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Abstract 
 
This thesis describes the effects of the application of high pressure to single crystals 
of small organic compounds. A range of different structural analysis techniques have 
been used with the emphasis on whole molecule interactions rather than atom-atom 
contacts. 
 
A study of the effect of pressure on the crystal structure of salicylaldoxime showed 
that the size of a pseudo-macrocyclic cavity within the structure is tuneable by 
compression. This cavity determines the reactivity of salicylaldoxime as a ligand, 
when deprotonated it is known to preferentially bind Cu2+ ions over other cations in a 
bis(salicylaldoximato) complex due to the compatibility between the cavity size and 
the ionic radius of Cu2+. Further compression studies on a range of substituted 
salicylaldoximes with different ambient cavity sizes showed that the application of 
pressure consistently decreases the cavity size across the whole series. Variation of 
substituent and the pressure yields cavities which span the covalent radii of many of 
the 1st transition series metal dications. This should allow the selectivity of metal 
extraction to be tuned using pressure. 
 
Computational studies of lattice energies and conformational energies in the 
compression studies of L-serine and 3-aza-bicyclo(3.3.1)nonane-2,4-dione have 
shown that significant molecular distortions can occur during compression of a 
crystal structure below 10 GPa. L-serine shows different conformations between 
phases with an energy difference of 40 kJ mol-1, whereas the conformation of 3-aza-
bicyclo(3.3.1)nonane-2,4-dione is seen to distort within the same phase. 
 
Analysis of a database of compression studies using Hirshfeld surfaces has 
highlighted the fact that all different types of intermolecular interaction have a lower 
limit for compression, at least in the pressure regime below 10 GPa. These studies, 
along with theoretical calculations, have suggested a lower distance limit for H…H 
contacts of 1.7 Å. This is potentially very useful for prediction of the effects of 
compression as H…H contacts are almost universal across small organic crystal 
structures. 
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1.1 Introduction 
The word ‘topology’ derives from the Greek words topos and logos, literally 

meaning ‘science of place’. A crystal structure is an infinite three-dimensional lattice 

of periodically repeating structural units. In reference to a molecular crystal structure, 

therefore, the term ‘topology’ can be used to describe the study of the spatial 

relationship between a molecule within the crystal and its neighbouring molecules – 

i.e. the intermolecular packing pattern.  

The experimental technique of x-ray crystallography is still seen by many 

chemists to be simply an accurate tool for determining the intramolecular structure of 

a sample. A crystal structure is much more than this; it is the end product of the 

complex process of crystal nucleation and growth (Davey et al., 2002, Davey, 2003) 

which produces the most advantageous three-dimensional arrangement of intra- and 

inter-molecular interactions. The observed structure, and its packing pattern, 

therefore contains a wealth of information about the delicate balance between the 

various interactions in the structure.  

The solid state is unique in that it exhibits polymorphism – the ability to exist 

in multiple different forms. This means that a particular molecule may have a large 

number of different possible ways to pack in a crystal thus forming a range of 

different intermolecular interactions. It is known that the properties of a compound in 

the solid state are not determined entirely by the molecular structure and that the 

intermolecular structure is also important. One example of polymorphism is 

elemental carbon for which there are a number of structural variants. Most chemists 

will be familiar with the structures of graphite, diamond and buckminsterfullerene 

(Figure 1.1), each made up of carbon, but having very different physical properties. 

 
Figure 1.1: Three of the structural variants of carbon in the solid state. 
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Organic molecular compounds can also display very different properties 

between polymorphs (Bernstein, 2002). Changes in intermolecular packing can affect 

a variety of different physical and chemical properties including crystal habit, 

melting point, solubility, dissolution rate, density, bioavailability, thermal stability. 

Understandably this phenomenon is of great interest to materials scientists and 

pharmaceutical companies in particular due to their desire to have some control over 

the properties of a compound. In the case of a pharmaceutically-relevant compound, 

not only can a new polymorph give rise to different properties, but it can also be 

patented separately as seen in the Zantac Patent case (Bernstein, 2002). This desire to 

control the noncovalent interactions and packing patterns of a compound has given 

rise to a large area of research called Crystal Engineering. 

Crystal Engineering is the design and production of molecular solid-state 

materials with the desired properties through the use of selected intermolecular 

interactions. It is known that certain patterns of interactions (or motifs) occur 

frequently within crystal structures compared to other less common patterns. The 

existence of common motifs has led to the use of the term ‘supramolecular synthon’ 

to describe a particular spatial arrangement of intermolecular interactions. These 

synthons are used in Crystal Engineering as the connectors between molecules in the 

rational design of a crystal structure. In the terminology of Crystal Engineering, the 

building block (or tecton) is the molecule; this building block is then connected to 

others using supramolecular synthons (for example see Figure 1.2). 

 
Figure 1.2: Schematic of the use of synthons and tectons in Crystal Engineering. 
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The majority of synthons used in the field of crystal engineering are based on 

hydrogen bonding contacts or other atom-atom based noncovalent interactions. The 

description of hydrogen bonding patterns has been considerably aided by the 

application of graph-set descriptors to hydrogen bonding (Etter, 1990, Bernstein et 

al., 1995). 

The concept of graph-set analysis is to classify hydrogen bonding patterns 

based on descriptors which specify the type of pattern along with the number of 

hydrogen bond donors and acceptors. A graph-set descriptor is therefore written as 

Ga
d(n), in which G represents the type of pattern, a is the number of hydrogen bond 

acceptors, d the number of donors and n the number of atoms in the pattern. The 

pattern type, G, can be one of four different options; C for an infinite chain, S for an 

intramolecular hydrogen bonding pattern, R for an intermolecular ring and D for an 

interaction between two or more discrete moieties. If the number of donors and 

acceptors are both one, then these are not written in the symbol. An example of each 

type of hydrogen bonding pattern is shown in Figure 1.3 along with the graph-set 

assignments. 

 
Figure 1.3: The four types of graph-set descriptor for hydrogen bonding patterns. 
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A great deal of research has also been done on analysing the energies and 

preferred geometries of hydrogen bonds. A number of substantial reviews have been 

written about hydrogen bonding and its importance in crystal engineering (Desiraju, 

1995, Aackeroy, 1997, Steiner, 2002). Observed crystal structures may not exhibit 

the expected synthons however, especially if there are multiple potential interaction 

motifs that are competing. The ideal situation would be to choose a particular 

molecule and be able to predict accurately the crystal structure of that molecule 

before performing a crystallisation experiment. This is exactly the problem that is 

currently being addressed in the field of Crystal Structure Prediction (CSP) by a 

number of research groups around the world (Day, Motherwell, Ammon et al., 

2005).  

The programs currently being developed for CSP have improved significantly 

in the last few years, but there are still a number of significant problems. Not least 

amongst the issues is the fact that the correct structure is likely to be only of the order 

of a few kJmol-1 more stable than other candidate structures. This means that the 

calculation of the lattice energies needs to be more accurate than this difference in 

order to obtain the correct ranking of possible structures. Other obstacles to a correct 

prediction are that the experimentally observed structure may not necessarily be the 

thermodynamically most stable structure, there may be other polymorphs of the 

compound that have not yet been observed; the molecule may also be 

conformationally flexible.  

There have recently been a number of very successful examples of crystal 

structure prediction (Day, Motherwell & Jones, 2005, Hulme et al., 2005, Oswald, 

Allan, Day et al., 2005, Nowell et al., 2006). By contrast, the success rate in the 

international blind tests for CSP which are run by the Cambridge Crystallographic 

Data Centre (CCDC) (Lommerse et al., 2000, Motherwell et al., 2002, Day, 

Motherwell, Ammon et al., 2005), has been more limited. The compounds that 

appear to be particularly problematic in these tests are ones which have significant 

intramolecular flexibility and those which only form relatively weak hydrogen 

bonds. It is unsurprising that the intricacies of crystal packing are still not well 

understood due to the inherent complexity of the problem. An empirical means to 
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learn more about the nature of intermolecular interactions, however, is to perturb the 

structure and analyse the changes; this can be achieved by applying pressure to a 

crystal structure.  

 

1.2 High Pressure Crystallography 
1.2.1 Background 

Pressure is a useful thermodynamic probe of molecular structure as it forces 

molecules in the solid state closer to each other. This facilitates the study of 

intermolecular interactions as the distances are varied, as well as the potential to 

access new phases of the compound at non-ambient conditions. Recent studies have 

shown that pressure can be used to form new polymorphs of compounds by 

recrystallisation at pressure from the melt (Lozano-Casal et al., 2005, Oswald, Allan, 

Motherwell et al., 2005) and from a solution (Fabbiani et al., 2005, 2006).  

Although much of modern high pressure research into organic solids has 

focussed on producing new polymorphs, the compression of a single phase produces 

information on the crystal packing forces. Biological organisms have been found to 

exist at pressures as high as 1000 times atmospheric pressure in deep-sea locations 

such as at the bottom of the Marianas Trench. These organisms are called piezophiles 

as they have evolved to survive in high pressure conditions. Studying simple organic 

molecular structures under pressure will help to develop our understanding of the 

response of noncovalent bonds to compression and is the first step towards analysis 

of biologically-relevant structures under pressure.  

It is possible that, with enough information from these kinds of studies, the 

anisotropic compression of a structure could be predicted before performing an 

experiment. The fundamental understanding of these interactions may also 

potentially allow predictions of pressure-induced phase transitions in the future, or 

even the existence of likely high-pressure polymorphs. 

 

1.2.2 Experiments and analysis 

The most common tool for the application of hydrostatic pressure to a single 

crystal is the Merrill-Bassett diamond anvil cell (Merrill & Bassett, 1974). The cell is 
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made up of a steel body incorporating a pair of Be backing discs. Diamonds are then 

glued onto the backing discs and a tungsten gasket is placed between the diamonds 

(see Figure 1.4). A hole is drilled (by spark-erosion) into the tungsten gasket which, 

when placed between the two diamond anvils, forms a cylindrical sample chamber. 

Pressure is applied by the tightening of three Allen screws. The cells used in this 

work had a 40° half-opening angle for admitting x-rays into and out of the sample 

chamber, as well as allowing visual inspection of the sample through the diamond 

anvils and holes drilled in the Be backing discs.  

 
Figure 1.4: Schematic of a Merrill-Bassett diamond anvil cell with contents of the 
high pressure chamber (High Pressure Diamond Optics, 2003). 

 

In a typical experiment, a single crystal is placed in the sample chamber 

along with a chip of ruby, for measuring the pressure via the ruby fluorescence 

method (Piermarini et al., 1975), and a hydrostatic pressure medium that ensures 

pressure is applied evenly around the crystal. High pressure x-ray diffraction 

experiments can then be performed using a standard single crystal diffractometer 

with the high pressure cell attached to a normal goniometer head. 

Analysis of high pressure crystal structures, as in the case of ambient pressure 

structures, has been highly influenced by the study of atom-atom interactions, such 

as hydrogen bonds and S…S contacts. It has been found in a range of different single 
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crystal compression studies that intermolecular contacts are not compressed beyond 

the limits of similar interactions found at ambient conditions in the CSD (Dawson et 

al., 2005, Moggach, Allan, Parsons et al., 2005, Moggach, Allan, Parsons et al., 

2006). Structures that have reached the ambient limits for a particular contact have 

been seen to undergo phase transitions which relieve these short contacts, e.g. in L-

serine and L-cysteine (Moggach, Allan, Morrison et al., 2005, Moggach, Allan, 

Clark et al., 2006).  

The study of molecular structures under compression has also consistently 

suggested that the size and distribution of voids between molecules found in the 

crystal structure at ambient conditions is important in determining the effects of 

pressure. Recent work has shown that the principal effect of compression in a 

number of cases is reduction of the sizes of these intermolecular voids (Dawson et 

al., 2005, Moggach, Allan, Parsons et al., 2005). This is exemplified in the pressure 

study of α-glycine (Dawson et al., 2005) in which structural voids within the 

hydrogen bonded layers of the ac plane decrease visibly between ambient pressure 

and 6.2 GPa (Figure 1.5). 

 
Figure 1.5: Space-filling plots showing the hydrogen bonded layers within the ac 
plane of the α-glycine crystal structure at ambient pressure (left) and 6.2 GPa (right). 
The intermolecular voids in the layers can clearly be seen to decrease upon the 
application of pressure. 

 

The number of high pressure studies being performed is still increasing and 

this provides the opportunity to explore new ways of analysing the structural 

compression. Some of the questions still to ask include: how necessary is it to take 

into account the other molecular contacts within the crystal structures even when a 
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hydrogen bond is present? Are the less directional interactions, such as π…π, 

CH…π, CH…O and van der Waals contacts significant in terms of structure 

compression and phase transitions? One way of approaching these questions is to 

develop a set of analysis techniques more focussed on whole molecule contacts 

rather than specific atom-atom interactions.  

 

1.3 Structural Analysis Techniques 
1.3.1 The PIXEL method 

Three methods for analysing crystal structures in particular have been 

developed which embrace the idea of whole molecule interactions rather than atom-

atom contacts. The first of these techniques is based on calculation of intermolecular 

interaction energies and is called the semi-classical density sums (PIXEL) method 

(Gavezzotti, 2005). This approach, developed by Gavezzotti, allows the computation 

of both full lattice and specific dimer energies along with a breakdown of the 

energies into four components; coulombic, polarisation, dispersion and repulsion 

(Dunitz & Gavezzotti, 2005).  

The PIXEL method starts with taking the geometry of the molecule from the 

observed crystal structure and extending the X-H distances to standard neutron 

lengths. Without optimising the geometry, an electron density map for the molecule 

is then calculated using a standard quantum chemical package such as GAUSSIAN98 

(Frisch et al., 1998). This calculation is done as standard at the MP2/6-31G** level 

of theory and produces a density map on a three-dimensional grid of step size 0.08 Å. 

The molecular electron density is then modified in three stages to speed up the 

subsequent calculations. Firstly the pixels are condensed into super-pixels made from 

a cube of the original pixels of size n x n x n, where n is the condensation level. This 

condensation level, as a standard, is set to 4 for a lattice energy calculation and 3 for 

a dimer calculation. Next the pixels are screened by charge, such that any pixels with 

a charge below a specified threshold, qmin which is set as default to 10-6 electrons, are 

removed. This reduces the number of pixels and the computational cost of the 

calculation considerably without significantly affecting the electron density. Finally, 
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the remaining pixels are renormalized such that the sum of the pixel charges is equal 

to the sum of the nuclear charges in order to achieve electrical neutrality.  

The next stage in the calculation is to generate the required cluster of 

molecules; in the case of a lattice calculation, this relates to a sphere of molecules 

produced via crystal symmetry operations and in the case of a dimer calculation, this 

refers to the reference molecule plus one other molecule. For the lattice calculation, 

the radius of the cluster is called the crystal cut-off radius and is set to 18 Å as 

standard for uncharged molecules. Once the required cluster has been generated, it is 

possible to begin the intermolecular energy calculation.  

Coulombic energies between the molecules in the cluster are calculated as 

sums of pixel-pixel, pixel-nucleus and nucleus-nucleus terms. Each pixel has its own 

partial charge, as does each atomic nucleus, so these terms can be calculated with no 

parameterisation. The formula used for each calculation is the standard electrostatic 

potential energy equation for two charges (q1 and q2) separated by a distance, r: 

r
qqE oCOUL πε4

21=  

Polarisabilities are then allocated to each pixel and this is done on the basis of 

assigning each pixel to the nearest atom (with number of valence electrons, Zatom) 

within the molecule, thus the pixel polarisability, αi, is given by: 

( ) atomatomii Zq αα /=  

In order to calculate the intermolecular polarisation energy, the electric field 

produced at each pixel, εi, as a result of the surrounding molecules is determined. 

The total polarisation energy for the molecule, EPOL, is thus calculated as the 

summation of all of the pixel contributions, EPOL,i, which are calculated using the 

following damped formula, where the damping parameter (εmax) is an adjustable 

empirical parameter: 
2

2
1

, ][ iiiiPOL dE εα−=  

)]/((exp[ max iiid εεε −−=  

0, =iPOLE for maxεε >  
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The dispersion energies (EDISP) are determined using a London-type formula 

as sums of pixel-pixel dispersion components, Eij. In order to avoid singularities 

arising due to very short pixel-pixel distances, the terms are damped via the use of a 

standard quantum mechanical damping term, f(R). The molecular ionization energy 

(EION) used is the highest occupied molecular orbital energy from the GAUSSIAN 

calculation. The damping threshold distance parameter, D, is another adjustable 

empirical parameter in this calculation. 

( ) ])()4/[()( 62
4

3
, ij

o
ji

i j
IONABDISP RRfEE πεαα∑∑−=  

( ) ])1/(exp[ 2−−= ijRDrf for DRij <  

( ) 1=rf for DRij >  

The repulsion energy (EREP) between molecules A and B is approximated 

using the overlap of the electron densities of two molecules, SAB, as shown below 

( )γABABREP SKE =,  

∑∑=
i j

jiAB VBAS )]()([ ρρ  

where the variables K and γ are also adjustable empirical parameters. This overlap 

integral is calculated by numerical integration. The repulsion is thus non-zero only 

for the areas of space where the two molecular electron densities overlap. 

The total intermolecular energy is therefore given by: 

REPDISPPOLCOULTOT EEEEE +++=  

This breakdown into physically meaningful component terms is invaluable 

when attempting to understand the changes in intermolecular interaction energies. 

The speed of the calculations also means that the lattice and dimer calculations for a 

full compression study are not prohibitive on a standard desktop computer.  

Drawbacks to the PIXEL method include the fact that it uses a rigid gas-

phase molecular electron density and its use of four empirical parameters. The 

empirical parameters used in the calculations have, however, been optimised to 

reproduce experimental sublimation enthalpies for a range of organic molecular 

crystal structures. This fitting has been tested by comparing the calculated lattice 
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energies with experimental enthalpies for organic structures which were not used for 

this fitting process. The PIXEL lattice energy of the most stable anhydrous caffeine 

polymorph, for example, has been calculated as -105.1 kJ mol-1 (Carlucci & 

Gavezzotti, 2005) compared with the experimental heat of sublimation of 110-115 kJ 

mol-1 (Griesser et al., 1999). Tests have also shown that PIXEL results compare well 

with the results of intermolecular perturbation theory calculations (Gavezzotti, 2003). 

 

1.3.2 Voronoi-Dirichlet Analysis 

The use of a technique called Voronoi-Dirichlet analysis has also been 

applied to the study of crystal structure space (Blatov et al., 1995). This method is 

based on the partitioning of space into polygons or polyhedra and can be exemplified 

using a two-dimensional set of points. Figure 1.5 shows a random distribution of 

points in two dimensions (left) with one point highlighted, point P. In order to 

determine the Voronoi-Dirichlet polygon for point P, a line is drawn from P to every 

other point in the pattern. The perpendicular bisectors of these lines are then drawn 

and the edges of the polygon are defined by the closest approach of these bisectors to 

P, thus bounding the space closest to P than any other point. This analysis is then 

applied to all the remaining points to build up the partitioning map of polygons 

(Figure 1.5, right). 

 
Figure 1.5: Example of Voronoi-Dirichlet analysis for a two-dimensional pattern of 
points. The set of points is shown before analysis (left) along with the result of 
partitioning the space into Voronoi-Dirichlet polygons (right). 
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It is possible to analyse a molecular crystal structure in a similar way by 

using the centroids of the molecules as the points and partitioning the space into 

polyhedra. In this case vectors between molecular centroids are drawn, the 

perpendicular bisectors are planes and the polyhedron is built from the planes closest 

to the molecular centroid. The faces of the polyhedra are representative of the 

intermolecular packing pattern (Peresypkina & Blatov, 2000). This construction is 

therefore called the molecular Voronoi-Dirichlet polyhedron (VDP). An example of 

a molecular VDP is shown in Figure 1.6 (far left) for the crystal structure of L-

alanine. 

 
Figure 1.6: Molecular VDP for L-alanine at ambient pressure (far left), 2.0 GPa 
(centre left) and 6.4 GPa (centre right) along with the VDP for a perfect BCC 
structure as observed in tungsten (far right). Figures drawn using TOPOS-Pro 
(Blatov et al., 2000). 

 

Figure 1.6 also shows the molecular VDPs of the structure of L-alanine at 2.0 

GPa and 6.4 GPa from a single crystal compression study (Dawson, 2003) and the 

VDP for a perfect  body-centred cubic (BCC) lattice as seen, for example, in the 

crystal structure of tungsten. It is plain to see that the topology of the molecular 

packing in the L-alanine structure becomes more symmetric as pressure increases 

and at 6.4 GPa the VDP looks remarkably similar to that of the perfect BCC VDP.  

The VDP analysis of crystal structures can also be used to investigate the 

sizes and locations of intermolecular voids (Blatov & Shevchenko, 2003). Void 

identification is based on searching for void centres, where the vertices of the VDPs 

meet, and analysing these void centres with reference to the atoms surrounding the 

voids. The voids can run into each other, so it is useful to apply a clustering 

algorithm to reduce the quantity of voids to a reasonable number. 
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The ability to identify and measure voids is particularly useful in compression 

studies as a means to rationalise the anisotropic effects of pressure on crystal 

structures. A high pressure study on L-cystine showed the correlation between the 

positions of the intermolecular voids determined using VDP analysis and the 

directions of compression of the structure (Moggach, Allan, Parsons et al., 2005). 

 

1.3.3 The Hirshfeld surface technique 

Another recently developed method for studying crystal structures involves 

calculation of molecular surfaces based on Hirshfeld’s stockholder partitioning 

(Hirshfeld, 1977). The Hirshfeld surface (Spackman & Byrom, 1997) encloses the 

volume in which the electron density contribution from a sum of spherical atoms for 

the molecule (the promolecule) dominates the corresponding sum for the whole 

crystal (the procrystal). Numerically the partitioning is described using a weight 

function, w(r), which is calculated as follows: 

( ) ( ) ( )rrrw
crystalA

A
moleculeA

A ∑∑
∈∈

= ρρ /  

( ) ( )rr procrystalepromolecul ρρ /=  

The volume inside the Hirshfeld surface satisfies the condition that the weight 

function ≥ 0.5 and the surface itself is defined by w(r) = 0.5. This choice of definition 

for the surface means that the molecular surfaces will at most touch but never 

overlap and in general they tend to fill at least 95 % of the volume for organic 

molecular crystal structures (McKinnon et al., 2004). The surfaces therefore pack 

very tightly, only leaving small gaps between molecular surfaces where no molecule 

dominates the electron density. For calculation of the surface, a cluster of molecules 

with a radius of ca 10 Å is used to approximate the sum over the crystal and 

hydrogen atom positions are set to standard neutron X-H bond lengths. 

The Hirshfeld surface itself (for a structure with Z’ ≤ 1) contains information 

about all the intermolecular packing contacts in the crystal structure at once. This 

information is not readily displayed in the form of a monochromatic, three-

dimensional object, so it is useful to encode properties onto the surface with a colour 

scale in order to allow visualisation of important features. One of the structural 
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properties that can be mapped onto the Hirshfeld surface is the distance from the 

surface to the nearest external atom, de. This property, when displayed using a colour 

scale, shows close contacts and distinct interaction patterns very effectively. Figure 

1.7 shows an example of a Hirshfeld surface for 3-hydroxybenzaldehyde (CSD 

refcode XAYCIJ) for which four different properties have been mapped onto the 

surface. The de surface, displayed here using a scale running from blue (2.3 Å) 

through green to red (0.7 Å), shows an intense red circle, which indicates a 

hydrogen-bonding interaction to the carboxyl acceptor group (O…O = 2.72 Å). Also 

visible on the de surface for this structure is a wheel-like pattern in the upper left 

corner of the surface with six pale blue spokes, this is indicative of a π-π stacking 

contact (stacking distance in XAYCIJ = 3.50 Å). The position of the centre of the 

six-fold wheel pattern away from the centre of the phenyl ring shows in this case that 

the stacking contact is offset. 

 
Figure 1.7: The molecular structure of 3-hydroxybenzaldehyde (top left) along with 
its Hirshfeld surface, plain (top centre) and with four different properties mapped 
onto it. The properties shown are as follows; the distance to the nearest external atom 
(de, top right), the shape index (bottom left), the curvedness (bottom centre) and the 
normalised distance to the nearest external atom (dnorm, bottom right). The molecule 
and all of the surfaces are shown at the same scale and in the same orientation.  
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The shape index (S) is another property which can be displayed on the surface 

and is determined using the principal curvatures of the surface. This property 

describes the shape of the surface in a dimensionless fashion whereby concave 

regions are negative (displayed in red) and convex regions are positive (blue). Using 

this measure, bumps and hollows which fit into one another appear similar in shape 

but with opposite signs. An example of this effect in Figure 1.7 is the two triangles 

on the shape index surface that are blue and red – these shapes fit into each other and 

are another characteristic sign of π-π stacking.  

The curvedness (C) of the Hirshfeld surface can also be calculated at all 

points and this property visualises how quickly the shape of the surface is changing. 

Figure 1.7 (bottom centre) shows the curvedness encoded on the Hirshfeld surface of 

3-hydroxybenzaldehyde. From the Figure it can be seen that the curvedness property 

is mostly green across the faces of the surface with very distinct blue delineations 

where one face joins to another face. This property effectively shows the contact 

faces between surfaces and imparts some information about the coordination of the 

molecule in the crystal structure. 

The dnorm property is a recently developed addition to the functions that can 

be displayed on the Hirshfeld surface (McKinnon et al., 2007). This variable is a 

normalised measure of the distance between atoms which uses the van der Waals 

radii (rvdW) of the nearest atom inside the surface and the nearest atom outside. 

Although the de property is very useful for visualising packing motifs, it has the 

drawback that it does not take into account the size of atoms. This means that close 

contacts between smaller atoms, e.g. H, C, N and O are highlighted better using the 

de function than those between larger atoms, e.g. P, S, Cl. The dnorm property avoids 

this problem by plotting a measure of whether the contact between atoms is greater, 

the same, or less than the sum of the van der Waals radii. This is calculated also 

using the distance to the nearest internal atom, di, in the function: 

vdW
e

vdW
ee

vdW
i

vdW
ii

norm r
rd

r
rdd −

+
−

=  
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The values are then encoded onto the Hirshfeld surface using a colour scale 

from blue (contacts longer than vdW separation), through white (around the vdW 

separation) to red (shorter than vdW separation). In this way the close contacts are 

displayed vividly as red patches independent of atom type, for example the hydrogen 

bonding interaction shows up very clearly in Figure 1.7 (bottom right). Another 

example of this is illustrated for the crystal structure of 4-chlorophenolpyruvic acid 

(CSD refcode PENPOO) in Figure 1.8. In the de surface we can see the OH…O 

hydrogen bond acceptor region as a bright red region (labelled 1, O…O = 2.76 Å), a 

π-π stacking contact (2, stacking distance = 3.45 Å) and a light yellow region 

corresponding to a close CH…HC contact (3, H…H = 2.36 Å). The dnorm surface, 

however, also very clearly shows the hydrogen bond donor region (4) along with a 

short Cl…Cl contact (5, Cl…Cl = 3.20 Å) which is not highlighted in the de surface 

due to the relative size of the Cl atoms compared to the other, lighter atoms.  

 
Figure 1.8: The molecular structure of 4-chlorophenolpyruvic acid (left) along with 
its Hirshfeld surface displayed using the de property (centre) and with dnorm (right). 
The molecule and both surfaces are shown at the same scale and in the same 
orientation. The numbered labels are referred to in the text. 

 

One problematic aspect of the three-dimensional nature of the Hirshfeld 

surface is that it is quite difficult to compare surfaces between two different crystal 

structures. Another tool has been developed to allow easy comparison of structures 

by condensing the distance information calculated into a two-dimensional plot of de 

against di. This plot is a histogram of intermolecular contact distances and provides a 

‘fingerprint’ of the crystal packing pattern. These fingerprint plots are formulated 

using bins of width 0.1 Å and a colour scale is used to show the frequency of 

contacts in a given bin such that blue bins relate to a small fraction of the overall 
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contacts, green is a greater fraction and red relates to a large number of contacts. The 

fingerprint plots themselves have also been shown to have the potential for 

facilitating simple quantitative comparison of packing patterns (Parkin et al., 2007). 

Figure 1.9 shows fingerprint plots for three organic molecular crystal 

structures; 1,4-butanediol (CSD refcode QATTIO), hexane (HEXANE01) and 

pyrene (PYRENE02). A range of intermolecular interaction motifs occur in these 

structures and the fingerprint plots reflect these differences. Distinctive features 

appear in the plots for standard packing contacts – hydrogen bonds, for example, are 

seen as two sharp symmetrical ‘prongs’ at short de/di (labelled 1 in Figure 1.9). The 

molecular structure of hexane only contains contacts between hydrogen atoms which 

are characterised by a ‘nose’ feature on the de/di diagonal line (2), a similar feature is 

also seen in the plot for 1,4-butanediol. In the structure of pyrene, along with 

contacts between hydrogens, there are π-π stacking contacts which appear as a 

distinct triangle at around de = di = 1.8 Å (3) and CH…π interactions that appear as 

two symmetrical ‘wings’ in the plot (4). 

 
Figure 1.9: The molecular structures and fingerprint plots for 1,4-butanediol (left), 
hexane (centre) and pyrene (right). The numbered labels are referred to in the text. 
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These three methods thus represent significantly different approaches, but 

each encourages the study of packing patterns with an emphasis on the global picture 

rather than being based on specific atom-atom interactions. As the amount of 

research performed on organic molecular systems at high pressure is still quite small, 

it remains to be seen how best to analyse the compression of packing patterns. The 

causes of compression-induced phase transitions in particular is of fundamental 

interest and to understand this it is necessary to first understand how pressure affects 

the balance of intermolecular interactions in a crystal. The further investigation of 

packing forces under compression is therefore of primary importance and this forms 

the subject of this thesis. 



Chapter 1. Introduction 
 
 

 
 
 - 20 -

1.4 References 
Aackeroy, C. B. (1997). Acta Crystallographica, Section B 53, 569-586. 

Bernstein, J. (2002). Polymorphism in Molecular Crystals. Oxford, UK: Clarendon 
Press. 

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angewandte Chemie, 
International Edition 34, 1555-1573. 

Blatov, V. A. & Shevchenko, A. P. (2003). Acta Crystallographica, Section A 59, 
34-44. 

Blatov, V. A., Shevchenko, A. P. & Serezhkin, V. N. (1995). Acta 
Crystallographica, Section A 51, 909-915. 

Blatov, V. A., Shevchenko, A. P. & Serezhkin, V. N. (2000). Journal of Applied 
Crystallography 33, 1193. 

Carlucci, L. & Gavezzotti, A. (2005). Chemistry - A European Journal 11, 271-279. 

Davey, R. J. (2003). Chemical Communications 1463-1467. 

Davey, R. J., Allen, K., Blagden, N., Cross, W. I., Lieberman, H. F., Quayle, M. J., 
Righini, S., Seton, L. & Tiddy, G. J. T. (2002). CrystEngComm 4, 257-264. 

Dawson, A. (2003). PhD thesis, University of Edinburgh, Edinburgh, UK. 

Dawson, A., Allan, D. R., Belmonte, S. A., Clark, S. J., David, W. I. F., McGregor, 
P. A., Parsons, S., Pulham, C. R. & Sawyer, L. (2005). Crystal Growth & Design 5, 
1415-1427. 

Day, G. M., Motherwell, W. D. S., Ammon, H. L., Boerrigter, S. X. M., Della Valle, 
R. G., Venuti, E., Dzyabchenko, A., Dunitz, J. D., Schweizer, B., Van Eijck, B. P., 
Erk, P., Facelli, J. C., Bazterra, V. E., Ferraro, M. B., Hofmann, D. W. M., Leusen, 
F. J. J., Liang, C., Pantelides, C. C., Karamertzanis, P. G., Price, S. L., Lewis, T. C., 
Nowell, H., Torrisi, A., Scheraga, H. A., Arnautova, Y. A., Schmidt, M. U. & 
Verwer, P. (2005). Acta Crystallographica, Section B 61, 511-527. 

Day, G. M., Motherwell, W. D. S. & Jones, W. (2005). Crystal Growth & Design 5, 
1023-1033. 

Desiraju, G. R. (1995). Angewandte Chemie, International Edition 34, 2311-2327. 

Dunitz, J. D. & Gavezzotti, A. (2005). Angewandte Chemie, International Edition 
44, 1766-1787. 

Etter, M. C. (1990). Accounts of Chemical Research 23, 120-126. 



Chapter 1. Introduction 
 
 

 
 
 - 21 -

Fabbiani, F. P. A., Allan, D. R., Parsons, S. & Pulham, C. R. (2005). CrystEngComm 
7, 179-186. 

Fabbiani, F. P. A., Allan, D. R., Parsons, S. & Pulham, C. R. (2006). Acta 
Crystallographica, Section B 62, 826-842  

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., 
Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A. J., Stratmann, R. E., 
Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. 
C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, 
C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., 
Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., 
Cioslowski, J., Ortiz, J. V., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., 
Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., 
Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., 
Johnson, B. G., Chen, W., Wong, M. W., Andres, J. L., Head-Gordon, M., Replogle, 
E. S. & Pople, J. A. (1998). Gaussian 98 revision A.7, Gaussian, Inc., Pittsburgh, PA, 
USA. 

Gavezzotti, A. (2003). CrystEngComm 5, 429-438. 

Gavezzotti, A. (2005). Zeitschrift fuer Kristallographie 220, 499-510. 

Griesser, U. J., Szelagiewicz, M., Hofmeier, U. C., Pitt, C. & Cianferani, S. (1999). 
Journal of Thermal Analysis and Calorimetry 57, 45-60. 

High Pressure Diamond Optics (2003). High Pressure Diamond Optics, Inc., 
http://www.hpdo.com. 

Hirshfeld, F. L. (1977). Theoretica Chimica Acta 44, 129-138. 

Hulme, A. T., Price, S. L. & Tocher, D. A. (2005). Journal of the American 
Chemical Society 127, 1116-1117. 

Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., D, D. J., Gavezzotti, A., 
Hofmann, D. W. M., Leusen, F. J. J., Mooji, W. T. M., Price, S. L., Schweizer, B., 
Schmidt, M. U., Van Eijck, B. P., Verwer, P. & Williams, D. E. (2000). Acta 
Crystallographica, Section B 56, 697-714. 

Lozano-Casal, P., Allan, D. R. & Parsons, S. (2005). Acta Crystallographica, Section 
B 61, 717-723. 

McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chemical 
Communications 3814-3816. 

McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Crystallographica, 
Section B 60, 627-668. 

Merrill, L. & Bassett, W. A. (1974). Review of Scientific Instruments 45, 290-294. 

http://www.hpdo.com/


Chapter 1. Introduction 
 
 

 
 
 - 22 -

Moggach, S. A., Allan, D. R., Clark, S. J., Gutmann, M. J., Parsons, S., Pulham, C. 
R. & Sawyer, L. (2006). Acta Crystallographica, Section B 62, 296-309. 

Moggach, S. A., Allan, D. R., Morrison, C. A., Parsons, S. & Sawyer, L. (2005). 
Acta Crystallographica, Section B 61, 58-68. 

Moggach, S. A., Allan, D. R., Parsons, S. & Sawyer, L. (2006). Acta 
Crystallographica, Section B 62, 310-320. 

Moggach, S. A., Allan, D. R., Parsons, S., Sawyer, L. & Warren, J. E. (2005). 
Journal of Synchrotron Radiation 12, 598-607. 

Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Dzyabchenko, A., Erk, P., 
Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Lommerse, J. P. M., Mooji, W. 
T. M., Price, S. L., Scheraga, H., Schweizer, B., Schmidt, M. U., Van Eijck, B. P., 
Verwer, P. & Williams, D. E. (2002). Acta Crystallographica, Section B 58, 647-
661. 

Nowell, H., Frampton, C. S., Waite, J. & Price, S. L. (2006). Acta Crystallographica, 
Section B 62, 642-650. 

Oswald, I. D. H., Allan, D. R., Day, G. M., Motherwell, W. D. S. & Parsons, S. 
(2005). Crystal Growth & Design 5, 1055-1071. 

Oswald, I. D. H., Allan, D. R., Motherwell, W. D. S. & Parsons, S. (2005). Acta 
Crystallographica, Section B 61, 69-79. 

Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., 
Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm 9, 648-652. 

Peresypkina, E. V. & Blatov, V. A. (2000). Acta Crystallographica, Section B 56, 
1035-1045. 

Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. (1975). Journal of 
Applied Physics 46, 2774-2780. 

Spackman, M. A. & Byrom, P. G. (1997). Chemical Physics Letters 267, 215-220. 

Steiner, T. (2002). Angewandte Chemie, International Edition 41, 48-76. 
 
 



Chapter 2. The Effect of Pressure on the Crystal Structure of Salicylaldoxime-I and the Structure of 
Salicylaldoxime-II at 5.93 GPa 

 
 

 
 

 

- 23 -

                                                

 

 

 

 

 

 

 

Chapter 2 

The Effect of Pressure on the Crystal Structure 

of Salicylaldoxime-I and the Structure of 

Salicylaldoxime-II at 5.93 GPa*

 

* Wood, P. A., Forgan, R. S., Henderson, D., Parsons, S., Pidcock, E., Tasker, P. A., Warren, 

J. E. (2006). Acta Crystallographica, Section B62, 1099-1111. 



Chapter 2. The Effect of Pressure on the Crystal Structure of Salicylaldoxime-I and the Structure of 
Salicylaldoxime-II at 5.93 GPa 

 
 

 
 

 

- 24 -

2.1 Synopsis 
The crystal structure of salicylaldoxime has been determined at room 

temperature at pressures from 0.75 to 5.28 GPa. Salicylaldoxime forms a pseudo-

macrocycle which contains a cavity which decreases in size with pressure. Above 

5.28 GPa the structure transforms to a new polymorph, the structure of which has 

been determined at 5.93 GPa. The changes in intermolecular interactions during the 

phase transition are interpreted with the aid of PIXEL calculations. 

 

2.2 Introduction 
The use of high pressure as a probe for studying molecular crystal structures 

under non-ambient conditions is still relatively lightly explored compared with low-

temperature studies. Recent studies of small organic molecules (Dawson et al., 2005, 

Moggach, Allan, Morrison et al., 2005, Moggach et al., 2006) have found that the 

primary effect of the compression in these cases is to reduce the sizes of voids 

present in the ambient-pressure structure. Analysis of the distributions and sizes of 

voids in crystal structures at ambient and high pressures is therefore an important 

area of research in terms of understanding the effects of compression. The subject of 

the effect of pressure on molecular systems has been addressed in a number of recent 

reviews (Boldyreva, 2003, 2004a, b, Katrusiak, 2004, Hemley & Dera, 2000). 

The presence of voids in a structure may also be of importance in the 

determination of chemical reactivity. Most of the voids in the crystal structure of a 

small organic compound will be between molecules, but some compounds also have 

intramolecular voids (usually referred to as cavities). One example of this is 18-

crown-6, which has a large cavity inside the ring of the molecule and is known to 

form complexes with metal ions such as Na+, K+ and Rb+. The type of complexation 

in these complexes is dependent on the size of the metal ion in relation to the crown 

ether cavity size. In the case of 18-crown-6 the macrocyclic cavity is best suited to 

the K+ cation, but it can also form complexes with smaller or larger cations by 

distorting the conformation of the molecule or by complexing the cation with two 

crown ether molecules in a ‘sandwich’ arrangement (Gokel, 1991).  
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Salicylaldoxime (Scheme 2.1) forms a hydrogen-bonded dimer creating a 

pseudo-macrocyclic cavity in the middle of the hydrogen-bonded R-type ring motif 

(Scheme 2.2a) (Bernstein et al., 1995). Deprotonation of the phenol group enables 

salicylaldoxime to bind to a transition metal as a mono-anionic, bidentate ligand. A 

bis(salicylaldoxime) complex is stabilised by hydrogen bonding between the two 

bidentate ligands.  

 

 

 

Scheme 2.1: Chemical structure diagram 

showing atomic numbering scheme. 

 

 

 

Salicylaldoxime is known to show a remarkable selectivity for complex 

formation of copper(II) above other metal ions as a result of the compatibility of the 

size of the cavity at the centre of the R motif and the ionic radius of Cu2+ (Smith et 

al., 2002). Salicylaldoximes bearing branched alkyl chains are used as solvent 

extractants to effect the ‘separation’ and ‘concentration’ operations in the 

hydrometallurgical recovery of copper, accounting for around 30% of annual 

production (Kordosky, 2002). The high affinity and selectivity of salicylaldoximes 

for Cu2+ is therefore of great commercial importance (Szymanowski, 1993).  

The development of ligands suitable for the selective complexation of metal 

ions based on synthesizing derivatives to control cavity sizes in polydentate ligands 

is both time-consuming and costly (Tasker et al., 2004). As salicylaldoximes are 

predisposed to assemble to provide N2O2
2- cavities for metal ions, an attractive 

alternative strategy would be to control the size of the cavity using pressure, and in 

this chapter we discuss the effect of pressure to 6 GPa on the crystal structure of 

salicylaldoxime. 
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Scheme 2.2a: Chemical structure diagram 

showing the hydrogen-bonded dimer in 

the ambient phase structure. 

 

 

 

Scheme 2.2b: Chemical structure 

diagram showing the hydrogen-bonded 

dimer in the phase II structure. 

 
 

2.3 Experimental 
Note: The crystal growth was performed by Ross Forgan of the University of 

Edinburgh. The details are included here for the sake of completeness. 

 

2.3.1 Crystal growth 

Salicylaldoxime (98%) was purchased from Acros (CAS number 94-67-7); it 

was then recrystallised by the slow evaporation of a concentrated hexane/chloroform 

solution. One small, colourless, block-shaped crystal was then taken directly from 

the recrystallised sample. The unit cell dimensions of the crystal were determined at 

150 K and ambient pressure to be monoclinic, a = 10.359 (3), b = 5.007 (1), c = 

13.292 (3) Å, β = 112.14 (2) ˚. The structure of salicylaldoxime has previously been 

reported by Pfluger & Harlow (1973), and we refer to this phase as salicylaldoxime-I.  

The same crystal was then loaded into a diamond anvil cell. For reference, a further 

polymorph of the compound (salicylaldoxime-III) was also observed from a 

crystallisation using approximately the same conditions (Wood et al., 2006). 

 

2.3.2 High pressure crystallography 

High-pressure experiments were carried out using a Merrill-Bassett diamond-

anvil cell (half-opening angle 40°), equipped with brilliant-cut diamonds with 600μm 
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culets and a tungsten gasket (Merrill & Bassett, 1974). A 1:1 mixture of n-pentane 

and isopentane was used as a hydrostatic medium; this mixture is volatile at room 

temperature, and the cell was cooled in dry ice prior to loading. A small ruby chip 

was also loaded into the cell so that the pressure could be monitored using the ruby 

fluorescence method (Piermarini et al., 1975). Diffraction data were collected on a 

Bruker-Nonius APEX-II diffractometer with silicon-monochromated synchrotron 

radiation (λ = 0.6889 Å) on Station 9.8 at the SRS, Daresbury Laboratory. 

 Data collection and processing procedures for the high-pressure experiments 

followed the methods of previous studies (Dawson et al., 2004, Moggach, Allan, 

Parsons et al., 2005). Integrations were carried out using the program SAINT 

(Bruker-Nonius, 2006), and absorption corrections with the programs SHADE 

(Parsons, 2004) and SADABS (Sheldrick, 2004). Data collections were taken in 

approximately 1.0 GPa steps from 0.75 GPa up to a final pressure of 5.93 GPa. 

Determination of the cell constants at 5.93 GPa showed that a single-crystal to 

single-crystal phase transition had occurred to a new polymorph, which we have 

designated salicylaldoxime-II. The phase transition degraded the crystal quality 

somewhat, and no attempt was made to study the effects of subsequent 

decompression. 

In order to facilitate a comparison with the ambient-temperature/high-

pressure results, diffraction data were also collected on salicylaldoxime-I at ambient 

pressure. Data were collected on a Bruker APEX diffractometer with graphite-

monochromated Mo-Kα radiation (λ = 0.71073 Å). The crystals were sensitive to 

radiation damage from the X-ray beam, so this dataset was collected at 273 K. The 

data were integrated using SAINT and corrected for absorption with SADABS. The 

structure was solved using the program SIR92 (Altomare et al., 1994) and structure 

refinement yielded a conventional R factor of 0.0564, giving structural parameters 

that are somewhat more precise than those determined in the previous study (Pfluger 

& Harlow, 1973). 

Refinements of the compressed form of salicylaldoxime-I were carried out 

starting from the coordinates determined at ambient pressure. The structure of the 

new phase (salicylaldoxime-II) was solved by direct methods using the program 
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SIR92. Refinements were carried out against |F|2 using all data with the program 

CRYSTALS (Betteridge et al., 2003). Owing to the low completeness of the data-sets, 

global rigid-bond and body restraints were applied to the anisotropic displacement 

parameters. The quality of the diffraction pattern deteriorated markedly after the 

transformation to salicylaldoxime-II, and no attempt was made to study this sample 

at still higher pressures. Displacement parameters in phase-II were only modelled at 

the isotropic level; shift-limiting restraints were also applied to all parameters. 

Hydrogen atoms attached to carbon atoms were placed geometrically and 

constrained to ride on their host carbon atoms. The hydroxyl H atoms (H1 and H5) in 

all cases were found using Fourier difference maps. The positional parameters of H1 

and H5 were then refined subject to the restraint r(O-H) = 0.820 (1) Å. Listings of 

crystal and refinement data are given in Table 2.1.   

Crystal structures were visualized using the programs CAMERON (Watkin et 

al., 1993), Mercury (Bruno et al., 2002) and DIAMOND (Crystal Impact, 2004). 

Analyses were carried out using PLATON (Spek, 2004), as incorporated in the 

WinGX suite (Farrugia, 1999). Searches of the Cambridge Structural Database (CSD; 

(Allen, 2002, Allen & Motherwell, 2002)) utilized the program ConQuest and 

version 5.27 of the database with updates up to January 2006.   

Topological calculations of void distributions (Blatov & Shevchenko, 2003) 

were carried out with TOPOS-Pro (Blatov et al., 1995, 2000). Considerable 

simplification of the void distributions can be gained by clustering; voids were 

therefore clustered using what the program refers to as the ‘clustering’ method with 

the ‘size’ parameter specified as 0.5 (Blatov, 2005). Strain tensor calculations were 

carried out using a locally-written program (STRAIN; (Parsons, 2003)), based on the 

discussion in Hazen and Finger (1982) and employing the JACOBI subroutine (Press 

et al., 1992). Equation-of-state calculations were carried out with EOSFIT (Angel, 

2002). 

The numbering scheme used (see Scheme 2.1) is the same throughout the 

ambient pressure and high pressure datasets, including the phase II structure. The 

setting that was used for the salicylaldoxime-II structure was chosen to facilitate the 

comparison with salicylaldoxime-I.   
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Pressure/GPa ambient 0.75 2.37 3.46 

Formula C7H7NO2 C7H7NO2 C7H7NO2 C7H7NO2

Mr 137.14 137.14 137.14 137.14 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic 

Space group P21/n P21/n P21/n P21/n 

a, b, c (Å) 10.346 (4), 

5.0294 (17), 

13.478 (5) 

10.1833 (16), 

4.9766 (3), 

13.0109 (15) 

9.851 (3), 

4.9325 (7), 

12.286 (3) 

9.7148 (16), 

4.9322 (3), 

12.0145 (16) 

β (°) 112.21 (2) 111.938 (10) 111.09 (2) 110.607 (11) 

V (Å3) 649.3 (4) 611.62 (13) 557.0 (3) 538.84 (12) 

Z 4 4 4 4 

Dx (Mg m–3) 1.403 1.489 1.635 1.690 

Radiation type Mo Kα Synchrotron Synchrotron Synchrotron 

No. of reflections 

for cell  

930 363 253 337 

θmax (°) 30.7 26.8 26.4 26.4 

μ (mm–1) 0.10 0.11 0.12 0.13 

Tmin/ Tmax 0.79, 0.99 0.34, 0.99 0.51, 0.99 0.62, 0.99 

Reflections 

collected 

6424 2288 2109 2031 

No. Unique [Rint] 1982 [0.047] 547 [0.079] 472 [0.075] 412 [0.061] 

R[F2 > 2σ(F2)], 

wR(F2), S 

0.056, 0.175, 

0.92 

0.049, 0.136, 

0.79 

0.040, 0.101, 

0.89 

0.042, 0.107, 

0.88 

No. of reflections 1982 reflections 514 reflections 437 reflections 412 reflections

Parameters 97 97 97 97 

Restraints 84 84 84 84 

Δρmax, Δρmin (e Å–

3) 

0.25, –0.23 0.11, –0.11 0.09, –0.16 0.13, –0.14 

(a) 
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Pressure/GPa 4.55 5.28 5.93 

Formula C7H7NO2 C7H7NO2 C7H7NO2

Mr 137.14 137.14 137.14 

Crystal system Monoclinic Monoclinic Monoclinic 

Space group P21/n P21/n P21/n 

a, b, c (Å) 9.5728 (15), 

4.9342 (3), 

11.7537 (15) 

9.513 (2), 

4.9319 (4), 

11.630 (2) 

7.677 (3), 

5.7731 (8), 

12.159 (3) 

β (°) 110.064 (10) 109.859 (14) 110.62 (2) 

V (Å3) 521.48 (11) 513.19 (15) 504.4 (3) 

Z 4 4 4 

Dx (Mg m–3) 1.747 1.775 1.806 

Radiation type Synchrotron Synchrotron Synchrotron 

No. of reflections for 

cell 

286 302 323 

θmax (°) 26.4 26.4 23.3 

μ (mm–1) 0.13 0.13 0.13 

Tmin/ Tmax 0.38, 0.99 0.42, 0.99 0.46, 0.99 

Reflections collected 1793 1925 1157 

No. unique [Rint] 417 [0.069] 410 [0.076] 296 [0.126] 

R[F2 > 2σ(F2)], 

wR(F2), S 

0.044, 0.112, 

0.91 

0.041, 0.094, 

0.94 

0.125, 0.275, 

0.82 

No. of reflections 394 reflections 386 reflections 268 reflections 

Parameters 97 97 47 

Restraints 84 84 95 

Δρmax, Δρmin (e Å–3) 0.14, –0.12 0.13, –0.11 0.37, –0.40 

(b) 
Table 2.1: Crystallographic data for salicylaldoxime at increasing pressures (a) 
ambient to 3.46 GPa and (b) 4.55 to 5.93 GPa. 
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2.3.3 PIXEL calculations 

The final crystal structures obtained were used to calculate the molecular 

electron density at each pressure by standard quantum chemical methods using the 

program GAUSSIAN98 (Frisch et al., 1998) at the MP2/6-31G** level of theory.  H-

atom distances were set to standard neutron values (CH = 1.083 Å, OH = 0.983 Å).  

The electron density model of the molecule was then analysed using the program 

package OPiX (Gavezzotti, 2005), which allowed the calculation of dimer and lattice 

energies. Lattice energy calculations employed a cluster of molecules of radius 18 Å. 

Calculations were also carried out for pairs of molecules identified in the lattice 

calculation as being energetically the most significant (i.e. with a magnitude > 2.5 kJ 

mol-1). The output from these calculations yields a total energy and a breakdown into 

its electrostatic, polarisation, dispersion and repulsion components (Dunitz & 

Gavezzotti, 2005). 

 

2.4 Results 
2.4.1 The structure of salicylaldoxime-I at ambient pressure 

Prior to this work two crystalline forms of salicylaldoxime had been 

characterized. The structure of salicylaldoxime-I was determined by Pfluger & 

Harlow (1973); salicylaldoxime-III was initially studied by (Merritt & Schroeder, 

1956), but its structure was determined only recently (Wood et al., 2006). The crystal 

structure of salicylaldoxime-I has one molecule in the asymmetric unit in the space 

group P21/n. The molecule as a whole is planar; a least-squares mean plane 

calculated using the C, N and O atoms shows that the average deviation of these 

atoms from the plane is 0.009 Å.  

The molecules form intramolecular O5H5···N2 hydrogen bonds [O5···N2 = 

2.621 (2) Å] and intermolecular O1H1···O5 hydrogen bonds [O1···O5 = 2.793 (2) Å]. 

The latter form a dimer across an inversion centre (Figure 2.1a), yielding a ring motif 

for which the graph-set descriptor is ( )104
4R  (Bernstein et al., 1995). The two 

molecules in the dimer are almost coplanar, with a distance of only 0.28 Å between 

the two least-squares planes.  
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(a)  

(b)  

(c)  

 

Figure 2.1: The effect of pressure on the crystal structure of salicylaldoxime as 
viewed along b: (a) salicylaldoxime-I at ambient pressure; (b) salicylaldoxime-I at 
5.28 GPa; (c) salicylaldoxime-II at 5.93 GPa.  The colour scheme is red: oxygen, 
blue: nitrogen, light-grey: carbon and dark-grey: hydrogen. 
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The molecule has three hydrogen bond acceptors (O1, N2 and O5) and only 

two conventional donors (O1/H1 and O5/H5), and there is therefore an unfulfilled 

hydrogen-bond acceptor (based on O1). Atom O1 forms a very weak inter-dimer 

C6H6···O1 interaction with a neighbouring molecule [C6···O1 = 3.404 (2) Å, PIXEL 

energy = -2.7 kJ mol-1] (Figure 2.2a). Successive C6H6···O1 interactions related by 

the n-glide build primary-level C(7) chains, producing ‘slabs’ which lie in the (1 0 -

1) plane (Figure 2.3a). There are no hydrogen bond interactions between the slabs. 

(a)  

(b)  

(c)  

Figure 2.2: The effect of pressure on the crystal structure of salicylaldoxime as 
viewed along a: (a) salicylaldoxime-I at ambient pressure; (b) salicylaldoxime-I at 
5.28 GPa; (c) salicylaldoxime-II at 5.93 GPa.   The colour scheme is the same as in 
Figure 2.1. 
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(a)  

(b)  

(c)  

Figure 2.3: The effect of pressure on the slabs in the salicylaldoxime structure 
formed from the C(7) chains: (a) salicylaldoxime-I at ambient pressure; (b) 
salicylaldoxime-I at 5.28 GPa; (c) salicylaldoxime-II at 5.93 GPa.  The blue lines 
shown in the diagram are (1 0 -1) planes viewed side-on. The red arrows indicate the 
extent of one slab in each diagram. The colour scheme is the same as in Figure 2.1. 
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Within the slabs, dimers interact with other dimers through π-π stacking 

(Figure 2.4). The inter-plane separations are 3.07 and 3.40 Å between the reference 

molecule and the molecules labeled 2 and 3, respectively. We show below that these 

stacking interactions are in fact more energetically significant than the CH…O 

contacts. The centroids of the phenyl rings are off-set from each other by 3.71 and 

5.25 Å for these two interactions along the horizontal direction in Figure 2.4, and the 

stacking interaction appears to be between ( )104
4R  and phenyl rings.    

 
Figure 2.4: The π-π stacking interactions between two dimers. Labels 2 and 3 refer 
to the specific interactions studied using the PIXEL method, see Figure 2.9. The 
colour scheme is the same as in Figure 2.1. 

 

2.4.2 The response of salicylaldoxime-I to pressure up to 5.28 GPa 

The response of the salicylaldoxime-I structure to hydrostatic pressure is 

anisotropic (Figure 2.5); the greatest reduction occurs in the c axis length (13.7% at 

5.28 GPa relative to ambient pressure), while the a and b axes reduce by 8.1 and 

1.9%, respectively. The direction of greatest linear strain lies approximately along 

the reciprocal axis direction (1 0 -2); the principal axis with the second largest 

eigenvalue is approximately along (6 0 1). These directions are shown in Figure 2.6. 

One eigenvector of the strain tensor must correspond to the b direction by symmetry, 

and this is the direction of least compression in the structure. 
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Figure 2.5: The variation of the lattice parameters (a, b and c, Å) and volume (Å³) of 
salicylaldoxime as a function of pressure (GPa). 

 

The bulk modulus (K0), refined for a Birch-Murnaghan equation-of-state 

(Birch, 1947, Angel, 2000) truncated to second order (thus requiring K’ = 4) is 13.3 

(4) GPa (equation reduces to Eq. 1). The data set used to calculate this quantity is 

admittedly rather limited, and the value of V0 was fixed at 649.3 Å3. Molecular solids 

generally have K0 < 30 GPa (Angel, 2004) and a useful comparison can be made 

from the following K0 values: Ru3(CO)12  6.6 GPa, NaCl 25 GPa, quartz 37 GPa, 

ceramics 50-300 GPa and diamond 440 GPa (Slebodnick et al., 2004). 

( ) 2/5
0 213 EE ffKP +=     (1) 

where ( ) 2/]1/[ 3/2
0 −= VVf E  

The molecule remains planar at 5.28 GPa, and the distance between the least-

squares planes of the molecules in the dimer remains essentially constant (0.27 Å at 

5.28GPa). 
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Figure 2.6: The directions of greatest strain in the salicylaldoxime-I crystal structure 
between ambient pressure and 5.28 GPa as viewed along b. The blue arrow shows 
the largest eigenvector of the strain tensor, the (1 0 -2) reciprocal axis direction, and 
the red arrow shows the second largest eigenvector, the (6 0 1) reciprocal axis 
direction. The colour scheme is the same as in Figure 2.1. 

 

The variation of non-covalent interaction parameters in salicylaldoxime-I 

between ambient pressure and 5.28 GPa is presented in Table 2.2. The least 

compressible interaction is the intramolecular OH···N hydrogen bond from O5/H5 to 

N2 (O5···N2 changes by 2.2%). The second conventional hydrogen bond 

(O1/H1···O5) is significantly more compressible because of the greater spatial 

flexibility of the molecules; O1···O5 decreases by 6.5% to a distance of 2.612 (6) Å. 

The OH···O angle remains approximately constant, and so the shape of the hydrogen 

bonding ring is essentially unchanged (c.f. Figures 2.1a and b).  
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Pressure/GPa ambient 0.75 2.37 3.46 4.55 5.28 

O5H5..N2i

H5..N2  
O5..N2 
<O5H5N2 

 
1.91 
2.621(2) 
144(2) 

 
1.90 
2.607(4) 
143 

 
1.87 
2.588(4) 
145 

 
1.83 
2.580(4) 
152 

 
1.90 
2.570(5) 
138 

 
1.86 
2.564(5) 
144 

O1H1..O5ii

H1..O5 
O1..O5 
<O1H1O5 

 
2.02 
2.793(2) 
156(2) 

 
1.98 
2.753(6) 
157 

 
1.92 
2.683(6) 
155 

 
1.89 
2.654(6) 
154 

 
1.86 
2.630(7) 
156 

 
1.83 
2.612(6) 
160 

C6H6..O1iii

H6..O1 
C6..O1 
<C6H6O1 

 
2.54 
3.404(2) 
154(1) 

 
2.44 
3.316(8) 
150 

 
2.35 
3.169(8) 
149 

 
2.30 
3.132(7) 
147 

 
2.27 
3.089(9) 
147 

 
2.27 
3.077(9) 
146 

π-πiv #2 
plane-plane 
offset 

 
3.073(2) 
5.25(1) 

 
2.984(3) 
5.24(2) 

 
2.872(3) 
5.15(2) 

 
2.839(2) 
5.10(2) 

 
2.798(3) 
5.03(2) 

 
2.819(3) 
5.01(2) 

π-πv #3 
plane-plane 
offset 

 
3.402(2) 
3.71(1) 

 
3.289(3) 
3.74(2) 

 
3.103(3) 
3.84(2) 

 
3.024(2) 
3.90(2) 

 
2.957(3) 
3.95(2) 

 
2.896(3) 
3.99(2) 

 

Symmetry Operators 

i x,y,z   

ii -x,-y,-z 

iii 1/2+x,1/2-y,1/2+z 

iv 1-x,1-y,1-z 

v x,-1+y,z 

 

Table 2.2: Non-covalent interaction parameters in salicylaldoxime-I. Distances are in 
Å, and angles in °. 
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The most compressible hydrogen-bonding interaction is C6H6···O1 which 

decreases by 9.6% to 3.077 (9) Å. The CHO angle decreases steadily with the 

application of pressure from 154° to 146° at 5.28 GPa as the molecules shift with 

respect to each other in order to pack more effectively (see Figures 2.1 & 2.2).  

The π-π stacking interaction distances, defined as the perpendicular distance 

between the least-squares mean plane of one phenyl ring and the centroid of another, 

are also compressed. The distance for interaction 3 in Figure 2.4 decreases by 14.8% 

from 3.40 Å at ambient pressure to 2.90 Å at 5.28 GPa, and the distance for 

interaction 2 decreases by 8.3% from 3.07 Å to 2.82 Å at 5.28 GPa. The offset 

distances for interactions 2 and 3 change from 5.25 Å to 5.01 Å and 3.71 Å to 3.99 

Å, respectively, as the molecules slide across each other.  

 

2.4.3 Salicylaldoxime-II at 5.93 GPa 

The observation that the transition from phase I to II proceeds from one 

single crystal to another suggests that the local topologies of the phase I and II 

structures are similar to each other. The space-group symmetry is retained, and the 

cell volume also follows a fairly smooth curve from the ambient pressure structure 

through the transition into phase II at 5.93 GPa (Figure 2.5). 

The  ring motif found in the phase I structure is no longer present in 

salicylaldoxime-II. At 5.93 GPa atom H1 forms an O1H1···N2 hydrogen bond to N2 

instead of O5 [O1···N2 = 2.622 (2) Å]. The new OH···N intra-dimer interaction and 

its inversion-related equivalent form an 

( )104
4R

( )62
2R  ring motif in the phase II structure 

(Scheme 2.2b and Figure 2.1c). This shifting of the molecules in the dimer and 

formation of a  ring instead of an ( )62
2R ( )104

4R  ring allows the molecules to 

approach more closely. The molecules themselves remain planar in the phase II 

structure; moreover the two molecules in the dimer are almost exactly coplanar, with 

a distance of only 0.02 Å between their respective least-squares planes (calculated 

for each using the C, N and O positions only). 

 

 

- 39 -



Chapter 2. The Effect of Pressure on the Crystal Structure of Salicylaldoxime-I and the Structure of 
Salicylaldoxime-II at 5.93 GPa 

 
 

 
 

 

- 40 -

The intramolecular O5H5···N2 hydrogen bonds found in the phase I structure 

are also broken and the presence of H1 forming a strong interaction with N2 forces 

H5 to flip out to the side of the dimer (see Scheme 2.2). This OH group now forms 

an O5H5···O1 hydrogen bond to O1 [O5···O1 = 2.582 (14) Å] on a neighbouring 

molecule in a different dimer which is related via the n-glide. These OH···O 

interactions form C(7) chains which run in the direction of the n-glide replacing the 

CH···O C(7) chains in the phase I structure. The chains are then linked to each other 

by the hydrogen bonds across the dimer forming slabs which lie in the (1 0 -1) plane, 

just as in the ambient pressure structure. There are no hydrogen-bonded interactions 

between the slabs (see Figure 2.3c).   

The π-π stacking interaction motif found in the salicylaldoxime-I structure is 

retained in the phase II structure. In the new phase there is still an interaction similar 

to interaction 3 in Figure 2.4, but now the inter-plane separation has increased from 

2.90 Å at 5.28 GPa to 3.06 Å at 5.93 GPa and the offset has increased to 4.90 Å. The 

reference molecule also forms an interaction similar to 2 in Figure 2.4, but now the 

inter-plane separation is 2.91 Å and the offset is 4.87 Å at 5.93 GPa. In the phase II 

structure the reference molecule phenyl ring is approximately equidistant from the 

centroids of both phenyl rings in the stacking interaction. 

 

2.5 Discussion 
2.5.1 Void analysis of the phase I structure 

The effect of pressure can be understood in terms of distributions of voids 

which exist in a structure prior to compression. The voids tend to close up at high 

pressure, and it is often found that the direction of greatest compressibility in a 

crystal is directly related to the position and orientation of the largest voids in the 

structure. 

In the salicylaldoxime-I structure it is possible to analyse the distribution and 

size of structural voids using a Voronoi-Dirichlet analysis as shown in previous 

studies (Blatov & Shevchenko, 2003, Moggach, Allan, Parsons et al., 2005). The 

largest void region (volume 16.77 Å³) consists of three void conglomerates which lie 
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in between the slabs of the structure. Figures 2.7a and 2.7b show space-filling plots 

of the salicylaldoxime-I structure, at ambient pressure and 5.28 GPa, respectively. It 

is apparent that there is a sizable void between the slabs at ambient pressure which 

closes up significantly at 5.28 GPa. The direction of movement of the molecules that 

closes the gap between the slabs is also in the direction of greatest linear strain. 

 

 
(a)     (c) 

 
(b)     (d) 

Figure 2.7: Space-filling plots showing the contraction of voids which occur in 
salicylaldoxime phase I with the application of pressure.  The top and bottom rows 
correspond to the salicylaldoxime-I structure at ambient pressure and at 5.28 GPa, 
respectively.  On the left of the diagram (a) and (b) show the structure with the a* 
direction vertical; there are large voids between the molecules which almost 
disappear completely with increasing pressure.  On the right (c) and (d) show the 
void between molecules related by the n-glide; this gap also closes up considerably 
with the application of pressure.  
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The second largest cluster of voids, which has a volume of 9.50 Å³, lies 

between molecules related by the n-glide, and this void can be seen in the structures 

at ambient pressure and 5.28 GPa in Figures 2.7c and 2.7d. The gap relates to the 

relatively long C6H6···O1 weak hydrogen-bond interaction. The vector between C6 

and O1 corresponds approximately to the second direction of greatest strain in the 

structure (the angle between the vectors is 12°). 

The void in the middle of the hydrogen-bonded dimer is formed by relatively 

strong hydrogen bonds, and it would not be expected to compress as much as voids 

in the vicinity of more weakly interacting molecules. Nevertheless, the dimer cavity 

is affected by the application of high pressure. The size of the cavity can be analysed 

by measuring the mean distance of the donor atoms from the centroid of the dimer. 

This distance decreases steadily with pressure from 2.0048 (15) to 1.935 (4) Å at 

5.28 GPa, as shown in Figure 2.8. The cavity size has been found to be 1.93 (1) Å in 

the Cu2+ salicylaldoxime complex, whereas in the corresponding Ni2+ complex it is 

1.864 (1) Å, a change of 0.066 Å (Smith et al., 2002). Pressure affects the cavity size 

by a similar amount. If the size of the cavity can be modified by an amount 

comparable to the difference in sizes in the different metal complexes, then it is 

possible that compression may affect the complexation properties of the compound. 

Voronoi-Dirichlet analysis shows that the voids present in salicylaldoxime-II 

are much smaller than those in phase-I. There are still small voids between the slabs 

in the structure, though the majority are distributed between the molecules related by 

a unit cell translation in the b-direction. 
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Figure 2.8: A graph of hole size in salicylaldoxime- I as a function of pressure where 
the hole size is defined as the mean distance of donor atoms from the centroid of the 
dimer. The error bars are displayed at the 1σ level. 

 

2.5.2 Hydrogen bonding and π-π stacking in salicylaldoxime-I 

The three different hydrogen bonds in salicylaldoxime-I do not compress 

uniformly. The largest compressibility is witnessed for C6H6···O1, which is the 

longest hydrogen bond in the structure. Our PIXEL calculations (see below) show 

that this interaction contributes rather little to the lattice energy at ambient or high 

pressure, and its distance can be varied without incurring a significant energy 

penalty. The least compressible hydrogen bond is the intramolecular O5H5···N2 

interaction, which only decreases by a small amount (2.2%) because of the 

conformational inflexibility of the molecule.  

The compression of the intermolecular O1H1···O5 hydrogen bond is not 

restricted by the molecular conformation and its compressibility is higher (6.5%) 

than that of the O5H5···N2 interaction. A search of the CSD revealed the shortest 

O···O distance in C=NOH···OHC containing systems to be 2.596 Å [for rac-2,3:6,7-

dibenzobicyclo(3.3.1)-nona-2,6-diene-4,8-dione dioxime methanol solvate, CSD 

refcode WUHGEL01; (Levkin et al., 2003)]. The O···O distance in salicylaldoxime 

at 5.28 GPa [2.612 (6) Å] is thus near the lower limit observed for such interactions. 
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The compression of π-π stacking interactions with hydrostatic pressure has 

not been extensively studied. Analysis of aromatic stacking interactions in the CSD 

shows that the minimum stacking distance between the phenyl rings is ca 2.9 Å. At 

5.28 GPa the stacking distances for interactions 2 and 3 (see Figure 2.4) are 2.82 Å 

and 2.90 Å, respectively. As in the case of the O1H1···O5 interaction, therefore, the 

π-π stacking in salicylaldoxime-I at 5.28 GPa is very close to the lower limit of 

similar interactions found at ambient pressure. The phase transition to 

salicylaldoxime-II allows the π-π stacking distances to increase (inter-planar 

distances = 2.91 and 3.05 Å), thus reducing the repulsion terms.  

Previous compression studies on small organic molecules which exhibit 

hydrogen bonding, such as glycine (Dawson et al., 2005), L-serine (Moggach, Allan, 

Morrison et al., 2005) and L-cysteine (Moggach et al., 2006), have shown that the 

application of hydrostatic pressure (below about 10 GPa) will not decrease the length 

of a hydrogen bond or other interaction to lower than can be found for a similar types 

of contact in ambient-pressure structures. Once a contact reaches its lower limit a 

phase transition occurs. The salicylaldoxime-I structure at 5.28 GPa has reached a 

point where one hydrogen bond and the π-π stacking interactions have contracted to 

near their lower distance limits. Further compression of the structure and the 

reduction of the void found in the middle of the ( )104
4R  ring can only occur through 

a phase transition, and so above 5.28 GPa salicylaldoxime-II is formed.  

The hydrogen-bonding pattern in salicylaldoxime-II is quite different from 

the ambient phase (Figures 2.1 and 2.2). The intramolecular O5H5...N2 hydrogen 

bond is broken in favour of a new intermolecular O5H5···O1 interaction, while the 

dimer-forming hydrogen bond (O1H1···O5) is also broken in order to create a smaller 

ring without a cavity through a new O1H1···N2 contact. Overall this yields a more 

compact structure, though the data in Table 2.3 and CSD searches show that the new 

hydrogen bonds are still near the lower limit for their contact-types. However, the 

changes that occur in the distances characterizing the π-π interactions before and 

after the phase transition suggest that strain is relieved in this region of the structure. 
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Interaction  
O1H1..N2i

H1..N2  
O1..N2 
<O1H1N2 

 
1.85 
2.622(25) 
156 

O5H5..O1ii

H5..O1  
O5..O1 
<O5H5O1 

 
1.83 
2.582(14) 
151 

π-πiii #2 
plane-plane 
offset 

 
2.925(10) 
4.86(4) 

π-πiv #3 
plane-plane 
offset 

 
3.065(10) 
4.89(4) 

 

Symmetry Operators 

i -x,-y,-z 
ii 1/2+x,1/2-y,1/2+z   
iii 1-x,1-y,1-z 
iv x,-1+y,z 

 

Table 2.3: Non-covalent interaction parameters in salicylaldoxime-II at 5.93 GPa. 
Distances are in Å, and angles in °. 
 
2.5.3 PIXEL analysis 

In the foregoing discussion we have presented an analysis of the changes 

which occur in the crystal structure of salicylaldoxime based on intermolecular 

distances.  The PIXEL procedure, which has been developed recently by Gavezzotti, 

enables further insight to be gained by calculation of intermolecular interaction 

energies. The method also enables these energies to be broken down into Coulombic, 

polarisation, dispersion and repulsion contributions. In a PIXEL calculation the 

electron density in an isolated molecule is first calculated using a quantum 

mechanical package such as GAUSSIAN. This electron density model is then placed 

in a crystal structure and divided into pixels of electron density. Each energy term is 

obtained by summing over energies calculated between pairs of pixels in 

neighbouring molecules. Further details on the PIXEL method have been published 

elsewhere (Dunitz & Gavezzotti, 2005, Gavezzotti, 2005).   
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The lattice energies and a breakdown of the energies into component 

Coulombic, polarisation, dispersion and repulsion terms for each pressure were 

calculated and are shown in Table 2.4. The overall lattice energy becomes more 

positive as pressure is increased due to the steady increase in the repulsion term as 

the molecules are pushed closer together. The phase transition between 5.28 and 5.93 

GPa results in a considerable decrease in the overall lattice energy. The change is 

caused by significant decreases in the Coulombic and polarisation terms, which 

outweigh the increase in the repulsion term. By extrapolation of the trend established 

up to 5.28 GPa we estimate that salicylaldoxime-II has a larger total energy than 

salicylaldoxime-I by approximately 25 kJ mol-1 at 5.93 GPa. This substantial change 

is likely to be due the loss of an intramolecular hydrogen bond (which only appears 

in the internal energy) in favour of an intermolecular interaction. The adjusted total 

energy (Uadj) suggests a change of approximately 50 kJ mol-1 from phase I to II, 

though this may be over-estimated due to the relatively poor quality of the phase II 

structure (Table 2.4).  
  

Pressure/
GPa Coulombic Polarisation Dispersion Repulsion Total 

Energy Uadj* H†

0.00 -56.4 -22.1 -87.5 78.2 -87.9 -87.9 -87.9

0.75 -65.8 -27.5 -101.5 109.4 -85.4 -78.8 -8.8 

2.37 -95.9 -44.0 -128.4 190.3 -78.0 -71.6 127.2

3.46 -107.2 -48.9 -137.0 226.5 -66.5 -60.3 219.5

4.55 -121.7 -57.7 -147.9 275.9 -51.4 -39.8 317.4

5.28 -128.3 -65.7 -154.0 304.2 -43.8 -26.4 381.6

5.93 -221.1 -117.2 -163.9 443.0 -59.2 21.4 471.7
 
* Adjusted Energy (Uadj) = Total Energy – Energy difference due to conformation change 
relative to 0.0 GPa structure based on GAUSSIAN98 calculation. 
 
† Enthalpy (H) = Uadj + PV, where P = pressure (in Pa) and V = molar volume (in m3 mol-1). 
  

Table 2.4: The components of lattice energy and total energy at each pressure for 
salicylaldoxime (energies in kJ mol-1) along with the adjusted total energy (Uadj) and 
the enthalpy (H). 
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Seven pairs of molecules have interaction energies of magnitude greater than 

2.5 kJ mol-1. These pairs, shown in Figure 2.9, have been labelled 1-7 in descending 

order of their total energies at ambient pressure. The total energies of the pairs at 

each pressure up to 5.28 GPa are also given in Table 2.5. The strongest interaction 

(1) corresponds to the O1H1···O5 hydrogen-bonded dimer across the inversion 

centre; this interaction is dominated by the coulombic term, as expected for a 

hydrogen bond. It continues to be the most important interaction with increasing 

pressure.  

 
Interaction 1   Interaction 2   Interaction 3 

 
Interaction 4   Interaction 5   Interaction 6 

 
Interaction 7 

 

Figure 2.9: Diagrams of the highest energy interactions in the salicylaldoxime-I 
structure from PIXEL analysis. The colour scheme is the same as in Figure 2.1. 
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Pressure/ 
GPa 0.00 0.75 2.37 3.46 4.55 5.28 

Interaction 1 -25.0 -24.2 -23.4 -20.6 -17.5 -17.6 

Interaction 2 -8.7 -8.8 -7.6 -7.3 -5.9 -5.8 

Interaction 3 -8.1 -8.3 -7.5 -5.6 -4.3 -2.8 

Interaction 4 -6.2 -6.4 -6.6 -5.8 -6.0 -5.6 

Interaction 5 -4.8 -4.6 -3.1 -2.5 -1.6 -1.2 

Interaction 6 -4.0 -3.9 -3.9 -3.6 -2.6 -1.4 

Interaction 7 -2.7 -2.5 -1.5 -1.0 0.1 0.1 

 

Table 2.5: Total energies of the seven strongest interactions with increasing pressure 
in salicylaldoxime-I (energies in kJ mol-1). 

 

The next two strongest interactions (2 and 3) are the π-π stacking interactions 

between the reference molecule and two salicylaldoxime units forming a hydrogen-

bonded dimer. Each interaction has an energy in the region of -8-9 kJ mol-1, with a 

large dispersion component. Interactions 4, 5 & 6 would all be overlooked in a 

conventional analysis focusing on hydrogen bonding, but each has an overall 

stabilising interaction, amounting to between -4 and -7 kJ mol-1. These interactions 

are an H…H contact, an offset CH…π interaction and an O…O contact, respectively. 

Interaction 7 corresponds to the C6H6···O1 hydrogen bond discussed above. It seems 

that this ‘weak hydrogen-bonding’ interaction contributes very little to the overall 

lattice energy, and has more contribution from the dispersion component than the 

coulombic component. 

The data from structures at increasing pressures shows that each interaction 

becomes weaker as a result of the increasing repulsion terms. The responses of the 

interactions to hydrostatic pressure are by no means uniform, and Figure 2.10 shows 

a graph of the total interaction energies for each of the seven principal interactions 

against the distance between the molecular centroids of the two molecules involved 
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in the interaction. The data shown in Figure 2.10 were also calculated using the 

Gavezzotti force-field [available in the program RPLUTO (Motherwell, 2002)] 

yielding qualitatively similar results. 

 

 
Figure 2.10: A graph of total interaction energy (in kJ mol-1) against the distance 
between the molecular centroids of the molecules involved in the interaction (in Å). 

 

Interactions 2, 4, 5, 6 & 7 are relatively unaffected by the compression. The 

interactions between these pairs of molecules would therefore seem to be very soft 

and not influential in the forcing of the phase transition. In contrast, the curves for 

interactions 1 and 3 are much steeper (note the distinct difference between the two 

stacking interactions 2 and 3). These results are consistent with the suggestion made 

above that the phase transition occurs in order to avoid further shortening of the 

OH…O hydrogen bond and π-π stacking distances. These results also suggest that 

the π-π interactions become strongly destabilising upon shortening and would appear 

to be very important in both the phase I structure and the phase transition to 

salicylaldoxime-II. 
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The energy of interactions in the phase II structure were also analysed using 

the PIXEL method. The most energetically stabilising interaction, as expected, is the 

 hydrogen-bonded ring. The pair of molecules involved has a total interaction 

energy of -16 kJ mol

( )62
2R

-1, which is comparable to that of the phase I dimer interaction 

energy at 5.28 GPa. Other significant interactions include π-π interactions similar to 

those found in the phase I structure, which have total interaction energies of -5.5 and 

-4.3 kJ mol-1. 

The hydrogen bond, O5H5···O1, which was formed by conversion of an 

intramolecular hydrogen bond into an intermolecular hydrogen bond, is found to 

have a large stabilising coulombic term (-35.6 kJ mol-1), but is actually not an 

stabilising interaction overall (Etot = +1 kJ mol-1) owing to the high value for the 

repulsion term (57.6 kJ mol-1). It seems that the intra- to intermolecular hydrogen 

bond conversion has allowed a pair of molecules to approach one another in order to 

pack more efficiently. 

 

2.6 Conclusions 
We have described here the effects of the application of hydrostatic pressure 

on the structure of salicylaldoxime. The principal effects of pressure, up to 5.28 GPa, 

on the phase I structure are to close up the voids present in the ambient pressure 

structure by shortening the intermolecular interactions and moving the non-

hydrogen-bonding slabs closer together. The only void in the ambient-pressure 

structure that is still visible in a space-filling plot at 5.28 GPa is in the middle of the 

 hydrogen-bonding ring which binds the salicylaldoxime molecules into 

dimers. 

( )104
4R

The pseudo-macrocyclic cavity in the salicylaldoxime dimer has been shown 

to decrease in size steadily with the application of hydrostatic pressure. This 

contraction of the cavity size is comparable to the difference in the hole sizes in the 

copper and nickel salicylaldoxime complex structures. The results suggest that it may 

be possible to tune the metal complex formation selectivity of the salicylaldoximes 

using high pressure. 
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The intermolecular hydrogen bonds and π-π interactions in the structure are 

compressed at 5.28 GPa to the lower limits of similar contacts at ambient pressure 

found in a search of the CSD. PIXEL calculations show a concomitant sharp increase 

in the repulsion energy of these interactions. Phase I is stable up to 5.28 GPa, but 

beyond this pressure the structure transforms to a new polymorph – salicylaldoxime-

II. The phase II structure breaks the ( )104
4R  hydrogen-bonded ring in favour of a 

 ring, which only has two hydrogen bonds, in order to improve the packing of 

the molecules. A CH···O interaction is also replaced by an OH···O hydrogen bond; 

overall this interaction is actually very slightly destabilising, but the intra- to 

intermolecular hydrogen-bond conversion enables a pair of molecules to approach 

one another in order to promote more efficient packing. 

( )62
2R
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3.1 Synopsis 
The crystal structures of four substituted salicylaldoximes have been 

determined at a range of pressures between ambient pressure and 6.2 GPa. 

Salicylaldoxime forms a pseudo-macrocyclic cavity, and derivatives of the 

compound are used as selective ligands in the process of copper solvent extraction. 

The substituted compounds exhibit a range of cavity sizes both larger and smaller 

than salicylaldoxime, but each compound shows a decrease in the size of the cavity 

with pressure and thus an even wider range of cavity sizes can be obtained. This 

implies that, by application of a substituent along with hydrostatic pressure, one of 

the ligands may favour nickel over copper at elevated pressure. 

 

3.2 Introduction 
The use of hydrostatic pressure as a technique for modifying the local 

geometry of small molecular crystal structures is a rapidly expanding field. Much 

recent work has shown that pressure can be used to induce polymorphism (Oswald et 

al., 2005), adjust intermolecular interactions (Boldyreva, 2004) and tune the size of 

intermolecular voids (Moggach et al., 2006). The voids found within a crystal 

structure at ambient conditions have been found to have a significant influence on the 

effects of pressure, with the primary consequences of compression tending to be 

reduction of these voids.  

The voids, or cavities, in a structure can also be of considerable importance in 

terms of the properties and reactivity of the compound. Examples of this include 

nanoporous dipeptide structures that can host organic solvents (Gorbitz, 2002), 

clathrate compounds which can encapsulate larger molecules (Small, 2003) and 

crown ethers, such as 18-crown-6 which forms different types of complex with Na+, 

K+ and Rb+ due to the relative sizes of the ions compared to the intramolecular cavity 

within the crown ether (Gokel, 1991).  

Salicylaldoxime (Scheme 3.1a) forms hydrogen bonded dimers, both in 

solution and in the solid state, which create a pseudo-macrocyclic cavity within the 

hydrogen bonded ring motif (Scheme 3.2). The compound can form bis-
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salicylaldoximato complexes with transition metal ions by deprotonation of the 

phenol groups. The bis complex is further stabilised by hydrogen bonding between 

the two bidentate ligands. Salicylaldoxime is known to be highly selective for 

complex formation of copper(II) over other transition metal ions due to the 

compatibility of the ionic radius of Cu2+ with the size of the intermolecular cavity 

within the hydrogen bonded ring (Smith et al., 2003). As a result of this, derivatives 

of salicylaldoxime are used as solvent extractants in the hydrometallurgical recovery 

of copper, a process which accounts for around a third of annual production 

(Kordosky, 2002). 
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Scheme 3.1a: Chemical structure 

diagram showing atomic 

numbering scheme for 

salicylaldoxime.

 

 

 

Scheme 3.1b: Chemical structure 

diagram showing atomic 

numbering scheme for 3-

chlorosalicylaldoxime.

 

 

 

 

Scheme 3.1c: Chemical structure 

diagram showing atomic 

numbering scheme for 3-

methylsalicylaldoxime.
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Scheme 3.1d: Chemical structure 

diagram showing atomic 

numbering scheme for 3-

methoxysalicylaldoxime. 

 

 

 

 

 

Scheme 3.1e: Chemical structure 

diagram showing atomic 

numbering scheme for 3-tert-

butylsalicylaldoxime (*=1 or 2 for 

phase I and is not present for 

phase II).

 

 

 

 

Scheme 3.2: Hydrogen bonding 

within the pseudo-macrocyclic 

dimer showing potential 

interactions with the 3-substituent 

(X).
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In the study of phase I of salicylaldoxime we showed that the size of the 

pseudo-macrocyclic cavity formed in the centre of the hydrogen bonded dimer can 

be reduced by the application of pressure (Chapter 2, Figure 2.8). The ligands used 

industrially for copper solvent extraction are salicylaldoxime derivatives 

incorporating substituents at different points of the molecule, principally to impart 

kerosene solubility. Such substituents can also influence extractant strength and 

selectivity (Szymanowski, 1993). In this chapter we consider how the effects of the 

application of pressure and of changing the nature of substituents close to the metal 

binding site influence the structure in the solid state and the size of the pseudo-

macrocyclic cavity available to a metal ion. The compounds studied were 3-

chlorosalicylaldoxime, 3-methylsalicylaldoxime, 3-methoxysalicylaldoxime and 3-

tert-butylsalicylaldoxime and results are compared with those for unsubstituted 

salicylaldoxime (Chapter 2). 

 

3.3 Experimental 
Note: All of the syntheses and crystallisations, except for the high pressure in-situ 

crystallisation of 3-chlorosalicylaldoxime, were performed by Ross Forgan of the 

University of Edinburgh. The details are included here for the sake of completeness. 

 

3.3.1 General comments 

All solvents and reagents were used as received from Aldrich and Fisher. 1H 

and 13C NMR were obtained using a Bruker AC250 spectrometer at ambient 

temperature. Chemical shifts (δ) are reported in parts per million (ppm) relative to 

internal standards. Hydrogen numbering in 1H NMR data refers to Scheme 3.1a-e. 

Fast atom bombardment mass spectrometry (FABMS) was carried out using a Kratos 

MS50TC spectrometer with a thioglycerol matrix. Analytical data were obtained 

using a Carlo Erba CHNS analyser at the EaStCHEM Microanalytical Service. 

 
3.3.2 Synthesis 
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3-Methyl-, 3-methoxy-, 3-chloro- and 3-tert-butylsalicylaldoxime (Scheme 

3.1) were synthesised according to the known method (Stepniak-Biniakiewicz, 

1980). 

 

Oximation General Procedure.  Equivalents of KOH and NH2OH.HCl were 

dissolved separately in EtOH, mixed thoroughly and a white KCl precipitate 

removed by filtration. The filtrate was added to the precursor aldehyde, refluxed for 

3 hr and the solvent removed in vacuo.  The residue was redissolved in CHCl3, 

washed with water 3 times, dried over MgSO4 and the solvent removed in vacuo to 

yield the crude product.  

 

3-Chlorosalicylaldoxime. Using the general procedure, 3-

chlorosalicylaldehyde (Hofslokken & Skattebol, 1999) (0.431 g, 2.75 mmol) was 

reacted with KOH (0.169 g, 3.0 mmol) and NH2OH.HCl (0.209 g, 3.0 mmol) to yield 

a white powder (0.376 g, 80 %). (Anal. Calc. for C7H6ClNO2: C, 49.0; H, 3.5; N, 8.2. 

Found: C, 49.4; H, 3.1; N, 8.0 %); 1H NMR (250 MHz, CDCl3): δH (ppm) 6.78 (t, 

1H, Ar-H8), 7.05 (dd, 1H, Ar-H9), 7.30 (dd, 1H, Ar-H7), 8.15 (s, 1H, ArCHN); 13C 

NMR (63 MHz, CDCl3) δC (ppm) 117.0 (1C, aromatic C-CHN), 121.0 (1C, aromatic 

CH), 122.0 (1C, aromatic C-Cl), 129.5 (1C, aromatic CH), 132.0 (1C, aromatic CH), 

153.0 (1C, ArCHN), 154.0 (1C, aromatic C-OH; FABMS m/z 172 (MH)+, 100 %. 

 

3-Methylsalicylaldoxime. Using the general procedure, 3-

methylsalicylaldehyde (Aldrich, 1.000 g, 7.35 mmol) was reacted with KOH (0.425 

g, 7.6 mmol) and NH2OH.HCl (0.530 g, 7.6 mmol) to yield a white powder, which 

was recrystallised from hexane to give colourless needles (0.889 g, 80 %).  (Anal. 

Calc. for C8H9NO2: C, 63.6; H, 6.0; N, 9.3. Found: C, 63.2; H, 6.0; N, 9.4%); 1H 

NMR (250 MHz, CDCl3): δH (ppm) 2.20 (s, 3H, ArCH3), 6.75 (t, 1H, Ar-H8), 6.95 

(dd, 1H, Ar-H7), 7.08 (dd, 1H, Ar-H9); 13C NMR (63 MHz, CDCl3) δC (ppm) 14.5 

(1C, ArCH3), 115.0 (1C, aromatic C-CHN), 118.5 (1C, aromatic CH), 125.0 (1C, 

aromatic C-CH3), 127.5 (1C, aromatic CH), 132.0 (1C, aromatic CH), 152.5 (1C, 

ArCHN), 154.5 (1C, aromatic C-OH); FABMS m/z 152 (MH)+, 83 %. 
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3-Methoxysalicylaldoxime (O-vanillin oxime). Using the general 

procedure, 3-methoxysalicylaldehyde (Aldrich, 3.00 g, 19.7 mmol) was reacted with 

KOH (1.35 g, 24.0 mmol) and NH2OH.HCl (1.42 g, 20.4 mmol) to yield an off-white 

powder, which was recrystallised from H2O to give white needles (2.61 g, 79 %). 

(Anal. Calc. for C8H9NO3: C, 57.5; H, 5.4; N, 8.4. Found: C, 57.4; H, 5.6; N, 8.6 %); 
1H NMR (250 MHz, CDCl3): δH (ppm) 4.12 (s, 3H, OCH3), 7.08 (m, 3H, 3 x ArH), 

8.42 (s, 1H, ArCHN); 13C NMR (63 MHz, CDCl3) δC (ppm) 56.5 (1C, OCH3), 113.0 

(1C, aromatic CH), 117.0 (1C, aromatic C-CHN), 120.0 (1C, aromatic CH), 125.0 

(1C, aromatic CH), 146.5 (1C, aromatic C-OH), 147.5 (1C, aromatic C-OCH3), 

153.0 (1C, ArCHN); FABMS m/z 168 (MH)+, 91 %. 

 

3-tert-Butylsalicylaldoxime. Using the general procedure, 3-tert-

butylsalicylaldehyde (Aldrich, 2.50 g, 14.0 mmol) was reacted with KOH (1.35 g, 

24.0 mmol) and NH2OH.HCl (1.42 g, 20.4 mmol) to yield a white powder, which 

was recrystallised from hexane to give white fluffy needles (2.34 g, 86 %). (Anal. 

Calc. for C11H15NO2: C, 68.4; H, 7.8; N, 7.3. Found: C, 68.4; H, 8.3; N, 7.4 %); 1H 

NMR (250 MHz, CDCl3): δH (ppm) 1.34 (s, 9H, C(CH3)3), 6.78 (t, 1H, Ar-H8*), 

6.95 (dd, 1H, Ar-H7*), 7.22 (dd, 1H, Ar-H9*); 13C NMR (63 MHz, CDCl3) δC (ppm) 

29.5 (3C, C(CH3)3), 35.5 (1C, C(CH3)3), 117.0 (1C, aromatic C-CHN), 119.5 (1C, 

aromatic CH), 129.5 (1C, aromatic CH), 130.0 (1C, aromatic CH), 138.0 (1C, 

aromatic C-C(CH3)3), 154.5 (1C, ArCHN), 157.0 (1C, aromatic C-OH); FABMS 

m/z 194 (MH)+, 100 %. 

 

3.3.3 Crystal growth 

The samples were recrystallised by slow evaporation of a concentrated 

solution of hexane/chloroform (for 3-Me- and 3-tBu-salicylaldoxime), chloroform 

(for 3-OMe-salicylaldoxime) or dichloromethane (for 3-Cl-salicylaldoxime). A 

colourless block of each compound was cut to the required dimensions for high 

pressure crystallography.   
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Initial pressure experiments on 3-chlorosalicylaldoxime showed that the 

crystals were made up of layers, and upon application of pressure the crystals were 

prone to shearing in the direction of these layers. This meant that it was very difficult 

to obtain high-quality compression data when using a single crystal cut from a larger 

sample. A crystal was therefore grown in-situ from solution by the application of 

hydrostatic pressure. A saturated solution in 4:1 methanol/ethanol was loaded into a 

diamond-anvil cell (see below). Pressure was increased to 0.2 GPa (at room 

temperature), leading to formation of several crystallites within the cell. The 

temperature was then increased until the polycrystalline sample began to redissolve.  

The temperature of the cell was then cycled around this elevated temperature in order 

to reduce the number of crystallites. Allowing the cell to cool to room temperature 

yielded a single crystal. Diffraction data were collected on the sample which could 

be indexed on essentially the same unit cell as the ambient pressure structure 

[monoclinic, a = 13.076 (5), b = 3.8514 (6), c = 14.234 (3) Å, β = 91.75 (2) ˚ and V = 

716.5 (3) Å3]. 

 

3.3.4 High pressure crystallography 

Crystal structures at ambient temperature and pressure have been reported 

separately (Forgan et al., 2007). 

High-pressure experiments were carried out using a Merrill-Bassett diamond 

anvil cell (half-opening angle 40°), equipped with brilliant-cut diamonds with 600μm 

culets and a tungsten gasket (Merrill & Bassett, 1974). A 1:1 mixture of n-pentane 

and isopentane was used as a hydrostatic medium for 3-methyl-, 3-methoxy- and 3-

tert-butylsalicylaldoxime; the 4:1 methanol/ethanol mother liquor from crystal 

growth (see above) was used for 3-chlorosalicylaldoxime. Due to the high volatility 

of the n-pentane/isopentane solution, the cells loaded with this medium were cooled 

in dry ice prior to loading. A small ruby chip was also loaded into each cell as the 

pressure calibrant, with the ruby fluorescence method being used to measure the 

pressure (Piermarini et al., 1975). In the case of 3-chlorosalicylaldoxime, the crystal 

scattered relatively strongly and so data were collected on a Bruker-Nonius APEX-II 

diffractometer with graphite-monochromated, sealed-tube Mo-Kα radiation (λ = 
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0.71073 Å). For the remaining crystals diffraction data were collected on a Bruker-

Nonius APEX-II diffractometer with silicon-monochromated synchrotron radiation 

(λ = 0.4577 Å for the 3-Me- and λ = 0.4869 Å for the 3-MeO- and 3-t-Bu-

compounds) on Station 9.8 at the SRS, Daresbury Laboratory.     

 Data collection and processing procedures for the high-pressure experiments 

followed previous studies (Dawson et al., 2004, Moggach et al., 2005). Integrations 

were carried out using the program SAINT (Bruker-Nonius, 2006), and absorption 

corrections with the programs SHADE (Parsons, 2004) and SADABS (Sheldrick, 

2004). Data collections were taken in approximately 1.0 GPa steps from between 0.2 

– 0.5 GPa up to the highest pressure at which usable data could be collected - 

between 5.0 and 6.2 GPa. Determination of the cell constants of 3-tert-

butylsalicylaldoxime at 1.0 GPa showed that a single-crystal to single-crystal phase 

transition had occurred to a new polymorph, which we have designated 3-tert-

butylsalicylaldoxime-II. The phase transition did not appear to cause significant 

degradation of the crystal quality, so the compression study was continued up to the 

limits of the hydrostatic medium. No phase transitions were found in the single 

crystal compression studies of the 3-chloro, 3-methyl or 3-methoxy-salicylaldoximes 

in the pressure ranges studied.  

Refinements of the compressed forms of each compound were carried out 

starting from the co-ordinates determined at ambient pressure. The structure of the 

new phase of the t-butyl derivative (3-tert-butylsalicylaldoxime-II) was solved by 

direct methods using the program SIR-92 and refinements of the subsequent high-

pressure datasets were carried out starting from these coordinates. Refinements were 

carried out against |F|2 using all data (CRYSTALS) (Betteridge et al., 2003). Extreme 

outlier reflections (e.g. those partially cut-off by the pressure cell, or overlapping 

with diamond reflections or Be powder lines) were omitted from the refinement.  

Listings of crystal and refinement data are given in Tables 3.1a-d.  

Crystal structures were visualized using the programs Mercury (Bruno et al., 

2002) and DIAMOND (Crystal Impact, 2004). Analyses were carried out using 

PLATON (Spek, 2003), as incorporated in the WinGX suite (Farrugia, 1999). 

Searches of the Cambridge Structural Database (Allen, 2002, Allen & Motherwell, 
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2002) utilized the program ConQuest and version 5.27 of the database with updates 

up to August 2006. Equation-of-state calculations were carried out with EOSFIT 

(Angel, 2000). 

 

 Ambient 1.6 GPa 2.4 GPa 3.4 GPa 5.0 GPa 
Formula C7H6ClNO2 C7H6ClNO2 C7H6ClNO2 C7H6ClNO2 C7H6ClNO2

Mr 171.58 171.58 171.58 171.58 171.58 
Cell setting, 
space group 

Monoclinic, 
P21/c 

Monoclinic, 
P21/c 

Monoclinic, 
P21/c 

Monoclinic, 
P21/c 

Monoclinic, 
P21/c 

a, b, c (Å) 13.1506  
(18),  

3.8859  
(6),  

14.3115  
(19) 

12.843  
(3),  

3.6613  
(3),  

13.7921  
(16) 

12.748  
(2),  

3.5954  
(3),  

13.6496  
(15) 

12.652  
(4),  

3.5295  
(4),  

13.509  
(2) 

12.544  
(6),  

3.4424  
(8),  

13.365  
(5) 

β (°) 91.548 (10) 92.603 (13) 93.115 (13) 93.64 (2) 94.44 (4) 
V (Å3) 731.08 (18) 647.88 (16) 624.71 (15) 602.0 (2) 575.4 (4) 

Z 4 4 4 4 4 
Dx (Mg m–3) 1.559 1.759 1.824 1.893 1.981 
 Measured, 
independent 
and observed 

reflections 

10310,  
1955,  
1127 

3158,  
440,  
348 

3218,  
415,  
341 

2720,  
416,  
319 

3081,  
351,  
231 

Rint 0.018 0.064 0.060 0.076 0.098 
R[F2 > 

2σ(F2)], 
wR(F2), S 

0.033,  
0.083,  
0.80 

0.058,  
0.158,  
1.02 

0.046,  
0.121,  
1.03 

0.078,  
0.227,  
1.02 

0.045,  
0.123,  
1.00 

No. of 
reflections 

1955 
reflections 

440 
reflections 

415 
reflections 

409 
reflections 

344 
reflections 

Parameters 106 106 106 106 106 
Δρmax, Δρmin 

(e Å–3) 
0.21, –0.12 0.26, –0.22 0.25, –0.22 0.36, –0.40 0.33, –0.33

(a) 

 



Chapter 3. The Effect of Pressure and Substituents on the Size of Pseudo-Macrocyclic Cavities in 
Salicylaldoxime Ligands 

 
 

 
 

 

- 66 -

 Ambient 1.3 GPa 2.2 GPa 3.5 GPa 4.2 GPa 4.9 GPa 5.6 GPa
Formula C8H9NO2 C8H9NO2 C8H9NO2 C8H9NO2 C8H9NO2 C8H9NO2 C8H9NO2

Mr 151.16 151.16 151.16 151.16 151.16 151.16 151.16 
Cell setting, 
space group 

Monoclin
ic, P21/c 

Monoclin
ic, P21/c

Monoclin
ic, P21/c

Monoclin
ic, P21/c

Monoclin
ic, P21/c

Monoclin
ic, P21/c 

Monoclin
ic, P21/c

a, b, c (Å) 13.249 
(4), 

3.9513 
(11), 

14.402 
(4) 

12.998 
(3), 

3.6988 
(5), 

13.9167 
(16) 

12.941 
(4), 

3.6146 
(5), 

13.7188 
(17) 

12.878 
(4), 

3.5363 
(5), 

13.5218 
(16) 

12.831 
(3), 

3.5096 
(4), 

13.4462 
(13) 

12.766 
(7), 

3.4872 
(9), 

13.382 
(3) 

12.750 
(4), 

3.4482 
(6), 

13.2910 
(18) 

β (°) 90.324 
(4) 

90.99  
(2) 

91.47  
(2) 

91.88  
(2) 

92.10  
(2) 

92.27  
(4) 

92.45  
(2) 

V (Å3) 754.0  
(4) 

669.0  
(2) 

641.5  
(2) 

615.5  
(2) 

605.11 
(16) 

595.2  
(4) 

583.8  
(2) 

Z 4 4 4 4 4 4 4 
Dx (Mg m–3) 1.332 1.501 1.565 1.631 1.659 1.687 1.720 
Measured, 

independent 
& observed 
reflections 

6640, 
1786,  
627 

6638, 
878,  
502 

6282, 
822,  
517 

8856, 
1402,  
654 

8863, 
1415,  
618 

8106, 
1373,  
673 

7902, 
1281,  
623 

Rint 0.041 0.233 0.157 0.199 0.271 0.222 0.242 
R[F2 > 

2σ(F2)], 
wR(F2), S 

0.049, 
0.131, 
0.69 

0.076, 
0.212, 
1.02 

0.068, 
0.196, 
1.02 

0.062, 
0.195, 
1.00 

0.076, 
0.240, 
0.96 

0.099, 
0.318, 
0.93 

0.059, 
0.174, 
1.02 

Reflections 1786 refs 876 refs 818 refs 1395 refs 1404 refs 1371 refs 1267 refs
Parameters 106 106 106 107 106 107 106 
Δρmax, Δρmin

(e Å–3) 
0.14, –
0.17 

0.22, –
0.23 

0.32, –
0.19 

0.20, –
0.20 

0.23, –
0.32 

0.44, –
0.38 

0.18, –
0.22 

(b) 
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 Ambient 1.4 GPa 2.7 GPa 4.4 GPa 5.3 GPa 6.0 GPa 
Formula C8H9NO3 C8H9NO3 C8H9NO3 C8H9NO3 C8H9NO3 C8H9NO3

Mr 167.16 167.16 167.16 167.16 167.16 167.16 
Cell setting, 
space group 

Orthorhom
bic, Pbca 

Orthorhom
bic, Pbca 

Orthorhom
bic, Pbca 

Orthorhom
bic, Pbca 

Orthorhom
bic, Pbca 

Orthorhom
bic, Pbca 

a, b, c (Å) 13.9108 
(5),  

7.1936  
(3), 

15.6965  
(6) 

13.0765 
(5),  

7.0982  
(4), 

15.2455  
(5) 

12.5814 
(4),  

7.0265  
(4), 

15.0188  
(4) 

12.3113 
(5),  

6.9800  
(4), 

14.8947  
(5) 

12.1340 
(13), 

6.9421 
(11), 

14.8065 
(13) 

12.0702 
(5),  

6.9200  
(5), 

14.7703  
(5) 

V (Å3) 1570.73 
(11) 

1415.08 
(11) 

1327.71  
(9) 

1279.94 
(10) 

1247.2  
(3) 

1233.70 
(11) 

Z 8 8 8 8 8 8 
Dx (Mg m–3) 1.414 1.569 1.672 1.735 1.780 1.800 
Measured, 

independent 
& observed 
reflections 

17158,  
1615,  
793 

12848, 
1160,  
733 

12227, 
1090,  
743 

12201, 
1425,  
890 

11069, 
1033,  
737 

11243, 
1022,  
693 

Rint 0.027 0.117 0.106 0.110 0.111 0.097 
R[F2 > 

2σ(F2)], 
wR(F2), S 

0.030, 
0.126,  
1.13 

0.046, 
0.153,  
0.94 

0.041, 
0.119,  
0.90 

0.049, 
0.162,  
0.87 

0.048, 
0.144,  
0.85 

0.042, 
0.111,  
0.90 

Reflections 1615 
reflections 

1155 
reflections

1087 
reflections

1424 
reflections

1029 
reflections 

1022 
reflections

Parameters 115 116 115 115 116 115 
Δρmax, Δρmin 

(e Å–3) 
0.16, –0.12 0.15, –0.17 0.15, –0.18 0.25, –0.19 0.24, –0.24 0.20, –0.17

(c) 
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 Ambient 0.2 GPa 1.0 GPa 2.3 GPa 3.4 GPa 4.6 GPa 6.2 GPa
Formula C11H15N 

O2

C11H15N 
O2

C11H15N
O2

C11H15N
O2

C11H15N
O2

C11H15N
O2

C11H15N
O2

Mr 193.25 193.25 193.25 193.25 193.25 193.25 193.25 
Cell setting, 
space group 

Triclinic,  
P-1 

Triclinic, 
P-1 

Monocli
nic, I2/a

Monocli
nic, I2/a

Monocli
nic, I2/a 

Monocli
nic, I2/a 

Monocli
nic, I2/a

a, b, c (Å) 6.6132 
(3), 

13.1087 
(6), 

13.6382 
(6) 

6.5597 
(7), 

12.8532 
(9),  

13.479 
(2) 

14.811 
(3), 

6.4564 
(7), 

19.759 
(4) 

14.5745 
(13), 

6.3779 
(4), 

19.0922 
(18) 

14.3941 
(14), 

6.3329 
(4), 

18.7250 
(19) 

14.271 
(4), 

6.3030 
(9), 

18.459 
(5) 

14.101 
(3), 

6.2699 
(6), 

18.158 
(3) 

α, β, γ (°) 68.762(3), 
76.739(3), 
79.733(3) 

69.311(10), 
76.054(10), 
79.035(6)

90,  
94.060 
(8), 90 

90,  
94.882 
(4), 90 

90,  
95.325 
(5), 90 

90,  
95.590 
(15), 90 

90,  
95.817 
(10), 90

V (Å3) 1066.71 
(9) 

1024.9 
(2) 

1884.7 
(5) 

1768.3 
(3) 

1699.5 
(3) 

1652.5 
(7) 

1597.1 
(4) 

Z 4 4 8 8 8 8 8 
Dx (Mg m–3) 1.203 1.252 1.362 1.452 1.510 1.553 1.607 
Measured, 
indep. & 
obs.  refs 

23029, 
4351,  
2393 

8650,  
1697,  
875 

8727, 
1163,  
630 

8098, 
1055,  
628 

7914, 
979,  
637 

7728, 
920,  
569 

7429, 
791,  
510 

Rint 0.050 0.097 0.125 0.125 0.106 0.119 0.110 
R[F2 > 

2σ(F2)], 
wR(F2), S 

0.054, 
0.134,  
0.85 

0.062, 
0.200,  
0.92 

0.062, 
0.206, 
0.96 

0.064, 
0.225, 
0.98 

0.056, 
0.184, 
0.96 

0.067, 
0.239, 
0.98 

0.053, 
0.163, 
0.95 

Reflections 4351 refs 1688 refs 1163 refs 1055 refs 979 refs 918 refs 790 refs
Parameters 265 265 134 134 134 134 134 
Δρmax, Δρmin 

(e Å–3) 
0.17, –0.15 0.12, –0.13 0.16, –

0.16 
0.23, –
0.26 

0.18, –
0.20 

0.24, –
0.27 

0.16, –
0.17 

(d) 
Table 3.1: Crystallographic data at increasing pressures for (a) 3-
chlorosalicylaldoxime (ambient to 5.0 GPa), (b) 3-methylsalicylaldoxime (ambient to 
5.6 GPa), (c) 3-methoxysalicylaldoxime (ambient to 6.0 GPa) and (d) 3-tert-
butylsalicylaldoxime (ambient to 6.2 GPa). 
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The numbering schemes used (Scheme 3.1a-e) are the same for each 

compound.  The oxime group is formed by H1-O1-N2-C3, and the hydroxyl group 

by O5H5; in the case of the two molecules comprising the asymmetric unit of 3-tert-

butylsalicylaldoxime-I these labels are augmented by ‘1’ or ‘2’ (O51-H51, O52-H52 

etc.). 

 

3.3.5 PIXEL calculations 

The final crystal structures obtained were used to calculate the molecular 

electron density at each pressure by standard quantum chemical methods using the 

program GAUSSIAN98 (Frisch et al., 1998) with the MP2/6-31G** basis set.  H-

atom distances were set to standard neutron values (C-H = 1.083 Å, O-H = 0.983 Å). 

The electron density model of the molecule was then analysed using the program 

package OPiX (Gavezzotti, 2003, 2005b) which allows the calculation of dimer and 

lattice energies. The output from these calculations yields a total energy and a 

breakdown into its electrostatic, polarisation, dispersion and repulsion components 

(Dunitz & Gavezzotti, 2005). 

 

3.4 Results 
3.4.1 The structures of the substituted salicylaldoximes at ambient pressure 

3-Methyl-, 3-methoxy- and 3-chlorosalicylaldoxime all crystallise with one 

molecule in the asymmetric unit, while the asymmetric unit of 3-tert-

butylsalicylaldoxime-I contains two molecules.  Prior to this work only one of the 

four compounds studied, 3-methoxysalicylaldoxime, had been crystallographically 

characterized (Xu et al., 2004). Each of these structures exhibits intramolecular 

phenolic O5*-H5*…N2* hydrogen bonds and intermolecular oximic O1*-

H1*…O5* hydrogen bonds (where * = 1 or 2 for 3-tert-butylsalicylaldoxime). The 

latter form a dimer motif across an inversion centre (Figure 3.1) in a similar manner 

to that seen in salicylaldoxime (Chapter 2, Scheme 2.2a) for which the graph-set 

descriptor is  (Bernstein et al., 1995).  ( )104
4R
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Figure 3.1: The hydrogen-bonded ( )104
4R  ring motif formed across an inversion 

centre in the structure of 3-methylsalicylaldoxime at ambient pressure. The colour 
scheme is red: oxygen, blue: nitrogen, light-grey: carbon and dark-grey: hydrogen. 

 

The salicylaldoxime molecule is essentially planar in each structure, though 

the perpendicular distance between the two molecules of the  dimer varies. 

The distances between the least squares planes of the two hydrogen bonded 

salicylaldoxime molecules are 0.967, 1.122, 0.836, 0.730 and 0.404 Å for 3-

chlorosalicylaldoxime, 3-methylsalicylaldoxime, 3-methoxysalicylaldoxime and the 

two different dimers in 3-tert-butylsalicylaldoxime, respectively.  

( )104
4R

The structures of 3-chlorosalicylaldoxime and 3-methylsalicylaldoxime have 

similar cell dimensions and are almost isostructural. The ( )104
4R  dimers are stacked 

via cell-translations along [010] to form π-π contacts between phenyl groups 

[stacking distance = 3.464 (1) Å and 3.533 (2) Å for 3-chloro and 3-

methylsalicylaldoxime, respectively], which connect the dimers into ribbons running 

in the direction of the b-axis. The ribbons are then held together by C3H3…O1 

interactions [C3…O1 = 3.583 (3) Å and 3.722 (3) Å for 3-chloro and 3-

methylsalicylaldoxime respectively] to form slabs in the (100) plane. In the structure 

of 3-methylsalicylaldoxime the slabs interact only through weak van der Waals 

contacts and are arranged so that H…H contacts are approximately equidistant 

(Figure 3.2a). The 3-chlorosalicylaldoxime structure, however, shows a shifting of 

the slabs with respect to the methyl form in order to optimise the CH…Cl contacts in 

the structure, two of which are formed between the slabs (Figure 3.2b). The packing 
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of the 3-chloro form includes three CH…Cl intermolecular interactions of similar 

length [C…Cl = 3.626 (2), 3.661 (2), 3.699 (2) Å] and two slightly longer CH…Cl 

contacts [C…Cl = 4.027 (2) and 4.200 (2) Å]. 

 
(a)      (b) 

Figure 3.2: The structure of 3-methylsalicylaldoxime (a) and 3-
chlorosalicylaldoxime (b) at ambient pressure as viewed along the b-axis. This view 
illustrates the similarity and differences in the formation of slabs in these crystal 
structures. Hydrogen bonds are shown as dashed yellow lines and close CH…Cl 
contacts are shown as dashed green lines. The colour scheme is the same as in Fig. 
3.1 with the addition of green: chlorine. 

 

3-Methoxysalicylaldoxime also contains a π-π stacking motif between phenyl 

rings. In this structure the stacking molecules are related by an inversion centre, and 

each molecule interacts with only one other in this fashion, rather than in the infinite 

stack arrangement seen in salicylaldoxime, 3-chlorosalicylaldoxime and 3-

methylsalicylaldoxime. The other side of the phenyl ring forms a CH…π interaction 

with the phenyl hydrogen atoms of an adjacent molecule; repetition of this motif 

generates a herringbone-like pattern (Figure 3.3). The hydrogen bonded dimer and 

the stacking motif combine to form ribbons which run along the b-axis; the ribbons 

are then connected via the CH…π interactions into slabs in the (001) plane. The slabs 

then interact with each other through C3H3…O1 interactions [C3…O1 = 3.368 (3) 

Å]. 
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Figure 3.3: The structure of 3-methoxysalicylaldoxime at ambient pressure as 
viewed along the c-axis. This view illustrates the stacking interactions between the 
dimer units and the CH…π interactions (shown as dashed lines) in the structure 
which form a herringbone-like pattern. The colour scheme is the same as in Fig. 3.1. 

 

The structure of 3-tert-butylsalicylaldoxime contains two molecules in the 

asymmetric unit and has the space group P-1. Each symmetry-independent molecule 

forms a hydrogen bonded dimer across an inversion centre, and exhibits a π-π 

stacking interaction with a molecule related by another inversion centre (Figure 3.4). 

Like the 3-methoxy substituted form, 3-tert-butylsalicylaldoxime only forms a 

stacking interaction on one side of the phenyl ring and is involved in a CH…π 

interaction on the other side, in this case with the tert-butyl group of the other 

molecule in the asymmetric unit. The hydrogen bonded dimer and stacking 

interactions again form ribbons, which in this case run along the a-axis, and the 

ribbons are then connected to each other via the CH…π interactions to form slabs in 

the (0-11) plane. These slabs interact with each other through long CH…O 

interactions [C31…O12 = 3.629 (3) Å and C32…O11 = 3.611 (3) Å].  
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Figure 3.4: The structure of 3-tert-butylsalicylaldoxime-I at ambient pressure 
showing the π-π stacking interaction between two hydrogen-bonded dimers for one 
of the crystallographically independent molecules. The colour scheme is the same as 
in Fig. 3.1. 

 

3.4.2 The phase transition in 3-tert-butylsalicylaldoxime 

The phase transition from 3-tert-butylsalicylaldoxime-I to 3-tert-

butylsalicylaldoxime-II occurs between 0.2 and 1.0 GPa and proceeds from one 

single crystal to another single crystal. The space group changes from P-1 to I2/a, the 

two crystallographically independent molecules of the triclinic phase becoming 

equivalent after the phase transition. The non-covalent interaction motifs of the 

structure remain essentially the same through the phase transition with the structure 

retaining the  hydrogen bonded dimer motif and the π-π stacking. These two 

intermolecular interactions form ribbons as in the ambient phase, but these now run 

along the crystallographic b-axis. The independent CH…π interactions of the triclinic 

phase are averaged with the distances from the closest hydrogen to the plane of the 

phenyl ring changing from 2.79 and 2.63 Å in the 0.2 GPa phase I structure to 2.69 Å 

in the 1.0 GPa phase II structure. The ribbons are connected through these CH…π 

contacts in the high pressure structure to form slabs in the (100) plane. The 

C3H3…O1 interactions between the slabs persist through the phase transition, 

though the C…O distances are shorter [C3…O1 = 3.432 (7) Å]. 

( )104
4R
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3.4.3 The response to pressure of the substituted salicylaldoximes 

The effect of pressure on the substituted oximes is anisotropic, the changes in 

unit cell dimensions with pressure are given in Tables 3.1a-d. The bulk moduli (K0) 

calculated using a Birch-Murnaghan equation-of-state (Birch, 1947, Angel et al., 

2000) are 12.1 (4), 12.2 (5), 14.2 (6) and 15.6 (6) GPa respectively for the chloro-, 

methyl-, methoxy- and t-butyl derivatives, compared to the value of 13.3 (4) GPa 

calculated for salicylaldoxime itself. The variation in unit cell volumes is therefore 

fairly consistent across this series of compounds. Molecular solids generally have K0 

< 30 GPa and a useful comparison can be made from the following K0 values (GPa): 

Ru3(CO)12 6.6, NaCl 25, quartz 37, ceramics 50–300 and diamond 440 (Slebodnick 

et al., 2004). 

The changes in non-covalent interaction geometries with pressure for the 

series of compounds are shown in Table 3.2. Consistently across the series of 

compounds the least compressible interaction is the intramolecular phenolic OH…N 

hydrogen bonding interaction (O…N distance decreases by between 1.5 and 2.2 %). 

The other conventional hydrogen bond in the structures, the oximic intermolecular 

OH…O interaction, is more compressible (the O…O distance decreases by between 

4.7 and 6.5 %). These hydrogen bonding interactions retain roughly the same donor-

hydrogen-acceptor angles with compression, so the conformation of the hydrogen 

bonding ring in each structure remains essentially unchanged. The deviation from 

planarity of the  rings is also insensitive to pressure throughout the series (e.g. 

the interplanar distance in 3-methylsalicylaldoxime is 1.122 Å at ambient pressure 

and 1.149 at 5.6 GPa; corresponding data for the 3-chloro derivative are 0.967 and 

1.026 Å at 5 GPa).   

( )104
4R

The most compressible of the three non-covalent interactions in the structures 

is the π-π stacking interaction, which can be described by the perpendicular distance 

between the least-squares mean plane of one phenyl ring to the centroid of another 

(stacking distances decrease by between 11.2 and 14.9 %).  

 

 

 

 

- 74 -



Chapter 3. The Effect of Pressure and Substituents on the Size of Pseudo-Macrocyclic Cavities in 
Salicylaldoxime Ligands 

 
 

 
 

 

- 75 -

Pressure/GPa 0.0 1.6 2.4 3.4 5.0 

O5H5..N2i

H5..N2  
O5..N2 
<O5H5N2 

 
1.85 
2.589(2) 
150(2) 

 
1.80 
2.562(13) 
149 

 
1.79 
2.550(11) 
153 

 
1.77 
2.550(16) 
152 

 
1.79 
2.538(15) 
146 

O1H1..O5ii

H1..O5 
O1..O5 
<O1H1O5 

 
2.07 
2.783(2) 
156(2) 

 
1.97 
2.731(10) 
149 

 
1.91 
2.709(8) 
152 

 
1.94 
2.692(12) 
147 

 
1.88 
2.653(11) 
151 

π-πiii

plane-plane 
offset 

 
3.464(1) 
1.761(1) 

 
3.242(3) 
1.701(2) 

 
3.191(3) 
1.656(3) 

 
3.122(4) 
1.645(3) 

 
3.055(4) 
1.586(4) 

 

Symmetry Operators: 

i x,y,z   
ii -x,-y,-z 
iii x,-1+y,z 

(a) 
 

Pressure/GPa 0.0 1.3 2.2 3.5 4.2 4.9 5.6 

O5H5..N2i

H5..N2  
O5..N2 
<O5H5N2 

 
1.85 
2.608(2) 
143(2) 

 
1.80 
2.597(7)
151 

 
1.86 
2.585(7)
138 

 
1.79 
2.573(6)
144 

 
1.86 
2.576(6) 
137 

 
1.80 
2.572(7) 
147 

 
1.82 
2.570(6)
145 

O1H1..O5ii

H1..O5 
O1..O5 
<O1H1O5 

 
2.06 
2.806(3) 
153(3) 

 
2.03 
2.750(6)
141 

 
1.94 
2.732(5)
156 

 
1.80 
2.694(4)
168 

 
1.87 
2.684(5) 
155 

 
1.88 
2.675(6) 
150 

 
1.77 
2.658(4)
156 

π-πiii

plane-plane 
offset 

 
3.533(2) 
1.769(2) 

 
3.314(2)
1.643(2)

 
3.238(2)
1.607(2)

 
3.167(2)
1.573(2)

 
3.139(2) 
1.571(2) 

 
3.117(2) 
1.563(2) 

 
3.080(2)
1.550(2)

 

Symmetry Operators: 

i x,y,z   
ii -x,-y,-z 
iii x,-1+y,z 

(b) 

 



Chapter 3. The Effect of Pressure and Substituents on the Size of Pseudo-Macrocyclic Cavities in 
Salicylaldoxime Ligands 

 
 

 
 

 

- 76 -

Pressure/GPa 0.0 1.4 2.7 4.4 5.3 6.0 

O5H5..N2i

H5..N2  
O5..N2 
<O5H5N2 

 
1.79 
2.586(3) 
151(3) 

 
1.81 
2.567(3) 
144 

 
1.77 
2.552(3) 
150 

 
1.76 
2.542(2) 
150 

 
1.81 
2.536(2) 
150 

 
1.85 
2.534(3) 
143 

O1H1..O5ii

H1..O5 
O1..O5 
<O1H1O5 

 
1.88 
2.707(2) 
155(3) 

 
1.90 
2.655(3) 
152 

 
1.79 
2.617(3) 
158 

 
1.81 
2.598(3) 
149 

 
1.77 
2.581(3) 
156 

 
1.77 
2.578(3) 
149 

π-πiii

plane-plane 
offset 

 
3.429(2) 
1.820(1) 

 
3.270(2) 
1.655(1) 

 
3.165(2) 
1.577(1) 

 
3.102(2) 
1.548(1) 

 
3.058(2) 
1.536(1) 

 
3.046(2) 
1.524(1) 

 

Symmetry Operators: 

i x,y,z   
ii -x,-y,-z 
iii 1-x,1-y,1-z 

(c) 
 

Pressure/GPa 0.0 0.2 
O51H51..N21i

H51..N21  
O51..N21 
<O51H51N21 

 
1.81 
2.597(3) 
150(2) 

 
1.85 
2.620(14) 
145 

O11H11..O51ii

H11..O51 
O11..O51 
<O11H11O51 

 
2.00 
2.811(3) 
156(3) 

 
1.96 
2.769(8) 
155 

O52H52..N22i

H52..N22  
O52..N22 
<O52H52N22 

 
1.84 
2.599(2) 
148(2) 

 
1.89 
2.614(18) 
143 

O12H12..O52iii

H12..O52 
O12..O52 
<O12H12O52 

 
1.99 
2.827(3) 
164(4) 

 
2.00 
2.813(8) 
157 

π-πiv

plane-plane 
offset 

 
3.371(2) 
3.768(2) 

 
3.314(5) 
3.745(5) 

π-πv

plane-plane 
offset 

 
3.696(2) 
3.309(2) 

 
3.612(6) 
3.249(5) 
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Symmetry Operators: 

i x,y,z   
ii 2-x,-y,-z 
iii 1-x,1-y,1-z 
iv 1-x,-y,-z 
v -x,1-y,1-z 

(d) 

 
Pressure/GPa 1.0 2.3 3.4 4.6 6.2 

O5H5..N2i

H5..N2  
O5..N2 
<O5H5N2 

 
1.80 
2.569(6) 
148(5) 

 
1.84 
2.578(6) 
145 

 
1.80 
2.586(6) 
146 

 
1.80 
2.551(7) 
145 

 
1.76 
2.541(9) 
148 

O1H1..O5ii

H1..O5 
O1..O5 
<O1H1O5 

 
1.94 
2.763(5) 
157(3) 

 
1.96 
2.723(5) 
152 

 
1.93 
2.694(5) 
153 

 
1.90 
2.677(6) 
148 

 
1.90 
2.653(6) 
148 

π-πiii

plane-plane 
offset 

 
3.308(3) 
3.382(3) 

 
3.192(3) 
3.332(3) 

 
3.114(3) 
3.302(3) 

 
3.065(4) 
3.274(4) 

 
3.011(3) 
3.239(3) 

 

Symmetry Operators: 

i x,y,z   

ii 0.5-x,0.5-y,0.5-z 

iii 0.5-x,1.5-y,0.5-z 

(e) 
 

Table 3.2: Non-covalent interaction parameters in the crystal structures of (a) 3-
chlorosalicylaldoxime, (b) 3-methylsalicylaldoxime, (c) 3-methoxysalicylaldoxime, 
(d) 3-tert-butylsalicylaldoxime-I and (e) 3-tert-butylsalicylaldoxime-II. Distances are 
in Å, and angles in °. 
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3.5 Discussion 
3.5.1 The effect of pressure on cavity size in the substituted salicylaldoximes 

The size of the intermolecular cavity, which occurs within the hydrogen 

bonded ring motif, can be studied by measuring the mean distance from the donor 

atoms of the ligands (i.e. O5, N2) to the centroid of the dimer. This distance was 

shown (Chapter 2, Figure 2.8) to decrease approximately linearly in the case of 

salicylaldoxime-I within the pressure range of 0-5.3 GPa. Figure 3.5 shows a graph 

of the cavity size as a function of pressure as determined in this study. We can see 

that the cavity sizes decrease for all the compounds and, with the exception of the 

tert-butyl phase I (from 0 – 1 GPa in Figure 3.5), with very similar gradients.  

 
Figure 3.5: Graph of cavity size (in Å) as a function of pressure (in GPa) for 
salicylaldoxime (dark blue), 3-chlorosalicylaldoxime (green), 3-
methylsalicylaldoxime (pink), 3-methoxysalicylaldoxime (light blue) and 3-tert-
butylsalicylaldoxime (orange). Cavity size is defined as the mean distance of donor 
atoms from the centroid of the dimer. Each pressure series (except for tBu) has been 
fitted with a line of best fit using a polynomial of order 2; these are guides to the eye 
rather than equations of state. The two phases of 3-tert-butylsalicylaldoxime have 
been plotted separately with a trend line fitted to each set of points, both are coloured 
orange. The error bars are shown at the 1σ level. 
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The cavity size at ambient pressure is found to be markedly dependent on the 

nature of the 3-substituent which is ortho to the phenolic OH group (X in Scheme 

3.2). The trend appears to be related to the ability of the substituent to accept a 

hydrogen bond. If it has a lone pair capable of accepting a hydrogen bond, the oximic 

hydrogen can in principle form an asymmetric bifurcated hydrogen bond, 

encouraging the molecules to approach each other more closely (see Scheme 3.2). 

On this basis the 3MeO- and 3Cl- derivatives are expected and are found to have the 

smallest cavity radii (Table 3.3) Conversely when the 3-substituent is bulky it will 

weaken the oximic H to phenolic O hydrogen bonding and a larger cavity will result, 

as in the 3-tBu compound (see Table 3.3).  

 

3-Substituent OMe Cl H Me tBu 

Cavity size at ambient 
pressure/Å 1.9492(19) 1.9837(12) 2.0048(15) 2.0237(18) 2.0367(19)

ΔEcoul / kJmol-1 -4.8 -0.5 0 +0.2 +2.1 

ΔErep / kJmol-1 -0.4 0.0 0 +0.6 +6.2 

ΔEpol / kJmol-1 -1.0 -1.0 0 -0.8 -2.7 

ΔEdisp / kJmol-1 -0.8 -1.5 0 -1.5 -5.8 

ΔETOTAL / kJmol-1 -7.0 -3.0 0 -1.5 -0.2 
 

Table 3.3: Ambient-pressure cavity sizes and differences in energy for the hydrogen 
bonded dimers in the substituted oximes structures with and without the substituent. 
The values are calculated for each dimer and then for the same geometry but with the 
substituent replaced by an H atom. The energies of the components in the 
salicylaldoxime-I dimer contact are -37.1, -7.8, 35.0, -15.0 and -25.0 kJ mol  for the 
Coulombic, dispersion, repulsion, polarisation and total energies respectively. 
Energies are in kJ mol . The cavity size for the Bu derivative is the average for the 
two molecules comprising the asymmetric unit.

-1

-1 t

 

In order to test this theory a set of energy calculations were performed using 

the geometry of the crystal structures and the PIXEL method (Gavezzotti, 2005a, 

Dunitz & Gavezzotti, 2005), which models intermolecular interaction energies in 

terms of Coulombic, polarization and dispersive-repulsion contributions. PIXEL 



Chapter 3. The Effect of Pressure and Substituents on the Size of Pseudo-Macrocyclic Cavities in 
Salicylaldoxime Ligands 

 
 

 
 

 

- 80 -

energies were calculated first for each dimer and then for the same geometry but with 

the substituent replaced by an H atom. The differences are reported in Table 3.3. 

The Coulombic term favours the association of the dimer when the 3MeO- 

and 3Cl- are present (Table 3.3) which is consistent with their H-bond acceptor 

properties whilst it disfavours association for the 3Me- and the 3-tBu substituted 

compounds. A large repulsion term (Erep) is seen for the tBu-substituted ligand, 

which may explain both its large hole size and poor extractive efficacy (Forgan et al., 

2007). However, the method also suggests there is a slightly stronger net stabilising 

energy between the two halves of the Me and tBu substituted dimers than in the 

unsubstituted system. Both have large, favourable dispersion terms, Edisp, due to the 

number of electrons in the substituents, though it is possible that this term may be 

over-estimated as it is the most parameterised in the PIXEL formalism (Gavezzotti, 

2007). 

Figure 3.5 shows that the relative compressibilities of the hole sizes in the 

five different compounds are quite similar, no doubt reflecting the similarity of the 

interactions involved.  The relative changes in cavity size (= cavity size at ambient 

pressure / cavity size at 5 GPa) are 1.031(4) (Me) and 1.031(6) (Cl) 1.036(3) (H), 

1.043(2) (OMe) and 1.054(3) (tBu).  Though these data refer to compression of an 

entire crystal structure, not an isolated dimer, it is noteworthy that the 

compressibility of the 3-tert-butylsalicylaldoxime cavity is greater than the other 

salicylaldoximes, and the hole size becomes smaller than that of the 3-methyl and 

unsubstituted compounds at elevated pressure. This is counter-intuitive as the tert-

butyl group is expected to be sterically repulsive: indeed steric effects have been 

used to explain the weakness of this ligand in binding Cu2+ at ambient pressure 

(Forgan et al., 2007).   

An important practical consequence of the data presented in Figure 3.5 is that 

the combination of varying the nature of the 3-substituent and of changing the 

pressure can change the N2O2 cavity radius between 1.87 and 2.04 Å. This range 

spans the covalent radii of many of the 1st transition series metal dications and should 

allow the selectivity of metal extraction to be tuned using pressure.  
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3.5.2 Analysis of non-covalent interactions under compression 

The effect of pressure on the intermolecular interactions within the 

substituted salicylaldoximes is non-uniform. There are three main non-covalent 

interactions which are found in each of the different compounds; the phenolic 

OH…N intramolecular hydrogen bond, the oximic OH…O intermolecular hydrogen 

bond and the π-π stacking interaction. The OH…N intramolecular hydrogen bond is 

the least compressible non-covalent interaction in the structures and is relatively 

consistent across the series of compounds due to the rigidity of the salicylaldoxime 

molecular geometry. The oximic OH…O hydrogen bond geometry is not restricted 

by the covalent bonds of the molecule and thus is considerably more compressible 

than the intramolecular hydrogen bond. Figure 3.6 shows a graph of the variation in 

the donor to acceptor distances for the OH…O hydrogen bond as a function of 

pressure for each of the compounds.  

 
Figure 3.6: Graph of donor to acceptor distance (in Å) of the oximic OH…O 
intermolecular interaction as a function of pressure (in GPa) for salicylaldoxime 
(dark blue), 3-chlorosalicylaldoxime (green), 3-methylsalicylaldoxime (pink), 3-
methoxysalicylaldoxime (light blue) and 3-tert-butylsalicylaldoxime (orange). 
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The oximic hydrogen bond in the 3-methoxysalicylaldoxime structure is 

considerably shorter than the corresponding interaction in the other compounds both 

at ambient pressure and when compressed. As described above, this is ascribable to 

the availability of the methoxy oxygen atom as a secondary hydrogen bond acceptor 

(Figure 3.7).  The shapes of the H, Me, and Cl curves are very similar though, so it 

would appear that changing the substituent can modify the length of the OH…O 

interaction and thus the size of the pseudo-macrocyclic cavity at ambient conditions, 

but doesn’t significantly affect the compressibility of the interaction.  

 
(a)      (b) 

Figure 3.7: The hydrogen bonded dimer with bifurcated character in 3-
methoxysalicylaldoxime at ambient pressure (a) and at 6.0 GPa (b). The distances 
displayed are H to O distances for O1H1…O5 and O1H1…O61. The colour scheme 
is the same as in Fig. 3.1. 

 

The stacking interaction in these structures is seen to be more compressible 

than the hydrogen bonds but, as PIXEL calculations on the salicylaldoxime 

compression study showed (Chapter 2, Figure 2.10), the interactions can become 

very destabilising at shorter distances. This sharp increase in repulsion as the 

stacking distance reaches its minimum means that the interaction can become 

important in terms of both anisotropic compression and phase transitions. To analyse 

the compression of these stacking interactions it is useful to compare them to similar 

interactions found at ambient conditions. The stacking interaction between phenyl 
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groups can be described using the angle between phenyl ring planes, the 

perpendicular distance between the groups (stacking distance) and the parallel 

distance between groups (stacking offset). A search of the CSD was performed for 

phenyl groups interacting in a stacking configuration with planar angle < 10˚, 

stacking distance < 4.5 Å, stacking offset < 4.0 Å, 3D coordinates and R-factor < 

0.05 in organic-only structures without errors or disorder.  

 
Figure 3.8: Graph of stacking distance (in Å) against stacking offset (in Å) for 
phenyl group stacking interactions in the CSD. The five oxime compression studies 
have also been plotted; salicylaldoxime (dark blue), 3-chlorosalicylaldoxime (green), 
3-methylsalicylaldoxime (pink), 3-methoxysalicylaldoxime (light blue) and 3-tert-
butylsalicylaldoxime (orange). 

 

Figure 3.8 shows a graph of stacking distance against stacking offset for all 

the interactions found in the CSD. Also shown are the stacking contacts in the five 

salicylaldoxime compression studies performed to date. This graph shows that the 

stacking interaction for each compound is at a normal distance at ambient conditions, 

but as pressure is increased the interactions are compressed to the limits of similar 

interactions seen at ambient pressures. The salicylaldoxime crystal structure was seen 

to undergo a phase transition between 5.3 and 5.9 GPa (Chapter 2, Table 2.1). This 

was believed to be caused in part by the stacking interaction reaching the limits of 

similar interactions found at ambient conditions. The data in Figure 3.8 suggests that 
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each of the substituted salicylaldoximes studied here may also be close to a phase 

transition at the highest pressures obtainable in this study.  

The range of pressures that were obtained in the experiments described in this 

chapter was limited by the hydrostatic pressure medium, the tungsten gasket and the 

single crystals themselves. It would be interesting to investigate the phase behaviour 

of salicylaldoximes at elevated pressures using powder methods. 

 

3.6 Conclusions 
The crystal structures of salicylaldoxime and the four 3-substituted 

derivatives (OMe, Cl, Me and tBu) examined in this study comprise pseudo-

macrocyclic dimers based on an ( )104
4R  hydrogen bonding ring motif which pre-

organises an N2O2 donor-set towards binding of planar transition metal ions, and 

stabilises the complexes after they have formed.  The size of the cavity at the centre 

of the pseudo-macrocycle is known to influence the binding-selectivity of metal ions, 

and the aim of this study was to investigate the extent to which the size of this cavity 

(and presumably metal-ion selectivity) can be varied with pressure.   

The crystal structures at ambient pressure show that the size of the cavity 

varies according to the substituent occupying the 3-position of the salicylaldoxime 

ring. The smallest cavity was observed for the OMe derivative, and H-bonding 

analysis combined with PIXEL calculations were used to show that inter-ligand H-

bonding involving the OMe group (see Figure 3.7) supports the H-bonds of the 

 ring, so reducing the cavity size. The largest cavity was observed for the ( )104
4R tBu 

derivative, and could be ascribed to steric effects. 

Crystal structures for each derivative were determined between 0 and 5-6 

GPa. In each case the pseudo-macrocyclic cavity decreases smoothly with the 

application of pressure. The combination of varying the nature of the 3-substituent 

and of changing the pressure can change the N2O2 cavity radius between 1.87 and 

2.04 Å. This range spans the covalent radii of many of the 1st transition series metal 

dications and may allow the selectivity of metal extraction to be tuned using a 

combination of chemical derivatisation and high pressure.  
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4.1 Synopsis 
The compound 3-aza-bicyclo(3.3.1)nonane-2,4-dione has been crystallised at 

high pressure from a solution of ethanol/methanol and the structure has been 

determined at room temperature at pressures from 0.9 to 7.1 GPa. Within this 

pressure regime the structure is seen to compress anisotropically with no phase 

transitions occurring. The changes in intermolecular interactions and molecular 

packing during the compression are interpreted with the aid of PIXEL calculations 

and Hirshfeld surfaces. 

 

4.2 Introduction 
The effectiveness of high pressure as a means for exploring polymorphism in 

the organic solid state has been demonstrated in a number of recent studies (Fabbiani 

et al., 2005, Oswald et al., 2005, Lozano-Casal et al., 2005). The ability to search for 

new polymorphs in this way is of interest to a number of fields, including the 

pharmaceutical industry and the crystal structure prediction community. The 

technique of crystal structure prediction (CSP) involves generating a large number of 

potential crystal structures and then determining which structure is the most 

energetically stable, this is then assumed to be the correct structure. In general are a 

number of different possible structures within a few kJ mol-1 of each other and these 

other structures might correspond to polymorphs of the compound. The application 

of pressure is one possible method for searching for these potential polymorphs. 

3-aza-bicyclo(3.3.1)nonane-2,4-dione, 1, was one of the test structures used 

in the second international blind test for crystal structure prediction of small organic 

molecules, which was organised by the CCDC (Motherwell et al., 2002). During the 

test, 15 different research groups were each asked to submit a list of three possible 

crystal structures for the molecule in order of confidence. The correct structure of 1 

was only adjudged to have been predicted in two cases out of the 15 submissions and 

these predictions had energy rankings of 2 and 3. The experimentally-determined 

structure of 1 consists of H-bonded chains, but several groups predicted incorrect 

structures based on a hydrogen-bonded dimer with a ( )82
2R  ring motif. 
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One possible reason for the lack of success of the crystal structure prediction 

trials for 1 is that the observed structure may not be the most thermodynamically 

stable, or that other structures may have lower energies under different conditions. 

This study was initially intended as a search for new polymorphs of the compound to 

see if they matched to one of the other structural models predicted by CSP. In the 

event this was not observed. However, the opportunity to observe the compression of 

small organic structures to high pressures is also of fundamental interest as the 

compression of intermolecular interactions in the solid state is still only relatively 

lightly studied. In this chapter we describe the crystal structure of the title compound 

on crystallisation from solution by the application of hydrostatic pressure and the 

effect of pressure on the structure up to 7.1 GPa. 

 

4.3 Experimental 
High-pressure experiments were carried out using a Merrill-Bassett diamond anvil 

cell (half-opening angle 40°), equipped with 600μm culets and a tungsten gasket 

(Merrill & Bassett, 1974). A small ruby chip was also loaded into the cell as a 

pressure calibrant, with the ruby-fluorescence method being used to measure the 

pressure (Piermarini et al., 1975). 

 

4.3.1 Crystal growth 

A sample of 3-aza-bicyclo(3.3.1)nonane-2,4-dione (1) was prepared 

essentially as described by Hulme and co-workers (Hulme et al., 2007), except that 

the starting material used was a mixture of cis/trans 1,3-cyclohexane dicarboxylic 

acid, which was used without further purification. The distillation of water was 

carried out at atmospheric pressure and the final product was purified by sublimation.  

Preliminary high pressure experiments were carried-out using a hydrostatic 

medium consisting of a 1:1 mixture of n-pentane and iso-pentane, however the 

quality of the crystals degraded rapidly on increasing pressure. Another commonly-

used hydrostatic medium is a 4:1 mixture of methanol and ethanol, but 1 proved to 

be soluble in this, and a strategy based on loading a crystal under ambient conditions 
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and applying pressure was therefore unsuitable. It proved possible, however, to grow 

a crystal from methanol/ethanol in situ and use the remaining mother liquor as the 

hydrostatic medium. 

A saturated solution of 1 in 4:1 methanol/ethanol was loaded into a Merrill-

Bassett diamond-anvil cell. The sample was pressurized at room temperature until 

crystallites began to form. The temperature was then increased using a heat-gun, so 

that the polycrystalline sample was partially redissolved, and then cycled close to this 

elevated temperature in order to reduce the number of crystallites. A single crystal 

was eventually obtained at a pressure of 0.9 GPa, which could be indexed on 

essentially the same unit cell as the ambient pressure structure (Howie & Skakle, 

2001). 

 
4.3.2 High pressure crystallography 

Diffraction data were collected on a Bruker-Nonius APEX-II diffractometer 

with silicon-monochromated synchrotron radiation (λ = 0.8640 Å) on Station 

16.2SMX at the SRS, Daresbury Laboratory. Data collection and processing 

procedures for the high-pressure experiments followed previous studies (Dawson et 

al., 2004, Moggach, Allan, Parsons et al., 2005). Integrations were carried out using 

the program SAINT (Bruker-Nonius, 2006) and absorption corrections with the 

programs SHADE (Parsons, 2004) and SADABS (Sheldrick, 2004). Data collections 

were taken in approximately 1.0 GPa steps from 0.9 GPa up to a final pressure of 7.1 

GPa. 

In order to facilitate a comparison with the ambient temperature/high-

pressure results, diffraction data were also collected on 1 at ambient pressure. Data 

were collected on a Bruker APEX diffractometer with graphite-monochromated Mo-

Kα radiation (λ = 0.71073 Å). The data were integrated using SAINT and corrected 

for absorption with SADABS. The structure was solved using the program SIR-92 

(Altomare et al., 1994) and structure refinement yielded a conventional R-factor of 

0.0553.  

Refinements [against |F|2 using all data (CRYSTALS (Betteridge et al., 

2003))] of the compressed forms of 1 were started from the co-ordinates determined 
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at ambient pressure. Because of the low completeness of the data-sets, displacement 

parameters for the high pressure structures were only modelled at the isotropic level. 

Global rigid bond restraints were also applied. Hydrogen atoms were placed 

geometrically and constrained to ride on their host atoms. Listings of crystal and 

refinement data are given in Table 4.1.   

Crystal structures were visualized using the programs Mercury (Bruno et al., 

2002) and DIAMOND (Crystal Impact, 2004). Analyses were carried out using 

PLATON (Spek, 2003), as incorporated in the WinGX suite (Farrugia, 1999). 

Searches of the Cambridge Structural Database (Allen, 2002, Allen & Motherwell, 

2002) utilized the program ConQuest and version 5.28 of the database with updates 

up to January 2007. Strain tensor calculations were carried out using a locally written 

program (Parsons, 2003), based on the discussion by Hazen & Finger (Hazen & 

Finger, 1982) and employing the JACOBI subroutine Numerical Recipes (Press et 

al., 1992). Equation-of-state calculations were carried out with EOSFIT (Angel, 

2000). Hirshfeld surface analysis was performed using the program CrystalExplorer 

(Wolff et al., 2005). 

The numbering scheme used (see Scheme 4.1) is the same throughout the 

ambient pressure and high pressure datasets.   

 

 

 

Scheme 4.1: Chemical structure diagram 

showing atomic numbering scheme. 
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Pressure/GPa Ambient 0.9 1.9 3.0 

Formula C8H11NO2 C8H11NO2 C8H11NO2 C8H11NO2

Mr 153.18 153.18 153.18 153.18 

Cell setting, 

space group 

Monoclinic, 

P21/c 

Monoclinic, 

P21/c 

Monoclinic, 

P21/c 

Monoclinic, 

P21/c 

a, b, c (Å) 9.3214 (11), 

10.5932 (12), 

7.6988 (9) 

8.868 (9), 

10.2833 (16), 

7.7016 (13) 

8.564 (7), 

10.0876 (18), 

7.6419 (12) 

8.367 (8), 

9.9317 (17), 

7.5667 (12) 

β (°) 95.059 (8) 95.88 (3) 96.38 (3) 96.49 (3) 

V (Å3) 757.24 (15) 698.6 (7) 656.1 (6) 624.8 (6) 

Z 4 4 4 4 

Dx (Mg m–3) 1.344 1.456 1.551 1.628 

Radiation type Mo Kα Synchrotron Synchrotron Synchrotron 

μ (mm–1) 0.10 0.11 0.11 0.12 

Tmin/ Tmax 0.75, 0.99 0.67, 0.99 0.76, 0.99 0.71, 0.99 

No. of measured, 

independent and 

observed 

reflections 

9428, 2086, 

1045 

1363, 275, 

230 

1143, 261, 

203 

1220, 249, 

201 

Rint 0.064 0.067 0.067 0.072 

θmax (°) 29.6 26.4 26.4 26.5 

R[F2 > 2σ(F2)], 

wR(F2), S 

0.055, 0.137, 

0.92 

0.055, 0.138, 

0.95 

0.053, 0.140, 

0.94 

0.050, 0.123, 

0.90 

No. of relections 1982 reflections 255 reflections 239 reflections 229 reflections

Parameters 104 45 45 45 

Δρmax, Δρmin (e 

Å–3) 
0.22, –0.24 0.15, –0.14 0.15, –0.14 0.13, –0.12 

(a) 
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Pressure/GPa 4.4 5.9 7.1 

Formula C8H11NO2 C8H11NO2 C8H11NO2

Mr 153.18 153.18 153.18 

Cell setting,  

space group 

Monoclinic, 

P21/c 

Monoclinic, 

P21/c 

Monoclinic, 

P21/c 

a, b, c (Å) 8.254 (4), 

9.8542 (15), 

7.5245 (11) 

8.054 (7), 

9.782 (3), 

7.5043 (19) 

7.938 (7), 

9.754 (3), 

7.481 (2) 

β (°) 96.63 (3) 96.80 (5) 97.03 (6) 

V (Å3) 607.9 (3) 587.1 (5) 574.9 (6) 

Z 4 4 4 

Dx (Mg m–3) 1.674 1.733 1.770 

Radiation type Synchrotron Synchrotron Synchrotron 

μ (mm–1) 0.12 0.13 0.13 

Tmin/ Tmax 0.69, 0.99 0.48, 0.99 0.27, 0.99 

Tmax 0.99 0.99 0.99 

No. of measured, 

independent and 

observed reflections 

1147, 229, 

189 

1063, 222, 

169 

916, 209, 

160 

Rint 0.061 0.076 0.107 

θmax (°) 22.2 22.1 21.8 

R[F2 > 2σ(F2)], 

wR(F2), S 

0.044, 0.109, 

0.90 

0.059, 0.162, 

0.93 

0.076, 0.206, 

0.85 

No. of relections 210 reflections 201 reflections 191 reflections 

Parameters 45 45 45 

Δρmax, Δρmin (e Å–3) 0.12, –0.11 0.17, –0.15 0.22, –0.25 

(b) 
Table 4.1: Crystallographic data for 3-aza-bicyclo(3.3.1)nonane-2,4-dione at 
increasing pressures (a) ambient to 3.0 GPa and (b) 4.4 to 7.1 GPa. 
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4.3.3 PIXEL calculations 

The molecular structures obtained at each pressure were used to calculate the 

molecular electron density by standard quantum chemical methods using the 

program GAUSSIAN98 (Frisch et al., 1998) at the MP2/6-31G** level of theory. H-

atom distances were set to standard neutron values (CH = 1.083 Å, NH = 1.009 Å). 

The electron density model of the molecule was then analysed using the program 

package OPiX (Gavezzotti, 2005) which allows the calculation of dimer and lattice 

energies. Lattice energy calculations employed a cluster of molecules of radius 18 Å. 

Calculations were also carried out for pairs of molecules identified in the lattice 

calculation as being energetically the most significant (i.e. with an energy < -2.5 kJ 

mol-1). The output from these calculations yields a total energy and a breakdown into 

its electrostatic, polarisation, dispersion and repulsion components (Dunitz & 

Gavezzotti, 2005a). 

 

4.4 Results 
4.4.1 The structure of 3-aza-bicyclo(3.3.1)nonane-2,4-dione at ambient conditions 

The crystal structure of 3-aza-bicyclo(3.3.1)nonane-2,4-dione (1) form I, was 

initially determined by Howie & Skakle (Howie & Skakle, 2001). A new polymorph, 

form II, has been described recently; this is meta-stable at ambient conditions, but 

can be trapped by rapid cooling to 250K (Hulme et al., 2006). In this study the 

effects of pressure on form I were analysed.  

The crystal structure of form I has one molecule in the asymmetric unit in 

space group P21/c. The molecule has approximate mirror symmetry in the plane 

running through the atoms N1, C3 and C7. The dicarboximide fragment of the 

molecule (N1, C1, O1, C5 and O2 along with the bonded carbon atoms C2 and C4) is 

nearly planar, with the greatest deviation from a least-squares mean plane of these 

atoms being 0.043 (3) Å for atom O2 (all data referred to in this section were derived 

from our own ambient pressure study, Table 4.1). 

The molecules form intermolecular N1-H1…O2 hydrogen bonds [N1...O2 = 

2.979 (2) Å] with a neighbouring molecule related by the c-glide. Successive 
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N1H1…O2 interactions form a primary-level C(4) chain (Bernstein et al., 1995) 

running in the direction of the c-axis. These chains then interact with adjacent chains 

through C8H10…O1 interactions [C8…O1 = 3.429 (4) Å] to form sheets which lie 

in the bc plane (Figure 4.1a).  

(a)  

(b)  

 

Figure 4.1: The effect of pressure on the crystal structure of 3-aza-
bicyclo(3.3.1)nonane-2,4-dione as viewed along the a-axis: (a) 3-aza-
bicyclo(3.3.1)nonane-2,4-dione at ambient pressure; (b) 3-aza-bicyclo(3.3.1)nonane-
2,4-dione at 7.1 GPa. The colour scheme is red: oxygen, blue: nitrogen, light-grey: 
carbon and dark-grey: hydrogen. 
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A second set of weak hydrogen bonds form symmetry-equivalent pairs of C3-

H3…O1 contacts [C3…O1 = 3.503 (4) Å] across an inversion centre, producing a 

centrosymmetric dimer (Figure 4.2a). These ring motifs link together pairs of 

sheets formed in the bc plane to produce slabs, such that the dicarboximide sides of 

the molecules are close together on the inside of the slabs and the alkyl sides of the 

molecules face each other between the slabs. There are no hydrogen-bonding 

interactions between the slabs, which only interact with each other through van der 

Waals contacts (Figure 4.3a). The contacts between the molecules include a number 

of close H…H contacts of which C9-H9…H9-C9 is the shortest [H9…H9 = 2.286 

(1) Å]. 

( )102
2R

 

4.4.2 The response of 3-aza-bicyclo(3.3.1)nonane-2,4-dione to pressure up to 7.1 

GPa 

The compression of the crystal structure of 1 is anisotropic (Figure 4.4); the 

greatest reduction occurs in the a-axis (14.8% at 7.1 GPa relative to ambient 

pressure, cf. Figs 2 a and b), while the b and c axes reduce by 7.9 and 2.8% 

respectively. The direction of greatest linear strain is found to lie approximately 

along the a-axis; one of the eigenvectors of the strain tensor must correspond to the 

b-axis by symmetry, and this is the direction of the second largest eigenvalue. Finally 

the direction of least compression in the structure lies approximately along the 

reciprocal lattice direction (-1 0 5).

The bulk modulus (K0), refined for a Birch-Murnaghan equation-of-state 

(Birch, 1947, Angel et al., 2000) to second order, is 13.3 (7) GPa. The data set used 

to calculate this quantity is rather limited, and the values of V0 and K’ were fixed at 

757.24 Å³ and 4, respectively. Molecular solids generally have K0 < 30 GPa and a 

useful comparison can be made from the following K0 values: Ru3(CO)12 6.6 GPa, 

NaCl 25 GPa, quartz 37 GPa, ceramics 50–300 GPa and diamond 440 GPa 

(Slebodnick et al., 2004). 
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(a)  

(b)  

 

Figure 4.2: The effect of pressure on the crystal structure of 3-aza-
bicyclo(3.3.1)nonane-2,4-dione as viewed along the b-axis: (a) 3-aza-
bicyclo(3.3.1)nonane-2,4-dione at ambient pressure; (b) 3-aza-bicyclo(3.3.1)nonane-
2,4-dione at 7.1 GPa. The colour scheme is the same as in Fig. 4.1. 
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(a)  

(b)  

 

Figure 4.3: The effect of pressure on the crystal structure of 3-aza-
bicyclo(3.3.1)nonane-2,4-dione as viewed along the c-axis: (a) 3-aza-
bicyclo(3.3.1)nonane-2,4-dione at ambient pressure; (b) 3-aza-bicyclo(3.3.1)nonane-
2,4-dione at 7.1 GPa. The colour scheme is the same as in Fig. 4.1. The horizontal 
lines indicate the slabs in the structure. 
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(a)  

(b)  

 

Figure 4.4: The variation of the lattice parameters a, b, c (Å) and volume (Å³) of 3-
aza-bicyclo(3.3.1)nonane-2,4-dione as a function of pressure (GPa). The variation of 
a, b and c are shown on the same graph, with squares, circles and triangles 
respectively. 

 

The dicarboximide fragment of the molecule distorts from planarity between 

ambient pressure and 7.1 GPa. The distances of the two carboxyl oxygen atoms (O1 

and O2) from the plane through the atoms N1, C2 and C4 increases from 0.035 (2) 

(O1) and 0.119 (3) Å (O2) at ambient pressure to 0.19 (2) and 0.47 (2) Å at 7.1 GPa. 

Refinements in which the dicarboximide fragment was restrained to planarity (with a 
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restraint s.u. of 0.01 Å) led to an increase in R1 from 7.6 to 9.2% and distortion of the 

rest of the structure, with C-C distances ranging from 1.38 to 1.68 Å. The deviation 

from planarity is therefore genuine, and not a consequence of low completeness or 

some other crystallographic or refinement artefact.  

 

Pressure/GPa 0.0 0.9 1.9 3.0 4.4 5.9 7.1 

N1H1..O2i

H1..O2  
N1..O2 
<N1H1O2 

 
2.13 

2.979(2) 
173(2) 

 
2.10 

2.941(5)
170 

 
2.05 

2.897(6)
167 

 
2.02 

2.849(5)
167 

 
1.97 

2.808(5) 
168 

 
1.94 

2.791(6) 
168 

 
1.96 

2.799(11)
162 

C8H10..O1ii

H10..O1 
C8..O1 
<C8H10O1 

 
2.66 

3.429(4) 
136(2) 

 
2.54 

3.288(10)
133 

 
2.41 

3.164(11)
132 

 
2.38 

3.103(11)
130 

 
2.34 

3.057(10) 3.017(14) 
129 

 
2.31 

129 

 
2.30 

3.00(3) 
129 

C3H3..O1iii

H3..O1 
C3..O1 
<C3H3O1 

 
2.59 

3.503(4) 
155(2) 

 
2.45 

3.332(16)
151 

 
2.41 

3.267(17)
146 

 
2.33 

3.159(16)
144 

 
2.29 

3.111(14) 3.011(16) 
142 

 
2.19 

141 

 
2.13 

2.95(3) 
141 

 

Symmetry Operators: 

i x,-1/2-y,-1/2+z   

ii x,1/2-y,-1/2+z   

iii 2-x,-y,1-z   

 

Table 4.2: Non-covalent interaction parameters in 3-aza-bicyclo(3.3.1)nonane-2,4-
dione. Distances are in Å, and angles in °. 

 

The variation of non-covalent interaction parameters in the crystal structure 

of 1 during compression from ambient pressure to 7.1 GPa is shown in Table 4.2. 

The least compressible intermolecular interaction in the crystal structure is the 

N1H1…O2 hydrogen bond for which the N1…O2 distance decreases by 6.0% to a 

distance of 2.799 (11) Å at 7.1 GPa. Comparison of Figures 4.1a and b also shows 

that as the C(4) hydrogen bonded chains are pushed closer together, the NH…O 

geometry becomes less ideal and the N1H1…O2 angle decreases from 173 (1) to 

162˚. The C…O distance in the C8H10…O1 contact, also formed in the bc plane, 
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decreases by 12.5%. Finally the C3H3…O1 weak hydrogen bond is the most 

compressible hydrogen-bonding interaction and the C3…O1 distance is reduced by 

15.8%. The two CH…O interactions become less linear with pressure [136 (2) to 

129˚ for C8H10…O1 and 155 (2) to 141˚ for C3H3…O1]. 

It is also notable that there is a considerable number of very short H…H 

contacts in the crystal structure at 7.1 GPa. In particular, there are five different 

contacts with a H…H distance shorter than 2.20 Å [H2…H4 = 1.974 (1), H4…H5 = 

2.036 (1), H3…H1 = 2.133 (1), H9…H11 = 2.144 (1), H9…H9 = 2.186 (1) Å]. 

 

4.5 Discussion 
4.5.1 Analysis of Non-covalent Interactions in the Structure 

A search of the Cambridge Structural Database (CSD) for R2N-H…O=CRN 

hydrogen bonds showed that the mean N…O distance is 2.89 (7) Å, with a minimum 

of 2.637 (5) Å [CSD refcode JUJSAI (Adhikary et al., 1992)].  At 2.979 (2) Å, 

therefore, the N1H1…O2 interaction is actually quite long, and is not unusually short 

[2.799 (11) Å] even at 7.1 GPa. Hulme and co-workers have ascribed the weakness 

of the H-bonding in 1 to the reduction of the electrostatic potential in the region of 

the NH group by the neighbouring carbonyl groups (Hulme et al., 2007). The 

minimum C…O distance in the CSD for CH…O interactions is 2.80 Å with less than 

0.4% of 5784 interactions having a distance below this and only 4.4% of the sample 

having a distance less than 3.00 Å. C8H10…O1 and C3H3…O1, have relatively 

normal donor to acceptor distances at ambient conditions (Desiraju, 1996); these 

reduce to 3.00 (3) and 2.95 (3) Å at 7.1 GPa, but, as with the H-bond, these can not 

be described as unusually short.  

We and others have investigated the effect of pressure on a number of organic 

systems and most either form a polycrystalline mass or undergo a phase transition at 

pressures considerably lower than 7.1 GPa. It appears that up to about 10 GPa non-

covalent interactions tend to only be compressed to the limits of similar interactions 

seen at ambient conditions in the CSD (Dawson et al., 2005, Moggach, Allan, 

Morrison et al., 2005); if these limits are reached, further increase of pressure leads 

to a phase transition (or break-up of the sample). The non-covalent interactions in the 
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crystal structure of 1 have not attained ambient pressure minimum distances by 7.1 

GPa, and so within a framework based purely on analysis of distances this is 

consistent with the absence of a phase transition in the present compression study.  

 

4.5.2 Hirshfeld Surface Analysis 

A particularly useful technique for studying the packing environment in a 

crystal structure is to analyse the molecular Hirshfeld surface. This surface is 

constructed by applying the Hirshfeld stockholder partitioning method to divide the 

crystal structure into regions in which the electron density of the crystal is dominated 

by the electron density of a specific molecule. A number of different properties can 

be plotted on the surface, including distances to nearest internal (di) and external 

atoms (de). The distance information contained within the Hirshfeld surface can also 

be condensed into a 2D graph of de against di, called a fingerprint plot, which has 

been shown to be very useful for identifying changes and similarities in packing 

(Fabbiani et al., 2006, Moggach, Allan, Parsons et al., 2006). The crystal structure at 

each pressure was used to calculate the molecular Hirshfeld surface and fingerprint 

plots using CrystalExplorer. 

Figure 4.5 shows the Hirshfeld surfaces for 1 with the d  property plotted on 

the surfaces using colours for the distance range 0.65 – 2.2 Å. Each surface is shown 

in two orientations for the ambient pressure and 7.1 GPa crystal structures. The 

numbering of the labelled regions refers to the dimers studied using the PIXEL 

method (see below). The blue regions on the surfaces indicate voids in the crystal 

structure and the red areas show short contacts. It can be seen that the blue areas 

present in the ambient surface are almost entirely absent at 7.1 GPa, which shows 

that the void regions in the structure have been reduced considerably. The largest 

blue regions, labelled V1 and V2 in Figure 4.5, each correspond to a significant void 

region, the first between the slabs of the structure and the second between the two 

planes within a slab. These voids are in the direction perpendicular to the slabs of the 

structure, which also corresponds to the direction of greatest compression in the 

structure as described earlier. The surfaces also show an increase in yellow and red 

e



Chapter 4. The Anisotropic Compression of the Crystal Structure of 3-Aza-bicyclo(3.3.1)nonane-2,4-
dione to 7.1 GPa 

 
 

 

regions along with a reduction in surface volume of 24.5 % (from 185.2 to 139.8 Å³) 

that is consistent with the overall shortening of packing interactions. 

 
(a)     (b) 

 
(c)     (d) 

Figure 4.5: The Hirshfeld surface of 3-aza-bicyclo(3.3.1)nonane-2,4-dione at (a-b) 
ambient pressure and (c-d) 7.1 GPa with the de property mapped on the surface. 
Surfaces have been mapped over the range 0.65 – 2.2 Å. All hydrogen distances have 
been automatically reset to standard neutron X-H lengths (C-H = 1.083 Å and N-H = 
1.009 Å. The orientations of the molecules have been included next to each surface 
for comparison. The colour scheme is red: oxygen, blue: nitrogen, grey: carbon and 
white: hydrogen. The numbered labels refer to the text. 
 

Figures 4.5a and c show the appearance of two red regions at 7.1 GPa, 

labelled 4’ & 3, which indicate very short contacts. These two areas correspond to 

the contacts H2…H4 and H9…H9/H11 respectively. The weak hydrogen bond 

C8H10…O1 is also seen to compress considerably as the region corresponding to 

this contact, labelled 4 in Figure 4.5a, changes from yellow to red. Other contacts 

that become visibly shorter in the Hirshfeld surface are C3H3…O1 and H4…H5, 

labelled 2 & 8 respectively in Figure 4.5b, for which the interaction regions again 
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change from yellow to red. The shortening of the N1H1…O2 hydrogen bond can 

also be seen in Figure 4.5d by the increase in size and darkening of the red region, 

labelled 1. 

The fingerprint plots for the crystal structure of 1 at ambient pressure and 7.1 

GPa are shown in Figure 4.6. The shape of the plot itself is seen to become smaller, 

due to the general shortening of intermolecular interactions, and more symmetrical 

about the d /d  axis. Asymmetry in fingerprint plots is caused by gaps in the structure 

where surfaces do not touch (McKinnon et al., 2004), and the increase in symmetry 

of the plots shown in Figure 4.6 is due to the reduction of intermolecular voids with 

pressure. The two long spikes in Figure 4.6a represent the N1H1…O2 hydrogen 

bonding interaction and the region highlighted with a red circle in between these 

spikes represents close H…H contacts in the structure. It can be seen from the two 

plots that the hydrogen bonds only decrease a small amount on compression to 7.1 

GPa and that at this pressure the hydrogen bond spikes are much less pronounced 

with the H…H region becoming more prominent. 

e i

 
 
4.5.3 PIXEL Analysis 

The preceding discussion has analysed intermolecular interactions in a mostly 

qualitative manner. The PIXEL method, a technique developed recently by 

Gavezzotti (Gavezzotti, 2003, 2005, Dunitz & Gavezzotti, 2005a), allows 

quantitative determination of crystal lattice energies and dimer energies along with a 

breakdown of these energies into Coulombic, polarisation, dispersion and repulsion 

terms. This method involves calculating the electron density of an isolated molecule 

from the crystal structure molecular geometry using a standard quantum mechanical 

package such as GAUSSIAN98. The model of electron density is then condensed into 

larger pixels and the energies are determined by performing pixel by pixel interaction 

calculations between molecules and then summing over all the pixels. An example of 

the use of the PIXEL method in analysing the relative energies of intermolecular 

interactions within a structure is given by Dunitz & Gavezzotti (Dunitz & 

Gavezzotti, 2005a, b). 
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(a)  

(b)  

Figure 4.6: Two-dimensional fingerprint plots for 3-aza-bicyclo(3.3.1)nonane-2,4-
dione at (a) ambient pressure and (b) 7.1 GPa. The regions corresponding to close 
H…H contacts are highlighted using red circles. 

 

The intermolecular lattice energies and a breakdown into the component 

terms for 1 for each structure from ambient pressure to 7.1 GPa were calculated and 

are shown in Table 4.3. The dicarboximide fragment of the molecule distorts from 

planarity during compression, and this affects the internal energy of the molecule. An 

adjusted total energy (U ) is shown in the table which is the total lattice energy 

minus the difference in internal energy of the molecule (as calculated by 

GAUSSIAN98) with respect to the ambient pressure conformation. Also calculated 

are the values of the enthalpy, H = U  + PV, where P = pressure and V = molar 

volume = unit cell volume/Z. 

adj

adj
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Pressure/
GPa Coulombic Polarisation Dispersion Repulsion U Uadj* H† Test‡

0.0 -55.2 -20.5 -85.2 72.6 -88.4 -88.4 -88.4 253.6

0.9 -69.7 -28.2 -107.7 113.7 -92.0 -71.3 23.4 244.2

1.9 -89.1 -38.5 -128.3 164.5 -91.4 -70.5 117.2 225.8

3.0 -109.3 -49.4 -147.9 226.8 -79.7 -62.0 220.2 220.2

4.4 -124.3 -56.2 -158.5 270.4 -68.6 -48.0 354.7 226.6

5.9 -144.8 -67.2 -174.3 330.8 -55.5 -29.0 492.5 236.2

7.1 -158.8 -76.8 -184.7 378.5 -41.8 -0.3 614.2 259.4
 

* Adjusted Energy (Uadj) = U – Energy difference due to conformation change 
relative to 0.0 GPa structure evaluated using GAUSSIAN98 calculations at the 
MP2/6-31G** level. 
 
† Enthalpy (H) = Uadj + PV, where P = pressure (in Pascals) and V = molar volume 
(in m3 mol-1). 
 

‡ The enthalpy data has been tested for consistency by selecting a pressure (in this 
test 3.0 GPa was chosen) and evaluating the enthalpy for each structure based on the 
values of Uadj and V determined for that structure along with the selected P of 3.0 
GPa. For example, in the 1.9 GPa structure, Uadj = -70.5 kJ mol-1, V = 9.878x10-5 m3 

mol-1, therefore the enthalpy = -70.5x103 + (3.0x109 x 9.878x10-5) = 225840 J mol-1 
= 225.8 kJ mol-1. 

 

Table 4.3: Components of lattice energy, the total intermolecular energy (U) and the 
total energy adjusted for changes in the internal structure of the 3-aza-
bicyclo(3.3.1)nonane-2,4-dione molecules during compression  (Uadj). The enthalpy 
(H) at each pressure is also given along with an example test for the consistency of 
the enthalpy data (see text). All energies are in kJ mol-1. 

 

The dominant energy terms are Coulombic and dispersion interactions, with 

polarisation playing a lesser role. It is notable that the value of Uadj becomes more 

positive with increasing pressure, as a result of increased repulsion between 

molecules.  The lattice energy approaches zero at the highest pressure reached in this 

study (7.1 GPa), and would presumably become positive at still higher pressures: 

there is a lot of energy stored-up in the compressed intermolecular interactions. Of 
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course, more stable polymorphs may exist, but the corresponding phase transition 

may be kinetically hindered. 

The values of the enthalpy also become more positive as pressure is 

increased, reaching an enormous +612 kJ mol-1 at 7.1 GPa.  To a chemist the 

numbers in Table 4.3, which are a consequence of the PV terms, seem large and 

unfamiliar, but they reflect the large amount of work done in compressing the 

sample. Moreover, it is relative enthalpies that are important, and any putative 

gaseous state would have an even higher PV term than the crystal on account of its 

having a larger volume. A test of the consistency of the data presented in Table 4.3 is 

to calculate the quantity Uadj + PV where P is held constant and the Uadj and V terms 

are those determined at each pressure (an example is given in Table 4.3); when 

plotted against P this quantity should have a minimum at the value of P used in the 

calculations. This procedure, when carried out for each pressure used in this study, 

reproduces minima at or near the expected values of P, confirming that each 

structure is at an enthalpy minimum. 

PIXEL calculations can be calculated between pairs of molecules in order to 

find their dimer interaction energies. Initial analysis showed that there are nine 

dimers in the ambient crystal structure which have a significant stabilising interaction 

(energy < -2.5 kJ mol-1) and these dimers, shown in Figure 4.7, are labelled 1-9 in 

descending order of ambient-pressure interaction energy. The hydrogen bond 

N1H1…O2 is found to be the strongest interaction (1) and the two CH…O 

interactions, C3H3…O1 and C8H10…O1, correspond to dimers 2 and 4 

respectively. Dimer 2 also corresponds to a stacking arrangement of the carboximide 

fragments in adjacent molecules. The third most stabilising interaction energetically, 

dimer 3, is a van der Waals interaction between molecules in separate slabs of the 

structure, for which the closest contact is H9…H9/H11. Interactions 5, 6 and 7 

correspond to very long CH…O contacts, C6H6…O1, C3H3…O2 and C7H8…O2 

respectively. The last two dimers, interactions 8 and 9, are both van der Waals 

contacts between the alkyl sides of the molecules where the closest contacts are 

H5…H3/H4 and H8…H6/H7 for dimers 8 and 9 respectively. 
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Interaction 1   Interaction 2   Interaction 3 

 

 
Interaction 4   Interaction 5   Interaction 6 

 

 
Interaction 7   Interaction 8   Interaction 9 

 

Figure 4.7: Diagrams of the most energetically important dimers in the 3-aza-
bicyclo(3.3.1)nonane-2,4-dione crystal structure from PIXEL analysis. The colour 
scheme is the same as in Fig. 4.1. 

 

Figure 4.8 shows a graph of the total interaction energies of the nine dimers 

as a function of the distance between the centroids of the two molecules involved in 

the dimer. These curves show the effect of compression on the energy of each 

interaction, identifying quantitatively which interactions are becoming short and 
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destabilising. The graph shows that interactions 5, 6 and 7, the three very long 

CH…O contacts, are relatively unaffected by the increase in pressure. The curve for 

interaction 1, the NH…O hydrogen bond, is also very shallow. This result contrasts 

with PIXEL calculations on salicylaldoxime (Chapter 2, Figure 2.10), in which H-

bond energies have been shown to be very sensitive to pressure, but is consistent 

with the results from CSD searches described above, which indicated that  this 

interaction is not particularly short.  

 
Figure 4.8: Graph of total interaction energy for the nine most energetically 
important dimers (in kJ mol-1) against the distance between the molecular centroids 
of the molecules involved in the interaction (in Å). 

 

The curves for interactions 2 and 3 become very steep; in other systems this 

behaviour has been seen to be a prelude to a phase transition. The fact that 

interaction 3, an alkyl H9…H9/H11 contact, becomes very destabilising may explain 

why the NH…O interaction does not become shorter: the alkyl group actually acts as 

a spacer, keeping apart the two molecules of dimer 1. Dimers 4, 8 and 9, which relate 

to contacts C8H10…O1, H5…H3/H4 and H8…H6/H7 respectively, also steepen 

showing that these interactions also become quite destabilising. Dimer 4, which 
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corresponds to the C8H10…O1 contact, also involves a short H2…H4 contact (1.97 

Å), which may explain why this interaction becomes destabilising even though the 

CH…O distance does not seem to become unusually short. With the exception of 

interaction 9, these interactions found to be becoming destabilising at high pressures 

also correspond directly to the contact regions indicated as becoming very short 

through analysis of the Hirshfeld surfaces (Figure 4.5). 

The results of these dimer calculations suggest that dispersion dominated 

interactions such as CH…O and H…H contacts are just as important in terms of the 

response of the crystal structure of 1 to compressions as the hydrogen bonds. The 

compression curves also show that as pressure is increased the CH…O and H…H 

contacts dominate the changes in lattice energy and that the NH…O interaction is not 

strongly affected by pressure. 

 

4.6 Conclusions 
We have described the crystallisation of 1 at high pressure and the subsequent 

effects of compression on the crystal structure to 7.1 GPa. The structure consists of 

C(4) chains running in the direction of the c-axis formed by N1H1…O2 hydrogen 

bonds. These chains are connected to neighbouring chains to form sheets in the bc 

plane by C8H10…O1 interactions. Each sheet also interacts with another sheet 

through C3H3…O1 interactions across an inversion centre, forming slabs. There are 

no hydrogen bonds between the slabs with the only interaction being van der Waals 

contacts between the alkyl moieties of the molecules. This phase is found to be stable 

under compression to 7.1 GPa - this is unusually high: most organic materials studied 

in our laboratory to date either became polycrystalline or underwent a phase 

transition at pressures lower than this.  

The crystal structure of 1 has been regarded as a ‘problem structure’ because 

it fails to conform to preconceived ideas of likely preferences for packing based on 

dimers. A similar case is alloxan, which also contains the carboximide fragment, and 

which has recently been discussed by Dunitz & Schweizer (Dunitz & Schweizer, 

2007). The structure of alloxan is a result of a collection of individually non-optimal 

interactions which together form a strong lattice which is competitive with more 
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extensively H-bonded alternatives. Much the same can be said of 1. PIXEL analysis 

shows that the NH…O H-bond in the crystal structure of 1 is relatively weak (-14.6 

kJ mol ), and that a pair of CH…O contacts and a van der Waals interaction are of 

comparable energy (between -8.7 and -6.0 kJ mol ). These relative energies have 

very little bearing on the relative preference of 1 for forming chains over dimers as 

one NH…O hydrogen bond is formed per molecule in either pattern, however they 

do show that the hydrogen bonding is not as dominant in terms of packing as might 

otherwise be expected. 

-1

-1

The NH…O hydrogen bond is still the least compressible interaction in the 

structure, but this contact is prevented from shortening further by close contacts 

between alkyl groups. Analysis of the Hirshfeld surfaces and fingerprint plots of the 

crystal structure at ambient pressure and 7.1 GPa identified the largest structural 

voids at ambient conditions and showed how these were reduced by compression. 

The surfaces also facilitated identification of the short contacts which appeared at 

pressure including two close CH…O interactions and three contacts between alkyl 

groups. PIXEL dimer calculations then showed that the CH…O interactions and 

various H…H contacts in the structure are more affected by pressure than the 

hydrogen bond, becoming destabilising at the highest pressures studied. It appears 

that the response to pressure is dominated by dispersion interactions rather than 

hydrogen bonds. A similar situation to this was seen in a compression study of L-

cysteine-I (Moggach, Allan, Clark et al., 2006) where a short S…S contact appeared 

to drive a transition to a new phase, L-cysteine-III. No phase transition was observed 

for 1 to a dimer-based or any other structure, though from the curves in Figure 4.8 

some sort of structural modification might be expected at pressures higher than 7 

GPa. 

Analysis of the output of the GAUSSIAN98 electron density calculations 

showed that the distortion of the dicarboximide fragment of 1 from planarity had a 

considerable effect on the internal energy of the molecule. The difference in internal 

energy became as high as 40 kJ mol  at a pressure of 7.1 GPa. This significant 

change in molecular geometry has shown that it is necessary to observe carefully the 

-1
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effects of pressure on the intramolecular interactions even for molecules that are 

relatively rigid. 

This study has also shown that the use of Hirshfeld surfaces and the PIXEL 

method together is a particularly effective combination for analysing changes in 

crystal structures. The Hirshfeld surfaces and fingerprint plots allow qualitative 

analysis of the crystal packing all at once in a completely unique manner, thus 

reducing the chance of missing important contacts. Allied to this is the PIXEL 

method with which it is possible to determine quantitatively the contribution to the 

lattice energy of individual dimer contacts and the effect of pressure on these 

energies.
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5.1 Synopsis 
The crystal structures of L-serine phases I, II and III have been optimised at 

pressures from ambient to 8.1 GPa using ab initio density functional theory. The 

phase-I to II transition is driven by a change in conformation of the serine molecules 

and a reduction in volume, while an intermolecular OH…carboxylate hydrogen bond 

strengthens in the II-to-III transition. 

 

5.2 Introduction 
The experimental equipment and techniques involved in small molecule high 

pressure crystallography are fast becoming accessible to more research groups. The 

software to deal with high pressure data from CCD detectors has also improved the 

quality of data and ease of structural determination considerably (Dawson et al., 

2004). This means that the number of structure determinations at pressure has risen 

very quickly in recent years and will continue to rise. The number of organic 

structures (with 3D coordinates) added per year to the Cambridge Structural 

Database (CSD) with the required field of pressure included has risen from less than 

ten in all previous years to over 60 in both 2005 and 2006.  

As the number of compression studies performed on small organic crystal 

structures has increased, a greater number of pressure-induced phase transitions have 

been found. These phase transitions have been rationalised by analysing the effects 

of pressure on intermolecular contact distances. Intermolecular interactions have so 

far been found not to become shorter than those seen for chemically similar contacts 

at ambient conditions in the Cambridge Database; phase transitions are observed 

once a lower limit has been reached. This idea has been used to ‘explain’ transitions 

due to short hydrogen bonds in L-serine-I (Moggach et al., 2005) and close S…S 

contacts in L-cysteine-I (Moggach, Allan et al., 2006). In order to advance our 

understanding of the effects of pressure on a crystal structure and to learn more about 

why phase transitions occur, it is desirable to quantify the effect of compression on 

interaction energies rather than to rely only on distance information. 

Periodic density functional theory (DFT) can provide quantification of 

interaction energies in the solid state (Morrison & Siddick, 2003, Boese et al., 2003). 
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These calculations are, however, very computationally expensive and therefore not 

ideal for systematically studying the effects of pressure on the geometries, and thus 

the energies, of multiple intermolecular interactions in a crystal structure. 

A relatively new technique, called the PIXEL method (Gavezzotti, 2005), has 

been developed which allows calculation of lattice and intermolecular dimer energies 

along with a breakdown of the energies into their Coulombic, dispersion, polarisation 

and repulsion components. This method has already been shown to be particularly 

useful in determining the causes of the pressure-induced phase transition in the 

structure of salicylaldoxime-I (Chapter 2).  

L-serine is an ideal test case for studying phase transitions caused by 

compression because there is already structural compression data at pressures from 

ambient to 8.1 GPa (Moggach, Marshall et al., 2006) and two phase transitions are 

seen to occur within this pressure regime. The effect of pressure on the crystal 

structure of L-serine has been studied using X-ray single-crystal diffraction 

(Moggach et al., 2005) and neutron powder diffraction (Moggach, Marshall et al., 

2006). The ambient pressure phase (L-serine-I) crystallises in space group P212121 

and is made up of C(5) chains formed along the c-axis by N1H5…O2 hydrogen 

bonds. Pairs of these C(5) chains are linked into ribbons by N1H6…O1 hydrogen 

bonds between molecules related by a 21 operation, which form repeated  ring 

motifs. The ribbons interact on both sides with adjacent ribbons via the hydroxyl 

side-chains to form an infinite O3H7…O3 hydrogen-bonded chain, thus forming 

layers in the bc plane (Figure 5.1a) which are referred to as the A layers by Moggach 

and co-workers (Moggach et al., 2005). These layers are then linked together by 

N1H4…O2 hydrogen bonds in the a-direction thus forming another set of C(5) 

chains and, when taken with the N1H5…O2 chains, they form another set of layers 

in the ac plane referred to as the B layers (Figure 5.2a). 

( )113
3R

The phase transition from phase I to phase II is isosymmetric and occurs with 

a substantial decrease in unit cell volume. In phase II the ribbons and  rings of 

phase I remain essentially the same except with further compression in the c-

direction, but now the hydroxyl groups have rotated to form O3H7…O2 hydrogen 

bonds with the carboxyl group of a neighbouring chain (Figure 5.1b). This transition 

( )113
3R
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is therefore accompanied by a change in the conformation of the L-serine molecule 

(Figure 5.3). The layers are again linked together by the N1H4…O2 hydrogen bonds 

(Figure 5.2b). 

(a)  

(b)  

(c)  

Figure 5.1: The effect of pressure on the theoretical crystal structure of L-serine as 
viewed along the a-axis: (a) L-serine-I at ambient pressure; (b) L-serine-II at 5.2 
GPa; (c) L-serine-III at 8.1 GPa. This layer is referred to as the A layer in the text. 
The colour scheme is red: oxygen, blue: nitrogen, light-grey: carbon and dark-grey: 
hydrogen. 
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The second phase transition, from phase II to phase III, is also isosymmetric 

but does not involve a significant decrease in unit cell volume. The hydrogen 

bonding motifs remain largely the same during this phase transition except there is a 

substantial shift of the B layers (Figure 5.1c) in the structure with respect to each 

other which causes the O3H7 hydrogen bond donor to form a bifurcated interaction, 

with O2 and O1 of separate molecules as acceptors.  

 (a)  

(b)  

(c)  

Figure 5.2: The effect of pressure on the theoretical crystal structure of L-serine as 
viewed along the b-axis: (a) L-serine-I at ambient pressure; (b) L-serine-II at 5.2 
GPa; (c) L-serine-III at 8.1 GPa. This layer is referred to as the B layer in the text. 
The colour scheme is the same as in Fig. 5.1. 
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Figure 5.3: Structure overlay using a capped sticks model showing the change in 
conformation of the L-serine molecule between phase I at 4.5 GPa (coloured by 
element) and phase-II at 5.2 GPa (green). The overlay shows the rotation of the 
hydroxyl group, a twisting of the carboxyl group and a slight rotation of the amino 
group. The colour scheme for the elements is red: oxygen, blue: nitrogen, light-grey: 
carbon and white: hydrogen. 
 

Here we describe the ab initio DFT calculation of the structure of L-serine at 

pressures from ambient to 8.1 GPa starting from the coordinates determined by 

neutron powder diffraction. The theoretical structures have also been used to perform 

PIXEL lattice and dimer calculations in order to analyse the causes of the two phase 

transitions more fully. 

 

5.3 Experimental 
Note: The neutron powder diffraction data were collected by Dr. William Marshall 

of ISIS and the refinements were carried out by Professor Simon Parsons of the 

University of Edinburgh. The details are included here for the sake of completeness. 

 

5.3.1 Neutron crystal structures 

Ambient temperature, high-pressure neutron powder diffraction data were 

collected by the time-of-flight technique at the PEARL beamline high-pressure 

facility (HiPr) at ISIS. Data sets between 0 and 4.3 GPa were collected using a 1:1 
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mixture of deuterated pentane and isopropanol as a hydrostatic medium; higher 

pressures were obtained using a reloaded sample with a hydrostatic medium 

consisting of a 4:1 mixture of deuterated methanol and ethanol. Lead was included 

with the sample as a pressure marker. Full details of the experiment have been 

published in an earlier paper (Moggach, Marshall et al., 2006). The coordinates for 

the structures at 4.5, 5.2, 7.3 and 8.1 GPa have already been published in the CSD 

[refcodes LSERIN22 to LSERIN25], but full refinements of the structure of L-serine 

at all pressures for which data were collected between 0 and 8.1 GPa are reported 

here for the first time. 

 
5.3.2 Crystal structure refinements 

All calculations were carried out using TOPAS-Academic version 4.1 

(Coelho, 2007). 

The crystal structures of L-serine-I between 0.1 and 4.5 GPa were initially 

refined individually starting from the coordinates of previous study at ambient 

conditions (Kistenmacher et al., 1974). Using the Z-matrix formalism for rigid-body 

modelling available in TOPAS, the primary bond distances and angles were held at 

ambient pressure values, but the torsional angles, position and orientation of the 

molecules were allowed to refine. A common isotropic displacement parameter was 

refined for the C, N and O atoms; the H-atom displacement parameters were made 

equal to 1.2 or 1.5 times this value. Acceptable fits were obtained in all cases, and 

‘unconstrained Rwp’ values are listed for this procedure in Table 5.1. 

Though the trends in intermolecular distances obtained followed the expected 

downward trend, the variation was not smooth. Therefore, following a recent paper 

(Stinton & Evans, 2007), we tested a second modelling procedure where all data sets 

were refined together, but with the displacement, position, orientation and torsion 

parameters all constrained to be a constant, linear or quadratic function of pressure. 

For example the displacement parameter could be modelled as either constant over 

all data sets, Biso(P) = a0 + a1P or Biso(P) = a0 + a1P + a2P2 where P = pressure in 

GPa and the coefficients a0, a1 and a2 were allowed to refine. Also included in the 

refinements were a complete ambient pressure X-ray data set, the high pressure X-
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ray data sets reported by Moggach and co-workers (Moggach et al., 2005) and a 

further data set for phase-III (Drebushchak et al., 2006). In short, all available high 

pressure X-ray single crystal and neutron powder data sets were refined together for 

phases I, II and III. 

It was found that, for phase-I, the position, orientation and the D7-O3-C3-C2 

torsion could be modelled as varying linearly with pressure; incorporation of a 

quadratic term did not improve the data-fitting, while at the same time introducing 

correlations between the linear and quadratic coefficients which tended to increase 

the standard deviations of derived parameters. Allowing other torsional parameters to 

vary did not significantly improve data-fitting. In the refinements for phases II and 

III common values of position, orientation and all torsions were refined. 

No constraints or restraints were applied to intermolecular distances. The 

primary bond distances and angles of the serine molecule were assumed to be 

invariant with pressure, and these were also refined freely. A parameter representing 

the difference between X-ray and neutron distances to hydrogen was also refined. 

For the neutron data sets the pressure was calculated during refinement from the lead 

cell constant using a Birch-Murnaghan equation of state (Birch, 1947) with Vo = 

30.3128 Å3, Bo = 41.92 GPa, B' = 5.72. These parameters were derived by Fortes 

(Fortes, 2004) as averages of the values determined in three earlier studies 

(Kuznetsov et al., 2002, Miller & Schuele, 1969, Waldorf & Alers, 1962). For the X-

ray data sets the pressure was derived from the equation of state of serine as derived 

from the neutron data and ruby fluorescence measurements. 

The neutron structures were used for comparison with the ab initio theoretical 

structures discussed herein, and crystal and refinement data and intermolecular 

contact distances are presented for the neutron refinements in Tables 5.1 and 5.2, 

respectively. 
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Phase Serine-I Serine-I Serine-I Serine-I Serine-I Serine-I 
Pressure 
(GPa) 

0.076(8) 0.940(8) 1.613(9) 2.625(9) 3.458(10) 4.270(8) 

Chemical 
formula 

C3D7NO3 C3D7NO3 C3D7NO3 C3D7NO3 C3D7NO3 C3D7NO3

Mr 112.11 112.11 112.11 112.11 112.11 112.11 
Cell setting, 
space group

Orthorhom
bic, 

P212121 

Orthorhom
bic, 

P212121 

Orthorhom
bic, 

P212121 

Orthorhom
bic, 

P212121 

Orthorhom
bic, 

P212121 

Orthorhom
bic, 

P212121 
Temperature 

(K) 
298 298 298 298 298 298 

a, b, c (Å) 8.5720 (7), 
9.3012 (5), 
5.6043 (5) 

8.4877 (7), 
9.0943 (5), 
5.5754 (5)

8.4435 (7), 
8.9641 (6), 
5.5546 (5)

8.3918 (7), 
8.8060 (5), 
5.5219 (5)

8.3547 (7), 
8.7062 (5), 
5.4968 (5) 

8.3216 (6), 
8.6243 (4), 
5.4739 (4)

V (Å3) 446.83 (6) 430.36 (6) 420.43 (6) 408.05 (6) 399.82 (6) 392.85 (5)
Z 4 4 4 4 4 4 

Dx (Mg m–3) 1.666 1.730 1.771 1.825 1.862 1.895 
Radiation 

type 
Neutron Neutron Neutron Neutron Neutron Neutron 

Specimen 
form, colour

Powder 
(particle 

morpholog
y: Block), 
colourless 

Powder 
(particle 

morpholog
y: Block), 
colourless

Powder 
(particle 

morpholog
y: Block), 
colourless

Powder 
(particle 

morpholog
y: Block), 
colourless

Powder 
(particle 

morpholog
y: Block), 
colourless 

Powder 
(particle 

morpholog
y: Block), 
colourless

Specimen 
size (mm3) 

55      

Diffractomet
er 

HiPr/PEA
RL, ISIS 

HiPr/PEAR
L, ISIS 

HiPr/PEAR
L, ISIS 

HiPr/PEAR
L, ISIS 

HiPr/PEAR
L, ISIS 

HiPr/PEAR
L, ISIS 

d-spacing 
range (Å) 

4.3 to 0.6 4.3 to 0.6 4.3 to 0.6 4.3 to 0.6 4.3 to 0.6 4.3 to 0.6

Refinement 
on 

I I I I I I 

R factors and 
goodness of 

fit 

Rp = 3.222, 
Rwp = 

2.845, Rexp 
= 1.821, S 

= 1.56 

Rp = 3.290, 
Rwp = 

2.974, Rexp
= 1.855, S 

=1.60 

Rp = 3.142, 
Rwp = 

2.848, Rexp
= 1.976, S 

=1.48 

Rp = 3.085, 
Rwp = 

2.848, Rexp
= 1.917, S 

=1.48 

Rp = 3.049, 
Rwp = 

2.522, Rexp 
= 1.961, S 

=1.29 

Rp = 2.735, 
Rwp = 

2.232, Rexp
= 1.567, S 

= 1.42 
Parameters 273 

(Δ/σ)max <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
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 Serine-I Serine-II Serine-II Serine-II Serine-II Serine-III
Pressure 

(GPa) 
4.514(15) 5.199(16) 5.700(17) 6.28(2) 7.243(19) 8.162(18)

Chemical 
formula 

C3D7NO3 C3D7NO3 C3D7NO3 C3D7NO3 C3D7NO3 C3D7NO3

Mr 112.11 112.11 112.11 112.11 112.11 112.11 
Cell setting, 
space group

Orthorhom
bic, 

P212121 

Orthorhom
bic, 

P212121 

Orthorhom
bic, 

P212121 

Orthorhom
bic, 

P212121 

Orthorhom
bic, 

P212121 

Orthorhom
bic, 

P212121 
Temperature 

(K) 
298 298 298 298 298 298 

A, b, c (Å) 8.3099 (5), 
8.5951 (4), 
5.4658 (4) 

6.8700 (3), 
9.6373 (6), 
5.6066 (3)

6.8107 (4), 
9.6227 (7), 
5.5934 (3)

6.7627 (4), 
9.6073 (7), 
5.5825 (4)

6.6869 (3), 
9.5802 (6), 
5.5624 (3) 

6.5487 (3), 
9.5386 (5), 
5.6078 (3)

V (Å3) 390.39 (4) 371.21 (3) 366.58 (4) 362.70 (4) 356.34 (3) 350.30 (3)
Z 4 4 4 4 4 4 

Dx (Mg m–3) 1.907 2.006 2.031 2.053 2.089 2.125 
Radiation 

type 
Neutron Neutron Neutron Neutron Neutron Neutron 

Specimen 
form, colour

Powder 
(particle 

morpholog
y: Block), 
colourless 

Powder 
(particle 

morpholog
y: Block), 
colourless

Powder 
(particle 

morpholog
y: Block), 
colourless

Powder 
(particle 

morpholog
y: Block), 
colourless

Powder 
(particle 

morpholog
y: Block), 
colourless 

Powder 
(particle 

morpholog
y: Block), 
colourless

Specimen 
size (mm3) 

55 55 55 55 55 55 

Diffractomete
r 

HiPr/PEA
RL, ISIS 

HiPr/PEA
RL, ISIS 

HiPr/PEA
RL, ISIS 

HiPr/PEA
RL, ISIS 

HiPr/PEA
RL, ISIS 

HiPr/PEA
RL, ISIS 

d-spacing 
range (Å) 

4.3 to 0.6 4.3 to 0.6 4.3 to 0.6 4.3 to 0.6 4.3 to 0.6 4.3 to 0.6

Refinement 
on 

I I I I I I 

R factors and 
goodness of 

fit 

Rp = 2.720, 
Rwp = 

2.223, Rexp 
= 1.659, S 

= 1.34 

Rp = 2.879, 
Rwp = 

2.555, Rexp
= 1.541,  S

= 1.66 

Rp = 2.939, 
Rwp = 

2.596, Rexp
= 1.616,  S

= 1.61 

Rp = 3.202, 
Rwp = 

2.552, Rexp
= 1.877,  S

= 1.36 

Rp = 2.961, 
Rwp = 

2.503, Rexp 
= 1.602, S 

= 1.56 

Rp = 3.017, 
Rwp = 

2.407, Rexp
= 1.834, S 

= 1.31 
Parameters 273 141 58 

(Δ/σ)max <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
 
 
Table 5.1: Crystallographic data for neutron powder diffraction study of L-serine at 
increasing pressures; L-serine-I (ambient to 4.5 GPa), L-serine-II (5.2 to 7.3 GPa) 
and L-serine-III (8.1 GPa). 
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Pressure/ 
GPa 

0.0 0.1 0.9 1.7 2.7 3.5 4.3 4.5 Δ (I) 

N1H5..O2i 
H5..O2  

 
N1..O2 

 
<N1H5O2 

 

 
1.73 

1.990(10) 
2.771 

2.887(5) 
165 

154(3) 

 
1.74 

1.930(6)
2.781 

2.875(5)
165 

153(1) 

 
1.72 

1.909(6)
2.753 

2.851(5)
164 

152(1) 

 
1.71 

1.894(6)
2.740 

2.834(5)
163 

152(1) 

 
1.72 

1.871(6)
2.747 

2.807(5)
162 

151(1) 

 
1.71 

1.853(6)
2.729 

2.786(5)
161 

151(1) 

 
1.69 

1.837(6) 
2.716 

2.768(5) 
161 

150(1) 

 
1.71 

1.832(6)
2.723 

2.761(5)
160 

150(1) 

 
 
 

0.048
0.126

N1H5..O1i 
H5..O1  

 
N1..O1 

 
<N1H5O1 

 
2.34 

2.304(11) 
3.119 

3.124(5) 
128 

142(2) 

 
2.30 

2.246(6)
3.064 

3.109(5)
128 

141(1) 

 
2.31 

2.220(6)
3.080 

3.081(5)
128 

141(1) 

 
2.28 

2.201(6)
3.056 

3.061(5)
128 

141(1) 

 
2.21 

2.171(6)
2.985 

3.029(5)
128 

141(1) 

 
2.20 

2.148(6)
2.973 

3.004(5)
128 

140(1) 

 
2.19 

2.127(6) 
2.954 

2.982(5) 
128 

140(1) 

 
2.16 

2.120(6)
2.942 

2.974(5)
129 

140(1) 

 
 
 

0.177
0.150

N1H4..O2ii 
H4..O2  

 
N1..O2 

 
<N1H4O2 

 

 
1.88 

1.967(8) 
2.911 

2.879(4) 
163 

157(3) 

 
1.86 

1.902(5)
2.886 

2.866(4)
163 

156(2) 

 
1.80 

1.856(5)
2.827 

2.813(4)
163 

155(1) 

 
1.78 

1.831(5)
2.804 

2.784(4)
161 

154(1) 

 
1.74 

1.803(5)
2.763 

2.748(4)
161 

153(1) 

 
1.71 

1.783(6)
2.732 

2.723(5)
160 

152(1) 

 
1.70 

1.767(6) 
2.713 

2.700(5) 
159 

150(1) 

 
1.68 

1.761(6)
2.699 

2.693(5)
160 

150(1) 

 
 
 

0.212
0.186

N1H6..O1iii 
H6..O1  

 
N1..O1 

 
<N1H6O1 

 

 
1.75 

1.938(9) 
2.775 

2.858(4) 
162 

159(4) 

 
1.76 

1.865(5)
2.788 

2.837(4)
163 

158(2) 

 
1.73 

1.808(5)
2.753 

2.781(4)
162 

158(2) 

 
1.72 

1.776(5)
2.741 

2.750(4)
162 

158(2) 

 
1.69 

1.743(5)
2.720 

2.718(4)
163 

159(2) 

 
1.69 

1.727(5)
2.712 

2.703(4)
163 

159(2) 

 
1.67 

1.718(6) 
2.695 

2.695(5) 
163 

159(2) 

 
1.66 

1.713(6)
2.689 

2.690(5)
163 

159(2) 

 
 
 

0.086
0.168

O3H7..O3iv 

H7..O3  
 

O3..O3 
 

<O3H7O3 
 

 
1.95 

2.103(14) 
2.891 

2.923(3) 
158 

155(4) 

 
1.95 

2.038(11)
2.884 

2.906(3)
157 

154(2) 

 
1.92 

2.002(13)
2.852 

2.863(2)
158 

152(3) 

 
1.90 

1.981(15)
2.837 

2.839(2)
157 

152(3) 

 
1.89 

1.96(2) 
2.817 

2.812(2)
156 

151(4) 

 
1.87 

1.94(2) 
2.795 

2.796(2)
155 

151(5) 

 
1.86 

1.93(4) 
2.783 

2.786(2) 
154 

150(7) 

 
1.84 

1.93(4) 
2.778 

2.782(2)
156 

150(7) 

 
 
 

0.113
0.141

 
 
Symmetry Operators: 

i x,y,1+z   

ii -1/2+x,3/2-y,1-z   

iii 3/2-x, 2-y,1/2+z   

iv 3/2-x, 1-y,1/2+z   

v 1-x, -1/2+y,3/2-z   
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Pressure/ 
GPa 

5.2 5.8 6.3 7.3 8.1 

N1H5..O2i 
H5..O2 

 
N1..O2 

 
<N1H5O2 

 

 
1.65 

1.887(13) 
2.686 

2.836(12) 
164 

152(3) 

 
1.65 

1.877(13)
2.686 

2.825(12)
163 

152(3) 

 
1.66 

1.869(13)
2.694 

2.816(12)
163 

152(3) 

 
1.67 

1.855(13)
2.692 

2.799(12)
162 

151(3) 

 
1.67 

1.82(3) 
2.708 

2.81(2) 
164 

160(9) 
N1H5..O1i 

H5..O1 
 

N1..O1 
 

<N1H5O1 
 

 
2.38 

2.221(13) 
3.185 

3.099(12) 
131 

142(2) 

 
2.37 

2.209(13)
3.171 

3.086(12)
131 

142(2) 

 
2.34 

2.199(13)
3.139 

3.075(12)
131 

142(2) 

 
2.31 

2.180(13)
3.120 

3.056(12)
132 

142(2) 

 
2.37 

2.32(3) 
3.165 

3.14(3) 
131 

135(4) 
N1H4..O2ii 

H4..O2 
 

N1..O2 
 

<N1H4O2 
 

 
1.81 

1.861(11) 
2.834 

2.832(9) 
164 

157(3) 

 
1.80 

1.835(11)
2.819 

2.805(9) 
164 

156(3) 

 
1.80 

1.814(11)
2.822 

2.783(9)
164 

156(3) 

 
1.79 

1.782(11)
2.806 

2.749(9)
162 

155(3) 

 
1.83 

1.84(2) 
2.836 

2.828(18)
161 

158(6) 
N1H6..O1iii 

H6..O1 
 

N1..O1 
 

<N1H6O1 
 

 
1.66 

1.745(11) 
2.654 

2.644(10) 
157 

144(2) 

 
1.65 

1.734(11)
2.643 

2.635(10)
157 

144(2) 

 
1.63 

1.723(11)
2.632 

2.627(10)
158 

144(2) 

 
1.63 

1.705(11)
2.622 

2.612(10)
157 

145(2) 

 
1.57 

1.675(19)
2.608 

2.642(17)
165 

154(5) 
O3H7..O2iv 

H7..O2 
 

O3..O2 
 

<O3H7O2 
 

 
1.64 

1.639(16) 
2.635 

2.630(13) 
173 

169(10) 

 
1.63 

1.629(16)
2.625 

2.629(13)
173 

168(10) 

 
1.62 

1.619(16)
2.614 

2.608(13)
173 

168(10)

 
1.60 

1.602(16)
2.599 

2.590(13)
172 

167(9) 

 
1.68 

1.84(3) 
2.615 

2.66(3) 
155 

136(5) 
O3H7..O1v 

H7..O1 
 

O3..O1 
 

<O3H7O1 
 

 
- 
- 
- 

 
- 
- 
- 

 
- 
- 
- 

 
- 
- 
- 

 
2.38 

2.13(3) 
2.940 

2.89(3) 
114 

131(4) 
 
Table 5.2: Non-covalent interaction parameters in L-serine theoretical and 
experimental crystal structures. The theoretical values are shown first and the 
experimental values given in italics underneath. Distances are in Å and angles in °. 
The Δ column refers to the D...A distance at the highest pressure obtained for phase I 
(4.5 GPa) subtracted from the same distance at the lowest pressure obtained 
(ambient). 
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5.3.3 DFT calculations 

First principles electronic structure calculations were performed with the 

localised basis set pseudopotential method as employed in the code SIESTA (Ordejon 

et al., 1996, Soler et al., 2002). The generalised gradient Perdew-Burke-Ernzerhof 

exchange correlation potentials were employed in the calculations (Perdew et al., 

1996). Valence double-ζ basis sets augmented with polarisation functions were used. 

The basis sets are numerical ones, consisting of the exact solutions of the 

pseudopotential for the atomic state, except that a radial confinement is included to 

localise the orbital corresponding to an energy shift of 0.0001 Rydberg. A real space 

mesh equivalent to a plane wave cut-off of 250 Rydberg was used for the evaluation 

of the Hartree and exchange-correlation energies. Optimisations performed on the 

solid-state structures over the range of pressures were constrained to the neutron 

compression study unit cell dimensions, while all other degrees of freedom were free 

to relax with no symmetry restrictions. The input files were prepared using the 

program GDIS (Fleming & Rohl, 2005). 

 

5.3.4 PIXEL calculations 

The final theoretical structures obtained were used to calculate the molecular 

electron density at each pressure by standard quantum chemical methods using the 

program GAUSSIAN98 (Frisch et al., 1998) with the MP2/6-31G** basis set. The 

electron density model of the molecule was then analysed using the program package 

OPiX (Gavezzotti, 2005) which allows the calculation of dimer and lattice energies. 

Lattice energy calculations employed a cluster of molecules with maximum distance 

from the central molecule of 40 Å and a top radius for search of 50 Å. This size of 

cluster was used in order to minimise the effect of long-range electrostatic 

contributions from molecules at the outer edges of the cluster due to the charged 

nature of zwitterionic L-serine. Calculations were also carried out for pairs of 

molecules identified in the lattice calculation as being energetically the most 

significant (i.e. with a magnitude > 2.5 kJ mol-1). The output from these calculations 

yields a total energy and a breakdown into its Coulombic, polarisation, dispersion 

and repulsion components (Dunitz & Gavezzotti, 2005). 
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5.3.5 Other programs used 

Theoretical and experimental crystal structures were visualised using the 

programs Mercury (Macrae et al., 2008) and DIAMOND (Crystal Impact, 2004). 

Analyses were carried out using PLATON (Spek, 2003), as incorporated in the 

WinGX suite (Farrugia, 1999). Searches of the CSD (Allen, 2002, Allen & 

Motherwell, 2002) utilised the program ConQuest and version 5.28 of the database 

with updates up to January 2007. Scatter-plots of intermolecular interaction 

geometries from the CSD were generated using the IsoStar library (Bruno et al., 

1997).  

The numbering scheme used (Scheme 5.1) is the same throughout the 

ambient-pressure and high-pressure datasets. This numbering scheme also matches 

the numbering used for L-serine in the previous two compression studies. 
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Scheme 5.1: Chemical structure diagram 

showing atomic numbering scheme. 

 

 

 

5.4 Results 
5.4.1 A comparison of the experimental & theoretical structures 

The experimental primary bond distances and angles in L-serine I, II and III 

are compared to the average values for each phase of the theoretical structures in 

Table 5.3. A recently developed option in CRYSTALS (Betteridge et al., 2003) was 

used to perform a geometrical comparison between the experimental and theoretical 

intramolecular structures in the solid state at each individual pressure (Collins et al., 

2006). This comparison of geometries found that the rms deviation of bond lengths 

in the structures was never greater than 0.08 Å and the rms deviation in positions was 

never larger than 0.15 Å. The largest variation with pressure in bond length in the 

theoretical data is 0.015 Å (for C1-O1 between phases I and II); this is within the 
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precision of experimentally determined structures at high pressure, and validates the 

commonly used procedure of restraining high pressure structure refinements with 

bond distances derived at ambient pressure. With the exception of <C1C2N1, the 

trends in the theoretical and experimental bond angles (Table 5.3) are consistent. The 

C2-C3-O3 bond angle, for example, changes from approximately 112° to 106° 

between phases I and II in both sets of structures.  

 

 Neutron 
Phase I 

Neutron 
Phase II 

Neutron 
Phase III

SIESTA 
Phase I 

SIESTA 
Phase II 

SIESTA 
Phase III

C1-C2 1.536 (2) 1.492 (5) 1.504 (10) 1.537 1.534 1.531 

C2-C3 1.528 (2) 1.539 (5) 1.511 (8) 1.536 1.529 1.526 

C1-O1 1.2303 (19) 1.222 (6) 1.266 (8) 1.268 1.253 1.257 

C1-O2 1.2583 (19) 1.279 (5) 1.266 (8) 1.282 1.293 1.286 

C3-O3 1.4225 (18) 1.437 (3) 1.402 (11) 1.432 1.422 1.428 

C2-N1 1.4899 (18) 1.520 (3) 1.483 (7) 1.479 1.476 1.474 

<C1C2C3 109.94 (10) 111.1 (2) 110.7 (3) 111.7 113.0 113.6 

<C1C2N1 109.33 (10) 109.2 (2) 110.7 (4) 111.8 107.9 108.2 

<C2C1O1 119.21 (13) 117.2 (4) 114.0 (8) 118.5 117.7 117.5 

<C2C1O2 114.60 (13) 119.5 (4) 121.4 (6) 116.3 118.1 118.4 

<C2C3O3 111.97 (13) 105.6 (3) 105.9 (6) 112.2 106.0 106.7 

<C3C2N1 109.31 108.8 108.2 110.3 108.3 108.1 

 
Table 5.3: Average non-hydrogen bond lengths and angles in the experimental and 
theoretical structures of L-serine. For the neutron structures the non-hydrogen 
primary bond lengths and angles were assumed to be constant during refinement. The 
theoretical values shown are the averages of the parameters for the structures within 
each phase. Bond lengths are in Å and bond angles are in °. 

 

Another technique for comparing structures, which is used by the Crystal 

Structure Prediction (CSP) community, is to compare the relative coordinates of a 

cluster of 15 molecules in each structure. This comparison can be performed using 

the program COMPACK (Chisholm & Motherwell, 2005) and the functionality has 

also been incorporated into the November 2007 release of Mercury CSD 2.0 (Macrae 

et al., 2008). A root-mean-squared deviation (RMSD) is calculated over this cluster 
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of 15 molecules for each comparison and a structural overlay is automatically carried 

out. For the purposes of this study the hydrogens were ignored for comparison of 

structures. Comparison across the pressure series for L-serine calculated RMSD 

values of between 0.06 and 0.12 Å for the experimental and theoretical structures. 

The largest deviation was seen for the structure of L-serine-III at 8.1 GPa which 

shows an RMSD of 0.121 Å between the neutron and ab initio structures. An 

example of the overlay between molecular clusters is shown in Figure 5.4 for L-

serine-II at 5.2 GPa (RMSD of 0.105 Å) with the experimental structure in green and 

the theoretical structure in red. Typically, in the field of CSP, a matched (correctly 

predicted) structure will give an RMSD for this size of cluster of less than 1.0 Å 

compared to the experimental structure, values less than 0.2 Å are considered to be a 

very good match (Day et al., 2005). In CSP, however, the structures will not 

necessarily have the same unit cell dimensions, whereas in our comparision the 

experimental and theoretical structures have identical cell dimensions. 

 

 
Figure 5.4: Structural overlay of a 15 molecule cluster in the L-serine-II 
experimental structure at 5.2 GPa (green) with the equivalent theoretical structure 
(red). Hydrogen atoms have been removed for clarity. The RMSD for this cluster 
comparison is 0.105 Å over the whole cluster. 
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5.4.2 The response of the theoretical structure to pressure 

Figure 5.5 shows the experimental and ab initio donor to acceptor distances 

for each of the shortest four hydrogen bonds as a function of pressure for the phase I 

structures of L-serine. Apart from the N1H5…O2 hydrogen bond, each of the 

theoretical compression curves matches well with that of the experimentally 

determined distances. The donor to acceptor distance in the N1H5…O2 interaction is 

seen to be in the region of 0.10 to 0.05 Å shorter in the theoretical structures 

compared to the experimental structures. This may be related to the fact that the C1-

O2 bond length is longer in the SIESTA calculations, though only by 0.024 Å. 

The data on variation of the non-covalent interaction parameters in the 

theoretical structures between ambient pressure and 8.1 GPa are presented in Table 

5.2. The least compressible hydrogen bond during the compression of phase I is seen 

to be the major component of the bifurcated hydrogen bond N1H5…O2 (N1…O2 

decreases by 1.7 % between ambient pressure and 4.5GPa). The N1H6…O1 

hydrogen bond is the next least compressible interaction, for which N1…O1 

decreases by 3.1 % to a distance of 2.689 Å at 4.5 GPa. The O3H7…O3 hydrogen 

bond compresses by 3.9 % from an O3…O3 distance of 2.891 at ambient pressure to 

2.778 Å at 4.5 GPa. Finally, the last two hydrogen bonds, N1H5…O1 and 

N1H4…O2 which are relatively long at ambient conditions, decrease by 5.7 and 7.3 

% respectively (N1…O1 decreases to 2.942 Å and N1…O2 is compressed to 2.699 

Å at 4.5 GPa). The three main N…O distances all compress to approximately the 

same value (N1H5…O2 = 2.723 Å, N1H6…O1 = 2.689 Å and N1H4…O2 = 2.699 

Å at 4.5 GPa).  

The phase transition from L-serine-I to L-serine-II is accompanied by a 

lengthening of the N1H4…O2 hydrogen bond from 2.699 Å in phase I at 4.5 GPa to 

2.834 Å in phase II at 5.2 GPa. The minor component of the bifurcated hydrogen 

bond, N1H5…O1, also becomes longer as the bifurcated character of the interaction 

decreases. Both of the remaining two NH…O hydrogen bonds (N1H5…O2 and 

N1H6…O1) decrease slightly during the phase transition. The new OH…O 

interaction in the phase II structure (O3H7…O2) is seen to be substantially shorter 

than the OH…O interaction in phase I (O3…O2 = 2.635 Å at 5.2 GPa). 
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(d) 

Figure 5.5: Graphs of hydrogen bond donor to acceptor distances (in Å) as a 
function of pressure (in GPa) for the interactions N1(H5)…O2 (a), N1(H4)…O2 (b), 
N1(H6)…O1 (c) and O3(H7)…O3 (d) in L-serine-I. The data are shown in each 
graph for the neutron powder structures (green) and the SIESTA theoretical structures 
(red). Error bars have been displayed for the interactions in the experimental 
structures at the 1 σ level. Each plot is shown on the same scale using distances from 
2.6 to 3.0 Å and pressures from 0.0 to 5.0 GPa. 
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In the second phase transition, from phase II to phase III, each of the 

hydrogen bonds N1H5…O2/O1, N1H4…O2 and O3H7…O2 increases slightly 

during the shifting of the B layers with respect to each other. The hydrogen bond 

donor O3H7 does now, however, form a bifurcated hydrogen bond with O3H7…O2 

the major component (O3…O2 = 2.615 Å) and O3H7…O1 the minor component 

(O3…O1 = 2.940 Å). The only hydrogen bonding interaction seen to decrease during 

this phase transition is N1H6…O1 (N1…O1 = 2.608 Å at 8.1 GPa). 

 

5.5 Discussion 
5.5.1 The phase I to II transition 

The pressure-induced phase transitions in the crystal structure of L-serine 

were rationalised in the previous two studies by analysis of the hydrogen bonding 

distances as pressure was increased. As described above, each of the main NH…O 

interactions in the theoretical structures reaches a N…O distance of approximately 

2.70 Å at 4.5 GPa, just before the phase transition to L-serine-II. A search of NH…O 

contact distances in the CSD for amino acid structures suggested that 2.70 Å 

approaches the minimum distance for this type of interaction, and we suggested that 

relief of strain in this contact ‘drove’ the transition from phase I to II. 

A more general search of the Cambridge Structural Database (CSD) for any 

R3NH+ to RCOO- interactions in organic structures with R-factor <= 0.075 showed 

that there is still a number of NH…O contacts shorter than this, with the shortest 

N…O contact being 2.533 (2) Å for QIBSAV (Burchell et al., 2001). This implies 

that the conclusion reached in our previous study was based on too restrictive search 

criteria, and it would appear that the hydrogen bonds in the phase I structures 

calculated are not yet at their ambient limits at 4.5 GPa. If this is the case then the 

phase transition is driven by some other factor. This was investigated further using 

PIXEL calculations. 

The PIXEL method is a technique that has been developed recently by 

Gavezzotti which allows substantial insight to be gained into the nature of 

intermolecular interactions through the calculation of crystal lattice and dimer 

energies. The technique is applied by determination of a molecular electron density 
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map (using GAUSSIAN), condensation of the map into larger pixels and then 

calculation of energy terms between pairs of pixels in adjacent molecules. Studies 

using the program to analyse the compression of organic molecules (Chapters 2 & 4), 

have shown that the PIXEL technique is particularly useful for investigating the 

variation of intermolecular interactions within a crystal structure. 

The lattice energies of the L-serine theoretical structures and a breakdown 

into the component Coulombic, dispersion, polarisation and repulsion terms have 

been calculated and are shown in Table 5.4. A plot of the overall lattice energy as a 

function of pressure for each of the three phases of L-serine is shown in Figure 5.6. 

In order to validate the energy calculations it is useful to compare the ambient lattice 

energy (-290.9 kJ mol-1) with lattice energies determined using other techniques. The 

enthalpy of sublimation of L-serine has been experimentally determined (de Kruif et 

al., 1979) to be -173.6 kJ mol-1, though proton transfer occurs between the 

ammonium and carboxylate groups during sublimation. If the proton transfer energy 

is taken into account (Kyoung et al., 1994) the lattice energy of zwitterionic serine is 

-279.9 kJ mol-1, which is close to the value determined by the PIXEL method.  

The PIXEL method only calculates energies of interactions between 

molecules and any change in the internal energy of the molecule is not taken into 

account. There is, however, a change in the conformation of the L-serine molecule 

between phases I and II which is characterised by a rotation of the hydroxyl group, a 

rotation of the amino group and a twisting of the carbonyl group about the C1-C2 

bond (Figure 5.3). GAUSSIAN calculations indicate that energy associated with the 

conformational change is -40 kJ mol-1, indicating that the conformation of the serine 

molecules in the ambient pressure structure is therefore not optimal. A recent DFT 

study reached a similar conclusion for L-alanine, quoting a difference between the 

solid state and gas-phase conformations of 40 kJ mol-1 (Cooper et al., 2007). Table 

5.4 includes a column showing an adjusted total energy (Uadj) which corresponds to 

the total lattice energy minus the difference in internal energy of the molecule as 

calculated by GAUSSIAN. Also displayed in the table are values for the enthalpy, H 

= Uadj + PV, where P = pressure and V = molar volume = unit cell volume/Z. Lattice 

enthalpy is plotted against pressure in Figure 5.6. 
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Pressure/
GPa Coulombic Polarisation Dispersion Repulsion Total 

Energy Uadj* H† 

0.0 -319.8 -121.6 -85.1 235.6 -290.9 -290.9 -290.9

0.1 -320.9 -122.6 -86.9 239.6 -290.7 -286.7 -280.0

0.9 -341.3 -134.3 -94.8 279.6 -290.8 -289.6 -231.3

1.7 -350.3 -140.5 -99.9 302.5 -288.2 -287.9 -180.3

2.7 -368.1 -151.1 -107.3 335.8 -290.8 -286.5 -120.6

3.5 -376.4 -157.1 -112.3 364.9 -280.9 -276.8 -66.2

4.3 -389.0 -165.9 -117.1 393.8 -278.1 -273.8 -19.7

4.5 -395.2 -170.9 -118.7 403.9 -280.9 -277.1 -12.7

5.2 -388.7 -162.1 -129.7 452.2 -228.4 -268.1 22.5 

5.8 -396.4 -167.4 -133.5 473.3 -223.9 -262.7 57.3 

6.3 -404.2 -171.0 -136.8 490.8 -221.2 -259.8 84.0 

7.3 -413.5 -178.4 -141.9 517.3 -216.6 -255.2 136.4

8.1 -428.7 -180.0 -149.4 547.6 -210.5 -246.8 180.5
 
* Adjusted Energy (Uadj) = Total Energy – Energy difference due to conformation change 
relative to 0.0 GPa structure based on GAUSSIAN98 calculation. 
 
† Enthalpy (H) = Uadj + PV, where P = pressure (in Pa) and V = molar volume (in m3 mol-1). 
 
Table 5.4: The components of lattice energy and the total energy at each pressure 
(GPa) for L-serine theoretical structures (energies in kJ mol-1) along with the 
adjusted total energy (Uadj) and the enthalpy (H). 

 

The lattice enthalpy becomes more positive as pressure increases throughout 

each of the three phases due to the increasing repulsion and the pV terms. There is a 

discontinuity in the graph near 5 GPa, where the phase transition from L-serine-I to 

L-serine-II takes place, the enthalpy becoming more negative, as expected. Analysis 

of the data in Table 5.4 shows that this can be ascribed to (i) the stabilisation of the 

internal energy of the serine molecules, and (ii) a diminution in the pV term as a 

structure with a smaller molecular volume is formed. Presumably the new phase 

formed, L-serine-II, has a hydrogen bonding pattern which can accommodate this 

lower energy conformation, but which only becomes stable at elevated pressures. 
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Figure 5.6: Graph of theoretical structure lattice enthalpy (in kJ mol-1) of the three 
phases of L-serine as a function of pressure (in GPa). 
 
5.5.2 Intermolecular interactions in L-serine-I as a function of pressure 

The PIXEL method also allows calculation of the intermolecular interaction 

energies between two molecules within the crystal structures. Six pairs of molecules 

in the L-serine-I theoretical crystal structure are found to have a stabilising 

interaction energy of magnitude greater than 2.5 kJ mol-1 at ambient pressure. These 

dimers, which are shown in Figure 5.7, are designated 1-6 in descending order of 

their interaction energy at ambient conditions; the energies and a breakdown into 

their component terms is shown in Table 5.5. The variation in energy as a function of 

the centroid-centroid distance for these interactions is displayed in Figure 5.8. The 

data in Figure 5.8 were calculated with the SIESTA-optimised structures, but similar 

results are obtained when experimental data are used. 

The dimer with the strongest interaction energy (1) at ambient conditions 

corresponds to the N1H4…O2 hydrogen bond in the L-serine-I structure. The next 
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strongest interaction (2) is the bifurcated hydrogen bond N1H5…O1/O2. Interactions 

3 and 4 relate to dimers which are not hydrogen bonded, 3 corresponds to a van der 

Waals contact and 4 corresponds to the interaction C3H3…O1. The final two 

interactions, 5 and 6, are also relatively weak and correspond to the hydrogen bonds 

N1H6…O1 and O3H7…O3 respectively. 

 

Dimer Coulombic Polarisation Dispersion Repulsion Total 
Energy 

1 -71.6 -19.2 -11.3 26.9 -75.1 

2 -70.4 -23.4 -8.5 44.2 -58.1 

3 -11.7 -3.8 -5.5 3.8 -17.3 

4 -7.7 -2.8 -2.3 0.9 -11.8 

5 -15.0 -16.8 -5.3 27.3 -9.8 

6 -4.4 -7.4 -6.7 14.8 -3.6 

 

Table 5.5: The total interaction energy and a breakdown into the component terms 
for the six most stabilising interactions at ambient conditions in the L-serine-I 
theoretical structure (energies in kJ mol-1). 

 

The energy of interaction 5 (corresponding to the N1H6…O1 contact) seems 

to be small compared to the other charge-assisted NH…O hydrogen bonds (Table 

5.5): even though N1H5…O2 has similar H-bond geometric parameters to 

N1H6…O1 (Table 5.2), interaction 2 has an energy of -58.1 kJ mol-1 compared to -

9.8 kJ mol-1 for interaction 5. Figure 5.9 shows an IsoStar contoured scatter-plot of 

intermolecular interactions between anionic RCOO- groups (fixed central fragment) 

and cationic RNH3
+ groups (distribution around carboxylate) found within the CSD. 

The N-H donor group shows a distinct preference for H-bonding to either of the 

carboxylate lone pairs. The hydrogen bond corresponding to interaction 5 exhibits a 

contact between the lone pairs and out of the plane of the carboxylate group.  
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Interaction 1   Interaction 2   Interaction 3 

 

 
Interaction 4   Interaction 5   Interaction 6 

 

Figure 5.7: Diagrams of the most energetically important dimers in the L-serine-I 
theoretical crystal structure at ambient pressure from PIXEL analysis. The colour 
scheme is the same as in Fig. 5.1. 

 

These observations are consistent with a study of intermolecular contact 

energies in α-glycine (Volkov & Coppens, 2004), which showed that there was also a 

weak hydrogen bond in that structure with a donor to acceptor geometry that would 

ordinarily suggest a strong interaction. This H-bond was also formed out of the plane 

of the carboxylate group. It is noticeable that the geometry of interaction 5 brings the 

carboxylate groups on neighbouring molecules relatively close to each other; the 

same is also true, though to a lesser extent, for the ammonium groups. This added 

repulsion between like charges may have a contributing effect upon the low 

interaction energy for this intermolecular contact.  
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Figure 5.8: Graph of total interaction energy for the six most energetically important 
dimers in the L-serine-I theoretical structure (in kJ mol-1) against the distance 
between the molecular centroids of the molecules involved in the interaction (in Å). 
A line of best fit has been displayed for each interaction. 

 

Although each of the six interactions has an increasing repulsion term with 

increasing pressure as the dimers are forced closer together, none of the interactions 

weaken considerably within this pressure regime. Three of the interactions (dimers 1, 

2 and 4) are actually seen to strengthen as pressure is increased, whereas the 

remaining three interactions are only slightly weakened by the compression. 

Although these results are different to the behaviour of interactions seen in other 

pressure studies (Chapter 2, Figure 2.10), they do appear to agree with the conclusion 

(see above) that the I-to-II phase transition is not driven by relief of unfavourable 

contacts.  
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Figure 5.9: IsoStar contoured scatter-plot of an RNH3

+ contact group around a 
central RCOO- group, contoured on the amide-N atoms. The colours show three 
different levels of contact density with red being the greatest density followed by 
yellow and then blue. The contact displayed corresponds to the weak NH…O 
interaction in the structure of L-serine-I (labelled interaction 5 in the PIXEL 
analysis). 
 
5.5.3 The phase II to III transition 

During the compression of phase II the N1H5…O2 hydrogen bond actually 

increases marginally, while the remaining interactions each decrease by 2 % or less 

up to 7.3 GPa. With the exception of N1H6…O1, the H-bonds in L-serine-III at 8.1 

GPa are actually longer than in phase-II prior to the phase transition. The main 

difference during the phase transition is the bifurcation of the O3H7…O2 interaction 

to form a hydrogen bond to a carbonyl acceptor (O1). In the theoretical structure the 

O3…O2 hydrogen bond is seen to be the major component of the bifurcated 

O3H7…O2/O1 interaction, whereas in the experimental structure O3…O1 is the 

major component.  
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Interaction 1   Interaction 2   Interaction 3 

 

 
Interaction 4   Interaction 5   Interaction 6 

 
Figure 5.10: Diagrams of the most energetically important dimers in the L-serine-II 
theoretical crystal structure at 5.2 GPa from PIXEL analysis. The colour scheme is 
the same as in Fig. 5.1. 

 

The conformation of the serine molecule does not change in moving from 

phase II to phase III, and the lattice enthalpy of phase III lies approximately along 

the trend line established for phase II. PIXEL calculations (using the theoretical 

structural data) show that there are six important interactions in the phase II 

structure. These are labelled 1-6 in Figure 5.10 in descending order of interaction 

energy at 5.2 GPa; the variation of interaction energy with distance is plotted in 

Figure 5.11. Interaction 1 is again the N1H4…O2 hydrogen bond which was also the 

strongest interaction in phase I. The next strongest interactions, 2 & 3, are also the 

same as interactions 2 & 3 in the phase I structure, namely the N1H5…O1/O2 

bifurcated hydrogen bond and a van der Waals contact respectively. The fourth 

interaction is now the hydrogen bonded O3H7…O2 contact which replaced the 

O3H7…O3 contact during the phase transition. Finally interactions 5 & 6 correspond 
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to another van der Waals contact and the hydrogen bonding interaction N1H6…O1 

respectively.  

 
Figure 5.11: Graph of total interaction energy for the six most energetically 
important dimers in the L-serine-II and L-serine-III theoretical structures (in kJ mol-

1) against the distance between the molecular centroids of the molecules involved in 
the interaction (in Å). The point corresponding to the phase III interaction energy for 
each dimer has been displayed as a red circle. 

 

The phase transition from phase II to phase III occurs with a marked increase 

in the stabilising energy of interaction 5 which, in phase III, now corresponds to the 

newly formed minor component of the bifurcated hydrogen bond O3H7…O2/O1. It 

appears that the II-to-III transition is driven by a rearrangement into a more optimal 

intermolecular packing pattern. At 7.3 GPa the O3H7…O2 H-bond (O3…O2 = 

2.599 Å) is seen to approach the shortest interaction distance for a primary alcohol 

donor to carboxyl acceptor OH…O hydrogen bond in the CSD [2.584 (2) Å for 

GOLWIN] (Tusvik et al., 1999), and the new phase allows the interaction to 

lengthen slightly as well as forming a hydrogen bonding interaction with another 

molecule.  
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5.6 Conclusions 
We have described DFT geometry optimisations of the three phases of serine 

which exist between ambient pressure to 8.1 GPa and compared these structures to 

those determined using neutron powder diffraction. The theoretical structures are 

seen to compare very favourably with the experimental ones with only small 

differences in the primary geometry and molecular packing. These findings suggest 

that it may be possible to predict high pressure structures by performing a geometry 

relaxation on an ambient pressure structure using the SIESTA code with the addition 

of a fixed external pressure parameter. 

PIXEL calculations show that there is a substantial energy gap between the 

internal lattice energies of phases I and II. Analysis of individual dimer energies also 

suggests that none of the intermolecular interactions becomes significantly 

destabilising as the transition pressure to phase-II is approached.  The transition 

between phases I and II is driven partly by the opportunity for the molecule to 

change its conformation during the phase transition to a new conformation, which is 

40 kJ mol-1 more stable than the ambient pressure conformation. The hydrogen 

bonding pattern in phase II which allows this new conformation of L-serine is 

presumably only feasible at this higher pressure. The phase transition also involves a 

substantial decrease in the unit cell volume which means a further stabilisation in 

enthalpy of phase II with respect to phase I.  

Analysis of the intermolecular interaction energies during the compression of 

the phase II structure showed that the largest gain in energy during the second phase 

transition from L-serine-II to L-serine-III was in the formation of a bifurcated 

OH…O/O hydrogen bond.  
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6.1 Synopsis 
A dataset of molecular compression studies has been analysed using 

Hirshfeld surfaces in order to investigate the effect of pressure on the balance of 

crystal packing interactions. This study has found a range of consistently recurring 

features, including the reduction of any voids within the structures and the 

appearance of a greater number of short contacts. The examination of fingerprint 

plots has also suggested a likely ambient pressure distance limit for H…H contacts 

within these organic crystal structures of 1.7 Å. A series of further analyses have 

been performed in order to assess the validity of this distance limit. 

 

6.2 Introduction 
The technique of high pressure crystallography using diamond anvil cells is a 

valuable probe for studying the fundamental properties of solid state materials. Of 

the many different areas to which high pressure crystallography has been applied, 

including metals, minerals and ices, the field of small organic molecules has still 

been only lightly explored. Much of the recent work looking at small molecules at 

high pressure has focussed on the opportunity to access new polymorphs of a 

compound either through pressure-induced freezing (Allan et al., 2002, Lozano-

Casal et al., 2005, Oswald et al., 2005, Gajda et al., 2006) or in-situ recrystallisation 

from a solution at pressure (Fabbiani et al., 2003, Fabbiani et al., 2004, Fabbiani et 

al., 2005). There is also a great deal to learn from the straightforward compression of 

single crystals. With good quality single crystal diffraction experiments at a range of 

pressures it is possible to analyse the compressibilities of different types of 

interaction and explore the dynamic effects of pressure on crystal packing.  

The analysis of small molecule crystal structures has long been dominated by 

the description, when present, of hydrogen bonding patterns. A crystal structure, at 

any pressure, is determined by a balance of many forces, so it is important to take 

into account all of the intermolecular interactions present in a structure. This is 

especially true for high pressure structural analysis because the contacts in a structure 

will become considerably distorted from their ambient pressure geometries. For this 

reason it is necessary to utilize a method which allows the visualization and 
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exploration of all of the intermolecular contacts in a structure at the same time. This 

can be achieved in the program CrystalExplorer (Wolff et al., 2007), which 

facilitates the calculation of the molecular Hirshfeld surface – a space partitioning 

construct that summarises the crystal packing into a single 3D surface (Spackman & 

Byrom, 1997, McKinnon et al., 1998, Spackman & McKinnon, 2002).  

The Hirshfeld surface is defined as the boundary of the region where ‘the 

electron distribution of a sum of spherical atoms for the molecule (the promolecule) 

dominates the corresponding sum over the crystal (the procrystal)’ (McKinnon et al., 

2004). For a weight function such that w(r) = ρpromolecule(r)/ρprocrystal(r), the Hirshfeld 

surface therefore corresponds to w(r) = 0.5. A range of properties can be mapped 

onto the Hirshfeld surface in order to display information about the surface including 

distances of atoms external (de) and internal (di) to the surface and the shape 

properties of the surface. It is also possible to condense the distance information 

summarised in the surface into a 2D histogram of de against di which is a unique 

identifier of a crystal structure, called the ‘fingerprint plot’ (Spackman & McKinnon, 

2002). The histogram displays the distance data using discrete data bins of width 

0.01 Å and each data point is assigned a colour based on the fraction of the surface 

area which corresponds to that pair of de and di. In this way blue points represent a 

small fraction of the surface area with the colour changing through green to red for 

increasing fractions. Recent developments in the program now allow the possibility 

to map a distance normalised using atomic van der Waals radii (dnorm) onto the 

surface and to analyse types of interactions individually, both using the Hirshfeld 

surface and the corresponding fingerprint plot (McKinnon et al., 2007). 

The occurrence of phase transitions in small organic molecules arising due to 

compression of single crystals has previously been rationalised by studying the 

changes in intermolecular interactions such as hydrogen bonding (Moggach, Allan, 

Morrison et al., 2005), π…π interactions (Chapter 2) and S…S contacts (Moggach, 

Allan, Clark et al., 2006). It has been found that, below 10 GPa, these types of 

interactions do not compress below the limits of similar contacts found at ambient 

conditions in the Cambridge Structural Database (CSD) (Allen, 2002, Allen & 

Motherwell, 2002). The phase transitions in these systems are found to occur when 



Chapter 6. Analysis of the Compression of Molecular Crystal Structures using Hirshfeld Surfaces 
 
 

 
 

 

- 153 -

these interactions reach their ambient limits. It is hoped that the use of a program in 

which the packing of the whole crystal structure can be studied at once will allow 

further insight to be gained into the effect of pressure on the delicate balance of 

intermolecular forces within a crystal. The ultimate goal for this area of research is to 

be able to predict both the anisotropic compression of organic crystal structures and 

at what pressures phase transitions will occur. 

 

6.3 Experimental 
6.3.1 Development of the data set 

The data required for this study were multiple series of organic molecular 

structures for which the same phase of the compound was stable under compression 

for a pressure range of at least 2.0 GPa and contains at least three crystal structures 

including an ambient pressure structure. It was also necessary to check that the 

placement of hydrogen atoms in the compression studies used were reasonable as 

this affects the Hirshfeld surface analysis considerably. The data were found through 

searches of the CSD combined with some of our own, as yet unpublished, data. 

These searches of the CSD utilised the program ConQuest and version 5.28 of the 

database.  

The resulting data set contains compression studies for 13 different 

compounds, which are listed, along with references, in Table 6.1. These compounds 

have been studied under compression over a range of different pressures making a 

total of 75 ambient phase crystal structures, two of which have been shown to 

undergo a single crystal to single crystal phase transition at higher pressures (L-

serine-I and salicylaldoxime-I). The compression data used for L-serine-I are from 

the neutron powder study on the compound (Moggach, Marshall et al., 2006) due to 

the higher precision of the structures compared to the single crystal x-ray diffraction 

structures. The neutron structures follow the same trend as the x-ray structures and 

the phase transition to form II of the compound occurs at approximately the same 

pressure in the two studies. 
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No. Compound HP* PT† Refcodes References 

I Acetaminophen-I 4.0 No HXACAN09-12 (Boldyreva et al., 
2000) 

II 
3-Aza-

bicyclo(3.3.1)nonane-
2,4-dione-I 

7.1 No - (Chapter 4) 

III 3-Chloro-
salicylaldoxime 5.0 No - (Chapter 3) 

IV 3-Fluoro-
salicylaldoxime 6.5 No - (Wood et al., 

2008) 

V α-Glycine 6.2 No GLYCIN63-64 (Dawson et al., 
2005) 

VI α-Glycylglycine 4.7 No GLYGLY14-18 
(Moggach, Allan, 

Parsons et al., 
2006) 

VII L-alanine 6.4 No - (Dawson, 2003) 

VIII L-cystine 3.7 No LCYSTI15-19 
(Moggach, Allan, 

Parsons et al., 
2005) 

IX L-serine-I 4.5 Yes - 
(Moggach, 

Marshall et al., 
2006) 

X 3-Methoxy-
salicylaldoxime 6.0 No - (Chapter 3) 

XI 3-Methyl-
salicylaldoxime 5.6 No - (Chapter 3) 

XII Naphthalene 2.1 No NAPHTA19-22 (Fabbiani et al., 
2006) 

XIII Salicylaldoxime-I 5.3 Yes SALOXM03-09 (Chapter 2) 
 
* HP = Highest pressure achieved in GPa for compression of the ambient phase structure.  
† PT = Single crystal to single crystal phase transition observed. 
 
Table 6.1: List of compounds for which compression data has been analysed in this 
particular study along with CSD refcodes for the structural data and references. 

 

The further study of H…H contacts in high pressure structures used an 

expanded set of structures made up of the original data set with the addition of a 

series of extra structures obtained from the CSD. The extra structures consist of those 

which satisfied the following search conditions:  a high pressure (≥ 0.1 GPa), room 

temperature structure of an organic compound containing at least one hydrogen atom 

with no disorder and 3D coordinates. A further restriction was also applied to remove 
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any structures with an R-factor of greater than 10%. The details of these extra 

structures along with their CSD refcodes are given in Table 6.2. A total of 48 further 

crystal structures were obtained, two of which required the addition of hydrogen 

atoms in calculated positions (FACRIK03 and FACRIK04).  

 
6.3.2 Hirshfeld surface calculations 

Each of the crystal structures in the data set was taken without modification 

from the CSD, or via a private communication, for Hirshfeld surface analysis. When 

the structures are read into the program for analysis CrystalExplorer automatically 

modifies all bond lengths to hydrogen to standard neutron values (C-H = 1.083 Å, N-

H = 1.009 Å and O-H = 0.983 Å). For the purpose of this study all the Hirshfeld 

surfaces were generated using a standard (high) surface resolution. The Hirshfeld 

surfaces mapped with de use a fixed colour scale of 0.65 (red) to 2.2 (blue) for easy 

comparison between structures. The dnorm surfaces are mapped over a fixed colour 

scale of -0.75 (red) to 1.10 (blue). The fingerprint plots displayed each use the 

standard 0.4 – 2.6 Å view with the de and di distance scales displayed on the graph 

axes. 

 

6.3.3 PIXEL Calculations 

An idealised geometry model for methane was created as a test molecule for 

study of H…H interactions. This model was used to calculate the molecular electron 

density by standard quantum chemical methods using the program GAUSSIAN98 

(Frisch et al., 1998) with the MP2/6-31G** basis set. The electron density model of 

the molecule was then analysed using the program package OPiX (Gavezzotti, 2005) 

which allows the calculation of dimer energies. The output from these calculations 

yields a total energy and a breakdown into its electrostatic, polarisation, dispersion 

and repulsion components (Dunitz & Gavezzotti, 2005). 
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CSD Refcodes No. 
CIFs Compound Pressure(s) 

(GPa) Reference 

ACETAC09 1 Acetic Acid 0.46 Dawson, 2004 

BENZEN04, 11 2 Benzene 2.5, 0.7 
Fourme, 1971, 
Budzianowski, 

2006 
BISMEV04 1 Piracetam 0.4 Pulham, 2005 

DATREV01 1 
bis(Ethylenedithio)-
tetrathiafulvalene tri-

iodide 
0.95 Molchanov, 

1986 

DCLMET11, 12 2 Dichloromethane 0.7 Podsiadlo, 2005
FACRIK03, 04 2 1,3-Cyclohexanedione 1.14,1.9 Katrusiak, 1990

FIGYID01 1 Cyclopropylamine 1.2 Lozano-Casal, 
2005 

GLYCIN36, 41, 
44-47, 50, 61, 

65-68 
12 Glycine 

0.95, 7.1, 5.1, 
4.38, 3.63, 3.12, 
1.39, 6.47, 0.5, 

1.3, 1.9, 4.3 

Boldyreva, 2005 
& Dawson, 2005

GUHHAS01-03 3 Chlorotrimethylsilane 0.23, 0.3, 0.58 Gajda, 2006 
HEGHUX 1 Cyclopentanol 1.5 Moggach, 2005a

KETVEK03 1 Cyclobutanol 1.3 McGregor, 2005
LCYSTN24, 25, 

27 3 L-Cysteine 2.6, 4.2, 1.8 Moggach, 2006

LSERIN11-16 6 L-Serine 0.3, 1.4, 2.9, 4.1, 
4.8, 5.4 Moggach, 2005b

NAGHOT, 02, 
03 3 2,5-bis(4-Nitrophenyl)-

(1,3,4)-oxadiazole 2.9, 1.1, 2.0 Orgzall, 1999 

NAPHTA12 1 Naphthalene 0.51 Alt, 1982 
PHENOL11 1 Phenol 0.16 Allan, 2002 
PRONAC02 1 Propionic Acid 1.4 Allan, 2000 
QAMTUU01 1 3-Fluorophenol 0.12 Oswald, 2005 
QAMVEG01 1 3-Chlorophenol 0.1 Oswald, 2005 
THIOUR19 1 Thiourea 0.97 Asahi, 2000 

TTFTCG06 1 Tetradeutero-
tetrathiafulvene 0.46 Filhol, 1981 

WAFNAT 1 Paracetamol dihydrate 1.1 Fabbiani, 2004 
WANMUU01 1 2-Chlorophenol 0.12 Oswald, 2005 

 
Table 6.2: Additional high pressure structures mined from the CSD using the search 
conditions: high pressure (≥ 0.1 GPa), room temperature, only organic compounds 
with at least one H or D atom, R-factor > 10%, no disorder, must have 3D 
coordinates. The CSD refcodes are given along with the pressure each crystal 
structure was collected at, the year of the publication and the first author listed in the 
publication. The data in the original set of compression studies was also removed to 
avoid duplication. 



Chapter 6. Analysis of the Compression of Molecular Crystal Structures using Hirshfeld Surfaces 
 
 

 

6.4 Results & Discussion 
6.4.1 Variation of Hirshfeld surfaces with pressure 

The data set of crystal structures contains a range of different elements (C, H, 

N, O, S, Cl, F) and a range of different intermolecular interaction types including 

conventional hydrogen bonds, S…S, CH…halogen, CH…π and π…π contacts. There 

are, however, a number of recurring packing features within the set of structures. The 

Hirshfeld surface mapped with de is a particularly useful tool for comparing packing 

patterns, especially when the colour scale is standardised such that close contacts in 

different compounds will appear the same colour.  

 
Figure 6.1: Hirshfeld surfaces mapped with de for acetaminophen-I (left), α-
glycylglycine (middle) and 3-methoxysalicylaldoxime (right). The diagram shows 
the molecular structure (top), the Hirshfeld surface at ambient pressure (middle) and 
the Hirshfeld surface at high pressure (bottom). 

 

It is immediately obvious from the systematic study of the variation of the 

surfaces with pressure that the blue areas on the surfaces decrease considerably. 

Figure 6.1 shows the Hirshfeld surfaces of acetaminophen-I, α-glycylglycine and 3-

methoxysalicylaldoxime both at ambient conditions and at the highest pressure 

obtained for these structures. The blue regions that are visible at ambient conditions 

almost completely disappear in the higher pressure structures. These blue areas on 
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the surface correspond to particularly long contacts and thus tend to indicate voids 

within molecular crystal structures. The reduction of the blue areas is therefore 

consistent with the observations from previous studies (Dawson et al., 2005, 

Moggach, Allan, Morrison et al., 2005, Moggach, Allan, Clark et al., 2006) that the 

primary effect of compression in molecular crystal structures is to decrease the sizes 

of voids present in the ambient pressure structures. 

The compression of these molecular structures is also seen to produce more 

red regions in the de-mapped Hirshfeld surfaces, which indicates significantly close 

intermolecular contacts. The de property does not, however, take into account the 

size of the atoms, so close contacts between larger atoms are less obvious in the 

surfaces than those between smaller atoms. A recent development in CrystalExplorer 

allows the mapping of a new function, dnorm, onto the Hirshfeld surface (McKinnon 

et al., 2007). This property is a contact distance normalised using the van der Waals 

(vdW) radii of the two atoms internal (ri
vdW) and external (re

vdW) to the surface using 

the following equation. 

vdW
e

vdW
ee

vdW
i

vdW
ii

norm r
rd

r
rdd −

+
−

=  

 This normalisation means that contacts closer than the vdW separation have 

a negative dnorm value and contacts further apart than the vdW separation have a 

positive value. The dnorm values are mapped onto the Hirshfeld surface using a colour 

scale that displays negative values as red regions and positive values as blue regions 

with values of zero (where the distance is exactly the vdW separation) being shown 

as white areas. Very close intermolecular contacts are therefore more easily 

identified on the Hirshfeld surface using this property rather than the de property.  

A study of the changes in the dnorm surface for the compounds in the dataset 

shows that the number of red regions (i.e. close contacts) increases significantly at 

higher pressures. Figure 6.2 shows the effect of compression upon the dnorm Hirshfeld 

surface of three of the compounds in the data set (3-aza-bicyclo(3.3.1)nonane-2,4-

dione-I, 3-chlorosalicylaldoxime & naphthalene) from ambient pressure to the 

highest pressure achieved for each of the structures. In each of these studies it can be 

seen from Figure 6.2 that the number of contacts closer than the vdW separation has 
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increased at the highest pressure obtained compared to the ambient structure. This is 

particularly noticeable in the Hirshfeld surface for naphthalene, where there is only 

one very faint area of close contacts at ambient conditions which corresponds to a 

CH…π interaction.  

 
Figure 6.2: Hirshfeld surfaces mapped with dnorm for 3-aza-bicyclo(3.3.1)nonane-
2,4-dione-I (left), 3-chlorosalicylaldoxime (middle) and naphthalene (right). The 
diagram shows the molecular structure (top), the Hirshfeld surface at ambient 
pressure (middle) and the Hirshfeld surface at high pressure (bottom). 

 

The red region in the surface of naphthalene expands considerably at 

pressures up to just 2.1 GPa and another two contacts closer than the vdW separation 

appear. We can also see in this case that for each contact region on the dnorm surface 

there must necessarily be an identical region somewhere else on the surface due to 

the definition of the property. These observations show that as pressure is increased 

it is not just the conventional intermolecular interactions which become close; all 

types of contacts can shorten, as exemplified in the high pressure dnorm surface for 3-

aza-bicyclo(3.3.1)nonane-2,4-dione-I (Figure 6.2). 
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This analysis illustrates the particular effectiveness of Hirshfeld surfaces in 

the evaluation of crystal structure compression studies – the surfaces highlight 

intermolecular contacts that become a lot shorter under pressure. The dnorm surface 

property also allows an impartial indication of which contacts become significantly 

short at pressure by using the van der Waals radii. Study of these surfaces is a lot 

faster and easier than looking at long lists of intermolecular atomic distances and 

changes in distances as the structures vary with pressure.  

 

6.4.2 Variation of fingerprint plots with pressure 

The calculation of the Hirshfeld surface of a structure allows all of the 

intermolecular contacts to be analysed at the same time, but as the surface is a 3-

dimensional object detailed comparisons need interactive computer graphics and this 

is not ideal for illustrations in publications. However, the fingerprint plot, which is a 

condensed 2D graph of internal and external distances of atoms from the surface, is 

an ideal tool for directly comparing structures to identify changes in packing. In 

addition, analysis of the fingerprint plot allows a very quick overview of all of the 

intermolecular interactions without simply focussing on specific interactions (such as 

H-bonds) that are perceived to be important. By studying the changes in the 

fingerprint plots for the range of structures in the data set it is possible to spot 

features which occur consistently upon compression.  

Figure 6.3 shows the fingerprint plots for three of the structures from the 

present study at ambient pressure and at the highest pressure obtained for that 

particular phase of the compound. The fingerprint for the structure in each case 

moves towards the origin of the plot as the overall structure has been compressed 

and, because the intramolecular geometry is relatively rigid, the intermolecular 

contacts must decrease on average. It can also be seen for each structure that, 

although the hydrogen bonding interactions (visible as a pair of spikes either side of 

the di = de diagonal) decrease, the longer interactions are compressed more, so the 

plot becomes squashed as the spread of intermolecular contact distances reduces. The 

shape of the plot also tends to change somewhat with compression; there is a 

noticeable increase in symmetry about the x/y diagonal as pressure increases, 
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especially at the higher distance end of the fingerprints. For 3-aza-

bicyclo(3.3.1)nonane-2,4-dione-I and salicylaldoxime-I the asymmetric regions seen 

at ambient conditions are indicated in Figure 6.3 by red arrows. Hirshfeld surfaces 

leave small voids in the crystal and asymmetry in the fingerprint plot occurs due to 

these voids, where adjacent surfaces do not touch each other. Thus, an increase in 

symmetry along the diagonal of the fingerprint plot indicates a reduction in the 

intermolecular voids. This is consistent with the decrease in blue areas seen in the 

Hirshfeld surfaces and the previous experience of our group of the compression of 

molecular structures. 

 
Figure 6.3: Fingerprint plots for 3-aza-bicyclo(3.3.1)nonane-2,4-dione-I (left), L-
alanine (middle) and salicylaldoxime-I (right). The diagram shows the molecular 
structure (top), the fingerprint plot at ambient pressure (middle) and the fingerprint 
plot at high pressure (bottom). The red arrows and circles are referred to in the main 
text. 

 

Another recent improvement in the functionality of CrystalExplorer is the 

ability to breakdown the fingerprint plot, and the surface itself, into regions 

corresponding to contacts between specific atom types, for example just O to H 
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contacts. This allows the easy identification of the causes of different areas of the 

fingerprint plot and simple study of the movement of these sections. In the analysis 

of the neutron powder diffraction study of L-serine, Moggach et al. (Moggach, 

Marshall et al., 2006) noted that close contacts between H atoms are seen in the 

fingerprint plot at high pressures and that these close H…H contacts are 

characteristic of the plots obtained for alkanes. The authors stated that the increasing 

prominence of the H…H region in the L-serine fingerprint plot illustrates the 

tendency for efficient packing to compete with hydrogen bonding in structure 

direction at higher pressures. 

This H…H region of the fingerprint is seen to become prominent across a 

range of compression studies as can be seen from the red circled sections for two of 

the structures in Figure 6.3. For two of these structures, the H…H contact becomes 

as short as the shortest hydrogen bond. Interestingly the H…H regions both seem to 

reach approximately the same point, i.e. with de and di around 0.9 Å. The H…H 

contact region does not seem to become prominent in the fingerprint plot for L-

alanine, and this is due to the extensive 3D hydrogen bonding pattern which restricts 

the packing such that the hydrogens cannot approach each other freely. This is also 

the case for the structures of α-glycine, α-glycylglycine, L-cystine and L-serine-I. 

Figure 6.4 shows a graph of the fractional variation relative to the ambient value for 

the shortest contact for a particular type (O…H, C…C and H…H are shown) as a 

function of pressure for the structures within the data set. This graph shows that 

although the H…H contacts seem to be more compressible and have greater variation 

in comparison to the other two interaction types, there does appear to be a flattening 

of the curve at higher pressures suggesting that the contacts may be reaching a 

distance limit. 
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Figure 6.4: Graph of shortest de + di distance for a particular contact type expressed 
as a fraction of the ambient pressure value plotted against pressure for the full data 
set. The data are coloured by contact type as follows; O…H pink squares, C…C dark 
green triangles and H…H dark blue diamonds. A line of best fit has been added for 
each contact type. 

 

6.4.3 Analysis of short H…H interactions 

The observation of prominent H…H contacts at elevated pressures in a 

number of structures led to an investigation of the causes of this phenomenon. Visual 

study of the fingerprint plots suggested that these contacts were compressing to 

similar distances in a range of different structures. Figure 6.5 shows a graph of the 

sum of the de + di distances for the shortest H…H interaction in the structure against 

pressure for all the compression studies as well as a further set of high pressure 

structures obtained from the CSD. It can be seen from the graph that these contacts 

do not compress below a distance of 1.7 Å (highlighted as a red line in Figure 6.5) in 

any of the structures analysed. The four shortest distances seen at elevated pressures 

in the compression studies have been circled and these points correspond to the 

highest pressure achieved for each of acetaminophen-I (labelled I in the diagram), 3-

aza-bicyclo(3.3.1)nonane-2,4-dione-I (II), 3-fluorosalicylaldoxime (IV) and 

salicylaldoxime-I (XIII). The first structure (acetaminophen-I) is believed to undergo 

a phase transition at higher pressures, although this has not been confirmed. The 
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single crystal compression study on acetaminophen-I was aborted after 4.0 GPa due 

to the limits of the pressure cell, but structural analysis suggested that the structure 

had limited room to compress further (Boldyreva et al., 2000), powder pressure 

studies (Boldyreva et al., 2002) also showed a partial transformation from form I to 

form II at pressure. Salicylaldoxime-I is known to undergo a single crystal to single 

crystal phase transition into form II of the compound between 5.3 and 5.9 GPa 

(Chapter 2). Interestingly, the crystals of the final two structures circled in Figure 6.5 

(3-aza-bicyclo(3.3.1)nonane-2,4-dione-I and 3-fluorosalicylaldoxime) were seen to 

disintegrate under further compression, which may be indicative of a reconstructive 

phase transition.  

 
Figure 6.5: Graph of shortest H…H contact de + di distance against pressure for all 
the ambient phase compression structures (shown as dark blue diamonds) and for the 
extra high pressure structures found in the CSD (shown as green triangles). The 
points circled represent the final structure in a compression series before either a 
known phase transition or the failure of the crystal. The Roman numbers refer to the 
main text and Table 1. The red line shown at 1.7 Å indicates the proposed limit for 
H…H contacts in organic structures within the pressure regime of ambient to 10 
GPa. 

 

These results seem to suggest that this distance of 1.7 Å is the limit for 

contacts between hydrogens in organic structures at pressure to around 10 GPa. 

Throughout the dataset of pressure studies, none of the structures exhibit H…H 
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distances below this limit and the ones that approach the limit appear to undergo 

phase transitions. Although some structures have restricted H…H contacts due to 

extensive 3D hydrogen bonding patterns, as mentioned earlier, there are a large 

number that do not (around 73% of organic structures that contain a C-H bond 

display C-H…H-C contacts between 1.7 and 2.4 Å). If these H…H contacts have 

such a consistent limit across a wide range of structures as they appear to, then the 

limit could be very useful for predicting phase transitions due to the application of 

hydrostatic pressure. In order to investigate this limit, two different studies were 

initiated; firstly to query the CSD in order to determine the ambient limits of H…H 

contacts, and secondly to analyse the effect of distance on the interaction energy 

between C-H groups.  

The CSD currently contains more than 400,000 crystal structures, the 

majority of which contain contacts between hydrogen atoms, and the search needed 

to be restricted in a number of ways. As the structures within the set of compression 

studies are all organics, and in order to avoid any unusual intermolecular hydrogen 

interactions, the search was restricted to molecules only containing the elements C, 

N, O and H. The search space was also restricted to structures with an R-factor < 

0.05, not disordered, no errors, not polymeric, no ions and no powder structures. This 

produced a more tractable quantity of data, which were then searched for H…H 

contacts within the sum of the van der Waals radii after normalising the terminal 

hydrogen positions to the same standard neutron lengths as CrystalExplorer uses. 

Figure 6.6 shows a histogram of the H…H separations for these close contacts found 

in the subset of the CSD. It can be seen from the histogram that only a small fraction 

(1.8%) of the 44,421 contacts analysed show H…H separations less than 2.0 Å. The 

ambient limit for these interactions would appear to be in the region from 1.7 to 1.9 

Å, though there are a small proportion of structures with shorter distances than this 

(146 contacts; 0.3% of the sample). These shorter contacts seem to be mainly due to 

errors in the structures, for example poorly placed hydrogens (e.g. DEBLAY, 

DEFTUD), possible incorrect symmetry (e.g. AWOTAH) or the presence of un-

flagged disorder (e.g. AFEBOC). 
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Figure 6.6: A histogram showing the H…H separations for contacts between 
hydrogens that are closer than the sum of the van der Waals radii within a subset of 
the CSD only containing molecules made up of the elements C, N, O and H. 

 

In order to quantitatively analyse the destabilising H…H interaction at short 

distances, methane dimer interaction energies were calculated for varying molecular 

separations using the PIXEL method. Idealised methane geometries (C-H = 1.083 Å, 

<HCH = 109.47 °) were used with a linear C-H…H-C approach (Figure 6.7) and the 

contact distance between the hydrogens varying in 0.2 Å steps from 4.0 to 3.0 Å and 

then in 0.1 Å steps from 3.0 to 1.6 Å. This produced a simplified model for the effect 

of decreasing contact distance on the interaction between hydrogens attached to 

carbon. The results of the dimer calculations are shown in Table 6.3 including the 

total dimer interaction energy as well as a breakdown of the component Coulombic, 

dispersion, polarisation and repulsion terms. The energies calculated describe the 

interaction felt by the reference molecule as a result of its neighbour, multiplying this 

value by two gives the dimerization energy. Figure 6.8 shows a graph of the total 

interaction energy of the collinear (CH4)2 dimer as a function of the H…H 

separation. 
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Figure 6.7: The geometry of the collinear C-H…H-C contact between methane 
molecules in the PIXEL dimer calculations. Dashed black line indicates the contact 
between hydrogens. The colour scheme is light-grey: carbon and dark-grey: 
hydrogen. 

 

H…H 
Distance Coulombic Dispersion Repulsion Polarisation Total 

4.0 0.00 -0.10 0.00 0.00 -0.05 
3.8 0.00 -0.10 0.00 0.00 -0.10 
3.6 0.00 -0.15 0.00 0.00 -0.10 
3.4 0.00 -0.20 0.00 0.00 -0.15 
3.2 0.05 -0.25 0.05 0.00 -0.20 
3.0 0.05 -0.35 0.05 0.00 -0.25 
2.9 0.05 -0.45 0.10 0.00 -0.30 
2.8 0.05 -0.50 0.15 0.00 -0.35 
2.7 0.00 -0.60 0.25 -0.05 -0.35 
2.6 0.00 -0.70 0.40 -0.05 -0.40 
2.5 -0.05 -0.85 0.60 -0.10 -0.40 
2.4 -0.10 -1.00 0.85 -0.15 -0.40 
2.3 -0.20 -1.20 1.30 -0.25 -0.30 
2.2 -0.30 -1.40 1.95 -0.40 -0.15 
2.1 -0.50 -1.65 2.80 -0.65 0.00 
2.0 -0.75 -1.95 3.95 -0.95 0.30 
1.9 -1.10 -2.25 6.05 -1.50 1.20 
1.8 -1.65 -2.65 8.60 -2.35 2.05 
1.7 -2.20 -3.05 12.20 -3.30 3.65 
1.6 -3.40 -3.45 16.90 -5.30 4.75 

 
Table 6.3: PIXEL dimer interaction energies for methane collinear C-H…H-C 
contact at varying H…H separation. Distances are in Å, energies are in kJ mol . The 
energies for each component and the total are rounded to the nearest 0.05 kJ mol .

-1

-1
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Figure 6.8: Graph of PIXEL dimer interaction energies for the methane collinear C-
H…H-C contact at varying H…H separation. 

 

The data in Figure 6.8 show that the interaction displays a smoothly 

decreasing interaction energy from an infinite separation until its optimum distance 

of around 2.5 Å. At H…H separations below 2.5 Å the repulsion term starts to 

outweigh the stabilising terms and the energy starts to become less negative, with the 

intermolecular interaction energy reaching 0.0 kJ mol-1 at a distance of 2.1 Å. The 

repulsion term is then seen to continue increasing sharply with further reduction of 

the H…H distance and at the proposed limit of these contacts in organic crystal 

structures the repulsion component of the energy is 12.2 kJ mol-1. This behaviour of 

the repulsion energy is consistent with results from the compression studies and the 

search of the CSD described above. It is particularly noticeable that the drop-off in 

frequency as a function of H…H distance in the CSD data (Figure 6.6) mirrors the 

increase in repulsion seen in Figure 6.8.  

The overall curve for the dimer interaction energy agrees well with a two 

previous studies of collinear C-H…H-C methane interactions using ab initio MP2/6-

311G(2d,2p) (Novoa et al., 1991) and counterpoise corrected MP2/6-

311+G(2df,2pd) (Rowley & Pakkanen, 1998) calculations. In both these cases the 

minimum energy was seen to have a H…H separation of approximately 2.5 Å and a 
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stabilising energy of approximately -0.4 kJ mol-1 with the interaction becoming 

destabilising at distances around 2.1-2.2 Å. There has also been a considerable 

number of theoretical studies on the intermolecular interaction between methane 

molecules in the more stable D3d configuration with a face-to-face contact between 

the methane tetrahedra (Rowley & Pakkanen, 1998, Williams & Malhotra, 2006, Li 

& Chao, 2006). These studies show a minimum energy point with a C…C distance 

of approximately 3.7 Å and an intermolecular interaction of around -1.0 kJ mol-1. The 

energies for these interactions are seen to become destabilising at C…C distances of 

about 3.3-3.4 Å. 

 

6.5 Conclusions 
There are many aspects of variation of the Hirshfeld surfaces due to 

compression which could have been discussed in this study, but we have chosen to 

focus on the effect of pressure on the intermolecular H…H contacts. Hirshfeld 

surfaces display all of the intermolecular interactions within the crystal at once and 

are therefore ideal for analysing the changes in crystal packing due to compression. 

This study has shown that systematic analysis of structures using Hirshfeld surfaces 

can help to identify common features which would be more difficult to recognise 

using more traditional methods of structure analysis. 

Previous work within our laboratory has pointed to interstitial void reduction 

as an important effect of pressure in molecular solids. It was also very noticeable that 

at elevated pressures a large number of close contacts tend to occur, but none of the 

intermolecular interactions, including hydrogen bonds, become exceptionally short. 

The present analysis based on Hirshfeld surfaces supports these general remarks.  

An approximate distance limit for H…H interactions of 1.7 Å has been 

identified from a combination of Hirshfeld surface fingerprints, a search of the CSD 

and PIXEL calculations on methane. The particularly interesting aspect of the H…H 

contacts and understanding their compression is that these interactions are relatively 

consistent across a huge range of different compounds. Whilst hydrogen bonds are 

highly affected by the chemical environment of the donor and acceptor atoms as well 

as the geometry of the interaction, the H…H contact is not as sensitive to these 
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parameters. This means that, in cases where the hydrogens have the freedom to 

approach closely, this information about the compressibility of H…H interactions 

and their ambient limit could be used to predict at what pressure a phase transition is 

likely to happen.  
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7.1 Conclusion 
The rationalisation of structural compression and phase transitions that occur 

due to the application of pressure has in the past been based to a large extent on the 

lower distance limits observed for similar intermolecular interactions at ambient 

conditions in the CSD. This method has been used to explain phase transitions due to 

short hydrogen bonds and also short S…S contacts. Further analysis of high pressure 

studies in this work has shown that other less directional interactions, such as π-π 

interactions and even H…H contacts, also have relatively well-defined distance 

limits. These results imply that there is the potential in the future for prediction of the 

effects of pressure on organic structures and possibly the pressures at which phase 

transitions will occur. 

Analysis of hydrogen bonding interactions based simply on D(H)…A 

distances and DHA angles has been found in this study to be inadequate for 

describing these contacts in some cases. Results of the L-serine dimer interaction 

calculations showed that two interactions, which have almost identical geometries 

when described in this simple way, have drastically different interaction energies. In 

this case the important geometrical parameter appeared to be the angle of approach 

of the hydrogen bond donor to the acceptor. This illustrates clearly the benefits of 

evaluating interaction energies quantitatively both when describing a crystal structure 

and analysing the compression of a structure. 

Study of the energies of molecular structures under compression has also 

helped to highlight the fact that it is important to consider the intramolecular 

geometry as well as the intermolecular geometries at pressure. The covalent bond 

lengths in molecules are relatively incompressible at pressures up to 10 GPa. This 

work has shown, however, that the bond angles and torsions can be seriously 

distorted, even in the case of rigid molecules as illustrated by the compression of 3-

aza-bicyclo(3.3.1)nonane-2,4-dione-I. It is necessary, therefore, to examine the 

primary geometry carefully with compression and also to take this into account when 

explaining the effects of pressure. 

In conclusion, the use of multiple complementary tools for structural analysis 

of compression studies is of great importance since reliance on one technique can 
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lead to failure in the identification of important features. Investigations using the 

PIXEL method and Hirshfeld surfaces together, for example, have been shown in 

this work to more easily allow identification of intermolecular contacts, 

quantification of their relative importance and the study of their changes with 

pressure. The structural analysis techniques based on whole molecule interactions 

that have been demonstrated in this thesis have consistently revealed important 

features that may not otherwise have been identified.  

 


	chapter1.pdf
	 1.1 Introduction 
	1.2 High Pressure Crystallography 
	1.3 Structural Analysis Techniques 
	 1.4 References 

	chapter2.pdf
	 2.1 Synopsis 
	2.2 Introduction 
	2.3 Experimental 
	2.4 Results 
	2.5 Discussion 
	2.6 Conclusions 
	2.7  References 

	chapter3.pdf
	 3.1 Synopsis 
	3.2 Introduction 
	3.3 Experimental 
	3.4 Results 
	3.5  Discussion 
	3.6 Conclusions 
	3.7  References 

	chapter4.pdf
	 4.1 Synopsis 
	4.2 Introduction 
	4.3 Experimental 
	4.4 Results 
	4.5 Discussion 
	4.6 Conclusions 
	4.7  References 

	chapter5.pdf
	 5.1 Synopsis 
	5.2 Introduction 
	5.3 Experimental 
	5.4 Results 
	5.5 Discussion 
	5.6 Conclusions 
	5.7  References 

	chapter6.pdf
	 6.1 Synopsis 
	6.2 Introduction 
	6.3 Experimental 
	6.4  Results & Discussion 
	6.5 Conclusions 
	6.6  References 

	chapter7.pdf
	 7.1 Conclusion 


