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A

1+ INTRODUCTION

Although ell populations undergoing artificial selection must
be of finite size, most of the theory of long term response to artificial
selection has been developed for infinitely large populations.

Algebraic diffioulties have made it necessary for much of the theory,
even of infinite populations, to be developed for single genes and only
recently has linkage been included (Griffing, 1960), Furthermore, it
has generally been assumed that individual genes have effects sufficiently
smell that changes in genetic parameters, other than the population mean,
can be ignored, Uninganodnloftnolociinaninﬁnitepopulaticn
Nei (1963) and Felsenstein (1965) have developed formulae for the

effect of directional selection on changes in linkage disequilibrium

and selection response, Nei (1963) also derived equations for the
expected changes in the components of genetic variance each generation
and gave some numerical results for long term predictions,

Unless there is heterozygote superiority all favourable genes
will eventually be fixed if the population is infinitely large.

However, in small populatioms, favoureble genes may be lost by chance
so that predictions are needed not only for the rate of selection
advance but also the selection limit, Robertson (1960) introduced a
theory of limits to artificial seleetion in small populations in terms
of single genes, which he extended to multiple loci by ignoring
linkage and epistatic interactions between loci, Simulation by
Monte Carlo methods on a high speed computer has shown that, although
populations may initially be in linkage equilibrium, the selection
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limit is reduced when genes are tightly linked, even with none
epistatic loci (Martin and Cockerham, 1960; Gill, 1963; Qureshi,
1963), However, these workers all used models in which each gene
had the same effect and initial frequency one~half so that generalised
conclusions on the role of linked genes were not obtained, Mnhgo
has been shown to have a more marked influence on selection response
and limits in small populations that are initially in disequilibrium
(Praser, 1957b; Martin and Cockerham, 1960),

Information on the effects of linkage on artificial selection
limits may be of uic in designing selection upoﬂ.unts and commercial
breeding programmes, so this study was undertaken to extend Robertson's
(1960) theory to include some aspects of linkage, Most of the
investigation is in terms of only two loei, each with two alternative
alleles, Whilst this must greatly oversimplify the situation in nature,
such a simple model allows a more thorough analysis of the effects and
interections of the various parameters, Even with two loci each of
two alleles sixteen parameters could be considered: three degrees of
freedom amongst the frequencies of the four types of gamete, ten geno-
types each with a different selective value, the population size and
the recombination fraction between the loci, Since this number of
variables could not be handled in detail, a simple model was used in
which only additive genes and populations in initial linkage equile
ibrium were included, An explicit generel solution even for the
additive model could not be found, so that most of the results have
been obtained by Monte Carlo simulation,
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2, RESULTS FROM INFINITE POPULATION

In this section the notation is introduced and some effects
of linkage on response to artificial selection in infinitely large
rvandom mating populations are discussed, These results will form
a basis for the small population study which follows,

Iwo looi

Let the two loci each have two alternative alleles A, a
and B, b where the alleles A and B are taken to have a favourable
effect on some trait, Let

p be the frequency of the allele A,

q B,

£y gamete AB,

£, . &b,

f3 ; aB,

fh ab,

¢ be the recombination frection between the loci and
be the same for both sexes, Linkage disequilibrium will be measured
by [\ , the linkage disequilibrium determinant, where

A= g8 =20,
Positive values of A imply an excess of coupling heteroszygotes (AB, ab)
and negative values an excess of repulsion heterozygotes (Ab, aB) beyond
their frequency expected from independent association of their constit-
uent genes, It can be shown that
f,=pa+ A, £,=p(i=g) = A ,

(1
f3 = (1=p)q = A B f;._ = (1=p)(1=q) + A ;
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The largest positive value which the disequilibrium determinant
can take is p(1=q) or (1=p)q, whichever is smaller, and the largest
negative value it can take is pq or (1=p)(1-q), whichever is
smaller (Lewontin, 196L),

1t D, is the determinant at generation t, then in a
large random mating population in which there are disecrete generations
and no nloctig, linkage disequilibrium is reduced at the mte

At = (1-0) Attﬂ

= (1-c)t A o *

Let the genotypioc value of the zygote formed from the
gametes with frequencies fJ and tk be Vi for some trait of interest
and let 'Jk be its selective advantage, 'Jk is defined as the
probability that an individual with genotypic value ik is selected
as a proportion of the probability that an individual taken at rendom
from the population is selected, The latter is, of course, the
fraction of the population selected as parents of the next generation,
With random mating, the frequency of a genotype is the product of the
frequencies of its constituent gametes, Thus, from the definition of
selective advantage used, it follows that j: l}i rdrk Yk = 1.

If truncation selection is practised on the individual
phenotype the selective advantage of a genotype is given by

Vi = 1"’%'('31:'") (2)
where m is the population mean and i the selection differential in
standard deviations (Kimure, 1958; Griffing, 1960), For the
derivation of equation (2) it is assumed that gene effects are small
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relative to the phenotypic standard deviation (¢), the selection
intensity is low and phenotypes are normally distributed, Latter
(1965) has investigated the consequences of departures from these
assumptions, He found that the relative pmbabi]ity is poorly
estimated by (2) when less than about LO¥ of the population is
selected and gene effects are such that | (ka - m)/e| > 0.5.
However changes in gene and gametic frequency are less seriously
affected, for with intense selection (2) underestimates the relative
probability of selection for both positive and negative values of
('Jk - m)/o,

The change in gametic frequency, obtained by modifying a
formula of Lewontin and Kojima (1960) to the notation used here, is
for one generation of selection

"= 1) Tar (3)

where dR is the change due to recombination and is given by

@ = o(wyyf4%), = o3faf3)e
The sign of dR in (3) is negative for the coupling heterosygotes
(J = 1,4) and positive for the repulsion heterozygotes (j = 2,3).
If the coupling and repulsion heterosygotes are assumed to have the
same selective advantage, then dR = ¢ /A )+ Substitution of (2)

dfjgfd (Ekfk

into (3) gives the general formula for response to truncation selection
at; = érj (@ frg == * oAl + 3 (v =m]. ()

Consider now the special case of two additive loeci, Let
them have genotypic effects, defined relative to the phenotypic
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standard deviation, of magnitude

AA Aa aa BB Bb bb

(5)
ao ao/2 0 vﬂo' Bo/2 0

For the model (5) the population mean is m = (pa + gf)o, Letting

B = /o = pa + gf, the changes in gametic frequency from ome cycle of
selection are, from (4)

B aty=de (@epon) -oD[1+d(arpaa) )

Ab arza-;-rz(a -p)+cA[1+%(a+ﬂ-2}x)] ©)

aB: afy=3f( Be-w) +cO[14F (asp- )

by o, =58 ( -w) ~cOM+3F(asp=an)]

The changes in gene frequency are

At dp=afy + af, = 3 [a(1-p) + BA]

(7)
B:dg=af, + dfjné[ﬁq(hq) + al] .

From (7) it can be seen that iu and ip are the usual selective values
of the alleles A and B respectively, Also equation (7) illustrates
that J\ 1is the covariance of the allelic frequencies of A and B, so
that the change in the frequency of A results from both the direct
response from selection on A and a correlated response from selection
on B, The disequilibrium, A » can be seen to be a covariance by
rearranging equation (1) into the form A = £,-pq, Thus [ equals
the frequency of gametes ocntin!.ngbothAa.ngB less the product of
their marginal frequencies and is therefore the covariance of a
bivariate binomial distribution (Kendall, 1943, p,133)., In terms
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of the disequilibriun determinent, the additive genetic variance (o7)
reduces to the same form as (7):

2 2
o = [§ p(1=p) + & q(t =)+ apAlds (@)

If a population is initially in linkage equilibrium, then A,
Robertson (personal commmication) has shown that after one cycle of
truncation selection on the individual phenotype with additive genes

Dy = f(ix =17 app(t = p) ot = @) (9)

where x is the truncation point in standard units of the phenotypic
distribution, which is assumed to be normal, Felsenstein (1965)
pointed out that the initial disequilibrium would be negative, but
did not give its magnitude, Since (ix - 1%) € 0, equation (9) also
shows that selection will generate negative disequilibrium and thus
reduce the response if linkage is tight, However if gene effects are
small the amount of disequilibrium actually generated will be very
small with an additive model, and long term selection response is
unlikely to be greatly affected by the degree of recombination in an
infinitely large population,

If the initial build up of A\ from a population in equil-
ibrium is calculated from the changes in gametic frequency (6), the
prediction turms out to be (Nei, 1963)

Ay =-31% app(t - pla(1 = a) (10)

= ~dpdq
The discrepancy between equations (9) and (10) arises from the fact

that for (10) the selective advantages of the gametes (equation 2) were



caleulated by excluding terns in squared proportionate effests (a°, ad, £°),
whereas these were included in computing (9). Equation (9) is therefore
more precise, but for simplicity the selective advantages (2) will be
used to compute changes in gametic frequency in the Monte Carlo study
to follow,

In general, using the approximate selective values (2) and
changes in gametic frequency (6), the change in disequilibrium is given by

Doy =Ay(=0)1+5(aspm20)) -apag (1)
where dp and dq are given by (7).

For a population which is initially in linkage equilibrium to
remain exactly in equilibrium after selection, the selective advantages
of the gametes (wJ = ]i: rk'dk) must be multiplicative, If, before
selection

A = f1f"’-f2f3=o
and after selection
then from (3), it follows that

LA A (12)

Model (12) will be used in the small population study for comparison
with the additive model and will be discussed in more detail later,

Many loei.

Geiringer (1944) developed the theory of recombination between
many loci, and Bemmett (1954) used Geiringer's results to extend the
formulae for linkage disequilibria to more than two loci, However it
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tums out that with none-epistatic genes disequilibria among more than
pairs of loci do not appear in any equations for the additive variance
or changes in gene frequency,

For n loei each of two altermative alleles AJ, a,, the second
order disequilibria are defined as in equation (1), The disequilibrium
between loci j a.ndk,/,\jk, is given by

A = PlAh) - oy
where f(AJAk) is the sum of the frequencies of all gametes containing
A'1 and A, , amlpJ and p, are the gene frequencies ofAj and A, respec-
tively, If 3k is the recambination fraction between these loci, at

generation t
Dgece) = (=) 8 gegem)

t
= =0y D (o)
If the loci are additive, with effects
Ashs A% %%
a0 0.30'/2 0
formula (8) for the additive variance can be extended to give

0_2

1n
A=["2-!!

=1
Similarly, with truncation selection, it can be shomn that the change

in gene frequency in one generation is

dPJ = % [ q'd Pd (1‘PJ) 4+ LJ%AJk]‘ (14)
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Formilae of the type (13) and (1)) can readily be extended
to include multiple alleles and dominance, However with epistatic gene
action the partition of the genotypic variance into additive, dominance
and epistatic components is less straightforward, because the»ctfoctl
are difficult to partition orthogonally if there is linkage disequile
ibrium, These extensions will not be pursued, for the small population
study is concerned entirely with additive loci, for which the results
of this section have been developed as a background,



1.

3« BAS Y FOR TIONS

One locus
Robertson's (1960) theory of limits to artificial selection

in small populations was developed from some results of Kimure (1957).
The concepts underlying their work were the distribution of gene
frequencies and the chance of fixation of a gene, The gene frequency
distribution can be regarded as either the distribution of the
frequencies of loci of the same effect and magnitude in ome population,
or of an individual gene in many populations, Similarly, the chance
of fixation of a gene can be considered either as the proportion of
genes of the same kind fixed in a line, or as the proportion of
replicate lines in which this gene is fixed, after a selection limit
has been reached, The case where no further selection response can
be made but not all the genes have become fixed due to heterozygote
superiority or opposing natural selection will not be discussed,

Kimura (1957) used a continuous model to deseribe the
change in the distribution of gene frequency, #(p, t), at time t by
means of the diffusion equation

b 2
§ = 157 e - e (15)

where M(dp) and V(dp) are respectively the mean and variance of the

change in gene frequency per generation, If the effective population
size is N then V(dp) = p(1=p)/2NV and for additive genes with selective
values i, M(dp) = 4 p(1-p). Substituting for V(dp) and M(dp) in
(15) gives after rearrengement
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Thus for a given value of gene frequency, p, the selection process can
be described by the parameter Nia on a time scale of t/N (Robertsonm,
1960)., The chance of fixation, u(po), of a gene with initial frequency
Po Was given by Kimure (1957), and for the additive model

- o~&Niap
u(p,) = =2 (17)
1 .-Zﬂio.

and is shown in Figure 1,

Two important assumptions are made in the diffusion approx-
imation : firstly that the population size is sufficiently large that
the distribution of gene frequencies can be ~¢:ami¢hz'e¢1 continuous,
whereas in fact only 2N+1 discrete values of gene frequency are
possible; and secondly that selective values are small, so that terms
in (1)% can be ignored relative to ia and 1/N, Ewens (1963)
investigated the fit of formula (17) from the diffusion equation
with the chance of fization camputed by matrix iteration for the
discrete model with N=6 and 0 £ iu £ 0,2 and found good agreement,
However, in order to reduce computing time in the Monte Carlo study
it was necessary to use selective values as large as ia = 1,0 and to
extrepolate from small populations (N = 8, 16) to those of larger
size, s0 that further checks on Kimura's (1957) formula for the
chance of fixation (17) are given in Table 1, The values of u (pg)
for N = 8, 16 and 32 were calculated by repeated iteration of a matrix
of transition probabilities of gene frequencies onto a vector of the



12a,

TABLE 1 The chance of fixation of a gene with
selective value io calculated by matrix
iteration for different population sizes
(N) and by diffusion approximation (N =0 ).

Nia N 005 .1 03 '5 07
32 o) «9592 +9983 1,0000 41,0000 1,0000
32 32 12 «9967 1.,0000 1.0000 1,0000
16 o0 « 7981 +9592 «9999 1.,0000 1.,0000
16 32 + 7766 +9507 «9999 1.0000 1.0000
16 16 « 19N « 9434 «9999 1.,0000 140000

8 oD +5507 « 7981 998 «9997 1.,0000
8 32 2392 « 7883 «9909 +9996 1.0000
8 16 o291 7797 «9901 +9996 1.0000
8 8 D12, + 7653 «9890 «9996 1.0000
4 P «3298 «5509 49096 +9820 +9966
L 32 +3260 #5462 9076 9817 «9966
L 16 « 3226 419 «9059 «9814 +9966
4 8 J164 5343 «9031 «9811 «9967
2 2 847 «3358 7118 +8808 «9567
2 32 +1838 #3346 « 7108 »8805 +9567
2 16 +1830 «333% « 7099 +8802 +9568
2 8 +1815 3312 « 7083 +8799 «9570
1 i J101 +2096 S218 N 8713
1 32 +1099 » 2094 5216 « 7310 8L
1 16 .1098 +2092 5213 + 7309 874
1 8 b »1095 «2087 «5209 « 7308 8716




u(p,) o

12b,

- P, =05
5 p,=03
r—
B =1
p, = 05
1 1 | Il 1 |
Ya Vs 1 2 4 8 16

FIGURE 1 The chance of fixation of a
single additive gene,

32
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distribution of gene frequencies, Agreement of the matrix and
diffusion equation results is generally very good, perhaps remarkably
80 since some of the selective values used are so large, The poorest
agreement is found with low initial frequencies; but for the para-
meters studied, notably ia < 1,0, p, > 0.05, N> 8, the response
(u(p,) = p,) predicted from matrix iteration never differs by more
than 8% from that predicted by the continuocus model, which can be
regarded as the case of population size becoming infinitely large.

With linked loeci it is convenient to study the distribution
of gametic frequencies rather than gene frequeneies, In addition to
selection and drift a third force is acting on the distribution, that
of recombination, The changes in the distribution of gametic
frequencies can be described by a continuous model, the multi-
dimensional diffusion equation (e.z, Kimura, 1955) of the general
form

[V =%

g . 15 V(a£, )] + z: ¥ [Cov(as, ,af, )F]
t 23_15‘2: 3 jx Ofph Lo

-51 S, itar ) (18)
where f(f,, ..., £,, t) is the distribution of gametic frequencies, £
at time t, The dimension of the equation is h, and is equal to the
number of degrees of freedom amongst the gametic frequencies, For n
loci each of two alleles h = 2" = 1, From the miltinomial distribution,
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the variance of the change in gametic frequency is given by V(af;) =
'[rd(1 = 2,)}/2, and the covariance of changes by Cov (af,, af,) =
-(rdrk)/zi. Directional changes in gametic frequency, M(af ),

given by (3), or by (4) for truncetion selection, For the diffusion
equation to hold, both the recombination fraction (e) and selective
values ('&-1) should not be of greater order than 1/N, so that
terms in their product can be ignored, Thus, after rearrengement,
the diffusion equation for truncation selection with two looi tums
out to be

o
sty - 12 2o e - lrytreen - 3 R A ALY

3 3
_!1 S%-[(z n)ﬂ]+Nc£S§-[Aﬂ] (19)

where f, must be fcmllly replaced by 1-f;=fy-f; and A vy £y (12,8, 3)-f2f3.
Clearly, if the terms 1:1 £y Ty ond m in (19) are written out in full,

the v;) can be taken out of the differentials as constants, Thus,

similarly, to the one dimensional equation (16), on a time scale of t/N

and for a given set of frequencies the process can be deseribed by the
parameters %* Viqs %,’4 Vips seveey % Y, and Ne, For the special case

of two additive loci the parameters reduce to only Nia, Nif and Ne where

o and B are defined by (5),

The chance of fixation of an additive gene, A, acting alone
in 2 population was seen to be a function of Pgs its initial frequeney,
and Nia, It has now been shown that if another additive gene, B, is
also segregating a further four paremeters can affect the chance of
fixation of A, These are Nif and Ne, measures of the effect of B and
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the tightness of linkage of A to B, g, the initial frequency of B,
and [\ , the initial linkage disequilibriun, Much of the work to be
described will be concerned with estimating how these extra parameters
influence the chance of fixation of A, However it will usually be
assumed that the population is initially in linkage equilibrium (A, = 0).
No algebraic solution of (19) has been obtained, even for the
additive model, Numerical solution of the differential equation could
have been attempted but was likely to involve excessive computing time
and storage, Although simulation of the process of selection in small
populations by means of trensition probability matrix iteretion has
been used successfully for ome locus (Allan and Robertson, 1964), the

method is not practicable for two or more loci, The two locus model

N+ 3
3
for example, 165 with a population size N = 4, It was therefore

requires a square transition matrix of diunsicu( which is,

decided to study the system by means of Monte Carlo simulation,

In this section formulae are derived for the rate of breake-
down of linkagé disequilibrium in unselected small populatioms and the
results used to calculate the response to artificial selection when
some simplifying assumptions are made,

In a population of effective size N in which no selection
is practised the expected disequilibrium after one generation is given
by

D, = EBl(g,+ ar,) (£, + &) - (£, + af,)(f; + af3)].
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Using the multinomial distribution, it can be shown that

Ay = (1=0)1-1/204
If ¢ and 1/2N are small such that o/2N can be ignored relative to
¢ and 1/2N then

A1 = (1 -c-1/2N)A°

and A,‘-(1-o-1/2n)"/l°

NAO e -(2Ne + 1)1;/2!‘. (20)

Thulonatimonﬂodw,ﬁt/ﬂoiaamnoticnof(mc-o1). The
helf 1ife of the breakdomn of 0, at whien A /A = 0,5, cccurs when

1

t = @paiS  generations (21)

In Pigare 2 the function 1/(2Ne + 1) is plotted against Ne, with Ne on

a log scale, The slope has a maximum at 2Ne = 1, so that the rate of
breakdown of disequilibrium is most sensitive to multiplicative changes
in recombination fraction at values of ¢ near 1/2V, The function

1/(2N¢ + 1) also appears in formulae for the probability of recombination
in small populations inbred to fixation (Vright, 1933; Kimura, 1963).

If selection is very weak and gene effects are small, it can
be assumed that the mean gene frequency and hence the variance and the
disequilibrium change very little as a result of selection, The additive
variance for one locus therefore declines as

Ry e R

A(t) = a(0)®
and /A declines as in equation (20), Therefore for a multi-locus
additive model, for which the variance in the first generation is given
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2Nc+l1

FIGURE 2 Graph of 1/(2Ne + 1) against Ne.
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by (13), the variance at generation t is

-t/2N ‘(2“”31; + 1)t/2N ]

{(t)’[%g"%l’a“'l’d)o + §iajakﬂjk' 62,

and the total selection advance is given by

Q0
io? |
f_‘.-‘;.(ﬁ it = Nic Dj ajz pj(‘l -pj)-o- 23;“;0..’01‘ Aak/(m’ak* 1)]. (22)
(+]
Similarly, the total change in the frequency of a gene can be expressed as

u(pg) = B, = Nilogp,(1 -p4)+é akAJJ(Z“CMH)] (23)

J

'The above equations, (22) and (23), were derived using the
approach of Robertson (1960) who gave similar formulae for a single gene
and showed that with weak selection the total response would be 2N times
that in the first generation, Clearly, from (22) and (23) it ean be
seen that if there is negative disequilibrium initially then the total
advance will exceed 2N times that in the first generation and if there is
initial positive disequilibrium less than 2N times the first generation's
response will be made, even with very weak selection, The assumptions in
the above derivations are very strong, and usually the total advance will
be less than 2N times that in the first generation, even with one locus,
the diserepancy becoming greater the larger Nia (Robertson, 1960), From
this simple model however, one important comclusion can be salvaged, If
there is initial linkage equilibrium and if the parameters lutzu..1 are very
small, then the population remains in equilibrium and the selection limit
is not influenced by the tightness of linkage,
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bo SDMULATION PROCEDURE

The simulation process used in this Monte Carlo study
differed from that of other workers (Fraser, 1957a; Martin and
Cockerham, 1960; Gill, 1963, 1965; Qureshi, 1963), They simulated
gametes un the computer and paired these to form individual genotypes.
The genotypic value of each individual was specified by the mode of
gene action used, and the phenotypic value computed by adding to the
genotypic value a random normal deviate as environmental error,
Selection of parents for the next generation was based on these
phenotypic values, New gametes were formed from the parents in
which erossing over between adjacent loci ocourred with probability
specified by the recombination frections,

In the procedure used here the 2N gametes formed each
generation were never paired into genotypes, The expected frequencies
of the gametes (fd) in the next generation were calculated algebraically,
and the caloulation included both seleetion and recombination, Thus
for truncation selection with an additive model of two loci, the new
expected gametic frequencies were computed by formula (6), In each
run the 2N gametes in the next generation were obtained by sampling
from a multinomial distribution with parameters td by means of gener-
ating 2N uniform pseudo-random numbers, x, and comparing each with the
gametic frequencies, If *

o< xSf1 then a gamete AB was generated, or if
fq <x §f, + £, then a gamete Ab was generated, and so on,
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In the computer programme each of the parameters N, ia, iB,
¢ and the initial frequencies could be altered, From the initial
frequencies for any run selection was practised first (e,g, by formila
6), before random gametes were formed in the manner described above,

Each iteration was continued to fixation or for 6,25 N
generations, whichever occurred first, After 6,25 N generations of
selection for one locus at least 99,97 of the total response can be
expected to be made if Nia D 4, 98,57 if Nia = 2 or 96,6% if Nia = 1,
The average gene frequency after 6,25 N generations was therefore taken
as the limit whether complete fixation in all lines had, or had not,
taken place, Usually 400 replicates were run for each set of parameters,
At fixation, the proportion of lines in which the favourable gene is
fixed is binomially distributed, so that with 400 replicates the chance
of fixation of the favoureble gene, u(p,), has a standard error of
0,05 / u(p,)[1 = u(py)].

AnIL.T, Atlas Computer was used for the simulation, It is

a fast machine (by present standards), such that for a population size
of 8, 40O replicates each of 50 generations required about 12 seconds of
computing time, dependent on the rate of fixation, Doubling the
population size increased the computing time by a factor of almost four,
The formulae used to calculate the changes in gametic
frequency were derived for infinite populations so they are not precise
for the small population sizes of 8 or 16 studied, In particular, an
assumption of the infinite model is that each genotypic frequency is
exactly the produet of its constituent gametic frequencies, However
the objective of this study was not to obtain results applicable only
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to one population size but to be able to extrapolate to populations
usually larger than those simulated, It was therefore thought
advisable to adopt general formulae for selection response within
populations and consider sampling only of gametes for the next
generation, Furthermore, considereble savings in computing time
could be made by using the algebraic approximations to selection
response and expected amount of recombination,
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The chance of fiation of a linked gene

In the first part of the Monte Carlo study all possible
combinations of several values of the paremeters Pys 9y Nic, Nip and
Ne were run for two additive genes initially in linkage equilibrium,
These were: |

Initial frequencies, p,, 9y = 0,05, 0,1, 0,3, 0.5, 0.7;

Nia, Nip = 2, 4, 8, 16;

Ne = 1, 1/4, O,
To avoid selective values ia, i greater than one, combinations in
which Nia or Nip = 16 were run at a population size N = 16, All
other combinations were run with N = 8 to reduce computing time,
For both population sizes 400 replicates were used, The chance of
fixation of the gene with madfroqmcypoandotfoot a is shown
for the above combinations of parameters in Figures 3-7, In addition,
the chance of fixation for each value of P, and Nia is given from the
matrix iteration for one locus (as Table 1, but taken for only 6,25 N
generations) with N = 8 for Nia = 2, 4, 8 and N = 16 for Nia = 16,
These results are labelled Ne =+ , for the response of a gene acting
alone can also be viewed as the response of that gene when segregating
independently of other genes in the population, implying free recombin-
ation in a very large population, The matrix results do not correspond
to free recombination (i.e. ¢ = 0,5) in a population of relatively
small size, when the maximum velue of Ne is N/2, or 4 for a population
size of 8,
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FIGURE 3 The influence of a linked additive gene
on the chance of fixation of an additive
gene with initial frequenecy 0,05 for various

values of Nia, Typical ranges of length
four standard deviations are also shown,
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FIGURE L The influence of a linked additive gene
on the chance of fixation of an additive
gene with initial frequeney 0,1 for
various values of Nia, Typiecal renges
of length four standard deviations are
also shown,
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FIGURE 5 The influence of a linked additive gene
on the chance of fixation of an additive
gene with initial frequency 0,3 for
various values of Nia, Typical ranges
of length four standard deviations are
also 8hm.
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FIGURE 6 The influence of a linked additive gene
on the chance of fixation of an additive
gene with initdlal frequency 0,5 for
various values of Nia, Typical ranges
of length four standard deviations are
also shown,
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u(e,)

FIGURE 7 The influence of a linked additive gene
on the chance of fixation of an additive
gene with initial frequency 0,7 for various
values of Nia, Typical ranges of length
four standard deviations are also shown,
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The similation results for Nia = 2, 4 and 8 which were run
at N = 16 (i,e, Nip = 16) have been adjusted to make them comparable
with those run with N = 8, since there are small differences in chance
of fixation for constant Nia, but varying N (Table 1), The results for
N = 16 were multiplied by the factor

ulrgs 8) - B (21)
u(pgs 16) = B,
which standardises responses, where u(po, N) is the chance of fixation
of the gene segregating independently in a population of size N,
computed by matrix iteration, Although the correction was arbitrarily

chosen, it usually makes small changes relative to the standard error

of the Monte Carlo estimates and does not affect any of the conclusions
to be drawn from the results, The main advantage in meking some trans-
formation of the form (2)) is that the same value of u(po) can be plotted
in Figures 3-7 for all N with Ne =o0 ,

The data in Figures 3«7 for two linked additive genes, A with
effect a.andm'd.alfr-qucuoypo. and B with effect p and initial
frequency Ao which are initially in linkage equilibrium show that:

(a) The chance of fixation, u(po), of A may be greatly reduced if
A is tightly linked to B, relative to A's chance of fixation if segregat-
ing independently, It is clear from the standard errors of the estimates
of "‘(Po) shown in Figures 3-7 that very highly significant reductions in
chance of fixation occur with many sets of parameters,

(b) The largest reductions in “(Po) are found when B has a low

frequency,
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(e) At least for low frequencies of the interfering gene B, and
for sizes of Nip studied, the greater the effect of B, the greater the
reduction in u(p,), the chance of fixation of the affeeted gene A,
Also there is apparently no ohmse in u(po) if Nip S Nig/2,

(d) The chance of fixation of the affected gene can be reduced for
any value of its initial frequency except, perhaps, when the gene is
almost certain to be fixed (u(p°)~ 1) when segregating independently,

(e) The tighter the linkage between the two genes, then the greater
is the reduction in u(p,).

These cbservations clearly need further examination, so
the data of Figures 3-7, together with additional results simulated
for some particular examples of parameters, will be investigated in
greater detail, The degree of recombination will be considered first,

It can be seen in Figures 3-7 that for a wide renge of
paremeter sets p., q,, Nia and NiB, the decline of u(p,) with tighter
linkage is approximately linear for the spacings of Ne used in these
graphs, The trensformation used to plot these Ne values was the
function 1/(2Ne + 1) which was shown in Figure 2 and gives values of
1/(2Ne + 1) = 0, 1/3, 2/3 and 1 for Ne = o, 1, 1/k and O, respectively,
This transformation was chosen partly for convenience, as it reduces
values of Ne ranging from zero to infinity to a secale renging only
from zero to one, but mainly because the transformed variate is a
measure of the rate of breakdown of linkage disequilibrium, It was
shown earlier that on a time scale of t/N generatioms, 1/(2Ne + 1) is
proportional to the half life of the breakdown of the disequilibrium
determinant, A\, in small populations (equation 21),
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The regression of chance of fixation on 1/(2Ne + 1) was
computed for each set of parameters Por Yy Nia and Nif using data
unadjusted by formula (24), As the variance of an estimate of u(po)
from some Monte Carlo simulationm (i) depends on u(po), squared
deviations from the regression were weighted by 1/0.; where of is
the variance of the estimate, The sampling variance of each Monte
Carlo estimate was calculated from the observed chance of fixation,

80 that repeated re-estimation of the variance was not required for
each possible regression line, The chance of fixation for Ne

was first compared with that for Ne = «© , then regression lines

were forced through u(po) for Ne =0 , The latter was calculated

by matrix iteretion and, of course, has no sampling variance, No
analysis was performed where u(p,) > .99 for Ne = , for at such high
frequencies errors in estimation of the variance become more serious,
and the estimates of u(po) and its variance more highly correlated,

In addition to the data shown in Figures 3-7, computer runs were also
made with N = 8 for the same parameter combinations shown in Figures
3=7, but with Nia, Nif < 16, and Ne = 4 (free recombination with N = 8)
and Ne = 1/4, The data for the regression analysis thus comprised

280 parameter sets, of which 100 had three estimated points: 1/(2Ne + 1)
= 1/3, 2/3, 1 and 180 had five estimated points: 1/(2Nec + 1) = 1/9, 1/3,
2/3, 8/9, 1. Pooled results are given in Table 2, where sums of sguares
are of the form z(d.f/of) where d, are deviations from Ne = or

regression and o the sampling variance of the estimate of u(p,)
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TABLE 2 Pooled analysis of lin i
of u(po) ayin:t 1/(2!1::‘ ‘3.6“" o

Source Sum of squares a.f.
Total (Deviatioms from u(po) 15893 1200
for Ne =0 )

Iinear regressions 14,58, 280
Residual from fitting linear
regressions. 1309 920

With the large number of replications used, the Monte
Carlo estimates of u(po) approach a norml distribution, so that

2
under a null hypothesis of no effects -i is distributed as chi-

02

'
square with one degree of freedom, Thommotnmchindnpmdmtlf

is distributed ast.” and has expectation n, In Teble 2 the total, and
both its components, linear regressions and residual from fitting linear
regression are significantly different from the appropriate X 2

(P < ,0001 in each case), However, although the residual variance is
nigpiﬂunt, it contributes a very small proportion of the variability
in this data, If binomial sampling variance is deducted from the sum
of squares for the total and linear regressions, then the linear
regressions remove 14304/14693 or 97..% of the remaining variability
for these parameter sets. The individual regression analyses most
often show significant non linear regressions when the chance of
fixation is very close to ome, in which case the reduction for Ne = O
exceeds that expected from intermediate Ne values, and when one gene
is much larger than the other, Nif > Nia, in which case the reduction
for Ne = O is less than that expected from intermediate Nec values.
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These exceptions to the general trend of a linear decline of u(po)
with inerease in 1/(2Nc + 1) will be considered later,

These regressions also provide good evidence that tight
linkage always reduces response with additive genes initially in
equilibrium, In the 280 lines fitted, there was a significant (P< ,05)
linear regression in 176 cases, In all but one of these 176, the
regression showed a reduction in u(po) as linkage became tighter,

In Figures 3-7 it was shown that the influence of the
affecting gene, B, on the chance of fixation of the geme A is highly
dependent on the initial frequency and effect of B, The influence
of the sige and initial frequency, Qs of B was studied in greater
detail for a gene A with initial tnquonoypos 0.3 and with Nia = L,
Further runs with 400 replicates beyond those shown in Figures 3-7 were
made for g, = 0,025, 0,075, 0.2, 0.4 and 0,6, and also results were
simulated for Nif = 32 with Ne = O, using a population size of 32,

In Figure 8 the chance of fixation, u(Po)' is plotted against q  for
Ne = O and Nif = 2, 4, 8, 16 and 32, The values otu(po) from matrix
iteration for one locus segregating are given in Figure 8 both for all
Nip when q = O or q = 1 and also for a neutral gene, Nif = O, for all
Qe In neither case does selection change the frequency of the inter-
fering gene, B, so that no influence on A's chance of fixation can be
expected, It can be seen in Figure 8 that as Nip is increased, then,

at least up to Nip = 16, the maximum reduction in u(po) is also increased,
Further, the larger Nip, the lower the initial frequency q, at which the
maximum reduction takes place, such that for the larger Nif values it
seems that the maximum reduction occurs where Nifg, = 0.8 approximately,



Py=:3,Nix =4 Nc=0

FIGURE 8 The relationship between the chance of
fixation of an additive gene and the
effeect and initial frequency of another
completely linked additive gene,
Typical ranges of length two standard
deviations are also shown,
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However if B has an initial frequency higher than that causing the
greatest reduction in u(po) for e particular value of Nif, then B may
influence u(po) less than does an interfering gene of smaller effect,
For example, with Nia = A, p, = 0,3 and No = 0, the estimtes of u(p )
are 0,675 for Nip = 8 and 0,537 for Nip = 16 with 9, = 0,05, but the
estimates are 0,766 for Nip = 8 and 0,863 for Nip = 16 with Qg = Ouki
On the other hand, Figure 8 indicates that if B has o frequency lower
than that causing the greatest reduction in u(p,) for some Nip, then
Binﬂuunu(po)mthanwmdlmuccﬂutmdm same
frequency,

Results for different degrees of linkage in the example of
l'igu-oehihichpo- 0.3 and Nia = 4 are shown in Figure 9 for Nip = 2
and Nif = 4, in Pigure 10 for Nip = 8 and in Figure 11 for Nip = 16,

In these graphs chances of fixation from Monte Carlo simulation for

Ne = 1 and 1/ are compared with those for Ne = O given in Figure 8

and with Ne =«© from one locus iteration, Figures 10 and 11, with the
higher Nip values, indicate that the initial frequency of the interfering
gene, B, which causes the maximum reduction in u(po) depends only on Nip
and not on Ne, With Nif = J (Figure 9) the reductions in u(p,) relative
to the sampling error are much smaller, but it appears that the same
conclusion holds,

Also in Figure 10 is shown a check on the theory from the
diffusion equation (section 3) that the paremeters Pgs %o Nia, Nip and Ne are
sufficient to describe the system without a knowledge of the population size,
N. Results for p, = 0.3, Nia = 4 and Nip = 8 were computed with both N = 8
and N = 16, each with 40O replicates, The data in Figure 10 has not been
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FIGURE 9 The relatiomship between the chance of

fixation of an additive gene and the
initial frequency and tightness of
linkage of another additive gene with
Nip = 2 or 4. Typical ranges of length
two standard deviations are also shown,
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FICIRE 10 The relationship between the chance
of fixation of an additive gene and
the initial frequency and tightness
of linkage of another additive gene
with Nip = 8, Estimates were made
at two levels of population size,
Typical renges of length two standard
deviations are also shown,
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N¢ = o0 {
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{ Po="3,Nia = 4,Nif =16

FIGURE 11 The relationship between the chance
of fixation of an additive gene and
the initial frequency and tightness
of linkage of another additive gene
with Nif = 16, Typical ranges of
length two standard deviations are
also shown,
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adjusted to constant population size by formula (2,); the appropriate
values for u(po) are 0,9029 and 0,9056 for N = 8 and 16 respectively,
when simulation is taken for 6,25 N generations,

For each value of q , the chance of fixation was compared
for the run with N = 8 and N = 16, Taking each value of No separately,
the totalX? with 10 degrees of freedom did not aiffer significantly
from expectation (P > ,05) mor did the poolod'Xz with 30 degrees of
freedom, The average of the differences [u(po, 8) - u(po, 16)], each
weighted inversely by its standard deviation, did not differ from
expectation for Ne = O or Ne = 1/4 (P > ,05), With Ne = 1 the average
difference was found to differ significantly from zero (.01 < P < ,025),
the greater response ocourring with N = 16, However, adjustment of
the data by formula (24) removed this latter significant difference
(405 < P < ,1) but did not affect any of the other comparisons,

The agreement is seen to be quite good for the example of
Figure 10, This was to be expected since the values of the recombine-
ation frection did not exceed 2/N, and thus the diffusion approximation
would be expected to hold fairly well, Iarge values of ia, or i, up to
1.0 were used, but whilst these viclate the diffusion equation assumptions,
it turns out (Table 1) that u(p,) is not much affected by population size
for this example when No =0 ,

The influence of Nip was studied in further detail for
examples in which it was necessary to hold constant not only P, and Nia,
but also q,» The two examples studied in most detail were: Py = 0.1,
qg = 041 and Nia = 8 (Pigure 12) and p_ = 0.3, qy = 0.3 and Nia = 4
(Figure 13), In each case the population sizes used were N = 8 for
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Po="1,%="1,Nia =8

FIGURE 12 The relationship between the chance
of fixation of an additive gene
and the effeot and tightness of
linkage of another additive gene,
Typical ranges of length four
standard deviations if Nip € 8
or two standard deviations if Nip > 8
are also shown,
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FIGWRE 13

The relationship betweenthe chance
of fixation of an additive gene
and the effect and tightness of
linkage of another additive gene,
Typical ranges of length two
standard deviations are also shown,
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1<Nip< 8, N=16 for 8 <Nip 16, N = 32 for 16 < Nip ¢ 32 and
N = Nip for Nif > 32, but all data was adjusted to N = 8 by formula

().
where 1600 replicates were used for all runs in which Nip < 8,

All runs were made with 400 replicates, except in Figure 12

Results for Nif = O and Ne = ® were taken from matrix iteration,

Of particular interest in Figure 12 is the minimum value
of Nif that causes a reduction in u(po), for in the earlier date
(Pigures 3-7) it was shown that little, if any, reduction occurred if
Nip < Nig/2, but no values of Nif between Nig/2 and Nic were run,
For the paremeters of Figure 12 the first significant (P < ,05)
reductions in u(po) below that expected for an independent gene
occur with Nip = 5 = (5/8)Nia when there is complete linkage, Ne = O,
The same relation holds, of course, between the gene effects; no
reduction occurs until B = (5/8)a,

A further detailed example of the fall off of “(po) with
increase in Nip up to Nip = Nia is given in Table 3 for a model with
larger effects, in which p, = q = 0,1 as in Figure 12, but with

Nic = 16, 400 replicate runs were used,
TABLE 3 The chance of fixation of a gene with
Py = 01, Nia = 16 and Qg = Ouls
Ne |Nip 0 2 A 8 10 12 14 16 | o
1 .%3 .955 .9&'6 .9"'} .%5 .915 ng .&7 .715
1/4 U3 W40 953 L9116 .951  L,903 ,900 839 579
0 L3 JO43 930 LW933  W935  W919 857 L6916
* N = 32 adjusted to N = 16, All other runs with N = 16,
Examples of S.E, of estimates : 943 L ,012, ,900 £ ,015, .800 I ,020,



30,

A significant (P < ,05) reduction in u(p,) with Ne = 0
does not occur in the data of Table 3 until Nip = 12 for which f = (3/4)a.
However the tests on the data in Table } are less powerful than those for
Figure 12 since fewer replicates were used, There is also a significant
reduction below that for one segregating locus in Table 3 for Nip = 8
with Ne = 1/4, but a higher value of Nif for the same N¢ does not show
any change in u(p,).

For the model of Figure 13 in which Nia = l;.and.p°=q°= 0.3
the first reduction in u(p,) is found when Nif = (3/4)Nic with Ne = O,
but fewer values of Nif were run, However, turning back to Figure 8 or
9, it can be seen that significant reductions ocour for Nif = 2 = Nig/2
with Ne = O where the linked geme, B, has initial frequency Qy = Ouky 0.5
or 0,6, In the data of Figures 3-7 one significant reduction can be
found for Ne = O and Nif = Nig/2 for both Nia = 8 and p, = 0.1 (g, = 0.5)
and Nia = 16 and p, = 0.1 (q = 0,7), at the 5% level of significame.

At the 1% level neither of these is significant and for the number of
comparisons udb, the 1% level of significance gives an overall Type I
error of approximately 5%,

In terms of the wvalue of P necessary to show significant
reductions in u(p,), the general comclusion that can be drewn from the
data is that the critical range of values of the effeet of the interfering
gene is o/2 < B< 3a/k, If B < o/2 no reductions have been cbserved,
whilst if B> 3a/) some reduction in “(Po) seems to occur, It must be
emphasised that these conclusions were drawn for interfering genes with
initial frequency close to that causing the maximum reduction for its
effect (Figure 8); it would be more difficult to detect deviations with
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other values of q . Presumably small reductions in u(po) oceur even
when B < /2, but these could not be detected with the number of
replications used and are trivial relative to the order of reduction
in u(p,) observed with larger Nip values,

When Nip is inereased beyond (3/4)Nic it can be seen in
Figures 12 and 13 that u(po) steadily declines but then passes through
a minimum before increasing as Nip becomes much larger than Nia, This
result could be predicted from Figure 8, where it was also showm that
the value of Nif causing the greatest reduction in u(po) is a function
of q,, the initial frequency of the interfering gene, In the example
of Figure 12, it can be seen that the minimum value of “(Po) ocours at
about Nip = 16 for complete linkage, Ne = O, In Table 3 the initial
frequencies, p, = q, = 0,1, are the same as in Figure 12, but in the
table Nia = 16 and in the figure Nia = 8, If the values of u(p,) are
compared for Ne = O and Nip = 16 and Nip = 32 in Table 3, it can be
seen that with this larger Nia, the maximum reduction in u(po) ocours
at an Nif value much greater than 16, for Nip = 32 reduces u(po) more
than does Nif = 16, Thus it appears that, for given P, and g, the
larger Nia the larger the value of Nif that causes the maximum reduction
in u(po). Similar results may be seen in the data of Figures 3-7.
For example, with p, = 0,1 (Figure 4) and dy = 0u3, if the reductions
in u(p,) are compared for Nip = 8 and Nip = 16 it is found that for
the largest Nia value (Nia = 16) a redustion in u(p,) ocours only if
Nif = 16, whereas for the smaller Nia values (Nia = 2 or L) a larger
reduction is caused by Nif = 8 than by Nip = 16,
| The data of Pigure 12 also shows that the values of Nip for
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which u(p,) passes through & minimum are a function of the recombination
fraction, Thus for Ne = O and Ne = 1/4 the minima are found near

Nip = 16 and Nip = 2, respectively, and the estimates of the chance

of fixation of the gene A at these minima are u(po) = 4330 and u(po)

= 4388 respectively, For Ne = 1, the maximum reduction is caused by a
gene with Nip at least 40, and from the trends of the grephs it appears
that the minimum value of u(p,) lies in the range 0.45 < u(p,) < «50.
In the example of Figure 13, the value of Nif at the minimum of u(po)
is apparently rather less dependent on Ne than in the previous example,
However the maximin reduction in u(p,) clearly depends on Ne in both
examples,

In Figures 12 and 13 it can be seen that, during the phase
where further inereases in Nip continue to reduce u(po), say in the range
Nip = 6 to Nip = 12 in Figure 12, the mﬂ.ﬂlinu(po) is about the
same whether Ne is altered from™ to 1, from 1 to 1/4 or from 1/4 to O,
In other words, during this phase, the reduction in u(p,) is linear on
a scale of 1/(2Nc + 1), for given Nip, However for larger values of
Nip, say Nip > 2Nia in Figures 12 and 13, this scale no longer leads to
linear reductions in u(po). The reduction in u(po) between the smaller
Ne values becomes much less than between the larger values, Thus in
Figure 12 there are no significant differences between u(p,) for Ne = 0
and Ne = 1/4 throughout the range Nip = 2, to 40, the highest Nif value
similated, whereas in this range the u(p,) values for Ne = 1 and Ne =0
differ widely, Thus the value of Nip causing the maximum reduction in
u(p,) must depend on Ne, and of course, an increase in Nip for low Ne may

increase u(po), while reducing u(po) for a higher Ne, An example of the
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latter phenomenon can be taken from Figure 12 for the range Nip = 16
to 40, during which u(po) rises for Ne = O and falls for Ne = 1,

The detailed analysis has so far been restricted to a study
of changes in the effect and frequency of the interfering gene B, The
discussion will now turn to the influence of the initial frequency of
the affected gene A on changes in its chance of fixation due to linkage,
However, since the chance of fixation is not linearly related to the
perameter Nia, and since the slopes of the graphs of u(p,) against
Nic depend on the initial frequency even for one segregating locus
(Pigure 1), it follows that a comparison of the changes in u(p,)
itself over different values of Py does not lead to coherent con-
clusions, The method adopted for comparing the chance of fixation
of genes with different initial frequencies was to compute from the
Monte Carlo estimate of u(p,) for a linked gene the Nic value which
would give the same “(Po) for a single gene with the same initial
frequency, This value of Nia, denoted N/i\a., was read from a graph of
u(po) against Nia, as in Figure 1 but using results computed by
matrix iteration for the appropriate population size (Table 1), An
alternative method of estimeting large values of Ni\a. derives from a

rearrangement of Kimura's (1957) formula
- o Aiapg
ulpg) = 1 - g-2¥ia
For large Nia

-2Ni
u(Po)r\/ 1-e e

so that

wa =12 (1 = u(p))] (25)
2P°
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The approximation (25) is not satisfactory for Nia 1,5, approximately,
and as a large proportion of Nli\a values fell below 1,5 the graphical
method of computing N/i\u was used throughout,

In Figures 14-17 Nﬁx estimates are given for Monte Carlo
runs with Nip = 16 and Ne = O (Figure 14), Ne = 1/4 (Figure 15) and Ne = 1
(Pigure 16) and with Nip = 8 and Ne = O (Figure 17). Most of the data
for these graphs was shown as chance of fixation in Figures 3«7, but
there are included extra runs with 400 replicates for initial frequen-
oles p, = 0,2, Ok, 0,6 and 0,8 with Nip = 16, q_ = 0,05, 0.1 and 0.3
and Ne = O, Typical sampling errors of 1;1\0. are shown in Table 4, but
because l@a is not linearly related to u(pb), upper and lower bounds
of Nﬁsm shom that correspond to u(p,) plus or minmus one standard
deviation of u(p,).

IABLE L S errors of N/:I}x : upper bounds
(u,B,) and lower bounds (L,B,) for % one
standard deviation of u(p_) using 400
"Pl‘umo
Nia po «05 o1 o3 o o7
1 L.B. 0.77 0.83 0.89 0.89 0.87
U.B, 1.22 1.16 1.12 1.12 1.1%
2 L.B, 1.75 1,81 1,86 1.86 1.82
U.B, | 2,25 2,19 2,15 2,16 2,27
I L.B, 3.65 3.73 3475 3.68 3.51
U.B, L., 36 4,29 429 L6 5.57
8 LoDy 7.46 7.53 7.27 -’ -
UOBO 8057 8053 9035 - -

* Values omitted for u(po) S 999,
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As can be seen in Table 4, values of u(p,) close to ane
produce large sampling errors in A are also difficult to interpolate
accurately from a greph, and so results for which u(p,) > .99 have been
omitted from Figures 14-17, Results for Nia = Nip = 16 with Ne = 1
and 1/4 have not been included in Figures 15 and 16 because many u(po)
values fall above 0,99 with these parameters,

The general impression obtained from the graphs of ll/i\a. is
that for specific values of Nia, Nip, q, and Ne the reduction in N/i\a
is approximately the same for all initial frequencies, Pos Of the
affected gene, The pattem of reduction in 1@« corresponds, of course,
to that for the chance of fixation : the greatest etfoetaaro caused
by genes with low initial frequency, U and with tight linkage, With
high frequency genes, % = 0.5 and 0,7, Nﬁ is reduced below Nia to a
very small extent, and, as would be predicted from Figure 8, genes with
qy = 0.3 inﬂumonq\a.almtu-mh as do genes with initial frequency
g, = 0,05 if Nip = 8, but to a much lesser extent if Nip = 16,

However there are clear exceptions to the independence of
N/i\a on p.. VWhen the interfering gene has a very low initial frequency
(g, = 0.05), nﬁ is reduced more if the affected gene has a high initial
frequency, p,e Also, if the gene effects are the same, so that
Nia = Nip, genes B of initial frequency higher than 0,05 (0,1 and perhaps
0.3) also influence m/\a to a greater extent if A has a high initial
frequenoy, It has been shown that where o is much greater than B (say
@ > 2p), then the chance of fixation of the A gene is not reduced by
linkage for any initial frequency, Pos of A, Thus in the terms of this

\
section, Nia is not reduced for any Pos given that o > 28, so that for
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these relative gene effects, ta is independent of p,. It is therefore
probable that N/i}'b is most dependent on Po where the gene effects are
the same,

Apart from the few exceptions noted above, the important
canclusion that can be obtained from Figures 14~17 is that the influence
of a linked gene, B, can be described solely in terms of the reduction
that it causes in the selection parameter, which has been called lﬁ}z.,
without reference to the frequency of the affected gene, Thus in the
earlier graphs of the influence of q , Nif and Ne (Pigures 8-11) and
of Nip and Ne (Figures 12 and 13), the axes showing u(po) could be re-
labelled in terms atl/i\a.andwould apply to all genes of the same
effect as those studied in the examples of Figures 8-13, |

It was noted earlier that if Nioc is much greater than Nip,
no reduction in H/:I_.}., below the appropriate Nia value, can be expected,
It might be thought that for constant Nip, then the smaller Nia, the
greater the reduction in lﬁ\a., measured as a proportion of Nia, However,
Figures 14=17 show that the reverse holds at least up to nearly equal
effects; larger proportional as well as absolute changes in N/i.\a.,
relative to Nia, are found with the larger Nia values, For example,
with Nip = 16, g, = 0.1 and Ne = O (Figure 14) estimates of N/i}l averaged
over all initial frequencies, p,, are 0,99, 1,47, 1,90 and 5.1 approx-
imately for Nip = 2, 4, 8 and 16 respectively, and the corresponding
ratios R/i\a/lua. are 0,49, 0,37, 0,24 and 0,32 respectively, Proportional
rather than absolute changes in ﬁ\a clearly facilitate comparisons
between wide ranges of Nia values, The problem immediately reised is :
what is the limiting proportion l(/i\a/!ua., as Nia becomes very small?
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Unfortunately Monte Carlo simulation can not be expected to give

very satisfactory answers, for the sampling error of N/i.\a/!ua. becomes

very large as Nia becomes small and the curve of u(po) against Nia

very flat (Pigure 1), The most suitable data available has p = g =

0.1 and Nip = 32, where runs with Nia as low as 2, or Nig/Nip = 1/16,

have been made, For Ne = O and Nia = 32, 16, 8, 4 and 2 the proportions

Ni\a/ma. are 0,26, 0,20, 0,18, 0,50 and 0,60 respectively, but clearly no

limit has been reached, An altermative method of finding limiting values

to the proportional reduction in N/i\a will be presented in Section 7.
Although the changes in N/Qx have been found to be dependent

on Nia, examination of Figures 14-17 shows that, for given Nip, the

relative influence of interfering genes of different initial frequency,

Qys is almost independent of Nia, For example, with Nip = 16 and Ne = 0

(Figure 14), the reduction from dy = 0.5 and q = 0,7 is nearly the same,

and alwgys small, The reduction for 4 = 0.3 is always less than for

Q@ = 0,05 or 0,1, except when gene effects are equal, but greater than

the reduction in N/i\o. caused by genes with initial frequency G = 0.5

or 0,7, The initial frequencies g, = 0,05 and 0.1 produce similar

reductions in lt/i\a., for all levels of Nia, but as mentioned previously,

a gene with 9 = 0,05 influences genes A of higher frequency, Pos rather

more than genes of lower frequency p.,. Of course, if Nia > 2Nip, say,

no reductions for any q, would be observed, Thus, at least if Nip > Nia,

it can be concluded that the results of Figures 8«11 on the relative

influence of different initial frequencies, g, hold not only for genes

of different initial frequemcy, p, but also for genes with effects

other than Nia = )4, the model actually studied,
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It was noted earlier that when u(po) is close to unity
for Ne =  the rogrouioﬁ of u(po) against 1/(2Nec + 1) is generally
curvilinear, Thus the reduction in response for Ne = O is greater
than would be u:pootod from intermediate values of Ne if the regression
were linear, Since the slope of the curve of u(po) against Nia is also
strongly curvilinear when u(po) — 1 (nguro 1) /i.\t tums out that
for these high values of u(pc) , the regression of Nia against 1/(2Ne + 1)
is more closely linear than is the regression of u(po) against 1/(2Ne + 1).

In this section of the thesis no attempt has been made to
interpret the results from the Monte Carlo simulation on the chance of
fixation of a linked gene, Some attempts at explanation of the data
will be presented in Section 7, but only after further aspects of the
simhtim results have been dimu«L Two tapioa are concerned with
the joint chmoo of fixation of the two linked genes : firstly, the chance
of fixation of the individual gametic types AB, Ab, aB and ab, and,
secondly, the change in the population mean of some ﬁ'a.it, where the
chance of fixation of the genes or gametes must be weighted by thd.r
effects on that trait, The next uotioﬁ will dou with the influence
of linkage on the rate of selection rupdnu during the intermediate
generations before vthe limit is reached,

It has been shown that the chance of fixation of each of a
pair of linked genes depends upon their relative effects, initial
frequencies and the tightness of linkage between them, A brief discussion
will now be given on the effects of linkage on the probability of fixation
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at the selection limit of each of the gametic types (AB, Ab, aB and ab
with two genes each of two alleles). The case of independent segre-
gation (Ne =® ) presents no problems, for if additive genes are
initially in equilibrium, then the chance of fixation of each gametic
type will be the product of the chance of finﬁon of the genes
comprising each gamete,

.As an example, some results from the 1600 replicate runs
with p, = ¢, = 0.1 and Nia = 8 which were used for Figure 12, are given
in Figure 18 for Ne = 4, 1, 1/4, 1/16 and 0 and taking four examples of
Nif : two (Nif = 2 and 4) in which Nip is not more than one-half Nia,
one (Nif = 7) in which Nip is almost as large as Nia, and finally the
case of equal effects (Nif = 8), The chance of fixation of the favour-
able genes and the four gametic types are plotted against Ne, transformed
to a scale of 1/(2Nec + 1), Previously a strict notation was adopted, in
which A was termed the affected gene and B the interfering gene, Here
the pair of loci are considered jointly, so the choice of label, A or
B, can be made arbitrarily,

The example of Figure 18 shows that for low values of
relative to o then, as mentioned previously, only the chance of fixation
of the smaller gene B is reduced as linkage becomes tighter, As the
gene effects become equal the fixation of both the favourable genes is
reduced, On the other hand, the chance of fixation of the unfavoureble
coupling gamete, ab, is not influenced by the recombination fraction for
any of the pair of values of Nia and Niff shown, The chance of fixation
of the repulsion gamete aB is increased only as the effect P approaches
the magnitude of a, otherwise it is unchanged with tight linkage., The
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gametes AB and Ab which contain the gene with larger effect in these
examples (except where effects are equal) are influenced at all levels
of p £ a With tight linkage the favourable coupling gamete AB is less
frequently fixed and the repulsion gamete Ab more frequently fixed, such
that the sum of their frequencies, the chance of fixation of the gene A,
is not affected if B is much less than a,

Deviations from matrix iteration results for independent loci
were tested by X goodness-of-fit on all the 1600 replicate runs with
Po = 9o = 0ul, Nic = 8 and Nif = 1, 2, 3, seeesy 8, These results
confirm the impressions gained from Figure 18, for linkage was found
to influence the chance of fixation in the following cases (P < ,05) :

Gene B, Gametes AB, Ab - all Nip

Gene A - Nip>5
Gemete aB - Nip 23
Gemete ab - no Nip

Perhaps the most interesting observation that can be made from these
results is that if ome gene (B) is much smaller than the other, say

B £ 9k, then the reduction in the chance of fixation of the smaller
gene as linkage becomes tighter takes place only among gametes in which
the large favourable gene (A) is fixed,

It can be seen in Figure 18 that as the recombination fraction
becomes smaller more repulsion heterosygotes Ab, aB are fixed at the
expense of coupling heterozygotes, Thus a negative linkage disequilibrium
between lines at the limit, O , is found, where

A u(AB) , u(ab) « u(Ab) , u(aB) (26)

L
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and u( -« ) is the chance of fixation of the specified gamete, For
the examples of Pigure 18 with N = 0, the values ofA are -0,0351,
-0,0667, -0.1129 and =0,1383 for Nipf = 2, 4, 7 and 8 respectively,
An excess of repulsion heterosygotes at the limit holds more generally
than for the examples of Figure 18, For the runs with 400 replicates
with the range of starting frequencies and effects shomn in Figures 3-7,
A was calculated in each of the 210 runs with Ne = 0, A was sero
in 72 cases, in all of which at least one gene was fixed in all
replicates, AL was negative in 130 runs and positive in only 8,
Moreover for none of these 8 parameter sets in which A,_ was positive
did the disequilibrium differ significantly at the 57 level from gero,
Further analyses were performed on the same data with Ne = O
to test the other conclusions from the examples of Figure 18, Firstly,
the chance of fixation of the unfavourable coupling gamete (ab) was
compared with its expectation from the independent case of Ne = «0 ,
From the 210 runs, 138 were excluded because the chance of fixation
for Ne = ©0 fell below 0,01, so that less than ) out of the 400 computer
runs would be expected to be fixed in this class and the X_ 2 test can
not be used, In the remaining 72 parameter sets only 2 showed
significant differences (P < ,05) between the chance of fixation of
ab for No = O and Ne =c0 , Secondly, for the case of unequal effects,
in which a 28 or f > 2a in this data, a similar analysis was carried
out for the chance of fixation of the repulsion gamete containing the
unfavourable allele of the locus with larger effect and the favourable
allele of the locus with smaller effect, From the 150 comparisons of

Ne = O with Ne =« , 79 were excluded because the expected chance of
fixation for Ne = «© was less than 0,01, and of the remaining 71
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comrarisons only 8 showed significant differences at the 5%
probability level,

The observation that the chance of fixation of the
inferior coupling gamete is not influenced by the degree of linkage
therefore appears to hold generally, Since there are only three
degrees of freedom among the four gametic frequencies, the additional
observation that the chance of fixation of only the smaller effect
gene is reduced with linkage if this gene has an effect less than,
say, half that of the larger effect gene, enables prediction of the
behaviour of the probability of fixation of the other three gametes
as linkage becomes tighter, Thus with a wide divergence of effects,
the repulsion gamete containing the favoureble allele of the larger
effect gene can not be influenced by linkage, as the results show,
Similarly, a negative disequilibrium, )\ , between the lines at fixation
is inevitable if at least one gene has a reduced chance of fixation
and the unfavourable coupling gamete's chance of fixation is not
changed by tighter linkage,

The change in the population mean
The Monte Carlo results discussed so far have mostly been

in terms of the chance of fixation of one gene and how this chance of
fixation is influenced by another, linked, gene, In a selection
experiment all that can usually be observed is the change in the
population mean, which is a funetion of the effects and changes in
frequency of all genes contributing to the trait, For two additive
genes, the total advance in the mean, denoted R(p), is given by
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R(k) = ao [u(py) = py) + Bo [ulg,) = q] (27)

where, as previously, o is the phenotypic standard deviation and the
effects o and P are defined as proportions of o,

R(p) can be calculated for each computer run from the data
of Figures 3-7, but it is difficult to compare results when the initial
frequencies and effects differ, Therefore the method used for making
comparisons of changes in the population mean was to express the R(p)

‘obaomd for some parameter set p., 4., Nia, NiB, Ne £ o as a
proportion of the response, R(u), expected from the same parameter set,
but with Ne = , ‘Tho latter results can, of course, be computed from
Table 1 for it is assumed that the individual genes respond independently
vhen Ne = 0, From the data given in Figures 3-7, this proportion of
the selection advance realised for Ne = O is listed in Table 5,

The greatest proportional reductions in R(p) caused by tight
linkage are found when Nic and Nip, and hence the gene effects o and B,
are approximately equal, Such a result could be anticipated from the
earlier data, for in a model in which one gene has an effect much larger
than the other it has been shown that the larger gene's response is
scarcely affected by the smaller linked gene, Since the gene with the
larger effect generally comtributes the greater part of R(n), it
therefore follows that R(p) will also not be greatly influenced by
close linkage when the genes have unequal effects,

The data from the computer runs shown in Figure 12 can also
be used to illustrate that the maximum reduction in the response of the
population mean caused by linkage occurs when the gene effects are
approximately equal, In Figure 19 the response, R(p), realised for
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TABLE 5 Total advance of the population mean with
two completely linked additive genes (Ne = 0)
as a proportion of the advance expected from the
same genes segregating independently (Ne =o2 ),
Nia N g Py
«05 ol o3 o5 o7
(a) 16 16 .05 «659 67 JT77 +885 91k
ol 671 o 701 +839 N7 «955
o3 o777 839 «980 +996 1,000
o5 +885 N7 +996 1,000 1,000
o7 91 +955 1,000 1,000 1,000
() - 16 8 «05 «830 «831 +89% o3 o973
o .803 .803 .886 o945 91
o3 806 .869 «958 986 0992
5 +895 «933 «997 +998 1,000
o7 «920 «939 «998 1,000 1,000
(e) 16 4 «05 +959 «953 +960 «988 «978
1 921 +906 «959 +965 +983
o3 «932 0923 +963 «995 « 984
o5 o1 +967 «990 +989 +989
o7 «983 +968 «997 1.001 «999
(&) 16 2 .05 1,006 +983 2996 1,001 0995
ot «955 »988 «990 «999 1.009
o3 978 «979 +980 «981 1,000
5 +966 +958 995 +998 «993
o7 976 +986 «998 1.001 «995




IABLE 5 continued
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Nia  Nip q, P,
«05 o oJ oD o

(e) 8 8 .05 781 W772 +799 860 918
o o772 o731 B4 817 «955

o3 «799 A +880 N7 «988

o> 860 817 o7 »988 +985

B ; 918 +955 - +988 985 1.000

() 8 I 05 942 +899 «939 oSl +955
ol +870 +835 L oSkl 942

o3 4863 «887 «892 96 +989

S +870 «879 942 «982 +967

o7 4958 961 I «985 +995

(g) 8 2 05 «930 963 «990 «985 +995
o 1,000 946 +983 +993 +962

o3 «993 «581 O +961 9N

o 914 «916 976 1,000 «982

o7 1,001 +983 978 +998 +992

(n) I 4 .05 o775 .868 +846 «883 +906
of +868 +850 776 +850 978

o3 46 « 776 o341 «879 «948

5 883 +850 +879 «951 977

o7 +906 «978 «9438 977 »982

(1) A 2 05 |1,053 +965 982 .992 1,000
o1 .821 +961 911 92 917

o3 881 «859 +907 +905 +958

5 .916 « 951 « 901 952 «967

o7 .986 912 919 «956 +986
(1) 2 2 05 1,054 1,064 1.02 «589 «932
ot 1,06} «839 «919 843 .889
oJ 1.024 919 826 N7 «899
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Ne = 1, 1/4 and O is plotted as a proportion of that expected for
Ne = o0 with the parameters p, = q°-0.1,lua.s8e.ndﬂxowidnnngo
of Nip values used for Figure 12,

Tuming again to Table 5, it can also be seen that the
reductions in response with tight linkage occur when both genes have
low initial frequency and large effects, There are two main contri-
buting factors, Firstly, as earlier results have shown, a low
~ frequency gene with large effect has most influence on a gene linked
to it, Secondly, genes with large effect and intermediate or high
frequency have a very high chance of fixation and the curve of “(Po)
against Nia is almost flat for such genes if Nia is large (Figure 1),
Therefore, even though the effective selection pressure (llﬁ) is
reduced at least as much for high frequency genes (Figures 14-17), their
response is less affected by a linked gene than is the response of a gene
with low frequency and the same, large, effect,

In summary, it has been shown that the total response in the
population mean for some trait determined by a pair of genes is most
influenced by linkage if these genes have low initial frequency and
large, approximately equal, effects,
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6. IHE OF ADVANC

The analysis has been restricted so far to the limits of
selection response, Using a few examples, a brief description will
now be given of the rate of progress to the limit, with the model
again restricted to a pair of additive loei initially in equilibrium,
The results are relevant to all population sizes, for it has been
shom (section 3) that for a given set of parameters p,, 4., Nig,
Nip and Ne the time scale is proportional to the population size, N,

Since the approach to the limit is asymptotie, Robertson
(1960) defined the half-life of the selection process, the time taken
for the mean gene frequency to get half-way to the limit, as a measure
of the time scale of the selection response, For one segregating locus,
Robertson showed that as Nia becomes very small then the half-life
approximates 1..N generations, Higher Nia values usually reduce the
half-life, for the favourable genes are more rapidly fixed by selectiom,
However low frequency genes with small Nia may have a half-life in excess
of 1,4N generations, for the initial inerease in variance due to an
increase in gene frequency from selection more than compensates for
the decrease in variance due to drift, Half-lives for single additive
genes were computed by matrix iteration with N = 32 and are plotted in
Figure 20,

Typical response curves of linked loci are shown in Figure
21, In these p, = q, = 0,1, Mla=2, 4 and 8, Nif = 8, No =0 , 1,
1/h and O and runs were made with population size N = 8, In all, 3200
replicates were used for Ne = 1, 1/ and O, and the curves of Ne = o
were obtained by matrix iteration. In the first few (say N/2)
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FIGURE 20 The half-life of the selection
process in generations for a
single additive gene, Curves
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FIGURE 21 Response curves for an additive gene
as influenced by its effect and
tightness of linkage to another
additive gene, Time is measured in
generations,
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generations linkage has little influence on the response but then
with tight linkage the response repidly slows down, Vith equal,
large Nia and NiB, it can be seen that the response ceases at about
the same time with Ne = O and Ne =0 , but some response is made later
with other values of Ne as recombination takes place, Since the reduc-
tion in response with linkage only oceurs in the later generations,
the half-life of the selection process must be reduced, Approximate
half-lives for the example of Figure 21 are given in Table 6.

TABLE 6 Halflives (xN generetions)

of the selection process for
p°8 %80.1 Mmﬂao

Nia| Ne 0 1 1A 0

2 1.3 1419 0.86 0.65
L 1.00 0.95 0,66 0,57

0464 0.62 0.57 0.50

The influence of the initial frequency and sisze of the

interfering gene, B, on the rate of response of the affected gene, A,
is 1llustrated in Pigure 22 for the example p, = 0.3, Nia = L and Ne = o,
in which runs were made with N = 16, The seleotion limits (at 6,25N
generations) have been shown earlier in Figures 8 and 10; they are
gven again in Figure 22 together with the average gene frequency of
A at several intermediate stages of the selection process, The time at
which response is first influenced by the linked gene, B, does not seem

' to depend on the initial frequency of B, but does depend on its sisze,
© If B has an initial frequency near to that causing the meximun reduction
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in A's chance of fixation, little further advance in the frequency of
A occurs after the first effects of linkage are noted and, in fact, a
small negative response may be observed for some ttm.. If B has an
intermediate or high initial frequency, it was seen previously (Figure
8) that the chance of fixation of A may be higher, the larger Nip,
Comparisons of the responses for Nif = 8 and Nip = 16 in Figure 22
show that it is only in the later generations that A makes a greater
response with the larger value of Nip, Approximate half-lives for this
example are given in Table 7, where it can be seen that the later
increase in response with the larger Nip and intermediate or high 49
(»0.2) is such that the half-life is abtually increased somewhat by
the presence of a large linked gene,

Half-lives (xN generations) of

the selection process for p, = 0.3,
Nios) and Ne = O,

Nip qo 0 ,025 05 ol o2 o3 ok N .6 o7 1.0

16 oT7 W51 W31 A8 79 W8 W8 87 B WA JT7
8 oTT  o62 U6 U3 b B3 62 75 T8 B WTT

In Figure 23 the influence of the size of the interfering gene
on the progress to the limit is studied in greater detail, using the
example of Figure 13 with p, = 4, = 0.3, Nia = 4 and Ne =0 , 1 and O,

If the results for Ne = O and Ne = © are compared, it can again be seen
that the larger Nip the earlier the frequency of A is influenced, Further-
more, for the highest values of Nip, almost all the reduction in response

for Ne = O versus Ne = 0 occurs in these early generations, Such an
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48,

observation is probably to be expected, for it is only in the early
generations of selection for a small gene that a very large gene remains
segregating and presumably the larger gene can only affeet the response
while it is still segregating, For a gene with initial frequency 0,3,
the ,99-life, when a proportion ,99 of the total response has been made,
occurs after 33N, 75N, 1,79N, 3.,97N and 4.61N generatioms for Nia =
32, 16, 8, 4 and O respectively for a single gene, and after these
times few genes remain segregating in the population,

When Ne = 1 it can be seen in Figure 22 that the initial
reduction due to linkage is almost as great as when Ne = 0, It is only
in the later generations and with the smaller values of Nip, say less
than 16, that more progress is made with Ne = 1 than with Ne = O,
Reasons for the build-up of linkage disequilibrium during selection
will be discussed in the next section of the thesis; for the present,
however, it can be assumed that differences in response for various
Ne values reflect differing rates of breakdown of this disequilibrium,
With the lgrgut_valuog of Mﬁ there oan'bo ngn. ﬁ.u for recombine
ation to occur before the large, B, gene is fixed, Thus for Ne = 1,
the half-life of the breakdown of linkage disequilibrium is 0,46N
generations in the absence of selection (equation 21), yet the ,99-life
for the selection response with Nif = 32 is only 0,33N generations,
However, with smaller gene effects, there is more time for recombination
to take place and the more closely does the rate of breakdown of linkage
disequilibrium correspond to the total advance for different values of
Ne,
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In this section an attempt will be made to formulate some
theory for interpreting the Monte Carlo data on selection limits and

rate of response, From the theory & new method of ealculating the
effects of linkage on selection limits for a simple model of two loei
will be developed,

It was shown earlier (10) that with the model of additive
selective advantages (2), which was used in the computer programme,
small amounts of negative linkage disequilibrium would be built up
by selection in an infinite population initially in equilibrium,

A similar effect would be expected in smell populations, Negative
disequilibrium has been shown to reduce the rate of selection response
(7), and might therefore be expected to reduce the chance of fixzation
also, Such a mechanism was also proposed by Felsenstein (1965) as an
explanation of the reduction in response observed by Martin and
Cockerham (1960) with an additive model initially in equilibrium in
small population, However, if the selective advantages Wy Wy Wy
and ), of the gametes AB, Ab, aB and ab, respectively, are multiplie
cative in relation to each other, such that WiW, = WoWy, no linkage
disequilibrium would result from selection in an infinite population
initially in equilibrium (12), Thus, if the build-up of negative /\
shown by equation (7) is the only cause of the reduced chance of
fixation with an additive model (2) in small population, no such
reduction in chance of fixation would be observed with the multipli-



cative model (12), Therefore a comparison of the two models in
small population was made by Monte Carlo simulation, using multi-
plicative selective advantages for some of the parameter sets run
previously with additive selective advantages,

The multiplicative model was constructed so that if the
population was in equilibrium it would remain ﬂxm.’ and also so that
changes in gene frequency would be as close as possible to those
obtained with the additive model and changes due to recombination
would be identical, By making these latter restrictions direct
comparisons could be made between the chances of fixation obtained
using the alternative models, The simulation procedure for the
multiplicative model was otherwise identical with that used for the
additive model (see section L), but the changes in gametic frequencies
were computed as follows:

Mg sdf, =t (1ega(l-p)Il1+4p(1-0q]-ar

2
Ab r2+arz.=u2 [1+%a(1-r)][1-%3q] +dR

(28)
aB : £, + &f; = Tf, [1-%ap][1+%ﬂ(1-q)] +dR

a'b:fh+dfkaﬂk[1-§ap][1-%ﬁfﬂ -dR

where T was chosen such that af, = 0, and
@eoll1+5 (aspma)],
where M = pa + gB, is the same as for the additive model, The change
in gene frequency with (28) can be written, for A,
2
ap = $op(tp) s §pb . eBh [1 - 2p = ap(1-p) - § pA\)

wmiapll
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and similarly for B, Thus the changes in gene frequency for the
additive and multiplicative models differ only in terms containing
both squared or cubed effects and /\ , In the initial generation
both models will show the same change in gene frequency,

Computer runs with the multiplicative model were made for
the parameters p, = q, = 0.1, Nia, Nip = 1, 2, J, 8 and 16 and Ne =
by 1, 1/4, 1/16 and 0, all with 400 replicates, Parameter sets with
Nia = 1 or Nif = 1 were run with population size N = 8 only, those with
Nia = 16 or Nip = 16 were run with N = 16 only; all others were run
with both N = 8 and N = 16, [Results are shown in Figure 24 together
with chances of fixation computed for the same parameters but with the
additive model, Some of the latter data was also shown in Figure L.,
Runs were made at different population sizes for two reasoms: firstly,
as a further check on the diffusion equation prediction that the chance
of fixation is independent of N for each model, and secondly to test
whether the comparison of the additive and multiplicative models was
affected by N, Since the rate of build-up of negative disequilibrium
with the additive model is a function of squared selective values (9)
it seemed possible that for constant Nia and Nif the alternative models

would agree more closely at larger population sizes and correspondingly
smaller selective values.

However, the general impression to be gained from Figure 2,
is that the selection limit is the same for both the additive and

multiplicative models at both levels of population size., Also,
comparisons of the results for each model with N = 8 and N = 16 indicate
that the diffusion approximation holds well, The statistical analysis
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FIGURE 2 The chance of fixation of an
additive gene, with various values
of Bﬁi estimated using additive (A)
and multiplicative (M) models of
selective advan each at two
levels of popula*tion size, Typical
ranges of length four standard
deviations are also shown,
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of the data of Figure 2, comprised pairewise comparisons both of
different models run with the same population size (Table 8) and of
aifferent population sizes run using the same model (Table 9), The
latter analysis was made on chances of fixation both adjusted (by
equation 2) to N = 8 and unadjusted, In each comparison, the
difference in response for each parameter set was divided by the
standard deviation of this difference and a factorial analysis
performed on the new variates, In the absence of any real differ-
ences between the models each sum of squares is distributed asX °
and has expectation equal to its degrees of freedom, Clearly the
fit is good in all cases, and adjustment to N = 8 makes little
improvement,

A further comparison of the additive and multiplicative
models is included in Figure 25, for which the parameters were
Po = 0s5, 4, = 0u1, Nia = 2 and Nip = 8, [Results for Ne = 0
were obtained by matrix iteration and those for Ne = 1/2 and
Ne =0 ‘by Monte Carlo simulation with 1600 replicates and a popul-
ation sige of N = 8 for both models, The average gene frequency
of A is plotted together with the average within-line values of
p(1 = p), the variance of gene frequency of A, and /\ , the disequil-
ibrium determinant or covarianee of gene frequencies of A and B,
From equation (7), the rate of change of gene frequency within a
line, for this parameter set, can be expressed by

'{(% = p(1 =p)+ 4 (29)
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TABLE 8 Analysis of chi-square of differences in the chance
of fixation for an additive ys. a multiplicative model,

! = § N =16
Source & Sum of squares
Nia 3 00883 60867
&
Nip 3 10,012 L,725
Nia x Nip 9 6,596 14,343
Ne h- 6.621 1 .58
Nia x Ne 12 3,536 16,405
Nip x Ne 12 170566 7.101
Nia x Nip x Ne 36 35.978 37477
Total 80 81,208 88,979
* 01 < P < ,05, All other sums of squaves have P > .05,
Analysis of chi-square of differences in the chance
of fixation for population sizes N = 8 ys. N = 16,
Model Additive Multiplicative
Adjusted to N = 8 No Yes No Yes
Source a Sun of Squares
Mean 1 Som 0.003 3020-61 oom
Nia 2 1,929 6,390 34439 1,521
Nip 2 44753 4,752 6.A7" 5,784
Nia x Nip I 2,130 1.186 3,228 2,82}
Ne L 2,691 2,576 2,268 2,213
Nia x Ne 8 5.872 5.916 7.129 7.426
Nip x Ne 8 84343 8,464 10,776 10,273
Nia x Nip x Ne 16 21,153 20,655 10,492 10,477
Total 45 504315 49,942 146,967 40,518

B3
LO1< P¢ ,05, All other sums of squares have P > ,05,



52b,

4 A

--05

‘25

‘08

e

ARt

\\ ,’ ADDITIVE MULTIPLICATIVE
\ /, N¢ = oo
\ /
N [p—— —_—— Ne =%
...... —— Ne = O
PO = -5, 10_ 1,

-
-
-
-

-
-
e

46
R
AN
SO
N,
\\\ \\
&\ x.
~ S
S N
e
1 1 | 1 5
N 2N 3N 4N SN

FIGURE 25 The change in the mean gene

frequency, variance of gene
frequency and disequilibrium
determinant within lines for
a linked gene using additive
and multiplicative models of
selective advantage, Time is
measured in generations,

AON3INO3Y4



53

The scales of Figure 25 have been arranged to show the relative
magnitude of the umm(w).mmsmammmauu
scale of /N generations,

In Figure 25 it can be seen that with both models there
is not only a build up of negative disequilibrium, but also a
reduction in the variance, p(1 = p), within lines when there is
tight linkage between the pair of loci, The reduction in variance
is about the same in both models, However, A becomes rather more
negative with additive selective advantages, particularly in the
early generations, and the chance of fixation u(Po) is slightly
lower with this model, at least for the runs shown in Figure 25,
Nevertheless, it is clear from both Figures 2, and 25 that the
additive and multiplicative models are acting in a very similar
manner, and that the build up of negative disequilibrium anticipated
from (10) for the additive model in an infinite population is not an
adequate explanation for the reduced chance of fixation in small
populations with linked genes,
Approximately equal effects

A more satisfactory interpretation of the Monte Carlo
results can be obtained by considering the sampling of gametes which
occurs during selection in a small population, Firstly the discussion
will be concerned with the case where the genes have approximately
equal effects, but the results are rather imprecise, Then for unequal
effects, say p > 21, in which the gene of smaller effect has no
influence on the chance of fixation of the gene of larger effect, a
more detailed approach will be presented, which leads to a useful



enalytical technique,

Consider the first generation of selection of N parents
from a large population in equilibrium, Let the gene frequencies
in these parents be p and q for the pair of genes A and B and assume
there is still equilibrium, The population of 2N sampled gametes
can be classified according to which gametiec types AB, Ab, aB and ab
oceur in the sample, as shown below,

Class Gemetes | Prequency
Qcour Do nmot ocour  May ocour

(1) ab  AB, Ab, ab - [(1=p) (1=g))*

(11) My B, ab . (1= = [(1=p)(1=0)1*
(141) aB,ab B, fb - (1=p)® <[(1=p) (12) 1
(iv) Kb ,aB AB ab (1-p0)® = (1-p)® - (1-0)%

+ [(1=p) (1=)1 &
(v) AB - Ab, aB, ab 1 = (1epg)®

If the first sample falls into ome of the classes (i), (ii) or
(111), there is at most one locus still segregating, so the degree of
linkage between the pair of genes will not influence later mates of
response and the chance of fixation, However in sub-populations of
class (iv) both the favoureble alleles A and B are represented, but
there are no gametes AB, Gametes of type Ab and aB will be selected
at the expense of ab, and AB will only arise as a result of recombination,
If linkage is complete most sub-populations starting in class (iv) will
be fixed for Ab or aB, If a = B, the ratio u(Ab) : u(aB) will equal
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the nﬁo of frequencies of Ab and aB in the initial sample, If

the parameters Nia and Nip are hfgn, AB gametes which come from a
recombination will have a high chance of fixation, With intermediate
degrees of linkage, some populations initially of class (iv) my lose
Ab or aB before a recombination has occurred, Thus with intermediate
or tight linkage and equal large effects, a response will be seen in
the early generations as the frequency of Ab and aB increase relative
to ab gametes, Then a period of no response may be observed if Ab
and aB have the same effect, after ab has been lost, Negative dis-
equilibrium will, of course, be observed within lines during this
period, Finally, if a recombination takes place and AB is formed, a
later period of response will occur as AB increases in frequency at
the expense of Ab and aB, On the average of many such populations,
this phenomenon will be reflected in a long period of slow response
after populations in which there is free recombination, or no
recombination, have ceased to respond (Figure 21).

In sub—popgl.ations in which AB gametes are found in the
initial sample (class (v)), AB will generally be fixed if Nia and
Nip are large. Otherwise, if AB is lost in the early generations,
the populations will respond as for class (iv) in which AB is not
found in the initial sample, |

Although the above model has not been developed far enough
to enable accurate predictions of chance of fixation, by making
several strong assumptions some results can be obtained which
indicate that the model has relevance to the observed Monte Carlo
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results, Assume that there are equal effects, complete linkage and
that after the first sample the selective values are sufficiently
large that the most favourable gamete in each class is fixed at the
limit, except in class (iv), where Ab and aB are fixed in proportion
to their frequency in the sauple, For an example with p = 0.1,
N=4 and 1o = if = 1,0 for the first generation of selection, chances
of fixation of the allele A were calculated for various values of q.
The results were, for
gy = 040, 0405, 041, 0,2, 0.3, 0.5, 0.7, 0.9, 1.0,

u(po)B oMk, o632, 537, 46k, A4T9, 4567, 643, 4695, 71k,
respectively, The minimum of the curve of u(po) against g, ocours near
4y = 0.2, and the curve clearly resembles that of Figure 8 with Nia =
Nip = 4, The minimum of the curve occurs where the product of the
probability of the initial sample falling in class (iv) and the chance
that Ab is lost from this sample is a maximum,
Zhe bottleneck model

Vhen the interfering gems, B, has a much larger effect than A,

say p 7 2a, a rather different approach, suggested by A, Robertson
(personal commmication), can be taken, Consider an additive model
in which B has a low initial frequency, qo,ghi@nlua of Nip and
is completely linked to A (No = 0), such that large reductions in the
chance of fixation of A are likely to be observed, Assume, firstly,
that the chance of fixation of B is very close to cne, a good approx-
imation if luﬂqo> 2, Most of the gametes fixed will therefore be
AB or aB, so that all the selection response of A that is realised at
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the limit will come from an increase in the frequency of AB relative
to aB gametes as no recombination can take place, If, at generation
t, the frequency of B is Qs there will be just 2!th gametes having
the B allele so that the realised response for A will be made in a
population of effective size 2Ng,. Thus, in the first few gener-
ations A will pass through a bottleneck of population size if B is
initially at low frequency, The within line variance of A will
therefore decline rapidly and less response will be made than if A
is segregating independently in the population,

Consider further a model in which Nia is very small, so
that the mean gene frequency of A will change little as a result of
selection, If there is only one additive locus, the variance
declines by a proportion 1/2N each generation and the total response
is given by

u(py) =, = % p, (1= I (-t
- 0
= Niagp (1 = p,)
(Robertson, 1960). For a linked additive loous, if only B gametes
are fixed, then 2N must be replaced by ?th to describe the change
in the variance and the total response, which will be denoted §p1 .
is

i
Spy = Fp, (1 =p )1+ (1 -ﬁ}qh (1 "”JE)“ --5,{!;) + eeel  (30).

However, not all the gametes fixed will, in general, contain the
favourable allele B, so the theory must be developed further to
include this situation, Further, it will be necessary to calculate
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the distribution of gene frequencies, q,, in order to evaluate (30).

Let Py be the frequency of A alleles among gametes having the
B allele, i.e. py = £,/(fy + f5) in terms of gametic frequencies, and
let Pp be the frequency of A alleles among gametes having the b allele,
Therefore

p=p 2+, (1=a (31)

At the limit, letting Py and Po be the total changes in frequency
of A among B and b gametes respectively, the average chance of fixation
of A can be written in the same form as (31) as

u(py) = (pg + 5py) ulgy) + (o, + Sp)l1 = u(g)’], (32)

where u(qo)‘ is the chance of fixation of B, which must be evaluated,
The disequilibrium determinant can be written as

A= (p =pylalt =)
so equation (7) for the change in frequency of B becomes

dg= Fqt =)+ 3 (py-p)alt - 9 . (33)
Kimura's (1957) formula (equation 17) for the chance of fixation holds
for one locus, and is thus comprised only of the tern &£ q(1 = q) in
(33)¢ In the model here, it is assumed that ic is very small, so that
changes in q due to disequilibrium and selection on A will also be
small, Thus if .‘.1%(13). is the differential of changes in the chance
of fixation of B with changes in gene frequency,

a(e), = [ ey,

where du(q)A and dg, = -1-2-'1“ (p1 - pz)q(‘l = q) are the changes in chance
of fixation and gene frequency of B due to selection on A, From
equation (17)
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au(q) 243 -2NiBq
. | e :-mupq - (34)

if u(qo) is the chance of fixation of B computed for the one locus
model, and Su(q,), is the adjustment that must be made to take -
account of selection for A, then

n(q,,)' = ulg) + Sule),.

Equation (32) can then be rewritten to give the respomse in A as

u(py) = By = (Fpgdulay) + (Sp)[1 = u(g)] + (Fpy =Spp) fuley),, (35)
where account has yet to be taken of the distribution of frequency of B,

If the changes in p, and p, at generation T are denoted dp,,
and dpa. respectively, then

o0
SP1 = TEO dp1,1, ’ ?Pa =

Also, at generation t,

. t
dg = B0 r (Tpg- Sl gy (1 - ap).
Thus .
(82 = 82,) Tulag)y = ¢ F [ (tryg = )]0 2 (amyg - )

SENCEERE - SN 5

The terms dpyq or dp,, in (36) each have a component from drift, which
has zero expectation, and a component from selection, Products of two
such terms will inelude a function of (ix)® which can be ignored as
this is of smaller order of magnitude than the other components of
(35)¢ So that



E(dP"TszT') 0 ,allT, T'D
E(dp.'po1T,) =0 and n(a;ﬂapﬂ,) =0 ,T#£T,
B(dp, ) = V(dp,,) and E(dp,3) = V(dpyy),

where V denotes variance, Hence (36) gives
0 t
( gp.‘ - ?pz) ?“(qo)A = %1 &0 }.Tfo[v(dpﬂr) > V(szr)]th -q‘h) uz_q'qlio (37)

In order to find the expectation of the terms in (35), it will
be necessary to investigate the gene frequency distribution of B, To

do this it is convenient to define ﬁm matrices at the outset, Let l(*,
M, X and Y be square matrices of dimension 2N + 1, with elements m. »

Ji
Dypes Egpes Tyges respectively, for j,k = 0, 1, ..., 2N, where:

mge = o) [+ 8ok 0 =10 - g - 8. (1 - 17,
mjkz m;k allj,koxooptmooamm’mao;
xy m;k(1-1/k),k;10;xj°-0;

yjk= m;k (1= mlzi)ak#miyd.m“oo

M is, of course, the transition probability mtrix for the change in
gene frequency, where j/2N = QY » k/2N = Qg+ Alsolet U, L and V
be column vectors of dimension 2N + 1, with elements Uss 1‘1 and Vi
respectively, for j = 0, 1, ..., 2N, where:

I

u; = ::m,thechanoootﬁntianotng
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1 - o~d1P
—-———-,thechancoofﬁxatimofb;
1 - 24P

1'1 = 1=

. e |
and v, = 1pj(1 = .1/21«)(1-=--°—-E), which in terms of q, is

YREGEENE o

Pinally let R, be a colum vector of the seme dimensioms, with
elements x'.1 (+)* At generation zero, Ro defines the initial gene
frequency distribution of B, and if 2Nq° = J is integral, Ro becomes

rk(o)-o, k‘j and rd(0)=1. (38)

Turning firstly to selection among gametes having the
favourable alloio B, imagine that 'at guxémticn (t=1) the frequency
of B is j/2N and the variance in gene frequency of A amang these
gmetu is p°(1 - po) 3(t=1) At generation t, B will have
fnquonoy k/2N with probability Bypes in which case the variance
will doolme by a proportion 1/k, The expected value of T (t)
is therefore
N
I

oy TaCe)Pe (1= 1/

!‘k(t) =
N
z
J=1
Summation in (31) does not have to be taken over j, k = O since B

is not segregating, However, in order to keep all matrices with the
same dimensions, it is convenient to do so, Since, by definition
;o = 0, (39) can be replaced by
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N

rk(t) = Jio ra(t.1)xjk . (ll»o)

In matrix notation (40) becomes

R' = R' X
t Tl
= R'! xt
o

wherexoa I, the identity matrix, X can be regarded as a trans-
ition matrix for changes in the veriance of A, From (35) the
contribution from generation t to “(po)'Po due to selection within
B gametes is seen to be the expectation of ap“u(qo). This is

ia ~
E[dPa't u(qo)] i P°(1 b po) 1:0 rk(t) e

i t
. -§p°(1-p°) R! X" U.

Therefore, the total response is
o0
5 Spyq ula)) = & p (1 = p,) B! (2 . @)
It can be shown that all the latent roots of X, )\J, are such that

| A Jl <1, so that the following relation holds

0
: x* = @-x0
=0

(esgs Finkbeiner, 1960, p, 196), Hence from (33)
B[ Spyq u(ay)] = Fpl=p) R (1-X"0. (42)
Among gametes in which b is finally fixed, the variance

1
each generation declines by a proportion m + The expected
total response from selection among b gametes is therefore given by
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B, - ue)) =¥ p-p)m a0 . ()
Finally consider the expectation of the remaining term in

(35), which is ($p, = sz) Su(qo)A and is expanded in (37), The
expectation of 15 V(dp1T) will be the drift variance among B alleles,
0

and will be

t
+ z%q—t (= s, (W)
since changes in p, are assumed to be small, (44) can be rearranged

to give
t t
1
E[;o V(dpyp)] = po(1 = p )1 = 111; (1 WT)]
Therefore from (37)

a < L
(Spy = Sp,) Sula), = 42 p.(1 = p,) ;o{ta UGES =

. 1 du
- 1;[1' (1~ m)]qtﬁ - qt)—d-ég-)-f (45)

From the transition matrix for the gene frequency distribution, M, and
from the derivations used to evaluate the responses within gametes
containing B or b alleles, the expectation of (45) becomes

E[( Spy - Sp,) Su(a)] = & p (1 = p) B Eo (2® - x® - Yy
& p (1 = pg) &Y [2(3-0)7" =(2-0)7"-(2-1)""1v. 06
Summing (42), (43) and (46) gives the final result for the expected

response,



u(pg)=p, = 4 py(1=p,) B! [2(1a0)V & (1=0)"1(0-¥) + (T-1)"(1=v)] @47)

Formula (47) was used to compute responses, u(p o)-p o» for a
rangc of Nif values, and results are shown as a function of g, the
initial frequency of the interfering gene, B, in Pigure 26, The
responses are plotted as a proportion of Nia p°(1 = Po)s Which is the
total response expected for a single gene of the same effect and
initial frequency (Robertson, 1960), and so are independent of Nia
and p,. In the notation used in seetion 5, this ratio is therefore
Iﬁ\a/Nia.

If Figure 26 is compared with Figure 8, in which u(po) is
plotted against q, for various Nif and Ne = O from Monte Carlo runs,
it can be seen that there is a striking resemblance between the
graphs, The agreement is best for the higher Nip values (Mip . 8),
where in Figure 26 it is again found that the maximum reduction in
the chance of fixation of A occurs when qy = 0.8/Nip, approximately,
for which u(qo) = 0,8, approximately, A larger maximum reduction in
u(po) for Nip = 32 relative to Nif = 16 is found in Figure 26 but not
in Pigure 8, It seems prcbable that the contrary observation from the
Monte Carlo run was caused by sampling, However, since the gene
A studied by Monte Carlo simulation for Figure 8 has Nia = ), little,
if any, reduction in u(p,) is found where Nif < 2 or, in terms of the
effects, B < ¢/2, The bottleneck model used to derive (47) assumes
a very small Nia, so a reduction in response is still observed at
Nip € 2, Also there is less reduction with Nip = 4 for the case
where Nia = 4 (Figure 8), relative to Nia becoming infinitely
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PROPORTION OF RESPONSE

32

FIGURE 26 The influence of the initial
frequency and value Nif of a
completely linked additive gene
on the total response of an
additive gene with very small
effect, The response is measured
as a proportion of that expected
from a single gene with the same
parameters,
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small (Figure 26), These differences between the two models could
be predicted from the size of effects, so it would appear that if a
gene with sufficiently small Nia was run by Monte Carlo simulation
with a large number of replicates and with Ne = O, a curve almost
the same as Figure 26 could be drawn, Thus it would seem that the
model of a bottleneck of effective population size used to derive
equation (47) is an adequate deseription of the influence of an
additive gene on the response of another completely linked additive
gene with small Nia value,

The data for Figure 26 is presented in an altermative
form in Figure 27, in which the proportional reduction in response
is plotted against Nip for a few values of Qe Figure 27 is
therefore analagous with Figures 12 and 13 for Ne = 0, but, as
would be expected, the curves only resemble each other when
Nip > Nia, say,

Apart from being able to mimic the Monte Carlo results,
the approach developed here has a useful predictive value for low
Nia, If Nia is small, Monte Carlo simulation is very inefficient
since the response, “(po)'po' is small relative to its standard
error, On the other hand, the bottleneck method only requires the
inversion of three matrices, with no replication, to simulate the
response for low Nia,

When the approach developed in this section for small
Nio was first introduced, it was argued in terms of a favourable
allele B at a low initial frequency, yet with a chance of fixation
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PROPORTION OF RESPONSE
. N

FIGURE 27 The influence of the value Nip and
initial frequency of a completely
linked additive gene on the total
response of an additive gene with
very small effect, The response is
measured as a proportion of that
expected ffom a single gene with the
same parameters,

32



close to unity because Nip was assumed to be m. As a result
all A, a alleles woﬁld pass through a narrow bottleneck of
effective population size for all x'upauo would be made among
gametes containing B and these would initially be few in number,
If B is lost when initially at low frequency, little reduction in
the variance of A can occur since the number of b gametes in the
population will always be close to 2N, However, it has been
found that the maximum reduction in n(po) occurs when u(qo) ~ 0,8
for large Nip, and, furthermore, genes of intermediate Nif values
may reduce response more than those with larger Nif, even if the
initial frequency is low, An explanation for these results can
easily be given, With the higher Nip values the response to
selection of the B allele is more rapid, so that although there
may be an initial bottleneck, the population of gametes having B,
within which A is selected, rapidly expands, It can therefore be
predicted that with large Nif values for the same, intermediate,
Qs Dore response in A will be made in later generations than

with small Nipf, Such a result was observed in Figure 22 and in
the half-lives shown in Table 7, Similarly, the maximum
reduction in u(p,) does not occur when “(qo) = 1, For the chance
of fixation, u(qo), to approach one, it is necessary for Nifq, to
be greater than 2, approximately, Thus the bottleneck for A
amongst gametes containing B is much less, in the early generationms,
than if a lower value of q, is found, It therefore tums out that
the average reduction is larger with 807 of the population passing
through a very narrow bottleneck and 20% being scarcely restricted
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at all, than with all the populations of A pua:lng through a
larger bottleneck,

In the Monte Carlo simulation results it was found
that the realised selection parameter, N?.\a. (the value of Nia which
would give the same chance of fixation for a single gene with the
same initiel frequency), is almost independent of the initial |
frequency, p,, at least where a <B, In the derivation of (7
it is actually assumed that N/l\a/lua. is independent of p , and
since Nia is very small it is assumed that Ri\u/lin is also indep~
endent of Nia, This result is likely to hold fairly well for all
Nia <1/2, say, when changes in gene frequency are expected to be
small, and the decline in the variance from drift remains closely
proportianal to p (1 = p,)s It was found earlier, however, that
N/:l.\a/lua. may be much smaller for genes where Nia is almost as large
as Nip than for genes with smaller Nia (Figures 14=17), The
explanation seems to be that the bottleneck in population size of
B gametes occurs in the early generations of selection and would
thus be expected to influence most the response of genes A which
would normelly be responding rapidly at that time, Now genes with
large Nia make a high proportion of their response in the early
generations, in other words they have a short half-life (Figure 20),
and would therefore be particularly affeected by a restriction in
population sigze in the initial generations, Genes of smaller Nia
generally make most of their response after the bottleneck has

been passed, Similarly, it was noted in Figures 14~17 that,
particularly when B had a low initial frequency, there was more



reduction in N?a/l{ia for genes A of high than of low initial
frequency, The same interpretation must hold, for genes A of

high initial frequency have a shorter half-life than do genes

of low frequency with the same Nia (Figure 20), and so would be
expected to be more affeeted by an early reduction in population
size, This in likely to be most extreme when B has a low initial
frequency and the initial bottlcn.ck is very small, Tumning

back to the relation between lﬂ.aﬂua and the magnitude of Nia,

it was noted that it was not practicable by Monte Carlo simulation
to find the nqiting value of M/\q/m.a. as Nia—> 0, However, the
results obtained from (47) glve a solution, For the example given
indutd.l earlier, for which g, = 0.1, Nip = BzmlNc-O it
was found that with Nia = 32, 16, 8, L and 2 the ratio Niaﬂuo. was
0426, 0,20, 0,18, 0,50 and 0,60, respectively, For very smll
Nia, the ratio for this example is seen to be Ni\a/Nia. = 0,73
(Figure 26).

If B has a low initial frequency, the effective populate
ion size for A will be smaller among gametes having the B allele than
among those with the b allele, Thus the expected response in pq Will
be smaller than in Pos and negative disequilibrium will be observed
both within lines (Figure 25) and between lines at the limit (Figure
18). However a necessary consequence of this hypothesis seems to
be thet positive disequilibrium would be expected if 9 is greater
than one-half, Evidence from the Monte Carlo simulations is not

adequate on this point, In particular meet of the runs in which
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Q, > 0.5 have resulted in a chance of fixation u(qo) = 1 and hence

no disequilibrium at the limit, Positive disequilibrium raises
problems on the consequences of recombination, for there is certainly
no significant evidence from the Monte Carlo runs that low Ne

values yield greater responses than do higher Ne values, other
farmtora remaining constant, Reductions in “(Po) are always

small for 9 0,5 so this aspeet will be difficult to study
precisely; however some further investigation is clearly necessary,
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8. DISCUSSION

The discussion in the previous sections of the thesis
has been concerned with interpreting the Monte Carlo results
obtained, Many of the assumptions in this Monte Carlo study and
some of its limitations will now be outlined,

From the diffusion equation (section 3) it was argued
that computer runs had only to be made at one level of population
size, However the parameters ia, i and ¢ used were frequently
much larger than those necessary for the diffusion approximation
to hold, but it appears (Figures 10 and 2),) that the conclusion
that Nioa, Nip and Ne are sufficient parameters is highly robust
against departures from the underlying assumptions, Computer runs
were usually made with as small a population size as possible in
order to reduce computing time, In order that results would be
more appropriate for populations of size larger than those simulated
several assumptions were made in the selection procedure adopted,
At the same time these approximations furtherreduced the amount of
computation necessary, In particular, the algebra developed for
infinite populations and used to simulate selection and recombination
was entirely in terms of gametes, no distinection was made between
the sexes and self fertilisation was permitted., The precision with
which that process deseribes the real situation for a bisexual
species must be largely a function of population sisze, the greater
N the smaller any errors introduced by these approximations become,
A similar type of inaccuracy was introduced into the definition of



the selective values (2), which are precise only for genes of small
effect, Strictly, second and higher order temms in effects should
have been included (e.g. (1@)2, (ip)z) but then the results could
not have been generalised in terms of Nia and Nif to populations of
diffomﬁ siges,

The selective values, ia and if, # the favourable alleles
have been kept constant throughout the selection process, for which
two important assumptions have been made, Firstly, the gene effects
@ and B have been defined (5) as the difference in genotypic value
between the homozygotes at a locus as a proportion of the phenotypic
standard deviation, o, so that for the selective values to remain
constant, o itself must be unchanged, In meking the same assumption,
Robertson (1960) pointed out that although the genetic variance would
be expected to decline during seleection, at the same time the environ-
mental component might i.ncmsi as the level of homozygosity rises,
Secondly, no account has been taken of naturel selection which might
be expected to alter the effective selective values of genes having
correlated effects on fitness as gene frequencies move from their
initial equilibrium,

The model of two additive loci each with two altermative
alleles which has been studied is probably the simplest in which
linkage could be included, In earlier Monte Carlo studies a larger
number of additive loci have been simulated, but with the exception
of Fraser and Hansche (1965) who were not concerned with selection
limits, workers in this field have always used a model of equal
effects and initial frequencies cme-half at each locus (Fraser, 1957b;
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Martin and Cockerham; 1960; Gill, 1963; 1965; Qureshi, 1963).
However with the restricted model used here the initial frequencies,
selective values and recombination fraction could be varied over a
wide range and it was possible to obtain a fairly complete description
of the ldnum limit for this model, In particular, the influence
of one gene on the chance of fixation of tho‘othu- could be studied
in detail, and this approach seems more likely to lead to an under-
standing of the process than if only the change in the population
mean, which is dependent on the responses of both genes, is
considered, Thus any reduction in response can be viewed as a
function of two components, Firstly, the bottleneck of population
sige within gametes containing the favourable gene B reduces the
effective selection pressure (Nﬁ) on the A gene, the reduction
being approximately independent of the initial frequency of A,

The effect of this bottleneck on the chance of fixation of A then
depends on the slope of the curve of u(p,) aainatll/i\a. If only
equal effects and initial frequencies are studied, it is umlikely
that these essential parts of the process could be disentangled,

It is intended to continue this study to include more
than two loci and non-additive gene effects, so at this stage there
is 1little benefit in discussing these extensions in detail, The
bottleneck model and the related model for equal effects outlined
in the previous section are pertinent for all non-epistatic systems
and the same general picture of reduction in response is likely to
be found with dominant as well as additive gemes. For the case
where the affected gene has a very small Nia, it should be possible



3.

to extend the matrix derivations to include the case of the
influence of both a dominant gene on a linked additive gene, an
additive on a dominant and finally a dominant on a dominant,
Perhaps the most simple multi-locus model is where a chromosome
has only one gene of large effeet, and several genes of very
small effect, Then the response of these smaller genes is likely
to be affected only by the larger gene and the model reduces
essentially to two loei, However when there is more than one
locus of intermediate or large effect on the chromosome no
definite conclusions can yet be given about their influence on
a third gene,

This study has been further restricted to include only
populations initially in linkage equilibrium, However Mather (1943)
has argued that natural selection would favour balanced repulsion,
but Wright (1952) has shown that seleective values have to be large
and linkage tight for much repulsion to be maintained, In general,
if loei have no epistatic effects on fitness, an unselected closed
random mating population would be expected to remain in equilibrium
(Lewontin and Kojima, 1960). On the other hand, disequilibrium
will almost certainly be found if the populations are derived from
a eross between lines, whether unrelated or selected from the same
original population, or from a cross of a highly selected line to
the original stock, It is hoped to investigate these situations
theoretically in some detail, for they have an important bearing
on the problem of breaking selection limits, Some relevant
information has come from this study, however,
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It has been shown that with tight linkage there is
usually negative disequilibrium (AL) in the chance of fixation of
the gametes, Thus line crosses, or crosses of selected lines to a
base population in equilibrium, will, on average, have an excess of
repulsion heterozygotes., Response after the cross is therefore
likely to be reduced when genes are tightly linked, and it may be
necessary to relax selection for a few generations to allow recombin-
ation, Also, if gene effects are unequal, an initial period of
reverse selection might be advantageous, so that the frequency of the
smller effect genes in repulsion gametes may be increased, Osman
(1963) allowed varying periods of random mating before re-selecting
crosses to the base population of a line of Drosophila melanogaster
selected close to a limit for stemopleural bristle number,

Although Osman concluded that, on average, the limit was reduced

by this random mating, two of the four crosses making most response
had undergone seven generations of relaxation before selection,

Of course, a eritical factor determining the effectiveness of any
period of random mating is the population size which can be maintained
during that time,

Vhen there is complete linkage (Ne = 0) the new selection
linit af'ter erossing selected lines can be computed using Kimura's
(1957) formula (equation 17), for there are only two alternative
gametes in each possible cross, If the new limit is termed v(p,)
for A, then, in general,
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-Nia.
v(p,) = [u(p,)]®+ 2[u(AB)u(aB) + u(ab)u(ab)][ ——;m]

~Ni () )
+ 2u(ABu(ab) [1 . mi?;j ] + 2u(Ab)u(aB) [‘| - 2N1(.(a-£37]

where N and i are the population size and selection intensity during
the period of re-selection, For ome locus, Robertson (1960) found
that if the further selection from the eross has twice the Nia value

as has the original selection, then the expected limit, v(po), would be
the same as for selecting one line from the original population with
twice the original value of Nia, It appears that the same result
holds epproximately for linked loei, An example is given in Table 10
where in the original subelines Nia = 4 and Nip = 8, Data is taken
from Figures 3-7 and limits for the eross were calculated by equation (18),

IABLE 10 Total response (v(py)=po) from selecting in two
sub-lines and re-selecting their cross as a
proportion of the total response from selecting
in one line, In the sub-lines Nio = ) and
Nip = 8, otherwise Nic = 8 and Nip = 16, Ne = O,

Po | % .05 o o3 5 o7
05 0.73 1.29 1.22 1,26 0.95
o 1,02 1.21 1,15 1,02 1,03
o3 1,19 1,02 1,06 1,01 1,01
5 0,87 1.07 0,98 1.00 0.99
o7 100 1.1 1,00 1,0 1,00

In Table 10 it appears that, while on average rather more
response is made by splitting the original population and re-selecting
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the cross, the differences between the methods are never large,
Further investigation is clearly necessary to determine whether
these alternatives ever differ much in efficiency.

Retuming to the problem of one cycle of selection from
the base population, it was found that, with an additive model, if
linkage influenced response it was always in the direction of a
reduction in the limit, Vhat evidence is there from animal popul-
ations that this occurs? Robertson (1965) selected 10 parents out
of 25 scored for each sex for low stermopleural bristle number in
Drosophile melanogaster, In five lines crossing over was suppressed
on chromosomes 2 and 3, in another five lines orossing over was
permitted., The base population had a mean of about 17,8, and the
averages of the five line sets for bristle number were as follows:

Generation 5 10 1%
Suppressed 15.7 14.8 1.5
Unsuppressed 154 13.9 1341

Also, after 15 generations, every line in which crossing over was
permitted had responded more than in every line in which it was
suppressed., The pattern of response in these lines is clearly
similar to the pattern observed in the Monte Carlo runs, In the
early generations the response is about the same, whether recombin-
ation cccurs or not, but with tight linkage the response rate slows
down much more rapidly in the later generations,

It is important to draw attention at this point to the
degree of linkage simulated in the Monte Carlo runs, Generally the
largest Ne value used was Ne = 1, which with 20 selected parents
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implies a recombination fraction of only 0,05, It has been found
that, at least for two loci, greatest reductions in the change in

the population mean are found when the gene effects are approximately
equal (Figure 19), In this case, there appears to be an almost
linear regression of response against Ne, trensformed to a scale

of 1/(2Me + 1), The example of Figure 19 shows that when p_ = q_ = 0.1
and Nia = 8, the largest reductions occur with Nip = 8 when about 707
of the response is made with Ne = O relative to Ne = o0, Using the
1/(2Ne + 1) transformation, the expected responses for this example
with N = 20 would be, as a proportion of the response with Ne = o0,

9846, 97.3, 9440, 90,0, 85,0, 78,6 and 70.0%
fore= 5, .25, 4, .05, .025, .01 and ,0 respectively,

These results illustrate a general conclusion that can be
gained from this study, for only when widely different recombination
fractions are compared is much difference in response to be expected,
Thus in the above example the greatest difference in response
observed for a doubling or halving of the recombination fraction is
only 5%, This occurs in the range around ¢ = 1/2N, where the curve
of 1/(2Ne + 1) against Ne has greatest slope (Figure 2).

These results have a bearing on the optimum intensity of
artificial selection which should be applied in order to meximise
the seleetion limit, In many selection programmes the number of
progeny (T) that can be recorded is fixed, TWith one locus, or no
linkage, the optimum proportion (N/T) to select is therefore the
value of N/T which maximises Ni, which turns out to be one-half
(Dempster, 1955; Robertson, 1960). Also, Ni is the same whether
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N/T or (T - N)/T individuals are selected, for any value of N and T,
Vhen there are linked loci, it can be expected that the optimum
intensity of selection will be rather lower, for if more than half
the individuals are selected, although Nia is reduced relative to
N/T = 0,5, at the same time Ne is increased and Nif reduced,

Both the latter would generally increase the response for A,
Further, the limit will no longer be symmetriec about N/T = 0.5,
very intense selection being less successful than very weak
seleotica in the long sun, An exasmple is glven in Table 11 for

the case of T = 40, a= P = 0,5, ¢ = 0,025 and p, = q, = 0.1,

It is assumed that the response is proportiomal to 1/(2Ne + 1)

for given Nia and Nip, The results are obtained from interpolation
of Monte Carlo data and are approximate,

TABLE 11 Chance of fixation of an additive gene when
40 individuals (T) are recorded, a = B = 0,5
andp°- %-‘0.1.

Proportion selected (N/T)

«05 o 25 oh o5 .6 ) o9 «95
No linkage | +34 o1 o7l « 78 «80 o 78 o 71 51 o3h
c = 00025 031 -‘l-‘ 061 o“ .70 070 065 021-9 053
e=0 o}o ow 052 ow 061 060 52 -20-5 «30

When N/T = 0.5, Ne = 0,5 for ¢ = 0,025 so the above example

is relatively sensitive to changes in Nc as the proportion of the

population selected is altered from ome~half, However it can be seen

that the optimum is still close to N/T = 0,5 when ¢ = 0,025 and the



curve of u(pe) against N/T is not very skewed, Of course, with
no recombination the optimum remains at N/T = 0,5 and the curve

is symmetric, Thus when designing selection programmes it would
appear that considerations of linkage should not influence greatly
the intensity of selection to be practised. However more drastic
effects might be found with more than two loei.
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A theoretical investigation was made of the influence of
linkage on limits to artificial selection in smell populations,
Most results were obtained by Monte Carlo simulation,

A model of two additive loci, each with two alleles, was
used, The difference between the effects of the two homozygotes
was expressed as a proportion of the phenotypic standard deviation
and defined as o and P for the loci with favourable alleles A and B,
respectively, These alleles had initial frequency Po and Qoo
respectively, It was assumed that the base population was in linkage
equilibrium, and that the recombination frectiom, o, was the same
for both sexes,

It was shown that, if the effective population size is N
and the selection differential is i standard deviations, the selection
limit is a funotion of only p,, q,, Nia, Nif and No, and the time
scale of the selection process is proportiomal to N, Thus it was
necessary for Monte Carlo computer runs to be made with only one
population size,

The chance of fixation (the expected gene frequency at the
limit) of A, u(p,), may be greatly reduced if the looi are tightly
linked and if P is not less than about one~half of a, The chance
of fixation is never increased by linkage if the population is
initially in equilibrium,

Unless « and p differ widely, the decline in u(po) with
reduction in Ne is approximately linearly related to the rate of
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breakdown of linkage disequilibrium in small populations, which is
proportianal to 1/(2Ne + 1),

The larger Nif, the greater the maximum reduction in u(p,)
and the lower the initial frequency of B at which this maximum occurs,
For large Ni, B has most influence if q ~ 0,8/Nif, If q is higher
than this, a gene, B, with smaller Nip may have a larger effect on u(p,).

It was shom that the influence of the linked geme, B, is
approximately independent of the initial frequency of A,

The total response of the population mean, a funetion of both
the responses and effects at each locus, is most influeneced by tight
linkage 'hen the loei have approximately equal effect and the favourable
alleles have a low initial frequency.

In th. early generations the mate of selection advance is not
affected by linkage, but in later generations the rate may become very
mach slower than with free recombination,

The degree of linkage has little influence on the optimum
intensity of artifieial selection,

Theoretical models were developed to interpret these results,
If the initial gene frequencies are low, the favourable coupling gamete,
AB, is rare, and in a small population AB may never be formed if linkage
is tight, If B has a high chance of fixation and a < /2, selection
for A can be viewed as selection in a population whose effective size
is the number of gametes that cmtain the B allele, If B has a low
initial frequency this effective population size is initially very
snall and the change in gene frequency of A is therefore reduced.
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The model was developed to give a method for simulating the case
of complete linkage, with very small Nia, which does not require the
use of Monte Carlo techniques,
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Aftiﬁ.ohl selection applied to one character almost always
leads to changes in others, The theory of such "ecorrelated responses"
is well known and has recently been reviewed by Falconer (1960a),

In this, the genetic correlation between the two characters plays an
important part and determines the predicted pattern of the correlated
responses found in different experiments, e.g., the response in
character 2 on selection for character 1 compared to that in 1 on
selection for character 2 or the comparison of the responses in 2 on
selection for 1 in opposite directions, Any discordance of the
pattermn of correlated responses from expectation will be termed an
"asymmetrical correlated response", The same measurement made

under two different environments can be considered as two separate
"characters",

Paleoner (1960b) selected mice for growth rate on high and
low planes of nutrition and observed the correlated responses on the
alternate nutritional level, The realized genetic correlations were
equal for the first four generations of selection (0,67, 0.65) but
wore markedly different for generatioms 5 to 13 (1.25, -0,02). The
asymmetry was attributed to changes in the basic parameters due to the
selection applied, and large changes in the phenotypic standard
deviations were observed, Asymmetry of the realized genetic correl-
ations was also observed by Bell and MeNary (1963) who selected
Iribolium castaneum for increased pupal weight in both a wet and a
dry envirenment, and by Yamada and Bell (1963) where selection was for
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increased and decreased 13 day larval weight in Tribolium castaneum
under good and poor nutritional levels,

Similar results have been observed in poultry by Siegel
(1962) and Nordskog and Festing (1962), The former selected for
four generations for body welght and breast angle, and found a
realized genetic correlation of about ,55 when selection was for
body weight and a value of about .45 when selection was for breast
angle, The latter workers selected in both high and low directions
for body weight and egg weight, and observed asymmetry of the realized
genetic correlations between body and egg weights when either the
direction of selection or the trait being selected was considered,

In both of these papers, the asymmetry was attributed to differing
genetic variances or heritebilities for the two traits,

Clayton, Knight, Morris and Robertsan (1957) observed
asymnetry in response of sternopleural bristle number in Drosophila
melanogaster to seleetion for inereased and decreased sternital
bristle number, The results were somewhat erratic, which led the
authors to conclude that gene drift may play an important part in the
correlated response when the genetic correlation is low, In general,
however, there was a positive correlated response when selection was
for increased sternital bristle number and no correlated response
when selection was for low sternitel bristle number,

On the other hand, some selection experiments show a close
fit of expected to observed correlated responses, For example, Reeve
and Robertson (1953) selected for wing and thorax lengths in Drosophila
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melanogaster and found good agreement between estimates of the
genetic correlation between the two characters in the base population
and the realized genetic correlations in the populations selected for
each trait separately,

The frequency with which asymmetrical correlated responses
have been found suggests that some mechanism other than genetic
sampling is affecting the correlated response in these populations,
The purpose of this study was to re~examine the theory of correlated
response and if possible to establish the conditions in which asymmetry
of ecorrelated response to seleetion was to be expeeted,

The Model

It has been shown by Faleoner (1960a) that the correlated
response in trait 2 from selection for trait 1 would be

CRyq =T, by hy¥y0p cevennnnannnnncnnenn (1)
where I, is the selection intensity for trait 1 in standard units,
by a.ndhzmthe square roots of the heritabilities for traits 1 and
2, respectively, r, is the genetic correlation between the two traits
and o, is the phenotypic standard deviation in trait 2, Dividing both
sides by I,0, results in a standardised correlated response (035.1) or
the correlated response in standard deviations in trait 2 for each
standard deviation of selection in trait 1, Thus,
%1 = OR) 4 =hy hy Tp ceccnnnnnnnns (2)

In a similar manner, Ry 2 . CR; can be obtained, and it is seen
1o "
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that
2 : = = e
CR} 4 = CR] , h, ha?G Cov G/oy Op eerees (3)
The standardized correlated response should be the same in the first

generation whether selection is on trait 1 or on trait 2 or whether
the selection is upwards or downwards,

When the correlated response is measured over several
generations, selection may change the value of the parameters them-
selves in such a way that the standardized responses, as measured in
the two different populations, ave asymmetrical and different from
those predicted on the basis of the original parameters, This follows
the suggestion of Falconer (1960b) that the asymmetrical responses he
observed were the comsequence of changes in parameters due to selection,
Large changes in the phenotypic standard deviations were cbserved, and
the potential effect of these changes on the standardized correlated
response is evident from equation (3).

The three parameters of interest in (3) are the genetic
covariance and the phenotypic standard deviations, and consideretion
is centered on how these parameters can change during selection for
each trait involved,

The genetic covariance between two treits, as calculated in
any population by the usual analysis of covariance technique, can be
caused elther by linkage disequilibrium of genes affecting the two
traits independently or by the pleiotropic effects of single genes.

In the case of linkage, the population would tend toward equilibrium
at variable rates depending upon the cross over distance between the
genes, The effect of linkage on the correlated response would be similar
to that of pleiotropic genes, except that, as crossing over occurred
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and the population approached equilibrium, the effect of linked genes
on the asymmetry of correlated response over a number of generations
would be less than that of pleiotropic genes, Therefore, only pleio-
tropic genes are considered, as the most extreme and constant case,

A genetic model for correlated responses was then constructed,
and the expected values of the parameters and the correlated responses
obtained from a Sirius computer for each of 9 generations of selection,
In the first series of selections, only additive gene effects were
considered since these would appear to be least likely to yield
asymmetrical correlated responses, Four types of loci are considered
in the model, with the following effects of a gene substitution on the
two traits: ]

(8) (B) (c) (D)

Trait 1 a 51 3’1 0

Trait 2 0 By -¥y §

Loci A and D affect the two treits independently, [Loci B and C

affect both traits, the former making a positive and the latter a
negative contribution to the covariance, The substitution effects
shown refer to one-half the difference between the alternative homo-
zygotes., Only one locus of each type with additive effects is assumed,
The existence of more than one locus having the same type of correlated
effects would not affect the occurrence of asymmetry, but only the rate
and pattern of its development, as we shall see later, It is assumed
that the frequencies of the genes at each locus are q,, 4, 4, and g,
respectively, the first three referring to the allele with positive

effect on trait 1, For this model it is seen that
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Cov G = 2q5 (1=q5) By B, = 2g5 (1=95) ¥, ¥y,
v, = 2q, (1=q,) o« » 2q, (1-qB) ﬁ12 + 29, (1--!;(:)253'2 + Voo

Vy = 2q5 (1=qp) {32 + 29, (1=q5) b’g + 2qy (1=gp) 5* Veos
where Vm and Vo are the environmental variences of the two traits,
The computer was programmed to obtain the expected gene
frequency at each locus for each generation. For example, the change
in gene frequency at the A locus due to selection for trait 1 is
110.

.
lodus (Griffing, 1960). The new gene frequencies were used to calculate

q “"qA) . I1 a/o',' being the selective advantage of the gene at that

the genetic covariance, the genetic and phenotypic variances, the mean
of each trait and the standardized correlated response for each gener-
ation when selection was on either trait 1 or trait 2, In all models
'{1 = 12 = 1,0, corresponding to a retention of 4O of the individuals
as parents, except for models (ii) and (iv), in whieh I, = I, = 0.5,
corresponding to 70% retention, In all runs the environmental variance
was arbitrarily set equal to the genetic variance when all gene
frequencies were one-half, The initial heritabilities of traits 1 and
2 were then close to one-half in all models, Because the above formula
for the change in gene frequency was used for selection on the two
charecters, the correlated response is always symmetrical in the first
generation, This formula does not in fact hold for genes with large
effects and such genes could well produce asymmetry in the very first
generation of selection, This appears to be most important under
conditions when the gene selected for is at frequencies greater than

0,8 and when ?.a/cq is greater than unity,
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The asymmetry of the genetic covariances generated by the first
generation of selection may be expressed algebraically as the difference
between the genetic covariances after one generation of selection on
trait 1 and trait 2, respectively., At the B locus, for instance, the
genetic covariance is 28,8,q5(1=qz). If the gene frequency is increased
by gy, then the covariance is increased by

. 2

28,8, [(«-a%) Ay = (Day) ] .

Inserting the expressions for the ohn.nfp in gene frequency on selection
for the two characters into this, and including the C locus, we obtain

for the difference in covariance,

2.2 12,2\
28,Byap(1=ag) (1 243)( _&_.1 i&> - ag(1=q5) G%ﬁ - .I__.%>
1 %2 1 g

v
2
2 2 1
=28, ¥,3(1=g5) (1 zqc)( A z_g) - a5(1=q5) <_ilff_1 -”2> cones (U)o

% %2

This equation is generalized to n loci affecting the two traits as
Cov Gy = Cov G, =
3 Ay gltea) [(1-zq,,) ( L fx _&> (1-qk>< Eg_f_ﬁ , ,’_%ﬁ_)] (5)
2
where g is the frequency of ome allele at the kth locus and)\k and p, are
one~half the homozygote differences in traits 1 and 2 respectively, and
can have either positive or negative values,
Expressions for the change in V1 and V2 an selection for the
two characters can be obtained by substituting A, W, outside the square
brackets in (5) by A 2 and u° respectively, It then follows that a
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symmetrical change in the omo will also mean symmetry in the
contributions of the B and C loei to the variance of the two characters,
Equation (k) consists of four terms in two pairs, Inside the
square brackets, two terms have linear gene effects in them, and will
both be gzero when the gene frequeney is 0,5. At usual selection
intensities, and from what is known of gene effects, it is unlikely
that expressions like I,8,/0, will be greater than 0,5, The second
pair of terms contain such expressions squared and will therefore be
smaller than the first pair, The gene frequency component in these
will be at a maximum when the gene frequency is 0,5.
Of the compcnents containing gene effects, it will be seen
that three contain differences and only one contains a sum, From this,
it is established that the simplest condition for asymmetry is the
presence of C type loci making a negative contribution to the genetic
covariance, with frequencies other than 0,5, From the entire gene
frequency expression entering into this temm, q(1-q)(1-2q), the
greatest absolute contribution to the asymmetry in the covariance
will ocour at frequencies of 0,2 or 0,8,
It is hardly surprising that the effects of A and D type loei
do not appear directly in (4). They are of course involved in o, and o,.
It then follows that changes in the frequency of alleles at these loei are
not of great importance and are exactly equivalent to changes in the
environmental variance of either of the charecters or to changes in the
gene effects at these loci, This was confirmed by the computer results,
The other three terms in (4) contain differences in gene effects,

They are more accurately differences in the selective advantage of the
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genes under the two kinds of uleétim. The two containing square terms
in gene effects will have maximum effects at gene frequencies around 0,5,
while the other will have a maximum at 0,2 or 0,8, But, if gene effects
are small, the term containing (1-2%) will be dominating in the early
generations,

Equation (4) gives the expected change in one generetion, In t
generations, the two linear terms will be multiplied approximately by t,
but the squared terms approximately by t2. In situations in which
changes in the covariance in the first generation are entirely due to
squared terms, the asymmetry in the covariance will then increase as
the square of the number of generations, An example will be given among
the computer results,

The Computer Results

The computer results shown in Tables 1 and 2 give the standard-
ized direect and correlated responses accumulated over 9 generations of
selection of the same intensity for the two traits, Various combinations
of gene effects and initial frequencies have been chosen to exemplify
the conclusions drewn from (4). The essential features of the gene
effects chosen in the different models are given below, The comparison
of standard deviations has been calculated for all gene frequencies at
045,

(1), (ii) and (iii), The B and C loous effects are the same -
oy = 0, for (1) and (ii) dut LA < o, for (111)

(iv) No variation at the C locus, B, = B, but oy < oy

(v) B locus effects twice those at C, and o, = o,.
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Table 1.

Standardized direct responses (R) and standardized correlated response

nine generations of selection on trait 1 (TM) and trait 2 (T2), with hi ~ by,

5 (CR‘)d af'ter

Gene effects ' % P1s ¥y
. T2 Bos ¥ 95§
frequencies (1) (1) (1i1) (iv) (v) (vi) (vii)
Ys s 90 Y 1, 1, ¥ 0, 1, 1 1, 1, 1 0,1, C 1, 2,1 1,1, 2 1, 2,
1, 1, § 1, 1,0 1,‘2 1,0,1 R, 1,1 1, 2,1 1, 2,1
™ T2 ™ = ™ ™= ™ T2 ™ ™ ™ T2 ™ T2
Rl 1.87 1.87 | 2.99 2.99| 1.87 1.79| 217 2.9 1.79 1.79| 1.79 1.7 1.79 1.7
(8) 25, <5, +5, 5| cpl 0,00 0,00 | 0.00 ©0.00| 0.00 0.00| 1.7 2.141|-0.61 -0.61 | =0.39 -0.39| -0uE 0.6
R| 2,28 2.28 | 3.61 3.61| 2,28 2.90| 3.38 3.61| 2.29 2.29| 2,10 2.10| 2.29 2.10
(b) <5, +2, 455 5| op| 0,39 0.39 | 0.72 0.72| 0.26 0.36| 2.30 2.95| 0.95 ©0.95 | ~0.11 -0.11| —0.19 0.9
R| 2.28 1.55 | 3.61 2.23| 2,28 1.5 | 2,17 2.99| 2.10 154 | 2.29 1.35| 2.10 1.35
(€) «55 <55 +2, 5| opl 0,39 0,38 |-0.71 0.97]-0.26 0.38| 146 21| 041 0.69 | =0.95 0.13| 0.9n 0.72
R| 1.87 2.28 2.99 2.99 1.87 2.29 2,17 3.61 1.79 2.10 1.79 2,10 1.79 2.10
(@) <5, <55 +5 2| cp| 0,00 0.00 [ 0,00 0.00| 0.00 0.00| 1.5 2.09| 0,40 ©0.39 | =00 -0.38| 047 0.46
R| 2,64 1.97 | 404 2,97| 2.6, 1.86| 3.37 3.61| 2,56 2,06 2,56 1.,66| 2,56 1,66
(€) 455 42, +2, <5 opf 0,00 0.77 | 0,00 1.72| 0.00 0.7 | 2.30 2.95| 0.66 1.22 | -0.66 0.1 -0.67 1.21
R 1.81 1,31 | 2,77 1,65 1.81 1,26 | 0,95 2.23| 1.55 1.16 1.87 1.23| 1,55 1.23
W(f) 35 #Bs ¢35 <3 | 010,60 0,13 |-1.5k =0.33 [ =043 =0.13 | 0.61 0,95 |-0.32 0.07 | <104 -0.35| ~1.06 o0.11
R 1.81 2,51 | 2,77 3.95| 1.81 2,28 | 2,98 3.5| 1.87 2.40 | 1.55 2.46| 1.87 2.46
[ +5 «3s «8s 5 | op| 0,60 =013 | 1.5 0,15 | 0a3 =011 | 2,05 2.75| 1.0 047 | o032 -0.7| 0.27 0.53 ]
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Table 2, Standardized direct responses
(R) and standardized correlated
responses (CR) af'ter nine
generations of selection on
trait 1 (M) and treit 2 (T2),
with hf ~ 2hZ,
™ a, By, 3’1
Gene effects
T2 Pos 3’2,8
Initial gene
frequencies (1) (v)
1, 1, ¢ 1, 2, 1
e % o0 B 1y 1, 4 2, 1, 1
™ T2 ™ T2
R| 1.87 1.25 179 1,15
(a) 05’ 05’ 05’ 05 3
CR| 0,00 0,00 0,29 Oulidi
R| 2.6, 1.2 | 2,56 1.35
(e) 45, 42, 42, 45
CR| 0,00 0,69 | 047 1.25
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(vi) B locus effects one half those at C, and oy = o,
(vii) The B locus has the greater effect on trait 1 but the C
locus on trait 2, and oy = 0.
In all models, the envirommental variance for both characters
was set equal to the genetic variance when all gene frequencies were 0,5.
The main points of interest in the correlated responses are
as follows, classified according to the gene frequency combinations:

(a) A1l gene frequencies equal to 0,5, Only the squared terms in ())
can then contribute to the change in covariance, There is symmetry for
all effect models except (iv) (B,/o; £ {32/0'2) and (vii), In the latter,
the selection for trait 1 causes most change in gene frequency away from
0.5 in a B locus and therefore reduces the genetic covariance, But
selection for trait 2 changes most the frequency at a C locus and there=-
fore increases the covariance, The asymmetry in the covariance increases
as t° in the early gonontic.us (Figs1), In (iii) the two squared terms
are not zero but cancel out,

(b) o5 # 0,5, There is now slight asymmetry in (iii), arising from
the linear term since, though By = By, oy # 0p

(e) qQ # 0,5, This is the situation to which attention was drawn
earlier of a C locus with a frequency away from 0.5, which will lead to
an asymmetry of covariance inecreasing linearly with time in all situatioms,
The actual response when all gene effects are equal is showm in Figure 2,

(8) qp # 0,5, In addition to models (iv) and (vii) a trivial asymmetry
in correlated response is now found in models (v) and (vi) because

asymmetry has developed in Toe



A/10a

Q.A=cla=qc=qp=°'5
xX=1 fB=2 7=1
B =2 8§ =1

Std. Corr. Response
; 3 /7 \\ s Cov.G
. n .t'. \°\ ===l

\ i

‘Generations

Figure 1 Standardized correlated responses, genetic

covariances (cov G) and genetic correlations
(r,) for selection on treit 1 (™M) or trait

2 (T2), Model (vii)(a), All gene frequencies
0.5. B8election for trait 1 rapidly fixes a
locus making a positive contribution to cov G,
that for trait 2 fixes one making a negative
contribution,



Figure 2
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qA =qB -9-5 qc=0~2 qD=O~5
o = ﬂ‘=| 7‘=l
/32=| =" &§=1

Std. Corr. Response

\ J/ \.
L P Ea
o~~‘\./
1 L 1 1 L 1 1 1
] | 2 3 4 5 6 7 8 9
Generations
Standardized correlated responses, genetic

covariances (cov G¢) and genetic correlations
(r,) for selection on trait 1 (T) or trait
2 {T2), Model (1)(e). All geme effects
equal, All frequencies 0,5 except that at
a locus making a negative contribution to
cov G, Perhaps the most frequent cause of
asymmetry in practice?
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(e) a5 = g4 # 0,5, Asymmetry in all models, Note that in (i),
(i1) and (iii) there is no correlated response on selection for trait
1 though there is on selection for treit 2 (Fig. 3).
(f) and (g). Deviations from 0,5 in opposite directions in B and
C loci, Asymmetry in all models,
The eritical point is simply that asymmetry of the correlated
responses occurs whenever the relative rete of response of the B and C
loci is different when selection is for trait 1, than it is when selection
is for trait 2, The combination of factors which can account for differing
relative rates of change at these two "bypas of loci when selection is for
different traits are shown in equation (4). This equation is very powerful
in the analysis of these correlated responses, and remarkably so considering
that it is strictly valid for only a single generation of selection, The
occurrence of symmetry was predictable from equation (4) in all models,
The table shows that quite remarkable degrees of asymmetry can
be found in some of the models and differences in sign in the realized
genetic correlation are frequently found, particularly in gene effect
model (vii), Even with all gene frequencies at 0,5, the realized gemetic
correlation is about 0,25 for selection on trait 2 and -0,25 for trait 1,
Several computer runs were done with different heritabilities
for the two characters (hi~ 2h3) and the results are given in Table 2.
Gene effect model (i) still shows symmetry with all frequencies at 0,5.
Vhen the heritabilities were equal all four terms in (4) were zero, but
now the linear terms are zero and the two square terms are equal but of
opposite sign, But, with gene effect model (v), the change in heritability
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Generations '

Ficure 3. Standardized correlated responses, genetic

oovariances (cov G) and genetic correlations

r,) for selection on trait 1 (T1) or trait

72), Model (i)(e). All gene effects
equal. All frequencies 0,5 except at two
loei, one with a positive and one with a
ne@tive contribution to cov G, Note the
absence of any correlated response on
selection for trait 1.
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leads to asymmetry because the square terms in (4) are no longer zero,
Vhen both B and C loei have gene frequencies of 0,2, the change in herit-
ability alters the existing asymmetry only a little,

In addition, one model with non-additive gene effects was studied,
The model assumed complete dominance, equal gene effects at all loei and
all gene frequencies at .25, This frequency was chosen because the
absolute change in the mean in the first generation of selection would
be the same whether the selection is up or down, This condition would be
the most likely to yield symmetry., Even so, asymmetry after 9 generations
was 0,21 standard deviations, Symmetry in the case of non-additive
genetic effects could occur only if no negatively correlated loci were
involved and the selective advantages of the positively correlated loci

in the two traits were equal,

A similar method of analysis can be used to explain asymmetry of
response in trait 2 when both up and down selection is practised for trait
1, and yice versa, With symmetry, the correlated responses in trait 2
should be of the same magnitude but of opposite sign, and asymmetry will
be observed after the first generation only if there are parameter changes.
From one generation of selection for trait 1, the difference between the
genetic covariances after up selection (Cov GU) and down selection (Cov GD)
turns out to be

n
Cov Gy = Cov Gy = -§1 fm’\i B @ (1=gy) [_(1-2qk)(IU+ 1)-q (1-q;) gs_ (15 -Ig)] (6
\ 1
where the notation is the same as in equation (5), and IU and ID are the
absolute values of the standardized selection differentials for up and down

selection respectively, If IU = ip = 1, equation (6) reduces to
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1

Cov Gy = Cov Gy = 4;1 3:;1 i C qk(‘l-qk) (1-2qk). sunved E10

Equivalent formulae can be obtained when selection is practised on trait 2,

From formula (7), it can be seen that asymmetry is to be anti-
cipated unless all gene frequencies are one-half, or in the situation
where the changes in covariance due to genes with frequencies below 0,5
just balances that from genes at high frequencies, The result of Clayton
et al, (1957) in which there was a positive correlated response to up
selection, but none to down selection, could be explained by the presence
of positively correlated genes at low initial frequency, with few or no
negatively correlated genes,

It is quite possible for the correlated responses to be symmetrical
on divergent selection for cne trait but asymmetrical on selection for the
other, Equal gene effects at the four types of loci and gene frequencies
0.5, 0.2, 0,2 and 0,5 would be an example of this,

Hazel (see Lermer, 1950, p,238) has pointed out that the eventual
effect of simultaneous selection for two characters must be to reduce the
genetic correlation by fixing first those loci contributing positively to
the covariance, Some experimental support of this prediction has been
presented by Friars, Bohren and MeKean (1962) in poultry, Selection giving
equal weight to one standand deviation in the two characters would give an
expression for the change in genetic covariance af'ter one generation of
upward selection of

A ey
(Cov 6) = I 11;1 )‘k e G (1=q) (1-2qk)<>‘_§ + ;_35 -12' Qe (1-qk<6__:g +%)

g

Obviously the loei with A and p both of the same sign will contribute most to
this change, But in early generations, the first term within the square
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brackets may predominate and if such loci have low values of Qs the
genetic covariance may well increase for a while,

USSI

Both from the algebraic treatment and from the computer results,
it is clear that asymmetry of correlated response is likely to be found
fairly frequently, The models are, of course, rather simplified and it
should be asked what relevance these results have to real situatioms,
!Ihonbstobvim simplification is in the small number of loei in the
models, The next degree of complexity would be to deal with n genes of
each kind, but with the condition that the total additive genetic
variance and the hox'.!.fkabm‘ty of the two characters should remain the
same, Then the scale of operations is altered by a factor |n, though
the initial rate of response to selection will not be changed, The
linear effects of the genes will be reduced by this factor, and the
total advance under selection and the time scale of changes in the
genetic parameters will be increased, If time is measured as a proportion
of the total period of selection advance, the deseriptions of asymmetry
will become almost independent of the number of genes concerned, From
the computer results it would seem that the greatest asymmetry (as
measured by the difference between the genetic covariance in the two
lines) will ocour when the lines are about half-way to the final limit,
The greater the number of genes concermed, the more likely it is that
the terms linear in gene effects in equation (4) will be greater than
those in which the effects are squared and the former will predominate
in the early generations,

If time is measured in generations, then the greater the number



M5

of genes concerned, the longer the time for the asymmetry to develop.
The amount of asymmetry expected in the early generations of selection
would be between 1/ (n and 1/n times that in the original model with
one locus of each type, depending on whether the linear or square terms
in equation (4) contribute most to the asymmetry, The expression far
the change in covariance on divergent selection for a single claracter
has only linear terms in it and the effect would therefore be 1/[n
times as large, The number of loci involved does not affect the eventual
presence or absence of asymmetry, Unequal numbers of loei contributing
positively or negatively to the covariance would have a similar effect
on asymmetry as would unequal eff'ects at the two loei in the model,
Nordskog and Festing (1962) have proposed a differential control
of the genetic variance in the two charaeters (similar to model (iv)) and
Siegel (1962) has proposed different heritabilities for the two characters
as explanations of asymmetry of correlated response. From the results
of this study, it appears that these causes will in some combinations
lead to asymmetry, but that neither of these causes are, in themselves,
either necessary or sufficient to produce asymmetry, The same is true
of the gene frequencies at any one type of locus, the gene effects on the
two traits at one locus, the ratio of the selection intensities in the
two treits, and the ratio of the envirommental variances in the two
traits as used in the model studied, While there are many combinations
of these factors which will lead to asymmetrical correlated responses
(1.,e., equation (4) # 0), only a few specific combinations of these
faotors will result in symmetrical correlated responses (equation (L) = 0).
In our view, the most Mq@t conmbination of factors giving asymmetry
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will be loeci contributing negatively to the covariance and having gene
frequencies other than 0,5,

Perhaps the most important consequence of these results is not
directly concerned with the asymmetry itself, If asymmetry exists, any
& priori prediction of correlated response must have been incorrect,
It has been accepted in quantitative genetic theory that predictions
of direct response have cnly short-term validity because of the necessary
changes that selection would being about in the genetic variance, It
appears from the results that the genetic covariance between two
characters may be m‘m- sensitive to changes in gene frequency
brought about by selection, and pru_unbly also to changes due to random
sampling when the population size is small, The additive genetic variance
of any character will be made up of contributions from the separate loci,
These contributions will change as the gene frequencies are altered by
selection or by random drift and they will not all change in the same way,
depending on the gene frequencies at the loci concerned, But the genetic
covariance (if the genetic correlation is not close to 1) will either be
made up of a much smaller number of terms, if all loeci contribute to the
covariance with the same sign, or will be made up of positive and negative
contributions from different loci., In either case the proportional change
in the genetic covariance is likely to be greater than in the genetic
variances themselves, It must thereforete expected that the static
description of a population in terms of additive genetic variances and
covariances will be valid in prediction over a much shorter period for
correlated responses than it will be for direct responses,

If the patterns of correlated responses in any situation are
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to be fully understood, it will be necessary to analyse the basic
causes of the genetic correlations between characters, Our results
point clearly to the need for the development of new experimental
techniques for this purpose. |

SUMMARY
The pattern of changes of the genetic covariance between two

characters on selection was examined in an effort to explain the
asymetry of correlated responses in two traits, or of the same trait
in two environments, frequently observed in experimental results,

The algebraic conclusions were further examined by model
selection experiments using a computer, The computer was programmed
to caleulate the change in gene frequency from generation to generetion
and to caleculate from it the expected changes in genetic variances and
covariance as selection proceeded, This procedure was carried out with
several models of gene effects and gene frequencies.

Asymmetry of the genetic covariance, and consequently of the
correlated responses, resulted when the relative change in gene
frequency at the loci contributing positively and negatively to the
covariance depended on the trait selected, The conditions necessary for
the development of asymmetry were examined and the results suggest that
any symmetry found in an experiment is perhaps more surprising than
asymmetry, Probably the most frequent contribution to asymmetry in
practice will be from loci contributing negatively to the covariance
and having frequencies other than 0.5,

Accurete prediction of correlated response over many gener-
ations is therefore not possible without prior kmowledge of the
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composition of the genetic covariance, as well as its magnitude,
The validity of existing theory for the prediction of correlated
responses is likely to be much poorer than for the prediction of
direct responses, Predictions would then have to be based on the

genetic parameters estimated in each generation,
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Introduction

In the earlier papers of this series algebreic and graphical
procedures were developed for determining the relative profitability
of pure lines and crosses between them, It was found that many of
the complex situations associated with this problem could be understood
and solved more easily by graphical techniques,

In this paper we propose to extend the graphical method to the
solution of problems of selection within lines and within specialised
sire and dam lines, Smith (1964) studied the problem algebraically
and concluded that selection in specialised sire and dam lines is at
least as efficient as selection within a single line, and that the
relative efficiency of the former inereases if there is an unfavourable
correlation between the two sets of traits under selection, Ve also
propose to investigate the efficiency of selecting males and females
on different indices within a single line,

In order to simplify the presentation of this paper, we will
assume that (i) both males and females are selected with equal
intensity and have the same gemeration interval; (ii) the same
selection indices can be applied to both meles and females, an
assumption which cannot be realised in practice if ome of the traits
is reproductive performance, unless selection is based on relatives'
performance; (iii) the two traits under selection are uncorrelated;
(iv) the traits are genetically additive, and (v) the population pare-
meters, other than the means, are the same for each line and do not
change as a result of selection, The discussion here is restricted to
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selection for productivity and reproductive performance in pigs and
poultry, although the techniques employed can easily be extended to
other animals,

Mathematical details have been excluded from the body of the
paper and are given in the Appendix, Also in Appendix 3 are given some
algebraic results for correlated traits, but for simplicity these are
not discussed in the text,

Selection indices in a single line.
Smith (19@) and Moav and Moav (1966) expressed profit (P)

from a mit of produce as a function of the productive efficiency (y)
of the offspring and the reproductive performance (x) of their parents
by the relation

P = C = 6(y)=N(x) (1)
where C is a constant and G and N are functions, Assuming genetic
additivity, then G and N may be replaced by constants and equation (1)
becomes

P = Cely-lN/x (2)

so that profit is directly proporticmal to productivity and inversely

proportional to reproductivity,
For a given value of P, y can be expressed as a function of x,

and therefore a greph of this function joins all genetic stocks with
the same profitability, Such graphs are termed profit contours, and a
collection of these contours a profit diagrem, An example is given in
Figure 1 for broilers, where profit in pence per pound live weight is
given by

P = 10,6-0,1y=320/x (3)



B/3

where y is market age in days and x is the total egg production per
hen (Moav and Moav, 1966).

A profit diagram can be used to show how selection changes
the profitability of a population, If a selection differential of i
standard deviations is applied to x alone, then the genetic change in x,
denoted A x, is i, where h2 and o, are the heritability and phenotypie
standard deviation of x, If selection is practised on y alone with the
sane intensity, then ) y = ihjo.., In Figure 1 1t 1s sssuned that
x = 108, 0, = 20 eges, s = 0,1 and y = 70, o = 4 days, B} = 0,25 and
the traits are uncorrelated, For this example, if a selection intensity
of 3 standard deviations were applied to x, then the response would be
A\ x = 6 eggs, and the consequent change in profit (AP,) = 0,15 pence,
caloulated by linear interpolation between the profit contours of
Figure 1. On the other hand, selection on y with the same intensity
would give a response Ay = <3 days with a subsequent change in profit
(APy) of 0,3 pence,

Altematively, animals may be selected on an index of the two
traits (Hazel, 1943), in which phenotypic values are weighted by the
formula

I = x4By (%)
For uncorrelated traits, the responses in the component traits from
selection on I are

Az = ihiof/c‘p DNy = LBh:c‘?/O'I (5)
where oy = /o2 + n"‘of, is the standard deviation of the index, For
example, the change in the population mean as a result of selection on
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the index I = x + Ly, when i = 3, is given in Figure 1, It is evident
that for a given set of parameters and intensity of selection, the
index weight B determines the magnitude and direction of the responses,
The locus of all points ( Ax, /[ y) obtained by varying B, but with
~constant i, can be shom to be an ellipse (see Appendix 1), This
ellipse will be termed the yesponse ellipse, and is illustrated in
Figure 1 for a selection intensity i = 3, It can be seen that the
maximum profit from a given selection intensity is that of the highest
profit contour which can be reached by the ellipse, At this point the
ellipse is tangential to the profit omtourl.. From a visual inspection
of Figure 1 it can be seen that the maximum inerease in profit for i = 3
is 0,34 pence, An algebraic method of using the response ellipse to
determine the optimum index and change in profit is given in Appendix 1,
The use of an ellipse has some disadvantages however, In
particular, the distance ( \/(A:t)2 + (Ay)z) moved by the population
mean on the profit diagram is dependent on the direction of selection,
and some manipulation is required in oxder to compute index weights
graphically from the ellipse, However, if the variables are transformed
as follows

A e 85, Ay ;%—Y- (6)
B Yy

then the locus of the transformed variables ( Ax., Ay') is a cirele,
termed the response gircle (see Appendix 2 for a proof), Since, for a
selection intensity of i standard deviations applied to xAx = i, or,
if applied to y, Ay =4, the transformed variables Ax and Oy
can be regarded as standardised units of response of the traits to
selection, In Figure 2, the response ellipse of Figure 1 has been
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transformed into a response eirele, which can be much more easily
constructed than the ellipse, Again, the point of maximum profit is
where the cirele is tangential to the profit contours, and it also
follows that the direction of response for maximum economic gain is
perpendicular to the profit contours,

The response circle can be used to caleculate the optimum index
weighting B, from a profit diagram, The direction of the response for
the optimum index is found by drawing a perpendicular to the contours,
and for an arbitrary contour N\x and Ny measured, Then the index

weight (see Appendix 2) is given by
-l &
5 - (25 6D (7)

In the example of Figure 2, Ay'/ Ax = 1.9 and 0 /o = 5, 80 that
the optimum index is I = x + 9,5y, This result is the same as that
obtainable by the algebraic methods of Haszel (1943). |

On the standardised scale the length of the response vector
(the line en the profit diagrem joining the population means before and
after selection) is a constant and equals i, the intensity of selection,
Therefore, the efficiency of different selectiom indices can be compared
by drewing the response vectors from the population mean to a convenient
profit contour for different indices and measuring their lemgths, For
example, if the length of the vector of the most efficient index in
Figure 2 is given a value of one, then it can be seen from the graph
that 2,1 or 1,1 units of selection on x or y alone respectively would
be needed to achieve the same increase in profit, Thus, in the present
example, selection on y alone reduces efficiency by omly 10%.
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similarly, it can be shown that changes in B over the range from 4 to 35
reduce efficiency not more than 57 below that of the optimum index,
B = 9.5.

For the profit equation (2), the change in profit resulting
from changes in reproductivity (9B/ dx) and productivity (9 B/ Jdy) are

given by
2.2 — -é.g. & -G (8)
Ix g Y

Since profit is linearly related to productivity, changes in y produce

“roz

the same change in profit at all levels of y, On the other hand, since
there is a nonelinear relationship between profit and reproductivity
changes in x yield changes in profit dependent upon the level of x, Thus
for the profit equation (2), it can be seen from (8) that the higher the
present level of reproductive performance, the greater the improvement
necessary to produce the same increase in profit, These points are
demonstreted in Figures 3A and 3B for pigs, for which the profit (P)

in pence per pound live weight is

P o= C= 3y - 122 (9)
where y is the feed conversion ratio, W the market weight and x the
number of pigs raised per sow per year (Moav, 1966), The constant C
was not estimated, but it does not affect changes in profit or relative
profitabilities, FMigures 3A and 3B are drawn on a standardized scale

2
(heoys hguy), so that the lengths of the response vectors show the
relative selection intensities necessary to achieve the same improvement
in profit from four different levels of reproductivity, when selection

is based on x alone, y alone, or on the optimum index, It can also be



RATIO

FOOD CONVERSION

oy
w

()
~

w
)

“
w

B/6a

A.PORK (150 Ib)

14 16 18 20 22

No. OF PIGS PER SOW PER YEAR

FIGURE 3 The effect of market age and level

of reproductive performance on the
efficiency of altemative selection
schemes within single lines in pigs,
The selection intensity needed to
produce a given change in profit when
selecting for food canversion ratio or
reproductive performence alone is given
relative to that necessary to make the
same change in profit when selecting
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seen from Figure 3 that as the reproductive performance improves,
less weight should be applied to it in a selection index, and it can
be shown algebraically (see Appendix )) that the optimum index for the

profit equation (2) is given by
x%Gh?

B =u = T“g (10)

The differences between Figures 3A and 3B demonstrate the effect
of market weight on the profit contours and selection responses, Since
the maintenance cost of the sow is constant, as market weight increases
the reproductive cost per pound of meat becomes inereasingly smaller,

. Thus at higher levels of reproductive performance, selection on feed
conversion efficiency (y) alone is almost as efficient as selection on

the best index,

In most classes of livestock, variation in the reproductive
performance of the male has a n.guaué effect on profitability and
can be ignored (Smith, 1964; Moav, 1966), Assuming genetic additivity
and independence of the component traits, then the profitability of
the oross breds (Psn) is a function of the arithmetic mean of the
productivity of the two parents and the reproductive performance of
the dam, Thus from equation (2)

Pp = C=§ (y5+ ) = I;-D (11)

where the subscripts S and D refer to the sire and dam respectively.
The sire and dam terms in (11) may be collected to show their con-

tributions to costs:



B/8

G N, G
Psn’c'('iyn‘&;)‘zys

Since the sire line affects costs only through productivity, selection
in the sire line should be based on that eriterion alone, However, the
contribution of the dam line to costs (VD) is

V= Sy - ”;; (12)
so selection on the dam line should be on both traits and aimed at
ninimising VD. The methods described earlier for single lines can be
used, for profit contours can be drawn by expressing ¥p as a function
of xp in (12), and a response circle constructed, The response vector
of the most efficient dam line index is then the vector which is
perpendicular to a dam contour,

The example of Figure 4 illustrates the comstruction of dam
line indices, and shows how the profitability of crosses is affected
by selection in their parental lines, This figure represents the hypo-
thetical situation in which three lines of pigs are available, The line
with the best productivity is chosen as the sire line, and denoted S;
the other two lines are therefore alternative dam lines (D1 and D2),
Figure L shows that, in this example, D1 and D2 have different performe
ances as single lines, but they are equally profitable as dam lines,

D1 and D2 fall on the same dam contour (VD), and their crosses (SD1 and
SD2) with the sire line also have the same profitability,

Also shown in Figure )4 are the responses to selection of the
same intensity in the sire line, based on productivity, and in the dam
lines, based on the appropriate optimal dam index, It is assumed that
the genetic parameters, other than the means, are the same for each line,
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The new line means are demoted 3', D; and Dj. S8ince the reproductive
Parmanzmmwamwn,,mwtm
praofitability as a dam line resulting from selection has been rather
greater in D, than in D,. Similarly, the new eross S'Di, is more
profitable than the cross 8'Dj. Vhilst the differences in profit-
ability of the dam lines after selection are small, the example
i1llustrates that the ranking of lines can be affected by selection,
even though the genetic parameters and selection intensities in such
lines are the same,

In this section we compare the efficiency of selecting males and

females on different indices within a sincle line with the efficiency of
selecting both sexes on the same index,

A graphical solution to this problem is shown in Figure 5, which
has a standardized scale (hio'x, hgo'y). The response cirele from the
original population, 0, for one standard deviation of selection is drawn,
and some specific response vectors marked, The vector I shows the
response from selecting both sexes on the most efficient single line
index, Mmmsmnxnhammpmutmuhctimm.ymy
and only on x respectively, and the veetor D the response when selection
is based on the best dam line index, Thus the vector I is perpendicular
to the profit contours (equation 2) and the veector D perpendicular to
the dam contours V, (equation 12), The profit of the progeny when
selecting on males and females separately is at SD.MSDxforthodm
selection vectors D, and D_ respectively, It can be shom (see Appendix

5) that if the sires are selected only on y, and the dam index varied,
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then the profitability of the progeny (SD) falls on an ellipse termed
thow_mémwiﬁce-aﬁimhsx-xomdysyo+$
where x, and y, are the co-ordinates of the base population and )

the length of the sire response vector, Ve see from Figure 5 that the
upper right quadrant of the sire-dam response ellipse lies outside the
response cirele, Thus we have a grephical proof of Smith's (196))
conclusion that selection on specialised Mm is always at least as
efficient as selecting both sexes on the same index,

We have considered the effects of different ways of selecting
individuals on the profitability of thoir progeny., Let us now investigate
the effects of these procedures on the profitability subsequent gener-
ations, In order to do this we have to distinguish between the profit-
ability of the progeny and their merit as parents for the next generatiom,
Assuming additivity, their profitability has been shown to be a funetion
of the mean productivity of both sets of parents and the reproductivity
of only their dams, However, the population from which selection must
now be practised has a performance which is the arithmetic meaxi of both
parental traits, In the example of Figure 5, the point 0 represents the
mean of a population formed from mating sires which were aoloetddony
alone, and dams which were selected on the best dam index, 0' is
therefore the mid-point of the line 5 to Do Here S and D represent
the population means after selection on the vectors S and D, respectively;
we shall use I similarly, As O' lies on a chord of the response circle,
it must have a lower profitability than I, the progeny mean when parents
of both sexes are selected on the same optimum index, which lies on the
circumference of the response cirele, Thus, since their parental
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performance is poorer, the "grandchildren" will be poorer if their
grandparents are selected on separate indices rather than on the same
index, so that, although using a separate index maximises profit after
one generation, it reduces profit in subsequent generatiams,
Discussion

There has been some indication in the profit diagrams that
selection for reproductive rete leads to only small improvement in
profitability for single lines (Figures 2 and 3) and even in specialised
dam lines (Figure 4), There are two main causes: firstly, reproductive
performance has a low heritability and, secondly, if reproductive rate
is already fairly high, the economic returms from further improvement
are small (equation 8), We shall now give a more detailed example to
illustrate this point, and consider only feed costs which, of course,
comprise the major portion of total costs in most livestock enterprises,

If the total food consumed per pound of live pig produced is F,
then we can write

Fn
P =R ey (13)

where y is the food conversion efficiency of food eaten directly by
the y'ouinsp:lg,rmia the food consumed by the dam per year for her
own maintenance, W is the market weight and x the number of offspring
reared per dam per year, r° is the food consumed by the dam in excess
of maintenance during pregnancy and lactation, and depends on x,
However, F, is relatively small and will be considered constant,
Optimal selection indices can be comstrueted for (13) in the same
menner as deseribed earlier for equation (2).

This example is illustrated in Figure 6 for bacon pigs (W = 200 1bs)
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with the paremeters i = 0.1, o, = 5, t§= Ok, 0, = 0,25, and selection
is in a single line, The grephs AP, and AF, show the changes in the
overall feed conversion ratio F when selection is based on x or y alone,
A7, shows the change in F when selection is on the optimmn index, and
AP p and Arﬂ are the correspending changes in F resulting from
changes in the component traits x and y, such that AP, = AP + Arﬂ.
The example clearly shows that as the reproductive performance increases,
little gein is made by selecting for x, that almost all the improvement
A7y comes fron OF o, end that the index is little more efficient
than selecting on y alone,

In view of these conclusions, we may consider why so much emphasis
is placed on selecting fof reproductive performance in the commercial
breeding of pigs and broilers, One possible reason is that throughout
this series of papers we have assumed that the demand for the final
produce is fixed, and that the number of parents is adjusted to meet
this demand, This approach strietly holds only for natiomal or regional
evaluation, or for very large single enterprises, However, a small farmer
may regard the number of sows, say, that he keeps as fixed, so that
inereasing their 1itter size not only reduces that part of the sow's
maintenanee cost to each piglet, but can also increase the total turnover
without increasing capital expenditure, Since the small farmer is only
supplying a very small part of the total demand, inereases in his
production would produce negligible effects on the price he receives
for his product, Another reason why excessive selection pressure may
be applied to reproduction is that,in a non~integrated system, the young
animals may be bought from the multiplier by the grower at a price
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dependent only on numbers and present weight or age, with little regard
to their future performence, Thus as the dam costs contribute a much
higher proportion of the total costs of the multiplier than of the grower,
and since the multiplier is the breeder's direct customer, 'Ehe latter is
forced to exert extra selection pressure on reproduction,

Let us now return to a discussion of the relative merits of
different procedures for selection from a single line, The three alter-
natives are illustraeted in Figure 7:

A, Maintaining a single line and selecting all animals on

the same index,

B, laintaining a single line but selecting males and females

on specialised indices,

C. Splitting the original line into separate sire and danm

lines, each selected on a specialised index,

A selection intensity of one standard deviation has been applied to pigs
of each sex in each of five generations, and it is assumed that no
parameters, other than the population means, change, The example shows
that method C is most efficient, followed by A and then B but the
differences between the methods are small, Thus, as Smith (1964) has
shown, the maintenance of separate sire and dam lines is theoretically
the most efficient method of improvement, In addition, there are several
other advantages to be gained by maintaining separate lines, Smith
showed that separate sire and dam lines become more efficient when
productive and reproductive traits are negatively correlated, Separate
lines allow heterosis in component traits to be expressed, Finally,
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with seversl lines, more genetic diversity is mintginod as an
insurance against changes .'m economic conditions or genetie pare-
meters and against incorrect estimates of parameters at the
beginning of the selection programme,

Summary

Selection on an index of two traits was represented graphically
by means of a response ellipse or response circle, This procedure was
used to find optimal index weights for uncorrelated traits, and to
compare the efficiency of alternative indices,

' Profit was expressed as a reciprocal function of reproductive
performance, from which it was shown that the higher the reproductive
performance, the smaller the weight that should be applied to it in a
selection index, It was found that in pigs and broilers the average
commercial standard of reproductive performance is sufficiently high
that selection on production traits alone is almost as efficient as
selecting on the optimum index,

Three altermnative procedures for selecting from a single
original line were compared graphically:
A, Maintaining the single line and selecting all animals on
the same index,
B, Maintaining the single line but selecting males and
females on separate indices,
C. Splitting the original line into separate sire and dam
lines, each selected on a specialised index,
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Method C was found to be the most efficient of the three; B was more
efficient than A for one generation, but less efficient in subsequent

generations,
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APPENDIX
1. ZIhe respomse ellipse

In the appendix we will find it convenient to define a more
generel notation than is used in the main part of the paper.

Let changes in profit be given by

Ap = axAx + ayﬁy (14)

whenaxandayamﬁxepmm:swsimofpmﬁ.tonxandy
respectively, ani are usually called the economic weights., Let

selection be practised on the basis of the index
1° = bx + b X (24)
For uncorrelated traits with heritabilities hﬁ, hs, and phenotypic
standard deviations o, . then the variance of the index (24) is
2 2

oo = %2 4+ b ya§ (34)
and the responses to selection with an intensity i standard deviations
are

Ax o n2o? Ay o b n2o? ()

xXxXx ,
o0 o0

If equation (3A) is rewritten

f(.;.;f) R
O’Io

2_\2 OO
(ihxo'x) I (1hyo’ y)

and Ax and [\ y arve substituted from (4A) into (54), and (5A) divided
by o‘%o then

(a2, (a2 i

(1o, 2 (itle )?
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Equation (6A) describes an ellipse in the variables Ax and Ay and is
termed the yesponse gllipse, The ellipse has exes of length ihs, and
i.t;ay which are parallel to the coeordinate axes,

The point of maximum response and the weights of the optimum
index are found by equating the tangents of the response ellipse and the
profit contours, The tangent of a prcflthcohtour is -a/a, and the

tangent of the ellipse (6A) is :'-l%-x-ﬁgé By equating tangents and
%

rearranging, we obtain the optimum index

2

. 5O ()
x ah2
XX

which is the same solution as can be obtained by Hazel's (1943) method,
If we define the index (equation (4) of the text) I = x + By,
then for the optimum index

w
]
o
b‘M

ol

(84)

2,The response ecircle
If we define the transformations (equation (6) of the text)

[\x. = -%—x— AY. "AL
’ = 2
thx hyay
then the ellipse (6A) reduces to
(A2 & (45 . ()
Bquation (94) describes a cirele of radius i, termed the ZTesponse
gircle of the trensformed variates,
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If the economic weights of the transformed variables are
i@ &
denoted a anday,ﬂzenfor
Bl * * *
axﬁx + 8 Ay = a.xAx + ayAy
to hold for all L\x, Ay, we matd.ﬁ.noa.; a.nda* by the inverse

N4

transformations
&*

% 2 2 :
a, = aho, a = a yhyo-y (104)
Equating the tangents of the transformed profit contours and the

response circle gives

A. &. .
-/ﬁ; - if‘ (114)

If (8A) end (10A) are substituted into (11A) and the equation
rearranged, we obtain formula (7) in the text

Ay® 9%
B-Exguo_

x y

3. Correlated traits

In this section we extend the theoretical results of
Appendices 1 and 2 to two correlated treits, We shall use matrix
algebre, and denote trensposition by a prime (').

Let P be the phenotypic variance covariance matrix,
oF Cov (xy)

x 2 ,
Cov (xy) 0-y

let G be the genotypic variance covariance matrix, and let

A (ﬁ?)- ’ (;‘f\ ) <’)

P =
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The selection responses on the index 1° = bxx + byy are

Ns 1Gb/a 10 (128)

where o%o = b'Pb

Writing b'Pb = b* 6™ re¢™! o

we can substitute (121) to obtain the response ellipse

-1;5 Net =D = 1 (13)

By equating tangents, it can be shown that (13A) yields the
same optimim index weights as does Hazel's (1943) method,
In order to transform (13A) to a circle, we define

v Cos © O'y Sin €

M
cxs:.ne cryCoaO

where Sin 26 = r, the phenotypic correlation, Since M'M = P, we can
write (13A) in the form '

A et ¢l = 12 (144)
so that if we define the transformed vector

A* = w™'A
then (A" et = 4P (154)

Equation (15A) is the formula of the response eircle,
Similarly, we apply the inverse transformation to the profit

contours

a = ()" ca,

and, after equating tangents and rearrenging, we obtain the formula,
analogous to equation (7) of the text, for computing index weights from
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the response circle, This formula tums out to be

B = ;1 - %% (1+J1-r§)él.-rﬂx‘

x o (1 + \/1-r§) Ax' -3 Ay‘

which, of course, reduces to (7) if r = O,

%, Non linesr profit contours

For the non linear profit contours of equation (2) we can
substitute a, = N/xz, 8, = <G (equation 8), Hence, from (8A) the
optimum index is

b ~x2GhZ
B = ;1 - —-;;il (16a)

If, for brevity, we let
L b
Nro? = A, Gznyo§ = A

then, from (3A), (4A) and (16A) the responses for the optimum index are

2
1A -1A
Az = A ’ Ay’ = f Y
N\/Ax+x’*Ay eV Ay + X

The proportion of the change in profit due to changes in x is therefore,
using (14),

a, Ax _ ‘A‘x
Ap Ax-o-;)\y
and due to changes in y
a_ Ay A

Op ) AL+ 5'Ay

so that clearly, as the present reproductive performance (x) inoreasoq,
a much greater proportion of the total economic response is contributed
by improvement in productivity (y),
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5. Ihe sire-dam response ellipse
Let the selection intensities be "S and "D standard deviations
in the sire and dam lines respectively, In the sire line selectiom is
for productivity (y) only, so on the standardised scales (equation 6 of
the text)
L
A Vg = i,

In the dam selection is on both traits, so from (114), we have
Ay = J2-(dx)

For the progeny (SD), therefore,

Ny = (Ay, +Dyp)/2

® L3
Aﬁn . Aﬁ
Combining the above equation, we obtain

Ayt = 12 + (V2= Bag)? )2 (1)

On rearrangement of (17A) we obtain the ellipse

9_‘;;»3.2. v Bry - 12 (12)
i (1p/2)°

Equation (184) is termed the gire-dam response ellipse, It has a centre at
(o, 1'/2) relative to the base population, and axes of length i, and
I.D/2, for x and y respectively, parallel to the co-ordinate axes, The

ennple:l.nﬂxete:thaais- "D'





