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Abstract

WWOX is a putative tumour suppressor gene. Although this statement is supported

by the identification of homozygous deletions and high frequency allelic loss in a

variety of human tumours, the role of the gene in human tumourigenesis is still

unknown. In particular, no in vitro phenotype has been identified for WWOX. The

reconstitution of WWOX in the PEOl ovarian cancer cell line (homozygously deleted

for most of the coding region) resulted in the abolition of tumourigenicity in nude

mice. In vitro studies revealed that exogenous WWOX expression decreased the

ability ofPEOl cells to migrate towards fibronectin. Preliminary data also suggested

that lEIEOA-transfected PEO1 cells had a decreased ability to attach to matrigel and

fibronectin. In a panel of 71 human ovarian tumours, 2 tumours expressing no full-

length WWOX mRNA (isoform 1) were identified. The level of WWOX isoform 1

expression in the ovarian tumour panel was significantly lower than that of 13

normal human ovaries (pO.OOOl). In addition, the expression of the WWOX A6-8

transcript (isoform 4) was associated with high grade (p=0.006), advanced stage

(p=0.012) ovarian cancer. However, the expression of WWOX isoform 4 was also

identified in 9 out of 13 normal ovaries. The data presented support the role of

WWOX as a tumour suppressor in ovarian cancer and suggest that it plays a role in

the prevention of cell migration and attachment to extracellular matrix components.
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1.1 Epithelial ovarian cancer: epidemiology and aetiology

1.1.1 Ovarian cancer epidemiology

Ovarian carcinoma is the second most common cause of gynaecological cancer in the

developed world. It has the highest mortality of all gynaecological cancers, being

responsible for 5% of all cancer female deaths. It is the 4th most common cause of

cancer death in women [1]. In the USA there are 25000 new diagnoses of ovarian

cancer per year [2], In the UK there are 6000 new diagnoses and 4500 deaths [3],

The risk of developing ovarian cancer in a woman's lifetime is 1 in 70 [4]. The

incidence increases with age and reaches a peak between the ages of 70 and 74.

Advances in surgery and chemotherapy have improved survival from this disease

over the past 30 years but 70-80% of women still present with advanced disease and

the overall 5-year survival rate is less than 50% [1].

1.1.2 Ovarian cancer aetiology

At least 90% of ovarian cancers occur in patients with no family history of the

disease, suggesting that environmental factors have a strong effect upon ovarian

cancer risk. This is also suggested by the sharp increase in incidence in Japanese

women who emigrate from Japan to the USA [5],

Endocrine factors are thought to play a role in the development of ovarian cancer [6].

High levels of gonadotrophins in early menopause [6,7], factors associated with

excessive androgenic stimulation of ovarian epithelial cells [7] and exposure to

fertility drugs or hormone replacement therapy [8,9] have all been implicated as

increasing the risk of ovarian cancer. Also, multiparity and use of the oral
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contraceptive pill have been noted to decrease the risk of ovarian cancer [10]. These

findings led to the 'incessant ovulation hypothesis' and the 'gonadotropin

stimulation hypothesis' [7], The former hypothesis suggests that ovarian cancer

arises as a result of repeated proliferative repair cycles of damaged ovarian

epithelium following ovulation. This trauma results in the formation of stromal

epithelial clefts and inclusion cysts. The cumulative genetic damage predisposes to

carcinogenesis. The 'gonadotrophin stimulation hypothesis' proposes that hormonal

stimulation of ovarian epithelial cells on the ovarian surface or within inclusion cysts

may play a role in ovarian cancer development. There is also evidence that ovarian

cancer risk may be increased by factors associated with excess androgen stimulation

of ovarian epithelial cells and decreased by factors related to greater progesterone

stimulation [7],

Other factors proposed to have a role in ovarian cancer aetiology include increased

saturated fat intake [10].

1.2 Epithelial ovarian cancer: pathogenesis and histology

1.2.1 Pathogenesis of epithelial ovarian cancer

The common epithelial ovarian tumours constitute 60% of all ovarian neoplasms and

80 to 90% of ovarian malignancies. These arise from the surface epithelium or from

inclusion cysts that are formed during ovulation. The remaining tumours arise from

germ or stromal cells. As a result of its embryological origin, malignancies arising

from the ovarian surface epithelium can resemble a variety of tissues of Mullerian
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origin including the fallopian tube (serous carcinomas), the endocervix (mucinous

tumours), the endometrium (endometrioid tumours) and the endometrial glands that

occur in pregnancy (clear cell tumours).

Malignant cells are shed from the ovarian surface and they can spread in the

peritoneal fluid to any intra-peritoneal surface. Ovarian cancer often attaches to and

grows in the omentum. Lymphatic spread may be via the infundibulopelvic ligament

to para-aortic and para-caval lymph nodes, through the broad ligament to the external

iliac, obturator and hypergastric lymph nodes, or more rarely, via the round ligament

to the inguinal lymph nodes.

1.2.2 Histology of ovarian cancer

There are three main subgroups of ovarian carcinoma: epithelial (accounts for 80-

90%), stromal and germ cell. Stromal and germ cell tumours are separate entities

that will not be considered here. Epithelial ovarian neoplasms can be divided into

three subtypes: benign, low malignant potential (borderline) and malignant. Benign

epithelial tumours occur in younger women (20-60 years), are often large, are

frequently cystic and almost always have a serous or mucinous histology. Ovarian

borderline tumours constitute about 15% of epithelial ovarian neoplasms and have a

much better prognosis than frankly malignant lesions [4], They affect an older age-

group than the benign ovarian neoplasms but a younger age group than malignant

epithelial tumours. Sixty percent of these tumours have a serous histology, 34% are

mucinous and the rest are of endometrioid, clear cell, Brenner or mixed epithelial

types. Histologically, borderline tumours have epithelial papillae with atypical cell

clusters, cellular stratification, nuclear atypia and increased mitotic activity but are
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differentiated from invasive tumours mainly because they do not show the same

pattern of invasion.

Malignant epithelial ovarian tumours can differentiate into a variety of mullerian-

type tissues: serous, mucinous, endometrioid and clear cell (in decreasing order of

frequency). The World Health Organisation Classification of malignant epithelial

ovarian tumours is shown in table 1.1. Histological tumour type has prognostic

significance in so much as clear cell histology has a worse prognosis and is thought

to require more aggressive adjuvant treatment in the setting of early disease than the

other histological subtypes.

Histological grade is classified from 1 (low grade) to 3 (high grade) and is based on

cytological detail and the degree to which a tumour forms papillary structures or

glands (i.e. the degree of differentiation). Again, histological grade is felt to be

prognostically important when deciding on adjuvant chemotherapy in early stage

disease.
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Table 1.1: World Health Organisation Classification of Common Malignant

Epithelial Ovarian Tumours

Malignant serous tumour

Adenocarcinoma, papillary adenocarcinoma, papillary cystadenocarcinoma
Surface papillary carcinoma

Malignant adenofibroma, cystadenofibroma

Malignant mucinous tumour

Adenocarcinoma, cystadenocarcinoma

Malignant adenofibroma, cystadenofibroma

Malignant endometrioid tumour

Carcinoma

Adenocarcinoma

Adenoacanthoma

Malignant adenofibroma, cystadenofibroma
Endometrioid stromal sarcoma

Mesodermal (Mullerian) mixed tumour: homologous and heterologous
Clear cell (mesonephroid) tumour, malignant
Carcinoma and adenocarcinoma

Brenner tumour, malignant
Mixed epithelial tumour, malignant
Undifferentiated carcinoma

Unclassified
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1.3 Epithelial ovarian cancer: clinical management

1.3.1 Staging of ovarian cancer

Full staging of ovarian cancer requires a laparotomy via a vertical midline incision

and a total abdominal hysterectomy, bilateral salpingo-oophorectomy and

omentectomy. Patients with apparent early disease should have peritoneal lavage for

cytological examination. Para-aortic and pelvic lymph node sampling should also be

performed. According to the extent of microscopic disease the patient can be staged

using the FIGO (Federation Internationale de Gynecologie et d'Obstetric) system

(table 1.2). This then allows a decision to be made on the optimal systemic therapy

that should be offered to the patient.
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Table 1.2: FIGO staging system for epithelial ovarian cancer

FIGO stage Description
I Limited to ovaries

la Limited to one ovary, capsule intact, no tumour on ovarian surface
No malignant cells in ascites or peritoneal washings

lb Limited to both ovaries, capsule intact, no tumour on ovarian surface
No malignant cells in ascites or peritoneal washings

Ic Limited to one or both ovaries but with either: capsular rupture, tumour on ovarian
surface or malignant cells in ascites or peritoneal washings

II Tumour extends into pelvis but not beyond it

Ha Extension and/or implants on uterus and /or fallopian tubes
No malignant cells in ascites or peritoneal washings

lib Extension to other pelvic tissue
No malignant cells in ascites or peritoneal washings

lie Pelvic extension (2a or 2b) with malignant cells in ascites or peritoneal washings

III Microscopically confirmed peritoneal metastases outside the pelvis and/or regional
lymph node metastases

Ilia Microscopic peritoneal metastases beyond the pelvis

II lb Macroscopic peritoneal metastases beyond the pelvis, 2cm or less in greatest
dimension

IIIc Peritoneal metastases beyond the pelvis, more then 2cm in greatest dimension
and/or regional lymph node metastases

IV Distant metastases (excludes peritoneal metastases)

1.3.2 Role of surgery in management of epithelial ovarian

cancer

Removal of the malignancy in its entirety is the optimal treatment for ovarian cancer,

but only 20-30% of patients present with disease that is limited to the ovaries or

resectable pelvic organs. Most present with advanced disease that cannot be
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removed in its entirety. Optimal debulking surgery is defined as removal of the

majority of macroscopic disease, leaving residual disease nodules of less than 1 or

2cm (depending on the study). In the setting of advanced disease, studies have

shown that optimal debulking significantly improves survival [11], Advanced

ovarian cancer patients who have more than 2cm of residual disease have a median

survival of only 12-16 months compared to 40-45 months if the residual disease is

less than 2cm [12]. Although progression-free and overall survival are improved in

all advanced disease groups by chemotherapy, the greatest impact is in optimally

debulked patients [13],

1.3.3 Role of chemotherapy in early stage ovarian cancer

Stage I ovarian cancer patients have disease that is confined to the ovary (although

there may be malignant cells in ascites or peritoneal washings taken at the time of

surgery). Therefore some of these patients will be cured by surgery alone and do not

necessarily require chemotherapy. However, this is a heterogeneous group of

patients and it is important not to miss the high-risk patients who have minimal

disease and may potentially be cured by chemotherapy administered immediately

after surgery.

Stage II ovarian cancer has extended beyond the ovary but has not extended beyond

the pelvis and has no regional lymph node metastases. Stage II ovarian cancer, is not

now considered to be 'early disease' by many gynaecological oncologists but it has

been included in this group in the relevant trials (many of which were initiated in the

early 1990s) so it will be considered in this section.
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Thirty percent of patients with epithelial ovarian cancer present with disease that is

localised to the pelvic organs (FIGO stages I and II). The ten-year survival of these

patients is 50-70%, which is better than that for patients presenting with advanced

disease (15-25%) but is still unsatisfactory. Until 2003, the only randomised trials

investigating adjuvant chemotherapy in early-stage ovarian cancer were small and

did not take into account the extent of surgical staging [14-16],

Data from two large randomised controlled trials in this setting was provided by the

International Collaborative Ovarian Neoplasm Trial 1 (ICON1) [17] and Adjuvant

ChemoTherapy In Ovarian Neoplasm (ACTION) [18] studies, the full results of

which were reported both separately and when the trials were analysed in

combination [19] in the Journal of the National Cancer Institute in 2003. These

studies randomised early-stage ovarian cancer patients into chemotherapy and no

chemotherapy arms.

There were important differences between the trials in terms of stage of disease that

was eligible and surgical recommendations. At first glance, the outcomes of the

trials appear similar. When they were analysed in combination [19] there was a

better overall survival (OS) for patients in the chemotherapy arm (82% versus 74%;

p=0.008). Recurrence-free survival (RFS) was also better for the patients in the

adjuvant chemotherapy arm (76% versus 65%; p=0.001).

When the ICON 1 study was analysed independently [17] a similar result was

obtained. The women who received adjuvant chemotherapy had a better overall

survival (hazard ratio [HR] of 0.66, 95% confidence interval [CI] =0.45-0.97;

p=0.03) and recurrence-free survival (HR=0.65, 95% CI= 0.46-0.91; p=0.01). The

investigators in this trial concluded that platinum-based adjuvant chemotherapy
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improved survival and delayed recurrence in patients with early-stage ovarian cancer.

As the majority of the centres in this trial used single-agent carhoplatinum, they

recommended the use of this as adjuvant treatment of early-stage ovarian cancer.

When the ACTION study was analysed independently [18], it flagged up what may

be an important issue when considering the results of these studies. In this study

there was no statistically significant difference in overall survival between the two

trial arms. Recurrence-free survival was however significantly improved in the

adjuvant chemotherapy arm (HR=0.63, 95% CI=0.43-0.92; p=0.02). Only about one

third of the patients in this study had been optimally staged (despite a determined

effort to maximise this). Among patients in the observation arm, optimal staging was

associated with a statistically significant improvement in overall and recurrence-free

survival (HR=2.31 [95% CI= 1.08-49.6]; p=0.03 and HR=1.82 [95% CI=1.02-3.24];

p=0.04 respectively) suggesting that the optimally staged group had better risk

disease than the suboptimally staged group. No such association was observed in the

chemotherapy arm. In the non-optimally staged patients, adjuvant chemotherapy

was associated with a statistically significant improvement in overall and recurrence-

free survival (HR=1.75 [95% CI= 1.04-2.95]; p=0.03 and HR=1.78 [95% 0=1.15-

2.77]; p=0.009 respectively). In the optimally staged patients no benefit from

adjuvant chemotherapy was seen. Thus, the poor prognosis of the non-optimally

staged patients could be corrected by administering adjuvant chemotherapy. The

suggestion from this study is that the non-optimally staged group may have more to

gain from adjuvant chemotherapy because it contains occult stage III patients and the

chemotherapy may work predominantly by affecting small volume or microscopic

tumour implants or metastases that were unnoticed at the time of surgical staging.
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Indeed, it has been shown that incompletely staged ovarian carcinoma harbours

occult stage III disease in 20-25% of patients [20-22], It may also be that the

optimally staged subgroup is too small to show a significant difference. In addition,

the completeness of surgical staging was found to be an independent prognostic

factor.

The main conclusion that can be drawn from the ACTION trial is that complete

surgical staging of early-stage ovarian cancer is extremely important. Despite the

fact that, in this trial, strict guidelines were set for optimal surgical staging, only one

third of patients were optimally staged. The problem is that early ovarian cancer

often mimics a benign ovarian cyst clinically, so the surgery is performed by

clinicians who are less aware of the requirements for optimal staging of ovarian

cancer (including lymph node biopsy). As regards adjuvant chemotherapy, the

ACTION trial would suggest that its use in early-stage ovarian cancer is mainly

effective in patients with occult residual disease, according to the subgroup analysis.

This conclusion could also explain the findings of the ICON1 trial and the results of

the combined analysis of the ICON1 and ACTION trials.

Considering the two trials, the most valid conclusions may be firstly that optimal

surgical staging is very desirable (if at all possible) and secondly that if optimal

surgical staging is not possible then patients with early stage ovarian cancer should

be offered adjuvant chemotherapy as there is evidence for statistically significant

benefits in terms of overall and progression-free survival in this group (perhaps by

virtue of the presence of patients with occult stage III disease in the group). Thus, it

seems that there is a role for adjuvant chemotherapy in some of the patients that we

currently define as early stage ovarian cancer but we are still unable to identify those
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patients who stand to benefit. Perhaps the use of molecular markers, gene expression

profiles or proteomics will facilitate this. Further randomised trials are required to

clarify this area of controversy but until then local opinion will determine what

constitutes 'high risk' for early stage ovarian cancer patients.

1.3.4 Role of chemotherapy in the treatment of advanced

stage ovarian cancer

Several meta-analyses published in the 1990s [23-25] clarified the roles of

cisplatinum, carboplatinum and doxorubicin in the treatment of advanced ovarian

cancer. The main controversy has been regarding whether the addition of paclitaxel

to platinum-containing chemotherapy is beneficial in this setting. There have been 4

large [26-29] trials comparing these regimens but they have delivered conflicting

results. The first trial reported was the GOG-111 (Gynaecology Oncology Group)

trial [26] which randomised 410 patients to either paclitaxel and cisplatin or

cyclophospamide and cisplatin. The former group were strongly favoured in terms

of overall survival, with a hazards ratio of 0.61 (95% CI 0.47-0.79). Following this a

European-Canadian Intergroup trial (OVIO) [28] performed the same randomisation

in 680 patients and confirmed the findings of GOG-111. The cisplatinum-paclitaxel

group were favoured in terms of overall response (59% versus 45%), complete

clinical response (41% versus 27%), progression-free survival (PFS; 15.5 months

versus 11.5 months) and overall survival (35.6months versus 25.8 months). The

conclusion drawn from these trials was that cisplatinum and pacltiaxel was the

optimal first-line treatment for advanced ovarian carcinoma. However, this

conclusion was contradicted by the findings of two other trials, GOG-132 [27] and
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IC0N3 [29]. In GOG-132, 648 patients were randomised between three arms

consisting of single agent paclitaxel, single agent cisplatinum and the same

cisplatinum/paclitaxel combination used in GOG-111. Four hundred and twenty-

four patients were randomised between the latter two regimens (single-agent

paclitaxel was clearly inferior in terms of response rate, complete response rate and

median progression-free survival) but the results suggested that there was no benefit

for paclitaxel/cisplatinum over single agent cisplatinum. These groups did not

significantly differ in response rate (67% in both groups), progression-free survival

(16.4 months for cisplatinum alone, 14.1 months for the combination) or overall

survival (30.2 months for cisplatinum alone, 26.3 months for the combination.

By far the largest of the 4 studies, ICON3 [29] was reported in the Lancet in 2002.

This study compared the carboplatinum/paclitaxel combination to either

carboplatinum alone or a combination of cyclophosphamide, adriamycin and

cisplatinum (CAP) in 2074 patients. Median progression-free survival and overall

survival were not significantly different between the arms of the study. There was

also no clear evidence that paclitaxel plus carboplatin was more or less effective than

control in any subgroup for either overall survival or progression-free survival.

Therefore this study concluded that single-agent carboplatin, CAP and

carboplatin/paclitaxel are all safe and show similar effectiveness up to 5 years as first

line treatments for women requiring chemotherapy for ovarian cancer. Of the

treatments, single-agent carboplatinum had the best toxicity profile. Possible reasons

for the differences between the findings of these four randomised controlled trials

are: differences in the extent of cross-over to the taxane-based treatment in the

control group; differences in the patient entry criteria for the trial and differences in
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the treatment administered in the research or control groups. In particular, the

combination of cisplatinum with cyclophosphamide as given in GOG-111 and OVIO

may well have been an inferior control arm to the optimum dose single-agent

platinum used in GOG-132 and ICON3 [30], This does not mean that paclitaxel does

not have a role in ovarian cancer chemotherapy. Indeed, many patients in the control

arm of ICON3 received it when they relapsed. Rather, we need to find the optimal

patient group and time in the disease course for its administration.

Equivalence of cisplatin and carboplatin from meta-analyses plus concerns about

neurotoxicity of the cisplatinum/paclitaxel combination led many countries to use

carboplatinum plus paclitaxel as the routine treatment for these women. Preliminary

results from three randomised trials [31-33] comparing paclitaxel plus carboplatinum

with paclitaxel plus cisplatin suggest that they are very similar in terms of

progression-free and overall survival but with decreased neurotoxicity for the former

combination.

1.3.5 Chemotherapy for relapsed ovarian cancer

Patients whose disease progresses on first-line therapy or who relapse within 3

months of treatment are considered to be platinum refractory. Patients who respond

to primary treatment but relapse within 6 months are considered platinum-resistant.

Patients who relapse more than 6 months after completion of initial therapy are

platinum-sensitive. At the time of relapse, platinum-sensitive patients should be re-

challenged with platinum. Platinum-refractory patients, platinum-resistant patients

or patients who have been platinum-sensitive but whose disease has become

platinum-resistant should be treated with paclitaxel (if this was not used first-line). If
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they have already been treated with paclitaxel, they should be considered for

treatment with topotecan, liposomal doxorubicin, or etoposide. The response rate in

this setting is between 7 and 33% [34], There is little evidence for patient benefit

from third line treatment or beyond.

1.4 Epithelial ovarian cancer: molecular biology

Much progress has been made in the identification of the molecular basis for

hereditary ovarian cancer but this accounts for only 5-10% of all ovarian cancer and

less is known about the molecular biology of the sporadic form of the disease. The

BRCA1 and BRCA2 genes have been well studied because they are high-penetrance

susceptibility alleles. Many other genetic variants in low-penetrance susceptibility

alleles may moderately increase the risk of ovarian cancer. These genetic variants

may be much more common in the population than high-penetrance gene mutations

and therefore may make a greater contribution to ovarian cancer in the population

than mutations in high-risk groups. However, genetic heterogeneity makes these

alleles difficult to identify.

1.4.1 Hereditary ovarian cancer

The proportion of ovarian cancers that are hereditary is among the highest for

common adult cancer [35], Previously, hereditary ovarian cancer was descriptively

categorised into three clinical syndromes: hereditary breast and ovarian cancer

syndrome; hereditary-site specific ovarian cancer syndrome and hereditary non-

polyposis colon cancer syndrome (HNPCC). With the possible exception of the
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latter syndrome it is now more useful to characterise hereditary ovarian cancer as an

autosomal dominant disorder of specific gene mutations.

1.4.2 BRCA1 and BRCA2 genes

The BRCA1 and BRCA2 genes account for most cases of hereditary ovarian cancer.

BRCA1 is located at chromosome 17q21 and BRCA2 is located at chromosome

13ql2-13. The hereditary breast and ovarian cancer syndrome caused by mutations

of these genes is inherited in an autosomal dominant fashion, with variable degrees

of penetrance. Mutations in BRCA1 confer a 15-45% lifetime risk of ovarian cancer

[36] and a 50-85% lifetime risk of breast cancer. BRCA2 mutations confer a lower

(10-20%) lifetime risk of ovarian cancer but a similar lifetime risk of breast cancer.

Both protein products have a role in genomic stability. More than five hundred

different mutations have been reported in the BRCA1 gene and more than three

hundred have been reported in the BRCA2 gene. The position of the BRCA1 or

BRCA2 mutation within the coding region of the gene may influence the risk of

breast or ovarian cancer. Amongst BRCA2 mutation carriers, the risk of ovarian

cancer is greatest for women who have mutations within the ovarian cluster region.

These individuals have a 1.9-fold increased risk of ovarian cancer and a decreased

risk of breast cancer [37]. Among BRCA1 mutation carriers, if the mutation is in the

5' two-thirds of the gene, the relative proportion of breast cancer to ovarian cancer is

higher [38].
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1.4.3 Hereditary non-polyposis colon cancer syndrome

(HNPCC)

HNPCC is caused by mutations in mismatch repair (MMR) genes such as hMLHl,

hMSH2, hMSH6, PMS1 and PMS2 [39]. Female mutation carriers have an

increased risk of colorectal and endometrial cancer, often of early onset. They are

also at increased risk for ovarian, gastric, urologic tract, small bowel, hepatobiliary

and brain tumours [40], Mismatch repair gene defects in ovarian cancers have been

shown to increase their platinum resistance [41-44],

1.4.4 Sporadic ovarian cancer

BRCAl and BRCA2 mutations are infrequent in sporadic forms of ovarian cancer.

There is however accumulating evidence that despite a paucity of somatic mutations,

the expression of BRCAl is frequently decreased in sporadic tumours.

Hypermethylation of the BRCAl promoter or altered activity of BRCAl upstream

transcription factors may contribute to this [45]. Genetic alterations in other tumour

suppressor genes and oncogenes are found at higher frequency in the sporadic form

of the disease.

1.4.5 Clonal origin of ovarian cancer

Microsatellite instability studies and studies of X chromosome inactivation

comparing molecular features of bilateral ovarian cancer and metastases suggest that

these cancers are clonal in origin [46]. Loss of heterozygosity (LOH), K-ras and p53

mutation analyses suggest that borderline or benign ovarian lesions are not

precursors of epithelial ovarian cancer. There is some evidence, however, that
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invasive tumours may have the same clonal origin as neighbouring benign-appearing

cysts [47] and that endometrioid and clear cell ovarian cancers have the same clonal

origin as adjacent endometriosis [48],

1.4.6 Tumour suppressor genes in sporadic ovarian cancer

Unlike most epithelia, division of normal ovarian surface epithelial cells gives rise to

two daughter cells with equal growth potential [49]. This means that mutated tumour

suppressor genes (TSGs) can more easily sustain a 'second hit' and play a role in the

development of ovarian cancer. The obvious examples of this are BRCA1, BRCA2

and p53. As stated above BRCA1 and BRCA2 are infrequently mutated in sporadic

ovarian cancer. Alterations in p53, however, are the commonest genetic mutation

identified in sporadic ovarian cancer so far.

Genetic alterations in p53 are present in 50% of advanced stage tumours [4]. The

frequency of p53 mutations increases with increasing stage of disease (58% in stage

III/IV ovarian cancer and 37% in stage I/II disease [50]). Mutations or over-

expression of p53 (suggestive of mutant p53) are most frequently found in ovarian

cancers of serous histology. Functional, wild-type p53 is required for ovarian cancer

sensitivity to a variety of chemotherapeutic drugs and radiation in vitro. This is

discussed in section 1.4.8.

Some of the other putative tumour suppressor genes in ovarian cancer are GPC3,

NOEY 2, OVCA1, DOC2 [46], OPCML [51] and WWOX [52,53], Widespread loss

of heterozygosity (LOH) in ovarian cancer suggests that there may be a number of

undiscovered TSGs that are inactivated during ovarian carcinogenesis.
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1.4.7 Oncogenes and growth factors in ovarian cancer

A common feature of all cancers is the central role that signal transduction pathways

appear to play in the malignant phenotype. The mitogen-activated protein kinase

(MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are examples of two

pathways that send diverse signals to the cell controlling proliferation, survival and

cell growth. Up-regulation or constitutive activation of any members of these

pathways (from the extracellular ligand to the intranuclear transcription factor) can

result in development of a more oncogenic phenotype.

Tanaka et al [54] showed that TGF(3l activated two different src-dependent signal

transduction pathways (Src-MAPK-PI3K-NF-KappaB-dependent and Src-MAPK-

AP-1 -dependent) to bring about TGFpl -dependent urokinase plasminogen activator

(uPA) upregulation and promotion of human ovarian tumour cell invasion.

Hongo et al [55] transfected a dominant-negative variant of the type 1 insulin-like

growth factor receptor (IGF-1R) into CaOV3 human ovarian cancer cells resulting in

inhibition of tumourigenicity in vivo and inhibition of anchorage-independent growth

in vitro. Also, when the purified dominant-negative IGF-1R recombinant protein

(designated 486/STOP) was injected into nude mice implanted with wild-type

CaOV3 cells, tumourigenicity was inhibited. These findings suggest a role for this

growth factor receptor in ovarian tumourigenesis.

Sewell et al [56] showed that the epidermal growth factor (EGF) receptor-specific

tyrosine kinase inhibitor ZD 1839 prevented transforming growth factor-alpha

(TGFa)-stimulated growth of 4 ovarian cell lines (PE01, PE04, SKOV-3, OVCAR-

5) that expressed the epidermal growth factor receptor. TGFa-stimulated

phosphorylation of the epidermal growth factor receptor and downstream
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components of the MAP kinase and PI-3 kinase signalling cascades were also

inhibited. This data adds weight to the view that the EGF receptor may be important

in ovarian carcinogenesis and may be a suitable therapeutic target.

A related receptor that may also be a therapeutic target is the heparin-binding EGF-

like growth factor (HB-EGF) receptor. Expression of this receptor was shown to be

significantly increased in cancer tissues and in patients' ascitic fluid [57],

Exogenous expression of the gene also increased the tumourigenicity in nude mice of

SKOV-3 and RMG-1 ovarian cancer cells.

Matei et al [58] showed that imatinib mesylate (Gleevec), another tyrosine kinase

inhibitor suppressed in vitro growth of primary ovarian cultures in a platelet-derived

growth factor (PDGF) receptor alpha-specific fashion, suggesting that stimulation of

this receptor may contribute to the proliferation of ovarian cancer cells.

The vascular endothelial growth factor (VEGF) is thought to play a central role in

tumour angiogenesis. Expression of VEGF was shown to be significantly higher in

ovarian tumours compared to benign lesions (p<0.001) in a study of patient material

[59]. VEGF protein expression was also significantly associated with poor survival

in this cohort of ovarian cancer patients.

The role of growth factors, growth factor receptors, tyrosine kinases and other signal

transduction molecules is central to the malignant phenotype. The challenge is to use

this information with a view to aquiring new, perhaps individualised therapies. The

use of Gleevec in chronic myeloid leukaemia and gastro-intestinal stromal tumours

was the first example of such a therapy and its efficacy in these settings provides

hope that small molecule inhibitors can be developed for other malignancies,

including ovarian cancer.
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1.4.8 Mechanisms of drug resistance in ovarian cancer

Despite being a very chemosensitive tumour with high initial clinical response rates

to single agent platinum (cisplatin or carboplatin) or combination

carboplatin/paclitaxel therapy, ovarian cancer usually relapses, often with

chemoresistant disease. Clinical drug resistance can be due to inadequate drug

exposure for pharmacokinetic reasons: the dose administered may be too small; the

bioavailability of the drug may be insufficient or the delivery of the drug to the site

of the cancer may be inadequate. It is assumed that following intravenous

administration of recommended doses of platinum or taxanes that the vast majority

of patients will receive a dose of cytotoxic agent to their tumour that is limited only

be the tolerance of their other bodily systems. The real challenge in ovarian cancer is

to identify the mechanisms responsible for resistance at the level of the cancer cell

with a view to targeting these (or creating cytotoxic agents unaffected by these

mechanisms) in an effort to improve therapy. The main cellular alterations that

result in drug resistance in ovarian cancer are: decreased cellular drug influx;

increased cellular drug efflux; mutation of drug targets and apoptotic evasion/cell

cycle effects.

a) Decreased cellular drug influx

Andrews et al [60] demonstrated that cisplatin accumulation in the 2008 human

ovarian cancer cell line could be interrupted by blocking the Na+, K+ ATPase with

ouabain and that cisplatin accumulation was partly Na+ dependent. In another study

performed in 2008 ovarian cancer cells, Jekunen et al [61] showed that cellular

uptake of a cisplatin analogue in cisplatin-resistant 2008 cells was only 25% of that
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in cisplatin-sensitive 2008 cells. This was, however, not the only cause of resistance

as DNA intrastrand adduct formation (the cytotoxic effect of cisplatin) was reduced

even further in the cisplatin-resistant 2008 cells to 11% of that in the cisplatin-

sensitive cells. Katano et al [62] used 3 pairs of human ovarian cancer cell lines,

each consisting of a sensitive parental line and a stably cisplatin-resistant subline

derived by in vitro selection. They showed that accumulation of cisplatin in the

resistant sublines ranged from 23 to 55% of the sensitive cells of each pair. The

changes in uptake were paralleled by similar changes in copper uptake suggesting

that cisplatin may enter and exit the cell via transporters that normally mediate

copper homeostasis. The role of decreased platinum influx in cisplatin-resistant

ovarian cancer in the clinical setting is unknown.

In a highly paclitaxel-resistant derivative of the CABA1 ovarian cancer cell line,

paclitaxel influx was significantly reduced and delayed compared to parental cells

[63]. There were no changes in cell surface expression of MRP1 (multidrug-

resistance-associated protein 1), MRP2 or P-glycoprotein in these cells.

b) Increased cellular drug efflux

Increased efflux of hydrophobic drugs from the cancer cell can be brought about by

upregulation of adenosine triphosphate (ATP[-dependent efflux pumps such as P-

glycoprotein and multidrug-resistance-associated protein (MRP) which are encoded

by the ABC group of genes. This phenomenon is known as multidrug resistance

(MDR).

Baekelandt et al [64] showed that 47% of a cohort of stage 3 ovarian cancer patients

expressed P-glycoprotein (by immunohistochemistry) prior to chemotherapy
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exposure. P-glycoprotein expression correlated with unfavourable prognostic factors

such as advanced age, presence of ascites and larger residual disease deposits after

primary surgery. The high frequency of expression prior to cytotoxic drug exposure

suggests that it is not necessarily an adaptation to chemotherapy exposure although

quantitation of expression before and after chemotherapy would determine if

upregulation had occurred. Regardless of the mechanism of induction, the P-

glycoprotein-negative cases responded significantly better to combination

chemotherapy with cisplatin and epirubicin (p<0.001) and in the multivariate

survival analysis P-glycoprotein expression was an independent predictor of both

overall (p=0.045) and progression-free (p=0.006) survival. These findings suggest it

would be a suitable target in patients treated with this regime (which would no longer

be regarded as the standard of care). Brinkhuis et al [65] investigated the prognostic

value of P-glycoprotein and a number of MDR-related proteins in advanced ovarian

cancer. In the multivariate analysis, the MDR-related protein LRP (lung resistance

protein) was the only such factor whose expression was of independent prognostic

value. Also, in a study of 54 patients with advanced ovarian cancer (a subset of 23 of

whom underwent 'second-look' surgery) expression of P-glycoprotein was not

associated with chemoresistance [66] although the study was too small to rule out the

possibility that such an association exists. A further study by the same group [67]

revealed significantly increased expression of LRP and MRP in the epithelial

component of ovarian cancers compared to the epithelial component of normal

ovaries. There was, however, no correlation between expression of either of these

molecules and chemosensitivity. In one study, Yokoyama et al [68] demonstrated

that MRP expression at time of initial surgery was an independent prognostic factor
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for chemotherapy resistance. The 5-year disease-free survival rate was 26% for

patients with MRP-positive tumours and 75.2% for those with MRP-negative

tumours. Therefore on the basis of the in vitro data, it is debatable whether P-

glycoprotein plays a role in chemoresistance in ovarian cancer (in terms of platinum-

resistance at least). There are individual studies that suggest a role for LRP and

MRP although the data is conflicting.

In view of the unclear in vitro data for the role of P-glycoprotein, it is perhaps

unsurprising that Valspodar (PSC 833, an MDR modulator) has shown minimal

efficacy in overcoming resistance in pre-treated ovarian cancer patients [69,70].

c) Mutation of drug targets

The classical example of mutation of a drug target in ovarian cancer is the paclitaxel

resistance caused by (3-tubulin mutation at its target site [71,72], There is also

evidence of paclitaxel resistance in ovarian cell lines secondary to a-tubulin

mutation [73], (It is worth noting however that many microtubule mutations that

result in paclitaxel-resistance do not affect binding to the microtubule. Mutations

that cause a decrease in microtubule stability, for example, result in paclitaxel

resistance [74]).

As cisplatin causes cancer cell death by the formation of intrastrand and interstrand

DNA adducts (mainly the former) and does not possess such a specific drug target,

cisplatin resistance is less likely to be mediated in this fashion.
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d) Apoptotic evasion / cell cycle effects

The above forms of drug resistance affect the ability of a drug to interact with its

target. Drug resistance in cancer, however, is often oncogenic when the drug is able

to interact with its target but downstream pathways of apoptosis or cell cycle arrest

are blocked. The cancer cell can therefore continue to proliferate unchecked,

resulting in the propagation of unrepaired DNA to daughter cells with the increased

propensity to aquire more mutations and develop a more malignant phenotype (i.e.

the cell develops genomic instability).

In response to DNA damage, the normal cellular response is either to invoke cell

cycle arrest at the Gi/S, S or G2/M checkpoints (allowing time to repair the insult) or

to undergo apoptotic cell death. In terms of chemosensitivity to DNA damaging

agents in cancer in general, experimental models suggest that there may be a critical

balance between cell cycle arrest and apoptosis [75]. If the former is favoured then

this may allow DNA repair, survival of the cell and drug resistance. Data relating to

oncogenic resistance, specifically in ovarian cancer, will now be considered.

Exposure of ovarian cancer cells to cisplatin results in the up-regulation of pro-

apoptotic factors such as p53, Bax and Fas [76] and down-regulation of anti-

apoptotic cell-survival factors such as Xiap (X-linked inhibitor of apoptosis protein)

and Akt [77]. The desired effect of this is cancer cell death by apoptosis. Cisplatin

resistance of some ovarian cancer cells has been shown to be due to an unfavourable

expression profile of pro-apoptotic and anti-apoptotic factors following cisplatin

exposure.

p53 is central to the response to cellular damage. It has a plethora of functions but

prevents propagation of mutations to daughter cells by either initiating cell cycle
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arrest (activating DNA repair genes and factors such as p21 Wafl/ClP1 ^ leading to G1

and G2 arrest) or triggering the cell to undergo apoptosis. While p53 mutations in

ovarian cancer have been shown to cause cisplatin resistance [78], they are also

associated with an increased sensitivity to paclitaxel therapy [79].

Fas is a death receptor belonging to the tumour necrosis factor superfamily.

Stimulation of this receptor leads to activation of initiation caspases such as caspase

8 followed by activation of execution caspases such as caspases -3 and -7.

Schneiderman et al [76] demonstrated that cisplatin induced Fas and Fas ligand

expression and apoptosis in the cisplatin-sensitive A2780 and OV2008 ovarian

cancer cell lines. In the cisplatin-resistant derivatives of these cell lines, although

cisplatin upregulated Fas, it failed to induce Fas ligand or apoptosis. This suggests

that failure to up-regulate Fas may be partly responsible for chemoresistance in these

cells although the mechanism responsible for this remains unclear.

Xiap is an anti-apoptotic factor which inhibits caspase-9, caspase -3 and caspase-7.

Li et al [77] demonstrated that cisplatin causes down-regulation of Xiap in

chemosensitive human ovarian surface epithelial (HOSE) cells but not in their

chemoresistant counterparts. Transfection of platinum-sensitive HOSE cells with

Xiap sense cDNA resulted in a decrease in the ability of cisplatin to induce apoptosis

in these cells. Sasaki et al [80] used antisense to down-regulate Xiap in C13*,

A2780S (wild-type p53), A2780-cp (mutant p53) and SKOV3 (null p53) ovarian

cancer cell lines. They showed that Xiap down-regulation induced apoptosis in the

p53 wild-type cells but not in the mutated or null cells. Xiap down-regulation in this

fashion caused caspase-3 activation, caspase-mediated MDM2 processing and p53

accumulation. Adenoviral transfection of p53 into the p53-mutated or null cells
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significantly increased the pro-apoptotic effect of Xiap antisense expression. These

findings show the effect that p53 status has on the role of Xiap in cisplatin-induced

apoptosis. More recently, Xiap overexpression has been shown to inhibit FAK

cleavage and apoptosis in cisplatin exposed OV2008 ovarian cancer cells [81],

suggesting that this component of integrin-mediated signal transduction may be

involved in the contribution ofXiap to cisplatin resistance.

Components of the phosphatidyl inositol-3-kinase/AKT signalling pathway are

frequently altered in human cancer. Activated Akt modulates the function of

numerous substrates involved in the regulation of cell survival, cell cycle progression

and cellular growth. Akt is a serine/threonine kinase which exists in 3 separate

isoforms (AKT1, AKT2 and AKT3). Yuan et al [82] demonstrated that

constitutively active AKT2 renders cisplatin-sensitive A2780S ovarian cancer cells

resistant to cisplatin whereas dominant negative AKT2 sensitises A2780S and

cisplatin-resistant A2780CP cells to cisplatin induced apoptosis. This inhibitory

effect of AKT2 on apoptosis is mediated by the phosphorylation of ASK1 and the

inhibition of its kinase activity. This, in turn, blocks activation of JNK and p38 and

inhibits the conversion of Bax (a pro-apoptotic factor) to its active form. Fraser et al

[83] showed that both Xiap and Akt can modulate cisplatin sensitivity individually

but that Xiap requires Akt for its full function. They also demonstrated that the

effect of dominant negative Akt to sensitize ovarian cancer cells to cisplatin only

occurs in the presence of functional p53. In OV2008 ovarian cancer cells, but not in

their chemoresistant counterpart (CI3*), cisplatin was shown to increase p53,

decrease Xiap and induce apoptosis. However, all of these features could be returned

to CI 3* cells by transfection of dominant negative Akt.
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Therefore, p53, Xiap and Akt2 are all important, functionally related factors in

deciding whether cisplatin-exposed ovarian cancer cells will undergo apoptosis. The

ability for a cancer cell to engage apoptotic pathways following cisplatin-induced

DNA damage now appears to be crucial in determining its platinum-sensitivity.

There is accumulating evidence that the mismatch repair pathway in general [41,84-

86] and the MLH1 gene in particular may be key factors in this process.

Brown et al [42] demonstrated that 9 out of 10 independent cisplatin-resistant

derivatives of the A2780 cell line show loss of expression (at the protein level) of the

hMLHl and hPMS2 subunits of the MutLa-mismatch repair complex. At the RNA

level this was shown to be the result of loss of expression of hMLHl. They also

showed an increase in ovarian tumours negative for hMLHl (at the protein level) at

second-look laparotomy after platinum and cyclophosphamide-containing

chemotherapy (36% vs 10%). This approached statistical significance (p=0.059) and

suggests that loss of hMLH 1 expression may be a mechanism of acquired platinum

resistance. The cisplatin-resistant A2780/cp70 cells showed considerably less G2

arrest than the cisplatin-sensitive parental A2780 cells following exposure to

cisplatin (1.3 fold and 9 fold increases in numbers ofG2/M phase cells 48 hours after

cisplatin exposure respectively). Following cisplatin treatment there is a reduction in

A2780 parental cells entering S phase which is not present in the cisplatin-resistant

lines. This suggests that the loss of the hMLHl subunit of the MutLa-mismatch

repair complex has resulted in disengagement of the cellular response to cisplatin-

induced DNA damage. It was later shown by the same group [44] that the reason for

the loss of hMLHl expression in the cisplatin-resistant A2780 cell lines was

hypermethylation of both hMLHl alleles (compared to just one hMLHl allele in the
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cisplatin-sensitive parent line). In the same study, two of the resistant cell lines were

treated with 5-azacytidine (an inhibitor of DNA methylation) resulting in re-

expression of hMLH 1 and an increase in cisplatin sensitivity. They then went on to

demonstrate that 3 out of 24 primary ovarian tumours were hypermethylated at the

hMLHl promoter and did not express hMLHl.

An important feature of the work with hMLHl is that the in vitro associations

between hMLHl promoter methylation, lack of hMLHl expression and cisplatin

resistance are reproduced in vivo. Plumb et al [43] showed that reversal of

A2780/cp70 (cisplatin-resistant ovarian cancer cell line) MLH1 promoter

hypermethylation in tumour-bearing nude mice with the demethylating agent 2'-

deoxy-5-azacytidine can restore cisplatin sensitivity in vivo. Taking the clinical

applicability of this one step further, Gifford et al [87] assessed the methylation

status of the hMLHl CpG islands in the plasma of ovarian cancer patients before

carboplatin/taxane chemotherapy and then again at the time of relapse. They found a

25% increase in methylation at relapse which significantly predicted poor overall

survival for these patients. Importantly, rather than concentrating on tumour

characteristics at diagnosis (relevant to intrinsic drug resistance) this method allows

analysis of cancer cell subpopulations that have become more apparent following

drug exposure (i.e. acquired drug resistance).

In a study of 134 patients with epithelial ovarian cancer (98.5% of whom had

received chemotherapy), Bali et al [88] investigated the expression levels of key

proteins involved in regulating the Gl-S-phase progression. They showed that in

univariate analysis reduced overall survival was associated with overexpression of

cyclin D1 (p=0.03) and p53 (p=0.03) and reduced expression of p27Kipl (p=0.05) and
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p21Wapl/Clfl (p=0.02). In multivariate analysis, overexpression of cyclin D1 and

combined loss of p21Wafl/ClP' were independent predictors of survival. Expression of

cyclins or cyclin-dependent kinases (CDKs) results in progress through cell cycle

checkpoints and cell proliferation. CDK inhibitors such as p21Wapl/Clfl, p27Kipl and

pl6Ink4a cause G1 arrest by binding to cyclin-CDK complexes. This study shows that

critical cell cycle regulatory proteins can predict the outcome of patients treated with

chemotherapy but does not prove a role in drug resistance. Sui et al [89] showed that

the frequency of cdk4 expression was increased in malignant compared to benign

ovarian tumours and that the frequency of expression of its inhibitor pl6Ink4a was

decreased in malignant compared to benign ovarian tumours. Although the loss of

pl6lnk4a expression was associated with high grade tumours, no role in

chemosensitivity was suggested. In fact, few studies have addressed the role of

specific cell cycle proteins in ovarian cancer chemosensitivity. One interesting study

directly addressed the question by transfecting the CDK inhibitor p21 WaP1/Clfl jnt0

SKOV3 and OVCAR3 ovarian cancer cells [90], This caused accumulation of cells

in G1 and G2 phase, in-keeping with the role of the protein in cell-cycle regulation

but was insufficient to totally maintain growth inhibition of the cells. The

p21 Wap'/clfi-transfeCted cells were more sensitive to cisplatin-induced apoptosis

suggesting that p2lWapl/Cltl increased their cisplatin-resistance. This is in contrast to

data in other cancer types which suggests that p21 protects cancer cells from

apoptosis [91-94],
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1.4.9 Molecules involved in ovarian cancer adhesion,

invasion and angiogenesis

CD44 [95,96], E-cadherin [97,98] and (31 [95,96] and (33 [95,96,99] integrins have

been demonstrated to play a role in the adhesion of ovarian cancer cells to the

peritoneum. Urokinase-type plasminogen activator [100], matrix metalloproteinases

(particularly MMP-2 [101,102] and MMP-9 [102,103]) and AP-2a[104] facilitate

the invasion and metastases of ovarian cancer cells. VEGF is highly expressed in

ovarian tumours [59] and malignant ascites [105]. It has a central role in

angiogenesis.

1.5 Common fragile sites and cancer

Fragile sites are non-random points of chromosome breakage that appear under specific

cell culture conditions. They are seen as breaks, gaps or decondensations in metaphase

chromosomes at conserved locations in mammalian cells. They are traditionally classified

as rare or common, although more recently a group, previously known as viral

modification sites [106], has been identified and considered as a separate entity.

Rare fragile sites are heritable, occurring in less than 1 in 20 individuals [107], They are

visible under specific tissue culture conditions (allowing further subclassification into

folate, distamycin or bromodeoxyuridine sensitive sites) and are associated with expanded

repeat sequence which cosegregates with the fragile sites and is shown to flank the fragile

site by fluorescent in situ hybridisation (FISH). Of these sites FRAXA and FRAXE are

associated with heritable mental retardation and FRA1 IB has been mapped very close to

the deletion breakpoint in Jacobsen syndrome [108],
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Common fragile sites (CFSs) in contrast are present in all humans, have been conserved

throughout mammalian evolution, are manifest in metaphase chromosomes in cell culture

at varying frequencies and are induced by aphidicolin, a DNA polymerase a/8 inhibitor.

They have less well characterised sequence requirements and do not appear to involve

expansion of repeats.

In 1984, Yunis and Soreng [109] observed a significant association between the

cytogenetic location of CFSs and known structural defects in cancer cells. This led to the

theory that CFSs (and the genes located at them) may contribute to cancer development or

progression. This theory was controversial because it could be argued that only once a

cell became a cancer cell did it develop the inherent instability to express the fragile site,

resulting in deletions or translocation events that could be seen as structural defects at the

cytogenetic level and were in this way associated with cancer. Thus, some investigators

felt that induction of the fragile site was secondary to the cancer rather than being a

causative step in its development. More recently however, 9 common fragile sites

(FRA2G [110], FRA3B [111] [112] [113], FRA16D [114] [115] [17] [116], FRA7G [117]

[117], FRA7H [118], FRA6E [119], FRA6F [120], FRA9E [121], FRAXB [122]) have

been fully or partially sequenced and characterised. This has resulted in the identification

of many genes located within or near the fragile sites and has allowed a more detailed

investigation of the role that these genes may play in cancer.

FHIT, located at FRA3B (the most frequently induced CFS in the human genome), was

the first identified gene at a CFS [123] and has been the subject of intense investigation

since this time. The fragile site is contained within the genomic structure of FHIT.

Multiple tumour types have been found to have homozygous deletions [124,125], loss of

heterozygosity (LOH) [2,123,124,126-131] and aberrant expression of FHIT [123,132]
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[2,124,125,127-129,133-135], Functional studies have pointed towards a role as a tumour

suppressor gene, and homozygous and heterozygous knock-out mice have been created

[136-140], Gene therapy to replace FH1T in the murine knockout mouse has also been

conducted [140],

WWOX, located at and spanning FRA16D (the second most commonly expressed human

CFS), was more recently identified and, similarly to FHIT, exhibits homozygous

deletions, LOH and aberrant expression in tumour cells (as discussed in section 1.6.10).

In vitro and in vivo functional studies also suggest a role as a suppressor of tumour

growth [52],

Seven genes map to >lMb of fragility in FRA2G and one of them has homology to the

LAGlHs tumour metastasis suppressor genes [110].

Parkin is located within FRA6E [119]. LOH [119], aberrant (exon-skipped) transcripts

[119] and decreased expression have all been associated with tumour tissue.

FRA6F contains 10 known genes, with another 9 genes located nearby [120]. One of the

genes within the fragile site induces senescence in vitro.

Three genes, CAV 1, CAV 2 and TESTIN are located at FRA7G [141], a region that

frequently shows LOH in multiple tumour types [142]. Functional studies in a CAV 1

knockout mouse suggest that it may act as a tumour suppressor [143]. Also the MET

oncogene is located telomeric to the fragile site and there is evidence of FRA7G being

involved in the amplification of this gene in a gastric cancer cell line [144],

FRA7H is a fragile site that shows allelic replication asynchrony [145] but appears to be

gene poor [118].

FRA9E contains 36 known genes; 6 of these are downregulated in ovarian tumour tissue

or cell lines [121].
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FRAXB contains 3 known genes. Loss of expression of one or more of these genes has

been identified in tumour tissue [122].

Many of the genes located at these CFSs share the features of tumour suppressor genes:

homozygous deletions, loss of heterozygosity, decreased expression in malignant tissue

compared to normal tissue and in some cases evidence of functional suppression of the

malignant phenotype in vivo or in vitro. However, evidence of truncating point mutations

is scarce and the role of the best-characterised genes (FH1T, WWOX and PARKIN) in

carcinogenesis is complicated by the presence of alternate transcripts that are more

frequently expressed in malignant tissue.

1.6 The WWOX gene: discovery and characterisation

1.6.1 Background to the discovery of the WWOX gene

Loss of heterozygosity (LOH) at chromosome 16q was described in ovarian, breast,

prostate and other cancers [146-151], raising the possibility that there was a tumour

suppressor gene located in this region. Later studies identified 16q23-24 as a region

of particularly high allelic loss in pre-invasive breast lesions and prostate cancer

[152-155], Following this, a region at 16q23.2 was found to be homozygously

deleted in malignant ovarian ascites using representational difference analysis as part

of a search for novel tumour suppressor genes in ovarian cancer [114], Overlapping

homozygous deletions were also found in the colorectal cancer cell line HCT116 and

the small cell lung cancer cell line WX330 and a 700kb physical map of this region
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was constructed [114], Homozygous deletions in this region were also identified in

the gastric carcinoma cell line AGS [115].

1.6.2 Discovery of the WWOX gene

In April 2000, the WWOX gene was mapped to 16q23 by researchers at the MD

Anderson Cancer Center [156]. Previous work by this group [152,157] had observed

a high incidence of LOH at 16q23.3-24.1 in pre-invasive breast cancer lesions,

leading them to speculate that there may be a tumour suppressor gene in this region

which had an important role in early breast carcinogenesis. On the basis of this, they

concentrated on the 16q23.3-24.1 interval, building a yeast artificial chromosome

(YAC) and bacterial artificial chromosome (BAC) contig, spanning the D16S518-

D16S516 region. Using conventional shotgun sequencing and cDNA isolation, they

identified numerous cDNA clones, 35 of which were sequenced. All of the cDNA

clones were mapped back to the corresponding BAC DNAs and their sequences were

compared with the genomic DNA sequence to identify evidence of exon-intron

structure. Only one of the cDNAs showed these features. Two corresponding

independent full-length clones were subsequently isolated from a placental cDNA

library. These full-length cDNAs showed a consensus sequence of 2264bp and a

predicted ORF of 1245bp with a 125 bp-long 5'UTR, a 870bp-long 3'UTR and a

polyadenylation signal AATAAA starting at position +2091. The putative start ATG

codon was located within a strong Kozak sequence (TCAGCCatgG). An in-frame

stop codon was present -30bp from the predicted translation start site, indicating that

the whole ORF had been cloned. The gene was named WWOX on the basis of the 2

types of functional domains that it encoded (2 WW domains and an oxidoreductase



domain; see sections 1.6.4-1.6.6). The gene spans a region of >lMb of genomic

DNA which encompasses FRA16D [114,115], the second most frequently expressed

common fragile site in the human genome [158].

1.6.3 Exonic structure of WWOX

Determination of the exon structure and exon-intron boundaries revealed that WWOX

is composed of 9 exons, ranging in size from 58 to 1060bp [156] (table 1.3). The

first exon is located in a CpG island starting at position -660 and extending into the

first intron at 292bp from the translation start site. Interestingly, intron 5 and intron 8

are very large (the latter is almost 800kb in size) [159], These introns contain the

sites of 4 translocation breakpoints participating in t(14;16)(q32;q23) translocations

in multiple myeloma [159,160], Consequently, at least one WWOX allele is

truncated in some cases of multiple myeloma, although perhaps the most pertinent

alteration in these cases is the up-regulation of c-maf brought about by the

proximation of the oncogene to the immunoglobulin heavy chain promoter.
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Table 1.3: WWOX exon size (isoform 1; GenBank accession no. AF211943)

Exon Starting Position in cDNA Exon Length (bp)

1 1 232

2 233 65

3 298 58

4 356 179

5 535 107

6 642 89

7 731 186

8 917 265

9 1182 1060

6a 642 129

9a 1182 51

10a 1233 33

1.6.4 WWOX protein product

The 1245bp WWOX open reading frame encodes a 414 amino acid protein product

[156] (figure 1.1). It has two regions near the N-terminus which have high

homology to WW domain sequences. WW domains bind to polyproline stretches of

binding partners in the cell. The first region (amino acids 18-47) shows typical

features of a WW domain, with two highly conserved tryptophan and one proline

residue. The second region (amino acids 59-88) has one tryptophan replaced by a
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tyrosine residue; this is an alternative motif which is seen in other WW domain

proteins. The other main region has homology to the steroid

dehydrogenase/reductase (SDR) family of proteins. This family of enzymes oxidise

or reduce a variety of hydroxy or keto substrates. This domain is synonymously

referred to as the SDR domain, the oxidoreductase domain or the alcohol

dehydrogenase (ADH) domain. The most conserved features of SDR proteins are the

cofactor (GXXXGXG) and substrate (YXXXK) binding sites. The cofactor bound

by WWOX is NAD(H) or NADP(H) and this binds to site GANSGIG at positions

131-137 with the potential substrate binding site YNRSK at positions 293-297

(binding sites shown in figure 1.1). Due to the sequence of the substrate-binding site

and the presence of a serine residue 12 amino acids upstream of the YNRSK

substrate-binding motif, it is thought that a steroid moiety is the most likely substrate.

In keeping with this, Northern blot analysis performed in normal human tissues

revealed highest expression ofWWOX in testis, prostate and ovary, but not in breast

[156], Proteins that bind to WWOX via the WW domains may be involved in

steroid-receptor interaction or regulation.
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Figure 1.1: WWOX protein product

tc categcagctgg cggg tgtacaca
ihrswwvyt

ctgctgtttaccttggcgaggcctttcaccaagtccatgcaacagggagctgccaccacc
LLFTLARPFTKSMQQGAATT
gtgtactgtgctgctgtcccagaactggagggtctgggagggatgtacttcaacaactgc
VYCAAVPELEGLGGMYFNNC

tgccgctgcatgccctcaccagaagctcagagcgaagagacggcccggaccctgtgggcg
CRCMPSPEAQSEETARTLWA
ctcagcgagaggctgatccaagaacggcttggcagccagtccggctaagtggagctcaga
LSERLIQERLGSQSG-

Oxidoreductase/
sliui t chain

dehydrogenase
domain

Andrzej Bednarek
Marcelo Aldaz

MD Anderson

Center, Texas

Co-factor

binding site

Substrate

binding site

gccatggcagcgctgcgctacgcggggctggacgacacggacagtgaggacgal
M AALRYAGLDDTDSEDE

The WWOX protein product showing the domain structure as described by Bednarek et al [156]. The
WW domains are highlighted in blue. The alcohol dehydogenase (ADH) or SDR (steroid

dehdrogenase/reductase) domain is highlighted in red. The co-factor and substrate binding sites are

highlighted in black.

1.6.5 WW domains

These domains are so-called because of a pair of signature tryptophan (W) residues

that are 20 to 22 amino acids apart and play a central role in the structure and

function of the domain. The whole domain is fairly compact being only 35-45 amino

acids long. These domains recognise and bind to polyproline stretches of other
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proteins. There are four groups ofWW binding domains each with different binding

sequence preferences. The major groups are I and II and the minor groups are III and

IV. Group I WW domains bind the minimum core consensus PPXY and include

such proteins as YAP65, dystrophin and NEDD4. Group II WW domains bind the

PPLP motif and include the formin binding proteins and FE65. Group III WW

domains bind to polyproline stretches flanked by arginine or lysine and group IV

WW domains bind to ligands containing phosphoserine or phosphothreonine residues

in their polyproline motifs. An example of a group IV WW domain-containing

protein is Pin-1.

Ludes-Meyers et al [159] have found that the first WW domain ofWWOX is a group

I WW domain as it interacts with the PPXY ligand. The in vivo binding partners of

the two WW domains have not yet been identified.

1.6.6 SDR domains

Based on structural analysis of human SDRs and comparison across species there are

63 different SDR enzymes in humans which reduces to 58 after elimination of

possible isozymes [161]. These 63 SDR enzymes are further subdivided into

classical and extended types with 46 and 17 members respectively. The extended

type is mostly related to sugar metabolism. WWOX structure is the archetypal

representative of one of four separate clusters of SDRs. The other three clusters are

represented by Hep27, FVT1 and 17beta-HSD3, but a molecular function has only

been ascribed to the latter. The clusters represented by WWOX, Hep27 and FVT1

are all thought to have some link to cancer.
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1.6.7 Independent identification of WWOX (FOR)

Independent identification of the gene also reported alternative mRNA variants with

unique 3'-terminal exons [162], These investigators named the gene FOR (fragile

site FRA16D oxidoreductase) calling the various isoforms FOR I, FOR II and FOR

III. They had previously performed fluorescent in-situ hybridisation (FISH) using a

panel of YAC and BAC DNA subclones to define the minimum DNA sequence

spanning FRA16D [115], Restriction analysis of the subclones and long-range PCR

were used to assemble the DNA sequences in a directed manner. GenScan gene

prediction analysis performed on their 270kb, FRA 16D-spanning sequence identified

exon 8 of WWOX/FOR. They then performed 5'- RACE (rapid amplification of

cDNA ends) using mRNA from normal (HS578BST) and tumour (T47D) breast cells

to extend and confirm the sequences of the clusters of Genbank expressed sequence

tag (EST) sequences. This allowed them to identify four transcripts, which they

named FOR I-IV. FOR /-/// have a common 5' end, indicating a common promoter.

The open reading frames encode proteins of 41.2, 46.7 and 21.5kDa respectively

with the FOR III transcript being truncated for most of the oxidoreductase domain

(figure 1.2). Their Northern blot analysis revealed FOR II (which corresponds to the

full-length WWOX identified by Bednarek et al [52]) to be the predominant and

ubiquitously expressed transcript. FOR I contains exons 1 to 8 of WWOX/FORII but

it has two smaller 3' exons (9a and 10a) rather than the large exon 9 of

WWOX/FORII. FORIII contains exons 1 to 5 of WWOX/FORII and replaces exons

6-9 with exon 6a. FOR IV was suggested to exist on the basis of a BLAST search,

which revealed ESTs with homology limited to exon 1 of the gene, suggesting that

these transcripts may arise from a different promoter and may encode little of the
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WWOX/FOR gene product. A complete FOR IV transcript has not as yet been

identified.

WWOX (the name given by the investigators who identified the gene first) is the

name recognised by the HUGO nomenclature committee and, to avoid confusion, the

various isoforms have been numbered 1 to 7 in the Genbank database (table 1.4).

Only the existence of isoforms 1-4 and 6 are supported by alignment with mRNA.

The exonic structure of these isoforms is shown in figure 1.3.

Figure 1.2: Three different isoforms of the WWOX (FOR) gene identified

by Reid et al (2000)

WW Short chain dehydrogenase domain
domains

FOR II
(pyoiis 1-9)

1 2 3 4 5 6 7 8 9

FOR I
(exonsl-10a)

i 2 3 4 5 6 7 8 9a 1 Or

FOR III
(exons l-6a)

i 2 3 4 5 6a

The exonic structure of FOR 7-/77, showing the location of the WW and SDR (steroid

dehdrogenase/reductase) domains. Exon numbers are indicated for each transcript. Position ofWW
domains is indicated by blue bars. Position of SDR domain is indicated by yellow bar. FOR II is the

wild-type WWOX full length transcript. FOR / contains exons 9a and 10a rather than the longer exon
9 of the wild-type transcript. FOR III contains alternate exon 6a but omits exons 6 to 9 of the wild-

type transcript (and most of the SDR domain).
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Table 1.4: WWOXmRNA Isoforms

wwox
isoform
number

Genbank
accession
number

Transcript encodes Protein product
Alternative
name

1 AF211943
Full-length WWOX (the

largest isoform)

Predominant form in normal

tissues
FOR 11

2 AF211943,

AF227526

A variant with an

alternative 3' end to

isoform 1

Smaller than isoform 1, with

a different C-terminus
FOR 1

3 AF395124

A variant lacking a 647nt

fragment in the middle of
the coding region due to

deletion of exons 5 to 8

Smaller than isoform 1,

deleted SDR domain and

subsequent ffameshift

giving different C-terminus

WWOXA5-8

4 AF395123

A variant lacking a 540nt

fragment in the middle of
the coding region due to

deletion of exons 6 to 8

Smaller than isoform 1,

most of SDR domain

deleted

WWOXA6-8

5 AF211943,

AHO11068

A variant with an

alternative central part

compared to the coding

region of isoform 1

Smaller than isoform 1,

most of SDR domain

deleted, different C-

terminus

6 AF211943,

AF227528

A variant that is much

smaller than isoform 1

with an alternative 3' end

Smaller than isoform 1,

most of SDR domain

deleted, different C-

terminus

FOR III

7 AF211943,

AF227529

The shortest putative
isoform with an

alternative 3'end

Lacks part of the first WW

domain, all of the second

WW domain and all of the

SDR domain

FOR IV

N.B. Only existence of isoforms 1-4 and 6 are supported by alignment with mRNA

Web address: www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=51741
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Figure 1.3: Exonic structure of WWOX isoforms

WW Short chain dehydrogenase domain
domains

Isoform 1
(exons 1-9)

1 i 3 4 5 6 7 8 9

Isoform 2
(exons l-10a)

1 i 3 4 5 6 7 8 9a Kb

Isoform 3
(exons 1-4,9)

1 7 3 4 9

Isoform 4
(exons 1-5,9)

1 3 4 5 9

Isoform 6
(exons l-6a)

1 3 4 5 6a

The exonic structure of WWOX isoforms 1 to 6, showing the location of the WW and SDR (steroid

dehydrogenase/reductase) domains. Exon numbers are indicated for each transcript. Position ofWW
domains is indicated by blue bars. Position of SDR domain is indicated by yellow bar. Isoform 1 is
the wild-type WWOX full length transcript. Isoform 2 contains exons 9a and 10a rather than the

longer exon 9 of the wild-type transcript. Isoform 3 omits exons 5 to 8 of the wild-type transcript

(and most of the SDR domain). Isoform 4 omits exons 6 to 8 of the wild-type transcript (and much of
the SDR domain). Isoform 6 contains alternate exon 6a but omits exons 6 to 9 of the wild-type

transcript (and most of the SDR domain).
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1.6.8 Homozygous deletions identified in WWOX coding

exons

Homozygous deletions had already been identified at I6q23 in tumour cell lines

[114,115] prior to the cloning of WWOX. Following the identification of the WWOX

gene, Paige et al [53] performed PCR amplification of WWOX exons in 95 tumour

cell lines and found homozygous loss of coding exons in 4 lines (figure 1.4). The

PE04 ovarian cancer cell line (which is derived from the ascites of the same patient

as the PEOl and PE06 ovarian cancer cell lines [163]) was homozygously deleted

for WWOX exons 4-8 (causing loss of the SDR domain and a ffameshift). The

WX330 and NCI-H69 small cell lung cancer cell lines were homozygously deleted

for exons 6-8 (causing in-frame loss of most of the SDR domain) and the PANC1

pancreatic cancer cell line showed loss of exons 7-8 (resulting in loss of part of the

SDR domain and a ffameshift). Reverse transcriptase-polymerase chain reaction

(RT-PCR) performed on these cell lines revealed the presence of 'aberrant

transcripts' missing the homozygously deleted exons, with no full-length WWOX

detected. These transcripts were identified only in malignant tissue, which is why

they were referred to as aberrant transcripts. As there is some doubt about this, I

refer to them as alternate transcripts throughout the rest of the text. As well as

causing loss of part, or all, of the SDR domain, these deletions also resulted in loss of

the putative mitochondrial localisation signal.
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Figure 1.4: Physical map of chromosome 16q23 showing location of

exons that are deleted in tumour cell lines

STS map
S515 S5.18 27Sp6 17Sp6 RD30 10102 S3029 S3049 S516 S507

-► r i r f i ii Li i i

PE04 (Ovary) Cell lines with homozygous deletions
WX330 (Lung)
NCI-H69 (Lung)

^ANC^Pancreas)^
AGS (Stomach) *
HCT116 (Colon)*

WWOX gene

D 1
1 2 3 4 5 6a 6 7 8 9a 10a 9

Isoform 6 lsoform 2 Isoform 1

Physical map of chromosome 16q23 showing the location of exons that are deleted in the POE1/PE04
ovarian cancer cell line series, the WX330 and NCI-H69 small cell lung cancer cell line and the
PANC1 pancreatic cancer cell line.
* The deletions in the HCT116 and AGS tumour cell lines are both contained within intron 8 of the

WWOX gene.

1.6.9 Loss of heterozygosity in the WWOX gene

Inactivation of tumour suppressor genes (as classically defined [164]) requires two

distinct mutational events in order to knock out both alleles. In sporadic cancers, one

allele may be altered by point mutation, deletion, rearrangement or hypermethylation

and the other event is often loss of heterozygosity (LOH). As discussed in section
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1.6.1, it was the identification of LOH in chromosome 16q [146-151] and then at

16q23-24 [152-155] that raised the possibility that there was a tumour suppressor

gene in this region. Following identification of the WWOX gene, LOH within the

gene itself has been demonstrated in 14 out of 36 (39%) squamous oesophageal

cancers [165] and in 10 out of 27 (37%) primary non-small cell lung tumours [166].

In the latter study they noted that LOH was more frequent in squamous cell

carcinomas than in lung adenocarcinomas, which may be of significance as the

former is more strongly associated with smoking than the latter.

By analogy with the FHIT gene (which is located at FRA3B, the most commonly

expressed CFS in the human genome), frequent LOH may be significant as there is

evidence that FHIT can function as a one-hit tumour suppressor gene [167], It is

possible that WWOX haploinsufficiency could also have a biological effect.

1.6.10 Features of WWOX isoform expression

a) Tissue-specificity of WWOX expression

Northern blot analysis of WWOX expression pattern in normal human tissues

revealed that expression was highest in the testis, prostate and ovary and significantly

lower in the other examined tissues (including spleen, thymus, small intestine,

peripheral blood leucocytes and breast) [156]. Chang et al [168] found murine Woxl

mRNA to be ubiquitously expressed in most tissues and organs in the mouse, as

determined by RT-PCR.
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b) Variable levels of WWOX expression in cell lines

When WWOX was initially identified, Bednarek et al [156] performed Northern blot

analysis on breast cancer cell lines, showing highly variable levels of mRNA

expression with some lines producing very little or undetectable transcript. They

then proceeded to perform quantitative RT-PCR on these cell lines, confirming that

some of these lines (MDA-MB-435, MDA-MB-231, BT549 and T47D) had very low

or almost undetectable expression of WWOX. Several of these cell lines are highly

tumourigenic in nude mice. The highest expresser of WWOX (MCF-7), by contrast,

is much less tumourigenic in nude mice.

c) Expression of WWOX alternate transcripts in tumour tissue

Paige et al [53] performed RT-PCR on 129 cancer cell lines, 31 primary ovarian

tumours and normal human ovarian surface epithelial (HOSE) cells, revealing that

most of the cell lines and ovarian tumours and all of the HOSE cells expressed the

full-length WWOX transcript. As well as the full-length transcript, several cell lines

and ovarian tumours expressed two additional, smaller products, one of which was

sequenced and was found to be a WWOX transcript lacking exons 6-8 (A6-8) and the

other (by size criteria) was thought to be a WWOX transcript lacking exon 7 (A7).

Some of the tumour cell lines expressing these smaller products (e.g. MCF-7) were

heterozygous for single nucleotide polymorphisms (SNPs) in exons 6, 7 or 8. This

suggested that, in these cell lines at least, the alternate transcripts were generated by

RNA processing rather than by hemizygous deletions at the genomic DNA level. No

alternate transcripts were detected in normal HOSE cDNA or in a Clonetech® cDNA
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panel of 16 normal tissues, suggesting that these smaller isoforms may be cancer-

associated.

In a similar study, Bednarek et al [52] performed nested RT-PCR and sequencing of

products in tumour cell lines, normal breast samples and breast tumours. This

revealed the presence of a A6-8 or isoform 4 transcript (missing exons 6-8) in MDA-

MB-453, MCF-7, HCT116 and AGS cancer cell lines. It is interesting that HCT116

and AGS which both have homozygous deletions entirely within the exceptionally

large intron 8, express this transcript, suggesting that the deletions may have affected

RNA processing. A A5-8 transcript (omitting exons 5-8) was also identified in

KMS11, a multiple myeloma cell line.

As the most frequently identified alternate WWOX transcript in the cell lines (except

full-length WWOX) was WWOX A6-8 , RT-PCR specifically seeking to amplify this

transcript (using an exon 5-9 junctional primer) was performed in 53 fresh breast

cancer samples and 18 normal breast tissue samples. The A6-8 transcript was

detected in 17 out of 53 of the cancer specimens (32%) and 0 out of 18 of the normal

breast samples [52], again suggesting that this alternate transcript was cancer-

specific.

Driouch et al [169] performed competitive RT-PCR on 4 normal breast tissue

samples, a pool of 6 normal human breast tissue samples, 9 breast cancer cell lines

and 20 human breast tumour samples. Full-length WWOX was present in all

normals, 8 out of 9 cell lines and 19 out of 20 tumours. The tumour lacking full-

length WWOX expressed WWOX A6-8. This tumour had a short interstitial deletion

at the end of intron 5 but no exonic deletions, suggesting that the A6-8 isoform in this

case was the result of a transcriptional event. WWOX isoform 4 (A6-8) was not
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present in any of the normal breast tissue and was present only in one breast cancer

cell line (MCF-7). Only one tumour (the one not expressing full-length WWOX)

expressed significant amounts of this transcript, but what the authors describe as

'minor' amounts were present in other tumours. WWOX isoform 6 (FOR III) was not

present in the 4 normal breast tumour samples but was present in the normal human

breast tissue samples (although apparently at lower levels than in the tumour

samples). This isoform was found in 8 out of 9 cell lines and 10 out of 20 tumour

samples with high concentrations of these transcripts found in most of these samples.

In addition, these investigators analysed two matched normal and tumour pairs. One

pair expressed only isoform 1. The other pair expressed isoform 6 in the tumour

material but not in the matched normal tissue. The conclusions from these findings

were once again that the shorter alternate isoforms may be specific to malignant

tissue.

Mori et al [170] had previously reported that the FHITIFRA3B locus was susceptible

to damage by environmental carcinogens, such as smoking and alcohol in

oesophageal carcinoma. As they wished to investigate whether this might be because

fragile site-associated genes in carcinogen-exposed sites were susceptible to mutation

they investigated WWOX for genetic alterations in 36 Japanese patients with

squamous oesophageal carcinomas [165]. They identified one tumour that lacked a

full-length WWOX transcript and found two tumours that expressed the A6-8

transcript as well as the full-length transcript.

In a similar study, Yendamuri et al performed RT-PCR, exonic PCR, mutation and

LOH analysis on 27 paired normal and non-small cell lung cancer samples and 8

lung cancer cell lines [166]. Seven out of 27 lung cancers (25.9%) expressed
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transcripts with missing exons. Two of these had no normal-sized transcripts. In all

cases, corresponding normal tissues showed normal-sized transcripts without

alternate transcripts. Five out of 8 lung cancer cell lines expressed transcripts with

missing exons. Exonic PCR (from genomic DNA) revealed no homozygous

deletions in any of these tumours or cell lines.

An important bone of contention concerning the importance of the alternate

transcripts found in these studies is the lack of evidence that they are expressed at the

protein level. Immunoblot analysis performed by Ishii et al [171] detected short

forms of WWOX in haematopoietic malignancies although no indication of the

specificity of the antibody is given. In the same study, RNA was pooled from

monocytes, granulocytes, T cells, erythroblasts and peripheral blood lymphocytes

from four healthy volunteers to characterise WWOX and FHIT expression in non-

tumour cells. There was abundant expression of full-length forms of WWOX and

FHIT, but small amounts of short form transcripts for both genes were found in non-

malignant haematopoietic cells.

d) Evidence of WWOX knockout in tumour tissue

In a study investigating whether there was a correlation between the expression of

the common fragile site genes FHIT and WWOX in 74 primary haematopoietic

neoplasias and 20 leukaemia cell lines, Ishii et al [171] found absent WWOX

transcripts in 29 primary neoplasias (39%) with alternate transcripts in a further 9

(12%). Similarly absent or alternate isoform expression was found in 11 out of 20

cell lines (55%). The alternate transcripts showed exon-skipping although, unlike in

solid tumours, there were examples of partial exonic loss. Interestingly, the
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incidence of WWOX transcript alteration was higher than that of FHIT (15 with no

transcripts and 12 with alternate transcripts out of 74 primary neoplasias and 3 out of

20 cell lines with altered expression). Importantly, they used immunoblot analysis to

show that the absence of wild-type WWOX protein correlated with the absence of

wild-type WWOX transcript. All of the cases of FHIT alteration also had WWOX

alteration, suggesting that WWOX and FHIT genes may be concordantly affected in

the progression of haematopoietic disorders. It is possible that the incidence of

alteration of expression of the two genes reflects the selective advantage conferred

by knockout of either gene alone compared to that conferred by knockout of both

genes. One could further speculate that in this setting, FHIT alteration only confers a

selective advantage if WWOX is also knocked out, but the converse may not

necessarily be true.

The reason for the absence of WWOX expression in a large percentage of these

haematological malignancies (as well as the presence of alternate transcripts in a

further significant percentage) led Ishii et al to perform DNA blot analysis in 18

cases with altered or absent expression of both the FHIT and the WWOX gene [171].

The genes were deleted in only 2 of the 18 cases suggesting that some other

mechanism of knockout such as small deletions or epigenetic modification may have

occurred.

e) WWOX promoter methylation / histone deacetylation in tumour cells

Promoter methylation does not appear to be a major mechanism of WWOX knockout

in breast cancer cell lines as evidenced by a lack of CpG methylation around the

translation start codon (-630 to +280) and a lack of significant increase in WWOX
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expression after treatment of one of the low WWO.Y-expressing breast cancer cell

lines (MDA-MB-435) with 5-aza-2'-deoxycytidine (an inhibitor of CpG

methylation) [52],

In an effort to explain a high incidence of loss of WWOX transcript expression in

haematological neoplasias, Ishii et al [171] treated K562 leukaemia cells (which

express a low baseline level of WWOX) with 5-aza-2'-deoxycytidine and

depsipeptide (an inhibitor of deacetylation) with the result that either agent increased

the expression of both full-length and short forms of WWOX. However in non-

malignant 293 control cells, neither agent had any effect on WWOX expression,

suggesting an epigenetic downregulation of WWOX specifically in malignancy.

1.6.11 Lack of mutations in the WWOX gene

One of the classical requirements for a gene to be considered as an archetypal tumour

suppressor gene is the demonstration of examples of truncating point mutations

within the coding region in tumour tissue [164], So far, there have been few

examples of this identified for WWOX. Bednarek et al [156] reported no mutation of

the gene in a panel of 27 breast cancer cell lines. Paige et al [53] identified no

truncating point mutations within the WWOX coding region of 95 tumour cell lines,

15 ovarian cancers and 34 colorectal cancers, although several missense alterations

were detected. Kuroki et al [165] found only one somatic missense mutation

(leucine to proline in codon 291) in 36 squamous oesophageal carcinomas. The site

of this mutation is only 2 residues away from the putative active site of the SDR

domain so could well affect enzymatic function (figure 1.5). Also, this tumour

displayed LOH, suggesting a possible 2-hit Rnudson knock-out. Yendamuri et al
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[166] found no point mutations in 27 lung tumour samples but one out of 8 lung

cancer cell lines (NCI-H23) had a missense mutation resulting in an aspartic acid to

asparagine substitution within its putative oxidoreductase domain. Three WWOX

nucleotide variants were found among a panel of 20 leukaemia cell lines but it was

not known whether these were polymorphisms or point mutations [171]. In the

same study they were able to find no point mutations or large deletions within the

coding exons of 74 primary haematological malignancies.

70



Figure 1.5: WWOX protein product: location of point mutation (Kuroki et

al)

Oxidoreiluciast;/
short chain
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Structure of the WWOX protein showing the position of the proline to leucine substitution identified

by Kuroki et al in a squamous oesophageal carcinoma. The WW domains are highlighted in blue.
The ADH (alcohol dehydrogenase) or SDR (steroid dehydrogenase/reductase) domain is highlighted
in red. The co-factor and substrate binding sites are highlighted in black. The leucine to proline
substitution is highlighted in green.

1.6.12 WWOX 'is highly polymorphic

Paige et al [53] performed a SNP analysis on DNA from 95 tumour cell lines, 15

ovarian cancers and 34 colorectal cancers. This revealed that WWOX was highly

polymorphic (around 1 polymorphism per lOObp). They identified 34 polymorphic

bases (16 exonic SNPs and 18 intronic SNPs) in tumour cell lines. Fourteen or these
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were also identified in normal individuals and 17 in the blood from cancer patients.

Eleven polymorphisms (3 silent and 8 missense) were found in the WWOX coding

region. Four of these missense polymorphisms were not detected in normal

individuals. Of these four, two (Arg-120 Trp and Arg-314 His) substitute non-

charged or weakly basic amino acid residues for highly basic residues conserved in

both mouse and drosophila. Both of these were found as homozygous changes in

tumour cell lines, suggesting possible loss of the second allele or reduplication.

1.6.13 WWOX phenotypic analysis in breast cancer cells

Bednarek et al [52] took two breast cancer cell lines with very low endogenous

WWOX expression (MDA-MB-435 and T47D) and transduced them with

recombinant retroviruses carrying the WWOX cloned cDNA. The WWOX

transfectants showed no detectable differences in ability to grow in monolayer

culture compared to empty vector transfectants but they did demonstrate a

dramatically decreased ability to grow in soft agar, for both breast cancer cell lines.

The cells expressing ectopic WWOX formed fewer and much smaller colonies than

control cells transfected with vector alone. These findings suggest that WWOX may

be a strong suppressor of anchorage-independent growth of breast cancer cell lines

T47D and MDA-MB-435.

Following this, they injected the MDA-MQ-A35/WWOX and MDA-MB-435/vector

cells into the intramammary fat pads of nude mice. The WWOX transfectants had a

markedly reduced tumour growth rate and size (p=0.00001), strongly supporting the

conclusion that WWOX is a suppressor of tumour growth.
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1.6.14 Intracellular localisation ofWWOX protein

Analysis of the WWOX primary amino acid sequence using PSORT (Prediction of

Protein Sorting Signals and Localisation Sites in Amino Acid Sequences) algorithm

predicted that WWOX had no N-terminal signal peptide and was probably located in

the cytoplasm [156].

Using confocal microscopy and colocalisation analysis with an anti-Woxl antibody

in a variety of malignant and non-malignant cell lines Chang et al [168] interpreted

the intracellular localisation of mouse Woxl as being mainly in the mitochondrion,

but also with some localisation in the nucleus. The presence of WOX1 in the

mitochondrion was further suggested by Western blotting using purified rat liver

mitochondria. By expressing successive GFP-WOX1 deletion constructs in COS-7

cells, the mitochondrial targeting sequence was localised within the ADH domain of

murine WOX1 (amino acids 209-273) [168], Constructs lacking this region but

containing both WW domains (with the putative nuclear localisation signal between

them) were expressed in the nucleus.

A time-course experiment in L929 murine fibroblast cells showed that tumour

necrosis factor alpha (TNFa) induced GFP-WOX1 translocation from the

mitochondrion to the nucleus [168]. Alteration of the nuclear localisation signal

(GKRKRV) to a less hydrophilic sequence (GQGTGV) by site-directed mutagenesis

abolished this TNF-induced nuclear translocation. Similarly, no nuclear

translocation was seen when a GFP-WOXladh construct (expressing a GFP-WOX1

ADH domain fusion protein) was transfected into L929 cells and they were treated

with TNFa [168].
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Bednarek et al [52] performed confocal microscopy on normal breast MCF-10 cells

transiently transfected with GFP-WWOX to show that GFP-WWOX fusion protein

is localised in distinct perinuclear particles. They used dual colour detection and

mitochondrial specific staining to show that GFP-WWOX does not localise within

mitochondria. GFP-WWOX did however colocalise with the anti-Golgi K protein

antibody (specific for an epitope on the Golgi membrane) suggesting that it is

localised within the Golgi complex. This was confirmed by treatment of GFP-

WWOX transfected cells with brefeldin A (BFA) resulting in the redistribution of

GFP-WWOX diffusely throughout the cytoplasm. (Brefeldin A causes disassembly

of the Golgi complex and redistribution of its contents to the cytoplasm). If BFA

was removed and the cells were allowed to recover, GFP-WWOX was again seen to

localise in the Golgi.

The subcellular localisation of full-length WWOX disagrees sharply between the two

studies [52,168]. Possible reasons for this could be: the use of endogenous WOX1

(as localised initially by Chang et al) and exogenous GFP-WWOX (as localised by

Bednarek et al); inter-species variation in subcellular location of the protein;

expression levels of the proteins in the cells or technical differences in the

experimental protocols used. The endogenous/exogenous argument is not favoured

because Chang et al [168] also used exogenous GFP-WOX1 constructs and this did

not alter their interpretation of the subcellular localisation of WOX1. It would seem

unlikely that the human and mouse proteins, which are so closely conserved through

evolution have different subcellular locations. Both groups used transient assays to

determine the subcellular location of the protein in non-malignant cell lines. The

levels of expression could have been different in the cell lines with a possible effect
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on protein trafficking. Also the origins of the cell lines were different, with

Bednarek et al using normal breast MCF-10 cells and Chang et al using African

Green Monkey kidney fibroblast COS-7 cells.

A third study by Watanabe et al [172] localised endogenous WWOX to the

mitochondrion (consistent with the results of Chang et al [168]) and also detected a

nuclear translocation of the protein under confluent cell culture conditions.

Resolution of this area of contention is clearly important for a fuller understanding of

the role ofWWOX in the cell. If the protein does translocate to the nucleus in vivo,

either because of cell contact inhibition (as suggested by Watanabe et al [172]) or

exogenous signalling such as TNFa (as suggested by Chang et al [168]) then this

translocation may be pivotal to the function of the protein.

GFP-WWOX A6-8 and GFP-WWOX A5-8 (which lack most of the ADH domain)

were both found to localise to the cell nucleus rather than the cytoplasm in the study

by Bednarek et al [52], Chang et al similarly found that constructs lacking the

WOX1 ADH domain (inside which they mapped the mitochondrial localisation

signal) localised to the nucleus [168] so the studies agree on this.

Therefore the exon-skipped alternate transcripts identified in many tumour samples

and tumour cell lines not only lack the catalytic function of the oxidoreductase

domain, but their putative protein products also have altered intracellular

localisation. These factors may combine to dramatically alter the function of

WWOX in the cell. Potentially, different protein partners could bind to the WW

domains of WWOX in the nucleus than bind in the cytoplasm. Another possibility is

that the shorter exon-skipped forms may compete with wild-type WWOX for its

binding partner then transport it to the nucleus.
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1.7 Significance of WWOX alternate transcripts

WWOX isoform 1 (full-length form) is expressed in normal tissues and in most

malignant tissues also. A variety of cancer cell lines harbouring homozygous

deletions in the gene have been identified and although some contain exonic

deletions e.g. PEOl, PANC1, WX330 and NCI-H69 [53], others such as HCT116

and AGS are homozygously deleted only in intron 8 [53,114,115,162], It is easy to

see how the former group (homozygously deleted exons) could knock out the

function of a putative tumour suppressor gene but it is harder to explain how the

latter cell lines (deletions in intron 8) could affect the function of the gene. However,

both HCT116 and AGS express the alternatively spliced, shorter forms of WWOX

[53,162], It is possible that deletions within this huge intron could affect the

processing of the WWOX mRNA transcript such that production of the shorter

isoforms is favoured. This could have one of two effects. Firstly, it could simply

result in lower expression of the full-length, enzymatically functional protein

product. Secondly, the shorter protein products, if synthesised and functionally

active, could act in a dominant negative fashion, competing with full-length WWOX

for the binding partner at the WW domains.

The fact that alternatively spliced transcripts have been identified in cells that do not

have genomic deletions [52,159] suggests that they can be generated by alternate

splicing as well as by exonic deletions. This is also suggested by the demonstration

of tumour cell lines that expressed these smaller products (e.g. MCF-7) and were

heterozygous for single nucleotide polymorphisms (SNPs) in exons 6, 7 or 8. Thus

there are at least two mechanisms by which the shorter forms of WWOX can be

generated.
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It has been suggested that the shorter WWOX isoforms may act in a dominant

negative fashion, resulting in the knockout of full-length WWOX function in the cell

thereby resulting in tumourigenesis. The finding of these isoforms exclusively in

malignant tissue initially and the lack of point mutations in a gene which otherwise

seemed to fit the criteria for a tumour suppressor, made this seem like a reasonable

proposal. The fact that the alternate transcripts are often expressed at much lower

levels than full-length WWOX does not preclude such a mechanism. As the isoforms

are largely localised to different compartments of the cell (until, for example, an

apoptotic signal is received), competition for potential binding partners to the WW

domains may not therefore be equal.

It is also possible that WWOX alternate transcripts are non-functional mRNAs.

Splicing abnormalities occur frequently in cancer e.g. oestrogen receptor alpha

[173,174], If a gene were to be affected by a cancer-induced splicing abnormality,

one would imagine that genes with large transcripts such as WWOX would be prime

candidates. There is evidence that WWOX alternate transcripts can produce protein

[171,172], In the former study, however, this was only seen when proteasomal

degradation was blocked, suggesting that in some cell types they may be candidates

for rapid degradation. It is questionable whether such short-lived protein species

could have a significant dominant negative effect in the cell. Also, going somewhat

against the dominant negative theory for alternate transcripts is their identification in

some normal tissues, albeit at low levels [169,171].
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1.8 Wox1 (the murine ortholog of WWOX): discovery of a

possible role in p53-mediated apoptosis

1.8.1 Discovery of murine Wox1 by differential display

Most cancer cells secrete hyaluronidase, which degrades the extra-cellular matrix

(ECM) and induces angiogenesis in vivo [175]. Increased hyaluronidase levels are

associated with progression, invasion and metastases of a variety of cancers,

including breast and ovarian [176-179], It has been shown that exogenous

hyaluronidase can reverse resistance to cytotoxic drugs of cultured cancer cells

[180],

Chang et al had previously shown that hyaluronidase increased TNFoc-mediated cell

death in murine L929 fibroblasts and in the human prostate cancer cell line LN-CaP

[181]. Using differential display and cDNA library screening, they identified a

cDNA, which was induced by exposure of L929 murine fibroblast cells to

hyaluronidase [168]. This cDNA was named Woxl and is highly homologous to

full-length human WWOX, encoding a 414 amino acid protein with two N-terminal

WW domains and a C-terminal short-chain ADH domain. A nuclear localisation

signal (NLS) was identified between the WW domains (amino acids 50-55) with

sequence GKRKRV. They demonstrated by non-reducing sodium dodecylsulphate

polyacrylamide gel electrophoresis (SDS-PAGE) that WOX1 is a single chain

protein that does not exist as a multimer. A putative caspase recognition site was

also identified at amino acid positions 267-270 (DIND). They demonstrated that

exposure of L929 cells (whose constitutive expression of Woxl mRNA is low) to

hyaluronidase resulted in a 150% increase in Woxl mRNA, peaking at 8-24 hours
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post initiation of exposure. The timing of Woxl induction by hyaluronidase

correlated with the timing for induction of TNF sensitivity in L929 cells (which

requires 8 hours of pre-treatment with hyaluronidase).

1.8.2 WOX1 up-regulates p53 and down-regulates Bcl-2 and

BcI-Xl

Chang et al stably transfected L929 murine fibroblasts with GFP-WOX1 constructs

containing various amounts of the WOX1 open reading frame [168]. All constructs

enhanced TNF-mediated cytotoxicity compared to GFP controls and the full-length

construct induced a greater degree of TNF-mediated cytotoxicity than either the WW

or ADH domain construct alone. When the same cells were engineered to express

antisense Woxl mRNA there was a 65-90% increase in resistance to TNF killing.

The authors interpreted these findings as indicating that WOX1 participates in the

TNF cytotoxicity pathway.

Western analysis showed that p53 expression was increased by around 200% in L929

cells expressing GFP-WOX1 or GFP-WOXladh (GFP-ADH domain fusion protein)

but not those expressing GFP-WOXlww (GFP-WW domain fusion protein). Also,

the ADH domain (but not the WW domain) significantly decreased the expression of

Bcl-2 and Bc1-xl (both apoptosis inhibitors) by more than 85%. This suggests that

part of WOXl's enhancement of TNFa-mediated cytotoxicity is secondary to

increased p53 expression and reduced Bcl-2 and Bc1-xl expression.

Bcl-2 and Bc1-xl block mitochondrial permeability transition and prevent

cytochrome c release from mitochondria. Chang et al speculate that the reduction of

Bcl-2 and Bcl-xL expression caused by WOX1 may result in opening of the
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mitochondrial permeability pores and release of apoptogenic proteins from the

intermembrane space [168], This is supported by their finding that over-expression

of the ADH domain resulted in cytochrome c release and cell death.

1.8.3 WOX1 mediates apoptosis by two separate pathways

Transient over-expression of full-length Woxl in a variety of TNF-resistant cell lines

resulted in apoptotic cell death 48 hours post transfection [168], Similarly, over-

expression of the ADH domain or the WW domain alone resulted in apoptosis but

over-expression of NLS-mutated Woxl did not. This suggested that nuclear

translocation is necessary for mediating WW domain-induced cell death. The reason

for the ADH domain failing to induce cell death as part ofNLS-mutated WOX1 may

be that the 3-dimensional conformation of the full-length protein does not allow this

to happen. There is a precedent for dehydrogenases mediating cell death as

mitochondrial apoptosis inducing factor [182] and CC3 protein [183] have both been

shown to induce cell death when they are over-expressed.

The cell death induced by the WW domains is independent of caspases and serine

proteases as evidenced by the failure of caspase or serine protease inhibitors to block

death of NIH/3T3 cells transiently transfected with constructs expressing the WW

domains alone. Thus, enhancement of TNFa-mediated cytotoxicity by WOX1

appears to be mediated by separable nuclear-targetted WW domain and

mitochondrial-targetted ADH domain functions, suggesting that WOX1 functions at

both cytosolic and nuclear levels.
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1.8.4 p53-mediated apoptosis requires WOX1, but not the

converse

The death of NIH/3T3 cells transiently expressing the Woxl domains was increased

by cotransfection with p53 [168], Expression of Woxl antisense mRNA in NIH/3T3

or THP-1 cells abolished p53-mediated cell death. These findings suggest some

synergy between WOX1 and p53-induced apoptosis. Chang et al used p53-deficient

NCI-H1299 cells to show that transient expression ofWW or ADH domains could

still mediate cell death [168], They interpreted these findings as suggesting that

WOX1-mediated apoptosis is independent of p53, but that p53-mediated apoptosis

requires the participation ofWOX1.

1.8.5 WOX1 WW domain appears to bind p53 polyproline

region

Chang et al [168] use coimmunoprecipitation and yeast two-hybrid analyses to

substantiate their claim that WOX1 interacts with p53. Immunoprecipitation of L929

cytosolic lysates with anti-p53 antibodies resulted in coprecipitation of p53 and

WOX1. Stimulation of the L929 cells with TNFa resulted in migration of both

proteins to the nucleus and disappearance of both proteins from the cytosolic lysates

in coimmunoprecipitation studies. These findings suggest that WOX1 and p53 may

bind to each other in the cytoplasm and then comigrate to the nucleus on stimulation

by TNFa. They interpreted their yeast two-hybrid analyses as showing that the

proline-rich region of p53 (amino acids 66-110) physically interacts with the WW

domains ofWOX1 in vivo. This region had previously been shown to be necessary
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for p53-mediated apoptosis [184] and Chang et al [168] suggested that binding of

WOX1 to this region is essential for p53 apoptosis-inducing activity.

1.9 Relationship between WWOX and FRA16D

In 1984 Yunis and Soreng noted that the cytogenetic location of many of the

common fragile sites (CFSs) map to regions that are frequently altered or rearranged

during cancer development [109], FRA3B is the most commonly expressed CFS in

the human genome and the putative tumour suppressor gene FHIT maps to this

region. FRA16D is the second most commonly expressed CFS in the human

genome. Prior to the identification of WWOX, Krummel et al wished to determine

whether the tumour-associated deletions and LOH at 16q23 corresponded at the

molecular level with FRA16D [116]. They constructed a Bacterial Artificial

Chromosome (BAC) contig that spanned FRA16D as evidenced by the most

centromeric clone not hybridising telomeric to the CFS and the most telomeric clone

not hybridising centromerically when fluorescent in situ hybridisation (FISH) was

performed on metaphases from aphidicolin-treated lymphocytes. This contig

extended over greater than 1Mb. This allowed them to show that the 3 markers that

exhibited high LOH in multiple solid tumours (D16S504, D16S516 and D16S518)

all map within FRA16D. This correlated the molecular position of the fragile site

and the region of instability, providing further evidence that the CFS may have a

causal role in cancer. Also, t(14q32;16q23) is a translocation estimated to occur in

up to 25% of all multiple myelomas [160]. The 4 multiple myeloma breakpoints

identified by Chesi et al [160] were all mapped by Krummel et al [116] to within
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FRA16D. In the multiple myeloma cell lines from which the 4 breakpoints were

cloned, c-maf (which lies telomeric to FRA16D) was up-regulated. This suggests

that as well as a possible role in gene disruption in solid malignancy, FRA16D-

associated translocations may also be implicated in upregulation of proto-oncogenes.

Krummel et al [185] positioned the mouse ortholog to WWOX (Woxl) at chromosome

band 8E1 in the mouse genome. They then demonstrated that Woxl co-localises with

Fra8El, a frequently expressed common fragile site (CFS) in the mouse genome.

Furthermore, the sequence from this region, including introns, is highly conserved

between human and mouse over at least a 100-kb region. The human FHIT gene and its

mouse ortholog Fhit were also found to co-localise with FRA3B (the most frequently

expressed CFS in humans) and Fral4A2 (a frequently expressed CFS in mice) [186,187]

respectively. This suggests that the two most active CFSs share many features, that CFSs

and their associated genes may be necessary for cell survival, and that the function of the

associated genes may depend upon their localization at the CFS.
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1.10 Aims of the project

The three main aims of the PhD project were:

1) To elucidate whether the WWOX gene functions as a tumour suppressor in

epithelial ovarian cancer

2) To clarify the role of the WWOX gene (and its alternate transcripts) in ovarian

carcinogenesis

3) To ascribe a phenotype associated with expression of the WWOX gene and

WWOX protein function

In order to achieve these aims two approaches were employed in parallel. The first

approach was to investigate the WWOXmRNA isoform expression profile of a panel

of human ovarian tumours, normal ovaries and ovarian cancer cell lines. The second

approach was to develop a cell line system with a functional WWOX pathway and by

means ofmanipulation of WWOX expression levels perform functional assays in the

search for an in vitro phenotype.

84



2. MATERIALS AND METHODS
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2.1 Conventional PCR

2.1.1 PCR blocks

All non-quantitative PCRs were performed on a PTC-225 Peltier Thermal Cycler

(MJ Research).

2.1.2 PCR reagents

10 x PCR Reaction Buffer

10 x PCR Reaction Buffer consisted of lOOmM Tris, 500mM KC1; pH8.3

50 x dNTP mix

A 50 x mix of the four dNTP's (2'-deoxynucleoside 5'-triphosphates, Amersham

Pharmacia) was made up as follows:

40pl of each dNTP (lOOmM) were mixed together with 240pl of distilled water.

This gave a final concentration of lOmM of each dNTP.

The 50 x dNTP mix was stored at -20°C.

0.5pl of this mix was added to each 25pl PCR reaction, giving a final concentration

of 200pM each dNTP in each PCR reaction.

Thermus Aquaticus (Taq) DNA polymerase

Standard Taq polymerase was in the form of Pic Taq supplied at a concentration of

5U/pl (supplied by Cancer Research UK). This was stored at -20°C. 0.2pl (1U) was

added to each PCR reaction.

Taq Gold® (Applied Biosystems) was a high fidelity hot-start Taq DNA polymerase

that was used for amplification of large fragments when this was suboptimal using
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standard Pic Taq. This was stored at -20°C. It was supplied at 5U/ml and 0.2pl (1U)

was used in each PCR reaction.

Reaction Buffer II

For amplifications using Taq Gold®, the reaction buffer used was that supplied by

Applied Biosystems with Taq Gold®, namely reaction Buffer II. Its constituents

were identical to our in-house reaction buffer (see above).

2.1.3 Oligonucleotide primers

Primers were chosen using 'Primer 3', a bioinformatics program accessible through

the following web site: http://www.broad.mit.edu/cgi-bin/primer/primer3 www.cgi/.

The nucleotide sequence for the full-length human WWOX transcript (GenBank

accession number AF211943) was pasted into the program, the target region

requiring amplification was identified and any regions to be excluded were

annotated. Limits for maximum 3' stability, primer size (18-27 nucleotides), primer

melting temperature (Tm) (55-63°C), primer GC% (20-80%) and maximum 3' and

self-complementarity were set. The output was in the form of possible primer

options. The best primers for the required PCR were chosen and optimised. Primers

for non-quantitative PCR were obtained from the Cancer Research UK

Oligonucleotide Synthesis Service.

2.1.4 Treatment of Oligonucleotides

Primers were supplied fully deprotected and dried down. Ethanol precipitation was

used to remove the side products of the synthesis. Each oligonucleotide was

dissolved in 200pl of distilled water containing 0.3M sodium acetate (pH 5.6) and
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lOmM magnesium chloride. 600pl of cold 100% ethanol was added and mixed

briefly by vortexing. After 30 minutes at -70°C or overnight at -20°C, the mixture

was centrifuged for 5mins at 16000g. The supernatant was discarded and the pellet

was washed with 500pl 80% cold ethanol. The supernatant was removed carefully,

air-dried and the pellet was resuspended in lOOpl of distilled water. The

concentration of the oligonucleotide was determined spectrophotometrically and the

volume adjusted to give a 20pM primer solution. The primers were stored at -20°C.

The primer sequences used for non-quantitative PCR are shown in table 2.1 and 2.2.
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Table 2.1: Primers and conditions for non-quantitative RT-PCR

Primers Sequences (5'-3') For/Rev Mg2+/
Taq"

Cycling
conditions

y-ACTIN F+R ATGACAATGCCAGTGGTGCG
ATGGCATCGTCACCAACTGG

1.6mM
Pic

94°C 30s; 57°C 45s;
72°C 45s; 35 cycles

3'UTRF+R

(both in 3'UTR)
GTGGTGGCCTGTTTGAAAGT
GGCACAGCAGGAGGTTTAAG

1,6mM
Pic

94°C 30s; 65°C 30s;
72°C 30s; 35 cycles TD*

E and Z GAATTCAGGTGCCTCCACAGTCAGCC
GAATTCTGTGTGCCCATCCGCTCTG

1.6mM
Pic

95°C 30s; 67°C 30s;
72°C 30s; 40 cycles TD

E + WWOX2rev GAATTCAGGTGCCTCCACAGTCAGCC
AGGATCAAGATTTTAGCCGGACTGGCTGCC

1.6mM
Pic

95°C 30s; 67°C 30s;
72°C 30s; 40 cycles TD

8F2+Z2

(exon 8 to 9)
ACTATTGGGCGATGCTGGCT
CGTTCTTGGATCAGCCTCTC

2.0mM
Pic

94°C 30s; 65°C 30s;
72°C 30s; 40 cycles TD

IM19R + BGHrev CAATGCAGCAAGGAGCAGT
TAGAAGGCACAGTCGAGG

2.0mM
Pic

94°C 30s; 55°C 30s;
72°C 30s; 35 cycles

8F2+Z2

(exon 8 to 9)
ACTATTGGGCGATGCTGGCT
CGTTCTTGGATCAGCCTCTC

2.5mM
Gold"

95°C 30s; 65°C 30s;
72°C 45s; 40 cycles TD

7F2+8R2

(exon 7 to 8)
CACCAAAGATGGCCTGGA
TGGACCTGTTATAAGCCAGCATCG

2.0mM

Pic

94°C 30s; 65°C 30s;
72°C 30s; 35 cycles TD

Ex4/4+Z2

(exon 4 to 9)
TTTCACTGGCAAAGTGGTTG
CGTTCTTGGATCAGCCTCTC

2.5mM

Gold

95°C 30s; 57°C 30s;
72°C 75s; 35 cycles

Exl/1+CodR

(5'UTR-3'UTR)
GAGTTCCTGAGCGAGTGGAC
ACTTTCAAACAGGCCACCAC

2.5mM

Gold

95°C 30s; 57°C 30s;
72°C 75s; 35 cycles

A6-8 F+R

(Ex4-Ex5/9
junction)

TTTCACTGGCAAAGTGGTTG
GCTCCCTGTTGCCATTCTTC

1.2mM
Pic

94°C 30s; 55°C 30s;
72°C 30s; 35 cycles

Exl/1-A6-8R

(5'UTR-Ex5/9
junction)

GAGTTCCTGAGCGAGTGGAC
GCTCCCTGTTGCCATTCTTC

2.5mM

Gold

95°C 30s; 67°C 30s;
72°C 75s; 40 cycles TD

\\ACTIN F+R CTACGTCGCCCTGGACTTCGAGC
GATGGAGCCGCCGATCCACACGG

2.0mM
Pic

94°C 30s; 55°C 30s;
72°C 30s; 35 cycles

Z1+Z2

(both in ex 9)
TACTTCAACAACTGCTGCCG
CGTTCTTGGATCAGCCTCTC

2.0mM
Pic

94°C 30s; 58°C 30s;
72°C 30s; 35 cycles

LCI F+R

(both in 3'UTR)
GTGGTGGCCTGTTTGAAAGT
GAGGGGACCTCAGGCTATTC

2.0mM
Pic

94°C 30s; 60°C 30s;
72°C 30s; 35 cycles

Primer sequences, magnesium concentrations, type of Taq DNA polymerase used and cycling
conditions for non-quantitative RT-PCRs.
"Gold = Taq Gold®, Pic = Pic Taq
aTD = annealing temperature decreased by 1°C per PCR cycle for first 10 cycles
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Table 2.2: Primers and conditions for PCR on genomic DNA

Primers Sequences (5'-3') For/Rev Mg2+/
Taq"

Cycling
conditions

Neo F+R GCGATGCCTGCTTGCCGA
GAAGGCGATAGAAGGCGA

l.6mM
Pic

94°C 30s; 55°C 30s;
72°C 30s; 35 cycles

Blast F+R ATCAACAGCATCCCCATCTC
CAAGATGCCCCTGTTCTCAT

1.6mM
Pic

94°C 30s; 55°C 30s;
72°C 30s; 35 cycles

Exon 1F+R GGAGACTGGATTTCAGCTTC
CCCTGGACCCTTTTCCCT

1.6mM
Pic

94°C 30s; 65°C 30s;
72°C 30s; 35 cycles TD*

Exon 2F+R GTCCTCTTTCTCCTTCTTCC
CAATAACCTGTCACCTCTCT

1.6mM
Pic

94°C 30s; 55°C 30s;
72°C 30s; 35 cycles

Exon 3F+R GTCTTTACTTCTCCCTGGCACC
GCGGGGAAAATAGAAGAATA

1.6mM
Pic

94°C 30s; 56°C 30s;
72°C 30s; 35 cycles

Exon 4F+R CTTTCTCTTTTGGGCAGC
GCAGTCCCAAAGATAAATAAC

1,6mM
Pic

94°C 30s; 58°C 30s;
72°C 30s; 35 cycles

Exon 5F+R AGGACTCTACCCCACAAC
ACACACTCCACTGAAATC

2.0mM
Pic

94°C 30s; 68°C 30s;
72°C 30s; 40 cycles TD

Exon 6F+R ATTAAACAGGGGAATTCCGAC
TCTCCCAATTGTGTTCATCTG

1.6mM

Pic

94°C 30s; 63°C 30s;
72°C 30s; 35 cycles TD

Exon 6aF+R TAGGAGGTGTTGGAAGAAGG
CACCTGAAGAGTCGTAAAGC

1.6mM
Pic

94°C 30s; 56°C 30s;
72°C 30s; 35 cycles

Exon 7F+R2 ACATCCATGGATCCCGAAG
TGATTCACTTGAAAGGTGGTCT

1.6mM

Pic

94°C 30s; 55°C 30s;
72°C 30s; 40 cycles

Exon 7F2+R CACCAAAGATGGCCTGGA
TGGTATGAGAAAGGGGATAAGTG

1.6mM
Pic

94°C 30s; 65°C 30s;
72°C 30s; 35 cycles TD

Exon 8F+R TGCACCCAGCATTCCTTAGATTTCC
ACCAGACTCATGCCCGCAAG

1.6mM
Pic

94°C 30s; 65°C 30s;
72°C 30s; 35 cycles TD

Exon 9F+R GACGCCATCTCATCACTCC
TTTACTTTCAAACGGCCACC

1.6mM
Pic

94°C 30s; 65°C 30s;
72°C 30s; 40 cycles TD

Primer sequences, magnesium concentrations, type of Taq DNA polymerase used and cycling
conditions exon-specific PCRs on genomic DNA.
Pic = Pic Taq
aTD = annealing temperature decreased by 1°C per PCR cycle for first 10 cycles

2.1.5 PCR conditions

Non-quantitative PCRs were performed using Pic Taq, or if the target fragment was

long and difficult to amplify, Taq Gold® was used. The amount of each PCR

reagent added to each Pic Taq PCR reaction is shown in table 2.3 and the amount

added to each Taq Gold® PCR reaction is shown in table 2.4. 2pl of sample
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genomic DNA or cDNA was used in each PCR, giving a total volume of 25pl for

each PCR. Each PCR was optimised for the primer pair used. The optimal

magnesium concentrations, cycling conditions and Taq polymerase enzyme for each

primer pair is shown in tables 2.1 and 2.2. Each PCR was initiated with a

denaturation step at 94 or 95°C (90s for Pic Taq, 12mins for Taq Gold to activate the

enzyme), followed by primer-specific cycling conditions and finished with a 3min

elongation step at 72°C.

Table 2.3: Pic Taq PCR reaction mix

Component
Stock

Concentration

Volume (pi) in
one reaction

Actual final

concentration

dNTPs lOmM (50x) 0.5 200pM
Reaction Buffer lOx 2.5 lx

MgCl2 25mM 2.0/1.6 2.0/1.6mM

Forward primer 20pM 1.0 0.8pM

Reverse Primer 20pM 1.0 0.8pM
Pic Taq 5U/ml 0.2 1U total

Distilled water 15.8/16.2

Total Volume 23pl
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Table 2.4: Taq Gold® PCR reaction mix

Component
Stock

Concentration

Volume (pi) in
one reaction

Actual final

concentration

dNTPs lOmM (50x) 0.5 200pM

Reaction Buffer II lOx 2.5 lx

MgCl2 25mM 2.5 2.5mM

Forward primer 20pM 0.25 0.2pM

Reverse Primer 20pM 0.25 0.2pM

Taq Gold® 5U/ml 0.2 1U total

Distilled water 16.8

Total Volume 23pl

2.1.6 Checking of PCR products by agarose gel

electrophoresis

TBE

10 x TBE stock was made up as follows:

108g Tris Base, 55g Boric Acid, 40ml 0.5M EDTA pH 8.0 were mixed (using a

magnetic stirrer) with 500ml of sterile distilled water until they had dissolved. The

volume was then made up to 1 litre with sterile distilled water and autoclaved. This

was stored at room temperature.

1 x TBE was made up from the 10 x TBE stock when required using distilled water.
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Agarose Gels

0.8g of general purpose agarose were added to 40ml of lxTBE to make up 40ml of

2% agarose. Weights of agarose and volumes of lxTBE were adjusted according to

the percentage and volumes of agarose gel required.

Loading buffer

6 x loading buffer consisted of 0.25% bromophenol blue and 40% weight by volume

sucrose in water. It was made up as follows:

4g sucrose, 0.025g bromophenol blue and 6ml 10 x TBE were made up to lOmls

with sterile distilled water.

DNA ladder

A lkb DNA ladder was obtained from Invitrogen and run as a size marker in agarose

gels.

PCR products were mixed with loading buffer and loaded onto general purpose 1-

2% agarose containing ethidium. The gel was run at 60-100mV in lxTBE. To

confirm product sizes, a lkb DNA ladder was also run. The products were visualised

under ultra-violet light.

2.1.7 Purification of PCR products

PCR products were purified using the QIAquick® PCR Purification Kit (Qiagen).

This protocol is designed to purify single-stranded or double-stranded DNA

fragments from PCR and other enzymatic reactions. It allows lOObp to lOkb DNA

fragments to be purified from primers, nucleotides, polymerases and salts.
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Five volumes of Buffer PB were added to one volume of the PCR reaction and

mixed. To bind the DNA, the sample was applied to the QIAquick® column and

centrifuged at 16000g for 60s. The flow-through was discarded, 0.75ml of Buffer PE

(to wash the DNA) was added and the column was centrifuged for another minute at

16000g. The flow-through was discarded and the column was centrifuged for a

further minute at 16000g. The column was placed in a clean microfuge tube. To

elute the DNA, 50pl of sterile distilled water or elution buffer was added to the

centre of the membrane and the column was centrifuged for a minute at 16000g.

2.2 Engineering of constructs for transfection

Most of the plasmid constructs used for the transfection work presented in this thesis

were prepared by Karen Taylor prior to the start of my PhD and I gratefully

acknowledge her help.

2.2.1 Media and additives

All media was sterilised by autoclaving before use.

L-Broth

2.46g magnesium sulphate, lOg Bacto-tryptone, 5g yeast extract and lOg sodium

chloride per litre of distilled water.

L-agar

15g agar added per litre of L-Broth
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Ampicillin

Ampicillin (Sigma) was prepared in a sterile fashion to give a stock solution with a

concentration of 50mg/ml. This was stored at -20°C. Ampicillin was added to the

bacterial culture media to give a final concentration of 50pg/ml in order to select for

bacteria transformed with plasmids carrying the ampicillin resistance.

2.2.2 Bacterial strains

Plasmids were propagated in One Shot® TOP 10 Chemically Competent Cells

(Invitrogen).

2.2.3 Plasmids

Two plasmids were used for transfecting WWOX sense and antisense constructs into

human cancer cell lines.

pcDNA3.1/V5-His-TOPO® (Invitrogen) is a 5523bp mammalian expression vector

that carries a geneticin resistance marker. It drives expression of the cloned insert

from a CMV promoter. A map of this vector is shown in figure 2.1.

pEF6/V5-His-TOPO® (Invitrogen) is a 5840bp mammalian expression vector that

carries a blasticidin resistance marker. Expression of the cloned insert is driven from

an EF-1 a promoter. A map ofpEF6/V5-His-TOPO® is shown in figure 2.2.
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Figure 2.1: Map of pcDNA3.1/V5-His-TOPO®

PCR
Product

I I
IXcooaB tB

oiS — o ra ro to o S3
T_ owo-c-QCamwTBujCQSXXQ^toGQl

V5 epitope

pcDNA3.1/
V5-His-TOPO

5523 bp

Comments for pcDNA3.1/V5-His-TOPO
5523 nucleotides

CMV promoter bases 209-863
T7 promoter/priming site: bases 863-882
Multiple cloning site: bases 902-1019
TOPO® Cloning site: 953-954
V5 epitope: bases 1020-1061
Polyhistidine tag: bases 1071-1088
BGH reverse priming site: bases 1111-1128
BGH polyadenylation signal: bases 1110-1324
f1 origin of replication: bases 1387-1800
SV40 promoter and origin: bases 1865-2190
Neomycin resistance gene: bases 2226-3020
SV40 polyadenylation signal: bases 3039-3277
pUC origin: bases 3709-4382
Ampicillin resistance gene: bases 4527-5387

Map ofpcDNA3.1/V5-His-TOPO® (Invitrogen) showing promoter, cloning site, restriction sites and
sites of antibiotic resistance genes. pcDNA3.1/V5-His-TOPO® is a 5523bp mammalian expression
vector that carries a geneticin resistance marker. It drives expression of the cloned insert from a CMV

promoter. Figure taken from the manual supplied with the product.
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Figure 2.2: Map of pEF6/V5-His-TOPO®

Comments for pEF6/V5-His-TOPO*
5840 nucleotides

pEF6/V5-His-
TOPO®
5840 bp

EF-1ct promoter: bases 470-1653
T7 promoter/priming site: bases 1670-1689
TOPO® Cloning site: bases 1760-1761
V5 epitope: bases: 1826-1867
Polyhistidlne (6xHis) tag: bases 1877-1894
BGH reverse priming site: bases 1917-1934
BGH polyadenylation signal: bases 1923-2147
f1 origin of replication: bases 2193-2621
SV40 promoter and origin: bases 2626-2970
EM-7 promoter: bases 3012-3078 -

Blasticidin resistance gene: bases 3079-3477
SV40 early polyadenylation signal: bases 3635-3765
pUC origin: bases 4148-4821 (complementary strand)
bla promoter: bases 21-105 (complementary strand)
Ampicillin (bla) resistance gene: bases 4966-5826 (complementary strand)

Map ofpEF6/V5-His-TOPO® (Invitrogen) showing promoter, cloning site, restriction sites and sites
of antibiotic resistance genes. pEF6/V5-His-TOPO® is a 5840bp mammalian expression vector that
carries a blasticidin resistance marker. Expression of the cloned insert is driven from an EF-la

promoter. Figure taken from the manual supplied with the product.
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2.2.4 Constructs

An insert designed to express a transcript complementary to part of full-length

WWOX 3'UTR was cloned into pcDNA3.1. It was envisaged that when transfected

into cells this antisense construct would target endogenous WWOX transcripts,

resulting in clones with decreased WWOX expression. These constructs were

labelled 'A'. For ease, the resultant transfected clonal cell lines were labelled Al,

A2, A3.

A second insert designed to express a transcript complementary to the full-length

WWOX open reading frame (ORF) was cloned into pEF6. It was envisaged that

when transfected into cells this antisense construct would also target endogenous

WWOX transcripts. These constructs were labelled 'D\

A third insert designed to express a transcript homologous to the full-length WWOX

ORF (without the 3'UTR region targeted by the antisense construct cloned into

pcDNA3.1) was cloned into pEF6. It was envisaged that when transfected into cells

this sense construct would result in high-level exogenous expression of WWOX.

These constructs were labelled 'FT.

The strategy of using expression vectors with different antibiotic resistance markers

was chosen to allow the possible replacement of WWOX in a cell after it had been

knocked out by an antisense construct targeting the 3'UTR, which could facilitate the

identification of a phenotype for WWOX.
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2.2.5 TOPO® cloning reaction and bacterial transformation

The inserts were cloned into both the pcDNA3.1/V5-His-TOPO® and the pEF6/V5-

His-TOPO® cloning vectors which provide an efficient, one-step cloning strategy for

direct insertion of Taq polymerase-amplified PCR products. Primers used to make

the A insert (see section 2.2.4) were 3'UTR F and 3'UTR R (for primer sequences see

table 2.1). The 'D' construct was made using primers E and Z. The 'H' construct

was made using primers E and WWOX2rev. In each case, the PCR product was

purified using the QIAquick® PCR Purification Kit (Qiagen) (see section 2.6.6).

0.5-4pl of PCR products was added to lpl of the TOPO® vector in a salt solution

with a final concentration of 200mM sodium chloride and lOmM magnesium

chloride. The reactants were mixed gently and incubated for 10 minutes at room

temperature, then placed on ice.

The TOPO® cloning reaction was performed by taking 2pl of the TOPO® cloning

reaction and adding it to 50pl One Shot® TOP 10 Chemically Competent Cells

(Invitrogen). This mixture was incubated on ice for 30 minutes. The cells were heat-

shocked for 30s at 42°C without shaking, then immediately transferred to ice. 250pl

of SOC medium (supplied with the chemically competent cell kit) was added and the

tube was shaken horizontally (200rpm) at 37°C for 1 hour. 25-200pl from each

transformation were spread on a pre-warmed selective L-agar plate and incubated

overnight at 37°C. Colonies were then picked the following day and grown in 5ml of

L-Broth (containing ampicillin) overnight. PCR was performed on 2pl of L-Broth

for each colony to identify the presence of insert. For the WWOX sense (H) and full-

length antisense (D) transfectants the primers used were 7F2 and 8R2. For the 3'

antisense construct (A) the primers used were 3'UTR F and R. The primer sequences
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and PCR conditions are shown in table 2.3. For the colonies that contained insert on

the basis of PCR, DNA was prepared using the QIAGEN Qiaprep® Spin Miniprep

Kit according to manufacturers guidelines. An EcoRl restriction digest was

perfomed (to release the insert) and the products were run on a 0.8% agarose gel to

determine the size of the insert. Those colonies with correctly sized inserts were then

sequenced for identity.

2.2.6 Sequencing of cloned inserts

2pl of plasmid DNA was used to sequence the entire cloned insert. To the 2pl of

plasmid DNA was added 4pl ABI Prism® Big Dye, lpl sequencing primer (3.2pM

stock) and water to a final volume of 20pl. The following hot-start sequencing

programme was run: 96°C hold for 30s, 50°C hold for 15s, 60°C hold for 4mins for

24 cycles, then 4°C hold.

For each sequencing reaction a 1.5ml microfuge tube was prepared containing 2pl

3M sodium acetate (pH 4.6), 0.5pl pellet paint and 50pl of 100% ethanol. The

contents of each tube were vortexed and left at room temperature for at least 30mins

to precipitate the extension products. The tubes were then centrifuged for 20mins at

16000g at 4°C. The supernatant was aspirated and discarded. The pellets were

rinsed by the addition of 250pl of 70% ethanol and a brief vortex. The tubes were

centrifuged for 5mins at 16000g at 4°C. The ethanol was removed using a fine tip

pastette and the pellets allowed to dry briefly at room temperature. The precipitated

sequences were run on an ABI 377 DNA sequencer (Agnes Gallacher, Medical

Research Council, Human Genetics Unit).
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2.3 Human cancer cell line culture

2.3.1 Media and additives

RPMI

RPMI 1640 medium (+L-glutamine) was obtained from GIBCO (Invitrogen

Corporation).

DMEM

Dulbecco's Modified Eagle Medium (with sodium pyruvate with 100mg/l glucose)

was obtained from GIBCO (Invitrogen Corporation).

Foetal calfserum (FCS)

Foetal calf serum was obtained from Harlan Sera-Lab Ltd.

Penicillin and Streptomycin

Penicillin and Streptomycin were obtained from GIBCO (Invitrogen). They were

aliquoted at concentrations of lOOOOU/ml and lOOOOpg/ml respectively. These were

added to tissue culture medium at a 1:100 dilution.

RPMI/10%FCS/P+S

55ml of FCS were added to 500ml of RPMI under sterile conditions. Penicillin and

streptomycin (P+S) were also added to the media at final concentrations of lOOU/ml

and 100pg/ml respectively. Media was stored at 4°C when not being used and was

heated to 37°C prior to use.
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DMEM/10% FCS/P+S

55ml of FCS were added to 500ml ofDMEM under sterile conditions. Penicillin and

streptomycin were also added to the media. Media was stored at 4°C when not being

used and was heated to 37°C prior to use.

Acid-inactivatedfetal calfserum

Protease activity can inhibit cellular invasion so acid-inactivated FCS was used in

invasion assays. To do this a 100ml bottle of heat inactivated foetal calf serum was

heated to 37°C in a water bath, concentrated hydrochloric acid was added until the

pH reached 3.0, the incubation was continued for a further 3 hours, the pH was

brought back to 7.4 using concentrated sodium hydroxide and the serum was then

0.22pm filtered.

Geneticin

Geneticin (50mg/ml) was obtained from GIBCO BRL. It was stored at 4°C,

protected from light. It was added to media to give a final concentration that

depended upon the cell line (table 2.6).

Blasticidin S, Hydrochloride

Blasticidin S, Hydrochloride was obtained from ICN Biomedicals. It was diluted in

sterile distilled water to give a stock solution at a concentration of 1 mg/ml that was

stored at -20°C. It was added to media to give a final concentration that depended

upon the cell line (table 2.5).

Hygromycin B

Hygromycin B (50mg/ml) was obtained from Roche. It was stored at 4°C, protected

from light. It was added to media to give a final concentration that depended upon

the cell line (table 2.5).
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Freeze Mix

Freeze mix was composed of 10% dimethyl sulfoxide (DMSO) in FCS.

Table 2.5: Antibiotic concentrations used for cell line culture

Cell Line Requires
Blasticidin

(pg/ml)

Geneticin

(pg/ml)

Hygromycin

(pg/ml)

A2780 HC2 hyg 2 100 75

HCT116 n/a 3 400

HCT116 cl 4 n/a 3 400

OAW42 hygl hyg 1 100 75

PEOl n/a 3 300

PEOl hygl.6 hyg 3 300 50

2.3.2 Maintenance of cell lines

All human tissue culture was carried out in a class II tissue culture hood (laminar

flow) using sterile plasticware and autoclaved glassware. Sterile technique was

employed at all times. Cell lines were maintained on RPMI/10% FCS/P+S or

DMEM/10%FCS/P+S. Cells were cultured in humidified incubators at 37°C, 5%

CO2. Harvesting of cells was performed by removal of media, washing with

phosphate-buffered saline (PBS) and incubation at 37°C for 5 to lOmins with a

minimal amount of trypsin. 6ml of serum-containing media was then added (to
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neutralise trypsin), the cells were recovered to a sterile universal container and the

mixture of media and cells were centrifuged at 522g for 5mins. The media was then

poured off and the cells were ready for further manipulation.

After recovery from liquid nitrogen, prior to freezing down and regularly during

culturing each cell line was tested for the presence of mycoplasma. 5ml of media

containing some shed cells was collected after 48-72 hours of incubation and the

sample was sent for routine testing to Cell Production, Cancer Research UK, Clare

Hall Laboratories, South Mimms.

2.3.3 Tumour cell lines

The HCT116 human colorectal cancer cell line and the PEOl, A2780 and OAW42

human ovarian cancer cell lines were transfected with the WWOX sense and

antisense constructs.

HCT116 [188] is a colorectal cancer cell line that has a homozygous deletion within

intron 8 of WWOX but still expresses a full-length transcript as well as a number of

smaller transcripts [53], The clonal line (HCT116 clone 4) used for the WWOX sense

and antisense transfections was derived by Dr. Larry Hayward (Edinburgh Cancer

Research Centre) by diluting the parent line to unicellularity and expanding out the

clone.

The PEOl cell line was derived from the ascites of an ovarian cancer patient [163].

It is homozygously deleted for WWOX exons 4-8 [53] and expresses a small

transcript containing exons 1,2,3 and 9. Clonality for this line was achieved by

transfecting the parent line with a hygromycin resistance vector then positively

104



selecting for growth. These cells were maintained in media containing 50pg/ml

hygromycin.

A2780 is a human ovarian cancer cell line [189,190], The clonal line used for the

WWOX transfections was derived by initially transfecting the parent line with a

hygromycin resistance vector then positively selecting for growth. These cells were

maintained in media containing 75pg/ml hygromycin. This cell line was transfected

with the construct expressing the WWOX sense transcript.

OAW42 is a human ovarian cancer cell line [191]. The clonal line used for the

WWOX transfections was derived by initially transfecting the parent line with a

hygromycin resistance vector then positively selecting for growth. These cells were

maintained in media containing 75pg/ml hygromycin.

RNA from a panel of cancer cell lines was used for the quantitative analysis of

WWOX isoform expression (table 2.6). This RNA was extracted from cultured cells

by Diane Scott.

The wild-type (wt), p53-null, p21-null and Bax-null HCT116 isogenic colorectal

cancer cell lines were obtained from the laboratory of Prof Bert Vogelstein.
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Table 2.6: Cell lines used for quantification of WWQX isoforms (listed

according to tissue of origin)

Tissue ofOrigin

Ovary Colon Lymphocyte Breast Prostate Lung

OVCAR3 HT115 FATO T47D DU145 NX002
CaOV3 HCT15 K562 ZR75.1 LN CAP

OAW42 HRT18 HBL
MDA
MB231

PC3

PEA1 HT29 JURKAT MCF7
SKOV3 SW48 HL60
A2780cis HCT116
PEA2 LOVO
PE014
HELA

OVCAR5
59M
A2780ad
41M

A2780
OVCAR4
PE016
PE023

2.3.4 Storage of cell lines in liquid nitrogen

Cells were grown in 75cm3 or 175cnr' tissue culture flasks until they were 70%

confluent. They were washed with sterile PBS, a minimal volume of trypsin was

added and the cells were incubated at 37°C for 5-10 minutes. The cells were

recovered by the addition of 6ml of serum-containing tissue culture medium which

was then removed using a pipette and placed into a universal container. The cells

were then spun at 522g for 5 minutes to pellet and the RPMI/trypsin discarded. The
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cell pellet was resuspended in freeze mix and aliquoted into freezing vials (Corning)

in 1 ml volumes. The freezing vial was stored at -70°C overnight, then transferred to

liquid nitrogen (-180°C to -175°C) for long-term storage.

2.3.5 Recovery of cell lines from liquid nitrogen

Recovery of the cells was performed by rapid thawing of the vial in a beaker ofwater

at 37°C, followed by two washes in media and seeding into flasks.

2.3.6 Counting cells using the haemocytometer

When specific numbers of cells were required for an experiment, they were in

general counted using a haemocytometer, which allows discrimination of viable and

non-viable cells. Cells were harvested and washed as required for the purposes of

the experiment in question. On occasion (if cell numbers were large) a 1 in 10 or a

lin 20 dilution was performed for the purposes of counting cells. A cover slip was

adhered to the surface of a clean haemocytometer. Using a pastette, a suspension of

the cells to be counted was applied to one half of the haemocytometer, under the

cover-slip. Under the microscope, the number of cells in each quadrant of that half

of the haemocytometer (16 smaller squares) was counted. This was performed for all

4 quadrants and the average count for a quadrant was calculated. This number, x,

multiplied by 10000, gave the number of cells per ml of original suspension. Using

simple proportion, the volume of cell suspension required to give a particular number

of cells could then be calculated.
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2.3.7 Determination of antibiotic sensitivities of individual cell

lines

In order to determine the sensitivity of the cell lines used in the transfection

experiments (HCT116, PEOl, A2780 and OAW42) to the antibiotic resistances

(geneticin and blasticidin) on the vectors carrying the WWOX sense and antisense

inserts, kill curves were performed prior to each transfection.

The cell lines were cultured in 75 cm1 flasks until in log phase, then subcultured into

24-well plates. Cell numbers per well varied according to the cell line (from 1.5 x

103 per well for OAW42 to 1.2 x 104 per well for A2780). Estimates of the number

of cells to use per well were obtained from Dr. Larry Hayward, Dr. Jane Sewell and

Mr. Peter Mullen, who were familiar with the use of these cell lines. In order to

allow a baseline count and three formally counted time-points, at least four 24-well

plates were set up for each cell line with each antibiotic. The first column of each 24

well-plate was left blank. Cells from the 75cm3 flasks were harvested, washed and

counted with a haemocytometer, so that a dilution with the correct number of cells

per millilitre could be made. The cells in 1ml of growth medium were added to the

24-well plates and incubated at 37°C for 24 hours. The following day a baseline cell

count was performed for one 24-well plate using the coulter-counter. For the other

24-well plates, the growth medium was removed and replaced with media containing

a concentration range of selective antibiotics. The 2nd column of wells had no

antibiotic and the following 4 columns had antibiotic of progressively increasing

concentrations. For geneticin, the first 4 antibiotic concentrations tested were 50,

100, 150 and 200pg/ml. For blasticidin, the first 4 antibiotic concentrations tested

were 0.5, 1.0, 1.5 and 2.0pg/ml. The effect of the antibiotic was monitored by
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counting the cells at regular intervals using the coulter-counter and by direct

visualisation of the cells. Complete cell death at 5-7 days post exposure was

considered to be optimal for transfection purposes.

The geneticin and blasticidin concentrations used for the cell lines involved in the

transfection experiments are shown in table 2.7.

Table 2.7: Geneticin and blasticidin concentrations used in transfections

Cell Line
Geneticin
Concentration (ftg/pl)

Blasticidin
Concentration (pg/pl)

HCT116 cl4 400 3

PEOl hyg 1.6 300 3

A2780 HC2 100 2

OAW42 hygl 100 1

2.3.8 Stable transfection of plasmid DNA into cell lines

Transfections were performed using linear rather than circular DNA to minimise the

possibility of interrupting the insert during integration into the mammalian genome.

The plasmid was prepared, linearised, gel purified and ethanol precipitated as

described in section 2.2 (above).

At least two transfections events were performed for each plasmid construct to

ensure that truly independent clones were obtained. Transfections were performed

using the Effectene® Transfection Reagent Kit (Qiagen).
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Adherent cells were grown to 70% confluence, then 5-20 x 103 cells (depending on

the cell type) were seeded into a 100mm Petri dish in 10ml of growth medium

containing serum and appropriate antibiotics. The cells were cultured in humidified

incubators at 37°C, 5% CO2. When the cells were in log phase the transfection was

performed, lpg of linearised plasmid DNA (dissolved in 5pl TE) was added to

145jli1 of buffer EC and 8pi of enhancer and briefly vortexed. The mixture was

incubated at 25°C for 5mins and briefly centrifuged. 25pl of Effectene®

Transfection Reagent was added to the DNA-Enhancer mixture. This was mixed by

vortexing for 10s and the mixture was incubated for a further lOmins at 25°C to

allow complex formation. The transfection complexes were removed from the

reaction tube and placed in a universal with a further 3ml of growth medium. This

mixture was pipetted up and down twice before being added drop-wise onto the cells

in the 100mm Petri dishes (which were swirled during addition of the transfection

complexes). The cells were then cultured at 37°C, 5% CO2 in a humidified

incubator. For each plasmid transfection (whether vector-only or vector containing

insert) 2 separate Petri dishes containing cells were transfected with the plasmid, a

further Petri dish was exposed to buffer and enhancer (but no plasmid) and a further

Petri dish containing cells was not exposed to any of the transfection reagents. The

cells were then cultured for a further 48 hours, before subculturing each Petri dish

into 5 Petri dishes. The cells were then incubated for a further 24 hours before

exposing them to antibiotic selection.

The cells were cultured in selective media until no live cells were visible in the

control dish that was not exposed to transfection reagents and until sizeable colonies

were visible in the Petri dishes containing the plasmid transfections.
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2.3.9 Picking of resistant clones

Colonies were identified with the naked eye and their location marked on the

undersurface of the dish with a marker. The degree of isolation of each colony was

checked under the microscope. Each petri dish was washed with PBS and one drop

of trypsin was placed on the colony. Five seconds were allowed to elapse before the

colony was aspirated with a fine pastette and deposited into one well of a 24-well

tray containing 1ml of tissue culture medium containing selection. The contents of

the well were pipetted up and down to break up the colony.

The cells were progressed through 24-well trays, 6-well trays, 25cm3 tissue culture

flasks into 75cm3 tissue culture flasks. Cells from 25cm3 flasks were used to obtain

RNA and the contents of one 75cm3 flask were frozen down in 3 freezing vials to

allow long-term storage of the cells in liquid nitrogen.

2.4 DNA preparation

2.4.1 Tumour cell lines

Tumour cell lines were grown in culture until log phase and harvested as described

earlier. DNA extraction was performed using the QIAamp® DNA Mini Kit

(Qiagen). The washed cells were suspended in a final volume of 200pl PBS in a

1.5ml microcentrifuge tube. 20|il Proteinase K and 200fil Buffer AL were added to

the sample which was mixed by pulse-vortexing for 15s. The sample was incubated

at 56°C for lOmin and the microcentrifuge tube was briefly centrifuged. 200|il

ethanol was added to the sample, which was then mixed by pulse-vortexing for 15s
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and briefly centrifuged. The mixture was applied to a QIAamp spin column and

centrifuged at lOOOOg for lmin. The column was washed firstly with 500|ll of

Buffer AW1 (centrifuged for lmin at lOOOOg) and secondly with 500jnl of Buffer

AW2 (centrifuged for 3min at 16000g). 200pl Buffer AE was added to the column,

which was spun at lOOOOg for 1 min to elute the DNA. The concentration of the

DNA was estimated by spectrophotometry (section 2.4.3) and stored at -20°C.

2.4.2 Clinical material

Primary ovarian tumour material and non-malignant tissues were obtained from

patients undergoing gynaecological surgery in Lothian University Hospitals NHS

Trust, Scotland, UK. This material was gathered by Diane Scott and her help with

this is gratefully acknowledged. Institutional ethical approval for this work was

granted by the Lothian University National Health Service Trust Medicine/Clinical

Oncology Research Ethics Subcommittee. Tissue samples were excised, transferred

on ice for section then transferred into liquid nitrogen. All the patient samples were

anonymised during laboratory investigation but were given human ovary (HOV)

numbers as unique identifiers in order to allow matching of clinical and laboratory

data.

One section of tissue was transferred to a freezing vial and dismembranated prior to

storage in liquid nitrogen. This vial was used for DNA extraction.

DNA was extracted from clinical samples using the Nucleon® Genomic DNA

Extraction Kit (Soft Tissue) supplied by Tepnel Life Sciences pic.
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Dismembranated frozen tissue was taken from liquid nitrogen storage and weighed.

2.5ml of Reagent A was added for each 0.25g of tissue. Following centrifugation at

1300g for 10 mins, the supernatant was discarded without disturbing the cell pellet.

0.5ml of Reagent B/0.25g of tissue was added to the pellet and the solution briefly

vortexed to resuspend the pellet. The suspension was then transferred to a

polypropylene tube and RNase I was added to a final concentration of 400ng/ml.

The suspension was then incubated at 37°C for 30mins. Following this, 150pl of

sodium perchlorate was added for each 0.25g of tissue. The suspension was mixed

by inverting 7 times to emulsify the phases. 150pl ofNucleon® Resin was added for

each 0.25g of tissue. This was rotary mixed for 5 mins and centrifuged at 350g for

lmin for samples of <0.25g or at 1300g for 3 mins with samples >0.25g. Without

disturbing the Nucleon® Resin layer, the upper phase was transferred to a clean

polypropylene tube. Two volumes of cold absolute ethanol were added to precipitate

the DNA and the tube was inverted several times. The DNA was removed from the

tube using a glass hook, was allowed to air-dry and was then placed into a microfuge

containing TE. The OD260 of the DNA solution was then determined

spectrophotometrically (section 2.4.3).

2.4.3 Quantification of DNA/RNA by spectrophotometry

l-5pl of nucleic acid was diluted in distilled water to a final volume of lOOOpl. The

absorbance of this dilution was read using a spectrophotometer at wavelengths of

260nm (OD26o) and 280nm (OD28o)- An OD26o of 1.0 is equivalent to a dsDNA

(double-stranded DNA) concentration of 50pg/ml, a ssDNA (single-stranded DNA)

concentration of 33pg/ml and an RNA concentration of 40pg/ml allowing simple
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proportional calculations to determine the DNA or RNA concentration of the sample.

For DNA and RNA, the OD280 to OD26o ratio indicates the purity of the sample with

a ratio of 1.8 being optimal for DNA and a ratio of 1.8 to 2.0 being optimal for RNA.

A ratio of less than 1.8 indicates considerable protein contamination.

2.5 RNA preparation

2.5.1 Cell lines

Cultured cells were grown to 70% confluence in a 25cm3 tissue culture flask and the

tissue culture medium was discarded. RNA was then prepared using the Absolutely

RNA® RT-PCR Miniprep Kit (Stratagene). 600p.l of lysis buffer was added to 4.2pl

of [3-mercaptoethanol in a labelled 1.5ml microcentrifuge tube and the mixture was

pulse-vortexed. The mixture was added to the 25cm3 tissue culture flask, spread

evenly over the surface and run back and forth over the surface of the flask. The cell

lysate was then returned to the microcentrifuge tube, which was vortexed to

homogenize the lysate. Up to 700pl of homogenate was transferred to a Prefilter

Spin Cup seated in a 2ml receptacle tube and centrifuged at 16000g for 5mins. The

spin cup was removed and discarded. The filtrate was retained. An equal volume of

70% ethanol was added to the filtrate and the tube was vortexed for 5s. Up to 700pi

of the mixture was transferred to a Fibre-Matrix Spin Cup, seated in a fresh 2ml

receptacle tube and centrifuged at 16000g for 60s. The filtrate was discarded and the

spin-cup retained. For samples homogenised in >350pl of lysis buffer, the last 2

steps were repeated. For all steps up to this the RNA was protected from RNases by
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the presence of guanidine thiocyanate. All further steps were performed in an

RNase-ffee hood. 600pl of Low-Salt Wash Buffer was added to the tube, which was

centrifuged at 16000g for 60s. The filtrate was discarded and the tube was

centrifuged for a further 2mins. The DNase solution containing 45U DNase I in 55pl

buffer was added directly onto the fiber matrix inside the spin cup and the sample

was incubated at 37°C for 15mins in an air incubator. After incubation, 600pi of

High-Salt Wash Buffer was added and the tube was centrifuged at 16000g for 60s.

The filtrate was discarded and the spin cup retained. Next, 600pl of Low-Salt Wash

Buffer was added and the tube was centrifuged at 16000g for 60s. The filtrate was

discarded and the spin cup was retained. Following this 300pl of Low-Salt Wash

Buffer was added and the tube was centrifuged at 16000g for 2mins to dry the fibre-

matrix. The filtrate was discarded and the spin cup was placed in a clean 1.5ml

microcentrifuge tube. 60pl of Elution Buffer was placed directly onto the centre of

the fibre matrix inside the spin cup and the tube was incubated for 2mins at room

temperature. The tube was then centrifuged at 16000g for 60s to elute the RNA.

5pl of RNA was taken immediately for quantification by spectrophotometry and the

remainder stored at -70°C.

2.5.2 Clinical material

Sections used for RNA preparation had not previously been ffeeze-thawed. RNA

was prepared using the Absolutely RNA RT-PCR Miniprep Kit (Stratagene) and a

dismembranator. The sample was retrieved from liquid nitrogen into a weighed

freezing vial on dry ice. Using a sterile scalpel, the sample was cut into fragments on

a Petri dish on dry ice to give 25-30mg aliquots. They were placed into numbered
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freezing vials and reweighed. Steel balls were washed in 50% neutricon®/distilled

water, then distilled water, then ethanol. One steel ball was then placed in each tube.

600pl of Lysis Buffer and 4.2pl of (3-mercaptoethanol were added to each tube and

the sample was dismembranated for lmin at 1800Hz. Using a pastette, the solution

was transferred into a clean 1.5ml microfuge tube. The sample at this stage could be

stored at -70°C for use at a later date if required. Otherwise, isolation of RNA was

similar to that for cell line RNA from the cell lysate step onwards, except that the

published protocol required optimisation for tissue samples because the DNasel

treatment step was not satisfactory for removing contaminating DNA in all cases.

A further 600pl of cell lysis buffer was added to the homogenate and the microfuge

tube was vortexed. Thus, a total volume of 1.2-1.6 ml was present in the microfuge

tube. This was run down two columns instead of one to prevent the capacity of the

column for removing all contaminating DNA from being overcome. Up to 700pl of

homogenate was transferred to each of two Prefilter Spin Cups seated in 2ml

receptacle tubes. The tubes were centrifuged at 16000g for 5mins. The spin cups

were removed and discarded. The filtrates were retained. An equal volume of 70%

ethanol was added to each fdtrate and the tubes were vortexed for 5s. For each tube,

up to 700pl of the mixture was transferred to a Fibre-Matrix Spin Cup seated in a

fresh 2ml receptacle tube in a fresh receptacle tube and this was centrifuged at

16000g for 60s. The fdtrates were discarded and the spin-cups were retained. For all

steps up to this the RNA was protected from RNases by the presence of guanidine

thiocyanate. All further steps were performed in an RNase-free hood. 600pl of

Low-Salt Wash Buffer was added to each tube and they were centrifuged at 16000g

for 60s. The fdtrate was discarded and the tubes were centrifuged for a further
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2mins. The DNase solution was prepared by gently mixing 50pl ofDNase Digestion

Buffer with 15 pi of reconstituted RNase-Free DNase I for each column. The DNase

solution was added directly onto the fiber matrix inside each spin cup and the

samples were incubated at 37°C for 15mins in an air incubator. After incubation,

600pl ofHigh-Salt Wash Buffer was added to each tube and they were centrifuged at

16000g for 60s. The filtrates were discarded and the spin cup was retained. Next,

600pl of Low-Salt Wash Buffer was added to each tube and they were centrifuged at

16000g for 60s. The filtrates were discarded and the spin cups were retained.

Following this 300pl of Low-Salt Wash Buffer was added to each tube and they were

centrifuged at 16000g for 2mins to dry the fibre-matrix. The filtrates were discarded

and the spin cups were placed in a clean 1.5ml microcentrifuge tube. 60pl of Elution

Buffer was placed directly onto the centre of the fibre matrix inside the spin cup and

the tubes were incubated for 2mins at room temperature. The tubes were then

centrifuged at 16000g for 60s to elute the RNA.

5ul of RNA was taken immediately from each sample for quantification by

spectrophotometry (see below). The rest was stored at -70°C.

2.6 Preparation of first strand cDNA

First strand cDNA was synthesised using the 1st Strand cDNA Synthesis Kit for RT-

PCR (AMV), obtained from Roche. Using this method AMV reverse transcriptase

synthesised the new cDNA strand from the 3'-end of the poly(A) mRNA, the reaction

having been primed by 01igo-p(dT)i5.

117



lpg ofRNA was used for each 1st strand cDNA synthesis of 20pl. Two lpg aliquots

ofRNA were prepared for each sample to allow for a positive (+ve RT) and a control

(-ve RT) reaction. For each set of aliquots a mastermix of reagents was prepared to

include 2pl lOx Reaction Buffer (lOOmM Tris, 500mM KC1; pH8.3), 4pl 25mM Mg

Cl2, 2pl Deoxynucleotide Mix (dATP, dCTP, dTTP, dGTP; lOmM each), 2pl Oligo-

p(dT)i5 Primer (0.8pg/pl) and lpl RNase inhibitor. To the first strand cDNA

synthesis reaction, 0.8pl ofAMV reverse transcriptase was added. The samples were

briefly vortexed then briefly centrifuged before being placed in a PCR block (PTC-

225 Peltier Thermal Cycler, MJ Research). The samples were heated on the block at

25°C for lOmins, 42°C for 60mins, followed by 5mins incubation at 99°C to denature

the AMV reverse transcriptase and then removed to ice

2pl of each first strand cDNA product (+ve and -ve RT reactions) was aliquoted off

for a PCR using y-ACTIN primers (section 2.1) and the rest was aliquoted into the

desired volumes and stored at -70°C.

2.7 Quantitative RT-PCR

Quantitative PCR was performed initially using a Light-cycler® (Idaho

Technologies) and subsequently using a Rotorgene® 2000 (Corbett Research).

2.7.1 Quantitative RT-PCR using the Light-cycler®

The Lightcycler® was a quantitative PCR machine that had 24 slots for PCR

reactions contained within glass capillaries (although in practice only 22 were

usable). It had a heating block that rotated once per cycle, allowing the incorporated
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fluorescence of each sample to be determined once per cycle. The PCR reactions

each contained SYBR Green, a stain that fluoresces when it binds to dsDNA. The

level of fluorescence is negligible at the beginning of the PCR reaction but, as the

exponential production of dsDNA occurs, the fluorescence rises off the baseline,

becomes detectable and continues to rise (figure 2.3). The number of cycles required

for there to be a significant rise in fluorescence off the baseline is proportional to the

concentration of the target DNA sequence in the original reaction mixture. Therefore,

by the use of standards of known DNA target copy number, a standard curve can be

produced (figure 2.4) which allows extrapolation from the number of PCR cycles

that produce a rise in fluorescence to the initial copy number in the unknown samples

(figure 2.5).
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Figure 2.3: Change in fluorescence as a real-time PCR progresses

fluorescence

Flo vs Cycle #

unknown

samples

standards

cycle number

Rise in fluorescence as a real-ime PCR progresses on the Lightcycler®. PCRs were performed using
ACTIN or WWOX specific primers, cell line cDNA as a template and SYBR green as a fluorophore.
Fluorescence is plotted against cycle number. Pairs of standards cut the noise band at 4, 12.5 and 19

cycles of PCR. On the basis of this a standard curve can be generated (fig 2.5) and quantitation of
unknown samples can be conducted (fig 2.6).
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Figure 2.4: A standard curve

Standard curve generated from a Lightcycler® PCR run. PCRs were performed using ACTIN or

WWOX specific primers, cell line cDNA as a template and SYBR green as a fluorophore. The point
where the standards cross the noise band (in terms of numbers of cycles) is plotted against the log of
the concentration of the target in the starting sample. This allows extrapolation of the point that
unknown samples cross the noise band to give the concentration of the target fragment in that
unknown sample at the start of the reaction.
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Figure 2.5: Lightcycler® quantification of unknown samples
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Quantification of target DNA copy number in unknown samples using the Lightcycler® by

extrapolation from a standard curve. PCRs were performed using ACTIN or WWOX specific primers,
cell line cDNA as a template and SYBR green as a fluorophore. Samples 1 to 6 are the standards of

designated concentration (in duplicate). Sample 22 is the NTC. Samples 7 to 21 are the samples of
unknown concentration (in triplicate).

Standards (amplified DNA with known gene copy number) at three different

concentrations, each in duplicate, were put in the first 6 slots of the machine.
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Typical copy numbers for these standards were either 109, 107 and 105 or 107, 105

and 103 depending on the abundance of the gene in the cell line being investigated.

Every effort was made to ensure that the copy number of the unknown samples was

contained within the extent of the standard curve. One no template control (NTC)

was included in each run. The main interest was in the level of gene expression in

transfectants compared to the parent line. Cell line cDNA was used and for each cell

line (whether parent or transfectant) the reactions were performed in triplicate. The

parent line was included in each run to allow comparability between runs without

relying entirely on the exact reproducibility of the standard curve. The average copy

number of each triplicate was used for quantitation analysis. In order to correct for

any differences in the amount of RNA used in each first strand reaction or for

differences in the efficiency of the first strand reactions, quantification of a

housekeeping gene (in this case $-ACTIN) was performed and the expression level of

the gene of interest (in most cases WWOX) in each cell line was corrected for the

expression level of fi-ACTIN.

The output from the Lightcycler®, as well as including the fluorescence of each

sample after each cycle of the PCR, also included a melt curve which was created by

slowly increasing the temperature of each tube from 70°C to 95°C at the end of the

PCR reaction (figure 2.6). This allowed the determination of the melt temperature

for all the double-stranded DNA molecules in the PCR products and helped in

distinguishing primer dimer from desired PCR products.
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Figure 2.6: Example of melt curves generated by the Lightcycler®

FvsT

10.0-

gppi
8.0

fluorescence
6.0

4.0

^ I
20-

rate of change
of fluorescence

0.2-, ,
70 72

-dF/dT vs Temp
2.86

ISpl
2.60

2.40

220-

|g p|
2.00

1.80

1.60

1.40-

1.20-

1.00

0.80-

0.60

188
0.40

0.20 -

0.00-

70

74 76 76 80 82 84 86

«5f

88 90 92 94 96 98 100 102 104 106 108 110

temperature

melting
temperature
of sample

98 100 102 104 106 108 110

temperature

Melt curves generated by the light cycler. PCRs were performed using ACTIN or WWOX specific
primers, cell line cDNA as a template and SYBR green as a fluorophore. Melt curves were produced
by slowly increasing the temperature of each tube from 70°C to 95°C at the end of the PCR reaction.

This allowed the determination of the melt temperature for all the double-stranded DNA molecules in
the PCR products and helped in distinguishing primer dimer from desired PCR products.
Fluorescence was plotted against temperature (top graph) and rate of change of fluorescence was

plotted against temperature (bottom graph).
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2.7.2 Lightcycler® reagents

2x PCR Mastermix

2x Taq based Glass Capillary Master Mix 2mM MgCb (Biogene) was used for all

Lightcycler® PCR reactions. This contained Taq DNA polymerase, reaction buffer,

magnesium chloride (to give a final concentration of 2.0mM) and dNTPs. The

Mastermix was stored at -20°C.

SYBR Green I

SYBR Green I (Biogene) was used in all Lightcycler® PCR reactions. This was

stored at -20°C, protected from light. A 1 in 10 stock solution was made up by

adding 45pl of TE to 5pl of SYBR Green I. This was mixed and stored at -20°C,

protected from light. A 1 in 1000 working solution was made up by adding 3pl of

the 1 in 10 stock to 297pl of TE. This was dated and stored at -20°C, protected from

light.

HPLC-purifiedprimers

HPLC purified PCR primers, obtained from Imperial Cancer Research Fund

(subsequently Cancer Research UK) Oligonucleotide Synthesis Service were found

to give optimal results and were subsequently used for all quantitative RT-PCR.

They were stored at -20°C at a stock concentration of 200mM.

2.7.3 Lightcycler® primers

Primers were chosen using Primer 3 (as for non-quantitative PCR, above). For

quantitative real-time PCR, maximum 3' and self-complementarity were kept to an

absolute minimum. The primer sequences used for quantitative RT-PCR on the

lightcycler® are shown in table 2.8.
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Table 2.8: Lightcycler® PGR primers and conditions

PCR Primers Sequences (5T-3f)
For/Rev

[Mg2+]/
Taq" Cycling conditions

Quantitative
real time
RT-PCR

using
Lightcycier®

$ACTIN F+R
CTACGTCGCCCTGGACTTCGAGC
GATGGAGCCGCCGATCCACACGG 2xMM

95°C 0s (20°C/s); 56°C 2s
(20°C/s); 72°C 15s (5°C/s);
85°C 2s (20°C/s) ACQUIRE;
45 cycles

Z1+Z2

(both in ex 9)
TACTTCAACAACTGCTGCCG
CGTTCTTGGATCAGCCTCTC 2xMM

95°C 0s (20°C/s); 58°C 2s
(20°C/s); 72°C 15s (5°C/s);
85°C 2s (20°C/s) ACQUIRE;
45 cycles

LCI F+R

(both in
3'UTR)

GTGGTGGCCTGTTTGAAAGT
GAGGGGACCTCAGGCTATTC 2xMM

95°C 0s (20°C/s); 59°C 2s
(20°C/s); 72°C 15s (5°C/s);
78°C 2s (20°C/s) ACQUIRE;
45 cycles

Primer sequences, magnesium concentrations, type of Taq DNA polymerase used and cycling
conditions quantitative real time RT-PCR performed on the lightcycler®.
"2x MM = 2x Taq based Glass Capillary Master Mix 2mM Mg (Biogene)

2.7.4 Generation of standards for the Lightcycler®

Conventional PCR was performed (primer sequences and PCR conditions in table

2.1) to generate amplified DNA for the required target sequences that was then used

to create DNA standards of known copy number. For example, in the case of (3-

ACTIN, a conventional PCR was performed to generate amplified $-ACTIN DNA.

The template for this PCR was cell line cDNA, usually from HCT116 clone 4. The

PCR products were checked by running on a 2% agarose gel and then purified using

the QIAquick® PCR Purification Protocol (section 2.1.7). The purified DNA was

then quantified spectrophotometrically. On the basis of the OD260 of the sample and

the size of the amplified fragment, it was possible to calculate the number of copies

of the target per pi. On the basis of this, a stock solution containing 1010 copies per

pi was made up. This was stored at -20°C and used to make up the standards for

each run. Dilutions of the 1010 stock were made fresh each day. Dilutions used as
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standards in the runs contained 109, 107 and 105 or 107, 105 and 103 copies per pi

(depending on the abundance of the gene in the cell line being investigated). As lpl

of standard was used for each PCR reaction, this meant that construction of a

standard curve with Ct values (number of cycles prior to significant amplification)

against starting target copy number was straightforward.

2.7.5 Lightcycler® conditions

As the lightcycler® used a silicon-based PCR methodology, optimisation of PCR

conditions on the non-quantitative block was not found to be useful. Optimisation of

Lightcycler® conditions involved trying a variety of magnesium concentrations (in

some cases generating a magnesium curve), various annealing temperatures and

primer concentrations and adding linearised plasmid DNA to the reaction mix in an

attempt in the first instance to achieve a clean melt curve with a single peak of

dsDNA product. For this reason, initial runs were conducted with a low fluorescence

acquisition temperature (e.g. 72°C). Once the melting temperature for the double-

stranded DNA product was known, the cycling acquisition temperature was set just

below this. One of the main problems encountered was the generation of primer

dimers during the PCR. These were seen as PCR products that had low melting

temperatures in the melt curve. Attempts to minimise this involved decreasing the

primer concentration, decreasing the magnesium concentration, increasing or

(paradoxically) decreasing the annealing temperatures of the reaction and adding

linearised plasmid DNA. Once conditions were found that generated a satisfactory

melt curve, the ability of the conditions to generate a good standard curve with a low

error (<1x10°) was tested. The fluorescence plot generally rose slowly with the
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number of PCR cycles, until a critical level was reached, after which the gradient of

the plot increased rapidly. The noise band (figure 2.7) was the horizontal line

parallel to the x-axis, the intersection of which by the fluorescence plot gave the Ct

value for each standard or sample. This was set so that all standards and samples had

entered the phase of rapidly increasing fluorescence (figure 2.7). The Ct values of

the standards were used to create a standard curve. The copy number in the samples

was calculated by extrapolation from this standard curve.

Figure 2.7: Setting the noise band

-JSoiseBaod

Demonstration of how the noise band is set. PCRs were performed using ACTIN or WWOX specific

primers, cell line cDNA as a template and SYBR green as a fluorophore. The noise band (green
horizontal line) was set at a level where the fluorescence of all the samples was rising rapidly off the
baseline (all standards and samples had entered the phase of rapidly increasing fluorescence). The
intersection of the noise band by the fluorescence plot gave the Ct value for each standard or sample.
The Ct values of the standards were used to create a standard curve. The copy number in the samples
was calculated by extrapolation from this standard curve.
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The best conditions for a house-keeping gene were achieved for a |3-actin primer

pair. The best results were obtained with high performance liquid chromatography

(HPLC) cleaned oligonucleotides. For full-length WWOX, a new primer pair, Z1/Z2

with a PCR product of 101 bp was used. This gave reproducible results with good

melt curves (figure 2.8 and 2.9) and a satisfactory standard curve (figure 2.10). The

presence of a single gene product as suggested by the melt curve was confirmed by

running the PCR products on a 2% agarose gel (figure 2.11). This PCR primer pair

targeted exon 9 of the WWOX gene, so was used for quantifying endogenous WWOX

expression in untransfected cell lines, vector controls and 3' antisense (A/B)

transfectants and for quantifying total WWOX expression in sense (H) transfectants.

However, they were unsuitable for quantifying WWOX expression in full-length

antisense (D) transfectants (which expressed an antisense molecule targeting the

whole open reading frame) as they would amplify from the antisense molecule itself.

Therefore a second WWOX-specific primer pair, LC1F/R, which targeted a region of

the 3'UTR was optimised for the Lightcycler®. This primer pair was used for

quantifying endogenous WWOX expression in untransfected cell lines, vector

controls, full-length sense (H) transfectants and full-length antisense (D)

transfectants. They were unsuitable for quantifying total WWOX expression in full-

length sense (H) transfectants or for quantifying WWOX expression in 3'antisense

(A/B) transfectants.
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Figure 2.8: Melt curves for 105-109 standards for Z1/Z2 Lightcycler®
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Melt curves produced following the Lightcycler® PCR using Z1 and Z2 primers with various dilutions of

amplified WWOXDNA as the PCR template. Melt curves shown here are from the reactions of the 105, 107
and 109 standards. Note the single peak in the lower curve for all the samples indicating a single dsDNA

product.
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Figure 2.9: Melt curves for 109 and 103 standards as well as NTC for

Z1/Z2 Lightcycler® PCR
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Melt curves produced following the Lightcycler® PCR using Z1 and Z2 primers with various
dilutions of amplified WWOX DNA as the PCR template. Melt curves shown here are from the
reactions of the 103 and 10° standards. Single peak to melt curve for 10° standards for Z1/Z2

Lightcycler® PCR. Primer dimer only in no template controls (NTC). One of the 103 standards
contains only double-stranded product, the other contains mostly double-stranded product but also
some primer dimer.
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Figure 2.10: Standard curve for Z1/Z2 Lightcycler® PCR
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Quantitation facility of the Lightcycler® being used to set up a standard curve for the PCR using the
Z1 and Z2 primers with various dilutions of amplified WWOX DNA as the PCR template. The noise
band is set above the level of'take-off of fluorescence for all the standards (top section of the figure).
The samples come up in pairs: 109 standards first, then 107 standards, then 105 standards, then 103
standards. The last 2 samples to start to fluoresce are the NTC (no template controls) and this is due
to primer dimer formation (seen in the melt curve, figure 2.9). The Lightcycler® performs the

quantitation analysis (bottom left) and generates a standard curve (bottom right).
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Figure 2.11: PCR products from the Z1/Z2 Lightcycler® standard curve

10kb 109 standards 107 standards 103 standards 103 standards NTC
ladder

PCR products following the Lightcycler® PCR using Z1 and Z2 primers with various dilutions of

amplified WWOX DNA as the PCR template. Lane a: lkb ladder. Lanes b+c: 109 standards. Lanes
d+e: 107 standards. Lanes f+g: 105 standards. Lanes h+i: 103 standards. Lane j: NTC

The reaction mix for all optimised Lightcycler® reactions is shown in table 2.9. The

reactants were added to a 500pl eppendorf tube with lpl of sample to give a total

volume of lOpl. The tube was then briefly vortexed and centrifuged. 5 pi from each

eppendorf was aliquoted into a labelled glass capillary (Biogene). The glass

capillaries were briefly centrifuged and then placed in the Lightcycler® and the

reaction was commenced.

All optimised Lightcycler® reactions started with a 95°C denaturation step

(temperature ramp 20°C/s), followed by 45 cycles of PCR (cycling conditions shown
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in table 2.8) and finished with a melt curve formed by continuous fluorescence

acquisition as the temperature of the PCR products was raised from 72°C to 95°C

(temperature ramp 0.1°C/s).

Table 2.9: Lightcycler® PCR reaction mix

Component Stock
Concentration

Volume (pi) per
reaction

Actual final
concentration

Taq Mastermix 2x 5 lx

MgCl2 25mM 0.8/0.6" 4mM"

SYBR Green 1:1000 0.25-0.50c 1:40000 to 1:20000

Forward primer 20pM 0.125-0.250" 0.25pM to 0.5pM

Reverse Primer 20pM 0.125-0.250" 0.25pM to 0.5pM

Distilled water variable

Total Volume 9pl

a0.8pl of magnesium added to the standards, but only 0.6(.il added to the samples, to account for

magnesium coming through from the first strand reaction in the latter.
''The final concentration of MgCl2 is 4mM, half provided from the mastermix and half in the form of
added magnesium.

'0.25pl of SYBR Green was used in the Z1/Z2 PCRs. 0.5pl of SYBR Green was used in the

$-ACTINand LCI PCRs.

0.125pl of each primer was used for the LCI PCRs. 0.25pl of each primer was used for the

$-ACTINand Z1/Z2 PCRs.
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2.7.6 Quantitative RT-PCR using the Rotorgene®

The Rotorgene® 2000 is a real-time PCR machine which works on similar principals

to the Lightcycler®. It detects the fluorescence of PCR reactants/products after every

cycle of the reaction, allowing the use of fluorescent stains such as SYBR Green to

determine the relative or absolute amounts of target in the starting sample (depending

upon the standard curve used). It differed from the Lightcycler® in that it was a

polypropylene tube-based system and allowed higher throughput, with a higher

capacity rotor.

Although all the quantitative RT-PCR performed in this project was interested in

relative gene expression (e.g. expression in transfectant cell lines versus controls or

expression in ovarian tumours versus normal ovaries), the Lightcycler® protocol

attempted absolute quantification because the standards were of known copy number.

The only concern with this was that the template in the standards (amplified DNA)

was not the same as that in the samples (first strand cDNA). This was acceptable for

two reasons. Firstly, the standard curve was a reference for the samples to be

compared to. As long as it was reproducible between runs, whether it was a true

representation of the actual copy number in the samples or not did not matter for the

analysis. Secondly, all the RT-PCRs contained an internal control that was present in

every run being compared (e.g. the HCT116 parent line was present in all the runs

screening HCT116 transfectants for WWOX expression). All quantitation was

normalised to this internal control so the final expression was represented as a

percentage of the level of expression in the parent line and not as an absolute copy

number.
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However, in the quantitative RT-PCR performed on the Rotorgene®, no attempt was

made to perform absolute quantitation at all. The standards that were used were

more comparable to the samples in that they were all first strand cDNA. A cell line

that expressed the gene of interest at adequate copy number was chosen, RNA and

first strand cDNA were generated and serial dilutions of this were used to

manufacture a standard curve (with the dilutions given nominal values e.g. 1, 0.25,

0.0625, 0.015625). Again, every effort was made to ensure that the amplification of

the unknown samples occurred at a PCR cycle number that was covered by the

standard curve. At least 3 no template controls were included in each run. All

standards were run in triplicate and all samples were run in quadruplicate. An

internal control sample was included in all PCR runs to be compared. Quantification

was performed by averaging the expression (compared to the standard) for the

quadruplicate for both the gene of interest and fi-ACTIN, dividing the former by the

latter and presenting the expression as a percentage of the internal control.

Like the Lightcycler®, the Rotorgene® generated a melt curve profile of the PCR

products once the PCR was completed. The polypropylene tube format of the

Rotorgene® system allowed setting up to be performed on ice, meaning that Hot

Start Taq DNA polymerase could be used. As a result of this, far fewer problems

with primer dimer formation were encountered with this machine.
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2.7.7 Rotorgene® reagents

2 x SYBR Green PCR Master Mix

2 x SYBR Green PCR Master Mix was obtained from Applied Biosystems. It

contained SYBR Green 1 dye, AmpliTaq Gold® DNA polymerase, dNTPs with

dUTP, a passive buffer and optimised buffer components.

2.7.8 Rotorgene® Primers

Primers were again chosen using Primer 3 (as for non-quantitative PCR, section 2.1).

Again, maximum 3' and self-complementarity were kept to an absolute minimum.

Primer sequences are shown in table 2.10. The concentration of primers used for

each reaction is given in section 2.7.10.

2.7.9 Generation of standards for the Rotorgene®

A cell line that expressed adequate amounts of the gene of interest was chosen (e.g.

HCT116, A2780, MCF7). Large amounts (e.g. 250pl) of first strand cDNA were

prepared (as described in section 2.6) for the cell line chosen, effectiveness of the

first strand reactions were checked, the products were pooled, vortexed, then split

into 5pl aliquots to avoid compromising the target cDNA and stored at -70°C.

Rotorgene® runs that were being compared were always performed with standards

produced from the same first strand reaction.
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Table 2.10: Rotorgene® PCR primers and conditions

PCR Primers Sequences (5'-3') For/Rev [Mg2+]
/ Taqa

Cycling
conditions

Quantitative
real time
RT-PCR

(UC77AT+R CTACGTCGCCCTGGACTTCGAGC
GATGGAGCCGCCGATCCACACGG

SYBR 95°C 15s; 57°C 60s; 85°C
15s (aquire); 40 cycles

8F2+Z2

(exon 8 to 9)
ACTATTGGGCGATGCTGGCT
CGTTCTTGGATCAGCCTCTC

SYBR 95°C 30s; 67°C 30s; 72°C
45s; 85°C 15s (aquire); 45
cycles TD

A6-8 F4+R2
(ex4 to 5/9 junct)

GGTTGTGGTCACTGGAGCTAA
CAGCTCCCTGTTGCCATTC

SYBR 95°C 15s; 67°C 60s; 78°C
15s (aquire); 45 cycles TD

Table x: Primer sequences, magnesium concentrations, type of Taq DNA polymerase used and

cycling conditions for quantitative real time RT-PCR performed on the Rotorgene®.
"SYBR = 2xSYBR Green PCR Mastermix (containing MgCf).
''TD = annealing temperature decreased by 1°C per PCR cycle for first 10 cycles

2.7.10 Rotorgene® conditions

20pl reactions were performed in quadruplicate using 0.2 to lpl first strand cDNA

per reaction, 2 x SYBR Green PCR Master Mix (Applied Biosystems). Reactions

were performed in triplicate for the standards and in quadruplicate for the samples.

Fluorescence was detected using the FAM channel (source 470nm; detector 510nm).

Final concentration of \S-ACTIN primers was 200nM each, of WWOX isoform l

specific primers was 400nM each and of WWOX isoform 4 specific primers was

200nM (forward) and 50nM (reverse). The PCR conditions for the 3 reactions all

included a 15 minute Taq activation step at 95°C before cycling and a 4 minute step

at 72°C and a melt curve post-cycling. The cycling conditions and primer sequences

are given in table 2.10. Specificity for isoform 4 was obtained by designing the

reverse primer across the junction of exon 5 and exon 9. Previous studies have used

a similar reverse primer and found no cross-amplification from isoform 1 (full-

length) cDNA [52]. A mispriming control was included in all isoform 4-specific
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PCRs to ensure that amplification detected could not be due to mispriming from

isoform 1. This control was derived by transfecting an isoform 1-overexpressing

plasmid into PEOl cells, which express no endogenous isoform 1 or isoform 4.

Expression levels were extrapolated from a standard curve (that was included in

every run) and corrected for fi-ACTIN expression. The standard curve was made up

of at least 4 sequential dilutions of a cell line cDNA known to express the WWOX

isoform being quantified. Selected products were run on a 2% agarose gel to confirm

band size and identity of the sequences were validated.

2.8 Quantitation of WWOX transcript levels in transfected cell

lines

Transfected cell lines were cultured in 25cm3 flasks until they were 70% confluent.

Media was removed from the flasks and 600pl lysis buffer and 4.2pl of

(3-mercaptoethanol were added. This cell lysate could be stored at -70°C until other

samples were ready so that the RNA could be prepared in batches. RNA was

prepared as previously described using the Absolutely RNA® RT-PCR Kit

(Stratagene) and cDNA was prepared using the AMV First Strand cDNA Kit

(Roche). The levels of ACTIN-corrected WWOX expression were then quantified

using the Lightcycler®. This was a screening exercise to identify transfectants that

may be useful in phenotypic assays. All transfectants that were taken forward for

extensive phenotypic work had their WWOX expression verified through multiple

real-time PCR reactions.
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2.9 Quantification of WWOX transcript levels in cell lines

exposed to hyaluronidase and TNFa

Hyaluronidase-exposure of HCT116 and PEOl cells was performed by Dr. A Paige

and I gratefully acknowledge his help. Quantification of WWOX levels in mRNA

from the exposed cells was performed by myself.

Hyaluronidase

Each vial of hyaluronidase was prepared as follows:

20ml of PBS was added to a universal. 6.67pl of 30% Bovine Serum Albumin

(BSA, Sigma A-9576) was added to the universal and mixed, giving a 0.01%

solution. The solution was passed through a 20pm filter into a sterile universal.

16.35ml of this solution was added to a vial of 327 U of hyaluronidase (Sigma) to

give a 2000u/ml solution.

Two 175cm flasks of tissue culture cells were used for each cell line to be

investigated. The media was decanted, the cells washed in PBS and trypsinised in

the usual fashion. The cells were resuspended in 30ml of serum-containing media,

dissociated with a pastette and counted on a haemocytometer. The exact cell

numbers used depended on the cell line. For HCT116 cells, 1 x 106 cells were sub-

cultured into each 25cm3 flask. The flasks were labelled as follows: 4hr Ounits/ml,

4hr lOOunits/ml, 4hr 200units/ml, 4hr 400units/ml, 8hr Ounits/ml, 8hr lOOunits/ml,

8hr 200units/ml, 8hr 400units/ml. The flasks were incubated at 37°C, 5% CCB for 48

hours. The media was removed from the flasks to be treated with hyaluronidase and

5ml of media containing the appropriate concentration of hyaluronidase was added to
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the flask. The cells were then cultured at 37°C, 5% CO2 for the desired duration of

hyaluronidase exposure. Media was removed from the baseline (Ohr) flasks and

600pl lysis buffer, 4.2pl of p-mercaptoethanol were added as previously described.

The cell lysate was stored at -70°C until RNA extraction was performed (section

2.5.1). The same step was performed for the hyaluronidase-exposed cells, once their

duration of exposure was complete. RNA was prepared using the Absolutely RNA®

RT-PCR Kit (Stratagene) and cDNA was prepared using the AMV First Strand

cDNA Kit (Roche). The levels of AC77A-corrected WWOX expression were then

quantified using the Lightcycler®.

2.10 Quantification of WWOX transcript levels in cell lines

exposed to cytotoxic agents

Cytotoxic-exposure of HCT116 cells was performed by Dr. A Paige and I gratefully

acknowledge his help. Quantification of WWOX levels in mRNA from the exposed

cells was performed by myself.

Doxorubicin

Doxorubicin (adriamycin) was obtained from the Western General Hospital

Pharmacy, Edinburgh. Stocks of lmg/ml (1.7mM) doxorubicin were stored at 4°C.

8.2pl of doxorubicin was added to 70ml media to give a 200nM solution.

Oxaliplatin

Oxaliplatin was obtained from Sanofi Synthelabo. 3.525mg of oxaliplatin powder

was dissolved in 1.11ml of sterile distilled water, giving a 8mM stock solution. The
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solution was stored at -20°C. Oxaliplatin was added to give a final concentration of

8pM.

5-Fluorouracil (5-FU)

5-FU was obtained from Sigma. 2.578mg of 5-FU powder was dissolved in 1.0ml of

sterile distilled water, giving a 20mM stock solution, which was stored at -20°C.

70pl of 5-FU was added to 70ml media (giving a 20pM solution).

These WWOX induction assays were performed in 6-well plates. The top 3 wells of

the plate were used for the p53 normal HCT116 cells and the bottom 3 wells of the

plate were used for the p53-null HCT116 cells. One 6-well plate was used for the

24-hour exposure to each drug and another 6-well plate was used for the 48-hour

exposure. The first well in each row was the untreated well. The other two wells in

each row were the exposed wells (performed in duplicate).

175cnU tissue culture flasks of HCT116 cells in log phase were trypsinised and

recovered in the usual fashion. The cells were counted on a haemocytometer, plated

in serum-containing media at 7.5 x 105 cells per well and incubated at 37°C, 5% CO2

overnight. The following day, the media was removed from the plates and replaced

with 5ml of media containing the appropriate drug (concentrations given above) or

5ml ofRPMI only in the case of the untreated plates. The plates were then incubated

at 37°C, 5% CO2 for 24 hours or 48 hours respectively and cells collected in lysis

buffer for RNA extraction.

142



2.11 Quantification of WWOX isoform levels in a human

ovarian tumour panel

2.11.1 Retrieval of human ovarian tumour samples

83 consecutive tumour samples were taken for analysis from the tissue bank

described in section 2.4.2. Twelve were excluded before analysis: 3 on histological

grounds (primary peritoneal, cystadenoma, pseudomyxoma peritonei); 4 samples

were not obtained at the time of primary surgery; extraction of RNA was

unsatisfactory in 2 cases; 2 patients had concurrent malignancies at the time of

diagnosis and 1 patient had no available clinical information.

13 non-malignant tissue samples were also removed from the tissue bank for

analysis. These patients underwent bilateral oophorectomies for suspected

malignancy but were found to have various benign histologies such as serous

cystadenoma, fibrothecoma, ovarian fibroma, endometriosis and salpingitis. On each

occasion, the apparently normal contralateral ovary was used for our analysis.

RNA and first strand cDNA were prepared as described in sections 2.5 and 2.6.

2.11.2 Quantitative RT-PCR

Quantitative RT-PCR to analyse levels of ft-ACTIN, WWOX isoform 1 and WWOX

isoform 4 expression in the ovarian tumours was carried out on the Rotorgene® as

outlined above (section 2.7.6-2.7.10). As a result the ^CTYA-corrected WWOX

isoform 1 and isoform 4 expression levels were obtained for the ovarian tumour

panel.
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2.11.3 Clinical data retrieval

After the laboratory data had been obtained, clinical data for each HOV sample was

retrieved using the local Cordite database. Missing clinical data was then retrieved

from case notes. Syvia Rye (Cancer Research UK Clinical Trials Office, Western

General Hospital, Edinburgh) correlated this information and her help is gratefully

acknowledged.

Clinical data retrieved included date of birth, age at diagnosis, date of diagnosis, date

of death/date last seen, overall survival, tumour grade, tumour stage, tumour

histology, degree of debulking and censor values.

2.11.4 Statistical Methods

Analyses for clinicopathological associations were conducted using Fisher's Exact

Test, Mann-Whitney Test and linear regression. These analyses were performed

using SPSS Version 10 (SPSS Inc, USA) and the Analyse-it® plug-in (Analyse-it

Software Ltd, UK) for Microsoft® Excel. Univariate analysis was performed

comparing clinicopathological factors and WWOX isoform expression to survival.

All parameters found to be significant at the univariate level were included in the

multivariate Cox regression analysis (forward stepwise likelihood ratio method; entry

probability 0.05; removal probability 0.1). I acknowledge the help of Robert Rush in

performing the multivariate Cox regression analysis.
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2.12 Quantification of WWOX isoform levels in human cancer

cell lines

RNA was isolated from a panel of cell lines (methods in section 2.4.1), first strand

cDNA manufactured and J3-ACTIN, WWOX isoform 1 and WWOX isoform 4

expression quantified using real-time PCR on the Rotorgene® (section 2.7.6-2.7.10).

Each gene quantification was performed in quadruplicate in each run. The average

expression for each cell line was obtained by taking the average expression from

three runs. The standard error of the mean was calculated from the average

expression from the three runs. The absolute error was calculated by dividing the

standard error of the mean by the mean expression. The actin-corrected WWOX

expression was calculated for each isoform by dividing the average WWOX

expression by the average J3-ACTIN expression. The total final error was obtained by

adding together the absolute error for both the WWOX and the (3-ACTIN

quantification. This was the error to which the final quantification of actin-corrected

WWOX expression was subject.

2.13 DNA-FACS (fluorescense activated cell sorting) analysis

Cells for FACS analysis were transferred into a FACS tube, washed in cold PBS and

resuspended in 1ml 70% ethanol. They were fixed on ice in 70% ethanol. They

were washed once and resuspended in 1ml of PBS. lOOpl of 5mg/ml RNaseA and

lOOpl of lOOmg/ml propidium iodide were added and the tube was incubated for

15mins at room temperature in the dark. The cells were than analysed on the flow

cytometer (FACSCalibur, Becton Dickinson).
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2.14 Growth curves

2.14.1 Set-up

Log phase cultures of parent and transfected cell lines were harvested as previously

described, passed 3 times through a 21G needle and seeded in duplicate in 6 well

trays for each time point. The number of cells seeded per well was 5 x 104 for

HCT116 and 1 xlO5 for PEOl.

2.14.2 Counting cells

The cells in growth curve experiments were counted using a coulter-counter

(Beckmann Coulter). Twenty-four hours after the cells were plated down, a 'time

zero' count was performed. The counts for this and all subsequent time points were

performed in the same fashion.

Media was removed from all of the wells in the 6-well tray. The wells were washed

with 2ml PBS per well. The PBS was removed in its entirety using a pastette. 0.8ml

of trypsin was added to each well and the tray was incubated at 37°C in 5% CO2 for 5

minutes. Following this 1.2ml of media was added to each well to give a total

volume of 2ml. The contents of the well were aspirated 6 times using a 21G needle

and 200pl of this cell suspension was added to 9.8ml of 0.9% saline in a coulter

counting cuvette. The contents of the cuvette were mixed by inverting 8 times, the

cuvette was placed in the coulter counter and 0.5ml of the solution was counted. The

settings of the coulter counter (e.g. the size criteria) were dependent on the cell line

used.
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2.14.3 Analysis

The counts for each cuvette were printed out and were subject to multiplication by a

factor of 200 (200pl out of 2ml added to cuvette and 0.5ml out of 10ml actually

counted). They were then entered into Excel® (Microsoft®), corrected for the day

zero counts and growth curves were produced.

2.15 In vivo tumourigenicity assays

Tumourigenicity assays were performed by injecting tumour cells subcutaneously

into both flanks ofnude mice (one injection per flank). Between 1 x 105 and 1 x 107

cells were used per injection (depending on the cell line). Where possible, ten

injections were performed per cell line. Growth of the tumours was then followed

until they reached such a size (2cm in maximum dimension) that the mice had to be

sacrificed.

2.15.1 Harvesting cells for xenograft experiments

Tumour cells were grown sterilely in tissue-culture. When they were in log phase

(30-80% confluent), they were harvested. Media was removed from the tissue-

culture flasks, the cells were washed twice with PBS and the cells were trypsinised.

The trypsinised cells were resuspended in 7ml standard serum-containing media and

transferred to a universal. The cells were centrifuged at 580g for 5minutes. The

media was poured off and the cells were resuspended by flicking the universal. 10ml

of serum-free media was then added to each universal. (If there was more than one

universal for each cell line then they could be pooled during these steps of washing
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the cells in serum-free media). This step was repeated another twice so that the cells

had been washed three times in serum-free media. Another 10ml of serum-free

media was added to each universal, the cells were passed three times through a 21G

needle and a 1 in 10 or 1 in 20 dilution of this was made for the purposes of counting

the cells. The cells were counted on a haemocytometer and the volume of cell

suspension required to give the total number of cells for the required injections was

calculated. This volume of cells was placed into a universal and spun at 580g for 5

minutes. The media was discarded and the cells were transferred into a 1.5 ml

microfuge tube that had a level marked on it for the total volume required (lOOpl per

injection). If the cells were being injected in purely serum-free medium then the

volume was made up to this level with serum-free medium. If the cells were being

injected into nude mice with matrigel then they were transferred across from the

universal using the required volume of matrigel (half the total volume required) and

the remainder of the volume (up to the mark on the microfuge tube) was made up

with serum-free media. The cells were immediately transferred on ice to the Cancer

Research UK Biomedical Research Facility, Western General Hospital, Edinburgh,

where the container with the eppendorfs was put into an isolator container port and

sprayed using Alcide ABQ disinfectant and left on cool packs for 30 minutes. The

container was then taken into the isolator and the cells were injected subcutaneously,

using a sterile 1ml luerlock syringe with a sterile 25G needle, 0.1ml per flank.

2.15.2 Maintenance of animals

The animals were housed in negative pressure isolators in groups of 5 unless there

were fewer animals per study group. The procuration of animals, the husbandry and
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the experiments conform to the United Kingdom Co-ordinating Committee on

Cancer Research (UKCCCR) Guidelines for the Welfare of Animals in Experimental

Neoplasia (Second Edition) [192].

2.15.3 Measurement of tumours

The frequency of measurement of tumours depended upon the cell line used.

Measurements were taken with callipers between once and twice a week, in two

dimensions. When tumours reached 2cm in maximum diameter, the mouse was

sacrificed and the experiment terminated.

2.16 Soft agar proliferation assays

These assays were performed in 6-well trays. 2ml of 1% seaplaque agarose

(BioWhittaker Medical Applications) was poured into each well and left at 4°C

overnight (bottom layer). 5000, 10000 and 20000 PEOl parent, vector-only and

sense (H) transfected cells were plated on top of the bottom layer in 3ml of 0.4%

seaplaque agarose containing selective antibiotics and serum (top layer). 1ml of

antibiotic and serum-containing media was added over the top layer of agarose the

following day. Experiments were performed in duplicate. The cells were cultured

for 3 weeks, then counted down a microscope.
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2.17 Clonogenicity assays

2.17.1 Preparation of cells

PEOl parent, vector-only and sense transfected cells were grown in 75cm3 or

175cm3 flasks. They were trypsinised and recovered in the usual fashion. A 3ml

aliquot of each cell suspension was transferred into a separate universal and syringed

ten times through a sterile 21G needle. 1ml of this cell suspension was transferred to

a separate universal and 19ml of medium was added to this. A cell count was

performed on the haemocytometer and a calculation of multiplicity was performed

(formula in figure 2.12). A multiplicity of less than 1.05 was required in order for

that cell preparation to be used.

Figure 2.12: Formula for the calculation of multiplicity

no. of single cells + 2 x (no. of doublets) + 3 x (no.of triplets) etc.

Multiplicity =
no. of single cells + (no. ofdoublets) + (no.of triplets) etc.

2.17.2 Seeding of cells

Cells were plated into Petri dishes with gridded bases. A cell suspension was made

up so that the required number of cells for each dish was contained in 4ml of media.

The first clonogenicity experiment used 500 and 1000 cells per dish but subsequent

experiments used 200 cells per dish. The cell suspension was then added to the

required number of dishes using an eppendorf multi-dispenser. If drug was to be
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added to the dishes then this was made up in media at twice the final concentration

and 4ml of this solution was added to each plate. The cells were then incubated at

37°C in 5% CO2 for 21 days before being counted. The media was not changed.

2.17.3 Counting of cells

The media was poured off the Petri dishes and the cells were washed twice with

PBS. The cells were fixed for 2 minutes in 2ml of 2:1 acetone/methanol. The dishes

were washed in tap water and the fixed cells were stained with haematoxylin. The

stain was washed off with water and the dishes were allowed to air dry. The number

of colonies on each plate was then counted.

2.18 Aggregation Assays

Log phase PEOl parent, vector control and sense-transfected lines were trypsinised

and recovered in serum-containing media. 1 x 106 cells were resuspended in 1 ml of

media and passed through a 21G needle to create a single-cell suspension. Cell

suspensions were incubated at 37°C, 5% CO2. At 0, 15, 30 and 60 minutes aliquots

were removed using a wide bore pipette and the number of single cells was counted

with a haemocytometer.
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2.19 Transwell migration assays

2.19.1 Reagents

Fibronectin, Laminin and Collagen IV

Fibronectin, Laminin and Collagen IV were obtained from Sigma. A lmg/ml stock

solution of each was made up. This was split into 50pl aliquots and stored at -20°C.

These extracellular matrix components were diluted to a concentration of lOpg/ml in

PBS for the assays.

Bovine Serum Albumin (BSA)

BSA was obtained from Sigma and was made up freshly for each experiment. BSA

was 0.22p-filtered prior to use.

Transwells

Transwell cell culture inserts 6.5mm diameter, 8pm pore size in a polycarbonate

membrane were obtained from Costar.

DMSO (dimethyl sulphoxide)

Spectroscopic grade dimethyl sulphoxide was obtained from BDH Laboratory

Supplies.

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) was obtained

from Sigma. It was made up to a concentration of 2mg/ml for the purposes of the

MTT assay used in this setting.

2.19.2 Preparation of transwells

400pl of a lOpg/ml solution of the matrix component was added per well to a 24-

well tissue culture tray. The transwell cell culture insert was placed into the tissue
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culture well so that the underside of the well was in contact with the solution. This

allowed the matrix component to become immobilised on the lower surface of the

polycarbonate membrane. The transwells were incubated at 37°C for 1 hour. The

transwells were then transferred to a 24 well plate containing 400pl 0.1%BSA in

PBS for 1 hour at room temperature (blocking step). The under surface of the well

insert was washed twice by replacing the BSA with PBS. 400pl of serum-free media

was then placed in the lower compartment of the transwell.

2.19.3 Preparation of cells

Cells were cultured in 175cm3 flasks, trypsinised and recovered in serum-containing

media. The cells were washed 3 times in serum-free media, syringed four times

using a 21G needle and then counted on a haemocytometer. A cell suspension of the

desired concentration was made up so that the number of cells to be aliquoted into

the upper compartment of each transwell was contained in lOOpl. In general the cells

were made up to a concentration of 5 x 105 cells per ml and 5 x 104 cells were

aliquoted per well. The cells were incubated for 84 hours at 37°C, 5% CO2.

2.19.4 Quantification of migrating and non-migrating cells

The upper chamber of the transwell was washed twice very carefully with PBS and

then a further lOOpl of PBS was added to this chamber. lOpl and 40pl of 2mg/ml of

MTT were added to the top and bottom compartments of the transwell respectively.

The plate was wrapped in foil and incubated for 3 hours at 37°C, 5% CCA The

unreacted MTT was aspirated off from the lower well and pipetted off from the

upper well. The crystals were removed from the under surface of the transwell insert
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using a cotton bud, the end of which was cut off and placed in an eppendorf

containing 1ml of spectroscopic grade DMSO. The eppendorf was vortexed to

release and solubilise the crystals. The transwell was placed in a culture well

containing 1ml DMSO. The sample was mixed by pipetting the solution up and

down several times.

Three x 200pl aliquots of solution per sample were transferred into a 96 well plate

and their absorption was read at 570nm using a plate-reader (Biohit). The first

column of the 96 well tray contained DMSO only and was used to zero the rest of the

readings. Migration was expressed as the ratio of the under surface OD reading

relative to the upper surface OD reading.

The experiment was repeated five times, the migration figures were averaged for the

cell lines tested and the standard error of the mean was calculated.

2.20 Invasion assays

Invasion assays were conducted with media containing 10% acid-inactivated serum

(section 2.3.1). Biocoat® Matrigel® invasion chambers were obtained from BD

Biosciences and stored at 4°C. They were allowed to equilibrate with room

temperature prior to use. The inserts were rehydrated for 2 hours at room

temperature by the addition of 0.5ml of media into the well (surrounding the insert)

and 0.25ml of media inside the insert. The media was carefully removed and log

phase cells that had been washed twice to remove untreated serum were resuspended

in media containing 10% acid-inactivated serum. The cells were passed 4 times

through a 21 G needle, counted on the haemocytometer and the concentration of the
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cell suspension adjusted to give a cell density of 105 cells per ml. 0.75ml of serum-

containing media was added to each well in a 24 well tray. The inserts were

carefully loaded into the wells and 0.5ml of cell suspension was added inside each

insert. The cells were incubated at 37°C, 5% CO2 for 72 hours then analysed by

MTT assay as described for the migration assay (section 2.19.4)

2.21 Attachment Assays

Attachment to matrigel was assessed using matrigel-coated 96 well trays obtained

from Biocoat®. Attachment to laminin and fibronectin was assessed using

bacteriological-grade 96 well trays obtained from Nunclon®. These wells were

prepared by the addition of lOOpl of lOpg/ml fibronectin or laminin to each test well

followed by 60 minutes incubation at room temperature, careful washing with PBS,

blocking with 200pl of 0.1% BSA, a further 1 hour incubation at room temperature

and final washing with PBS.

In optimisation assays, 1 x 104 to 5 x 104 PEOl cells (washed 3 times in serum-free

media) were added to each well. Following this each assay used 5 xlO4 PEOl cells

per well. The cells were incubated at 37°C, 5%C02 for the specified duration of the

particular experiment, washed carefully then quantified by MTT assay as described

for the migration assay (section 2.19.4).
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2.22 Western Blotting

Western blotting of the WWOX-transfected PEOl cells was performed by Karen

Taylor and I gratefully acknowledge her help. The polyclonal antibody used was a

kind gift from Marcelo Aldaz (MD Anderson Cancer Centre, Texas).

Cells grown in monolayer culture were harvested and lysed with lysis buffer

supplemented with 1 x Complete protease inhibitors (Roche) and 0.5 mM

phenylmethylsulfonyl fluoride. Following incubation on ice for 15 min, the lysate

was centrifuged at 16000g for 5 min, and the postnuclear supernatant was harvested

and sampled for quantitation of protein concentration, using the BioRad protein

reagent. Forty mg of the lysate were then mixed with SDS-PAGE sample buffer,

boiled for 5 min, and subjected to electrophoresis in 10% SDS gels under reducing

conditions. The separated proteins were electrophoretically transferred to Trans-Blot

transfer membrane (BioRad). Blots were incubated with primary anti-WWOX (a

polyclonal antibody, raised in rabbit using as antigen a WW-GST fusion protein) or

anti-GAPDH (Abeam) antibodies overnight at 4°C. Immunocomplexes were

visualized with the BM chemiluminescence detection kit (Roche) using horseradish

peroxidase-conjugated secondary antibodies. Quantitative values for WWOX and

GAPDH proteins were obtained by densitometric analysis using a gel scanner (UVP

Fife Sciences) and analyzed by Fabworks gel analysis software (UVP Fife Sciences).

This provided integrated absorbance values.
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3. RESULTS: WWOX mRNA ISOFORM

EXPRESSION PROFILE IN A PANEL OF

OVARIAN TUMOURS AND NORMAL

OVARIES
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3.1 Rationale for investigating the WWOX mRNA isoform

expression profile in an ovarian tumour panel

There is controversy surrounding whether the WWOX gene can be regarded as a

tumour suppressor. As discussed previously (sections 1.6 and 1.7), the fact that the

gene is homozygously deleted in a number of tumour cell lines [53], the high

incidence of loss of heterozygosity at the WWOX locus in a variety of human cancers

[165,166], the presence of alternate transcripts predominantly in malignant tissue

[52,53,165,166,169,171] and the reduction in tumourigenicity when the gene is

transfected into breast cancer cells [52] all support a role as a tumour suppressor.

However, the fact that no truncating point mutations have been identified and the

lack of a familial cancer syndrome caused by WWOX gene mutation have been cited

as reasons why it cannot be regarded as a classical tumour suppressor.

WWOX transcripts are found in a variety of malignant tumours and cell lines

[52,53,165,166,169,171] but examples of these transcripts in non-malignant tissues

are a rare, recent, somewhat understated finding [169,171]. This fact, combined with

the finding that most of the alternate transcripts omit the region encoding the alcohol

dehydrogenase domain of the protein, have led many investigators to postulate that

these transcripts may act in a dominant negative fashion, disrupting the normal

(presumed tumour suppressor) role of WWOX in the cell. Although a variety of the

above studies have investigated WWOX isoform expression in specific cancer types,

none have looked at ovarian cancer or have investigated the WWOX mRNA isoform

expression profile in relation to clinical details.

This chapter investigates whether WWOX gene expression is down-regulated in a

panel of ovarian cancers compared to a panel of normal ovaries. It also examines the
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possible role of the WWOX alternative transcripts by establishing the mRNA

expression profile in the same ovarian tumour and normal ovary panels and by using

this information to identify whether there is any association with clinicopathological

factors or patient survival.

3.2 Characteristics of the human ovarian tumour panel

Eighty-three consecutive samples in two blocks (one collected from March 1991 to

September 1993, the other collected from January 1999 to December 2001) were

obtained from the tissue bank held at the University of Edinburgh Cancer Research

Centre. Twelve were excluded during the comparison with clinicopathological

factors: 3 on histological grounds (primary peritoneal, cystadenoma, pseudomyxoma

peritonei); 4 samples were not obtained at the time of primary surgery; extraction of

RNA was unsatisfactory in 2 cases; 2 patients had concurrent malignancies at the

time of diagnosis and 1 patient had no available clinical information. Tumour

characteristics of the remaining 71 tumours are described in table 3.1.
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Table 3.1: Characteristics of the human ovarian tumour panel

Tumour Characteristic Number of Patients

Grade

1 3

2 16

3 49

unknown 3

Stage

I 11

II 6

III 41

IV 10

unknown 3

Histology

serous papillary 36

endometrioid 13

clear cell 10

mucinous 6

mixed serous

papillary/endometrioid
4

unknown 2
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3.3 Investigation of WWOX mRNA isoform expression in an

ovarian tumour panel by non-quantitative RT-PCR

3.3.1 PCR across the entire WWOX coding region

Previous attempts at amplifying the whole WWOX coding region with conventional

Taq DNA polymerase had met with limited success (perhaps due to the size of the

PCR product at l ,5kb, perhaps due to sequence characteristics) and required the use

of nested PCR in order to get significant amplification [53], It was considered

desirable to avoid this if possible as nested PCR is renowned for the production of

spurious products and its use in the early work on the FHIT gene was a major source

of controversy. Therefore a single round PCR was optimised using the hot-start Taq

DNA polymerase Taq Gold®. This worked well on cDNA from A2780 cell lines

that had been transfected with WWOX expressing constructs. This cDNA was used

for the optimisation process (figure 3.1) with WWOX isoforms 1 and 4 clearly

amplified. Unfortunately, results from PCRs performed using cDNA from human

ovarian tumours were less consistent, with many samples providing extremely faint

or no amplification (figure 3.2). This may have been related to the quality of the

RNA/cDNA used in the reaction as the process of RNA extraction from human

ovarian tumours is less efficient than the extraction from cells grown in culture.

Smaller PCR targets were therefore designed in order to characterise the WWOX

mRNA expression profile in the ovarian tumour panel. Three PCRs were used: a

PCR specifically targeting WWOX isoform 1 using primers in exon 8 (8F2) and exon

9 (Z2); a PCR specifically targeting WWOX isoform 4 by amplifying from exon 4
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(A6-8 F) to the exon 5/9 boundary (A6-8 R) and a PCR spanning the region of

deletion using primers in exon 4 (ex 4/4) and exon 9 (Z2).

Figure 3.1: Single round PCR across WWOXcoding region using cell

line cDNA

I II II II I I I I I
lkb A2780 A2780 A2780 NTC lkb

ladder Fl F2 H4 ladder

Single round PCR across the WWOX coding region using A2780 ovarian cancer cell line cDNA as the

template. Lane contents as follows: a lkb DNA ladder; b A2780 Fl cDNA as template (expresses
WWOX isoform 1); c A2780 F2 cDNA as template (expresses WWOX isoform 1); d A2780 H4 cDNA
as template (expresses WWOX isoform 4); e no template control (NTC); f lkb DNA ladder
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Figure 3.2: Single round PCR across WWOXcoding region using

I II II I I II II II I I I I I I I I I

ladder 303 311 380 386 397 401 417 423 NTC ladder

PCR products following single round PCR across the WWOXcoding region using human ovarian
tumour (HOV) cDNA as template. Lane contents as follows: a lkb DNA ladder; b HOV303; c

HOV311; d HOV380; eHOV386; f HOV 397; g HOV 401; h HOV 417; i HOV 423; j no template
control (NTC); k lkb DNA ladder

3.3.2 PCR from exon 8 to exon 9 to specifically detect full-

length WWOX (isoform 1)

Non-quantitative PCR using Taq Gold® amplifying between exons 8 and 9 (primers

8F2 and Z2) revealed a product for all but two of the human ovarian tumour (HOV)

samples (HOV 12 and HOV 104; figure 3.3).

For these two tumours the 8F2/Z2 PCR was repeated another twice without any

amplification. The y-ACTINRCR was repeated, showing that the first strand reaction
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had been successful for both of these HOVs (figure 3.4). In case there had been a

mutation or small deletion at one of the primer binding sites, PCRs using different

primers located in exons 7 and 8 (7F2 and 8R2; figure 3.4) and primers located in

exons 4 and 9 (exon 4/4 and Z2; figure 3.4) were performed but no amplification

resulted in either the case of HOV 12 or HOV 104. Amplification across the whole

open reading frame for theses 2 tumours (using primers exon 1/1 and coding R) gave

a truncated product for HOV 12 (size around 950bp instead of 1550bp) and no

product for HOV 104 (figure 3.4). Exon-specific PCR of genomic DNA revealed

that all the exons were present in both cases (figure 3.5).
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Figure 3.3: All but two human ovarian tumours expressed WWOX

isoform 1

500bp.
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PCR

product

PCR products from the WWOX specific 8F2/Z2 PCR (primers in exon 8 and exon 9) performed on

first strand cDNA from human ovarian tumours (FIOVs). Upper panel lane contents: a lkb DNA

ladder; b HOV5; c HOV8; d HOV9; e HOV12; f HOV14; g HOV21; h HOV53; i HOV58; j HOV60;
k HOV69; 1 HOV76; m HOV77; n HOV80; o HOV88; p HOV92; q HOV98; r HOV104; s HOV170; t

F10V179; u HOV180; v HOV183; w HOV188; 1 kb DNA ladder. Lower panel lane contents: a lkb
DNA ladder; b HOV190; c HOV192; d HOV273; e HOV296; f HOV507; g HCT116cl4 cDNA

(positive control); h no template control (NTC); i lkb DNA ladder.
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Figure 3.4: PCRs investigating the apparent lack of WWOXisoform 1

expression in HOV 12 and HOV 104
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y-actin PCRs
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A7-8PCR

product

A6-8 PCR

product

WWOX PCR 1 WWOX PCR 2 WWOX PCR 3

(exon 7 to exon 8) (exon 4 to exon 9) (across coding region)

PCRs investigating the apparent lack of WWOX isoform 1 expression in HOV 12 and HOV 104.

Lanes a, f, k and p contain the lkb ladder. Lanes b to e contain the products of the y-ACTIN PCR;

templates are: b HOV12 cDNA; c HOV 104 cDNA; d HCT116 positive control cDNA; e no template
control (NTC). Lanes g to j contain the products of the 7F2/8R2 PCR (primers from exon 7 to exon 8
of WWOX); templates are: g HOV12 cDNA; h HOV 104 cDNA; i HCT116 positive control cDNA; j
NTC. Lanes 1 to o contain the products of the exon 4/4 and Z2 PCR (primers from exon 4 to exon 9
of WWOX); templates are: 1 HOV 12 cDNA; m HOV 104 cDNA; n HCT116 positive control cDNA; o
NTC. Lanes q to t contain the products of the exon 1/1 and coding R PCR; templates are: q HOV12

cDNA; r HOV 104 cDNA; s HCT116 positive control cDNA (primers amplifying across the WWOX

coding region); t NTC. In lane s, the largest band is amplified from WWOX isoform 1, the shorter

bright band is from WWOX isoform 4.
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Figure 3.5: Exon-specific PCR of HOV 12 and HOV 104 genomic DNA

lOOObp

Exon-specific PCR ofHOV 12 and HOV 104 genomic DNA. The first and last lane of each panel
contain lkb ladder. Otherwise the exon-specific PCRs are performed in quadruplicates. The template
for the first sample in the quadruplicate is HOV 12 DNA, for the second sample is HOV 104 DNA and
for the third sample is HCT116 DNA (positive control). The final sample in each quadruplicate is the
no template control (NTC). The exon being tested is annotated above each quadruplicate on the gel.
The first quadruplicate is amplified exon 1, the second is amplified exon 2, the third is amplified exon

3, the fourth is amplified exon 4, the fifth is amplified exon 5, the sixth is amplified exon 6, the
seventh is amplified exon 6a, the eighth is amplified exon 7 (primer set 1), the ninth is amplified exon

7 (primer set 2), the tenth is amplified exon 8 and the eleventh is amplified exon 9.

In a final effort to try and amplify a WWOX transcript for HOV 104, a nested RT-

PCR was performed (using primers exon 1/1 and coding R for the first round and
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primers E and Z2 for the second round). Once again no PCR product was obtained

for this tumour sample.

In summary, of 71 ovarian tumour samples, 69 expressed full-length WWOX (by

virtue of the PCR amplification of a target in exons 8 and 9 of the gene). One

tumour expressed no WWOX transcript at all and another tumour expressed a

truncated transcript. Neither of these tumours had large exonic deletions. The

tumour (HOV104) expressing no transcript may have undergone epigenetic silencing

of the WWOX gene, secondary to promoter methylation or histone deacetylation, or

may have aquired a large insertion into one of its exons, preventing PCR

amplification. The tumour (HOV12) expressing a truncated WWOX transcript may

have a mutation at a normal splice site, resulting in altered mRNA processing.

3.3.3 PCR to specifically detect isoform 4 (from exon 4 to the

exon 5/9 boundary)

Initially, WWOX isoform 4-specific amplification was performed using a primer pair

known as A6-8 F and R. A6-8 F was located in WWOX exon 4 and A6-8 R was

located at the junction of exons 5 and 9 in the WWOX A6-8 (isoform 4) transcript. It

had 9 nucleotides in exon 5 and 11 nucleotides in exon 9. As the 9 nucleotides in

exon 5 only shared homology with 2 of the 9 most 3' nucleotides of exon 8, it was

felt that the potential for mispriming from the full-length transcript was minimal. At

this time, no source of isoform 4 without the presence of isoform 1 was available to

allow optimal controls for mispriming to be performed but these were generated later

in the project. Investigation of isoform 4 expression was initially carried out on the

second batch of tumours from the tumour bank (January 1999 to December 2001).
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Of these 50 ovarian cancer patients analysable for isoform 4 expression, 21 (42%)

expressed isoform 4 on the basis of this PCR. In these patients there was a

correlation between isoform 4 expression and stage 3 or 4 disease (p=0.001, 2-tailed

Fisher's Exact test; table 3.2) and a trend towards an association with high-grade

ovarian cancer (p=0.09, 2-tailed Fisher's Exact test; table 3.3). Stage information

was available for 47 patients and grade information was available for 49 patients.

Kaplan-Meier analysis also revealed that there was a significant association between

expression of the isoform 4 transcript and poor survival (p=0.047; figure 3.6).

Table 3.2: WWOX isoform 4 expression and tumour stage

Tumour stage TOTAL
I/II III/IV

Isoform 4 expression 0 19 19

No isoform 4 expression 11 17 28

TOTAL 11 36 47

P=0.001, Fisher's

Exact test

Table 3.3: WWOX isoform 4 expression and tumour grade

Tumour grade TOTAL
1 or 2 3

Isoform 4 expression 2 19 21

No isoform 4 expression 9 19 28

TOTAL 11 38 49

P=0.087, Fisher's

Exact test
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Figure 3.6: Kaplan-Meier analysis according to isoform 4 (A6-8)

transcript expression

1.00 - P-.

0.75 -

1
1

No delta 6-8
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0.00 -

Survival (yrs)

Kaplan-Meier analysis of 50 ovarian cancer patients demonstrating proportion of surviving patients

according to WWOX delta 6-8 (isoform 4) expression as judged by non-quantitative RT-PCR.

Significantly worse survival for patients that expressed WWOX delta 6-8 (p=0.047).

As there had been only 15 deaths in this group of tumours (which had been collected

between January 1999 and December 2001), it was decided to also analyse the older

group of samples from the tumour bank (collected between March 1991 and

September 1993) for isoform 4 expression. These patients had longer follow-up and

may be more informative with regard to any association between this transcript and

survival.

Although the initial data regarding a possible association between isoform 4

expression and adverse clinicopathological features was interesting and exciting, the

level of the isoform 4 transcript was extremely low in many of these tumours. It was
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not known whether this transcript was genuinely expressed at very low levels in

some tumours or whether there was a problem with WWOX isoform 1 partially

sequestering some of the reverse primer. It was therefore decided to perform an

exon-spanning PCR (from exon 4 to exon 9) for the batch of tumours already

analysed and also for the older batch of tumours with longer follow-up.

3.3.4 Exon-spanning PCR from exon 4 to exon 9 (detects

expression of multiple isoforms)

A PCR spanning exons 4 to 9 (using primers exon 4/4 and Z2) was optimised using

Taq Gold®. HCT116 clone 4 cell line cDNA was used to optimise this PCR as it

was known to express multiple WWOX isoforms [53], Five bands were amplified

(figure 3.7). The largest band is faint and of uncertain origin. On size criteria the

other 4 bands correspond to (from largest to smallest) full-length WWOX, WWOX A7

(skipping exon 7), WWOXA7-8 (skipping exons 7-8) and WWOX A6-8 (table 3.4).
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Figure 3.7: Exon4/4 and Z2 (Taq Gold®) PCR performed on HCT116

cDNA

1600bp

lOOObp

500bp

350bp

ladder HCT NTC HCT NCT HCT NTC

Band of unknown origin

Full-length WWOX PCR product

WWOX A7 PCR product

WWOX A7-8 PCR product

WWOXA6-8 PCR product

Exon 4/4 and Z2 (Taq Gold®) PCR performed using HCT116 cell line cDNA as template. Lane a

contains the lkb DNA ladder. Lanes b to g contain the PCR products of PCRs performed using Taq

gold® and the exon 4/4 and Z2 primers under 3 different sets of PCR conditions. HCT116 cDNA is
the template in lanes b, d and f. NTC (no template control) was the template in lanes c, e and g. The

largest amplified band is of unknown origin. The second largest band corresponds to full-length
WWOX (an example was sequenced). The third largest band corresponds to A7 (assumed on size

criteria; band too faint to sequence). The fourth largest band corresponds to A7-8 (assumed on size

criteria; band too faint to sequence). The smallest band corresponds to WWOX A6-8 (an example was

sequenced).
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Table 3.4: Origins of exon 4/4 and Z2 PCR products

Size of exon 4/4 and Z2 PCR product
on agarose gel electrophoresis (bp)

Origin on size criteria

950 Unknown

850 Full-length WWOX (86lbp)

700 WWOXA7 (664bp)

400 WWOXA7-8 (410bp)

320 WWOXA6-8 (321 bp)

A preliminary exon-spanning PCR was performed on HOV samples whose isoform 4

status was previously investigated using the A6-8 F and R primers (figure 3.8). This
showed concordance for isoform 4 detection between the two PCR reactions (table

3.5).
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Figure 3.8: Preliminary exon-spanning PCR on selected HOV samples

lOOObp

I I I I L I I I I

ladder HOV 386 HOV 389 HOV 497 HOV 499 HOV 518 NTC

Preliminary exon-spanning PCR on selected human ovarian cancer (HOV) cDNA samples. Lane a

contains the lkb DNA ladder. Lanes b to g contain the PCR products ofPCRs performed using Taq

gold® and the exon 4/4 and Z2 primers. The templates used were as follows: b HOV386; c HOV389;
d HOV497; e HOV499; f HOV518; g no template control (NTC).
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Table 3.5: Concordance between isoform 4 detection using exon-spanning

(exon4/4 and Z2 primers) and isoform 4-specific (A6-8 F and R primers)

PCRs

HOV

Sample

Isoform 4 status on

A6-8 F and R PCR

Isoform 4 status on

exon 4/4 and Z2 PCR

Other transcripts visible
on exon 4/4 and Z2 PCR

386 Strongly positive Strongly positive Isoform 1, A7

389 Negative Negative Isoform 1

497 Faintly positive Faintly positive Isoform 1, A7-8

499 Positive Positive Isoform 1

518 Negative Negative Isoform 1

The exon 4/4 and Z2 PCR was performed for 68 tumours in the panel (RNA and

cDNA required to be made again for a small number of samples and these were not

included in this experiment). A band corresponding to the full-length WWOX

transcript was identified for all tumours except HOV 12 and HOV 104. Expression

of exon-skipped forms (on size criteria) was identified in a number of samples

(example of PCR products shown in figure 3.9). The most abundant alternate

transcript was isoform 4 (A6-8), which was present in 35 (51%) of the tumour

samples. The A7 transcript was present in 7 (10%) of the tumour samples and the

A7-8 transcript was present in 5 (7%) of the tumours. Interestingly, the A7-8

transcript was only ever found in tumours that also expressed the A6-8 transcript, but

the A7 transcript was present in tumours that expressed no other alternate transcripts
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and was never found in the presence of a A7-8 transcript. Only 12 tumours (18%)

contained transcripts other than isoforms 1 and 4 based on this experimental

methodology.

Figure 3.9: PCR products from exon-spanning PCR on HOV samples

500bp

350bp

A7-8 PCR

product

isoform 1
PCR

product

A6-8

(isoform 4)
PCR product

lkb 183 188 190 192 300 304 308 401 421 429 432 438 453 474 485 512 cl4 NTC lkb
ladder ladder

PCR products from exon-spanning PCR on human ovarian cancer (HOV) cDNA samples. Lanes a

and t contain a lkb DNA ladder. Lane r used HCT116 cDNA as template (+ve control). Lane s

contains the no template control (NTC). The other lanes contain the PCR products from the exon-

spanning PCR performed on a series ofHOV cDNA samples (numbers under the lanes represent the
HOV numbers). The ultraviolet light exposure has had to be turned up to maximum in order to see

some of the faint bands produced by amplification of the alternate transcripts.

The presence of any of these alternate transcripts was significantly associated with

high stage (III or IV) ovarian cancer (p=0.02, Fishers Exact Test). The presence of

the A7 or A7-8 transcript was very significantly associated with high stage disease

(p=0.0087, Fisher's Exact Test). The presence of the A6-8 transcript showed a trend

towards an association with high stage disease but this was non-significant (p=0.08).
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These findings suggest that there may be some association between the presence of

alternate transcripts and high stage disease. As before, the expression of the alternate

transcripts in some of the tumours was very low (figure 3.9), raising the question of

whether this level of alternate isoform expression was high enough to be of

functional significance. As a result of this it was decided to analyse WWOX isoform

expression in the tumour panel using real-time PCR (section 3.5).

3.4 Investigation of WWOX mRNA isoform expression normal

ovaries by non-quantitative RT-PCR

Using the 8F2/Z2 PCR, WWOX isoform 1 was found to be expressed in 13 out of 13

normal ovary samples.

Using the exon-spanning PCR (primers exon4/4 and Z2), a product corresponding to

isoform 1 was obtained in all 13 samples. In addition, 6 of these normal ovaries

were also found to express isoform 4 transcripts, again at extremely low levels. One

of these normal ovaries that expressed the A6-8 isoform also expressed the A7-8

isoform. Thus WWOX alternate transcripts were expressed in 46% of the normal

ovaries on the basis of this assay. On the basis of previous WWOX publications

stating the lack of alternate transcripts in normal tissue this was a surprising finding.

It was felt that the level of expression of the alternate transcripts may be an important

issue, so this was investigated using quantitative RT-PCR (section 3.5).
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3.5 Investigation of WWOX mRNA isoform 1 expression in an

ovarian tumour panel and normal ovaries by quantitative RT-

PCR

The expression of WWOX isoform 1 cDNA in 71 ovarian tumours and 13 normal

ovaries was quantified on the Rotorgene® and corrected for the expression of J3-

ACTIN. All quantitation was relative (expression level calculated by extrapolation

from a standard curve constructed using aliquots of cell line cDNA that was the same

in all runs to be compared).

3.5.1 WWOX isoform 1 mRNA expression in the ovarian

tumour panel

The relative WWOX isoform 1 expression (WWOX/J3-ACTIN), as determined by

quantitative real-time PCR, varied from 0 to 58.7 (median 9.57) in the ovarian

tumours (figure 3.10; the two non-expressing tumours, HOV12 and HOV 104 are not

shown). This expression was not normally distributed (figure 3.11) with most of the

tumours expressing low levels of WWOX and a few tumours expressing more than

four times the median level of isoform 1.
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Figure 3.10: ACTIN-corrected IVWOX isoform 1 expression in the

human ovarian tumour panel.

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

ACTIN-corrected WWOX isoform 1 expression

A bar chart illustration of the expression of WWOX isoform 1 in ovarian tumour samples with ACT1N-
corrected WWOX isoform 1 expression plotted on the x-axis. The numbers on the y-axis correspond
to the human ovarian cancer (HOV) numbers. Therefore each bar corresponds to the ACTIN-
corrected WWOX expression in an individual tumour as measured by quantitative RT-PCR. Each
WWOX and each ACTIN PCR was performed on HOV cDNA and repeated in quadruplicate.

Quantification of expression from repeated samples of the same tumour was not possible due to

limited tumour material.
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Figure 3.11: The ACTIN-corrected WWOX isoform 1 expression in the

human ovarian tumour panel is not normally distributed.

Bar chart showing the distribution ofACTIN-corrected WWOX isoform 1 expression in human ovarian
tumour (HOV) samples. ^Cr/jV-corrected WWOX isoform 1 expression (as measured by quantitative

RT-PCR) is plotted in cohorts on the x-axis. This allows illustration of the spread of expression levels

amongst the tumours. There is a non-parametric distribution of WWOX expression of these ovarian
tumour samples. Each WWOX and each ACT1N PCR was performed on HOV cDNA and repeated in

quadruplicate.

3.5.2 WWOX isoform 1 mRNA expression in norma! ovaries

The relative WWOX isoform 1 expression (WWOX/'fi-ACTIN), as determined by

quantitative real-time PCR, varied from 9.3 to 61.6 (median 22.9) in the normal

ovarian tissues (figure 3.12). This expression was not normally distributed (figure
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3.13) but all the normal ovaries expressed WWOX at levels that are higher than the

median expression in the ovarian tumours.

Figure 3.12: ACTIN-corrected WWOX isoform 1 expression in the

normal ovaries.

ACTIN-corrected WWOX isoform 1 expression

A bar chart illustration of the expression of WWOX isoform 1 in 13 normal ovaries with ACTIN-
corrected WWOX isoform 1 expression plotted on the x-axis. The numbers on the y-axis correspond
to the number given to the normal ovary sample. Therefore each bar corresponds to the WWOX

expression in an individual normal ovary as measured by quantitative RT-PCR. Each WWOX and
each ACTIN PCR was performed on normal ovarian cDNA and repeated in quadruplicate.

Quantification of expression from repeated samples of the same normal ovary was not possible due to

limited normal ovarian material.
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Figure 3.13: The ACTIN-corrected WWOX isoform 1 expression in the

normal human ovaries is not normally distributed.

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65

ACTIN-corrected WWOX expression

Bar chart showing the distribution of/lCT/iV-corrected WWOX isoform 1 expression in normal human
ovaries. /4C77A'-corrected WWOX isoform 1 expression is plotted in cohorts on the x-axis. This
allows illustration of the spread of expression levels amongst the normal ovaries. There is a non-

parametric distribution of WWOX expression of these normal ovary samples. Each WWOX and each
ACTIN PCR was performed on normal ovarian cDNA and repeated in quadruplicate.

3.5.3 Comparison of WWOX isoform 1 mRNA expression

between ovarian tumour and normal ovaries

Neither group of samples had a normal distribution of variant l expression (figure

3.14) but the median WWOX variant 1 expression was significantly reduced in the

ovarian tumours compared to the normal ovarian tissues (pO.OOOl; Mann-Whitney
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test, figure 3.15). Indeed, all the normal ovaries expressed WWOX at a level that

was higher than the median expression in the tumours.

Figure 3.14: ACTIN-corrected WWOXisoform 1 expression in the

human ovarian tumours and in the normal ovaries.

35.0 Tfj — \

30.0 — 1

_ 25.0
<0

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65

ACTIN-corrected WWOX expression

Bar chart showing the distribution ofACTIN-corrected WWOX isoform 1 expression in human ovarian
tumours and in normal ovaries. ACTIN-corrected WWOX isoform 1 expression is plotted in cohorts
on the x-axis. The distribution of expression levels amongst human ovarian tumours (blue) and
normal ovaries (red) is illustrated. Each WWOX and each ACTIN PCR was performed on human
ovarian tumour or normal ovarian cDNA and repeated in quadruplicate.

183



Figure 3.15: WWOX isoform 1 expression is significantly decreased in

the human ovarian tumours compared to the normal ovaries

n | 84

wwox exp n Rank sum Mean rank U

Normal 13 888.0 68.31 126.0
Hov 71 2682.0 37.77 797.0

Difference between medians 14.509
95.0% CI 8.815 to 21.635 (normal approximation)

Mann-Whitney U statistic I 126
2-taiied p | <0.0001 (normal approximation, corrected for ties)

Mann-Whitney test showing that there is a significant difference between the median ACTIN-
corrected WWOX expression in 71 ovarian tumours compared to the median expression in 13 normal
ovaries.

3.6 Investigation of WWOX mRNA isoform 4 expression in an

ovarian tumour panel by quantitative RT-PCR

The expression of WWOX isoform 4 (A6-8) cDNA in 71 ovarian tumours and 13

normal ovaries was quantified on the Rotorgene® using primers A6-8 F4 (in exon 4)

and A6-8 R2 (located at the boundary of exon 5 and exon 9, but this time only

extending 6 nucleotides into exon 5 and having 13 nucleotides in exon 9 in an

attempt to minimise mispriming). As usual, all PCR reactions on the Rotorgene®

were performed in quadruplicate.
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3.6.1 WWOX isoform 4 mRNA expression in the ovarian

tumour panel

Expression of WWOX isoform 4 was detected in 45 out of 71 (63%) ovarian tumour

samples. The expression of isoform 4 was generally low (amplification after 32 to

39 cycles of PCR when lpl of cDNA sample was used in each case), although the

expression in a small number of tumours was an order of magnitude higher than the

median for isoform 4-expressing tumours (figure 3.16). By comparison, isoform 1

amplified significantly after 19 to 32 cycles, when 0.2pl of first strand cDNA was

used in the PCR.
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Figure 3.16: ACTIN-corrected WWOX isoform 4 expression in the

human ovarian tumour panel.
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A bar chart illustration of the expression of WWOX isoform 4 in the individual ovarian tumours with
^C77A-corrected WWOX isoform 4 expression plotted on the x-axis. The numbers on the y-axis

correspond to the human ovarian tumour (HOV) numbers. Therefore each bar corresponds to the
WWOX isoform 4 expression in an individual tumour as measured by quantitative RT-PCR. Each
WWOX isoform 4 and each ACTIN PCR was performed on HOV cDNA and was repeated in

quadruplicate. Quantification of expression from repeated samples of the same tumour was not

possible due to limited tumour material.

3.6.2 WWOX isoform 4 mRNA expression in normal ovaries

Expression of WWOX isoform 4 was detected in 9 out of 13 (69%) normal ovarian

tissue samples. The expression of the isoform 4 transcript was very low

(amplification after 36 to 40 cycles, when lpl of cDNA sample was used in each

case). By comparison, isoform 1 amplified significantly after 19 to 32 cycles, when

1.5 2 2.5

ACTIN-corrected WWOX isoform 4 expression
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0.2pl of first strand cDNA was used in the PCR. The reproducibility of the

quantitation in these extremely low expressing samples was predictably poor.

3.6.3 Comparison of WWOX isoform 4 mRNA expression

between ovarian tumours and normal ovaries

Expression of WWOX isoform 4 was detected in 45 out of 71 (63%) ovarian tumour

samples, and surprisingly in 9 out of 13 (69%) normal ovarian tissue samples. In

both normal tissues and in the ovarian tumour samples, the expression of the isoform

4 transcript was generally very low (amplification after 32 to 39 cycles of PCR in the

tumours and after 36 to 40 cycles in the normal ovarian tissues, when lpl of cDNA

sample was used in each case). By comparison, isoform 1 amplified significantly

after 19 to 32 cycles, when 0.2pl of first strand cDNA was used in the PCR. The

relative WWOX isoform 4 expression (WWOXZJ3-ACTIN) varied from 0 to 0.33 in the

normal ovarian tissues and from 0 to 3.65 in the ovarian tumours, although the

reproducibility of the quantitation in the extremely low expressing samples was poor.

3.7 Comparison of WWOX mRNA expression profile with

clinicopathological factors in ovarian tumours

No correlation was identified between WWOX isoform 1 expression level (as tested

using this Rotorgene®-based assay) and clinicopathological factors.

There was a significant association between the presence of the isoform 4 transcript

(on the basis of the Rotorgene® assay) and high grade ovarian cancer (p= 0.006;
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Fisher's Exact Test; table 3.6) for the 66 isoform 1 expressing tumours that had grade

information available. The presence of the isoform 4 transcript was also significantly

associated with advanced stage disease (p=0.012; Fisher's Exact Test; table 3.7) in

the 66 isofom 1 expressing tumours that had stage information available. There was

no correlation between expression of isoform 4 and histology of ovarian tumour.

Table 3.6: WWOX isoform 4 expression and tumour grade

Tumour grade TOTAL

1 or 2 3

Isoform 4 expression 6 37 43

No isoform 4 expression 11 12 23

TOTAL 17 49 66

P=0.006, Fisher's

Exact test

Table 3.7: WWOX isoform 4 expression and tumour stage

Tumour stage TOTAL

I/II III/IV

Isoform 4 expression 5 37 42

No isoform 4 expression 10 14 24

TOTAL 15 51 66

P^O.012, Fisher's

Exact test
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3.8 Comparison of WWOX mRNA expression profile with

patient survival in ovarian tumours

In the 69 ovarian cancer patients assessable for WWOX expression, Kaplan-Meier

analysis of survival was performed (figures 3.17-3.19). There was no difference in

survival between high {ACTIN-corrected level >10) and low (ACTIN-corrected level

<10) WWOX isoform 1 expressers (figure 3.17). There was a trend towards worse

survival in those patients whose tumours expressed any level of WWOX isoform 4

but this did not reach significance (p=0.057; figure 3.18). However, in the patients

expressing high levels of isoform 1 (ACTIN-corrected level >10), those that

expressed isoform 4 had significantly worse survival (p=0.048; figure 3.19)

compared with those that did not. In contrast, expression of isoform 4 did not

significantly alter the survival in patients expressing low levels of isoform 1 (data not

shown).

Analysis of isoform 4 in a multivariate model demonstrated that expression of this

isoform was not an independent prognostic variable.
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Figure 3.17: Survival according to WWOX isoform 1 expression in 69

ovarian cancer patients

survival (days)

Kaplan-Meier analysis of 69 ovarian cancer patients demonstrating proportion of surviving patients

according to WWOX isoform 1 expression level as judged by quantitative RT-PCR. The cut-off
chosen for this analysis was an AC77jV-corrected WWOX level of 10 (as the median ACTIN-corrected
WWOX expression in this group was 9.57). No significant difference in survival according to WWOX
isoform 1 expression for this group ofpatients.

190



Figure 3.18: Survival according to WWOX isoform 4 expression in 69

ovarian cancer patients

ra
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° variant 4 expresser
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Kaplan-Meier analysis of 69 ovarian cancer patients demonstrating proportion of surviving patients

according to WWOX isoform 4 expression as judged by quantitative RT-PCR. The survival of

patients whose tumours expressed any WWOX isoform 4 was compared to those whose tumours

expressed no WWOX isoform 4. No significant difference in survival according to WWOX isoform 4

expression for this group of patients.

191



Figure 3.19: Survival according to WWOX isoform 4 expression in 33

robust expressers of WWOX isoform 1
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Kaplan-Meier analysis of 33 ovarian cancer patients who expressed high levels of WWOX isoform 1

demonstrating proportion of surviving patients according to WWOX isoform 4 expression as judged by

quantitative RT-PCR. The definition of a high WWOX isoform 1 expresser used for this analysis was

an 4C7Yi¥-corrccted WWOX level of 10 (as the median ACT/AZ-corrected WWOX expression in this

group was 9.57). The survival of patients whose tumours expressed any WWOX isoform 4 was

compared to those whose tumours expressed no WWOX isoform 4. There was a significant survival
difference according to ACTZV-corrected WWOX isoform 4 expression in patients who expressed high
levels of WWOX isoform 1 (p=0.048)

3.9 WWOX isoform 6 expression

It would have been highly desirable to test for WWOX isoform 6 expression in this

ovarian cell line panel as it is the other alternate transcript that has been found to be

expressed at reasonable frequency in malignant tissue [169]. However, exhaustive

attempts to find a consistent, reproducible one round PCR for this isoform of the

gene always resulted in the amplification of multiple products. When the conditions
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described by Driouch et al [169] to specifically amplify this transcript were used,

again multiple products were obtained. Driouch et al performed this reaction as part

of a multiplex reaction, which may have altered the dynamics of the reaction

compared with the one round PCR tested here. The difficulty in optimising single

round PCR conditions was highlighted when a reaction was tested on the

Rotorgene®. It gave highly efficient amplification and allowed the generation of an

adequate standard curve but the melt curve showed the definite presence of multiple

products, although agarose gel electrophoresis suggested that the target product was

predominant. Therefore, due to these limitations, this was not pursued further.

3.10 Evaluation of results

Out of 71 ovarian tumour samples, 69 expressed full-length WWOX. One tumour

expressed no full-length transcript at all and another expressed a truncated transcript.

Full-length WWOX expression was found to be significantly lower in these 71

epithelial ovarian cancers compared to 13 normal ovaries (p<0.0001). These

findings support the hypothesis that WWOX acts as a tumour suppressor in ovarian

cancer and address one of the main aims of the project (to elucidate whether the

WWOX gene functions as a tumour suppressor in epithelial ovarian cancer).

However, this conclusion has to be qualified for two main reasons.

Firstly, a significant problem with comparing gene expression from ovarian tumour

samples to normal is choosing a suitable normal tissue. Factors that have to be

considered are the cellular content of the normal tissue compared to the tumour

tissue, comparability of sample isolation procedures and extent to which gene

expression may have been affected by ex vivo factors. The tumour component of
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epithelial ovarian tumours consists by definition ofmainly epithelial cells. There are

however a variable number of supporting cell types; stromal cells, endothelial cells

etc. Normal ovaries contain only a covering layer of human ovarian epithelium and

therefore may be considered a poor comparator. The other option, cultured human

ovarian surface epithelial cells, although purely epithelial, will have sustained

changes in gene expression as a result of there forced in vitro growth and contain no

supporting cells. For this reason and so that RNA isolation from tumours and

'normals' could be performed identically it was decided to use normal human ovaries

as the comparator although it is recognised that there are inherent problems with this.

Secondly, in order to fully characterise gene expression it is optimal for this to be

performed at the protein rather than the RNA level. At the time this project was

performed the sensitivity of the available antibodies was insufficient to identify

alternate transcript expression or even expression of full-length WWOX from some

tumours or cell lines. It was therefore decided to perform the analysis at the RNA

level for reasons of sensitivity.

The analysis of alternate transcript expression revealed that WWOX isoform 4 was

expressed at low levels in 63% of the ovarian tumour samples. The expression of

WWOX isoform 4 mRNA was significantly associated with high grade (p=0.006) and

advanced stage ovarian cancer (p=0.012). There was a trend towards adverse

survival (p=0.057) in patients who expressed this isoform and significantly worse

survival (p=0.048) in robust isoform 1 expressers who also expressed isoform 4.

These findings suggest that in some way the expression of WWOX isoform 4 is a

poor prognostic factor but do not indicate a mechanism for this. Although it is

tempting to propose that these findings suggest a dominant negative mechanism of
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action for WWOX isoform 4, two facts argue somewhat (although not completely)

against this. Firstly, WWOX isoform 4 was identified in non-malignant ovarian

tissue at a comparable frequency (69%) to the frequency identified in ovarian

tumours (63%). Secondly, the level of WWOX isoform 4 expression in most of the

ovarian tumours (and in all the normal ovaries) was exceedingly low. Although this

does not entirely preclude a dominant negative function (as WWOX isoform 1 is

located in the cytoplasm and WWOX isoform 4 is located in the nucleus and

competition for binding partners is therefore not equal) it is difficult to imagine that

expression at the limit of detection can significantly affect the function of the well-

expressed WWOX isoform 1. This component of the work addresses one of the main

aims of the project (to clarify the role of the WWOX alternate transcripts in ovarian

cancer). Although it suggests that WWOX isoform 4 expression may imply poor

prognosis, it does not elucidate whether this is an effect that is directly attributable to

WWOX isoform 4 or whether the expression of the alternate transcript is a bystander

effect in more aggressive tumours whose splicing fidelity is decreased.
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4. RESULTS: WWOX mRNA ISOFORM

EXPRESSION PROFILE IN A PANEL OF

HUMAN TUMOUR CELL LINES

196



4.1 Rationale for investigating the WWOX mRNA isoform

expression profile in a human tumour cell line panel

The expression of WWOX alternate transcripts has been identified in a number of

malignant tissues and cancer cell lines (section 1.6.10) [52,53,165,166,169,171]. We

wished to establish the pattern of WWOX mRNA isoform expression in a panel of

human cancer cell lines from a variety of tissues. Specifically, the aims were to

identify cell lines expressing:

1) Very low levels of WWOX isoform 1 (full-length transcript), suggesting

knock-down as these could be transfected with the WWOX coding region and

used for functional analysis.

2) High levels of WWOX isoform 4 (A6-8 transcript), suggesting a possible

dominant negative mechanism of WWOX isoform 1 downregulation that

could then be investigated.

3) High levels of expression of both isoform 1 and of alternate transcripts as

they would be good candidates for RNA interference based experiments

investigating the possible dominant-negative mechanism of action of

alternate transcripts.

It was hoped that these findings could be used to create resources that would

facilitate the clarification of the role of the WWOX alternate transcripts and that

would help ascribe a phenotype to the WWOX gene.
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4.2 Description of human tumour cell line panel

RNA from 37 human tumour cell lines (table 4.1) was analysed for WWOX isoform 1

and WWOX isoform 4 expression. Cell lines known to be homozygously deleted for

WWOX exons (PE04, WX330, NCI-H69 and PANC1) were not included in this

analysis. Seventeen ovarian lines, 7 colorectal lines, 5 leukaemia/lymphoma lines, 4

breast lines 3, prostate lines and 1 lung line were investigated.

Table 4.1 Cell lines used for quantification of WWOX isoforms (listed

according to tissue of origin)

Tissue ofOrigin

Ovary Colon Lymphocyte Breast Prostate Lung
OVCAR3 HT115 FATO T47D DU145 NX002
CaOV3 HCT15 K562 ZR75.1 LN CAP
OAW42 HRT18 HBL MDAMB231 PC3
PEA1 HT29 JURKAT MCF7
SKOV3 SW48 HL60
A2780cis HCT116
PEA2 LOVO
PE014
HELA

OVCAR5
59M

A2780ad
41M

A2780
OVCAR4
PE016
PE023
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4.3 WW/OX isoform 1 mRNA expression in the cell line panel

WWOX isoform 1 expression in the cell lines varied over almost 3 orders of

magnitude (0.003-2.417, normalised to 41M cell line cDNA; figure 4.1). Cell lines

from each tissue of origin demonstrated a wide range of WWOX isoform 1

expression, except for the prostate cancer cell lines. Of three prostate cancer cell

lines tested, two (PC3 and DU145) expressed extremely low levels of WWOX

isoform 1. In addition, the expression of this isoform in the CaOV3 ovarian cancer

cell line was barely detectable. The MCF-7 and ZR75-1 breast and SW48 colorectal

cancer cell lines expressed high levels of WWOX isoform 1 compared to the other

cell lines.
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Figure 4.1 WWOX isoform 1 expression (according to tissue of origin) in

37 human cancer cell lines

ACTIN-corrected WWOX isoform 1 expression in 37 human cancer cell lines, sorted according to

tissue of origin. All expression levels were normalised to the expression in the 41M ovarian cancer

cell line. Each gene quantification was obtained by performing RT-PCR on cell line cDNA using the

Rotorgene®. Each quantification was performed in quadruplicate in each run. The average

expression for each cell line was obtained by taking the average expression from three runs. The
standard error of the mean was calculated from the average expression from the three runs. The
absolute error was calculated by dividing the standard error of the mean by the mean expression. The
actin-corrected WWOX expression was calculated for each isoform by dividing the average WWOX

expression by the average J3-ACTIN expression. The total final error was obtained by adding together

the absolute error for both the WWOX and the J3-ACTIN quantification. This was the error to which
the final quantification of actin-corrected WWOX expression was subject (represented by the error

bars in the figure).
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4.4 WWOX isoform 4 mRNA expression in the cell line panel

WWOXisoform 4 was expressed in 33 out of 37 (89%) human cancer cell lines tested

(figure 4.2). Again, there was no association between the tissue of origin and the

level of WWOX isoform 4 expression. The HCT116 and LOVO colorectal and

MCF-7 breast cancer cell lines expressed high levels of WWOX isoform 4 compared

to the other cell lines.
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Figure 4.2 WWOX isoform 4 expression (according to tissue of origin) in

37 human cancer cell lines

5.000

4.000

3.000

fi _ n fl x. n

colon

human cancer cell line

ACT/A'-corrcctcd WWOX isoform 4 expression in 37 human cancer cell lines, sorted according to

tissue of origin. All expression levels were normalised to the expression in the HCT116 colorectal
cancer cell line. Each gene quantification was obtained by performing RT-PCR on cell line cDNA

using the Rotorgene®. Each quantification was performed in quadruplicate in each run. The average

expression for each cell line was obtained by taking the average expression from three runs. The
standard error of the mean was calculated from the average expression from the three runs. The
absolute error was calculated by dividing the standard error of the mean by the mean expression. The
actin-corrected WWOX expression was calculated for each isoform by dividing the average WWOX

expression by the average (3-ACTIN expression. The total final error was obtained by adding together
the absolute error for both the WWOX and the /3-ACTIN quantification. This was the error to which
the final quantification of actin-corrected WWOX expression was subject (represented by the error

bars in the figure).
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4.5 Evaluation of results

WWOX isoform 1 expression varied over 3 orders of magnitude in the cell lines

tested. The PC3 and DU145 prostate cancer cell lines and the CaOV3 ovarian cancer

cell line expressed very low levels of WWOX isoform 1. These cell lines would be

suitable for investigation of WWOX down-regulatory mechanisms and in this sense

represent a valuable resource. In addition, the finding of a further ovarian cancer cell

line with negligible WWOX expression adds support to the hypothesis that WWOX

may act as a tumour suppressor in ovarian cancer. To prove that the loss of WWOX

played a role in the malignant phenotype would require for the WWOX gene to be re-

expressed in these cells and for a change in phenotype (such as a loss of

tumourigenicity) to be demonstrated. The finding that 2 out of 3 prostate cancer cell

lines expressed very low levels of WWOX isoform 1 is also noteworthy because a

high incidence of LOH has been identified at the WWOX locus in prostate cancer

cells [153], It adds weight to the suggestion that WWOX may also act as a tumour

suppressor in prostate cancer.

WWOX isoform 4 was expressed in 33 out of 37 (89%) of the cell lines and in 16 out

of 17 (94%) of the ovarian cancer cell lines. Although it is tempting to suggest that

this represents a high rate of alternate transcript expression, using the same

methodology I identified a high frequency of WWOX isoform 4 expression in non-

malignant ovarian tissue (chapter 3) so the high frequency of expression identified in

these cell lines does not allow us to draw any conclusions regarding the role of these

alternate transcripts in ovarian cancer. The HCT116 and LOVO colorectal cancer

cell lines and the MCF-7 breast cancer cell line expressed levels of isoform 4 that are

almost an order of magnitude higher than any of the other cell lines. Although no
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reason for this has been identified, the reason for this expression pattern may become

clear as we learn more about the function of the WWOX isoforms in the cancer cell.

The MCF-7 breast cancer cell line was the highest expresser of both isoform 1 and

isoform 4 and would be ideal for RNA interference-based investigation of a possible

dominant-negative mechanism of action of WWOX isoform 4 (by targeting this

isoform for knockout). Although not directly achieving any of the aims of the PhD

project, through further investigation the above findings could facilitate the

clarification of the role of WWOX isoform 4 in ovarian carcinogenesis.
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5. RESULTS: INDUCTION OF WWOX

OCCURS VIA BOTH P53-DEPENDENT AND

P53-INDEPENDENT PATHWAYS
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5.1 Hyaluronidase-induced WWOX mRNA expression in

HCT116 cells is p53-dependent

As discussed in section 1.8.1, hyaluronidase is secreted by most cancer cells and

induces angiogenesis in vivo [175]. Increased hyaluronidase levels are associated

with progression, invasion and metastases of a variety of malignancies including

ovarian cancer [176-179], Chang et al showed that hyaluronidase increased

TNFa-mediated cell death in murine L929 fibroblasts and in the human prostate

cancer cell line LN-CaP [181]. Using differential display and cDNA library

screening, Chang et al subsequently identified a cDNA which was induced by

exposure of L929 murine fibroblast cells to hyaluronidase [168], This murine cDNA

was named Woxl and was highly homologous to full-length human WWOX. They

demonstrated that exposure of L929 cells (whose constitutive expression of Woxl

mRNA is low) to hyaluronidase resulted in a 150% increase in Woxl mRNA,

peaking at 8-24 hours post initiation of exposure. Chang et al [168] also proposed

that part ofWOXl's enhancement of TNFa-mediated cytotoxicity was secondary to

increased p53 expression, that p53-mediated apoptosis required WOX1 and that the

WW domain ofWOX1 bound to the polyproline region of p53.

In order to determine whether hyaluronidase could induce WWOX in our human

cancer cell line systems, HCT116 and PEOl cells were exposed to three doses of

hyaluronidase for two different durations, RNA was prepared and the levels of

WWOX expression were compared to the baseline level of expression. The reason

that the HCT116 colorectal cancer cell line was chosen in a mainly ovarian cancer

orientated study was the availability of well-characterised isogenic wild-type, p53-

null, p21-null and BAX-null derivatives of this cell line.
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5.1.1 WWOX mRNA expression in hyaluronidase-exposed p53

normal HCT116 cells

The expression of total WWOX mRNA in p53 wild-type (wt) HCT116 cells exposed

to 3 doses of hyaluronidase (100, 200 or 400 units/ml) for 4 or 8 hours was

quantified using the Lightcycler®. Following 4 hours of exposure, expression of

WWOX was increased for all doses of hyaluronidase. This was maximal using 200

units/ml hyaluronidase (figure 5.1). After 8 hours exposure, there was no longer any

elevation of WWOX expression compared to baseline for the cells exposed to 100

units/ml, but the expression in the cells exposed to 200 and 400 units/ml was still

elevated (figure 5.1), although starting to decrease. These findings suggest that

hyaluronidase induces expression of WWOX and that this effect is greater after 4

hours of exposure than after 8 hours of exposure.
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Figure 5.1: WWOX mRNA expression in wild-type HCT116 cells

following 4 and 8 hours of hyaluronidase exposure

300

□ 4 hours

□ 8 hours

0 units/ml 100 units/ml 200 units/ml

dose of hyaluronidase

400 units/ml

ACTIN-conected WWOX expression following exposure of wild-type HCT116 colorectal cancer cells
to 0, 100, 200 and 400units/ml of hyaluronidase for 4 or 8 hours. cDNA was isolated from

hyaluronidase-exposed wild-type HCT116 cells and the levels of WWOX and $-ACTIN gene

expression was quantified using the Lightcycler®. This allowed calculation of the ACTIN-conected
WWOX expression. All values were normalised relative to untreated cells at that timepoint. This

experiment was not repeated and the results must be considered as hypothesis generating rather than

hypothesis proving.
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5.1.2 WWOX mRNA expression in hyaiuronidase-exposed

p53-null HCT116 cells

WWOX levels were also quantified in p53-null HCT116 cells exposed to the same

hyaluronidase concentrations (100, 200 or 400 units/ml), again for 4 or 8 hours. No

effect on WWOXmRNA expression was seen at any dose of hyaluronidase for either

duration of exposure (figure 5.2). These data indicate that hyaluronidase induces

expression of WWOXmRNA in the HCT116 colorectal cancer cell line but not in a

p53-null derivative of that line. This suggests that functional p53 may be required

for hyaluronidase-induced WWOX expression in HCT116 cells.
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Figure 5.2: WWOX mRNA expression in p53-null HCT116 cells following

4 and 8 hours of hyaluronidase exposure

100 units/ml 200 units/ml

dose of hyaluronidase

ACTIN-corrected WWOX expression following exposure of p53-null HCT116 colorectal cancer cells
to 0, 100, 200 and 400units/ml of hyaluronidase for 4 or 8 hours. cDNA was isolated from

hyaluronidase-exposed p53-null HCT116 cells and the levels of WWOX and \i-ACTIN gene

expression was quantified using the Lightcycler®. This allowed calculation of the AC77;V-correctcd
WWOX expression. All values normalised relative to untreated cells at that timepoint. This

experiment was not repeated and the results must be considered as hypothesis generating rather than

hypothesis proving.
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5.2 Hyaluronidase does not induce WWOX mRNA expression

in PE01 cells (p53 mutant)

The expression of WWOX mRNA in PE01 cells (which contain a mutant p53) that

were exposed to the same 3 doses of hyaluronidase (100, 200 or 400 units/ml) for 4

or 8 hours was also quantified. As with p53-null HCT116 cells no significant effect

on WWOX mRNA expression was seen at any dose of hyaluronidase for either

duration of exposure (figure 5.3). This is consistent with the previous results for

HCT116, as PEOl has mutant p53, and again suggests that WWOX induction by

hyaluronidase may be p53-dependent.
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Figure 5.3: WWOX mRNA expression in PE01 cells following 4 and 8

hours of hyaluronidase exposure

0 units/ml 100 units/ml 200 units/ml 400 units/ml

Dose and Duration of Hyaluronidase Exposure

ACT/jY-corrcctcd WWOX expression following exposure of PEOl ovarian cancer cells to 0, 100, 200
and 400units/ral of hyaluronidase for 4 or 8 hours. cDNA was isolated from hyaluronidase-exposed
PEOl cells and the levels of WWOX and \\-ACT!N gene expression was quantified using the

Lightcycler®. This allowed calculation of the ACTIN-corrected WWOX expression. All values were

normalised relative to untreated cells at that timepoint. This experiment was not repeated and the
results must be considered as hypothesis generating rather than hypothesis proving.
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5.3 Induction of WWOX mRNA expression by cytotoxic

agents is partially p53-dependent and partially p53-

independent

As WWOX induction by hyaluronidase appeared to be p53-dependent, we

investigated whether inducers of p53 expression would also induce expression of

WWOX mRNA. Therefore, the expression of WWOX in the wild-type and p53-null

variant of the HCT116 colorectal cancer cell line was quantified following exposure

to doxorubicin, oxaliplatin and 5-fluorouracil. Doxorubicin is an anthracycline

cytotoxic agent that intercalates between DNA base pairs resulting in conformational

changes in DNA structure and changes in the activity of topoisomerases. Its

complete mechanism of action is not known but it has been shown to increase p53

expression [193], Oxaliplatin is a platinum-based chemotherapeutic agent that acts

through the formation of platinum-DNA adducts, which block DNA replication [46].

It has been shown to induce p53 expression [194]. 5-fluorouracil inhibits

thymidylate synthase and is incorporated into nuclear and cytoplasmic RNA,

interfering with normal RNA processing and function [46]. It too has been shown to

induce expression of p53 in human cancer cell lines [194],

5.3.1 WWOX mRNA expression in cytotoxic-exposed p53

normal HCT116 cells

Expression levels of WWOXmRNA were quantified in wild-type (wt) HCT116 cells

exposed to 200nM doxorubicin, 8pM oxaliplatin or 20pM 5-fluorouracil for 24 or 48
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hours. After 24 hours, WWOX expression had increased 3-fold in the cells treated

with doxorubicin but there was no change in expression in the cells exposed to

oxaliplatin or 5-fluorouracil (figure 5.4). After 48 hours exposure, WWOX

expression in doxorubicin-exposed cells remained 3-fold greater compared to

untreated cells. Expression in the 5-fluorouracil-exposed cells was unchanged

(figure 5.4) but at this later time point WWOX expression in oxaliplatin-exposed cell

lines increased to almost 5 times that of the untreated cells.
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Figure 5.4: WWOX mRNA expression in p53 normal (wild-type) HCT116

cells following 24 and 48 hours of exposure to cytotoxic agents

untreated doxorubicin oxaliplatin 5-fluorouracil

chemotherapy agent

ACT/A'-corrected WWOX expression following exposure of wild-type HCT116 colorectal cancer cells
to doxorubicin, oxaliplatin and 5-fluorouracil for 24 or 48 hours. cDNA was isolated from drug-

exposed wild-type HCT116 cells and the levels of WWOX and $-ACTIN gene expression was

quantified using the Lightcycler®. This allowed calculation of the A6'77/V-corrccted WWOX

expression. All values normalised relative to untreated cells at that timepoint. This experiment was
not repeated and the results must be considered as hypothesis generating rather than hypothesis

proving.

5.3.2 WWOX mRNA expression in cytotoxic-exposed p53-null

HCT116 cells

WWOX induction was then tested in p53-null HCT116 cells exposed to the same

doses of doxorubicin, oxaliplatin and 5-fluorouracil. Again, the only cells with
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induction of WWOX after 24 hours (figure 5.5) were those exposed to doxorubicin.

The effect was much less than in the p53 wt cells (an increase of only about 50% in

expression as opposed to 200% in the p53 wt cells). After 48 hours (figure 5.5), the

WWOX expression in the doxorubicin-treated cells approached the level seen after 24

hours in the p53 normal cells. Induction after 48 hours of exposure to oxaliplatin

was less than 50% of that in the p53 normal line. Again there was no induction in the

cells exposed to 5-fluorouracil at either time point.
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Figure 5.5: WWOX mRNA expression in p53-null HCT116 cells following

24 and 48 hours of exposure to cytotoxic agents

untreated doxorubicin oxaliplatin 5-fluorouracil

chemotherapy agent

ACTIN-corrected WWOX expression following exposure of p53-null HCTl 16 colorectal cancer cells
to doxorubicin, oxaliplatin and 5-fluorouracil for 24 or 48 hours. cDNA was isolated from drug-

exposed p53-null HCTl 16 cells and the levels of WWOX and $-ACTIN gene expression was

quantified using the Lightcycler®. This allowed calculation of the ACT/jV-corrected WWOX

expression. All values normalised relative to untreated cells at that timepoint. This experiment was
not repeated and the results must be considered as hypothesis generating rather than hypothesis

proving.
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5.3.3 Comparison of WWOX mRNA induction profile in

cytotoxic-exposed p53 wt and p53-null HCT116 cells

The profile of WWOX induction is different in the p53 normal and p53-null HCT116

colorectal cancer cells (figure 5.6). The response to all agents appears to be blunted

in the p53-null cells compared with p53 normal cells. The response to doxorubicin

(in terms of WWOX induction) reaches almost the same level in the p53-null cells but

takes 48 hours rather than 24 hours to do so. The level of induction induced by

oxaliplatin at 48 hours in the p53-null cells is less than half that in the p53 wild-type

cells. Assuming that the main difference between these cell lines is their p53 status

(the p53-null cell line is a derivative of the p53 normal HCT116 line; however,

clonal heterogeneity could also be a factor) this suggests that there is both a p53-

dependent pathway of WWOX induction (that acts early in the case of doxorubicin)

and a p53-independent pathway of WWOX induction.
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Figure 5.6: WWOX mRNA induction profile in wild-type and p53-nul!

HCT116 cells following 24 and 48 hours of cytotoxic exposure

600 T"

^ 400

S 200

doxorubicin | oxaliplatin
24 hours exposure

untreated | doxorubicin | oxaliplatin
48 hours exposure

5-fluorouracil

cytotoxic agent and duration of exposure

^CTTA-corrected WWOX expression following exposure of p53 wild-type and p53-null HCT116
colorectal cancer cells to doxorubicin, oxaliplatin and 5-fluorouracil for 24 or 48 hours. cDNA was

isolated from drug-exposed wild-type and p53-null HCT116 cells and the levels of WWOX and (3-
ACTIN gene expression was quantified using the Lightcycler®. This allowed calculation of the
ACTIN-corrected WWOX expression. All values normalised relative to untreated cells at that

timepoint. This experiment was not repeated and the results must be considered as hypothesis

generating rather than hypothesis proving.
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5.4 Evaluation of results

The aim of this section of the study was to use the real-time PCR techniques that we

had optimised for the WWOX gene to determine whether the induction ofWoxl by

hyaluronidase demonstrated in L929 murine fibroblasts [168] also occurred for

human WWOX in human cancer cells. The reason for using the HCT116 colorectal

cancer cell line in an ovarian cancer-based project was the availability of well-

characterised isogenic wild-type, p53-null, p21-null and BAX-null derivatives of this

cell line.

It is important to note that although all drug exposures were performed in duplicate,

these experiments were not repeated on separate occasions. This limits the

conclusions that can be drawn from the findings and they have to be considered as

hypothesis-generating rather than hypothesis-proving.

It was shown that exposure of wild-type HCT116 colorectal cancer cells to

hyaluronidase resulted in a maximal WWOX induction of 150% (coincidentally the

same figure demonstrated by Chang et al [168] in hyaluronidase-exposed L929

murine fibroblasts) but that there was no induction in p53-null HCT116 colorectal

cancer cells. This suggests that induction of WWOX by hyaluronidase may be p53-

dependent. Although an attractive hypothesis (because it would fit with WWOX

acting as a tumour suppressor) further supporting evidence would be required. In a

crude attempt to show that there was no induction in a p53 mutant cell line, the same

experiment was repeated in PEOl ovarian cancer cells. Again there was no

induction of WWOX but because this was a completely different cell line system, the

loss of WWOX induction may have been secondary to any number of differences

between this cell line and the HCT116 colorectal cancer cell line.
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As preliminary evidence suggested that WWOX induction may be p53-dependent it

was decided to investigate whether induction of p53 using cytotoxic agents would

result in WWOX up-regulation. It was indeed shown that WWOX was induced in

wild-type HCT116 colorectal cancer cells following exposure to doxorubicin and

oxaliplatin (but not 5-fluorouracil) and that the level of induction in the p53-null

HCT116 colorectal cancer cell line was decreased and perhaps also delayed. A

serious limitation of this approach, however, is the fact that a variety of alterations in

gene expression (not just p53 induction) will occur following exposure of cancer

cells to these cytotoxic agents. One could argue that the differences seen in

induction between the wild-type and p53-null HCT116 colorectal cancer cell lines is

as a direct result of their differing p53 status but inevitably there will be other genetic

differences between these supposedly isogenic lines (due to passage since creation of

the variants).

Although these experiments provide interesting hypotheses concerning the possible

role of p53 in WWOX induction, they require to be replicated and to be extended

before meaningful conclusions can be drawn. As these experiments are upstream of

WWOX function and do not directly address the aims of the PhD project (section

1.10) they were not taken forward in the course of this work.
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6. RESULTS: MANIPULATION OF WWOX

EXPRESSION LEVELS IN HUMAN CANCER

CELL LINES
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6.1 Cell lines and constructs used in WWOXtransfections

In order to identify a phenotype for the WWOX gene, manipulation of WWOX

expression levels was carried out in the HCT116 colorectal cancer cell line and the

PEOl and A2780 ovarian cancer cell lines.

HCT116 was one of the cell lines found to have a homozygous deletion in the

WWOX gene, although this transpired to be contained entirely within intron 8.

HCT116 expresses full-length WWOX (isoform 1), WWOX A6-8 (isoform 4) as well

as probably (on size criteria) exon 7 skipped and exon 7-8 skipped forms of the gene

(section 3.3.4). Although HCT116 was a colorectal cancer cell line (as opposed to an

ovarian cell line), it was chosen because of evidence suggesting that murine Woxl

was required for p53-mediated apoptosis and that it may physically interact with

murine p53 [168], HCT116 has well characterised wild-type, p53-null, p21-null and

Bax-null cell lines that would lend themselves to phenotypic analysis if a functional

WWOX pathway was found in this cell line.

PEOl is an ovarian cancer cell line [163] that has homozygous deletions in exon 4-8

of WWOX [53], It expresses a truncated A4-8 transcript and no full-length WWOX.

PEOl expresses mutant p53.

A2780 is an ovarian cancer cell line that expresses full-length WWOX (isoform 1)

and WWOXA6-8 (isoform 4). It expresses wild-type p53.

To investigate the effects of up and downregulated levels of WWOX, these cell lines

were transfected with the following constructs:

i) 'A' (3' UTR antisense) construct: pcDNA3.1 plasmid containing an insert

designed to express a transcript complementary to part of the WWOX 3'

UTR.
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ii) 'D' (full-length antisense) construct: pEF6 plasmid containing an insert

designed to express a transcript complementary to the WWOX coding

region.

iii) 'H' (sense) construct: pEF6 plasmid containing an insert designed to

express a transcript identical to the WWOX coding region.

iv) 'E' (pcDNA3.1 vector) construct: pcDNA3.1 plasmid with no insert.

v) 'F' (pEF6 vector) construct: pEF6 plasmid with no insert.

For ease of understanding, cells transfected with the 3' UTR construct will be termed

'A' transfectants, those transfected with the full-length antisense construct will be

termed 'D' transfectants and those transfected with the sense construct will be

termed 'H' transfectants. Cells transfected with the pcDNA3.1 vector alone (no

insert) will be termed 'E' transfectants and cells transfected with the pEF6 vector

alone will be termed 'F' transfectants.

6.2 Screening of WWOX expression levels in HCT116

antisense transfectants

6.2.1 Screening using conventional PCR

DNA was isolated from FICT116 cells transfected with the construct expressing the

antisense transcript targeting the WWOX 3'UTR ('A' construct). PCR amplification

of the neomycin resistance gene was used to confirm vector incorporation. 22 out of

24 clones were positive for the presence of the vector. RT-PCR was then performed
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on these samples using primers 8F2 (in WWOX exon 8) and Z2 (in WWOX exon 9) to

determine levels of WWOX expression. Figure 6.1 shows that WWOX was still being

expressed in these transfectants, indicating that antisense targeting of the 3' UTR did

not induce complete knockout of WWOX. There was some minor variation in band

intensity suggesting that WWOX expression was greater in the parent line than in the

antisense transfectants, the significance of which was difficult to determine in a

saturated PCR.
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Figure 6.1: No complete knockout of WWOX using the antisense

construct targeting the 3'UTR
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2% agarose gels showing RT-PCR products from WWOX specific PCRs (top 2 gels) and y-ACTlN

specific PCRs (bottom gel) using cDNA from HCT 116 antisense (A) transfectants as template. The
antisense molecule in the A transfectants is directed against the 3'UTR. In the top 2 gels, the first and
last lanes contain a lkb DNA ladder. The other lanes contain PCR products from the WWOX specific
8F2/Z2 PCR for alternating postive and negative RT samples. The lane contents are labelled for the

positive RT samples as follows: a HCT116 parent line; b HCT116 Al; c HCT116 A2; d HCT116 A3;
e HCT116 A4; fHCT116 A5; g HCT116 A6; h HCT116 A7; i HCT116 parent line; j HCT116 A8; k
HCT116 A9; 1 HCT116 A10; m HCT116 All; n HCT116 A12; o HCT116 A13. There is little

difference between the intensity of the y-ACTIN band for the various transfectants and the parent line

(which is again the first sample; bottom gel), although the PCRs are saturated.
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As none of the transfectants containing the WWOX 3'UTR antisense (A) construct

showed complete knockout of WWOX expression on the basis of RT-PCR,

confirmation that the antisense insert of construct A was being expressed was

required. RT-PCR was carried out using a forward primer within the WWOX 3'UTR

(IM19R) and a reverse primer exclusive to a contiguous transcribed region of the

vector construct (BGHrev). This revealed that 24 out of 27 of the transfectants

expressed the antisense construct.

Incomplete knockout of WWOX expression was also seen in HCT116 cells

transfected with the full-length antisense (D) construct targeting the WWOX coding

region (figure 6.2). Variability in levels of WWOX expression was more obvious in

this non-quantitative PCR with most of the transfectants apparently expressing

WWOX at lower levels than the parent line.

The fact that no complete knockout of expression had been achieved was

disappointing. However, as the HCT116 cell line does express full-length WWOX, it

was felt that even partial knockout may allow identification of a phenotype. It was

therefore decided to quantify the degree of WWOX knockout by quantitative RT-PCR

and if it was significant then to proceed to phenotypic assays with these transfectants.

227



Figure 6.2: Potential partial knockout of WWOXexpression
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2% agarose gels showing RT-PCR products from y-ACTlN specific PCRs (top gel) and WWOX

specific PCRs using cDNA from HCT 116 antisense (D) transfectants as template. The antisense
molecule in the D transfectants is directed against the whole WWOX coding region. The bottom gel
shows WWOXRT-PCR products from the same cDNA sources. The templates are as follows: lanes c,

e, g, i, k, m, o, q and s contain -ve RT template; lane b contains HCT116 clone 4 cDNA; lanes d, f, h,

j, 1, n, p and r contain cDNA from HCT116 D1-D8 transfected clones respectively. Lanes a and t

contain lkb DNA ladder.
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6.2.2 Screening using quantitative RT-PCR

As there was a suggestion from conventional PCR that some of the HCT116 full-

length antisense (D) transfectants had reduced WWOX expression, these 17 clones

and the parent cell line were analysed using real-time PCR on the Lightcycler®

(figure 6.3). The LC1F and LC1R primer pair (both located in exon 9) was used to

quantify WWOX and the expression levels were normalised with respect to ji-

ACTIN.

Figure 6.3: WWOX expression in HCT116 antisense (D) transfectants

cell line

ACTZV-corrected WWOX expression in HCT116 antisense (D) transfectants. cDNA was prepared
from cultured cells and the levels of WWOX and $-ACTIN gene expression was quantified in

triplicate using the Lightcycler®. This allowed calculation of the ACTIN-corrected WWOX

expression. WWOX expression in all the transfectants (Dl-16, D18) is expressed as a percentage of
the WWOX expression in the HCT116 cl4 parent line. This was an initial screening exercise to

identify transfected cell lines suitable for phenotypic analysis. Quantification of WWOX expression in

repeated independent preparations of cDNA for a particular cell line was only performed for cell lines
used in phenotypic analyses and is demonstrated in later chapters with resultant error bars inserted.
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All but 2 of the transfectant clones (D8 and D14) expressed WWOX at between 28%

and 86% of the level of the parent line. Although greater WWOX knockout would

have been desirable for the purposes of phenotypic assays, 3 clones with expression

levels of approximately 30% of the parent line (D4, D5 and D16) were selected for

phenotypic analysis. The D2 clone with an intermediate level of WWOX expression

was also used in functional experiments to see if there was any evidence of an

intermediate phenotype.

The level of WWOX expression in four HCT116 vector-only (F) transfectants was

also analysed on the Lightcycler® (figure 6.4) using the same primer pair to ensure

that they were suitable controls. They were found to be comparable or expressing

slightly higher levels of WWOX compared to the parent line. Clones F2 and F4 were

used in subsequent phenotypic analysis.
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Figure 6.4: WWOXexpression in HCT116 vector-only (F) transfectants
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ACTIN-corrected WWOX expression in HCT116 vector-only (F) transfectants. cDNA was prepared
from cultured cells and the levels of WWOX and $-ACTIN gene expression was quantified in

triplicate using the Lightcycler®. This allowed calculation of the /ICT/A-corrected WWOX

expression. WWOX expression in all the transfectants (Fl-4) is expressed as a percentage of the
WWOX expression in the HCT116 cl4 parent line. This was an initial screening exercise to identify
transfected cell lines suitable for phenotypic analysis. Quantification of WWOX expression in

repeated independent preparations of cDNA for a particular cell line was only performed for cell lines
used in phenotypic analyses and is demonstrated in later chapters with resultant error bars inserted.
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6.3 Screening of WWOX expression levels in HCT116 sense

transfectants

The WWOX expression in the parent cell line (HCT116 el 4) and in 16 sense

transfectants (HCT116 Hl-8 and HCT116 H31-38) was quantified using the

Lightcycler® (figure 6.5). The Z1 and Z2 primer pair (located in exon 9) was used

to quantify WWOX and the expression levels were corrected for /3-ACTIN.

The first four clones (HI-4) from the transfection experiment (i.e the first four cell

foci to reach a size suitable for transferral to a separate flask) had no upregulation of

WWOX expression. The next four clones (H5-8) had only minimal upregulation of

WWOX expression. Some of the slowest growing clones, and the later ones to come

through, (H32-36) were found to have the highest level of WWOX expression. These

latter clones had 7 to 74 fold upregulation of WWOX compared to the parent line.

Clones H32 to H36 were deemed suitable for further phenotypic analysis.
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Figure 6.5: WWOXexpression in HCT116 sense (H) transfectants

cell line

ACTIN-corrected WWOX expression in HCT116 sense (H) transfectants. cDNA was prepared from
cultured cells and the levels of WWOX and ft-ACTIN gene expression was quantified in triplicate

using the Lightcycler®. This allowed calculation of the /ICT/TV-corrected WWOX expression. WWOX

expression in all the sense transfectants (HI-8 and H31-38) is expressed as a percentage of the WWOX

expression in the HCT116 cl4 parent line. This was an initial screening exercise to identify transfected
cell lines suitable for phenotypic analysis. Quantification of WWOX expression in repeated

independent preparations of cDNA for a particular cell line was only performed for cell lines used in

phenotypic analyses and is demonstrated in later chapters with resultant error bars inserted.

6.4 Screening of WWOX expression levels in PEOI antisense

transfectants

The WWOX expression in the PEOI hyl.6 parent ovarian cancer cell line and in 9

antisense (D) transfectants (PEOI D1 and PEOI D5-12) was quantified using the
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Lightcycler® (figure 6.6). Quantification of WWOX was performed using the LC1F

and LC1R primer pair and the expression levels were corrected for J3-ACTIN. Clones

D6, D7, D8 and D10 showed 55%, 78%, 51% and 37% decreases in WWOX

expression respectively. As was observed in the HCT116 expression analysis, there

were a number of transfects with minimal alteration or even increases in their

expression levels.

Again, the level of WWOX expression in PEOl vector-only (F) transfectants was

analysed on the Lightcycler® (figure 6.7) using the LC1F and LC1R primer pair to

ensure that they were suitable controls. Two of the transfectants (F2 and F4) had

comparable WWOX expression to the parent line and could be used as control lines in

phenotypic assays. The other 4 lines showed increased WWOX expression, as had

D1 and D5 from the antisense transfection and other vector controls in the HCT116

transfections. Possible explanations for this include clonal heterogeneity of the

parent line used for the original transfection and an increase in WWOX expression

secondary to the integration of the plasmid in the host genome.
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Figure 6.6: WWOXexpression in PE01 antisense (D) transfectants
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ACTIN-corrected WWOX expression in PEOI antisense (D) transfectants. cDNA was prepared from
cultured cells and the levels of WWOX and $-ACTIN gene expression was quantified in triplicate

using the Lightcycler®. This allowed calculation of the /fC777V-corrected WWOX expression. WWOX

expression in all the transfectants (Dl, D5-12) is expressed as a percentage of the WWOX expression
in the PEOI hyl.6 parent line. This was an initial screening exercise to identify transfected cell lines
suitable for phenotypic analysis. Quantification of WWOX expression in repeated independent

preparations of cDNA for a particular cell line was only performed for cell lines used in phenotypic

analyses and is demonstrated in later chapters with resultant error bars inserted.
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Figure 6.7: WWOXexpression in PE01 vector-only (F) transfectants
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ACT/iV-corrcctcci if (FOX expression in PEOl vector-only (F) transfectants. cDNA was prepared from
cultured cells and the levels of WWOX and (3-ACTIN gene expression was quantified in triplicate

using the Lightcycler®. This allowed calculation of the ACTIN-corrected WWOX expression. WWOX

expression in all the transfectants is expressed as a percentage of the WWOX expression in the PEOl

hyl.6 parent line. This was an initial screening exercise to identify transfected cell lines suitable for

phenotypic analysis. Quantification of WWOX expression in repeated independent preparations of
cDNA for a particular cell line was only performed for cell lines used in phenotypic analyses and is
demonstrated in later chapters with resultant error bars inserted.
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6.5 Screening of WWOX expression levels in PE01 sense

transfectants

As the only WWOX transcript present in the PEOl parent line lacked exons 4-8

(which encode the enzymatic domain ofWWOX) it was hoped that this line may be

null for WWOX function while still having the rest of its associated functional

pathway intact. This would permit reconstitution of the intact pathway and

investigation for a functional phenotype by exogenous expression of WWOX. The

line was therefore transfected with the sense construct encoding the WWOX coding

region. The level of full-length WWOX expression in these cell lines was quantified

using the Z1 and Z2 primer pair (located in exon 9) and is shown in figure 6.8 (note

the level of WWOX expression is plotted on a logarithmic scale).
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Figure 6.8: WWOXexpression in PE01 sense (H) transfectants

(logarithmic scale)

hy 1.6 H1 H2 H3 H4 H6 H7 H8 H9 H10 H12
cell line

ACT/A'-correctcd WWOX expression in PEOl sense (H) transfectants. cDNA was prepared from
cultured cells and the levels of WWOX and $-ACTIN gene expression was quantified in triplicate

using the Lightcycler®. This allowed calculation of the ACTIN-corrected WWOX expression. WWOX

expression in all the transfectants is expressed as a percentage of the WWOX expression in the PEOl

hyl.6 parent line. Note that the WWOX expression is on a logarithmic scale. This was an initial

screening exercise to identify transfected cell lines suitable for phenotypic analysis. Quantification of
WWOX expression in repeated independent preparations of cDNA for a particular cell line was only

performed for cell lines used in phenotypic analyses and is demonstrated in later chapters with
resultant error bars inserted.
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As previously observed in the HCT116 transfects, the first lines to come through the

transfection process had generally lower levels of WWOX than the later ones. Lines

H4, H6-H10 and H12 expressed full-length WWOX at 7 to 3800 times that of the

endogenous level of WWOX A4-8 in the parent line.

To discriminate between endogenous WWOX A4-8 transcript and exogenous WWOX,

different primer pairs were used. The LC1F and LC1R primers detect endogenous

WWOX A4-8 transcript only whereas the Z1 and Z2 primer pair detect total

(exogenous and endogenous) WWOX. Endogenous and total WWOX levels are

shown in figure 6.9. The difference between these levels represents the level of

exogenous WWOX transcript in each cell line.
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Figure 6.9: Endogenous and total WWOXexpression in PE01 sense (H)

transfectants
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ACTIN-correctcd endogenous and total WWOX expression in PEOl sense (H) transfectants. cDNA
was prepared from cultured cells and the levels of WWOX and $-ACTIN gene expression was

quantified in triplicate using the Lightcycler®. This allowed calculation of the ACTIN-corrected
WWOX expression. WWOX expression in all the transfectants is expressed as a percentage of the
WWOX expression in the PEOl hyl.6 parent line. Total WWOX expression is shown in blue and

endogenous WWOX expression is in green. Note that the WWOX expression is on a logarithmic scale.
This was an initial screening exercise to identify transfected cell lines suitable for phenotypic analysis.

Quantification of WWOX expression in repeated independent preparations of cDNA for a particular
cell line was only performed for cell lines used in phenotypic analyses and is demonstrated in later

chapters with resultant error bars inserted.
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Figure 6.9 shows that WWOX expression in the transfectants HI-3 is almost entirely

attributable to endogenous WWOX. (This is inkeeping with the finding that PEOl

vector-only controls also seemed to have upregulated WWOX expression and

suggests that it may have something to do with the transfection/integration process).

The other sense transfectants expressed mostly exogenous WWOX and in the two

most highly expressing clones, H6 and H7 (which were produced as the result of two

separate transfection events), the endogenous WWOX expression was very low (only

4-10% of the parent line). The H4 to H12 clones were deemed suitable for

phenotypic analysis.

6.6 Screening of WWOX expression levels in A2780 sense

transfectants

The levels of WWOX expression were quantified in the A2780 HC2 parent line and

in 18 lines that had been transfected with the sense (H) construct (figure 6.10). Three

clones (H7, HI 7 and H20) had highly upregulated levels of WWOX (80 to 220 fold

upregulated) and would be suitable for phenotypic analysis. The other sense

transfectants tended to have lower levels of WWOX than the parent line, a feature that

was also seen in the vector-only controls (figure 6.11). Quantification of endogenous

WWOX showed that in these low-expressing sense transfects there was little or no

expression of exogenous WWOX.
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Figure 6.10: ACTIN-corrected WWOXexpression in A2780 sense (H)

transfectants

22174

8149

100 36 174 136 41 22 126 60 59 28 173 103 141

11586

12 49 232

HC2 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H14 H15 H16 H17 H18 H19 H20 H21

cell line

ACTIN-corrected WWOX expression in A2780 sense (H) transfectants. cDNA was prepared from
cultured cells and the levels of WWOX and (3-ACTIN gene expression was quantified in triplicate

using the Lightcycler®. This allowed calculation of the ACTIN-corrected WWOX expression. WWOX

expression in all the transfectants is expressed as a percentage of the WWOX expression in the A2780
HC2 parent line. This was an initial screening exercise to identify transfected cell lines suitable for

phenotypic analysis. Quantification of WWOX expression in repeated independent preparations of
cDNA for a particular cell line was only performed for cell lines used in phenotypic analyses and is
demonstrated in later chapters with resultant error bars inserted.
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Figure 6.11: ACTIN-corrected WWOXexpression in A2780 vector-only

(F) transfectants

120

ACTIN-corrected WWOX expression in A2780 vector-only (F) transfectants. cDNA was prepared
from cultured cells and the levels of WWOX and (3-ACTIN gene expression was quantified in

triplicate using the Lightcycler®. This allowed calculation of the ACTIN-corrected WWOX

expression. WWOX expression in all the transfectants is expressed as a percentage of the WWOX

expression in the A2780 HC2 parent line. This was an initial screening exercise to identify transfected
cell lines suitable for phenotypic analysis. Quantification of WWOX expression in repeated

independent preparations of cDNA for a particular cell line was only performed for cell lines used in

phenotypic analyses and is demonstrated in later chapters with resultant error bars inserted.
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6.7 Evaluation of results

The aim of this section of the study was to identify transfectants of the HCT116

colorectal cancer cell line and the PEOl and A2780 ovarian cancer cell lines whose

level of WWOX expression was up-regulated or down-regulated in such a fashion as

to facilitate phenotypic analysis. In particular, because the HCT116 colorectal

cancer cell line was known to express a number of WWOX alternate transcripts it was

desirable to achieve down-regulation of WWOX in this cell line. The PEO1 ovarian

cancer cell line, in contrast, is homozygously deleted for WWOX exons 4-8 and

therefore expresses only very small amounts of a WWOX A4-8 transcript. In this cell

line the aim was to reconstitute WWOX expression (although antisense transfections

were also performed in an attempt to create an entirely WWOX-nuU version of the

PEOl cell line).

For the HCT116 colorectal cancer cell line, 3 antisense clones (HCT116 D4, D5 and

D16) were identified with expression levels of around 30% of the parent line. A

number of clones were identified with more intermediate levels of WWOX

expression. The justification for using quantitative PCR to select these clones for

phenotypic analysis is that it allowed selection of the clones with the greatest

reduction in WWOX expression. In terms of the HCT116 sense transfectants, a

number of significantly upregulated clones (HCT116 H32-36) were identified but

these were the clones that grew more slowly after transfection and would not have

been selected if quantitative RT-PCR had not been performed.

For the PEOl ovarian cancer cell line, only 4 clones had down-regulation of WWOX

and only one of these (PEOl D7) had expression levels that were less than 30% of

the parent line. In terms of the PEOl sense transfectants, quantitation of WWOX
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expression levels (both endogenous WWOX and total WWOX) was particularly useful

for selecting clones to be used in phenotypic analysis. In the PEOl system, for

example, the transfection process was associated with some WWOX induction as the

vector-only controls had increased endogenous (A4-8) WWOX expression compared

to the parent line. The first PEOl sense clones to grow up following transfection had

equivalent endogenous WWOX expression to vector-only controls and expressed no

exogenous full-length WWOX. If these had been used for the subsequent phenotypic

analysis then no WWOX-specific phenotype would have been identified. Instead,

slower-growing sense transfectants with significant expression of exogenous full-

length were taken forward for functional assays.

In the case of the sense transfectants of the A2780 ovarian cancer cell line, only 3 out

of 18 had significantly up-regulated WWOX levels and the use of quantitative RT-

PCR allowed identification of these clones.

Therefore, this section of the study was successful in its aim of unambiguously

detecting cell lines with suitably manipulated WWOX expression levels that could be

taken forward and used in functional assays to identify a phenotype for the WWOX

gene.

245



7. RESULTS: PHENOTYPIC ANALYSIS OF

HCT116 WWOX ANTISENSE

TRANSFECTANTS
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7.1 Rationale for perfoming phenotypic analysis on HCT116

antisense transfectants

As previously discussed (section 6.1), the HCT116 colorectal cancer cell line was

used for functional analysis because of the suggestion that murine Woxl was

required for p53-mediated apoptosis and the implication that it physically interacted

with murine p53 [168], Well-characterised wild-type, p53-null, p21-null and Bax-

null isogenic HCT116 cell lines were available, so if a functional WWOX pathway

were found to exist in these cells, the availability of these derivatives would assist the

phenotypic analysis.

HCT116 cells express a number of WWOX transcripts, so it was decided to analyse

the cells with downregulated WWOX expression in the first instance. As described in

chapter 6, there was little evidence for downregulation of WWOX in the cells

transfected with the antisense construct targeting the 3' UTR of WWOX. On the

basis of quantitative RT-PCR, the HCT116 cells transfected with the antisense

construct targeting the full WWOX coding region did display a variety of levels of

WWOX mRNA expression (figure 6.3). The most downregulated clones (D4, D5,

D16) expressed WWOX at 30% of the level of the parent line and their growth was

investigated both in vitro and in vivo. The aim of these experiments was to get an

early indication of whether this level of WWOX down-regulation was associated with

a change in growth characteristics, either in vitro or in vivo in the HCT116 colorectal

cell line system. An alteration in tumourigenicity in vivo for instance would then

signal the fact firstly that this cell line contained a functional WWOX pathway and

secondly that a significant degree of WWOX downregulation had been achieved.
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7.2 Growth of HCT116 antisense transfectants in vitro

To determine whether there were any phenotypic effects evident in the most down-

regulated antisense transfectants, growth was tested in vitro and in vivo.

The in vitro growth of the HCT116 parent line, two vector only controls (F2 and F4)

and three WWOX antisense transfectant clones (D2, D4 and D5) was measured. The

3 antisense clones used comprised two of the clones that were most downregulated

for WWOX expression (D4 and D5) as well as one (D2) that had an intermediate

level of WWOX expression at 66% of the level in the parent line. No significant

difference in growth rate was identified when the antisense clones were compared to

the parent line or the vector-only controls (figures 7.1 and 7.2).
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Figure 7.1 In vitro growth of HCT116 parent line, antisense transfectants

and vector-only controls

In vitro growth of HCT116 parent line (HCT116 cl4), antisense transfectants (D2, D4 and D5) and
vector-only controls (F2 and F4). 5 x 104 log phase cells were seeded in duplicate into 6-well trays for
each time point and cultured at 37°C, 5% C02. At each time point cells were harvested and counted

using a coulter-counter.
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Figure 7.2 In vitro growth of HCT116 parent line, antisense transfectants

and vector-only controls (logarithmic scale)
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In vitro growth of HCT116 parent line (HCT116 cl4), antisense transfectants (D2, D4 and D5) and

vector-only controls (F2 and F4). 5 x 104 log phase cells were seeded in duplicate into 6-well trays for
each time point and cultured at 37°C, 5% C02. At each time point cells were harvested and counted

using a coulter-counter. Cell counts are plotted on a logarithmic scale.
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7.3 Growth of HCT116 antisense transfectants in vivo

The subcutaneous growth in nude mice of the HCT116 parent line, two vector only

controls (F2 and F4) and three WWOX antisense transfectant clones (D4, D5 and

D16) was measured. The 3 antisense clones used were those that were most

downregulated for WWOX expression. As observed in the in vitro growth assay, no

significant difference in growth rate was identified when the antisense clones were

compared to the parent line or the vector-only controls (figure 7.3).

251



Figure 7.3 Growth of HCT116 parent line, antisense transfectants and

vector-only controls in nude mice
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In vivo growth of HCT116 parent line (HCT116 cl4), antisense transfectants (D4, D5 and D16) and

vector-only controls (F2 and F4) in nude mice. 5 x 106 log phase cells were injected subcutaneously
in lOOpl serum-free medium into each flank of a nude mouse. Each group consisted of 10 tumours (5

mice). Tumour size was measured twice per week until the tumours reached a size that required the
mouse to be sacrificed. The error bars represent the standard deviation of the tumour size for each

group.

7.4 Evaluation of results

The aim of these experiments was to get an early indication of whether this level of

WWOX down-regulation (to 30% of the level in the HCT116 parent line) was

associated with a change in growth characteristics, either in vitro or in vivo in the

HCT116 colorectal cell line system. An alteration in tumourigenicity in vivo for
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instance would then signal the fact firstly that this cell line contained a functional

WWOX pathway and secondly that a significant degree of WWOX downregulation

had been achieved.

These experiments identified no significant differences in growth rate in vitro or in

subcutaneous tumourigenicity in vivo for the HCT116 antisense transfectants tested.

This does not mean that HCT116 colorectal cells do not have a functional WWOX

pathway or that the level of WWOX downregulation was insufficient to identify a

phenotype. Concurrent investigations in the PEOl cell line system (chapter 8) had

identified an in vivo phenotype and it made more sense to investigate this fully and

then return to the HCT116 colorectal cancer cell line system (if necessary) once the

role of the WWOX gene had been elucidated in the PEO1 cell line system (which was

by this time known to possess a functional WWOX pathway). This would avoid the

need to perform an exhaustive screen of phenotypic assays in a cell line (HCT116)

that may not possess a functional WWOXpathway.

Therefore the results reported in this chapter were entirely negative and did not

contribute towards the achievement of the aims of the study. Results in the PEO 1

cell line system (chapter 8) suggested that this would be the more informative system

to use in the first instance.
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8. RESULTS: IDENTIFICATION OF VIVO

AND IN VITRO PHENOTYPES FOR WWOX

IN THE PEOI OVARIAN CANCER CELL

LINE
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8.1 Rationale for the investigation of the function of WWOX in

PEOI sense transfectants

Until now the only functional data, regarding the role of the WWOX gene in

tumourigenesis, has been provided by Bednarek et al [52], They showed that ectopic

WWOX expression strongly inhibited anchorage-independent growth in soft agar of

the MDA-MB-435 and T47D breast cancer cell lines (both of which have a low

baseline expression of the WWOX gene). They also showed that WWOX inhibited

the tumourigenicity of MDA-MB-435 breast cancer cells in nude mice. The PEOI

cell line is homozygously deleted for WWOX exons 4-8 and as such expresses only a

truncated WWOX A4-8 transcript, which lacks the alcohol dehydrogenase domain of

the protein. This makes it a suitable system for testing the phenotypic effects of

reconstituting functional WWOX. The aims of this component of the study were to

establish whether reconstitution of WWOX in PEOI ovarian cancer cells affected

subcutaneous tumourigenicity in vivo. If this was the case, then an exhaustive search

for an in vitro phenotype could be conducted.

Additional note:

The PEOI system was fully characterised for the purposes of these phenotypic

assays. This included flow cytometry, which was performed after in vitro growth

curves and the first tumourigenicity assay were performed. This revealed that most

of the vector-only controls and and some of the sense transfectants had become

tetraploid (the parent PEOI line is diploid). None of these lines were used for any

further phenotypic assays. Unfortunately, this left just one suitable, diploid, vector-

only control (F9) and also one diploid clone that appeared abnormal down the
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microscope, with a lot of dead cells present (F2). As a result it was decided to use, in

addition, two polyclonal cell lines containing these vectors (Flp and F2p) to increase

the number of vector-only controls. In addition one of the antisense transfectants

(D6), which was transfected with the same vector was also used in some of the

phenotypic assays

8.2 Confirmation of WWOX upregulation in PEOI sense

clones chosen for functional analysis

PEOI cells were transfected with a sense construct expressing the WWOX coding

region and also with vector-only controls. WWOX expression in these transfects was

quantified using the Lightcycler® (section 6.5). A number of transfectants had

significantly upregulated WWOX levels (clones H4, H6-H10 and H12 were between

7 and 38000-fold upregulated compared to the expression of the endogenous

transcript). The RNA used for this screening of clones was obtained while the cells

were being expanded following initial transfection. In order to confirm that the

expression levels were maintained during functional studies, quantitative RT-PCR

was performed on the clones chosen for phenotypic analysis using the Rotorgene®

after the cells had been passaged on 2-3 times. The 8F2 and Z2 primer pair (which

detects only exogenous WWOX) was used for this quantitation. As expected, neither

the parent line nor the vector-only controls expressed full-length WWOX (figure 8.1).

The expression of full-length WWOX in the sense transfectants (normalised to H7,

the highest expresser) varies from 0.9 to 100% (figures 8.1 and 8.2). In comparison

to the initial quantitation, the expression of the H6 clone appears to have fallen (by

256



around an order ofmagnitude in comparison to the H7 clone), possibly as a result of

the selection of cells with lower WWOX expression during cell culture.

Figure 8.1 WWOX expression in PEOI sense (H) and vector-only (F)

transfectants

cell line

ACTIN-corrected WWOX expression in PEOI parent line (hy 1.6), vector-only (F) and sense (H)
transfectants. cDNA was prepared from cultured cells and the levels of WWOX and ft-ACTIN gene

expression was quantified in quadruplicate using the Rotorgene®. This allowed calculation of the
AC77;V-corrected WWOX expression. WWOX expression in all the transfectants is expressed as a

percentage of the expression in the H7 clone. Each gene (WWOX and ACTIN) quantitation was

repeated in quadruplicate on 3 separate occasions and the error bars represent the sum of the fractional
error of the WWOX and ACTIN quantitations.
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Figure 8.2 WWOXexpression in PEOI sense (H) transfectants

(logarithmic scale)

1000.0
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22.6

PE01 H6 PE01 H7 PE01 H8 PE01 H9 PE01 H10 PEOI H12

cell line

AC77jV-corrected WWOX expression in PEOI sense (H) transfectants. cDNA was prepared from
cultured cells and the levels of WWOX and $-ACTIN gene expression was quantified in quadruplicate

using the Rotorgene®. This allowed calculation of the ACTIN-corrected WWOX expression. WWOX

expression in all the transfectants is expressed as a percentage of the expression in the H7 clone. Note
that WWOX expression is on a logarithmic scale. Each gene (WWOX and ACTIN) quantitation was

repeated in quadruplicate on 3 separate occasions and the error bars represent the sum of the fractional
error of the WWOX and ACTIN quantitations.
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8.3 Linear correlation between WWOX mRNA and protein

levels in WWOX transfectants used for functional analysis

In order to check that WWOX isoform 1 mRNA was translated into protein in the

WWOX sense transfectants, Western blotting was performed. No WWOX expression

was detected in 3 vector-transfected controls (data not shown). Western blotting

detected translated WWOX protein in 4 out of the 6 sense transfectants (figure 8.3).

The two transfectants in which protein was not detected were the lowest expressers

of WWOX isoform 1 mRNA by real-time PCR (figure 8.2). There was a strong linear

correlation between mRNA and protein levels in this transfected cell line system

(R2=0.995; figure 8.4).

Figure 8.3 WWOX protein expression in PE01 sense transfectants

WWOX
ISOFORM 1

GAPDH ■

Fpolyl Hyl.6 H7 H6 H10 H9 H8 H12

Western blot of PEOl cell lines: Flp (vector-transfected control); Hyl.6 (untransfected parent cell

line); H7, H6, H10, H9, H8, H12 (sense transfectants). Extracts of the cultured cells were Western

immunoblotted and analysed using a WWOX-specific antibody. GAPDH was used as an internal
control for loading.
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Figure 8.4 WWOXmRNA plotted against protein in PE01 sense

transfectants

WWOX protein level (relative to GAPDH)

ACTIN-corrected WWOX variant 1 mRNA level (as quantified by real-time PCR) plotted against
GAPDH-corrected WWOX variant 1 protein level (as quantified by Western blot). For real-time PCR
cDNA was prepared from cultured cells and the levels of WWOX and $-ACTIN gene expression was

quantified in quadruplicate using the Rotorgene®. This allowed calculation of the ACTIN-corrected
WWOX expression. For Western blot extracts of the cultured cells were Western immunoblotted and

analysed using a WWOX-specific antibody. GAPDH was used as an internal control for loading.

8.4 WWOX reconstitution abolishes tumourigenicity of PEOI

cells in nude mice

A preliminary experiment was performed to determine the optimal conditions and

cell number for assessing the growth of PEOI cells following subcutaneous injection

into nude mice. Two groups of 5 mice were injected subcutaneously with PEOI
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parent cells, using matrigel for injections into one flank and using no matrigel for

injections into the contralateral flank. 1 x 106 cells per injection were used for the

first group of mice (GP.A) and 5 x 106 cells per injection for the second group

(GP.B). In both groups, the cells injected without matrigel grew best. 5 x 106 was

the optimal cell injection number on the basis that none of the tumours injected

without matrigel in this group failed to grow.
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Figure 8.5: Optimisation of PE01 tumourigenicity protocol
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-*-GP.A 1 X 106 Non-Matrigel
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0 4 7 11 14 18 21 25 28 32 35 39 42 46 49 53 56 60 63

Day

Growth of PEOl ovarian cancer cells injected subcutaneously into nude mice with or without

matrigel. 1 x 106 or 5 x 106 log phase cells were injected subcutaneously into each flank of a nude
mouse. In one flank the cells were injected in lOOgl serum free media, in the other flank the cells
were injected in 50|0.1 serum free media and 50pl matrigel. Each group consisted of 10 tumours (10

mice). Tumour size was measured twice per week until the tumours reached a size that required the
mouse to be sacrificed. The error bars represent the standard deviation of the tumour size for each

group.

Following this optimisation protocol, PEOl parent cells, a vector-only (F)

transfectant and 4 WWOX sense (H) transfectants were each subcutaneously injected

(5 x 106 cells per injection) into both flanks of 5 nude mice. The PEOl parent line

and the vector-only control (F9) grew in nude mice but there was no growth of any

of the sense transfectants (figure 8.6). This suggested that the expression of WWOX

262



had resulted in the abolition of tumourigenicity in nude mice. There was some

variation between the growth rate of the parent line and the vector-only control,

which may have been due to clonal heterogeneity. To confirm these findings, the

experiment was repeated using further vector-only controls, one of the PEOl

antisense (D) transfectants and two sense transfectants (figure 8.7). This confirmed

growth of the parent line, of two vector-only control lines (Flp and F2p) and an

antisense transfectant (D6). Once again there was a considerable difference in the

growth rate of these clones. As observed previously (figure 8.6), there was no

growth of either of the sense transfectants (PEOl H6 and H7). Therefore, the

expression of exogenous WWOX in a PEO1 cell line system resulted in the abolition

of tumourigenicity in nude mice.
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Figure 8.6 Tumourigenicity of PE01 parent line and transfected cells in

nude mice (first series)
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-GP.D H7

-GP.E H8

-GP.F H12

Day

Growth of PEOl parent cells (hyl.6), vector-only control (F9) and sense transfectants (H6, H7, H8,

HI2) injected subcutaneously into nude mice. 5 x 106 log phase cells were injected subcutaneously in

lOOpl serum-free medium into each flank of a nude mouse. Each group consisted of 10 tumours (5

mice). Tumour size was measured twice per week until the tumours reached a size that required the
mouse to be sacrificed. The error bars represent the standard deviation of the tumour size for each

group.

264



Figure 8.7 Tumourigenicity of PE01 parent line and transfected cells in

nude mice (second series)
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Growth of PEOl parent cells (hy 1.6), vector-only controls (Flp and F2p), antisense (D6) and sense

(H6 and H7) transfectants injected subcutaneously into nude mice. 5 x 106 log phase cells were

injected subcutaneously in 100|il serum-free medium into each flank of a nude mouse. Each group

consisted of 10 tumours (5 mice). Tumour size was measured twice per week until the tumours

reached a size that required the mouse to be sacrificed. The error bars represent the standard deviation
of the tumour size for each group.

8.5 Demonstration of an in vitro phenotype for the WWOX

gene

The finding that exogenous WWOX expression abolished tumourigenicity in nude

mice suggested that there was a functional WWOX pathway in PEOl cells.
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Therefore phenotypic assays were conducted in this cell line system in order to

determine an in vitro phenotype for WWOX.

8.5.1 In vitro growth curves

Growth rate of PEOl sense transfectants was not significantly different to that of the

parent line and vector-only controls (figures 8.8 and 8.9).

PE01 hy1.6
—PEOl F2

PEOl F9

—PEOl H6

—PEOl H7

—PE01 H9

Figure 8.8 In vitro growth of PEOl parent line, vector-only controls and

sense transfectants

90 -r

Growth rate of PEOl parent line (hy 1.6), vector-only controls (F2 and F9) and sense transfectants

(H6, H7 and H9) in vitro. 1 x 10" log phase cells were seeded in duplicate into 6-well trays for each
time point and cultured at 37°C, 5% C02. At each time point cells were harvested and counted using
a coulter-counter. Growth curves were repeated three times and the error bars indicate the standard
error of the mean.

6

days of culture
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Figure 8.9 In vitro growth of PE01 parent line, vector-only controls and

sense transfectants (logarithmic scale)

—PE01 hy1.6
—PE01 F2

PE01 F9

—PE01 H6

—PE01 H7

—PE01 H9

100 t-

0 2 4 6 8 10 12 14

days of culture

Growth rate of PEOl parent line (hy 1.6), vector-only controls (F2 and F9) and sense transfectants

(H6, H7 and H9) in vitro. 1 x 105 log phase cells were seeded in duplicate into 6-well trays for each
time point and cultured at 37°C, 5% CO2. At each time point cells were harvested and counted using
a coulter-counter. Growth curves were repeated three times and the error bars indicate the standard
error of the mean. The cell counts are plotted on a logarithmic scale.

8.5.2 Agarose growth curves

Bednarek et al [52], working with breast cancer cell lines, also failed to identify a

difference in growth rate (in vitro) between WWOX transfected cells and controls.

They did, however, find a difference in the rate of anchorage -independent growth in

soft agar. Consequently, the possible anchorage-independent growth phenotype

associated with WWOX was examined in the fTITOX-transfected PEOl cell line

series. Therefore 5000 cells were seeded per well in 6-well trays. Following 28 days
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of incubation, colonies of tumour cells were counted manually down the microscope.

No apparent difference was observed in the number of colonies between the cell lines

examined in this assay (figure 8.10).

Figure 8.10 Soft agar clonogenicity of PE01 parent line, vector-only

controls and sense transfectants

1000

hy1.6 F2 F9 H6 H7 H9
PEOI clone

Soft agar clonogenicity of PEOI parent line (hy 1.6), vector-only controls (F2 and F9) and sense

transfectants (H6, H7 and H9). 5000 log phase cells were seeded in 3ml of 0.4% seaplaque agarose

on top of a layer of 2ml of 1% seaplaque agarose. The cells were incubated at 37°C, 5% C02 and the

number of PEOI colonies counted after 28 days incubation. 5000 cells plated per well at the outset.

The experiment was repeated three times and the error bars represent the standard error of the mean.
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8.5.3 Clonogenicity

The colony-forming efficiency of cells in the PEOl series was assessed by

performing clonogenicity assays. In the first instance cells were plated at low

density (1000 cells per well) in media without cytotoxic agents and the numbers of

colony-forming units was counted after 21 days (figure 8.11). One of the vector-only

controls (F9) had a lower colony-forming efficiency than the other lines but there

was no significant difference between the WWOX sense transfectants and the parent

line or the other vector-only control. The experiment was repeated (plating 200 cells

per well) adding cisplatinum to the medium (0.008pM-lpM). There was again no

difference in the colony-forming efficiency of the sense-transfected lines compared

to controls for a given concentration of cisplatinum (figure 8.12). Only the highest

dose of cisplatinum (lpM) had a significant effect on colony-forming efficiency.

The results for this dose are expanded in figure 8.13.
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Figure 8.11 Colony-forming efficiency of the PE01 series in the absence

of cytotoxic agents
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hy1.6 F2 F9 H6 H7 H9
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Colony-forming efficiency of the PEOI parent line (hy 1.6), vector-only controls (F2 and F9) and

sense transfectants (H6, H7 and H9). Log phase cells were harvested and syringed 10 times.

Multiplicity was calculated to ensure it was <1.05. For each cell line 1000 cells were seeded onto a

gridded Petri dish. The cells were then incubated at 37°C, 5% CO2 for 21 days before being fixed

with 2:1 acetone/methanol, stained with haematoxylin and counted. The experiment was repeated

three times and the error bars represent the standard error of the mean.
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Figure 8.12 Colony-forming efficiency of the PE01 series following

exposure to various doses of cisplatinum
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□ untreated

□ cis 1uM
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□ cis 0.0016uM

20 -

i
hy1.6 H12

cell line

F1p F2p

Colony-forming efficiency of the PEOl parent line (hy 1.6), vector-only controls (F9, Flp and F2p)

and sense transfectants (H6, H7, H8 and H12) following exposure to 0, lpM, 0.04pM, 0.008pM and

0.0016pM cisplatinum. An antisense transfectant (D6) was also included in this analysis. Log phase

cells were harvested and syringed 10 times. Multiplicity was calculated to ensure it was <1.05. For

each cell line 200 cells were seeded onto a gridded Petri dish. The cells were then incubated at 37°C,

5% CO2 at the appropriate drug concentration for 21 days before being fixed with 2:1

acetone/methanol, stained with haematoxylin and counted. The experiment was repeated three times

and the error bars represent the standard error of the mean.
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Figure 8.13 Colony-forming efficiency of the PE01 series following

exposure to 1pM cisplatinum
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Colony-forming efficiency of the PEOl parent line (hy 1.6), vector-only controls (F9, Flp and F2p)

and sense transfectants (H6, H7, H8 and HI2) following exposure to lpM cisplatinum. An antisense

transfectant (D6) was also included in this analysis. Log phase cells were harvested and syringed 10

times. Multiplicity was calculated to ensure it was <1.05. For each cell line 200 cells were seeded

onto a gridded Petri dish. The cells were then incubated at 37°C, 5% C02 at the appropriate drug

concentration for 21 days before being fixed with 2:1 acetone/methanol, stained with haematoxylin

and counted. The experiment was repeated three times and the error bars represent the standard error

of the mean.

8.5.4 Aggregation assays

Aggregation assays were performed on the PEOl cells. The assay was difficult to

reproduce consistently. Initial attempts suggested that WWOX transfected cells had a
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decreased propensity to aggregate (figure 8.14a) but this did not prove to be

reproducible in further experiments (figure 8.14b). As the results of the aggregation

assay were inconsistent, it was not pursued any further.

Figure 8.14 Aggregation of PE01 parent cells, vector-only controls and

sense transfectants

(minutes) of aggregalon

Aggregation of PEOl parent cells (hy 1.6), vector-only control (Flp) and sense transfectants (H6 and

H7). Log phase PEOl parent, vector control and sense-transfected lines were trypsinised and
recovered in serum-containing media. 1 x 106 cells were resuspended in 1ml of media and passed

through a 21G needle to create a single-cell suspension. Cell suspensions were incubated at 37°C, 5%

CO2. At 0, 15, 30 and 60 minutes aliquots were removed using a wide bore pipette and the number of

single cells was counted with a haemocytometer. All counts are normalised to the time zero count.

8.5.5 Invasion assays

Invasion assays were performed using matrigel invasion chambers (described in

section 2.20). After 84 hours of invasion, the number of cells in the upper and lower
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chambers was quantified using an MTT assay. The invasion was calculated as the

OD570 for the lower chamber divided by the OD570 for the top chamber multiplied

by 100. The MTT assay was performed 3 times for each well. Two wells were used

for each cell line, the complete experiment was repeated three times and the mean

taken. The number of cells in both the upper and lower chambers following 84 hours

of invasion was reduced in the PEOl sense transfectants compared with the parent

line and vector-only controls (figure 8.15). The calculated invasion, however, was

not significantly different between the cell lines (figure 8.16). A possible

explanation for the decrease in cells in both chambers in the sense transfectants

(despite equal numbers of cells being used for each line) may be that less of these

cells are attaching to the matngel of the upper chamber and are therefore available

for invasion. It could also be that a lower number of the sense transfectants added to

the upper chamber are surviving and therefore, again less are available for invasion.

Matrigel attachment and apoptotic assays would potentially help to clarify this issue.
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Figure 8.15 Number of PE01 cells in upper (a) and lower (b) level of

invasion chamber (A570 following MTT assay)

Number of PEOl parent cells (hyl.6), sense transfectants (H6 and H7), vector-transfected controls

(Flp and F2p) and antisense transfectants (D6) in the upper (a) and lower (b) levels of the invasion
chamber (as measured by A570 following MTT assay) after 84 hours of the invasion assay. Invasion

assays were conducted with media containing 10% acid-inactivated serum. 5 x 104 cells were loaded

into the top of each invasion chamber. The cells were incubated at 37°C, 5% C02 for 84 hours then

cells on either side of the insert were quantified by MTT assay. The MTT assay was performed 3
times for each well. Two wells were used for each cell line, the whole experiment was repeated three
times and the mean taken. The error bars show the standard error of the mean.
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Figure 8.16 Invasion of PE01 parent cells, vector-only controls and

sense transfectants

hy 1.6 H6 H7 F1p F2p D6
cell line

Invasion of PEOl parent cells (hyl.6), sense transfectants (H6 and H7), vector-only controls (Flp and

F2p) and an antisense transfectant (D6). Invasion assays were conducted with media containing 10%
acid-inactivated serum. 5 x 104 cells were loaded into the top of each invasion chamber. The cells

were incubated at 37°C, 5% C02 for 84 hours then cells on either side of the insert were quantified by

MTT assay. The MTT assay was performed 3 times for each well. Two wells were used for each cell
line, the whole experiment was repeated three times and the mean taken. The error bars show the
standard error of the mean.

8.5.6 Migration assays

Migration assays were performed in transwells (as described in section 2.19).

Transwells are similar to invasion chambers but are not coated with matrigel.

Instead they contain pores (8pm in this case) and can by coated on their undersurface

with extracellular matrix proteins. Again, an MTT assay was performed to quantify
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the upper and lower chamber cells after 84 hours of migration. Migration was

compared between cell lines of the PEOl PEPEClY-transfected series as for the

invasion assays. This assay showed that the PEOl sense transfectants have a

decreased ability to migrate towards fibronectin when compared to the parent line

and a vector-only control (figure 8.17). Migration towards laminin was lower in the

sense transfectants than in the parent line, but was the same as the vector-only

control. These findings suggest that the exogenous expression of WWOX decrease

the capacity of PEOl cells to migrate towards fibronectin.
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Figure 8.17 Migration of PE01 parent cells, vector-only controls and

sense transfectants towards bovine serum albumin, fibronectin and

laminin

100

Migration of PEOl parent cells (hyl.6), sense transfectants (H6 and H7) and a vector-only control

(Flp) towards bovine serum albumin, fibronectin and laminin. Prior to the migration assay, the
undersurface of each transwell was coated with a matrix component (fibronectin, laminin or BSA for
the control wells), blocked with 0.1%BSA and then washed with PBS. 5 x 104 cells were aliquoted to

each well and the cells were incubated at 37°C, 5% C02 for 84 hours. The number of cells on the

upper and lower surface of the transwell was quantified by MTT assay. Migration was expressed as

the ratio of the undersurface OD reading to the uppersurface OD reading. The experiment was

repeated five times, the migration figures were averaged for the cell lines tested and the standard error

of the mean was calculated (represented by the error bars). Migration towards BSA, fibronectin and
laminin is represented by red, blue and green bars respectively.
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8.5.7 Attachment assays

Attachment to matrigel and to plastic coated with fibronectin or laminin was

investigated for the PEOl cell line series. However, investigation of attachment to

matrigel of the parent line was compromised due to a technical problem. The 3

vector-only control lines attached to matrigel following 1 hour of incubation,

whereas there was no attachment of either the H6 or H7 WWOX sense transfectants

(figure 8.18). This supported the suggestion from the invasion assays (section 8.5.5)

that PEOl sense transfectants may have a decreased capacity to attach to matrigel.

In a subsequent experiment, attachment to laminin and fibronectin following 30

minutes and 18 hours incubation was decreased when the PEOl H7 sense

transfectant was compared to the parent line (figure 8.19). When the assay was

repeated using more cell lines, there was again evidence of decreased attachment of

the sense transfectants (H6 and H7) to fibronectin compared to controls (figure 8.20).

In this particular assay, however, little difference was observed in the attachment of

the cells to laminin as compared with uncoated wells, presumably due to the supply

of laminin having deteriorated.

These attachment assays suggest that WWOX reconstitution causes PEOl cells to

attach less well to matrigel, fibronectin and possibly also laminin. They were,

however, not replicated a sufficient number of times to be considered definitive.

However, the findings are interesting and were reproducible when the number of cell

lines used at one time was kept to a minimum. Considerably more time would be

required in order to fully characterise the attachment phenotype of these WWOX

transfectants.
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Figure 8.18 Attachment of PE01 vector-only and sense transfectants to

matrigel

0.12

0.08

Attachment of vector-only controls (Flp, F2p and F9) and sense transfectants (H6 and H7) to matrigel
1 hour following the seeding of 5xl04 (blue bars), 4xl04 (red bars), 3xl04 (yellow bars), 2xl04 (green

bars) and lxl 04 cells (purple bars). Cells were added to matrigel-coated 96 well trays obtained from
Biocoat®. They were incubated for 1 hour at 37°C, 5% C02 and washed carefully. Following this,
attached cells were quantified by MTT assay.
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Figure 8.19 Attachment of PE01 parent line and a sense transfectant to

laminin and fibronectin

0.25 -p-

well coating and duration of incubation

Attachment of the PEOl parent line (hyl.6; blue bars) and a sense transfectants (H7; red bars) to
fibronectin and laminin coated wells 30 minutes and 18 hours following the seeding of 5xl04 cells.

Bacteriological-grade 96 well trays (Nunclon®) were prepared by the addition of 100|il of lOpg/ml of
fibronectin or laminin to each well, followed by 60mins incubation at room temperature, careful

washing with PBS, blocking with 200pl of 0.1% BSA, a further 1 hour incubation at room

temperature and final washing with PBS. Then, 5xl04 PEOl parent (hyl.6) or WTfOX-transfected
cells (H7) were added to each well. The cells were incubated for 30 minutes or 18 hours at 37°C, 5%

C02 and then washed carefully. Following this, attached cells were quantified by MTT assay.
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Figure 8.20 Attachment of PE01 parent line, vector-only controls and

sense transfectants to laminin and fibronectin

0.1 r — —

hy 1.6 H6 H7 F1p F2p
cell line

Attachment of the PEOl parent line (hyl.6), 2 vector-only controls (Flp and F2p) and 2 sense

transfectants (H6 and H7) to fibronectin and laminin coated wells 60 minutes following the seeding of
5x104 cells. Bacteriological-grade 96 well trays (Nunclon®) were prepared by the addition of lOOpl
of 10|ig/ml of fibronectin or laminin to each well, followed by 60mins incubation at room

temperature, careful washing with PBS, blocking with 200|il of 0.1% BSA, a further 1 hour
incubation at room temperature and final washing with PBS. Control wells had no coating applied but
were still washed and blocked. Then, 5xl04 PEOl parent (hyl.6), IFOTTY-transfected (H6, H7) or
vector-transfected control cells were added to each well. The cells were incubated for 60 minutes at

37°C, 5% C02 and then washed carefully. Following this, attached cells were quantified by MTT

assay. Attachment to uncoated, fibronectin-coated and laminin-coated wells is represented by the

blue, red and yellow bars respectively.
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8.6 Other work performed using this system

The PEOl cell line system generated and characterised during this project was also

used by Karen Taylor for microarray analysis, comparing the gene expression of the

sense transfectants to controls. This generated a small number of candidate genes

whose expression may be affected by WWOX upregulation, and this is being

investigated further.

8.7 Evaluation of results

Expression of ectopic WWOX in PEOl cells resulted in the abolition of

tumourigenicity in nude mice. This is functional evidence that WWOX may operate

as a tumour suppressor in ovarian cancer and therefore addresses the first aim of the

study (to elucidate whether the WWOX gene functions as a tumour suppressor in

epithelial ovarian cancer). This is an important result but certain caveats must be

noted. Firstly, the result depends upon stable transfection of a cell line with

constructs expressing exogenous WWOX or vector-only controls. Therefore the issue

of clonal heterogeneity becomes a factor. That is, differences between the phenotype

of transfected cell lines being due to changes in gene expression that have arisen

during passage of cells since the transfection event rather than being due to the gene

that has been transfected into the cells. I would strongly counter this argument here

because the phenotype seen was either tumour growth (for the parent line, vector-

only controls or antisense transfectants) or no tumour growth (for the sense

transfectants) with no intermediate phenotype identified. There were a total of 5 cell

lines in the former group (all of which produced tumours in nude mice) and a total of

4 cell lines in the latter group (none of which produced tumours in nude mice) so the
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chance of this result occurring fortuitously as the result of clonal heterogeneity is

infitessimally small. The second caveat is that these results have only been

demonstrated for one ovarian cancer cell line. We could be more confident about the

role of this gene as a suppressor of ovarian tumourigenesis in general (rather than in

the PEOl ovarian cancer cell line alone) if the in vivo phenotype could be replicated

in another ovarian cancer system.

The fact that expression of ectopic WWOX in PEOl cells resulted in the abolition of

tumourigenicity in nude mice also implies that there is a functional WWOX pathway

in the PEOl cell line. Therefore a number of phenotypic assays were performed in

an attempt to identify an in vitro phenotype for the gene. Expression of exogenous

WWOX in PEO1 cells was found to have no effect on in vitro growth rate (on plastic

or in agarose), clonogenicity (in the presence or absence of cytotoxic drugs), cellular

aggregation or cellular invasion. WWOX expression in PEOl cells was however

shown to decrease the migration of PEO 1 cells towards fibronectin and preliminary

attachment assays also suggested that it may decrease the attachment of PEO 1 cells

to matrigel, fibronectin and other extracellular matrix components, such as laminin.

Further work is required to clarify the role that WWOX plays in attachment to

extracellular matrix components. However, the demonstration that exogenous

expression of the WWOX gene in the PEOl cell line system reproducibly decreases

migration towards fibronectin and the suggestion that it decreases attachment to

extracellular matrix components represents a significant step forward in the search

for an in vitro phenotype for this gene. Once again, the possibility of these results

being caused by clonal heterogeneity has to be considered. The best way to get

around this is to use an inducible cell line system. Attempts to achieve this in the
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present study using the Tet-On® system were unsuccessful due to high baseline

(unstimulated) expression of transfected WWOX or 'leakiness' of the system. Once

again, it would be easier to consider these phenotypic findings as generalisable to

ovarian cancer if they were replicated in another ovarian cancer system.

These caveats aside, the findings in this chapter go some way towards the aim of

ascribing a phenotype associated with expression of the WWOX gene.
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9. DISCUSSION
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9.1 Preamble

Unlike most epithelia, division of normal ovarian surface epithelial cells gives rise to

two daughter cells with equal growth potential [49]. This means that mutated tumour

suppressor genes can easily sustain a 'second-hit' and play a role in the development

of ovarian cancer. Homozygous deletion [53], loss of heterozygosity [165,166] and

loss of expression in malignant compared to non-malignant tissue [171] are all

mechanisms of WWOX knockout or downregulation which have been identified.

However, very few mutations have been found in the gene and no truncating point

mutations have been identified. Also, there are no hereditary cancer syndromes

known to result from defects in the WWOX gene. As such, it cannot be considered as

a 'classic' tumour suppressor gene. The role of aberrant transcripts that were

apparently specific for tumour tissue has been controversial.

Importantly, functional evidence does exist for a tumour suppressor role.

Overexpression of WWOX in breast cancer cell lines inhibits tumourigenicity in nude

mice and decreases the proliferation of breast cancer cells in soft agar [52]. Also,

there is some evidence that murine Wox 1 is required for p53-mediated apoptosis of

murine fibroblasts and that it enhances TNFoc-mediated cytotoxicity. There is also a

suggestion from coimmunoprecipitation and yeast two-hybrid analyses that murine

Wox 1 may bind to the p53 polyproline region.

However, no firm phenotype has yet been ascribed to WWOX, the partners that bind

to its WW domains are unknown, its natural intracellular substrate(s) in the cell are

unknown and there is no evidence as yet that it interacts with p53 in the human cell.
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The aims of the PhD were to

(i) Elucidate whether WWOX acts as a tumour suppressor gene in ovarian

cancer.

(ii) Clarify the role of the WWOX gene (and its alternate transcripts) in

ovarian carcinogenesis.

(iii) Ascribe a phenotype associated with expression of the WWOX gene and

WWOXprotein function.

In order to achieve these aims, two approaches were taken in parallel.

The first approach was to investigate the WWOX mRNA isoform expression

profile of a panel of 71 human ovarian tumours, 13 normal ovaries and 37 human

cancer cell lines. Full-length WWOX (isoform 1) expression was found to be

significantly lower in tumours than in normal ovaries (p<0.0001). Two tumours

expressed no full-length WWOX mRNA. The WWOX A6-8 mRNA (isoform 4)

was expressed at low levels, and was significantly associated with high grade (p=

0.006) and high stage (p=0.012) ovarian cancer but was also identified in non-

malignant tissue. Three tumour cell lines (the CaOV3 ovarian line and the

DU145 and PC3 prostate lines) were identified with extremely low levels of

WWOX expression. 89% of the tumour cell lines were found to express WWOX

isoform 4.

The second approach was to develop a cell line system with a functional WWOX

pathway and by means of manipulation of the WWOX expression levels perform

functional assays in the search for an in vitro phenotype. In addition, some

preliminary experiments investigating pathways of WWOX induction in cell line

systems were performed.
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Three tumour cell lines (the HCT116 colorectal cancer cell line and PE01 and

A2780 ovarian cancer cell line) were transfected with sense and antisense IWWOX

constructs and levels of WWOX expression were assessed by quantitative RT-

PCR. On the basis of expression levels transfected clones were chosen for

functional analysis. The reason for using a colorectal line in a mainly ovarian

cancer-orientated project was the availability of well-characterised wild-type,

p53-null, p21-null and Bax-null derivatives of the line. The most useful system

was the PE01 cell line system. When WWOX was replaced in this cell line (its

enzymatic domain is homozygously deleted in the PEO1 parent line) this resulted

in complete abolition of tumourigenicity in nude mice. This suggested that there

was a functional WWOX pathway in PEOl cells so in vitro phenotypic analyses

were conducted in this system. These in vitro analyses revealed that replacement

of WWOX in PEO 1 cells had no effect upon growth (either in plastic or soft agar),

clonogenicity (in the presence or absence of cytotoxic drugs) or on cell invasion.

However it did result in decreased tumour cell migration towards fibronectin.

There was also a suggestion that WWOX replacement resulted in decreased

attachment to matrigel and fibronectin.

9.2 WWOX mRNA isoform expression in epithelial ovarian

tumours, normal ovaries and cancer cell lines

In light of the paucity of mutations in WWOX, other mechanisms of WWOX

dysregulation that may play a role in cancer, such as reduced expression or the

production of aberrant isoforms, were investigated. At the time of this study, the
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available antibodies directed against WWOX protein only recognised full-length

WWOX, not any of the shorter alternate transcripts. However the sensitivity of the

real-time PCR assay appeared to be superior to Western blotting as evidenced by

PEOl WWOX transfectants that expressed low levels of WWOX isoform 1 mRNA

but apparently no protein (section 8.2). The expression of the alternate transcripts is

generally orders of magnitude lower than that of WWOX isoform 1. These two facts

together indicate that it is extremely unlikely that even if this antibody recognised the

alternate transcripts that it would detect them.

9.2.1 Full-length WWOX (isoform 1) mRNA expression

supports the role of the WWOX gene as a tumour suppressor

Full-length WWOX expression was found to be significantly lower in epithelial

ovarian cancers compared to normal ovarian tissue (p<0.0001), which would support

its role as a tumour suppressor gene or a negative regulator of cancer. In addition

2/71 tumours expressed no full-length WWOX (isoform 1). This frequency is

consistent with previous reports describing the absence of isoform 1 in 1/36

oesophageal cancers [165], in 2/27 non-small cell lung cancers [166] and in 1/20

breast cancers [169], The latter example, like our two cases, demonstrated no

evidence of exonic homozygous deletion. Of these two non-expressors of WWOX

isoform 1, one expressed a truncated transcript and the other tumour expressed no

transcript at all. In neither case was homozygous deletion of exons identified in

genomic DNA. The reasons for these findings are at present unclear. The tumour

with a truncated transcript may have a mutation at a normal splice acceptor or donor
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site resulting in altered mRNA processing. The tumour expressing no transcript may

have undergone epigenetic silencing of the WWOX gene secondary to promoter

methylation or histone deacetylation or may have acquired a large insertion into one

of its exons, preventing PCR amplification of the transcript. However, previous

studies [52] have demonstrated no evidence of somatic methylation as an inactivating

mechanism for WWOX.

There was no association between WWOX isoform 1 expression levels and

clinicopathological factors or patient survival. An ovarian cell line (CaOV3) and two

prostate cancer cell lines (PC3 and DU145) expressed very low levels of WWOX

isoform 1, again suggesting that this isoform may act as a tumour suppressor. These

cell lines would be suitable for investigation of WWOX downregulatory mechanisms.

9.2.2 The role of the WWOX A6-8 (isoform 4) transcript in

tumourigenesis is uncertain

The WWOX A6-8 (isoform 4) transcript was expressed at low levels in 63% of the

ovarian tumour samples and in 16/17 (94%) of ovarian cancer cell lines. In addition,

other alternate transcripts (possibly WWOX A7 and A7-8 on size criteria) were

identified in 17% of ovarian tumours. This compares to a frequency of 5.5% in

oesophageal squamous cell carcinoma [165] and 11.1% in non-small cell lung

carcinoma [166], although a further 14.8% of these lung tumours expressed other

alternate transcripts. The frequency of alternate transcript detection using a

competitive PCR similar to that used in earlier studies was 57% suggesting that the

discrepancy in expression frequency between the different tumour types was

probably real rather than being method related.
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The expression of WWOX isoform 4 mRNA was significantly associated with high

tumour grade (p=0.006) and advanced stage ovarian cancer (p=0.012). There was a

trend towards adverse survival in patients who expressed this isoform and

significantly worse survival in robust isoform 1 expressers who also expressed

isoform 4.

There are several possible explanations for the association of WWOX isoform 4 with

adverse clinical parameters. WWOX isoform 4 could represent a surrogate marker of

disruption at FRA16D or it could be a surrogate marker for a more general problem

with the splicing machinery of the cancer cell. Alternatively, isoform 4 may imply

an oncogenic gain of function characteristic. The fourth possibility is that isoform 4

(which has a disrupted oxidoreductase domain) may function as a dominant negative

isoform, sequestering binding partners of WWOX isoform 1 and inhibiting its

putative tumour suppressor role.

Low levels of WWOX isoform 4 expression were also identified in 69% of non-

malignant ovarian tissues. Alternate transcripts have been noted in normal tissues

previously but this has been somewhat understated [169,171], This suggests that the

isoform may be an infrequently produced splice form, even in normal cells. It has

been estimated that in normal cells spliceosome errors occur in 2-3% of transcripts

[195], Under these circumstances, its presence in malignant tissue would not be

surprising considering the size of the unprocessed WWOX transcript. Spliceosome

errors have been estimated at 10-20% in cancer cells [196], Indeed, alternative

splicing isoforms are commonly associated with cancer. Cancer-associated splice

variants have been reported for a number of genes including EGFR, CD44, and NER

[197]. Wang et al [198] performed a genome-wide computational screen identifying
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26258 alternative splicing isoforms, of which 845 were significantly associated with

human cancer. Some of these alternate transcripts have the potential to play a role in

tumourigenesis e.g. by inhibiting apoptosis (CD79 [199]) or by blocking tumour

suppressor activity (BIN 1 [200]). It may be that the general increase in alternate

transcript production in tumour tissue is because splicing fideltity is decreased by

mutations or altered gene expression affecting the splicing apparatus.

In this regard it is interesting that in malignant tissue it is mainly alternative splicing

rather than aberrant splicing of WWOX that is identified, although the latter was seen

in the study by Ishii et al [171]. Alternative splicing uses inherent intron/exon splice

sites of a single mRNA transcript to produce different mRNAs through differential

splicing whereas aberrant splicing does not occur at de facto splice sites. This may

suggest that in the case of WWOX, exon-skipping is not simply due to a loss of

splicing specificity in tumours. Also, the fact that there is one main alternate isoform

(isoform 4 or A6-8) that is frequently expressed rather than a large number of variant

isoforms (the other forms are expressed at low frequency) raises the possibility that

this phenomenon may not be due entirely to a random process of loss of splicing

specificity.

An important question is whether these alternative transcripts are translated intact or

not. At the time this project was conducted, no antibodies specific for isoform 4 had

been identified. Two groups have recently generated antibodies that detect the

WWOX alternate transcripts. One group [172] could only detect isoform 4

expression if the proteosome was blocked. They interpreted this as meaning that this

transcript is targeted for destruction and is not translated. While this may be true,

these data show that the level of alternate transcript expression in tumour tissue is at
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a level at which expression of WWOX isoform 1 would not be detected (for which an

antibody was available). Blocking the proteosome could result in the alternatively

spliced proteins rising to a level that was detectable by Western blotting. The second

group [171] did identify the presence of WWOX short form proteins in

haematopoietic malignancies, although no indication of the specificity of the

antibody was given.

Finally, when considering the question of whether the WWOX alternative transcripts

may have a functional role in tumourigenicity, it is important to note that WWOX

isoform 1 and WWOX isoform 4 have different intracellular locations. While WWOX

isoform 1 is located largely in the cytoplasm (whether it be in the Golgi or in the

mitochondrion), WWOX isoform 4 is located in the nucleus. This means that low

levels of WWOX isoform 4 do not preclude it having a dominant negative effect on

the function of WWOX isoform 1 as competition for binding partners may not be on

an equal basis.

The role of WWOX isoform 4 is clearly speculative at this time. More definitive

evidence regarding its role in ovarian cancer could be gained by transfecting it into

immortalised human ovarian surface epithelial lines or by specific knockout of this

isoform in cell lines expressing high levels of both WWOX isoform 1 and isoform 4,

followed by analysis for any resulting phenotypic alteration. On the basis of the

isoform expression in our cell line panel, MCF-7 (which was the highest expresser of

both isoforms) would be ideal for this purpose.

294



9.3 WWOX appears to be upregulated by hyaluronidase and

inducers of DNA damage

In a preliminary investigation of WWOX induction pathways, exposure of isogenic

p53 normal and p53-null HCT116 colorectal cancer cells to hyaluronidase resulted in

150% upregulation of WWOX expression in the p53 normal cells but no upregulation

of WWOX expression in the p53-null cells. This suggests that hyaluronidase-induced

WWOX expression is p53-dependent (although an unknown mutation arising in a

component of the WWOX induction pathway subsequent to the derivation of the p53-

null line cannot be excluded). This conclusion was supported by the finding that

WWOX was not induced in the PEOl cell line (p53 mutant). This evidence,

however, is a lot weaker as a vital component of the WWOX induction pathway may

have been knocked out in the PEO1 cell line.

It is interesting and reassuring to note that the same degree of upregulation of murine

Woxl (150%) was obtained by Chang et al [168] when they expressed L929 murine

fibroblasts to the same dose of hyaluronidase (200units/ml) for a comparable

duration of time (8-24 hours). This time course of Woxl induction fits with the time

course for hyaluronidase to induce TNFa sensitivity in murine L929 fibroblasts

(mouse Woxl was identified when Chang et al were exploring mechanisms whereby

hyaluronidase enhanced TNFa cytotoxicity using differential display and cDNA

library screening).

It may be that in the p53 wild-type non-malignant cell WWOX/Woxl is upregulated

as part of the plethora of intracellular events that occur following exposure to

hyaluronidase. Woxl transfection is known to enhance TNFa-mediated cytotoxicity

in L929 mouse fibroblasts [168], If however, WWOX is knocked out in a normal,
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pre-malignant or malignant cell then presumably a state of increased resistance to

TNFa-mediated cell death exists. It is important to establish that this induction

pathway may also exist in human cancer cells.

The suggestion that p53 may be involved in WWOX induction led to the investigation

of whether inducers of DNA damage (in the form of cytotoxic agents) induced

WWOX expression in the same HCT116 cell line system. It was found that

doxorubicin and oxaliplatin induced WWOX expression over the time course tested

(48 hours) but 5-fluorouracil did not.

Doxorubicin was the only drug that increased WWOX expression in the wild-type

HCT116 cells following 24 hours exposure and it maintained this effect at 48 hours.

Oxaliplatin caused a more marked induction of WWOX but this was not evident until

48 hours.

In the p53-null cells the WWOX induction respone to doxorubicin and oxaliplatin

exposure appeared blunted. In the doxorubicin-exposed cells after 24 hours there

was only a 50% increase in WWOX expression (compared to 200% in the p53 normal

cells). There was a 90% increase in WWOX expression after 48 hours which was

again less than in the p53 normal cells. Also, the profde of induction was different.

In the p53 wild-type cells, maximal WWOX induction occurred after 24 hours but in

the p53-null cells, it occurred after 48 hours.

Similarly, the induction of WWOX in oxaliplatin-exposed p53-null cells was less than

half of that in the p53 wild-type cells.

Although 5-fluorouracil did not appear to induce WWOX in this assay, other

investigators have found that in some systems it takes 72 hours to demonstrate

altered gene expression as a result of 5-fluorouracil exposure [194].
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These findings suggest that WWOX mRNA induction may be partly dependent on

p53 and is reduced or delayed in the absence of p53.

Since this work is preliminary, further confirmatory work is required to completely

secure this data. Future work should extend the time course of the WWOX induction

studies in response to cytotoxic agents and investigate, firstly, which component of

the induction is a stress-related p53 response and, secondly, which component is

secondary to induction of specific signal transduction pathways.

9.4 Discovery of in vivo and in vitro phenotypes for WWOX in

an ovarian cell line system

Until now, the only functional data regarding the phenotype of the WWOX gene have

been provided by Bednarek et al [52], They showed that ectopic WWOX expression

in breast cancer cell lines with low baseline levels of WWOX expression strongly

inhibited anchorage-independent growth in soft agar and dramatically inhibited

tumourigenicity in vivo.

The PEOl parent cell line is homozygously deleted for WWOX exons 4-8 and

expresses only small amounts of a WWOX A4-8 transcript. This cell line was stably

transfected with constructs expressing the WWOX coding region. WWOX expression

levels in the transfected clones were then determined using real-time PCR. A tight

linear correlation between WWOX mRNA and protein levels was then demonstrated

in this system.
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9.4.1 WWOX reconstitution in PE01 ovarian cancer cells

suppresses tumourigenicity in nude mice

PEOl parent cells and vector-only transfected control cells caused tumour growth

when injected subcutaneously into the flanks of nude mice. Ectopic expression of

WWOX in these cells caused complete abolition of tumourigenicity. This suggested

that there was a functional downstream WWOX pathway in PEOl cells. It also

suggested that WWOX may function as a tumour suppressor in ovarian cancer. This

is important of itself, but by replicating the findings of Bednarek et al [52] it adds

credence to the hypothesis that WWOX acts as a tumour suppressor in human cancer.

9.4.2 WWOX reconstitution in PEOl ovarian cancer cells

results in decreased migration towards fibronectin in vitro

As there appeared to be a functional WWOX pathway in PEOl cells, an in vitro

phenotype for the gene was sought in this system. The PEOl sense transfectants

showed no difference in growth (either on plastic or soft agar), clonogenicity (in the

presence or absence of cytotoxic drugs), cell aggregation or cell invasion compared

to the parent line or vector-only controls but they did show significantly decreased

tumour cell migration towards fibronectin. Preliminary work on the attachment

characteristics of these PEOl cells suggests that replacement of WWOX has an

inhibitory effect on their attachment to matrigel as well as to laminin and fibronectin.

These findings raise the possibility that WWOX may suppress the migration of

ovarian cells and loss of WWOX may increase the migratory capacity of

premalignant or malignant cells, facilitating local spread. Specifically, WWOX may
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inhibit migration towards fibronectin. This along with the preliminary findings

regarding the effect of WWOX reconstitution on the attachment of PEOl cells to

extracellular matrix components, suggests that this effect may be manifest through

cell-surface proteins, such as integrins.

As cancer cells become metastatic, they develop an altered affinity for the

extracellular matrix [201], This change is mediated by alterations in cell-surface

molecules, particularly integrins. Integrin types expressed on the surface of the

malignant cell may be altered [202-204] compared to its non-malignant counterpart

or there may be a change in affinity or avidity for a particular ligand. Ligand binding

of integrins activates intracellular signalling that affects cellular migration, invasion,

proliferation and survival. Migrating cells project lamellipodia that attach to

extracellular matrix proteins (such as laminin, fibronectin and collagen) via integrins

expressed on the cell surface. This allows the cell to pull itself forward. Therefore

integrins would seem to be a likely candidate for the effector of the altered migration

phenotype seen in WWOXtransfected PEOl cells.

Casey et al [205] found that OVCAR 5 ovarian carcinoma cells were able to form

spheroids similar to multicellular aggregates isolated from patient ascitic fluid. This

spheroid formation was increased by a (31 integrin-stimulating monoclonal antibody

or exogenous fibronectin but was inhibited by blocking monoclonal antibodies

against the a5 or [31-integrin subunits. These spheroids adhered to fibronectin,

laminin and collagen type IV. This adhesion was partially inhibited by blocking

antibodies against the a5, a6 and a2 integrin subunits respectively but a blocking

antibody against the [31 integrin subunit completely inhibited adhesion to all three

extracellular matrix components. These findings were interpreted as suggesting that
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interactions between oc5131 integrin and fibronectin facilitate ovarian carcinoma

spheroid formation and that multiple integrins are involved in adhesion to

extracellular matrix proteins at the site of secondary tumour growth (the peritoneal

mesothelium).

Integrins, however, are not the only molecule that could be effecting the phenotypic

change seen in the WWOX transfected PEOl cells. E-cadherin mediated cell-cell

adhesion has been shown to inhibit anoikis in cancer cells [206]. This inhibition of

anoikis is at least partly due to the maintenance of anti-apoptotic phosphatidylinositol

3-kinase signalling following E-cadherin binding[207]. It has been speculated that

E-cadherin (which is not expressed in normal ovarian surface epithelial cells,

becomes expressed in early ovarian cancer and is then lost again following

progression to locoregionally disseminated disease) may facilitate the survival of

tumour cells when they leave the ovary and spread throughout the peritoneum

[208,209],

It may be that loss of WWOX expression in a malignant or pre-malignant cell alters

integrin (or other cell surface molecule) expression profde, affinity or avidity in such

a way that cell migration and attachment to extracellular matrix proteins at the site of

secondary growth is promoted. This could have the effect of preventing the normal

process of anoikis as the integrin (or other cell surface molecule) ligand interaction

could promote cell survival.

In order to further elucidate the mechanism by which WWOX expression affects

migration of ovarian cancer cells towards fibronectin, it will be necessary to

characterise and compare the integrin expression on the surface of ovarian cancer

cells expressing WWOX to those not expressing WWOX. The PEOl cell line system
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developed in this project would be ideal for this purpose. Characterisation of

integrin expression would involve profiling the integrins expressed and assessing the

affinity and avidity of each for their respective ligand. In order to further clarify the

involvement of the migration/attachment phenotype in ovarian tumourigenesis, it

would be useful to compare the gene expression of WWOX expressing and WWOX

non-expressing PEOl cells stimulated by fibronectin by microarray and proteomic

analysis.

9.5 Future directions

The role of the WWOX alternate transcripts in tumourigenesis remains controversial

and unproven. In order to directly test whether they were of functional significance,

MCF-7 breast cancer cells could be transfected with constructs expressing RNA

interference molecules targeting WWOX isoform 4 (this cell line expresses high

levels of both WWOX isoform 1 and WWOX isoform 4). Functional analyses could

then be performed in an attempt to identify an isoform-specific phenotype. Another

strategy would be to transfect WWOX isoform 4 into human ovarian surface

epithelial cells and investigate for a transformed phenotype.

The most important aspect of this project that requires further investigation is the

effect that WWOX appears to have on the interaction of PEO1 ovarian cancer cells

with extracellular matrix proteins. It would be desirable to fully characterise the

ligands that are affected by WWOX expression and then identify which cell surface

molecule is involved in these interactions. Cell attachment assays, however, are

difficult to perform and reproduce but procedures to identify the cell surface integrin
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expression by flow cytometry are now routine and this may be the simplest way to

identify whether WWOX has an effect on this type of interaction. Flow cytometry

can also be used to assess the affinity and avidity of integrins on the cell surface for

their respective ligands.

As interactions between cell surface molecules and the extracellular matrix can affect

cell survival and a role in apoptosis has been postulated for Woxl in the mouse, it

would be important to assess the effect of WWOX on cell survival. Again, the PEOl

cell line system would be ideal for this purpose.

Since WWOX expression appears to affect cellular migration towards fibronectin, a

microarray-based comparison of the gene expression of WWOX expressing and

WWOX non-expressmg PFOl cells stimulated by fibronectin may shed light on

intracellular signalling pathways that are affected by this interaction.

Ultimately, the most definitive evidence regarding whether WWOX functions as a

tumour suppressor will come from the construction of the WWOX knockout mouse,

which is currently being generated.

9.6 Summary of project and extent to which aims were

achieved

Three aims were set out at the beginning of the project:

1) To elucidate whether the WWOX gene functions as a tumour suppressor in

epithelial ovarian cancer.

2) To clarify the role of the WWOX gene (and its alternate transcripts) in ovarian

carcinogenesis.
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3) To ascribe a phenotype associated with expression of the WWOX gene and

WWOX protein function.

These will be considered in turn and the extent to which the results achieve these

aims will be discussed. This final summary of the project is summarised in the form

of a schematic in figure 9.1.

a) Aim 1: To elucidate whether the WWOX gene functions as a tumour

suppressor in epithelial ovarian cancer

The hypothesis was that the WWOX gene acts as a tumour suppressor in ovarian

cancer.

WWOX isoform 1 expression was found to be absent in 2 out of 71 ovarian tumours

and was down-regulated in ovarian tumours compared to normal ovaries (p<0.001).

This provides supportive evidence that WWOX acts as a tumour suppressor gene in

epithelial ovarian cancer. There are 2 caveats however: the choice of controls in this

setting is difficult and normal ovarian tissue is not an ideal comparator (although

nothing really is) and quantitation of expression at the protein level would have been

superior if the antibody sensitivity had been satisfactory.

Up-regulation of WWOX in the PEOl ovarian cancer cell line resulted in the

abolition of tumourigenicity in nude mice. This provides strong evidence that

WWOX acts as a suppressor of human ovarian tumourigenesis. The strength of this

statement would be increased if this result could be replicated in a second ovarian

cancer cell line.
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b) To clarify the role of the WWOX gene (and its alternate transcripts) in

ovarian carcinogenesis

The hypothesis being tested was that WWOX alternate transcripts act in a dominant

negative fashion to facilitate ovarian tumourigenesis.

It was shown that WWOX isoform 4 was expressed at low levels in 63% of human

ovarian tumour samples, at low levels in 69% of normal ovaries and at variable

levels in 94% of ovarian cancer cell lines. This data does not help in the clarification

of the role of WWOX alternate transcripts.

Expression of WWOX isoform 4 was significantly associated with high ovarian

tumour grade (p=0.006) and advanced tumour stage (p=0.012). There was a trend

towards adverse survival (p=0.057) in patients who expressed this isoform and

significantly worse survival (p=0.048) in robust isoform 1 expressers who also

expressed isoform 4. These findings help little in the clarification of a role (if one

exists) for the WWOX alternate transcripts in ovarian tumourigenesis. They merely

identify an association between isoform 4 expression and poor risk disease which

could be due to a number of reasons (see earlier discussion).

c) To ascribe a phenotype associated with expression of the WWOX gene and

WWOX protein function

The hypothesis being tested was that exogenous expression of the WWOX gene in an

ovarian cell line defective for WWOX would result in a tumour-suppressing

phenotypic change that could then be ascribed to the WWOX gene.

The first step in testing this hypothesis and then identifying a phenotype was to find a

suitable cell line that was defective for WWOX but in which the rest of the WWOX
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pathway remained intact. This was achieved when it was shown that expression of

exogenous WWOX in the PEO1 cell line resulted in the abolition of tumourigenicity

in nude mice. It was then demonstrated that this WWOX reconstitution in PEOl cells

resulted in significantly decreased tumour cell migration towards fibronectin.

Preliminary work on the attachment characteristics of these PEOl cells also

suggested that exogenous WWOX expression inhibited cellular attachment to

matrigel, fibronectin and laminin. These findings therefore identified a WWOX-

specific phenotype (decreased tumour cell migration) and suggested that this

phenotype extends to a role in inhibiting cancer cell binding to ECM components.

The main caveats to this conclusion are that the work was only performed in one cell

line (so generalisation requires caution) and that stable transfection was used in this

system (hence clonal heterogeneity is a consideration). Despite this point, this data

goes some way to achieving this aim (although further characterisation of this

exciting phenotype would have been desirable if time allowed).

9.7 Conclusion

WWOX reconstitution in the PEO 1 ovarian cancer cell line abolishes tumourigenicity

in nude mice and decreases migration towards fibronectin in vitro. The former

finding provides strong supportive evidence that WWOX acts as a tumour suppressor

of human ovarian tumourigenesis and the latter finding provides a handle on an in

vitro phenotype which until now has proved elusive.
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Figure 9.1 Schematic diagram summarising findings and how they

address initial aims of the project

Schematic diagram summarising the main findings of the study and how and whether these address
the initial aims of the project. Results pertaining to aims 1, 2 and 3 are shown in green, yellow and
blue respectively.
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