
STUDIES ON ARTIFICIAL SELECTION 

by 

1ILLIAM GEOWE HILL 

B So. (Lcd.on) 

H.S. (California) 

Thesis presented for the Degree of Doctor of Philosophy 

of the University of Edinburgh in the Faculty of Science. 

Lo 

Institute of  Animal Genetics, 	 October, 1965. Edinburgh. 



CONTENTS 

Page 

I • Introduction 	 I 

2. Results from infinite population 	 2 

Two loci 	 2 

many loci 	 8 

3, Basic theory for amll populations 	 11 

One locus 	 11 

The diffusion equation for 11rilted. loci 	13 

The breakdown of linkage die equilibrium 	15 

4. Simulation procedure 	 18 

The selection limit 	 21 

The chance of fixation of a linked gene 	21 

The chance of fixation of the gametes 	38 

The change in the population mean 	 42 

The rate of selection advance 	 45 

Interpretation of simulation results 	 49 

Cainparison of additive and multiplicative 	49 
models 

Approxivmtely equal effects 	 53 

The bottleneck model 	 56 



caT2TS (continued) 

Page 

Discussion 	 70 

Summary 	 80 

Acknowledgments 	 83 

References 	 84 

APPENDICES 

Papers submitted for publication under joint authorship: 

Some observations on asymmetrical correlated responses 

	

to selection. B.B. Bohren, W.G. Hil). and A. Robertson, 	A/I 

Speoiiliaed sire and dam lines: IV. Selection within 

lines. Ron Moav and W I G.. Hill. 	 B/I 



I • XTIDtXTION 

Although all populations undergoing artificial selection must 

be of finite size, most of the theory of long term response to artificial 

selection has been developed for infinitely large populations. 

Algebraic difficulties have made it necessary for much of the theory, 

even of infinite populations, to be developed for single genes and only 

recently has lir'kge been included (Gritting, 1960). Furthermore, it 

has generally been assumed that individual genes have effects sufficiently 

smell that changes in genetic parameters, other than the population mean, 

can be ignored. Using a model of two loci in an infinite population 

Nei (1963) and Felsenstein (1965) have developed for'1 e for the 

effect of directional selection on changes in linkage disequilibrium 

and selection response. Nei (1963) also derived equations for the 

expected changes in the components of genetic variance each generation 

and gave some numerical results for long term predictions. 

Unless there is heterosygOte superiority all favourable genes 

will eventually be fixed if th e  population is infinitely large. 

However, in small populations, favourable genes may be lost by chance 

so that predictions are needed not only for the rate of selection 

advance but also the selection limit. Robertson (1960) introduced a 

theory of 14rdta to artificial selection in small populations in  term 

of single genes, which he extended to multiple loci by ignoring 

linkage ancl epiatatlo  interactions between loot. Siiw'ticn by 

Monte Carlo methods on a high speed computer has shown that, although 

populations may initially be in 14  90  equilibrium, the selection 
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limit is reduced when genes are tightly linked, even with non-

epietatio loci (Martin and Cookerham, 1960; GiU 1963; ureshi, 

1963). However, these workers all used moda].s in which each gene 

had the same effect and initial frequency one-half so that generalised 

conclusions on the role of linked genes were not obtained. Linkage 

has been shown to have a more znai4ce& influenc, on selection response 

and limits in small populations that are initially in disequilibrium 

(Fraser, I 957b; Martin and Cookerhain, 1960). 

Information on the effects of li nkage on artificial selection 

limits may be of use in deaiiing selection experiments and ocmt.roial 

breeding programmes, so this study was undertaken to extend. Robertson's 

(1960) theory to include some aspects of linrage. Most of the 

investigation is in toxins of only two loci, each with two alternative 

alleles. Vhilat this must greatly oversimplify the situation in nature, 

such a simple model allows a more thorough analysis of the effects and 

Interactions of the various parameters. Even with two loci each of 

two alleles sixteen parameters could be considered: three degrees of 

freedom amongst the frequencies of the four types of gemet., ten geno-

trpes each with a different selective value, the population size and 

the recombination fraction between the loci. Since this number of 

variables could not be handled in detail, a aisle model was used in 

which only additive genes and populations in initial linkage equil-

ibrium were included. An explicit general solution even for the 

additive model could not be found, so that most of the results have 

been obtained by Monte Carlo simulation. 
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In this section the notation is introd.uced and some effects 

of 1 he*ge on response to artitioial seleotion in infinitely large 

random mating populations are discussed. These results will form 

a basis for the arall population study which follows. 

Two loci 

Let the two loci each have two alternative alleles A t  a 

and. B, b where the alleles A and 3 are taken to have a favourable 

effect on some trait. Let 

p be the frequency of the allele A. 

q B, 

fl  gamete kB, 

f2  Ab, 

f.3  aB, 

ab, 

a be the recombination fraction between the loci and 

be the same for both sexes. Linkage  disequilibrium will be neasured. 

by 1\, the linkage disequilibrium deternl-n*nt, where 

= f1 f4. -f2f3 . 

Positive value. of A imply an excess of coupling heterozygotes (AB, ab) 

and. netive values an excess of repulsion heterosygotea (Ab, aB) beyond 

their frequency expected from independent association of their constit-

uent genes. It can be shown that 

pq + 	, 	f2  p(f-q) - 	, 	) 
) (1) 

	

= (1-p)q - IX, 	= ( 1-p)(1-q) + A . 	) 
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The largest positive value which the disequilibrium determinant 

can take is p(1q) or (1—p)q, whichever is smaller , and the largest 

negative value it can take is pq or (i..p)(i'.q), whichever is 

iller (Leworitin, 1964), 

it 6 is the determinant at generation t, then in a 

large random mating population in which there are discrete generations 

and no selection, linkage disequilibrium is reduced at the rate 

= 	(i...c) IX1111 

= 

Let the genotypic value of the zygote formed from the 

gametes with frequencies f and f be Tjk  for some trait of interest 

and lot w be its selective advantage. w is dmfined as the 

probability that an individual with genotypic valuevjk is selected 

as a proportion of the probability that an individual taken at random 

from the population in selected. The latter is, of conree, the 

fraction of the population selected as parents of the next generation. 

With random zting, the frequency of a genotype is the product of the 

frequencies of its constituent gametes. Thus, from the definition of 

selective advantage used, it follows that E Z f f wik = 1. 
j  

If truncation selection is practised on the individual 

phenotype the selective advantage of a genotype is given by 

b Wik =I+  (v _m) 	 (2) 

where m is the population mean and i the selection differential in 

standard deviation. (Kinnara, 1958; Griffin8, 1960). For the 

derivation of equation (2) it is assumed that gene effects are m11 
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rlative to the phenotypic standard deviation (cr), the selection 

intensity is low and phenotypes are norw.13.y distributed., Latter 

(1965) has investigated the consequences of departures from these 

aaswtions. He found that the relative probability is poorly 

estimated, by (2) when less than about Wo of the population is 

selected and gene effects are such that I (v 	m)/o- 1 > 0.5. 

However changes in gene and gametic frequency are less seriously 

affected, for with intense selection (2) underestimates the relative 

probability of selection for both positive and negative values of 

- m)/o-. 

The change in genetic frequency, obtained by modifying a 

foxila of Lewontin arid Kojina (1960) to the notation used here, is 

for one generation of selection 

d.f = f (z f Wjk - i) t  dR 	(3) 

where dR is the change due to recombination and is given by 

dR = (w14fj f4  - w23f2f3 ). 

The sign of dB. in (3) is negative for the coupling heterozygotes 

(j = 1,4) and positive for the repulsion heterozygotes (j = 20), 

If the coupling and repulsion heterosygotes are assuned to have the 

same selective advantage, then dR a a A w14. Substitution of (2) 

into (3) gives the general formula for response to truncation selection 

dfJ 
= 	( 	- a) t a t [1 + 	(v14  - a)]. 	(4) 

Consider now the special case of two additive loot. Let 

them have genotypic effects, defined relative to the phenotypic 
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standard deviation, of uaiitude 

AL As, aa 	BB Bb bb 
(5) 

ao c&o-/2 0 	(3o PT12 0 

For the model (5) the population mean is in = (pa. + qj3)o. 	Letting 

= m/cr = pa. + qj3 9  the changes in genetic frequency from one cycle of 

selection are, from (ii.) 

AB : df1  i =f1  (a. + 	- 	- i ot[i + (a.+ p.. Zi)] 

Ab : f2  (a. 	- 	t) 	+ cAll + (a.+ p.. 
(6) 

aB*dt3=f3( P-M)+cA[i+(a.+P-2L)) 

ab:df=f1f ( JA) 	- c 6 (1 + -L (a. + p - 2g)] 

The changes in gene frequency are 

A : d.p = df1  +. (a(i_p) + pL] 
i(7) 

B t dci = d.f1  + df3  = . [q(1-q) + cLL¼] 

From (7) it can be seen that i and i(3 are the usual selective values 

of the alleles A and B respectively. Also equation (7) illustrates 

that A is the oovarianoe of the ailelic frequencies of A and B. so 

that the change in the frequency of A results from both the direct 

response from selection on A and a correlated response from selection 

on B. The disequilibrium, A , can be seen to be a oovarianoe by 

rearranging equation (1) into the form A = f1-pq, Thus 6 equals 

the frequency of gametes containing both A and B less the product of 

their marginal frequencies and is therefore the oovariaxioe of a 

bivariate bino"4  *1 distribution (Kendall. 1943 t  p.133). In terms 



7 . 

of the disequilibrium determinant., the additive genetic variance (of) 
red.uose to the same torn as (7): 

[2 p(1 - p) + 
	

q(1 - q) + 	 (8) 

If a population is initially in linkage equilibrium, then A. 

Robertson (personal oon"niloation) has shown that after one cycle of 

truncation selection on the individual phenotype with additive genes 

= 	(ix - 12) ci.3p(1 	p) q(1 	q) 	 (9) 

where x is the truncation point in standard units of the Phenotypic 

distribution, which is assumed to be normal. Felsenetein (1965) 

pointed out that the initial disequilibrium would be negative,, but 

did not give its magnitude. Since (ix - i 2) 	02  equation (9) also 

shows that selection will generate negative disequilibrium and thus 

reduce the response if 11-nk'ge  is tit. However if germ effects are 

smal l the amount of disequilibrium aotuall.y generated will be very 

small with an additive model, and long tern selection response is 

unlikely to be greatly affected by the degree of recombination in an 

infinitely large population. 

If the initial build up of 6 from a population in equil-

ibrium is calculated from the changes in genetic frequency (6), the 

prediction turns out to be (Nei, 1963) 

	

= 112 ap(1 - p)q(1 - q) 	(10) 

= .-dpd.ci 

The discrepancy between equations (9) and (10) arises from the fact 

that for (10) the selective advantages of the gemetes (equation 2) were 



calculated by excluding terms in squared proportictate effects (a2, CO, 

whereas these were included in computing (9). Equation (9) is therefore 

more precise, but for simplicity the selective advantages (2) will be 

used to compute changes in gametic frequency in the Monte Carlo study 

to follow. 

In general, using the approximate selective values (2) and 

changes in geinetio frequency (6), the change in disequilibrium is given by 

= 	t ( - o)[1 + 	(a.+ - 21)] - dpdq 	(ii) 

where dp and dq are given by (7). 

For a population which is initially in linlrge  equilibrium to 

remain exactly in equilibrium after selection, the selective advantages 

of the geinetes (Wj  = E fkwjk)  must be multiplicative. If, before 

selection 

L\  = f1f-f2f3=0 

and after selection 

(f1  + df1 )(r4  + dt4) - (f2  + df2)(f3  + df) = 0 

then from (3), it follows that 

w1w
2z

w2w3 . 	 (12) 

Model (12) will be used in the snill  population study for comparison 

with the additive model and will be discussed in more detail later. 

Many loci. 

Geiringer (1942+.) developed the theory of recombination between 

many loci,, and Bennett (1954) used Geiringer's results to artend the 

formulae for ? 1nkLge d.ts.quilibria to more than two loci. However it 
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turns out that with non-epistatia genes diaequiitbria &ng moz'e than 

pairs of loci do not appear in any equations for the additive variance 

or changes in gone frequency. 

For n loci each of two alternative alleles A, aj , the second 

order disequilibria are defined as in equation (1). The disequilibrium 

between loci j and k, L jkv is given by 

jk = f(A) - jk 

where f(AjAk)  is the sum of the frequencies of all gainetss containing 

and Ak,  and 
p 
  and pk  are the gene frequencies of A, and Ak  respec-

tively. IfOjk is the rsonbination fraction between these loci, at 

generation t 

A jk(t) = (1 - o) A jk(t-i) 

= (1 - Ojk) A 

If the loci are additive, with effects 

AA 	Aa 	ajaj  

a., 	a.o12 	0 

forn11R (8) for the additive variance can be extended to give 

= [ 1 a.2 p(1-p)+ Zkô 	(1.3) ' 	j  

Similarly, 'with truncation selection, it can be shown that the change 

in gene frequency in one generation is 

dp = • i 	P (i_) + E
41 	jk' 	(hf) 
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PormuThe of the type (13) and (14) can readily be extended 

to include multiple alleles and domI'wioe. However with epiatatic gene 

action the partition of the genotypic variance into additive, dominance 

and epistatic components is less straightforward, because the effects 

are difficult to partition orthogonally if there is linkage  disequil.. 

ibrium. These extensions will not be pursued., for the small population 

study is concerned entirely with additive loci, for which the results 

of this section have been developed as a background. 
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3. BASIC THEORY FOR SMALL IPIJLATIONS 

One locus 

Robertson's (1960) theory of limits to artificial selection 

in small populations was developed from now results of Kimura (1957). 

The concepts underlying their work were the distribution of gene 

frequencies and the chance of fixation of a gene. The gene frequency 

distribution can be regarded as either the distribution of the 

frequencies of loci of the sane effect and inaaitude in one population, 

or of an individual gene in many populations • Sim( ar].y, the chance 

of fixation of a gene can be considered either as the proportion of 

genes of the same kind fixed in a line, or as the proportion of 

replicate lines in which this gene is fixed, after a selection limit 

has been reached. The case where no further selection response can 

be made but not all the genes have become fixed due to heterozygote 

superiority or opposing natural selection wi].l not be discussed. 

Kimura (1957) used a continuous model to describe the 

change in the distribution of gene frequency, Ø(p, t), at time t by 

means of the diffusion equation 

St = 2 	EV(d.p)Ø] - 	[M(d.p)%] 	(15) 

where M(dp) and V(dp) are respectively the mean and variance of the 

change in gene frequency per generation. It the effective population 

size is N then V(d.p) = p(1-p)/2N and for additive genes with selective 

values ia, M(dp) = y p(1-p). Substituting for V(dp) and M(dp) in  

(15) gives after rearrangement 
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Ni [p(1-p)Ø - 1 	[p(1-p)Ø]. 	(16) 

Thus for a given value of gene frequency, p,  the selection process can 

be described by the parameter Nia on a time scale of t/N (Robertson, 

1960). The chance of fixation, u(p 0), of a gene with initial frequency 

p0  was given by Kimura (1957),  and for the additive model 

i - eo u(p0) 	= 	 (17) 

I 

and is shown in Figure 1. 

Two important assumptions are made in the diffusion approx-

imation z firstly that the population size is sufficiently large that 

the distribution of gene frequencies can be considered continuous, 

whereas in fact only h1 discrete values of gene frequency are 

possible; and secondly that selective values are small, so that terms 

in (i.) can be ignored relative to ict and 11N. Ewens (1963) 

investigated the fit of formula (17) from the diffusion equation 

with the chance of fixation computed by matrix iteration for the 

discrete model with N=6 and 0 . ia < 0,2 and found good. agreement. 

However, in order to reduce computing time in the Monte Carlo study 

it was necessary to use selective values as large as ict = 1.0 and to 

extrapolate from small populations (N = 8 9  16) to those of larger 

size, so that further checks on Ktimii'a's (1957) formula for the 

chance of fixation (17) are given in Table I • The values of u (p0 ) 
for N = 8 9  16 and 32 were calculated by repeated iteration of a matrix 

of transition probabilities of gene frequencies onto a vector of the 
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TABLE I The chance of fixation of a gene with 
selective value ia calculated by matrix 
iteration for different population sizes 
(N) and by diffusion approT{ntion (N woo). 

Initial frequency 

Ni N .05 	 1 1 	.3 	.5 .7 

32 00 .9592 .9983 1,0000 1,0000 1,0000 

32 32 .9412 .9967 1,0000 1.0000 1 1 0000 

16 00 67981 .9592 .9999 1 1 0000 1 1 0000 
16 32 .7766 .9507 .9999 1.0000 1.0000 
16 16 .7591 .9434. .9999 1 1 0000 1.0000 

8 00 6507 .7981 .9918 .9997 1,0000 
8 32 .5392 .7883 .9909 .9996 1.0000 

8 16 .5291 .7797 .9901 .9996 1 1 0000 
8 8 .5124. .7653 .9890 .9996 1.0000 

4 dD .3298 .5509 .9096 .9820 .9966 
4 32 .3260 .5462 .9076 .9817 .9966 
4 16 .3226 154.19 .9059 .9814 •9966 
4. 6 .3164 .5343 0031 .9811 .9967 

2 C10 41847 .3358 .7118 .8808 .9567 
2 32 .1838 .3346 .7108 .8805 .9567 
2 16 .1830 .3334 .7099 ,8802 .9568 
2 8 .1815 .3312 .7083 .8799 .9570 

I Qc 
1 1101 .2096 .5218 .7311 .8713 

1 32 .1099 .2094. .5216 .7310 .8714 
1 16 .1098 .2092 .5213 .7309 .8714 
1 8 .1095 • 2087 .5209 .7308 .8716 
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9- 

•6 

(P,) . 5 

.4 -jp = 0 3 

'4 2 I 2 

N 
8 	16 	32 

FItJBE I The chanoe of fixation of a 
single ad&ttive gene. 

12b. 
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distribution of gene frequencie s . Agreement of the matrix and 

diffusion equation results is generally very good,, perhaps remeztably 

so since acme of the selective values used are so large. The poorest 

agreement is found with low initial frequencies; but for the para-

meters studied, notablyi 	1.09 p0 . 0.05, N.8, the response 

(u(p0) - ps,) predicted from matrix iteration never differs by more 

than 8ro from that predicted by the continuous modal, which can be 

regarded as the case of population size becoming infinitely large. 

The diffusion equation for linked loci 

With linked loci it is convenient to study the distribution 

of gametic frequencies rather than gene frequencies. Ih addition to 

selection and drift a third force is acting an the distribution, that 

of recombination. The changes in the distribution of gametic 

frequencies can be described by & ocntiuuoua model, the uailti-

dimensional diffusion equation (e.g. Kimura, 1955) of the general 

form  

_ h 
Ev(df)ØJ + 	 [cov(dr,dç)Ø) 

2 j=i 

h 
[M(dr)Ø] 	 (18) 

where 0(t1, 
'' 	h' t) is the distribution of gemetic frequencies, f, 

at time t. The dimension of the equation is h, and is equal to the 

number of degrees of freedom amongst the gametic frequencies. For n 

loot each of two alleles h z 2n - I • From the multinomial distribution, 
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the variance of the change in genetic frequency is given by V(df j )= 

[r(i f)J/2N, and the covariance of ohenges by Coy (at, dfk) = 

Directional changes in genetic frequency, u(&r3), are 

given by (3), or by (4) for thinoation selection. For the diffusion 

equation to hold., both the recombination fraction (c) and selective 

values (wik - 1) should not be of greater order than 1/1, so that 

terms in their product can be ignored.. Thus, after rearrangement, 

the diffusion equation for truncation selection with two looi turns 

out to be 

	

3 	'2 
- 	 [f (1-f )Ø] - 	z z 
'j=1 f2 	1 	J 	2 J  

Ni 
- 

	

3 	
tkvjk -m)ø ; No 	k LØ] (19)

jai
Cr 	 i1 

where f4  must be formally replaced by 1-f 1 .f2-f3  and A by f 1  (1 -.f1 -f2-f3 )-f23•  

Clarly, if the terms E f v and m in (19) are written out in full, 
k=1 	jk 

the v can be taken out of the differentials as constants. Thus, 

sim{in1.y, to the one MminRionai equation (16), on a time scale of VV 

and for a given set of frequencies the process can be described by the 

parameters y 

	

o- 11' o12' 	' cr  v and No. For the special case 

of two additive loci the parameters reduce to only NicL. Nip and No where 

c and 3 are defined. by (5). 

The chance of fixation of an additive gene, A. acting alone 

in a population was seen to be a function of p0, its initial frequency, 

and Nia 1  It has now been shown that if another additive gene, B, is 

also segregating a further four parameters can affect the OhRnO9 of 

fixation ofA. These are Nip and No, measures of the effect otBand 
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the titaes s of linkage of A to B, q 09  the initial frequency of B, 

and 8 Of  the initial linkage disequilibrium. Much of the work to be 
described will be concerned with estimating how these extra parameters 

influence the chance of fixation of A. However it will usually be 

assumed that the population is initially in linkage equilibrium (L0 = 0). 

No algebraic solution of (19) has been obtained, even for the 

additive model. Numerical solution of the differential equation could 

have been attempted but was likely to involve excessive computing time 

and storage. Although simulation of the process of selection in en11 

populations by means of transition probability matrix iteration has 

been used suocesafully for one locus (Allan and Robertson, 1964), the 

method is not practicable for two or more loci. The two locus model 

requires a square transition matrix of dimension (2N; 3) which j 

for example, 165 with a population size N = li. It was therefore 

decided to study the system by means of Monte Carlo 5(Im,lRtion. 

The breakdown of 1 inmge disequilibrium 

In this section formulae are derived for the rate of break-

down of 14nkJLgS disequilibrium in unselected small populations and the 

results used to calculate the response to artificial selection when 

some simplifying asumpticna are made. 

In a population of effective size N in which no selection 

is practised the expected disequilibrium after one generation is given 

by 

i = E[(f1 + dt1 )(f + df4) - (t2  + df2)(f3  + df3)}. 
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Using the multinziial distribution, it can be shown that 

A 1  = (i - c)(1 - 1/2N)/ 0  

If o and 1/2N are small such that o/2N can be ignored relative to 

C and ON then 

= (1 	a - 

and £h = (i - o - 

, -(2No + 1)t/29 
S 
	 (20) 

Thus ona time wale ott/N,A/L\ 0 i8a function of(2No+1). The 

half life of the breakdown of ii, at which 
' 	

= 0.5, occurs when 

(2Nc + 1) generations 1.4N 	 (21) 

In Piire 2 the function 1/(2No + i) is plotted against No, with No on 

a log scale. The slope has a mRdrnum at 211c x 1, so that the rate of 

breakdown of disequilibrium is most sensitive to multiplicative changes 

in recombination fraction at values of o near 1/21. The function 

i/(2No + 1) also appears in formulae for the probability of recombination 

in s= 11  populations inbred to fixation (Wright, 1933; Kimura,  1963). 

It selection is very weak and gene effects are smaU, it can 

be assumed that the mean gene frequency and hence the variance and the 

disequilibrium change very little as a result of selection. The additive 

variance for one locus therefore declines as 

= 
S 

and ( declines as in equation (20). Therefore for a multi-looua 

additive modal, for which the variance in the first generation is given 



2 Nc+1 

16a 

	

256 '- 	 1 	4 	 64 16 	 '4 

Nc 

PIGB 2 Graph of 1/(o + 1) againat No, 



17. 

by (13)9  the variance at generation t is 

-t/21f 	

j1k Aik 
e2W0 + 1)t/2N 

S 	+ EEc = 	p(i - p) 	
k 

and the total selection advance is gLven by 
00 

) 	(t) dt = Ni (Z 2 
	

0p) + 2 	Aj(2WOjk + 1)). (22) fI 0.  
Jo  

Similarly, the total change in the frequency of a gene can be expressed as 

u(p0) - p0  = Ni[a6 P(1  - pj  ) + 	kjJ(2i4+J Ij 
(23) 

The above equations, (22) and (23), were derived using the 

approach of Robertson (1960) who gave similar formulas for a single gene 

and showed that with weak selection the total response would be 2W times 

that in the first generation. Clearly, from (22) and (23) it can be 

seen that if there is negative disequilibrium initially then the total 

advance will exceed 21 times that in the first generation and if there is 

initial positive disequilibrium less than 21 times the first generation's 

response will be made, even with very weak selection. The assumptions in 

the above derivations are very strong, and usually the total advance will 

be less than 21 times that in the first generation, even with one locus, 

the discrepancy becoming greater the larger Nia. (Robertson, 1960). From 

this simple model however, one important conclusion can be salvaged. If 

there is initial 1inrge equilibrium and if the parameters Nia. are very 

then the population remains in equilibrium and the selection limit 

is not influenced by the tightness of linkage. 
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The simulation process used in this Monte Carlo study 

differed from that of other workers (Fraser, 1 957a; Martin and 

Cookerham, 1960; Gill, 1963 9  1965; Qureshi, 1963). They simulated 

gametes on the computer and paired these to tons indivi&a1 genotypes. 

The genotypic value of each individual was specified by the mode of 

gene action used, and the phenotypic value computed by adding to the 

genotypic value a random normal deviate as environmental error. 

Selection of parents for the next generation was based on these 

phenotypic values. New gametes were tensed from the parents in 

which crossing over between adjacent loci occurred with probability 

specified by the recombination fractions. 

In the procedure used hery the 2 gametes formed each 

generation were never paired into genotypes.  The expected frequencies 

of the gametes (t) in the next generation were calculated algebraically, 

and the calculation included both selection and reocthinaticri. Thus 

for trimoation selection with an additive model of two loot, the new 

expected gametic frequencies were ocquted by fonsi].a (6). In each 

run the 2N gametes in the next generation were obtained by sampling 

from a aaltinomial distribution with parameters f by means of gener-

ating 2K uniform pseudo-random numbers, x, and comparing each with the 

gametic frequencies. If 

o < x :~ f1  then a gamete A3 was generated., or if 

f1  + f2  then a gamete Ab was generated, and so on. 
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In the computer programme each of the parameters N. ia, it3, 

a and the initial frequencies could be altered.. From the initial 

frequencies for azW zm selection was practised first (e.g, by formula 

6), before random gametes were formed in the inner described above. 

Each iteration was continued to fixation or for 625 N 

generations, whichever occurred first. After 6.25 N generations of 

selection for one locus at least 99.9 of the total response can be 

expected to be made if NicL >/ 4,, 98.5% if Nia = 2 or 96.6J if Nia. a 1. 

The average gene frequency after 6.25 N generations was therefore taken 

as the limit whether complete fixation in all lines had., or had not, 

taken place. Usually 400 replicates were run for each set of parameters. 

At fixation, the proportion of lines in which the favourable gene is 

fixed is b4nomiR1]y distributed., so that with 400 replicates the chance 

of fixation of the favourable gene, u(p0), has a standard error of 

0.05 J U(PO)I. 

An LC .T. Atlas Computer was used for the elTmilJttion. It is 

a fast machine ('by present standards), such that for a population size 

Of 8, 400 replicates each of 50 generations required about 12 seconds of 

computing time, dependent on the rate of fixation. Doubling the 

population size increased the computing time by a factor of almost four. 

The formulae used to calculate the changes in genetic 

frequency were derived for infinite populations so they are not precise 

for the small population sizes of 8 or 16 studied.. In particular, an 

assumption of the infinite model is that each genotypic frequency is 

exactly the product of its constituent genetic frequencies. However 

the objective of this study was not to obtain results applicable only 
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to one population size but to be able to extrapolate to populations 

usually larger than those s1mi1iiited. It was therefore thought 

advisable to adopt general fonnulae for selection response within 

populations and consider sampling only of Vnietes for the next 

generation, Purther!nore, considerable savings in outing time 

could be made by using the algebraic approT4T'Ltiona to selection 

response and expected amount at recombination. 
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5. 'fliE SELECTION LIMIT 

The chance of fixation of a Li nked gene 

In the first part of the Monte Carlo study all possible 

combinations of several values of the parameters p0 , 
q0 , Nic&, NiP and 

Na were run for two additive genes initially in linkage equilibrium. 

These were: 

Initial frequencies, p0, qo  a 0.05, 0.1, 0.3 9  0.5, 0.7; 

Nia, NiP = 2 9  1 9  8 2  16 

No = 1, 1/4., 0. 

To avoid, selective values ia, i3 greater than one, combinations in 

which Nia or NW = 16 were run at a population size N = 16. All 

other combinations were run with N = 8 to reduce computing time. 

For both population sizes 4.00 replicates were used.. The chance of 

fixation of the gene with initial frequency p0  and effect a. is shown 

for the above combinations of parameters in Figures 3-7. In addition, 

the chance of fixation for each value of p0  and Nia is given from the 

matrix iteration for one locus (as Table 1, but taken for only 6.25 N 

generations) with N = 8 for Nic& = 2, 4, 8 and N = 16 for Nia. = 16. 

These results are labsiled. No = , for the response of a gene acting 

alone can also be viewed as the response at that gene when aegregeting 

independently of other genes in the population, implying free recombin-

ation in a very large population. The matrix results do not correspond 

to free recombination (i.e. o = 0.5) in a population of relatively 

snail size, when the maximum value of No is W2, or 4. for a population 
size of 8. 
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The sinriil*tion results far Nic& = 2 9  4 and 8 which were run 

at N = 16 (i.e. Nip a 16) have been adjusted to make them ooqarable 

with those run with N = 8, since there are small differences in chance 

of fixation for constant Nia., but varying N (Table 1). The results for 

N = 16 were multiplied by the factor 

u(p0, 8) - p0 	 (24.) 
u(p0, 16) - p0  

which standardises responses, where u(p 0, N) is the chance of fixation 

of the gene segregating independently in a population of size N. 

computed by matrix iteration. Although the correction was arbitzri]y 

chosen, it usually makes arall changes relative to the standard error 

of the Monte Carlo estimates and does not affect az' of the conclusions 

to be drawn from the results. The min advantage in mRHng  some trans- 

formation of the toxin (24) is that the same value of u(p 0) can be plotted 

in Figures 3-7  for all N with No=oO, 

The data in Yiires 3-7 for two linked additive gsn•s, A with 

effect a and initial frequency p0, and B with effect P and initial 

frequency clo, which are initially in l-inege equilibrium show that: 

The chance of fixation, u(p0), of A =y be greatly reduced if 

A is tightly linked to B. relative to A's chance of fixation if segregat-

ing independently. It is clear from the standard errors of the estimates 

of u(p0) shown in Figures 3-7 that very highly significant reductions in 

chance of fixation occur with many sets of parameters. 

The largest reductions in u(p 0) are found when B has a low 

frequency. 
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(o) At least for law frequencies of the interfering gene B. and 

for sizes of Nip studied, the greater the effect of B, the greater the 

reduction in u(p0 ) 9  the chance of fixation of the affected gene A. 

Also there is apparently no change in u(p0) it Nip ,< Niq/2. 

The chance of fixation of the affected gene can be reduced for 

any value of its initial frequency wc oopt, perhaps, when the gene is 

almost certain to be fixed (u(p 0) - 1) when segregating independently. 

The  tighter the Ilvrge  between the two genes, then the greater 

is the reduction in u(p0). 

These observations clearly need further examination, so 

the data of Figures 3-7,  together with additional results simulated 

for some particular simples of parameters, will be investigated, in 

greater detail. The degree of recombination will be considered first. 

It can be seen in Figures 3-7 that for a wide range of 

parameter sets p0
, 

gop Nia and N1,13, the decline of u(p) with tighter 

linkage is appro'{tely linear for the spacings of No used in these 

graphs. The tranforwation used to plot these No values was the 

function i/( 2No + 1) which was shown in Figure 2 and gives values of 

1/(2No + 1) = 0, 113, 213 and I for No a a, 1, 1/4 and 0, respectively. 

This transformation was chosen partly for convenience, as it reduces 

values of No rnging from zero to infinity to a scale ranging only 

from zero to one, but inAn1y  because the transformed variate is a 

measure of the rate of breakdown of linkage disequilibrium. It was 

shown earlier that on a time scale of f/N generations, i/( 2No + I) is 

proportional to the half life of the breakdown of the disequilibrium 

detern(Y*nt, L\, in sn11 populations (equation 21). 
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The regression of chance of fixation on 1/(206 + 1) was 

oonuted for each set of parameters p0, qop Nia. and Nip using data 

unadjusted by formula (2). As the variance of an estimate of u(p0 ) 

from some Monte Carlo simulation (i) depends on u(p0), squared 

deviations from the regression were weighted by i/cr, where 	is 

thL. vartance of the estimate. The sampling variance of each Monte 

Carlo estimate was calculated from the observed chance of fixation, 

80 that repeated re-estimation of the variance was not required for 

each possible regression line. The chance of fixation for No 

was first compared with that for No = 	* then regression lines 

were forced through u(p 0) for No noo • The latter was calculated 

by matrix iteration and, of course, has no sampling variance. No 

analysis was performed where u(p 0) >.99 for No = , for at such high 

frequencies errors in estimation of the variance become more serious, 

and the estimates of u(p0) and its variance more highly correlated. 

In addition to the data shown in Figures 3-7, computer nine were also 

made with N = 8 for the earns parameter combinations shown in Figures 

3-7, but with Nia, Ni(3 < 16 9  and No a 4 (free recombination with N a 8) 

and No a 1/4., The data for the regression analysis thus comprised 

280 parameter sets, of which 100 had three estimated points: 1/(c + 1) 

113, 213, 1 and 180 had five estimated points: i/(c + 1) a 1/9 9  113, 

2/3, 8/9 9  1. Pooled results are given in Table 2, where sums of squares 

are of the form Z (d/a) where di  are deviations from No = oo or 

regression and af the sampling variance of the estimate of u(p). 
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TABLE 2 Pooled ana3,vais of linear regressions 
of u(p0) against 1/(2No + 1). 

Source 	 Sum of squares 

Total (Deviations from u(p 0) 	15893 	1200 
for No 

Linear regressions 	 1458 4. 	280 

Residual from fitting linear 	
1309 	 20 regressions. 

With the large number of replications used, the Monte 

Carlo estimates of u(p 0) approach a forum], distribution, so that 
d2  

under a null hypothesis of no effects i is distributed as chi- 

cr 

square with one degree of freedom. The sum of n such independent Y.. 

is distributed as 	and has expectation n. In 	Table 2 the total, and 

both its components, linear regressions and residual from fitting linear 

regression are significantly different from the appropriate 2 

(P < .0001 in each case). However, although the residual variance in 

significant, it contributes a very small proportion of the variability 

in this data. If binomial sampling variance is deducted from the au 

of squares for the total and linear regressions, then the linear 

regressions remove 14304/11.693 or 97.Wo of the rntln(v'g variability 

for these Daramstex' sets. The individual regression analyses most 

often show significant non linear regressions when the chance of 

fixation is very close to one, in which case the reduction for No a 0 

exceeds that expected from intermediate No values, and when cme gene 

is such larger than the other, Ni 	Nia., in which ass, the reduction 

for No - 0 is lees than that expected from intermediate Na values. 
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These exceptions to the general trend of a linear decline of u(p 0) 

with increase in 1/(o + 1) will be considered later. 

These regressions also provide good evidence that tight 

14 go always reduces response with additive genes initially in 

equilibrium. In the 280 lines fitted., there was a significant (P<.05) 

linear regression in 176 oases. In all but one of these 176, the 

regression showed a reduction in u(p 0) as ll'ge became tighter. 

In Fiirea 3-7 it  was  shown that the influence of the 

affecting gene, B, on the chance of fixation of the gen. A is highly 

dependent on the initial frequency and effect of B. The influence 

of the size and initial frequency, q0, of B was studied in greater 

detail for a gene A with initial frequency p0  = 0.3 and with Nia = l. 

Further rma with 400 replicates beyond those shown in Figures 3-7 were 

made for q = 0.025, 0.075, 0.2, 0.4 and 0.6, and also results were 

simulated for Nip = 32 with No = 0, using a population size of 32. 

In Figure 8 the chance of fixation, u(p 0), is plotted against q for 

Nc=0 and Nip = 2, 4, 8, l6 and 32.  The walues ofu(p0) from matrix 

iteration for one locus segregating are given in ?i€,are 8 both for all 

Nip when go  = 0 or q = I and also for a neutral gene, Nip = 0, for all 

In neither case does selection change the frequency of the inter-

fering gene, B. so that no influence on A's chance of fixation can be 

expected. It can be now in Figure 8 that as Nip is increased., then, 

at least up to Nip = 16, the maxinsam reduction in u(p0) is also increased. 

Further, the larger Nip, the lower the initial frequency q at which the 

m{mnm reduction takes place, such that for the larger Nip values it 

seeme that the ma.nn1m reduction occurs where Ni3q0  = 0.8 approriite]y. 
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However if B has an initial frequency higher than that causing the 

greatest reduction in u(p0) for a particular value of Ni, then B may 

influence u(p0 ) less than does an interfering gene of smUler effect. 

For exançle, with Nim = 4j, Po  = 0.3 and No = 0 0  the estimates of u(p0) 

are 0.675 for NW = 8 and 0.537 for NW = 16 with qO  = 0.05, but the 

estimates are 0.766 for Nip = 8 and 0.863 for Nip = 16 with qO  = 0.4. 

On the other hand, Figure 8 indicates that if B has a frequency lower 

than that causing the greatest reduction in u(p0) for some NW,  then 

B influences u(p 0) more than arq gene of smaller effect and the Barns 

frequency. 

Results for different degrees of linkage in the example of 

Figure 8in which p0 r 0.3 and Nic,= 4.are shown inFigure 9 for Nip 2 

and Nip 4., in Figure 10 for Nip = 8 and in Figure 11 for Nip a 16. 

In these graphs chances of fixation from Monte Carlo simulati on  for 

No n I and 1/4.  are compared with those for No = 0 given in Figure 8 

and with No = 96 from one locus iteration. Figures 10 and 11, with the 

higher Ni3 values, indicate that the initial frequency of the interfering 

gene, B. which causes the mqy(iiim reduction in u(p 0) depends only an Ni 

and not an No. With Nip = 4 (Figure 9) the reductions in u(p0) relative 

to the sampling error are much smaller, but it appears that the same 

conclusion holds. 

Also in Figure 10 is shown a check on the theory from the 

diffusion equation (section 3)  that the parameters p0, q0j, NicL, Nip and No are 

sufficient to describe the mystom without a knowledge of the population size, 

N. Results for p0  = 0.3, Nia = 4 and Nip = 8 were computed with both N = 8 

and N = 16 9  each with 400 replicates. The data in Figure 10 has not been 
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adjusted to constant population size by formula (4); the appropriate 

values for u(p0) are 0.9029 and 0.9056 for N = 8 and 16 respectively, 

when s('='1ation is taken for 6.25 N generations. 

For each value of q0, the chance of fixation was compared 

for the run with N= 8 and N= 16 Taking each value of No separately, 

the total X2  with 10 degrees of freedom did not differ significantly 

from expectation (P > .05) nor did the pooled X2 with 30 degrees of 

freedom. The average of the differences [u(p0, 8) - u(p0, 16)], each 

weighted inversely by its standard deviation, did not differ from 

expectation for No = 0 or No = i/i' (P> .05). with No =1 the average 

difference was found to differ significantly from zero (.01 P <.025), 

the greater response occurring with N = 16. However, adjustment of 

the data by formala (24) removed this latter significant difference 

(.05 < P < .1) but did not affect any of the other comparisons. 

The agreement is seen to be cjuite good for the arAmple  of 

Figure 10. This was to be expected since the values of the recombin-

ation fraction did not exceed 21N, and thus the diffusion approrinuttion 

would be expected to hold fairly well. Large values of ia, or i(3, up to 

1,0 were used, but whilst these violate the diffusion equation assumptions, 

it turns out (Table i) that u(p0) is not much affected by population size 

for this example when No = oO 

The influence of Nip was studied in further detail for 

____ 	in which it was necessary to hold constant not only p0  and Ni, 

but also q0. The two examples studied in most detail were: p0  = 0,1, 

qo  = 0.1 and Nic& a 8 (Figure 12) and p0  = 0.3, q = 0,3 and NiCL = 4 

(Figure 13).  In each case the population sizes used were N = 8 for 
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I 

N = Nip for NiP> 32, but all data was adjusted. to N = 8 by formal* 

(24). All urns were made with 400 replicates, except in Figure 12 

where 1600 replicates were used for all urns in which Ni 8. 

Results fox' Nip = 0 and No = 	were taken from matrix iteration. 

Of particular interest in Figure 12 is the mi ninsm value 

of Nip that causes a reduction in u(p0), for in the earlier date 

(Figures 3..7) it was shown that little, if any, reduction occurred. if 

Nip < NicV2, but no values of Nip between NicV2 and Nia. were run. 

For the parameters of Figure 12 the first significant (P < .05) 

reductions in u(p0) below that expected for an independent gene 

occur with Nip = 5 = (5/8)Nia when there is complete l(rtlrrLge,  No • 0. 

The same relation holds, of course, between the gene effects; no 

reduction occurs until 3 = (5/8)cL. 

A further detailed example of the fall off of u(p0) with 

increase in Nip up to Nip = Nia is given in Table 3 for a model with 

larger effects, in which p0  = q = 0.1 as in Figure 12, but with 

Nia. = 16. 400 replicate rune were used. 

TABLE 3 The chance of fixation of a gene with 
p0  = 0.1 9  NiCL = 16 and qo  = 0.1. 

No I Ni 	0 	2 	4 	8 	10 	12 	14 	16 	32* 

I 	 .943 .953 .946 .943 .945 .915 .920 .887 .715 

1/4 	.943 .940 .953 .916  .951 	.903 .900 .839 .579 

0 	 .94.3 	.943 	.930 .933 	.935 	.919 	.857 .691 	.464 

*N32 adjusted toN16, All other runs with N = 16. 

Examples of S.E. of estimates 1 .94.3 1 .012, .900 ± .015, .800 ± .020. 
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A significant (P <.05) reduction in u(p0) with No z 0 

does not occur in the data of Table 3 until  Nip = 12 for which p = (3/4)cx, 

However the tests on the data in Table 3 are less powerful than those for 

Figure 12 since fewer replicates were used. There is also a significant 

reduction below that for one segregating locus in Table 3  for Nip = 8 

with No = 1/4., but a higher value of Nip for the same No does not show 

acy change in u(p0). 

For the model of Figure 13 in which Nia=4. and p0=%= 0.3 

the first reduction in u(p0) is found when Ni 	(3/4.)Nia. with No = 0 0  

but fewer values of Nip were run. However, turning back to Figure 8 or 

9 9  it can be seen that significant reductions occur for Nip = 2 = Nicy'2 

with No a 0 where the 1ii1red. gene, B, has initial frequency qo  = 0.4. 9  0.5 

or 0.6. In the data of Figures 3-7 one significant reduction can be 

found for No = 0 and Nip = Ntq/2 for both Nia. = 8 and p0  = 01 1 NO  = 0,5) 

and Nic& n 16 and p0  = 0.1 No  = 0.7), at the Zo level of signifioarre. 

At the 1% level neither of these is significant and for the number of 

occiparisons nude, the 1 level of significance given an overall Type I 

error of approximately 5. 

In terms of the value of 3 necessary to chow significant 

reductions in u(p0 ), the general conclusion that can be drawn from the 

data is that the critical range of values of the effect of the interfering 

gene is c/2 £ 3 < 30/4. If P < cV2 no reductions have been observed, 

whilst if 	3cV4 eccie reduction in u(p0) seems to occur. It must be 

etph*sised that these conclusions were drawn for interfering genes with 

initial frequency close to that causing the '.-4'um reduction for its 

effect (Figure 8); it would be more difficult to detect deviations with 
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other values of qo. Presumably sms3l reductions in u(p0) occur even 

when (3 <V2,  but these could not be detected with the number of 

replications used and are trivial relative to the order of reduction 

in u(p0) observed with larger Nip values. 

When Nip is increased. beyond (3/4)Nim it can be seen in 

Figures 12 and 13 that u(p0) steadily declines but then passes through 

a m(nim  before increasing as Nip becomes much larger than Nic6 This 

result could be predicted from Figure 8, where it was also shown that 

the value of Nip causing the greatest reduction in u(p0) is a function 

of q0, the initial frequency of the interfering gene. In the example 

of Figure 12 9  it can be seen that the n44w.im  value of u(p0) occurs at 

about Nip = 16 for ooilete li'*ags, No a 0. In Table 3  the initial 

frequencies, p0  = q = 00, are the same as in Figure 12, but in the 

table Nic6 ss 16 and in the figure Nici a 8. If the values of u(p0) are 

oonpared for No = 0 and Nip = 16 and Nip a 32 in Table 3, it can be 

seen that with this larger Nick, the iximwn reduction in u(p0 ) 000urs 

at an NL(3 value much greater than 16, for Nip a 32 reduces u(p0) more 

than does Nip = 16. Thus it appears that, for given P. and q0, the 

larger Nia the larger the value of Nip that causes the m4imim  reduction 

in u(p0). Similar results may be seen in the data of Figures 3-7, 

For exaspls. with p0  = 0.1 (Figure 4) and qo  = 0.3, if the reductions 

in u(p0) are oonqared. for Nip = 8 and Nip = 16 it is found that for 

the largest Nict value (Nici = 16) a reduction in u(p0) occurs only if 

Nip = 16, whereas for the smaller NiCL values (NiCL = 2 or 4)  a larger 

reduction is caused by N1(3 a 8 than by Nip = 16. 

The data of Figure 12 also shows that the values of Nip for 
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which u(p0) passes through a md aimm are a function of the recombination 

fraction. Thus for No = 0 and No = 1/4 the ad rd 

Nip = 16 and Nip a 24., respectively, and the estimates of the chance 

of fixation of the gene A at these minima  are u(p0) = . 330 and u(p0) 

.388 respectively. For No = 1, the m4nim  reduction is caused by a 

gene with Ni3 at least 40, and from the trends of the graphs it appears 

that the minimum value of u(p0 ) lies in the range 0.45 < u(p0) <.50 
In the examle of Figure 13, the value of Nip at the mijdn.im  of 

is apparently rather lees dependent on No than in the previous eJLnTle. 

However the mxJ n2m reduction in u(p0) clearly depends an No in both 

e*inplea. 

In Figures 12 and 13 it can be seen that, during the phase 

where further increases in Nip continue to reduce u(p0), say in the range 

Nip = 6 to Nip 12 in Figure 12, the reduction in u(p0) is about the 

same whether No is altered frombO to 1, from I to 1/)+ or from 1/4 to 0. 

In other words, during this phase, the reduction in u(p0) is linear on 
a scale of i/(2No + 1), for given Ni. However for larger values of 

Nip, say Nip > 2Nia. in Figures 12 and 13, this scale no longer leads to 

linear reductions in u(p0). The reduction in u(p 0) between the smaller 

No values becomes much less than between the larger values. Thu. in 

Figure 12 there are no significant differences between u(p 0) for No = 0 

and No = 1/4 throughout the range Nip = 24. to 4.0, the highest Nip value 

iil ated., whereas in this range the u(p0) values for No = I and No = 

differ widely. Thus the value of EiP causing the miazI n2im reduction in 

u(p0) must depend on No, and of course, an increase in Nip for low No may 

increase u(p0), while reducing u(p 0) for a higher No. An .wiIsle of the 
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latter phenomenon can be taken from Figure 12 for the range Nip = 16 

to 40, during which u(p0) rises for No = 0 and falls for No = 1. 

The detailed analysis has so far been restricted to a stud.y 

of changes in the effect and frequency of the interfering gene B. The 

discussion will now turn to the influence of the initial frequency of 

the affected gene A on changes in its chance of fixation due to linkage. 

However, sines the chance of fixation in not linearly related to the 

parameter Nia, and since the slopes of the gmphs of u(p0) against 

Ni& depend on the initial frequency even for one segregating locus 

(Figure 1), it follows that a comparison of the changes in u(p 0) 

itself over different values of p0  does not lead to coherent con-

oluzions. The method adopted for comparing the chance of fixation 

of genes with different initial frequencies was to computs from the 

Monte Carlo estimate of u(p 0) for a linked gene the Nici value which 

would give the same u(p0 ) for a single gene with the same initial 
A 

frequency. This value of Nic, denoted Ni, was read from a graph of 

u(p0) against N1CL, as in Figure 1 but using results computed by 

matrix iteration for the appropriate population size (Table 1). An 

alterrtive method of estimating large values of Ni derives from a 

rearrangement of Kimura' a (1957) formula 

I - u(p0) = 	072Nic I - 

For large Nici 

u(p0),, -2Nicip0  
I - . 

so that 
-  

Ni o 	in [1 - u(p0)] 	
(25) 

2p0 
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The appro.nMion (25) is not satisfactory for Nim 1.5, approximately, 

and as a large proportion of Nim values fell below 1.5 the graphical 

method of computing Nia was used throughout. 
A 

In Figures 14..17 Nia estimates are given for Monte Carlo 

rune with Nip = l6 and No= 0 (Figure 14),  No  1/14. (Pigursf5) and Nc = f 

(Figure 16) and with NO = 8 and No = 0 (Figure 17). Most of the data 

for these graphs ime shown as chance of fixation in Figures 3-7, but 

there are included extra rune with 400 replicates for initial frequen-

cies p0  = 0.2 9  0.4, 0 96 and 0.8 with NiA = 16 9  q = 0.05 9  0.1 and 0.3 
,\ 

and No = 0. Typical sampling errors of Nia are shown in Table 4, but 
A 

because Nia is not linearly related to u(p 0), upper and lower bounds 

Of Nia are shown that correspond to u(p 0) plus or ThiflUR  one standard 

deviation of u(p0). 

TABLE 4 	Sampling errors of Nia.: upper bounds 
(U,B.) and lower bounds (L.B.) for ± one 
standard deviation of u(p0) using 400 
replicates. 

Nia. p 	.05 	.1 .3 .5 .7 

I L,B, 0.77 	0.83 0189 0.89 0.87 
U.B, 1.22 	1.16 1.12 1.12 1.14 

2 L.B. 1.75 	1.81 1.86 1.86 1,82 

TJ,B. 2.25 	2.19 2.15 2.16 2.27 

4 L,B, 3.65 	3.73 375 3.68 3.51 

LB. 4.36 	4.29 4,29 4.46 5,57 

8 L.B. 7.46 	7.53 7.27  

U.B. 8.57 	8,53 9.33 - - 

* Values omitted for u(p0) 	. .999. 
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As can be seen in Table 4 9  values of u(p0) close to one 

produce large sampling errors in Nia and are also difficult to interpolate 

aocuxately fran a graph, and so results for which u(p0)'> .99 have been 

omitted from Figures 1 4-1 7.  Results for Ni a. a Ni( = 16 with No = I 

and 1/4. have not been included in Figures 15 and 16 because many u(p0 ) 

values fall above 0.99 with these parameters. 

The general impression obtained fran the graphs of Nic& is 
,\ 

that for specific values of Nia., Nip,, q 0  and No the reduction in Nia 

is approximately the same for all initial frequencies, p0, of the 

affected gene. The pattern of reduction in Nia corresponds, of course, 

to that for the chance of fixation : the greatest effects are caused 

by genes with law initial frequency, q0, and with tight linkage. With 

high frequency genes, q0  = 0.5 and 0.7. Nia is reduced. below Nim to a 

very small extent, and., as would be predicted. from Figure 8, genes with 

qQ  = 0.3 influence Nia al 	as much as do genes with initial frequency 

qo  = 0.05 it Nip = 8, but to a much lesser extent if N343 = 16. 

However there are clear exceptions to the independence of 

Nim on p0. When the interfering gs1e has a very low initial frequency 
A 

(q0  = 0.05), Nim is reduced more if the affected gene has a high initial 

frequency, po. Also, if the gene effects are the same, so that 

Nia. = Nij3, genes B of initial frequency higher than 0.05 (o.i and perhaps 

0.3) also influence Niz to a greater extent if A has a high initial 

frequency. It has been shown that where a. is much greater than P (say 

a. > 23), then the chance of fixation of the A gene is not reducd by 

14?ik*ge for any initial frequency, p0, of A. Thus in the terms of this 

section, Nia is not reduced for any p0, given that a. > 23, so that for 
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/\ 
these relative gene sffeota, Nim is independent of p0. It is therefore 

probable that Nia is most dependent on p0  where the gene effects are 

the same. 

Apart from the few exceptions noted above, the important 

conclusion that can be obtained from Figures 14-17 is that the influence 

of & linked gene, B, can be described solely in terms of the reduction 

that it causes in the selection parameter, which has been called 

without reference to the frequency of the affected gene. Thus in the 

earlier graphs of the influence of q, Nip and No (Figures 8-11) and 

of Nip and No (Figures 12 and 13),  the axes showing u(p0) could be i's-

labelled IM terms of Nia and would apply to all genes of the same 

effect as those studied In the errlea of Figures 8-13. 

It was noted earlier that if Nia is much greater than Nip,, 

no reduction in Nia., below the appropriate Nia value, can be expected. 

It might be thought that for constant Nip, then the siiI ler Nic&, the 

greater the reduction in Nia, measured as a proportion of Nia. However, 

Figures 14-17 show that the reverse holds at least up to nearly equal 

effects; larger proportional as well as absolute changes in Nicz, 

relative to Nia, are found with the larger Nici. values. For ammple, 

with Nip = 16 0  q0  = 0.1 and No = 0 (Figure 14) estimates of Nia averaged 

over all initial frequencies, p0 , are 0.99 1, 1.47, 1.90 and 5.1 approx-

mutely for Nip a 2 9  4 9  8 and 16 respectively, and the corresponding 

ratios ?2'cVNia  are 0.49, 0.37 9  0,24 and 032 respectively. Proportional 

rather than absolute changes in Nim clearly facilitate comparisons 

between wide ranges of Nia values. The problem imuediat&.y raised is * 

what is the limiting proportion IcVNia, as Nim becomes very small? 
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Unfortunately Monte Carlo a4iii1&tion can not be expected to give 
A 

very satisfactory answers, for the sampling error of NiVNia  becomes 

very large as Nia because small and the curve of u(p 0) against Nic 

very flat (Figure 1). The most suitable data available has p0 a q0  

00 and Nip = 32, where urns with Nia as low as 2, or NiNi(3 = 1/16 0  

have been made. For No = 0 and Nici. = 32, 16 9  8, 4. and 2 the proportions 

are 0.26, 0.20, 0.18, 0.50 and 0.60 respectively, but clearly no 

limit has been reached.. An alternative method of finding limitinE. values 

to the proportional reduction in NiCL will be presented in Section 7. 

Although the changes in NicL have been found to be dependent 

on Nic., examination of Fiires 14-17 shows that, for given Nip, the 

relative influence of interfering genes of different initial frequency, 

q0, is almost independent ofNicL. For erample, with Nip = i6 and No=0 

(Figure 14), the reduction from 	0.5 and q a 0.7 is nearly the same, 

and always e'". The reduction for qc  = 0.3 is always less than for 

qo  = 0.05 or 0.1, except when gene effects are equal, but greater than 

the reduction in Nim caused by genes with initial frequency go  = 0.5 

or 0.7. The initial frequencies qj, = 0.05 and 0.1 produce similar 

reductions in Nia., for all levels of Nia, but as mentioned previously, 

a gene with qO  = 0.05 influences genes A of higher frequency, p0, rather 

more than genes of lower frequency p0. Of course, if Nio.'> 2Ni43, say, 

no reductions for any % would be observed.. Thus, at least if Nip > NicL, 

it can be concluded that the results of Figures 8-11 on the relative 

influence of different initial frequencies, q0, hold, not only for genes 

of different initial frequency, p0,  but also for genes with effects 

other than Nio. = 4, the model actually studied. 
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It was noted earlier that when u(p0 ) is close to unity 

for No = 	the regression of u(p0) against 1/(290 + 1) is generally 

curvilinear. Thus the reduction in response for No = 0 is greater 

than would be expected from intermediate values of No if the regression 

were linear. Since the slope of the curve of u(p0) against Nia is also 

strongly curvilinear when u(p0) 	) I (Figure 1) it turns out that 
A 

for these high values of u(p0), the regression of Nia against 1/(2No + 1) 

is more closely linear than is the regression of u(p0) against 1/(o + 1). 

In this section of the thesis no attent has been made to 

interpret the results from the Monte Carlo siTT 11 rticIi on the chance of 

fixation of a UVIeOd. gene. Some attente at explanation of the data 

will be presented in Section 7, but only after further aspects of the 

simI1RLtion results have been discussed. Two topics are concerned with 

the joint chance of fixation of the two linked genes : firstly, the chance 

of fixation of the individual gainetio types )B, Ai,, aB and ab, and., 

secondly, the change in the population mean of some trait, where the 

chance of fixation of the genes or gametes must be weighted by their 

effects on that trait. The next section will deal with the influence 

of linkage on the rate of selection response during the intermediate 

generations before the limit is reached. 

The chance of fixation of the gametes 

It ban been shown that the chance of fixation of each of a 

pair of linked genes depends upon their relative effects, initial 

frequencies and the tightness of linkage between them. A brief discussion 

will now be given on the effects of linkage on the probabili' of fixation 
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at the selection limit of each of the ipmetio types (AB, Ab, aB and ab 

with two genes each of two alleles). The case of independent aegre. 

tion (No = ° ) presents no problena, for if additive genes are 

initially in equilibrium, then the chance of fixation of each gametic 

type will be the product of the chance at fixation of the genes 

cxising each gamete. 

As an ei*le, some results from the 1600 replicate rune 

with p0 =q0 =O.1 and Nia=8 which were used for Figure l2, are givsn 

in Figure 18 for No = 4 9  i t  1/4 9  1116 and 0 and taking tour sxairqlee of 

Nip : two (Nip = 2 and 4) in which Nip is not more than one-half Nia, 

one (Nip = 7) in !vh.tch Nip is almost as large as Nia, and finally the 

case of equal affects (NW = 8). The chance of fixation of the favour- 

able genes and the four genetic types are plotted against No, transtoxned 

to a scale of 1/(2No + 1). Previously a strict notation was adopted, in 

which A was termed the affected gene and B the interfering gene. Hers 

the pair of loci are considered jointly, so the choice of label, A or 

B. can be made arbitrarily. 

The example of Figure 18 shows that for low values of 3 

relative to a then, as mentioned previously, only the chance of fixation 

of the smaller gene B is reduced as linkage becomes tighter. As the 

gene effects become equal the fixation of both the favourable genes is 

reduced. On the other hand, the chance of fixation of the unfavourable 

coupling genete, ab, is not influenced by the recombination traction for 

any of the pair of value. of Nia and Nip shown. The chance of fixation 

of the repulsion gemete aB is increased only as the affect A approaches 

the magnitude of a, otherwise it is unchanged with tight linrage. The 
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metes AB and Ab which contain the gene with larger effect in these 

examples (except where effects are equal) are influenced at all levels 

of 	a With tight linkage the favourable coupling gamete Al is ieee 

frequently fixed and the repulsion gamete Ab more frequently fixed, such 

that the sum of their frequencies, the chance of fixation of the gene A, 

is not affected if 3 is much less than a.. 

Deviations from matrix iteration results for independent loci 

were tested by X2 goodness-of-fit on all the 1600 replicate rims with 

p0  a q, = 0.1, Nia. = 8 and Nip = 1, 2, 3, ....., 8. These results 

confirm the impressions gained from Figure 18, for linkage was found 

to influence the chance of fixation in the following oases (P <.05) : 

Gene B. Gametes AB, Ab 	all NW 

Gene A 	 - Nip )5 

GemeteaB 	 * Nip >, 3 

Gamete ab 	 - no N.t3 

Perhaps the most interesting observation that can be mad, from these 

results is that if one gene (B) is much smaller than the other, say 

P cy'4, then the reduction in the chance of fixation of the smler 

gene as linkage becomes tighter takes place only among gametes in which 

the large favourable gene (A) is fixed.. 

It can be seen in Figure 18 that as the recombination fraction 

becomes effiRiler more repulsion heterozygotes Ab, aB are fixed at the 

expense of coupling heterosygotea. Thus a negative linkage disequilibrium 

between lines at the l4nilt, L L , is found., where 

AL = u(AB) • u(ab) - u(Ab) , u(aB) 	 (26) 
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and u( - ) is the chance of fixation of the specified Smote. For 

the er*irpiea  of Figure 18 with No = 0, the values othL are -0.0351, 

-0.0667, -00129 and  .0.1383 for Nit3  = 2 9  1, 7 and 8 respectively. 

An excess of repulsion heterozygotee at the limit holds more generally 

than for the examples of Figure 18. For the runs with 400 replicates 

with the range of starting frequencies and effects shown in Figures 3-7, 

AL was calculated in each of the 210 rune with No = 0, A was zero 

in 72 cases, in all of which at least one gene was fixed in all 

replicates, AL  was negative in 130 runs and positive in only 8. 

Moreover for none of these 8 parameter sets in which AL was positive 

did the disequilibrium differ sipifioantly at the Za level from zero. 

Further analyses were performed on the same data with No = 0 

to test the other conclusions from the examples of Figure 18. Firstly, 

the chance of fixation of the unfavourable coupling gamete (ab) was 

compared with its expectation from the independent case of No = 00 

From the 210 runs, 138 were excluded because the chance of fixation 

for No= oO  fell below 0.01,, so that less than 4  out of the 400 computer 

rune would be expected to be fixed in this class and the X 2  test can 

not be used.. In the remaining 72 parameter sets only 2 showed 

significant differences (P < .05) between the chance of fixation of 

ab for No = 0 and No =oo • Secondly, for the case of unequal effects, 

in which a.. 23 or A >, 2ci in this data, a 34 ni1-1a analysis was carried 

out for the ohancs of fixation of the repulsion Smote containing the 

unfavourable allele of the locus with larger effect and the favourable 

allele of the locus with smaller effect. From the 150 comparisons of 

No = 0 with No =oo ,79 were excluded because the expected chance of 
fixation for No = aD was less than 0.01, and of the remaining 71 
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oonuarisona only 8 showed significant differences at the 

probability level. 

The observation that the chance of fixation of the 

inferior coupling gamete is not influenced by the degree of linkage 

therefore appears to hold generally. Since there are only three 

degrees of freedom among the four gametic frequencies, the additional 

observation that the chance of fixation of only the smeller effect 

gene is reduced. with 11nkge  if this gene has an effect less than, 

say, half that of the larger effect gene, enables prediction of the 

behaviour of the probability of fixation of the other three gametes 

as linkage becomes tighter. Thus with a wide divergence of effects, 

the repulsion gamete containing the favourable allele of the larger 

effect gene can not be influenced by linkage,, as the results show. 

Similarly, a negative disequilibrium, A LP  between the lines at fixation 
is inevitable if at least one gene has a reduced chance of fixation 

and the unfavourable coupling gamete's chance of fixation is not 

changed by tighter linkage. 

The change in the population mean 

The Monte Carlo results discussed so far have mostly been 

in terms of the chance of fixation of one gene and how this chance of 

fixation is influenced by another, linked, gene. In a selection 

experiment all that can usually be observed is the change in the 

population mean, which is a function of the effects and changes in 

frequency of all genes contributing to the trait. For two additive 

genes, the total advance in the mean, denoted R(.t), is given by 
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= a.c [u(p0) - p0) + j3o-  [u(q) 	q] 	(27) 

where, as previously, o is the phenotypic standard deviation and the 

effects a. and P are defined as proportions of a. 

can be calculated for each computer run from the data 

of Figures 3-7, but it is difficult to compare results when the initial 

frequencies and effects differ. Therefore the method used for making 

comparisons of changes in the population mean was to express the R(p) 

observed for some parameter set p0, cia, Nici, Nip, No 1 cc,  as a 

proportion of the response, R(i), expected from the sane parameter set, 

but with No = 1? • The latter results can, of course, be computed from 

Table I for it is assumed that the individual genes respond independently 

when No = 0, From the data given in Figures 3-7, this proportion of 

the selection advance realised for No = 0 is listed in Table 5, 

The greatest proportional reductions in R(ii)  caused by tight 

llnrage are found when Nia. and Nip, and hence the gene effects a. and 1, 

are approximately equal. Such a result could be anticipated from the 

earlier data, for in a model in which one gene has an effect much larger 

than the other it has been shown that the larger gene's response is 

scarcely affected by the smaller linked gene. Since the gene with the 

larger effect generally contributes the greater part of R(M), it 

therefore follows that R(i) will also not be greatly influenced by 

close linkage when the genes have unequal effects. 

The data from the computer runs shown in Figure 12 can also 

be used to illustrate that the n1"1ni reduction in the response of the 

population mean caused by linkage occurs when the gene effects are 

approinvteLy equal, In Figure 19 the response, R(i'), realised for 
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TABLE Total advance of the population mean with 
two completely linked additive genes (No = 0) 
as a proportion of the advance expected from the 
same genes segregating independently (No = 

Nia Nip qO 
PO 

.05 • 1 .3 .5 .7 

(a) 16 16 .05 .659 .671 .777 .885 ,91 
1 1 .671 .701 ,839 .917 .955 

777 .839 .980 .996 1 1000 

.5 .885 .917 .996 1.000 1.000 

.7 .914 .955 1.000 1.000 1.000 

(b) 16 8 .05 .830 .831 .894 .943 .973 
• 1 .803 .803 .886 .945 .94 1  
.3 .806 .869 .958 .986 .992 

.5 .895 .933 .997 .998 1.000 

.7 .920 .939 .998 1.000 1.000 

(C j  16 4 .05 .959 .953 .960 .988 .978 
.1 .921 .906 .959 .965 .983 

.3 .932 .923 .963 .995 .984 

.5 .941 .967 .990 .989 .989 

.7 .983 .968 .997 1.001 .999 

(a) 16 2 .05 1.006 .983 .996 1 1 001 0995 
• 1 .955 .988 .990 .999 10009 

.3 .978 .979 1 980 1981 1 1 000 

.5 .966 .958 0995 .998 .993 

.7 .976 .986 .998 1.001 .995 
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TABLE 5 continued. 

Niu. idp (10 
 

P O  

.05 .1 .3 .5 .7 

(e) 8 8 .05 .781 .772 .799 .860 1918 
.1 .772 .731 .814 .817 .955 

.799 .814 .880 .947 .988 

.5 .860 .817 .947 .988 .985 
.918 .955 .988 .985 1.000 

(f) 8 4 .05 .942 .899 •939 .941 .955 
1 1 .870 .835 .914 .944 .942 
.3 .863 .887 .892 •964 .989 
.5 .870 .879 .942 .982 .967 
.7 .958 .961 .971 .985 .995 

(g) 8 2 .05 .930 .963 .990 .985 .995 
•1 1.000 .946 .983 .993 .962 
03 .993 .681 .971 .961 .971 
.5 .914 .916 .976 1 1000 .982 
.7 1.001 .983 .978 .998 .992 

(h) 4 4 .05 

.1 
.775 

.868 

.868 

.850 

.84.6 

.776 

.883 

.850 

.906 

.978 
.846 .776 .84.1 .879 .948 

.5 .883 .850 .879 ,951 .977 
.906 .978 .948 .977 .982 

4 2 .03 (i) 

 

1.053 .965 .932 .992 1 1 000 

1 1 .821 .961 .911 .942 .917 
.881 .859 .907 .905 .958 

.5 .916 .951 901 •952 067 

.7 .986 .912 .919 .956 .986 

(j) 2 2 .05 1.054 1.064 1,024. .889 .932 

1.064 .839 .919 .843 .889 

.3 1,024 .919 .826 .917 .899 
oodm 01 fA J 
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No a I t  1/4 and 0 i's plotted as a proportion of that expected for 

No - oO with the parameters p0  a % = 0.1 9  Nic&= 8 and the wide range 

of Nip values used for Figure 12. 

Tuniing again to Table 5 0  it can also be seen that the 

reductions in response with tight linkage occur when both genes have 

low initial frequency and large etfeots. There are two main oontri-

buting factors. Firstly, as earlier results have shown, a low 

frequency gene with large effect has most influence on a gene 14  

to it. Secondly, genes with large effect and intermediate or high 

frequency have a very high chance of fixation and the our?e of u(p0) 

against Nim is almost flat for such genes if Nim is lax'g. (Figure 1). 

Therefore, even though the effective selection pressure (Nia.) is 

reduced, at least as much for high frequency genes (gures 14.-17), their 

restonae is less affected by a linked gene than is the response of a gene 

with low frequency and the sane, large, effect. 

In summary,, it has been shown that the total response in the 

population mien for some trait determined by a pair of genes is most 

influenced by linkage it these genes have law initial frequency and 

large, approximately equal, effects. 
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6. THE RATE OF SELECTION ADVANCE 

The Rfla]yBia has been restricted so far to the limits of 

selection response. Using a few examples, a brief description will 

now be given of the rate of progress to the limit,  with the model 

agein restricted to a pair of additive loot initially in equilibrium. 

The results are relevant to all population sizes, for it has been 

shown (section 3) that for a given set of parameters p0, %, Nia, 

Nip and No the time eoa].e is proportional to the population size, N. 

Since the approach to the limit is aaynqtotio, Robertson 

(1960) defined the half-life of the selection process, the time taken 

for the mean gene frequency to get halfway to the limit, as a measure 

of the time scale of the selection response. For one segreting locus, 

Robertson showed that as Nicz becomes very small then the half-life 

approximates 1.4N generations. Higher Nia values usually reduce the 

half-life, for the favourable genes are more rapidly fixed by selection. 

However low frequency genes with smell Nim my have a half-life in excess 

of 1,4N generations, for the initial increase in variance due to an 

increase in gene frequency from selection more than compensates for 

the decrease in variance due to drift. Half-lives for single additive 

genes were computed by matrix iteration with N = 32 and are plotted in 

Figure 20. 

Typical response curves of linked loot are shown in Figure 

21. In these p0 = q = 0.1, Nia = 2, 4 and 8, NiP = 8, No = oG, 1, 

1/4 and 0 and rims were made with population size N = 8. In a]]., 3200 

replicates were used for No = 1 9  1/4. and 0 0  and the curves of No = cl) 

were obtained by matrix iteration. In the first few (say N/2) 
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generations linkage has little influence on the response but theta 

with tight linkage the response rapidly slows down. With equal, 

large Nia and Ni3, it can be seen that the response ceases at about 

the same time with No a 0 and No = o, but some response is mede later 

with other values of No as recombination takes place. Since the reduc-

tion in response with linkage only occurs in the later generations, 

the half-life of the selection process must be reduced. ApproTi'Tte 

half-lives for the example of Figure 21 are given in Table 6, 

TABLE 6 Half-lives (N generations) 
of the selection process for 
p0  = q0  = 0.1 and Nip = 8. 

Niu.INc 	00 	 1/4. 	0 

2 1.31 1.19 0.86 0.65 

4 1 100 0195 0.66 0,57 

8 o.6 062 0.57 0.50 

The influence of the initial frequency and size of the 

interfering gene, B, on the rate of response of the affected gene, A, 

is illustrated in Figure 22 for the ,v.rrle p0  = 0.3, Nia a 4 and No a 0, 

in which iime were made with N = 16. The selection limits (at 6.25N 

generations) have been shown earlier in Figures 8 and 104 they are 

given again in Piir'e 22 together with the average gene frequency of 

A at several intermediate stages of the selection process. The time at 

which response is first influenced by the 141red  gene, B, does not seem 

to depend on the initial frequency of B, but does depend on its size. 

If B has an initial frequency near to that causing the maximum reduction 
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in A's chance of fixation, little further advance in the frequency of 

A occurs after the first effects of linkage are noted and, in fact,, a 

sm1l negative response may be observed for some time. If B has an 

intermediate or high initial frequency, it was sun previously (Figure 

8) that the chance of fixation of A may be higher, the larger Rip. 

Comparisons, at the responses for Rip = 8 and Nip a 16 in Figure 22 

show that it is only in the later generations that A makes a greater 

response with the larger value of Nip. Approximate half-lives for this 

example are given in Table 7,  where it can be seen that the later 

increase in response with the larger Nip and intermediate or high q 

(>,o.2) is such that the half-life is atuaUy increased somewhat by 

the presence of a large linked gene. 

TABLE 7 Half-lives (zN generations) of 
the selection process for p o  = 0.3, 
Nio4 and No a 0. 

Nip jqo 	.0 .025 	.05 	.1 	.2 	.3 	.4 	.5 	.6 	.7 	1 10 

	

16 I 	.77 .51 	.31 	.48 	.79 	.84 .84 ,87 ,84 •84 	77 

	

81 	.77 .62 .46 	.43 .44 .53 	.62 .75 	.78 .75 •77 

In Figure 23 the influence of the size of the interfering gene 

on the progress to the t 4-'nl-t is studied in greater detail, using the 

example of Figure 13 with p0  = q a 0.3, Nia = 4 and No woo 9  I and 0. 

If the results for Nc=O and Nc=° are compared, it can again b.seen 

that the larger Nip the earlier the frequency of A is influenced. Furthez'-

:ore, for t} e highest values of Nip,, aincet all the reduction in response 

for No = 0 versus No = 	occurs in these early generations. Such an 
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observation is probably to be expected, for it is only in the early 

generations of selection for a smell gene that a very large gene rsmL 4 ? 

segregating and presumably the larger gene can only effect the response 

while it is still segregating, For a gene with initial frequency 0,3, 

the .99-life, when a proportion .99 of the total response has been made, 

occurs after .33N, .75N, 1.79N, 3,97N and 4.61N generation. for Nia. 

32 0  16 0  8, 4. and 0 respectively for a single gene, and after these 

times few genes re'4n segregating in the pqpulation. 

When No = I it can be seen in Figure 22 that the initial 

reduction due to li nkage ia almost u great as when No.o. It is only 

in the later generations and with the smaller values of Nip, say lea. 

than 169  that more progress is nd.s with No - I than with No a 0. 

Reasons for the build.-up of linkage disequilibrium during selection 

will be discussed in the next section of the thesis; for the present, 

however, it can be assumed that differences in response for various 

No values reflect differing rates of breakdown of this disequilibrium. 

With the largest values of Nip there can be little time for reoombin. 

aticntooccurbdorethelarge,B,geneiafize4, Thus for No1, 

the half-life of the breakdown of linkage disequilibrium is 0.40 

generations in the absence of selection (equation 21), yet the .99-life 

for the selection response with Nip = 32 is only 0.33N generation.. 

However, with smaller gene effects, there is more time for recombination 

to take place and the more closely does the rate of breakdown of linlr*ge 

disequilibrium correspond to the total advance for different values of 

No. 
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7. fliTPRETATION OF SIMULATION RESULTS 

In this section an attempt will be made to formulate some 

theory for interpreting the Monte Carlo data on selection limits and 

rate of response. From the theory a new method of calculating the 

effects of linkage on selection 1(mlte for a simple modal of two loci 

will be developed. 

Conuariscn of additive and multiplicative models 

It was shown earlier (10) that with the model of additive 

selective advantages (2), which was used in the computer programme,, 

small amounts of negative linkage disequilibrium would be built up 

by selection in an infinite population initially in equilibrium 

A s1lr effect would be expected in snail populations. Negative 

disequilibrium has been shown to reduce the rate of selection response 

(7) 0  and might therefore be expected to reduce the chance of fixation 

also. Such a mechanism was also proposed by Pe].aenstein (1965) as an 

explanation of the reduction in response observed by Martin and 

Cockerham (1960) with an additive model initially in equilibrium in 

5nR11 population. However, if the selective advantages w1 , W2 , W3  

and w14  of the gametes AB, Ab, aB and ab, respectively, are multipli-

cative in relation to each other, such that w 1w4  = w2w3 , no li nkage 

disequilibrium would result from selection in an infinite population 

initially in equilibrium (12). Thus, if the build-up of negative 

shown by equation (7) is the only cause of the reduced chance of 

fixation with an additive model (2) in 5mJLfl population, no such 

reduction in chance of fixation would be observed with the multipl.t- 
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cative model (12). Therefore a comparison of the two models in 

small population was made by Monte Carlo si-irnilaticm,  using multi-

plicative selective advantages for some of the parameter sets run 

previously with additive selective advantages. 

The multiplicative model was constructed so that if the 

population was in equilibrium it would remain there, and also so that 

changes in gene frequency would be as close as possible to those 

obtained with the additive model and changes due to recombination 

would be identical. By im]ring  these latter restrictions direct 

comparisons could be made between the chances of fixation obtained 

using the alternative models. The simulation procedure for the 

multiplicative model was otherwise identical with that used for the 

additive model (see section i,), but the changes in ge.metio frequencies 

were computed as follows: 

AB : f, + df1  = if1  C  + 4 u. (1 - p)][1 + 4 j3 (1 - q)] -dR 
+ df 2 = 2 [1 + 4 o (1  - pfl[1 -4   qJ +an 

aB:f3+df3=if3(i_4cq)[1+4(f_q)+dR 
	 (28) 

ab:f4+df4if f [1_4ap][f_4f3q] 

where T was chosen such that d.f1  = 0, and 

a,= c A[i + 4 (Q.+ - 

where i = pa + aJ3, is the same as for the additive model. The change 

in gene frequency with (28) can be written, for A. 

d.p = 4 p ( i-p) + 4 	
j2 	

2p - 4 a.p(1-p) - 4 + 	 [1- 
4+i2cL3/X 
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and similarly for B. Thus the changes in gene frequency for the 

additive and multiplicative models differ only in terms contIii(ig 

both squared or cubed effects and LI . In the initial generation 

both models will show the same change in gene frequency. 

Computer runs with the multiplicative model were made for 

the parameters p0  = q, = 0.1, Nia, Nip = 1, 2, 4, 8 and 16 and No = 

4, 1, 1/4, 1/16 and 0, all with 400 replicates. Parameter sets with 

Nia.= I or Nip =1 were run with population size N=Scn]y, those with 

Nia. a 16 or Nip = 16 were run with N = 16 only; all others were zm 

with both N a 8 and N a 16. Results are shown in Figure 24 together 

with chances of fixation computed for the same parameters but with the 

additive model. Some of the latter data was also shown in Figure 4 

Rims were made at different population sizes for two reasons: firstly, 

as a further check on the diffusion equation prediction that the chance 

of fixation is independent of N for each model, and secondly to test 

whether the comparison of the additive and multiplicative models was 

affected by r.. Since the rate of build—up of negative &tseq4librium 

with the additive model is a function of squared selective values (9) 

it seemed possible that for constant Nia. and Nip the alternative models 

wild agree more closely at larger population sizes and correspondingly 

smaller selective values. 

However, the epneml impression to be gained from Figure 24 (( 
is that the selection 14n(t  is the same for both the additive and 

multiplicative models at both levels of population size. Also, 

comparisons of the results for each model with N = 8 and N a 16 tmitoate 

that the diffusion approxiition holds well. The statistical analysis 
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of the data of Figure 24 comprised pair-wise comparisons both of 

different models run with the same population size (Table 8) and of 

different population sizes run using the same model (Table 9).  The 

latter analysis was made on chances of fixation both adjusted (by 

equation 2) to N = 8 and unadjusted. In each o,arison, the 

difference in response for each parameter set was divided by the 

standard deviation of this difference and a factorial analysis 

performed on the new variates. In the absence of any real differ. 

enoet between the models each sum of squares is distributed as X 2 

and has expectation equal to its degrees of freedom. Clearly the 

fit is good in all oases, and adjustment  to N = 8 makes little 

improvement. 

A further comparison of the additive and azltiplioative 

models is included in Figure 25, for which the parameters were 

Po = 0.5 9  q = 0.1 9  Nia = 2 and Nip = 8. Results for No = oO 

were obtained by matrix iteration and those for No = 1/2 and 

No = 0 by Monte Carlo simulation with 1600 replicates and a popul-

ation size of N = 8 for both models. The average gene frequency 

of A is plotted together with the average within-line values of 

p(f p), the variance of gene frequency of A. aML.\ , the disequil. 

ibrium determinant or oovarianoe of gene frequencies of J and B. 

From equation (7), the rate of oh*nge of gene frequency within a 

line, for this parameter set, can be expressed by 

dD 
d(tIN) = p(1 - p) + 4A 	 (29) 
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TABLE 8 Analysis of chi-square of differences in the chance 
of fixation for an additive z. a multiplicative model. 

N=8 	 Ni6 

Source  df Sum of aquarea 

Mean 1 0.016 0.303 

Nia 3 0.883 6.867 

Nip 3 
* 

10.012 4.725 

Nic& x Nip 9 6.596 14.343 
No 4 6,621 1.758 

Nia x No 12 3.536 16,405 

N143 x No 12 17,566 7,101 

NiCL x Nip x No 36 35.978 37.477 

Total. 80 81,208 88.979 

* 
.01 < P <.05. All other sums of squares have P .05. 

TABLE 9 Analysis ofchi-square of differences in the nh1iioe 
of fixation for population sizes N = 8 vs. N a 16. 

Model Additive Multiplicative 
Adjusted to N = 8 No Yea No Yea 

Source df Sum of Squares 

Mean I 3.414 0.003 3.461 0.000 
Nia. 2 1.929 6,390 3.439 1,521 

Nip 2 4.753 4.752 6.174* 5.784 

Niax Nip 4 2.130 1.186 3.228 2.824 
No 4 2.691 2.576 2.268 2.213 
NiaxNo 8 5.872 5.916 7.129 7,426 

Nip x No 8 8.343 8,464 10,776 10,273 
Nia. x Nip x No 16 21,153 20.655 10.492 10,477 

Total 45 50,315 49.94.2 46,967 40,518 

.01 4 1< .05. AU other sums of squ ,.res have F > .05. 
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The scales of Figure 25 have been arranged to show the relative 

mageitude of the terms in (29), and curves are drain on a time 

scale of t,41 generations. 

In Figure 25 it can be seen that with both models there 

is not only a build up of negative disequilibrium, but also a 

reduction in the variance, p(1 - p), within lines when there is 

tight li'ik.ge  between the pair of loci, The reduction in variance 

is about the same in both models. However, L becomes rather more 

negative with additive selective advantages, particularly in the 

early generations, and the chance of fixation u(p0) is slightly 

lower with this model, at least for the rune shown in Figure 25. 

Nevertheless, it is clear from both Figures 24 and 25 that the 

additive and multiplicative models are acting in a very 54?n4lx' 

manner, and that the build up of negative disequilibrium anticipated 

from (to) for the additive model in an infinite population is not an 

adequate explanation for the reduced chance of fixation in small 

populations with linked genes. 

Aprintely equal effects 

A more satisfactory interpretation of the Monte Carlo 

results can be obtained by considering the saqling of gametes which 

occurs during selection in a small population. Firstly the discussion 

will be concerned with the case where the genes have approximately 

equal effects, but the results are rather imprecise. Then for unequal 

effects, say P > 2a., in which the gene of e'&1er effect has no 

influence on the chance of fixation of the gene of larger effect, a 

more detailed approach will be presented, which leads to a useful 



analytical technique. 

Consider the first generation of selection of N parents 

from a large population in equilibrium. Let the gene frequencies 

in these parents be p and q for the pair of genes A and B and assume  

there is still equilibrium. The population of 2N sampled, gametes 

can be classified according to which genetic types Al, Ab, aB and ab 

occur in the sample, as shown below, 

Class 	 Gametes 

	

Lo ur 	Do not occur 

(i) 	ab 	AB, Ab, aB 

(it) 	Ab,ab 	Al, aB 

aB,ab 	Al, kb 

Ab,aB 	AB 

AB 	-  

Pguency 

May occur 

- 

2N 

ab 	(1_pqj2N - (f-p) - 	2N (i -q) 

+ [0-p)(1-qfl 

Ab, aD, ab 	I - (I-pq) 

If the first sample falls into one of the classes (i), (ii) or 

(iii), there is at most one locus still segregating, so the degree of 

l4nrige between the pair of genes will not influence later rates of 

response and the ohanoe of fixation. However in sub-populations of 

class (iv) both the favourable alleles A and B are represented, but 

there are no gametes Al. Gametes of type Ab and aB will be selected 

at the wqmnse of ab, and AB will only arise as a result of recombination. 

if 14 go is complete most sub-populations starting in class (iv) will 

be fixed for h or aB. If = 3 	 ( b) , the ratio 	-1(,--73) will eua1 
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the ratio of frequencies of Ab and aD in the initial sale. If 

the parameters NicL and Nip are large, AD gametes which ocm* from a 

recombination will have a high chance of fixation. With intermediate 

degrees of linkage, se populations initially of class (iv) may lose 

Ab or aD before a recombination has occurred. Thus with intermediate 

or tight linkage and equal large effects, a response will be seen in 

the early generations as the frequency of Ab and aB increase relative 

to ab gametes. Then a period, of no response may be observed if Ab 

and aB have the same effect, after ab has been lost. Negative dis-

equilibrium will, of course, be observed within lines during this 

period. Plnsl1y,  if a recombination takes place and AB is formed., a 

later period of response will ocoin' as AD increases in frequency at 

the expense of Ab and aD. On the average of mazW such populations, 

this pheomencm will be reflected in a long period of slow response 

after populations in which there is free recombination, or no 

recombination, have ceased to respond (Pipre 21). 

In sub-populations in which AD gametes are found in the 

initial sample (class (v)), AD will generally be fixed if Nic& and 

Nip are large. Otherwise, if AD is lost in the early generations, 

the populations will respond as for class (iv) in which AD is not 

found in the initial sample. 

Although the above model has not been developed far enough 

to enable accurate predictions of chance of fixation, by iking 

several strong assumptions some results can be obtained which 

indicate that the model has relevance to the observed Monte Carlo 
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results. Assume that there are equal effects, complete linkage and 

that after the first sample the selective values are sufficiently 

large that the most favouzble gemete in each class is fixed at the 

limit, except in class (iv), where Ab and aB are fixed in proportion 

to their frequency in the sample. For an nr, le with p0  = 0.1 9  

N a 4 and ia = ip = 1.0 for the first generation of selection, ohanoes 

of fixation of the allele A were calculated for various values of q 0. 

The results were, for 

qO  = 0.0 9  0.05, 0.1 0  0.2 0  0.3 9  0.5, 0.79  0.9 9  1.0, 

u(p0 )= .714, .632, .537, .4649  .479 9  .5679  .643 0  .695, .714, 

respectively. The miniaam of the curve of u(p 0) against q occurs near 

qO  = 0.2, and the curve clearly resembles that of Figure 8 with Nia 

Ni3 = 4. The ninimum of the curve occurs where the product of the 

probability of the initial sample falling in class (iv) and the chance 

that Ab is lost from this sample is a maxiimm, 

The bottleneck model 

%Vh.n the interfering gone,, B, has a zazch larger effect than A. 

say 3> 2a, a rather different approach, suggested. by A. Robertson 

(personal oic'mmrn(oaUon), can be taken. Consider an additive modal 

in which B baa a low initial frecjueioy, q0, a high value of Nip and  

is completely linked, to A (No = o), such that large reductions in the 

chance of fixation of A are likely to be observed.. Assume, firstly, 

that the chance of fixation of B is very close to one, a good approx... 

ination if Ni(3q0 > 2. Most of the metes fixed will therefore be 

AB or aB, so that all the selection response of A that is realised. at 
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the limit will come from an increase in the frequency of AB relative 

to aB gametes as no recombination can take place. If, at generation 

t o  the frequency of B is q, there will be just 2Nq1  gametes having 

the B allele so that the realised response for A will be made in a 

population of effective size 2Nq.. Thus, in the first few gener-

ations A will pass through a bottleneck of population size if B is 

initially at low frequency. The within line variance of A will 

therefore decline rapidly and less response will be made than if A 

is segregating independently in the population. 

Consider further a model in which Nia is very small, so 

that the mean gene frequency of A will change little as a result of 

selection. If there J# only one additive locus, the variance 

declines by a proportion 1/2N each generation and the total response 

is given by 

iCL  u(p0) - p0  = 	p0  (1 	p0) 	( i - 
 tuo 

= Map 0(1 - p0) 

(Robertson, 1960). For a linked additive locus, if only B gametes 

fixed, then 2N must be replaced by 2ffqt  to describe the change 

the variance and the total response, which will be denoted 

ia 
= 	p0  (1 - p0) [1 + 0 - 	+ (1 - 	) (1 - 	+ .. . 3 (30). 

i, not all the gametes fixed will, in general, contain the 

le allele B, so the theory must be developed further to 

ncThe t1i 	1.thrt o. 	ir'r, Ii- rT1 	 r'1 r-' 
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the distribution of gene frequencies, q, in order to evaluate (30). 

Let p1  be the frequency of A alleles among gametes having the 

B allele, i.e. p1  = f1/(f1  + t3 ) in terms of genetic frequencies, and 

let be the frequency of A alleles mg gametes having the b allele. 

Therefore 

	

p = p1  q + 2 	q). 
	 (31) 

At the limit, letting p1  and P2 be the total changes in frequency 

of A among B and b gametes respectively, the average chance of fixation 

of A can be written in the same form as (31) as 

u(p0 ) = (p0  + pj) u(%)* + (i'0 + 
p2)[1 - u(%)*], 	(32) 

where u(q0 ) is the chance of fixation of B. which must be evaluated. 

The disequilibrium determinant can be written as 

= (i - p2  )q(1 - q) 

so equation (7) for the change in frequency of B becomes 

	

' 	iQ. , dq = 	ci(1 	q) 1 -- p1  - p2  )q(1 	q) . 	(33) 

Kimura's (1957) formula (equation 17)  for the chance of fixation holds 

for one locus, and is thus ocmqr'iaed only of the term % q(1 - q) in 

(33). In the model here, it is assumed that ia is very small, so that 

c o.nges in q clue to disequilibrium and selection on A will also be 

.11111. Thus if du(g) is the differential of changes in the chance dq 

o fioTt.on of 	c. 	e 	11 0110 frequency, 

I,   

;LLJ 	= L dq 	CIA 

(1 p2  )q(1 q) are the changes in chance 

fixation and gene frequency of B due to selection on A. From 
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du(g) - 2Nij3 5-2Ni3q 
d.q 	- 	I - e'1 	

• 	 (34) 

If u(q) is the chance of fixation of B ooiuted for the one locus 

model, and 'U(% )A is the adjustment that must be made to take 

account of selection for A. then 

= u() + 

Equation (32) can then be rewritten to give the response in A as 

u(p0) - 	= ( p1 )u(q0) + ( p2)[1 - u(q0)] + ( p1 - p) u(q)A, 	(35) 

where account has yet to be taken of the distribution of frequency of B. 

If the changes in p1  and p2  at generation T are denoted dpjT 

and dP2T  respectively, then 

l= 	iT 

Also, at generation t, 

'p2= 
00 

 0 &P2 . 

t 
dQA = 	[ Z PI T- 	2T I qt (1-  )• 

Thus 
t 

- 2) U(%)A = 	Z [ L (dPIT  - &p)][ 2 (dp1  - 

	

t=O T=O 	 T=O 

du(q)    

	

. 	(l - q) d.q 	• 	(36). 

The terms dpiT  or d.p in (36) each have a component from drift, which 

ae zero expectation, and a component from selection. Products of two 

uoh terms will include a function of (ia) 2  which can be iiored as 

is is of smaller order of magnitude than the other components of 

(5) 	s that 



E(dpjTd.p,) = 0 	, all T, T', 

E(dplTd.pjT,) = 0 and E(dp2Tdp2T,) = 0 , P ¶2', 

) = V(dp1 ) and E(dp) E(dp1   

where V denotes variance. Hence (36) gives 

t 	
du(q)

- 	(q0) = 	 c 	[V(1p 
t=O NO 	

1T + V(dp)]q(i - 	. (37)  qt )  dcl 

In order to find the expectation of the terns in (35), it will 

be necessary to investigate the gene frequency distribution of B. To 
* 

do this it is convenient to define some mtrices at the outset. Let M 

U, X and V be square matrices of dimension 29 + I t  with elements mjkt 

mjkl Zik, Yjkt respectively, for j,k = 0, 1, •.., 21q, where: 

• 	2N j)]k[1 	 ,j 2 	 22N 	2N 

C 

I mik = mik all j,  k except m = nim 	 = '-'  

* 
x. jtc = m. (1-f/k)k0;x 0 =o; 

* 
= m ik 	 jk 	2N-k' k 2N ; Yj, = 0 

is, of course, the transition probability matrix for the change in 

iene frequency, where j/2N = q , 1ç12N = q 1 . Also let U, L and V 

be column vectors of dimension 211 + I t  with elements Uj , ]. and vp  

, 	 , 1, ..., 2119  where: 

- i13 
the ehiee of fixation of P 
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= 
, the chance of fixation of b; 

I — 
-ji1' 

and v = ipj(i - j/)(1 - 	which in terms of q is 
I -e 

u( g) 
Vj  = q(1q.) d. 

 d 

Finally let Rt  be a column vector of the same dimensions, with 

elements rj(t).  At generation zero, R0  defines the initial gene 

frequency distribution of B, and if 2Nq = j is integral, R0  becomes 

t'k(o) = 0, k j j and rj()  = 1. 	 (38) 

Turning firstly to selection among gametes having the 

favourable allele B. imagine that at generation (ti) the frequency 

of B is j/2N and the variance in gene frequency of A Among these 

gametes is p0(1 - p0) rj(t..I).  At generation t. B will have 

frequency k/2N with probability mik,  in which case the variance 

will decline by a proportion 1/k. The expected Value of 1'k(t) 

is therefore 

rk(t) 	2  nj(t_1)mjk (1 - I/ic) 

= Z rJ(t-1) Xjks 	 (9) 
j=I 

Summation in (31) does not have to be taken over j,  k a 0 since B 

is not segregating. However, in order to keep all matrices with the 

was dimensions, it is convenient to do so. Since, by definition 

Xjo 
= 0, (39)  can be replaced by 
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2N 
rk(t) zE 	rj(t..l) Xjk • 	 (4.0) 

J=O 

In matrix notation (4.0) becomes 

	

R' 	1' 1 

	

t 	t-1 

= RXt 

where 10  = i t  the identity matrix. X can be regarded as a trans-

ition matrix for changes in the variance of A. From (35) the 

contribution from generation t to u(p0)-p0  due to selection within 

B gametes is seen to be the expectation of dp 1 tU(clo).  This is 

	

ia 	 29 
E[dpjt  u(%)) = 	p0(1 - p0) E rk(t) Uic  

= 
72 
 p(i - p0 ) R, X U. 

Therefore, the total response is 

El 41t  u(%)] a 	p0(i - p0 ) R ( 	xt)u • 	(41)'cL 

It can be shown that all the latent roots of I, ,k, are such that 
A-1 < 1, so that the following relation holds 

xt = (i-x) 1  

c, p. 196). Hence from (33) 

tc fine'ation declines by a proportion 	 The expected 
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E 	[1 - u(q0)] = 	p0(1 - p0) R (I - 	. 	(43) 

Finally consider the expectation of the remaining term in 

	

(35), which is (p - 	u(q0) and is expanded in (37). The 

expectation of Z V(d.plT) will be the drift variance aixng B alleles, 

and wil). be 

E[Lv(dPIT)j = p0(l - p0)[2 	+ 2N(: 	21 	+ •' 

	

T=1 	2Nq ' 

since changes in p0  are assumed to be small. (44) can be rearranged 

to give 
t 	 t 

[ z V(dp1 )] = p0(1 - Po) [1 - 	0 	2Iq fl 
T=O 

Therefore from (37) 

	

iC6 	 .6 

- 	u(q0) 	p(1 - p0 ) E 	- I 
t 	1 f (1 

-T 	2Nq' =1 

t I 	 _qj  du  - ii (i - 	(fJ)]Q(i - 	dq  

From the transition matrix for the gene frequency distribution, M. and 

from the deriv&ttons used to evaluate the responses within sametes 

containing B or b alleles, the expectation of (45) becomes 

E[( 'p1 - 	 0)) = 
LM 	 '  p0(I - p0) R 	(t - 	- yt)v 

ia  = 	p0(I - p0) % [2(1-M) -1  -(I-xy1- (i-YY 1 3v.(46) 

•:, () 	5) gives the final result for the expected 

response, 



64. 

p0(1-p) R [2(I.M'1V + ( i-x) 1  (u..v) + (i-) (L-v)] (4 7) 

Formula (47) was used to oompute responses, u(p0)-p 0 , for a 

range of Nip values, and results are shown as a function of q 0, the 

initial frequency of the interfering gene, B, in Figure 26. The 

responses are plotted as a proportion of Nicr. p0(1 - p0), which is the 

total response expected for a single gene of the same effect and 

initial frequency (Robertson, 1960), and so are independent of Nia 

and p 0 . In the notation used in section 5, this ratio is therefore 

Niu/Nic 

If Figure 26 is compared with Figure 8, in which u(p0 ) is 

plotted against q for various Nip and No = 0 from Monte Carlo runs, 

it can be seen that there is a striking resemblance between the 

graphs. The agreement is best for the higher Nip values (7i13 >/8)2 

where in Figure 26 it is again found that the maxinnim reduction in 

the chance of fixation of A occurs when qO  = 0.8/Ni3, approximately, 

for which u(%) = 0.8, approximately, A larger nsxijmim reduction in 

u(p0) for Nip = 32 relative to N143 = 16 is found in Figure 26 but not 

in Figure 8. It seems prbable that the contrary observation from the 

Monte Carlo run was caused by sampling. However, since the gene 

A studied by Monte Carlo ain1lAtion for Figure 8 has Nim = 4., little, 

if any, reduction in u(p0) is found where Nip < 2 or, in terms of the 

effects, 3 . c/2. The bottleneck model used to derive (47)  assumes 

a very small Nia, so a reduction in response is still observed at 

Nip < 2. Also there is less reduction with Nip = 4 for the case 

where Ni = 4 (Figure 8), relative to Nia becoming infinitely 
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FIGURE 26 The influence of the initial 
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completely linked additive gene 
on the total r esponse  of an 
additive gene with very small 
effect. The response is measured 
as a proportion of that expected 
from a single gene with the same 
parameters, 
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an11 (Figure 26). These differences between the two models could 

be predicted from the size of effects, so it would appear that if a 

gene with sufficiently smell Nia was nm by Monte Carlo sinilation 

with a large number of replicates and with No = 0, a curve almost 

the earns as Figure 26 could be drawn. Thus it would seem that the 

model of a bottleneck of effective population size used to derive 

equation (47) is an adequate description of the influence of an 

additive gene on the response of another ocletely linked additive 

gene with small Nia value. 

The data for Figure 26 is presented in an alternative 

form in Figure 27,  in which the proportional reduction in response 

is plotted against Nip for a few values of q 0. Figure 27 is 

therefore analagous with Figures 12 and 13 for No a 0, but, as 

would be expected, the curves only resemble each other when 

Nip >Nia, say, 

Apart from being able to mimic the Monte Carlo results, 

the approach developed here has a useful predictive value for law 

Nia, If Nicz. is small, Monte Carlo simulation is very inefficient 

since the response, u(p0)-p0, is smell relative to its standard 

error. On the other hand, the bottleneck method only requires the 

inversion of three matrices, with no replication, to slaval ate the 

ro once 	law Nia., 

hen the approach developed in this section for small 

introduced, it was argued in terms of a favourable 
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close to unity because Nip was assumed to be large. As a result 

all A. a alleles would pass through a narrow bottleneck of 

effective population size for all response would be made among 

gametes containing B and these would initially be few in number. 

If B is lost when initially at low frequency, little reduction in 

the variance of A can occur since the number of b gametes in the 

population will always be close to 2N. However, it has been 

found that the maximum reduction in u(p0) occurs when u(q)— 0.8 

for large Nip, and, furthermore, genes of intermediate Nip values 

may reduce response more than those with larger Nip, even if the 

initial frequency is low. An expl anation for these results can 

easily be given. With the higher NW values the response to 

selection of the B allele is more rapid, so that although there 

may be an initial bottleneck, the population of gametes having B. 

within which A is selected, rapidly pand.s. It can therefore be 

predicted that with large Nip values for the same, intermediate, 

q0, more response in A will be made in later generations than 

with me 1 Nip. Such a result was observed in Figure 22 and in 

the half-lives shown in Table 7. Similarly, the m4niit 

reduction in u(p0) does not occur when u(q) = I • For the chance 

of fixation, u(q0), to approach one, it is necessary for Ni3% to 

be greater than 2, apprimate1y. Thus the bottleneck for A 

J:r g . t 

 

gametes containing B is much less, in the early generations, 

if a lower value of qO  is found. It therefore turns out that 

the average reduction is larger with 80$ of the population passing 

-- 
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at all, than with all the populations of A passing through a 

larger bottleneck. 

In the Monte Carlo simulation results it was fonnd 
-A 

that the realised selection parameter, Nici (the value of Nia which 

would give the same chance of fition for a single gene with the 

same initial frequency), is almost independent of the initial 

frequency, p0, at least where a. <.13 . In the derivation of (47) 

it is actually assumed that NiCVNiCL is independent of p0, and 

since Nia. is very small it is assumed that NictNici is also indep-

endent of Nic&. This result is likely to hold fairly well for all 

Nia. <1/2, say, when changes in gene frequency are expected to be 

smell, and the decline in the variance fron drift remains closely 

proportional to p0(i - p0). It was found earlier, however, that 

NjcV'Nici may be much smaller for genes where Nia. is almost as large 

as N143 than for genes with smaller Nici (Figures 14-17)0 The 

explmtion seems to be that the bottleneck in population size of 

B gametes occurs in the early generations of selection and would 

thus be expected to influence most 	the response of genes A which 

would normally be responding rapidly at that time. Now genes with 

.1.2rge Nici make a high proportion of their response in the early 

cnem.tionz, in other words they have a short halt-life (Figure 20), 

d would therefore be particularly affected by a restriction in 

uL - :. ion 'iie in the initial generations. Genes of smaller Nia 

ee: iy make most of their response after the bottleneck has 

an passed. Similarly, it was noted. in Figures 14-17 that, 

Th 	tHL fre 	+T ----r 



reduction in NiWN.ic6 for genes A of high than of low initial 

frequency. The same interpretation must hold, for genes A of 

high initial frequency have a shorter half-life than do pnes 

of low frequency with the same Nia. (Figure 20), and BO would be 

expected to be more affected by an early reduction in population 

size. This is likely to be most extreme when B has a low initial 

frequency and the initial bottleneck is YGX7 ame.].l. Turning 
A 

back to the relation between NiNia, and the magnitude of Nia, 

it was noted that it was not practicable by Monte Carlo simulation 

to find the limiting value of Niciia. as Nia— 0. However, the 

results obtained from (47) give a solution. For the am Is given 

in detail earlier, for which q = 0.1 0  Nip a  32 and No  0 9  it 
A 

was found that with Nia. = 32 1  16, 8, 4 and 2 the ratio NicVNia was 

0.26 0  0.20 9  0.18, 0.50 and 0.60, respectively. For very small 
A 

Nia, the ratio for this exanle is seen to be NicVNia. = 0.73 

(Figure 26). 

If B has a low initial frequency, the effective populat-

ion size for A will be smaller among gametes having the B allele than 

among those with the b allele. Thus the expected response in p 1  will 

be wmaller than in p2, and negative disequilibrium will be observed 

both within lines (Figure 25)  and between lines at the limit (Figure 

1 . However a necessary consequence of this hypothesis seems to 

be that positive disequilibrium would be expected if qo  is greater 

than cne.half. Evidence from the Monte Carlo simulations is not 
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q '> 0.5 have resulted in a chance of fixation u(%) = I and hence 

no disequilibrium at the limit. Positive disequilibrium raises 

problems on the consequences of recombination, for there is certainly 

no significant evidence from the Monte Carlo nine that low No 

values yield greater responses than do higher No values, other 

parameters renaming constant. Reductions in u(p0) are always 

small for q >0.5 so this aspect will be difficult to study 

precisely; however some further investigation is clearly necessary. 
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8. DISCUSSION 

The discussion in the previous sections of the thesis 

has been concerned with interpreting the Monte Carlo results 

obtained. Many of the assumptions in this Monte Carlo study and 

some of its Limitations will now be outlined. 

From the diffusion equation (section 3) it was argued 

that computer rune had only to be made at one level of population 

size. However the parameters ia, ij3 and c used were frequently 

much larger than those necessary for the diffusion approximation 

to hold, but it appears (Figures 10 and 24) that the conclusion 

that NicL, Nip and No are sufficient parameters is highly robust 

against departures from the underlying assumptions. Computer rune 

were usually made with as email a population size as possible in 

cider to reduce computing time. In order that results would be 

more appropriate for populations of size larger than those simulated 

several assumptions were made in the selection procedure adopted.. 

At the some time these approximations further reduced the amount of 

computation necessary. In particular, the algebra developed for 

infinite populations and used to sImn)ite  selection and recombination 

was entirely in terms of gametes,, no distinction was made between 

the sexes and self fertilisation was permitted.. The precision with 

which that process describes the real situation for a bisexual 

species must be largely a function of population size, the greater 

N the smaller any errors introduced by these approximations become. 

. similar type of inaccuracy was introduced into the definition of 
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the selective values (2), which are precise only for genes of small 

effect. Strictly, second and higher order term in effects should 

have been included (e.g. (ia) 2 9  (i13) 2) but then the results could 

not have been generalised in terms of Nia. and NiP to populations of 

different sues. 

The selective values, ia and i, of the favourable alleles 

have been kept constant throughout the selection process, for which 

two important assumptions have been made. Firstly, the gene effects 

a. and 3 have been defined. (5) as the difference in genotypic value 

between the homozygotes at a locus as a proportion of the phenotypic 

standard deviation, a, so that for the selective values to remain 

constant, a itself must be unchanged. In nk1ng  the same assumption, 

Robertson (1960) pointed out that although the genetic variance would 

be expected to decline during selection, at the same time the environ-

mental component might increase as the level of homozygosity rises. 

Secondly, no account has been taken of natural selection which might 

be expected to alter the effective selective values of genes having 

correlated effects on fitness as gene frequencies move from their 

LnitiJ. euILLbrii:;. 

The oaei of tv:o additive loci each with two alternative 

alleles which has been studied is probably the simplest in which 

linkage could be included. In earlier Monte Carlo studies a larger 

number of additive loot have been simulRted, but with the exception 

of Fraser and Hansohe (1965) who were not concerned with selection 

limits, workers in this field have always used a model of equal 

fects and initial frequencies one-half at each locus (Fraser, 1957b; 
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Martin and Cookerham 1960 Gill, 1963 0  1965; Qureshi, 1963). 

However with the restricted model used here the initial frequencies, 

selective values and recombination fraction could be varied over a 

wide range and it was possible to obtain a fairly oomplete description 

of the selection Limit for this model. In particular, the influence 

of one gene on the chance of fixation of the other could be studied 

in detail, and this approach seems more likely to lead to an under-

standing of the process than if only the change in the population 

mean,, which is dependent on the responses of both genes, is 

considered. Thus any reduction in response can be viewed as a 

function of two components. Firstly, the bottleneck of population 

size within gametes containing the favourable gene B reduces the 

effective selection pressure (Nic) on the A gene, the reduction 

being approlmte]y independent of the initial frequency of A. 

The effect of this bottleneck on the chance of fixation of A then 

depende on the slope of the our?, of u(P o) age.inst1ii, If only 

equal effects and initial frequencies are studied, it is unlikely 

that these essential parts of the process could be disentangled. 

It is intended to continue this study to include more 

than two loci and non-additive gene effects, so at this stage there 

is little benefit in discussing these extensions in detail. The 

bottleneck model and the related model for equal effects outlined 

in the previous section are pertinent for all non-epistatia systems 

and the sane general picture of reduction in response is likely to 

be found with dOith*nt as well as additive genes. For the case 

where the affected gene has a very small NiCL, it should be possible 
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to extend the matrix derivations to include the case of the 

influence of both a dominant gene on a linked additive gene, an 

additive on a dominant and finally a dominant on a 

Perhaps the most simple multi-locus model is where a chromosome 

has only one gene of large effect, and several genes of very 

n11 effect. Then the response of these smaller genes is likely 

to be affected only by the larger gene and the model reduces 

essentially to two loci. However when there is more than one 

locus of intermediate or large effect on the chromosome no 

definite conclusions can yet be given about their influence on 

a third gene. 

This study has been further restricted to include only 

populations initially in linkage equilibrium. However Mather (1943) 

has argued that natural selection would favour balanced repulsion, 

but Wright (1952) has shown that selective values have to be large 

and linkage tight for much repulsion to be mint&ine&, In general, 

if loci have no epistatic effects on fitness, an unse].eoted closed 

random mating population would be expected to remain in equilibrium 

(Lewontin and Kojima, 1960). On the other hand, disequilibrium 

will almost certainly be found if the populations are derived from 

a cross between lines, whether unrelated or selected from the same 

original population, or from a cross of a highly selected line to 

the on 4na]. stock. It is hoped to inveetito these situations 

theoretically in some detail, for they have an important bearing 

on the problem of breaking selection limits. Some relevant 

infoziuU.on his come from this study, however. 
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It has been shown that with tight 1 i nrge there is 

usually netive disequilibrium () in the chance of fixation of 

the gametes. Thus line crosses, or crosses of selected lines to a 

base population in equilibrium, ivill, on average, have an excess of 

repulsion heterozygotu. Response after the cross is therefore 

likely to be reduced when genes are tightly linked, and it may be 

necessary to relax selection for a few generations to allow recombin-

ation. Also, if gene effects are unequal, an initial period of 

reverse selection might be advantageous, 80 that the frequency of the 

smaller effect gems in repulsion gametes may be increased. Osman 

(1963) allowed varying periods of reMain mating before re-selecting 

crosses to the base population of a line of Drosophila ,  meiostei 

selected close to a limit for sternopleural bristle number. 

Although Osman concluded that, on average, the limit was reduced 

by this random mating, two of the four crosses nk{ng most response 

had undergone seven generations of relaxation before selection. 

Of course, a critical factor determining the effectiveness of any 

period of random mating is the population size which can be maintained 

1urin thr time. 

hen there is oalete linkge  (No a 0) the new selection 

U;it ftcr crossing selected lines can be computed using Kiimira'a 

(1957) for,nii* (equation 17), for there are only two alternative 

mnietez in each possible arose. If the new limit is termed v(p0) 
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-Nia .-s v(p0) = [u(p0)] 	
1 2 	

1 + 2[u(AB)u(aB) + u(Ab)u(ab)j[ - 

i -
-c..3 

+2u(A*i(ab) [ - et" 
	

+ 2u(Ab)u(aE) 1 - 0 
Ni( 	) 

 

	

1 - 	
( 

where N and I are the population size and selection intensity during 

the period of re-selection. For one locus, Robertson (1960) found 

that if the further selection from the cross has twice the Ni value 

as has the original selection, then the expected limit s  v(p0), would be 

the same as for selecting one line from the original population with 

twice the original value of NiCL. It appears that the same result 

holds approximately for linked loci. An exanle is given in Table 10 

where in the original sub-lines Nia.= 4 and Nip u 8, Data is taken 

from Figures 3-7 and limits for the cross were oaloulated by equation (48). 

TABLE 10 Total response (v(p0)-p0) from selecting in two 
sub-lines and re-selecting their cross as a 
proportion of the total reeponee from selecting 
in one line. In the sub-lines Nb. 4. and 
Nip = 8, otherwise Nia = 8 and Nip 16. No = 0, 

Po 	q .05 .1 .3 .5 .7 

.05 0.73 1.29 1.22 1.26 0.95 

1 1 1.02 1.21 1.15 1.02 1.03 

.3 1 1 19 1.02 1.06 1,01 1,01 

.5 0.87 1.07 0.98 1,00 0.99 

1.00 1,11 1 100 1.00 1.00 

In Table 10 it appears that, while on average rather more 

response is made by splitting the original population and re-selecting 



76. 

the cross, the differences between the methods are never large. 

Further investigation is clearly necessary to determine whether 

these alternatives ever differ much in efficiency. 

Returning to the problem of one cycle of selection from 

the base population, it was found that, with an additive model, if 

linkage influenced response it was always in the direction of a 

reduction in the limit. That evidence is there from animal popul-

ations that this occurs? Robertson (1965) selected 10 parents out 

of 25 scored for each sex for low sternopleural bristle number in 

Drosophila melsnogaster, In five lines crossing over was suppressed 

on chromosomes 2 and 3, in another five lines crossing over was 

permitted.. The base population had a mean of about 17.8, and the 

averages of the five line sets for bristle number were as follows: 

Generation 5 10 14. 

Suppressed. 15.7 14.8 14.5 

Unsuppressed 15.4 13.9 13.1 

Also, after 13 generations, every line in which crossing over was 

permitted had responded more than in every line in which it was 

suppressed. The pattern of response in these lines is clearly 

similar to the pattern observed in the Monte Carlo runs. In the 

early generations the response. is about the same, whether reconibin.. 

ation occurs o: not, but with tight 1inkge the response rate slows 

clown rnch more rapidly in the later generations. 

It is important to draw attention at this point to the 

d.eyec of linkage smmulted. in the Monte Carlo nine. Generally the 

1arest No value used was No = 1, which with 20 selected parents 
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implies a recombination fraction of only 0.05. It has been found 

that, at least for two loci, 'eatest reductions in the change in 

the population mean are found when the gene effects are approximately 

equal (Figure 19). In this case, there appears to be an almost 

linear re'easion of response against No, transformed to a scale 

of i/(2Nc + 1). The exazrle of Figure 19 shows that when p0 = 	= 0.1 

and Nia = 8, the largest reductions occur with Nip = 8 when about 70 

of the response is made with No = 0 relative to No = oO . Using the 

1/(2Nc + 1) transformation, the expected responses for this example 

with N= 2o would be, asa proportion of the response with Nca, 

98.6 9  97.3, 94.0, 90.0, 85.0 9  78.6 and 70.Oj 

for c = .5 9 	.25 9  .1 9 	.05 9  .025, .01 and .0 respectively. 

These results illustrate a general conclusion that can be 

gained from this study, for only when widely different recombination 

fractions are compared is much difference in response to be expected. 

Thus in the above example the greatest difference in response 

observed for a doubling or halving of the recombination fraction is 

only , This occurs in the range around 0 = 1/2N, where the curve 

of 1/(2Nc + 1) against No has greatest slope (Figure 2). 

These results have a bearing on the optimum intensity of 

artificial selection which should be applied in order to mimtae 

the selection limit.  In meny selection programmes the number of 

progeny (T) that can be recorded is fixed. Tith one locus, or no 

linkage, the opttntim proportion (NIT) to select is therefore the 

value of WT which nimises  Ni, which turns out to be one-half 

(Dempster, 1955; Robertson, 1960). 	Iaso,Ni is the same whethrr 
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NIT or (I - N)/T individuals are selected, for any value of N and T. 

When there are linked loci, it can be expected that the optimum 

intensity of selection will be rather lower, for if more than half 

the individuals are selected., although Nim is reduced relative to 

N/I = 0.5, at the same time No is increased and Nip reduced.. 

Both the latter would generally increase the response for A. 

Further, the limit will no longer be symmetric about WI = 0.5 9  

very intense selection being less successful than Ye17 weak 

selection in the long run. An example is given in Table 11 for 

the case of I = 40 9  a.= P = 0.5, 0 = 0.025 and 	 = 0.1. 

It is assumed that the response is proportional to 1/(2No + 1) 

for given Nia. and Nip. The results are obtained from interpolation 

of Monte Carlo data and are approximate, 

LTABLE 11 Chance of fixation of an additive gene when 
4.0 individuals (T) are recorded., a. = = 0.5 
and p0  = q = 01. 

Proportion selected (N/I) 

.05 	• 1 	.25 	. 	.5 	.6 	.75 	.9 	.95 

•34 .51 .71 78 .80 .78 .71 .31 .314 

.31 .4.6 .61 .66 .70 .70 .65 .4.9 .33 

.30 .45 .52 .60 .1 .(0 .52 • 15 .30 

No linkage 

0 = 0.025 

c=0 

7.hen NIT = 0.5 0  No = 0.5 for o = 0.025 so the above eainple 

i-z3 relatively sensitive to changes in No as the proportion of the 

population selected in altered from one-half. However it can be seen 

that the optimum is still close to N/I = 0, when o = 0.025 and the 
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curve of u(p0) ainAt N/T is not very skewed. Of course, with 

no r.00mbinaticn the optimum ren*ins at WT = 0.5 and the curve 

is symmetric. Thus when designing selection progrrazmnsa  it would 

appear that considerations of linkage  should not influence great3 jy 

the intensity of selection to be practised.. However more drastic 

effects might be found with more than two loci. 
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9. 	Si.W4A.RY 

A theoretical investigation was made of the influence of 

likge on limits  to artificial selection in small populations. 

Most results were obtained by Monte Carlo simulation, 

A model of two additive loci, each with two alleles, was 

used.. The difference between the effects of the two honozygotas 

was expressed as a proportion of the phenotypic standard deviation 

and defined as a. and P for the loci with favourable alleles A and B, 

respectively. These alleles had initial frequency p0  and q, 

respectively. It was assumed that the base population was in linkage 

equilibrium, and that the recombination fmoticm, o, was the same 

for both sexes. 

It was ahoivu that, if the effective population size is N 

and the selection differential is i standard deviations, the selection 

limit in afunotionof only p0 , q,, Nia., Nij3 and No, and the time 

scale of the selection process is proportional to N. Thus it was 

necessary for Monte Carlo computer runs to be mad.e with only on 

population size. 

The chance of fixation (the expected gene frequency at the 

limit) of A, u(p0), mey be greatly reduced if the loci are tightly 

linked and if j3 is not less than about one-half of a. The chance 

of fixation is never increased by linkage if the population is 

Initially in equilibrium. 

Unless a. and 3 differ widely, the decline in u(p 0) with 

reduction in No is appriirtelr linearly related to the rtte of 
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breakdown of 1(ikngs disequilibrium in sm1l populations, which is 

proportional to 1/(o + 1). 

The larger NW,  the greater the madxmiin reduction in u(p0) 

and the lower the initial frequency of B at ithioh this n.,4niyn  occurs. 

For large N143, B has most influence it q' 0.8/Ni. If q o  is higher 

than this, a gene, B. with snl1er  Nip may have a larger affect on u(p 0 ). 

It was shown that the influence of the linked gene, B, is 

approTintely independent of the initial frequency of A. 

The total response of the population mean, a function of both 

the responses and effects at each locus, is most influenced by tight 

linkage when the loci have appro3inte1y equal effect and the favourable 

alleles have a low initial frequency. 

In the early generations the rate of selection advance is not 

affected by liiik.ge, but in later generations the rats may becone vezr 

much slower than with free reoo,nbination. 

The degree of linkage has little influence on the aptiiiim 

intensity of artificial selection. 

Theoretical models were developed to interpret these results. 

If the initial gene frequencies are low, the favourable coupling gamete, 

B, is rare, and in a small population AB may never be foxed if linkage 

is tight. If B has a high chance of fixation and a < p/2, selection 

can be viewed as selection in a population whose effective size 

i t.e number of gemetes that contain the B allele. If B has a low 

initial frequency this effective population size is initially very 

ra11 	the in -e ii one fre- ency of  
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The model was d.eelcped to gtys a method for sl-i'niiiting the oaas 

of conlete linkage,, with very small 1tic, which does not rsq4re the 

use of Monte Carlo techniques. 
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Artificial selection applied to one character almost always 

leads to changes in others. The theory of such "correlated responses" 

is well known and has recently been reviewed by Falconer (1960a). 

In this, the genetic correlation between the two characters plays an 

important part and deterd.nee the predicted pattern of the correlated 

responses fomd in different experiments, e.g., the response in 

character 2 on selection for character I coared to that in I on 

selection for character 2 or the caaxtaon of the responses in 2 on 

selection for I in opposite directions. Aror discordance of the 

pattern of correlated responses from expectation will be termed an 

"asymmetrical correlated response". The sane measurement made 

under two different environments can be considered as two separate 

"characters". 

Falconer (1960b) selected mice for growth rate on high and 

low planes of nutrition and observed the correlated responses on the 

alternate nutritional level. The realized genetic correlations were 

equal for the first four generations of selection (0.67, 0.65) but 

were marked3,y different for generations 5 to 13 (1.25 9  -0.02). The 

.'symmetry was attributed to changes in the basic parameters due to the 

•eleotion applied, and large changes in the phenotypic standard 

Asymmetry of the realized genetic correl-. 

o 	by Bell and McNary (1963) who selected 

ribolium oaataneum for increased pupal weight in both a wet and a 

:nc:L, 	n7. b 	:cTh. 	e1 (:: 
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increased and decreased 13 day larval weitht in Tribolium caataneum 

under good and poor nutritional levels. 

Similar results have been observed in poultry by Siegel 

(1962) and Nordakog and Festing (1962). The former selected for 

four generations for body weight and breast angle, and found a 

realised genetic correlation of about .55 when selection was for 

body weight and a value of about .45 when selection was for breast 

angle. The latter workers selected in both high and low directions 

for body weight and egg weight, and observed asymmetry of the realized 

genetic correlations between body and egg weights when either the 

direction of selection or the trait being selected was considered. 

In both of these papers, the asymmetry was attributed to differing 

genetic variances or heritabilities for the two traits, 

Clayton, Knight, Morris and Robertson (1957) observed 

asymmetry in response of sternopleural bristle number in Drosophila 

m,lRno5ter to seletion for increased and decreased stemital 

bristle number. The results were somewhat erratic, which led the 

authors to conclude that gene drift may play an important part in the 

correlated response when the genetic correlation is low. In general, 

however, there was a positive correlated response when selection was 

for increased sternital bristle number and no correlated response 

1--.en select ion was for lo-ir steriitt1 1:rist].e number. 

On the other hnl, some selection experiments show a close 

'it of expected to observed correlated responses. For example, Reeve 

oi; 	(15) 	'n' thorcrtson    



melanogster and found good agreement between estimates of the 

genetic correlation between the two characters in the base population 

and the realized genetic correlations in the populations selected for 

each trait separately. 

The frequency with which aayrimstrioal correlated responses 

have been found suggests that some mechanism other than genetic 

saqling is affecting the correlated response in these populations. 

The purpose of this study was to reu'.e.mine the theory of correlated 

response and if possible to establish the conditions in which any try 

of correlated response to selection was to be expected. 

The Model 

It has been shown by Falconer (1 960a) that the correlated 

response in trait 2 from selection for trait I would be 

C P21 = ! 1 h1  h2 rGo-2 ••••••••••••••••••• (1) 

where Ti is the selection intensity for trait I in standard units, 

h1  and h2  are the square roots of the hez1tabilities for traits I and 

2, respectively, rr  is the genetic correlation between the two traits 

and 2  is the phenotypic standard deviation in trait 2, Dividing both 

sides by t1O2  results in a standardized correlated response (cR 1 ) or 

the correlated response in standard deviations in trait 2 for each 

standard deviation of selection in trait I • Thus, 

- 2 1 - 1 h2  ' G 

can be obtained, and it is seen 



that 

NO 	CR4 2  = li,1  h2 rG. - COY W0 1  02  •••••• 

The standardised correlated response should be the same In the first 

generation whether selection is on trait I or on trait 2 or whether 

the selection is upwards or downwards. 

When the correlated response is measured over several 

generations, selection my change the value of the parameters them-

selves in such a my that the standardized, responses, as measured in 

the two different populations, are asyninetrioal and different from 

those predicted on the basis of the original parameters. This follows 

the suggestion of Falconer (1960b) that the asyxrtnetz'ical responses he 

observed were the consequence of changes in parameters due to selection. 

Large changes in the phenoipic standard deviations were observed, and 

the potential effect of these changes on the standardised correlated 

response is evident from equation (3). 

The three parameters of interest in (3) are the genetic 

oovarianoe and the phenotypic standard deviations, and consideration 

is centered on how these parameters can change during selection for 

each trait involved. 

The genetic covarianos between two traits, as calculated, in 

any population by the usual analysis of oovarianoe technique, can be 

caused either by linkage disequilibrium of genes affecting the two 

traits independently or by the plsiotrqiio effects of single genes. 

In the case of linkage, the population would tend toward equilibrium 

at variable rates depending upon the cross over distance between the 

genes. The effect of linkage on the correlated response would be similar 

to that of pleiotric genes, except that, as c csin!- over occurred 

444- 



and the population approached equilibrium, the effect of linked genes 

on the asymmetry of correlated response over a number of generations 

would be less than that of pleiotropio genes. Therefore, only pleio-

tropic genes are considered, as the most extreme and constant case. 

A genetic model for correlated responses was then constructed, 

and the expected values of the parameters and the correlated responses 

obtained from a Sirius computer for each of 9 generations of selection. 

In the first series of selections, only additive gene effects were 

considered since these would appear to be least likely to yield 

asynmetr'ical correlated. responses. Pour types of loci are considered 

in the model, with the following effects of a gene substitution on the 

two traits: 

(A) 	(B) 	(C) 	(D) 

Trait 	CL 	 P, 	W1 0 

Trait 	0 

Loci A and D affect the two traits independently, Loot B and C 

affect both traits, the former making a positive and the latter a 

noative contribution to the covariance. The substitution effects 

shown refer to one-half the difference between the alternative homo- 

otes. Only one locus of each type with additive effects is assumed.. 

ho existence of more than one locus having the same type of correlated 

:ffeote would not affect the occurrence of asymmetry, but only the rate 

d pattern of its development, as we shall see later. It is assumed 

at the frequencies of the genes at each locus are q, q B#  qC  and 



Ca, G =2qB "½)  Pi 2 - 

V1  = 2q (1..q) a.2  +2qB (1l..q) p2 +(1-q) 	+ 

V2 = 2½ (1..q) P + 	(I-q) 	+ 2q (1..q) ç2 + 

where V and VE2 are the environmental variances of the two traits. 

The computer was programmed to obtain the expected gene 

frequeno7 at each locus for each generation. For anmple, the change 

in gene frequency at the A locus due to selection for trait I is 

(1_q), 	being the selective advantage of the gene at that 
0 j  

locus (Gritting, 1960). The new gene frequencies were used to calculate 

the genetic oovarianoe, the genetic and phenotypic variances, the mean 

of each trait and the standardized correlated response for each gener-

ation when selection was on either trait I or trait 2. In all models 

= 2 = i.01, corresponding to a retention of 	of the individuals 

as parents, except for models (ii) and (iv), in which I = 12 0.5, 

corresponding to 7 retention. In all rims the environmental variance 

was arbitrarily not equal to the genetic variance when all gene 

frequencies were me-half. The initial hez'itabilities of traits I and 

2 were then close to one-half in all models. Because the above formula 

for the change in gene frequency was used for selection on the two 

characters, the correlated response is always symmetrical in the first 

'-eneration. This formula does not in fact hold for genes with large 

effects and such genes could well produce asymmetry in the very first 

enex'ation of selection. This appears to be most important under 

r onditions when the gene selected for is at frequencies greater than 

'n vThen I 	reeter then unity, 
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The asymmetry of the genetic oovarianoes generated by the first 

generation of selection may be expressed algebraically as the difference 

between the genetic oovarianoes after one generation of selection on 

trait I and trait 2, respectively. At the B locus, for instance, the 

genetic oovarianoe is 2P 2qg(1-Q. If the gene frequency is increased 

by qB9  then the covariance is increased by 

2P I 	
(q)2 I I 

Inserting the expressions for the change in gene frequency on selection 

for the two characters into this, and including the C locus, we obtain 

for the difference in covariance, 

CoyG1- COT C
2  = 

231 P2q(I_q) [(I._2 B ) (TIP,  - !22"\ - 	(1_g)  

°2) 	 c ' I 

hI5'1 + 	- q(1-q) (,2I - _P 	
(n.) 

0j 	
°2 ) 

This equation is generalized to n loci affecting the two traits as 

Coy C1  - Ccv C2  = 

A ,(I-) [(1-2) (k - 
	

- 	(f)(t 	- 	
(5) q  

cc 	i te frequenc of one allele at the kth locus and Ak and Pkare 

onc- aif the hcozygete differences in traits I and 2 respectively, and  

o-:-..n have eiter positive or negative values. 

xpressione for the change in V 1  and V2  on selection for the 

,,;o characters can be obtained by substituting A k 	outside the square 
2 

c:. 	 A and 'k  respectively. It then foll ows that a 



syirmietrical change in the covariance will also mean symmetry in the 

contributions of the B and C loci to the variance of  the two characters, 

Equation (4)  consists of four terms in two pairs. Inside the 

square brackets, two terms have linear gene effects in them, and will 

both be zero when the gene freuenoy is 0.5. At usual selection 

intensities, and from what is ]mown of gene effects, it is imukely 

that epressions like I 	will be greater than 0.5. The second 

pair of terms contain such expressions squared and will therefore be 

smaller than the first pair. The gene frequency component in these 

will be at a nm.minn when the gene frequency is 0.5. 

Of the ccqonants containing gene effects, it will be seen 

that three contain differences and only one contains a sum. From this, 

it is established that the simplest condition for asymmetry is the 

presence of C type loci mRk4ng  a negative contribution to the genetic 

covariance, with frequencies other than 0,5. From the entire gene 

frequency expression entering into this term, q(1-q) (1-2q),, the 

::reatest absolute contribution to the asymmetry in the covariance 

v111. 

 

occur it frequencies of 0.2 or 0.8. 

Lt is hardiy suzrising that the effects of A and D type loci 

i 	ar directly in (4). They are of course involved in 

t then follows that changes in the frequency of alleles at these loci are 

ct c reat importance and are exactly equivalent to changes in the 

L::::.ontal variance of either of the characters or to changes in the 

erie effects at these loci. This was ocrdirxned by the computer results. 

e other three terms in (4) contain differences in gene effects. 

- ore accurrte?v differences in the sciective avnte of the 
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genes under the two kinds of selection. The two containing square terms 

in gene effects will have nT{zm1m effects at gene frequencies around 0.5, 

while the other will have a rrp.4ymim at 0.2 or 0.8. But, if gene effects 

are smfl  the term containing (1..2q) will be doininting in the early 

generations. 

Equation (4) gives the expected change in one generation, In t 

generations, the two linear terms will be multiplied approximately by t, 

but the squared terms approximately by t 2. In situations in which 

changes in the oovarianoe in the first generation are entirely due to 

squared terms, the asymmetry in the covariance will then increase as 

the square of the number of generations. An example will be given among 

the computer results. 

The Conuter Results 

The computer results shown in Tables I and 2 give the standard-

ized direct and correlated responses aooumuls&ted over 9 generations of 

selection of the same intensity for the two traits. Various combinations 

of gene effects and initial frequencies have been chosen to exemplify 

the conclusions drawn from (4).  The essential features of the gene 

effects chosen in the different models are given below. The comparison 

of standard deviations has been calculated for all gene frequencies at 

0.5. 

(ii) and (iii). The B and C locus effects are the same 

• 	(i) and (ii) but a, < O for (iii) 

(iv) No variation at the C locus, Pi 	2 but a, < 



Table 1. Standardized direct responses (R) and standardized correlated resjonae (CR) after 
nine generations of selection m trait I (TI) and trait 2 (T2), with h 1  '-'-' h. 

Gene effects TI 	C61, 	1' 	1 
T2 

Initial none 
(ii T'ii) - (v (i) (Vii)-  

1A' 1T 1, 	1, 	1 C O  '1, 	1 1, 1, 	1 0, 	1, C 1, 	2, 1 1, 1, 2 1, 	2 9  1 

1,1,1 1,1,0 1,1,2 1,0,1 2,1,1 1,2,1 1,2,1 

TI T2 TI T2 TI T2 TI T2 TI T2 TI T2 TI T2 

R 1,87 1.87 2.99 2.99 1,87 1.79 2,17 2.99 1,79 1.79 1,79 1,79 1,79 1.79 
(a) , ', CR 0,00 0.00 0.00 0.00 0.00 0.00 1.47  2.11 -0.61 -.0.61 -0.39 -0.39 -0.46 0.46 

R 2.28 2.28 3,61 3.61 2.28 2,10 3.38 3.61 2.29 2.29 2.10 2.10 2.29 2.10 

CR 0,39 0,39 0.72 0.72 0.26 0.36 2,30 2.93 0,93 0.9.) -0.11 -0.11 -0.19 0.94 

R 2.28 1.55 5,61 2,23 2,28 1.54 2.17 2,99 2.10 1.54 2,29 1.35  2,10 1,35 
(a) .5, .5, .2, 	• CR -0.39 0.38 -0.71 0,97 -0.26 0.38 1.46 2,11 0.11 0.69 -0.93 0.13 -0.94 072 

R 1.87 2.28 2.99 2.99 1,87 2.29 2.17 3.61 1.79 2.10 1.79 2.10 1.79 2.10 
(d) .5, .5, .5, 	.2 CR 0.00 0.00 0.00 0.00 0,00 0.00 1.54. 2.09 0.40 0.39 -0.40 -0.39 -0.47 0.46 

R 2.64. 1.97 14.04 2.97 2.64. 1.86 3.37 3.61 2.56 2,06 2.56 1.66 2.56 1.66 
(e) .5, .2, .2, 	.5 CR 0100 0.77  0.00 1,72 0100 0.74 2.30 2.95 0.66 1,22 -0.66 0.41  -0,67 1.21 

R 1.81 1.31 2.77 1.65 1.31 1.26 0,95 2.23 1.55 1.16 1,87 1.23 1.55  1.23 
(f) .5, .8, .3, 

CR -0.64. -0.i. -1.54 -0.33 -'0.43 -0.13 0.61 0,95 -0.32 0.07 -1,04. -.0.35 -1.06 0.11 

R 1,81 2.51 277 3.95 1.81 2.28 2.98 3.45 1.87 2.40 1.55 2.46 1.87 2.46 
g) .5, .3, .8, 

CR 0.64. -0.13 1,54. -0,15 0.43 -0.11 2.03 2.75 1.04. 0,47 0,32 -0.74 0.27 0.53 
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Table 2. Standardized d.tx'eot responses 
(R) and standardised correlated 
reaponses (CR) after nine 
generations of selection on 
trait I (TI) and trait 2 (T2) 9  
with h —'2h. 

TI 
Gene effects 

T2 p2' 
Initiil ere 
freuencies 

1, 	1, 1 2 9  i t 	1 

TI T2 TI T2 

R 1.87 1.25 1.79 105 
' 

CR 0.00 01 00 0,29 0.44 

R 2.64 1.21 2.56 1.35 
(e) 	.5, .2 1 	.2, 

CR 0.00 0.69 0.4.7 1.2.3 
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B locus effects one halt those at C. and a*, = 

The B locus has the greater effect on trait I but the C 

locus on trait 2, and 0-1 = 0 2. 

In all models, the environmental variance for both oharaotere 

was not equal to the genetic variance when all gene frequencies were 05. 

The main points of interest in the correlated responses are 

as follows, classified, according to the gene frequency combinations: 

AU gene frequencies equal to 0.5. Only the squared terms in -  (4) 

can then contribute to the change in covariance. There is synetzy for 

all effect models except (iv) (/c 	p2/o2) and (vii). In the latter, 

the selection for trait I causes most change in gene frequency away from 

0.5 in a B locus and therefore reduces the genetic covariance. But 

selection for trait 2 changes most the frequency at a C locus and there-

fore increases the covariance. The asymmetry in the covarianoe increases 

as t2  in the early generations (Fig.f). In (iii) the two squared terms 

are not zero but cancel out. 

q 	0.5. There is now slight asyninetzy in (iii), arising from 

the linear term since, thou
" Al = 2' 0'1 ' °'2 

(o) q 	0.5. This is the situation to which attention was drawn 

of a C locus with a frequency away from C. 5,, which will lead to 

e 	c 

 

Co'— 	linearly with time in all situations. 

:eots are equal is shown in Figure 2. 

(d.) 	05. In addition to models (iv) and (vii) a trivial asymmetry 

correlated response is now found, in models (v) and (vi) because 

:T:'etr7 has 	ve1opec3. in cr,.. 
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(e) qB  = qC  j 05 	Asymmetry in all models. Note that in (i), 

(ii) and (iii) there is no correlated response on selection for trait 

I though there is on selection for trait 2 (Pig. 3). 

(t) and (g). Deviations from 0.5 in opposite directions in B and 

C loci. Asynimetzy in all models. 

The critical point is simply that asymmetry of the correlated 

responses occurs whenever the relative rate of response of the B and C 

loci is different when selection is for trait I, than it is when selection 

is for trait 2. The combination of factors which can account for differing 

relative rates of change at these two types of loci when selection is for 

different traits are shown in equation (4). This equation is very powerful 

in the analysis of these correlated responses, and renzcably so considering 

that it is et lotly valid for only a single generation of selection. The 

occurrence of symmetry was predictable from equation (4) in all models. 

The table shows that quite remarkable degrees of asymmetry can 

be fonn& in some of the models and differences in sign in the realized 

enetic correlation are frequently found, particularly in gene effect 

:rodel (vii). Even with all gene frequencies at 0.5, the realized genetic 

crL.:tLon :L about 0.25 for selection on trait 2 and -0.25 for trait I. 

E'VC J 

 

computer runs were done with different her'itabilities 

or the two characters (hp-' 2h) and the results are given in Table 2. 

;ene effect model (i) still shows symmetry with all frequencies at 0.5. 

hen the hez'itabilities were equal all four terms in (4) were zero, but 

near terms are zero and the two square terms are equal but of 

i. 	rth e' n±Teet 7,01p1 (V) 9  t!ie canre in her hflhlny 
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2ooi, one with a positive and one with a 
etive contribution to coy G. Note the 
.b sence of any correlated response on 
-election for trait I. 
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leads to aayianetiy because the square terms in (4)  are no longer zero. 

\lien both B and C loci have gene frequencies of 0.2 0  the change in herit-

ability alters the existing asymmetry only a little. 

In addition, one model with non-additive gene effects was studied. 

The model assumed complete dominance, equal gene effects at all loci and 

all gene frequencies at .25. This frequency was chosen because the 

absolute change in the mean in the first generation of selection would 

be the sane whether the selection is up or down. This condition would be 

the most likely to yield. synunetry. Even so, asymmetry after 9 generations 

was 0.21 standard. deviations. Symmetry in the case of non-additive 

genetic effects could occur only if no negatively correlated loci were 

involved and the selective advantages of the positively correlated loci 

in the two traits were equal. 

Selection in opsite directions for the sane trait. 

A S1nd1A2 method of analysis can be used to explain asymmetry of 

response in trait 2 when both up and down selection is practised for trait 

i t  and vice versa. With syietry, the correlated responses in trait 2 

should be of the same magnitude but of opposite sign, and asymmetry will 

be observed after the first generation only if there are parameter changes. 

..ror.: one :eneratlon of selection for trait i. the difference between the 

:eetIc covariances after up selection (Coy 	and down selection (Coy ) 

tumz out to be 

- Coy GD = 	 k 	(i*q1 ) 	 (iI)] (6 

the notation is the same as in equation (5), and 	and 	are the 

As values of the standaized selection differentials for up and down  

eiection respectively. If i. = 	= , equation (6) reduces to 
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Coy 	- Coy 	=7 
	2 01,q(i..q) (12q). ...... (7) 

Equivalent formulae can be obtained when selection is practised on trait 2. 

From formula (7), it can be seen that aeyzretry is to be anti-

cipated unless all gene frequencies are one-half, or in the situation 

when the changes in covarianoe due to genes with frequencies below 0.5 

just balances that from genes at high frequencies. The result of Clayton 

al . ( 1957) in which there was a positive correlated response to up 

seleotion, but none to down selection, could be explained by the presence 

of positively correlated genes at low initial frequency, with few or no 

negatively correlated genes. 

It is quite possible for the correlated responses to be symmetrical 

on divergent selection for one trait but asymmetrical on selection for the 

other. Equal gene effects at the tour types of loci and gene frequencies 

0.5 9  0.2 9  0.2 and 0.5 would be an example of this. 

Hazel (see Lerner, 1950, p.238) has pointed, out that the eventual 

effect of simultaneous selection for two characters must be to reduce the 

genetic correlation by fixing first those loci contributing positively to 

the covariance. Some experimental support of this prediction has been 

reeented by Friars, Bohren and McKean (1962) in poultry. Selection giving 

t to one standard deviation in the two characters would give an 

the change in genetic covanoe after one generation of 

:pware selection of 	 r 

A k 	 + 	- 	k (1q+2 

viouJ.y 	loci with A and p both of the sane sign will contribute most to 
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brackets may predominate and if such loci have low values of q, the 

genetic covariance may well increase for a while. 

DISCUS8Ici 

Both from the algebraic treatment and from the cczqrntex' results, 

it is clear that asynmetxy of correlated response is likely to be found 

fairly frequently. The models are, of course, rather ainqlifisd and it 

should be asked what relevance these results have to real situations. 

The most obvious sinlitieation is in the small number of loci in the 

models. The next degree of complexity would be to deal with n genes of 

each kind, but with the condition that the total additive genetic 

variance and the heritability of the two characters should remain the 

same. Then the scale of operations is altered by a factori, though  

the initial rate of response to selection will not be changed.. The 

linear effects of the genes will be rediioed by this factor, and the 

total advance under selection and the time scale of changes in the 

genetic parameters will be increased.. It time is measured as a proportion 

of the total period of selection advance, the descriptions of asymmetry 

will become almost independent of the number of genes concerned. From 

the ocxzuter results it would seem that the greatest aayumetry (as 

easur'ed by the difference between the genetic oovarianoe in the two 

lines are about haf-way to the f ThAi 

genes  concerned, the more likely it is that 

I. terms linear in gene effects in equation (4)  will be greater than 

38 in which the effects are squared and the former will predominate 

tie early generations. 

- 	 . 	 ..- . 
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of genes ooncex,ied., the longer the time for the asymmetry to develop. 

The amount of aayixnstxy expected in the esx'Ly generations of selection 

would be between 1/ 	and 1/n times that in the original model with 

one locus of each type, depending on whether the linear or square terms  

in equation (4) contribute most to the asynhiletry. The expression for 

the change in covariance on divergent selection for a single a 1araoter 

has only linear terms in it and the effect would therefore be 1/  Tn- 

times as large. The number of loci involved dose not affect the eventual 

presence or absence of asyirinetry. tequal numbers of loci contributing 

positively or negatively to the covariance would have a 51m11A?'  effect 

on aayznratry  as would unequal effects at the two loot in the model. 

Nordkog and Fasting (1962) have proposed a differential control 

of the genetic variance in the two characters (simi 1 RL" to model (iv)) and 

Siegel (1962) has proposed different heritabilities for the two characters 

as explanations of asymmetry of correlated response. From the results 

of this study, it appears that these causes will in s 	combinations 

lead to aayrznetzr, but that neither of these causes are, in themselves, 

either necessary or sufficient to produce asyzmastzy. The same is true 

f1  the gene frequencies at azy one type of locus, the gene effects on the 

wo traits at one locus, the ratio of the selection intensities in the 

A the ratio of the environmental variances in the two 

• 	•. 	in the model studied. While there are mazy combinations 

- 	 •- 	 •• 	 ••.-•, 	 -• 

.otora will result in symmetrical correlated responses (equation (4.) = 0). 
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will be loci contributing negatively to the covarianoe and having gene 

fr.quenoies other than 0.5. 

Perhaps the most important consequence of these results is not 

directly concerned with the asymmetry itself. It asymmetry exists, any 

piod prediction of correlated response not have been incorrect. 

It has been accepted in quantitative genetic theory that predictions 

of direct response have only short-tam validity because of the necessary 

changes that selection would being about in the genetic variance. It 

appears from the results that the genetic oovarianoe between two 

characters my be even more sensitive to changes in gene frequency 

brought about by selection, and preeumably also to changes due to random 

sampling when the population size is small. The additive genetic variance 

of any character will be ude up of contributions from the separate loci. 

These contributions will change as the gene frequencies are altered by 

selection or by random drift and they will not all change in the same way, 

depending on the gene frequencies at the loci concerned. But the genetic 

oovarianoe (it the genetic correlation is not close to 1) will either be 

made up of a much smaller number of terms, if all loci contribute to the 

iriance with the same sign,, or will be nude up of positive and negative 

tributions from different Loot. In either case the pz'oporticnaj change 

enetlo covariance is likely to be greater than in the genetic 

: themselves. It must thereforele expected that the static 

-ascription of a population in terms of additive genetic variances and 

Lances will be valid in prediction over a much shorter period for 

' responses than it will be for direct responses. 

atterns of correlated responses in any situation are 
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to be fully understood, it will be necessary to analyse the basic 

causes of the genetic correlations between characters. Our results 

point clearly to the need for the development of new experimental 

techniques for this purr ose. 

The pattern of changes of the genetic covariance between two 

characters on selection was eyam(ned, in an effort to explain the 

asymmetry of correlated responses in two traits, or of the sane trait 

in two environments, frequently observed in experimental results. 

The algebraic conclusions were further examined by model 

selection experiments using a computer. The computer was proanmed 

to calculate the change in gene frequency from  generation to generation 

and to calculate from it the expected changes in genetic variances and 

covariance as selection proceeded. This procedure was carried out with 

several models of gene effects and gene frequencies. 

Asymmetry at the genetic covariance, and consequently of the 

correlated responses, resulted when the relative change in gene 

frequency at the Loci contributing positively and negetively to the 

ii '-ided on the trait selected. The conditions necessary for 

of asymmetry were examined aM the results suggest that 

symmetry found in an experiment is perhaps more surprising than 

try. Probably the most frequent contribution to aaytrrnetry in 

.:ice will be from loci contributing negatively to the covarianoe 

having frequencies other than 0.5. 

ccurate prediction of correlated response over nany gsnez'- 

ter&ore not possible without prior aknowledge of the 



composition of the genetic covariance, as well as its ni.ttude. 

The ,a1idii' of edsting theory for the prediction of correlated 

responses in likely to be much poorer than for the prediction of 

direct responses. Predictions would then have to be based on the 

genetic parameters estimated in each generation. 
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Intro&tion 

In the earlier papers of this series algebraic and graphical 

procedures were developed for determining the relative profitability 

of pure lines and crosses between them. It vas found that many of 

the complex situations associated with this problem could be understood 

and solved more easily by graphical techniques. 

In this paper we propose to extend the graphical method to the 

solution of problems of selection within lines and within apeoialised 

sire and dam lines. Smith (1964) studied the problem algebraically 

and concluded that selection in apecialied sire and dam lines is at 

least as efficient as selection within a single line, and that the 

relative efficiency of the former increases if there is an unfavourable 

correlation between the two sets of traits under selection. We also 

propose to investigate the efficiency of selecting males and females 

on different indices within a single line. 

In order to sin].ify the presentation of this paper, we will 

assume that (i) both males and females are selected with equal 

intensity and have the same generation interval; (ii) the same 

selection indices can be applied, to both males and females, an 

assumption which cannot be realised in practice if one of the traits 

is reproductive performance, unless selection is based on relatives' 

performance; (iii) the two traits under selection are unoorrelated.; 

(iv) the traits are genetically additive,, and (v) the population pare.' 

ieters, other than the means, are the same for each line and do not 

ret1 of o1ectii. The dlictrc here is restr1eta t 
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selection for productivity and reproductive performance in pigs and 

'poultry, although the teobniquea employed can easily be extended to 

other RM1ThL15 •  

Matheitioal details have been excluded from the body of the 

paper and are given in the Appendix. Also in Appendix 3 are given some 

algebraic results for correlated traits, but for simplicity these are 

not discussed in the text. 

Selection indices in a single line. 

Smith (1 9 %) and Moav and Moav (1966) expressed. profit (F) 

from a unit of produce as a function of the productive efficiency (y) 

of the offspring and the reproductive performance (x) of their parents 

by the relation 

P a C 	G(y)..'N(x) 	 (1) 

where C is a constant and C and N are functions. Assuming genetic 

a&litivity, then G and N may be replaced by constants and equation (1) 

becomes 

P a C-Gyu.N/x 
	

(2) 

so that profit is directly proportional to productivity and inversely 

proportional to reproductivity. 

For a given value of P, y can be expressed as a function of x, 

and. therefore a ih of this function joins all genetic stocks with 

the saze prit1'i1ity. ;uch Imphs are termed profit contours, and a 

collection of these contours a profit d.iatam. An ATRlnple is given in 

'igure I for broilers, where profit in pence per pound live weight is 

iven by 

C;) 
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where y is market age in days and x is the total egg production per 

hen (Moav and Moav, 1966). 

A profit diagram can be used to show how selection changes 

the profitability at a population. If a selection differential at i 

standard deviations is applied to x alone, then the genetic change in x, 

denoted ts x, is ihcr1, where h and crx  are the heritability and phenotypic 

standard deviation at x. If selection is practised on y alone with the 

same intensity, then (\,y = iho. In Figure 1 it is assumed that ry 
x = 108, (rx = 20 eggs, b; = 0.1 and y= 70,cr7 = i days, h,= 0.25 and 

the traits are =correlated. For this example s  if a selection intensity 

of 3 standard deviations were applied to x, then the response would be 

A x U 6 eggs, and the consequent change in profit (tP X) = 0.15 pence, 

calculated by linear interpolation between the pratit contours of 

Figure 1 • On the other hand, selection on y with the same intensity 

would give a response A y = 3 ys with a subsequent change in profit 

(M7) of 0.3 pence. 

Alternatively, animals ns.y be selected on an index of the two 

traits (Hazel, 1943), in which phenotypic values are weighted by the 

formula 

I * x+By 	 (if) 

For =correlated traits, the responses in the component traits from 

selection on I are 

X = ihc/cr1 , 11y = iBh2c/o 1 	(5) 

where 	= j  + B2o is the standard deviation of the index. For 

example, the chance in the population mean as a result of selection on 
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the index I=x+Iiy, 'hen i=3,ie given inPigurei. It is evident 

that for a given set of parameters and intensity of selection, the 

index weight B determines the igeitude and direction of the responses. 

The locus of all points ( Lx, A y) obtained by varying B, but with 

constant i, can be shown to be an ellipse (see Appem4 1). This 

ellipse will be tanned the 	eUipae and is illustrated. in 

Figure I for a selection intensity i = 3. It can be seen that the 

74IM1tn profit from a given selection intensity is that of the highest 

profit contour which can be reached by the ellipse. At this point the 

ellipse is tangential to the profit contours. Fran a visual inspection 

of Figure 1 it can be seen that the m(imm  increase in profit for i 3 

is 0.34 pence. An algebraic method of using the response ellipse to 

determine the opiFtiin  iner and change in profit is given  in AppenMr I, 

The use of an ellipse has sane disadvantages however. In 

particular, the distance 
( J(Ax) + (6y) 2) moved, by the population 

mean an the profit diagram is depeMiit on the direction of selection, 

and some manipulation is required in order to ocqnite iMex weights 

graphically from the ellipse. However, if the variables are transformed 

as follows 
L\x , A7 	 (6) .2

a' 

then the locus of the transformed. variables ( L. x, & y" ) is a circle, 

termed tie reeDonse circle (see Appendix 2 for a proof). Since,, for a 

selection intensity of i standard deviations applied to x,áx = j 

if applied to y. A y = i t  the transformed variables A x and A y 

can be regarded as standardised units of response of the traits to 

selection. Tn Figure 2, the response ellipse of Figure I has been 
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transformed into a response circle, which can be much more easily 

constructed than the ellipse. Again,, the point of i4inum  profit is 

where the circle is tangential to the profit contours, and it also 

follows that the direction of response for maximum economic gain is 

perpendicular to the profit contours. 

The response circle can be used to calculate the optimum index 

weighting B, from a profit diagram. The direction of the response for 

the qptinnmt index is found by drawing a per en&toular to the ocntours, 

and for an arbitrary contour L\ and 6 y measured. Then the index 

weight (see Appendix 2) is given by 

B = 	() 	 (7) 

In the example of Figure 2, Ly/ A x = 1.9 and o/o = 5, so that 

the optimum index is I a x + 9.5y. This result is the same as that 

obtainable by the algebraic methods of Hazel (1943). 

On the standardised scale the length of the response vector 

(the line on the profit diaam joining the population means before and 

after selection) is a constant and equals i, the intensity of selection. 

Therefore, the efficiency of different selection indices can be ooaared 

by drawing the response vectors from the population mean to a convenient 

profit contour for different indices and measuring their lengths. For 

example, if the length of the vector of the most efficient index in 

igure 2 is given a value of one, then it can be seen from the graph 

ihat .1 or 1.1 units of selection on x or y alone respectively would 

be needed to achieve the same increase in profit. Thus, in the present 

example, selection on y alone reduces efficiency by only 1O3. 
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similarly, it  can be shown that changes inB over the range from let035 

reduce efficiency not more than 55 below that of the op4'iim Index, 

B s 9,5. 

For the profit equation (2), the change in profit resulting 

from changes in reproductivity (?)P/ )x) and productivity (P/y) are 

given by 
N 	_ -4 	(8) 
2' 

X 

Since profit is linearly related to productivity, changes in y produce 

the same change in profit at all levels of y. On the other hand,since 

there is a non-linear relationship between profit and reproductivity 

changes in x yield changes in profit dependent upon the level of x. Thus 

for the profit equation (2), it can be seen from (8) that the higher the 

present level of reproductive performance, the greater the improvement 

necessary to produce the same increase in profit. These points are 

demonstrated in Figures 3A and 33 for pigs, for which the profit (P) 

in pence per pound live weight is 

P = C3.4y'-130° 
	

(9) 

where y is the feed conversion ratio, W the market weight and x the 

number of pigs raised per now per year (Moav, 1966). The constant C 

was not estimated, but it does not affect changes in profit or relative 

pr&itabilitiea. Figures 3k and 33 are drawn on a standardized scale 

x' h;0y),j  so that the lengths of the response vectors show the 

relative selection intensities necessary to achieve the same improvement 

in profit from four' different levels of reproductivity, when selection 

'oo o o 	o otrn 	t can 1'o be on  	 ar9  
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seen from Figure 3 that as the reproductive performance improves, 

less weight should be applied to it in a selection index, and it can 

be shown algebxe.ioal2y (see Appendix If) that the optimum index for the 

profit equation (2) is given by 

(10) 

Nh 

The differences between Figures 3k and 3B d.emonatmte the effect 

of market weight on the pr'it contours and selection responses. Since 

the maintenance cost of the sow is constant, as market weight increases 

the reproductive cost per pound of meat becomes increasingly wall er. 

Thus at higher levels of reproductive performance, selection on feed 

conversion efficiency (y) alone is almost as efficient as selection on 

the best index. 

Selection in sire and darn lines 

In most classes of livestock, variation in the reproductive 

performance of the male has a negligible effect on profitability and 

can be ignored (Smith, 19641 Moav, 1966). Assuming genetic additivity 

and independence of the caonent traits, then the profitability of 

the cross breda 	is a function of the arithmetic mean of the 

productivity of the two parents and the reproductive performance of 

tLe dark. 	Thii from equation (2) 

= C 	(,+)- 	 (11) 
C- 

ore to uoerijti 	refer to tie sire orA dam respectively. 

The sire and darn terms in (ii) me.y be collected to show their con- 

:r)tLcnE to Cc:tS: 



LAWO 

	

N 	C- 
SD = 	- ç) - 

Since the sire line affects cost.- only through productivity, selection 

in the sire line should be based on that criterion alone. However, the 

contribution of the dam line to costs (VD) is 

C- 	N 

	

VD=YD_ç 	 (12) 

so selection on the darn line should be on both traits and aimed at 

minimising VD. The methods described earlier for single lines can be 

used, for profit contours can be drawn by expressing 7D  as a function 

Of X )  in (12), and a response circle constructed. The response vector 

of the most efficient dam line index is then the vector which is 

perpendicular to a darn contour. 

The ençle of Figure 4 illustrates the construction of darn 

line indices, and shows how the profitability of crosses is affected 

by selection in their parental lines. This figure represents the hypo- 

thetical situation in which three lines of pigs are available. The line 

with the best productivity is chosen as the sire line, and denoted 8; 

the other two lines are therefore alternative darn lines (Dl and D2). 

Figure 4 shows that, in this en iTplot  Dl and D2 have different perform. 

ames as single lines, but they are equally profitable as darn lines. 

Dl and D2 fall on the same darn contour (VD), and their crosses (81)1 and 

3D2) with the sire line also have the sane profitability. 

Also shown in Figure )+ are the responses to selection of the 

same intensity in the sire line, based on productivity, and in the darn 

lines, based on the appropriate optim4l darn index. It is assumed that 

the genetic paraeter, other than the means, are the same for each line. 
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The new line means are denoted S I #  D11  and D. Since the reproductive 

performance of D2  was poorer than that of D1 , the improvement in 

profitability as a dam line resulting from selection has been rather 

greater In D2  than in D1. Slnd1L1'2y, the new cross SID21  is more 

profitable than the cross SID I . Vihilst the differences in profit-

ability of the dam lines after selection are wall, the aza1npie 

illustrates that the ranking of lines can be atfeoted by selection, 

even though the genetic parameters and selection intensities in such 

lines are the sane, 

Seleet1.m of x*].ea and females on apect,' teed Lnd.toee within a sing.1.p line. 

In this section we compare the efficiency of selecting 'l.s and 

fenales on different indices within a sin-le line with the efficiency of 

selecting both sexes on the earns jnttsr 

A graphical solution to this problem is shown in Figure 3, which 

has a standardized scale (hcr19  hcT). The response circle from the 

original population, 0, for one standard deviation of selection is drawn, 

and some,  specific response vectors marked. The vector I shows the 

response from selecting both sexes on the moat efficient single line 

index. The vectors S and D. show the response fron selection only on y 

and only on x respectively, and the vector D M the response when selection 

is based on the beat darn line index. Thus the vector I is perpendicular 

to the  profit  contours (equation 2) and the vector D m  perpendicular to 

the darn contours VD  (equation 12). The profit of the progeny when 

selecting on melee and females separately is at SDrn and SD1  for the dam 

selection vectors Dm and D1  respectively. It can be ahoin (see Appendix 

5) that if the sires are selected only on y, and the dam index varied, 
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then the profitability of the pz'ogez (SD) falls on an ellipse termed 

the sire-dan reeiise .Uipee with co-ordinates x = x 0  and y = y0  + 

where x0  and Y. are the co-ordinates of the base population and 3-0 

the length of the sire response vector. Te see from Figure 5 that the 

upper right quadrant of the sire-dam response ellipse lies outside the 

response circle. Thus we have a graphical proof of Smith's (1964) 

conclusion that selection on specialised indices is always at least as 

efficient as selecting both sexes on the same index. 

We have considered the effects of different ways of selecting 

individuals on the profitability of their progeny. Let us now investigate 

the effects of these procedures on to profitability of subsequent gener. 

ations. In order to do this we have to distinguish between the profit-

ability of the px'oger' and their merit as parents for the next generation. 

Assuming a&tttivity, their profitability has been shown to be a function 

of the mean productivity of both sets of parents and the reproductivity 

of only their dams. However, the population from which selection must 

now be practised has a performance which is the arithmetic mean of both 

parental traits. In the example of Figure 5, the point 0 represents the 

mean of & population fz'uied from mating sires which were selected on y 

alone, and dams which were selected an the beet dam index. 0' is 

- erefom the mid-point of the line S to Dm  Here S and Dm  represent 

-. opulation means after selection on the vectors S and Dm  respectively; 

hail use I 54m(lAr3y. As 0' lies on a chord of the response circle, 

it must have a lower profitability than I s  the progwW mean when parents 

of both sexes are selected on the sane opf4n2iii index, which lies on the 

Thus since their parental crnference of the response circle. 	0  
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performance is poorer, the "grandchildren" will be poorer if their 

grandparents are selected on separate indices rather than on the same 

index, so that, although using a separate index nv{in{ses profit after 

one generation, it reduces profit in subsequent generations. 

Discussion 

There has been some indication in the profit diagram that 

selection for reproductive rate leads to only small improvement in 

profitability for single lines (Figures 2 and 3)  and even in specialised 

clam lines (Figure ii.). There 55  two main causes: firstly, reproductive 

performance has a low heritability and, secondly, if reproductive rate 

is already fairly high, the economic returns from further improvement 

are small (equation 8) • We shall now give a more detailed eruTle to 

illustrate this point, and consider only feed costs which, of course, 

comprise the major portion of total coats in most livestock enterprises. 

If the total food consumed per pound of live pig produced. is F, 

then we can write 
F 

In 
F = 	 l3 

where y is the food conversion efficiency of food eaten directly by 

the rowing pig, Fm  is the food consumed by the dam per year for her 

o maintenance, T is the mazicet weight and. x the number of offspring 

reared per dam per year. F  is the food consumed by the dam in excess 

of maintenance during pregnancy and lactation, and depends on x. 

owever, F0  is relatively small and will be considered constant. 

iimal selection indices can be constructed. for (13) in the same 

I.S described earlier for equation (2). 

?his example is illustrated. in Figure 6 for bacon pigs ( = 200 ibs) 
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i?IGU1L 6 The effect of level of reproductive 
performance on the relative efficiencies 

of alternative selection schemes designed 
to minimise food costs in pigs, measured 
by the overall food conversion ratio 
which includes the maintenance cost of 
the dam. Selection is based on food 
conversion efficiency in the growing 
pig alone (6F ), on reproductive 
performance  alie (AFt) and on the 
optimlLrn index (AFT). The contributions 
(1F.rTp F 	of the component traits to A'  als shown. 
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with the parameter's h = 0.1 1, c = 5, h = 0.4, Cr - 0.25, and selection 

is in a single line. The graphs Fx  and 6 F show the changes in the 

overall feed conversion ratio P when selection is based on x or y alone, 

t\F1  shows the change inF when seleotionis on the opt1niIm index, and 

and 6FYI  are the corresponding changes in F resulting from 

changes in the component traits x and y, such that A P1  = A F + AP YIxi 

The example clearly thaws that as the reproductive performance increases, 

little Win is made by selecting for x, that almost all the iiroveinent 

A p1  comes from A p71, and that the index is little more efficient 

than selecting on y alone. 

In view of these conclusions, we may consider why so much emphasis 

is plaoed on selecting tok reproductive performance in the oozmaex'oial 

breeding of pigs and broilers. One possible reason is that throughout 

this series of papers we have assumed that the demand for the final 

produce is fixed, and that the number of parents is adjusted to meet 

this demand.. This approach strictly holds only for national or regional 

evaluation, or for very large single enterprises. However, a small farmer 

may rerd the number of saws, say, that he keeps as fixed., so that 

increasing their litter size not only reduces that part of the sow's 

maintenance cost to each piglet, but can also increase the total turnover 

without increasing capital expenditure. Since the small fanner is ori].y 

supplying a very small part of the total demand, increases in his 

production would produce negligible effects on the price he receives 

for his product. Another reason why excessive selection pressure may 

be applied to reproduction is that,in a non,-integrated aystecn, the young 

r±ils ri1;r to 	Cro tho riltp1±er t te "rorer at. 	vr.ce 
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dependent only on numbers and present weight or age, with little regard 

to their future perforwance. Thus as the darn costa contribute a much 

higher proportion of the total costs of the multiplier than of the grower, 

and since the multiplier is the breeder's direct customer, the latter is 

forced to exert extra selection pressure on reproduction. 

Let us now return to a discussion of the relative merits of 

different procedures for selection from a single line • The three alter-

natives are illustrated in Figure 7: 

A. Maintaining a single line and selecting all animals on 

the same index, 

B 	aintaining a single line but selecting meles and females 

on specialised. indices, 

C. Splitting the original line into separate sire and dam 

lines, each selected on a specialised. index. 

A selection intensity of one standard deviation has been applied to pigs 

of each sex in each of five generations, and it is assumed that no 

parameters, other than the population means, change. The example shows 

that method C is most efficient, followed by A and then B but the 

differences between the methods are sm all .  Thus, as Smith (1964) has 

shown, the maintenance of separate sire and dam lines is theoretically 

the most efficient method of improvement. In addition, there are several 

other advantages to be pined by nintaining separate lines. Smith 

showed that separate sire and dam lines become more efficient when 

productive and reproductive traits are netive],y correlated. Separate 

lines allow heterosis in component traits to be expressed.. Finally,, 
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FIGURE 7 Long-term efficiency of alternative 
selection schemes. Left: Selection in 
a single line using the ean index for 
each sex. Centre: Selection in a single 
line but using different indices for each 
sex. Right: Selection in specialized 
sire and darn lines. The fifth generation 

4. ofitabilities are denoted 0 SD and SD 
respectively. 
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with several lines, more genetic diversity is maintained as an 

insurance against changes in eooncnio conditions or genetic para 

meters and against incorrect estimates of parameters at the 

beginning of the selection programme. 

Summary 

Selection on an index at two traits was represented graphically 

by means of a response ellipse or response circle. This procedure was 

used to find optimal index weights for imoorrelated traits, and to 

caare the atficienoy of alternative indices. 

Profit was expressed as a reciprocal funotion of reproductive 

performance, from which it was shown that the higher the reproductive 

performance,, the smeller the weight that should be applied to it in a 

selection index. It was found that in pigs and broilers the average 

oon'eroial standard of reproductive performance is sufficiently high 

that selection on production traits alone is almost as efficient as 

selecting on the optiiiirn index. 

Three alternative procedures for selecting from a single 

original line were oorçared graphically: 

A, Maintaining the single line and selecting all animals on 

the same index. 

B. Maintaining the single line but selecting males and 

females on separate indices, 

0 	plitting the original line into separate sire and dais 

I ines, each selected on a specialised index. 
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Method C was found to be the most efficient of the three; .1 was more 

efficient than A for one generation, but lees efficient in subsequent 

generations. 
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I • The response eUipae 

In the appendix we will find, it convenient to define a nre 

general notation than is used in the main part of the paper. 

Let changes in profit be given by 

	

AP = a1 L\x + aA 	 (IA) 

where a1  and a are the partial regressions of profit on x and y 

respectively, and are ueuaUy called the economic weights. Let 

aeleotton be practised on the basis of the index 

I°=bz+bY 	 (2A) 

For unoorrelated traits with heritabilities h, h, and. phenotypic 

standard deviations o - , O3  then the variance of the index (2A) is  

aIo = bc + bo 	 (3A) 

and the responses to selection with an intensity i standard deviations 

are 

Ax 	ibh2cr2 	 ibh2cr2  
= 	xxx 	y= 	yyy 	(i) 

If equation (3A)  is iewritten 

ib h2c2 	2 
o 

2 4b h2c'2 \2 ____ (5A) 
° ) (jj2 	

)2 
xx ) (jji2 	

)2 
y  

and 1),, x and j\ y are substituted from (4A) into  (5A),  and (5A) divided 

by 4o then 

	

(jx)2 	+ 	(Ly)2 = I 
	 (&) 

	

KTX 

2 	(ih2c )2 
yy 

B/I 6 
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Equation (6A) describes an ellipse in the variables Ax and Ay and is 

termed the Ieapczl3e  ellipse. The ellipse has axes of length ihOr and 

which are parallel to the oo..ord.inate axes. 

The point of nx4nu1n response and the weights of the optimum 

index are found by equating the tangents of the response ellipse and the 

profit contours. The tangent of a profit contour is _aja , and the 
A jf2

-y vtangent of the ellipse (6A) is 	, 	. By equating tangents and 

hV x  
rearranging,, we obtain the optimum index 

b 	ah2  ___ 	 (7A) 

x 	a  
X  

which is the same solution as can be obtained by Hazel's (1943) method. 

If we define the index (equation (4.) of the text) I = x + By, 

then for the cplilIlun index 

2 B = ah 	 (8A) 

ah 

2. The respcnze circle 

If we define the transformations (equation (6) of the text) 

= 	, 
h'c x  

then the ellipse (6A) reduces to 

2 ho 
y  

(/ x*)2 + ( Ay* )
2  

1. 	(9A) 

Equation (9A) describes a circle of radius i, termed the response 

circle of the transformed variates, 
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If the eooniio weights of the transformed variables are 

denoted ax  and a 	 then for 

	

ax*  L\ x + a A 	= ax  A x + ay. A y 

to hold for all L\x, (\y, we must define ax*  and a by the inverse 

transformations 
* 	2 	* 	2 = 	a 	= 	 (I QA) 

Equating the tangents of the transformed profit contours and the 

response circle gives 

'. * 
L\y 	= 

Ax 	x 
(hA) 

If (8A) and (10k) are substituted into (hA) and the equation 

rearranged, we obtain formula (7)  in the text 

3. Correlated traits 

In this section we extend the theoretical results of 

Appendices I and 2 to two correlated traits. We shall use matrix 

algebra, and denote transposition by a prime ('). 

Let P be the phenotypic variance covariance matrix, 

	

42 	Ccv (zy) 

	

P =1 X 	 2 
Ccv (xy) 	Oy 

let G be the genotypic variance covariance matrix, and let 

= (u), 
b = ('), a (

ax) • 
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The selection responses on the index 1 ° = b1x + b,Y are 

A = iGb/cr10 

2 where 010 = b' Pb 

Writing b'Pb = b' G(f' 1  PG Gb 

(12A) 

we can substitute (12k) to obtain the response ellipse 

I 	(..f 	Ij 	= j 	 (13A) 

By equating tangents, it can be sholm that (13A) yields the 

same optim= index weights as does Hazel's (1943) uthod. 

In order to transform (13A) to a circle, we define 

a-, Cos 8 

M 	(Tsine cy coe) 

where Sin 20 = r, the phenotypic correlation. Since MOIS = F, we can 

write (13A) in the form 

A ' GM"a cr1 A = 	 (ii) 

o that if we define the transformed vector 

* 
then 	(11 )' 1 	= 12 	 (15A) 

Equation (15A) is the formula of the response circle. 

Similarly, we apply the inverse transformation to the profit 

contours 

a * = (M'r' Ga s  

and, after equating tangents and rearranging, we obtain the formula, 

analogous to equation (7) of the text, for computing index weights from 
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the response circle. This formula turns out to be 

B 	= o•x (1+v4)ty_rAx 

	

X 	 oj (i+J)Ax_rAy*  

which, of course 1  reduces to (7) if r = 0. 

4e Non Linear Drofit contours 

For the non linear pr&it contours of equation (2) we can 

substitute a = NIx2, a (equation 8). Hence, from (8A) the 

optimmn index is 
b 

(16A) 

If, for brevity,, we let 

NW= x  A, rAV = 

then, from (3A), (4A) and (1 6A) the responses for the optimum  index are 

= 

x4 	Y 
	 (JA+xA 

The proportion of the change in profit due to changes in x is therefore, 

using (IA), 

a 	 AX  x 
= 	A+x4A x 	y 

and due to changes in y 

ay fY 	
x4 

AY  

so that clearly, as the present reproductive performance (x) increases, 

a much greater proportion of the total eoczianic response is contributed 

: 	 ( 	• 
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5 • The dre-dam r.sse ellitae 

Let the selection intensities be i 3  and iD  standard deviations 

in the sire and dam lines respectively. In the aim line selection is 

for productivity (y) only,, so on the standardised scales (equation 6 of 

the text) 

ys = Is 

In the darn selection is on both traits, so from (11A), we have 

= 	IiD(D) 

For the progeny (SD), therefore, 

y. = ( Ay+Ay)/2 

A • 	A * 
'SD 	= 	I XD 

Combining the above equation, we obtain 

iJ2 + ( Jig -  (*) 2 )/2 (17A) 

On rearm.ngsrnent of (17A) we obtain the ellipse 

(\)2 + 
	- iJ2)2 = I 	 (1 8A) 

Equation (ISA) is termed the aim-dam response ellipse. It has a centre at 

(0 , iJ2) relative to the base population, and axes of length i,1  and 

for x and y respectively, parallel to the co-ordinate axes. The 

example in the text has 1 5  a :LDS  




