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Chapter 1

Introduction

Learning and generating musical structures computationally is a challenging task
that has taken the interest of several research projects since the start of modern

computation. This research aims at learning large-scale structures of musical prop¬
erties with probabilistic models, and thus generating believable musical material.

Many different approaches have been used for the generation of musical struc¬
tures, some of them trying to find and use parallels between music and natural

language (Cope, 1991), representing musical structures with stochastic grammars

(Bod, 2002), others building expert systems whose rules describe musical pro¬
cesses as closely as possible (Ebcioglu, 1993; Spangler, 1999), and some even us¬

ing genetic algorithms (Burton & Vladimirova, 1999). Probabilistic models have in
the past been used successfully in applications such as speech recognition (Rabiner,
1989), natural language processing (Jelinek, 1985) or the modelling of biological
sequences (Bengio, 1999), but they have also been used in musical applications,
addressing counterpoint or harmonisation problems (Farbood & Schoner, 2001;
Allan & Williams, n.d.). Following this same idea, our research uses stochastic

processes to learn large-scale musical structures from existing musical data sets.
Unlike expert systems, rule bases or generative theories, our approach is based on

the idea that musical properties should be extracted from data sets, while as lit¬
tle musical expert knowledge as possible is encoded in the system's structure and
parameters. The use of explicit knowledge, i.e. knowledge that is coded into the

system, should be minimised. Using the existing concept of Hierarchical Hidden
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Markov Models (HHMMs) and introducing the hierarchical Input-Output Hidden
Markov Models (hlOHMMs), we present networks of statistical models that can
learn correlated musical properties and generate new material accordingly.

Standard Hidden Markov Models (HMMs) are efficient at modelling local depen¬
dencies in data sequences (Rabiner, 1989; Bengio, 1999), but cannot represent
those of a large-scale nature in an efficient way. Local dependencies are important
in musical data for the encoding of style signatures (Cope, 1991), but a notion of

large-scale dependencies is essential for the creation of believable musical struc¬
tures; HHMMs can represent both the local and the large-scale dependencies in a

data set. We introduce the concept of hlOHMMs, which provide the hierarchical
structure of an HHMM coupled with the additional constraint of an Input-Output
HMM (IOHMM); hlOHMMs are a valuable tool that helps modelling hierarchical
data when a minimum of control over the output generation is desired.

Building separate models for different levels of description, we are using a network
of probabilistic models that is made up from HHMMs and hlOHMMs to learn the

dependencies of the elements inside the structures as well as the dependencies be¬
tween the different layers of structures that a musical work consists of. A major
focus of this research is the desire to have only a minimum of expert knowledge
encoded in the system; we want to show that, using the right tools and structures of

understanding, it is possible to learn sufficient information from musical data itself
to generate new material.

The existing concepts of HHMMs and IOHMMs are combined and extended to

the novel concept of hlOHMMs. Both the hierarchical and the 10 models are

then used in composite networks, whose building blocks can be reused to make

up different architectures of networks. This new approach allows the flexible and

dynamic modelling of hierarchical musical structures, representing both the depen¬
dencies between structures (i.e. the connection between two models in a network)

and inside each structure (i.e. the structural probabilities of each model).

The project aims to devise a system that is able to create new pieces of music,
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which should ideally have a clearly defined global structure, without providing it
with musical context or patterns during the procedure of generating new pieces
of music. The knowledge the system has access to, which is essential to write
new musical pieces, is implicit rather than explicit: the knowledge, i.e. the struc¬
tural probabilities and dependencies, is made available to the system via a training

corpus. The amount of explicit knowledge, for instance musical rules hard-coded
into the system, are kept to a necessary minimum. The system is evaluated using

cross-entropy measures to determine the accuracy with which the training data is

represented, as well as by conducting a listening experiment on some of the results

generated by the networks.

Outline of Thesis

The thesis is organised as follows:

• Chapter 2 provides background information on existing research in the field
of computational music harmonisation and generation, as well as some the¬
oretical background on musical structures. Finally, the chapter concludes
with an outline of the scope and aims of this research.

• Chapter 3 provides a short overview of the field of Machine Learning, ex¬

plaining concepts such as entropy measures and smoothing. The definitions
of Markov chains and Hidden Markov models are introduced together with
their methods of inference.

• Chapter 4 begins with the definition ofHierarchical Hidden Markov models
and techniques for linear time inference. It continues by introducing the new

concept of Input-Output HHMMs, an extension to the hierarchical models
that is derived from Input-Output HMMs.

• Chapter 5 is a short chapter that shows the importance of the music rep¬

resentation and model structures for this research, and gives details of the

representation.

• Chapter 6 outlines the design of the software used for the HHMM mod¬
elling, and gives details of the software implementation and use.
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• Chapter 7 describes how dynamic networks of models were used for the

generation of new pieces of music using a "random walk" approach. Several
different types of networks are presented, exploring the different possibilities
of layering the musical structures and organising the networks.

• Chapter 8 tries to evaluate musical examples that were generated with sev¬

eral different types of networks. The evaluation process is both subjective
and objective, using the results of a listening experiment as well as cross

entropy measures and musical theoretical rules.

• Chapter 9 offers a discussion of the methodology of the approach, the con¬

figuration and design of networks and models as well as the learning and
generation of the new musical structures.

• Chapter 10 concludes the thesis by summarising the research's contribu¬
tions, evaluating whether the project scope has been fulfilled and the major

goals of the research have been met.



Chapter 2

Background

Applications in AI and music can range from composition and harmonisation to

sound processing and signal analysis, and can thus be divided into two major

groups: music analysis and music synthesis (Kramer, Stein, & Wall, 2006). Kramer
et al. present a taxonomy of problem classes, distinguishing applications by prob¬
lem types, modelling levels or levels of abstraction, and arrangements directions,
i.e. horizontal and vertical tasks. The task of composing a melody is thus described
as being a synthesis task that is horizontal in direction and symbolic in its level of
abstraction. Harmonising a melody is seen to be a task that is both horizontal, by

following the progression of the melody, and vertical, by building the harmonies
between different parts.

The scope and methodology of the present work were influenced by a diverse range

of related research projects. This chapter provides an overview of these projects,
trying to highlight both their strengths and shortcomings, which we try to address
in this research. Several research projects, using different techniques such as neural
networks, genetic algorithms or rule-based systems, concentrate on the harmonisa¬
tion of simple melodies, notably Bach chorales. The insight gained by analysing
the results and methodologies of these harmonisation systems is extremely valuable
when devising a system for the generation of new pieces of music. The problem of
generating new music is naturally more complex than the harmonisation problem:
while a system that harmonises a given melody can benefit from the structures al¬

ready incorporated into this melody, e.g. phrasing structure or cadential patterns, a

5
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generative system has to create these structures from scratch. However, the tech¬

niques used in systems that successfully solve the harmonisation problem can po¬

tentially be reused and altered to fit the more difficult problem. Some background
is also given on research that addresses the problem of generating music compu¬

tationally and on theories of musical structures that influenced this work. Finally,
we outline the scope and aims of this research.

2.1 Hierarchical Structures in Music

The hierarchical properties of musical structures can be used to represent the musi¬
cal data on several levels of description, and thus play a vital role in any system that
tries to address the problem of generating music computationally. Human cogni¬
tion tends to organise complex structures, such as natural language, music or visual

input, into hierarchies (Bod, 2002). These hierarchies can be represented with tree¬

like structures. The complexity of the represented knowledge domain decreases
with every level of the tree structure, i.e. the leaves of the tree are the smallest and

simplest units of representation that can describe the domain. The lowest levels of
a hierarchy represent the small-scale structures that make up a complex organisa¬
tion. According to their relative places in a hierarchy, small-scale structures can be
combined to build the more complex medium-scale and large-scale structures. The
root of the hierarchy is equivalent to the entire knowledge domain that the hierar¬

chy reflects.

In their "Generative Theory of Tonal Music", Lerdahl and Jackendoff (1983) iden¬

tify the main large-scale structures that build musical surfaces and define them

using 'well-formedness rules' and 'preference rules': grouping structure divides a

piece of music into a hierarchy of motives, phrases and sections; metrical structure

expresses several hierarchical levels of strong and weak beats; time span reduction

assigns levels of 'structural importance' to events given their relative positioning
in groups and phrases; finally, prolongational reduction defines a hierarchy of har¬
monic and melodic tension and progression. They define a hierarchy as a structure,

composed of discrete elements. An element of the hierarchy that contains other
elements is superordinate to those elements, which in return are subordinate to the
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element that contains them. Lerdahl and Jackendoff also define hierarchical levels

in music:

"Elements ... that are about equally subordinate within the entire
hierarchy can be thought of as being at a particular hierarchical level.
A particular level can be spoken of as small-scale or large-scale, de¬
pending on the size of its constituent elements ..." (Lerdahl & Jack¬
endoff, 1983)

An event on a small-scale level is a motive or a specific cadential pattern, a large-
scale event on the other hand can be a phrase or an overall harmonic structure that

progresses towards a cadence.

The hierarchical nature of the grouping structure helps a listener identify and under¬
stand the overall structure of a piece of music by dividing it into smaller, character¬
istic entities such as motives, themes or phrases. The metrical structure represents

the relationships between alternating weak and strong beats; events that occur on

strong beats are perceived to be structurally more important than events that occur
on weak beats. The function of an event is thus influenced by its relative placing
in the metrical structure. Temperley (2001), who builds his work onto Lerdahl and
Jackendoff's theories, underlines this with some of his metrical preference rules.
The harmony rule, for instance, states that changes in harmony should be aligned
with strong beats, the stress rule states a preference for stressed events on strong

beats. In conjunction with metrical and grouping structure, time-span reduction

assigns different levels of importance to musical events depending on their relative

place in a group and their metrical position's strength.

2.2 Rule-Based Systems

Rule-based systems, also called knowledge-based or expert systems, use rules and
facts to represent a specific part of the real world. An inference engine matches
facts against rules using an inference mechanism, thus solving given problems.
The major issues in developing rule-based systems are the representation and the

acquisition of the expert knowledge that defines a problem space. Knowledge ac¬

quisition focusses on transferring the expert knowledge from a source to the sys¬

tem. If, for instance, the source is a human expert, the knowledge is directly, or
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explicitly, coded into the expert system in the form of rules. However, knowledge

acquisition can also use induction to extract information from a data set and im¬

plicitly create sets of rules. Knowledge representation deals with representing the

expert knowledge inside the system. A common representation technique is the use

of production ("if-then") rules: if a certain condition is true, then execute a given
action.{Jackson, 1990)

2.2.1 CHORAL

Ebcioglu (1993) developed the expert system CHORAL for the harmonisation of
chorales in the style of Bach. CHORAL is a knowledge-rich system that uses a

rule base, in conjunction with heuristics, to generate harmonisations. The princi¬

ple of multiple viewpoints is introduced to simplify the complex musical knowl¬

edge and divide it into distinct groups. Each viewpoint is then represented by its
own knowledge base. The main viewpoints for the harmonisation process are the
chord skeleton and the individual voices. The chord skeleton viewpoint, repre¬

sented as a sequence of rhythmless chords with phrasing structure, generates one

chord per step. The voice leading viewpoint, which generates the actual notes,
contains three lower-level viewpoints to represent ornamentation, harmonic con¬

straints and melodic lines.

The generation process for each viewpoint has three steps: first, production rules

generate possible solutions; then a set of constraints verifies the validity of those so¬

lutions; finally, a heuristic search method seeks the solution with the most desirable

properties. The processes that generate the results from the different viewpoints are

run simultaneously, the chord skeleton viewpoint being the clock process, which
all other processes must follow. The solution is generated step-by-step according
to the clock process; if no solution can be found for one step in the process, back¬

tracking is employed to return to an earlier stage and change the solution.

Ebcioglu states that the knowledge-base of CHORAL, whose rules were explic¬

itly coded into the system, is very large and complex and that the heuristics are

the most important step in creating aesthetically pleasing music. Every situation
that the system might encounter while harmonising a given melody needs to be
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defined and hard-coded into the knowledge base. Also, while the production rules
and the constraints are responsible for the correctness of the results, the heuristics
define the style by giving preference to desirable solutions. The amount of domain
and style-specific knowledge, that has to be encoded into CHORAL explicitly, is
vast. However, the subdivision of the task into separate, hierarchical viewpoints
greatly reduces the complexity of the problem. Ebcioglu evaluates the competence

of his system as approaching "that of a talented student who has studied the Bach
chorales".

2.2.2 Minuets in Classical Style

Lothe (1999) addresses the problem of composing music from scratch using a

rule-based system. Due to their strict and regular form, he focusses on minuets
in the early classical style. Lothe distinguishes two levels of composition: a mi-
crostructure that represents the horizontal (melodic) and vertical (harmonic) re¬

lationships between notes, and a macrostructure, i.e. the horizontal relationships
between larger parts of the music. He also highlights the importance of the relative
place of an event in a score:

"Decisions in the microstructure of a part depend on the role the
part plays in the macrostructure of the piece. Therefore, musical parts
cannot just be concatenated together, they have to be purpose-built to
fit into their role." (Lothe, 1999)

The compositional process is subdivided into a number of subtasks, such as plan¬

ning the large-scale harmonic structure or constructing the melody or bass lines.
The system's rule-base defines all the valid events and progressions of a minuet
and new works are generated note by note based on those rules.

Both Lothe's and Ebcioglu's approaches use knowledge-bases that define every

aspect of the systems' behaviour. In order to simplify the harmonisation and com¬

position procedures, the main problems are split into smaller, simpler subtasks.

Dividing a large complex problem into a number of more manageable problems

implicitly decreases the complexity of the system. However, the main drawback of
the knowledge-intensive approach, i.e. the large amount of explicit knowledge that



Chapter 2. Background 10

is hard-coded in the system, remains and the need for more flexible solutions that
can adapt more easily, for instance to different musical styles, becomes evident.

2.3 Genetic Techniques

Genetic Algorithms use techniques based on a process of evolution to search a large
domain for optimal results to a given problem. The starting point for the search is
the first generation of a population of often randomly initialised candidate results.
These candidates are also called chromosomes, which evolve during a mutation
and cross-over cycle. Their overall quality, or fitness, is then assessed and only
the fittest candidates of a population continue to live to the next generation. The
fitness evaluation is generally based on domain-specific constraints, specifying the
rules or properties an optimal solution should respect. Chromosomes that do not

respect those constraints are filtered out in favour of candidates that are closer to the

optimal result. The evolution cycle is repeated until the population's overall fitness
ceases to improve and an optimum has been found. Genetic algorithm systems

learn to improve a sample of results for a given domain based on expert knowledge
or subjective evaluation. A detailed introduction to genetic algorithms and their

application to music can be found in (Russell and Norvig, 1995, Chapter 20) and

(Burton & Vladimirova, 1999) respectively. The following paragraphs describe
two different approaches to the genetic technique applied to music harmonisation
and composition.

2.3.1 Harmonising Melodies with Genetic Algorithms

Phon-Amnuaisuk et al. (1999) and Wiggins et al. (1999) describe a system for
the four-part homophonic harmonisation of simple melodies, based on genetic al¬

gorithms. The main aim of their research is the simulation and understanding of
the human behaviour involved in the harmonisation process. The quality of the

produced musical results is important, however the research also focusses on how
and why those results were achieved.

The system presented is a knowledge-rich, non-interactive genetic algorithm. A
non-interactive algorithm does not allow human evaluation of the fitness of any in-
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chromosome length
✓

Soprano 10,0.3] 10.03] [4.0.2] [0.0.3] [1.03] 14.0.2]
Alto |2.0.2] 12,0,2] ]2,0,2J [2,0.2] |4.0,2| |1.0.2|
Tenor [4.0.1] ]4.0.1] [2,0,1] [0,0.2] [7,0,1] [1.0,1]
Bass [2,0.1] [0,0,1] [0,0.1] [4.0.1] [4.0.1] 17.0,0|

Duration 1 z. t 1 2 Ti
z.

Figure 2.1: Schematic diagram of a four-voice harmony chromosome.(Phon-
Amnuaisuk et al., 1999)

termediate results. Instead, it uses a fitness evaluation function which relies heavily
on expert knowledge from the musical domain. This expert knowledge is mainly
encoded in the reproduction operators and the fitness function, however the repre¬

sentation of the chromosomes is also rich in domain specific knowledge. Figure 2.1
shows an example of a chromosome used in this system: it describes the four parts
of a harmonised melody, with each column representing a chord. The soprano line
is fixed, the three remaining parts are initialised at random and evolve with each

generation through crossover, mutation and selection operations. Each pitch is de¬
scribed with three integers which denote its relative pitch, accidental and octave,

e.g. [5,0,2] = A4.

The reproduction operators use mutation and crossover techniques adapted to mu¬

sical material, for instance allowing voices to swap, changing pitch by semitones
or changing chords based on the melody. After the reproduction operators have
evolved the chromosome population, the fitness function assesses each chromo¬
some's fitness according to a large number of criteria. Avoiding parallel fifths/octaves
between voices, hidden unisons or leaps of augmented/diminshed intervals, as well
as the preference of stepwise motion or the doubling of the root are some of the
evaluation criteria in the fitness function. Each mistake is penalised, thus decreas¬

ing a chromosome's overall fitness and its likelihood to survive into the next gen¬

eration.

The overall results generated by the system were found to be of acceptable quality,
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lacking mainly in coherent large-scale progression. The assessment of the large-
scale structure of the harmonisations however is not apart of the fitness function's

criteria, thus the system cannot be expected to generate large-scale progressions.
It was also found that even after 300 generations, the population could not satisfy
all the constraints set by the fitness function. In music, the context of an event is
crucial to the event's function. Therefore for instance, changing (mutating) one

chord in a progression according to the fitness function changes the entire progres¬

sion and does not necessarily increase a chromosome's fitness. The algorithm often

gets stuck in a local optimum without being able to find the best possible solution
for a problem.

Although the results generated by this genetic algorithm system are to some de¬

gree musically acceptable, its shortcomings and limitations are quite clear. The
lack of evaluation of large-scale structure and the system's weakness in handling
musical context severely limit the quality of the results that can be produced with
this system and are the main discrepancies when comparing the system to human
behaviour. The relatively large amount of expert knowledge encoded into the sys¬

tem helps to evolve the local structures and reduces mistakes. The overall quality
of the music however suffers because of the lack of large-scale progression and the
often poor use of context, thus underlining the importance of large-scale structure
and dependencies as well as the relative timing of events.

2.3.2 GeNotator

Thywissen (1999) developed an interactive compositional tool, which uses a ge¬

netic algorithm to evolve musical structures, such as melody, harmony or rhythm,
within a grammar-based model. The goal is to evolve musical structures through
interactive evaluation by the system's users rather than a fitness function. Instead
of initialising the population randomly, this system tries to narrow down the search

space by giving the chromosomes some degree of musical structure, pre-defined

through a generative grammar. Each chromosome's fitness is evaluated separately,
therefore the more pre-defined the candidate solutions are, the smaller the number
of generations that could lead to satisfactory results. This reduces the time spent

evaluating intermediary results.
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GeNotator's generative grammar is defined by the system's users, and can include
basic grammatical constructs, such as iteration or concurrency, as well as music
specific constructs and transformational rules, e.g. scales, rhythms or phrases and

transposition or modulation. The grammar is compiled into a parse tree1, which
is used to initialise the chromosome population. The chromosomes are created by
scanning through the parse tree and adding a gene for every possible choice route

in the tree. The algorithm uses the standard mutation and cross-over techniques to

alter the population, and the users can influence the evolution by controlling the

probabilities of the reproduction operators.

The GeNotator's ability to generate interesting music is heavily dependent on the

quality of the generative grammar and the subjective evaluation of intermediary
results, thus the quality of the results can be expected to vary considerably with
different users. GeNotator is a compositional tool that allows users to create their
own search space for the genetic algorithm interactively, defining musical styles
and rules. Hierarchical structures in the generative music grammar are highlighted

through the parse tree. GeNotator relies more on using specified knowledge in the

generative grammar than on extracting optimal results with the genetic algorithm
based on general rules of music theory. However, this is a valid approach for a

compositional tool that is designed to reflect each user's personal choice of music.

2.4 Neural Networks

Artificial neural networks are a mathematical representation of the interconnection
of neurons in a (human) brain, i.e. a representation of the network of cells that
are responsible for processing information. A neural network is thus a network
of artificial neurons, which are represented as nodes that are connected by links,
each associated with a weight2. Every node has both an input and an output link

1A parse tree represents the syntactic structure of a string of words. Its internal nodes represent
phrases, its leaf nodes represent single words. The links between the nodes represent the grammar
rules.(Russell and Norvig, 1995, Chapter 22; Jurafsky and Martin, 2000, Chapter 9)

2The weight of a link is a numeric value that is associated with that link. Weights are often
initialised arbitrarily and later updated by the neural net according to the training data. (Russell and
Norvig, 1995, Chapter 19)
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to allow it to communicate with the remaining nodes in the network. A node also
has an activation threshold: based on the input from neighbour nodes, a node can

be activated if the sum of the input weights surpass its activation threshold. The

learning process in a neural net involves updating the weights of the network in
order to reflect the training data. (Russell and Norvig, 1995, Chapter 19) Initial

knowledge can be encoded into a neural net through the network's structure, for
instance by choosing a specific number of nodes or restricting the links between
nodes, as well as the initial weight settings for the links and the representation
of the domain specific knowledge inside each node. However, a large amount

of information is extracted by the neural net and incorporated into the system by

adjusting the connections and the weights attached to them.

2.4.1 HARMONET

Hild et al. (1991) developed HARMONET, a system of neural networks, designed
to learn how to harmonise Bach chorale melodies by extracting short-term struc¬

tural probabilities from existing harmonisations, i.e. learn by example. The har-
monisation problem was divided into three subtasks: first, the harmonic structure

is predicted; then, given the harmonies and the melody, the chords are built; finally,
the ornamentation is added. Creating the harmonic skeleton, i.e. finding an appro¬

priate harmony for every beat of a melody, is treated as the most important step
in the harmonisation process. Therefore, HARMONET uses context windows to

predict harmonies (see Figure 2.2): the new harmony Ht at time t is based both on

the harmonic context of the three previous harmonies //,_3, //,_2 and #/-i and on

the three-note melodic context s,_i, s, and s(+i around the current note s,. The har¬

mony H, contains information about harmonic function, inversion and characteris¬
tic dissonances, i.e. non-harmony notes. Additionally, the process has information
about the current note's relative place in a phrase and its positioning on a weak or
a strong beat.

The second neural net addresses the problem of filling in the chords given the

melody and the newly created harmonic structure. Information about chord inver¬
sion is included in the harmonies, thus the bass line is implied by the harmonic
structure and only the alto and tenor parts need to be inserted. A neural net gen-
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Figure 2.2: HARMONET uses both the harmonic context (H,^, //,_2 and H,~\)
andthe melodic context (st-\, s, and st+i) to predict the harmonyH,. phr, andstr,
contain timing and metric information.(Hild et at., 1991)

erates the chords and a symbolic algorithm3 selects the best solution. The final
network is used for the ornamentation step, using several attributes, such as the
intervals between the chords Ct and Cl+1 and voice leading rules, as input.

HARMONET was trained on a small number of chorales only, however the net¬

works were not trained on entire chorales. Short, overlapping time windows of
four or five beats were used instead. The twenty chorales used as training data
thus amount to approximately 1000 examples to learn from. As a result, the sys¬

tem does not learn the overall large-scale structure of the Bach chorales, but rather
the short-term dependencies that define the melodic and harmonic structures inside
the time window. However, HARMONET counterbalances the lack of large-term

dependencies by encoding knowledge that will help overcome the problems that
result from training on small-scale structures only. The system keeps track of the
relative place of an event in the score, thus helping to distinguish the different func¬
tions of events based on their timing. Although the time window is only four or
five beats, the system can distinguish between the beginning or the end of a piece.

2.5 Probabilistic Models

Sequences of events can be represented by probabilities that define the frequencies
and contexts of the events as well as the transitions between them. Context models,

3Symbolic algorithms are algorithms that are taken from symbolic AI, e.g. expert systems or
Bayesian networks, as opposed to connectionist AI, e.g. neural networks. (Gurney, 1997)
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a simple type of probabilistic models, store the frequency of occurrence of each
event given certain contexts in a database. These probabilities are then used to

predict the next event in a sequence given a context of a fixed number of previous
events. Markov models (also Hidden Markov models, see sections 3.4 and 3.5)

represent sequential data through states and the probability of transition between
those states. The context information is limited to the order of the Markov model,

i.e. a model of order 1 uses a context of size 1.

2.5.1 Context Models and Multiple Viewpoints

Based on the conjecture that systems with high predictive power also have high

generative power, Conklin and Witten (1995) introduce a multiple viewpoint sys¬
tem of context models for the prediction and generation of music. A context model
has a database that contains all the sequences of a possible event space and a fre¬

quency count attached to each one of those sequences. The model also provides an

inference method to calculate the probability p(e\c) of an event e given a context
c. This particular system is trained on a sample set of Bach chorales.

Context models that work with only one musical feature are in themselves not

powerful enough to represent all the musical surfaces that make up a chorale, e.g.

pitch, duration or phrasing. Conklin and Witten therefore define several view¬

points, which are all represented by their own underlying context model. Some of
the basic viewpoints are 'pitch', 'start time', 'key signature' and 'duration'. These

viewpoints can be linked together, or derived into more specialised viewpoints such
as 'position in bar' (derived from 'start time') or 'sequential interval' (derived from
'pitch'). The entire group of viewpoints used in a system is referred to as the sys¬

tem's event space. The system also distinguishes between long-term effects and
short-term effects by representing them with different context models, or combina¬
tions of different models.

Figure 2.3 shows the application of the multiple viewpoint approach to a simple
chorale melody. Each viewpoint separately encodes one level of musical repre¬
sentation for every event in the melody. The viewpoint information for every se¬

quence, i.e. each event and its context, is then stored in a database together with the
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Figure 2.3: Multiple viewpoint information for the events in a simple melody. (Conklin
& Witten, 1995)

sequence's probability4. In order to find the best generative system, the predictive
power is tested using a number of combinations of different viewpoints and mea¬

sured with an entropy profile. The entropy value (see section 3.2) for each event

reflects the predictability of the event for a given viewpoint and context. The event

space for the Bach chorales is created by linking the pitch, key signature, time
signature, fermata, start time and duration viewpoints. The system generates new

examples of music by concatenating a given context c and a newly created event

e, thus producing a new context c + e. Figure 2.4 shows an example of a melody
created by the multiple viewpoint system. The system was given the first seven
events of the melody and the rhythmical structure for the entire piece as input.

The multiple viewpoint approach is very successful in separating the different lev¬
els of musical description and thus simplifying the process of generating a musical
surface. Some of the works mentioned earlier, e.g. (Ebcioglu, 1993) and (Hild
et al., 1991), employ a similar way of dividing their main task into more man¬

ageable subtasks. However, Conklin and Witten's system allows a flexible and

dynamic combination of viewpoints that best describe a musical structure. The

system needs to be provided with an underlying structure and context in order to

4A detailed description of the system's inference method is described in (Conklin & Witten,
1995).



Figure 2.4: Short melody generated by the multiple viewpoint system, using the first
seven events and the rhythmical structure of the entire piece as input.(Conklin &

Witten, 1995)

generate new examples of music; it is limited to adding new events to an already
existing sequence of events. The different viewpoints are encoded with a maxi¬
mum of musical knowledge in order to obtain a detailed description of the musical
surfaces. The context models do not use this knowledge directly, they simply store

sequences and their probabilities. It is rather the combination of the information
stored in the viewpoints, represented by the models, that makes the system power¬

ful enough for generative purposes.

2.5.2 Harmonising Bach Chorales with HMMs

Allan (2002; n.d.) developed a system of HMM (see section 3.5 for details) for
the harmonization of Bach chorale melodies, that aims at creating harmonizations
based on the short-term dependencies extracted by the models. Pre-encoded knowl¬

edge of harmonization rules and music theory are avoided. In order to simplify the
task of adding extra voices to the given melody, the process is split into three parts,

based on the research by Hild et al. (1991): a first HMM models the harmonies

depending on the melody, a second model fills in the chords and a final model is

responsible for the ornamentation. The Viterbi decoding method is used to gener¬

ate the harmonizations: for a given melody, the models search for the best possible

sequence of harmonies, then chords and ornamentations. The result returned is a

global optimum, i.e. a harmonization which has the highest overall likelihood given
the melody.
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The first HMM models the dependencies between melody notes and harmonic
functions. This model then generates the best possible harmonic sequence for the
melody, which in return is used together with the melody to fill in the three re¬

maining voices. Alto, tenor and bass are not treated as separate parts, but rather
as single events. These single events encode the melody pitch and the three addi¬
tional voices as well as the intervals between them, represented by the distance in
half-tones. For instance, given the melody note G, a tonic chord with a C as the
tenor and bass, E as the alto and G as soprano would be described 19:16:12:0: T,
i.e. 12 half-tones between bass and tenor, 16 between bass and alto and 19 between

bass and soprano. The ornamentation model inserts passing and neighbour notes
to all four voices separately by diving each beat into four parts, i.e. a crotchet be¬
comes four semi-quavers, and filling the space between the current pitch and the
first pitch of the following beat. Figure 2.5 shows the completed harmonisation of
a Bach chorale melody.

The division of the harmonisation task into three easier subtasks and the represen¬

tation of the music are the only pieces of expert knowledge that this system makes
use of. The HMMs extract the probabilities that connect the harmonic structure

with the melody and chords, basing the generation of new harmonisations onto

those probabilities. The rigid representation of the three newly added voices can

be seen as a drawback: because the new parts are not treated separately, there can

be a lack of horizontal flow in those parts, possible resulting in awkward leaps. The

system simply adds the chords like vertical building blocks, not taking the struc¬

ture of each individual voice into consideration directly. Allan states that learning
the short-term dependencies in the musical data should be sufficient to create sat¬

isfactory harmonisations, however the lack of large-scale dependencies becomes

apparent especially in poor phrase structuring. Nevertheless, Allan shows that,
even with minimal supervision and domain specific knowledge, a relatively simple

probabilistic system can be a powerful tool to solve aspects of the harmonisation

problem.



Chapter 2. Background 20

Figure 2.5: Example of a harmonisation created by the HMM system. The melody
was taken from chorale K211, BWV367. (Allan, 2002)
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2.6 Project Scope and Goals

The scope of this project was to devise a system that can learn how to create new

music from an existing set of musical examples, then using this knowledge to gen¬

erate the structures of simple musical works. The project's emphasis lies on three
main points. Firstly, the system should be able to create new pieces of music en¬

tirely from scratch, i.e. no musical context or patterns should be provided. The
motivation for this restriction is the challenge to generate new material that re¬
flects the structural characteristics of the training data without the influence of any

pre-existing patterns of musical context. If musical context is provided during the

generation procedure, this context is likely to influence the outcome of the gener¬

ation and thus the newly created material does not solely reflect the information
and knowledge extracted from the training corpus. Secondly, the generated music
should ideally have a clear large-scale structure, i.e. melodies for instance should

progress towards a cadence. As this research tries to set up a system that is capable
to generate believable musical structures, the generation of event sequences that

progress towards cadences is defined to be a minimal condition that has to be ful¬
filled in order to achieve results of acceptable quality. Finally, the system should
use as little domain specific knowledge as possible, learn from examples and auto¬

matically extract the knowledge needed to create new musical examples, thus make
use of implicit rather than explicit knowledge. Rather than explicitly defining all
the information and domain knowledge that a system needs to have access to to be
able to create musical pieces from scratch, it is more desirable and flexible to de¬

velop a system that can extract and store the necessary information from a training
data set.

From the works described in this chapter, it becomes clear that creating a new

musical work computationally is a data-intensive and complex problem; certain AI
techniques are more likely to be successful in solving the problem, given all the
constraints outlined in the project aims. For instance, given that the system should
take minimal advantage of domain specific knowledge, the use of an expert system
is ruled out. Similarly, for a musical problem, a genetic algorithm needs a certain
amount of expert knowledge to evaluate intermediary results with its fitness func-
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tion. It has been shown that music generation (or harmonisation) is a problem that
cannot easily be solved in a single step (Ebcioglu, 1993; Hild et al., 1991; Lothe,
1999; Allan &Williams, n.d.). As musical surfaces are defined by both small-scale
and large-scale structures, the system should be able to support and underline the

timing of events, their relative placing in a musical structure and the hierarchies in
music.

Hierarchical Hidden Markov Models respect all the constraints set up for this

project. The hierarchical structure facilitates the learning of large-scale structures
in data through multiple levels of states that describe sequences at different levels
of precision (Skounakis, Craven, & Ray, 2003). Allan and Williams (n.d.) have
shown that simple HMMs can learn the structural probabilities of musical data
without needing a large amount of domain specific information. Also, HHMMs

(just like simple HMMs) allow the division of a problem into simpler subtasks by

addressing each of those subtasks by a separate model. By feeding the output of
one model into another, dynamic networks can be constructed to create entire ex¬

amples of layered musical structures.

The system is expected to learn the structural probabilities and interdependencies
that define the training data, namely Bach chorales, and generate simple musical

examples (two and four parts) from scratch, reflecting musical properties and dis¬

playing a certain degree of large-scale structure. The rules of composition in the

style of Bach should be reflected in the models and the results created from them.
We hope to demonstrate that it is feasible for a computational system to extract
and learn the musical rules and properties necessary to generate acceptable new

musical works by using the right techniques and levels of description, but only a

minimum of expert knowledge.



Chapter 3

Machine Learning and
Probabilistic Modeling

Machine Learning (ML), a sub-field of Artificial Intelligence (AI), is the study of

systems that can learn from examples, their environments or their experiences and

adapt to changing requirements, allowing them to improve their (re)actions over

the change of time. ML is especially beneficial for finding solutions to problems
which cannot be solved directly, namely when the necessary expertise to solve
the problems either does not exist or cannot easily be explained. This is the case

for instance in areas such as speech recognition or computer vision: although we

cannot explain how we understand speech and why we recognise faces, machines
can be programmed to learn both tasks using ML algorithms. Methods from ML
are also used in data mining applications to detect patterns and regularities in large
data sets (Alpaydin, 2004). This chapter gives a very brief introduction to the field
of ML, focussing especially on domain specific notions, such as smoothing and

entropy, that are important for the understanding ofmajor aspects of this research.

3.1 Supervised vs Unsupervised Learning

Algorithms in ML can be classed into two major categories: supervised or unsu¬

pervised learning. In supervised learning, both the input and the output of a system
are known and the output can be classified. This is the case, for instance, if a sys¬

tem uses labeled data as training examples and the correct output is known a priori.

23
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In unsupervised learning, the correct output of a system, or the classification of the
data, is not known. The pair (x,f(x)) represents a training example, with x being
the input and f(x) being the output of a function / applied to x. Inductive learning
tries to find a function or model h, also called hypothesis, which best approximates

/ (Russell and Norvig, 1995, Chapter 18). Partially supervised algorithms makes
use of both labeled and unlabeled training data. This approach is used when large
amounts of data are available, but only a fraction of the data is labeled, thus making
maximal use of sparse knowledge in order to optimise the learning process.

3.2 Entropy Measures

The successful performance of an ML algorithm is dependent on the algorithm's

ability to predict future events, make decisions and generate new data according to

information learnt from previous data or experience. The performance quality can

be assessed with the measure of entropy, commonly used in information theory.

Entropy measures the amount of information contained in a data set and assesses

how accurately an algorithm represents the data. It is also a measure of uncertainty
and predictability; the more uncertain and unpredictable the data, the higher its in¬
formation content. For a set of events X, the measure of entropy is defined thus:

H(X) = ~Y,P(x)logp(x) (3.1)
xex

with p(x) being the probability of event x.

The entropy rate of a sequence wiW2---wn, i.e. the average information content

per symbol, is calculated by dividing the entropy H(X) by the number of symbols
in the sequence. For a process that is both ergodic1 and stationary, i.e. does not

change over time, the entropy rate is:

H(L) = lim— -logp(wiW2...w„) (3.2)
n

'An ergodic process is a process that does not have the possibilities of endless loops, i.e. that
cannot reach sub-processes from which it is impossible to escape. (Manning & Schiitze, 1999)
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with p(w\W2---wn) being the probability of sequence w\wi...wn.

The entropy rate can also be regarded as a measure of the complexity of a lan¬
guage L. The more complex and diverse a language, the higher its entropy rate.

The measure of cross entropy is useful when the actual probability distribution
p of a language L is not known. Instead a model m, an approximation of p, can be
used:

H(p,m) = lim —-logm(wiW2...vv„)
n->°° n

« --logm(vviw2...w„) (3.3)
n

Because m is a model of p, the cross entropy value can never underestimate the
real entropy. The model m of a set of events can never be more accurate than the
real set of events and its probability distribtuion p\

H(p) < H(p,m) (3.4)

The closer H(p,m) is to H(p), the better the model m represents the language
L. The cross entropy measure can be used to compare the performance of two

algorithms on the same data set. Given two models m\ and m2, the model with the
lower cross entropy is the one that represents the data more accurately (Manning
and Schiitze, 1999, Chapter 2).

3.3 Smoothing

A system's predictive power is directly dependent on its ability to classify un¬

seen events and to make rational choices when facing uncertainty (Mitrani, 1998).

Training data often only represents a fraction of the knowledge that an ML system

is supposed to reflect. Smoothing techniques are used to balance the probabilities
of seen and unseen events.
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Smoothing takes a part of the probability space from previously seen events and as¬

signs it to unseen events, which were previously estimated by a training algorithm
to have zero probabilities; smoothing is therefore also referred to as discounting.
A commonly adopted solution for smoothing zero probability events in statistical
models is additive smoothing: a certain value X is added to all probabilities, which
are then re-normalised (Manning and Schiitze, 1999, Chapter 6). The oldest ver¬
sion of this solution is Laplace's law, where X is set to 1:

D r \ C{wi,...,wn) + lPLap[W\,...,Wn) = (3.5)

with N being the number of observations in the training data, B being the number
of values possible for the observations, andC(w\,wn) being the frequency count
of the sequence (w\,...,wn). The new probability of sequence (wi,...,wn) is thus
its frequency of occurrence in the training data plus 1, divided by the sum of all
possible values for the observations and the size of the training set.

The main problem with simply adding 1 to all probabilities is that the probabil¬

ity space assigned to previously unseen events is too large, and the discounting
effect deflects a considerable portion of the probability space from events that oc¬
cur in the training data. To adjust this effect, X can be reduced to any value between
0 and 1, and used as stated in Lidstone's law ofsuccession2:

O t ^ C(wi,...,w„)+A.
—NTbx— (3'6)

This definition can be transformed into a linear interpolation between a uniform

prior p = N/(N + BX) and the Maximum Likelihood Estimator (MLE) :

Pud(wu...iWn) +(i_(3.7)

The smaller the value of X, the smaller the influence on the probability space. For

example, consider the training data Tr = (X,Z,X,X,Z) and the event set Obs —

{X,Y,Z}. The size of the training set is N — \Tr\ = 5 with B — \Obs\ = 3 different
2For A. = 0.5, this definition is called Jeffrey-Perks law.
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P(') PLap,(X= 1) PJP,{X = 0.5) OII<<£

X 0.6 0.5 0.54 0.59

Y 0.4 0.375 0.38 0.39

Z 0.0 0.125 0.08 0.02

Table 3.1: Comparison of different types of additive smoothing. For X — 1, a signif¬
icant amount of probability space is assigned to an unobserved event. For small X,
the smoothed probabilities converge towards the absolute probabilities.

possible events. Table 3.1 compares the results of the different types of additive

smoothing, showing the absolute probabilities of all events, as well as the smoothed

probabilities for different values of X.

The ideal value for X is dependent on the nature of the training data and choosing it
can be difficult. If the data is sparse, i.e. if there are few high frequency and many

low frequency events, the probability space set aside for zero probability events is

significant and can be reduced by using a small value for X. However, if too small
a value is chosen for X, potentially important and interesting events become highly

unlikely.

3.4 Markov Models

There are several types of techniques for solving ML problems, among them Neu¬
ral Networks (NN), Decision Trees and Genetic Algorithms. One group of tech¬

niques, which are based on the modelling of dependencies between the variables
or events in a system, is called Bayesian Networks (BN), also referred to as Belief
Networks or probabilistic graphical models (Alpaydin, 2004). A BN is a directed

acyclic graph, the nodes representing variables and the arcs representing the depen¬
dencies between variables. The network is a representation of the joint distribution3
over all the variables.

3The joint distribution P(X, Y) is the probability of the intersection of the random variables X and
Y and is defined P(X,Y) = P(X)P(Y |X).
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Markov models4 are a special type of belief network. Markov models are stochas¬
tic processes that were first introduced in 1906 by Andrej Markov, who used them
in the linguistic task of modelling letter sequences. Markov models have a finite
number N of states q, with transition arcs between the states representing depen¬
dencies between the variables (or states) with respect to the Markov property.

?(%+1 = j\quqi,-,qt) = P{qt+i = j\qt = 0 (3.8)

i.e. the state j at time t + 1 is only dependent on the state i at time t. In other words:
the future is only dependent on the past given the present. Equation 3.8 shows the

property for a first-order chain, however higher-order processes are possible. In a

second-order Markov model, the state at time t + 1 is not only dependent on the

previous state but also on the state at time t - 1. A Markov model can be visual¬
ized as a directed graph where the edges are assigned the transition probabilities
between nodes. The elements of the transition matrix A = {a,y } represent the prob¬
abilities of moving from state i to state j:

&ij = P(th+1 = j I <7/ = 0 (3-9)
with atj > 0 and £^=1 a,y = 1.

The vector n = {7t,} stores a model's initial state activation probabilities:

ft,- = P(qi = i) (3.10)

with n > 0 and £-1,7i,= 1. An example of a simple 3-state Markov model is shown
in Figure 3.1.

3.5 Hidden Markov Models

In a visible Markov model the variables are observable and it is unambiguous
which states are active at any time. In some processes however, it might not al-

4A Markov model is also referred to as Markov chain for a discrete-time process, or a Markov
process for a continuous-time process.
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Figure 3.1: Example of a 3-state Markovmodel. The probability of the model starting
in state Si is Tt,-; the probability ofmoving from Si to Sj is aij.(Alpaydin, 2004)

ways be possible to observe the states a system is in. HMMs are Markov models
that offer an additional layer of hidden states to represent the unobservable vari¬
ables in a system. They are useful when a process can be divided into underlying,
or hidden events which generate the observable events on the surface (Manning and
Schiitze, 1999, Chapter 9). A HMM thus has one layer of hidden states and one

layer of observable states. Figure 3.2 shows the interactions between the layers of
a HMM. The parameters that define a HMM X = (A, B, n) are the transition proba¬

bility matrix A = {n,y}, the observation or emission probability vector B = {bj(k)}
and the initial probability vector n = {71, } (Rabiner, 1989). The elements of matrix
A define the probabilities for moving from hidden state i at time t to hidden state j
at time t -I- 1:

The vector B for state j defines the probabilities of observing event Ok in state j at
time t:

aij = P{ql+\ = j\q, = i) (3.11)

bj(k) =P{Ok\q, = j) (3.12)
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The initial probability vector n holds the probabilities for activating state i at time
t = 1:

71/ = P{q\ = i) (3.13)

Figure 3.2: Example of a HMM. The state q\ is initially activated according to the

probabilities in n. The process then moves through the states q while time in¬
creases. Each time a hidden state is entered, the corresponding observable state

is activated.

Inference with a HMM is mathematically well-founded and three main algorithms
solve the common questions of stochastic learning procedures:

1. Given an observation sequence O and a model X = {A,B. n), what is the
overall sequence probability P(0 \ X)1 The overall sequence probability is
calculated with the Forward-Backward algorithm.

2. Given an observation sequence O and a model X = (A,B,n), what state se¬

quence qi,...,qr best explains the observations? The Viterbi algorithm re¬

turns the state sequence most likely having produced O.

3. Given an observation sequence O, what set of parameters (A,5,11) maximises
the probability P(0|A,)? This most complex of all problems, the training
problem, can be solved using the Expectation-Maximization algorithm.

For a full account of all three algorithms the reader is referred to (Rabiner, 1989).
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3.6 Summary

This chapter gives a brief introduction to the field of Machine Learning and pro¬

vides detailed descriptions of ideas and techniques that are essential for the under¬
standing of this research, such as entropy measures and smoothing. The definitions
and theory ofMarkov chains and HMMs provide the foundation knowledge for the
following chapter, which will introduce the extended concept of HHMMs.



Chapter 4

Hierarchical Hidden Markov

Models

HHMMs are the hierarchical extension to standard HMMs and were first intro¬

duced by (Fine, Singer, & Tishby, 1998), with the goal of facilitating the represen¬

tation and visualization, and thus the learning, of hierarchical data. HHMMs are

therefore advantageous to the representation and the modelling of musical struc¬
tures, allowing to make use of the hierarchies present in musical data. HHMMs
are multi-levelled and can be seen as having a tree-like structure; the nodes of the
tree1 are the states of the model, the tree's edges represent the transitions between
those states. Figure 4.1 shows an example of a HHMM with three levels. HHMMs
define three different types of states, as well as three different types of transitions.
States have different purposes according to their position in a model: the internal
nodes of the tree structure are internal states; the tree's leaves are production states;

and the final states on each sublevel of the model are the end states. The internal

states are the only states that have children, i.e. for every internal state there exists
at least one state on a lower level that can be reached from this internal state. The

production states do not have any children, however they are the only states that
can actively emit observations. End states are simply states that, when entered,
force a return to the next higher level in the tree2. The transitions, which define

'Even though the structure is not a tree in the way that it is understood in computer science, we
use this description to visualize the model's tree-like structure.

2The root state is the state on the highest level of the tree structure, therefore there is no end state
on the root level. End states exist only from the second level onwards.
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paths through a model and enable the activation of its states, are categorised thus:
vertical transitions connect pairs of parent and child states and always move one

level down in the model; horizontal transitions exist between two brother states,

i.e. two states which have the same parent and are situated on the same level\ forced
transitions connect end states with the next higher level, therefore always moving
one level up in the model.

Figure 4.1: Example of a three-level HHMM with three internal states and five pro¬

duction states. (The dashed transitions replace the transitions to and from the end
states, which have been omitted for clarity.)

Most importantly, throughout the model children states can be considered as be¬

ing contained inside their corresponding parent states, making each internal state
a probabilistic model of its own. Contrary to standard HMMs where states emit

single symbols, the internal states of every HHMM recursively emit complete se¬

quences of those observations made by the production states associated with them.
Internal states can therefore learn the probability structures of whole sequences,

starting from the single observations at the production state level.

4.1 Linear Time Inference

However, the strong point of HHMMs, namely their hierarchical topography, is

directly related to one of the main problems of working with them: the compu¬

tational expense. Due to their hierarchical structure, the conventional algorithms
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that were defined by Rabiner (Rabiner, 1989) for standard HMMs and adapted to

hierarchical structures by Fine et al. (1998) prove to be highly impractical. For
instance, when executing the Forward-Backward (FB) algorithm to calculate the
overall probability of a given sequence of length T, the machine has to process

the forward variables for every possible path through the model, given each sym¬

bol in the sequence. Additionally, the Expectation-Maximization (EM) algorithm

requires the calculation of backward variables, which involves processing every

possible path for every possible sub-sequence of the initial input sequence. For

long sequences, i.e. training data sets, and models with a large number of states,
the computational time exceeds reasonable limits. The runtime performance for
the algorithms by Fine et al. (1998) are 0(AT3), N being the number of states in
the model and T being the size of the input sequence or the training data set.

Several research projects concentrated on finding alternative ways of inference and

training HHMMs (Murphy & Paskin, 2002; Ueda & Sato, 2001). However, the
most simple and efficient approach was discovered by Wierstra (2004): suggest¬

ing that every HHMM in minimally self-referential form (see section 4.2) can be
transformed into an equivalent flat HMM, he devised algorithms that use the flat

equivalent of a HHMM, switching between the hierarchical structure and the flat

representation of the hierarchical structure.3 Runtime for the major algorithms is

hereby improved from 0(Ar3) to 0(N2T) and is only linearly dependent on the
size of the training data set.

4.2 Minimally vs Maximally Self-Referential HHMM

Maximally self-referential (maxSR) HHMMs are models that have self-referential

loops on internal states, i.e. internal states have horizontal transitions that point
back to themselves. As opposed to maxSR HHMMs, minimally self-referential
(minSR) HHMMS are not allowed to have self-referential loops on internal states,

although they are permitted on production states. A HHMM that is in minSR form
has only one possible path between each pair of production states and the hierar-

3We do not have formal proof that the transformation from maxSR to minSR to a flat model (and
vice versa) is always possible for every type of model structure, however we strongly believe this to
be true through the experience of successfully converting a large number of different models.
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chical form of the model can be easily transformed into a flat model by calculating
a new set of transition probabilities between all production states in the model. If
a HHMM is not in minSR form, the probabilities of the self-referential loops can

be shifted to the production state level, giving the model the required structure.

4.2.1 maxSR to minSR

While converting an HHMM from maximally to minimally self-referential, the

equality of both models needs to be respected, i.e. sequences generated by both
models need to have the same overall probability. The fundamental difference
between a minSR and a maxSR HHMM is that, in a model that is minimally self-
referential, the shortest path between any two production states of that model is at

the same time the only path between those production states. This property allows
the transformation of a minSR hierarchical HMM into a flat HMM. In a maximally
self-referential model, on the other hand, there is more than one possible path.
The new horizontal transition probability between the states i and j in the minSR
model, both substates of q (and with i and j possibly being the same state, but j
not being an end state), is:

The new horizontal transition probability between i and j is the existing transition
probability between those states plus the probability to go from state i to state j via
their parent state: the product of the probabilities from state i to the end state, the
self-referential loop in the parent state and the vertical activation of state j. The
new transition probabilities towards end states need to balance out the fact that in¬
ternal states are not allowed to have self-referential loops. The old probability of
an internal state loop therefore has to propagate back through the system:

After updating the horizontal transition probabilities between state q's children,

simply set the probability of q's self-referential loop to zero:

(4.1)

ali,end) ~ ali,end) ' 0 (4.2)
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a?M) = 0 (4.3)
After calculating the new probabilities, it is necessary to normalize the new values
by dividing each value by the sum of all transitions from state i'4:

q*
(T,. .v

a4* — ibU. (A 4)
(U) ~ yN 1 <?*LJ= 1

These steps are repeated for every internal node, starting at the level closest to the

production state. The horizontal transition probabilities between the root state's
children do not need to be re-calculated: because there is no end state on the second

level and no self-referential loop to the root, the above mentioned equations are not

valid for those states. Instead, the horizontal probabilities between the roots chil¬
dren states simply need to be normalized to balance out the lack of self-referential

loops.

4.2.2 minSR to maxSR

The transformation of a minimally self-referential into a maximally self-referential
HHMM follows the same principle, using the existing equations to extract the prob¬
abilities:

Aq
(i,end)

Aq*
(i,end)

1 -A
(4.5)

and

<46)

The value for A(9i<?), the probability of a self-referential loop on parent state q, can
be chosen to be either the value of that particular transformation in the previous
maxSR version of the model, or, if no previous maxSR form of the model exists,
an estimated value.

4In equations 4.4, 4.5 and 4.6, the capital letter A is used to represent a (re)normalised value of
a horizontal transition probability a. It is not to be confused with a horizontal transition probability
matrix.
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4.3 Conversion into flat HMM

When a HHMM is in minSR form each pair of production states in the model will
be connected by one single path. The flat model will not contain any internal or end
states. Transforming the HHMM into an equivalent flat HMM thus means build¬

ing a HMM from the production states only, calculating the new direct transitions
that have not been present in the HHMM. Figure 4.2 shows the transformation of a
hierarchical model to its flat equivalent. The transitions between brother states, i.e.
children of the same state i, will remain unchanged. All other transitions that were

possible in the HHMM between production states, via end and internal states, need
to be computed thus:

i.e. the probability of going from state i to state j is the product of the horizontal

probability of going from state i to the end state, from state ;"s to state j's parent,
and the vertical probability of activating state j.

The vertical transition probabilities need to be transformed into initial activation
probabilities by computing the product of the vertical probabilities from the root

state to every production state qD\

(with D being the production state level).
After a hierarchical model has been flattened, the standard FB and Viterbi algo¬
rithms can be used for the calculation of overall sequence probabilities and best
overall states sequences respectively. The re-estimation of the model parameters
has to be adapted to rebuild the hierarchical structure.

Although technically the hierarchical structure of a HHMM is lost during the flat¬

tening process because the tree structure is given up, logically the hierarchical ideas
are still present in a HMM that has been built from flattening a HHMM; the models

nij — ' Oqiqj ' ttj (4.7)

(4.8)
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*

Figure 4.2: Example of a HHMM and its equivalent flat HMM. (The dashed transi¬

tions in the hierarchical model replace the transitions to and from the end states,

which have been omitted for clarity.) The vertical transition probabilities are con¬

verted into initial probabilities; existing direct transitions are copied into the flat

model. Paths between two production states are transformed into direct transitions

by adapting the probabilities.

are equivalent regarding the information they can learn. However, the tree struc¬
tured HHMM is restored after the training process as a way to visualize the hi¬
erarchical structures in the training data and reflect the probabilities that connect
the internal nodes in the model, because the flat model cannot represent hierar¬
chical structures in the same logical way that a HHMM can. The models are not

equivalent in the way they represent hierarchical structures. A hierarchical model
can learn the interdependencies of states on different levels. In a flat model that
is theoretically equivalent to a hierarchical model, the probabilities that represent
movements between internal states are lost. For instance in Figure 4.2, the proba¬

bility of moving from internal state is 1 to internal state is2 is 0.8. In the equivalent
flat model, this probability is incorporated into all the probabilities that connect
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the children states of is I and is2, for example the path from ps 1 and ps2 to ps3 or

psA. However, the original transition probability between the two internal states,
which reflects an important process of a higher order than a transition between two

production states, cannot be extracted from the flat model and would be lost unless
the original hierarchical structure of the model is restored. Using the flat version
of the model only (i.e. a flat model that does not incorporate any information of hi¬
erarchical structures) would mean an additional loss of information regarding the

probabilities between the different levels of the hierarchy, which provide an addi¬
tional view of the internal structure of a data set.

Due to the flattening procedure, the definitions of both the FB and the Viterbi al¬

gorithms for hierarchical models are identical to the algorithms for flat models.
However, the EM algorithm, used for training models, has to be adapted to the
hierarchical stmcture. After scanning through the training data, the EM algorithm
re-estimates a model's structural parameters, i.e. its horizontal, vertical and emis¬
sion probabilities. The transition probabilities are adjusted so that the training data
will receive the highest possible overall probability, thus representing the data's

properties through a model's parameters. Additionally to the horizontal transitions
between the production states, parameter re-estimation needs to take the vertical
transitions and the horizontal transitions between internal states into consideration.

The algorithm for the flat HMM is not sufficient and needs to be adapted to a hier¬
archical model structure, as outlined in (Wierstra, 2004).

4.4 Hierarchical lOHMMs

Although HMMs and HHMMs provide a rather effective means of modeling and

learning (hierarchical) structures in data, the parameters in these types of model
are adjusted in an unsupervised way by the EM algorithm. HHMMs extract de¬

pendencies on a local as well as a larger scale, i.e. inside each level and between
the levels. Sometimes however, it might be helpful to add some supervision or

constraints into the process of parameter learning and estimation; for the learning
of musical structures this means that it might be helpful to use the constraint of
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one level of parameters to learn the next level. Synchronous IOHMMs5 offer the
constraint of mapping the models' observation sequences to a given input, thus

modeling the dependencies of two sequences (see Figure 4.3) and conditioning the
output to an input sequence (Bengio & Frasconi, 1995). The probability of entering
state Q at time t is dependent on the input at time t and the state at time t - 1; the

output at time t is dependent on both the state and the input at time t. In musical
data, this added feature allows us to learn the interdependencies of the different
levels of musical structures.

Input U ={Ui,...,Ut}

Q,,,) States Q ={Qi,...,Qt}

Output O ={Oi,...,Ot}

Figure 4.3: Dependencies between input, output and states in an IOHMM.

Using the improved approach for inference with HHMMs and the idea of IOHMMs,
we introduce the concept of hlOHMMs, combining the power of hierarchical struc¬
tures in HHMMs with the constraint of an added input layer in IOHMMs. The
hlOHMM X has the topography of an HHMM with an underlying input sequence
U = ((/i,...,I7r)6; both vertical and horizontal transitions, as well as the obser¬
vations, are directly dependent on the input sequence. The input sequence U is
divided into partial sequences over all the levels of the model; at the production
state level, single input symbols are matched against the states and their observa¬
tions (see Figure 4.4). Time flow in an hlOHMM is similar to HHMMs - time only
increases after an observation symbol has been emitted from a production state

5In a synchronous IOHMM, the input and output sequences need to consist of the same number of
elements and every input element is mapped against an output element. An asynchronous IOHMM
allows the input and output sequences to be of different lengths. It is possible to imitate the behaviour
of an asynchronous model by introducing a "null" symbol in the sequence alphabets, therefore only
synchronous models are discussed here.

6Notation: T is the length of the input or output sequence, or the size of the training data set.
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because every output symbol has to be matched against a symbol of the input se¬

quence, i.e, on horizontal transitions out of a production state. During any other
transitions through the model time stands still.

Figure 4.4: Example of a three-level hlOHMM (end states are omitted for clarity).
Solid lines show the transitions between states, dashed lines show the dependen¬

cies between input, output and states.

The vertical probabilities n define the transitions between a parent i and a child
state j, given a symbol U, from the input alphabet U:

*?j(Ut) = PU,U,\i,Ut) (4.9)

As time does not pass when states are activated vertically, the child states are condi¬
tioned on the same symbols as their parent states. The definitions for the horizontal
transition probabilities differ for production states and internal states because only
after an output symbol is emitted does the model look one step ahead, i.e. it looks
at the next input symbol, and chooses the following state accordingly. Transitions
between states Q at production state level are defined as

aij(Ut) = P(Qt = j\Q,^i = i,Ut) (4.10)

i.e. the probability of being in production state i at time t - 1 (represented by

Qt-\— i) and moving to state j (Qt = j, either a production or an end state) given
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the input U at time t, thus moving a step forward in the input sequence. The hori¬
zontal transition probabilities between internal states are defined as

aij(Ut) = P(Q, =j\Q,-i = i, I/,-1) (4.11)

i.e. both states j and i are dependent on the same input symbol. Emission proba¬
bilities at time t are conditioned on the input symbol at time t:

bi{Ot | U,) = P(0, \ Ut,Q, = i) (4.12)

Flattening a hlOHMM allows the use of the algorithms for sequence probability
and best state sequence calculation defined for IOHMMs. When the model is in
minSR form, the new transition probabilities for the equivalent flat model can be
calculated for every symbol in the input alphabet U:

aij{u)* = aitend{u)-a^tPQ)(u)-nj{u) (4.13)

i.e. the product of the transition probabilities between state i and the corresponding
end state, the parent states, and the vertical transition to state j, given input u.

Similarly, the vertical transition probabilities have to be transformed into initial
activation probabilities for all the production states:

= (4.14)

i.e. the product of all the vertical probabilities on the path from the root state to the
production state qD (D being the production state level of the model).

The FB and the Viterbi algorithms for the hlOHMM are similar to the algorithms
defined for the IOHMM, using the flattened equivalent of the hlOHMM. However
the learning and re-estimation of the model's parameters with the EM algorithm
need to be adjusted to the novel structure.
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As part of the EM algorithm, the forward variables a and backward variables (3
need to be processed. The a terms, the probabilities of observing a partial se¬

quence given state i at time t and an input sequence U\,...,Ut are defined
thus:

al(i)=iti(Ui)-bi(Ol\Ul) t = 1 (4.15)

a,(/) £a,_iU)aji(U,)
j=i

■bi{0,\Ut) 1 <t<T (4.16)

The overall probability of an observation sequence O given a model X and an input

sequence U is calculated by summing over the terminal forward values:

n

P(0|X,t/) = £ar(i) (4.17)
i=i

The predictive power of a hlOHMM can be measured with the cross entropy, the

negative average logarithmic likelihood per symbol (Shannon, 1948; Allan, 2002),
which provides a measure of probability and predictability of a sequence given a

certain model (see Chapter 3.2). It is estimated by summing over the negative log¬
arithmic probability of every symbol in a sequence, given the model, and dividing
by the length of the entire sequence:

H(0\\,U) = ~ftlog2aT(i) (4.18)1 i=i

The backward variables (3, the probabilities of observing a partial sequence Ot+\
given state i at time t and an input sequence Ut+\,,Ut are defined similarly:

M0 = 1 (4-19)

(MO = £ Qij(Ut+i) -bjiOt+i | Ut+i) ■ Pf+iC/) 1 < t < T (4.20)
7=1
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Equations 4.15 to 4.20 are taken from (Bengio & Frasconi, 1995) and are provided
here for ease of reference. Based on (Wierstra, 2004), we define the EM algorithm
for a hlOHMM as follows.

Starting from the production states of the hierarchical model, the first step is to

calculate the state transition probabilities i.e. the probabilities of being in state i
at time t and moving into state j given the input symbol U at time t + 1:

(-,;!«+.) = p(o\m <4'21)
The state occupation probabilities y, the overall probabilities of being in a state i at
time t, can then be calculated using the state transition probabilities. On produc¬
tion state level these values are processed by summing over all the probabilities of
exiting production state i and entering production state j (notation j £ Pr):

Yf(0 = £^(/J|t/,+ 1) (4-22)
j€Pr

For the state occupation probabilities of internal states, the hierarchical structure
of the hlOHMM needs to be taken into consideration; the probability of being in
state k is the sum of all the probabilities of being in one of the descendant states of
k1 and moving into a non-descendant of k (j £ d(k))\

Y»(*) = £ £ ^(hj\U,+l) (4.23)
ied(k) j$d{k)

Using those definitions, the re-estimation equations for horizontal transition prob¬
abilities are:

Yj=l Y.ked(i) Hied(j) ^t{k,l | Ut+\ — Um)
Efr/Yr(0&ij(um) = ^,=I —— (4.24)

1 Hked(i) Y.l£d{p(i))£>l(kJ\Ut+l ~ Um)
1,^(0&i,end{Cm) — 1 (4-25)

7Notation: i 6 d(k). A descendant is any state that can be reached through vertical transition. If
k is a production state, d(k) = k.
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The new horizontal transition probabilities between two production or two inter¬
nal states i and j have to be computed for every symbol Um of the input alphabet
and are calculated by summing over the descendants of i and j respectively. How¬
ever, the horizontal transition probabilities between an internal or production state
i and an end state need to be processed by summing over ;'s descendants and the
non-descendants of fs parent state, thus reflecting the exiting of a sublevel of the
hierarchical structure.

The vertical transitions from i to j are re-estimated by dividing the sum of the
state occupation and state transition probabilities for the child state j by the sum of
those same probabilities for the parent state i:

\
_ LterfU) Yi (k) + Tj=i Ikjd{i) Liedp) l\Ut+i=Um)

J Lked(0Yl(*) + Lk<td(i)Lied(i)(*,l\U,+i = Um)
The re-estimation of the emission probabilities is not dependent on the hierarchical
structure of the hlOHMM, therefore the equation for the flat model is sufficient.
The new emission probability for symbol k from state i is the probability of being
in state i and observing symbol k given input m, divided by the overall probability
of being in state i:

bi(Ok | Um) = (4.27)

The EM algorithm shown above is only valid for synchronous hlOHMMs. The

input and output sequences need to have the same number of elements, as every

output symbol needs to be matched against an input symbol.

4.5 Summary

HHMMs are an extension to standard HMMs, which allows the hierarchical and

layered representation of complex data. Every HHMM that is in minimal self-
referential form can be transformed into a flat HMM to reduce the computing time

necessary for inference and training. Although both types of models are equiva¬
lent in terms of the predictions that they make, the transformation into a flat model
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needs to be temporary as the hierarchical representation and the structural proba¬
bilities on intermediate levels are lost in the flat HMM. The chapter then introduces
the novel concept of hlOHMMs, which allow to map input to both a hidden state
sequence and an observed output sequence, outlining the definitions and algorithms
necessary for inference and training.



Chapter 5

Music Representation and Model
Structures

Probabilistic models are used to learn the structural probabilities that define a data
set which reflects the knowledge of a specific part of the real world. The represen¬

tation of the explicit knowledge has to be chosen carefully so as to be unambiguous
and precise. The quality of a representation directly influences a model's ability to

extract dependency probabilities. However, the choice of model structure is just as
important as the type of knowledge and its method of representation. The numbers
of states, layers and transitions in a hierarchical model are crucial to its perfor¬
mance and to the training procedure's success in capturing the characteristics of a
data set. The implications of choosing the right representation and model struc¬
tures, as well as the choices made for this project, are outlined in sections 5.2 and
5.3.

5.1 Music Corpus

The music corpus used for this research is a set of 384 Bach chorales1. The chorales
are available both in MIDI and text format, with the text files containing informa¬
tion on metre, rhythm, phrasing, harmonies and pitch for the four parts of a chorale,
i.e. soprano, alto, tenor and bass. Table 5.1 shows the distribution of modes and

'Available from ftp://il lftp.ira.uka.de/pub/neuro/dominik/midifiles/bach.zip

47
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time signatures among the chorales.

major key minor key

4/4 181 162 343

3/4 25 15 40

6/4 0 1 1

206 178 384

Table 5.1: Distribution of Bach chorale time signatures and modes.

There are a number of reasons for choosing Bach chorales as a training corpus

for this project. The chorales have been the basis of many research projects that
concentrate on the analysis or generation of music with computers. Therefore it
is possible to compare directly the results of different approaches, which are all
based on the same material. Additionally, Bach chorales are complex enough to

provide a challenging and interesting basis for a machine learning approach, yet the

compositional rules behind them are well established and understood. Most Bach
chorales are very short, with an average length of around 24 to 40 bars, however
there are a high number of chorales available. For a project that aims to learn

large-scale structures in music this certainly proves to be an advantage, because it
allows the training of models with a high number of complete works, thus making
it possible to extract the high-level dependencies that define entire works of music.

5.2 Music Representation

Although the Bach chorales are available in text form, the text cannot be used

directly as input for the HMMs. The information contained in the text has to be ex¬

tracted and transformed in order for it to become suitable training data for the mod¬
els. As this research tries to use minimal a priori knowledge of musical structures

only, part of that transformation process includes the ident fication of the minimum
of information necessary for the machine learning approach to be workable. Addi¬

tionally, although the improved algorithms for HHMMs reduce the computational
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expense considerably, a small and efficient representation vocabulary helps min¬
imise the size of the training sequences and thus reduces the algorithms' runtime.
In order to capture the large-scale dependencies of the events inside the musical
structures, it is necessary that the representation allows for the distinction of the
timing of those events, i.e. the relative place of an event in a score needs to be
included in the representation of that event.

The representation of the metrical structure has to include not only the number
of beats per bar, thus defining a time signature, but also the relative place of a beat
inside a bar. It is necessary to be able to distinguish between strong beats and weak
beats, or the beginning or end of a bar. The most simple way of representing the
relative place of a beat is by numbering each beat according to its position. The

accuracy of the metrical structure can be varied by using different sampling rates.
For instance, a bar in a 4/4 metre is represented as 1234 if the sampling rate is
a crotchet, however it becomes 12345678 for the more precise sampling rate of a

quaver.

Using the standard pitch symbols (C, C#, Db, D,...) is a simple and unambiguous

way of representing pitch structure. In order to the keep the number of possible

symbols, and thus the computational expense during training at a minimum, we
decided against using register information together with pitch. Each voice in a

chorale only has a range of approximately one and a half octaves, therefore the ad¬
ditional information provided by the register is negligible. If a model can learn the

probabilities connecting the sequence B4 C5 D5, it can extract the same probabili¬
ties from a more general pitch sequence without register. The harmonic structure

of a chorale is implied by the pitch structures of the four voices. As part of this
research aims at modelling the interdependencies of different structures, such as

the pitch structures of the soprano and bass parts, the harmonic structure is not

represented independently.

The phrasing structure needs to define the beginning and the end of each phrase
in a chorale, as well as the end of a chorale. A phrase is highlighted by an opening
and closing bracket, ' (' being the beginning and ')' being the end of a phrase. The
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end of a chorale needs to be marked not only to separate the chorales in the train¬

ing data but also to help reinforce the importance of the relative place of a phrase
inside a chorale. The symbol # is used as 'end of chorale' marker.

Similar to the harmonic structure, the rhythmical structure is not represented in¬

dependently, but rather is implied using metre and pitch with the sampling rate of
the metrical structure providing a basic time unit. If the sampling rate is a quaver, a

pitch of a duration of a minim is four 'beats' long. In order to distinguish between
a pitch that is attacked on the beat and a pitch that is held over from a previous beat,
the latter is represented in square brackets, [ ]. For example, C with a duration of a
crotchet at a sampling rate of a quaver is denoted C [C], while it would simply be

represented as C at a sampling rate of a crotchet.

The expert knowledge included in this representation of music is mainly limited
to the importance of the timing of events. The representation allows for the possi¬

bility to learn distinct characteristics of musical structures by mapping those char¬
acteristics to a relative time in a bar, phrase or entire score.

5.3 Choice of Model Structure and Initialisation

An important factor in the process of training a HMM is the choice of the model's
structure, i.e. the number of its states, layers, and transitions. However, there is no

simple, correct way of choosing the structure (Rabiner, 1989). In order to obtain
the best possible results from training a model, its structure has to reflect certain
structural properties of the training data. For musical structures, this means that a
model should have the possibility to learn the importance of time, as outlined in

previous paragraphs. The model's structure should also represent the hierarchical
structures in music, for instance the division of an entire piece into phrases, which
in return are subdivided into bars.

Choosing a model structure at random without taking the nature of the training data
into consideration most definitely results in a poor performance of the model. Ad¬

ditionally, an intelligent choice of structure means that the size of a model, which
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directly influences the runtime of the inference algorithms (see section 4.1), can be

kept in reasonable boundaries. It is important to point out however, that a model
with a larger number of hidden states is likely to provide a better approximation of
the training data than a model with a smaller number of states, because the char¬
acteristics and properties of the data can be mapped to a larger number of states.
This is however not necessarily better for the overall representation of the musical
structures, because this can result in overfitting. Additionally, given that very large
models require a considerable amount of computational power, it is necessary to

find a balance between model size, number of states and and compute time in order
to keep the models at a manageable level.

The amount of domain specific knowledge used to construct the models for this
research is limited to the minimum necessary to make the models workable. The
models that are used in this research for instance reflect the basic phrasing struc¬

tures of a piece of music, having separate internal states to represent the phrases
at different points in time. This allows the models to distinguish between sepa¬

rate phrases and extract time specific information. The models' structures are thus
influenced by the (explicit) expert knowledge that phrases, and the events inside
them, have different functions and internal structures depending on the time of
their occurrence inside a piece of music.

The model parameters are the transition and observation probabilities. When cre¬

ating a new model, these parameters need to be given initial values that are the

starting point from which the training process re-estimates new probabilities that
fit a training data set. A danger for the estimation of such new probabilities is that
the algorithm might not find a globally optimal solution, because any initial values

push the calculation towards a local optimum. In order to avoid actively reaching a

local optimum and therefore a sub-optimal solution, it was decided to initialise all
model parameters through even distribution of transition and observation probabil¬
ities.
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5.4 Summary

The representation of the knowledge domain and the structure of a model are both
essential parts in the process of devising a system that can learn structural de¬
pendencies and probabilities using a minimal amount of expert knowledge. A poor

representation of domain knowledge is likely to result in a suboptimal performance
by the system. This research provides the composite networks with a small amount
of domain specific knowledge, thus helping the models to extract those probabili¬
ties and dependencies that are structurally important.



Chapter 6

Software Design and

Implementation

This chapter will describe the process of designing and implementing the software
that was used throughout this research project to simulate the hierarchical models
and composite networks. The differences in the implementation of a HHMM and
an IOHHMM are minimal and their design follows the same structure, therefore

only the HHMM implementation is described here.

6.1 Motivation

Very early on in this research project it was decided to develop new software that

implements the hierarchical models we wanted to use, rather than reusing and ex¬

panding on existing tools. The main reason for this decision was that at that point
in time, there existed no software which already implemented the HHMM algo¬
rithms. A number of software packages provided tools builiding HMMs, e.g. the
Hidden Markov Model Toolkit (HTK)1, but none of these packages contained an

implementation of the hierarchical extension of the models. Having to choose be¬
tween expanding on existing software or developing new software, it was decided
that it would be in the best interest of the project to create a new tool, which would
be custom built and could address all the requirements of the research.

1 http://htk.eng.cam.ac.uk/
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6.2 Requirements and Design

The first step of the design process is the identification of the requirements for the
software and the definition of the basic functionalities. The functionalities involve

inputting an initial model; using the HHMM algorithms on an input data set based
on the model; generating new results; and storing the results and new model struc¬
ture. As the models will be used in a feed-forward network, it is a requirement that
all the information resulting from one model can be accessed and read by another
model. The tool needs to implement all the HHMM algorithms and has to be able
to build a model that follows a user-defined structure. The definition of a model's

structure should be simple, so that many different types of models can be built and
tested.

The software needs access to two types of information: firstly, the data sets that
are needed for input (the musical structures that are used for training); secondly,
the information that is necessary to build the initial model. This information is
reusable and accessible outside the lifetime of the program. Any results generated

by the program, as well as any changes made to the initial model, have to be stored.
The format of the data input and output are an essential part of the design of the
software.

Training a model is computationally very expensive and, given the same data sets,
the reuse of probability distributions from previous training runs increases the ease

of use for HHMM. The generation of a large number of results from many differ¬
ent production runs and initial model settings makes it an essential requirement,
for both testing and verification purposes, to be able to easily reproduce scenarios
that caused certain sets of results. The tool therefore should be able to create a

model from input files that describe a certain model, as well as write the results of
this model's training into output files of a similar format. The output files can then
later be used to recreate the model and its state after training on a given data set.

The information for the initial set-up of a model includes the basic model structure,
such as the number of states and distribution of states over the different levels, and

the initial probability values for the state transitions and emissions of symbols.
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Three different platforms (Solaris 9, Mac OSX and Windows XP) were used dur¬

ing this research, and the portability of the code was important. It was decided
to implement the software in Java2, because this allowed for easy an migration of
the code between machines. Additionally, a Java graph library called JGraphT3,
which implements mathematical graph-theory objects, is freely available. The li¬
brary supports a large number of graph types, including directed, weighted graphs.
The library was used as a basis for the HHMM code, making use of the avail¬
able graph objects and graph manipulation algorithms and methods. Details of the

implementation of the code will be given in the next few paragraphs.

6.3 Implementation

As mentioned earlier, the functionality of the HHMM tool can be divided into
three basic parts: data input, computation, and data output. The data input is con¬

cerned with preparing and reading the data set, i.e. the musical structures, as well
as getting the information on the initial model set-up. The computation involves
the HHMM algorithms, i.e. the Forward-Backward, the Expectation-Maximisation
and the Viterbi algorithms, as well as the flattening and rebuilding of the hierar¬
chical model structure. Finally, the output handles storing the generated musical
results and a model's parameters after training on a given data set. This section
will briefly describe the implementation of the code for each of these three basic
parts.

6.3.1 Input

The musical data that the model uses needs to be extracted from existing data files.
The Bach chorales that were used here are available both in MIDI and in ASCII

format. Given that the information that is included in the text files is sufficiently
detailled, is was possible to extract the necessary data directly from these files by

using a regular expression parser with pattern matching. The parser was imple¬
mented as a Java class as part of the main code, and can optionally extract metri-

2Java version 1.4
3 h ttp ://j grapht.sourceforge .net/
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cal, phrasing or pitch structures. Pitch information that is extracted by the parser

is automatically transposed into C major (or A minor respectively) to create a nor¬

malised data set. Figure 6.1 shows the first few bars of a Bach chorale in ASCII
format. The file's header defines the chorale's name and key, as well as the key

signature. The music is represented in seven columns: phrase, bar, the four voices

(soprano, alto, tenor and bass) and the harmony. The regular expression parser

scans through the file and extracts the needed metrical, pitch or phrasing informa¬
tion together with the key and key signature. Any pitch information is transposed

according to the chorale's key.

Additionally to the musical data, the program requires access to the initial struc¬
ture and parameter setup for any model it wants to build. This configuration data

comprises information such as number of levels in the hierarchical model, number
of states per level and each state's status (internal, productive or end state), and the
initial values for the transitions between the states and the emission of observation

symbols. The initial data is stored in a set of ASCII files and is read by the program

at runtime.

6.3.2 Computation

The code is organised in an object-oriented design, separating the implementation
of the model from the implementation of the computation algorithms and other util¬
ities, such as the parser. The user specifies the path to the input files, which contain
a model's parameters and structure, at runtime. Once these files have been read

by the program, the initial model is created and the main code interacts with the
user through a command line interface, from which a user can navigate through a

choice ofmenu options that can be executed by the code: the three main algorithms
(FB, EM and Viterbi); the generation of musical data and the size generated data;
an option that allows to print the current state of the model, i.e. print a snapshot
of the parameters that define the model at a certain point in time; and an option to

exit the program. The code runs in a loop and returns to the main menu each time
a computation has been executed until the user actively quits the program.

As mentioned earlier in this chapter, the implementation of the graph structures
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Chora Iname = bch001
Anzahl Stimmen = 4
Tonart = A-dur
Takt = 4/4
Tempo = 100
Notentextausgabe in 16tel-Schritten:

PHRASE TAKT SOPRAN ALT TENOR BASS HARMONIK

1 C#2 A 1 El A -1 T

C#2 A 1 El A 0

D 2

E 2 HI El G#8 D3

C#2 A 1 El A 0 T

A 1 A 1

2 HI G 1

F#1

C#2 El

E 1 F#8 S3

D 1

D 1 G 0 SS

A 0 A 0 T

D 2 F#L A 0 D 0 S

C#2 E 1 A 0 A -1

3 HI El G#0 E 0 D 7

D 1

Figure 6.1: Beginning bars of a Bach chorale as represented in ASCII format. The
content of the file is separated into a header, which holds key and key signature

information, and a body, representing the actual musical structures that make up

the chorale.
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was based on the JGraphT library, which contains a large set of methods for the

manipulation of directed graphs. For instance, an efficient implementation of Di-
jkstra's "Shortest Path" algorithm, which allows the quick and easy calculation of
the shortest path between two states in a model, is available as part of the library.
The library's vertex objects are used as a basis for the states of a model, the edge

objects represent transitions.

The algorithms are implemented as standalone classes, using the definitions pre¬

sented in Chapter 4. The calculations performed in these algorithms mostly involve

very small values, thus risking arithmetic underflow. On top of leading to false re¬

sults in arithmetic operations, underflow can potentially cause severe disruptions to

a program, such as runtime errors or hardware interrupts. In order to alleviate this
problem, a scaling step that uses state-independent scaling coefficients was added
to the calculations (implementing the scaling definitions in (Rabiner, 1989)). The

scaling ensures that the floating point operations remain stable and accurate.

6.3.3 Output

The program directs its main output into files. This output consists of the generated
data and the state of the model after training. The generated musical data is written
into files that are defined by the user at runtime. These are simple text files that can

easily be parsed into a music notation format, such as ABC4 or MusicXML5.

The second type of output is the snapshots of the state of the models after training.
Once the EM algorithm has calculated a new set of parameters that best represent
the model relative to the data set, this set of parameters is directed to a file. There
are two reasons for creating these output files: firstly, it is helpful for any future

setup of models to be able to see how the EM algorithm alters the initial setup of a
model. However, the more important reason is that these files provide the user with
the ability to recover a model's state after training. The training process is often

computationally expensive, therefore saving the state of a model after this process

4The ABC notation is used to write music in ASCII format. Software for the transformation of
ABC files in, for instance, MIDI format are freely available.

5MusicXML is an XML-based music notation format. Software for the manipulation of Mu¬
sicXML files is readily available.
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reduces the risk that comes with any software or hardware failure after training.

6.3.4 Testing

The correctness of the implementation of the algorithms was tested using the Hid¬
den Markov Model Toolbox for Matlab6, which provides a well tested implemen¬
tation of the basic algorithms for HMMs. Given that HHMMs use the algorithms
for HMM in large parts, the FB, Viterbi and part of the EM algorithms could be
tested using this software. A number of artificial test data sets were created and
run on basic models using both the HMM Toolbox and our own implementation of
the algorithms, thus allowing the comparison and verification of results. As there
was no existing implementation of a hierarchical HMM available at the time of the
research, the conversion of the hierarchical model to the equivalent flat model (and
vice versa) had to be tested manually by writing small test units that controlled
each step of the algorithm. Once the test results were satisfactory on the artificially
created test data sets, the implementation was checked on the real data, ensuring
the robustness of the code.

6.4 Summary

This chapter gives an overview of the implementation of the HHMM code, written
in Java 1.4, justifying its design and the reasons for a new implementation. The
basic structure of the program is explained together with its use of data input and

output. The following chapter will show how HHMMs and composite networks
were used to generate musical data.

6http://www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html



Chapter 7

Generation of Music with

Composite Networks

Musical works have several defining levels of representation, or musical param¬
eters, such as metre, duration, phrase structure, cadential patterns or pitch (see

Chapter 1). Large-scale musical structures can be described in terms of several

layers of such representations (Ebcioglu, 1993; Conklin & Witten, 1995). The

concept of generative networks of probabilistic models proposed here uses the idea
of 'layering' those parameters; by starting from one parameter layer, which is used
as the basis for an entire piece, and adding more layers on top of the basis, complete
structures are generated. For instance, using metrical structure as the basis for a

piece, the layers rhythm, phrasing and pitch can be added to create a pitch structure
that incorporates all four of these parameters. A single HHMM can represent sev¬
eral of those representation levels simultaneously; an HHMM that models metrical
structure can represent bars, phrases and sections on its different levels, modelling
the interdependencies of the parameters inside a musical work (Weiland, Smaill,
& Nelson, 2005). A network of models, namely a combination of HHMMs and
hlOHMMS, can thus learn the interdependencies of parameters that would not be

represented in one model, such as for example melody, pitch and bar structure or

phrasing structure.

In order to show the HHMMs and hlOHMMs performance on learning the statis-

60
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tical regularities that define musical material, networks with a variety of topogra¬

phies are built. They are used to create simple two-part and four-part works with

appropriate phrasing, rhythms and passing notes, based on and according to the in¬
formation that can be extracted from the musical data set used to train the networks.

If the model networks are able to generate musical material that is believable on

a large scale and respects the standard rules of harmony, e.g. if they can for in¬
stance create melodies that progress towards a cadence, this will show that the
most important structural regularities that define the music (in the training set) can
be extracted and represented by probabilistic models.

7.1 'Random Walk' Method

The process that generates new material from a trained model uses a 'random walk'

approach: based on structural probabilities, the process walks through the model,
making decisions on transitions and emissions using random numbers. Preference
will thus be given to events with high probabilities, however chance may decide
to choose events with low probabilities as well. The 'random walk' method has
been described as "greedy" as it does not guarantee to produce results with high
overall probabilities (Conklin, 2003). However, the models should preferably gen¬

erate a large number of results, all of them representing the structural probabilities
extracted from the training material, but also distinctly different from each other.

Simply generating the most likely result at each stage of a network is a very lim¬

iting approach. The random walk method allows a cheap and quick generation of
large numbers of results, and their overall likelihood given the model can be easily

computed. The random numbers used in the decision making process ensure that
the results are diverse and reflect different levels of quality.

7.2 Generative Networks

The generative networks of models are built from a combination of HHMMs and
hlOHMMs. In order to create a musical work from scratch using the layering
of structures, one of the structures has to constitute the basis for the entire work.

A HHMM does not require an input sequence to work from, therefore it can be
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used as the basis, i.e. the bottom layer, of a network. The data generated from the
HHMM will then serve as input sequence for a hlOHMM in the network. A simple
network for the creation of melody and bass lines could, for instance, consist of an
initial HHMM that generates the harmonic structure, which then serves as an input

'

for a hlOHMM that builds a bass line on top of the harmonic structure. This bass
line could then in return serve as input for a hlOHMM that writes a melody given
a bass line. Each layer in the final work is thus not only dependent on the layer

upon which it has been built, but also on the previous layers. Considering the

previous example: as the bass line is directly dependent on the harmonic structure,

and the soprano is dependent on the bass, the soprano is implicitly also dependent
on the harmonic structure. The models in a network are all trained separately on

data from the same group of chorales. Only after training are they used as a feed¬
forward network. The fact that the models are trained independently allows them
to be reused and to change the structures of networks dynamically. For instance,
a HHMM that models metrical structure and that has been trained on a set of 50

chorales can be used in any network that uses this specific set of chorales, as the

training procedure and its results are dependent on the training data only.

7.3 Smoothing vs Non-Smoothing Models

Input-output models map observation sequences to input sequences. Both input
and output symbols have to be part of defined alphabets of valid events. For al¬

phabet sizes of, for example, 50 symbols each (where each output symbol can be

mapped against one input symbol), this results in 50 * 50 = 2500 possible pairs of

input/output symbols. However, it is likely that not all of those symbol pairs are

represented in the training data. Those symbol combinations that do not occur in
the training material are assigned zero probabilities during training. Additionally,
not all symbols might be interconnected by valid transitions, and thus not every

sequence made up from symbols of the input alphabet of a trained model is neces¬

sarily automatically a valid input sequence for that model.
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For instance, if a model that was trained on the data

1 2 3 4 1 2 3 4 input
A B CPA BCD output

was fed a new input sequence 11 2 3 1 2 3' to generate data from. Consider¬
ing the symbols only, this sequence is correct. However, because the subsequence
*3 1' is not in the training data, this input sequence will fail to run through the
model successfully, because there will be no transition that allows a '1' to follow
a *3'. The result can be a model that is very likely overfitting, i.e. that tends to¬

wards memorizing the training data. A way of dealing with overfitting is through

using larger training sets or by smoothing the training process, i.e. assigning small

probabilities to events that do not occur in the training data (see Section 7.3).

The degree of overfitting is influenced not only by the size of a training set, but
also by the sizes of the input and output alphabets, with small alphabets implying
a higher probability of occurrence for all possible events, and the sparseness of the
training data. Data from natural language follows Zipf's law (Manning & Schutze,
1999):

f<x-=>fr = k (7.1)
r

i.e. the frequency / of a word in a text is inversely proportional to its rank r and
a constant k describes the relationship between frequency and rank. For instance,
the 10,/i most common word should have a frequency that is two times higher than
the 20Ih most common word. This implies that the frequency distribution is such
that there are few words with very high frequencies and a large number of words
with very small frequencies, resulting in data sparseness. If frequencies and rank
form a near straight line when plotted in a double logarithmic graph, the data's

frequency distribution follows Zipf's law. The frequency distributions of events in
data sets outside natural language can also be compared to Zipf's law. For instance,

Figure 7.1 shows the ranks and frequencies of the soprano and bass pitch symbols.
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Figure 7.1: Rank and frequencies of bass and soprano pitch symbols from 80
chorales (5880 symbols), compared to Zipf's law.

The frequencies of the pitch symbols are taken from 80 chorales1, sampled at

crotchet rate. There is a total of 5880 pitch symbols per voice and 47 different

symbols are possible (additional to 42 pitch symbols, there are 2 rest symbols and
3 phrasing symbols)2 27 of the bass events and 23 of the soprano events have
non-zero frequencies, with the first 13 events having frequencies higher than sug¬

gested by Zipf's law (the highest ranked events for bass and soprano have fre¬
quency counts of 977 and 835 respectively). The frequencies of the remaining
events however, rapidly drop to low numbers. The fact that 42.5% of the bass sym¬
bols and 51 % of the soprano symbols are not represented in the frequency chart

suggests that smoothing would be advisable. However, if these symbols have not

'All of the 80 chorales are in a major key with a 4/4 time signature. They were transposed to C
major to achieve a relative pitch profile.

2The pitch symbols are 7 letters (C, D, E, F, G, A, B) used with three accidentals (natural, sharp
and flat), representing notes both in normal and continued form. Similarly, the rest symbols are in
normal and continued.
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occurred in 80 chorales and a total of 5880 events, how important are they in the

representation of the musical structures? A symbol with a frequency count of 1

certainly has an important function inside the bar, phrase or chorale to which it

belongs, however its global function is minor.

Figure 7.2: Rank and frequencies of bass/soprano pitch pairs compared to Zipf's
law.

Figure 7.2 shows the more interesting distribution of input/output pairs of bass
and soprano pitches, taken from the same set of chorales. The logarithmic fre¬
quency/rank ratio of the pitch pairs follows a line closer to Zipf's law. One cause

is the much larger alphabet of symbols, which increases to 1939 possible symbols

(44*44 = 1936 pitch symbol pairs, plus three pairs of phrasing symbols). Of all
possible symbols however, only 192 have non-zero frequencies, i.e. approximately
90% of all possible symbol combinations are not represented in the training data.
This can be explained in part by the fact that certain pitch pairs simply would not
occur in a Bach chorale. For instance bass/soprano pitch pairs such as Cb/B# or

rank
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E#/Ab will not be found in a chorale, but they are included in the frequency count
as valid combinations of two pitches. Pairs of symbols might have non-zero fre¬

quencies, however that does not guarantee transitions between them. As mentioned
earlier, if a transition between input symbols is not represented in the training data,
it will also reflect on the performance of the IO models by rejecting certain sym¬

bol sequences. The implications of overfitting are thus greater for IO models than
for general HHMMs: not only might it not be possible to emit certain symbols
because they have a zero frequency count in the training data, but the transitions
between output symbols are directly dependent on the validity of the input symbol
sequences.

Thus the following question arises: is smoothing a necessity for a successful gen¬
erative model, or does it deflect attention, i.e. redistribute the probability space,

away from the important structural regularities of the training material? In order
to evaluate this question the models described in the following paragraphs are both
used with and without smoothing, enabling the comparison of results and of the

potential merits or drawbacks of both approaches.

7.3.1 Adjusting the Smoothing Parameter X

The value of the smoothing parameter X influences the generation of new musical
structures with a trained model. Using the events for the 80 chorales sampled
at crotchet rate (5880 separate events) as an example, Table 7.1 shows how the

probabilities of events from the possible observation set that do occur in those 80
chorales are affected by introducing smoothing.

The table contains the probabilities for the events using their absolute frequency in
the given data set, as well as the adjusted probabilities using Lidstone smoothing,
with the smoothing parameter being set to different values. It can be noted that the

probabilities are gradually reduced for the ten most frequently observed symbols
and are increased for the less frequent events as well as those events that are not

observed at all in the data set. In this case, even for the larger values of X, the
resulting increase or decrease in the probabilities for each symbol are very small.
However, the overall effect is that out of 47 possible symbols, the probabilities of
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Symbol Frequency P II o P(k = 0.1) P(A, = 0.3) P(A. - 0.5) ^5 II

C 977 16.615 16.604 16.581 16.558 16.500

G 770 13.095 13.086 13.069 13.051 13.008

A 583 9.915 9.908 9.896 9.884 9.853

( 560 9.523 9.517 9.506 9.494 9.465

) 560 9.523 9.517 9.506 9.494 9.465

E 471 8.010 8.005 7.996 7.986 7.963

D 459 7.806 7.801 7.792 7.783 7.761

F 405 6.887 6.884 6.876 6.868 6.850

B 275 4.676 4.674 4.670 4.666 4.656

[C] 269 4.574 4.572 4.569 4.565 4.555

[G] 96 1.63 1.633 1.633 1.634 1.636

F# 84 1.428 1.429 1.430 1.431 1.434

# 80 1.360 1.361 1.362 1.363 1.366

[A] 58 0.986 0.987 0.9891 0.990 0.995

G# 45 0.765 0.766 0.768 0.770 0.776

Bb 42 0.714 0.715 0.717 0.719 0.725

C# 37 0.629 0.630 0.632 0.635 0.641

[E] 34 0.578 0.579 0.581 0.584 0.590

[F] 24 0.408 0.409 0.412 0.415 0.421

[D] 20 0.340 0.341 0.344 0.347 0.354

Eb 18 0.306 0.307 0.310 0.313 0.320

[Bb] 5 0.085 0.086 0.089 0.093 0.101

[F#] 4 0.068 0.069 0.073 0.076 0.084

[Eb] 4 0.068 0.069 0.073 0.076 0.084

[B] 1 0.017 0.018 0.022 0.025 0.033

[C#[ 1 0.017 0.018 0.022 0.025 0.033

[G#] 1 0.017 0.018 0.022 0.025 0.033

Table 7.1: Absolute and relative frequency of bass pitch symbols in 80 Bach

chorales, sampled at crotchet rate, depending on the value of X. This table only
shows those pitch symbols that do occur in the chorales. For the 19 pitch symbols
that do not occur, the percentages are: P(k = 0) = 0, P(K = 0.1) = 0.017, P(k = 0.3;
= 0.0051, P(X = 0.5) = 0.0085,P(X = 1 ) = 0.017.
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Figure 7.3: Bass line generated on top of a simple metrical structure, with no

smoothing being applied to the model. Most of the pitch symbols are part of the
set of observations that occur frequently in the training data.

the ten most frequent symbols are reduced and the value are redistributed to rare or

non-occurring symbols.

The danger of picking a value of X that is too high is that, when generating new

structures using the random walk method, the generation process might start choos¬
ing too many low probability symbols and become stuck in these low probability
events. The reason for this is that the smoothing process is applied to a model after
training and thus the transitions between symbols that occur rarely (or never) in the
data set are not re-estimated. This effect can be illustrated using a simple example
of a bass line at crotchet sampling (using the data set reflected in Table 7.1) being

generated on top of the following basic metrical structure:

(4 1 2 3 4 1 2 3) (4 1 2 3 4 1) (2 3 4 1 2 3) (4 1 2 3 4 1 2 3) (4

12 3)#

The Figures 7.3, 7.4, 7.5 and 7.6 show examples of bass lines generated with mod¬
els that use the values X = 0, X = 0.1, X = 0.3 and X = 0.5 respectively.

When setting the parameter X to 0, i.e. no smoothing, the models generate new

structures that will only make use of symbols that are in the training data set (see
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Figure 7.4: For this example, the smoothing parameter X was set to OA. As in
the previous example in Figure 7.3, most of the events still occur frequently in the

training data, however the occurrence of a D If shows that a symbol from outside the

training data set can now be chosen.

Figure 7.5: X was set to 0.3 for the generation of this bass line. The (initially)
zero probability events are now chosen more frequently, the bass line starts on two

pauses for instance, a symbol that is not present in the training data set. C# and

[Fit] are also two low frequency events.
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Figure 7.6: The smoothing parameter X was set to 0.5 for the generation of this
bass. This is an example of the generation process becoming stuck within low

probability events: the second phrase has a pitch sequence [D ] G# [G# ] P. The
actual frequencies of these events in the training set are 20, 45, 1 and 0 (out of 5880

events).

Figure 7.3). The bass line in Figure 7.4 shows the effect of a small amount of
smoothing, with X being set to 0.1. The majority of the represented symbols are

still high probability events from the training set, however zero probability events

are now possible. Figures 7.5 and 7.6 show how higher values for the smoothing

parameter can result in a proportionally large number of low probability events
even in short sequences, due to the generative process becoming stuck inside tran¬

sitions between unlikely events. This can be observed especially in the second

phrase of the example in Figure 7.6. Given observations when testing the effect
of the level of smoothing on the generative process, it was decided that an appro¬

priate, and with regards to musical structures successful, value for the smoothing

parameter would be 0.1.

7.4 Model Performance and Number of States

As mentioned previously in Chapter 5.3, a model with a larger number of hidden
states is more likely to perform better when learning the characteristics of a given
data set than a model with a smaller number of hidden states. The more hidden

states a model has, the more it has the possibility to distinguish between different
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properties and structures in a data set, single them out and represent them with

probabilities. Figure 7.9 shows the top two levels of a model, with the second level

giving a representation of phrases in musical structures. In this example, four hid¬
den states describe all the phrases in a piece of music. Underneath such phrase
states, on a lower level of the hierarchy, additional states represent musical struc¬
tures of a higher granularity, for instance bars, motives and single musical events.

Taking the example from Figure 7.9, different phrase representations were exper¬

imented with when choosing an initial structure for the model. The more hidden
states are available for the representation of the notion of a musical phrase, the
more accurately each phrase in a data set will be learnt by the states and the model.
It was thought to be important that a model should, as a minimum requirement,
be able to distinguish the beginning and end phrases of a piece of music from any

other phrases. Thus it was decided that a minimum of three states should be as¬

signed to describe phrases. However, to increase accuracy, the number of states
needs to be higher; experiments were run with models from three to six phrase
states. The models with both three and six phrase states were rejected early; out of
the models with four and five phrase states, the "four states" model was retained.
Six states proved to make the overall model too large, increasing the computation
of the training step to nearly twice the duration for that same step in a model with
four states. The model with four hidden states available for phrasing information

proved to be a good compromise between accuracy (i.e. more accurate than three
states) and computation (i.e. less compute intensive and more manageable with

regards to duration).

7.5 Two-Part Music

The design of a network that has to be capable of learning and generating two-

part music, i.e. soprano and bass, is decided based on the musical structures that
are needed to construct the music. Each voice can be represented by a layering
of pitch structure, metrical structure, phrasing structure, rhythmical structure and
harmonic structure. Figure 7.7 shows an example of some of the layers that can be
extracted from a melody.



Chapter 7. Generation of Music with Composite Networks 72

G ABC G FED C

J i> J> J J J> J> J J
12 3 4 56 78 II 2 34 5 6 18 11

Figure 7.7: Simple melody separated into its pitch, rhythmical and metrical struc¬
tures.

One of these structures, or possibly a combination of them, needs to constitute
the basis for the generative network upon which the remaining structures can be
built. The quality of the foundation structure will thus be passed on and reflected
in further structures. The quality of the basis is important, thus choosing a structure

that is relatively easy to learn and reproduce seems to be the best choice. Using
harmonic structure as the foundation layer would be a musically sound choice.
However, learning the harmonic structures ofmusical training material is a difficult
task that has been addressed in a number of research projects (see chapter 2). It is
an even more challenging task to create harmonic structures from scratch, therefore
harmonic structure is not an optimal solution for a solid foundation of a generative
network. On the other hand, metrical structure is made out of repetitive patterns

of beats in bars, which can be represented easily by a probabilistic model. Metre
follows strict repetitive patterns, e.g. the 2nd beat of a bar will always follow the F'
beat, thus metrical structure does in itself contain little information that a HHMM

would need to extract. However, when combining metrical structure with phrasing
structure, which can easily be represented together with the metre, a model can
extract important features such as the lengths of phrases and the numbers of phrases
in a piece, or the relative places in a bar in which phrases begin or end. Figure 7.8
shows how metrical and phrasing structures can be coupled.

The metre/phrasing structure can be learnt by a simple HHMM. The initial struc¬
ture of the HHMM should allow the model to learn the properties of each of the
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Figure 7.8: Representation of metrical structure with added phrasing information.

different phrases. The middle level is therefore divided into four internal states, as¬
suming that every Bach chorale has a minimum of four phrases, and one production
state. The production state on that level represents the end of a chorale; the internal
states represent the phrases in a chorale. The middle level has a 'left-right' struc¬
ture: the model is forced to start at the first phrase state and traverse the remaining
states until it reaches the 'end of chorale' state. The first and last phrase states are

not self-referential, i.e. there can only be one start phrase and one end phrase. On
the lowest level the production states hold the observations, i.e. the phrasing and
metre symbols. Each phrase state is superordinate to one set of production states

representing the phrasing and metre information. After training the model with a

non-smoothing EM algorithm, superfluous transitions are removed from the model

by being assigned zero probabilities. A smoothing model would not remove these
transitions, but merely assign them very low probabilities. Figure 7.9 shows the
structure of the phrasing level of the model after training with a non-smoothing
algorithm.

After learning and generating the basic framework ofmetre, bars (as implied by the
metrical structure) and phrases, hlOHMMs will add the next layers of structures.
A bass line together with a melody imply underlying harmonies, therefore it was
decided that learning the harmonic structure is not strictly necessary if the relation¬

ships between the voices are modelled accurately (see section 5.2). A hlOHMM
that represents the dependencies between metre/phrasing and pitch should there¬
fore be sufficient. Figure 7.10 shows two possible types of networks to model both
the bass and soprano parts. In the first network, the bass is directly dependent on
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Figure 7.9: Structure of the top two levels of the metre/phrasing HHMM after training

(with a non-smoothing EM algorithm). The self-referential loop on the secondphrase

state, present in the initial model structure, was removed by the training process.

the metrical structure and will be constructed first. The soprano is in turn, directly

dependent on the bass. In the second network the roles are reversed and the so¬

prano is the first part to be constructed, followed by the bass.

Both network designs are equally valid and musically plausible, the first reflect¬

ing the creation of a melody on top of a bass line, whereas the second implies the
harmonisation of a melody. Both types of networks were used here in order to be
able to evaluate which sequence of models best captures the information held in
the training structures. The initial structures of the models are similar to the me¬

tre/phrasing model. The hlOHMMs that represent bass and soprano also have four
phrase states on the second level, each of them holding the production states that

represent the pitch symbols. The phrasing information that was used in the metri¬
cal structure is added onto the pitch structure, therefore the phrasing symbols are

also part of the hlOHMMs input and observation alphabets. Each absolute pitch is
represented by one production state per phrase, i.e. both B# and C are observations
from state C. Table 7.2 shows how the transition probabilities between events are

influenced by their relative placing. The table lists the transition probabilities from
the pitch C to any other pitch or phrasing symbol, given the input 4, i.e. the proba¬
bilities of moving from pitch C on beat 3 to the next event on beat 4.
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Figure 7.10: Possible network structures for the creation of two-part music. (1) The
bass line is modelled as being directly dependent on the metrical structure, while the

soprano is directly dependent on the bass. (2) In the second network, the places of
bass and soprano are reversed, with the soprano part being constructed before the

bass part.

Figure 7.11 is an example generated by a metre/bass hlOHMM3. Both the input
and observation sequences, i.e. the metrical structure and the pitch structure, relate
to each other in a hlOHMM that models the dependency between metre and bass.
The sampling rate in this example is a crotchet, therefore the maximum value for
the beat count in a 4/4 metre is 4. As every pitch symbol is dependent on a metre

symbol, which denotes the relative place of an event in a bar, the regularities of
the relative placing of pitch symbols can be extracted together with occurrence

frequencies and transition probabilities. This allows for some degree of distinction
between the different levels of importance of events on strong or weak beats (see
section 2.1).

After the first voice (either bass or soprano) is created, the second part needs to

be added. The final model in the network, a pitch/pitch hlOHMM, is trained on

soprano/bass (or bass/soprano) sequences and the model's parameters are adapted
3No register information is included in the pitch representation (see section 5.2). However, in

order to visualise the results with staff notation, the pitches are used with a register typical for the
voice that is being represented.
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phrase 1 phrase 2 phrase 3 phrase 4
to />(•) to /»(■) to />(•) to />(•)
F 0.0447 C 0.0273 F 0.0125 G 0.0212

E 0.0582 F 0.0407 F# 0.0350 F 0.0425

A 0.0624 E 0.0637 C 0.0551 C 0.0425

C 0.0727 B 0.0863 B 0.0562 A 0.0851

B 0.1100 A 0.0960 D 0.0710 B 0.0851

G 0.1258 G 0.1300 A 0.1211 [C] 0.7234
D 0.2581 D 0.1568 E 0.1353

[C] 0.2680 [C] 0.3990 G 0.1480
'

[C] 0.3657

Table 7.2: Transition probabilities P(-) in a (non-smoothing) metre/bass hlOHMM.
The model was trained on 80 chorales in a major key, with a 4/4 time signature
and crotchet sampling rate. The probabilities represent the transitions from pitch
C given input 4 in all of the phrase states, i.e. the probabilities of moving from the

pitch C on the third beat of a bass line to a new event on the last beat in a 4/4 bar.

to the training material's structural probabilities. The result from the first hlOHMM
in the network is then fed into the final model as the input sequence. The result of

using the bass line from Figure 7.11 as input for a bass/soprano hlOHMM is shown
in Figure 7.12.

Music that was generated from a model that uses training data sampled at crotchet
rate will lack passing and neighbour notes. A separate hlOHMM could be used
to add those extra notes to an existing pitch structure. The model scans through
the pitch structure, which is used as input, and decides, based on its parameters,
whether additional notes should be inserted between already existing ones. All the
notes of the pitch structures occur on the beat, as only those pitches have been ex¬

tracted for the training data. For the passing notes hlOHMM however, the pitches
that occur after a beat are also taken into account and all the groups of notes that

appear inside one beat will be added to the output symbol alphabet. For instance,



Chapter 7. Generation ofMusic with Composite Networks 77

(4 12 3 4 1 2 3) (4 1 2 3 4 1 2 3) <4
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Figure 7.11: Simple bass line, generated by a (non-smoothing) metre/bass

hlOHMM, annotated with metrical, phrasing and pitch structures. In a hlOHMM
that models bass pitch depending on metre, the metrical structure would serve as

the input, the pitch structure would be the observation sequence.

consider a bass line that contains the pitch context C E; the output alphabet of
the hlOHMM will include the pitches that appear in the training set immediately
between C and E. The hlOHMM can, but does not have to, insert a passing or neigh¬
bour note between two pitches by changing the pitch at time t + 1 into a group of
pitches, where the last element has to be the original pitch. Using the example of
the notes C and E, the model can either decide to keep this progression unchanged,
or to replace the E by the group DE, FE, DFE or similar.

The model that creates the passing notes is structured differently from the pre¬

vious models. Although the results would probably benefit from a differentiation
of phrases similar to the previous models, a high number of observation symbols
(due to the many different patterns of passing notes) makes it preferable to use a

smaller model. There is only one phrase state defined for this hlOHMM, resulting
in the model not being able to distinguish between the beginning, middle and end
of a piece. Figure 7.13 is an example of a bass line with added passing notes.

7.6 Four-Part Music

The networks designed to leam and generate two-part music accomplish their tasks
successfully. It is therefore a natural choice to 'upgrade' those networks to repre-
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Figure 7.12: Example of a new two-part piece generated by a (non-smoothing)

network, using the bass line from Figure 7.11.
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Figure 7.13: Bass line with passing notes added by a hlOHMM. The model takes a

context of two beats from the original (crotchet based) line and decides whether or
not to insert additional notes between the beats.

sent four-part chorales. With bass and soprano already represented with underly¬

ing metre and phrasing, the two remaining voices can be added through pitch/pitch
hlOHMMs, making them dependent on the already existing voices. The basic ini¬
tial structure of the models themselves does not change (see Figure 7.9). The major
choice that has to be made when designing four-part networks is the order of de¬

pendencies in the network. For instance, if the bass is directly dependent on the
metrical structure, and the soprano is dependent on the bass, the soprano is im¬

plicitly dependent on the metrical structure through the bass. However, implicit

dependence is not as strong and influential as direct dependence. The composite
nature of the networks allows us to experiment with different network structures.

Figures 7.14 and 7.15 show two types of four-part networks that were used here.
The first network uses a simple feed-forward architecture: the tenor is dependent
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on the alto, which in return is dependent on the soprano. Assuming that the implicit
dependency between the observations of two models becomes weaker with every

step through the network, this design would result in a tenor part that is only very

weakly dependent on the bass line for instance.

Figure 7.14: Simple feed-forward structure for a four-part network (B-S-A-T). The
tenor is directly dependent on the alto, which in return depends directly on the so¬

prano.

In order to obtain a possibly stronger dependency between all four parts, the dis¬
tance between the models in the network can be reduced. The network structure in

Figure 7.15 makes both the alto and the tenor dependent on the soprano, thus the
distance between bass and tenor in the network is smaller. The drawback however

is that, in this type of network, the connection between alto and tenor exists only
via the soprano part.

The final network architecture that was used for four-part chorales is shown in

Figure 7.16. In this network, bass and soprano are created in separate steps and
models, however they are then used together as input for a model that creates both
alto and tenor. Only one sequence can act as input, and only one observation se¬

quence can be created, thus two pitch structures have to be merged into one:
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Figure 7.15: Network structure in which both the alto and the tenor part are made

directly dependent on the soprano (B-S-A-S-T).

B S B S B ... bass/soprano input
A T A T A ... alto/tenor output

For instance, given the bass line CEFG and the soprano EGAG, the resulting input

sequence becomes C E E G F A G G. In the observation sequence, the alto and tenor

pitches are placed underneath the bass and soprano pitches respectively. Thus, ev¬
ery alto pitch is directly dependent on the bass and every tenor pitch is dependent
on the soprano. The vertical connection, i.e. the connection between input and
output symbols is valid. However, the horizontal connection, i.e. the connection
between the symbols in either input or output, is more problematic. The model
learns from a training set that uses merged input and output sequences, thus it can
extract the properties of the data and the transition probabilities between the events

of different voices. However, because the models used here are of the first order,

i.e. in every point in time t the model only looks one step back at the immediately
preceding event at time t - 1, the direct dependencies between the pitches of one
voice cannot be captured. For instance, when generating a new tenor pitch, the
model will not be able to directly look back at the last event in the tenor, but it
can only do so via the latest alto pitch. This will certainly lead to some obvious
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Figure 7.16: BS-AT network which first creates bass and soprano separately, and
then merges both voices together to use as one input sequence. The final model in
the network generates both the alto and tenor part.

mistakes in the material generated from this network, however the results are still

likely to reflect some of the structures of the training data. A model of the second-
order, which at time t takes events from both times t - 1 and t - 2 into account,

would resolve the problem. However, as second-order hlOHMMs are beyond the

scope of this research4, we use the first-order models and try to assess this net¬

work's merits in comparison with networks introduced previously.

All of the network designs presented here were trained to learn and generate large-
scale musical structures. They were used with smoothing and non-smoothing EM

algorithms, and used musical data sampled at both crotchet and quaver rates. The
results and the performance of the different types of network are evaluated and
discussed in the following chapters.

7.7 Summary

Generative composite networks are a collection of different types of HMMs, in
which the output from one model is fed into the next model, thus layering the struc-

4In first-order HHMMs (and hlOHMMs), the transition probabilities are held in two-dimensional
matrices A/y. For a second-order model however, the matrices have to be three-dimensional, i.e. A,yt,
to reflect the dependency of the current event on two, rather than one, previous events. Therefore the
definitions of the inference algorithms would have to be adapted to using three-dimensional matrices,
which is beyond the scope of this research.
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tures that result from each stage of a network. This chapter introduces the concept
of composite networks as used in the research and shows how these networks can

be used to learn from existing data as well as generate new data. The potential
advantages and drawbacks of using non-smoothing and smoothing models with
musical data are highlighted. The basic structure of a model inside a network, as

well as several different network structures are laid out to demonstrate the flexibil¬

ity and adaptability of the composite network concept. The following chapter will
evaluate a number of musical examples that were generated using networks of the

types introduced here.



Chapter 8

Evaluation of Results

A network's ability to accurately model musical structures is reflected in the quality
of the results it can generate. The evaluation of the results is divided into two main

parts: a subjective evaluation, achieved mainly with a listening experiment, and
a more objective measurement of how well the training data is learnt, using the

cross-entropy measure and music theoretical rules to assess the models' ability to

learn to musical data sets, the quality of the results and the merits of the composite
network approach.

8.1 Listening Experiment

A listening experiment is an excellent method for receiving subjective feedback
on musical works. Rather than concentrating on objective measures of quality, it

highlights how the music is perceived. In order to get an overview of how well the
different types of networks perform on both two-part and four-part music, the ex¬

periment was split into two sections. With a total of 27 subjects' available for the
entire experiment, 13 subjects participated in the experiment for two-part music,
while the remaining 14 subjects were assigned to the study of four-part examples.
The number of subjects participating in this experiment is small, however all the

subjects are musically trained and able to provide the desired subjective feedback.
A greater number of subjects would certainly deliver more accurate results, as the

1 Music students from the Royal Scottish Academy of Music and Drama (RSAMD) in Glasgow,
UK.

83
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impact of each individual's assessment is reduced the larger the number of sub¬
jects that are delivering assessments. If there is only a small number of participants
available, a single subject's feedback has increased impact on the overall results,

potentially reducing the significance of those results. The aim of the listening ex¬

periment was to establish an overall picture of the subjective perception of the
machine generated musical structures. Every question in the experiment uses a

control value, i.e. an original Bach chorale, to judge the significance of the partici¬

pants' assessments.

The musical examples used in the experiment were generated by a range of differ¬
ent types of networks, thus allowing for a performance comparison of the various
network designs. The test examples are chosen as to reflect a cross-section of the
data generated by different models and different composite networks. The number
of examples in the experiment is kept small for a number of reasons: firstly, listen¬

ing experiments require a high level of concentration from all the participants and
the duration of such an experiment should therefore be kept short; secondly, each
musical example in the experiment should be assessed from more than one point of
view, i.e. more than one question should be asked about that example. Both points
led to the decision to have a small number of questions and musical examples,
which are used throughout the experiment.

Aiming to get a broad view of how the different musical examples are perceived,
six questions had to be answered for each section of the experiment:

• Is the piece an original Bach chorale?
• Does the piece progress towards a perfect cadence?
• Are the phrases well-structured throughout and do they progress towards a

cadence?

• Is the piece harmonically well-structured throughout?
• Is the piece similar in style to a Bach chorale?
• How would you assess the overall quality of the piece?
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For each question, four musical examples were played to the subjects2, who then
had to answer the question for all four examples. The examples were played only
once; after all the examples for one question had been listened to, the subjects were
allowed thirty seconds to finalise their answers before moving on to the following

question. One original Bach chorale was part of each group of examples. The
result given for the Bach chorale acts as the question's control value for remaining
examples, i.e. the quality of the answers given by the subjects is dependent on the
answers given for the original chorale, which is expected to always receive the

highest score. In an effort to achieve a balanced evaluation, the subjects were not

told that they were being presented with exactly one original chorale per question.
The following sections provide a detailed analysis of the results of the listening

experiment.

8.1.1 Two-part examples

The musical examples for either section of the listening experiment should reflect a

variety of different network types and sampling rates, and also represent smoothing
and non-smoothing models. The following examples were used in the first part of
the experiment (all the examples can be found in staff notation in appendix A):

(2P1) Bach chorale K181, BWV 133, crotchet
(2P2) B-S, no smoothing, crotchet
(2P3) B-S, no smoothing, quaver
(2P4) S-B, smoothing, crotchet
(2P5) Bach chorale K209, BWV 145, quaver
(2P6) B-S, smoothing, quaver
(2P7) S-B, no smoothing, crotchet
(2P8) B-S, flat HMMs, no smoothing, quaver
(2P9) Bass added to melody of chorale K211, BWV 367, taken from (Allan, 2002)
(2P10) B-S, no smoothing, passing notes added separately

Examples 2P1 and 2P5 are the original Bach chorales that will act as the control
values for the questions. Example 2P9 is taken from (Allan, 2002): the soprano is

2The music was encoded in MIDI format and played to the subjects from a CD, thus ensuring a
uniform performance.
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the original chorale melody, the bass was added on with a flat HMM. All except
one of the remaining examples were generated by first creating the bass line, then

adding the soprano. Example 2P8 was generated with a network of standard, flat
HMMs in order to enable a direct comparison between the results of hierarchical
models and flat models. Two different sets of training chorales were used for exam¬

ples sampled at either quaver or crotchet rate, the former consisting of 50 chorales
(6511 events), the latter consisting of 80 chorales (5880 events).

The first question the subjects were asked, "Is the piece a Bach original?", aims
both at evaluating the subjects ability to recognise an original Bach chorale and
at getting a first overview of the quality of the computer generated results. Ta¬
ble 8.1 shows the results for this question for examples3 2P1, 2P3, 2P4 and 2P2.
As expected, all the subjects correctly recognised the last example as being an

original Bach chorale. Out of the three remaining examples however, only exam¬

ple 2P4 (see appendix A, Figure A.4), created by an S-B network with smoothing,
is unanimously identified as being computer generated. Examples 2P2 and 2P3,
both generated by non-smoothing models that add the soprano onto the bass, score

relatively high with 30% and 38.5% of the subjects respectively mistaking those

pieces for original chorales.

It was expected that the example created from a network with smoothing models
would receive a lower score, because these models potentially allow any succes¬

sion of events to occur, albeit with a very small probability. The low probability
events that are selected by the smoothing models can thus result in examples that
are further removed from the structures of the training set. Example 2P3 (see ap¬

pendix A, Figure A.3), which received the highest score of the computer generated

pieces, is the only example in this set that is sampled at quaver rate. The models
that generated this piece were trained on a larger set of chorales, and thus were

enabled to extract a larger amount of structural information, which in return is re¬

flected in the results.

3The numbers of the examples refer to the list of examples at the beginning of section 8.1.1. The
order in which the examples are listed in the tables is the order in which those examples were played
to the subjects.
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Is the piece a Bach original?

yes no

Example 2P3 5 = 38.5% 8 = 61.5%

Example 2P4 0 = 0% 13 = 100%

Example 2P2 4 = 30% 9 = 70%

Example 2P1 13 = 100% 0 = 0%

Table 8.1: Example 2P1, the only Bach chorale in this set of examples, was correctly

recognised as the only original work. The three remaining examples are computer

generated, with only example 2P4 being identified as such by all the subjects.

One of the aims of this research is the generation of large-scale musical structures,
e.g. musical pieces that are well-structured overall and progress towards cadences.
For questions 2 to 5 the musical examples were given ratings from 1 to 5, with 1

being "not at all" and 5 meaning "very much so". When answering question 2 (see
Table 8.2), the subjects were asked to specifically concentrate on whether the entire

piece progresses towards a perfect cadence. The original chorale again receives the

highest rating, closely followed by example 2P7, generated from an S-B network
with no smoothing and crotchet sampling. Example 2P6, from a smoothing net¬

work with quaver sampling rate, scores considerably lower. Although the models
in the quaver network can learn from a larger training corpus, this effect is weak¬
ened by the smoothing applied during training. Example 2P8 was created from a

network that uses flat HMMs only, thus no hierarchical information is represented
in those models, which are unable to distinguish the relative timing of events in
musical structures. A piece generated from such a network thus does not progress

towards a perfect cadence at the end, because the models are unable to distinguish
between the separate phrases of a musical piece.

Questions 3 and 4 (see Tables 8.3 and 8.4) look at the melodic and harmonic struc¬

turing of the phrases that make up the musical examples. As expected, example
2P6 (smoothing B-S network, quaver rate) receives a similarly lower result than
for the previous question. Examples 2P3 and 2P10, both sampled at quaver rate,
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Does the piece progress towards a perfect cadence?
1 2 3 4 5 p

Example 2P6 2 5 3 3 0 2.54

Example 2P8 13 0 0 0 0 1

Example 2P5 0 2 4 4 3 3.61

Example 2P7 115 5 1 3.30

Table 8.2: The original chorale, example 2P5, receives the highest rating with a

mean of 3.61, closely followed by example 2P7 at 3.30. Example 2P8, the only

piece that was generated by a network of flat HMMs, receives an overall rating of 1,
and thus is identified as not progressing towards a perfect cadence at all.

received the highest rating respectively.

Are the phrases well-structured and do they progress

towards a cadence?

1 2 3 4 5 p

Example 2P9 1 3 7 2 0 2.77

Example 2P3 2 14 5 1 3.15

Example 2P6 1 6 3 2 1 2.70

Example 2P5 0 2 1 3 7 4.15

Table 8.3: Overall low ratings for the computer generated examples, with only the

piece generated from a non-smoothing network being judged to be slightly above

average.

The final two questions are aimed at providing a general overview of the quality
of the musical examples. Whereas for question 5, "Is the piece similar in style to

a Bach chorale?" (see Table 8.5), none of the computer generated examples re¬

ceives a rating above average, the results for question 64 are more revealing (see
Table 8.6): assessing the overall quality of the original Bach chorale with a rela-

4For question 6, the value 1 equals to the assessment "very poor", 5 equals "very good".
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Is the piece harmonically well-structured throughout?
1 2 3 4 5 P

Example 2P1 0 1 2 4 6 4.15

Example 2P8 2 3 7 1 0 2.54

Example 2P2 0 5 6 2 0 2.77

Example 2P10 0 2 4 7 0 3.38

Table 8.4: Example 2P8, generated from flat HMMs receives the lowest score as

anticipated. Example 2P10, generated with a crotchet based network and a passing
notes model, receives the highest rating of the computer generated examples.

Is the piece similar in style to a Bach chorale?
1 2 3 4 5 P

Example 2P2 0 4 8 1 0 2.77

Example 2P1 0 1 2 4 6 4.15

Example 2P7 0 5 4 4 0 2.92

Example 2P4 4 7 1 1 1 2.30

Table 8.5: Ratings below average for the computer generated examples, and the

original chorale again obtains the highest score. The style of the Bach chorales
thus seems to be reflected poorly in examples 2P2, 2P4 and 2P7.

tively low mean value of 3.54, the next best example (2P3) scores an average result
of 3.23. Although the mean values are not very high, it shows that the quality of
both examples is perceived to be quite similar. Example 2P3 has obtained high
ratings throughout the experiment, and these ratings are reflected and summarised
in the results for question 2P6.

Certain examples receive high scores throughout the experiment, thus suggesting
that they are strong representations of the musical structures in the training data.
For instance example 2P3, which was mistaken to be an original chorale by 5 out of
13 subjects, also receives high scores in questions relating to the phrase structures
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How would you assess the overall quality of the piece?
1 2 3 4 5 n

Example 2P6 0 4 6 3 0 2.92

Example 2P5 0 2 4 5 2 3.54

Example 2P9 2 7 3 1 0 2.23

Example 2P3 1 1 6 4 1 3.23

Table 8.6: The original chorale receives a relatively low score, albeit the highest
score for the four examples. Example 2P3, which has consistently received high

ratings throughout the experiment, obtains a a score similar to the Bach chorale.

and overall quality. Additionally, this underlines the validity of the results given by
the listeners, who attribute consistent levels of quality to the various examples.

8.1.2 Four-part examples

The results of the two-part experiment show that certain networks are more suc¬

cessful than others in capturing musical structures, the dependencies inside those
structures and those between the different layers that make up a piece of music.

Judging the harmonic and cadential structures, as well as the general quality of
the interdependencies of the different voices of two-part examples can be difficult,

especially when the musical examples are sampled at crotchet rate. The four-part

listening study thus provides a deeper insight into how the musical examples are

perceived.

The following nine examples were set up for the four-part listening study:

(4P1) Bach chorale K181, BWV 133, crotchet

(4P2) B-S-A-T, no smoothing, crotchet
(4P3) B-S-A-S-T, no smoothing, quaver
(4P4) Bach chorale K209, BWV 145, quaver
(4P5) B-S-A-S-T, smoothing, quaver
(4P6) B-S-A-S-T, no smoothing, quaver
(4P7) B-S-A-S-T, flat HMMs, no smoothing, quaver
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(4P8) Harmonisation of chorale melody K211, BWV 367, taken from (Allan,

2002)

(4P9) BS-AT, no smoothing, crotchet

Most of the examples are built on the existing two-part pieces; example 4P9 uses

the melody and bass of Bach chorale K211. Reusing the musical structures from
the two-part examples allows for the comparison of the results of both the two-part
and the four-part experiment.

The subjects were asked the same questions as in the two-part experiment. The
first question again asks whether a musical example is an original Bach chorale.

Similarly to the two-part study the subjects identify two of the examples as origi¬
nal and machine generated chorales respectively (though not unanimously), leaving
the remaining two examples with a more mixed result. Built on the soprano and
bass structures from the third example of the two-part experiment, example 4P3 is

again mistaken to be an original chorale by a high percentage of subjects. Example
9 however receives a low score, although it uses the soprano and bass parts of Bach
chorale K211 and could therefore have been expected to confuse the listeners.

Is the piece a Bach original?

yes no

Example 4P9 1 = 7.15% 13 = 92.95%

Example 4P3 6 = 42.9% 8 = 57.1%

Example 4P2 2 = 14.3% 12 = 85.7%

Example 4P1 13 = 92.95% 1 = 7.15%

Table 8.7: Example 4P1 was almost unanimously identified as being the only original
chorale. Example 4P9 uses the soprano and bass parts of Bach chorale K211, the

alto and tenor parts were machine generated. Example 4P3, which is based on the
same example of the two-part experiment, is mistaken to be an original chorale by
6 out of 14 subjects.
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The following two questions target the overall structures and the phrase structures

of the examples, as well as their progression towards a cadence at the end of each

phrase or piece. Both examples that were generated with flat HMMs, i.e. examples
4P7 and 4P8, are assessed with the lowest result in each question, with a mean

score of 1.85 and 2 respectively. They are followed by the pieces that were gener¬

ated using smoothing models, leaving examples 4P3 and 4P6 with the best scores

among the machine generated examples.

Does the piece progress towards a perfect cadence?
1 2 3 4 5 p

Example 4P5 3 3 8 0 0 2.35

Example 4P7 8 3 111 1.85

Example 4P6 0 3 6 4 1 3.21

Example 4P4 0 0 1 4 9 4.57

Table 8.8: 4s anticipated, the example generated from the network that uses flat
HMMs received the lowest score with a mean value of 1.85. The results for the

piece generated with a smoothing network (example 4P5) are also considerably
lower than the results for example 6, which was generated without smoothing.

Question 4 aims to obtain an assessment of the harmonic structuring of the musical

examples. Reflecting the results of previous questions, example 4P7 is seen to be
of poor quality and example 4P6 receives a consistently high score.

The final question aims at the pieces' overall perceived quality as well as their

quality in comparison to the original Bach style. Surprisingly, although example
4P3 was mistaken by 6 out of 14 subjects to be an original Bach chorale, it only
scores a mean value of 2.71 for question 5, "Is the piece similar in style to a Bach
chorale". It thus receives the same score as example 4P2, which was estimated to

be a Bach original by only 2 out of 14 subjects. However, when asked about the
overall quality of the pieces, examples 4P3 is again the machine generated piece
with the highest score.
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Are the phrases well-structured and do they progress

towards a cadence?

1 2 3 4 5 p

Example 4P8 5 6 2 0 1 2

Example 4P3 1 4 3 7 0 3.28

Example 4P4 0 0 2 2 10 4.57

Example 4P5 3 2 8 1 0 2.50

Table 8.9: Example 4P3 was mistaken by 6 out of 14 subjects to be an original Bach

chorale, which is again underlined by this relatively high result in the assessment

of the quality of the phrase structures. Both examples 4P5, which was generated

by smoothing models, and 4P8, taken from (Allan, 2002), are considered by the

subjects to be of a poorer quality.

Several results can be drawn directly from the listening experiment. One clear ob¬
servation is that musical examples generated from systems formed with flat HMMs
are perceived to be of poorer quality than those generated with models and net¬

works that make use of the hierarchical structures in musical material. The pieces
generated with the flat models consistently received the lowest scores in each group
of examples, and they were assessed to be of especially low quality for questions
that targeted the overall structure of a piece and its progression towards a final ca¬
dence.

Additionally it can be extracted that examples created with non-smoothing models
received higher scores overall than those examples from smoothing models. Non-

smoothing models are stricter when generating structures, because transitions and

progressions that do not exist in the training corpus are not allowed in the gener¬

ation process. Finally, the choice of network composition also seems to influence
the quality of the generated results. In the two-part experiment, the examples gen¬
erated with an S-B network receive slightly lower scores than those generated with
a B-S network. This can be explained thus: in Bach chorales bass parts are often
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Is the piece harmonically well-structured throughout?
1 2 3 4 5 p

Example 4P7 2 8 3 1 0 2.21

Example 4P6 0 14 8 1 3.28

Example 4P1 0 1 1 2 10 4.50

Example 4P9 2 6 4 1 1 2.69

Table 8.10: Example 4P6 receives a consistently high score, whereas example 4P7
is again judged to be ofpoor quality.

Is the piece similar in style to a Bach chorale?
1 2 3 4 5 p

Example 4P6 0 2 7 3 2 3.35

Example 4P1 0 0 3 3 8 4.35

Example 4P3 0 8 4 0 2 2.71

Example 4P2 2 5 4 2 2 2.71

Table 8.11: Example 4P3 receives a surprisingly low score which is not in keeping
with previous results for this examples. Example 4P6 is seen to be the machine

generated example that is closest in style to an original Bach chorale.

more varied than soprano parts (see chapter 7.3), using a larger number of different

possible events. They are therefore slightly more difficult to represent and learn
with a machine than soprano lines. In the case of a B-S network, the bass line is
matched against the metrical structure, conditioning the possible bass events to a

relative place in a bar. The number of metrical events is very small, thus matching
the bass structure to the metrical structure successfully narrows the event space

for the bass. However, if the bass is added after generating the soprano (and is
therefore directly dependent on the soprano), the number of possible bass events in
every generative step is larger, thus possibly leading to the generation of structures
that are of poorer quality.
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How would you assess the overall quality of the piece?
1 2 3 4 5 p

Example 4P5 0 8 4 1 1 2.64

Example 4P8 4 6 3 1 0 2.07

Example 4P3 0 2 7 5 0 3.21

Example 4P4 0 0 2 2 10 4.57

Table 8.12: Example 4P3 is back to receiving the highest result out of the machine

generated examples. Similar to the earlier results, example 4P8 is assessed with

the lowest score.

8.2 Measurement of Learning

The subjective evaluation of the musical examples generated with a variety of dif¬
ferent networks highlights the listeners' preference of certain musical results, and
thus points towards the networks which have generated those results. Each model's
and network's ability to learn a musical data set can be measured more objectively

by calculating the cross-entropy values of the training data and the newly created
results. The measure of cross-entropy, which was introduced in section 3.2, allows
to put an absolute value (given the model) on the accuracy with which a model
learns the training data. However, we are not using the cross-entropy values in the
standard Machine Learning approach. Cross-entropy values calculated on the train¬

ing data gives us confidence that the program produces reasonable results. Lower
values indicate a closer approximation of the training data. The more complex the

training material, the higher the cross-entropy value for that material and a given
model or network.

The real probability distribution of the language that forms musical structures is
not known, however it can be approximated using a corpus of examples that rep¬
resent a part of the language. In this work we used cross-entropy as a measure of
how successful the different models are in learning structures of training data, by

comparing results on that data. An interesting extension to the evaluation would
involve the more usual use of cross-entropy results for unseen data.
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Smoothing is used to enable the program to introduce events that do not occur

in a training data set during the generation of new material. The cross-entropy

measurements could be performed without taking the smoothing models into ac¬

count, because there are no unexpected events in the training data. However, given
that we are also interested in generating new material using our program, we want

to include smoothing so as to be able to put cross-entropy values on the new data.

Using this type of measurement, the cross-entropy values for models that use

smoothing are expected to be higher than the cross-entropy values for equivalent
models with no smoothing. The reason for this is that the transition and emission

probabilities are distributed more widely across the entire model and the proba¬
bilities are lower overall because a given percentage of the probability space is
reserved for the smoothing process. These lower probabilities lead to a higher
value of cross-entropy for each smoothing model. The cross-entropy values for

smoothing models are shown (e.g. in Table 8.15 ) to illustrate this point.

Tables 8.13 and 8.14 list the cross-entropy values calculated using the training
data for the non-smoothing models and networks that generated musical examples
for the two-part listening experiment. Eighty different chorales (5880 events in to¬

tal) were used to train the models that generated material sampled at crotchet rate,
whereas 50 chorales (6511 events) provided training data sampled at quaver rate.

The cross-entropy values are calculated separately for each model, i.e. each step

through the network, and are then added together to form a global entropy value
for the entire network. This global value allows us to compare different types of
networks, provided that they are built using the same types and numbers of models.
The networks in Tables 8.13 and 8.14 for instance are all built from three separate

models that represent metrical structure, metre/pitch structure and pitch/pitch struc¬

ture.

In both Tables 8.13 and 8.14 the cross-entropy values are slightly higher for the

larger training data set, i.e. the data set that samples the Bach chorales at quaver

rate, which is an expected result. The larger the data set the models can learn from,



Chapter 8. Evaluation of Results 97

non-smoothing Bass-Soprano networks
80 examples 50 examples

metre 1.093 1.151

metre/bass 5.160 5.732

bass/soprano 5.406 5.816

total 11.659 12.699

Table 8.13: Cross-entropy values of the training data for a non-smoothing Bass-

Soprano network. The left-hand column shows the cross-entropy results for 80

training examples sampled at crotchet rate (5880 events), the right-hand column
shows those same values for 50 examples sampled at quaver rate (6511 events).

non-smoothing Soprano-Bass networks
80 examples 50 examples

metre 1.093 1.151

metre/soprano 4.871 5.312

soprano/bass 6.622 7.140

total 12.586 13.603

Table 8.14: Cross-entropy values of the training data for a non-smoothing Soprano-
Bass network.

the more diverse the distribution of probabilities that reflect this data set.

The cross-entropy results for the different stages of the networks also reflect the
levels of complexity of the structures that are represented by the models. Accord¬

ing to the results, metrical structure can be represented a lot more accurately by
a model than pitch structure for instance. Compared to pitch structure, metre has
a very low cross-entropy: metrical structure is regular and predictable, and can

easily be represented by a model. The metre/pitch and pitch/pitch models have
to represent structures with an increased complexity, thus the cross-entropy of the

training data is higher. The cross-entropy values indicate that a network that models
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soprano depending on bass is slightly more successful in capturing the structural

probabilities of the training material. For instance, the global cross-entropies of
the training data as represented by a Soprano-Bass network are consistently higher
than those represented by a Bass-Soprano network. The metre/soprano model re¬
ceives slightly better values than the corresponding model in the Bass-Soprano
network, however the entropy values for the final step through the network are

considerably higher and result in comparatively worse global cross-entropies. The
main explanation for this effect are the different levels of complexity of bass and

soprano lines respectively. Bass lines tend to be more diverse than soprano lines,
which often prefer a uniform pitch distribution. Thus, for a probabilistic model, a

soprano part is simpler to learn through the extraction of probabilistic structures.

This is reflected in the cross-entropy values of the metre/soprano and metre/bass
models. In the consecutive step through the network however it becomes apparent
that the simpler structure of a soprano part is not beneficial when acting as the input
to a model. The lack of diversity of events in a soprano part reduces the probability
of each bass event, thus the cross-entropy values for the soprano/bass models are

higher than the values for the bass/soprano models.

Tables 8.15 and 8.16 show the cross-entropy values for the same training material,

represented by smoothing networks. The metrical structure was modelled without

smoothing, therefore the cross-entropy remains the same as previously. The values
are again slightly increased compared to the non-smoothing networks. This can

easily be explained: because smoothing models take a part of the probability space

and assign it to events that have not occurred in the training material, the probabili¬
ties of every event that does occur in the training data is slightly lower than if there
were no smoothing process.

Comparing the cross-entropy values for the networks that use hierarchical models
with those that use standard flat HMMs (see Table 8.17), the results support the as¬

sumption that the hierarchical structure of the models facilitates and enhances the

accuracy of the learning process. For the same training material, the cross-entropy

values are notably higher. With only one level of description that represents all the

phrases in a piece, the transitions between the states are assigned lower probabil-
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smoothing Bass-Soprano networks
80 examples 50 examples

metre 1.093 1.151

metre/bass 6.841 6.992

bass/soprano 7.012 7.327

total 13.946 14.470

Table 8.15: Cross-entropy values of the training data for a smoothing Bass-Soprano
network. (The metrical structure was learned using a non-smoothing model, thus
the values are identical to those for non-smoothing networks.)

smoothing Soprano-Bass networks
80 examples 50 examples

metre 1.093 1.151

metre/soprano 6.767 6.832

soprano/bass 7.311 7.614

total 15.171 15.597

Table 8.16: Cross-entropy values of the training data for a smoothing Soprano-Bass
network.
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non-smoothing Bass-Soprano networks with flat HMMs
80 examples 50 examples

metre 1.597 1.611

metre/bass 7.124 7.398

bass/soprano 7.540 7.781

total 16.261 16.790

Table 8.17: Cross-entropy values of the training data for a non-smoothing Bass-

Soprano network of flat HMMs.

ities because they are independent of their timing. For example, a transition G -

Bb that only occurs in the first phrase of a piece is assigned zero probability (or
a very small probability if the model uses smoothing) by a hierarchical model in

every phrase except the first one; a flat model however will allow the transition in

every phrase and thus reduces transition probabilities overall.

Given the global cross-entropy values, the non-smoothing Bass-Soprano network
should be the most accurate in modelling, and thus predicting, the training material.

Assuming that successful modelling of the training data will lead to the successful

generation of believable results, the network should have generated those results
that scored the best results in the two-part listening experiment. Indeed, the sub¬

jects evaluate the two pieces, 2P2 and 2P3 (see Figures 8.1 and 8.2), that were

generated by this type of network as being of high quality, especially example 2P2
in Figure 8.2. This example has a cross-entropy of 15.138, which is considerably
higher than the cross-entropy of the training data at 12.699. However, the goal
is to model the training material as closely as possible and to reuse the probabili¬
ties extracted during training during the generating process. The cross-entropy of
the generated material thus shows how far the new material is removed from the

training data, it does not directly reflect the quality of the training process. Newly

generated examples whose cross-entropy is close to the cross-entropy of the train¬

ing data however are likely to be of better quality than those examples with much

higher cross-entropy values. This is especially true for examples generated using
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smoothing models: if a new piece has a cross-entropy that is much higher than
the cross-entropy of the training data, it is likely that a substantial part of the new

example was built from events that did not occur in the training material.
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Figure 8.1: Non-smoothing Bass-Soprano network, sampled at crotchet rate. Cross-

entropy values per model: metre = 1.075, metre/bass = 5.139, bass/soprano =

4.920. Global cross-entropy value: 11.134.

The example in Figure 8.2 received a higher global cross-entropy value because it
includes a small number of lower probability events. The local cross-entropy for
the metre/bass structure is especially high compared to the training material, which

suggests that most of the lower probability events occur in the bass line. The fact
that this example was the subjects' preferred piece (aside from the original Bach
chorales) in the listening experiment supports that salient, low probability events

can increase the quality of a piece of music. Too many rare and low probability
events in the music however may have the opposite effect and break the flow of the
musical structures. This can be problematic for examples generated by smoothing
networks which give too much probability space to previously unseen events.

Soprano

Bass
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Figure 8.2: Non-smoothing Bass-Soprano network, sampled at quaver rate. Cross-

entropy values per model: metre = 1.075, metre/bass = 7.738, bass/soprano =

6.325. Global cross-entropy value: 15.138.

The cross-entropies of the four-part training material are similar in value: Ta¬
bles 8.18 and 8.19 show the degrees of accuracy with which the two different types
of networks represent each training corpus. The global entropies are very similar
for both networks, with a slight preference given to the network that represents alto
and tenor being dependent on the soprano.

8.3 Analysis of Generated Music

The cross-entropy measurement puts a value on a composite network's ability to

capture and represent the data in a training corpus. However, it can only give a

limited insight into the quality and correctness of the musical examples that are

generated using these networks. This section gives a musical analysis of some of
the four-part examples used in the listening experiment, focussing mainly on the
structural aspects of the music.
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non-smoothing B-S-A-T networks
80 examples 50 examples

metre 1.093 1.151

metre/bass 5.160 5.732

bass/soprano 5.406 5.816

soprano/alto 5.374 5.832

alto/tenor 5.243 5.768

total 22.276 24.299

Table 8.18: Cross-entropy values of the training data for a non-smoothing B-S-A-T
network.

non-smoothing B-S-A-S-T networks
80 examples 50 examples

metre 1.093 1.151

metre/bass 5.160 5.732

bass/soprano 5.406 5.816

soprano/alto 5.374 5.832

soprano/tenor 5.012 5.615

total 22.045 24.146

Table 8.19: Cross-entropy values of the training data for a non-smoothing B-S-A-S-T
network.
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Ideally, each piece of music that is generated based on probabilities extracted from
a set of Bach chorales should have a style-specific structure. A main characteris¬
tic, which is addressed in two questions in the listening experiment, is that each
phrase ends in a cadence, with the final phrase ending in a perfect cadence. The

listening experiment evidently shows that the lack of cadences in the musical ex¬

amples results in a very poor quality assessment by the subjects. Example 4P3
(see Appendix B, Figure B.3), which received the best results, does indeed have

clearly defined cadences. The piece consists of five phrases, all of which end on

either the dominant or the tonic. The perfect cadence at the end of the piece is a

V -II6-V1 -I progression. The phrases of example 4P6 (see Appendix B, Fig¬
ure B.6), which is also judged to be of acceptable, if slightly poorer, quality in the
listening experiment, progress towards cadences (either dominant or tonic). The

perfect cadence at the end of the piece is less clear (I6 - //| — I), if still present.
As opposed to these two pieces example 4P7, generated by a network of standard
flat models (see Appendix B, Figure B.7), does not show any progression towards
cadences at the end of its phrases, or indeed the end of the piece. The lack of a
flat model's ability to learn the relative time of an event in a piece, which is sup¬

ported by the hierarchical models, becomes evident. Similarly, the example taken
from (Allan, 2002) (example 4P8, see Figure B.8), which was also generated using
standard HMMs, does not show any progression of the harmonic structure towards
cadences at the end of the phrases. The piece does find a perfect cadence at the
end with a I — V1 -1 progression, however the example is a harmonisation of the
original melody which thus strongly leads the models towards the perfect cadence.

Given that these four examples represent various levels of quality as assessed by the

subjects of the listening experiment, it is worth having a closer look at all the ex¬

amples individually to highlight and understand the possible reasons behind those
assessments. Example 4P3 was mistaken to be an original Bach chorale by 42.9%
of the subjects, and received above average results for all questions except one,

which targets the style of the piece. Aside from the presence of cadences, which
was discussed earlier and has an obvious influence on the subjects' judgements, the
overall structuring of the phrases and the reuse of certain patterns inside the phrases
are important to the perception of the entire piece. The use of small patterns and the



Chapter 8. Evaluation of Results 105

repetition of these patterns is evident in example 4P3. On the metrical/rhythmical
level, there seems to be a preference for the quaver-quaver-crotchet pattern, which
occurs throughout the piece and in all four voices. The use of this pattern becomes

especially clear for instance in the second phrase, where it is alternated between
alto, tenor and bass. This pattern is used similarly in the final phrase, adding the
notion of contrary movement between the voices. Another example of repeated
structures is the rhythms at the end of phrases three and four, which are almost
identical to each other. This reuse of small patterns in a piece of music is a clear
indication of parallelism, i.e. the occurrence of identical or similar fragments of
events. The phenomenon of parallelism will be discussed further in Chapter 9.

Additionally, the piece seems to have an acceptable large-scale structure. For in¬
stance, the second-last phrase progresses towards a cadence on the dominant, then
the final phrase modulates briefly into A minor before returning to C major and

ending in a perfect cadence. The sum of these points can probably explain why the

subjects rated the example to be of an above average quality during the listening

experiment. However, the piece is far from being mistake-free: the occurrence of

parallel fifths or octaves is not uncommon, especially between voices that are not

directly dependent upon each other in the network. Thus for example the alto and
bass parts are entirely parallel in bar nine, a clear mistake according to the rules
associated with Bach chorales.

Example 4P6 was judged to be of similar quality to the previous example, how¬
ever it was seen to be of a style that is closer to a Bach chorale than example 4P3.
It is difficult to ascertain why example 4P6 received a much higher rating with

regard to its style. The piece makes use of cadences and parallelism to a similar
degree as the previous example. The main difference between the two pieces prob¬

ably lies in the different number and lengths of their phrases: example 4P3 has five

phrases, the second phrase being very short at four beats; example 4P6 on the other
hand consists of four phrases which are all eight beats or more. The single very

short phrase in example 4P3 is quite unnatural for a chorale, which might have in¬
fluenced the subjects' decisions. The voice leading of both pieces is in a style that
can be expected from a chorale: the soprano in both examples is more uniform and

prefers stepwise motion, leaps of an interval bigger than a third are rare; the bass
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however is more varied and leaps of fourths and fifths are not uncommon.

Whereas the previous two pieces were well-received during the listening exper¬

iment, examples 4P7 and 4P8 were assessed to be of rather poor quality. Both

pieces were generated using standard flat HMMs, with example 4P8 being a har-
monisation of Bach chorale K211, BWV 367, taken from (Allan, 2002). The main
weaknesses of both pieces are their lack of cadences, as discussed earlier. Exam¬

ple 4P7 however also suffers from poor phrase structuring, particularly on the pitch
level. As the flat models cannot distinguish the relative time of an event, the phrases
of each voice are generated with a number of small mistakes, especially towards
the end of a phrase where the cadence should be prepared. The mistakes are carried
through to the next step in the network and accumulate (see for instance phrases
three and four of example 4P7). The reuse of patterns is still detectable, however
the lack of structure in the phrases and the entire piece outweigh any traces of par¬
allelism. Finally, although example 4P8 is the harmonisation of an original Bach
chorale melody, and thus has the advantage of an existing high quality structure

to build the remaining parts on, it is of poor quality. The piece ends on a perfect
cadence, however the endings of the phrases are not respected at all and there is

virtually no progression towards a cadence at any point through the piece.

8.4 Summary

This chapter tries to deliver an evaluation of a number of musical pieces that were

generated using different types of composite networks. Firstly, the results of a lis¬
tening experiment for both the two-part and four-part pieces are presented and

interpreted. Then, as a more objective measure of the networks' and models'
ability to capture the structural probabilities of the Bach chorales, an evaluation
using cross-entropy values is provided. Finally, a small number of the four-part

pieces that were presented to the subjects of the listening experiment are analysed
in greater detail, trying to determine the reasons behind their results in the ex¬

periment. The following chapter will discuss the overall results further, trying to

highlight the importance of parallelism and network structure.



Chapter 9

Discussion

The previous chapters have defined the novel concept of hlOHMMs and their in¬
ference algorithms, introduced the idea of composite networks and evaluated the
musical results generated with these networks. This section will discuss, with re¬

gard to the generated results, the methods and techniques, and will try to single out

their advantages and drawbacks.

9.1 Methodology

In order to learn and generate believable large-scale musical structures, the com¬

plex problem space which these musical structures represent has to be divided into
smaller and simpler subtasks. A natural method of dividing an entire piece of mu¬
sic is the separation of the different layers, or levels of representation, that make up

the entire musical structure. A simple melody can be regarded for instance as be¬

ing a composite structure built with metre, rhythm and pitch structures. The entire
melody is thus a composite object that is defined by the combination of those three
structures, i.e. their interdependency, as well as their individual internal structures,
i.e. the dependencies between their internal events. This research uses the notion
of building entire pieces of music from separate structural levels and introduces
the concept of composite probabilistic networks that use hierarchical extensions of
HMMs. The models that build the networks extract and learn the relevant internal

structural probabilities and interdependencies from a given training corpus. The

composite nature of the networks allows for great flexibility regarding the config-
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uration of the networks and makes them dynamic and expandable. HHMMs and
hlOHMMs act as the building blocks of the networks.

The flexibility in the configuration of the networks proved to be a major advan¬

tage in this research. Each model inside a network can be trained individually and

independent of any other models in the network. Thus a trained model can also be
reused in different network structures. The obvious restriction to reusing trained
models lies with the training data: in order to receive consistent results, a workable
network should only use models that were trained on the same set of training data.
Even with the improved training algorithms, the procedure of estimating the new

model parameters and probabilities to reflect the training material can be compu¬

tationally expensive. Therefore the opportunity to use already trained models and

plug them into new networks greatly reduces the computing cost. The reusability
of trained models and the easy reconfiguration of the network made it possible to

test a large number of different network types (see Chapters 7 and 8) in order to
find the optimal layout of models for a given problem. If a network has to represent

music with multiple voices, for instance two-part and four-part music, it is impor¬
tant to decide the hierarchy of the interdependencies between the different parts
so as to be able to construct the most efficient configuration of models. In two-

part music for example, it is necessary to decide whether to represent the soprano

dependent on the bass or vice versa. A simple solution is to build both types of
networks, i.e. one network that models the soprano dependent on the bass and one

that models the bass followed by the soprano, and to then measure the accuracy of
the networks using cross-entropy. This is only possible if it is cheap to build and
run the different network structures by reusing the trained models.

The networks' building blocks consist mainly of HHMMs, which provide a ba¬
sis layer, and hlOHMMs. The input-output models learn the connections between
a given input layer and an observation sequence, and thus stand for the intercon¬
nection of the different levels of representation of musical structures. For instance,
a hlOHMM that models metre and bass extracts the structural probabilities of a
bass line when depending on metre. This interconnection then allows for the di¬
rect link between a model that emits a metrical structure and the model that uses
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metrical structure as an input. During the generation process, a new structure is
created and emitted from a model and then passed on to the following model in the
network to serve as input. When this method of feeding structures forward through
the network is used with models that do not smoothen their parameters after train¬

ing, it is possible to overfit the generated structures. The effects and consequences

of overfitting are discussed later in this chapter (see Section 9.3.1).

9.2 Learning Musical Structures

Cross-entropy measures the degree of accuracy with which a network can model
and reflect training data, and thus is an indication of the quality of the learning

process. Chapter 8 shows that not all types of networks are equally powerful.
The cross-entropies, which measure the networks' abilities to represent a data set,

vary slightly for different network structures. The cross-entropies for the networks
that use hierarchical models however demonstrate clearly that these models are

more suitable for learning and representing musical structures than the simpler flat
HMMs (see Tables 8.13 and 8.17). The hierarchical models' superior power lies in
their ability to naturally learn the hierarchical structures in music and the relative

timing of the musical events, in addition to the events' frequencies of occurrence
and most likely contexts.

One aim of this research was to devise a system that can extract the knowledge that
is necessary to create new pieces of music from a training corpus of Bach chorales,
while only a minimum of expert knowledge is hard-coded into the system. The
main areas where domain specific knowledge would have influenced the decisions
made about the system are the representation of the music inside the system, the

design of the basic models and their structures as well as the configurations of the
networks. Regarding the music representation, an effort was made to keep the rep¬

resentation simple and minimalist. It was thus decided that it is not necessary to

explicitly define rhythmical or harmonic structure, as both these structures can be

implied from pitch structures and metrical structures. The separate symbols that

represent the start and end of a phrase, as well as the end of a piece, can be seen

as giving more than the minimum information, i.e. pitch or rhythm, to the sys-
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tem, however this information was seen to be essential: if a system is supposed to

learn the structure of a phrase it needs to have enough knowledge to understand the
notion of 'phrase'. Using that same reasoning, in order for the system to learn the

large-scale dependencies of an entire piece, it needs to know the concept of 'piece'.
Therefore the representation includes a symbol that acts as a delimiter between the
different chorales, defining the length of the pieces.

Designing the probabilistic models, i.e. deciding the configurations and structures,

requires the use of a certain level of domain specific knowledge. The knowledge
that influences the design stage is thus also incorporated in the final model. When

deciding on a structure for a HHMM it is possible to set up a model with an ar¬

bitrary number of levels and states, however it is unlikely that such a model will
ever work to the full potential of a properly structured HHMM. In this research, the
main information that is hard-coded into the models via their structures, i.e. their

numbers of levels and the distribution of states on those levels, is the concept of
phrasing. The models are defined such that the entire piece is subdivided hierar¬

chically into a varying number of distinct phrases, which in return are built from
small events such as pitch or metre symbols. Additional information is given by

defining that a piece has to consist of at least two phrases, that the start and end

phrases are distinct, i.e. the system knows that each piece must have exactly one

start and one end phrase, and that a piece has to end with an 'end' symbol. When

devising the structures for the networks, the decision to use metrical structure as a

basis was influenced by the simplicity of the structure rather than being based on

any expert knowledge.

The amount of explicit expert knowledge that is hard-coded into this system is

very small, yet it is crucial to the performance of the system. The individual models
need to be provided with basic domain knowledge of the data they will represent,
otherwise their performance is likely to be suboptimal. As the training procedure
involves updating a model's parameters, i.e. its transition and emission probabili¬
ties, to maximise the overall probability of the training data, a poor choice ofmodel
structure can result in model parameters that only represent a local maximum. A
well-designed model however can find the global maximum, i.e. an ideal set of
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parameters, for the training data.

The major part of the knowledge that is used to generate new large-scale musical
structures is implicit knowledge that is extracted from the training data and stored
as a model's transition and emission probabilities. Each model thus builds its own
set of rules according to the probabilities with which a process can move from one

state to the next and emit certain observations. Implicit knowledge holds a major

advantage to hard-coded, explicit knowledge: when the system needs to learn a

new set of rules, it can extract new probabilities from an alternative training data
set, for example music of a style different to Bach, and then update its parameters.

Unless the basic structure of the training data is entirely different, for instance if
the music in the new corpus does not use phrases, the training algorithm updates
the system automatically to represent the new data. It is not necessary to change
the basic design of the system. A system that relies on hard-coded knowledge on

the other hand is likely to have to be rewritten and expanded in order to fit new

requirements.

9.3 Generation of Musical Structures

The generative process used with this system uses the random-walk method which
has the advantage of producing a large number of results at very low computational
cost. The random element that is part of the procedure influences the quality levels
of the generated results, which can thus vary greatly. However, this is not seen as

a drawback of the process: rather than wanting to generate only the best exam¬

ples that a system can produce, it is more desirable to produce and then analyse
a larger number of results of varying quality. These results can then be evaluated
with methods similar to the ones described in Chapter 8. Cross-entropy put an

absolute value to a network's ability of representing a data set. A network that
can accurately learn musical structures is also likely to generate new results that
are of acceptable quality. However cross-entropy value alone does not necessarily
indicate the perceived quality of the new music. The cross-entropy measures the
amount of information contained in an event sequence and puts a value onto the

predictability of that sequence. If a new piece of music has a cross-entropy that
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is close to the cross-entropy of the training material, this only indicates that the
new musical structure is close to the training corpus regarding its level of infor¬
mation or predictability. It does not however put an explicit value to the quality
of the new piece of music. This is underlined by the fact that the two-part exam¬

ple 2P3 (see Figure A.3), which was preferred by the subjects during the listening
experiment has a cross-entropy of 15.138, compared to an average of 12.699 for
the training corpus. This leads to the conclusion that the most probable gener¬

ated musical structure is not necessarily the listener's preferred musical structure.
A sequence of musical events that has an overall high probability, and therefore
low cross-entropy and information content, is unlikely to contain many salient,

low-probability events. Thus a listener will perceive such a sequence as a rather
uniform structure with few outstanding events. The presence of a small number of

low-probability events can benefit the perceived quality of a musical structure, as

is evident through example 2P3.

9.3.1 Overfitting and Smoothing

The random element in the generation process gives the system a certain degree
of freedom when making choices. Instead of using the overall most likely paths

through models, which restricts the system into generating the overall most prob¬
able solutions, the random element allows to potentially choose paths and events
that have low probabilities. All the possible results are made available and events

with high probabilities are preferred, however the system does not force the gener¬

ating procedure to choose events according to their likelihood.

Although the generation is not dictated by an overall probability threshold, it can
be restricted through the use of the non-smoothing models in the networks. The

input-output models in the networks use the observation sequence emitted from
the previous model as their input sequences. When using non-smoothing models,
it is important that these input sequences are legal sequences, i.e. they have to be

representable in the current hlOHMM. All the progressions that are in an input

sequence have to be legal progressions with non-zero probabilities. If an input se¬
quence does include progressions between events that have zero-probabilities in the
current hlOHMM, the input sequence will be rejected. For example, given a model
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that emits a sequence which contains the pitch progression C#-E. The sequence is
then used as input to the next model in the network. In that model however, the

input progression C#-E has zero probability because it was not encountered in the

training data. The model will therefore reject the input sequence as illegal. The
effect of the distinction between legal and illegal input sequences is overfitting.

The main problem of overfitting is the fact that a system prefers to regenerate ma¬

terial that is close to the training data, i.e. the system will have the tendency to

simply recreate the existing training data. This problem can be resolved by using
smoothing procedures after the re-estimation of each models parameters to redis¬
tribute probabilities and assign part of the probability space to unseen events. How¬

ever, because this system uses a generative approach, with an incorporated random
element, which builds the final results from several layers of musical structures,
the potential of severe overfitting, i.e. recreating the training data, is seen to be

very low and has currently never been traced during a generation process. Rather
than decreasing the diversity and quality of the generated musical examples, slight
overfitting can be seen to be beneficial: the random-walk method can create a large
number of structures, whose quality can vary and is not always easily assessed. By

using non-smoothing models the input sequences that are of very poor quality, such
as sequences that have a very high number of low probability events, are rejected
by the system, whereas the sequences that are higher in quality are accepted. Slight

overfitting can thus lead to a beneficial selectiveness of the system, as long as the
selectiveness does not become too restrictive.

Models that use smoothing procedures will not show signs of overfitting, though

they might suffer from the opposite effect and become too flexible. Even if non-
observed events are only assigned a minor fraction of the probability space, the ef¬
fects of using too many events from that space can have considerable consequences
to the quality of the generated material.

9.3.2 Parallelism

A side-effect of the random-walk generative procedure, which makes solutions
available rather than enforcing them, is the occurrence of parallel structures in
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the generated material (see Section 8.3). The problem of parallelism, or the iden¬

tity/similarity problem, has had plenty of attention in a number of research projects
(Lerdahl & Jackendoff, 1983; Cambouropoulos, 1998) and focusses on identifying
and defining patterns in musical structures that show traces of similarity. The main

difficulty with parallelism is that, although it is simple to define the identity of two

objects or patterns, describing their similarity is a lot more complicated and depen¬
dent on their definitions. A popular solution to the problem is to attach weights
to each of the parameters of the objects, and to define a threshold at which two

objects are seen to be different. By calculating the sum of the differences in weight
of the parameters, the objects are classed as being different if this sum exceeds the
threshold. The main drawback of this method is that the weights of the parameters

and the threshold are often chosen arbitrarily, and the parameters are different for
each pair of objects. The problem of parallelism is a clear example of where a rule-
based approach for instance struggles to find a solution. The composite networks

system learns parallel structures from the training set and stores the probabilities
that define them into the models' parameters. Two patterns are seen to be parallel
if they are similar to a certain degree (or identical). Parallelism can appear in any

structure of a piece of music, for instance in the rhythm or pitch structures. The
different models that make up a composite network, and which break a musical

piece down into several layers of structures, learn those parallel patterns through
their recurrence inside the training data. The more often a certain pattern occurs

in the training data, the higher the probabilities that will be assigned to the transi¬
tions, which then lead to the construction of the pattern. The layered configuration
of the networks allows for parallelism to spread through all of the musical struc¬
tures, but does not necessarily constrain towards parallelism, e.g. a bass line that
contains parallel patterns may lead to a similarly parallel soprano line, but not nec¬
essarily so. In the generation process, parallel patterns will be favoured due to

higher probability of occurrence of the parallel events. As shown in the evalua¬
tion of the musical examples in Chapter 8, most of the generated musical material
shows some traces of parallelism. Although the models and networks do not learn
a definition of parallel structures, they are made available and are favoured in the
solution space.
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9.4 Summary

This chapter discusses the methods and techniques that the system of compos¬
ite networks is built on, and attempts to explain arising issues such as overfit-
ting and parallelism. It also highlights the difference between the implicit and
explicit knowledge that was used when designing the representations, models and
networks. The next and final chapter will draw the conclusions of this research and
establish whether the initial goals have been met.



Chapter 10

Conclusion

This research set out to devise a system that, with the use of a minimum of explicit

expert knowledge, can learn and generate believable large-scale musical structures.
Based on the experiences from related research works, the complex problem space

of musical structures was divided into simpler, more manageable domains. The no¬

tion of composite networks, whose individual building blocks represent the differ¬
ent domains of the problem space, was introduced. It was decided that probabilis¬
tic networks would be ideal building blocks for the composite networks, because

they are proven to have the ability to extract important structural probabilities from
large data sets. The concept of HHMMs was extended using the idea of input-

output models, and the novel technique of hlOHMMs was defined. Both HHMMs
and hlOHMMs were then used in conjunction to create composite networks that
can represent the different layers of musical structures.

At the beginning of this thesis, the project scope and its major goals were outlined.
The research aimed to develop a system that should be able to create new pieces
of music, which have a clear large-scale structure, from scratch, while making
use of as little expert knowledge as possible and learning the necessary structural

probabilities and information from a corpus of training examples. These aims ad¬
dress some major issues that were highlighted from related research projects (see

Chapter 2) and on which this research attempted to improve. Moving away from
rule-bases and knowledge intensive systems to an approach that largely relies on

the automatic extraction of knowledge from training material, the main challenge
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was in devising up a system that could create new music entirely from scratch.
Only one of the related works in Chapter 21 addresses this problem, solving it us¬

ing an expert system, thus restricting the generation of music heavily to a specific

style and type of music. The second challenge was the representation, and gener¬

ation, of large-scale musical structure. The projects presented in Chapter 2 are all
successful in modelling and representing small-scale and local structures, however
there are virtually no attempts to try and capture the large-scale structures in mu¬

sic. The hierarchical structures of the models used for the composite networks did

provide a powerful way of representing those large-scale structures.

All of the aims outlined for the project have been achieved during the course of
this project: composite networks, and the models that build them, were shown to
be capable of successfully learning the local dependencies of the events inside each
musical structure, as well as the interdependencies between the different structures.

Additionally to extracting and learning the structural information, the approach
achieved the generation of new pieces of music that have a believable large-scale
structure and are of acceptable quality, as was shown by the listening experiment.

Finally, the project scope put a restriction on the amount of domain specific knowl¬

edge that could be encoded into the system. The approach uses an essential mini¬
mum of expert knowledge to enable the configuration of a workable system.

The newly introduced concepts, i.e. the hlOHHMs and the composite networks,
as well as the notions of hierarchy and structural layers in music, have proven to be
fundamental to the success of the project. The hierarchical models were crucial in
the learning process, as they provide the possibility to extract the probabilities of

recurring events relative to their time in a sequence. They made it possible to, for
instance, learn the specific makeup of different phrases in a piece, i.e. they could
extract specific structural information depending on the timing of a phrase. The

timing specific knowledge was then used in the generation process, thus a model
would be able to generate large-scale structures that progress towards cadences.
The novel concept of hlOHMMs was developed to provide the opportunity to use

the power of hierarchical models together with the added constraint of an input

'(Lothe, 1999)
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sequence. Combining both HHMMs and hlOHMMs in composite networks thus
delivered a very powerful tool to represent and learn each of the different layers of
musical structures and their interdependencies. The major advantage of using the

composite networks was their flexibility and the reusability of the building blocks,
i.e. the trained models. The advantage of being able to reuse trained models is

largely caused by the approach's most severe drawback: executing the training al¬

gorithm on large sets of training data is computationally expensive. A system that
can reuse previously trained models can thus avoid a computation overhead and

change the configurations of its networks more easily.

As a conclusion it can be stated that systems of probabilistic models combined
in flexible, composite networks are highly adaptable and powerful tools that can
learn the structural information of highly complex data sets. The training of the

separate models can be time consuming and computationally expensive, however
this can be avoided by the intelligent reuse of trained models. The system that was
devised during this research fulfilled all the goals of the project scope and gener¬

ated acceptable pieces of music from scratch, extracting the vast majority of its

knowledge from a given set of Bach chorales.

Future Work

Using the existing model and network structures, a future step in the research would
be to train the models on a distinctly different set of musical material and reassess

its performance. Although the system is expected to generate results of a compa¬

rable quality if the new material uses mainly short examples of music, it would
be interesting to measure its performance on longer pieces of music. In order to
obtain similarly good results, it is likely that both model and network structures

would need some adjustments to accommodate the characteristics and properties
of longer pieces of music.

A major improvement of the system would be an increase of the efficiency of the
code that implements the models. Although the revised definitions and algorithms
have considerably reduced the runtime of the training process, the computational
expense remains high for large training sets. This problem could be resolved by
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transforming the existing code into a parallel program, i.e. by rewriting the code so

that different tasks and procedures can be distributed over several processors and
run in parallel. A successful parallelisation, and therefore increased performance,
of the code would allow to train the system on much larger data sets, which could,
for instance, either contain a larger number of training examples or use higher pre¬
cision and sampling rates. Additionally, a parallel system of generative networks
would be able to work with models that have an increased number of internal and

production states, thus adding to the accuracy which with musical structures can

be represented.
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Listening Experiment - Two-Part

Examples

Figure A.1: (2P1) Bach chorale K181, BWV 133. Soprano and bass lines sampled
at crochet rate.
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Figure A.2: (2P2J Soprano built on top of bass with non-smoothing models (sampled
at crotchet rate).
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Figure A.3: (2P3) Soprano built on top ofbass with non-smoothing models (sampled
at quaver rate).
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Figure A.4: (2P4) Bass built under soprano with smoothing models (sampled at

crotchet rate).
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Figure A.5: C2P5J Bach chorale K209, BWV 145. Soprano and bass sampled at

quaver rate.
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Figure A.6: (2P6) Soprano built on top of bass with smoothing models (sampled at

quaver rate).
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Figure A.7: (2P7) Bass built on top of soprano with non-smoothing models (sampled
at crotchet rate).
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Figure A.8: (2P8) Soprano built on top of bass with standard non-smoothing HMMs

(sampled at quaver rate).
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Figure A.9: (2P9) Bass line added to the melody of Bach chorale K211, BWV 367,
taken from (Allan, 2002).
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Figure A.10: (2P10) Soprano built on top of bass with non-smoothing models. Pass¬
ing notes added with separate model.
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Figure B.1: (4P1) Bach chorale K181, BWV 133, sampled at crotchet rate.
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Figure B.2: (4P2) Example generated from a B-S-A-T network with non-smoothing
models (sampled at crotchet rate).
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Figure B.3: (4P3) Example generated from a B-S-A-S-T network with non-

smoothing models (sampled at quaver rate).
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Figure B.4: (4P4) Bach chorale K209, BWV 145, sampled at quaver rate.
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Figure B.5: (4P5) Example generated from a B-S-A-S-T network with smoothing
models (sampled at quaver rate).
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Figure B.6: (4P6) Example generated from a B-S-A-S-T network with non-

smoothing models (sampled at quaver rate).
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Figure B.7: (4P7) Example generated from a B-S-A-S-T network with non-

smoothing, flat HMMs (sampled at quaver rate).
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Figure B.8: (4P8) Harmonisation of the melody of Bach chorale K211, BWV 367,
taken from (Allan, 2002).
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