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ABSTRACT 

Alternative models for the adjustment of environmental effects in 

dairy sire evaluation were investigated in order to overcome some of the 

limitations of the commonly used herd-year-season fixed effects model. 

The data comprised the first lactation records on 49242 progeny of 69 

widely used proven Holstein-Friesian sires in England and Wales. The 

effects of sire (as fixed, since the data were on proven sires), overall 

effects of year and month of calving (both as fixed) and age as a 

covariable by linear and quadratic regressions were the same in all 

models. Altogether 5 models which differed in fitting the following 

effects were examined: (1) herd-year-season fixed; (2) herd-year fixed 

and herd-year-season random; (3) herd fixed, herd-year and 

herd-year-season random; (4) herd-year fixed, with the 

variance-covariance structure between months included; (5) herd-year 

fixed and herd-year-month-age class random. Seasons were taken to be of 

either 1 or 2 or 4 months. 

Using model 1 the variances of the estimates of sire effects were 

considerably larger when seasons were shorter, showing that shorter 

seasons (fixed) result in substantial losses of information. Longer 

seasons introduced larger herd-year X month within season interactions. 

Models 2 and 3 were observed to be more efficient than model 1. They 

increased the accuracy, not just from the recovery of inter-season 

information but also from the use of grouping of one month's duration. 

As the seasons (random) were assumed to be shorter the advantages of 

using random effects models became larger. Model 4 did not show much 

improvement over model 2 with each season of one month. This model was 

found to give larger advantages when herds were bigger, however, it was 

observed to be only 2.6% more efficient than model 2 with the maximum 

average herd-year size (14.8) in the data sets created for large herd 

situations. Model 5 was chosen in order to account for any biases due 

to interactions of age at calving with herd, year or season, however the 

variance component for age within herd-year-month was not different from 

zero. 

It was concluded that a model similar to either model 2 or 3 will be 

useful for sire evaluation, particularly in small herds such as those in 

Switzerland and India. These two models each using seasons (random) of 

one month overcome the limitations of seasonal groupings. 



Chapter 1 

- 	 GENERAL INTRODUCTION 

Selection of sires through progeny test has been the main basis 

for genetic improvement of dairy cattle. Only a maximum of 10% of 

the variation in milk, fat and protein yields is accounted for by 

sire effects, however, therefore much of the variation observed in 

milk production is non-genetic or environmental. As is evident from 

the literature (Chapter 2), in the estimation of the breeding values 

of dairy sires little attention has traditionally been paid to the 

analyses of the environmental factors causing variation in milk 

production, therefore the main objective of this group of studies is 

to investigate alternative models for the adjustment of 

environmental effects in a dairy sire evaluation model. The effects 

of herd, year, season, age of calving and interactions among them 

are the identifiable factors which account for most of the 

environmental variation in milk production. In order to account for 

the interactions between the effects of herd, year, and season these 

effects are fitted as a joint effect (i.e. the herd-year-season) in 

the model for sire evaluation used in most breeding schemes, and 

data are precorrected for the effects of age and month of calving 

using standard correction factors derived from large data sets. 

Seasons are usually assumed to be 2 or 3 arbitrary groups of equal 

or unequal number of consecutive months and herd-year-season effects 

are fitted as fixed. 
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The herd-year-season fixed effects model is widely used and it 

has become a conventional model for estimating the breeding values 

of dairy sires. The main reasons that can be given for the above 

practices are (i), herd-year-season effects are assumed to be fixed 

in order to remove any possible bias that could arise from the 

non-random use of bulls across herds, (ii) milk yield varies between 

months, but months have to be grouped into seasons to avoid losses 

of information due to small environmental subclasses in 

herd-year-month models, (iii) precorrections for age and month of 

calving are done to reduce the amount of computation. 

The above procedure of environmental adjustments ignores the 

herd-year-season x month and herd-year-season X age of calving 

interactions. Because herd-year-seasons are fitted as fixed 

effects, the covariances between cows in the same or different 

seasons in the same herd are assumed to be zero. Although it is 

reasonable to assume the herd effects to be fixed for the non-random 

use of bulls across herds because some farmers tend to have 

preferences for particular bulls, there do not seem to be any 

explanations why the year effects within herd and season effects 

within herd-year are assumed to be fixed. However, if the year 

trends within herd are important then it may be useful to assume 

herd-year effects to be fixed, but the season effects within 

herd-year (i.e. the herd-year x season interaction) can still be 

assumed to be random. Since the seasonal and management variations 

from month to month are generally large, long seasonal groupings do 

not seem to be appropriate for progeny group comparisons. The cows 

calving in the beginning of a long season and those calving towards 

the end hardly perform under similar environments. This procedure 
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of 	splitting cows by their calving dates 	into different 

herd-year-season subclasses or "contemporary groups" is such that a 

few hours difference in the calving times would send them into 

different contemporary groups. Therefore a model with shorter 

seasons may be more suitable than the models assuming seasons of 4-6 

months duration. 

Whatever the length of seasons may be, the fixed season models 

may not be efficient because the covariances between seasons are 

assumed to be zero. If each season comprised one month then the 

covariance of cows calving in a given month with the cows calving in 

the preceding and the following months may be higher than with those 

calving more months apart. Therefore, a model in which the 

environmental covariances between months are accounted for would 

also be desirable. 

The objectives of this work are to examine some of the above 

limitations of the herd-year-season fixed effects model of sire 

evaluation, and to suggest some alternative models for adjustment of 

environmental effects. Specifically, the following areas are 

chosen: 

to examine the criteria of seasonal grouping 	in a 

herd-year-season fixed effect model of sire evaluation which would 

minimise 	herd-year-season 	X 	month 	interactions, 	so 	that 

precorrections for month effects in all herds are efficient (Chapter 

3), 

to estimate environmental correlations between records within 

seasons of variable lengths, in order to obtain the variance 
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components necessary for random effects analyses (Chapter 4), 

to contrast the herd-year-season fixed effects model with models 

in which herd is fixed, and the effects of year within herd and 

season (different lengths) within herd-year are assumed to be random 

(Chapter 5), 

to estimate the environmental covariances between months within 

herd-year, and to fit a sire evaluation model that accounts for 

these covariances (Chapters 6 and 7), 

finally, to suggest a model for sire evaluation suitable in very 

small herd situations, for example, India (Chapter 8). 

The findings from the literature on the above areas will be 

discussed in Chapter 2. However, parts of the review will also be 

included in the subsequent chapters where appropriate. 
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Chapter 2 

LITERATURE REVIEW 

The non-genetic parts of the variance in milk production comprise 

the environmental and residual variances. The identifiable 

environmental factors causing variation are herd, year, month of 

calving, age at calving, lactation length, milking frequency and 

interactions among them, etc. When an environmental effect is 

ignored it may result either in an increased residual variance 

and/or in partial confounding of its variation with other effects. 

Consequently, the sire evaluations may be biased. 

VARIATION DUE TO DIFFERENT ENVIRONMENTAL EFFECTS: 

The variance due to herd, year-season, sire and interactions 

among them reported from several studies (Hickman and Henderson, 

1955; Legates, Verlinden and Kendrick, 1956; Van Vleck, Wadell and 

Henderson, 1961; Allaire and Gaunt, 1965; Bereskin and Freeman, 

1965; Harville and Henderson, 1967; Fimland, Bar-Anan and Harvey, 

1972b) are given in Table 2.1. Most of the reports given in this 

table are from the United States in which the herd components were 

observed to be about 30% for milk and fat yields and about 15% for 

fat contents. However, the proportions of variance due to herd 

reported for Friesians in Great Britain (Robertson and Rendel, 1954; 

Robertson and Khishin, 1958; and Barker and Robertson, 1966) and for 

Israeli Friesians (Fimland et al, 1972b) are slightly smaller. 

Unfortunately, the results of different studies are no.t directly 
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comparable since the models of analyses and the bases of choosing 

data sets often differ. 

The herd component of variance consists of both genetic and 

environmental portions. The genetic portion is, however, small 

(about 10% of the total herd component) as reported by Lush and 

Straus (1942), Robertson and Rendel (1954), Robertson and McArthur 

(1955), Freeman and Henderson (1959), Pirchner and Lush (1959) and 

Moriello and Legates (1970). The genetic variation among herds is 

mainly due to use of natural service sires and non-random use of 

A.I. sires, i.e. superior sires being used in high yielding herds. 

Because of extensive use of artificial insemination and advanced 

selection practices in dairy cattle, the use of natural service 

sires is limited , at present. A model with a1effect of maternal 

grandsire (Quass, Everett and McClintock,- 1979) is used in some 

breeding schemes (e.g. the MMB) in order to account for genetic 

variation between the dams of progeny. 

Van Vieck et al (1961) and Bereskin and Freeman (1965) reported 

that the variance component for year-season was about 2% of the 

total variance in milk and fat yields while the estimates reported 

by Hickman and Henderson (1955) and Harville and Henderson (1967) 

were slightly higher (about 5%). In a study ignoring year X season 

interactions, Gacula, Gaunt and Damon (1968) reported that the year 

components for yield and composition traits were respectively 1.0 

and 1.9%, and season components 1.9 and 1.4% of the total variance. 

The effects of month of calving on milk, fat and protein yields and 

fat and protein contents have been reported to be significant 

(Sanders, 1927; Bereskin and Freeman, 1965; Sargent, Butcher and 

Legates, 1967; Wood, 1970; Norman, Kuck, Cassell and Dickinson, 
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1978; Cooper and Hargrove, 1982; McClintock, 1982). Bereskin and 

Freeman (1965) reported the month component to account for 1.4% of 

the total variance in milk and 1.7% in fat yields. 

In contrast to the year-season effects across herds the 

year-season effects within herd (i.e. the herd X year-season 

interaction) typically account for three times as much variation as 

the year-season effects alone (Hickman and Henderson, 1955; Van 

Vieck et al, 1961). The variance due to year effects within herds 

reported by Barker and Robertson (1966) was similar to the combined 

effects of year-season and herd x year-season interactions reported 

by Van Vieck et al, (1961) and Harville and Henderson (1967). 

Age effects have been found to be highly significant in many 

studies (Fimland, Bar-Anan and Harvey, 1972a; Norman et al, 1978; 

Cooper and Hargrove, 1982). The age component has been reported to 

account for about 20 - 25% of the total variance in milk and fat 

yields and 2 - 5% in fat and protein contents, respectively 

(Robertson, Waite and White, 1956; Gacula et al, 1968; Sargent et 

al, 1967). Age X season of calving interactions were also reported 

to be significant in several studies (Van Vleck and Henderson, 1961; 

Syrstad, 1965; Wunder and McGilliard, 1967; Mao, Burnside, Wilton 

and Freeman, 1974; and Norman et al, 1978). According to these 

authors, and also Miller, Lentz and Henderson (1970) and Lee and 

Hickman (1972), joint corrections for age and month of calving would 

be desirable. 

Fimland et al (1972a) reported that the herd-year-season X age 

interactions were significant for milk and fat yields. The herd x 

age interaction is mainly due to differences in the maturity of the 
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cows between herds, in other words all breeders do not breed their 

heifers at the same age. Those who raise their heifers on a good 

plane of nutrition would tend to breed them at an early age. In an 

attempt to partially overcome the problems of herd X age 

interactions, Searle and Henderson (1959) and Searle (1962) 

recommended the use of separate sets of age correction factors 

derived for different herd production levels. However, the 

component of variance for herd-year-season x age interaction was 

observed to be small (Fimland et al, 1972a). Barker and Robertson 

(1966) reported that the residual mean squares within 

herd-year-month-age subclasses were about two-thirds of those within 

the herd-year-month subclasses, therefore a herd-year-month-age 

model may be more suitable for sire evaluation. 

ENVIRONMENTAL CORRELATIONS: 

The covariances between records within different environmental 

subclasses are often expressed in terms of the environmental 

correlations. 	The significance of these correlations in sire 

evaluations depend on the assumptions made in the model. 	The 

herd-year-season effects are invariably assumed to be fixed in the 

sire evaluation model used in most breeding schemes. The herd 

effects are usually assumed to be fixed in order to account for the 

bias due to non-random use of sires across herds. However, if some 

of the environmental effects, e.g. season within herd-year or both 

season and year within herd, can be assumed to be random then the 

corresponding correlations among records in the herd-year and 

herd-year-season subclasses may be of interest from the point of 

view of evaluating the. commonly used herd-year-season fixed effects 

model of sire evaluation. 
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Bereskin 	and 	Lush 	(1965) 	demonstrated 	the 	effects 	of 

environmental correlations, caused by factors other than sire, on 

the accuracy of prediction of breeding value (in the herd-mate 

comparison method). These authors indicated that the values of the 

accuracy were 0.91, 0.85, 0.81, 0.74 and 0.68 respectively when the 

environmental correlations were of the order of 0, 0.01, 0.02, 0.04 

and 0.06. Therefore the accuracy of sire evaluation decreases as 

the environmental correlations increase. 

Miller (1964), Thomson and Freeman (1970) and Arora and Freeman 

(1971) used the following model and the formulae for estimating 

correlations among records within different environmental 

subclasses. Each record was represented by the following model: 

ijklm = p + a + h + Zk + djkl + eijklm 

where: p is the overall mean and 1ijklm  is the mth record of the 

ith daughter (d) of the kth sire (z) made in the jth herd (h) and 

started in the ith year-season (a). All effects, fitted in the 

above described model and the residual error (e) were assumed to be 

random distributed with mean zero and the variances cia 2 , h2'  ciz 2 , 

and ae2,  respectively. The formulae used for estimating 

correlations among records in the same herd and the same year-season 

(rha), in the same herd but different year-season (rh),  and in 

different herds but the same year-season (ra)  are given below: 
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rha 	: (Ga2  + Gh2 )/(0a 2 h2 +0z 2 d 2  + 0e 2 ) 

Ga2  Gh2 + Gz 2 + Gd 2  Ge 2  

ra 	: 0a2/((ya 2 +Gh2 +0 z 2 +0d 2 +0e 2 ) 

In their model they ignored the herd X year-season interaction 

effects (i.e. aXh interaction). This interaction effect should have 

been included in their model, however, for estimating the 

correlation among records within the same herd and the same 

year-season. Then the following formula would have been appropriate 

for estimating r * ha , 

r 
*
ha = (Ga 2 +Gh 2 axh 2 )/(Ga 2 h2+ Gaxh2 z 2+ Gd2+0e 2 ) 

The environmental correlations reported by Thomson and Freeman 

(1970) and Arora and Freeman (1971) using mature equivalent milk and 

fat yield records are given below. 

rha 	 rh 	ra 

Thomson and Freeman (1970) 

	

milk yield: 	0.328 	0.226 	0.028 

Arora and Freeman (1971) 

	

milk yield: 	0.357 	0.198 	0.022 

	

fat yield: 	0.381 	0.216 	0.018 

If the variance components given in Table 2.1 were to be 

interpreted in terms of the environmental correlations, then the 

environmental correlations corresponding to the above notations are 
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as follows: 

* 

	

r ha 	rh 	ra 

Hickman and Henderson (1955) 

	

milk yield: 	0.483 	0.300 	0.040 

	

fat field: 	0.524 	0.329 	0.047 

Van Vleck et al (1961) 

	

milk yield: 	0.381 	0.291 	0.021 

	

fat yield: 	0.428 	0.317 	0.026 

Harville and Henderson (1967) 

	

milk yield: 	0.377 	0.266 	'0.051 

	

fat yield: 	0.403 	0.289 	0.047 

These correlations are larger than those of Thomson and Freeman 

(1970) and Arora and Freeman (1971). The estimates reported by 

these authors were biased downward presumably due to the fact that 

they ignored the herd X year-season interaction effects in their 

models and also due to culling as they used records of all 

lactat ions. 

ENVIRONMENTAL GROUPING FOR PROGENY GROUP COMPARISONS 

Environmental grouping in a sire evaluation model is a highly 

debatable issue. The environmental, effects are grouped together 

arbitrarily in most breeding schemes. An efficient grouping is very 

important in order to make the best use of field data. 

Grouping months to form seasons: Seasonal grouping is useful in 
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sire evaluation to increase the number of comparisons. 	If the 

environmental subclasses are small (e.g. herd-year-month) then there 

may be substantial losses of information. 

Two types of seasonal groupings - fixed and moving seasons - are 

generally used in sire evaluation. Fixed seasons are used in almost 

all herd-year-season models of sire evaluation. A moving season 

over 5-months centered on the month of calving is also used by the 

USDA-DHIA in their Modified Contemporary Comparison method of sire 

evaluation (Dickinson, Norman, Powell, Waite and McDaniel, •1976). 

Fixed seasons are taken to be arbitrary groups of consecutive 

calendar months, in most breeding schemes. For example, the 

Northeast Artificial Insemination Sire Comparison (NEAISC) of New 

York uses two seasons: December-April and May-November (Bolgiano, 

Van Vieck and Everett, 1979), and the Milk Marketing Board of 

England and Wales (MMB) uses three seasons: December-March, 

April-July and August-November (G.J.T. Swanson, personal 

communication, 1984). In several studies it has been recommended 

that consecutive months with similar effects on milk production 

should be grouped together (Tucker and Legates, 1962; Gaunt, 

Bartlett and Comstock, 1964; Sargent, et al, 1967). Bereskin and 

Freeman (1965) suggested the criteria of largest between seasons, 

smallest within season and smallest residual variances, which are 

equivalent to grouping months with similar effects. However, there 

are no reports showing how the residual variance changes by grouping 

months with different trends in the milk production. 

Fixed seasons, however, do not seem to be appropriate as the 

covariances among cows calving in the same and different months 

within season are assumed to be equal (given that the season effect 
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is assumed to be random). This limitation can be overcome to some 

extent by using shorter seasons or by using a model assuming 

covariances between months. Some models similar to those used in 

the comparisons of crop varieties in agricultural experiments 

(Bartlett, 1978; Wilkinson, Eckert, Hancock and Mayo, 1983) may also 

be desirable. Compared to a fixed seasons grouping in the 

herd-year--season model, smaller residual variances have been 

reported from analyses of records deviated from a moving season mean 

(Gaunt, et al, 1964; Bereskin and Freeman, 1965). The authors of 

the latter study reported that the residual variances for milk and 

fat% were smaller by factors of 0.90 and 0.57, respectively, but for 

fat yield the residual variance was larger by a factor of 1.28. 

Allaire and Gaunt (1965) also reported that the residual variances 

were smaller in records deviated from moving season means. 

The moving seasons were presumably used in order to provide a 

similar variance-covariance structure between months for records of 

each month. Van Vleck (1966) reported that the correlations, 

estimated using records deviated from herd mean, between milk yields 

of unrelated Holstein cows calving 0 to 18 year-seasons apart did 

not show any trend as the distance between calving dates increased. 

Environmental correlations among records in the same year-season 

(i.e. 0-month-apart) and 1-, 2-, 5-, 10, 15- and 17-year-seasons 

apart were estimated to be 0.007, 0.081, 0.055, 0.073, 0.004, 0.090 

and 0.099, respectively. Van Vieck himself considered these 

correlations to be unrealistic since he expected them to show a 

declining trend as the distance between year-seasons increased. 

These estimates are biased as they involve the covariances of each 

record with the rest in a herd, since each record was expressed as a 

deviation from the herd mean. 
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Grouping several environmental effects: While comparing different 

methods of sire evaluation, Dempfle (1977) discussed the uses of 

different environmental groupings under different herd size 

situations. He suggested that a herd-class effect (i.e. the 

grouping of herds according to milk production levels) could be more 

useful than the herd effect for small herds. It was also pointed 

out that the herd-year effects model may also be more efficient than 

the herd-year--season model for small herds. However, these 

suggestions were not supported by any results from the field data 

analyses. Considering the small herd problems in Switzerland, 

Hagger and Dempfle (1983) have suggested a 

region-herdclass-year-season (fixed) grouping rather than the usual 

herd-year-season (fixed) grouping. Although the model with 

region-herdclass-year-season effects gave a slightly larger residual 

variance than the herd-year-season model, it increased the number of 

comparisons substantially. It could be argued, however, whether it 

was necessary to have an environmental grouping fitted essentially 

as a fixed effect. A model in which some environmental effects are 

assumed as fixed and some effects as random would have been 

presumably more efficient than the region-herdclass-year-season 

fixed effects model. With this grouping they had to ignore the herd 

effects. 

ADJUSTMENTS FOR THE ENVIRONMENTAL EFFECTS: 

Procedures for adjustment of environmental effects used in 

different methods of estimating breeding values of sires are 

discussed below. 

14 



In several studies pertaining to the herd-mate comparison method 

of sire evaluation (Henderson, Carter and Godfrey, 1954; Henderson, 

1956) the adjustments for environmental effects were observed to be 

more efficient when the covariances among records of the herd-mates 

were accounted for (Heidhues, Van Vieck and Henderson, 1961; Van 

Vieck, Heidhues and Henderson, 1961). 

At present, the best linear unbiased predictor (BLUP) procedure 

is the method of choice for sire evaluation (Henderson, 1973, 19Thb; 

Thompson, 1979). A model with herd-year-season as a fixed effect, 

sire effect as random and the group of sire as a fixed effect, is 

commonly used. In this model all covariances among records in the 

same or different seasons in the same herd are assumed to be zero, 

since herd-year-yeason is fitted as a fixed effect. Because of the 

non-random use of bulls across herds it seems reasonable to assume 

herd effects to be fixed. However, there is no evidence suggesting 

that the year effects within herd and/or the season effects within 

herd-year should not be assumed to be random. If the year and 

season effects within herd can be assumed to be random, then extra 

information on progeny group comparisons could be recovered from the 

inter-year and inter-season comparisons (Cunningham and Henderson, 

1966; Patterson and Thompson, 1971). 

Cunningham (1965) and Henderson (1973, 1975a, 1975b), in simple 

examples, and Miller, McDaniel and Plowman (1968) using field data, 

have compared sire evaluation models in which a s.inIe environmental 

factor was fitted as  fixed or random effect. They showed that a 

random effects model gave smaller sampling errors of the estimates 

of sire effects. Miller et al (1968) compared the least squares and 

maximum liklihood methods of sire evaluation. In their models they 
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fitted the effects of herd-year, season of calving, year of birth, 

season X year interaction, group of sire and sire within group. In 

the least squares method all effects except error (error: random 

with mean zero and variance (Y e 2)  were assumed to be fixed. The 

maximum liklihood method differed from the least squares method in 

that the herd-year effects were assumed to be random distributed 

with mean zero and variance Oh2,  and the ratio of 0e 2  /0h 2  was added 

to the diagonal coefficients of the submatrix for herd-years. 

Miller et al (1968) reported that the sampling errors of the maximum 

liklihood estimates were 1.5% smaller than those of least squares 

estimates. However, the estimates of sampling errors for the 

maximum liklihood estimates were considered to be biased in this 

study and also that of Cunningham (1965) because they used the 

residual variance (Ge2)  estimated on a least squares model. 

Thompson (1969) has shown that the reduction in the sum of squares 

due to a random effect depends on the value of the ratio of residual 

variance to the variance of the random effect added to the diagonal 

coefficients of the submatrix for the random effect. He showed that 

an unbiased estimate of the residual variance in a maximum liklihood 

analysis can be obtained by the usual procedure but the degrees of 

freedom for the random effect are not to be subtracted from the 

total degrees of freedom. A method described by Cunningham and 

Henderson (1968) for estimating residual variance in the weighted 

least squares analysis has also been shown to be incorrect by 

Thompson (1969), as the total degrees of freedom were accounted for 

incorrectly. 

As regards the comparisons of different models for evaluation of 

sires, the criteria of the product moment correlations between the 

estimates of sire effects from different models or the rank 
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correlation are most commonly used. 	However, the covariances 

between the estimates of sire effects obtained from two or more 

independent data sets seems to be a reasonable criterion because an 

efficient model should give similar estimates of sire effects from 

the independent data sets. Dempfle and Hagger (1983) compared the 

efficiency of sire evaluation models using the product moment 

correlations between sire effects estimated from two data sets using 

the same model. Henderson (1975a) has described a method for 

checking the predicted variances on incorrect models assuming that 

the true model is known. Kennedy and Moxley (1975) used this 

criteria to compare the two models of sire evaluation: (i) fitting 

group of sire as an effect ignoring genetic relationships among 

sires, and (ii) accounting for genetic relationships among sires 

ignoring groups. 

SUMMARY 

Since the introduction of BLUP procedure for sire evaluation in 

early 1970's the herd-year-season effects are traditionally assumed 

to be fixed, with two or three seasons in most situations. The 

environmental variation from month to month are usually large, 

therefore long seasons are not desirable for progeny group 

comparisons. However, if seasons are taken to be as short as a 

single month then the herd-year-season subclasses may be very small. 

The year and seasonal groupings are often completely arbitrary. It 

could be asked why the year effect is necessary in the model. Could 

there be a period effect with a length of 6, 18 or 24 months, 

dI, 

instead of a year effect? So long the herd-period-season effects 

are assumed to be fixed a change in the length of period would not 

help. But when the season and period effects or just the season 
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effects are assumed to be random, models with periods and seasons of 

different lengths may be worth investigating. 

There are no reports available in which the above mentioned 

aspects of environmental groupings have been investigated. There 

are sufficient demonstrations, using examples, of the fact that the 

sire evaluation models with environmental effects fitted as random 

give smaller prediction error variances of the estimates of sire 

effects, but the reports using the field data sets are limited. 
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TABLE 2.1. Variance (%) contributed by different factors in milk and 
fat yields. 

Source 	 Herd Year- 	H X YS 	Sire 	H X Z 	YS X Z 	H X Residual 
(H) Season (Z) YS X 

(YS) Z 

Legates et al 	(1956): data - all lactations of 17581 daughters by 
1260 holstein sires in 5359 herds of the DHIA. 

Milk yield: 	30.10 5.90 2.10 61.90 
Fat yield 	: 	32.30 6.80 1.20 59.70 
Fat % 	: 	15.20 11.80 0.00 73.00 

Hickman and Henderson (1955): data - first two lactation records on 3912 
Holstein cows in 1094 herds of the USDA-DHIA. 

Milk yield: 29.97 4.04 14.31 	6.97 	1.71 
	

43.00 
Fat yield : 32.87 4.70 14.87 	7.26 	2.44 

	
37.86 

Van Vleck et al (1961): data - 39728 first lactation records of Holsteins 
from USDA-DHIA. 

Milk yield: 29.14 2.08 	6.86 	5.89 	0.41 	70.75 6.87 	49.51 
Fat yield : 31.72 2.59 	8.50 	6.55 	0.64 	-1.33 3.50 	47.84 

Allaire and Gaunt (1965): data - 4855 first lactation records in 430 
herds by 252 sires (DHIA). 

Milk yield: 33.60 
	

4.70 	2.90 
	

58.80 

Bereskin and Freeman (1965): data - 39368 records of first three lactations 
of Holsteins of Holsteins of Iowa-DHIA and DHIR. 

Milk yield: 28.10 
Fat yield : 29.20 

Harville and Henderson 
Holstein from DHI 

Milk yield: 26.61 
Fat yield : 28.93 

Fimland et al (1972b): 
Friesians. 

2.30 
1.80 

(1967 

5.13 
4.69 

data 

	

3.20 	 66.40 

	

4.10 	 64.90 

data - 39644 first lactation records of 

	

5.93 	8.69 	-0.37 	-3.11 0.04 	57.08 

	

6.72 	6.95 	-0.03 	-2.84 1.04 	54.54 

14612 first lactation records of Israeli- 

Milk yield: 25.35 	 3.91 	0.00 	 70.74 
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Chapter 3 

SEASONAL GROUPING IN A HERD-YEAR-SEASON MODEL OF SIRE EVALUATION 

INTRODUCTION 

In the sire evaluation procedures used in most breeding schemes 

some of the environmental effects are fitted in the model (e.g. 

herd, year, season and interactions among these) and some are 

precorrected (e.g. month and age of calving). In this method of 

environmental corrections it is assumed that the interactions 

between the fitted and precorrected effects are unimportant. When 

these interactions are an important source of variation or bias in 

sire evaluation the joint corrections herd-year--season (Hickman and 

Henderson, 1955; Van Vleck, Wadell and Henderson, 1961; Bereskin and 

Freeman, 1965; Harville. and Henderson, 1967) or age-month (Miller, 

Lentz and Henderson, 1970; Mao, Burnside, Wilton and Freeman, 1974; 

Cooper and Hargrove, 1982) have been recommended. But the 

interactions between the fitted and precorrected effects (e.g. 

between herd-year-seasOn and month and age at calving) are of great 

concern in sire evaluation. If the effects of herd-year-season and 

month of calving were to be fitted as a joint effect in the model it 

would result in very small subclasses, making the progeny group 

comparisons ineffective. 

This study was undertaken to examine the criteria of seasonal 

grouping, so that herd-year-season x month of calving interaction 
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(i.e. herd-year x month within season interaction) is small and the 

grouping is helpful in giving a smaller variance of sire effects. 

MATERIAL AND METHODS 

First lactation records on progeny of Holstein-Friesian proven 

sires in herds participating in the Dairy Progeny Testing Scheme 

(DPTS) of the Milk Marketing Board of England and Wales (MMB) were 

extracted from the files supplied by the MMB and edited such that a 

record must: 

have complete information on milk, fat and protein yields, 

pertain to the daughter of a sire which had at least 500 

daughters which calved between November, 1972 and October, 1981, and 

have a lactation length between 250 and 305 days (both 

inclusive), so that it was not necessary to fit the effect of 

lactation length in the model, 

The above editing was done to ease the computations, but there were 

few records 	with 	missing information 	on 	either 	of the milk 

production traits or with a lactation length of less than 250 days. 

The qualifying 	records were on 69 	widely used proven sires. From 

the edited data a total of 49 242 first lactation records were used, 

and these were split by herd at random into two subsets of 

manageable size (25 158 and 24 084 records). Both subsets contained 

records on progeny of all 69 sires and showed similar residual 

variances. 
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Least squares analyses were carried out using the LSML76 computer 

program of Harvey (1977). A "herd-year-month" analysis with fixed 

effects of herd-year, month of calving, herd-year x month 

interaction, sire and linear and quadratic regressions on age was 

undertaken to estimate constants for month of calving (Figure 3.1). 

Based on these constants the following five seasonal groupings with 

different trends in production were chosen, in which the grouping 

(three seasons: December-March, April-July, August-November) 

currently used in the sire evaluation model of the MMB (G.J.T. 

Swanson, personal communication) was included. 

December-March, April-July and August-November (S-3), 

January-April, May-July and August-December (S-3A). 	This 

grouping was chosen because the yields of December calvers were more 

similar to those of November than January. 

February-July and August-January (S-2A). 	Both seasons 

included increasing as well as declining trends in yields. The 

August-January was considered to be a favourable season in which 

yields increased gradually until October and then went down, and 

February-July unfavourable as the yields started going down until 

May and then increased gradually. 

December-May and June-November (S-2B). 

November-May and June-October (S-2C). The seasons of the latter 

two groupings of unequal size described either a solely increasing 

(June-October) or declining (November-May) trend. 
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The different seasonal groupings were compared by the criteria 

of: (i) smallest herd-year x month within season interaction, (ii) 

smallest residual variance, (iii) largest effective number of 

daughters (i.e. diagonal elements of the sire's coefficient matrix 

after absorption of all enviromental effects in the model with sire 

as a fixed effect) (iv) smallest variation among months within 

season. The above criteria were considered to be useful in a 

herd-year-season model of sire evaluation using records precorrected 

for the effect of month of calving. 

The following model was fitted using different seasonal 

groupings: 

ijklmn 	11 + HYij + Sic + Mkl + (HYXS)ijk + Zm + b1A + b2A 2  + eijklmn 

where: 

p 	= overall mean 

HYij = fixed effect of the ith herd and the jth year of calving 

Sk 	= fixed effect of the kth season of calving 

Mkl = fixed effect of the ith month of calving within the kth season 

(HYxS)jjk = fixed effect common to progeny in the ith herd, calved 

in the jth year and kth season 

Zm = fixed effect of the mth sire (fixed effect since proven sires) 

b1 and b2 = linear and quadratic regression coefficients on age at 

calving (A) 

eijklmn = random error. 	- 

The subtraction of 	the residual sum of squares of the 

"herd-year-month" analysis from that of the above model gave the sum 

of squares for herd-year x month within season interaction effect. 

The degrees of freedom were obtained by subtraction. 
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Since these data were only of widely used proven sires they were 

not appropriate for drawing inferences about the effects of 

different seasonal groupings on alteration in effective number of 

daughters. Therefore, the effective numbers of daughters were 

estimated using all the first lactation records of all sires (proven 

and young) in DPTS herds in a complete year and fitting a model .with 

the fixed effects of herd-year-season and sire. The calculations of 

effective number of daughters for the S-3 (December-March, 

April-July and August-November), S-3A (January-April, May-July and 

August-December) and S-2A (February-July and August-November) 

groupings were done using the data between August, 1980 and July, 

1981 (63 739 records of 3450 sires in 3881 herds), and for S-2B 

(December-May and June-November) and S-2C (November-May and 

June-October) between June, 1980 and May, 1981 (63 163 records of 

3408 sires in 3873 herds), so that each season in all groupings 

comprised a complete set of months. Because different sets of data 

were used, comparisons of groupings were based on the regressions 

fitted through the origin of the effective number on the actual 

number of daughters for all sires. 

The records used for sire evaluation by the MMB are precorrected 

for the effects of month and age at calving independently using 

standard correction factors in all herds of all regions (in Figure 

3.2). In this procedure of precorrection of records with the same 

correction factors it is assumed that there is no region x month of 

calving interaction. Therefore, region x month of calving and year 

x month of calving interactions were also examined in two different 

models to study the seasonal variations from region to region and 

year to year. In order to partition the sum of squares for region x 

month interaction a model with fixed effects of region, 
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herd-year-sire within region, month of calving, region x month and 

herd-year-sire x month interactions, linear and quadratic 

regressions on age at calving (Table 3.2) was fitted. Similarly the 

year x month of calving interaction was partitioned using a model 

with fixed effects of year, herd-sire within year, month of calving, 

year x month and herd-sire x month interactions, linear and 

quadratic regressions on age at calving. 

The main analysis was conducted (on an untransformed as well as a 

log scale) using records on progeny of widely used proven sires to 

enable the estimation of environmental effects more precisely. 

RESULTS 

Since all inferences drawn from the results of analyses of both 

subsets of data were the same, full results from only one subset 

comprising 25 158 records, are presented. However, the main results 

of the second subset (24 084 records) are also included in Table 

3.4. The least squares constants for milk, fat and protein yields 

and fat and protein contents for the effect of month of calving 

obtained from the "herd-year-month" analysis are plotted in Figure 

3.1. For the three seasons presently used by the MNB the yields of 

milk, fat and protein of the heifers calving in August-November were 

observed to be highest followed by those calving in December-March 

and April-July. The fat contents were highest in August-November 

and lowest in December-March, and protein contents highest in 

April-July and lowest in August-November. These results are in 

agreement with those of Wood (1970) on 6846 heifers from the same 

breeding scheme for which the highest milk yields were in 

October-December calvings and the lowest in May-June. 
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The significance of different factors contributing to variation 

in yields and composition traits are given in Tables 3.1 and 3.2 and 

these were in general agreement with other reports (Sanders, 1927; 

Gacula, Gaunt and Damon, 1968; Wood, 1970; Auran, 1973; Lee, 1974; 

Norman, Kuck, Cassell and Dickinson, 1978; Cooper and Hargrove, 

1982). The effects of herd-year, herd-year x season and herd-year x 

month within season interactions were highly significant (P<0.01) 

for all traits. The year x month of calving interaction was not 

significant for milk yield but significant for yields of fat and 

protein and composition traits. 

The weighted meang of least squares constants (from both subsets) 

for milk, fat and protein yields for region-month effects estimated 

using a model with the joint effect of region and month of calving, 

and the rest of the effects the same as in the model used for 

partitioning region x month of calving interaction (in Table 3.2), 

are shown in Figure 3.2. The seasonal trends tended to be similar 

for all regions and only small region x month of calving 

interactions were observed. The effect of region was highly 

significant (P<0.01) for all traits. The region x month of calving 

interactions were significant (P<0.05) for analyses of all 

untransformed yields, but on a log scale were significant only for 

fat yield. Regional differences were large. However, since the 

region x month of calving interactions were significant, although 

small, it would be best to use separate month correction factors for 

each region for sire analysis to improve comparisons among young 

bulls which are tested within region at present. 

Herd-year x month of calving within season interaction: The mean 

squares due to season of calving, herd-year x season-and herd-year x 
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month within season interactions, and months within each season for 

milk, fat and protein yields and fat and protein contents, using the 

different groupings, are given in Table 3.3. Among all analyses 

with three (S-3 and S-3A) or two seasons (S-2A, S-2B and S-2C) per 

year with different combinations of equal or unequal number of 

consecutive months, the S-3 grouping (December-March, April-July and 

August-November) currently used by the MMB, gave the smallest 

herd-year x month within season interactions for milk, fat and 

protein yields and fat and protein contents, however the differences 

among all groupings were small. As expected, smaller herd-year x 

month within season interactions were found to be associated with 

larger herd-year x season interaction effects. The herd-year x 

month within season interaction effect did not show any association 

with the between and within season variations. The S-2A season 

groups showed the largest between season mean squares, more than 

twice as those in S-3, but there was not much difference in the mean 

squares for herd-year x month within season interaction effects. 

Influence of seasonal groupings on residual variance: The residual 

variances obtained after fitting the given model using different 

seasonal groupings, ignoring the herd-year x month within season 

interaction, from the analyses on an untransformed and a log scale 

are given in Table 3.4. The residual variance was smallest after 

fitting a herd-year-month model and largest after fitting only 

herd-years. Fitting the former is not usually feasible because it 

results in small environmental groups, whereas the latter does not 

take account of the distribution of records across seasons, and the 

herd-year x month interactions are large. Amongst all analyses 

using a herd-year-season model, the S-3 season groups gave the 

smallest residual variance for milk, fat and protein yields and fat 
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and protein contents. The residual variances fitting all seasonal 

groupings were, however, similar on the untransformed as well as the 

log scale. 

Influence of seasonal groupings on effective number of daughters: The 

effective number of daughters is important because they enter into 

the formula for the weights to be given to the estimates of sire 

effects (Robertson and Rendel, 1954) and into the formula for the 

prediction error variance in the Best Linear Unbiased Prediction 

procedure (Henderson, 1973). The regressions of effective numbers 

(estimated fitting a model with fixed effects of herd-year-season 

and sire) on the actual number of daughters for all sires (proven 

and young) fitted through the origin, were estimated to be 0.608, 

0.617, 0.638, 0.630 and 0.631 for S-3, S-3A, S-2A, S-2B and S-2C 

groupings, respectively. These regression coefficients indicated 

that groupings with two seasons would give a slightly larger 

effective number of daughters than those with three seasons, but the 

differences were small. 

DISCUSSION 

In order to account for the seasonal variation in milk production. 

traits it has been recommended in several studies that consecutive 

calendar months of calving with similar effects on production should 

be grouped together (Tucker and Legates, 1962; Gaunt, Bartlett and 

Comstock, 1964; Sargent, Butcher and Legates, 1967). Bereskin and 

Freeman (1965) suggested the criteria of largest between season, 

smallest within seasons and smallest residual variances, which is 

equivalent to grouping months with similar effects. On this basis 

the S-2A season grouping should have been the best as it showed the 
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largest between season and smallest within season mean squares, but 

it gave a larger herd-year x month within season interaction and 

residual variance than other groupings. In any case the variation 

between months was small. The S-3A grouping was used to group 

months with similar effects and gave slightly larger between seasons 

and smaller within seasons mean squares than S-3, but a larger 

residual variance. For the purpose of the precorrection of milk 

records for the effect of month of calving, the smallest herd-year x 

month within season interaction is considered to be most desirable, 

but it is not clear how months should be grouped into seasors 

because the between months within season mean squares did not show 

any association with the herd-year x month within season interaction 

effect or residual variance. 

If the losses of information due to seasonal groupings were to be 

taken into account, the effective number of daughters would seem to 

be a useful criterion for seasonal grouping. The losses of 

information with any of these five groupings with two or three 

seasons are negligible, however, because the average number of 

heifer records available per herd per year is large in DPTS herds, 

about 15 (MMB, 1984). In a study using the same data, the 

herd-year-season fixed effects model of sire evaluation with shorter 

seasons (one or two months) gave larger variances of the estimates 

of sire effects than it did with longer seasons (Chapter 5). The 

effective number of daughters would therefore be a more useful 

criterion where herd sizes are smaller. 
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SUMMARY 

Analyses of variance were conducted using two separate random 

sets of data (25 158 and 24 084 records) on first lactation milk 

production records on progeny of 69 British Holstein-Friesian proven 

sires to examine the criteria of seasonal grouping for a sire 

evaluation model fitting herd-year-season as a fixed effect. Five 

different seasonal groupings having two or three seasons with equal 

or unequal number of months and different trends in production 

within season were chosen. 

The smallest herd-year x month of calving within season 

interaction, smallest residual variance, largest effective number of 

daughters (diagonal elements of sire's coefficient matrix after 

absorption of all effects in the model with sire as a fixed effect) 

and smallest among months within season variation were considered to 

be the appropriate criteria for determining the effectiveness of the 

seasonal groupings. None of the groupings examined satisfied all 

criteria. However, small herd-year x month within season 

interaction and small within season variation would be desirable if 

milk records were precorrected for the effect of month of calving in 

sire evaluation, and the effective number of daughters should be 

large. On these criteria, the grouping used currently in Britain 

(three seasons: December-March, April-July and August-November) was 

considered to be optimal, although a grouping with two seasons: 

February-July and August-November increased -the number of 

within-group comparisons, the herd-year X month within season 

interaction was large. 
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TABLE 3.1. F-ratios for the effects of different factors on milk, fat and 
protein yields (kg) and fat and protein contents (kg/kg x 100) 

Milk 	Fat 	Protein 	Fat 	Protein 
Source 	 d.f. 	yield 	yield 	yield 	content 	content 

Herd-Year-Month modelt 

Herd-Year (HY) 	3049 
onth of calving (M) 	11 
HYXM 	 7282 
Sire 	 68 
Regression on age 
at calving: Linear 	1 

Quad. 	1 
Residual m.s. 	14745 

6.945** 
34.279** 
1.212**  
8.503** 

356.599** 
64.462** 

482 243 

9.208**  
49.710**  
1.279** 
7.199**  

425.169** 
62.776** 

690 

9.043**  
24.831** 
1.290**  
5.9-74** 

491.543** 
80.503** 

435 

4. 789** 
13.312** 
1.237** 

14.679** 

4.233* 
0.226 
0.088 

4.085**  
25.689** 
1.226** 

16.557** 

22.194** 
0.397**  
0.024 

Herd-Year-Season modelit Seasons: (1) December-March, (2) April-July and 
(3) August-November. Residual m.s. and d.f. same 
as above 

	

4.305** 	3.920** 
48.661** 30.986** 

	

1.393** 	1.399** 

	

0.999 	1.070** 

	

0.480 	10.380** 

	

0.964 	14.540** 

	

0.794 	23.874** 
19.568** 22.879** 

10.002** 35.332** 

	

0.736 	0.248 

other effects 

Herd-Year 	 3232 	6.641** 	8.801** 	8.651** 
Season of calving (5) 	2 	150.443** 213.988** 112.829** 
HY X S 	 2617 	1.199** 	1.302** 	1.332** 
HY X M within S 	4482 	1.121** 	1.133** 	1.130** 
• within S(l) 	 3 	17.004 	20.070** 	10.927** 
• within S(2) 	 3 	0.054 	0.316 	1.419 
• within S(3) 	 3 	3.940 	3.170* 	1.403 
Sire 	 68 	10.932** 	8.965** 	7.538** 
Regression on age 

	

at calving: Linear 	1 	560.026** 683.332** 773.286** 

	

Quad. 	1 	108.647**  104.123**  125.879** 

tEffect of month of calving tested against HY X M and all 
tested against the residual m.s. 

¶Effect of season tested against HY X 5, HY X S and months (M) within 
season (S) tested against HY X M within S and all other effects against 
residual m.s. 
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TABLE 3.2. F-ratios for the analyses of variance for seasonal variations 
from region to region and year to year in milk, fat and protein 
yields (kg) and fat and protein contents (kg/kg x 100) 

Source 	 d.f. 	Milk 	Fat 	Protein 	Fat 	Protein 
yield 	yield 	yield 	content content 

Region X Month of calvingt 

Region (R) 	 4 
Herd-Year-Sire 	8000 
within region 

Month of calving (M) 	11 
RX.M 	 44 
Herd-Year-Sire X M 	7215 
within region 

Regression on age 
at calving: Linear 	1 

Quad. 	1 
Residual m.s. 	 9881 

20.625** 
3.817** 

20.973** 
1.399* 
1.150** 

138.412** 
39.592** 

463 090 

12.991** 
4.762** 

29. 023** 
1.504* 
1.189** 

165.114** 
40.917** 

665 

26.056** 
4.642** 

15.195** 
1.402* 
1.203** 

182.991** 
47.979** 

419 

21.700** 
3.085**  

6.562** 
1.282 
1.133** 

2.343 
0.001 
0.086 

8. 486* 
2.957**  

17.893** 
1.775** 
1.214** 

5. 459* 
0.101 
0.023 

Year X Month of calvingil (eight years data only) 

Year of calving (Y) 
Herd-Sire within Y 
Month of calving (M) 
Y X M 
Herd-Sire X M 
within Y 

Regression on age 

7 39.056 50.246** 58.997** 11.973** 43.622**, 
7195 3.692** 4.516** 4457** 3.093** 2.801** 

11 8.641 12.749** 7.487** 4.306** 6.000** 
77 1.223 1.586** 1.303* 1.458** 2.300** 

6338 1.154** 1.196** 1.197** 1.124** 1.186** 

at calving: Linear 	1 122.186** 143.324** 156.059** 1.373 2.102 
Quad. 	1 41.569** 43.869** 46.166** 0.002 0.007 

Residual m.s. 	 8723 461 341 657 415 0.086 0.023 

tEffect of region tested against herd-year-sire, month and region X month 
against herd-year-sire X month and all other effects against residual m.s. 

¶Effect of year tested against herd-sire, month and year X month 
against herd-sire X month and all other effects against residual m.s. 
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TABLE 3.3. Mean squares for milk, fat and protein 	yields (kg 2 ) and fat 
and protein contents (kg/kg x 100) 2 ; due to different factors 
using different seasonal groupings 

Mean squares 

Model / Source 	d.Tf. 	Milk 	Fat 	Protein 	Fat 	Protein 
yield 	yield 	yield 	content 	content 

(X10 3 ) 	(kg2 ) 	(kg2 ) 	(X10 2  

Herd-Year--Month: 
Herd-Year (HY) 3049 3 349 6 354 3 935 42.15 9.74 
Month of calving (M) 	11 20 040 43 862 13 937 144.90 75.11 
HY X M 7282 585 882 561 10.89 2.92 
Sire 68 4 101 4 967 2 599 129.20 39.48 
Regression on age 
at calving: Linear 	1 171 968 293 391 213 858 37.26 52.92 

Quad. 	1 31 086 43 319 35,025 1.99 0.95 
Residualt 14745 482 690 435 8.80 2.38 

Herd-Year-Season (S-3): 	(1) Dec.-March, 	(2) April-July and (3) 	Aug.-Nov. 
Season of calving (5) 	2 97 485 217 883 73 922 638.86 110.65 
HY X S 2617 648 1 019 655 13.13 3.57 
HY X M within S 4482 541 782 492 9.43 2.55 
• within S(1) .3 9 192 15 697 5 374 4.53 26.49 
• within S(2) 3 29 247 698 9.09 37.11 
• within S(3) 3 2 130 2 479 690 7.49 60.93 

Herd-Year-Season (S-3A): 	(1) Jan.-April, (2) May-July and (3) 	Aug.-Dec. 
Season of calving 2 101 082 222 379 71 858 521.11 189.94 
HY X S 2296 631 989 639 12.93 3.46 
HY X M within S 4738 550 800 501 9.49 2.59 
• within 5(1) 3 7 284 11 931 4 844 9.38 18.72 
• within S(2) 2 296 120 1 068 6.29 13.10 
• within S(3) 4 2 185 3 842 929 28.04 48.03 

Herd-Year-Season (S-2A): 	(1) Feb.-July and (2) Aug.-Jan. 
Season of calving 1 201 168 369 639 138 674 160.07 376.88 
HY X 5 1473 663 1 047 664 13.03 3.55 
HY X M within S 5508 546 805 506 9.83 2.67 
• within S(l) 5 3 981 3 192 4 601 78.46 26.95 
• within S(2) 5 3 227 . 	 9.693 1 483 83.75 39.29 

Herd-Year-Season (S-2B): 	(1) Dec.-May and (2) June-Nov. 
Season of calving 1 52 362 200 289 31 705 1 	266.71 145.20 
HY X S 1728 691 1 107 706 14.83 3.88 
HY X M within S 5371 544 793 502 9.49 2.62 
• within 5(1) 5 14 544 22 354 9 867 4.63 39.08 
• within S(2) 5 11.339 18 160 8 251 6.59 43.31 

Herd-Year-Season (S-2C): 	(1) Nov.-May and (2) June-Oct. 
Season of calving 1 18 217 106 121 13 358 1 	163.70 24.89 
HY X S 1867 712 1 140 731 15.16 3.77 
HY X M within S 5415 541 794 503 9.41 2.63 
M within S(l) 6 19 035 33 032 11 251 19.16 70.95 
M within S(2) 4 10 016 16 888 7 267 5.27 30.67 

t All analyses have the same residual m.s. and d.f. 
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TABLE 3.4. Residual variances after fitting a herd-year-season model with 
different seasonal groupings 

Seasonal Residual variance ignoring Herd-year X month within 
grouping season interaction 

untransformed log scale 

Milk Fat Prot. Fat Prot. Milk Fat Protein 
yield yield yield content content yield yield yield 

(kg 2X 10) (kg 2 ) (kg 2 ) (X10 2 ) (X10 2 ) (X10 4 ) 

Data subset 1: (25 158 records) 
H-Y-M 482 690 435 8.80 2.38 39.83 38.96 34.18 
H-Y-S (S-3) 496 712 448 8.95 2.42 41.33 40.45 35.52 
H-Y-S (S-3A) 499 717 451 8.97 2.43 41.51 40.68 35.69 
H-Y-S (S-2A) 500 721 454 9.08 2.46 41.70 41.04 36.08 
H-Y-S (S-2B) 499 717 453 8.99 2.45 41.75 40.97 36.06 
H-Y-S (S-2C) 498 718 453 8.97 2.45 41.69 41.05 36.09 
H-Y 516 754 477 9.49 2.56 43.32 43.18 38.10 

Data subset 2: (24 084 records) 
H-Y-M 473 692 427 8.77 2.29 38.55 38.14 33.06 
H-Y-S (S-3) 486 706 438 8.85 2.31 39.62 38.98 34.05 
H-Y-S (S-3A) 488 710 440 8.91 2.32 39.77 39.21 34.19 
H-Y-S (S-2A) 492 715 444 8.97 2.35 40.13 39.61 34.57 
H-I-S (S-2B) 489 712 442 8.90 2.35 40.03 39.49 34.49 
H-I-S (S-2C) 487 713 441 8.94 2.36 39.93 39.54 34.42 
H-I 510 751 467 9.41 2.47 41.86 41.68 36.52 

H = Herd, I = Year, M = Month and S = Season; for season grouping codes 
refer to Table 3.3. 
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FIG. 3.1 Seasonal trends for milk, fat and protein yields and fat and protein 
contents in British Holstein-Friesian (least squares constants for month 
of calving). Overall least squares means: milk yield, 4741 kg; fat yield, 
183 kg; protein yield, 155 kg; fat content, 3.86 kg/(kgXlOO); protein 
content, 3.27 kg/(kgXlOO). 
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FIG. 3 • 2 Regional variation in seasonal trends for milk, fat and protein yields 
(least squares constants for region-rrKnth effects). 
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Chapter 4 

PARTITIONING OF HERD, YEAR, AND SEASON VARIATION IN MILK PRODUCTION 

INTRODUCTION 

/ 

About 40% of the total variance in milk and fat yields is 

accounted for by the effects of herd, year and season of calving and 

two and three factor interactions among them (Hickman and Henderson, 

1955; Van Vleck et al., 1961; Bereskin and Freeman, 1965; Harville 

and Henderson, 1967). The proportions of variances accounted for by 

different effects fitted in the models of analyses in these studies 

are given in Table 4.1. These authors fitted the effects of year 

and season of calving as a joint effect, and therefore the two and 

three factor interaction variances among herd, year, and season were 

not partitioned. Environmental correlations among records in the 

same herd, in the same year-season and in the same herd-year-season 

have also been reported (Miller, 1964; Thomson and Freeman, 1970; 

Arora and Freeman, 1971). There are no reports available, however, 

in which variance components for. season of variable lengths within 

herd-year, have been investigated. Seasons are usually assumed to 

be 4 to 7 months long, e.g. Milk Marketing Board (MMB) of England 

and Wales (G.J.T. Swanson, personal communication, 1984) and 

Northeast Artificial Insemination Sire Comparison (NEAISC) of New 

York (Bolgiano et al., 1979). Since the seasonal and management 

variations from month to month are generally large, long seasonal 

groupings do not seem to be appropriate for progeny group 

comparisons. Therefore a model with shorter seasons may be suitable 
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for estimating the sire effects more precisely. 

The main objective of this study was to partition the total 

variance due to herd-year-season effects such that the variance 

components could be used in a herd-year-season model of sire 

evaluation if some of the environmental effects were to be fitted as 

random effects. Each recording year (December-November) was split 

into two periods, December-May and June-November. Therefore, the 

terms "period" and "herd-period-season" have been used instead of 

year and herd-year-season, respectively. The effects of period and 

season of calving were fitted with different lengths in order to 

examine how the variance components would change when the lengths of 

the period and season changes. Environmental correlations among 

records within the same herd, the same herd-period and the same 

herd-period-season were also estimated. 

MATERIAL AND METHODS 

From the same data as described in Chapter 3 records of the first 

lactation milk and fat yield on 25158 progeny of 69 widely used 

proven Holstein-Friesian sires in 832 herds participating in the 

Dairy Progeny Testing Scheme of the MNB were used. Records of 

widely used proven sires were used to enable the environmental 

effects to be estimated more precisely. Since the data were on 

proven sires, the sire effect was fitted as a fixed effect. The 

following model with three nested effects was used to estimate 

variance components for the effects of herd, period within herd and 

season within period within herd. 
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ijklm = 11 + Hi + HP11 + HPSijk+ Zi + bA + b'A 2  + eijklm 

where: 

ijklm = record of the mth daughter of the ith sire calved at age A 
in the jth period and the kth season of the ith herd 

= overall mean 

H1 	= random effect of the ith herd 

HP11 	= random effect of the jth period of calving within the ith herd 

HPSj1k = random effect of the kth season of calving within the jth period of 
the ith herd 

Z1 	= fixed effect of the lth sire (fixed effect since proven sires) 

b and b' = linear and quadratic regression coefficients on 
age at calving A 

eijklm = random error 

A least squares analysis of variance was carried out using the 

LSML76 program of Harvey (1977). Because of the limitations in this 

program, the analysis of variance (ANOVA) corresponding to the above 

model had to be synthesized by fitting several models separately, 

and combining the mean squares (m.s.), degrees of freedom (d.f.) and 

coefficients (k-values) of variance components. The procedure for 

constructing an ANOVA for three nested effects model using m.s., 

d.f. and k-values from two nested effects analyses is given in Table 

4.2. All k-values except one (k2) were available from two nested 

effects analyses. The k2 was calculated as described by Mahamunulu 

(1963). This procedure (Table 4.2) was verified by analysing' 

example data with two herds, using MTY option 5 in the LSML76 

program. 

The data were precorrected for the effects of year and month of 

calving using least squares constants estimated from the same data. 

The constants for year effects were estimated fitting a model with 

the effects of year, herd-month within year and sire with age at 

39 



calving as a covariable (linear and quadratic regressions). 

Constants for month of calving were obtained using a similar model 

but with the effects of month and herd-year within month. This 

method was a combination of Henderson's methods 2 and 3 (Henderson, 

1953), because some of the fixed effects were precorrected for, and 

some fixed effects fitted in the model. 

Four environmental groupings, given in Table 4.3, were used. The 

variance components for season within period within herd are 

directly comparable between groupings only when the period effects 

are the same. Similarly, components for period within herd are 

comparable when season effects are the same. Groupini A (period of 

12 months and season 4 months) is presently used by the MNB in their 

sire evaluation model, with herd-period-season fitted as a fixed 

effect. Grouping C (period of 12 month and season one month) was 

chosen to fit shorter seasons and to compare it to grouping A. 

Groupings B (period of 6 months and season 2 months) and D (period 

of 6 months and season one month) also gave comparisons of variance 

components for seasons within period within herd, with different 

lengths. The component of variance for the effects of period within 

herd in grouping D is comparable to the period component in grouping 

C. 

The formulae for estimating environmental correlations have been 

given by Miller (1964) and Thomson and Freeman (1970), using a model 

with the effects of herd, year-season, sire, and daughter all fitted 

as random effects. In their models they ignored the herd x 

year-season interaction. This herd x year-season interaction effect 

should have been included in their model, however, for estimating 

the correlation among records within the same herd-year-season. 
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The following formulae were used in this study for calculating the 

enviromental correlations from the variance components estimated 

using the given model. 

same herd 	 : 

same herd-period 	: (0h2 +Ghp2 )/(0h 2+Ghp2 +(Yhps 2 +Ge 2 ) 

same herd-period-season: (Gh 2 +Ghp2 +(Jhps 2 )/((Jh 2 +Ghp2 +Ohps 2 +Ge 2 ) 

The quantities Gh2 1 Ghp 2  Ghps2 and  Ge2  are the variances due to herd, 

period within herd, season within period within herd and residual, 

respectively. For calculating the correlations assuming the herd as 

a fixed effect, the cYh2  component would not be included in the 

above formulae. This would cause the "same herd" correlation, i.e. 

the correlation amongst records in the same herd, to be zero. 

RESULTS 

The variance components estimated fitting period and season with 

different lengths are given in Table 4.3. 

Using grouping A (period of 12 months and season 4 month) the 

proportions of variances due to herd, period within herd, season 

within period within herd, and residual were; milk yield: 0.31, 

0.06, 0.05 and 0.58 respectively, and fat yield: 0.35, 0.08, 0.07 

and 0.50. These proportions with different groupings were similar. 

The residual variance was, however, smallest when each season 

comprised one month (groupings C and D). It was also noticed that 

the residual variance was proportionately less for fat yield than 
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for milk yield. The results of other studies given in Table 4.1 

also showed similar patterns in which residual variances for fat 

yield were about 2 to 5% smaller than those for milk yield. 

The environmental correlations assuming herd as either a fixed or 

random effect and period within herd and season within period within 

herd as random effects, are given in Table 4.4. Using both sets of 

correlations, the comparisons between groupings A and C, and B and 

D, showed that correlations among records within the same 

herd-period-season were higher when seasons were shorter, but the 

differences were small. Comparisons between groupings C and D also 

showed that correlation within herd-period were higher when period 

comprised 6 months, as opposed to 12 months. 

DISCUSSION 

Although the models used were slightly different, the proportions 

of the components of variance for herd and residual were in 

agreement with those of Hickman and Henderson (1955), Van Vleck et 

al (1961), and Harville and Henderson (1967). The residual 

variances for milk and fat yields reported by Bereskin and Freeman 

(1965) were about 10% higher than the estimates found in this study 

and also of those of Hickman and Henderson (1955), Van Vleck et al 

(1961), and Harville and Henderson (1967). These differences were 

presumably due to the fact that Bereskin and Freeman did not fit the 

effect of sire. In the model used in this study, the effects of 

period within herd and season within period within herd, comprise 

the variances due to the two and three factor interactions among 

herd, period and season. These effects were considered to be 
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important sources of variation as they accounted for about one-third 

of the total variance due to the herd-period-season effects 

(excluding overall effects of period and season of calving). 

The environmental correlations found in this study were 

considerably higher than those of Thomson and Freeman (1970) and 

Arora and Freeman (1971). Thomson and Freeman reported correlations 

(for milk yield) of 0.226 within the same herd and 0.328 within the 

same herd-year-season. Correlations within the same herd, and in 

the same herd-year-season, reported by Arora and Freeman, were 0.198 

and 0.357 respectively for milk yield, and 0.216 and 0.381, 

respectively, for fat yield. The estimates of these two studies 

seem to be biased downward because they ignored herd x year-season 

interaction effect in their model. Correlations among records in 

the same herd and in the same herd-year-season, computed from the 

proportions of variance components reported by Hickman and Henderson 

(1955), Van Vleck et al (1961), and Harville and Henderson (1967) 

(Table 4.1), were in the ranges of 0.27 - 0.30 and 0.38 - 0.48 

respectively for milk yield and 0.29 - 0.33 and 0.40 - 0.52, 

respectively, for fat yield. 

The differences in the environmental correlations among records 

within the same herd-period-season with a season of either 1 or 2 or 

4 months (Table 4.4) were small. It was concluded that seasons 

shorter than 4 months in the sire evaluation model of the MNB 

(herd-year-season fixed) would not be very helpful, because shorter 

seasons will split records into small subclasses with a few or a 

single record, and these small subclasses will contribute a little 

or nothing to progeny group comparisons. However, if the effects of 

period within herd and season within period within herd are assumed 
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to be random then there are two possible models for sire evaluation: 

(i) herd fixed and herd-period-season random, (ii) herd fixed, 

herd-period and herd-period-season random. The latter model takes 

account of the fact that the correlations among records within the 

same herd-period-season are higher than those within the same 

herd-period. Therefore, a sire evaluation model with herd as a 

fixed effect and herd-period and herd-period-season as random 

effects may be more appropriate than a model with herd fixed and 

herd-period-season random (see Chapter 5). 

SUMMARY 

Variances in milk and fat yields due to herd-period-season 

effects (period either 6 or 12 months, and season either 1 or 2 or 4 

months) were partitioned fitting a three nested effects model with 

herd, period within herd and season within period within herd as 

random nested effects, sire a fixed effect and linear and quadratic 

regressions on age at calving. The overall effects of period and 

season of calving were regarded as fixed effects and were removed by 

precorrecting records using least squares constants estimated from 

the same data. Environmental correlations within herd, herd-period 

and herd-period-season were also estimated for all period and season 

groupings. Records of first lactation milk and fat yields on 25158 

progeny of 69 widely used proven Holstein-Friesian sires in 832 

herds in England and Wales were used. 

The variance components for the effects of herd, period within 

herd, season within period within herd and residual accounted for 

31, 6, 5 and 58% of the total variance in milk yield, and 35, 8, 7 

and 50% of the variance in fat yield, respectively, using a period 
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of 12 months and a season of 4 months. 	Differences amongst 

correlations within the same herd-period-season, fitting seasons of 

different lengths, were small. It was therefore concluded that 

shorter seasons in a herd-period-season fixed effect model of sire 

evaluation would be of no advantage. 
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TABLE 4.1. Variance (%) contributed by different factors in milk and 
fat yields. 

Source Herd Year- H X YS Sire H X  YS X Z H X Residual 
(H) Season (Z) YS X 

(YS) Z 

Hickman and 
Henderson (1955) 

Milk yield: 29.97 4.04 14.31 6.97 1.71 43.00 
Fat yield 	: 32.87 4.70 14.87 7.26 2.44 37.86 

Van Vleck et al 
(1961) 

Milk yield: 29.14 2.08 6.86 5.89 0.41 -0.75 6.87 49.51 
Fat yield 	: 31.72 2.59 8.50 6.55 0.64 -1.33 3.50 47.84 

Bereskin and 
Freeman (1965) 

Milk yield: 28.10 2.30 3.20 66.40 
Fat yield 	: 29.20 1.80 4.10 64.90 

Harville and 
Henderson (1967) 

Milk yield: 26.61 5.13 5.93 8.69 -0.37 -3.11 0.04 57.08 
Fat yield 	: 28.93 4.69 6.72 6.95 -0.03 -2.84 1.04 54.54 
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TABLE 4.2. Constructing ANOVA for estimating variance components in a 
three nested effects structure using information from two nested 
effects analyses with LSML76 computer program of Harvey (1977). 

Source 	D.F. 	M.S. 	 E.M.S. 

Analysis 1: H = herd, HPS = period-season within herd 

H 	 DF(h) 	MS(h) 	Ge2  + kl2GHps 2  + kl3aH2  

HPS 	 DF(HPS) 	MS(HPS) 	0e2  + 

Residual 	DF(e) 	MS(e) 	Ci e   

Analysis 2: HP = herd-period, HPS = season within herd-period 

HP 	 DF(HP) 	MS(HP) 	Ge2  + kGjp 	+ k23GHp2 

HPS 	 DF(hps) 	MS(hps) 	Ge2  + k2lGHpS 2  

Residual 	DF(e) 	MS(e) 	Ge2  

Analysis 3: H = herd, HP = period within herd, 

H 	 DF(h) 	MS(h) 	GE2  + k32GHp 2  + k33GH2  

HP 	 DF(hp) 	MS(hp) 	GE2  + k3lGHp2  

Residual 	DF(E) 	MS(E) 	GE  

Final ANOVAt:  H = herd, HP = period within herd, HPS = season within period 
within herd, 

H 	 DF(h) 	MS(h) 	Ge2  + kl2Ghps2+ k32 Ghp 2 	+ k33äh2 

HP 	 DF(hp) 	MS(hp) 	Ge2  + k2Ghps2 + k31 Ghp 2  

HPS 	 IDF(hps) 	MS(hps) 	Cie   + k2lGhps 2  

Residual 	DF(e) 	MS(e) 	Cie   

k2 = [k11[DF(HPS)} -k21(DF(hps))J/[(DF(HPS)) - (DF(hps))] 

The M.S. and D.F. indicated with small letters in parentheses and 
some k-values from the first three analyses were used to construct 
ANOVA. k13 and k33 are the same. The first subscript of k-values 
indicate the analysis they come from, 
Only the residual variance indicated with a small subscript is relevant 

• to final ANOVA, and those with subscripts using bold letters are 
appropriate for two nested effects models in respective analysis, 
Effects of sire (fixed) and age as a covariable fitted in all 
analyses, and effects of period and season of calving removed 
by precorrecting records. 
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TABLE 4.3. Variance components for milk and fat yields with different 
environmental groupings and subclasses. 

Grouping 

A B C D 

Herd 	(h): 	herd herd herd herd 
Period 	(p): 	12 month 6 month 12 month 6 month 
Season 	(s): 	4 month 2 month 1 month 1 month 

Number of 
Subclasses: 
Herd 832 832 832 832 
Herd-period 3233 4962 3233 4962 
Herd-period-season 5852 7974 10344 10344 

Milk yield 	(kg 2 X 10) 

0h2 	 264 (0.31) 268 264 268 

Ghp2 	 52 (0.06) 73 66 78 

Ohps 2 	 46 (0.05) 30 46 30 

oe 2 	 497 (0.58) 488 482 482 

Fat yield (kg 2 ) 

0h 2 	 500 (0.35) 509 500 509 

Ghp2 	 113 (0.08) 161 144 171 

Ohps 2 	 93 (0.07) 50 85 49 

Ge 2 	 714 (0.50) 699 690 690 

NB: As the effects of period and season were removed by precorrecting 

records Gh2comprises  variance due to 	HxP 	interaction, and 

Ghps 2  variance due to HxS, PxS and HxPxS interactions. Oh2  

and Ge2  are herd and residual variances, respectively. 

Figures in parentheses are proportions of total variance. 
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TABLE 4.4. Environmental correlations. 

Environmental grouping 

A 	 B 	 C 	 D 

Period: 12 months 	6 months 	12 months 	6 months 
Season: 	4 months 	2 months 	1 month 	1 month 

Assuming herd as a fixed effect, and period within herd and season 
within period within herd as random effects 

Milk yield: 

Same herd-period 	 0.09 	0.12 	0.11 	0.13 
same herd-period-season 	0.16 	0.17 	0.19 	0.18 

Fat yield: 

Same herd-period 	 0.12 	0.18 	0.16 	0.19 
Same herd-period-season 	0.22 	0.23 	0.25 	0.24 

Assuming herd, period within herd and season within period within 
herd as random effects 

Milk yield: 

Same herd 	 0.31 	0.31 	0.31 	0.31 
Same herd-period 	 0.37 	0.40 	0.38 	0.40 
same herd-period-season 	0.42 	0.43 	0.44 	0.44 

Fat yield: 

Same herd 	 0.35 	0.36 	0.35 	0.36 
Same herd-period 	 0.43 	0.47 	0.45 	0.48 
Same herd-period-season 	0.50 	0.51 	0.51 	0.51 

NB: Overall effects of period and season of calving removed by 
precorrécting records. 
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Chapter 5 

DAIRY SIRE EVALUATION FITTING SOME OF THE HERD-YEAR-SEASON 

EFFECTS AS RANDOM 

INTRODUCTION 

In the sire evaluation model used in most breeding schemes 

herd-year-season is fitted as a fixed effect and it is the main 

environmental grouping, with two or three seasons, within which 

progeny groups are compared. For example, the Northeast Artificial 

Insemination Sire Comparison (NEAISC) of New York uses two seasons: 

December-April and May-November (Bolgiano et al., 1979), and the 

Milk Marketing Board (MF4B) of England and Wales uses three seasons: 

December-March, April-July and August-November (G.J.T. Swanson, 

personal communication, 1984). The effect of herd-year-season is 

fitted as a fixed effect in order to allow corrections for the 

possible bias due to non-random use of sires across herds, because 

some breeders tend to use bulls of a higher genetic merit. However, 

it is reasonable to assume that breeders use bulls of a similar 

genetic merit in any one year and also presumably they do not tend 

to use any one of the bulls in a particular season. If this 

breeding practice applies, although the herd effects would be fixed, 

the effects of year within herd and season within year within herd 

could be assumed to be random, and extra information could be 

recovered on progeny group comparisons from herd-year and 

herd-year-season blocks (Cunningham and Henderson, 1966; Patterson 
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and Thompson, 1971). 	Year is generally split into two or three 

seasons and the cut off points are decided by the date of calving. 

A few hours difference in calving may result in distributing animals 

into different herd-year-season contemporary groups. When seasons 

t.. 
are taken to be 4 to 7 months long 4MNB and NEAISC), a large number 

of animals may have contemporaries which perform under a completely 

different environment, so shorter season grouping should be more 

efficient. In this study, therefore, smaller seasonal groupings 

were considered along with the suitability of different models using 

different groupings. Year was split into two shorter periods in one 

of the groupings and, therefore, the terms "herd-period" and 

"herd-period-season" have been used instead of herd-year and 

herd-year-season, respectively. 

Cunningham (1965) and Henderson (1973, 1975a, 1975b), in simple 

examples, and Miller et al (1968) using field data, have compared 

sire evaluation models in which a single environmental factor was 

fitted as a fixed or random effect. They showed that a random 

effects model gave smaller sampling errors of the estimates of sire 

effects. However, no reports are available in which environmental 

factors such as herd, period within herd, and season within period 

within herd are fitted in a nested structure, with one or more of 

the nested factors fitted as random effects. 

This study was undertaken to compare sire evaluation models with 

alternative environmental groupings and with some environmental 

effects fitted as random. 



MATERIAL AND METHODS 

The data comprised nine years of records on first lactation fat 

yields of 49242 progeny of 69 widely used proven Holstein-Friesian 

sires in 1628 herds participating in the Dairy Progeny Testing 

Scheme (DPTS) of the MMB and as described in Chapter 3. The number 

of daughters per sire ranged between 92 and 3681 with an average of 

714. As only the records on progeny of widely used sires were 

tracted about 50% of the first lactation records were discarded, 

resulting in an average of 7.8 heifer records per herd per year 

whereas in the DPTS herds the average number of heifer records is 15 

per herd per year (MMB, 1984). The data on widely used proven sires 

were used so that it was possible to split them into several random 

subsets in order to compare different models using empirical 

covariances of the estimates of sire effects between subsets. These 

data were split by herd at random into 8 subsets. With this, all 

records of a herd were included in any one of the subsets. Each 

subset contained records of all sires. The data were precorrected 

for the effects of year and month of calving using least squares 

constants estimated from the same data (Chapter 4). Precorrections 

were done mainly to avoid having to fit the crossclassified fixed 

effects of period and season of calving. The variance components 

used in the weighted least squares estimation of sire effects were 

also estimated from precorrected records, as described in Chapter 4. 

The ratios of residual variance to the variance of particular 

environmental factors and environmental groupings used are given in 

Table 5.1. In grouping A and C a period comprised 12 months 

(December-November) whereas in grouping B it was split into two 

periods each comprising 6-months: December-May and June-November. 

The seasons were of either 1 or 2 or 4 months. 
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The following three models were compared using each grouping. 

Model 1 : Yijklm = HPSIjk + Zi + bA + b'A2  + eijklm 

Model 2 : Yijklm = HPIj + Sijk + Z1 + bA + b'A 2  + eijklm 

Model 3 : 1ijklm = Hi + Pjj + Sjjk + Zi, + bA + b'A 2  + eijklm 

where: 
ijklm = record of the mth progeny of the ith sire calved at age A 

in the jth period and the kth season of the ith herd, 

HPSjjk 	joint fixed effect of the ith herd, the jth period and the kth 

season of calving, 

HPIj 	= joint fixed effect of the ith herd and the jth period of calving, 

Hi 	= fixed effect of the ith herd, 

5ijk 	= random effect of the kth season of calving in the jth period and in 

the ith herd, 

Pij= random effect of the jth period of calving in the ith herd, 

Z1 	= fixed effect of the ith sire (fixed effect since proven sires), 

b and b' = linear and quadratic regression coefficients on age at calving A. 

eijklm = random error. 

The mixed model equations (MME) for model 3 (herd fixed, herd-period and 

herd-period-season random) are given below in matrix notation: 

H'H 	H'P 	HIS 	H'Z 	H'C b1 H'Y 

P'H 	P'P+ 	XI 	P'S 	 P'Z 	P'C b2 P'Y 

S'H 	SIP 	S'S+ ai 	S'Z 	S I C b3 = s ' Y 

Z'H 	Z I P 	Z'S 	 Z'Z 	Z'C u Z'Y 

C'H 	C'P 	C'S 	C'Z 	C'C b4 dy 

wher: 

Y = vector 

H = design 

P = design 

S = design 

Z = design 

of fat 

matrix 

matrix 

matrix 

matrix 

yie 

for 

for 

for 

for 

ld records 

herds 

herd-periods 

herd-period-seasons 

sires 

53 



C = matrix of information on covariables of age and square of 
age at calving 

b1= vector of unknown fixed effects for herds 

b2 = vector of unknown random effects for herd-periods 

b3 = vector of unknown random effects for herd-period-seasons 

b4 = vector of unknown linear and quadratic regression coefficients 
of fat yield on age at calving 

u = vector of unknown fixed effects for sires 

X = ratio of residual variance to the variance due to 
herd-periods, oe 2 /ahp 2  

= ratio of residual variance to the variance due to 

herd-period-seasons, Ge 2 /Ghps 2  

I = identity matrix 

The sires' equations were solved in the following order: 

M = [I - S(S'S+I) - S'] ..(adjustment for random effect of herd-period--seaso 

Q = [ M - MP(P'MP+XI)P'M] 	.(adjustment for random effect of herd-period) 

R = EQ - QH(H'QH)1H'Q1 
	

(adjustment for fixed effect of herd) 

After processing the data of each herd the equations for age 

and sire were accumulated and then sire equations were solved by 

absorbing age equations as follows: 

T = [R - RC(C'RC)C'R] 

u = [Z'TZ] - [Z'TY] 

The residual mean squares (RMS) were estimated by the procedure 

described by Thompson (1969), which was a correction to the method 

of Cunningham and Henderson (1968) for estimating the residual 

variance in the weighted least squares procedure, 

RMS = [ Y'TY - Y'TZ (Z'TZ), - Z'TYJ/[N - rank(fixed effects)] 

where, N = total number of records, 

The variances of sire effects were estimated by the procedure given 

by Henderson (1973), as the product of the RMS and the corresponding 

diagonal element of the inverse of Z'TZ. 
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The MME for model 2 (herd-period fixed and herd-period-season 

random) can be obtained from the MME of model 3 by deleting the row 

and column pertaining to herd (H) equations and not adding XI to 

the p'p submatrix of the coefficient matrix. Similarly, the MME for 

model 1 (herd-period-season fixed) can be obtained by deleting the 

rows and columns pertaining to herd (H) and herd-period (P) 

equations and not adding CLI to the S's submatrix. 

Criteria of comparison of models 

The product moment correlations between sire effects from two 

random subsets have been used (Dempfle and Hagger, 1983; Hagger and 

Dempfle, 1983) as a criterion to compare different models of sire 

evaluation. This procedure ignores the fact that the estimates of 

sire effects have unequal variances when data are unbalanced. 

However, in addition to the best linear unbiased predictor (BLUP) 

properties (Henderson, '1973, 1975b), the following properties of a. 

sire evaluation model are also desirable: It should (i) give the 

minimum variance of sire effects, (ii) be able to make 

herd-period-season corrections such that the sire effects are 

similar from all independent subsets, (iii) give estimated variances 

that are close to their expected values. Based on these properties 

the following three criteria were chosen to compare different 

models. (a) Relative values of estimated variances of sire effects; 

(b) Empirical variance: empirical variances for each sire were 

calculated using the formula given below, 
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P 
Empirical variance 	[ E (Uij - u1) 2 1/(P-l) 

j=l 

where: 

P 
Ui = ( E u1)/P 

ujj = sire effect for the ith sire from the jth subset of data, 

P 	= number of subsets of data 

(c) Ratio of empirical to estimated variance: 

P 
Ratio = E 

j=l 

where: 

= [E(u/V)]/[E 	(l/Vij)] 

Vij = estimated variance of Ujj for the specified model, 

In the above formulae iij is the simple mean of sire effects for a sire 

from all subsets and is the weighted mean.The expected value of 

the empirical variance is the variance due to sire, whereas the 

expectation of the ratio of empirical to estimated variance is 

(P-l). The empirical variances and the ratios were calculated for 

each sire and then averaged. As the empirical variance decreases 

the efficiency of the model increases. Similarly, a value of the 

ratio of empirical to estimated variance close to unity is 

desirable. The methods (a) and (b) have algebraic similarity and 

may give similar inferences about comparison of models. However, 

the ratio method was considered to be a logical criterion because it 

takes account of the unequal variance of sire effects from each 

subset, and could be useful especially when the differences in the 

number of progeny between subsets are large. The ratio method and 

the product moment correlations (between sire effects from two 

subsets) have one to one correspondence when sire effects have equal 
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variances. 

In order to contrast different methods for comparing models, the 

intraclass correlations among sire effects from all subsets were 

also estimated. The efficiency of different models was illustrated 

in terms of the the effective number of daughters they would require 

to give the equivalent variances of sire effects. The effective 

numbers were defined as the corresponding diagonal elements of the 

sires' coefficient matrix after absorption of all environmental 

effects in the herd-period-season fixed effect model. The predicted 

effective numbers for the equivalent variances of the estimates of 

sire effects were calculated using a regression of effective numbers 

on the 'inverse of estimated variances' of sire effects from each 

model. 

RESULTS 

The relative values of the estimated variances of sire effects 

using different models and environmental groupings are given in 

Table 5.2. Compared to model 1 (herd-period-season fixed), model 2 

(herd-period fixed and herd-period-season random) gave 16, 17 and 

37% smaller variances, and the model 3 (herd fixed, herd-period and 

herd-period-season random) 32, 40 and 49% smaller variances using 

groupings A, B and C,,  respectively. Comparisons between models 2 

and 3 demonstrated what would be gained if the period effects within 

herd were assumed to be random. These results (Table 5.2) showed 

that model 3 was more efficient than model 2 by about 29 and 19% 

using periods of 6 months (grouping B) and 12 months (groupings A 

and C), respectively. 
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When different enviromental groupings were compared within model 

it was observed that the variances of the estimates of sire effects 

using model 1 (herd-period-season fixed) were larger by 14% with a 

season of 2 months (grouping B) and 36% with a season of one month 

(grouping. C), than those of a season of 4 months (grouping A). 

Although shorter seasons are desirable for comparing progeny groups, 

these results showed that with a herd-period-season fixed effect 

model the losses of information were substantial. This is because 

the herd-period-season subclasses which contain a single or few 

records, or subclasses in which all or almost all records are of the 

same sire, contribute nothing or little to progeny group 

comparisons. These losses could be avoided using the random effects 

model. / 

The trends in the estimates of the empirical variances (Table 

5.3) and intraclass correlations among sire effects (Table 5.4) were 

quite similar to .those of the relative values of estimated variances 

for all models, leading to the same inferences about comparison of 

models - model 3 being the best followed by models 2 and 1. 

The ratios of empirical to estimated variances, each of them 

divided by the expected value of 7 (i.e. number of subsets minus 

one), are given in Table 5.3. All models underestimated the 

variances of sire effects by a similar proportion of about 18%. It 

implies that all three models were equally accurate. 

The product moment correlations between the sire effects 

estimated using different models for all enviromnental groupings are 

given in Table 5.4. All correlations were close to unity. Table 

5.5 shows the effective number of daughters required by different 
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models to give the equivalent variances of the estimates of sire 

effects. 

DISCUSSION 

Based on the criteria of the relative values of estimated 

variance, empirical variance and intraclass correlations among sire 

effects, model 3 (herd fixed, herd-period and herd-period-season 

random) was observed to be the best followed by models 2 and 1. It 

was concluded that the random effects models were more efficient 

than the herd-period-season fixed effect model, as the averages of 

the empirical variances were smaller (Table 5.3) and also required a 

smaller number of progeny to yield the equivalent variance of sire 

effects (Table 5.5). While examining the sire effects for each sire 

from all subsets, it was noticed that, although most of the sires 

had a similar number of progeny in all subsets, a few sires had 

uniform numbers in most subsets but smaller numbers in one or two of 

the subsets. The sire effects from such subsets (with small 

numbers) were much larger than the sire effects from the rest of the 

subsets. In these cases the empirical variances were exceptionally 

large. However, the ratios of empirical to estimated variances 

would not be so sensitive because the estimated variance of sire 

effects based on small numbers would also be larger. 

The product moment correlations between sire effects from 

different models (Table 5.4) were close to unity, indicating that 

using random effects models (models 2 and 3) the same sires would be 

selected as would be by using the herd-period-season fixed effect 

model. The random effects models were considered to be more 
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efficient, however, because they require a considerably smaller 

effective numbers. of daughters (Table 5.5) than the 

herd-period-season fixed effect model to give the equivalent 

variances of the estimates of sire effects. This implies that the 

random effects models could allow testing of a larger number of 

young bulls with the same amount of resources. Consequently, a 

higher intensity of selection could be applied. 

If the breeding practices are such that periodic trends 

(environmental or genetic) existed within herds, however, then the 

model 2 in which herd-period is fitted as a fixed effect, should be 

preferred over model 3. Using the criterion of empirical variances, 

a model with herd-year effects as fixed and herd-year-month random 

(model 2 with grouping C) was observed to be 37.3% more efficient 

than the herd-year-season fixed effects model (i.e. model 1 with 

grouping A), currently used by the MMB. The empirical variances for 

each sire have been plotted in Figure 5.1 for model 2 with grouping 

C against those for model 1 with grouping A, showing that the 

empirical variances for most sire were much smaller on the former 

model. Alternatively, a model similar to model 3 with herd-period 

(period of 12 months) as a fixed effect, and herd-period-season 

(season of 3 or 4 months) and herd-period-month as random effects 

could be suitable. 

Random effects models could be especially useful where herds are 

small. For instance, in the sire evaluation model of the dairy 

cattle breeding schemes in Switzerland the effect of herd production 

level-region-year-season is the main environmental group for 

Braunvieh, and herd production level-region-year for Black-and-White 

cattle (Hagger et al., 1984). The herd effects are ignored because 
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herd-year-season size is small. Fitting the effect of herd as a 

random effect within herd production level-region-year-season would 

presumably be more useful than ignoring it completely. 

Alternatively, a model in which the effect of herd production 

level-region (HR) is a fixed effect, herd-year within HR is a random 

effect and month within herd-year is also a random effect, could be 

worth investigating. The overall effects of year and month of 

calving could be fitted in the model as fixed effects or 

precorrected. 

SUMMARY 

Three models of sire evaluation using different environmental 

groupings were compared. Effects fitted were herd, period (either 6 

or 12 months) within herd, season (either 'l or 2 or 4 months) within 

period within herd, sire and linear and quadratic regressions on age 

at calving. Models differed in fitting (1) the effect of 

herd-period-season fixed, or (2) herd-period fixed and 

herd-period-season random, or (3) herd fixed, herd-period and 

herd-period-season random. The overall effects of period and season 

of calving were regarded as fixed, and were removed by precorrecting 

the records using least squares constants estimated from the same 

data. Records of first lactation fat yield on 49242 progeny of 69 

widely used proven Holstein-Friesian sires in 1628 herds in England 

and Wales were used, and sire effects were fitted as fixed. 

Compared to model 1, model 2 required about 4/5ths and model 3 

2/3rds of the effective number of daughters (i.e. diagonal elements 

of the sire's coefficient matrix after absorption of all 
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environmental effects in the herd-period-season fixed effect model) 

to give the equivalent variance of the estimates of sire effects. 

However, all models would seem to give similar ranking of sires. 

Using the random effects models the relative advantages, in terms of 

smaller variances of sire effects, increased as the sizes of 

herd-period-season subclasses decreased. 

When herd-period-season is fitted as a fixed effect there may be 

considerable loss of information because the herd-period-season 

subclasses which contain a single or few records, or subclasses in 

which all or almost all records are of the same sire, contribute 

nothing or little to the progeny group comparisons. The random 

effects models could avoid these losses, and were considered to be 

useful especially where herds are small. 
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TABLE 5.1. Ratios of residual variance (ae2)  to different environmental 
variance components for fat yield with different environmental 
groupings and subclasses. 

Environmental Grouping 

A 	 B 	 C 

Herd 
Period 
Season 

Ratios: 

(h): Herd Herd Herd 
(p): 12 months 6 months 12 months 
(s): 4 months 2 months, calendar month 

within p within p within 	p 

ae 2/ahp2 	 6.29 	 4.33 	 4.78 

ae 2 /ahps 2 	 7.68 	14.07 	 8.07 

Average size 
of subclasses: 

Herd 
	

30.2 	 30.2 	 30.2 
Herd-period 
	

7.8 	 5.1 	 7.8 
Herd-period-season 
	

4.3 	 3.2 	 2.4 

ahp2  component con sists of variance due to h x p interaction; and Ghps 2  

	

due to h x s, p x s, and h x p x s 	interactions because the 
overall effects of period and season were precorrected. 
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TABLE 5.2. Relative values of estimated variance of sires effects using 
different models and groupings 

Model Environmental grouping 

A B C 

Period: 12 months 6 months 12 months 
Season: 4 months 2 months 1 month 

Comparison of models within grouping 

1 1.00 1.00. 1.00 
2 0.84 0.83 0.63 
3 0.68 0.60 0.51 

Comparison of groupings within model 

1 1.00 1.14 1.36 
2 1.00 1.13 1.00 
3 1.00 0.99 1.00 

All compared to model 1 using grouping A 

1 	 1.00 
	

1.14 	 1.36 
2 	 0.84 
	

0.95 	 0.84 
3 	 0.68 
	

0.68 	 0.68 

Model 1: herd-period -season fixed, 
Model 2: herd-period fixed and herd-period-season random, 
Model 3: herd fixed, herd-period and herd-period-season random. 
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TABLE 5.3. Ratios of the empirical to estimated variance of sire effects 
using different models and groupings 

Model 	 Environmental grouping 

A 	 B 	 C 

Period: 12 months 	6 months 	 12 months 
Season: 4 months 	2 months 	 1 month 

1 	 1.14 (57)t 	1.20 (72) 	1.14 (79) 

2 	 1.16 (44) 	1.19 (55) 	1.21 (44) 

3 	 1.18 (36) 	1.23 (37) 	1.21 (37) 

tFigures  in parentheses are the averages of the empirical variances (kg 2 ) 
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TABLE 5.4. Correlations between sire effects for different models, and 
intraclass correlations among sire effects from all subsets 
using each model. 

Model 1 	 Model 2 	 Model 3 

Grouping A: period of 12 months and season 4 months 

Model 1 	1.00 
Model 2 	0.95 	 1.00 
Model 3 	0.86 	 0.91 	 1.00 

Grouping B: period of 6 months and season 2 months 

Model 1 	1.00 
Model 2 	0.93 	 1.00 
Model 3 	0.82 	 0.85 	 1.00 

Grouping C: period of 12 months and season 1 month 

Model 1 	1.00 
Model 2 	0.87 	 1.00 
Model 3 	0.81 	 0.91 	 1.00 

Intraclass correlations: 

Grouping A 0.38 0.42 0.45 
Grouping B 0.33 0.38 0.44 
Grouping C 0.30 0.42 0.44 
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Period of 12 months and season one month 

91.1 59.8 
51.3 33.6 
32.8 21.5 
22.8 14.9 
16.7 11.0 

Grouping C 

9 
16 
25 
36 
49 

48.5 
27.3 
17.5 
12.1 
8.9 

TABLE 5.5. Predicted effective number of daughters required using different 
models to give the equivalent estimated variance of sire effects 
for fat yield with different environmental groupings. 

Desired estimated 
variance (kg 2 ) 	Model 1 	 Model 2 	 Model 3 
of sire effect 

Grouping A : Period of 12 months and season 4 months 

9 91.2 78.4 64.0 
16 51.3 44.1 36.0 
25 32.8 28.2 23.0 
36 22.8 19.6 16.0 
49 16.8 14.4 11.8 

Grouping B 

9 
16 
25 
36 
49 

Period of 6 months and season 2 months 

90.6 76.6 55.4 
51.0 431 31.2 
32.6 27.6 20.0 
22.7 19.2 13.9 
16.6 14.1 10.2 
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Chapter 6 

ESTIMATING VARIANCES AND COVARIANCES OF MONTHS WITHIN 

HERD-YEAR FOR MILK PRODUCTION TRAITS 

INTRODUCTION 

In a herd-year-season model of sire evaluation, seasons are 

formed by grouping several consecutive months together. In a sire 

evaluation model fitting herd-year-season effects as fixed, it is 

assumed that the covariances between all cows calving in the same or 

different months are zero. When the season effects within herd-year 

are regarded as random and herd-year effects are regarded as fixed, 

it is assumed that all cows calving in different months but the same 

season have equal covariances with each other, and that the 

covariances of any of them with any of those calving in a different 

season are zero. However, in a model in which only herd effects are 

fixed and season within herd-year and year effects within herd are 

random, the covariances between cows calving in the same as well as 

different seasons are assumed to be non-zero. 

However, since the intra-herd environmental variations from month 

to month (i.e. the herd-year x month interactions) are usually large 

(Chapter 3), it is not appropriate to assume that the covariances 

between all cows calving in different months of a season, are equal 

or are zero. The environmental correlations among milk production 

records in the same herd-year-season have been found to be slightly 
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smaller when seasons are longer (Chapter 4), showing that the 

environmental covariance between cows decreases as calving dates 

become further apart. Van Vieck (1966) reported the environmental 

correlations between milk yields of cows calving from zero to 18 

year-seasons apart. No specific trends in the correlations were 

observed as the distance between year-seasons increased. However, 

his estimates were biased because they involved the covariances of 

each record with the rest in a herd, since each record was expressed 

as a deviation from the herd mean. 

This study was undertaken to estimate the covariances between the 

first lactation records of cows calving in the same month and 

between records of those calving various months apart. It was 

assumed that the covariances of records between any pair of months 

the same distance apart are equal. For example, taking the 

recording year "December-November" currently used by the Milk 

Marketing Board of England and Wales (MMB) the one month apart 

covariance is the covariance of records of December with January, 

January with February, ..., October with November; and the two 

months apart: December with February, January with March, ..., 

September with November, and so on. 

MATERIAL AND METHODS 

The data consisted of the first lactation fat yield records of 8 

recording years (December, 1972 to November, 1980) on 43089 progeny 

of 69 widely used proven Holstein-Friesian sires in 1533 herds 

participating in the Dairy Progeny Testing Scheme of the MMB, as 

described in Chapter 3. Records of widely used sires were used so 

that the environmental effects could be estimated more precisely. 
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Rather than analysing all data together, it was considered more 

appropriate to split them by herd at random into two subsets (22077 

and 21012 records) such that all records of a herd were included in 

any one of the subsets, and compare the results from both. Each 

record was represented by the following model: 

ijklm = 11 + HY 	+ Mk + (HYxM)jjk + Z1 + bA + b'A 2  + eijklm 

where: 

ijklm = record of the mth daughter of the lth sire calved at age A 
in the jth year and the kth month of the ith herd 

= overall mean 

HYij 	fixed joint effect of the ith herd and the jth year of calving 

Mk 	= fixed effect of the kth month of calving 

(HYxM)jk = random effect common to records of cows calved in the kth 
month of the jth year of the ith herd (random applies to 
Henderson's methods, 1953) 

z1 	= fixed effect of the lth sire (fixed effect since proven sires) 

b and b' = linear and quadratic regression coefficients on 
age at calving A 

eijklm 	= random error 

This model was fitted to the data using the LSML76 computer program 

of Harvey (1977). Using the least squares constants from the above 

analysis, the data were adjusted for the effects of sire, month and 

age at calving. The herd-year effects were removed by subtracting 

the respective herd-year mean (calculated from records adjusted for 

sire, month and age) from each record. The herd-year mean included 

the record itself also. These deviated records were then used to 

calculate sums of squares (SSQ) for each month and sums of 

crossproducts (SCP) between different records in the same month and 

between different months. All calculations of SSQ and SCP were done 

on a herd-year basis, therefore the SSQ and SCP and their 
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coefficients (the numbers on which these SSQ and SCP were based) 

were accumulated, accordingly. Altogether, there were 12 SSQ and 12 

SCP for the same month (i.e. 0-month-apart), and 66 SCP for 

different months. The figure 66 consists of 11 1-month--apart SCP 

and 10, 9, 8, 7, 6, 5, 4, 3, 2 and 1, respectively, 2-, 3-, 4-, 5-, 

6-, 7-, 8-, 9-, 10- and 11-months-apart SCP, the 11-months-apart 

figure being for between December and November. Since the herd-year 

mean has been subtracted from each record, these SSQ and SCP include 

covariances with other months, in addition to covariance between the 

months in question. Therefore, the equations of the expectation of 

these SSQ and SCP, in terms of the unknown variance and covariances, 

are given below. 

For the same month: 

E(SSQ) = ni E(Yjj-Y )2 

= niv - 2njE(Yi ,Y  ) + niE(Y. )2 	 [1] 

E(SCP) = 	1)C0 - 2ni(nj -  l)E(Yi ,Y  ) + ni(ni -  1)E(Y )2  [2] 

For different months: 

E(SCP) = E[(nnj)(Y. -  Y)(Y- Y)J 	 [3] 

= ninj[E(Yi.Yj.) - E(Yi,Y..) - E(Y1,Y) + E(Y) 2 1 

where: 
E(Y,Y) = [ niY + nj.(ni -  1)C0 + 

J
.E.

1
ninjCli_jI)/niN 

E(Y1 ,Yj. ) = C 

P 
	p 	 p 

E(Y) 2  = [ E fliV + 	flj(flj 	1)C0 + 2 E riinjCli_jI]/N2 
i=1 	i=1 	 J_>] 

E 	= denotes the sign for expectation 

Yij = the jth record in the ith month adjusted for the effects of 

sire, month and age of calving 

= mean of the ith month within the herd-year (i=1,2,3,...,12) 

= mean of the jth month within the herd-year (j=1,2,3,. ..,12) 
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= herd-year mean 

N = total numberof records in the herd-year 

P = total number of months (i.e. 12) within the herd-year 

ni = number of records in the ith month within the herd-year 

flj = number of records in the jth month within the herd-year 

CO = 0-month-apart covariance i.e. the covariance between records 

in the same month 

V 	= residual variance within month plus CO 

CJ i-il = the li-il months-apart covariance, where ij; 

and the sign ( 	I denotes the absolute value 

The equations for the expectations of the 90 terms of SSQ and SCP-

within a herd-year, in matrix notation, can be written as, 

Xb = y 

Where: 

X = matrix (order 90xl3) of the coefficients of unknown 

parameters of variance and covariances, 

b = vector (order 13x1) of unknown parameters of variance and 

[4] 

covariances, the first parameter being the V (as defined in 

[11, [21 and (3]) followed by 0 to 11 months apart covariances, 

Y = vector (order 90x1) of SSQ and SCP based on records deviated 

from herd-year mean, the first 12 elements are the respective 

SSQ for different months followed by 11 elements for 0-month-apart 

SCP, 10 for 1-month-apart, ..., 1 for 11-months-apart SCP. 

It was observed that all rows of the matrix X sum to zero but 

neither the columns of matrix X nor the elements of vector Y sum to 

zero. According to [1], [2] and [3], altogether there are 90 

equations in [4] for the expectations of SSQ and SCP. The matrix X 
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and the vector Y can be transformed to reduce the total number of 

equations to a number equal to the number of unknown parameters in 

the vector b. All equations derived from [11 can be added into a 

single equation and all those from [2] into a second equation. 

Likewise the 66 equations derived from [3] are reduced to only 11 

equations since the equations pertaining to the expectations of the 

same months apart SCP are added together. These 11 equations need 

to be multiplied by two in order to make the transformed matrix X 

(i.e. X*) symmetric. This transformed matrix X is now of order 

13x13 and elements of each row and each column sum to zero. 

Similarly, elements of the transformed vector Y *  (order 13x1) also 

sum to zero. The equations pertaining to 1, 2, 3, . .., 11 months 

apart unknown covariances are multiplied by two since the 

expectations of the between months SCP of only one triangle of the 

matrix of SCP were calculated in order to minimize the computations 

(see Table 6.1 and calculations in the example given in the appendix 

at the end of this Chapter). In view of the above characteristics 

of the matrix X the solution to unknown parameters of variance and 

covariances in the vector b can be obtained by either one of the 

following two methods: 

using untransformed matrix X and vector 1, 

X'Xb = X'Y 

b = (X'X) -X'Y 
	

[5] 

using transformed matrix X and vector 

X * b = 

b = (X * ) _] Y * 
	

[6] 

The preinultification of both sides of equation [4] by the transpose 

of matrix X, forces the matrix X'X to be symmetric (order 13xl3). 

The vector x'Y is eventually of order 13xl. Although the' matrices 
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X I X and X are symmetric, they are not of full rank, and hence there 

is no unique solution for the unknown parameters in the vector b. 

Because of using deviations within herd-year all covariances cannot 

be estimated. Therefore, in order to solve these equations, it was 

considered reasonable to impose a constraint that the longest 

distance apart covariance (i.e. the 11-months-apart within herd-year 

analyses) is zero. This caused all elements of the 13th row and the 

13th column of the matrices X'X and X to be zero, and also the 13th 

elements of the vectors X'Y and were automatically zero. As a 

consequence, the matrices X'X and X (both having order 12x12) were 

symmetric matrices of full rank (i.e. 12). Solution of the unknown 

parameters in the vector b can then be obtained by inverting the 

matrices X'X or .  X and premultiplying the inverse by the 

corresponding right hand side vector. 

The covariances between year-months within herd-period (period of 

24 months) and between year-months within herd (period of 96 months, 

i.e. the whole data available in a herd) were also estimated using 

the method (b). Method (b) requires a much smaller store for the 

transformed matrix X* than does the untransformed matrix X in method 

(a). 

The variances and covariances within and between months, using 

records deviated from herd-year mean, were also calculated by 

dividing each SSQ and SCP by the corresponding coefficients (i.e. 

the numbers on which these SSQ and SCP were based). The variances 

of records within different months were not much different from each 

other. But the covariances between months at the same distance 

(e.g. 0-month-apart: for December, January, ..., November; 

1-month-apart: between December and January, January and February, 
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•, October and November; 2-months-apart: between December and 

February, January and March, ..., September and November) were found 

to be very heterogenous (Table 6.1). These variances and 

covariances, obtained from deviated records, were broken up in terms 

of the unknown variance and covariances in order to examine the bias 

in them caused by subtracting the herd-year mean from each record. 

For these investigations, the coefficients of the unknown variances 

and covariances in the matrix X were scaled by the corresponding 

coefficients (numbers) on which the SSQ and SCP were based (see 

example in the appendix). This procedure modifies the matrix X as 

if each SSQ, or each of the same months-apart SCP, are based on 

equal coefficients (i.e. as if the numbers of records in each month 

are equal). 	The scaling procedure in matrix notation is given 

below. 	As far as the estimation of the unknown variance and 

covariances is concerned, the properties of the scaled equations 

remain unchanged. 

DXb = D 1Y 	 [7] 

where: 

D = diagonal matrix (order 90x90) having the coefficients of SSQ and 

SCP on its diagonal corresponding to the respective equation of 

the expectation. 

The matrix X and the vectors b and Y are the same as defined in [4]. 

Most of the calculations for estimating the unknown variance and 

covariances using method (b) are illustrated in the appendix (at the 

end of this chapter) using an example. 

It could be asked what is the relationship between the estimated 

value of Co (i.e. the 0-month-apart covariance) and the component of 
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variance for month (Gm 2 ) within herd-year, given in Chapter 4. 

This question was answered using the following formula, which gives 

an approximate value for the month component from the estimated 

values of different months apart covariances (R. Thompson, 1985, 

personal communication). 

am 2 
	

P-1 
= [ PC0 - (PC0 + 2E (P- i)Ci)/P]/(P- l) 	 [8] 

1=1 

where: 

P = number of months within a period (period of 6 or 12 months) 
minus one 

Cj = i-months-apart covariance 

RESULTS AND DISCUSSION 

Since the inferences from the results of both subsets of data 

were quite similar, the full results from only one subset (22077 

records) are presented. However, the estimates of various 

months-apart covariances from within herd-year analyses for both 

subsets are plotted in Figure 6.2. 

The within-month variances and the covariances between months 

based on records deviated from herd-year mean are given in Table 

6.1. These estimates are biased because they include the 

covariances with other months. This bias was introduced by the 

subtraction of the herd-year mean from each record. In order to 

demonstrate the consequences of subtracting the herd-year mean from 

each record, the composition of only the 0-month-apart scaled SCP in 

terms of the unknown variance and covariances is shown in Figure 

6.1. Only the scaled coefficients, obtained from [7], of unknown 

variance and 0- and 1-month-apart covariances from the equations of 

the expectations of 0-month-apart SCP have been plotted (Fig 6.1). 
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The scaled coefficients of other unknown covariances (i.e. for 2 to 

11 months apart covariances) in these equations were close to zero, 

indicating that their contribution to the bias in 0-month-apart 

covariances were small. From Figure 6.1, it was clear that there 

were unequal contributions from the unknown variance and covariance 

terms to each of the 0-month-apart covariances shown in Table 6.1 

(based on deviated records). These contributions, however, did not 

show any specific trend. 

The estimated values of 0 to 11-months-apart covariances obtained 

from the solution of the equations in [5] and [6] for within 

herd-year analyses have been plotted in Figure 6.2. The trends in 

the estimates of covariances from both subsets were quite similar. 

The solutions from both methods, [51 and [6], were not identical as 

different weightings are accounted for in these two procedures, but 

the estimates showed quite similar tends. The covariances from 0 

through to 5-months-apart showed an almost linear decline, and 

thereafter all covariances were apparently similar and close to 

zero. The variation in the estimates of 6 to 10-months-apart 

covariances (the 11-months-apart covariance was forced to be zero) 

can be attributed to the fact that, as compared to the 0- to 

5-months-apart covariances, they were based on smaller coefficients, 

e.g. the 10-months-apart covariance comprised the covariance between 

records in December and October, and January and November; and the 

11-months-apart covariance was only between December and November. 

The estimates of covariances from the analyses over 24 months and 

96 months also showed a linear decline from 0 through to 5 or 6 

months apart (Figures 6.3 and 6.4). All covariances beyond 6 months 

apart showed a gradual declining trend, although very slow, 
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suggesting periodic trends in the covariances between year-months. 

In the absence of periodic trends all covariances beyond 11 months 

apart should have been similar, having no specific trends. 

Since there were no unique solutions to the parameters of 

variance and covariance in [5] or [61 the longest 

distance-apart-covariances in all analyses were assumed to be equal 

to zero. Therefore, there does not seem to be an exact 

correspondence between the estimates from different analyses, as the 

estimates of the covariances from the analyses within 24 months or 

96 months include the between years within herd-period covariances 

in addition to the covariances between the corresponding 

year-months. However, the following two checks were made to test 

the consistency of the estimates of the covariances. Firstly, the 

within-month variances from all analyses, using the same data subset 

(22077 records), were estimated as the value of the parameter V 

minus CO, and are given below: 

Analyses 	 within month 
variance (kg 2 ) 

within herd-year, using method (a) 687 

within herd-year, using method (b) 672 

within herd-period (period of 24 months), using method 	(b) 657 

within herd-period (period of 96 months), using method 	(b) 651 

These variances are close to the residual variance in the 

herd-year-month analysis (i.e. 690 kg 2 ), given in Chapter 4, showing 

that the estimates of the covariances from different period 

groupings are consistent. Secondly, using the estimated values of 

various months apart covariances from within herd-year analysis, the 
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components of variance for month within herd-period with a period of 

6 or 12 months were estimated to be 64 and 103 kg 2  using equation 

[8]. These estimates are in agreement with the values of 49 and 85 

kg 2  respectively obtained with periods of either 6 or 12 months, in 

Chapter 4. 

The main conclusion from the results of this study is that the 

differences in the estimates of covariances from 0 to 5-6 months 

apart were quite substantial and thereafter all covariances were 

observed to be similar. Therefore, a model assuming realistic 

variance-covariances between months may be useful to improve progeny 

group comparisons. If it is necessary to fit herd-year effects as 

fixed then, in view of the observed covariances and the trends in 

them, the following two models of sire evaluation may be suitable: 

(1) taking account of the variance-covariances between all months 

within a herd-year, 

(ii) assuming a linear decline in the covariances from 0 through to 

5 months apart and all covariances beyond 5 months apart to be zero. 

The latter model may be helpful from the point of computations as 

the covariances between several pairs of months can be taken to be 

zero, a priori. 

The year effects within herd are mainly fitted to account for the 

environmental trends within herds. However, from the plot of 0 to 

95 months apart covariances in Figure 6.4 it was observed that 

yearly trends are apparently small. Therefore, year effects within 

herd could be replaced by a period effect (e.g. period of 24 

months). This consideration may not be of any help in a 

herd-period-year-season fixed effects model, but it might be useful 
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in a model in which herd-period effects are fitted as fixed and 

herd-period-year-season effects as random. This is because it would 

increase the number of comparisons from the herd-year subclasses 

having all or almost all records of the same sire. Similarly, a 

period effect instead of the year effects may also be helpful in a 

model in which covariances between year- months within herd-period 

are accounted for. 

SUMMARY 

A procedure for estimating the covariances among first lactation 

records (precorrected for sire, age and month of calving, and 

deviated from the respective herd-year mean) commencing in the same 

and different months within herd-year has been given. Covariances 

were estimated to examine an assumption underlying the commonly used 

herd-year-season fixed effects model of sire evaluation; the 

assumption being that all covariances between cows calving in the 

same or different months are zero. Analyses were conducted on two 

independent subsets of data comprising 22077 and 21012 first 

lactation fat yield records on progeny of 69 widely used 

Holstein-Friesian sires in 1533 herds. The covariances from 0 

through to 5 months apart were observed to decline in an almost 

linear fashion as the distance between months (within herd-year) 

increased. All covariances beyond 5 months apart were small. It 

was concluded that a sire evaluation model accounting for these 

covariances might be desirable. 
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Appendix to Chapter 6. 

Example using herd-year data over 4 months only with a 
maximum of 5 records in a month. These data are assumed 
to be precorrected for all effects except for the herd-year 
effect. 

Total number of records = 13 
Herd-year mean 	 = 20.19 

The records deviated from herd-year mean: 

Month Individual records deviated Total no. 
from herd-year mean in month 

1 -4.19 4.81 	2.81 	1.21 	0.61 5 

2 -0.39 2.01 	-2.89 3 

3 -3.29 0.51 	-2.19 	3.61 4 

4 -2.59 1 

Sums of squares (SSQ) and sums of crossproducts (SCP): 

Month 

	

1 	2 	 3 	4 

SSQ for different months: 

SSQ: 	50.40 	12.54 	28.92 	6.72 

Coeff.: 	5 	3 	4 	1 

SCP (between different records in the same month): 

SCP 	-22.96 	-10.92 	-27.04 	0.00 

Coeff.: 	20 	6 	12 	0 

SCP (between month s )t 

month-1 	.... 	 15 	20 	5 

month-2 	-6.69 	.... 	 12 	3 

month-3 	-7.17 	1.75 	.... 	 4 

month-4 -13.58 	3.31 	3.55 

figures in the lower triangle are the SCP between 
months and in the upper triangle the corresponding 
coefficients on which SCP are based. 

82 



The equations for the expectations of the SSQ and SCP 
using equations [1], [2] and [3]: 

V CO Cl C2 C3 

E(Y. . ,Y..) = 	0.0769 0.2249 0.3669 0.2722 0.0592 
E(Y1.,y..) = 	0.0769 0.3077 0.2308 0.3077 0.0769 
E(Y2.,Y..) = 	0.0769 0.1538 0.6923 0.0769 0.0000 
E(Y3.,Y..) = 	0.0769 0.2308 0.3077 0.3846 0.0000 
E(Y4.,Y..) = 	0.0769 0.0000 0.3077 0.2308 0.3846 
E( 	50.40) = 	4.6154 -1.9527 -0.4734 -1.7160 -0.4734 
E( 	12.54) = 	2.7692 -0.2485 -3.0533 0.3550 0.1775 
E( 	28.92) = 	3.6923 -0.9467 -0.9941 -1.9882 0.2367 
E( 	6.72) = 	0.9231 0.2249 -0.2485 -0.1893 -0.7101 
E(-22.96) = 	-1.5385 12.1893 -1.8935 -6.8639 -1.8935 
E(-10.92) = 	-0.4615 5.5030 -6.1065 0.7101 0.3550 
E(-27.04) = 	-0.9231 9.1598 -2.9822 -5.9645 0.7101 
E( 	-6.69) = 	-1.1538 -3.5503 6.6568 -1.6864 -0.2663 
E( 	1.75) = 	-0.9231 -1.9172 4.4024 -2.2722 0.7101 
E( 	3.55) = 	-0.3077 -0.0237 3.0059 -1.3728 -1.3018 
E( 	-7.17) = 	-1.5385 -6.2722 -3.4320. 11.5976 -0.3550 
E( 	3.31) = 	-0.2308 0.2130 -1.8994 2.8935 -0.9763 
E(-13.58) = 	-0.3846 -0.4142 -0.8580 -1.3314 2.9882 

C = unknown covariance among records, the subscript followed 
by C indicate the "months-apart"; 

V = the variance within month plus Co. 

The equations for the expectations of SSQ and SCP can be 
written in matrx notation as below: 

Xb = y 

X = matrix of the coefficients of unknown variance and covariances 
in the equations of the expectations of SSQ and SCP, 

I = vector of SSQ and SCP, based on deviated records, 

b = vector of parameters of unknown variance and covariances. 

4.6154 -1.9527 -0.4734 -1.7160 -0.4734 50.40 
2.7692 -0.2485 -3.0533 0.3550 0.1775 12.54 
3.6923 -0.9467 -0.9941 -1.9882 0.2367 28.92 
0.9231 0.2249 -0.2485 -0.1893 -0.7101 6.72 

-1.5385 12.1893 -1.8935 -6.8639 -1.8935 -22.96 
-0.4615 5.5030 -6.1065 0.7101 0.3550 -10.92 

X = 70.9231 9.1598 -2.9822 -5.9645 0.7101 ; 	1 -27.04 
-1.1538 -3.5503 6.6568 -1.686,4 -0.2663 -6.69 
-0.9231 -1.9172 4.4024 -2.2722 0.7101 1.75 
-0.3077 -0.0237 3.0059 -1.3728 T3018 3.55 
-1.5385 -6.2722 -3.4320 11.5976 -0.3550 -7.17 
-0.2308 0.2130 -1.8994 2.8935 -0.9763 3.31 
-0.3846 -0.4142 -0.8580 -1.3314 2.9882 -13.58 
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a 

The transformed matrix X and vector are, 

12.0000 -2.9231 -4.7692 -3.5385 -0.7692 98.59 
-2.9231 26.8521 -10.9822 -12.1183 -0.8284 -60.92 

X 	= 	-4.7692 -10.9822 28.1302 -10.6627 -1.7160 	; 	Y -2.79 
-3.5385 -12.1183 -10.6627 28.9822 -2.6627 -7.72 
-0.7692 -0.8284 -1.7160 -2.6627 5.9763 -27.16 

Solution by inverting the transformed matrix X and vector 
and imposing a constraint that C30, 

V 	11.43 

CO 	2.25 

b= 	Cl 	= 	4.07 

C2 	3.7 

C3 	0.00 

The procedure for scaling the coefficients of unknown variance and 
covariances in the equations of the expectations of SSQ and SCP. 

DXb = D 1Y 

D = diagonal matrix (order 13x13) having coeff. of SSQ and 
SCP on its diag. 

5 0 0 0 0 0 0 0 0 0 0 0 0 
0300000000000 
0 0 4 0 0 0 0 0 0 0 0 0 0 
0001000000000 
0 0 0 0 20 0 0 0 0 0 0 0 0 
0000060000000 
0 0 0 0 0 0 12 0 0 0 0 0 0 
0 0 0 0 0 0 0 15 0 0 0 0 0 
0 0 0 0 0 0 0 0 12 0 0 0 0 
0000000004000 
0 0 0 0 0 0 0 0 0 0 20 0 0 
0000000000030 
0000000000005 

Scaled coefficients (X 5 ): 

X 	= D 1X = 

0.9231 -0.3905 -0.0947 -0.3432 -0.0947 
0.9231 -0.0828 -1.0178 0.1183 0.0592 
0.9231 -0.2367 -0.2485 -0.4970 0.0592 
0.9231 0.2249 -0.2485 -0.1893 -0.7101 

-0.0769 0.6095 -0.0947 -0.3432 -0.0947 
-0.0769 0.9172 -1.0177 0.1183 0.0592 
-0.0769 0.7633 -0.2485 -0.4970 0.0592 
-0.0769 -0.2367 0.4438 -0.1124 -0.0178 
-0.0769 -0.1598 0.3669 -0.1893 0.0592 
-0.0769 -0.0059 0.7515 -0.3432 -0.3255 
-0.0769 -0.3136 -0.1716 0.5799 -0.0177 
-0.0769 0.0710 -0.6331 0.9645 -0.3254 
-0.0769 -0.0828 -0.1716 -0.2663 0.5976 
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TABLE 6.1. Variances within month and covariances between months based 
on records of fat yield (kg) deviated from herd-year mean 
after adjustments for sire, age and month of calving. 

DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NO 
V 699 645 591 555 605 586 672 717 640 655 695 61 
N(V) 1565 1403 1449 1343 960 670 612 1235 2390 4405 3480 256 

CO 20 67 21 18 7 26 31 21 -14 -12 -19 - 
N(C0) 4266 3446 4182 4922 2250 1338 1664 8838 10546 25806 15502 813C 

DECt ... 2217 1571 1452 749 468 576 1153 1790 3655 3905 295; 
JAN 0 ... 1987 1508 763 468 422 1350 1576 3075 2802 1665 
FEB 9 14 ... 2467 847 505 467 2697 2086 2868 2383 1876 
MAR 11 14 31 . 	. 	. 1525 434 666 2182 1370 2840 1805 1472 
APR -31 -93 -50 -4 ... 981 620 715 964 1950 1475 1102 
MAY -59 -55 -41 -33 -5 . 	. 	. 546 459 564 951 930 715 
JUN -56 -75 -45 23 12 -20 . 	. 	. 1035 641 969 773 767 
JUL -58 -153 -77 -83 26 -52 -101 ... 2658 2579 2102 1334 
AUG -74 -84 -70 -94 -120 -120 -76 -20 ... 8307 3505 2704 
SEP -99 -87 -72 -90 -100 -97 -137 -53 -24 . . . 11563 5848 
OCT -70 -94 -86 -122 -59 -82 -144 -34 -55 -40 . 	. 	. 6706 
NOV -96 -110 -114 -107 -68 -84 11 -27 -52 -40 -20 ...  

V = residual variance i.e. variance within month, 
Co = Covariance between different records in the same month, 

N = the coefficients on which V and Co are based, 

Figures in the lower triangle are the covariances between different 
months, and in the upper triangle the corresponding coefficients. 
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Fig. 8.4. Various months apart covariances among Fat yield records within herd 
using all data over 98 months (using 22077 records and method b). 

CD 
0 
C 
a 
L 

600 
0 
0 

-o 
0 

400 
.1 

CO 
LU 

U) 

800 

1200 

tIIIII] 

200 

8 	16 	24 	32 	40 	48 	56 	64 	72 	80 	88 	96 
Months apart  

99 



Chapter 7 

SIRE EVALUATION FITTING A LINEAR COVARIANCE STRUCTURE BETWEEN 

MONTHS WITHIN HERD-YEAR ("ROLLING MONTHS" MODEL) 

INTRODUCTION 

In sire evaluation models used in most breeding schemes it is 

assumed that the covariances between cows calving in the same and 

different months in the same herd-year are zero, since 

herd-year-seasons are fitted as fixed effects. However, the 

covariances between months in the same herd-year have been observed 

to decline from 0 through to 5 months apart in an almost linear 

fashion as the distance between months increased (Chapter 6). All 

covari4es beyond 5 months apart were small. 

The aim of this study is to derive a sire evaluation model which 

could take account of these observed covariances between months. In 

deriving this model it will be assumed that the covariances between 

months decline linearly as the distance between them increases, in 

order to mimic the observed trends. Models such as this have been 

recently suggested for the analyses of crop variety trials 

(Bartlett, 1978; Wilkinson, Eckert, Hancock and Mayo, 1983). 

/ 
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MATERIAL AND METHODS 

Data: 

The same 8 subsets of data as described in Chapter 5 were used 

for estimating sire effects. These data were the first lactation 

fat yield records, precorrected for the effect of month of calving, 

of 49242 progeny of 69 widely used proven Holstein-Friesian sires in 

herds participating in the Dairy Progeny Testing Scheme (DPTS) of 

the Milk Marketing Board of England and Wales (MI4B). The data on 

widely used sires were useful for empirical comparisons of sire 

effects from different subsets. 

Methods: 

The observed covariances between months could have been taken 

into account using a procedure similar to the sires's relationships 

matrix (Henderson, 1975). But in this study it has been chosen to 

derive a model in which it is assumed that the covariances between 

months decline linearly as the distance between them increases. An 

assumption, that the covariances between months decrease linearly 

from 0 through to 5 months apart, is close to the observed 

relationship between the covariance and the distance between months 

(see Figure 7.0). However, in order to investigate the appropriate 

model alternative analyses will be conducted assuming that the 

covariances between months decline linearly from 0 through to either 

1- or 2- or 3- or 4- or 5- or 8-months-apart and the rest of the 

between months covariances are zero. This model hereafter will be 

called the "rolling months" model as it accounts for the covariances 

of each month with a "specified" number of months on each side of 
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it. Suppose the covariances between months are assumed to decline 

linearly from 0 through to W months apart, then the covariances 

among '2-l' months are accounted for with each individual month - 

with the exception of those of the beginning or of the end of the 

herd-year blocks. The covariances of each month with its preceding 

as well as with the following months are assumed to decline 

linearly. The value of W will hereafter be referred to as the 

"width" of a group of months among which the covariances are 

accounted for. In order to obtain the assumed variance-covariance 

structure between months a "pseudo-month" effect will be fitted. 

The total number of pseudo-month effects to be fitted within 

herd-year will be 'm+W-l' where 'm' is the number of months. 

The records were assumed to be represented by the following 

model: 

Y=Pb1+Hb2+Cb3+Zu+e 	 [1] 

where, 

Y = vector of the first lactation fat yield records, 

P = design matrix for pseudo-months resulting from the assumed variance- 

covariance structure between months, with variance of month effects 

equal to W and covariance of month effects in the same herd-year, 

i-months-apart equal to (W-i) for l.i<W and equal to 0 for iW 

H = design matrix for herd-years, 

C = matrix of information on covariables (ie age and square of age at 

calving), 

Z = design matrix for sires, 

bl = vector of unknown random effects for pseudo-months, 

b2 = vector of unknown fixed effects for herd-years, 

b3 = vector of unknown linear and quadratic regression coefficients of 
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fat yield on age at calving, 

u = vector of unknown fixed effects for sires, (fixed since proven sires), 

A = ratio of residual variance to the variance of records within the same 

pseudo-month, Oe 2 / 

e 	vector of residuals 

The herd-year effects have been chosen to fit in the above model 

(i.e. the rolling months model) in order to compare it with the 

"random month" model in Chapter 5, in which herd-year effects were 

fitted as fixed and instead of a pseudo-month effect the random 

effect of herd-year-month was fitted with the rest of the effects 

the same as in the rolling months model. Alternatively, a 

herd-period effect (period of 2 years) could have been fitted 

instead of herd-year effects, as the yearly trends in the 

covariances between year-months over two consecutive years were 

small (Chapter 6). A rolling months model, in which the covàriances 

among records only in the same month are accounted for and the rest 

of the covariances between months are assumed to be zero (i.e. 

W=l), is equivalent to the random month model. However, the rolling 

months model, with an appropriate width, has the advantage over the 

random month model or a herd-year-season fixed effects model, in 

that because it gives different weightings to the comparisons at 

different times apart. 

The mixed model equations (MME) pertaining to the rolling months 

model are given below in matrix notation. 

p'p+Ai 	P'H 	P'C 	P'z 	b1 	P'Y 

HIP 	H'H 	H'C 	H'Z 	b2 	H'Y 	 [2] 

C'P 	C'H 	C'C 	C'Z 	b3 	C'Y 

Z'Z 	Z I P 	Z'C 	Z'Z 	u 	 Z'Y 

93 



All the submatrices in [2],  except those in the equations for 

pseudo-months, can be constructed by the usual procedure. Assuming 

that the data are available over only 4 months in a herd-year and 

the width (W) for rolling over months is 3, an example is given 

below for constructing the PIP and P'H submatrices. The submatrices 

P'C, P'z and P'Y can be constructed similarly. Suppose n1, n2, n3 

and n4 are the numbers of records respectively for months m1, m2, m 

and m4, then the total number of pseudo-months (P) effects to be 

estimated will be 6 (i.e. m+W-1 within a herd-year). 

Pseudo- 
month 	1 	2 	 3 	 4 	 5 	6 

1 n1+X n1 n1 

2 n1 nl+n2+X n1+n2 

3 	PIP= n1 n1+n2 

4 0 n2 n2+n3  

5 0 0 

6 0 0 0 

0 	 0. 	0 

0 	0 

n2+n3 	 n3 	0 

n2+n3+n4+X 	n3+n4 	n4 

n3+n4 	 n3+n4+X n 

n4 	 n4 	n4+X 

P'H = 

ni 

n1+n 

fll+fl2+13 

fl2+n314 

n3+n4 

n4 

The month effects in terms of the pseudo-month effects can be given 

by the following equations. 

Mi = P+P++. •i+W-1 

mj = P+P+l+. . .+Pj+W_1 
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The following assumptions are made in fitting the rolling months 

model: 

homogeneity of variance over pseudo-months (Var[P]= ) 

Coy 	= 0 	t4'J 

In order to fit the rolling months model the pseudo-month effects 

must be assumed to be random, otherwise the estimates of sire 

effects and their variances would be identical to those on a 

herd-year-month fixed effects model. Using the above assumptions 

the linear relationship between the covariance (Coy) and different 

months-apart distances (shown in Figure 7.0) can be shown or 

re-demonstrated as follows, 	using the same example with information 

over only 4 months and assuming W equal to 3, 

Cov(m1,m1) = CO = Cov(P1+P2+P3,P1+P2+P3) = 3 

Cov(m1,m2) = Cl = Cov(P1+P2+P3,P2+P3+P4) = 2 

Cov(m1,m3) = C2 = Cov(P1+P2+P3,P3+P4+P5) = 

Cov(m1,m4) = C3 = Cov(Pl+P2+P3,P4+P5+P6) = 0 

where: 

Cj = i-months-apart covariance 

= Variance of records in the same pseudo-month 

The quantity 4 was estimated using the covariance among records in 

the same month (CO = 168 kg 2 ) given in Chapter 6. 

Since the submatrix P'P+XI is not a diagonal matrix the 

equations for the pseudo-month effects may be absorbed either by 

inverting it or by successively eliminating the pseudo-month 

effects. In this study the latter procedure was used as it required 

less computing time than the inversion. The MME in [ 2 ] after 
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absorption of the equations for the effects of pseudo-month and 

herd-year can be written as below, 

let: 

S = [I - P(P'P+XI)P'] 

Q = [S - sH(H'sH) -H'SJ 

then the equations for age and sire effects would be, 

C'QC 	C'QZ 	[b3j 	 C'QY 

Z'QC 	Z'QZ 	u 	 Z'QY 	 [3] 

The estimates of sire effects were obtained by absorbing the 

equations for age into sire equations and then inverting the sire's 

coefficient matrix, 

letting: 

R = [Q - QC(C'QC)C'Q] 

then 

u = (Z'RZ) - (Z'RY) 

The residual mean squares (ae2)  were calculated by the procedure 
given by Thompson (1969). 

h 
ae  = [• E Y'QY - Y'QC(C'QC) -1C'QY 

i=1 

-Y'RZ(Z'RZ) - Z'RY]/[N- rank(fixed effects)] 	[4] 

	

where, 	h = total number of herd-years 
N = total number of records 

	

V(u) = (ZIRZ)_ 1 0e 2 
	

[5] 

The MME for the random month model would be similar to [2] and 

[3] of the rolling months model. These two models differ only in 

assuming the variances and covariances between months. In the 

random month model all covariances between months are assumed to be 

zero, consequently, the p'p+Xi submatrix in [2] for the month 

equations in the random month model would be diagonal. Therefore, 
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in this study only these two models will be compared with each 

other. Let the random month model be model 1 and the rolling months 

model be model 2. 

Criteria of comparison: 

The following two criteria were used to compare the rolling months 

model with the random month model: 

Empirical variance: the following formula given in Chapter 5 

was used to calculate the empirical variances for each sire. 

P 
Empirical variance = [Z (Ujj - uj) 2 ]/(P-l) 	 [6] 

j=l 

where: 

P 
Ui = (

J
E 
l
uj. j)/P 

= 

Uij = sire effect for the ith sire from the jth subset of data, 

P 	= number of subsets of data 

Comparing the predicted variances of the estimates of sire 

effects on the random month model given that the rolling months 

model 	is 	the 	true 	model 	(see 	Henderson, 	1975a). 	The 

variance-covariance (V) of elements in the vector Y in [1] for both 

models can be written as follows: 

V1 = IGe2 + MMm2 ... (random month model) 

V2 = IGe + PP'4 ... (rolling months model) 

where: M = design matrix for herd-year-months 

am2 = variance of records in the same month 
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Let the variance-covariance matrices of month effects for models 1 

and 2 be denoted by Al and A2, respectively. Then for a value of W 

equal to 5 months the matrices Al and A2 can be written as follows: 

Al 

A2 = 

100000000000 
010000000000 
001000000000 
000100000000 
000010000000 
000001000000 
000000100000 
000000010000 
000000001000 
000000000100 
000000000010 
000000000001 

543210000000 
454321000000 
345432100000 
234543210000 
123454321000 
012345432100 
0 0 1 2 3 4 5 4 3 2 1 0 
000123454321 
000012345432 
000001234543 
000000123454 
000000012345 

am2/ae 2 	[71 

4/ae 2 	 [8] 

Then 
V1 = I + MA1M' 

V2 = I + MA2M' 

and 
= M(A2-A1)M' 

Based on the same design matrix the predicted variances of the 

estimates of sire effects on the random month (model 1) and the 

rolling months (model 2) models can be written as, 

let: 

(X'V 1X) = (ZRZ) 

then: 

Var(ullmodell) = (X'Vi1X)Yel2 
	

[91 
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Var(u21model2) = (X 1 v2 lX)_ 1 ae 2 2 	 [10] 

Var(uilmodel2) = [(X S V1_ 1X)_ 1X I V1_ 1V2V1_1X(X I V1_ 1 X)l]0e 2 2 	 [11] 

When V2 = V1, [11] reduces to [9]. Given that model 2 (the rolling 

months model) is the true model, the efficiency of model 1 (the 

random month model) can be judged by comparing Var(u2model2) and 

Var(ullmodel2). The larger the value of Var(uilmodel2)  in relation 

to Var(u21model2)  the more efficient the rolling months model. 

Computing procedure for Var(u1 I  mode12): 

Equation [11] can be rewritten as follows: 

Var(ullmodel2) = [(X'VlX) -  + 

(XIV1 1X)_ 1X 1 V1 1 (V2_V1)V1 1X(XVl l X)_l ] ae 2 2 	 [12] 

Replacing V2-V1 by M(A2-A1)M' 

Var(ullmodel2) = [(X'V1X) 	+ 

(X 1 Vl lX)_1 (X 1 V1 1M(A2_Al)M 1 V1 1X(XVl lX)_ h ]ae 2 2 	 [13] 

In order to compute the quantities in [13] the coefficient matrix 

in [3] for the random month model would of the form given below, 

let: 

S = [I - M(M'M+XI) -M'] ...(adjustment for random herd-year-month) 

Q = [S - SH(H'SH) -H'S] 	. . . (adjustment for fixed effect of herd-year) 

then the coefficient matrix will be as follows: 

C'QM(A2-A1)M'QC 	C'QM(A2-A1)M'QZ 

Z 'QM(A2-A1)M'QC 	Z 'QM(A2-A1)M 1 QZ 

where: 

M = design matrix for herd-year-months 

X = ae 2 /am2  on the random month model 
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The implications of the rolling months models for different herd 

sizes were also investigated, using herd sizes defined as being 

either large, moderate or small. The data subsets with the 

"moderate" herd sizes were simply the data subsets used in the 

previous parts of this study. To simulate the situations of large 

herd sizes all herd-year subclasses having less than 8 records were 

S 

diJ,arded from the initial data subsets. To simulate the situations 

of small herd sizes each subset was split at random into two, by the 

animal number. This resulted in a total of 16 subsets. 

RESULTS AND DISCUSSION 

The average values of the percent increase in the empirical 

variances on the random month model over the rolling months model 

showed that the rolling months models with all values of W (i.e. the 

width for rolling) examined were more efficient than the random 

month model (Table 7.1). As the value of W increased the rolling 

months model became slightly more efficient. The plots of the 

empirical variances for each sire in Figures 7.1-7.7 (for different 

widths) are consistent with the values of the' empirical variances 

given Table 7.1. The straight lines drawn through the origin in 

these Figures have a slope of 1.00. The number of sires having 

empirical variances below the straight line in these figures tended 

to increase as the value of W increased, showing that the empirical 

variances on the rolling months model were smaller. All empirical 

variances plotted in Figures 7.1-7.5 and 7.7 are based on the 

estimates of sire effects obtained using the estimated -values of 

parameters (i.e. the ratios of variances). However, the empirical 

variances for the rolling months model plotted in Figure 7.6 are 
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from sire effects estimated using an arbitrary value of X equal to 

50.00. Compared. to the estimated value of X (i.e. 20.60) this 

value (X=50.00) made the rolling months model slightly less 

efficient. Substantial changes in the value of X, being equal to 

either 10 or 35 or 50 or 60 or 70 had only a marginal effect on the 

empirical variances. 

Comparisons of the rolling months models (fitting different 

widths) with the random month model in terms of the predicted 

variances of the estimates of sire effects using [10] and [11] are 

given in Table 7.1. Average increases in the predicted variances of 

the estimates of sire effects on the random month model, given that 

the rolling months models with a width either 1 or 2 or 3 or 4 or S 

or 8 months were the true models, were estimated to be respectively 

0.77, 1.30, 1.73, 2.01, 2.19 and 2.21%. These values can be 

interpreted as the percent gain in the efficiency of using the 

rolling months model over the random month model. Although 

advantages were small, the rolling months model became more 

efficient as the width of the rolling months increased. The 

advantages Of using a rolling months model with a width of 8 months 

over a width of 5 months were not as much as observed for the 

increases in the widths from 1 to S months. Therefore a rolling 

months model with a width equal to 5 months seems to be optimal. 

The rolling months model with a value of X equal to 50 (i.e. an 

arbitrary value 2.5 times higher than the estimated value of X with 

W=5) became closer to the random month model. Its efficiency, in 

terms of the predicted variances, over the random month model 

reduced from 2.19% to 0.79%. 
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The results of the investigation on the usefulness of the rolling 

months model over the random month model for different herd 'size 

situations are given in Table 7.2 and Figures 7.5 and 7.8 - 7.10. 

The empirical variances on the random month model were larger than 

those for the rolling months model for all situations. The 

empirical variances for each sire are plotted for the rolling months 

model against those for the random month model in Figures 7.5, 7.8 

and 7.9 respectively for small, moderate and large herd size 

situations. More sires have plotted points below the straight line 

than above, showing that the empirical variances on the rolling 

months model are smaller in all herd size situations. Considering 

the predicted variances it. was observed that the rolling months 

model was more efficient for larger herds. The percentage increases 

in the predicted variances of the estimates of sire effects on the 

random month model given the rolling months model, from each subset 

for different herd sizes, are plotted in Figure 7.10. The average 

values of the observed gains in the efficiency of the rolling months 

model over the random month model are 1.42, 2.19 and 2.55% 

respectively for average herd sizes of 4.4, 7.8 and 14.8 records per 

year. The gains in the efficiency of the rolling months model 

increase slightly as the herd size increases, however after a 

herd-year size of about 10 the gains are marginal. Since the 

correlations between the estimates of sire effects from both models 

for all herd sizes were very close to unity, however, they would 

give essentially the same ranking of sires. 

The average herd-year size of 14.8 in the data subsets used for 

large herds in these analyses is incidently equal to the actual 

number of heifer records available for sire analyses per herd per 

year in the DPTS herds of the MMB (MNB, 1984). Therefore it can be 
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concluded that the rolling months model would be about 2.55% more 

efficient than the random month model (herd-year fixed and 

herd-year-month random) for sire evaluation in the DPTS. The random 

month model itself was found to be 37.3% more efficient (in terms of 

the empirical variances) than the MMB's currently used 

herd-year-season fixed effects model in Chapter 5. 

However, it was concluded that the rolling months procedure did 

not show as much improvement over the random month model as was 

imagined it may have. However, the observed and predicted values 

were consistent. It was observed that there were only 26% of the 

total number of herd-year-month subclasses filled (in the data 

subsets for herds of moderate size), and therefore there were not 

enough connections between months within herd-year to gain the 

advantages from the variance-covariance structure assumed in the 

rolling months model. For larger herds there were better 

connections between months and this was the main reason why the 

rolling months model was slightly more efficient than the random 

month model. These results suggest that, compared to the random 

month model, a model assuming covariances between months would not 

be advantageous for dairy sires analyses unless herds were large. 

SUMMARY 

A sire evaluation model assuming covariances among records in the 

same and different months within herd-year ("rolling months" model) 

has been compared with the model assuming covariances among records 

only in the same month and ignoring all covariarices between months. 

The effects of herd-year (fixed, since the data used were on progeny 

of proven sires), and the overall effects of month of calving 
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(fixed) and age as a covariable by linear and quadratic regressions 

were the same in both models. The data comprised 8 independent 

subsets of the first lactation fat yield records on 49242 progeny of 

69 widely used proven Holstein-Friesian sires in 1628 herds in 

England and Wales. The rolling months model, assuming linear 

covariance between months up to S months apart and the rest of the 

covariances between months zero, was observed to be only 2.19% more 

efficient than the random month model. These data had an average 

herd-year size of 7.8. Analyses for different herd size situations 

showed that this model was 1.42 and 2.55% more efficient for herds 

with 4.4 and 14.8 records per year. However it was concluded that 

this model would not be advantageous over the random month model for 

dairy sires analyses as the average herd-year size in most 

situations is less than 14.8. 
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TABLE 7.1. 	Percent increases in the empirical, and predicted variances 
-- of the estimates of sire effects on the random month model 

given that the rolling months models with different widths 
(W) 	are the true models. 

Subset W=l W=2 W= 3 W= 4 W= 5 W= 5 W8 

tX=412 X=8.24 X12.36 X=16.48 X=20.60 PX=50.00 	X=32.95 

1 0.75 1.25 1.63 1.92 2.05 0.74 2.11 
2 0.86 1.48 1.93 2.25 2.42 0.87 2.32 
3 0.82 1.36 1.89 2.23 2.46 0.89 2.54 
4 0.76 1.27 1.60 1.85 1.99 0.76 2.05 
5 0.69 1.07 1.41 1.60 1.77 0.68 1.76 
6 0.76 1.27 1.65 1.87 2.05 0.71 1.95 
7 0.74 1.26 1.79 2.12 2.33 0.75 2.36 
8 0.78 1.42 1.92 2.23 2.46 0.89 2.58 

Average 
increase 0.77 1.30 1.73 2.01 2.19 0.79 2.21 

Emp.var. 2.29 	3.19 	3.47 	3.78 	395 	3.40 	4.29 

tx = ae 2 /c added to the diagonal of the P'P submatrix in rolling 
months model. The value of X as the ratio of residual variance 
to variance of records in the same month (ce2/am2)  used in the random 
month model was 8.07. The 0e2  and the variance of records in the 
same month (CO) respectively were 690 and 168 kg 2 . 

*The value of A equal to 50.00 is an arbitrary value. 

Average values of the % increase in empirical variances for random 
month model over those for the rolling months model. 
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TABLE 7.2. Percent increases in the empirical and predicted variances of 
the estimates of sire effects on the random month model given 
that the rolling months model with W=5 and X = 20.60 	is the true 
model, 	for all situations with different herd sizes. 

tHerd No. of Average % increase in the % increase 	Product 
size subsets herd-year empirical variances in predic- 	moment 

size on the random month ted variance corre- 
model over the rolling on random 	lation 
months model month model 

Small 16 4.4 1.32 1.42 	0.997 

Moderate 8 7.8 3.95 2.19 	0.994 

Large 	8 	14.8 	 1.33 	 2.55 	0.994 

tThe  data on widely used proven sires are regarded as being from herds 
of moderate size. Small herds were created by splitting each subset 
at random into two, and large herds by discarding all herd-year subclasses 
having less than 8 records. 

Product moment correlation between the estimates of sire effects on the 
rolling months and the random month models. 
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Fig 7.10. Percent increase in the predicted variance 
of' sire eF'f'ecls For diF'F'erenl herd-year 
sizes on He random month model given that  
rolling months model (width = 5 months) 
is the true model. The ratio of' residual 
variance 10 the variance of' records in the 
some pseudo-moniTh used For these analyses 
was 20.60. 
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Chapter 8 

GENERAL DISCUSSION AND IMPLICATIONS 

DISCUSSION 

Of the several questions asked in these studies the main ones 

were on the season effects as follows: 

(1) how should the months of calving be grouped to form seasons? 

what is the effect of considering season effects to be random 

rather than fixed? 

how does the length of season affect the accuracy of sire 

evaluation using models with season effects fitted as random, as 

opposed to models with season effects as fixed? 

(3) are there any covariances between months, and would a model 

accounting for such covariances, if there are any, be helpful in 

sire evaluation? 

There do not seem to be any specific guide lines for grouping 

months into seasons. However, the smallest herd-year X month within 

season interaction was considered to be a useful criterion in sire 

analyses for using milk production records precorrected for month 

effects. Other criteria used were the residual variance and the 

effective number of daughters (i.e. the number of progeny adjusted 
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for herd-year-season effects). Several analyses fitting seasons of 

variable lengths, having different trends in production, showed 

little differences in herd-year X month within season interactions 

and residual variances. Comparing different seasonal groupings with 

three seasons, the grouping currently used by the MMB 

(December-March, April-July and August-November) was found to be 

optimal. A two seasons grouping (February-July and August-November) 

increased the number of within group comparisons, but it gave a 

larger herd-year X month within season interaction. 

Using a model fitting seasons of either 1, 2 or 4 months it was 

observed that the correlations among records tended to be larger 

when seasons were shorter. However, although shorter seasons were 

therefore considered to be useful for progeny group comparisons, the 

losses of information due to smaller subclasses were substantial 

when herd-year-season effects were fitted as fixed. From the 

comparisons of herd-year-season fixed effects models with seasons of 

different lengths (see Table 5.2 in Chapter 5) it was observed that 

the estimated variances of sire effects were larger by 14% with a 

season of 2 months, and by 36% with a season of one month, than 

those for a model with each season of 4 months (currently used by 

the MMB). The corresponding average values for the empirical 

variances using seasons of either 1 or 2 or 4 months were 

respectively 79, 72 and 57 kg 2 , showing that the herd-year-season 

fixed effects models with shorter seasons were considerably less 

efficient. Models fitting the effects of year within herd and 

season within herd-year, or just season within herd-year, as random 

effects, were observed to be more efficient than the 

herd-year-season fixed effects model. The use of random • effects 

models increased the accuracy of sire evaluation, not just from the 
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recovery of the inter-season information but also from the use of 

groupings of shorter duration i.e. one month. Compared to the MMB's 

currently used herd-year-season fixed effects model (each season of 

4 months) the following two models: (i) herd-year fixed and 

herd-year-month random, and (ii) herd fixed, herd-year and 

herd-year-month random, gave respectively 16 and 32% smaller 

variances of sire effects. The respective average values for the 

empirical variances were 44 and 37 kg 2 , compared to 57 kg2  for the 

herd-year-season fixed effects model. Much of the loss of 

information involved in using shorter seasons can be avoided by 

fitting them as random rather than fixed effects. As the seasons 

were made shorter the advantages of using random effects models 

became larger, suggesting that seasonal grouping could be reduced to 

a single month (N.B. the information necessary to subdivide even 

further than a month were not available in the data set). 

Consequently, the models fitting season of one month as a random 

effect would be helpful as they would account for the 

herd-year-season X month interaction effect. Therefore the random 

effects models eventually overcome the limitations of seasonal 

groupings discussed in Chapter 3. 

In contrast to the assumptions of zero covariances between months 

within season or across seasons within herd-year in the 

herd-year-season fixed effects model, the covariances, between months 

up to 5 months apart within herd-year were found to be considerably 

larger than zero, with an almost linear decline from 0 through to 5 

months apart. All covariances beyond ,5 months apart were small. In 

order to account for these observed covariances a model - the 

"rolling month" model - was fitted in which herd-year effects were 

regarded as fixed and the covariances from 0 to 5 months apart were 
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assumed to decline linearly as the distance between months 

increased. All covariances beyond 5 months apart were assumed to be 

zero. This model did not show as much improvement over the random 

month model (herd-year fixed and herd-year-month random) as was 

imagined it may have. The random month model takes account of only 

the covariance among records in the same month (i.e. the 

0-month-apart covariance) and all between months covariances are 

assumed zero. It was concluded that there were not enough 

herd-year-month subclasses filled to provide the connections between 

months necessary to gain the advantages from the variance-covariance 

structure assumed in the rolling months model. However, this 

procedure was found to be slightly more efficient than the random 

month model for larger herds where the connections between months 

were better. 

In addition, a "herd-year-month-age" model was also examined in 

view of the findings of Barker and Robertson (1966) that the 

residual mean squares within herd-year-month-age subclasses were 

considerably smaller than those within herd-year-month subclasses. 

Least squares analyses were conducted on two data subsets (25158 and 

24084 records, as described in Chapter 3) using a model fitting the 

effects of herd-year, month within herd-year, age class within 

herd-year-month, sire and age as a covariable by linear and 

quadratic regressions. Based on the age-milk yield relationship in 

British Holstein-Friesian shown by McClintock (1982) three age 

classes (less than 25 months, 25-30 and over 30 months) were fitted. 

The variance components for herd-year, month within herd-year, age 

class within herd-year-month, and residual variances for milk and 

fat yields, using the procedure shown in Table 4.2, are given in 

Table 8.1. Since the estimates of variance components for age 
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within herd-year-month are close to zero, herd-year-month X age 

interactions can be ignored. The residual variances for milk and 

fat yields on herd-year-month plus age model were not different from 

those on a herd-year-month-age plus age model. The results from 

both subsets were consistent on untransformed as well as a log scale 

(see Table 8.1). The residual mean squares within herd-year-month 

subclass reported by Barker and Robertson (1966) were higher, 

presumably because of overall age effects. Assuming the same 

covariance among records in a herd-year-month or a 

herd-year-month-age subclass, the empirical variances on two models: 

(1) herd-year fixed, herd-year-month random and age as a covariable, 

and (2) herd-year fixed, herd-year-month-age random and age as a 

covariable, are plotted in Figure 8.1. The average values of 

empirical variances for models 1 and 2 were quite similar, being 

44.3 and 44.5 kg 2 , respectively. Considering the additional 

interactions accounted for in the latter model, it was concluded 

that the interactions of age with either herd, year, or month of 

calving do not seem to bias the sire evaluations, in contrast to the 

reports of Miller et al (1970). The product moment correlations 

between the sire effects estimated using these two models were not 

different from unity. 

In all models investigated in these studies the effect of sire 

was fitted as a fixed effect because the data used were on widely 

used proven sires. However, if the data were on young sires and 

sire effects were fitted as random, the inferences about the 

comparison of models would presumably have been the same. The data 

on widely used sires were useful in making the empirical 

comparisons. 
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Sire evaluation models for very small herds, with particular reference to 

India: 

In contrast to the dairy cattle population structure in Britain 

the herds in India are very small. Therefore some more 

investigations were carried out to determine a model suitable in 

small herd situations. 

The same 8 subsets of data as described in Chapter 5 were used to 

simulate small herds situations. Each of these subsets was further 

split at random by animal number into two smaller subsets in Chapter 

7, resulting in a total of 16 subsets. The average herd-year size 

in these subsets was 4.35 and the herd-year-month size 1.74 records 

(Table 8.2). The data on 63 sires (48101 records) having records in 

all 16 subsets were used. 

Based on the findings in Chapter 5 on the usefulness of different 

models of sire evaluation, it would not be appropriate to use a 

model with herd-year-season effects as fixed because this model 

results in heavy losses of information when subclass sizes are 

small. A model assuming a variance-covariance structure between 

months (Chapter 7) would also not be helpful or advantageous, since 

the gains of using this model over a model fitting herd-year fixed 

and herd-year-month random were observed to be very small for small 

herds. In view of these considerations the following two models 

were examined using the above data from British herds used to 

simulate a small herds situation: 

Model 1 : Yijklm = HYij + Mijk + Z1 + bA + b'A 2  + eijklm 

Model 2 : ij1m = HYij + Z1 + bA + b'A 2  + eijlm 
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where: 
ijklm = record of the mth progeny of the ith sire 'calved at age A 

in the jth year and the kth month of the ith herd, 

ijlm = record of the mth progeny of the ith sire calved at age A 

in the jth year of the ith herd, 

HYj. j = joint fixed effect of the ith herd and the jth year 

Mjjk 

	

	= random effect of the kth month of calving in the jth year 

of the ith herd, 

Z1 	= fixed effect of the ith sire (fixed effect since proven sires), 

b and b' = linear and quadratic regression coefficients of fat yield 

on age at calving A. 

eijklm = random error in model 1, 

eijlm = random error in model 2. 

The ratio of residual variance to the variance of iecords in a 

herd-year-month suclass (0e2/am2)  was 8.07 as given in Chapters 4 

and 5. The data were precorrected for the overall effects of month 

of calving. Alternatively the effect of month of calving could be 

fitted in the model as a fixed effect. Similarly, age effects could 

have been precorrected. These two models were compared using the 

empirical variances of sire effects as in Chapters 5 and 7. This 

criterion is useful because 'an efficient model should give similar 

estimates of sire effects from independent subsets of data. 

The residual variances after fitting the above two models to 

different data subsets are given in Table 8.2. These variances were 

consistent for both models, showing that the data split was 

reasonable. The empirical variances for model 1 (herd-year fixed, 

and herd-year-month random) and model 2 (herd-year fixed ignoring 

herd-year-month) were respectively 98.7 and 99.9 kg 2 . Although the 

averages of the empirical variances using both models are similar, 

more sires have a smaller empirical variance on model 1 than on 
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model 2 (Figure 8.2), suggesting that model 1 is the more 

appropriate. 

It 	could be 	argued, 	however, 	that 	the 	herd-year 	and 

herd-year-month sizes in India are not even as big as in the data 

created for small herds from British herds. Most farmers own a 

single milking cow, with the average herd size for sire analyses 

being under two. The main breeding practices comprise the 

crossbreeding of indigenous cattle with Holstein-Friesian, Jersey 

and Brown Swiss. A large quantity of semen of proven bulls of 

exotic breeds is imported to produce bulls of exotic breeds and 

crossbred bulls at the institutional herds. The main criterion for 

choosing young bulls for use in field is the dam's yield and their 

sire's merit. However, in a few breeding schemes progeny testing 

has also been recently introduced. These schemes require a model of 

sire evaluation that can make the best use of the information. In 

view of the above breeding practices the evaluation of the crossbred 

as well as purebred exotic young bulls may be useful. Apart from 

the common effects of herd, year, season, age and any interactions 

among them, the effects of exotic inheritance level of sire and of 

the dam of progeny are the known important sources of variation in 

milk production. Therefore., the grouping of bulls according to 

exotic inheritance levels (Hagger and Dempfle, 1983) along with 

other criteria, e.g. year of birth, stud, etc. may be helpful for 

effective comparison of bulls. At present, the artificial 

insemination is mostly undertaken by the village milk producers' 

cooperatives. It is true that the bigger the village cooperative 

the better the facilities for breeding. Therefore, similar to the 

larger herd situations it may be useful to assume the village 

effects to be fixed, in order to remove any possible bias in 
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evaluations due to non-random use of bulls across villages. Since 

the yearly trends in milk production within villages would seem to 

be large due to increasing facilities for dairy cattle improvement, 

it may be more appropriate to assume the village-year effects to be 

fixed rather than just the village effects fixed. 

The structure and design of Indian field data were not available 

to simulate data true to the Indian situation. Ignoring the effects 

of exotic inheritance levels or the breed of bulls and the dam of 

progeny, and considering the above results for sire analyses in 

small herds, the possibilities of a model suitable for India are 

discussed below. Assume the number of cows in a herd-year subclass 

in British herds to be analogous to a group of cows recorded in a 

village in India in one year, and likewise a herd-year-month 

subclass to be analogous to a farmer nested within village-year. If 

the farmer effects are considered analogous to the herd-year-month 

effects it has to be assumed that all cows of a farmer calving in 

the same or different months have equal covariance with each other. 

To overcome this problem, farmer-month effects could have been 

assumed to be analogous to the herd-year-month effects, however this 

would have resulted in most subclasses being of size one. The error 

variance-covariance between farmer effects within village-year can 

not be assumed to be analogous to those of herd-year-month effects 

within herd-year, however these results of sire analyses for small 

herds do give an indication of the consequences of ignoring an 

effect. The variation between farmers within village would 

presumably be much larger than the variation between months within 

herd-year in British data. Therefore, a model ignoring the farmer 

effects may result in considerably larger variances of the estimates 

of sire effects, and consequently a bias in the ranking of sires. 
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In view of these results and the dairy cattle population structure 

in India, a model with the following effects may be suitable: fixed 

effect of village-year, random effect of farmer within village-year, 

fixed effect of group of sire, random effect of sire within group, 

fixed effects of month of calving and age at calving, and fixed 

effect of breed of the dam of progeny. The effects of age and month 

of calving could be precorrected if appropriate correction factors 

are derived from large data sets. The true model, however, should 

be based on adequate investigations using actual data sets. 

IMPLICATIONS 

Considering that yearly trends in milk production within herd are 

an important source of bias in sire evaluations in most breeding 

schemes, a model in which herd-year effects are regarded as fixed 

and herd-year-season random (season being one month duration in this 

model) would be more efficient than a herd-year-season fixed effects 

model, as the random (season) effects model will recover information 

from inter-season comparisons. If it is necessary to fit 

herd-year-season effects as fixed (e.g. for the existance of 

seasonal trends within herds, convention, etc) then substantial 

gains in the accuracy of sire evaluation could most probably still 

be obtained by fitting herd-year-month as a random effect along with 

herd-year-season (fixed). If the connections between months within 

herd are sufficient then a model assuming covariance between months 

will be useful. 

In view of the findings in these studies based on the data from 

the herds participating in the Dairy Progeny Testing Scheme of the 

MMB, it can be suggested that a model with herd-year effects as 
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fixed and herd-year-month effects as random will be considerably 

more efficient than their currently used herd-year-season fixed 

effects model. 

Although it does not seem necessary to fit herd-year-seasons as 

fixed in the DPTS, investigations on a model with herd-year-season 

effects as fixed and herd-year-month random may have been useful. 

Since the random effects model showed a larger advantage with 

shorter seasons, it may have been worth examining a model with a 

season shorter than one month. Similarly, some models could have 

been examined in which herd-period effects (period of 2 years) are 

fixed, and herd-period-season (season of 4 months) and 

herd-period-month effects are random. 

Most importantly, the random effects models were observed to be 

of great value for small herds. Considering the environmental 

effects strictly in terms of herd, year, season etc., a model with 

random effects in a nested structure would be very helpful for small 

herd size situations, e.g. India. 
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TABLE 8.1. Herd-year-month-age analyses for milk and fat yields (kg). 

Milk yield Fat yield 

F-ratio 	variance IF-ratio variance 
tSource 	 DF 	------------- compo- -------------- compo- 

untrans- log 	nent(%) untrans- 	log nents(%) 
formed scale formed 	scale 

Data set 	(25158 	records): 

Herd-year 	 3232 5.329 	5.304 	38.1 6.620 	6.644 45.0 

Herd-year-month 	7110 1.191 	1.156 	5.0 1.234 	1.209 5.4 

Herd-year-month-age 2212 1.019 	1.083 	0.6 1.036 	1.078 1.0 

Residual 	 12533 56.3 48.6 

Residual variance (kg 2 ) 480902 686 
Residual variance ignoring 
herd-year-month-age 482243 690 

Data set 	(24084 records): 

Herd-year 	 3112 5.543 	5.654 	38.4 6.542 	6.658 44.7 

Herd-year-month 	6607 1.259 	1.220 	5.7 1.284 	1.237 5.5 

Herd-year-month-age 2133 0.977 	1.011 	0.0 0.969 	1.003 0.0 

Residual 	 12161 55.9 49.8 

Residual variance (kg 2 ) 475095 695 
Residual variance ignoring 
herd-year-month-age 473445 692 

tI n  all analyses sire effect fitted as a fixed effect and age as a- 
covariable by linear and quadratic regressions, and the overall 
effect of month of calving removed by precorrection of data. 

'ffherd-year tested against herd-year-month, herd-year-month against 
herd-year-month-age, and herd-year-month-age against residual variance. 

given as a percentage of the total variance due, to herd-year, 
herd-year-month, herd-year-month-age and residual variance, negative 
components were set to zero. 
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TABLE 8.2. Average herd-year and herd-year-month sizes, and residual 
mean squares (R.M.S.) for fat yields from different subsets 
simulated for small herds. 

Subset Total no. Herd-year Herd-year-month tR.M.S. (kg 2 ) 
records size size 

model 1 model 2 

1 2822 4.26 1.69 681 742 
2 3269 4.43 1.80 717 783 
3 3266 4.69 1.83 690 754 
4 2475 4.11 1.72 659 717 
5 2806 4.33 1.68 675 735 
6 3089 4.23 1.75 703 766 
7 3180 3.99 1.64 706 770 
8 3245 4.81 1.85 708 770 
9 2777 4.33 1.70 694 753 

10 3237 4.46 1.78 681 739 
11 3277 4.56 1.77 735 802 
12 2414 3.98 1.70 679 742 
13 2771 4.33 1.68 664 719 
14 3122 4.30 1.76 676 737 
15 3095 3.98 1.67 707 774 
16 3256 4.87 1.85 681 741 

Average 3006 4.35 1.74 

tIn  model 1 herd-year is fixed and herd-year-month random 
whereas in model 2 herd-year effects are fitted 	as fixed 
and herd-year-month effects are ignored. 
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purebred Jersey Bull Mother Farms of the National Dairy 
Development Board, Anand in India. 

Comparison of Jerseys for Milk and Fat Yield 

Introduction 

Jersey animals as well as frozen semen have been introduced 
into the tropics from several temperate countries for dairy 
cattle breeding. However no information is available on the 
comparison of performance of genotypes of different 
origins. Besides the differences in milk, fat and protein yield, 
it is of great interest in an animal breeding programme to 
know the rank of a genotype in the temperate and tropical 
conditions. Although studies from Britain (Robertson et(i!., 
1960), the United States (Legates et a!, 1956; Van Vleck, 
1963 and McDowell et a!, 1975) and Ireland (Cunningham 
and O'Byrne, 1977) have shown that the genotype x envi-
ronment interaction is small, it may be of some interest to 
examine this problem in the tropical conditions where the 
performance of exotic breeds is affected by the stress of hot 
and humid climate as well as the management level. 
The aim of this study was to compare the milk and fat yield of 
Australian, Danish and American Jerseys maintained at the 

TABLE 1 - Distribution of animals by herd and genetic group and 
the number of sires in each group 

Herd code 

Genetic group 

AUS 	DAN 	USA ENGF NZF DANF INDF 

1 77 	6 	34 	2 6 52 12 
2 - 	 94 	24 	- 4 58 - 

3 - 	 6 	- 	 - - - - 

4 - 	 21 	26 	8 6 - 39 
5 - 	 13 	7 	- - - 10 
6 4 	- 	 21 	1 3 7 26 
7 - 	 69 	- 	 3 2 - 23 
8 - 	 29 	24 	- - - 13 
9 - 	 - 	 32 	- - 10 1 

Total 	 81 	238 	168 	14 	21 	127 	124 
No. of sires 	49 	70 	72 	5 	4 	18 	36 

TABLE 2- Least squares analysis of variance of first lactation milk yield, fat% and fat yield 

Milk yield 
	

Fat% 
	

Fat yield 

Source 

Genetic group 
Sire within genetic group 
Herd 
Year of calving 
Month of calving 
Regression on age at calving: 

Linear 
Quad. 
Cubic 

Residual 

* P < 0.05; ** P < 0.01 

D.F. 	Mean squares 	D.F. 	Mean squares 	 Mean squares 

6 1088108** 5 0.4856 4135.59** 
247 265354 135 0 . 1693** 980.16 

8 5920915** 5 1.5947 5882.39** 
10 418995 8 0.3750** 2601.88** 
11 753564** 11 0.3049** 2136 .08** 

1 2144025** 1 0.0031 3345.98* 
1 331884 1 0.0003 256.56 	- 

1 1122795* 1 0.1433 1214.94 
487 268014 247 0.1162 850.56 

TABLE 3 - Least squares means of first lactation milk yield, fat% 
and fat yield 

Genetic Milk yield Fat% Fat yield 
group (kg) (kg) 

No. of Mean 4  S.E. No. of Mean ±S.E. Mean ±S.E. 
obs. obs. 

AUS 81 2333±203.7 
DAN 238 2557± 75.3 137 5.52±0.11, 164.06± 7.56 
USA 168 2450± 91.9 98 5.28±0.09 144.84± 6.89 
ENGF 14 1978±163.6 8 5.19±0.10 110.77±13,43 
NZF 21 2333±139.2 12 5.30±0.16 142.77±11.27 
DANF 127 2294± 03.0 100 5.27±0.11 141.04± 8.94 
INDF 124 2251± 77.9 60 5.14±0.08 132.27± 5.94 
Overall 773 2314± 51.8 415 5.28±0.08 140,63± 5.87 

Materials and Methods 

The first lactation records of Jersey heifers imported front 
Australia in 1971-72, from Denmark in 1973 and 1977k 
from the United States in 1979 and of their farm born heife 
herdmates were used to compare different genetic groups. 
The imported animals were highly selected on pedigree and 
most of them were born to proven sires. Animals of eacl 
country were designated as a separate genetic group: Au 
stralian (AUS), Danish (DAN) and American (USA). Th 
farm born heifers were classified according to their sir 
groups: 5 sires from England and Wales (ENGF), 4 sire 
from New Zealand (NZF), 18 imported Danish young bull' 
(DANF) and 36 farm bred young bulls (INDF). 
Only records on lactations completed after 250 days wer 
used in the analysis. Shorter lactations were omitted as they 
were considered to be due to individual health problems. 
Lactations following abortions or stillbirths were excluded. 
For lactations continued beyond 305 days the first 305day 
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However the sire X lactation interaction was not significant. 
o DANISH SIRES 	 Finally the following model was used to analyse the first 

'S 

	 lactation records by least squares (Harvey, 1977): 

''ijkImn = U + G 1 + s 1  + Hk  + Yi+Mm  + b 1 A + b2 A 2  + b3 A 3  
+ eijklmn  

where, 
"'ijkImn = record of nth animal of jth sire of ith genetic 

group, lactating in kth herd, calved in lth year and 
mth month 

U 	= overall mean 
G i 	= fixed effect of ith genetic group 
S. 	= random effect of jth sire of ith genetic group 

= fixed effect of kth herd 
= fixed effect of Ith year of calving 

Mm 	= fixed effect of mth month of calving 
b 1 A, b2 A 2, b3 A 3  = regression on age at calving, 
Cijklmn = random error associated with "'ijkImn 

The herd-wise distribution of animals in different genetic 
groups and the number of sires in each group are given in 
Table 1. More than 50% of the sires had only one progeny. 
The AUS genetic group had progeny in only two herds while 
the DAN and USA genetic groups had a fairly good distribu-
tion. 
Fat % and fat yield records were available only on 415 
animals in the first lactation which were also analysed by the 
above model. No record of fat% was available on AUS 
genetic group in the first lactation. Genetic groups were 
compared by t-test using the inverse elements and sires 
mean squares as the residual variance. 

Results 

The first lactation records were analysed using the given 
model and also by ignoring the effect of sire. The sum of 
squares of the herd and year were reduced by about 50% by 
fitting sire within genetic group which shows confounding of 
the sires' effect with herd and year. The sum of squares of 
month of calving was not affected by fitting sires. 
The mean squares and LS means of milk, fat% and fat yield 
are presented in Table 2 and 3. As can be expected for the 
tropical conditions the LS means of milk and fat yield were 
less than the averages generally reported from their home 
country. In a recent study (Buvanendran and Peterson, 
1980) the first lactation milk yield of Jerseys was 1281 kg. in 
Sri Lanka while their half-sibs produced 3334 kg in 
Denmark. 
The effect of genetic group, herd and month of calving was 
significant for milk, fat% and fat yield. The effect of year and 
sire was significant only for fat% which seems to be as-
sociated with the import of year and the genetic group. 
Comparisons based on first lactation records among AUS, 
DAN and the USA genetic groups showed no significant 
difference for milk yield but for fat% and fat yield the DAN 
was significanly higher than the USA genetic group. g: 

Since the AUS genetic group only had sufficient fat% re-
cords in the later lactations these were analysed along with 
all lactations of all the genetic groups assuming homogenei-
ty of variance over lactations as observed from the analysis 
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Comparison of Jerseys for Milk and Fat Yield 

of 1204 lactation records in these data. The same model was 
used but with an additional fixed effect for the lactation 
number. The LS means of fat% and fat yield for AUS, DAN 
and USA genetic groups based on all lactations were 5.22 
0.11,5.59 ± 0.18 and 5.32 ± 0.12; 125.38 ± 8.95,152.86 ± 
13.75 and 139.03 ± 9.15 kg. respectively. Comparison be-
tween DAN and the USA genetic groups based on all lacta-
tions showed similar results for fat% and fat yield as that of 
the first lactation. It was also observed that DAN produced a 
significantly higher fat% and fat yield than AUS genetic 
group but the differences between the USA and AUS were 
not significant. 

Discussion 

These data were from a project which was not specifically 
designed to compare the Jerseys of different origins, but the 
records were quite numerous. From the results of this study 
it was concluded that there are no significant differences in 
the milk yield of Australian, American and Danish Jerseys 
in the Indian conditions. However the Danish Jerseys could 
be preferred in the situations where fat yield is the main 
constraint in determining the net returns from dairying. 
While comparing the performance of imported animals it 
was of particular interest to examine whether the genotypes 
from temperate conditions have the same rank in the tropics. 
To look into this problem the LS means of milk yield were 
estimated for 11 sires of DAN and 7 sires of the USA genetic 
groups with 5 and more progeny. These sires had progeny 
group sizes of 5 to 28 in India, 49 to 189 in Denmark and 76 
to 1750 in the USA. The correlations of predicted breeding 
values, the R-value for fat yield in Denmark and the Pre-
dicted Difference for milk in the USA with the LS means of 
milk yield (India) were 0.11 and 0.70 respectively. The fat 
yield records for most of the progeny of these sires were not 
available in these data. The correlations of progeny group 
means for milk yield in their home country and in India were 
0.63 for DAN and 0.61 for the USA sires. Correlations of 
progeny group means were converted into genetic correla-
tions by assuming a heritability of 0.25 in Denmark and the 
USA and 0.20 in India and ignoring the fact that these were 
selected sires, which were estimated to be 1.04 for Danish 
and 1.14 for the USA sires. The progeny means are plotted 
in Figure 1. It was observed that none of the sires with a high 
progeny mean in their home country had a very low mean in 
India. These limited data suggest no interaction. 
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Joint effect of age and parity on milk production in Indian conditions 

V. P. S. Chauhan 
Institute of Animal Genetics, University of Edinburgh 

West Mains Road, Edinburgh EH9 3JN, Scotland 

Introduction 

As the genetic correlation between milk yields at different ages 

is close to unity (Barker and Robertson 1966; Tong, Kennedy and 

Moxley 1979; Powell, Norman, and Elliot 1981; Meyer 1984;) the 

effect of age on milk yield seems to be purely environmental. Since 

cow evaluation procedures involve large computing needs, most 

breeding organisations use age adjustment factors to bring the 

lactation yields to a standardised basis to enable the comparison of 

animals of different age, and parity is ignored. Lactation number 

is affected by the breeding performance of the individual animals. 

Age-yield relationship in animals with a normal and impaired 

fertility may not be exactly the same. Therefore, it may be useful 

to consider age and parity together for comparing animals of 

different parity and age, especially under the situation like India 

where age correction factors for field use are not available. The 

differences between the milk yields of cows of different ages but 

the same parity have been reported to be significant (Buchsteiner 

1976, 1978; Skjervold 1978). 

This study was undertaken to examine: (i) whether the milk 

records should be corrected for the effect of age at calving, or 

parity, (ii) what would be gained if corrections were made for the 

effects of the both. 
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Material and Methods 

The data consisted of 2276 lactation records on 926 Jersey cows 

in .9 herds of the National Dairy Development Board, Anand in India, 

over a period of 11 years. Animals were grouped in 9 categories (3 

imported and 6 farm bred by source of dam or sire). Lactations 

following abortions or stillbirths were excluded and only the 

records completed after 250 days were used. For lactations 

completed beyond 305 days the first 305 days yield was used as 

lactation yield. Age at calving was divided into 7 age classes: up 

to 2.5, 2.5-3.5,...,6.5-7.5 and over 7.5 years. With this 

classification each parity occurred in at least two consecutive age 

classes and the total number of age-parity subclasses was 29. The 

maximum likelihood (ML) procedure suggested by Henderson, 

Kempthorne, Searle and Von Krosig (1959) to estimate the 

environmental effects from the records subjected to culling, was 

used to study the effects of age and parity in these data. Miller, 

Harvey, Tabler, McDaniel and Corley (1966) also used the same 

procedure for estimating age effects. The following ML model was 

used to fit the joint effect of age-parity along with other factors 

using LSML76 program of Harvey (1977): 

ijk1mnop U + GHi + Cijk + Yl + Mm + APno + eijklmnop 

where, 

U 	= overall mean 

GHij = fixed effect of the ith genetic group and the jth herd 

Cijk = random effect of the kth cow of the ith genetic group in the jth herd 

Yl = fixed effect of the lth year of calving 

Mm = fixed effect of the mth calendar month of calving 

AP 0  = fixed effect of the nth age group and the oth parity 

eijklmnop = random error 
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The interactions among the effects of herd, year, and month of 

calving were ignored because the data were limited. The ML analyses 

of variance shown in Table 1, were set up using four different 

analysis fitting : (1) age-parity, (2) age ignoring parity, (3) 

parity ignoring age, and (4) age and parity simultaneously. The 

effect of age-parity (AP) was replaced accordingly in the above 

described model. All models were fitted using a repeatability of 

0.323 ± 0.025 which was estimated assuming the homogeneity of 

variance over lactations using a least squares model similar to the 

one given above but with the effects of age and parity fitted 

individually. The repeatability in these data was.low as compared 

to some published estimates of repeatability which are close to 0.50 

(Maijala and Hanna 1974). It was biased by culling and also perhaps 

by more environmental variation in these data due to some 

unaccountable factors such as disease outbreaks, preferential 

treatment to imported cows etc. The above estimate of repeatability 

corresponds to a value of 2.096 as the ratio of error variance to 

the between cow variance added to the diagonal elements of the 

equations for cows in ML estimation of the fixed effects in the 

LSML76 program. Substantial changes in the repeatability used had 

little influence on the effects estimates. 

For examining the differences between age groups within the same 

parity, and between parities in the cows of the same age group only 

13 age-parity subclasses were used. The remaining 15 age-parity 

subclasses were based on only 71 records. 
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Results and Discussion 

The sum of squares for the effects of age and parity fitted 

jointly and individually one after another are given in Table 1. It 

was observed that the effects of age and parity were mainly 

confounded with each other. Out of the total variation accounted 

for by the effects of ale, parity, and age x parity interaction, 

79.2% was accounted for by age alone. In contrast, the effect of 

parity ignoring age accounted for only 66.3% of the variation, 

showing that corrections for age were more useful than parity. 

Fitting age after parity accounted for 21.4% of the variation 

whereas parity after age accounted for only 8.4% of the variation. 

The effect of age x parity interaction accounted for 12.3% of the 

variation and was significant (P<0.05). Mao, Wilton, and Burnside 

(1974) reported age x parity interaction to be nonsignificant for 

milk yield but significant for total fat yield. From their results, 

however, the variation accounted for by age x parity interaction for 

milk yield was estimated to be 12.5% of the total variation 

explained by age, parity, and age x parity interaction. 

Since the effects of parity after fitting age and age x parity 

interaction together accounted for a substantial proportion of the 

variation, the joint corrections would be more useful than 

correcting for age and parity separately. 

Comparisons of ML constants for milk yields at different ages in 

cows of the same parity and that of different parity in the same age 

group are given in Table 2. It was observed that the constants at 

older ages within the same parity were higher than at younger ages. 

But the differences were significant only up to fourth lactation, 
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which indicated that the animals reached maturity by their fourth 

lactation at around six years of age. No significant differences 

were observed between constants for different parities in cows of 

the same age group except at 5.5-6.5 years, which could be 

incidental. However, it was noticed that within the same age group 

the constants for a higher parity were smaller than for a lower 

parity, for all age groups except 3.5-4.5 years. Buchsteiner (1976) 

and McClintock (1982, p  41) also reported significant differences 

between age classes within the same parity. 

Summary 

The effects of age and parity on milk yield were examined by 

maximum likelihood (ML) analysis using 2276 lactation records on 926 

purebred Jersey cows. Out of the total variation accounted for by 

age, parity and age x parity interaction, the effect of age ignoring 

parity accounted for 79.2%, and parity after age accounted for 8.4% 

only. Whereas fitting the effect of parity ignoring .age accounted 

for 66.3% and age after parity 21.4%. Age x parity interaction was 

significant and accounted for 12.3% of the variation. These limited 

data from the Indian conditions suggest that joint corrections for 

age and-parity would be more useful than the effect of age alone. 
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Table 1 

Maximum Likelihood analyses of variance of milk yield fitting the effects of 
age-parity, age ignoring parity, and parity ignoring age 

	

Age-parity 	Age ignoring 	Parity ignoring 
parity 	 age 

Source 	 D.F. 	S.S. 	 S.S 	 S.S. 

Age-Parity 	 28 	46 848 840 

Age ignoring Parity 	6 	 37 102 444 
Parity after Age 	7 	 3 962 818 

Parity ignoring age 	7 	 31 068 988 
Age after Parity, 	6 	 9 996 274 

Age x Parity 	 15 	 5 783 578 	 5 783 578 

Residual 	 2185 	458 369 054 	458 369 054 	458 369 054 

N.B. Sum of squares (S.S..) for all the effects are after fitting the effects of 
genetic group-herd (41 d.f.), year of calving (10 d.f.) and month of 
calving (11 d.f.) 

Table 2 

Comparison of parity and age within each other (ML constants [kg] ± S.E.) 

Age 	 Parity number 
(yrs) 	 1 	 2 	 3 	4 	 5 	6 	 7 

< 2.5 -345 ± 66 
2.5-3.5 	-92 ± 75 -152 ± 63 
3.5-4.5 	 106 ± 71 139 ± 63 
4.5-5.5 	 190 ± 76 	83 ± 67 
5.5-6.5@ 	 291 ± 81 88 ± 75 
6.5-7.5 	 159 ± 99 -11 ± 87 
> 7.5 	 130 ± 112 41 ± 99 
Significance ** 	 ** 	 ** 

between ages 

** P<0.01;@ Differences between parities within the same age group only 
significant at 5.5-6.5 yrs. 

7 


