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Abstract

Temporal analysis is the task of determining the temporal structure of a given text.
Such a structure represents the order of the events and states mentioned in the text
on a time line. The main contribution of this thesis is in presenting a new processing
framework for temporal analysis.

The framework is a computational one and has been implemented in a system called
taste for the temporal analysis of instructional texts. In particular, taste has been
successfully tested on nine cookery recipes. Amongst the more important ideas ex¬

plored in this thesis are the following:

• We integrate qualitative information (as expressed by temporal connectives like
before and after) and quantitative information (as expressed in phrases like for
20 minutes and 20 minutes before) in a text into the temporal analysis frame¬
work. Previous work has only considered qualitative information but ignored the
quantitative kind.

• We propose a new approach to the problem of integrating the current event or
state into the preceding discourse. This problem has been identified as important
for solving the temporal analysis task.

• We show how information from the environment surrounding a text can affect
the temporal analysis of instructional texts. In particular, we show that different
temporal structures for the same text can be derived in different environments.
Note that the environment information is in addition to the usual information

considered in temporal analysis such as information from tense and aspect, tem¬
poral connectives and real-world knowledge. An example of information from the
environment for the domain of cookery recipes is the availability of resources for
carrying out an action.

• We incorporate techniques developed in the field of temporal reasoning into the
temporal analysis task. In addition, we analyse the complexity of temporal rea¬
soning algorithm needed in the temporal analysis of instructional texts.

• We propose a novel ontology for representing the composite and repetitive events
that are mentioned in cookery recipes.

Finally, the thesis ends with some suggestions for extending the work reported here.
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Chapter 1

Introduction

This thesis addresses the problem of temporal analysis for natural language discourse.
A discourse typically consists of multiple sentences, each of which describes either a

state or an event. Temporal analysis is then the task of determining the intended

temporal relations between the events and the states in the discourse. Consider the

following simple discourse adapted from [Caenepeel & Moens 93]:

(1.1) a. e\: Jane and I had a quarrel.

b. e-i'. Three months after that, she left me and

c. e3: fell in love with someone else.

d. si: I was very upset.

e. e\\ Luckily, Anne came to keep me company.

In (1.1), the first three clauses1 (a, b and c) and the last clause (e) describe events
while the second last clause (d) describes a state. The temporal relations that can be
extracted by temporal analysis from this discourse are: e\ occurs before e2, e2 occurs

before e.3 occurs before si and e4 is during Si. These relations together define the

temporal structure of (1.1) which is shown in figure 1.1.2
1We will also use the term 'clause' for simple sentence.

2In diagrams depicting temporal structures, a horizontal line denotes a time line while rectangular
boxes denote time intervals assigned to situations. In such diagrams, time is taken to advance from

1
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Figure 1.1: The temporal structure of example (1.1)

Temporal analysis has found applications in many research areas of Artificial Intelli¬

gence (ai). In story understanding, for example, one is interested not only in the events

that occur in the story but also the order in which they occur. For instance, the order

of the events and states described in (1.1) is given in its temporal structure. Knowing
this structure allows one to answer questions like What did Jane do after quarreling

with me? and Who came to keep me company when I was upset?.

In addition to story understanding, temporal analysis is also useful for query interpre¬

tation to temporal databases and knowledge-based systems. For instance, [Hinrichs 88]
describes how temporal analysis is used in the janus system, a natural language sys¬

tem that allows a user to interface with several knowledge bases maintained by the U.S.

Navy. These knowledge bases contain, among other things, information about the de¬

ployment schedules, locations and readiness conditions of ships in the Pacific Fleet.
Information from temporal analysis is used in janus to answer questions that involve
time like When will Vincent arrive in Hawaii? and Who was Frederick's previous

commander? where Vincent and Frederick are the names of U.S. ships.

1.1 Problems in Temporal Analysis

Temporal analysis is not an easy task. In this section, we highlight the issues which
have been identified as critical for temporal analysis. These issues are as follows:

• the integration of both qualitative and quantitative temporal information;

left to right.



CHAPTER 1. INTRODUCTION 3

• the interaction among the wide range of linguistic devices that can be used to

describe temporal relations and world knowledge;

• the need for context to interpret these linguistic expressions; and

• the problem of integrating a situation described by the current clause into the

previous discourse.

We will now elaborate on each of these points below. For ease of exposition, we will

follow [Mourelatos 78, Comrie 76] in using the term SITUATIONS to refer to either states
or events.

1.1.1 Qualitative and Quantitative Temporal Information

Both qualitative and quantitative temporal information can be described in a discourse.

The former is concerned with the relative ordering between two situations or describes
whether one situation contains the other, while the latter is more detailed by further

specifying the extent of the time separation or containment. Consider example (1.2).

(1.2) a. 30 minutes before

b. e\: serving,

c. e2: add the wine.

In (1.2), both qualitative and quantitative temporal information is expressed. The

before adverbial expresses qualitative temporal information and indicates that e2 pre¬

cedes ej. Notice that the qualitative temporal information is not concerned with the
amount by which e2 precedes it makes no difference if e2 precedes e\ by ten or

twenty minutes. On the other hand, the difference does matter in quantitative tempo¬

ral information. In (1.2), the qualifier of the adverbial, 30 minutes, gives quantitative
information specifying that the extent which the event of adding the wine precedes the

serving event by is 30 minutes.

Current processing frameworks for temporal analysis [Webber 87, Passonneau 88,

Song 91b] consider only qualitative temporal information but ignore the quantitative
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type. This leads to a less precise analysis of the temporal structure of discourse than

is possible. For instance, frameworks that ignore quantitative information would be

unable to determine that in example (1.3), John came home one hour later than Mary.
This determination can only be obtained via the quantitative information expressed

by the af-adverbials.

(1.3) John reached home at 8 pm and Mary at 7 pm.

In our framework, we have successfully integrated both qualitative and quantitative

information.

1.1.2 Interaction among temporal linguistic devices and world knowl¬

edge

There is a wide range of linguistic devices that can be used to describe temporal rela¬
tions. These devices include tense, aspect, temporal adverbials and temporal connec¬

tives, and have been extensively studied by both linguists and computational linguists.

In English, tense is a grammatical category and provides ordering information with

respect to a well-defined point on the time line, such as the time of speech. For

instance, the clause John went to see a doctor is in the simple past tense and indicates

that the event of going to see a doctor is located before the time of speech. On the other

hand, aspect is a semantic category and is determined from the tense and the type of
the main verb as well as the meaning of the verb's arguments, including subjects and

objects. The aspect of a clause indicates which part of a situation is being described

by the clause. For instance, the aspect of the clause The water has cooled indicates the

end state of a cooling event. In contrast, on switching to a progressive tense, the aspect

of the clause The water is cooling indicates the cooling process itself. Finally, temporal
adverbials like for three minutes and at three o'clock and temporal connectives like

before and meanwhile can also provide additional temporal information. For instance,
in the clause Before serving, put in the wine, the before connective indicates that the

put-in-the-wine event occurs before the serving event.
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These linguistic devices interact with one another and with world knowledge to de¬
termine the intended temporal relation between two situations, complicating the

temporal analysis task. Consider, for instance, the interaction between the when

connective, tense and aspect, and world knowledge in (1.4) and (1.5), taken from

[Singh & Singh 92].

(1.4) When A1 won the race, he took steroids.

(1.5) When A1 was winning the race, he took steroids.

In (1.4) and (1.5), the event of winning the race can be thought of [Singh & Singh 92]
as consisting of three parts: the preparatory stage before the running commences, the
actual running itself and the final state at the end of the race. For (1.4), we can

use world knowledge to infer that A1 takes the steroids before the race begins, i.e. in

the preparatory stage. That is, the event of taking the steroids is before the event of

winning the race. However, in (1.5), the progressive forces an interpretation in which
the taking of the steroids must be during the actual running itself. No world knowledge
is able to override this effect of the progressive. Thus, for (1.5), the temporal relation
extracted is that the event of taking the steroids is during the event of winning the
race.

Although the various linguistic devices for expressing temporal information have
been extensively studied, it is only recently that researchers have started building

computational models for them [Hinrichs 87, Webber 87, Moens 87, Passonneau 88,

Singh & Singh 92]. Among this work, [Moens 87, Singh & Singh 92] are the most in¬

teresting from the point of view of our work since they provide an account of the
interaction of the various temporal linguistic devices discussed in this section for single
sentences. In this thesis, we integrate ideas from this work on single sentences into our

temporal analysis framework for discourses of more than one sentence.
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1.1.3 The Influence of Context
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Context can be seen to influence temporal analysis, since many of the linguistic de¬
vices discussed earlier cannot be interpreted without looking at previously mentioned
situations. For example, tense can relate a situation to the time of speech and also to

a previously mentioned situation. Consider example (1.6):

(1.6) a. e\: John went to the hospital.

b. e2: He had twisted his ankle on a patch of ice.

where clause (1.6a) introduces an event e\ prior to the time of speech while clause (1.6b)
introduces another event e2 which is interpreted as happening before the previous

event e\. This is because a past perfect tense, as in clause (1.6b), typically describes
a situation that holds or occurs before another situation. Similarly, the aspect of a

clause describes which part of a situation is viewed and in a discourse, a new clause

may describe part of a previously mentioned situation. Consider example (1.7):

(1.7) a. e\\ Cool some soup.

b. When the soup has cooled,

c. e2: put in the meat.

where the when-clause in (1.7b) is describing the end state of the cooling event men¬

tioned in (1.7a). We can thus infer that the event of putting in the meat begins after
the cooling event has finished.

Another way in which context can influence temporal analysis but which has not been

noted in previous work is via the resolution of referring expressions such as pronouns

and NPs. It is a well-established fact that the interpretation of referring expressions is

dependent on context. However, the role which such interpretation can contribute to

temporal analysis has not been investigated. Consider, for instance,

(1.8) a. Brown the beef until tender.

b. e\: Chop one of the onions.
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c. e2: Add the chopped onion to the beef and

d. fry together.

7

where the NP the chopped onion in clause (1.8c) describes an onion that has participated
in a chopping event. Since the 'chopped' property of the onion in e2 is acquired in e\,

we have e2 to be after e\. Now, one might argue that it is not necessary to use

such reference resolution information since it appears that the narrative convention

(the narrative convention states that time moves forward for events) can be used to

determine that e2 is after ei. However, the narrative convention may not work all the
time and in some cases can be too restrictive. For instance, in example (1.9), narrative
convention would dictate that the chopping of the potato must occur after the chopping

of the carrot.

(1.9) a. e\\ Chop a carrot.

b. e2: Chop a potato.

However, it is also possible that the chopping of the potato can occur at the same time
as the chopping of the carrot.

Finally, the context which affects temporal analysis need not be from within the dis¬

course, such as those cases discussed above. Information from outside the discourse

can also affect temporal analysis. In this thesis, we will view such extra-linguistic infor¬
mation as the environment surrounding a discourse. To illustrate the effect, consider

example (1.9) again. In an environment where there are two agents and two chopping

knives, e\ and e2 can occur simultaneously. On the other hand, in another environment
where there is only one agent and one chopping knife, e\ and e2 must occur sequen¬

tially. No current processing frameworks of temporal analysis have incorporated the
effects of such environmental information.

In our work, we study how information from reference resolution and the environments

surrounding a text can affect temporal analysis.
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ei

e2 e3

Figure 1.2: The temporal structure after processing example (1.10a) to (1.10c)

1.1.4 The Integration Problem

When carrying out temporal analysis of discourse consisting of more than one clause,
a difficult problem is integrating the situation described by the current clause into

the temporal structure of the previous discourse. To see why this is so, consider the

following example from [Webber 87]:

(1.10) a. e\: John went over to Mary's house.

b. e2: On the way, he had stopped by the flower shop for some roses.

c. e3: He picked out 5 red ones, 3 white ones and one pale pink.

d. e4: Unfortunately they failed to cheer her up.

For (1.10), we assume that the events e\ to e3 have been successfully processed and that
the temporal structure so far is as given in figure 1.2. The next clause to be processed
is (l.lOd) which gives rise to the event e\. The integration problem is concerned with
where in the temporal structure to place e\.

A common approach [Webber 87, Song & Cohen 91b, Hwang & Schubert 91] is to de¬
termine a suitable REFERENCE from which the temporal location of can be 'mea¬

sured'. One way [Eberle 92, Hwang & Schubert 91] is to look for the reference among

the preceding events. Applying this approach to example (1.10), the suitable reference
for e4 is e\. From world knowledge, we can infer that e4 occurs after ei. Notice that
since e4 is after e\, the orderings of e4 with the rest of the preceding events are also
known.

However, the choice of ei as the reference for e4 is far from obvious. In the first place,
the clause which describes ei is not immediately previous to the clause which describes
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e4.

The integration problem has been looked at only recently [Webber 87, Song 91b,

Hwang &: Schubert 91, Eberle 92]. The solutions proposed face difficulties of one kind

or another (see chapter 2). In this thesis, we provide an alternative solution to the

integration problem that does not have these difficulties.

1.2 Problems to be Addressed in this Thesis

The aim of this thesis is to provide a processing framework for carrying out temporal

analysis of discourse. More specifically, the framework needs to achieve the following

objectives:

• To integrate qualitative and quantitative information to give a more precise tem¬

poral analysis. As noted above, previous computational work has ignored quan¬

titative information.

• To study the effect of the environment in which a discourse is embedded on the

temporal analysis task. No current temporal analysis frameworks have incorpo¬

rated this kind of information.

• To study the integration problem and to present a new approach for solving it.
As noted above, there has been much work in attempting to solve the integration

problem but the solutions are far from satisfactory.

• To integrate previous work on the temporal analysis of single sentences

[Moens 87, Singh & Singh 92] into that for discourses ofmore than one sentence.

• To embody the framework in a working system and thus demonstrate its practi¬

cability.
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1.2.1 The Domain of Application
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The richness and breadth of natural language means that any computational treat¬

ment has to narrow its focus. For example, previous work on temporal analysis has

typically used only narrative texts as the genre of study. In addition, there may be

the assumptions that there is only one speaker and all the utterances describe actual

situations, those that are asserted to have already occurred, to be occurring, or to oc¬

cur at a particular time [Passonneau 88]. Narratives with such restrictions have been
called SIMPLE NARRATIVES [Song 91a]. Similarly, in our work, we have to decide on a

domain of application for achieving our aims stated above.

In order to get a fresh perspective on temporal analysis, we decide to move away from

the traditional genre of narrative texts. Instead, we use instructional texts as our

genre of study. Now, instructional texts are very different from narrative texts. A

fundamental difference between instructional and narrative texts is that the former

are prescriptive while the latter are descriptive. That is, clauses in narrative texts

describe situations that have already occurred or to be occurring at a particular time
while instructions in instructional texts prescribe actions that are to be carried out by

an agent. This means that in carrying out the temporal analysis of narrative texts,

one is concerned with reconstructing the ordering of the situations that are described
in the narration. However, when carrying out the temporal analysis of instructional

texts, it is a case of deciding the order in which the events described in the text are to
be carried out.

Given the difference between instructional and narrative texts, it is interesting to see

whether a processing framework designed for instructional texts can be applied to

narrative texts. We believe that it is possible, and the issue will be further discussed
in chapter 7.

Since the interest in this thesis is on instructional texts, it is appropriate to note some

observations made in the literature on such texts which bear on temporal analysis:

• One such observation is given in [Webber & Di Eugenio 90] which states that
there need not be a direct relationship between an instruction and the ac-
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tion carried out by an agent. An example of a direct relationship is given by
an instruction like Jane, turn on the light, which would evoke the turning-on-

the-light behaviour of Jane. However, there are also instructions that can de¬

part from this simple direct relation. For instance, Webber and Di Eugenio

[Webber & Di Eugenio 90] give the following instruction in (1.11) which is part
of the instructions for filling holes in plaster over wood lath.

(1.11) If a third coat is necessary, use prepared joint compound from a hard¬
ware store.

An agent intending to execute (1.11) will not know if a third coat is necessary

until s/he sees whether the first two coats have produced a smooth level surface.
This means that the instruction is conditional on information coming from the

agent's environment.

Similarly, in deciding the order in which actions are to be carried out, an agent

may need to make use of environmental information. Of course, there exist

instructional texts where the order of execution is explicitly given:

(1.12) First, chop the carrot. Then, chop the potato. Finally, add the carrot

and potato to the soup.

However, there also exist instructions where the order of the actions is not ex¬

plicitly given. For instance, in example (1.9) given above and reproduced below:

(1.9) a. e\: Chop a carrot.

b. e2'- Chop a potato.

the order of the two chopping actions is not specified. As noted earlier, this
order is dependent on environmental information such as the number of agents
and number of chopping knives.

Based on the discussion above, we will say that the behaviour of an agent given

an instruction is SITUATED (i.e. depends on information from the agent's envi¬

ronment).
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• Another observation is made by Dale [Dale 92] who notes that the most useful

temporal ordering of the actions is often sabotaged by the author of the recipe.

One reason may be due to editorial compactness so that actions which act on

the same objects are often described together even if these actions are not to be

carried out sequentially. Consider the following example from [Dale 92]:

(1.13) Cook the rice; cool.

Sprinkle apple and banana with lemon juice and add to rice.

Steep raisins in a little boiling water for half an hour to plump;

drain, and add to rice with sunflower seeds, mixing well.

Fry onion in oil with curry powder for 10 minutes.

where the instruction to steep the raisins comes after the instruction to add the

apple and banana to the rice although it would clearly (in the context of the

following instructions) be more sensible to start steeping the raisins at an earlier

point in time.

From the observations discussed above, we can note that for the temporal analysis

of instructional texts, environmental information plays an important role and that

narrative convention imposes too strong a constraint.

To further focus our study, we consider only a particular type of instructional texts,

namely cookery recipes. The cookery recipe domain is fairly well-defined and yet

exhibits some remarkably complex phenomena. It is therefore not surprising that

cookery recipe has been extensively used as a domain of investigation. For instance, in

planning, Hammond [Hammond 86] describes a system that plan recipes while Tsang

[Tsang 86] uses recipes as the domain for discussing the temporal aspect of planning.
In natural language work, Karlin [Karlin 88] describes a natural language interface to
a computer animation system that operates in the cooking domain and Dale [Dale 92]
describes a system for generating referring expressions found in recipes.

An example of a recipe that we use as data is shown in figure 1.3 (taken from the
Internet newsgroup, rec.food.recipes). This recipe is further simplified to remove any

linguistic expressions that do not affect temporal analysis before processing by our
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GREEN ONION AND POTATO SOUP

5-6 medium sized potatoes

| a bunch of green onions, sliced
1 shiitake or Chinese black mushroom

salt and pepper

bay leaves

1 chicken leg
1 cup milk

Soak the mushroom in hot water for 30-45 minutes. Peel and slice the potatoes. Saute

the onions in a little bit of olive oil over medium heat. Add the potatoes and a quart

of water. Put in the bay leaves and the chicken leg. Simmer for an hour. Dice the

mushroom and add the mushroom pieces to the soup. When the potatoes are done,

mash them with a fork or a potato masher and stir the soup well. Add the milk and

season with salt and pepper. Oh, before you mash the potatoes, take the chicken leg

out, cut it into little pieces and add it back in.

Figure 1.3: The GREEN ONION AND POTATO SOUP recipe

TASTE system (see section 1.3.2).

1.3 Contributions of the Thesis

In the previous section, we have explained the problems to be addressed in the thesis.
Our main contributions are:

• We propose a framework for temporal analysis that embodies the aims given
above. Thus, our framework is more complete and precise than previous frame¬
works for temporal analysis.

• Our framework is a computational one and is embodied in a working system,

called TASTE (Temporal Analysis of instructional TExts), in the domain of cook-
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ery recipes.
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We will now elaborate further on these two contributions.

1.3.1 Our Temporal Analysis Framework

It is common to postulate that when a person is understanding a text, he/she is

building up some representation of the text. For example, Webber [Webber 87, p 147]
postulates that in processing a narrative text, a listener is building up a representation
of the speaker's view of the events and states being described and of their relationship
to one another. According to Webber, this representation (termed an e/s structure

by Webber) reflects the listener's best effort at interpreting the speaker's ordering of
those events and states in time and space.

Likewise, in our work, we postulate that in processing an instructional text, an agent

is building up some form of representation which encodes the situations mentioned in

the text and their relationships. However, for instructional texts, this representation

does not necessarily reflect the ordering of the events in time. If the representation

reflects the ordering of the events in time, then the behaviour of the agent is fixed,
i.e. the agent needs only to execute the events in the order given, irrespective of the
environment he/she is in. This would imply a direct relationship between instructions
and an agent behaviour, contradicting the observation that the behaviour of an agent

executing an instruction is situated.

Thus, we believe that in the representation built up by an agent when processing
instructional texts, the relations between situations need not all be temporal. Such
a representation can then interact with information coming from the environment to

determine the agent behaviour. This means that the same representation can give
rise to different agent behaviours in different environments. We represent this model

graphically in figure 1.4.

We note that the temporal structure of a text is a representation that can be seen

as specifying a particular form of agent behaviour. That is, the temporal structure
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Instructional Text

Understanding Process

Some Representation

Environment Information

Figure 1.4: A model of the relationship between instructional text and agent behaviour

determines not only the actions that the agent needs to carry out but also when
to execute them. Based on this observation, we obtain the following framework for

temporal analysis (called ta2) from the model in figure 1.4.

In Ta2, we postulate two levels of representation. In the first level, we have the

representation that encodes the situations mentioned in the text and their relations.

This representation can then be combined with information from the environment to

determine the temporal structure which constitutes the second level of representation.

In this thesis, we will call the first level representation, the Quasi Temporal Structure

(qts), since the relations at this level of representation need not all be temporal. The
two levels of representation are depicted graphically in figure 1.5.

Informally, the qts encodes the representation of the situations described in the text

and the relations that hold between pairs of situations. We now consider some of the

possible relations that can hold between two situations (see chapter 3 for the complete

set):

• In some cases, the relation between two situations is given explicitly in the text.

Consider example (1.14):

(1.14) Before e\: you mash the potato, ei\ take out the chicken leg.

where the use of the before-connective indicates that e\ (the mashing event)
occurs after ei (the taking-out event).
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Figure 1.5: The two levels of representation in ta2

• The relation explicitly indicated can also be a non-temporal one such as in

(1.15) Clean the wok by scrubbing thoroughly.

where the use of the preposition by explicitly indicates that carrying out the

scrubbing action in the event described by scrubbing thoroughly achieves the
event described by cleaning the wok. In such cases, we say that the relation

between the scrubbing event and the cleaning event is such that the former

generates [Goldman 70] the latter. Note that knowing this relation allows one to

determine that in executing the instruction given in (1.15), only one action needs
to be carried out by an agent.

• For other pairs of situations, the relations involved are not explicitly given and
have to be inferred. Consider, for instance,

(1.16) a. e%: Cook some rice,

b. e-i: Cool.

where the relation between e2 and e\ has to be inferred from the world knowledge
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that cooking results in the rice being hot, a condition needed to bring about the

cooling event. Therefore, we can infer that the relation between ex and e2 is such

that e\ enables e2.

• Finally, it is also possible that there might not be any apparent relations hold¬

ing between a pair of situations such as between e2 and ex in example (1.9)
reproduced below:

(1.9) a. ex: Chop a carrot.

b. e2: Chop a potato.

In such cases, we might assume the narrative convention so that e2 follows ex.

However, as noted earlier, this need not be the case if we take into account

environmental information. Recall that if (1.9) is carried out in an environment

where there are two agents and two chopping knives, then e2 can be carried out

simultaneously with e\. Now, one might be tempted to include environmental
information as another source of information in addition to other knowledge
sources like world knowledge to infer the relation between events, so that in the

QTS of (1.9), there exists a temporal relation between ex and e2. However, this
obscures the role which environmental information plays in the temporal analysis

task, i.e. that under different environments, different temporal structures may be

obtained from the same qts. Thus, in the qts of example (1.9), e2 is represented
as having no relation with ex since no apparent relations can be derived between

ex and e2 based on world knowledge and the semantic contents of the clauses

describing ex and e2.

The qts is made use of in the second step of ta2. At this step, we associate each

situation with a unique time interval. The ordering of the situations on a time line is
then determined by considering the ordering of their respective time intervals on the
time line. The ordering of the time intervals on a time line is determined from both

qualitative and quantitative temporal relations between time intervals.

Qualitative temporal relations between time intervals are expressed using the relations
in Allen's Interval Algebra [Allen 83] (see chapter 2). These qualitative temporal re-
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lations between time intervals are derived from the relations between the situations

identified by the time intervals in the qts. It is at this step that environmental infor¬

mation such as the number of agents available is made use of. Note that in different

environments, situations that are indicated in the qts to have no relation with one

another can have different qualitative temporal relations between their time intervals.

Quantitative temporal relations are typically relations between the start and end time

points of a time interval or a pair of time intervals. They are expressed via temporal

adverbials like the /or-adverbial as in

(1.17) e\: Soak the carrots for twenty minutes.

where the /or-adverbial indicates a quantitative temporal relation that the distance

between the start and end time point of the time interval associated with e\ is 20

minutes. Such quantitative temporal relations are extracted from the text at the same

time as the qts is built up. It is stored separately from the qts as a set of equations

involving the start and end time points of time intervals (see example (1.18) and (1.19)).

We then view qualitative and quantitative temporal relations as temporal constraints

on time intervals and time points and propagate them via a constraint propa¬

gation algorithm developed in the field of temporal reasoning [Allen & Kautz 85,
Kautz &. Ladkin 91, Meiri 91]. Consider example (1.2) again:

(1.2) a. 30 minutes before

b. ei, te\: serving,

c. e2, te2'. add the wine.

where the before connective indicates that e2 occurs before e\. In the qts for (1.2),
we represent explicitly that e2 occurs before e\. In the second step, we extract the

qualitative temporal relations between the time interval associated with e\ {tei) and
the time interval associated with e2 {te2). There are two possible such qualitative
temporal relations depicted graphically in figure 1.6 where te~ is the start time point
of time interval te; and tef is the end time point of time interval te;. To gloss in
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te2 te i te2 te\

te% tex tef te2

(a) (b)

Figure 1.6: The two possible qualitative temporal relations for example (1.2)

English, figure 1.6a depicts that e2 occurs before e\ while figure 1.6b depicts that e\
starts when e2 finishes.

The quantitative temporal relation extracted from (1.2a) is given by the following

(1.18) te1 — te2 = 30

In addition, suppose we also know the typical duration for the adding action in e2 is
less than 30 minutes:

(1.19) te% - te2 < 30

Now, if we combine the qualitative and quantitative temporal relations together via
constraint propagation, only the ordering indicated in figure 1.6a remains. This is then
the temporal structure of (1.2).

Based on the discussion above, we can identify the following two stages in the ta2
framework:

1. For each sentence in the text, do

Representation: Construct the representation of the situation underlying the
sentence and extract any quantitative information mentioned

in the sentence.

Integration: Integrate the situation representation into the qts.

equation:
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2. Propagation: Obtain the temporal structure by

• Extracting the qualitative information between the time intervals over which

the situations occur from the qts;

• Forming a constraint network from the qualitative and quantitative infor¬

mation;

• Propagating the constraints in the constraint network and

• Extracting the temporal structures from the resultant constraint network.

Finally, although ta2 is motivated by the analysis of naturally occurring data from

cookery recipes, we believe the framework can also be applied to other types of instruc¬

tional texts. In addition, as will be further discussed in chapter 7, we believe that the

framework can also be applied to narrative texts.

1.3.2 An Implementation of TA2

ta2 is a computational framework and is implemented in a system called taste.

taste has been tested on nine recipes, selected from cookery books and the news¬

group rec.food.recipes. Before passing to taste, the recipes need to be simplified by

removing linguistic expressions that are not relevant to temporal analysis but other¬
wise complicate the task. The nature of these simplifications is described in Appendix
A.

One of the nine recipes which taste processes is given in figure 1.3. This recipe is
first simplified to that given in figure 1.7 before passing to taste. The result of the

processing is given in figure 1.8 which shows the qts (top diagram) and the temporal
structure (the bottom diagram) built up by taste. In the qts, the symbols p, a, c,

D, n are abbreviations for the precede, after, constituency, include and none relations

(see chapter 3) respectively.

The temporal structure shown represents the 'best' ordering of the situations according
to the heuristics employed by taste (see chapter 5). Note from the temporal structure
that taste determines that it is best to first prepare all the ingredients for the soup.
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green onion and potato soup

5 to 6 medium sized potatoes

^ a bunch of sliced green onions
1 Chinese black mushroom

some salt and pepper

some bay leaves

1 chicken leg
1 cup of milk

Soak the mushroom for 30 to 45 minutes. Peel and slice the potatoes. Saute the

onions. Add the potatoes and a quart of water. Put in the bay leaves and the chicken

leg. Simmer for an hour. Dice the mushroom. Add the mushroom pieces to the soup.

When the potatoes are done, mash them. Stir the soup. Add the milk. Season with
salt and pepper. Before you mash the potatoes, take the chicken leg out, cut it and
add it back in.

Figure 1.7: The simplified form of the green onion and potato soup recipe
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El : Soak the mushroon for 30 to 45 ninutes

E2 : Peel the potatoes
E3 : Slice the potatoes
E4 : Peel and slice the potatoes
E5 : Saute the onions

EG : Add the potatoes and a quartz of water
E7 : Put in the bay leaves and the chicken leg
E8 : Si rater for 1 hour

E9 : Dice the nushrooN

E10 : Add the nushroon pieces to the soup

ST1 : The potatoes are done
Ell : Hash the potatoes

E12 : Stir the soup

E13 : Hash the potatoes and stir the soup

E14 : Add the nilk

E15 : Season with the salt and pepper

EiG : Take the chicken leg out
E17 : Cut the chicken leg
E18 : Add the chicken leg to the soup

E19 : Take the chicken leg out, cut it and add it ba

Figure 1.8: The qts and temporal structure of the green onion and potato soup

recipe
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These preparations include peeling the potatoes (te2), slicing the potatoes (te3), saute-
ing the onions (te5), adding the potatoes and a quart of water (tee) and putting in the

bay leaves and the chicken leg (te?). Thus, in the temporal structure, these are placed
before the event of simmering the soup (tes). Then, while the soup is simmering for
an hour, the agent can be freed to carry out the soaking of the mushroom (te1) and
the dicing of the mushroom (te9).

The temporal structure shown in figure 1.8 is obtained by assuming that there is

only one agent available to carry out the instructions. If there is more than one

agent available, then the temporal structure output by TASTE will be different. For

instance, the peeling and slicing of the potatoes and the sauteing of the onion can be

done simultaneously instead of sequentially as in figure 1.8. This issue will be further
discussed in chapter 5.

The remaining eight recipes and their simplified forms, as well as the result of processing

by TASTE, are given in Appendix A.

As will be discussed in section 6.6 of chapter 6, the testing of TASTE is somewhat

limited. The design of TASTE will also be detailed in that chapter.

1.3.3 Other contributions

In addition to the two main contributions discussed above, we have also developed a

complex ontology for situations. As noted in [Wilensky 91], the ontology of situations

provided in computational natural language processing systems has generally been
limited.

Our complex ontology allows us to represent repetitive events in which the actions

specified in the events are to be repeated a number of times. An example of such an

event is that described by stir occasionally where the stirring action is to be repeated a

number of times (determined by the frequency adverbial occasionally). In addition, we
can also represent events which contain sub-events. For instance, the event described
by bring the soup to the boil stirring occasionally can be represented as a composite
event consisting of the two sub-events described by bring the soup to the boil and stir
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occasionally which are to be carried out simultaneously.
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1.4 An Overview of the Thesis

The rest of the thesis is structured as follows:

Chapter 2 presents an overview of related work. It surveys the previous work that has

been done in temporal analysis. In particular, it highlights the issues which previous

work has focused on, the solutions proposed, and the limitations of these solutions.

Chapter 3 proposes an ontology for representing situations as needed in the represen¬
tation step of ta2. This ontology is capable of representing complex events such as

composite events with sub-events and repetitive events. In addition, we also describe

the relations between situations that we identify and use in our work. Finally, the

chapter discusses the issue of taking situations as holding over time intervals.

Chapter 4 looks at the issues involved in constructing the QTS as required in the
INTEGRATION step of the framework. The chapter presents a solution for integrating a

current situation into the QTS of the previous discourse. As noted above, the integration

problem has received much attention recently. Our solution utilises information from

the resolution of NPs and pronouns as well as clauses to decide on the reference events

for the current situation.

Chapter 5 addresses the PROPAGATION step of the framework. The key idea is to

associate each situation with a unique time interval and to extract the qualitative

temporal relations between time intervals from the relations between situations in
the QTS. The chapter will also introduce temporal reasoning and how this provides
us with a mechanism for integrating qualitative and quantitative temporal relations.
Such integration is missing from other current temporal analysis frameworks. Finally,
we show how different temporal structures for a text can be obtained in different
environments.

Chapter 6 discusses the TASTE system developed for the temporal analysis of instruc¬
tional texts. TASTE takes natural language texts as input and the chapter discusses
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how taste implements the various steps in ta2.

Finally, chapter 7 concludes the thesis and discusses some future directions.



Chapter 2

A Survey of Temporal Analysis

This chapter surveys the work that has been done on temporal analysis. The problems

which such work addresses covers both single sentences and discourse of more than one

sentence.

The main issue investigated in work on the temporal analysis of single sentences

(such as [Moens & Steedman 88, Passonneau 88, Singh & Singh 92]) is how the var¬

ious linguistic devices like tense, aspect, temporal adverbials, and world knowl¬

edge interact to determine the temporal relation between the situations described

in the sentence. Some typical sentences used for such investigation are (from

[Ritchie 79, Moens & Steedman 88]):

(2.1) When they built the 39th Street bridge,

a. a local architect drew up the plans.

b. they used the best materials.

c. they solved most of their traffic problems.

where (2.1a) to (2.1c) are three possible main clauses. Although the three sentences
in (2.1) are syntactically similar, the temporal relation between the event described by
the main clause and the event described by the when-clause is different in each case.

From world knowledge, it can be derived that the drawing up of the plans precedes

26
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the building of the bridge, the usage of the best materials occurs during the building
itself and the traffic problems are solved after the bridge is completed.

In the temporal analysis of discourse of more than one sentence, previous work (such
as [Hinrichs 86, Dowty 86]) first looks at simple narratives in which the order of the

underlying events directly corresponds to their order of presentation. Following Webber

[Webber 87], we will call such simple narratives LINEAR narratives. Some examples are:

(2.2) a. John got up. He poured himself a coffee,

b. John got up. He was in a bad mood.

For such work, the main issue studied is the problem of deciding when the current

clause in the discourse is interpreted as a situation following the situation described

by the previous clause (example (2.2a)) and when as overlapping it (example (2.2b)).

Subsequent work on discourse (such as [Webber 87, Song 91b]) examines texts where
narrative order may not correspond to the presentation order, as in:

(2.3) a. Annie broke her leg. She fell off the bicycle,

b. Max died. John poisoned him.

where in each case the event described by the second clause is most plausibly interpreted

as preceding that described by the first clause. In addition, this work looks at texts
which contain an embedded discourse, such as

(2.4) a. e\\ Mary and I talked about his brother.

b. e2: He had spent five weeks in Alaska with two friends.

c. ez'. Together, they climbed Mt. McKinley.

d. e±: Mary was very proud of him.

where clauses (2.4b) and (2.4c) form another discourse embedded within the main
discourse comprising clauses (2.4a) and (2.4d). For ease of exposition, we will call
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texts where narrative order may not agree with presentation order and texts which

contain embedded discourses NON-LINEAR narratives.

Unlike linear narratives, non-linear narratives complicate temporal analysis since the

situation described by the current clause need not necessarily be interpreted against

the situation described by the previous clause, and this interpretation need not be one

of following or coincidence; it can also be before. Recall from chapter 1 that we call this

problem the problem of integrating the current situation into the preceding discourse.

In the rest of this chapter, we will discuss how previous work tackles the problems and

issues discussed briefly above.

In section 2.1, we first discuss the basic concepts underlying previous work in temporal

analysis.

Then, in section 2.2, we discuss work that is concerned with the temporal analysis of

single sentences.

In section 2.3, we consider temporal analysis work on simple linear discourse.

In section 2.4, we consider temporal analysis work that looks at simple non-linear
discourse.

Finally, in section 2.5, against the background of the earlier review material, we present
a summary of the problems and issues underlying temporal analysis. This will allow
us to identify more clearly the issues to be addressed in the remainder of the thesis.

2.1 Basic Concepts

In this section, we discuss the basic concepts which underlie previous work in temporal
analysis. These concepts are:

• Tense

• Aspect

• Temporal Ontology
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Tense Example Relation Between st, rt and et
Simple Present John runs st = rt = et

Simple Past John ran et = rt < st

Simple Future John will run st < rt = et

Present Perfect John has run et < st = rt

Past Perfect John had run et < rt < st

Future Perfect John will have run

st < et < rt

st = et < rt

et < st < rt

Present Prospective John is going to run st = rt < et

Past Prospective John was going to run

rt < et < st

rt < st = et

rt < st < et

Future Prospective John will be going to run st < rt < et

Table 2.1: The Reichenbachian analysis of tense

2.1.1 Tense

Tense has been studied extensively and a most influential analysis of tense is due to

Reichenbach [Reichenbach 47]. In a Reichenbachian account, the underlying structure
of an English tense needs to be described with three time points: the time of speech

(st), the time of the event (et) and the reference time (rt), together with two temporal
relations: precedes (<) and coincides (=). The rt is the time from which the event
described in the clause is viewed. For instance, a clause in a past perfect tense like

John had slipped on ice describes a slipping event that occurs before some past time.
By using rt to denote this past time, the et of the slipping event can be located before
the rt. The tense structure of a past perfect tense is thus as follows:

(2.5) et < rt < st

Altogether there are nine tenses in a Reichenbachian account and the st|rt|et config¬
uration that they denote is given in table 2.1.

Notice that in a Reichenbachian account, the past prospective tense and the future

perfect tense are ambiguous in that there is more than one possible ordering among

the st, et and rt.



CHAPTER 2. A SURVEY OF TEMPORAL ANALYSIS 30

eti, rt\
i

st

i

et2
_i

rt2 st
i

Figure 2.1: The anaphoric behaviour of tense: rt2 corefers with eti

The next influential development in the use of tense for temporal analysis is the view

that tense is anaphoric. In this view, a tensed sentence is to be interpreted with

respect to a previously established reference time which functions as its antecedent.

For instance, in example (2.6), the aadverbial is taken as identifying a reference time
and the tensed sentence Harry walked in will be interpreted as coreferential with it.

(2.6) At exactly 5 o'clock, Harry walked in.

Later work by Hinrichs [Hinrichs 86] and Steedman [Steedman 82] argue that it is not
tense per se that is anaphoric, but that part of tense called by Reichenbach's RT (see

above). Webber [Webber 87] gave the following example to demonstrate why the RT

is to be taken as anaphoric:

(2.7) a. et\, rt\, st: John went to the hospital.

b. et2, rt2, st: He had twisted his ankle on a patch of ice.

Here, it is not the ET of John's twisting his ankle that is interpreted anaphorically
with respect to his going to the hospital. Rather, it is the RT of the second clause

{Tt2). The referent for rt2 is et\ of the previous clause and since the second clause is
in the past perfect tense, et2 is positioned before rt2 (see table 2.1). We illustrate the
anaphoric nature of rt2 in figure 2.1. Note that there is no subscript for the speech
time in figure 2.1 since the discourse is assumed to be uttered at the same time.

Assuming that it is the RT of a tensed clause that is anaphoric, what is the nature of this
anaphoric behaviour of tense? Work by [McCawley 71, Partee 73] claims that tense
behaves like pronoun in its anaphoric behaviour. For instance, in example (2.7), just



CHAPTER 2. A SURVEY OF TEMPORAL ANALYSIS 31

as the pronoun he in (2.7b) corefers with its antecedent john in (2.7a), the reference
time rt2 of (2.7b) corefers with the event time et\ of (2.7a). However, as noted in

[Webber 87, Moens & Steedman 88], in one respect, the past tense does not behave like
a pronoun. The use of a pronoun does not change the referent to which a subsequent

use of the same pronoun may refer. On the other hand, using a past tense may.

Consider, for instance,

(2.8) At exactly 5 o'clock, Harry walked in. He sat down. He took off his boots.

where the referent for the successive RTs seems to advance from the time point originally

set up by the adjunct. However, the referent for the pronoun he remains the same.

To account for this discrepancy, Partee [Partee 84], Hinrichs [Hinrichs 86] and Dowty

[Dowty 86] stipulate that the time point which serves as referent for successive RTs

automatically advances during a narrative. This stipulation causes problems for the

theory in those narratives where time appears to move backward as in example (2.3):

(2.3) a. Annie broke her leg. She fell off the bicycle,

b. Max died. John poisoned him.

To overcome the problem, Webber [Webber 87] suggests that the anaphoric behaviour
of a tense is better compared to that of a definite NP. The referent for a definite NP

can be a new entity which is related to a previously mentioned object. For example,
in

(2.9) I picked up a banana. The skin was all brown.

where the referent of the N p the skin is an object which is semantically related to the

object set up by the indefinite NP a banana. Likewise, in tense, the referent of the RT

can be a new time point which is related to a previously mentioned time. Thus, for
Webber, to account for the time movement in (2.8) repeated below:

(2.8) a. e<i, rt%, st: Harry walked in.

b. et2, rt2, st: He sat down.
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et\, rt\ st

et2, rt2 st

after referent for rt2

Figure 2.2: The referent for rt2 in example (2.8)

c. et3, rt3, st: He took off his boots.

she would say that the RT of the second clause (rt2) corefers with a new time point
that is related to the ET of the first clause (efj). For example (2.8), the relation is
one in which the new time point is after et\ (see figure 2.2). In other examples, the
relation can be one in which the new time point is before et\ such as in example (2.3)

reproduced below:

(2.3) a. Annie broke her leg. She fell off the bicycle,

b. Max died. John poisoned him.

As to be expected, determining this relation depends on world knowledge.

To summarise, tense is commonly regarded as an anaphoric device and its anaphoric
behaviour is seen as analogous to that of pronouns [McCawley 71, Partee 73] or to that
of definite NPs [Webber 87]. Typically, tense is described by Reichenbach's trinity of
ST, RT and ET.

2.1.2 Aspect

There are two main computational treatments of aspect represented by work like
[Moens & Steedman 88, Passonneau 88] and [Song 91b, Singh & Singh 92].
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For Moens and Steedman and Passonneau, the aspect of a clause is taken to be the

type of the situation underlying the clause. The classification of the situations used

in this work is based on that of Vendler [Vendler 67] who identifies the following four
kinds of situation:

State John loves Mary.

Activity John ran.

Achievement John reached the top of the mountain.

Accomplishment John built a house.

For Vendler, activities and accomplishments have successive phases while achievements

and states do not. Accomplishments, activities and states extend in time while achieve¬

ments are instantaneous. Finally, accomplishments are distinguished from activities in
that the former have an intrinsic conclusion, whereas the latter go on in a homoge¬
neous way. Like accomplishments, achievements also have an intrinsic conclusion. To

these four Vendler's categories, Moens and Steedman [Moens & Steedman 88] add a

fifth one, called points, as exemplified by John coughs. Like achievements, points are

instantaneous but unlike them, points do not have a well-defined culmination point.

Moens and Steedman also use a different terminology from Vendler: activities are

called processes, achievements are called culminations, accomplishments are called

culminated processes. In addition, the term events is used to refer to processes,

culminated processes, culminations and points.

Besides classifying the type of the situation described by a clause, Moens and Steed¬
man also propose a tripartite structure reflecting the 'parts' of an event (Passonneau
proposes a similar structure). More specifically, they suggest that an event contains a

preparatory process which can lead up to (without necessarily reaching) a culmination
point, and this in turn has certain consequences attached to it [Moens 87, p 47]. The
tripartite structure is shown in figure 2.3.
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preparatory process consequent state

culmination

Figure 2.3: The tripartite structure of an event

Song and Singh and Singh

A different approach of handling aspect and its interaction with temporal adverbials

is given in [Song 91b, Singh &; Singh 92]. This work views aspect as the viewpoint of
a speaker towards a situation which is distinct from situation type. More specifically,

the approach postulates a structure for the event underlying a sentence and the aspect

of the sentence indicates which part of this event structure is being referred to by the

speaker.

The event structure proposed by [Song 91b, Singh & Singh 92] is slightly different from
the tripartite structure of Moens and Steedman. Song and Singh and Singh note that
one problem with the tripartite structure is that it uniformly regards situations that
occur before the culmination point as being in the preparatory phase. This arises since
the tripartite structure represents explicitly only the end point but not the start point
of an event . Consequently, the tripartite structure makes it difficult to distinguish
between events that provide preconditions to a specific event and events that elaborate
details of the specific event. Temporally, the former events should be located entirely
before the specific event while the latter events entirely within the specific event. For

example, consider the event ofmaking a phone call. The various steps that occur before

reaching the culmination point when the phone call has been completed include looking
up a phone number, picking up a phone, dialing the number and waiting for connection.
Clearly, the event of looking up a phone number should occur before the event ofmaking
a phone call while the event of picking up a phone, dialing the number and waiting
for connection should be during the event of making a phone call. However, using the
tripartite structure, all these events are represented as before the end point of the event
ofmaking a phone call. Therefore, [Song 91b, Singh & Singh 92] suggest distinguishing
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event

preparatory processes preliminary processes consequent state

culmination

Figure 2.4: The four part structure of an event

between processes that occur during the event and leading up to the culmination point

from processes that occur before the event. Following [Singh &: Singh 92], we will

call the former preliminary processes while the latter are called preparatory

processes. The structure of an event is now as in figure 2.4. In [Singh & Singh 92],
three basic aspects are proposed.1. The perfective aspect describes a situation as a

complete whole, for example, John ate an apple. The progressive aspect presents an

event internally by referring to the preliminary processes part of the event structure

(see figure 2.4); for example, John was eating an apple. The third kind of aspect
is the neutral perfective aspect and describes an event that has ended, but not

necessarily at its natural end point, for example, John ate an apple (but not all of it).

In our work, we adopt the event structure proposed in [Song 91b, Singh & Singh 92]
and view aspect as indicating which part of this structure is referred to by the clause

(see chapter 4).

2.1.3 Temporal Ontology

There has been much debate on the appropriate temporal ontology on which to base
the semantics of temporal expressions in natural language. Consider, for instance, the

analysis of the before connective in

(2.10) The compressor failed before the pump seized.

One approach [Hirschman & Story 81] takes time points as its temporal ontology and
equates events with time points. The semantics of temporal expressions are then

1Song [Song 91b] proposes a more detailed aspect classification based on time interval.
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A before (<) b
b after (>) A

a meets (m) b
b met-by (mi) a
a overlaps (o) b
b overlapped-by (oz) a
A starts (s) b
b started-by (si) A
A during (d) b
b contains (c) A

a finish (f) b
b finished-by (fi) a

a equals (=) b

I—=H

I—

Figure 2.5: Allen's thirteen relations

taken to be indicating some relation between two time points. Now, there are only
three possible ordering relations between two time points, namely either <, > or =.

In example (2.10), the before connective is taken as indicating that the time point
associated with the compressor failed precedes (<) the time point associated with the

pump seized. Typically, an event is equated with the et of Reichenbachian tense

structure denoting the tense of the clause describing the event.

Another approach [Allen 83] takes time intervals as its temporal ontology and equates
events with time intervals. The semantics of temporal expressions are then taken to be

indicating some relation between two time intervals. Unlike the case for time points,
there are more relations between time intervals. Allen [Allen 83] identifies thirteen

possible such relations as given in figure 2.5. For example (2.10), assume that the
compressor failed is assigned to time interval int\ and the pump seized is assigned to
time interval int2. Then, the before connective is taken as indicating that int\ is either
before or meets int2. This is commonly written as int\ {<, m} int2.
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A third approach [Moens & Steedman 88] argues that the semantics of temporal ex¬

pressions should not be directly related to a linear time concept, that is to a model based

on the number line. This is exactly what the two approaches discussed above do. In¬

stead, Moens and Steedman argue for the use of situations as the basic temporal ontol¬

ogy. They give when-clause as an example of the mismatch between linguistic temporal
connectives and a semantics based on the time line conception [Moens & Steedman 88,

p 15]. For instance, Moens and Steedman point out that directly reducing situations
to time points or intervals would not explain the peculiarity of the following clause:

(2.11) * When my car broke down, the sun set.

This is because, if we regard the event described by my car broke down as only a

time point or time interval and the situation described by the sun set as another
time point or time interval, then there will be a perfectly legitimate temporal relation

existing between these two time points or time intervals. But, the unusual character
of example (2.11) is because the when-clause predicates something more than mere

temporal coincidence, i.e. some relation such as a causal link between the two events.

In our work, we adopt situations as the basic temporal ontology at the level of the qts.
On the other hand, at the level of the temporal structure, we adopt time intervals and
time points as the basic temporal ontology. This allows us to overcome the limitations
of the individual approaches discussed above.

2.2 The Temporal Analysis of Single Sentences

In this section, we discuss work that carries out temporal analysis of single
sentences. In particular, we consider the computational work of Passonneau
[Passonneau 88] in the pundit system and the treatment of when-clauses as proposed
in [Moens & Steedman 88, Singh & Singh 92].
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The temporal analysis component in pundit [Passonneau 88] is originally designed to

handle casrep messages. These messages are reports describing equipment failures on

navy ships. Each of these reports consists of simple declarative clauses. Some examples
of these clauses are:

(2.12) a. The pressure was low at 0800.

b. The alarm sounded at 0800.

c. The alarm was sounding at 0800.

d. The pump failed at 0800.

The main goal of the temporal analysis component in pundit is to extract the temporal

information given in a clause using tense and aspect.

As in [Moens & Steedman 88], pundit regards the aspect of a clause as describing
the type of the situation underlying the clause. A situation in pundit is assumed to

hold over a time interval and contained in this interval is a time point called the et2.
The et may be explicitly indicated in the clause. For instance, in (2.12a - d), the at

adjunct explicitly indicates the et. The temporal information that is extracted from
a clause by pundit then consists of the following:

• the ET of the situation described by the clause; and

• the relation of ET with the time interval associated with the situation.

In order to derive the temporal information from a clause, pundit identifies three main

types of situations and based on the situation type to determine the relation between
the et and the time interval associated with the situation.

The three main types of situations identified in pundit are:

• States (example (2.12a))

2This is the same as the ET in Reichenbachian tense structure.
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• Processes (example (2.12b) and (2.12c))

• Transition Events (example (2.12d))

States and processes are equivalent to Vendler's states and activities. However,

Vendler's achievements and accomplishments are now collapsed into pundit's tran¬

sition events which hold over a time interval. This is because Passonneau believes that

achievements, which are considered to be instantaneous, can be argued to hold over a

time interval whose duration is typically shorter than that for accomplishments.3 We

will now discuss these situations:

• A state describes a static situation and is inherently unbounded in time. For

instance, the clause The pressure was low at 0800 describes a state that holds

not only at 0800, but possibly prior to and subsequent to 0800.

• A process describes a dynamic situation. As noted in [Passonneau 88], a distinc¬
tion between static and dynamic situations is that the former cannot be modified

by rate adverbials like slowly and rapidly. This is because states are characterised

by an absence of change over time. Processes can themselves be subdivided into

two kinds:

— An unbounded process, like a state, is temporally unbounded, as for in¬

stance, The alarm was sounding at 0800.

— An unspecified process like The alarm sounded at 0800, on the other hand,
is temporally bounded. However, for an unspecified process, there is an

ambiguity as to how the explicitly given time point (0800) is related to the
time interval associated with the process. For our current example, 0800

can either start the time interval, end the interval or be included in the
interval.

• A transition event such as that described by The pump failed at 0800 is temporally

bounded. The explicit time point of 0800 marks the end point of the process of

failing. Like a process, a transition event describes a dynamic situation.

3In chapter 3, we make a similar argument for associating situations with time intervals.
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Based on the situation type, PUNDIT can determine the relation between the ET and

the time interval of the situation:

• Since a state or unbounded process is temporally unbounded, ET is assumed to

be an interior point of the time interval.

• For an unspecified process, PUNDIT encodes ambiguously that the ET can either

start, end or be included in the time interval.

• For a transition event, the ET is taken to be the end point of the time interval.

This end point represents the transitional moment at which the event ends and

a new state or a process starts.

Besides simple declarative clauses discussed above, PUNDIT also has a rudimentary
treatment of temporal connectives. Consider for instance

(2.13) The compressor failed before the pump seized.

Here, the before connective is taken as indicating a precedence relation between the RT

of the main clause and the RT of the subordinate clause. Thus, PUNDIT employs time

points as the temporal ontology for describing the semantics of temporal connectives.

To summarise, PUNDIT deals only with single clauses. It also has a limited treatment

of clauses connected by temporal connective. PUNDIT employs both time points and
time intervals to represent the temporal information found in single clauses. This
information is derived from the tense and aspect of a clause. The aspect of a clause
determines the type of the situations underlying the clause. Depending on the situation

type, PUNDIT postulates a relation between the ET and the time interval associated
with the situation.

2.2.2 The Temporal Analysis ofWhen-Clauses

As discussed above, PUNDIT deals mainly with simple declarative sentences and takes
temporal connectives as representing the relation between the RT of the main clause
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Figure 2.6: The bridge building event structure

and the RT of the subordinate clause. As pointed out in [Moens & Steedman 88], this
treatment of the temporal connectives is insufficient especially in the case of the when-

connective. Recall from section 2.1.3 that Moens and Steedman believe that the when

connective indicates a contingency relation between the situation described in the when

clause and that described in the main clause.

To analyse sentences with when-clauses, Moens and Steedman propose the following

approach. According to them, a when-clause brings into focus a novel temporal ref¬
erent which is associated with a tripartite event structure (see figure 2.3). The event

described by the main clause can refer to any part of this structure conditional on

support from general or discourse specific knowledge [Moens & Steedman 88, p 23].
Later work of [Singh & Singh 92] suggests essentially the same approach to analysing
the u)/ien-clause. However, as discussed in section 2.1.2, Singh and Singh differ from
Moens and Steedman in that they take aspect as the viewpoint of a speaker towards a

situation and the event structure consists of four parts instead of three: the prepara¬

tory processes before the start of the event, the preliminary processes during the event,

the culmination which the preliminary processes lead up to and the consequent state.

We will now consider how the above approach analyses sentence (2.14a) and sen¬

tence (2.14b) given below. In this analysis, we will adopt the notion of aspect-as-
viewpoint and the four part event structure. The event structure associated with the
bridge building event is given in figure 2.6.

(2.14) a. When they built the bridge, a local architect drew up the plan.

b. When they were building the bridge, a local architect drew up the plan.
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In example (2.14a), the when-clause is describing the building event from a perfective

viewpoint (this can be determined from the verb). This means that the whole event

structure in figure 2.6 is available for situating the event described by the main clause.

From world knowledge, the drawing up of the plan is situated in the preparatory stage

of the event structure. This, in turn, gives rise to the temporal relation that the event

of drawing up the plan occurs before the event of building the bridge.

In example (2.14b), the when-clause is describing the building event from a progressive

viewpoint (this is determined from the use of the progressive tense). This means that

only the preliminary processes part of the event structure are available for situating

the event described by the main clause. Therefore, the event of drawing up the plan
must be during the building event. Note that no world knowledge can override this
effect of the progressive.

In our work, we integrate what have been done on single sentences into our temporal

analysis framework for discourse of more than one sentence.

2.3 The Temporal Analysis of Simple Linear Discourse

In this section, we consider work that carries out temporal analysis of simple linear
discourse ofmore than one sentence. In particular, we consider the work of [Hinrichs 86]
and [Hirschman &; Story 81].

2.3.1 Hinrichs

Hinrichs [Hinrichs 86] considers linear narratives consisting of sequences of simple past
tense sentences:

(2.2) a. John got up. He poured himself a coffee,

b. John got up. He was in a bad mood.

As noted, a linear narrative is one in which the temporal order of events described does
not contradict the order of the sentences. By making this assumption, Hinrichs is able
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to focus on the problem of deciding when the situation described by the current clause

in the discourse is interpreted as following the situation described by the previous

clause (example (2.2a)) and when as overlapping it (example (2.2b)).

Hinrichs bases his account on the type of the situation underlying a clause. In par¬

ticular, he uses Vendler's classification of a situation into state, activity, achievement

and accomplishment. Assuming a current reference time (refcurr) in a discourse, a new
clause describing an achievement or accomplishment will introduce a new reference

time ordered after refcurT and the event described by the new clause is interpreted as

temporally included in this new reference time. On the other hand, a current clause de¬

scribing an activity or state does not introduce a new reference time and the situation

underlying the clause is taken as surrounding refcurr.

Consider for instance example (2.2a):

(2.2a) John got up. He poured himself a coffee.

The first sentence in this discourse denotes an accomplishment and thus introduces a

reference time ri which temporally includes the event underlying the sentence. The
second sentence also denotes an accomplishment and therefore, it introduces a new

reference time r2 which is ordered after ri. The event described by the second sentence

is temporally included in r2 and thus we have the interpretation that the pouring coffee
event is after the getting up event.

Now, consider example (2.2b):

(2.2b) John got up. He was in a bad mood.

As in example (2.2a), the first sentence introduces a reference time r\ which temporally
includes the getting up event. The second sentence denotes a state and thus does not
introduce a new reference time. The state described by the second sentence is taken
as temporally surrounding r\ and thus resulting in the interpretation that John being
in a bad mood temporally surrounds the event of John getting up.
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Figure 2.7: The time graph of example (2.15)

Hinrichs takes the reference time as providing a referent for Reichenbach's RT. As

noted earlier, Hinrichs's account is unable to account for the backward movement of

time in some discourses.

2.3.2 Hirschman and Story

Hirschman and Story [Hirschman & Story 81] describe a system for analysing the tem¬

poral information found in medical narratives. An example of such a narrative is shown

(2.15) a. 3 weeks prior to the current admission, a bright red patch appeared

where the current admission is on 1/27. The temporal information obtained from

analysing (2.15) is represented in a time graph shown in figure 2.7.

The nodes in a time graph are the time points associated with the events described
in the narratives while the edges denote the distance between the time points. If two
events occur at the same time, they are assigned to the same time point. For example,

in (2.15):

under the patient's eye.

b. The patient developed a maculopapular rash over hands and knees.

c. On 1/27 she began having a fever to 104.
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in figure 2.7, the event described by began having a fever and the current admission

occur on the same day (1/27) and are assigned to the same time point C. Node A

in the figure is the time point associated with the event described by the red patch

appeared. The edge between node A and node C indicates the distance between the

events associated with A and C. In example (2.15), this distance is 3 weeks as indicated

by the phrase 3 weeks prior.

From the discussion above, we can say that the basic temporal ontology employed

by Hirschman and Story is based on time points. Events are associated with time

points and relations between events are reduced to relations between time points.

Such relations are determined using a combination of the narrative convention and

syntactically-based heuristics:

• The narrative convention provides certain default time relations between events

described by consecutive clauses. More specifically, the convention provides that

in narrative, time does not move backward unless an explicit time marker is

provided. For example, in

(2.16) a. 3 weeks prior to the current admission, a bright red patch appeared
under the patient's eye.

b. The patient developed a maculopapular rash over hands and knees.

the rash-over-hands and rash-over-knees events described in (2.16b) have a de¬
fault time greater than or equal to the bright-red-patch-appearing event described
in (2.16a).

• The syntactically-based heuristics are used to determine the temporal relation
between the time points described by various clauses in a sentence. One such
heuristic deals with sentences with subordinate clause such as

(2.17) A spinal tap was performed which revealed 806 red blood cells.

It states that the time of a subordinate clause is equal to the time of its main

clause, provided no explicit time information occurs in the subordinate clause.
In (2.17), no such explicit information is given (for example, via a temporal
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adjunct like after or before) and thus, the events described by the main and
subordinate clause are assigned to the same time point. That is, the two events

are coincident.

Summary and Discussion

To summarise, Hirschman and Story use a time graph representation to represent the

temporal information given in medical narratives. Their approach uses time points as

the basic temporal ontology and reduces the semantics of temporal expressions to that

based on the relation between time points. Narrative convention and syntactically-
based heuristics are used to determine the relations between time points.

As noted in section (2.1.3), reducing the semantics of temporal expressions to that
based on the relation between time points faces difficulties especially in dealing with
when-clause. For instance, using Hirschman and Story's heuristics, one is able to obtain
a coincidence relation for the apparently anomalous sentence discussed earlier:

(2.18) * When the sun set, the car broke down.

2.4 The Temporal Analysis of Non Linear Discourse

As noted in section 2.1.1, the approach for linear texts is problematic for non-linear
texts where time may appear to move backwards and where the texts may contain
embedded discourses. Any approach for non-linear text must account for why time
moves backward and also handle the problem of integrating the situation described by
the current clause into the temporal structure of the preceding discourse. Recall from

chapter 1 that the integration problem involves finding suitable preceding events for

interpreting the current situation and determining the nature of this interpretation.

We will now describe previous work that addresses the temporal analysis of non-linear
texts. The pieces of work reviewed are:

• Webber [Webber 87]
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• Song and Cohen [Song & Cohen 91b]

• Hwang and Schubert [Hwang & Schubert 91]

• Eberle [Eberle 92]

• Lascarides and Asher [Lascarides & Asher 91]

2.4.1 Webber

A basic premise of Webber's approach is that in processing a narrative text, a listener

is building up a representation which reflects his/her best effort at interpreting the

speaker's ordering of those events and states in time and space. Webber calls this

representation the event/situation structure (e/s structure). According to Webber

[Webber 87, p 147], the listener's problem can then be viewed as that of establishing
where in the evolving e/s structure to attach the event or state described in the next

clause. This is essentially the integration problem.

Webber's approach is based on the tense-as-anaphor idea. However, as noted in sec¬

tion 2.1.1, instead of regarding the anaphoric behaviour of tense to be like pronoun,

Webber regards tense's anaphoric behaviour to be more like that of a definite np.

Basically, Webber employs Reichenbach's tense structure and regards the RT as being

anaphoric. The referent for RT can be either the ET of a previously mentioned event

or a time point related in some manner to the ET of a previously mentioned event.

There are three possible cases, as illustrated by the following two-clause discourses

(from [Webber 87]):

(2.19) a. st, eti, rt\: John walked across Iowa,

b. st, et2, rt^: He thought about Mary.

(2.20) a. st, et\, rt\: John walked across Iowa.

b. st, et2, rt2'. He crossed the state line at Council Bluffs.

(2.21) a. st, et\, rt\: John walked across Iowa,

b. st, et2, rt2'. He started in Sioux City.
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et\, rti st

referent for rt2

et2, rt2

Figure 2.8: The e/s structure of example (2.19)

eti, rti referent st

et2, rt2

Figure 2.9: The e/s structure of example (2.20)

In (2.19), the referent for rt2 of the second clause is et\ itself. Since the clause is in the

simple past tense, it positions et2 (see table 2.1) as well. The e/s structure is as shown
in figure 2.8. Notice that et2 is coincident with et\ giving rise to the interpretation that
the event of John thinking about Mary is coincident with the event of John walking
across Iowa.

In (2.20), the referent for rt2 of the second clause is a time point that is after et\. Since
the clause is in the simple past tense, the referent sites et2 also (see figure 2.9). Notice
that e<2 is after et\ resulting in the interpretation that the event of John crossing the
state line follows the event of John walking across Iowa.

Finally, in (2.21), the referent for rt2 of the second clause is a time point that is
before et\. Since the clause is in the simple past tense, the referent sites et2 also (see

figure 2.10). Note from the figure that is before et\. This results in the temporal
interpretation that the event of John starting in Sioux city is before the event of John

walking across Iowa.

As acknowledged in [Webber 87, p 150], deciding which of the above three cases holds
demands an appeal to world knowledge, an area not examined by Webber. The main
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Figure 2.10: The e/s structure of example (2.21)

concern for Webber is how to determine the referent for the rt of the current clause.

This referent will site the rt of the current clause and thus indirectly determines

the location of the et of the clause based on the relation between et and rt in

Reichenbach's tense structure.

To determine the referent for rt, Webber proposes a notion of temporal focus. The

temporal focus (tf) is the temporal analogue of the notion of focus in the nominal
domain [Sidner 79]. The referent for rt can relate to the tf in three ways: it can be
either before, after or coincide with the tf. Thus, the tf serves as a time point against
which the rt is to be interpreted.

Webber's Temporal Focus Mechanism

There are two basic problems to solve with the focus idea. Firstly, it is necessary to

determine what a focus is; and secondly, a mechanism is needed for tracking the focus.

We now examine Webber's proposal with respect to these two issues.

In Webber's proposal, the tf is typically the et of a previous event. When there is no

such previous event, Webber creates a new node of e/s structure, ordered prior to the
speech time to serve as the tf. There are three potential movements of the tf: (1)
maintain the current tf; (2) create a new tf; and (3) resume a previous tf.

In order to determine the possible movements of the tf, Webber proposes four heuris¬
tics which have to be applied in parallel rather than serially. When more than one

heuristic is applicable, Webber resorts to an unexplained notion of plausibility to de¬
cide which heuristic should fire. The four heuristics [Webber 87, p 151] are given in
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Focus Maintenance Heuristic: After interpreting clause n, the new TF is the most

recent TF — i.e. the node against which rtn was interpreted.

Embedded Discourse Heuristic 1: If etn is different from rtn = TF, treat utterance

n as the beginning of an embedded narrative, reassign etn to TF (stacking the

previous value of TF, for possible resumption later) and try to interpret rtn+\

against this new TF.

Embedded Discourse Heuristic 2: If clause n + 1 is interpreted as beginning an

embedded narrative, create a new node of e/s structure and assign it to be TF.

Stack the previous value of TF for possible resumption later

Focus Resumption Heuristic: At the transition back from an embedded narrative,

the TF prior to the embedding (stacked by an Embedded Discourse Heuristic)
can be resumed.

Figure 2.11: Webber's temporal focus tracking heuristics

figure 2.11.

We will now briefly describe how the above heuristics are used to decide on the TF

movement. Consider, for instance,

(2.22) a. et\, rt\, st: John went over to Mary's house.

b. et2, rt2, st: On the way, he had stopped by the flower shop for some

roses.

c. et3, rts, st: Unfortunately, the roses failed to cheer her up.

When clause (2.22a) is processed, there is no previous event and so a new TF (TFi) is
set up prior to the speech time. The RT of the clause (rt\) is interpreted to coincide
with TFi and since the clause is in the simple past, it sites the ET of the clause (eti)
also. At this point, it is necessary to decide whether to maintain TFj as the focus for

interpreting the RT of the second clause. Only the Focus Maintenance Heuristic can
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(a)
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Figure 2.12: The stages of the e/s structure of example (2.22)

apply and so tfi is maintained as the current tf for interpreting the rt of the next

clause. The e/s structure is as shown in figure 2.12a.

The rt of clause (2.22b) (rt2) is interpreted as coinciding with tfi. Since the clause
is in the past perfect tense, the et of the clause (et2) is sited at a point before rt2.

At this point, it is necessary to decide the movement of the focus for interpreting
the rt of the third clause. Both the Focus Maintenance Heuristic and the Embedded

Discourse Heuristic 1 can apply. As noted above, an unexplained notion of plausibility
is used to decide which of these heuristic should apply. In this example, it is the

Focus Maintenance Heuristic which wins the plausibility stake against the Embedded

Discourse Heuristic 1. Thus, TFi is maintained as the current focus. The e/s structure
is shown in figure 2.12b.

The rt of the third clause (rt3) is interpreted as immediately following tfi. Since this
clause is in the simple past tense, rt3 in turn directly sites et3. The e/s structure is
now as in figure 2.12c (tf is not shown since there are no more clauses).

Notice that from the e/s structure of figure 2.12, Webber can determine that the event
of john going over to Mary's house (efi) is preceded by the event of john buying some

roses (et2) and followed by the event of the rose failing to cheer Mary up (et3).
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Summary and Discussion
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Webber's work focuses mainly on the problem of integrating the situation described

by the current clause into the e/s structure of the preceding discourse. In Webber's

framework, this problem can be reformulated as the problem of determining the referent
for the RT of the current clause. To determine this referent, a notion of temporal focus
is employed. More specifically, the RT of the current clause is to be interpreted as

either following, preceding or coincident with the temporal focus. Four heuristics are

proposed to track the focus.

Webber's proposal has some serious problems. First, the notion of plausibility needed

to decide which heuristics should apply is not very well-defined. Second, Webber does

not specify how an embedded discourse is to be recognised; such information is required

by Embedded Discourse Heuristic 2. Third, Webber does not elaborate further on how

to determine whether the RT of a current clause is to follow, precede or coincide with
the current TF. Finally, Webber essentially equates situations with time points and

therefore does not consider the effect of duration.

To overcome some of these problems, Song and Cohen [Song & Cohen 91b] make some

extensions to Webber's work. We will now turn to this work.

2.4.2 Song and Cohen

Song and Cohen [Song & Cohen 91b] extend Webber's work in four areas.

First, Song and Cohen incorporate aspect into Webber's framework and following

[Passonneau 88] classify situations into three types: states, processes and transition
events. As discussed in section 2.2.1, these situations are assumed to hold over a time
interval and depending on the type of the situations, the relation between the ET of the
situation and its time interval can be determined. For instance, ignoring time intervals,
the temporal structure of example (2.23):

(2.23) a. et\: John went to a hospital.

b. et2'. He had fallen on a patch of ice.
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(a)
et2 et3 eti

(b)
et2 et3 et\

Figure 2.13: Temporal structure in terms of time intervals

c. et3: and had twisted his ankle.

is as given in figure 2.13a. Now, all three sentences in (2.23) denote transition events

and thus as noted in section 2.2.1, et\ to et3 are taken to be the end points of the time

intervals associated with the events described by the three sentences. Incorporating

time intervals, the temporal structure of example (2.23) is as given in figure 2.13b.

Although Song and Cohen associate events with time intervals, they do not make
use of quantitative information such as event's duration in their temporal analysis
framework.

Second, they propose to use a standard sre triple of the form [st R1 rt R2 et] where
R1 and R2 are taken from the set of relations {<, >, —} to denote the nine tenses in
Reichenbach's account. The nine tenses and their corresponding sre triple are shown

together with Reichenbachian tense structure in table 2.2.

Notice that in Song and Cohen's scheme, each of the nine tenses is associated with a

unique sre triple.

Third, Song and Cohen argue that it is insufficient to consider only the rt of a clause
as anaphoric. They argue that it is also necessary to regard the et of a clause as

anaphoric. Consider example (2.23) again:

(2.23) a. et\, rt\, st: John went to a hospital.

b. et2, rt2, st: He had fallen on a patch of ice.

c. et3, rt3, st: and had twisted his ankle.

For example (2.23), we should be able to decide that et\ > et2, et\ > et3 and et2 <
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Tense Song and Cohen Reichenbach

Simple Present en >-3 II B II ST = RT = ET

Simple Past [ST > RT = ET] ET = RT < ST

Simple Future [ST < RT = ET] ST < RT = ET

Present Perfect [ST = RT > ET] ET < ST = RT

Past Perfect [ST > RT > ET] ET < RT < ST

Future Perfect [ST < RT > ET]
ST < ET < RT

ST = ET < RT

ET < ST < RT

Present Prospective [ST = RT < ET] ST = RT < ET

Past Prospective [ST > RT < ET]
RT < ET < ST

RT < ST = ET

RT < ST < ET

Future Prospective [ST < RT < ET] ST < RT < ET

Table 2.2: Song and Cohen sre triples

e/3 (since the falling may be a cause for the twisting). Following Webber's approach
described in section 2.4.1, it is possible to determine that et\ > et2 after the processing

of (2.23b). At this point, it is necessary to decide the temporal focus for interpreting
rt3. Both the Focus Maintenance Heuristic and the Discourse Maintenance Heuristic 1

are applicable. If the Focus Maintenance Heuristic is used, then rt3 will be interpreted

against the previous tf positioned at et\ and we will be able to obtain the temporal
relation that et\ > et3. However, no information is derived regarding the relation
between et2 and et3. On the other hand, if the Embedded Discourse Heuristic 1 is

applied, then rt3 will be interpreted against a new tf positioned at et3 and we will get
the relation that et2 > et3 which is wrong, since falling on a patch of ice may be the
cause of twisting one's ankle. To get the right interpretation, Song and Cohen suggest
that one needs to take rti as the referent for rt3 and a point after et2 as the referent
for ef3 (see figure 2.14). In other words, both the rt and the et of the current clause
have to be anaphoric requiring previously mentioned time points as referents.

Given that Song and Cohen are taking both the rt and et as anaphoric, Webber's
one-point focus (tf) is insufficient. Instead, Song and Cohen introduce the concept
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et\,rt\ st

et2 rt2 st

referent of et3 referent of rt3
st

et3 rt3

Figure 2.14: The referents of rt3 and et3 in example (2.23)

of a temporal focus structure (tfs) which is the sre triple of a previous clause. The
tfs contains the focus points for interpreting the rt and et of the current clause. As
in [Webber 87], there are three possible movement of the current tfs: (1) maintain
the current tfs (2) create a new tfs and (3) resume a previous tfs. Unlike Webber's
non-deterministic strategy of tracking the focus movement, Song and Cohen propose

a deterministic strategy. In their strategy, Song and Cohen arrange the sre triples of
the nine tenses into a tense network.4

Song and Cohen's Tense Network

Song and Cohen's tense network is as shown in figure 2.15.5 Note the thick and thin
link in the network.

Based on the tense network, Song and Cohen propose the following scheme for tracking
the movement of the tfs. At the point of deciding the focus movement, the information
available includes the sre triple of the current tfs (a) and the sre triple of the current
clause (/?). Then, Song and Cohen's proposal for determining the movement of the
current tfs can be summarised in the following four rules (the first two rules are tried
first before the last two):

(2.24) If there is a thin link from a to (3 in the tense network

4In their work, Song and Cohen call this tense network a tense hierarchy.
5To ease readability, we show the actual tense instead of its corresponding sre triple.
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Simple Present

Figure 2.15: Song and Cohen's tense network for English

then create a new TFS

(2.25) If there is a thick link from a to (3 in the tense network
or a and /? are the same tense

then maintain the current TFS

(2.26) If there is a link between a and /3
then resume a previous TFS such that either

this previous TFS and (3 are the same or

there is a thick or thin link from this previous TFS to (3

(2.27) If there is no link between a and (3
then the tense sequence is incoherent
and stop processing

We are now in a position to illustrate how Song and Cohen's proposal works. First,
consider example (2.28):

(2.28) a. [st = rt\ — eti]: John is staying at home.

b. [st > rt2 > et2]: He had finished his homework.

Initially, Song and Cohen set up the current TFS to be [stf = rt\ = et\\ since the first
sentence is in the progressive present. The second clause is now processed. This clause
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is in the past perfect tense with SRE triple [st > rt2 > et2]. Therefore a is simple

present and (3 is past perfect. From the tense network, there is no link between a

simple present and past perfect. Thus, rule (2.27) is applicable and the tense sequence

is ruled as incoherent and processing stopped.

Next, consider the following example:

(2.29) a. [st > rt\ = et\]: John went over to Mary's house.

b. [st > rt2 > et2]: On the way, he had stopped by the flower shop for

some roses.

c. [st > rt3 > eta]: He had picked 5 red ones, 3 white ones and one pale

pink.

d. [st > rt4 = et4]: Unfortunately, the roses failed to cheer her up.

After processing the first sentence, the current TFS is set up to be [st > rt\ = et\\. To

interpret et2 and rt2 of the second clause, it is necessary to decide on the movement of

the current TFS. Now, a is simple past and [3 is past perfect. From the tense network,

there is a thin link from simple past to past perfect. Rule (2.24) is therefore applicable
and a new focus is created: [st > rfi > et[] following the tense structure of the second
sentence. Note that et\ is a time point before et\. Then, rt2 is interpreted as coinciding
with rfi in this focus and et2 is interpreted as coinciding with etx in the focus. As a

result of this interpretation, Song and Cohen obtain the relation that et\ > et2. They
also update the current TFS to [st > rt2 > et2\. The previous TFS ([et\ — rt\ < st]) is
stacked.

We now interpret ef3 and rt3 of the third clause which is in past perfect. At this point,
the current TFS is [st > rt2 > et2]. Therefore, a is past perfect and (3 is also past

perfect. Rule (2.25) therefore applies and the current focus is maintained. The ET of
the current clause (et3) is interpreted to follow et2 (et3 > et2) in the focus while r<3 is
interpreted to coincide with rt2. The current TFS is updated to [st > rt3 > et3].

Finally, we interpret et4 and rt4 of the fourth clause which is in the simple past. At
this point, the current TFS is [st > rt3 > ef3]. Thus, a is past perfect while /3 is simple



CHAPTER 2. A SURVEY OF TEMPORAL ANALYSIS 58

ct2 6^3 et\ etj

Figure 2.16: The temporal structure derived by Song and Cohen for example (2.29)

past. Rule (2.26) applies since there is a link between a past perfect and simple past

but no thin or thick link from a past perfect to a simple past. The previous focus ([efi
= rt\ < st]) is resumed since this previous focus also denotes a simple past. The event

etj is interpreted to follow et\ (etj > et\) and rt± is interpreted to coincide with rt\.

The final temporal structure for example (2.29) is shown in figure 2.16.

Notice that et± is positioned correctly after et\ as a result of resuming the previous

focus. This is flagged by the explicit tense change from past perfect in (2.29c) to the

simple past in (2.29d).

Summary and Discussion

Song and Cohen's approach attempts to overcome some of the difficulties of Webber's

approach. In particular, they suggested that both the et and the rt of Reichenbach's
tense structure need to be treated as anaphoric. Furthermore, Song and Cohen propose

a deterministic strategy using heuristics based on tense change (as captured in the tense

network) to decide on the focus movement. However, these heuristics do not work all
the time and in some cases would suggest the wrong result. For instance, consider

example (2.30).

(2.30) a. Jack and Sue went to a hardware store to buy a new lawnmower.

b. Their old one had been stolen.

c. Sue saw the men who took it and

d. chased them down the street.

In interpreting the rt and et of the third clause, we have to decide the movement
of the current focus given by the sre triple of the past perfect tense of the second
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clause. In this case, a is past perfect and f3 is simple past. Rule (2.26) applies and the

previous focus (the SRE triple of the simple past tense of the first clause) is resumed.
This means that the event of Sue saw the men who took it will be interpreted against
the event described by Jack and Sue went to a hardware store. This is clearly not

correct.

In addition, Hwang and Schubert [Hwang & Schubert 91] note that Song and Cohen's
tense network will rule out the following coherent tense sequence in example (2.31)
since there is no link between a simple present and a past perfect in the tense network.

(2.31) a. Mary is angry about the accident.

b. The other driver had been drinking.

2.4.3 Hwang and Schubert

Hwang and Schubert focus on the problem of how to represent complex events described

by sentences like Everyone looked at Mary (see chapter 3) and the problem of how to

choose the event described by a previous sentence against which the event described

by the current sentence is to be interpreted. Hwang and Schubert call the previous

event a reference event for the current event.6 Knowing the relation between the
current event and its reference event in this interpretation is not the prime concern in

[Hwang & Schubert 91]. As Hwang and Schubert note [Hwang & Schubert 91, p 35],
whatever the relation may be (they use the predicate orients to 'subsume' the possible
relations that can hold between two events), finding the right pair of events involved
in such relations is of crucial importance in discourse understanding.

Like Webber and Song and Cohen, Hwang and Schubert study the role which tense

contributes to a solution of finding the reference event for the current event. However,
unlike [Webber 87, Song & Cohen 91b] which analyses tense in a Reichenbachian man¬

ner, uses a notion of temporal focus and a set of heuristics for tracking the movement
of the focus, Hwang and Schubert make the following proposals:

6Hwang and Schubert use the term EPISODE instead of event.
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• They regard tense as sentential operator operating on the logical form (lf) of a
sentence and associate rules with sentential operators.

• They propose a contextual structure called tense tree which is built up by the
rules associated with sentential operators as the LFs of the sentences in a narrative

text get interpreted. The events extracted from the LFs are appended to the tree

nodes whose positions mirror the structural positions of the corresponding tense

operators in the sentence.

Hwang and Schubert's Tense Tree Mechanism

We now consider how Hwang and Schubert's approach analyses example (2.23) which
is used by Song and Cohen to argue for the case that both the et and rt of Re-
ichenbachian tense structure have to be anaphoric. The example is reproduced below

together with the LFs which the sentences give rise to and the operators (in italics)

acting on them (the decl operator arises from the declarative nature of the sentence):

(2.23) a. John went to a hospital.

(decl (past (John went to hospital)))

b. He had fallen on a patch of ice.

(decl (past (perfect (He fell on a patch of ice))))

c. and had twisted his ankle.

(decl (past (perfect (He twisted his ankle))))

Each LF is interpreted by successively calling the rule associated with the leftmost

operator which recursively calls the rule associated with the operator to its right and
so on until there are no more operators. At the end of this interpretation process, the
tense tree built up for example 2.23 is as in figure 2.17 where the tokens at the nodes
of the tree are as follows:

• The tokens ej, e<i and e% are the events underlying respectively the clauses John
went to a hospital, He fell on a patch of ice and He twisted his ankle.
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a B

o
Ul,U2,U3

c ei ,7*1,7*2

D O e2,e3

Figure 2.17: The tense tree of example (2.23)

• The tokens u\, u2 and are the utterance events introduced by the decl operator.

• The tokens ri and r2 are introduced by the perfect operator and can be thought
of as the event analogue of the rt in a Reichenbachian tense structure.

Notice from the tense tree that the positions of the tree nodes correspond to the

structural positions of the sentential operators:

• Nodes a and B are created by the rule associated with the decl operator in (2.23a).
The rule also creates event token ui and stores it at node a. Rules associated

with decl operator in (2.23b) and (2.23c) creates respectively event tokens u2 and

«3 and append them to U\ at node a.

• Node c is created by the rule associated with the past operator in (2.23a) and
is positioned to the left of node B. The rule also creates event token e\ and
stores it at node c. As before, rules associated with the past operator in (2.23b)
and (2.23c) creates respectively event tokens r\ and r2 and append them to e\

at node c.

• Node d is created by the rule associated with the perfect operator in (2.23b) and
is positioned directly below node c. The rule creates event token e2 and stores

it at node d. As before, the rule associated with the perfect operator in (2.23c)
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creates an event token e3 and appends it to e2 at node D.
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From the tense tree of figure 2.17, Hwang and Schubert propose the following interpre¬
tation scheme to 'read off' both temporal and non-temporal relations between event

tokens in the tense tree:

• An event at a node is oriented by the event to its left (if any). For example, since
e3 (the event of john twisting his ankle) is to the right of e2 (the event of john

falling on ice) at node c in figure 2.17, we have e3 orients e2.

• At any given moment, for a pair of event e and / that are rightmost at node
n and m respectively, where m is a daughter of n, if the branch connecting the
two nodes is a left branch (past), then / before e and if it is a downward branch

(perfect), / before-or-until e. For instance, at a given moment in processing, e2

and r\ are rightmost at node c and D respectively. Since the branch connecting

node c and D is a downward branch, e2 is before-or-until r\.

Summary and Discussion

Given that different kinds of relations can exist between episodes, Hwang and Schubert
focus on the problem of finding the right pairs of episodes involved in such relations.
Like Webber and Song and Cohen, Hwang and Schubert believe that tense contributes
to a solution of this problem. However unlike Webber and Song and Cohen, Hwang
and Schubert do not invoke Reichenbachian tense structure but instead view tense

as operator. This view of tense as a sentential operator is not unique to Hwang and
Schubert. It is also adopted in work such as IQ [Richards et al 89].

Hwang and Schubert propose a contextual structure called tense tree where the position
of the nodes reflects the structural position of the corresponding tense operators in
the sentence. From the tense tree representation, both temporal and non-temporal
relations can be read off. In both Webber and Song and Cohen's approaches, there are

no representations equivalent to the tense tree and situations are generally treated as

time points or time intervals so that the only relation between them must be temporal.
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Like Song and Cohen, Hwang and Schubert's approach faces the same problem when
it comes to embedded discourse in which the tense change does not provide enough
information. For example, like Song and Cohen's approach, Hwang and Schubert's

approach will also fail on example (2.30) given above and reproduced below together
with the LFs of each sentence and the operators acting on them:

(2.30) a. Jack and Sue went to a hardware store to buy a new lawnmower.

(decl (past (Jack and Sue went to a hardware store)))

b. Their old one had been stolen.

(decl (past (perfect (Their old one was stolen))))

c. Sue saw the men who took it and

(decl (past (Sue saw the men who took it)))

d. chased them down the street

(decl (past (Sue chased them down the street)))

In the tense tree of example (2.30), the event token extracted from the LF in (2.30a)

(i.e. the going-to-hardware-store event) is stored at the same node as the event token
extracted from the LF in (2.30c) (i.e the saw-the-men-who-took-it event). This is
because the operators operating on the two LFs are the same past operator. The
saw-the-men-who-took-it event token (say e3) is stored to the right of the going-to-
hardware-store event token (say ei) and thus Hwang and Schubert would say that e3

orients e\ which is not right.

The common problem with the approaches of Song and Cohen and Hwang and Schubert
can be attributed to the fact that they only consider the role of tense in determining the

pair of events which should be related. In the following section, we discuss an approach

that focuses on the role which world knowledge and information from preceding text

play in determining the reference event for a current event.
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2.4.4 Eberle
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Eberle's work is concerned with the problem of choosing a temporal anchor among
the events described in the preceding text for the event described by a new clause

[Eberle 92, p 289]. For instance, Eberle asks in the following discourse:

a. ei:

b. e2-

c. £3-

d. e4:

e. €5:

f. ee:f. ee'- Jane took the book with a smile.

how does one decide that the temporal anchor or the reference event for e3 is not the

earlier introduced e\, but e2 and that the reference event for ee is not the most recent

event es but e\ 1

Note that the approach of Song and Cohen and Hwang and Schubert described above
would have no problem determining the correct reference for the various events in (2.32)
since the tense change provides enough information. Eberle's approach handles the
same problem in a different manner. We will now consider how this approach decides
the temporal anchor for ee in example (2.32).

At the point of processing clause (2.32f), Eberle's approach would have built up a

structure representing the result of processing the preceding clauses. Eberle calls this
structure the EVENT STRUCTURE whose nodes are the events described by the clauses

in the discourse and the arcs between nodes represent the 'discourse' relations between

events.

Events are represented in a variant of Davidsonian representation [Davidson 80]. For

instance, the event described by John came is represented as

(2.33) come(ei) A agent(ei, john)
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where e\ is the constant assigned to the coming event.

There are 4 discourse relations between events considered in [Eberle 92]:

Continuation For example, in

(2.34) a. e\: John went into the room,

b. e2' He sat down.

ei is a continuation of e\. Temporally speaking, e2 occurs after e\.

Flashback An example of a flashback relation is in the discourse:

(2.35) a. e\: John bought an umbrella,

b. e2: He had lost his old one.

where e2 is a flashback of e\. Note that e2 occurs before e\.

Elaboration In the following example, e2 is considered to be an elaboration of e\

since according to Eberle, e2 describes e\ on a more fine-grained level:

(2.36) a. Hans went to Paris.

b. At the border, he had some trouble.

Note that if e2 elaborates e\, then e2 is temporally included in e\.

Background This is typically a relation between an event and a state. For example,
in

(2.37) a. e\: At the border, he was stopped,

b. si: It was pretty dark.

Si is said to provide a background for ei. As widely accepted, the state seems

to temporally include e\ although this may be overridden by world knowledge.

Consider, for instance,

(2.38) a. Jameson entered the room, shut the door carefully and switched
off the fight. It was pitch-dark around him because the Venetian
blinds were closed.
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where the state of being pitch-dark follows the event of switching off the light.
Eberle calls this state a causally introduced background, but for the purpose of
our discussion here, this distinction with background is not important.

The process of building up the event structure is an incremental one. Given the event

structure of the preceding discourse (say esn), the process attempts to integrate the
situation described by the current clause into esn. To carry out this integration, Eberle
first determines an ordered set of possible preceding events which can serve as temporal
anchors. Then, Eberle attempts to anchor the current situation to the first event in this

set. This involves attempting to determine a discourse relation between the current

situation and the event. If no such discourse relations can be determined, the next

event in the set is tried and so on.

Back to example (2.32) repeated below:

a. ea:

b. e-T-

c. e3-

d. e4:

e. e5:

f. ee-

We assume that the first five clauses have been processed and that the event structure

built up is as in figure 2.18 where cont and fb are abbreviations for the continuation
and flashback relation. We now consider the integration of e6 into the event structure

of figure 2.18. There are two questions to answer first:

1. The first question is how does Eberle decide on the set of possible temporal
anchors ? To do this, he uses a notion of accessible events which is loosely
stated as follows [Eberle 92, p 290]: At the point of attempting to integrate e5,

the accessible events are €4 and e\ (with decreasing prominence) whereas at the
point of integrating e4, the accessible events are e3 and e4 (again with decreasing
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^6
o

o

Figure 2.18: The event structure after processing example (2.32a) to (2.32e)

prominence). Based on this imprecise statement and referring to figure 2.18, we

assume that Eberle's accessible events are those events at the right frontier of
the event structure. Note that states are excluded from consideration by Eberle

as possible temporal anchors for the current situation.

2. The second question is how does Eberle determine the discourse relation between

the current situation (a) and the current prominent accessible event (/?) ? To do

this, he uses a sequence of 3 filters to remove those relations that cannot exist

between a and (3. These 3 filters are as follows:

(a) The first filter (Fi) uses tense and aspect information. The continuation,
elaboration and flashback relations are accepted if a is an event and the

tense form of the clause describing a and that describing /3 are the same.

In addition, Fi accepts the flashback relation if the tense of the clause de¬

scribing a is past perfect and that describing (3 is simple past. On the other

hand, the background relation is accepted if a is a state and the tense form
of the clause describing a and that describing (3 are the same.

(b) The second filter (F2) consists mainly of testing sort subsumptions in the
context of temporal incompatibilities between calendar units and event sorts

and removes those discourse relations which are logically incompatible with

the information of the preceding text. For instance, an event introduced
with the location time of 1987 cannot overlap with an event with location

time 1988 so that the elaboration relation between the two events will be

filtered out.

e2 cont cont cont
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(c) The third filter (F3) is an evidence filter which tries to find support for the
discourse relations. The filter accepts the relation if some evidence can be

found for the relation. Consider, for instance,

(2.39) a. John left Paris in the evening.

b. He went to Frankfurt.

c. At the border, he was stopped.

At the point of processing (2.39c), a is the event described by He went to

Frankfurt and /3 is the event described by the current clause At the border,

he was stopped. After Fi and F2, the remaining discourse relations between

a and /? are continuation and elaboration. Now, F3 found supports for elabo¬
ration since it determines using world knowledge that border is on the path

of a foreign travel and thus At the border, he was stopped could describe

He went to Frankfurt at a finer level of detail. Therefore, the competing
continuation relation will be disregarded if no corresponding evidence can

be found for it.

Note that if at the end of applying the three filters, there is more than one

possible discourse relation remaining, then the most preferred one is taken. In

Eberle's approach, continuation is preferred over elaboration which is preferred
to flashback.

We are now in a position to discuss the integration of e6 into the event structure of

figure 2.18. The most prominent accessible event is e5. The tense form of the clause

describing the current event e6 is simple past while that of the clause describing e$

is past perfect. Filter Fx rules out all the possible discourse relations between e^ and

e5. The next prominent accessible event ex is tried. This time, a continuation relation
is determined between ex and e6. Thus, the event ex can anchor e& and the event

structure after the integration of e6 is given in figure 2.19.

Since the discourse relations used by Eberle have direct temporal imports (see dis¬
cussion above), the event structure in figure 2.19 can be taken to be another way of

encoding the temporal structure on a time line given in figure 2.20.
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cont e<3

Figure 2.19: The final event structure of example (2.32)

^2 63 64 es ei eg
I I I I I I ' 1 1 1 1 1

Figure 2.20: The temporal structure equivalent to the event structure in figure 2.19

Summary and Discussion

Eberle presents another approach to solving the integration problem. Unlike Song and

Cohen and Hwang and Schubert who use only tense information in their approach,
Eberle also uses information from the preceding text to decide on the reference events

for the current situation. This information from preceding text is represented as an

event structure where the nodes are the events and the arc represents the possible

discourse relations used by Eberle between events.

In Eberle's approach, integrating a current situation into the event structure of the

preceding text involves first identifying the set of possible accessible events. An attempt
is then made to find a possible discourse relation between the current situation and the
most prominent accessible event. It is at this stage that tense information is employed.
If the attempt fails, the next prominent accessible event is tried and so on.

As noted by Eberle, his approach does not address the problem that it is possible to

anchor new events to events that may no longer be accessible. For example, a definite

description using event nominalisation can be used to make this anchoring explicit.

Consider, for instance
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(2.40) a. e\: James renovated his house.

b. e^'- His friend was envious.

c. ez: He did not see the hard work James put in

d. before the renovation.

By the time of integrating e3, the event structure is such that ez is a continuation of ex.

This means that ei is no longer accessible as a temporal anchor for e3. This is wrong

since e\ is explicitly indicated by the event nominalisation the renovation to anchor e3.

Another problem with Eberle's approach is that the notion of an accessible event is

not clearly defined. This notion seems to depend on the kind of discourse relations

that hold between events in the event structure. However, discourse relations are

typically talked of as holding between discourse segments. Furthermore, Canepeel

and Moens [Caenepeel & Moens 93, p 11] point out that it is important to distinguish
between eventuality relations that hold between situations in a discourse, and discourse

relations between the discourse segments.

2.4.5 Lascarides and Asher

Finally, we consider the work of Lascarides and Asher [Lascarides & Asher 91]. The
main focus of this work is to show how a formal theory incorporating defeasible rules

characterising causal laws and Gricean-style pragmatic maxims can explain the two

different temporal interpretations of syntactically similar texts like

(2.41) a. Max stood up. John greeted him.

b. Max fell. John pushed him.

where in the first case, the event described in the first clause precedes the event de¬
scribed in the second clause, while in the second case, the event described in the first
clause is preceded by the event described in the second clause.

Lascarides and Asher's approach makes use of a set of discourse relations between
clauses. Some of these relations are similar to that used by Eberle although Eberle
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regards them as relations between events. As in [Eberle 92], Lascarides and Asher use
these relations to represent a text as a structure. However, for Lascarides and Asher,
the nodes are the semantic contents of the clauses and the arc represents the discourse
relation between the clauses. This structure is termed a discourse representation pair

(drp) by Lascarides and Asher.

Lascarides and Asher represent the semantic content of a clause in first order logic.
For example, the semantic content of the clause Max stood up is represented as

(2.42) 3 e, t [t < now A hold(e,t) A standup(max, e)]

where now is the speech time and the predicate hold(e,t) asserts that the event e holds
at the point of time t which is earlier than now (due to the simple past).

The drp is built up in a manner similar to that used for building up the event structure

in [Eberle 92]. That is, at the time of integrating the semantic content of the current

clause into the drp of the preceding text, a list of open clauses (more correctly, the
semantic content of the clauses) is first identified. A clause a is open if and only if
a is the previous clause or the previous clause is subordinate to a. A clause f3 is

subordinate to a clause a if:

• (3 explains a or f3 elaborates a, or

• there exists a clause 7 such that f3 explains 7 or /3 elaborates 7 and 7 is subor¬
dinate to a.

This definition of openness can be represented pictorially in figure 2.21. Notice from

figure 2.21 that the open clauses are at the right frontier of the structure. Given this

description, it appears that the notion of accessible events used in [Eberle 92] is similar
to the openness notion of Lascarides and Asher.

After identifying the list of open clauses for the current clause, a non-monotonic logic
MASH [Asher & Morreau 91] is used to infer the possible discourse relations holding
between the current clause and each of the open clauses. The drp is then updated
with these discourse relations. The notation (a, (3) is used to mean that there is some
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Figure 2.21: Lascarides and Asher's openness notion

discourse relation between the content a of the clause currently being processed and
the content (3 of the clause which is currently open in the DRP representing the text so

far. Lascarides and Asher say that a and j3 are DISCOURSE-RELATED.

We will now illustrate how Lascarides and Asher's approach infers that in exam¬

ple (2.41a) (reproduced below), the relation between the first and second clause is
one of narration while that in example (2.41b) is one of explanation:

(2.41) a. Max stood up. John greeted him.

b. Max fell. John pushed him.

The appropriate relevant knowledge needed for example (2.41) is as follows:

(2.43) (a, /3) > Narration(/3, a)

(2.44) (a, /?) A fall(a:, me(/3)) A push(a:, y, me(a)) > cause(me(a), me(/?))

(2.45) (a, (3) A cause(me(a), me(/3)) > Explanation(/3, a)

where the function me(a) returns the main eventuality described in a. For example,
if a is the semantic content of Max stood up, then me (a) is the constant assigned to

the event of Max standing up. Glossing in English, the three laws state the following:
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1. The first law states that a normally forms (indicated by the symbol '>') narrative
with the open clause (3 if they axe discourse related (indicated by (a, /?)).

2. The second law states that a and /3 that are discourse related where (3 describes

the event e\ of x falling and a describes the event e2 of y pushing x are normally
such that e2 caused e\.

3. The third law states that a and /3 that are discourse related where the event

described in a caused the event described in f3 are normally such that /3 explains
a.

Consider text (2.41a):

(2.41a) Max stood up. John greeted him.

At the point of integrating the second clause, the only open clause is the first clause

in the text. Therefore, a and (3 are respectively

(2.46) a. 3 f2, e2 [f2 < now A hold(e2, f2) A greet(john, max, e2)]

b. 3 ti, e\ [fx < now A hold(ei, fx) A standup(max, ex)]

Lascarides and Asher assume that a current clause is discourse-related to each of its

open clauses. Thus, in our current example, (a, (3) is asserted. Therefore, law (2.43)
applies and a narration relation is obtained between a and (3. From this discourse rela¬

tion, Lascarides and Asher infer that ex occurs before e2 using the following indefeasible
rule:

(2.47) Narration(/3, a) —»• me(/3) < me(a)

Now, consider text (2.41b):

(2.41b) Max fell. John pushed him.

As before, at the point of integrating the second clause, the only open clause is the
first clause in the text. Therefore, a and (3 are respectively



CHAPTER 2. A SURVEY OF TEMPORAL ANALYSIS 74

(2.48) a. 3 f2, e2 [t2 < now A hold(e2, f2) A push(john,max, e2)j

b. 3 ei [<i < now A hold(ei, fx) A fall(max, ex)]

and (a, (3) is asserted. Now, both law (2.43) and law (2.44) apply in this case. But,
by the Penguin principle built into MASH that the more specific law overrides the less

specific one, the inference that e2 causes ex is derived (law (2.44) is more specific than
law (2.43) since the premise of law (2.44) subsumes that of law (2.43)). This, in turn,
causes law (2.45) to apply giving the result that a explains (3. From this discourse

relation, the following indefeasible law is used to infer that e2 occurs before ex:

(2.49) Explanation(/3, a) —* me(a) < me(/3)

Lascarides and Asher extend the theory to discourse of more than two clauses and

in particular to explain the choice of discourse attachment points for clauses in the

discourse. For example, in

(2.50) a. Guy experienced a lovely evening last night.

b. He had a fantastic meal.

c. He ate salmon.

d. He devoured lots of cheese.

e. He won a dancing competition.

the theory correctly predicts that clause (2.50e) should not be attached to the previous
clause (2.50d). This problem of deciding discourse attachment points for the current
clause bears striking similarity to the problem of deciding suitable preceding events for

integrating the current situation.

We will now briefly explain how the discourse attachment point for clause (2.50e) is
determined. At the point of integrating clause (2.50e), the DRP is as given in figure 2.22.
The open clauses are (2.50d), (2.50b) and (2.50a). Since Lascarides and Asher assume
that a current clause is discourse-related with each of its open clauses, the following
discourse related pairs are asserted into MASH:
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Guy experienced a lovely evening (2.50a)
elaboration "

He had a fantastic meal (2.50b)

narration

Figure 2.22: The drp after processing example (2.50a) to (2.50d)

1. (2.50e, 2.50d)

2. (2.50e, 2.50b)

3. (2.50e, 2.50a)

From the first discourse related pair, mash determines from law (2.43) that (2.50e)
forms a narration with (2.50d).

However, since from world knowledge that winning a dancing competition (the
event described by (2.50e)) cannot be part of having a meal (the event described

by (2.50b)), (2.50e) cannot elaborate (2.50b). Since (2.50d) elaborates (2.50b), another
defeasible law applies to determine that (2.50e) cannot form a narration with (2.50d).

There is thus conflicting information and no discourse relation can be inferred be¬
tween (2.50e) and (2.50d). From the remaining two discourse related pairs, mash

infers that (2.50e) forms a narration with (2.50b) and that (2.50e) elaborates (2.50a).
The final drp is as shown in figure 2.23.

The drp according to Lascarides and Asher represents the discourse structure of the
text. Note that the discourse relations used have a direct temporal import (see inde¬
feasible laws (2.47) and (2.49)) so that from figure 2.23, we can extract the temporal
structure of the events described in (2.50) in figure 2.24. Note that in addition to in¬
defeasible laws (2.47) and (2.49) which give the temporal imports of the narration and
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Guy experienced a lovely evening

Figure 2.23: The final DRP
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Figure 2.24: The temporal structure of example (2.50)

explanation discourse relation, there is also the law that if clause a elaborates clause

/3, then the event described in clause a is included in the event described in clause (3.

Summary and Discussion

Lascarides and Asher describe a formal approach to understanding the temporal re¬
lations in a discourse. Their account employs world knowledge expressed as defeasi¬

ble and indefeasible rules in a non-monotonic logic mash to determine the discourse
relations between clauses and from this, the temporal relations between the events

described by the clauses.

Their theory is also used to determine the discourse attachment points for the current

clause. The approach used is very similar to that used to determine the temporal
anchor for the current event in [Eberle 92]. For instance, there appears to be a strong
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similarity between the notion of accessible events in [Eberle 92] with the openness

notion in [Lascarides & Asher 91].

As in [Eberle 92], it is possible to extract the temporal structure from the drp since

the discourse relations used have a direct correspondence with temporal relations (see
for example indefeasible laws (2.47) and (2.49)).

However, like Eberle, Lascarides and Asher do not address the problem which occurs

when a definite NP is used to explicitly attach the current clause to a clause which is

no longer open.

2.5 Summary and Conclusion

In this chapter, we have looked at the various approaches to temporal analysis. We

began with work on single clauses and proceeded to discuss work on simple linear dis¬

course and finally non-linear discourse. Against this background, we can now identify
more specifically the issues to be tackled in this thesis:

• From our survey, it can be noted that most work only considers clauses describ¬

ing simple situations. These situations are typically represented in a Davidsonian

representation. The exception is the work of [Hwang & Schubert 91] which pro¬

poses a scheme for representing complex events described by clauses with quanti¬
fiers such as Everyone looked at Mary (see chapter 3). In our work, we propose an

alternative representation for complex events which is able to represent repetitive

events and composite events with sub-events.

• A problem in non-linear texts that has been actively investigated is that of inte¬

grating a current situation into the representation built up for the preceding text.
This problem appears in various guises in the work on non-linear texts surveyed
here:

- In [Webber 87], the problem is phrased as determining the referent for the
rt of the current clause.
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— In [Song & Cohen 91b], the problem is phrased as determining the referent
for the RT and ET of the current clause.

— In [Hwang & Schubert 91], the problem is regarded as finding the right pairs
of events that are to be related.

— In [Eberle 92], the problem is one of determining the temporal anchor for

the current event from the preceding text.

— In [Lascarides & Asher 91], the problem of determining discourse attach¬
ment point for the current clause bears a striking similarity with the inte¬

gration problem.

The solutions proposed in the surveyed work are far from satisfactory. For in¬

stance, Song and Cohen and Hwang and Schubert only consider the role of tenses

and are unable to handle discourses in which tense change does not provide

enough information. Although Eberle considers both information from preced¬

ing discourse and tenses, he does not consider the case where a non-accessible
event is explicitly indicated to be a temporal anchor for the current event. In

addition, previous work employs an intuitive notion of reference whose role is not

clearly defined. In our work, we propose an alternative approach in which the
role of reference is explicit and which overcomes the limitations of previous work.

• None of the work surveyed handles quantitative temporal information. Such

information can definitely contribute to temporal analysis. For instance, if an

event e\ takes a duration of 20 minutes and another event e2 takes a duration

of 10 minutes, then e\ cannot be included in e2. In our work, we show how such

quantitative temporal information can be handled and integrated with qualitative

temporal information.

• Finally, in the work surveyed here, world knowledge is needed for determining the
relation between situations. Lascarides and Asher provide a formal account of

how such world knowledge can be used. In our work, in addition to world knowl¬

edge, we also show how information from the environment can affect temporal

analysis. For the instructional domain that we are working on, such informa¬
tion from the environment includes resources information such as the number of
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agents available to carry out the actions indicated in the events. We show how

such environmental information can give rise to different temporal structures of
the same text.



Chapter 3

Representational Issues

In chapter 1, we presented a processing framework of temporal analysis called ta2.

As noted in section 1.2.1, the richness and breadth of natural language means that

any computational treatment has to narrow its focus. Previous work has focused on

narrative texts. In our work, we focus on instructional texts and in particular, on

cookery recipes.

The aim of the present chapter is to develop an ontology that encompasses at least the
more common of the range of situations and their relations in cookery recipes.

The chapter is organised as follows:

In section 3.1, we discuss some of the basic issues that arise from a consideration of

what constitutes an event in a recipe.

In section 3.2, we survey the variety of instructions1 that occur in recipes. This gives

us a better idea of what our ontology, and therefore our representation of the world,
has to deal with.

In section 3.3, we introduce an ontology that can be used to represent a considerable
subset of the data previously considered. In particular, we show how the mechanism

adopted can be used to deal with complex events.
1We will use the terms 'instruction' and 'sentence' interchangeably. Recall also that we use the

term clause for simple sentences.

80
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In section 3.4, we consider the possible kinds of relations that can exist between situ¬

ations.

In section 3.5, we discuss the representation of the relations that can hold between

time intervals.

Finally, in section 3.6, the representation language is summarised, and section 3.7 ends

by indicating some known limitations of the approach taken here.

3.1 Some Ontological Problems in Recipes

In a domain like cookery recipes, ontology is difficult. Our primary concern in this

regard is with the representation of situations that can be described in recipes. As

noted in [Wilensky 91], situations on the whole have been relatively neglected in com¬

putational natural language processing systems and when they are treated at all, the

ontology of situations has generally been limited. Before considering this limitation, we

first discuss a well-known approach for representing events proposed by Reichenbach

[Reichenbach 47] and elaborated by Davidson [Davidson 69, Davidson 80].

In this solution, typically each event is represented by a symbolic constant and infor¬

mation about the event is represented by asserting propositions about the constant.

For example, a Davidson-like representation of the sentence John bought the car from

Mary is as shown in example (3.1), where john and mary are constants.

(3.1) 3 e, c buying(e) A buyer(e, john) A seller(e,mary) A

car(c) A patient(e,c)

Upon skolemising (3.1), we will have a unique constant, say e\, that corresponds to
the buying event. The information about e\ is asserted via the following predicates:

buyer, which indicates that John is the buyer in e\\ seller, which indicates that Mary
is doing the selling; and patient, which indicates the object involved in the transaction.
Note that there is a finite number of such predicates needed for representing an event

(in a theory like the case theory of [Fillmore 68], these predicates are also called cases).
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The types of these predicates will depend on the nature of the events.

As pointed out in [Wilensky 91], there are many advantages to be gained from the
Davidson-like representation discussed above:

• A unique constant is given to an event which not only serves as a locus of in¬

formation about the event but also facilitates the representation of subsequent
references to the event. For example, assume that the sentence John bought the

car from Mary represented in (3.1) is followed by the sentence This upset Jane.

Assuming that the constant assigned to the buying event is ei, then the this can

be resolved to this event and the representation of the second sentence is then

as in example (3.2). Notice that the agent causing the upsetting is the event, e\.

The patient predicate indicates that the person who is being upset is Jane.

(3.2) 3 e upsetting(e) A agent(e, ei) A patient(eJane)

• Events are treated analogously to objects in that they are both treated as in¬

stances of types. For example, in (3.1), the buying event is represented as an

instance of buying (buying(e)). This is similar to that for the car object which
is represented as an instance of car (car(c)). One advantage of this can be seen

in (3.2) where the buying event, e\, is taken as the agent of the upsetting event.
Another advantage is that the analogous treatment enables the same spatial

meaning of a preposition like in to be captured irrespective of the argument.

For instance, an expression like the pen in the box has the representation given

in (3.3) where penl and box 1 are constants.

(3.3) m(penl,boxl)

Now, consider the sentence The pen broke in the box. In this case, unlike the NP,

the pen in the box, we would like to say that it is the event of the pen breaking
that occurs in the box. To do this, we can use the same in predicate given in (3.3)
above:

(3.4) breaking(ei) A patient(ei,penl) A in(ei,6ozl)
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In (3.4), e1 is the constant assigned to the breaking event and the patient predicate
indicates that the object which broke is a pen.

• The representation allows a uniform treatment of verbal adjuncts and verbal

complements. Typically, verbal adjuncts predicate something about the whole
event while verbal complements constitute a component of it. An example will
make this clear. Consider example (3.5).

(3.5) John gave a ring to Mary in London

In (3.5), the NPs John and a ring, and the PP to Mary are regarded as verbal

complements since the objects they describe are typically considered components

of the giving event. However, the PP in London predicates the location of the

giving event and is a verbal adjunct. The verbal complements and adjunct in (3.5)
are represented similarly as in

(3.6) 3 e, r giving(e) A agent(e,john) A recipient(e,mary) A ring(r) A

patient(e,r) A in(e,london)

where john, mary and london are constants. Note that the verbal adjunct in

London is represented by the proposition in(e,london) which is similar to that of
the three verbal complements, one example of which is to Mary, represented by

recipient (e,mary).

A uniform treatment of verbal adjuncts and verbal complements in the Davidson¬

like representation removes a lot of the problems that arise from maintaining a

distinction between verbal complements and adjuncts in a representation scheme.

For instance, it is now no longer necessary to decide on the number of arguments
which verbal predicates should have or whether some arguments are optional or
not. Consider, for instance, the verbal predicate corresponding to the verb throw.
In order to cover data like the following:

(3.7) a. Mary threw the ball onto the roof,
b. Mary threw the ball.
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one might say that the predicate corresponding to throw takes three arguments:

the agent (mary in our example), the patient (ball in our example) and an op¬

tional onto (roof in our example). However, this is unnecessary in the Davidson¬
like representation discussed above.

3.1.1 The Limitations of Simple Events

The Davidson-like representation for events has many advantages as discussed above.

However, the representation has its limitation when applied to more complex domains
such as cookery recipes.

The Davidson-like representation given for the declarative sentences discussed above

can be easily modified to represent simple instructions like

(3.8) Stir the soup,

as

(3.9) stirring(ei) A object(ei,a:i) A agent(ei,hearer)

where e\, x\ and hearer are constants assigned to the stirring event, the soup object
and the hearer of the instruction. The object predicate indicates that the object acted

upon in e\ is xi (the soup object) and the agent predicate denotes that the person

doing the action in e\ is the hearer of the instruction.

However, we also find more complex instructions than that shown in (3.8). For example,
we can have:

(3.10) Stir the soup twice.

In such cases, we can take the view that (3.10) specifies some plural number of the
event described by stir the soup. For ease of exposition, we will call an event like
stir the soup, a simple event. A simple event can be thought of as a singular event
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without any decompositions. We can then represent (3.10) as the following conjunction
of expressions2:

(3.11) stirring(ei) A stirring^)

This approach will work as long as we have a constant for each individual event in the

collection of individuals described. However, this is not always the case since we can

also find examples where the number of repetitions is not specified as in:

(3.12) a. Stir occasionally.

b. Stir every 5 minutes.

In these cases, the events described by these sentences cannot be represented at all if
we allow ourselves only simple events since we do not know how many stirring events

there are in (3.12). Our formalism must therefore be able to represent such non-simple
events.

Other sentences which cause related problems include those with a progressive adjunct
such as:

(3.13) Bring the soup to the boil stirring occasionally.

In the above case, it is tempting to say that (3.13) gives rise to two events, viz those
described by bring the soup to the boil and stirring occasionally. However, this gives

rise to an ambiguity if we follow (3.13) by the sentence Meanwhile, chop a carrot since
it is now unclear whether the carrot chopping event is during the event described by

bring the soup to the boil or the event described by stir occasionally or both. A better
solution is to regard sentence (3.13) as describing an event with the two sub-events
of boiling and stirring occasionally, and assigning a constant, say e\ to it. Then, the
meanwhile connective in Meanwhile, chop a carrot can be taken as indicating that the

carrot chopping event occurs during e\. Note that e\ is not a simple event.

2We leave out predicates like object and agent associated with the stirring event.
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Outside of recipes, observations have also been made by Hwang and Schubert

[Schubert & Hwang 90] on the inadequacy of the Davidson-like representation. In

particular, they point out that it is unclear how such a representation can represent

sentences involving logical operators or quantifiers such as:

(3.14) Everyone looked at Mary.

although the event described by such a sentence may be referred to subsequently and

participates in a causal relation. For example, sentence (3.14) may be followed by:

(3.15) This made Terry furious.

where the this refers to the event described by (3.14).

The problem with representing (3.14) is similar to that of representing (3.12) repeated
below:

(3.12) Stir occasionally.

As discussed above, the main problem with representing (3.12) is that we do not know
the number of stirring events that is being repeated. Similarly, in (3.14), we do not

know the number of people looking at Mary.

3.1.2 The Individuation of Events

A related problem to that just discussed is the individuation problem, i.e., the question
of deciding exactly how many distinct events are mentioned in a sentence. In our work,
events are taken to be actions that are carried out by an agent. Thus, in the context

of instructional texts, the individuation problem can be rephrased as that of deciding
the number of actions that are to be carried out by an agent. The problem is not an

easy one. Consider the following examples:

(3.16) Soak the carrot and the potato.
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(3.17) Beat the egg every 5 minutes.
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The question to ask in these examples is whether they describe one or more than one

event, i.e. actions to be carried out by an agent.

A possible approach is to take the number of events as corresponding to the number
of verbs that appeared in the sentence. Thus, under this approach, the instruction

in (3.16) describes a single event in which the carrot and potato are soaked in one

go. However, there is a problem since whether (3.16) corresponds to one or two events

is dependent partly on the external environment in which the instruction is to be

executed. In some circumstances, the agent may not want to mix the carrot and

potato and soak them in one go. In this case, sentence (3.16) indicates two actions to

be carried out by the agents, corresponding to:

(3.18) a. Soak the carrot,

b. Soak the potato.

A similar difficulty occurs in (3.17). Here, it would appear that the sentence is describ¬

ing more than one event. However, it is not hard to imagine a circumstance in which
the agent has access to an egg-beating instrument which can be set to beat every 5

minutes. Under this circumstance, sentence (3.17) really denotes a single event. In this

event, the only action required of the agent is to press the switch on the egg-beating
instrument.

In our work, we follow Dale [Dale 92] (who follows Hobbs [Hobbs 85]) in adopting the
view that language provides the best guide to ontology. Unlike us, [Dale 92] looks at the
problem of the individuation of objects, i.e. whether the NP shown in example (3.19)
describes one or more objects.

(3.19) one onion, two potatoes and one carrot

Under the view that language provides the best guide to ontology, we take instruc¬
tions (3.16) and (3.17) as corresponding to an event each, and permit events to have
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other events as constituents. Thus, we take the sentence soak the carrot and potato as a

single event and the sentence beat the egg every 5 minutes as a single event. However,
this does not preclude the possibility that as additional information comes to light

(such as the absence or presence of the egg-beating instrument), we might wish to

decompose the two events. In the case of soak the carrot and potato, we might want to

decompose this event into two sub-events: the event of soak the carrot and the event of

soak the potato. Similarly, in a circumstance where there is no egg-beating instrument
and the agent has to do the beating, the event of beat the egg every 5 minutes can be

decomposed into the individual egg-beating sub-events.

3.1.3 Summary

This section has introduced the Davidson-like representation as a common approach

for representing events. We highlight the advantages of the representation and also

point out its limitations when applied to non-simple events.

In developing our approach to representing the ontology in cookery recipes, we adopt
Hobb's view that language provides the best guide to ontology. Before presenting this

approach, we first survey the situations that can be described in cookery recipes.

3.2 A Survey of Situations in Recipes

In the previous section, we presented the idea of what we take to be an event within
the cookery domain. In this section, we will go on to examine the wide variety of
instructions that can be expressed in recipes. Our survey will build on the data analysis
work of [Karlin 88] who carried out an empirical study of approximately 110 sentences
from nine cookbooks. In particular, we supplement Karlin's work by going through

recipes found in the newsgroup, rec.food.recipes and two cookbooks.3

3These cookbooks are The Electric Casserole Cook Book by the Good HouseKeeping Institute and

the Harvest Traditional British Cooking.
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3.2.1 Conjoined, Disjoined and Negated Specifications
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In this section, we discuss examples of instructions involving conjoined, disjoined or

negated specifications.

Conjoined Specifications

If more than one action is to be performed on an object, these are typically listed

together as conjoined verbs, as in the following:

(3.20) a. Soak, drain and rinse the butterbeans.

b. Peel and core the apples.

In (3.20a), the three actions of soaking, draining and rinsing are to be carried out

sequentially on the butterbeans. However, in (3.20c), the two actions of peeling and

coring can be done in any order on the apples: it is not hard to imagine an agent

either coring the apple first and then peeling it or peeling the apple and then coring

the peeled apple.

Sometimes, when the same action is to be carried out over more than one object, the

object is typically specified using a conjoined NP:

(3.21) a. Chop the onion and garlic.

b. Heat the vegetable garniture and the sauce.

where in the first case, both the onion and garlic objects are to be chopped, and in

the second case, the heating action is carried out on both the sauce and the vegetable

garniture.

Finally, it is common to find in recipes instructions with conjoined clauses. These
clauses are themselves simple sentences or instructions. Consider for instance,

(3.22) a. Soak the kidneys beans overnight and drain.

b. Heat the oil in a frying pan and cook the onion for 5 minutes until soft.
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where in both cases, two instructions are conjoined together.
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Disjoined Specifications

The specification of an instruction can also involve disjunction. Such disjunction allows

the agent a choice of actions to select from. Consider example (3.23) which instructs
an agent on how to serve the beef stew that has been just cooked:

(3.23) Serve in its casserole, or arrange the stew on a platter surrounded with pota¬

toes, noodles and decorated with parsley.

Sometimes, the choice is not in the actions to select but in the objects that are to be

acted on by an action. This typically happens when different objects could play similar

roles in the recipe. For instance, consider example (3.24)

(3.24) If the casserole seems dry, add a little water, or more beer.

where the objects of water and beer play the role of 'moistening' the casserole.

Finally, one can also find instructions like:

(3.25) Simmer for 10 minutes or until just tender.

where a disjoined specification is given for the ending point of the simmering action.

Negated Specifications

Finally, a third kind of specification that can be found in recipes is a negated speci¬

fication; these tell the agent what not to do. For example, the instruction in (3.26c)
tells the agent not to burn the onion while frying it.

(3.26) a. Heat the butter and half the oil in a large heavy pan.

b. Fry the onion over a medium heat until brown and crisp.
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c. Do not allow it to burn.
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Such negated specifications can be subsequently referred to as in:

(3.27) a. Do not use too high a heat,

b. This prevents overcooking.

where the this in (3.27b) refers to the 'negated event' described in (3.27a).

The representation scheme used in this thesis is adequate for representing conjoined

specifications. However, we will not attempt to represent disjunctive or negated spec¬

ifications. The problems associated with such specifications are discussed further at

the end of this chapter.

3.2.2 Constituent Specifications

Instructions can specify actions to be taken at varying levels of detail. For example,
clause (3.28b) describes the high-level action of making the icing. The subsequent
instructions in (3.28c) further specify the detail on how this high-level action is to be
carried out.

(3.28) a. When the cake is cooled,

b. make the icing.

c. Put the chocolate and water into a small saucepan and melt over a gentle

heat. Remove from the heat and stir in the butter. When the butter

has melted, beat in the icing sugar.

More specifically, the various instructions in (3.28c) describe the sub-events of the
event of making the icing.

3.2.3 Repetitive Specifications

There are many ways in which repetition can be specified in recipes. A common way

is to specify explicitly that an action is to be repeated a certain number of times either
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on the same object or different objects of the same type. As noted in [Karlin 88], this
can be done via cardinal count adverbials as in example (3.29a), frequency adverbials
as in example (3.29b) and (3.29c) and verbal modifiers as in example (3.29d):

(3.29) a. Baste twice during the cooking period.

b. Stir the soup occasionally.

c. Stir the soup every 15 minutes.

d. Beat in the eggs one at a time.

In example (3.29a), (3.29b) and (3.29c), the same action is to be repeated over the same

object and the number of such repetitions is either explicitly indicated via adverbial

like twice) or easily computed from adverbials like occasionally and every 15 minutes.
On the other hand, in (3.29c), the beating action is to be repeated over objects of the

type egg and the number of such repetitions is given implicitly by the modifier one at

a time.

Sometimes, the action to be repeated need not be a single action. It can be a whole

sequence of actions as in

(3.30) a. Roll the dough out lightly on a floured board, then dab it with small
pieces of butter, using a knife blade. Sprinkle with a pinch of flour. Fold
the pastry towards you and pinch the edges so that it forms an envelope.
Roll as before, rolling away from the joined edge and towards the fold
so that the air is not forced out.

b. Repeat until all the butter has been used and you have an oblong about
1 cm thick.

where the action to be repeated in (3.30b) is the sequence of actions described
in (3.30a).
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3.2.4 Time Quantities
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It is very common to find time information given in recipes. One such kind of informa¬
tion is the duration, which specifies the interval of time over which an action specified
in an event should be carried out. There are many ways in which this can be done. For

instance, verbal modifiers may be used to specify an explicit duration by an absolute
value (eg (3.31a)), a range (eg (3.31b)), a minimum value (eg (3.31c)), or a fuzzy term
like about or around (eg (3.31d)).

(3.31) a. Steam the fish for 15 minutes.

b. Steam the fish for 10-20 minutes.

c. Steam the fish for at least 5 minutes.

d. Steam the fish for about 30 minutes.

Another kind of time information found in recipes gives the extent which separates

two events. Consider the following examples:

(3.32) a. 30 minutes before serving, add the wine.

b. 5 minutes before the end of cooking time, add the seasoning.

In (3.32a), the clause, 30 minutes before serving expressed the information that the
start time of the event of adding the wine precedes the start time of the event of serving

by 30 minutes. However, in (3.32b), the clause, 5 minutes before the end of cooking

time, expressed the information that the start time of the event of adding the seasoning

precedes the end time of the cooking event by 5 minutes.

3.2.5 Conditions

Sometimes, the starting and/or ending conditions of an action are specified in the

recipes. Typically, these conditions indicate the state something is in before an action
can begin or end.
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We first consider starting conditions. Typically, these are expressed with when-clauses
such as

(3.33) When the cake is cooled, make the icing.

where the event of making the icing can only begin when the condition indicated by
the cake is cooled is achieved.

For terminating conditions, an unh7-clause is typically used. Examples of such clauses
are as follows:

(3.34) a. Saute over high heat until moisture is evaporated.

b. Cook the pork until golden brown.

where in the first case, the sauteing event is halted when the moisture is evaporated;

while in the second case, the cooking is stopped when the pork has become golden
brown.

In certain cases, the terminating conditions are specified as a disjunction involving
duration and state change. Consider the following instruction:

(3.35) Cook the pork for 10 minutes or until golden brown.

which specifies that the cooking action is to be terminated when the disjunctive con¬

dition, for 10 minutes or until the pork becomes golden brown, is reached. Notice that

the disjunction need not be expressed with an explicit or as in (3.35).

A question that arises with disjunctive terminating conditions is whether the disjunct
is giving the cook a choice. For instance, in (3.35), does the cook have a choice between

cooking for 10 minutes or until the pork becomes golden brown? According to Karlin

[Karlin 88], the cook does not have such a choice. Instead, the terminating condition
is given by the state change, i.e. when the pork has become golden brown, while the

explicit duration provides information on the usual amount of time that is needed for
the state change to take place. However, for Rock [Rock 92], the explicit duration is
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taken as contributing to evaluating the terminating condition: if the cooking has been

going for more than 10 minutes and the pork is still not golden brown, then something

may be wrong.

Our mechanism is able to represent the starting and terminating conditions by regard¬

ing them as states. We are, however, not concerned with how disjunctive terminating
conditions can be interpreted since they are not crucial to the temporal analysis task.

As such, we arbitrarily follow Karlin in interpreting disjunctive terminating conditions.

3.2.6 Purpose Clauses

The purpose of carrying out an action is sometimes given in an instruction. For in¬

stance, in

(3.36) Heat on stove to simmer.

where the infinitival clause to simmer expresses the purpose of the heating action

described by the main clause. Observe that carrying out the heating action specified
in the main clause results in the simmering of the object being heated.

Purpose clauses can also indirectly constrain the way in which the action specified in

the main clause is to be carried out. For instance, in (3.36), the heat supplied must

be moderated to ensure that the object being heated is simmering and not boiling. As
another example, consider the following from Di Eugenio [Di Eugenio 92]:

(3.37) Cut the dough in half to create two triangles.

who points out that there are many ways of cutting a piece of dough in half, eg either

vertically, horizontally or diagonally, but the purpose clause to create two triangles,
constrains the cutting action to cutting diagonally.

In our work, we can handle instructions with purpose clauses by treating them as

corresponding to single events with two sub-events: the event described by the main
clause and the event described by the purpose clause. The relation between the sub-
events is typically one of either GENERATION or ENABLEMENT (see section 3.4).
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However, we do not consider the issue of how purpose clauses can contribute to de¬

riving a more specific interpretation of the action described in the main clause. For

instance, in (3.37), we do not derive the more specific action of cutting the dough in
half diagonally. Such an issue is peripheral to our main concern of temporal analysis
where relations between events are more important. For work concerned with the role

which purpose clauses play in the interpretation of instructions, see [Di Eugenio 92].

3.2.7 Some Other Observations

There are a number of other phenomena to be found in the specifications of situations.

These are discussed here as they are peripheral to our work and the representation

mechanism presented here does not address them.

Constraints on Actions

Instructions sometimes express the constraints on the actions to be taken. These
constraints express the circumstances under which an action is to be taken and are

typically specified using an (/-clause. Consider, for example,

(3.38) a. If a slightly softer dip is desired, add a little extra milk,

b. If the casserole seems dry, add a little water.

where the circumstances under which the adding action is to be done in each case is

given by the (/-clause.

Speed

Verbal modifiers can be used to characterise the speed of an action. Some examples

are

(3.39) a. Drop the laver cakes into the hot bacon fat and fry fairly fast for 2
minutes on each side, shaping and patting the cakes as they fry.
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b. Combine the egg and melted butter. Add slowly to the flour.

where in the first case, the speed of the frying action is specified by the modifier fairly

fast, and in the second case, the adding action is to be carried out slowly. Such verbal

modifiers can affect temporal analysis by modifying the duration of an action. However,
in our work, we ignore such modification.

3.3 Representing Situations

In this and the following sections, we present a representation scheme that is able to

represent a wide range, although not all, of the examples discussed in section 3.2.

To begin the discussion, we first review the notion of Generalised Physical Objects
introduced by Dale [Dale 92] for representing objects described by NPs in recipes. This
is necessary as our representation for situations is analogous to Dale's representation for

objects, reflecting the strong parallels that have been noted between the logic of objects
and the logic of events [Mayo 61]. Then, we introduce our ontology for situations and
the concept of the structure of an event and go on to describe the representations

used for representing the various information regarding events and states. Finally, we
discuss the issue of assigning to each situation a unique time interval.

3.3.1 Dale's Generalised Physical Objects

Dale [Dale 92] describes a scheme for representing objects described by NPs. In partic¬

ular, he is interested in representing plural NPs such as

(3.40) a. 3 pounds of carrots.

b. 350g mixed raisins, sultanas and currants.

The key idea behind Dale's scheme is that each NP describes a GENERALISED PHYSICAL

OBJECT (or PHYSOBJ for short) which is defined [Dale 92, p 111] as follows:
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A generalised physical object is any (not necessarily contiguous) collection
of contiguous regions of space occupied by matter.
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Thus, a physobj consists of one or more 'conventional' physical objects. For example,
the physobj corresponding to (3.40a) consists of one or more carrot objects whose total

weight is 3 pounds while the physobj described by (3.40b) consists of three objects,

namely raisins, sultanas and currants whose total weight is 350g.

In addition to the notion of PHYSOBJ, Dale also proposes that a physobj has an associ¬

ated STRUCTURE which reflects the PERSPECTIVE from which the physobj is conceived.

In particular, a physobj can be viewed either as mass or countable. For example, when

cooking, the physobj described by four ounces of rice will in all likelihood be viewed

as a mass. However, as Dale points out, if I am a scientist examining rice grains for
evidence of pesticide use, I may view that same quantity of rice as a countable set of

individuals.

We can now show how Dale would represent the physobj described by (3.40a). This

representation is given in (3.41). On skolemising (3.41), we will get a unique constant,

say ®i, assigned to three pounds of carrots. The information predicated of x\ in (3.41)
can be glossed in English as follows:

The physobj is to be viewed as a set (expressed in the structure predicate)
and the elements of this set (denoted by the variable y) have the following

properties: y is to be viewed as a countable individual which is made up

of the substance 'carrot-matter' (indicated by the substance predicate) and
whose shape and size is the default 'carrot-shaped' and 'regular' respectively

(represented in the packaging predicate).

As Dale is also interested in modelling the change in properties of a physobj, a holds

predicate is introduced to indicate the proposition which holds in a particular state.
For instance, in (3.41), the substance and quantity of a physobj are invariant properties
which do not change and thus these are predicated to be true in all states (denoted by
the variable s,). However, the remaining properties can change and may be true only
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in the current state (denoted by the variable sj).
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(3.41) 3 x V S{ holds(.s,-, quantity(a:, (3, pound))) A
3 Sj current (.Sj) A holds(sj, structure(a;, set)) A

[V y holds(sj, element(y, x)) D

holds(s,-, substance(y, carrot-matter)) A

holds(sj, structure(y, individual)) A

holds(sj, packaging(y, (carrot, regular)))]

To complete the discussion, we show the representation of (3.40b), 350g mixed raisins,
sultanas and currants. In Dale's scheme, this object is represented as a set that itself

consists of three sets:

(3.42) 3 x V Sj holds(s,-, quantity(x, (350, g))) A

holds(s,-, constituent^, [ x\, X2, ]) A

3 sj current (sj) A holds(sj, structure(x, set)) A

[ V z holds(sj, structure^!, set)) A

holds(sj, elemental, z)) D

holds(sj, substance(^, raisin-matter)) A

holds(sj, structure^, individual)) A

holds(sj, packaging^, (raisin, regular))) ] A
[ V z holds(sj, structure^, set)) A

holds(sj, element^, z)) D

holds(sj, substance(2, sultana-matter)) A

holds(sj, structure^, individual)) A

holds(sj, packaging(z, (sultana, regular))) ] A

[ V 2 holds(5j, structure^, set)) A

holds(sj, element^, z)) D

holds(sj, substance(z, currant-matter)) A

holds(5j, structure(z, individual)) A

holds(sj, packaging(z, (currant, regular))) ]
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where the predicate constituent(x, [x\, x2, X3]) indicates the constituents of the set x.

As noted in [Dale 92, p 96]: the constituents of the object x are constituents not only
in the current state but in all states; this reflects the fact that the constituent objects
in question are physical constituents irrespective of whatever other properties are true

of the objects.

Note that the substances which objects consist in are organised into a taxonomic

hierarchy (see Appendix C for how such a hierarchy can be defined). For instance, the
substance potato-matter is a kind of the substance vegetable-matter and we write:

(3.43) is-a(potato-matter, vegetable-matter)

3.3.2 An Ontology for Situations

In our work, we are interested in representing instructions like the following:

(3.44) Stir occasionally.

(3.45) Soak and drain the beans.

We first define a notion of generalised physical event (event for short), analogous
to its counterpart (physobj) in Dale's scheme:

A generalised physical event is any (not necessarily contiguous) collection
of contiguous regions of time occupied by process stuff.

As in the case of physobj, an event may consist of one or more 'conventional' physical
events. For example, the event corresponding to (3.44) consists of a number of stirring
events and the 'process stuff' which this event consists in is the stirring action. Sim¬

ilarly, the event corresponding to (3.45) consists of two events (namely, the soaking
and the draining event) and that the process stuffs which the event consists in are the

soaking and draining action.

In our work, events have to be physical since we are dealing with events that have

physical existence. In fact, these physical events describe actions to be performed by
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an agent and the process stuff can be thought of as the action to be carried out by an

agent.

However, unlike Dale who uniformly takes each NP as corresponding to a physobj, we
do not uniformly take each sentence in the text as corresponding to a single event.

Of course, there are sentences which we take as corresponding to an event such as

sentences with progressive adjuncts:

(3.13) Bring the soup to the boil stirring occasionally.

and sentences with conjoined clauses:

(3.22a) Soak the kidney beans overnight and drain.

Example (3.13) is taken as describing a single event (see discussion in section 3.1.1) with
the two 'conventional' physical events of bring the soup to the boil and stir occasionally.

Likewise, example (3.22a) is taken as describing a single event with the two sub-events
of soaking and draining. This decision is motivated by the fact that the single event

described by an instruction with conjoined specifications can be subsequently referred
to. For example, in

(3.46) a. Move your cursor to the third sentence and type control-K.

b. This will kill the sentence.

the this refers to the sequence of events described by the sentence in (3.46a) which
contains two conjoined clauses.

However, a sentence with temporal adjuncts as in

(3.47) Steam the fish until it is tender.

is not taken as corresponding to a single event but instead gives rise to two situations

(i.e. either events or states): the event of steaming the fish and the state of the fish
being tender.
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Situations

States Generalised Physical Events

Figure 3.1: Our ontology of situations

Our ontology for situations is shown graphically in figure 3.1.

Based on the discussion above, we can now introduce the following predicates into our

representation scheme:

state This is a 1-place predicate which indicates that its argument is a state. Thus, if
the constant assigned to the situation described by the water is cooled is si, then
the following means that sx is a state:

(3.48) state(si)

event Like the state predicate, this predicate has arity 1 and indicates that its argu¬

ment is an event. For example, if the constant assigned to the situation described

by Bring the soup to boil is ex, then the following means that ex is an event:

(3.49) event(ex)

In addition to classifying situations into either events or states, we also consider the
STRUCTURE of an event. Like its analogue in Dale's scheme, the structure of an event

indicates the perspective from which the event is to be conceived. The first question
we need to answer is why we need such a notion of structure. Consider the following
event described by

(3.50) Cover the pot.

The event in (3.50) appears to be a simple event which cannot be decomposed. How¬
ever, one might argue that such events can be decomposed if we examine them more

closely. For example, the event of covering the pot might be composed of the event of
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looking for the cover, the event of lifting the cover and the event of lowering the cover

onto the pot. Similarly, Allen [Allen 83, p834] argues that there seems to be a strong

intuition that, given an event, one can always "turn up the magnification" and look at

its structure.

It seems more appropriate to talk about the view from which an event is to be conceived.

That is, events are not inherently simple or complex (i.e. decomposable) but are viewed
as such. Thus, an event can be viewed at one time as simple, and at another time as

complex. For example, when cooking, I will typically view the event of covering the pot
as a simple event. However, if I am an industrial researcher interested in productivity,

I would regard (3.50) as a complex event which can be decomposed into its sub-events
so that the timing for each of these sub-events can be taken.

In our domain of cooking, it is unlikely that there is any need to maintain more than
one perspective on a given event at any one time. We thus represent the perspective

as an objective property of an event. This is done by using the following predicate:

structure This is a 2-place predicate whose first argument is the event and the second

argument is the perspective from which the event is to be conceived. In our work,
we find it appropriate to consider three perspectives. First, we have SIMPLE

events, i.e. events which are viewed as having no decompositions. Then, we

have complex events which are viewed as having decompositions: within this

category, we distinguish between repetitive events and non-repetitive one. Recall
from section 3.2.3 that a repetitive event is one in which some actions are repeated

over the same object (eg (3.29b)) or objects of the same kind (eg (3.29c)).

(3.29b) Stir the soup occasionally.

(3.29c) Beat in the eggs one at a time.

We will call complex events which are repetitive, REPETITIONS and those which
are not, COMPOSITE events. Now, consider the following examples:

(3.51) a. e\ : Steam the fish.
b. e<i : Bring the soup to the boil stirring occasionally.
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c. e3 : Stir occasionally.

(3.51a) describes an event which is to be viewed as a simple event and thus will
be represented as

(3.52) structure(ei, simple)

However, (3.51b) describes an event which is to be viewed as a composite event

with two sub-events, namely the event of boiling some soup and the event of

stirring occasionally. This is represented as

(3.53) structure(e2, composite)

Finally, (3.51c) describes an event which is to be viewed as a repetition since the

stirring action is repeated; this can then be represented as

(3.54) structure(e3, repetition)

As noted, an advantage of using the notion of the perspective of an event is that it does

not preclude the possibility that as more information is obtained, a simple or repetitive

event may be decomposed and be viewed as composite. We can therefore begin with
a underspecified representation which can be fleshed out as processing proceeds. This

is especially useful in handling the problem of the individuation of events discussed
earlier. For instance, we can view the instruction soak the carrot and potato as a

simple event. However, when more information is obtained, we could decompose this

event into two individual sub-events, i.e. the event is now to be viewed as composite.

Finally, each event has a begin and an end state. This is represented using an occur

predicate. For example, if the end state of the event described by steam the fish until
it is tender is si and the state where the event begins is sq, we write

(3.55) occurs(ei, so5 ^i)

where e\ is the constant assigned to the steaming event. To gloss in English, (3.55)

says that the state prior to the execution of the steaming action is so while the state

after the execution is si.
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In our work, conditions expressed in instructions (see section 3.2.5) are represented as

states. We will now turn to how these can be represented. Typically, a state can be

described by a formula of the form:

(3.56) Px A P2 ... Pn

where each Pi is a proposition that is true in that state. Following Dale [Dale 92],
we will use a holds predicate to indicate that some propositions hold in a given state.

Thus, in the sentence, steam the fish until it is tender, the state described by it is

tender is represented by

(3.57) holds(si, tender(a:i, +))

assuming that si is the state described and xx is the constant assigned to the physobj
described by the fish. The representation of x\ is as in Dale's scheme. Thus, the

representation assigned to the sentence the fish is tender will be

(3.58) 3 s, x state(^) A

holds(s, tender(x, +)) A

holds(s, substance(a>, fish-matter)) A

holds(s, structure^, individual) A

holds(s, packaging («i, (fish, regular)))

3.3.4 Representing Simple Events

There are many properties which one can predicate of the constant assigned to a simple
event. These properties are as follows:

• Telic

• Action
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• Participants
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In this section, we will describe these.

Telic

We subdivide simple events into two types: telic and atelic. Telic events are those

in which the actions specified in the events have a well-defined culmination point

(eg (3.59a)) while atelic events do not have such a point (eg (3.59b)). We can think of
the culmination point as the time point at which the event ends and a change in state

occurs.

(3.59) a. Bring the soup to the boil,

b. Steam the fish.

(3.59a) describes a telic event since the boiling action has a well-defined culmination

point which is observable by an agent. This culmination point is the time point at

which the boiling temperature of the soup is reached and bubbling occurs. On the other

hand, the steaming action in (3.59b) does not have such a point. In fact, in recipes,
we often finds that the steaming action is qualified with an imh7-clause (eg (3.60a)) or
a for-clause (eg (3.60b)) to indicate the ending point.

(3.60) a. Steam the fish until tender.

b. Steam the fish for 20 minutes.

At this point, it is appropriate to compare Vendler's classification of situations (see

chapter 2) with ours. Recall that Vendler classifies situations into 4 kinds: states, activ¬

ities, achievements and accomplishments. Vendler's states correspond to our own states

while Vendler's activities correspond to our atelic events. We have, however, collapsed
Vendler's achievements and accomplishments into our telic events. In Vendler's scheme,
achievements (eg (3.61a)) and accomplishments (eg (3.61b)) both have a well-defined
culmination point and the only difference between them is that accomplishments are

extended in time while achievements are punctual.
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(3.61) a. Achievement: John arrived.

b. Accomplishment: John walked to the store.
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In our work, we do not distinguish between achievements and accomplishments since

we take all events including such apparently punctual events like John coughs as be¬

ing extended, i.e. occurring over a time interval. We leave the discussion of this to

section 3.3.6.

To indicate whether an event is telic or atelic, we use a telic predicate which takes as

its first argument, an event, and its second argument, a value of either + or —. A

value of -f indicates that the event is telic while a value of — indicates that the event

is atelic. For instance, the event described by Bring the soup to the boil is telic and

would thus be represented as

(3.62) telic(ei, +)

where e\ is the constant assigned to the event. On the other hand, the event described

by Steam the fish is atelic and thus has the following representation

(3.63) telic(ei, —)

where e\ is again the constant assigned to the steaming event.

Action

This indicates the action which an agent has to carry out in the event. For example,
in the event described by Bring the soup to the boil, the action which an agent has to

carry out is the bring to boil action. This can be represented as:

(3.64) actional, bring-to-boil)

where e\ is the constant assigned to the bring-to-boil event.
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The various actions are arranged into a taxonomic hierarchy (see Appendix C for how
such a hierarchy can be defined). For example, we know that scrubbing action is a

kind of (ako) cleaning action:

(3.65) ako(scrubbing, cleaning)

Participants

Each event involves an agent carrying out actions on objects. For example, in melt the

butter, the agent is to carry out the melting action on the butter object. The agent

and the objects which the agent acts on form the participants in the event.

In the cookery domain that we are dealing with, sentences are of the imperative kind

and the agent is typically omitted. We therefore assume that the agent is the hearer
of the instruction and this can be represented as

(3.66) agent(ei, hearer)

where e\ is the event corresponding to the instruction.

In addition to the agent, we also need to represent the role which objects play in the
action. As pointed out in section 3.1, the choice of these roles is typically arbitrary
and depends on the domain. In this thesis, we will use role names like OBJ, ADDENDUM

and BASE. The meanings of these roles are typically self-explanatory. For example,
the participants involved in the event of melt the butter can be represented as

(3.67) agent(ei, hearer) A obj(ei, x{)

where e\ is the melting event and x\ is the butter object. Similarly, the participants
involved in the event of add the cheese to the pasta can be represented as

(3.68) agent(ei, hearer) A addendum(ei, x\) A base(ei, x-2.)

where e\ is the adding event, x\ is the cheese object and X2 is the pasta object.

We can now show the representation of the event described by melt the butter:
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(3.69) 3 e, so, -si event(e) A structure(e, simple) A

telic(e, +) A action(e, melting) A

occurs(e, so, si) A agent(e, hearer) A

obj(e, »i)

where x\ is the constant assigned to the butter object.

3.3.5 Representing Repetitions and Composite Events

In this section, we discuss the representation of events which are to be perceived as

complex, i.e. as having sub-events. We divide such complex events into the repetitive

kind (repetitions) and the non-repetitive kind (composite events).

Repetitions

There are two main aspects of a repetition, namely the event to be repeated and the

number of such repetitions. We divide our discussion according to how the number of

repetitions is specified:

• Specification by Cardinality

• Specification by Frequency

• Implicit Specification

Specification by Cardinality First, consider a case where a cardinal count adver¬
bial is used such as in stir the soup twice. Here, the number of repetitions is explicitly

indicated via the adverbial, twice. The event that is repeated is represented using an

element predicate while the number of such repetitions in the event is represented with
a cardinality predicate:

(3.70) 3 e, So, -Si event(e) A structure(e, repetition) A occurs(e, so, si) A

cardinality(e, 2) A
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[ V / element(/, e) J

event(/) A structure(/, simple) A

telic(/, —) A action(/, stirring) A

agent(/, hearer) A obj(/, X\) ]

where x\ is the constant assigned to the soup object and s0 and si are the constants

assigned to the state before and after the execution of the instruction respectively.

Specification by Frequency Next, consider the representation of the repetitive

event described by stir the soup occasionally. Here, the event to be repeated is the

stirring event and the frequency of carrying out this repetition is indicated by the

frequency adverbial occasionally. As before, the event to be repeated is represented

via the element predicate. The frequency of such repetition in the event is represented

with a frequency predicate:

(3.71) 3 e, s0> si event(e) A structure(e, repetition) A occurs(e, s0, si) A

frequency(e, occasionally) A

[ V / element(/, e) D

event(/) A structure(/, simple) A

telic(/, —) A action(/, stirring) A

agent(/, hearer) A obj(/, x\) ]

where aq, so and Sj are as described in the previous section.

Implicit Specification Finally, consider a repetitive event in which the number of

repetitions is not explicitly given as in beat the eggs one at a time. Here, the number
of repetitions is implicitly given by the cardinality of the set of eggs which the NP,

the eggs resolved to. Assuming that the constant assigned to this object is xi, the

representation of the instruction is as follows:

(3.72) 3 e, so; $i event(e) A structure(e, repetition) A occurs(e, so, si) A

[ V x egg(:r) A element(a:, x\) D
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3/ element(/, e) A event(/) A

structure(/, simple) A telic(/, —) A

action(/, beating) A agent(/, hearer) A

obj(/, x) ]

Glossing in English, the above representation essentially says that for every egg that is
an element of x\, the agent is to perform the beating action on it and that each of these
actions is an element of the repetition. Note that in (3.72), we used the proposition,

egg(x) as a gloss for the actual representation using Dale's scheme:

(3.73) holds(so, substance(x, egg-matter)) A

holds(so> structure^, individual)) A

holds(s0, packaging(x, (egg,regular)))

Composite Events

Unlike repetitions, composite events are events in which the sub-events are typically

explicitly indicated. Consider, for example, the representation of the composite event

described by soak and drain the carrot:

(3.74) 3 e, /, g, so, si event(e) A structure(e, composite) A occurs(e, so, si) A

constituent(e, [/,<?]) A

[ event(/) A structure(/, simple) A

action(/, soaking) A telic(/, +) A

agent(/, hearer) A obj(/, xi) ] A
[ event(^r) A structure^, simple) A

action(<7, draining) A telic(<7, +) A

agent(5, hearer) A obj(£, xx) ]

where x\ is the constant assigned to the physobj described by the carrot. Essentially,
the representation says that the instruction soak and drain the carrot is to be viewed as

a composite event with two sub-events, namely the soaking event (/) and the draining
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event (g). These two sub-events are said to be the CONSTITUENTS of the composite

event. Note that no ordering is implied between / and g in the notation [f,g].

Combining Repetitions and Composite Events

It is possible in instructions that a composite event can include repetition as a sub-

event, and for a composite event to be repeated. These can all be represented in our

representation scheme. Consider the following examples

(3.75) a. Bring the soup to the boil stirring occasionally,

b. Flake the salmon discarding all bones.

(3.75a) describes a composite event with a repetition as a sub-event. This can be

represented as

(3.76) 3 e, /, g, so, si event(e) A structure(e, composite) A occurs(e, so, -si) A

constituent(e, [/, 5])) A

[ event(/) A structure(/, simple) A telic(/, +) A

action(/, boiling) A agent(/, hearer) A

°bj(/» xi) ] A

[ event(g) A structure^, repetition) A

frequency(5, occasionally) A

[ Vh element(/i, g) D

event(h) A structure(h, simple) A

telic(/i, —) A action(h, stirring) A

agent(h, hearer) A obj(h, £1) ] ] A
simultaneous(/, g)

where / is the event of bring the soup to the boil and g is the repetitive event of stir

occasionally. The relation between / and g is one of simultaneity and this is represented

using the simultaneous predicate (see section 3.4).
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(3.75b) describes a repetitive event in which at each repetition, a piece of salmon flesh
is flaked and any bone in this piece discarded. We can represent this as

(3.77) 3 e, so) event(e) A structure(e, repetition) A occurs(e, so, «i) A

[ V x flesh(x) A part-of(x, xi) D

3 /, g, h element(/, e) A structure(/, composite) A

constituent(/, [<7, hj) A

[ event(<7) A structure^, simple) A telic((7, +) A

action((7, flaking) A agent(<7, hearer) A

°bj(fif, x) ] A

[ event(/i) A structure(h, repetition) A

[ Vz/ bone(j/) A part-of(z/, x) D

3 i element(z, h) A

structure(i, simple) A telic(i, +) A

action(z, discarding) A agent(z, hearer) A

°bj(t, y) ] ] A

simultaneous(g, h) ]

where x\ is the constant assigned to the physobj described by the salmon and flesh(x)
and bone(x) are again glosses for the actual representation in Dale's scheme:

(3.78) a. holds(so5 substance(x, flesh-matter)) A

holds(so, structure(x, mass))

b. holds(so, substance(x, bone-matter)) A

holds(so) structure(x, individual)) A

holds(so, packaging(x, (bone, regular)))

Glossing in English, the above representation says that (3.75b) describes a repetition
in which the event to be repeated is the composite event of executing g and h simul¬

taneously: the event g is the flaking of a flesh from the salmon and h is the repetitive
event of discarding all the bones from the flesh which has been flaked.
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3.3.6 Situations and Time Intervals
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In the cookery recipes that we have looked at, there are no instances of instructions

expressing instantaneous actions: all actions require some time to be carried out. Out¬

side of cooking, Allen [Allen 83, p834] talks about being able to 'magnify' any events

so that they can be regarded as having duration. This is especially true with modern

day technology like slow-motion pictures which can be used to magnify apparently

punctual events like John coughs.

There are, however, objections to such arguments since there exist sentences like John

reached the summit of the mountain in which there is one moment when John had not

yet reached the summit, and another moment when he had, with no time intervening

between the two. As Comrie [Comrie 76] points out, no matter how slowly presented
the film of John's mountaineering exploits, the interval between these two moments

would always be zero. However, one can also argue that the sentence is describing the
culmination point of a climbing event. That is, the sentence is not introducing a new

event but describing a part of a climbing event. Such a climbing event occurs over a

time interval.

Hence, in our work, we regard situations as having duration and occurring over a time
interval. To reflect this, we introduce the following predicate:

interval This is a 2-place predicate whose first argument is a situation and the second

argument is a time interval associated with the situation. For example, if the
constant assigned to the event described by Bring the soup to the boil is e\, then
the time interval associated with e\ is represented as follows:

(3.79) interval(ei, te\)

where te\ is the time interval associated with e\.

A time interval has two well-defined time points representing the beginning (start time

point) and ending (end time point) of the interval. We define two functions that take
an interval and return its start and end time points:
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start This is a function which takes a time interval and returns the start time point

of the interval.

end This is a function which takes a time interval and returns the end time point of
the interval.

The unit of time used in our work is taken to be the minutes. Thus, if we have an

instruction like bake the cake for half an hour, we would convert the hour time unit

into the minute time unit, i.e for half an hour is converted into for thirty minutes. The

choice of the minutes as the default time unit is the right grain size for the cooking

domain. However, it may not be for other domains. For instance, in the domain of

sub-atomic physics, a more appropriate time unit will be of the order of nanoseconds.

We now have the necessary means to represent the information on time quantities

discussed in section 3.2.4. The remaining functions and predicates that we need are

those from the arithmetic domain, namely, =, >, <, <, >, +, —. The representations

of the time information given in (3.31) are as follows:

(3.31) a. Steam the fish for 15 minutes

end(fei) — start(tei) = 15

b. Steam the fish for 10-20 minutes

end(tej) — start(fei) > 10 A

end(fei) — start(tei) < 20

c. Steam the fish for at least 5 minutes

end(tei) - start(fei) > 5

d. Steam the fish for about 30 minutes

end(fei) — start(iei) > 25 A

end(iei) — start(tei) < 35

where tei is the time interval associated with the event of steaming the fish. Note that
the fuzzy term, about, is treated as indicating a range of time. This range is arbitrarily
set to be about ± 5 in our work. For instance, about 30 minutes is taken to mean 30

± 5.
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Finally, we illustrate how we represent the time quantity information given in sentences
like

(3.80) a. 30 minutes before serving, add the wine,

b. Just before serving, add the wine.

In (3.80), we assume that the time interval associated with the serving event is tex and
the time interval associated with the event of adding the wine is te2. For (3.80a), the
information expressed in 30 minutes before can then be represented as

(3.81) start(tei) — start(ie2) = 30

In (3.80b), we take the modifier of the &e/ore-adjunct, just, as an indicator of quanti¬
tative information like 30 minutes. Here, one might argue that it is possible to take
the phrase just before as indicating that the serving event begins immediately after the
add-the-wine event. However, such an approach seems to miss some important gen¬

eralisations. We would, for instance, need to associate a temporal relation with every

structurally similar phrase like 30 minutes before and 20 minutes before. A better way
is to take a compositional approach and consider the contribution of the semantics of

just and before separately. This is what we do in our work.

More specifically, we take the word just as conveying quantitative information, speci¬

fying that the difference between the start time of serving and the start time of adding
the wine is equal to the duration of adding the wine, i.e.

(3.82) start(tei) — start(te2) = end(fe2) — start(te2)

which can be further simplified to

(3.83) start(tei) = end(te2)

The full representation of the instruction in (3.32a), 30 minutes before serving, add the
wine, is as follows:
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(3.84) 3 e, te, /, tf, s0, si, s2, «3

[ event(e) A structure(e, simple) A

occurs(e, so, «i) A interval(e, te) A

action(e, serving) A telic(e, +) A

agent(e, hearer) A obj(e, £i) ] A

[ event(/) A structure(/, simple) A

occurs(/, «2) -53) A interval(/, //) A

action(/, adding) A telic(/, -f) A

agent(/, hearer) A obj(/, #2) ] A

precede(/, e) A

start(te) — start(t/) = 30

where xi and a>2 are the constants assigned to the object that is served and the wine

object. Notice that / precedes e as indicated by the before-adjunct.

3.3.7 Related Work

As pointed out above, outside of the cooking domain, there has been some work on ad¬

dressing the problem associated with representing sentences involving logical operators
or quantifiers such as

(3.14) Everyone looked at Mary.

One proposal is made by Hwang and Schubert [Hwang & Schubert 91]. In this pro¬

posal, a sentence like (3.14) is essentially taken as a proposition that completely de¬
scribes or characterises a situation e\. According to Hwang and Schubert, a proposition
is said to completely characterise a situation if everything else one can say about the

situation is entailed by that proposition. An operator '**' is introduced to connect the

proposition to the situation it completely describes:

(3.85) 3 e\ (**(V x (Person(x) —> Look-at(x, mary)), ei))
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Observe that the scheme of Hwang and Schubert essentially allows one to tag the

propositions expressed in sentences with situations. Thus, if there are n sentences

which gives rise to n propositions, one would need to decide which of the propositions

are associated with the same situation identifiers. Given the propositions associated
with the same situation, one would then need to decide which of these is characterising
and which is entailed. These decisions may not be obvious. For example, Hwang and
Schubert consider the situation associated with (3.86) to be characterised by the main

clause, John fired the gun but not by that corresponding to the subordinate clause,

Looking down the barrel of the gun.

(3.86) Looking down the barrel of the gun, John fired the gun.

However, as pointed out in Wilensky [Wilensky 91], the same would then apply to the
sentence

(3.87) John fired his gun looking down the barrel.

But this sentence could be followed by

(3.88) This enabled him to focus clearly on the target

This sentence is problematic since we have no event characterised by looking down the
barrel and it is this event that enables John to focus clearly on the target.

In addition to the above problem, Hwang and Schubert's proposal also loses some of
the advantages associated with a Davidson-like representation discussed in section 3.1.
For example, there is no longer an analogous treatment of objects and events and
verbal adjuncts and verbal complements are treated separately.

A second proposal is made by Wilensky [Wilensky 91]. Basically, he proposes to include

complex events which have sub-events into the event ontology. Then, sentence (3.14)
repeated below:

(3.14) Everyone looked at Mary.
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can be taken as describing such a complex event and represented as follows:

(3.89) 3 cl aio(cl, complex-event) A

V x [ aio(x, person) D

3 I aio(/, looking-at) A

actor(Z, x) A patient(Z, mary) A

sub-event(cl, I) ]

where the aio predicate is used to denote that the first argument is an instance of the
second argument. Thus, cl is predicated to be an instance of a complex-event and / is

predicated to be an instance of the looking-at event.

Our own representation scheme is closer to Wilensky's suggestion than to Hwang and

Schubert's. For instance, our representation extended in the obvious way to sen¬

tence (3.14) is:

(3.90) 3 e event(e) A structure(e, composite) A

[ V x person(a:) D

3 / element(/, e) A

event(/) A structure(/, simple) A

action(/, looking-at) A

agent(/, x) A patient(/, mary) ]

Unlike Hwang and Schubert, our scheme and Wilensky's preserve the advantages of
the Davidson-like representation. However, unlike Wilensky, we do not regard complex
events as part of the event ontology. Instead, we see them more as one of the perspec¬

tives from which an event can be viewed. As discussed previously, this means that our

representation does not preclude the possibility that an event can be decomposed later
if additional information merits it. Moreover, we distinguish between complex events

that are repetitive and those that are not.
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Temporal Relations Non-Temporal Relations

1. Precedes and After

2. Includes and Included-In

3. Meets and Met-By

4. Simultaneous

5. Enables and Enabled-By
6. Generates and Generated-By
7. Constituent and Constituent-In

8. None

Table 3.1: The set of relations between situations

3.4 The Relations Between Situations

In the previous section, we have seen how situations can be represented. In this section,

we discuss the relations that can hold between pairs of situations.

The choice of our relations that we use in our work is motivated by the linguistic data
that occurs in recipes. Based on this data, we arrive at the following set of relations

(and their inverses) in table 3.1. Note that the none relation is a default relation used
when we do not know which of the seven relations and their inverses (numbered 1 to
7 in table 3.1) hold between a pair of situations.

We will now discuss these various relations including their representation and the data

expressing them. It must be stressed that in many cases, the relations are not directly

given in the data but have to be inferred.

3.4.1 The Precedes Relation

Informally, if a situation, sit\ precedes another situation, sit2, then sit\ occurs before

sit2. We will use the notation

(3.91) precedes(siti, sit2)

to indicate that siti occurs before sit2.

A common way of indicating the precedence relation in recipes is via the use of the

6e/ore-adjunct to connect the clauses describing the two situations. If we let a and /3
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be the two clauses, then there are two ways of connecting them with a before-adjunct,

namely either /? before a or Before a, /?. Consider the following examples:

(3.92) a. Before serving, stir in the soured cream and sprinkle with parsley,

b. Bring the water to boil before putting in the spaghetti.

In these examples, the he/ore-adjunct serves to indicate that the event described in the

main clause precedes the event described in the he/ore-clause. For instance, in (3.92a),
the complex event of stir in the soured cream and sprinkle with parsley precedes the

event of serving; and in (3.92b), the event of bring the water to boil precedes the event

of putting in the spaghetti.

Another way of indicating the precedence relation is through the use of ^hen-adjunct:

(3.93) Mix together the flour and salt in a large mixing bowl and then rub in the
butter.

In such cases, the event described in the main clause precedes the event described in

the then-clause.

Finally, the a/fer-adjunct can also be used as in

(3.94) After cooking the meat for 1 hour, add half the mushrooms and half the
dumplings to each pan.

where the event described in the a/ter-clause precedes the event described in the main

clause.

3.4.2 The Includes Relation

If the action in an event is to be carried out in the course of an action in another event,

then the temporal relation between them is one of inclusion. We will use the notation

(3.95) includes(ei, e2)
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to indicate that the event t\ includes e2, i.e. e2 is done during e\.

There are many ways in which a temporal inclusion relation can be expressed in recipes.

One way is to use a meanwhile-adjunct as in

(3.96) a. Put the prepared leeks into boiling, salted water and cook for twenty
minutes.

b. Meanwhile, make the cheese sauce.

where the event described in the meanwhile-clause is temporally included in the event

described by (3.96a).

Another way is to use the u>Me-adjunct as in

(3.97) While the pastry is cooking, mix all the vegetables into the sauce and season

to taste.

In this case, the event described in the u>/iz7e-clause includes the event described in the

main clause. Note that the u7n'/e-clause need not be at the front, it can also be at the

end of the sentence as in

(3.98) Transfer the poussins to a heated serving dish and keep hot while making the
gravy.

3.4.3 The Meets Relation

A meets relation is said to hold between two situations if one situation happens just

after another situation. We specify this with

(3.99) meet(sifi, sit2)

where sit\ meets sit2.

A common way of specifying that one situation meets another is via the use of the

until-adjunct. This is the case when expressing the culmination point of an event. For

example, in
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(3.100) Boil the broccoli until it is tender.
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the boiling event meets the state in which the broccoli is tender.

Another way is to qualify the before and after adjuncts with modifiers like just as shown
in (3.80b):

(3.80b) Just before serving, add the wine.

Unlike the case of the until-adjunct, the meets relation in (3.80b) is the result of
the semantics of just and before. As explained in section 3.3.6 and section 3.4.1, we

take just as indicating quantitative information and before as indicating the temporal

relation of precedes. These two kinds of information are then combined (in the second

step of TA2) to determine that the meets relation holds in (3.80b) (see chapter 6).
This compositional treatment of just and before is much better than simply treating

just before as a phrase that indicates the meets relation since it allows important

generalisations in the data to be captured.

3.4.4 The Simultaneous Relation

Two situations are said to be simultaneous if they happen during the same time. We

specify this with

(3.101) simultaneous(sitx, si^)

to indicate that sit\ is simultaneous with sit2.

The most common way of expressing simultaneity in recipes is to use progressive ad¬

juncts as in

(3.102) a. Bring the soup to the boil stirring occasionally.

b. Line a greased bowl with bread, cutting and fitting it to ensure there are

no gaps.
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where in the first case, the event of stirring occasionally is to be done at the same time
as when the soup is brought to a boil, and in the second case, the action of cutting
and fitting are to be carried out at the same time as the lining.

3.4.5 The Generation Relation

The generation relation has been extensively studied in the literature [Goldman 70,
Pollack 90, Grosz & Sidner 90, Balkanski 90, Di Eugenio 92]. Intuitively, generation
is the relation between actions conveyed by the preposition fry in English, as in turn on

the light by flipping the switch. More formally, an event e\ generates another event e2

if and only if when e1 occurs, a set of conditions C hold such that the joint occurrence

of e\ and C imply the occurrence of e2. In the case of the event described by turn on

the light by flipping the switch, e\ is the event of flipping the switch and e2 is the event

of turning on the light. The conditions that must hold when e\ is performed include
that the wire, the switch and the bulb are working. As another illustration, consider

open the door by pressing the button. Here, e\ is the event of pressing the button and

together with the conditions that the button and the electrical connection to the door
is working will result in the door opening.

An important property of the generation relation is that if it holds of two events, e\

and e2, then performing e\ simultaneously leads to the performance of e2. We specify
the generation relation with

(3.103) generates(ei, e2)

to indicate that e\ generates e2. Now, if e\ generates e2, then e\ is simultaneous with

e2-

Having defined the generation relation, we now discuss how it is expressed in recipes.
In her study on instructions from a how-to-do book on installing wall coverings, and
from two craft magazines, Di Eugenio [Di Eugenio 92] finds that the use of fry-clauses
to convey the generation relation is not that common. Instead, purpose clauses (see
section 3.2.6) are commonly used. This appears to be true also in cookery recipes
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where purpose clauses are used to indicate the generation relation as in
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(3.104) a. Heat on the stove to simmer.

b. Now, steam the chicken. Make a few slits on the chicken to expose the
meat inside.

where in the first case, the event of heating on the stove simultaneously results in

simmering, and in the second case, the event of making a few slits results in the meat

being exposed at the same time. One can reexpress the examples in (3.104) using the

by-clause:

(3.104) a. Simmer by heating on the stove.

b. Now, steam the chicken. Expose the meat inside by making a few slits

on the chicken.

3.4.6 The Enablement Relation

Following first Pollack [Pollack 90] and then Balkanski [Balkanski 90], we take the view
that the enablement relation holds between two events, e\ and e2, if and only if an

occurrence of e\ brings about a set of conditions that are necessary (but not necessarily

sufficient) for the subsequent performance of e2. Unlike the generation relation, both

e\ and e2 have to be performed by an agent. For instance, [Balkanski 90] gives the

following example:

(3.105) Mary inserted a diskette to back up her file.

where the action of inserting a diskette does not simultaneously result in her backing

up the file. Instead, the action brings about a condition necessary for the subsequent

performance of backing up a file. We will use the notation

(3.106) enables(er, e2)

to denote that ei enables e2-
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As noted in [Di Eugenio 92], a purpose clause can sometimes, although rarely, be used
to express the enablement relation:

(3.107) Unscrew the protective plate to expose the box.

where the event of unscrewing the plate enables the event of taking the plate off which

generates the event of exposing the box.

In recipes, it appears that it is equally hard to find instructions involving purpose

clauses which express enablement. Instead, the enablement relation is expressed

through examples like

(3.108) a. Soak and drain the carrots,

b. Cook some rice. Cool.

where in the first case, the event of soaking brings about a condition of carrots in

water necessary for the performance of the draining action, and in the second case,

the event of cooking brings about a condition of rice is hot which is necessary for the

cooling action. Notice that in these cases, linguistic cues do not provide much help in

determining the relation between events; instead, real-world knowledge is required.

We note that if an event e enables another event /, then e precedes / since e brings

about the conditions necessary for the execution of /.

3.4.7 The Constituency Relation

Recall that a composite event is an event which can be further decomposed into sub-
events. In this case, we say that a constituent relation holds between an event and
each of its sub-events. If the sub-events of a composite event c are c\ ... cn, then the
relation between the c,- and c is as follows:

(3.109) constituent(c, c,) 1 < i < n

If an event e is a constituent of an event /, then / includes e.
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3.4.8 The None Relation
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As noted, this is a default relation used when we do not know yet which of the seven

relations and their inverses holds between a pair of situation. Consider, for instance

(3.110) a. ei: Chop the carrots,

b. e<i'. Chop the potatoes.

In this example, no explicit temporal relation is given between e\ and e<i via temporal
connectives like meanwhile. In addition, it is not possible to infer enablement, generation
and constituency between the two events.

In such cases, we use the default none relation as the relation holding between e\ and

£2-

(3.111) none(ei, ei)

Unlike the other seven non-default relations discussed above, the none relation can give

rise to different temporal relations in different environments (see section 3.5).

3.5 The Relations Between Time Intervals

In the previous section, we presented the possible relations that can hold between sit¬

uations. As noted, these relations can be either temporal or non-temporal. In this

section, we discuss the relations that can hold between the time intervals associated
with situations via the interval predicate (see section 3.3.6). Clearly, the relations
between time intervals can only be temporal. In our work, we make use of the seven

temporal relations and their inverses proposed in [Allen & Kautz 85] to represent the
possible temporal relations between time intervals. These relations are given in fig¬
ure 2.5 (see chapter 2).

At this point, it is appropriate to point out the relationship between the relations of
two situations as discussed in the previous section with the temporal relations between
their time intervals:
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• We first consider the temporal relations between two situations. Typically, the

temporal relations between two situations as expressed via linguistic devices like

6e/ore-adjunct are more vague than the temporal relations that can hold between
two time intervals. For example, a 6e/ore-adjunct connecting two clauses, a and

/?, only indicates that the situation described by a must precede that described

by (3. However, it does not specify whether the time interval assigned to the
situation described by a should be < or meets the time interval assigned to the
situation described by /?. That is, a precedes relation between two situations is

equivalent to the following Allen relations between their time intervals:4

(3.112) siti precedes sit2 = [ tsitl < tsit2 ] V [ tsih m tsit2 ]
= tsit\ m} tsiti

The corresponding Allen relations for the inverse of the precedes relation (i.e. the
after relation) is:

(3.113) siti after sit2 = tsaj {>, m} tsa2

Similarly, the includes relation between two situations is equivalent to the follow¬

ing Allen relations between two time intervals:

(3.114) sit\ includes sit2 = [ £siti ^ tsit2 ] V [ tsiti si tsit2 ] V [ tsiti fi tsiti ]
= tsiti { di^ si, ji) tsn2

The corresponding Allen relations for the inverse of the include relation (i.e. the
included-in relation) is:

(3.115) siti included-in sit2 = tsitl {d, s, f} tsa2

The two remaining temporal relations (and their inverses if any) between situa¬
tions correspond directly to their Allen counterparts for time intervals:

(3.116) siti meets sit2 = tsitl m tsn2 = tsitl {m} tsit2

siti met-by sit2 = {mi} tsit2

4For clarity, we used the infix form, i.e siti precedes siti instead of precedes(si<i, siti). Similarly,
we use t,itl < ta,t2 instead of , ts,t2) where i3ttl and t„t2 are the time intervals associated with
siti and siti respectively.
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(3.117) siti simultaneous sit2 = tsn1 = tsn2
— tsiti {—} tait2

The above observation on the vagueness of temporal relations indicated by tem¬

poral adjuncts is also noted in [Song & Cohen 88]. Such vagueness may be made
more precise in language via other means. One example of such a device is quan¬

titative information. For instance, the quantitative information expressed by 30

minutes and just in example (3.80) reproduced below:

(3.80) a. 30 minutes before serving, add the wine,

b. Just before serving, add the wine.

makes precise the intended temporal relation between the serving event and the

add-the-wine event. In the first case, the time interval associated with the add-

the-wine event is entirely before the time interval associated with the serving

event. On the other hand, in the second case, the time interval associated with

the add-the-wine event meets (m) the time interval associated with the serving
event. This implies that any temporal analysis framework which does not con¬

sider quantitative information will necessarily produce a less precise temporal
structure than one which does.

• Of the non-temporal relations, the enablement and generation relation (and their

inverses) have a direct mapping into Allen relations:5

(3.118) sit\ enables sit2 —> siti precedes sit2
= isit\ tsit2

sit\ enabled-by sit2 —► siti after sit2
= isit\ \ ? tni} tsn2

(3.119) sit\ generates si/2 siti simultaneous sit2
— tsit\ {=} t$it2

siti generated-by si/2 siti simultaneous si/2
= tsiti {tsif2

5Again, we use the infix form i.e siti enables sit2 instead of enables(si<i, sit2).
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However, the constituent and the default none relation does not have a direct

correspondence with Allen relations (see chapter 5). In fact, as will be further
discussed in chapter 5, the none relation can give rise to different Allen relations
in different environments. For instance, consider example (3.110) given above
and reproduced below:

(3.110) a. e\: Chop the carrots.

b. e2: Chop the potatoes.

where there is a none relation between e\ and e2. In an environment where there

is only one agent and one chopping knife, the time interval associated with e\

and e2 must be disjoint since both e\ and e2 require the agent to bring it to

completion. On the other hand, if there are two agents and two chopping knives,
then e\ and e2 can be carried out simultaneously.

Based on the discussion above, the correspondence of all the relations between situ¬

ations except the none and constituent relation and the Allen relations between the

time intervals assigned to the situations is given in table 3.2. We will discuss this

correspondence further in chapter 5.

3.6 The Representation Language Summarised

This section summarises the details of the representation language presented in the

preceding sections.

In our work, we are primarily interested in the representation of situations. A situation
can be either a state or generalised physical event (or event for short).

A state is described by the set of conjoined propositions which HOLD in that state.

An event is defined as follows:

any (not necessarily contiguous) collection of contiguous regions of time
occupied by process stuff
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siti relation sif2 tsnj {Allen relations}
siti precedes sit?, tsiti {^ > TO } tsit2

siti after sit2 isiti {^ > mi} fsiij
siti includes sit2 tsiti {fii di} tsn2

siti included-in sit2 isit\ {®> /) d} fsit2
siti meets sit2 tsiti {m} tsit2

siti met-by sit2 tsit\ {mi} tait2

siti simultaneous sif2 isiti {=} tsit2

siti enables sit2 isiti m} tait2

siti enabled-by sit2 isiti {--*> mi} tsn2

siti generates sit2 isiti { —} fsi<2

siti generated-by si/2 tsiti {—} tsit2

Table 3.2: The relations between situations and their time intervals

and can be viewed as either a simple event, a composite event or a repetition.

Simple events are further divided into whether they have a well-defined culmination

point or not, i.e. whether they are telic or not. In addition to these properties, the

following are necessarily true of events:

• Every event occurs from a begin state to an end state.

• Every event has an action indicating the action which an agent has to carry out

in the event.

• Every event has a finite number of participants. An example of a participant is
the agent responsible for carrying out the action.

Both events and states are associated with a time interval over which the situations

occur.

The predicates used for representing the various kinds of information discussed above
are given in table 3.3. In addition, there are two main functions in the representation
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Predicate Meaning

state(s) s is a state.

event(e) E is an event.

structure^, STRUCT) The structure of e is struct whose value

is either simple, composite or repetition.

element(F, e) F is an element of E.

constituent(e, [Fi, ... Fn]) The events Fi ... Fn are the sub-events

of event E.

telic(e, telicity) E is telic if TELICITY is + and atelic if

TELICITY is -.

occurs(E, si, s2) E occurs from a begin state, Si,

to end state, S2

action(E, action) The action which an agent in e has to carry out

holds(s, PROP) Proposition PROP holds in state s

interval(siT, INT) Situation sit occurs over interval int

Table 3.3: The predicates in our representation language

language and these are shown in table 3.4.

We also represent the relations that can hold between situations. These relations can

be both temporal or non-temporal and are represented via the predicates given in

table 3.5.

Finally, we represent the relations between the time intervals associated with situations.

Here, we employ the seven relations and their inverses defined in Allen Interval Algebra

Function Meaning

start(lNT)

end(lNT)

This indicates the start time point of interval int
This indicates the end time point of interval int

Table 3.4: The functions in our representation language
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Predicate Meaning

precede(siTi, SIT2) Situation siti precedes situation sit2.

include(siTi, SIT2) Situation SiTi includes situation SIT2.

simultaneous(siTi, SIT2) Situation SiTi is simultaneous with sit2.

meet(siTi, sit2) Situation siti meets situation sit2.

enable(Ei, e2) Event ei enables event e2.

generate(Ei, E2) Event ei generates event e2 .

constituentEi, Fi) Event Ei has constituent Fi

none(siTi, sit2) There is no information about the relation

between SiTi and SIT2.

Table 3.5: The predicates for the relations between situations

and these are represented via the predicates given in table 3.6. The meanings of these

predicates directly correspond to the meanings of their respective relations shown in

figure 2.5.

3.7 Conclusions and Limitations

This chapter presented an ontology for representing a wide range of situations that can
occur in recipes. Outside of recipes, Wilensky's proposal [Wilensky 91] for representing
sentences with logical operators like Everyone looked at Mary is compatible with our

idea presented here.

We have also presented a set of relations between situations that are motivated by
data in cookery recipes. We believe this set is also applicable to other instructional
domains.

Finally, we made use of Allen's seven relations and their inverses to represent the
relations between time intervals associated with situations. As noted, these temporal

relations between time intervals are more exact than the temporal relations between

situations that are conveyed by adjuncts like before and meanwhile. In chapter 6, we
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Predicate Meaning

<(tsiti, tsit2) tsiti < tsit2

d(tsitj, tsit2) TSITi d TSIT2

s(tsiti, tsit2) tsiti S tsit2

f(tsiti, tsit2) tsiti /tsit2

m(tsiti, tsit2) tsiti m tsit2

o(tsiti, tsit2) tsiti otsit2

= (TSITi, tsit2) tsiti = tsit2

Table 3.6: The predicates for Allen relations between time intervals

will show how the relations between time intervals can be deduced from the relations

between situations. These relations between time intervals together define the temporal
structure of a discourse.

Before concluding this chapter, we end by noting some limitations of our ontology.

3.7.1 Limitations

In this section, we consider some of the potential problems which our approach to ontol¬

ogy might give rise to. In particular, we consider the issue of representing instructions
with negated specifications and those with disjunctive specifications.

Negated Specifications

Consider example (3.27) given above and reproduced below:

(3.27) a. Do not use too high a heat.

b. This prevents overcooking.

In (3.27), there appears to be a need for a 'negated event' representing sentence (3.27a)
which the diectic this in (3.27b) can refer to. An obvious approach in accordance with
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our idea is to extend the ontology for situations to include negated-event so that a

possible representation of (3.27a) will then be

(3.120) 3 e, x negated-event(e) A action(e, using)
agent(e, hearer) A obj(e, x) A

heat(x) A intensity(x, high)

However, such 'negated events' may seem ontologically suspect as noted in [Hobbs 85,
Hirst 89].

Disjunctive Specifications

Instructions with disjunctive specifications pose another problem. Consider exam¬

ple (3.23).

(3.23) Serve in its casserole, or arrange the stew on a platter surrounded with pota¬

toes, noodles and decorated with parsley.

where the disjunction appears to be giving a hearer a choice of which actions to take.
If this is the case, then it is appropriate to take (3.23) as giving rise to two events.
This is what we do for instructions with temporal adjuncts like

(3.121) Before serving, add the wine.

where the instruction gives rise to two events with the relation between them being the

precede relation. However, in the case of disjunction in (3.23), what kind of relations
exist between the two events? An obvious answer might be to introduce an or relation
but again this seems to be ontologically suspect.



Chapter 4

The Quasi-Temporal Structure

In chapter 3, we presented our approach to representing the situations (events or states)
mentioned in a text. In this chapter, we consider the issue of how the representations

of successive instructions are built up into a Quasi-Temporal Structure (qts), the first
level of representation in our temporal analysis framework, ta2.

Recall from chapter 1 that informally the qts encodes the representation of the situ¬

ations described in the text and the relations that hold between pairs of situations.

The qts is built up by incrementally integrating the situation described by the

current' sentence into the qts of the text preceding the current sentence. At the same

time as the qts is built up, any quantitative information mentioned in the text is

extracted and stored.

As noted in chapter 2, many approaches have been proposed recently on how to carry

out the integration process [Webber 87, Song & Cohen 91b, Hwang & Schubert 91,
Lascarides & Asher 91, Eberle 92]. However, these approaches all have their limita¬
tions. The main purpose of this chapter is to describe a new approach to carrying out

the integration process that overcomes some of the limitations of previous approaches.

Section 4.1 gives a formal definition of the qts and describes an approach for building
it.

136
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Section 4.2 focuses on the integration problem within the approach for building a qts.

We present our integration approach and compare this with related work.

Our integration approach makes use of information from reference resolution and in

section 4.3, we present our reference resolution model. This model incorporates the
effects of carrying out simulation of the events described in the text.

Section 4.4 considers the issue of updating the QTS with event decompositions when

necessary.

Finally, section 4.5 presents a conclusion and summary.

4.1 Building the Quasi-Temporal Structure

4.1.1 A Formal Definition of the QTS

We now give a formal definition of the qts which is described informally above. The

qts of a text is defined as a 2-tuple (g, r):

• g = {sit{ | 1 < i < n A siti is either an event or state}

• r c relns x G x G such that (r, siti, sitj) 6 r only if
2 < i < n A 1 < j < i

where relns is the set of possible relations between situations which in the case of

cookery recipes is given by the seven relations (precede, include, simultaneous, meet, en¬

ablement, generation and constituency) and their inverses, and the default none relation
discussed in chapter 3.

The set g is the set of situations (either events or states) mentioned in the text. Note
that in this set, we use event subscripts to indicate order of processing, for example, e2
is processed later than e\ and e3 later than e2 and e\. The set r indicates the relations
that can hold between a situation and the situations processed prior to it. As noted

earlier, the set of possible relations is given by relns.
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Given a qts, if V i, j 3 (r,j, sit{, sitj) g r, we say that the qts is complete.

Otherwise, the qts is said to be reduced.

We will now define what is meant for a current situation to be integrated in a qts.

Recall that in our framework, a situation is either an event or state and that an event

can be either composite (with sub-events) or non-composite (i.e. either a simple or

repetitive event).

We first define what is meant for a non-composite event or state to be integrated:

Definition 1

A non-composite event or state is integrated in the qts if it is related
with respect to all the situations processed prior to it in the qts.

A composite event is made up of sub-events. If each of these sub-events is integrated

in the qts, the composite event will also be. We thus have the following definition:

Definition 2

A composite event is integrated in the qts if all its sub-events are inte¬

grated in the qts.

We can now define what is meant for a non-composite event or state to be related with

respect to a previous situation:

Definition 3

A non-composite event or state curr is said to be related with respect

to a previous situation prev if either

1. there is a relation between curr and prev or

2. there exists a chain of situations INTERMj ... INTERM„ from CURR

to PREV (CURR —> INTERMi . . . -*• INTERMn -*■ PREV) such that the
relation between CURR and PREV can be deduced from the relations

between the situations in the chain.
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The relation is one of the seven relations and their inverses (if any) and the
default none relation.

There are a finite number of rules that we use to determine whether the relation

between CURR and PREV can be deduced. We will discuss these rules in section 4.2.2.

Finally, we define what is meant for a QTS to be fully-integrated:

Definition 4

A QTS is FULLY-INTEGRATED if all the situations in the QTS are integrated.

Note that the first situation mentioned in the text is trivially integrated.

Before leaving the section, we will illustrate the various points make above with two

examples.

Example 1

Consider the following QTS:

(4.1) G = {ei, e2, e3}
R = {(none, e2, ex), (after, e3, e2), (none, e3, ex)}

where the relations between e2 and ex and between e3 and ex are the default none

relation while e3 occurs after e2.

The QTS given in (4.1) is complete. In addition, the QTS is fully-integrated since all
the events in the QTS are integrated:

• ex is trivially integrated since it is the first event,

• e2 is integrated since it is related with respect to the previous event ex by the
none relation and

• e3 is integrated since it is related with respect to the two previous events e2 and
ex respectively by the none and after relation.
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Example 2
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Consider the following qts:

(4.2) g = {ei, e2, 63}
R = {(after, e2, eQ, (after, e3, e2)}

The qts given in (4.2) is reduced since the set r does not contain an entry for the
relation holding between e3 and e\. As in (4.1), the qts is fully-integrated since all
the events in the qts are integrated:

• e\ is trivially integrated since it is the first event,

• e2 is integrated since it is related with respect to the previous event e\ by the

after relation,

• e3 is integrated since it is related with respect to the previous event e2 by the after
relation and there exists a chain of events (e3 —► e2 —> e\) such that the relation
between e3 and e\ can be deduced using the following rule (see section 4.2.3):

(4.3) If after(e3, e2)
And after(e2, ei)
Then after(e3, ei)

Note that the QTS given in (4.2) can be made 'complete' by adding the after relation
between e3 and e\ into the set R:

(4.4) G = {ei,e2, e3}
R = {(after, e2, ex), (after, e3, e2), (after, e3, ei)}

4.1.2 Our Approach to building the QTS

Recall from chapter 1 that ta2 takes a text as input. Each successive sentence in

the text is first processed into some intermediate representation which is close to the
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surface syntactic structure of the sentence (see chapter 6). This intermediate repre¬

sentation is then further processed and the situations extracted from the intermediate

representation integrated into the qts of the preceding discourse.

The integration process ensures that the current situation is integrated in the qts.

This process computes a qts which is reduced and fully-integrated. Leaving details
to section 4.2, our approach to integrating the current situation can be outlined as

follows:

1. Let prev-events be the set of events processed prior to the current situation.

2. Pick an event (ref) from prev-events.

3. Determine the relation between ref and the current situation curr.

4. Remove any event (prev) in prev-events whose relation with curr can be
deduced from the relation between curr and ref, i.e. there exists a chain curr
—> ref ... —> prev such that the relation between curr and prev can be

deduced from the relation between the situations in the chain.

5. Repeat step (2) to (4) till prev-events is empty.

For ease of exposition, we will call the events that are picked at step (2) of our approach
reference events. One way of thinking about these reference events for a current

situation is that they provide 'anchors' from which the relations between the current

situation and the remaining previous events can be determined without going through

step (3). This step invokes both linguistic information and real-world knowledge and
will be further discussed in section 4.2.4.

Using the above approach, a current situation will get integrated in the qts since
for any previous event prev, the current situation is either related explicitly to prev

(step (3)) or there exists a chain of situations from the current situation to prev such
that the relation between the current situation and prev can be deduced (step (4)).
Note that by carrying out step (4) in our approach, a current situation may not be

explicitly linked to every of its previous situations. In particular, the current situation
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will not be linked to those previous events whose relations with the current situation

can be deduced (see section 4.2.3). This is why the qts computed by our approach is

a reduced one.

Note that, if at step (4) of the approach, we do not remove the set of previous events

whose relations with the current situation can be deduced, but instead, add the deduced

relation between the previous events and the current situation to the qts, the qts

obtained will be a complete one. Thus, a reduced qts computed by our approach

can be easily converted into an equivalent complete one. Why then do we compute a

reduced qts instead of a complete one ? There are three reasons for this:

1. A reduced qts distinguishes between events whose relations with the current sit¬

uation are determined using a combination of real-world and linguistic knowledge
from those events whose relations with the current situation can be deduced using

pattern-matching rules such as rule (4.3). The former events are called reference
events. Recall from chapter 2 that a notion of reference has been widely adopted

in previous work on temporal analysis although such notion is often regarded as

intuitive. By clearly defining what is the role of a reference event in our work
and using it to compute a reduced qts, we are in a better position to compare

our approach with previous work.

2. A suitable choice of reference events can 'maximise' the number of previous events

removed in step (4) of our integration approach and thus 'minimise' the need for
step (3). As noted, this step typically involves real-world reasoning which may

be computationally expensive.

3. A reduced qts contains less links than a complete qts and this implies less

computational work to be done when traversing the reduced qts to obtain the
set of possible interval algebra relations between the time intervals associated
with the situations (see chapter 5).
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We are now in a position to present the top-level algorithm for constructing a reduced
and fully-integrated qts of a text. This is given in figure 4.1. The algorithm takes as

input the set of n sentences in the text (sent\ ... sentn) and returns as output the
text's qts. There are five main kinds of sentences we consider:

• The sentence may be a simple sentence such as the sentence chop a carrot.

• The sentence may contain a progressive adjunct as in the sentence bring the soup

to the boil stirring occasionally.

• The sentence may contain conjoined clauses as in take out the chicken leg, cut it
and add it back to the soup. Note that sentences with conjoined verbs such as

soak, drain and rinse the beans are treated as if they are sentences with conjoined

clauses. Thus, we treat the sentence soak, drain and rinse the beans as equivalent

to the sentence soak the beans, drain them and rinse them.

• The sentence may have a temporal connective connecting a subordinate clause

and a main clause as in the sentence When the water is boiling, add the meat.

• The sentence may have a temporal connective connecting a subordinate NP with
a main clause as in the sentence 10 minutes before the end of cooking time, put

in the seasoning.

In the algorithm, the build-intermediate-rep function takes a sentence and returns

its intermediate representation. We will further discuss this function in chapter 6.

The intermediate representation of a sentence is further processed in the

incremental-build-qts function which extracts the representations of the situa¬

tions underlying the sentence and integrate these representations into the preceding

qts. We will first give a gloss of this algorithm:

• If the intermediate representation is that of a simple sentence such as chop a

carrot, the algorithm will extract the situation underlying it using the build-

situation-rep function (see section 4.3.2). The underlying situation is then
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Algorithm : build-qts
Input : senti ... sentn
Output : QTSn

1. Let QTS0 = ({}, {})
2. For i = 1 to n, do

Let INT-REP,- = build-intermediate-rep(sercft)
Let QTS,- = incremental-build-qts(lNT-REP,-, QTS,_i)

3. Return QTSn

Figure 4.1: The top level algorithm for building the QTS of a text

integrated into the preceding QTS via the call to the INTEGRATE function. The
function takes three arguments: the situation to be integrated, the preceding QTS

and any explicit integration information provided in the sentence (an example of
such information is the explicit mention of a reference event in the sentence). This
function will be further discussed in section 4.2 when we present our approach

to the integration process.

• If the intermediate representation is that of a sentence with a progressive adjunct,
such as bring the soup to the boil stirring occasionally, the algorithm first extracts
the event underlying the main clause and integrates it into the preceding QTS.

Subsequently, the algorithm extracts the situation underlying the progressive

adjunct clause and integrates it into the preceding QTS. When integrating the
situation underlying the adjunct clause, the event underlying the main clause is

taken to serve as an explicit reference event and as noted above, this is passed

as explicit integration information to the INTEGRATE function. Since we take a

sentence with a progressive adjunct as describing a single event (see section 3.1.1),
the algorithm will build a new event with the events described by the main
and progressive adjunct clauses as constituents (i.e. a composite event). No

integration is needed for this composite event since a composite event is integrated
if all its sub-events are integrated. The QTS is updated accordingly.
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• If the intermediate representation is that of a sentence with conjoined clauses

clause^ ... clause^, the algorithm successively extracts the situation under¬

lying each of the clause,- and integrates them into the preceding qts. Note
that when integrating the situation underlying clause,-, we take the situation

underlying clause,-_i to serve as an explicit reference event. Since we take a

sentence with conjoined clauses as describing a single event (see section 3.1.1),
the algorithm will build a new event with the events described by the conjoined
clauses as constituents. As in the case of a sentence with progressive adjunct,
the qts is updated accordingly with this new event.

• If the intermediate representation is that of a sentence consisting of a main clause
connected to a subordinate clause by a temporal connective, such as before serv¬

ing, add the wine, the algorithm first extracts the situation underlying the sub¬
ordinate clause. There are two cases to consider:

— If the subordinate clause is describing a new event, it is integrated into the

preceding qts. On the other hand, if the subordinate clause is describing
a state, we then find an event in the preceding qts which can give rise to

this state (via the find-assoc-event function). Here, we are making the
assumption that a state is brought into existence by an event. For example,
in

(4.5) a. Chop the meat.

b. When the meat is chopped, add the seasoning.

the when-c\a.nse is describing a state which is actually the end state of the

chopping event described in the first sentence. The state is then integrated
into the preceding qts and the event which gives rise to the state serves as

an explicit reference event for the integration.

The new event or state underlying the subordinate clause is then used as an

explicit reference to integrate the situation described by the main clause.
— If the subordinate clause is describing a previously mentioned event (perhaps
from a different aspect), no integration of the event in that clause is needed.
For example, in
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(4.6) a. e\\ Cool the water.

b. When the water has cooled, e2'. put in the meat.

the when clause in the second sentence is describing the end state of the

cooling event described in the first sentence. In such cases, the previously
mentioned event (ex in example (4.6)) and the aspect which the subordinate
clause is describing this event are passed as explicit integration information
to the integrate function for integrating the situation described by the
main clause (e2 in example (4.6)).

The main clause is next processed and the situation underlying it is integrated
into the preceding qts.

• If the intermediate representation is that of a sentence consisting of a main clause
connected to a subordinate np of the form the start of x or the end of x by

a temporal connective, such as 10 minutes before the end of cooking, add the

seasoning, the algorithm first processes the subordinate np. It does this by

calling the build-obj-rep which builds up the object representation underlying
the subordinate np. The event which this object relates to is then determined

(via the find-assoc-event function) and this event is taken to serve as an

explicit reference for integrating the situation underlying the main clause.

Recall that ta2 deals with quantitative information. In the discussion above, we have
left out the description of the function in the incremental-build-qts algorithm

which processes quantitative information given in a sentence. This function add-

quant stores any quantitative information mentioned in the sentence in the following
form:

(4.7) X - Y R N

where X and Y is either start(I) or end(I) (I is a time interval and start and end

are functions which return the start and end time point of I (see chapter 3)), R is a

relation from the set {<, >, <, >, =} and N is a number. For example, from the
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sentence cook the rice for 20 minutes, we extract and store the following quantitative
information where te\ is the time interval associated with the cook-the-rice event:

(4.8) end(tei) — start(tei) = 20

We postpone the discussion of this function to chapter 5.

Based on the discussion above, we can now present the INCREMENTAL-BUILD-QTS al¬

gorithm. This is given in figure 4.2 and continued in figure 4.3 and figure 4.4. To
illustrate the algorithm, we will step through four examples using texts containing two

sentences.

Example 1

Consider the following example:

(4.9) a. sent\: Cool the water.

b. sent2: When the water has cooled, put in the herbs.

At the beginning, we initialise QTSo to

(4.10) QTS0 = ({}, {})

Now, sent\ is passed to the incremental-build-qts algorithm. It is a simple sentence

and thus step (1) of the algorithm in figure 4.2 is applicable. At step (la), the BUILD-

SITUATION-REP builds up the representation of the event described by sent\ (say ei).

Then, the following call is made:

(4.11) integrate(ei, QTS0, 0)

Leaving details to section 4.2, the INTEGRATE function integrates ex into QTSo to got

QTSi:

(4.12) QTS! = ({ei}, {})
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Algorithm : incremental-build-qts
Input : int-rep, QTSp
Output : qts

1. If int-rep is that of a simple sentence, then

(a) Let [curr-sit, quant] = build-situation-rep(lNT-REP)
(b) add-quant(curr-si/, quant)
(c) Let qts = integrate(curr-sit, qtsp, 0)
(d) Return qts

2. If int-rep contains the intermediate representation of the main clause (say main)
and that of a progressive adjunct clause (say prog), then

(a) Let [sitmain, quantmain] = build-situation-rep(maln)
(b) add-quant(sitmain, quantmain)
(c) Let QTSma,-n — integrate(sifmatn, QTSP, 0)
(d) Let [sitpr0g, quantpr0g] = build-situation-rep(prog)
(e) add-quant(sifpros, quantprog)
(f) Let qtsprop — {Gprog , Rprog )

- integrate(sitprog, QTSmo,-n, [sitmain, progressive])
(g) Let sitcomp = an event whose constituents are {sitmain, sitprog}
(h) Let qts — (Gprog U {sitcomp},

Rprog bf {(constituent, sitcomp: <sitrnnxn), (constituent, sitcomp? s%tpTog)j)
(i) Return QTS

3. If int-rep contains the intermediate representation of conjoined clauses (say
clausei . . . clause^), then

(a) Let [siti, quant\] = build-situation-rep(cLAUSEi)
(b) add-quant(s«tt, quant\)
(c) Let QTSi = integrate(sifi, QTSP, 0)
(d) For i = 2 to n, do

(i) Let [siti, quanti] — build-situation-rep(CLAUSE,)
(ii) add-quant(«'t;, quanti)
(iii) Let qts,- = integrate(szt,-, qts,_i, and])

(e) Let (g„, rn) = qtsn
(f) Let sitcomp = an event whose constituents are {siti, ... sitn}
(g) Let QTS = (g„ U {sitcomp{,

Rn U {(constituent, sitcomp, siti) | 1 < « < «})
(h) Return QTS

Figure 4.2: The INCREMENTAL-BUILD-QTS algorithm
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4. If int-rep contains the intermediate representation of a subordinate clause (say
subord) connected to that of a main clause (say main) by a temporal connective
con, then

(a) Let [sitsubord, quantsubord] = build-situation-rep(suBORD)
(b) If sitsubord is a state or new event, then

i. add-quant(sjtsu6or.(£, quaixtsubord]
11» If Sitsubord I® ^ State,

A. Let EVENT = find-assoc-event(sit3U()0r££)
B. Let QTSsubord = integrate(sits„f,ord, qtsp, [event, perfect])
C. Let integ-info = [sitsubord, perfect, con]

iii. If sitsub0rd is an event,
A. Let QTS5U£>0j'(^ — iategrate(sztsu£)07*^, QTSp, 0)
B. Let integ-info = [sitsubord, con]

iv. If MAIN is that of a simple sentence, then
A. Let [sitmain, quantmain] = build-situation-rep(maln)
B. add-quant(sitmasn, quantmain)
c. Let qts = integrate^ qtssutor(i, integ-info)

v. If MAIN contains the intermediate representation of conjoined clauses
(say clausEi ... clause,,), then
A. Let (Gint, R,„f) = build-qts(CLAUSEi, ... CLAUSE,,)
B. Let sitmain — an event whose constituents are Gt-nt
C. Let QTSmai„ — (Gmatn) Itmain)

= integrate(sitmo,„, qtss,,^,.^, integ-info)
D. Let qts — (gmotn {sitmain] U g,„} U {sitmain},

^main U R,-„t U {(constituent, sitmain, siti), | siti € Gmi})
(c) If sitSubord describes another ASPECT of a given event, then

i. Let QTSsubord — QTSp
ii. Let INTEG-INFO = [sitsubord, ASPECT, CON]
iii. If main is that of a simple sentence, then goto (4b iv)
iv. If main contains the intermediate representation of conjoined clauses

(say clause} ... clause,,), then goto (4b v)
v. If CON is a when-connective and ASPECT is neutral perfective, then

add-quant(sitmo,„, [sitSubord, qid,(mtsubordY)
(d) If con is qualified by a quantitative term quant, then

add-quant(sitma,n, [sitsubord, quant, con])
(e) Return QTS

Figure 4.3: The incremental-build-qts algorithm continued
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5. If INT-rep contains the intermediate representation of a subordinate NP (say
subord-np) the X of Y where X is either START or END connected to that of a
main clause MAIN by a temporal connective CON qualified by a quantitative term
QUANT, then

(a) Let objsubord — build-obj-rep(suBORD-NP)
(b) Let sitsubord = find-assoc-event(objsubord)
(c) Let QTSsu^orrf = QTSp
(d) Let INTEG-INFO = [sitsubord, 0]
(e) If MAIN is that of a simple sentence, then

Goto (4b iv)
(f) If MAIN contains the intermediate representation of the conjoined clauses

CLAUSEi ... clause^, then
Goto (4b v)

(§) add-quant(sitma17i, [[szf5U^ort^,x],QUANT,CON])
(h) Goto (4e)

Figure 4.4: The incremental-build-qts algorithm continued

We now process sent2. This is a sentence with a when connective. Thus, step (4) of
the algorithm in figure 4.3 is applicable. At step (4a), the build-situation-rep is
called to build the representation of the situation underlying the subordinate clause the
water has cooled. It finds that the subordinate clause is describing the end state of e\,
the event described by the first sentence (see section 4.3). When this happens, we say

that the subordinate clause is describing another aspect of a GIVEN event. Therefore,

step (4c) is applicable. At step (ii) of (4c), we record the following information which
is used when integrating the event described by the main clause:

(4.13) [ei, perfect, when]

where perfect indicates that the subordinate clause is describing the end state of a

previously mentioned event e\ (see section 4.3).

Since the main clause put in the herbs is a simple sentence, we continue with step (iii)
of (4c). Assuming that the build-situation-rep returns e2 for the main clause, the
following call is made:
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(4.14) integrate(e2, QTSi, [ei, perfect, when])
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which will integrates e2 into QTSi. An explicit reference event for e2 is given. This
reference is e\ and e2 is determined to occur after e\ (see section 4.2.4). The updated
qts (qts2) is now:

(4.15) qts2 = ({ej, e2}, {(after, e2, ex)})

This is then the QTS of example (4.9).

Example 2

We next consider the following example:

(4.16) a. senti: Bring the soup to the boil.

b. sent2: When the soup is boiling, add the meat.

The initial processing is similar to that of example 1 above and we assume that QTSx

at the end of processing sent\ is

(4.17) QTSi = ({ex}, {})

where ex is the event described by sent\. We now process sent2 which is sent to the

incremental-build-qts algorithm. Since this sentence has a when-connective, step

(4) is applicable. The subordinate clause the soup is boiling is determined to describe
a state si (see section 4.3). Thus, step (4b) is applicable. We continue with step (ii)
of (4b) since si is a state and attempt to find an event that gives rise to si. Such an

event is found in ex since the state of the soup boiling is actually the end state of the
event of bringing the soup to the boil. The following call is then made:

(4.18) integrate(sx, QTSi, [ei, perfect])

which integrates si into QTSi by making ex a reference event for si and determining
that si meets e\. The updated QTS is QTSaub0rd-
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In addition, we also record the following information which is to be used in integrating
the event described by the main clause:

(4.20) [si, perfect, when]

Now, the main clause add the meat is simple and so we carry out step (iv) of (4b).
Supposing that the event underlying this clause is e2, we then make the following call:

(4.21) integrate(e2, QTSsubord, [«i, perfect, when])

to integrate e2 into QTSs„f,or£i. Now, e2 is explicitly indicated to take reference from si

and that it is included in si. The updated QTS is QTS2:

(4.22) QTS2 = ({ei, Si, e2), {(meet, si, e\), (included-in, e2, s^})

which is the QTS of example (4.16).

Example 3

Here, we consider the following example:

(4.23) a. sent\: Mash the potato.

b. sent2: Before you mash it, take out the chicken leg, cut it and add it
back.

The initial processing is similar to that of example 1 and example 2 and we again
assume that QTSi at the end of processing sent\ is

(4.24) QTSi = ({cj, {})

where e\ is the event described by sent\. We now process sent2 which is sent to the

incremental-BUILD-QTS algorithm. Since this sentence has a before-connective, step
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(4) is applicable. The subordinate clause you mash it is determined to describe e4. We

therefore carry out step (4c) and at step (ii) of (4c), we record the following information
which will be used when integrating the event described by the main clause:

(4.25) [ei, identity, before]

where identity indicates that the subordinate clause is describing an event which is
identical with an existing event.

Since the main clause take out the chicken leg, cut it and add it back contains conjoined

clauses, step (iv) of (4c) is applicable. A recursive call is made to the build-qts

algorithm to build up the quasi-temporal structure (QTS,n<) of the set of conjoined
clauses. These clauses are all simple sentences and repeatedly applying step (1) of

figure 4.2, we have the following QTS,„t where e2, e3 and e4 are the events described

by take out the chicken leg, cut it and add it back respectively.

(4.26) Gint = {e2, e3, e4}
R«n< = {(after, e3, e2), (after, e4, e3)}

We now create a composite event es whose constituents are the elements of the set

Gint. The following call is then made to integrate es into QTSj:

(4.27) integrate(e5, QTS4, [e4, identity, before])

In this integration, es is explicitly indicated to take reference from e4 and that es

precedes ex. The updated QTS (QTSmatn) is:

(4.28) QTSmain = ({ex, e5}, {(precede, e5, ei)»

Finally, at step D of (4b v), we return QTS2:

(4.29) QTS2 = ({ei, e2, e3, e4, e5),
{(precedes,e5, e4), (after, e3, e2),

(after, e4, e3), (constituent, es, e2),
(constituent, es, e3), (constituent, es, e4)})
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Example 4

Finally, we consider the following example:

(4.30) a. senti: Cook the rice for 30 minutes.

b. sent2: 10 minutes before the end of cooking time, put in the seasoning.

The first sentence sentx is simple and as in the previous three examples the first step

of the algorithm in figure 4.1 applies. However, unlike the previous examples, the

presence of the /or-adverbial in sentx is analysed as indicating a duration. As noted,
this quantitative information is stored separately from the QTS and in the following
form:

(4.31) end(tei) — start(fei) = 30

where tei is the time interval associated with the cook-the-rice event e\. After inte¬

grating ex, the QTS (say QTSi) is as follows:

(4.32) QTSi = ({ei}, {})

We now process sentz- This sentence contains a subordinate NP of the form the end of

cooking time. Therefore, step (5) of the algorithm in figure 4.4 is applicable. We build

up the representation of the end time point entity (say xx) described by the NP. At

step (5b), we determine that this entity is semantically related to ex and at step (5d),
we record the following integration information to be used when integrating the event

described by the main clause:

(4.33) [ex, 0]

Since the main clause is simple, we proceed to step (5e) which redirects us to step (iv)
of (4b). Assuming that the event described by the main clause is e2, the following call
is made to integrate e2 into QTSi:
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In this integration, e2 is explicitly indicated to take reference from ex. However, no
relation is explicitly given between e2 and t\. This is because in our current example,

only quantitative information between e2 and e\ is given. We therefore need to deter¬
mine the qualitative relation between e2 and e\. For our current example, none of the
seven relations exists between e2 and e\ and thus the default none relation is indicated

as holding between e2 and e\.

Before returning the QTS at step (5h), we store the following quantitative information

explicitly given in the sentence:

(4.35) add-quant(e2, [[ei,end], 10, before])

This gives rise to the following equation:

(4.36) end(tei) — start(te2) = 10

The QTS returned is as follows:

(4.37) ({ei, e2), {(none, e2, ei)»

4.2 The Integration Problem

In this section, we present our approach to the integration problem needed in the
INTEGRATE function in the INCREMENTAL-BUILD-QTS algorithm. As noted, the inte¬

gration problem has received much attention recently [Webber 87, Song & Cohen 91b,

Hwang & Schubert 91, Lascarides & Asher 91, Eberle 92].

As noted earlier, our approach computes a reduced and fully-integrated QTS and the

steps involved in this approach are as follows:

1. Let PREV-EVENTS be the set of events processed prior to the current situation.
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2. Pick an event (ref) from prev-events.

3. Determine the relation between ref and the current situation curr.

4. Remove any event (prev) in prev-events whose relation with curr can be
deduced from the relation between curr and ref, i.e. there exists a chain curr
—*■ ref ...—>• prev such that the relation between curr and prev can be

deduced from the relation between the situations in the chain.

5. Repeat step (2) to (4) till prev-events is empty.

Recall that we call the events that are picked at step (2) reference events. In

particular, the first event chosen at step (2) will be called the initial reference
event and any subsequent events chosen at step (2) are further reference events.

As noted, a suitable choice of reference events can 'maximise' the number of previous

events removed at step (4) and thus 'minimise' the need for step (3) which typically
involves real-world reasoning. In our work, we propose two heuristics for choosing the
reference events.

Based on the discussion above, the algorithm for integrating a current situation into

the preceding qts is given in figure 4.5. As noted above, the integrate function
takes three arguments: the current situation, the preceding qts and any explicit inte¬

gration information mentioned in the sentence describing the current situation. In the

algorithm, the function choose-initial-reference picks the initial reference event

while the function choose-further-reference picks the further reference events.

The function det-relation determines the relation between the current situation and

a reference event and will be further discussed in section 4.2.4.

4.2.1 Choosing the Initial Reference Event

Given a current situation, the simplest case occurs when the initial reference event is

given explicitly. Consider, for instance, the following sentences:

(4.38) Before serving, add the wine.
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Algorithm : integrate
Input : current, (g, r), integ-info
Output : Updated (g, r)

1. If integ-info is not 0, do

(a) If integ-info = [ref, 0], then
Let RELATION = det-relation(cuRRENT, ref, 0)

(b) If integ-info = [ref, connective], then
Let RELATION = det-relation(cURRENT, REF, CONNECTIVE)

(c) If integ-info = [ref, aspect, connective], then
Let relation = det-relation(cURRENT, [aspect, ref], connective)

(d) If integ-info = [ref, aspect], then
Let relation = det-relation(cuRRENT, [aspect, ref], 0)

2. If INTEG-INFO is 0, then

(a) Let REF = choose-initial-reference(cuRRENT, (g, r))
(b) Let RELATION = det-relation(cuRRENT, REF, 0)

3. Let g = g U {current}
Let r = r U {relation(current, ref)}

4. Let (g, r) = choose-further-reference(cuRRENT, ref, relation, (g, r))
5. Return (g, r)

Figure 4.5: The integration algorithm
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(4.39) Bring the soup to the boil stirring occasionally.
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where in the first sentence, the event described by the main clause is explicitly indicated
to take reference from the event described by the subordinate 6e/ore-clause, and in the

second sentence, the event described by the progressive adjunct clause takes reference
from the event described by the main clause. Note from the algorithm of figure 4.2, 4.3
and 4.4 that it is in these cases that the integration algorithm is passed some explicit

integration information. For instance, in the case of sentence (4.38), at the point of

integrating the event described by the main clause (say e2), the following call is made:

(4.40) integrate^, QTSP, [ei, before])

where QTSP is the preceding QTS , ei is the serving event described in the before clause.
The third argument of the INTEGRATE function in (4.40) indicates explicitly that e2

is to take initial reference from e\ and that e2 occurs before e\ (determined from the

before connective given).

We consider the case where no such explicit integration information is available such
as at step (lb) in figure 4.2:

(4.41) integrate(siti, QTSP, 0)

In such case, the problem is to select the 'best' reference event from among the events

in the preceding QTS.

The basic idea is to compute the 'similarity' between the current event and each of

the events in the preceding QTS based on the objects involved in the events. More

specifically, we say that an event e\ is more similar to an event e2 than to another
event es if e\ shares more 'similar' objects with e2 than with e$. How then does one

decides the 'similarity' of two objects? To answer this, we first consider the following

examples:

Example 1 The example is as follows:
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(4.42) a. e\: Wash and core six cooking apples,

b. e2: Put them into a fireproof dish.
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The object in e\ is the set of apple objects (xi) described by the NP six cooking apples.
There are two objects mentioned in e2, namely the objects referred to by the pronoun

them and the dish object described by a fireproof dish. The anaphoric them is resolved

to x\ so that there is an identical object in e\ and e2. In such case, we say that the NP

six cooking apples in (4.42a) and the pronoun them in (4.42b) corefers and that they

identify the same object. Thus, the event e\ and e2 share a common object.

Example 2 Here, we consider the following example:

(4.43) a. ei: Break an egg.

b. e2: Beat the egg yolk and the white so that they hold a peak.

In e-i, the object is the egg object (xj) described by the indefinite NP an egg. Now,
in e2, the NPs the egg yolk and the white are referring to objects that are part of X\.

Thus, we can say that e2 has two objects that are semantically related to the object

in ei. This semantic relation is one of whole-part.

Example 3 In the example below,

(4.44) a. e\\ Bring the soup to the boil,

b. e2: Reduce the heat.

the entity described by the NP the heat is semantically related to the event e\. This is
because the heat entity is a resource that is required in bringing the soup to boil. There¬

fore, we can say that e2 has an entity which acts as a resource for e\. Alternatively,
we say that the semantic link between the heat entity and e\ is one of resource.

Based on the discussion above, we are now in a position to define a measure for the

degree of similarity between the current event (curr) and a previous event (prev):
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(4.45) degree-of-similarity(ciirr, prev) = f(prev, c-obji, p-objj)

where c-obji and p-objj are the objects in the event curr and prev respectively. The
function / itself is defined as follows:

f{prev, c-obji, p-objj) -

1 if c-obji and p-objj are semantically related
1 if c-obji and prev are semantically related

0 otherwise

where the possible semantic relations between c-obji and p-objj include 'identity',
'whole-part' and those between c-obji and prev include 'resource' (for the whole set of
semantic relations we used, see section 4.3.1).

Having computed the degree of similarity between the current event and each of the

events in the preceding qts, we can then take the event in the preceding qts which
is most similar to the current event as the best initial reference event for the current

event. Consider for instance the choice of the initial reference event for e3 in the

following example:

(4.46) a. e\: Chop the meat.

b. e2: Chop the spring onion.

c. 63: Put the meat into the soup.

d. e\: Bring the soup to the boil.

e. e$\ When the soup is boiling, add the spring onion.

At the point of integrating e3, the qts is as follows:

(4.47) QTS2 = ({ei, e2}, {(none, e2, e^})

Computing the degree of similarity using the formula in (4.45), we have

• degree-of-similarity(e3, e%) — 1

• degree-of-similarity(e3, e2) = 0
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Thus, e\ is taken as the initial reference event for e3 although the clause describing e\

is not the most recent one to the clause describing e3.

We are still not in the clear yet since we have not considered the case where there may

be more than one event in the preceding qts with the same degree of similarity to the
current event. For instance, in

(4.48) a. e\: Simmer the soup for an hour.

b. e2: Chop the meat.

c. e3: Add the meat to the soup.

the qts at the point of integrating e3 is:

(4.49) qts2 = ({e1; e2}, {(none, e2, ej)})

Computing the degree of similarity between e3 and e\ and e2 results in the following:

• degree-of-similarity(e3, ei) = 1

• degree-of-similarity(e3, e2) = 1

since e3 and e\ share one 'similar' object (namely the object described by the soup)
and e3 and e2 share one 'similar' object (namely the meat object).

In such cases, the choice of initial reference from among the set of equally similar

previous events (similar) is based on the following heuristic. This heuristic chooses
the event among similar that is temporally the 'furthest'. We define the notion of an
event being temporally further than another event as follows (recall that if an event e\

enables another event e2, then e\ precedes e2; similarly, if e\ has constituent e2, then e\

includes e2):

Definition 6

An event e is temporally further than another event / if either

• precede(/, e) or enables(/, e) or



CHAPTER 4. THE QUASI-TEMPORAL STRUCTURE

• meet(/, e) or

• include(e, /) or constituent(e, /)
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This heuristic is chosen based on the assumption that later processed sentences tend to

describe situations that occur later in time. The heuristic is implemented by removing
from similar those events which precedes, meets, enables, is included-in or is constituent-

in another event in similar. If there is more than one event remaining in similar

after the removal, we choose the event that is processed the latest (again using our

assumption). The steps taken to find the initial reference are thus:

1. Let modulo = {e |e 6 similar A 3 / G similar such that
e precedes or meets or enables

or included in or constituent in /}

2. Let remainder = similar - modulo

3. If there is only one event remaining in remainder, then take this as the initial

reference, otherwise

4. Choose the latest processed event in remainder as the initial reference.

We now apply the above steps to determine the initial reference for e3 in example (4.48).
As discussed above, the set similar is {ei, 62}■ Note from the qts of this example

given in (4.49) that the relation between ei and e2 is none. The set modulo at step

1 is therefore {} which means that the set remainder at step 2 is simply {ei, 62}.
Therefore, we proceed to step 4 and choose e2 as the initial reference event for e3 since

e2 is processed later than e\.

Now consider a case where the set modulo at step 1 is not empty. For instance,

consider the integration of e3 in the following example:

(4.50) a.

b.

c.

e\: Finely chop the meat.

e3: Add some sauce.

e3: Leave to stand.
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The qts at the point of integrating e3 is
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(4.51) qts2 = ({el5 e2}, {(after, e2, ei)})

Computing the degree of similarity between e3 and ei and between e3 and e2 results

in the following:

• degree-of-similarity(e3, ei) = 1

• degree-of-similarity(e3, e2) = 1

where the common object between e3 and each of ei and e2 is the meat object. The set

similar is therefore {ei, e2} and the set modulo at step 1 is {ei} since ei precedes

e2. Thus, the set remainder at step 2 is {e2} and since there is only one event in

remainder, this is taken as the initial reference for e3.

Given an initial reference event for the current situation, we determine the relation

between the initial reference event and the current situation. This relation is important

for deciding further reference events (if any) for the current situation.

Based on the discussion above, the algorithm for choosing the initial reference event

for a current situation when no explicit integration information is given is shown in

figure 4.6.

4.2.2 Inferring Further Relations

Given an initial reference event (ref) for the current situation (curr), we can find
all the previous events which lie in a chain from curr via ref such that the relations
between curr and the previous events can be deduced. We divide this discussion into

five classes based on the possible relations that can hold between curr and ref:

• Precedes, Meets and Enables

• After, Met-By and Enabled-By

• Includes and Constituent
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Algorithm choose-initial-reference
Input curr-event, (g, r)
Output ref-event

1. Let SIMILAR = {e |e S G A
degree-of-similarity(cURR-EVENT, e) is the highest}

2. If similar = {e}, then Return e

3. If SIMILAR is not a singleton set, then

(a) Let modulo = {e \e £ similar A 3 / € similar A 3 r € r such that
r = precedes(e, /) or meets(e, /) or enables(e, /)

or included-in(e, /) or constituent-in(e, /)}
(b) Let REMAINDER = SIMILAR - MODULO

(c) If REMAINDER = {e}, then Return e

(d) If remainder is not a singleton set, then
Return the event in REMAINDER that is processed the latest

Figure 4.6: The algorithm for choosing the initial reference event

• Included-In and Constituent-In

• None

and for ease of exposition, we will use the following equivalence:

• temporally-equal(cuRR, REF) = simultaneous(cuRR, REF) V

generates(cuRR, ref)

• temporally-before(cuRR, ref) = precedes(cuRR, ref) V

meets(cURR, ref) V

enables(cuRR, ref)

• temporally-after(cuRR, ref) = after(cuRR, ref) V

met-by(cuRR, ref) V

enabled-by(cuRR, ref)

• temporally-include(cuRR, ref) = include(cuRR, ref) v
constituent(cuRR, ref)
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• temporally-included-in(cuRR, ref) = included-in(cuRR, ref) V

constituent-in(cuRR, ref)

Precedes, Meets and Enables: The enablement relation is included in this case

since this relation has the direct temporal import that if an event t\ enables an

event e2, then e\ either precedes or meets e^. If curr is temporally before ref,
we have

(4.52) temporally-before(cURR, REF)

Given (4.52), the previous event (prev) whose relation with curr can be deduced
is given by the following rules:

a. If temporally-before(cuRR, ref)
And temporally-before(ref, prev)
Then precedes(cURR, PREV)

b. If temporally-before(cuRR, ref)
And temporally-include(REF, prev)
Then precedes(cURR, PREV)

c. If temporally-before(cURR, ref)
And temporally-equal(REF, PREV)
Then precedes(cURR, PREV)

After, Met-By and Enabled-By: This case is the reverse of the case just consid¬
ered above. If curr is temporally after the reference event ref, we have

(4.54) temporally-after(cuRR, ref)

and the previous event (prev) whose relation with curr can be deduced is given

by the following rules:

(4.55) a. If temporally-after(cuRR, ref)
And temporally-after(ref, prev)
Then after(cuRR, PREV)
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b. If temporally-after(cuRR, ref)
And temporalIy-include(ref, prev)
Then after(cuRR, PREV)

c. If temporally-after(cuRR, ref)
And temporally-equal(ref, prev)
Then after(cURR, prev)

Includes and Constituent: The constituent relation is included in this case since

this relation has the temporal import that if an event e\ has constituent e2, then

e\ includes e2. If curr temporally includes ref, we have

(4.56) temporally-include(cuRR, REF)

and the previous event (prev) whose relation with curr can be deduced is given

by the following rules:

(4.57) a. If temporally-include(cuRR, ref)
And temporally-include(ref, prev)
Then include(cuRR, prev)

b. If temporally-include(cuRR, ref)
And temporally-equal(ref, prev)
Then include(cuRR, prev)

Included-In and Constituent-In: The constituent-in relation is the inverse of the

constituent relation and is included in this case since this relation has the temporal

import that if an event e\ is a constituent in an event e2, then e\ is included in

e2. If CURR is temporally included in REF, we have

(4.58) temporally-included-in(cuRR, ref)

and the previous event (prev) whose relation with curr can be deduced is given

by the following rules:

(4.59) a. If temporally-included-in(cuRR, ref)
And temporally-included-in(ref, prev)
Then included-in(cuRR, prev)
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b. If temporally-included-in(cuRR, ref)
And temporally-equal(ref, prev)
Then included-in(curr, prev)

c. If temporally-included-in(cuRR, ref)
And temporally-after(REF, prev)
Then after(cuRR, prev)

d. If temporally-included-in(cURR, REF)
And temporaJly-before(ref, prev)
Then precedes(cuRR, prev)

None: Recall from chapter 3 that the temporal import of the none relation is depen¬

dent on the environment. If CURR has a none relation with REF, we have

(4.60) none(cURR, ref)

and the previous event (prev) whose relation with curr can be deduced is given

by the following rule:

(4.61) If none(cuRR, ref)
And temporally-equal(REF, PREV)
Then none(cURR, prev)

4.2.3 Choosing Further Reference Events

At times, one reference event is insufficient to relate the current situation with respect

to all the situations in the preceding QTS. Consider for instance

(4.62) a. Soak and drain the beans.

b. Meanwhile, e\: chop a carrot.

where the QTS at the point of integrating the event described by chop a carrot is as

given in (4.63):

(4.63) QTS3 = ({ci, e2, e3},
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{{after, e2, ei), (constituent, e3, ei), (constituent, e3, e2)})

where e\ is the event described by the clause soak the beans, e2 is the event described

by the clause drain the beans and e3 is the composite event described by the sentence

Soak and drain the beans.

We now integrate e4. The meanwhile connective indicates explicitly that e4 takes initial
reference from the event described by the preceding sentence, i.e. e3. In addition, e4

is explicitly indicated to be included in e3. Thus, the event e4 is related with respect

to e3. But, is it related with respect to e2 and e4 ? The answer is no since there

exists no chain from e4 to either e\ or e2 such that the relations between e4 and e\ and

between e4 and e2 can be deduced. This is because temporally e4, e4 and e2 are all

included in e3. We thus need to pick either e\ or e2 as further reference. We choose

e2 since it is the later processed event and determine the relation between e4 and e2.

The default none relation holds between e4 and e2. Again, there exists no chain from

e4 to e\ that will allow the relation between e4 and e\ to be deduced. We therefore

need to determine the relation between e4 and e4. This relation is again the default

none relation.

The qts of example (4.62) is thus:

(4.64) qts3 = ({ex, e2, e3},

{(after, e2, e4), (constituent, e3, e4),

(constituent, e3, e2), (included-in, e4, e3),
(none, e4, e2), (none, e4, ei)})

In this qts , all situations are integrated and we note that e4 takes reference from e3,

e2 and e4.

Based on the discussion above, we need to find further reference events for a current

situation until the situation is related with respect to all the situations in the preceding

qts . This process begins by filtering any event prev in the preceding qts which lies
on a chain from the current situation curr via the initial reference ref (i.e. curr —>

ref prey) such that the relation between curr and prev can be deduced (see
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section 4.2.2). We then choose the next reference event for the current situation from

the remaining events. To do this, we will use the 'similarity' and 'temporally further'
heuristics discussed in section 4.2.1. The process then repeats.

An algorithm implementing the above process to choose further reference event for

a current situation is given in figure 4.7. The choose-further-reference func¬

tion takes four arguments: the current situation (curr), a reference event (ref), the
relation between the current situation and the reference event, and the preceding qts.

Note from step (1) of the algorithm that if the relation between curr and ref is one

of either simultaneous or generation, then no further reference events are needed. This

is because if curr is simultaneous with ref (recall that if an event ex generates an

event e2, then ex is simultaneous with e2), we can take curr to be 'coextensive' with
ref. Since ref is already integrated in the qts , curr will be.

For other relations between curr and ref, the choose-further-reference function

calls the temporally-inferrable-events function to determine the set of events in

the preceding qts whose relations with curr can be deduced. Based on the discussion

in section 4.2.2, the temporally-inferrable-events function can be implemented
as a process of forward rule chaining initiated by asserting the relation between curr
and ref (see section 6.5).

4.2.4 Determining the Relations

Given a current situation and its reference event, we need to determine the relation that

holds between them. To do this, we employ both linguistic information and real-world

knowledge. These information sources are encoded as rules and are arranged such that
rules encoding linguistic information are tried first. When linguistic information does
not give a relation, rules encoding real-world knowledge are tried. If no relations are

determined by the various information sources, we say that the default none relation
holds between the current situation and the reference event.

The task of determining the relation between the current situation and a reference
event is carried out in the det-relation function. We will now describe the various



CHAPTER 4. THE QUASI-TEMPORAL STRUCTURE 170

Algorithm : choose-further-reference
Input : curr, ref, relation, (g, r)
Output : Updated (g, r)

1. If relation is simultaneity or generation, then return (g, r)
2. Otherwise, do

(a) Let further-ref = {e | e g g A e is an event Ae / ref}
(b) Let S = FURTHER-REF -

temporally-inferrable-events(cuRR, REF, RELATION, FURTHER-REF, r)
(c) If s is 0, Return (g, r)
(d) If s = {e}, let REF = e

(e) If s is not a singleton set, then
i. Let SIMILAR = {e |e € s A

degree-of-similarity(curr-event, e) is the highest}
ii. If SIMILAR = {e}, then let REF = e
iii. If SIMILAR is not a singleton set, then

A. Let modulo = {e \e e similar A 3 / € similar Aire r such that
r — precedes(e, /) or meets(e, /) or enables(e, /)

or included-in(e, /)}
B. Let REMAINDER = SIMILAR - MODULO

C. If REMAINDER = {e}, let REF = e
D. If REMAINDER is not a singleton set, let REF be the event in RE¬

MAINDER that is processed the latest.

(f) Let relation = det-relation(cuRR, ref)
(g) Let r = r U {relation(curr, ref)}
(h) Let FURTHER-REF = S - {REF}
(i) Goto step (2b)

Figure 4.7: The algorithm for choosing further reference events
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information sources used by this function.
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Temporal Connectives, Temporal Adverbials and Aspect

The simplest case occurs when the relation is expressed explicitly via a temporal con¬
nective such as before and meanwhile (but excluding the when-connective). Consider,
for instance

(4.65) Before e\: you mash the potato, e2: take out the chicken leg.

where the call to integrate e2 (see step (4) of figure 4.3) is:

(4.66) integrate(e2, QTSi, [e1; before])

where QTSi is the preceding QTS . From step (lb) of the integration algorithm given
in figure 4.5, the call to determine the relation between e2 and ei is:

(4.67) det-relation(e2, ci, before)

This fires the following rule which encodes the semantics of the before connective:

(4.68) If the current situation is curr
And the reference event is ref

And the temporal connective is before

Then precede(cuRR, ref)

Now, consider the case which involves a when-connective such as (4.69a)
and (4.69b), (4.69a) and (4.69c) and (4.69a) and (4.69d):

(4.69) a. e\: Cool the water.

b. When the water has cooled, e2: put in the vegetables.

c. When the water has cooled for 5 minutes, e2: put in the vegetables.

d. When the water is cooling, e2: put in the vegetables.
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cooling event
Preconditions | | The water has cooled

culmination
point

Figure 4.8: The event structure of e\ described by cool the water

We assume that at the end of processing (4.69a), the QTS is QTSi. When processing ei¬
ther (4.69b), (4.69c) or (4.69d), we know from step (4) of the algorithm in figure 4.3 that
there is a call to build the situation representation underlying the when-clause. Dur¬

ing this call, the when-clauses in (4.69b) to (4.69d) are determined to refer to different

parts of the structure associated with the event e\ (see section 4.3 for how this is done).
In our work, we adopt the event structure proposed in [Song 91b, Singh & Singh 92].
Our main motivation for adopting this event structure is that it clearly indicates the
start and end point of an event. In addition, we employ the following kinds of aspects:

Perfect This aspect describes the end state that occurs after the completion of the

event, for example, The water has cooled.

Progressive This aspect presents an event internally, for example, John was eating
an apple (see chapter 2).

Neutral Perfective This aspect is introduced in [Singh & Singh 92] and describes an

event that has ended, but not necessarily at its natural end point. For example,
the when-c\a,use in when the water has cooled for 5 minutes, put in the meat

describes a cooling event from a neutral perfective aspect (see chapter 2).

For example (4.69), the event structure corresponding to e\ is shown in figure 4.8.
where 'preconditions' indicates the state before the cooling begins. The parts of the
structure in figure 4.8 referred to by the various when-clauses in example (4.69d) are
as follows:

• In (4.69b), the clause the water has cooled is taken as referring to the end state.
We say that the aspect indicated is perfect.
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• In (4.69c), the clause the water has cooled for 5 minutes is taken as referring to

those preliminary processes in the event structure associated with e\ such that

their total duration is 5 minutes. We say that the aspect indicated is neutral

perfective.

• In (4.69d), the clause the water is cooling is taken as referring to the internal

process of the cooling in e1. We say that the aspect indicated is progressive

Therefore, the lyhen-clauses in (4.69b) to (4.69d) refer to different aspects of a pre¬

viously mentioned event. This means that step (4c) of the algorithm in figure 4.3 is

applicable and the calls to integrate e2 for (4.69b) to (4.69d) are respectively:

(4.69) b. integrate(e2, QTSi, [ex, perfect, when])

c. integrate(e2, QTSX, [ex, neutral-perfective, when])

d. integrate(e2, QTSi, [ei5 progressive, when])

These integration calls in turn invoke the det-relation function to determine the
relation between e2 and ei (see figure 4.5):

(4.70) a. det-relation(e2, ex, [perfect, when])

b. det-relation(e2, ei, [neutral-perfective, when])

c. det-relation(e2, ex, [progressive, when])

From (4.70a), we determine that e2 occurs after ex using the following rule:

(4.71) If the current situation is curr
And the reference event is ref

And curr is an event

And the aspect of ref is perfect

Then after(cuRR, ref)

Similarly, from (4.70c), we determine that e2 is included in ex using the following rule:
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ei

5 minutes
The water has cooled for 5 minutes

Figure 4.9: The neutral perfective viewpoint as expressed in the water has cooled for
5 minutes .

(4.72) If the current situation is curr
And the reference event is ref

And curr is an event

And the aspect of ref is progressive

Then included-in(cuRR, ref)

The case with (4.70b) needs some explanations.

As noted in section 2.1.2, when a clause is describing an event from a neutral perfective

viewpoint, the clause is referring to those preliminary processes such that their total
duration is as indicated in the clause. The situation for the case of the water has cooled

for 5 minutes is depicted graphically in figure 4.9. This means that from (4.70b) it
is only possible to say that the start of e\ precedes the start of e2 by 5 minutes. In

addition, since e\ has not ended, the start of e2 must precede the end of e\. As noted in

chapter 3, these are quantitative relations between the time points of the time intervals
associated with e\ and e2:

(4.73) a. start(te2) - start(iei) = 5

b. end(/ei) - start(te2) > 0

where te 1 and te2 are the time intervals associated with the event e\ and e2 respectively

(see chapter 3).
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Therefore, unlike (4.70a) and (4.70c), (4.70b) does not indicate a qualitative relation
between e\ and e?.1 We thus need to determine the relation between e2 and e\ via

other information sources (see below).

Knowledge About Actions

Recall from chapter 3 that events are defined as actions to be carried out by
an agent over a time interval. In our work, we employ a STRIPS representation

[Fikes & Nilsson 71] for actions. In such representation, we encode the PRECONDI¬

TIONS and POSTCONDITIONS of the action, i.e., those facts about the world that must

hold before the action can be carried out, and those facts about the world that must

hold after the action is carried out. For example, the peeling action in the event

described by peel a potato is represented as follows:

(4.74) Action: Do(Agent, PEEL(a:))
Preconditions: -ipeeled(a:, +)
Postconditions: peeled(a;, +)

As noted in chapter 3, these actions are organised into a taxonomic hierarchy using an

IS-A link.

This knowledge about actions is used in determining the enablement and generation
relation between the current event and its reference event. Consider, for instance

(4.75) a. Cook the rice,

b. Cool.

(4.76) As you work, clean the surface thoroughly each time you change grits, vac¬

uuming off all the dust and wiping the wood with a rag dampened with tur¬

pentine or paint thinner.

1Of course, from the quantitative relations given above and the duration of ei and ti, one can

deduce that ei either overlaps or includes Such deductions are carried out in the second step of
TA2 via constraint propagation (see chapter 5).
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In (4.75), a precondition for the cooling action is that the object being cooled must

be hot. In the cooking action, a postcondition is that the object being cooked will

get hot. Thus, the cooking action brings about a condition which is necessary for the

subsequent performance of the cooling action. In other word, the cooking event enables
the cooling event. In (4.76), the vacuuming action and the wiping action are classified
as a specialisation of the cleaning action. This classification allows us to determine
that performing the vacuuming and wiping action results in the cleaning action. That

is, the cleaning event is generated by the event comprising the sequence of vacuuming
and wiping event.

Information from Reference Resolution

In our work, we model the effects of an action. Such modelling is required to maintain

the correct state of objects so that referring expressions can be resolved correctly.

Consider, for instance,

(4.77) a. Brown the beef until tender.

b. e-i: Chop one of the onions.

c. e3: Add the chopped onion to the beef and fry together.

where the N P the chopped onion is resolved correctly to the onion that was chopped in

ei- Notice that if the effect of the chopping action in e2 is not modelled, then it would
not be possible to obtain the correct referent for the NP the chopped onion since none

of the onions would have the 'chopped' property added to it.

Now, notice that the onion object in e$ is a result of modelling the effect of e^. This
means that e$ must occur after e^. Similarly, as will be discussed in section 4.3, the

ellided NP in (4.78b) is resolved to the result of executing the bring-to-boil action
in (4.78a):

(4.78) a. ei: Bring the soup to the boil,

b. e^'. Stir.
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This means that we can determine that e2 occurs after e\.

177

4.2.5 Summary and Related Work

To summarise, we regard the integration problem as finding the set of reference events

such that the current situation is integrated in the QTS, i.e. related with respect to all

the preceding situations in the QTS. Our integration process proceeds by finding an

initial reference event based on the degree of similarity between the current situation

and each of the possible reference events. This degree of similarity is computed based
on the semantic relationships between objects in the events and between objects and

events. Any previous events whose relations with the current situation cannot be

deduced via the initial reference serve as possible further references. If there is more

than one such preceding events remaining, we employ a notion of 'temporally further'
to choose the reference event. The integration process then repeats.

Our approach to the integration problem makes explicit the notion of reference which
is regarded as intuitive in previous work. In our work, the reference events for a

current situation are those preceding events which can serve as an 'anchor' from
which the relations between the current situation and the rest of the preceding

events can be deduced. Our approach avoids the difficulties of approaches recently

proposed [Webber 87, Song & Cohen 91b, Hwang & Schubert 91, Eberle 92]. Unlike

[Webber 87, Song & Cohen 91b, Hwang & Schubert 91] who use only tense informa¬

tion, our approach is not dependent on tense change to decide on the right reference
events for the current situation. Therefore, we believe that our approach can handle

those discourses where tense change does not provide enough information to decide on

the correct reference event (see chapter 2).

In [Eberle 92], the possible reference events for the current event are those which
are regarded as 'accessible events' (see chapter 2). However, this approach does not
consider the case where an inaccessible event may be explicitly mentioned as a reference

event for the current event. Consider, for instance,

(4.79) a. e\: Mash the potato.
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b. e2: Add to the soup.

c. Before you mash the potato, e3: take out the chicken leg from the soup.

At the point of integrating e3, the event structure built up by Eberle is such that e2

is a continuation of e\. Thus, using the criterion for accessible event, e\ is no longer
accessible. However, the before clause indicates explicitly that e3 is to take reference

from this inaccessible event e\. In our approach, we determine that the before clause

is describing an event which is identical with e\ and that e3 takes its initial reference
from e\.

4.3 Reference Resolution

In this section, we present the model of reference resolution used in our work. As noted

in the discussion above, information from reference resolution is used for the following:

• Reference resolution of the NPs determines the semantic links between objects in

events and between objects and events. This is needed in the computation of the

degree of similarity between events.

• Reference resolution determines whether different clauses are referring to the

same event (perhaps with different aspect) or a different event that may or may
not be related to another event. This information helps in determining the initial
reference event for a current event and also the temporal relation between events

(see section 4.2.4).

Traditionally, the term REFERENCE is used to name the study of how phrases in a

sentence relate to objects in the real world. For example, the NP the chopped onion

describes a particular onion object that is chopped. This is approximated in compu¬

tational systems by relating the referring expressions (i.e. linguistic expressions used
for the purpose of reference) to terms in the knowledge representation which in turn

represent some object in the world. In our work, a referring expression can either relate
to a physobj, an event or state. For instance, the NP five pounds of carrots refers to a
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physobj which is to be viewed as a set whose elements are the individual carrots such

that their total weight is 5 pounds, and the NP a carrot and a potato refers to a physobj
which is to be viewed as a set whose constituents are the physobj described by the np

a carrot and that described by the np a potato. Similarly, the sentence bring the soup

to the boil stirring occasionally refers to an event which is to be viewed as a composite

event whose constituents are the event described by the clause bring the soup to the boil
and that described by the clause stirring occasionally. For ease of exposition, we will
call the entity which a referring expression identifies the referent of the expression.

Reference resolution can now be defined as the process of finding the entities in the

knowledge representation which a referring expression identifies. A common way of

tackling the reference resolution problem in a computational system is to view it as

a search for the right referent in a model containing all the entities (represented in
the knowledge representation) that have been seen so far in the discourse. Following

[Sidner 79, Webber 78], we will call this model the discourse model (dm). Likewise,
in our work, we adopt this common approach extended to incorporate the effects of

modelling the events.

In the next two sections, we will present our approach to resolving for the referents to

objects and situations. There are two main questions that the approach will attempt
to answer, namely where and how the referent is to be found.

4.3.1 Resolution to Objects

In this section, we consider the problem of resolving NPs to the objects in the knowledge

representation they identify. This problem has received much attention in the literature

[Sidner 79, Webber 78, Grosz et al 83]. As noted above, the basic idea is to search for
the referent of an anaphoric element in the discourse model containing all the objects
that are mentioned so far in the discourse.

In our work, we adopt the same approach that to resolve the referent of an NP, one

searches among the objects in the discourse model. However, we differ in that the
discourse model need not only contain objects that are mentioned in the discourse. It
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can also include objects that are introduced through event simulation.

We will now discuss event simulation before presenting the discourse model used in
our work and the search process through the model.

Event Simulation

As noted in chapter 3, every event has a begin state (sf,) and an end state (se). A state
is described by the set of propositions which hold in the state. Consider, for instance,

the following simple recipe:

(4.80) a. x\: an onion

b. e\: Peel the onion.

In the begin state of ei, the following propositions (see chapter 3) hold:

(4.81) hold(5ft, substance(a;i, onion-matter)) A

hold(6f,, structure^!, individual)) A

hold(st, packaging(a:i, (onion, regular)))

We now simulate the effect of the action in e\. As noted above, actions are repre¬

sented as operator using the strips notation. For instance, the peeling action in e\ is

represented using the strips notation given in (4.74) above and reproduced below:

(4.74) Action: Do(Agent, peel(:k))
Preconditions: -ipeeled(x, +)
Postconditions: peeled(a:, +)

From (4.81), we know that the precondition of the peeling action is satisfied since there
did not exist a proposition peeled(a:, +) in the begin state of e\ (see (4.81)). Therefore,
we carry out the action and add the postcondition to the end state of ej. In the end
state of ei, the following propositions hold:
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(4.82) hold(se, substance(a:i, onion-matter)) A

hold(se, structure^!, individual)) A

hold(se, packaging(xi, (onion, regular))) A

hold(se, peeled(xi, +))

Observe that in simulating an event, we use the default assumption that if a proposition

in the begin state is not affected by an action, it persists into the end state of the event.

For example, the proposition structure^!, individual) is not affected by the peeling
action and so persists into the end state.

In addition to events that change the properties of objects, we also have events that
create new objects either by combining two or more objects, or by breaking an existing

object into parts. These events change the population of objects in the world. Following

[Dale 92], we use the notion ofworking set to model the effects of these events. The

working set is basically a list of the identifiably distinct objects in the domain at any

point in time. It is represented as a distinguished physobj, whose constituents are just
the ingredients in the recipe. For instance, in the following simple recipe:

(4.83) a. X\\ some melted butter

b. X2: a potato

c. e%: Add the potato to the butter.

the begin state of e\ contains a proposition of the form:

(4.84) hold(sj, constituent(working-set, [®i, x2]))

We now simulate the adding action in e\ which is represented as the following strips

operator:

(4.85) Action: Do(Agent, add(:e, y))
Preconditions: x 6 Working Set

y € Working Set
Postconditions: constituents(z, [a;, y])
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x $ Working Set

y £ Working Set
z G Working Set

Therefore, after simulation, the end state of e\ will contain the following propositions:

(4.86) hold(se, constituent (working-set, [x3])) A

hold(se, constituent^, [®i, £2]))

We will now discuss the impact of such event simulation on the discourse model.

Our Discourse Model

Traditionally, there are two ways in which new objects can be added to the discourse

model:

• The first way is via the use of an indefinite np. For example, the indefinite np a

carrot introduces a new carrot object into the discourse model.

• The second way is via a definite np. For instance, in

(4.87) a. Wash an apple.
b. Peel off the skin.

the definite n p the skin in the second sentence identifies an object that is seman-

tically related to the object described by the np an apple in the first sentence

(more specifically, the skin object is part-of the apple object).

In such cases, a new object corresponding to the np the skin is created and added
to the model.

In our work, we identify a third way in which new object can be added to the discourse
model. This is via events that create new objects from existing objects. Consider, for

instance,
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(4.88) a. Melt some butter.

b. Add some carrots and potatoes.

c. Saute them for 7 to 8 minutes.

d. Then, add some butterbeans, stock and milk.

e. Simmer the soup for 1 hour.

The referent of the definite np the soup in (4.88e) is actually the product of the

adding action in (4.88d). This means that any new object produced by event sim¬

ulation has to be added to the discourse model. A similar argument is given in

[Webber & Baldwin 92] to show why the discourse model used in reference resolution
needs to incorporate entities which are introduced by event simulation. For instance,

[Webber & Baldwin 92] gives the following example:

(4.89) a. Mix the flour, butter and water.

b. Knead the dough until smooth and shiny.

where the object identified by the definite NP the dough is the product of the mixing

event described in the first sentence.

It is not an easy matter to determine the result of an event which produces new object.
For instance, in (4.89b), the result of the mixing action in (4.89a) in some circumstances

may also be a paste or a batter. Currently, in our work, we simply invoke rules encoding
hard-wired knowledge to determine the result of actions that produce new objects2.
For instance, in our work, the add operator given in (4.85) is actually implemented
as:

(4.90) Action: Do(Agent, add(a;, y))
Preconditions: x £ Working Set

y € Working Set
Postconditions: invoke-ruleset(add-rules, x, y, z)

2For some initial discussions on how such hard-wired knowledge can be generalised, see

[Webber & Baldwin 92].
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x $ Working Set

y ^ Working Set
z G Working Set

where the function invoke-ruleset invokes the ruleset add-rules to determine the result

of adding x and y. The add-rules ruleset is a collection of rules and the first rule that

applies to x and y returns (see chapter 6). For instance, if we say Add the vegetables
to the water, then x is the physobj described by the vegetables and y is the physobj

described by the water. The rule that applies is:

(4.91) If either x or y is a liquid
then constituent(z, [a;, y]) A

substance(z, soup-matter)

which essentially says that if one of the objects being added is a liquid, then the result
will be soup.3

Based on the discussion above, our discourse model contains objects that are mentioned

in the ingredient list and objects that are the results of event simulation (the discourse
model also contains the events and states mentioned but we postpone this discussion

to section 4.3.2). In addition, we also define a current center in our discourse model
used for resolving inter-sentential pronouns and ellided nps. This notion of center is

intuitively similar to the notion ofcentering proposed in [Grosz et al 83]. In addition,
we follow [Dale 92] in defining the center to be the product of simulating the current
event. Consider, for instance

(4.92) a. Bring the soup to the boil,

b. Cool 0.

where the current center at the end of processing the first sentence is the result of

modelling the bring-to-boil event (the boiling soup). The ellided np in the second
sentence is then resolved to this center.

3This is obviously a simplification but suffices for the purpose of our work.
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To summarise, the discourse model (dm) used in our work consists of the following:

• a set of objects that are either mentioned in the text or introduced through event

simulation,

• the current center and

• a set of events and states mentioned in the text (see section 4.3.2).

Our Search Mechanism

We will now discuss how we carry out the search for the referent of a referring expression

in our discourse model.

The basic approach is to carry out lexical disambiguation of the verb and the reference
resolution of the noun phrases in the clause simultaneously. The main motivation for

doing this is that when resolving the noun phrases we can take into account constraints

from all the words in the clause.

More specifically, the approach involves first determining the sets of objects in the dm

which can be the referents of the noun phrases. This determination makes use of any
constraints expressed in the np. Then, we use constraints arising from the verb to

remove all those referents that are not suitable.

The above approach can be easily viewed as a problem of constraint satisfaction which
is defined as:

A constraint-satisfaction problem (csp) consists of a set of variables, each
of which must be instantiated in a particular domain of values, and a set of

predicates/constraints which the values of the variables must simultaneously
satisfy [Mackworth 87, 206].

The problem can be schematised as follows:

(4.93) (3 nr)(3 v2).. .(3 v„)(r>i G Di)(v2 G D2).. ,(v„ G Dn) P(vi, v2, ..., vn)
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where P(wj, V2, ..., vn) stands for an arbitrary conjunction of predicates over subsets
of the variables {ui, V2, ..., vn}.

We now describe how the CSP is set up for a clause:

Variables We assign a variable to each verb and NP in the clause. Consider, for

instance

(4.94) a. Chop the carrots.

b. Chop the carrots and potatoes.

where in the first case the CSP contains two variables corresponding to the verb

chop and the NP the carrots, and likewise in the second case, the CSP contains

two variables corresponding to the verb chop and the NP the carrots and potatoes.

Domains Recall from chapter 3 that we maintain a taxonomic hierarchy of actions.

Verbs are taken as linguistic expressions of these actions and the same expres¬

sions can be used for different actions. For example, the verb have is ambiguous

between owning (John has a piano) and afflicted-with (John has a fever). There¬

fore, the domain for the verb variable is the possible actions which the verb can

describe.

The domain for a referring expression is decided as follows:

• If the referring expression is an indefinite NP, the domain is simply the new

object created from the NP.

• If the referring expression is a pronoun or ellided NP, the domain is simply
the current center in the discourse model.

• If the referring expression is a definite NP, then the domain is the set of

objects in the discourse model which satisfy the constraints given in the NP

itself. For example, the domain of the NP the chopped carrot will be the set

of objects in dm which are both carrots and chopped (we will discuss how
this domain is obtained below).

Constraints The constraints are constraints arising from the verb in the clause. In

the case where there is a pronoun, additional constraints may be derived. For
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instance, if the referring expression is the pronoun them, then the referent must
be a physobj (see section 3.3.1) which is to be viewed as a set.

We now illustrate the csp for two examples.

Example 1 The csp corresponding to the clause chop them is

(4.95) (3 actioni) (3 obj\)

(actionx £ {chopping}) {obji £ (get-center dm))

structure(o&7i, set) A action-constraints(octioni, obji)

where actioni and obji are the variables associated with the verb and the pro¬

noun in the instruction respectively, get-center is a function which returns the

current center in the discourse model and action-constraints(actioni, obji) is a

function which retrieves the constraints stored in actioni. For instance, in the

course of solving the csp, actioni will get bound to the chopping action. The
constraints retrieved is then simply that obji is an object that can be chopped:

(4.96) choppable(o6ji)

Example 2 The csp corresponding to the clause chop the carrots is:

(4.97) (3 actioni) (3 obji)

{actioni € {chopping}) {obji € (find-np-dom np))
act ion-constraints(actioni, obji)

where actioni, °bji and action-constraints(ac<ion1, obji) are as before. In addi¬

tion, the function find-np-dom returns the objects that satisfy the constraints

given in the NP.

We will now describe the approach behind the find-np-dom function.

Finding the Domain of Definite NP

If a clause contains a definite np, the domain of the variable assigned to the np needs
to be determined. Recall that a definite np can identify an object that is already in
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the discourse model or an object which is semantically linked to its referent. In our

work, we use the following five kinds of link between an object described by a definite
NP and a referent of the NP:

Identity: This link exists if the object described by the definite NP and a referent of
the NP is identical. For instance, in

(4.98) a. Wash and core six cooking apples,

b. Put the apples into the oven dish.

the definite NP the apples and the indefinite NP six cooking apples corefer to the

same set of apple objects. In such cases, we say that there is an identity link

between the object described by six cooking apples and the apples.

Whole-part: Consider for instance

(4.99) a. Break an egg.

b. Beat the yolk and the white so that they hold a peak.

where the object described by the definite NP the yolk is part-of the egg object

introduced by the indefinite NP an egg in the previous sentence. In such case, we

say that there is a whole-part link between the egg object and the yolk object.

Class-subclass: Consider for instance

(4.100) a. Soak, drain and rinse the celery.
b. Melt the butter in a large saucepan and add the vegetable.

where the object described by the definite NP the vegetable is a superclass of the

celery object mentioned earlier. In such case, we say that there is a class-subclass
link between the celery object and the vegetable object.

Set-subset: Consider for instance

(4.101) a. Shell the eggs.

b. Finely chop two of the eggs and stir into the kedgeree with the

parsley.
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where the objects described by the NP two of the eggs is a subset of the set of

egg objects described by the eggs in the first sentence. In such case, we say that
there is a set-subset link between the object described by two of the eggs and the
set of egg objects described by the eggs.

Resource: Consider for instance

(4.102) a. ex: Bring the soup to the boil,

b. Reduce the heat.

where the entity described by the heat is a resource required in ex. In such case,

we say there is resource link between the heat entity and the bring-to-boil event.

Based on the five kinds of links given above, our approach to determining the object
identified by a definite NP is as follows:

If the NP is a partitive NP of the form N of NPx where N is a number (such as two of the

eggs), we take the link type between the object identified by the NP and the referent
of the NP to be set-subset. The set object is determined by the reference resolution of

NPx. For each referent of NPx, we create a new object and mark its relation with the

referent as set-subset. We then return these new objects as the objects identified by

the definite NP.

For the other types of NP, we do the following:

1. Hypothesize a link type from the set {identity, whole-part, class-subclass,

resource}.

2. Search the dm for the referents that can be linked to the object described by the

definite NP with the hypothesized link type.

3. If no referents exist, try another link type and repeat step (2).

4. If such referents exist, do the following:

(a) If the link type is IDENTITY, return the referents as the objects identified
by the definite NP.
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(b) If the link type is either whole-part or resource, create a new object
for each referent found and mark the relation between them appropriately.

Then, we return these new objects as the objects identified by the definite
np.

(c) If the link type is class-subclass, we do the following:

i. If there is only one referent found, we create a new object and mark

the relation between this object and the referent as class-subclass. This

object is then returned as the object identified by the definite NP. For

instance, in example (4.100) given above and reproduced below:

(4.100) a. Soak, drain and rinse the celery.

b. Melt the butter in a large saucepan and add the vegetable.

we create a new vegetable object and mark the relation between this

object and the celery object as class-subclass.

ii. If there is more than one referent, we create a new composite object

whose constituents are these referents and mark the relation between

this object and each of the referents as class-subclass. This object is
then returned as the object identified by the definite np. For instance,
in

(4.103) a. Soak, drain and rinse the celery.

b. Chop the onions.

c. Melt the butter in a large saucepan and add the vegetables.

we create a new vegetable object with the celery object and the onion

object as constituents.

The search through the dm at step (2) for the referents of a definite np can be formalised
again as a csp. In this csp, lexical disambiguation of the noun in the np is carried out

as well. To set up this csp, we do the following:

Variables We assign a variable each to the noun in the np and the np itself. For

instance, if the np is the chopped carrot, a variable is assigned each to the noun

carrot and to the n p the chopped carrot.
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Domain The domain for the variable assigned to the noun is the set of possible object
substances which the noun can describe. In the case where the noun is lexically

ambiguous, the set will consist of more than one element. For instance, the

noun dough in the dough is lexically ambiguous between an uncooked pastry and

money. The domain for the variable assigned to the np is the dm itself.

Constraints The constraints come from the np itself and also from the type of links

that can exist between the object described by the NP and its referent.

We will now give the csp set up when the link type hypothesized is identity, whole-

part, class-subclass and resource. In the discussion that follows, we let subst and

referent be the variables assigned to the noun and np respectively and dm to be the

discourse model at the time of resolving the NP.

Identity We consider how to search for the referents of the np the apples in exam¬

ple (4.98):

(4.98) a. Wash and core six cooking apples.
b. Put the apples into the oven dish.

The CSP set up for the search is:

(4.104) (3 subst) (3 referent)

(subst 6 {apple-matter}) (referent € dm)
substance(referent, subst) A structure(referent, set)

The constraints given essentially say that the possible referents for the apples are
those objects in dm which are made of apple-matter and which are viewed as a

set.

Whole-Part Consider how the referents for the definite NP the yolk in example (4.99)
are determined:

(4.99) a. Break an egg.

b. Beat the yolk and the white so that they hold a peak.
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We set up the following csp:

(4.105) (3 subst) (3 referent)

(subst £ {yolk-matter}) (referent £ dm)
part-of(su6st, substance-of( referent))

where the function substance-of returns the substance which referent consists of

while the predicate part-of is true if subst is part of the substance of referent.
This predicate can be directly verified by the taxonomic hierarchy of substances.

Class-Subclass Consider the referent of the definite NP the vegetables in the following

example:

(4.103) a. Soak, drain and rinse the butter beans.
b. Peel and chop the onion.

c. Melt the butter in a large saucepan and add the vegetables.

The csp sets up is as follows:

(4.106) (3 subst) (3 referent)

(subst £ {vegetable-matter}) (referent £ DM)

subclass-of(substance-of(referent), subst)

where subclass-of is a predicate which is true if the substance of referent is a

subclass of subst.

Resource Consider how the referents of the NP the heat are determined in

(4.107) a. e\\ Bring the soup to the boil,
b. Reduce the heat.

The CSP set up is as follows:

(4.108) (3 subst) (3 referent)
(subst £ {heat-matter}) (referent £ dm)
event (referent) A resource-required(su6s<, referent)

where the constraints state that the referent must be an event and that subst is

a resource required in the event.
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Solving a CSP
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There are many methods of solving a CSP. The most straightforward method is the

generate-and-test strategy. In this strategy, one computes the cartesian product D of

all the given value domains, i.e.

(4.109) d = di x d2 x ... dn

and then tests each of the n-tuples in d to see whether they satisfy the given constraints.
This basic search strategy can be easily improved using techniques like backtracking.
A backtracking algorithm explores the product space d by sequentially instantiating

variables in the constraints list. Once a constraint is fully-instantiated, its truth value

is determined: if it is false, the last variable with untried values in its domain is

instantiated with another value.

Another method is to use network consistency techniques which regard the problem as

one of elimination rather than search. The goal is to refine the value domains as much

as possible so that values which cannot be part of a global solution to the problem
are eliminated. Such techniques are applied in [Mellish 85, Haddock 88] for solving
the CSP associated with noun phrase resolution and shown to be useful for incremental

interpretation.

In our work, we essentially employ the generate-and-test approach for solving the
derived CSPs. This is because the investigation of algorithms for CSPs is not within the

scope of the current work.

The Algorithm

Based on the discussion above, the algorithm we employ for disambiguating the verb
and resolving the referring expressions in a clause is given in figure 4.10.
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Algorithm : resolve-obj
Input : v, npi ... np„
Output : the action indicated by v and the referents of the npj.

1. Set up a csp as follows:

(a) Let action be the variable corresponding to v

(b) Let refi be the variables assigned to np,-

(c) Let the domain of action be those actions which v describes.
(d) Determine the domain of each reft:

i. If NP,- is a pronoun or ellided NP, then let the domain of refi be the set
consisting of the current center.

ii. If NP,- is a definite NP, then let the domain of ref be the set obtained
by calling find-np-dom(np,-).

(e) Let constraints be the constraints arising from any pronouns and constraints
from v.

2. Solve the CSP.

3. Return the value bound to action and each of the ref.

Figure 4.10: The object resolution algorithm
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In terms of the algorithm in figure 4.2, we resolve a clause to either a state or event

via the function build-situation-rep. If the situation is a new one, it is added to

the discourse model. The steps involved in this process are as follows:

1. If the clause contains a verb be+verb and the tense is not progressive as in the
water is cooled, then we take it as describing a state. We resolve for the object
which the definite np describes (by calling the find-np-dom function) and search
for a state of the object which contains the predicate given by verb.

2. If the clause contains a verb in present progressive form (vprog) as in the water
is cooling or the water is boiling, we do the following:

(a) We take vprog as a modifier of the np in the clause. We can think of this as

equivalent to forming the referring expression ( the vprog np).

(b) We attempt to find a referent in dm that has the vprog property. The idea
here is that if such a referent exists, then the vprog property must have been
added to the referent by the simulation of a previously mentioned event.

In terms of the strips representation, vprog will be a postcondition of the
operator corresponding to the action in the event. This means that the
clause describes the consequent state of the previously mentioned event.

Consider for instance

(4.110) a. ex: Bring the water to the boil.
b. When the water is boiling, put in the meat.

In our work, we represent the bring-to-boil operator corresponding to the action
in ex as follows:

(4.111) Action : Do(Agent, bring-to-boil(x))
Precondition : boiling(x, —)
Postcondition : boiling(x, +), hot(x, +)
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We use the boiling predicate in (4.111) since it is plausible to describe water

which is brought to the boil as the boiling water.

This means that after simulating e\, the water object (cci) will have the boil¬

ing property added. Then, we process the ic/ien-clause the water is boiling by

attempting to find a referent for the boiling water. This succeeds with x\ and

therefore we regard the clause as describing a state (s) in which the following

proposition holds:

(4.112) hold(s, boiling(a;i, +))

On the other hand, consider what happens if the example is changed to

(4.113) a. e%: Cool the water.

b. When the water is cooling, put in the meat.

The cooling operator is represented as follows:

(4.114) Action Do(Agent, cool(x))
Precondition : hot(x, +)
Postcondition : cooled(x, +)

Note that unlike (4.111), we do not use a cooling predicate to describe the water

that has cooled. This is because it is not plausible to describe the water that has

cooled as the cooling water.

Thus, after simulating e1? the water object (zi) will have the cooled(x, +) prop¬
erty. This means that no referent will be found for the np the cooling water

since there exists no water object with the cooling property. Thus, we take the

when-clause as not describing a state. It is then taken to be describing an event.

3. Otherwise, the clause is describing an event and we do the following:

(a) We carry out lexical disambiguation of the verb and reference resolution
of the referring expressions in the clause using the algorithm given in fig¬
ure 4.10. This step essentially works out the action and participants in the
instruction.
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(b) We search in the DM for an event with the same action and participants.
This is treated as another CSP. Assuming that the action is action and the

participants are participants, then the CSP is:

(4.115) (3 referent) (referent € dm)

event(referent) A substance(referent, action) A

same-participants( referent, participants)

where the constraints say that the referent must be an event with the same

action and the same participants.

(c) If there are no referents in dm which satisfy the constraints of the csp

in (4.115), then the clause is describing a new event. We create a new event

and add to the dm.

(d) Otherwise, there exists a referent event e and we determine the aspect of

this event which the clause is describing. Here, we make use of the work of

[Song 91b, Singh & Singh 92] as described in chapter 2. The basic idea is

to use the presence or absence of perfect, for-adverbial and progressive to

determine the aspect:

(4.116)

Linguistic Features Aspect

Perfect + For-Adverbial Neutral Perfective

Perfect Perfect

Progressive Progressive

Consider, for instance the following examples:

(4.117) e\: Cool the water.

a. When the water has cooled for 10 minutes, take the meat out.

b. When the water has cooled, take the meat out.

c. When the water is cooling, take the meat out.

where the when-clause in (4.117a) is describing the first 10 minutes of e\

(neutral-perfective aspect), the u>hen-clause in (4.117b) is describing the end
state of e\ (perfect aspect) and the when-clause in (4.117c) is describing the

preliminary processes leading up to the end point of e\ (progressive aspect).
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Note that in such cases, we do not create a new event for the current clause.

Instead, we simply record the aspectual information derived.

The Algorithm

Based on the discussion above, the algorithm for resolving a clause into either a state

or event is given in figure 4.11. The input to the algorithm is some intermediate

representation of the clause.

4.4 Decomposing Events in QTS

Recall from chapter 3 that in our work, we take a sentence as being viewed as describ¬

ing a simple or complex event (i.e. either as a repetition or composite event). This
does not preclude the possibility that as more information comes to light, the event

can be decomposed further. Such is the case especially for sentences with plural nps

(example (4.118a)) and sentences describing repetitive events (example (4.118b)).

(4.118) a. Soak some carrots and potatoes.

b. Stir occasionally.

In this section, we consider the problem of decomposing an event if it is deemed nec¬

essary. To do this, we discuss how the event corresponding to stir occasionally can be

decomposed in the QTS corresponding to example (4.119):

(4.119) a. Bring the soup to the boil stirring occasionally,

b. Meanwhile, chop a carrot.

The QTS of example (4.119) is as follows:

(4.120) QTS3 = ({ex, e2, e3},
{(simultaneous, e2, e\), (constituent, e3, ei),
(constituent, e3, e2), (included-in, e4, e3), (none, e<j, e2)})
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Algorithm : build-situation-rep
Input : int-rep
Output : a new situation and any durational info or a given event + aspect

1. If the verb in INT-REP contains a verb-to-be, then

(a) Let ref = find-np-dom(the np in int-rep)
(b) Let STATE = Search for a state of REF with the verb as predicate.
(c) Add STATE to DM and return [STATE, 0]

2. If the verb in int-rep is in present progressive form, then

(a) Let aelem = Conjoin the verb and the np in int-rep
(b) Let REF = find-np-dom(AELEM)
(c) If ref is not 0, then

i. Let state = the state which ref is in
ii. Add state to dm and return [state, 0]

3. Otherwise, do

(a) Let V be the verb in int-rep
Let NPi ... NP„ be the NPs in INT-REP
Let tense be the tense in int-rep
Let for-adv be the /or-adverbial in int-rep

(b) Let [action, participants] = resolve-obj(v, npx ... np„)
(c) Let EVENT = Search for an event in DM with the same

ACTION and PARTICIPANTS

(d) If event is 0, then
i. Let NEW = Create a new event from ACTION and PARTICIPANTS.

ii. Add event to dm.

iii. If for-adv is not 0, return [new, [duration, info in the /or-adverbial]]
Otherwise, return [new, [duration, 0]]

(e) Otherwise, do
i. Determine ASPECT:

A. If TENSE is perfect and FOR-ADV is not 0, then assign ASPECT to be
neutral-perfective.

B. If tense is perfect and for-adv is 0, then assign aspect to be
perfect.

C. If tense is progressive, then assign aspect to be progressive.
ii. Return [event, aspect]

Figure 4.11: The situation resolution algorithm
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Figure 4.12: The qts of example (4.119)

Graphically, we can represent the qts in (4.120) in figure 4.12. where

• e3 is the composite event of bring the soup to the boil stirring occasionally,

• e\ is the event of bring the soup to the boil,

• e2 is the event of stir occasionally,

• e\ is the event of chop a carrot and

• the abbreviation of the constituent, simultaneous, none and induded-in relation is

c, s, n and d respectively.

Recall that the event representation corresponding to stir occasionally is

(4.121) Be event(e) A structure(e, repetition) A occur(so, si, e) A

frequency(e, occasionally) A

[ V/ element(e, /) D

event(/) A structure(/, simple) A

telic(/, —) A substance(/, stirring-matter) A

agent(/, hearer) A obj(/, xi) ]

where mi is the soup object.

The first question that has to be solved is to determine the number of individual stirring
events. Following [Karlin 88], this calculation is carried out as follows:
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e\ C

Figure 4.13: The QTS after decomposing e2, the event described by stirring occasionally

in figure 4.12

1. Assume that the intervals between repetitions are equal. The length of this
interval (len) is calculated by using a percentage value stored in the lexicon
with the frequency adverbial such that len = percentage x total-time. The

total-time is the time for the whole event of stirring occasionally which in our

present example is equal to the duration of the boiling some soup event. For

the adverbial occasionally, the percentage is set arbitrarily at twenty five percent

while for adverbials like frequently, the percentage will be set at a lower value.

2. The number of individual stirring events (n) is then obtained from the following
formula: n = total-time / (len + Duration of an individual stirring event).

The above calculation is necessarily only an approximation of the real world. Suppose

that, based on the above calculation, there are two individual stirring events. The

representation in (4.121) is changed to

(4.122) 3e event(e) A structure(e, repetition) A occur(so, «i, e) A

constituents(e, [ Ci, C2 ]) A

[ event(ei) A structure^, simple) A

telic(ei, —) A substance(ei, stirring-matter) A

agent(ei, hearer) A obj(ei, X\) ] A

[ event(e2) A structure^, simple) A
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Bring the soup to the boil
■ ■

Stir Chop Stir
I II II I

Figure 4.14: The temporal structure of example (4.119)

telic(e2, —) A substance(e2, stirring-matter) A

agent(e2, hearer) A obj(e2, x\) ] A

precedes^, e2)

The qts is updated accordingly. One updating involves altering the link to the de¬

composed event to ensure that the sub-events are integrated in the qts :

1. For each event in qts which is either included-in or has the none relation with

the decomposed event, do

2. (a) Determine the relation between the event and each of the decompositions.

(b) Remove the relation between the event and the decomposed event from the
qts .

The final qts is as in figure (4.13) where es and ee are the two individual stirring
events in e2-

4.5 Conclusion and Summary

In this chapter, we have presented a new approach to the problem of integrating the
current situation into the structure built up for the preceding text. In this approach,
we find the set of reference events needed for a current situation to be integrated in

the qts. There may be more than one reference event needed. The role which these
reference events play in our ta2 framework is explained and two heuristics for choosing
them are given: the similarity criterion and the temporally-further criterion.
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We have also presented an approach to the reference resolution of objects and identified
a new way in which new objects may be added to the discourse model, namely through

event simulation. In addition to resolving references to objects, we also presented an

approach to resolving references to situations. In resolving references to situations,

we make use of the internal structure of event and employ aspectual information to

determine the part of this event structure which the current clause is describing.

In the next chapter, we examine the issue of how the temporal structure can be ex¬

tracted from the QTS . For example, from the QTS of example (4.119) (see figure 4.13)

reproduced below:

(4.119) a. Bring the soup to the boil stirring occasionally,

b. Meanwhile, chop a carrot.

we are able to extract the temporal structure in figure 4.14.



Chapter 5

Temporal Structure

Recall from chapter 1 that there are two levels of representation in Ta2. A text

is first processed into a reduced, fully-integrated QTS which encodes the situations

mentioned in the text and the relations between a situation and its reference events.

We next regard each situation as occurring over a unique time interval and work out the

temporal structure by determining the relations between the time intervals associated
with the events and states. More formally, we can define a temporal structure as

follows:

The temporal structure of a text is defined as a total order on the start

and end time points of the time intervals associated with the situations
mentioned in the text.

As noted in chapter 3, there are two aspects in the relations between time intervals.

First, we have the qualitative relations between time intervals which are represented

using the thirteen relations in Interval Algebra (see figure 2.5). For ease of exposition,
we will refer to these qualitative relations as ia relations. Second, we have quantitative

relations between the start and end time points of the time intervals which indicate

the extent to which time intervals are separated from one another.

Consider, for instance, how the following simple text is processed:

204
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(5.1) Just before e\: serving, e2: add the wine.
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The QTS corresponding to example (5.1) is:

(5.2) ({ea, e2}, {(precedes, e2, ei)})

The precedes relation between e2 and t\ is obtained from the semantics of the before

connective, at the QTS stage, in example (5.1). Note that we do not derive the relation
that e2 meets e\ although it appears that this is indicated by the phrase just before.
This is because we regard the word just as an indicator of the quantitative relation
between the end time point of te2 (the time interval assigned to e2) and the start time

point of te 1 (the time interval assigned to ei):

(5.3) start(fei) - end(te2) = 0

The quantitative relation given in (5.3) is then combined with the qualitative relations
between te2 and te 1 derived from the precede relation between e2 and e\ (see chapter

3):

(5.4) e2 precedes e\ = te2 < te 1 V te2 m te 1 = te2 {<, m} te\

where < and m are two of the possible IA relations between time intervals. Note

that the single precedes relation between e2 and e\ is vague between whether the time
interval associated with e2 is before (<) or meets (m) the time interval associated with
e\. We represent this vagueness by saying that there is a set of possible IA relations
between te2 and te 1 (i.e. te2 {<,m} te1).

The combination of qualitative and quantitative information is carried out through
a process of constraint propagation. In the case of example (5.1), this process will
eliminate < from consideration and determine that te2 m te1. This is then the temporal

structure for example (5.1) in which the orderings among the start and end points of
te 1 and te2 are as follows:

(5.5) te\ m te2 = end(fei) = start(te2) A
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start(iei) < end(fei) A

start(te2) < end(fe2)

Recall from chapter 3 that start and end are functions which return respectively the
start and end time points of a time interval.

On the other hand, if example (5.1) is changed to

(5.6) 30 minutes before e%: serving, e2: add the wine.

then the qualitative relation between te2 and tei is as before while the quantitative

relation is changed to:

(5.7) start(fei) — end(ie2) = 30

In this case, constraint propagation will eliminate m from consideration and determine

that te2 < te\. This is then the temporal structure for example (5.6) where the ordering

among the start and end points of te\ and fe2 are as follows:

(5.8) te\ < te2 = end(tei) < start(te2) A

start(Zei) < end(tei) A

start(te2) < end(te2)

Note that the temporal structure of a text contains the time intervals of all the situa¬
tions mentioned in the text. Given the temporal structure of a cookery recipe, we can

easily extract a schedule specifying the actions which an agent has to carry out:

1. We remove all time intervals from the temporal structure corresponding to states.

2. We remove all time intervals from the temporal structure corresponding to com¬

posite events. This is because the agent only need to carry out the sub-events of
a composite event.

3. We remove all time intervals from the temporal structure corresponding to events

which are generated by other events. Recall from chapter 3 that if an event e



CHAPTER 5. TEMPORAL STRUCTURE 207

is generated by another event /, then the agent needs only to perform / as this

simultaneously achieves e.

Notice that the above extraction steps require access to information about the relations

between situations kept in the qts.

The rest of this chapter is organised as follows:

In section 5.1, we discuss how qualitative relations between time intervals and quanti¬

tative relations between the start and end time points of time intervals can be derived.

The qualitative relations are derived from the relations between situations in the qts

and may differ in different environments. The kind of environmental information we

consider is the resource requirement of the events. This means that different temporal

structures may be obtained from the same qts in different environments.

In section 5.2, we show how the set of qualitative and quantitative relations extracted

can be viewed as constituting a constraint satisfaction problem (csp) (Recall also that
in chapter 4, we discuss how reference resolution and lexical disambiguation can be

solved by viewing them as a csp). The csp can be solved using algorithms developed
in the field of temporal reasoning. We analyse the requirements posed by our csp

on temporal reasoning and based on this analysis choose an appropriate approach for

solving the csp.

In section 5.3, we work through a simple example to demonstrate how different tem¬

poral structures can be obtained from the same qts in different environments.

Finally, section 5.4 ends with a conclusion and summary.

5.1 Relations Between Time Intervals

The first step in extracting the temporal structure is to derive the qualitative and

quantitative relations that can hold between the time intervals associated with the
situations in the qts. The relations can be qualitative, indicating the relative ordering

of the time intervals with respect to one another. Other relations are quantitative,
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siti relation sit2 tsnj {Allen relations) tait2

siti precedes sit2 tsiti {""-) m ) tait2

sit\ after sit2 tsiti {>? Oil) tait2
siti includes sit2 tsiti fit dl} tait2

sit\ included-in sit2 tsiti {s> fi <0 tsit2

siti meets sit2 tsiti {m} ts

siti met-by sit2 tsiti {mi} tsit2

siti simultaneous sit2 tsit\ {~1 tsit2

siti enables sit2 tsiti {<-» m) tsn2

siti enabled-by sit2 tsiti {->> mi) tsn2

siti generates sit2 tsiti { ~} tait2

siti generated-by sit2 tsiti { tait2

Table 5.1: The relations between situations and their time intervals

indicating the extent to which time intervals are separated from one another. Quanti¬
tative relations are typically expressed between the start and end time points of time
intervals.

5.1.1 Qualitative Relations Between Time Intervals

The qualitative relations between time intervals are expressed using the thirteen re¬

lations in Interval Algebra (ia) [Allen 83]. These relations between time intervals are

derived from the relations between situations (identified by the time intervals) in the

qts. Recall from chapter 3 that we employ seven relations between situations, namely

precede, include, meet, simultaneous, constituent, enable, generate, and the default none
relation. In addition, we have discussed the correspondence between these eight rela¬
tions and the IA relations. This correspondence for all but the constituent and none

relation is given in table 3.2 and reproduced in table 5.1.

An approach to obtaining the set of possible IA relations between the time intervals
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assigned to the situations in the QTS is then to iteratively carry out the following steps
until there are no more relations to be picked in the QTS:

1. Pick a relation from the qts.

2. Derive the set of IA relations that corresponds to the picked relation.

3. Repeat step (1).

At step (2) of the above approach, the derivation is simply a lookup from table 5.1

for the precedes, includes, meets, simultaneous, enables and generates relation. However,
this is not so in the case of the constituent and none relation. We will now discuss these

two cases.

Reasoning About the NONE relation

Given a none relation between two events, the temporal relation between the time

intervals associated with the events may differ under different assumptions of resource

availability. In our work, we consider resources to be 'things' which are required to

bring an event to completion. For instance, in bringing a chopping event underlying a

clause like chop a carrot to completion, one would need the availability of instruments
like a chopping knife or a chopping machine. In addition, the agent may or may not

be needed to bring an event to completion. For example, in an environment where an

agent only has access to a chopping knife, then the agent needs to be involved in the

chopping action. On the other hand, if the agent has access to a chopping machine,
then the agent needs only to perform some initial steps of starting the machine after
which the chopping action can be left on its own to completion.

Depending on the environment at the time of understanding the instructions in (5.9):

(5.9) a. e\\ Chop the carrot.

b. ei\ Chop the potato.

where e\ has a none relation with e2, there can be the following kinds of scenarios:
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• If the environment has only one agent or two agents with one chopping knife,
there is no way in which e\ and e2 can be carried out simultaneously.

• If the environment has two agents and two chopping knives, then e\ and e2 can

be performed simultaneously.

• If the environment has only one agent but one chopping knife and a chopping

machine, then the agent could use the chopping machine to carry out e\ and
while e\ is being carried out to use the chopping knife for carrying out e2 or vice
versa. If we ignore the initial steps needed to start the chopping machine, we can

say that e\ and e2 are carried out simultaneously.

Based on the discussion above, we invoke information about resource contention to

decide on the set of possible IA relations corresponding to a none relation. This can be
done using rules. The two rules used are:

(5.10) IF none(ei, e2)
AND -i resource-contention(ei, e2)
THEN te\ {<, >, m, mi, o, oi, =, s, si, f, fi, d, di} te2

(5.11) IF none(ei, e2)
AND resource-contention(ei, e2)
THEN te-i {<, >, m, mi} te2

where the first rule says that if there is no resource contention between an event e\

and another event e2, then there is no ordering between the time intervals of the two

events, and the second rule says that if the two events have a resource contention, then
their time intervals must not overlap.

How do we determine whether there exists a resource contention between two events?

To do this, we employ rules such as those below:

(5.12) IF there is only one agent
AND e\ requires the agent to bring it to completion
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AND

THEN

(5.13) IF

AND

AND

THEN

e2 requires the agent to bring it to completion

resource-contention(ei, e2)

there is only one agent

e\ require the agent to bring it to completion

e2 does not require the agent to bring it to completion
-i resource-contention(ei, e2)

Notice that the clauses on the left-hand side of rules (5.12) and (5.13) need access to

environment information such as the number of agents available and the need for an

agent to be involved in bringing an event to completion.

Consider example (5.9) again:

(5.9) a. e\: Chop the carrot.

b. e2: Chop the potato.

We consider an environment where there is only one agent, one chopping knife and
no chopping machine. We can represent this environment as a set of the following

predicates:

(5.14) number-of-agent(l)

number-of-chopping-knife( 1)

number-of-chopping-machine(O)

In this environment, the agent is needed to bring both t\ and e2 to completion since no

chopping machine is available. Rule (5.12) is therefore applicable in this environment
which means that there is a resource contention between e2 and e\. Thus, rule (5.11)
fires and the set of possible IA relations between te\ and te2 is {<,>, m,mi}.

Consider another environment where there is only one agent, one chopping knife and
one chopping machine:

(5.15) number-of-agent(l)
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number-of-chopping-knife( 1)
number-of-chopping-machine(1)
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In this environment, the agent may use the chopping machine to chop the carrot in e\

and thus she/he is not required to bring ei to completion. While the chopping machine
is doing its work, the agent may use the chopping knife to chop the potato in e2 and

in this case, the agent is needed to bring e2 to completion. Rule (5.13) is applicable
which means that there is no resource contention between e\ and e2. This in turn fires

rule (5.10) and the set of possible IA relations between tei and te2 is {<, >, m, mi, o,

oi, =, s, si, /, fi, d, di}.

From the above discussion, it is clear that in different environments, a none relation

between two events can give rise to different sets of IA relations between the time

intervals over which the events occur. As will be shown in section 5.3, this can give

rise to different temporal structures for the same text in different environments.

Reasoning About CONSTITUENCY

Recall from chapter 3 that the constituent relation is a relation between a composite

event and its sub-event. That is, given a composite event c and its sub-event ci ... cn,

we use

(5.16) constituent^, c;) 1 < i < n

to denote that c,- is related to c by a constituent relation. For instance, the instruction

in

(5.17) Bring the soup to the boil stirring occasionally.

describes a composite event e3 whose constituents are the bring-to-boil event (ej) and
the stirring event (e2). The relations between e3 and each of ei and e2 are then:

(5.18) a. constituent^, ei)
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b. constituent^, e2)
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Now, if an event c4 is a constituent of c, then c\ is temporally included in c. In the

case of example (5.17), we have the following set of IA relations between te3 and te1

and between te3 and te2:

(5.19) a. te3 {si,fi,di,=} fei

b. te3 {si,ft, di,=] te2

However, the above correspondence fails to take into account the temporal relations

among the various constituents or sub-events of the composite event. For instance, in

example (5.17), the two sub-events of e% (i.e. e2 and ei) are simultaneous with one

another. This actually constrains e$ to be simultaneous with both e2 and e\. That is,

we obtain the more 'constrained' IA relations between te3 and each of te2 and te\ than

those given in (5.19) above:

(5.20) te3 {=} te\
te3 {=} te2

As another example, consider the following instruction:

(5.21) Soak, drain and rinse the beans.

which describes a composite event e4 whose sub-events are soaking (ei), draining (e2)
and rinsing (63). The relations among the et- are inferred to be enablement (see sec¬

tion 4.2.4) so that e\ must occur before e2 and e2 before e3. Since e4 includes all and

only these sub-events, it must be the case that e4 starts e4, e2 is during e4 and e3 fin¬
ishes e4. That is, we have the following relations between the time interval associated
with e4 (/e4) and that associated with its sub-events e4 (fe4), e2 (te2) and e3 (^3):

(5.22) te4 {sf} te\
te4 {di} te2

te4 {fi} te3
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Given the discussion above, an approach for determining the possible ia relations
between the time interval of a composite event and those of its sub-events must take

into account the possible ia relations among the time intervals associated with the

sub-events. One such approach can be found in [Song & Cohen 91a]. In our work, we
make use of this approach which we will discuss now.

Song and Cohen's Approach

We can divide the discussion into two cases: one in which a composite event has only
two sub-events and the other where the composite event has more than two sub-events.

Consider first the case where we have a composite event e (time interval te) with two

sub-events e\ (time interval tei) and e2 (time interval te2). There are two possible
sub-cases:

1. In the first sub-case, the ia relation between te\ and te2 is one of the thirteen

IA relations. There are five cases to consider:

(a) In the first case, the relation between te 1 and te2 is such that te 1 is either

before, meets or overlaps te2. This means that the sub-events are arranged
in some sequence within the composite event. Thus, it must be the case

that the first event in the sequence starts the composite event and the last
event in the sequence finishes it. Any events in between the first and the
last event must be necessarily during the composite event:

(5.23) te {si} te 1

te {fi} te2

(b) The second case is the converse of the first case. That is, the relation
between te 1 and te2 is such that te 1 is either after, met by or overlapped

by te2. The same reasoning as in the first case applies except that we now

have:

(5.24) te {fi} te 1

te {si} te2
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(c) In the third case, te\ is either during, starts or finishes te2. Intuitively, this
means that te\ is contained within te2. Since te\ and te2 are both contained

within te, it must he the case that te is simultaneous with te2 and that te

contains te1:

(5.25) te {si,di,fi} te1

te {=} te2

(d) The fourth case is the converse of the third case so that te2 is either during,
starts or finishes te1. The same reasoning as in the third case applies except

that we now have:

(5.26) te {=} te 1

te {si,di,fi} te2

(e) The final case is when te2 is equal with te1. Since both te 1 and te2 are within

te, it must be the case that te is equal with te 1 and with te2:

(5.27) te {=} tei
te {=} te2

The five cases discussed above are shown graphically in figure 5.1.

2. In the second sub-case, there is a set of more than one possible IA relation be¬
tween te 1 and te2. In this case, the possible IA relations between te and te\

and between te and te2 are the union of the appropriate results read off from

figure 5.1. Consider, for instance, what are the possible IA relations between te

and te 1 and between te and te2 if the set of possible IA relations between te1 and

te2 is as follows:

(5.28) tei {<,>} te2

These relations can be computed as follows:

(a) First, recall that te 1 {<, >} te2 = (tei {<} te2) V (tej {>} te2).

(b) From tei {<} we know that te {si} te 1 and te {fi} te2. Similarly, from
te 1 {>} te2, we know that te {fi} tei and te {si} te2. Combining the two

results by taking the disjunction of the corresponding relations, we obtain
the following:
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Figure 5.1: The 5 cases

i. te {si, fi} te\

ii. te {si, fi} te2

Next, we consider how the approach described above for a composite event with two

sub-events (for ease of exposition, we call this approach SUB2) can be extended to
a composite event with more than two sub-events. The strategy is to use sub2 to

determine the set of possible IA relations between the composite event and two sub-
events at a time. One such way of carrying out this strategy can be illustrated using
a composite event e {te) with three sub-events e\ {te\), e2 {te2) and e3 {te3) (see

figure 5.2a):

1. Introduce an intermediate composite event e12 {te12) that has as its constituents

e\ and e2 (see figure 5.2b).

2. Apply SUB2 to obtain the set of possible IA relations between tei2 and te 1 and
between te12 and fe2.
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tei C te3

te2

Figure 5.2: An event with three sub-events

3. Compute the set of possible ia relations between te\2 and te3 from the set of

possible ia relations between the time intervals on the two chains: (te\2 —* te\

—► te3) and (te\2 -> te2 -» te3).

4. Now, from figure 5.2c, ei2 and e3 form two sub-events of e. Apply sub2 to obtain
the set of possible IA relations between te and te\2 and between te and te3.

5. Compute the set of possible IA relations between te and te 1 from the set of

possible ia relations between the time intervals on the chain: (te —> te\2 —* te1).

Similarly, compute the set of possible ia relations between te and te2 from the
set of possible ia relations between the time intervals on the chain: (te —> te\2

-*■ te2).

6. Remove te12 and all its links with te\, te2 and te3. We are left with the set of ia

relations between te and each of te1, te2 and te3.

We now consider how step (3) and (5) are carried out. Given a chain (ta —>• tb —> tc),
the set of possible ia relations between ta and tc can be computed from that between

ta and tb and that between tb and tc. For ease of exposition, we let rab be the set
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of possible ia relations between ta and tb and rbc be the set of possible ia relations
between tb and tc. The set of possible ia relations between ta and tc (say rac) can be
computed using the composition operation ® introduced by Allen [Allen 83]:

(5.29) rac = rab ® rbc = {h X i2 \ h € rab A i2 € rbc}

where the result of i\ X i2 can be looked up in table 5.2.

For example, if rab is {<, m} and rbc is {m}, then we have:

(5.30) rac = {<, m} ® {m}
— {< x m} U {m x m}
= {<} U {m}
= {<, m}

If there are more than one chain from ta to tc, then we take the intersection of the set

of possible ia relations computed from each chain.

The above approach for a composite event with three sub-events can be repeated if

there are more sub-events.

Our Algorithm for Traversing the QTS

Based on the discussion above, we can now give the algorithm for traversing the arcs

of the qts and extracting the appropriate ia relations between the time intervals
associated with the situations in the qts. This algorithm is shown in figure 5.3. The

input to this algorithm is the qts of a text. Recall from chapter 4 that a qts is

given as a two tuples: the set g of situations that are mentioned in the text and the
set R of relations between pairs of situations. The algorithm first traverses those arcs

in the qts whose label is not one of constituency. This results in the determination

of the possible ia relations between the time intervals of all the related situations in

the qts except that between an event and its sub-events. This is necessary as the

algorithm for determining the set of possible ia relations between a composite event

and its sub-events need to know the set of possible ia relations between the sub-events.
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A R1 B/ < > m mi o oi s si d di f fi
B R2 C
< < no < <,m < <,m < < <,m < <,m <

info o,s o,s o,s o,s
d d d d

> no > >,mi > >,mi > >,mi > >,mi > > >

info oi,d oi,d oi,d oi,d
f f f f

m < >,mi < f < o m m o < o <

oi,si fi s s s

di = d d d

mi <,m > s > oi > oi > oi > mi mi

o,di si d d d
fi — f f f

o < >,mi < oi b o,oi o o o <,m o <

oi,si si m di,d di s o,di s m

di di o = fi d fi d o

oi <,m > o > o,oi > oi > oi >,mi oi oi

o,di di di,d, mi d mi d oi,di si

fi fi — oi f oi f si di

s < > < mi < oi s s d <,m d <

m,o d,f si,= o,di m

fi o

si <,m > o mi o oi s si oi di oi di

o,di di di si d
fi fi fi = f

d < > < > <,m >,mi d >,mi d no d <

o,s oi,d oi,d info m,
d f f o,

S,

d

di <,m >,mi o oi 0 oi o di o,oi di oi di

o,di oi,si di si di di di di si

fi di fi di fi si fi d,= di

f < > m > o > d > d >,mi f f

s,d mi,oi mi,oi oi,si fi
di =

fi < >,mi m oi o oi o di o di f fi

oi,si si si s fi

di di di d -

Table 5.2: Composition of two IA Relations



CHAPTER 5. TEMPORAL STRUCTURE 220

Algorithm: Extract-Qual
Input: (g, r)
Output: The set of IA relations between time intervals

corresponding to the relations between situations in R

1. Let CONSTITUENCY = {r | r € R A r is of type constituency}
2. Let REMAINDER = R - CONSTITUENCY

3. For RELATION G REMAINDER, do

(a) If type of RELATION € {precedes, includes, meet, simultaneous, enables,
generates}, return the corresponding set of IA relations.

(b) If type of RELATION is none, perform resource contention reasoning.

4. Perform constituency reasoning on elements in CONSTITUENCY.

5. Return.

Figure 5.3: The algorithm for transversing the qts

We next apply the algorithm for determining the relation between the time interval of
an event and that of its sub-events described above.

As an illustration, consider the traversing of the QTS of the following example:

(5.31) a. Bring the soup to the boil stirring occasionally,

b. Meanwhile, chop a carrot.

The QTS of this example is given in figure 5.4. In the QTS, we have

• e\ is the composite event described by Bring the soup to the boil stirring occa¬

sionally,

• e2 is the event of bring the soup to the boil,

• e3 is the event of stir occasionally,

• e\ and e5 are the two individual stirring events after decomposing e3 and

• e6 is the event described by chop a carrot.
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Figure 5.4: The QTS of example (5.31)

The IA relations derived for the above QTS are as below. In this derivation, we assume

that the environment has only one agent, one chopping knife and no chopping machine:

1. From the three temporal relations between ej and e6, between e2 and e3 and
between e4 and es, we have the following set of IA relations (see table 5.1):

(a) tee {s,f,d,=} tei

(b) te2 {=} te3

(c) te4 {<,m} te5

2. There are two arcs marked with the none relation and since the chopping and

stirring action both require the agent to bring it to completion and there is only
one agent, we have the following set of IA relations:

(a) te6 {<,>,m,mi} te4

(b) te6 {<,>,m,mi} te5

3. Finally, we work out the set of IA relations between the time interval of the

composite event and that of its sub-events. There are two composite events in

figure 5.4. The IA relations derived are as follows:

(a) tei {=} te2
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(b) tei {=} te3

(c) te4 {s} te3

(d) te5 {f} te3

The set of qualitative relations that can be extracted from the qts in figure 5.4 is then
as follows:

(5.32) te6

te2

te4

te6

te&

te i

te i

te4

te5

/> d> —} te\

=} te3

<,m,o} te5

<, >, m, mi} te4

<, >, m, mi] te$

=} te2

=} te3

s} te3

f} te3

5.1.2 Quantitative Relations Between Time Intervals

Recall from chapter 3 that quantitative information is information about the start

and end time points of time intervals associated with situations. The quantitative

information is extracted from a sentence by the add-quant function during the process

of building the situation representation underlying the sentence (see chapter 4). After

extraction, the information is stored separately from the qts as a set of equations of

the form:

(5.33) X - Y R N

where X and Y is either start(I) or end(I) (I is a time interval), R is a relation from
the set {<, >, <, >, =} and N is a number. This set of equations will be added to the
set of qualitative relations extracted from the qts (see section 5.1.1) when carrying
out constraint propagation.
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To illustrate the working of the add-quant function, we consider the following ex¬

amples (in these examples, we take fe,- to be the time interval assigned to the event

e«'):

Cook the rice for 30 minutes: In this case, the /or-adverbial is analysed in the
build-situation-rep function (see chapter 4) as indicating a duration. The
call to add the quantitative information is:

(5.34) add-quant(ei, [duration,30])

where t\ is the event described by cook the rice. The quantitative information

added is then:

(5.35) end(tei) — start(fej) = 30

10 minutes before serving, add the wine: In this case, the call to add the quan¬

titative information is:

(5.36) add-quant(e2, [ei, 10,before])

where e\ is the event described by serving and e2 is the event described by add

the wine. The quantitative information added is as follows:

(5.37) start(tei) - start(te2) = 10

10 minutes before the end of cooking time, add the wine: In this example,
the call to add the quantitative information is:

(5.38) add-quant(e2, [[ei,end],10,before])

where ei is the event which the time point entity described by the end of cooking
time is semantically related and e2 is the event described by add the wine. The

quantitative information added is then:

(5.39) end(tei) - start(te2) = 10

When the water has cooled for 10 minutes, add the seasoning: In this case,

the when-clause is analysed as describing the first 10 minutes of a cooling event.
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Assuming that e\ is the cooling event, we say that the when-clause is describ¬

ing the neutral perfective aspect of e\ (see section 4.3.2). The call to add the

quantitative information is then:

(5.40) add-quant(e2, [ex,10,[neutral-perfective,when]])

where e2 is the event described by add the seasoning. The quantitative informa¬
tion added is then:

(5.41) start(/e2) — start(tex) = 10

The extraction of quantitative information is complicated in those cases where dura¬
tional information is not explicitly given. Consider for instance,

(5.42) a. Chop a carrot.

b. Brown the beef until tender.

where the durations of the chopping and browning event are not given. In such cases, it

is not an easy issue to derive the duration of the event. Of course, there are events like

the bring-to-boil event which may be given a default duration indicating the duration
that the actions in the events normally last. However, there are also events where the

duration of an action is dependent on the agent. For instance, a more experienced

agent would take less time to chop than a less experienced one. To simplify the issue,
we currently assume that each action has a default duration.

To end the section, consider example (5.31) again:

(5.31) a. Bring the soup to the boil stirring occasionally,

b. Meanwhile, chop a carrot.

Recall from the QTS of example (5.31) that e2 is the bring-to-boil event, e6 is the
chopping event while e4 and e5 are the two individual stirring events. We assume that
the chopping action in e6 takes 5 minutes while the stirring action in e4 and e6 each
takes 3 minutes. The quantitative information extracted from the events mentioned
in (5.31) is thus:
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(5.43) end(tfe2) — start(fe2) = 30

end(tee) — start(fee) = 5

end(tfe4) — start(te4) = 3

end(tes) — startles) = 3

5.1.3 Summary

In this section, we have discussed how qualitative and quantitative relations between

time intervals associated with the situations mentioned in a text are derived. The

qualitative relations are derived from the relations between situations in the qts and

we show that the set of qualitative relations derived may vary in different environments.

Given the set of qualitative and quantitative relations between time intervals, the next

problem is how to derive the temporal structure from the set. We now turn to this

problem.

5.2 Temporal Reasoning and Temporal Structure

The problem of solving the set of qualitative and quantitative relations between time
intervals can be viewed as a temporal reasoning problem. One method of solving is
to view the problem as one of constraint satisfaction [Allen 83]. Recall from chapter 4
that a constraint satisfaction problem (csp) can be defined as follows:

(5.44) (3 ui)(3 v2).. .(3 u„)(ui € Di)(v2 G D2).. .(vn € Dn) P(vi, v2, ..., vn)

where i?i, v2 ... vn are variables and P(tq, v2, ..., vn) stands for an arbitrary conjunc¬
tion of predicates over subsets of the variables (vi, v2, ..., vn}.

In section 5.2.1, we will show how a given set of qualitative and quantitative relations
can be formalised into a csp. We will do this in an incremental manner by first

formalising the set of qualitative relations and then adding the quantitative relations
into the formalisation.
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In section 5.2.2, we will introduce temporal reasoning and analyse the requirements
which our csp imposes on temporal reasoning algorithms. Based on this analysis, we

present the approach which we take to solving the csp. The solution of the csp may

consist of more than one solution tuple each of which represents an assignment of
one value to each of the variables in the csp such that all the constraints are satisfied.

Each solution tuple constitutes a possible temporal structure for the text.

5.2.1 Formalisation as a CSP

In this section, we will formalise a given set of qualitative and quantitative relations
between time intervals as a csp.

Formalising Qualitative Relations as a CSP

We consider how the qualitative relations expressed between time intervals can be

regarded as a CSP. If we let s be the set of time intervals associated with the situations
in a text, i.e.

(5.45) Let s = {/e; | fe, is the time interval associated with the
ith situation in the text and 1 < i < n)

then the CSP corresponding to the set of qualitative relations is defined as follows:

Variables The variables are the labels on the nCi arcs that link the tex in s, i.e the

set of variables is:

(5.46) Let VAR = {r,j | r,j is a label on an arc linking fe,- and tey
1 < i < n A i + 1 < j < n}

Domains The domains of these variables are the set of possible ia relations that can

hold between the fet- and tey

Constraints The constraints on the variables are binary:

(5.47) rtJ ® rjk = rik
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f6i € {s,f,d,=}
r23 G {=}
r45 e {<,m,o}
^*64 € {<,>,m,mi}
r&5 € {<,>,m,mi}
r12 € {=}
ri3 e {=}
r-43 e {s}
r-53 e {f}
All other arcs labels = the full

set of 13 ia relations.

Figure 5.5: The network representation of the csp for example (5.32)

where ® is the composition operation defined in (5.29).

For example, the csp corresponding to the set of qualitative relations given in (5.32)
above and reproduced below:

(5.32) te6 {s, /, d, =} tei
te2 {=} te3

te4 {<,m,o} te5

tee {<> >) mi ™}
te& {<, >> mi} te5

te-i {=} te2

te 1 {=} te3

te4 {s} te3

tee {f) te3

can be visualised as in figure 5.5.

For ease of exposition, we will call the network representation of the csp corresponding
to a set of qualitative relations (such as the network in figure 5.5), a Constraint Interval
Network (cin). We now consider the problem of adding quantitative relations into the
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CIN.

Adding Quantitative Relations into the CSP

As noted above, quantitative relations are relations between the start and end time

points of time intervals. For instance, the quantitative relations extracted from exam¬

ple (5.31) given above and reproduced below:

(5.31) a. Bring the soup to the boil stirring occasionally,

b. Meanwhile, chop a carrot.

are as follows:

(5.43) end(te2) — start(te2) = 30

end(tee) — start(tee) = 5

end(te4) — start(te4) = 3

end(tes) — start(tes) = 3

where e2 is the bring-to-boil event, e§ is the chopping event and e4 and e$ are the two

individual stirring events.

Following [Meiri 91], one can regard the quantitative relations between two time points,

Pi and pj, as constraining the possible values for the distance pj — pi to a given set of
intervals, i\ to ik, each of which may be open or closed on either side:

(5.48) (pj - Pi eh) V ... (pj - pi e ik)

For instance, the quantitative relations in (5.43) can be recoded as:

(5.49) end(/e2) - start(fe2) e [30,30]

end(te6) - start(te6) € [5,5]

end(te4) — start(te4) € [3,3]
end(te5) — start(tes) G [3,3]
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te6
O

{sp}

{<i>,m ,mi} [3,3]
[5,5]

te6 te4

O ifp}
te+

{fP} 6
te+

Figure 5.6: The network representation of the CSP for example (5.51)

where [f4, t2] represents an interval that is closed on both sides or equivalently that
the interval starts at ti and ends at t2 on a time line. As another example, consider

the quantitative relation expressed in the sentence John left for work between 7.05 and
7.10 am. If we assume the existence of a speech time point, say po at 7.15 am, then

the quantitative relation in the above sentence can be represented as:

where p\ is the start time point of the john-go-to-work event and (5,10) represents a

time interval which is open at both ends.

We are now in a position to add quantitative relations into the CIN corresponding to

a set of qualitative relations. The resultant network has both time points and time
intervals. For example, the CSP corresponding to the following set of qualitative and

quantitative relations:

(5.51) te6 {<,>,m,mi} te4

end(tee) — start(tee) = 5

end(te4) — start(fe4) = 3

is given in figure 5.6. For ease of exposition, we will call the resultant network when
quantitative relations are added a ciN+,uon. From figure 5.6, one can identify 3 kinds
of variables in a ciN+<?uan:

(5.50) Po - Pi € (5,10)
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Relation Symbol Inverse Relations on Endpoints

p before I bp aP p < I~

p starts I Sp sip P = r

p during I dp dip /- <p<i+

p finishes I fp fip II >»<+

p after I ap bp P > I+

Table 5.3: The relations between time points and time intervals

1. One kind of variable arises from the labels on the arcs linking two time intervals
such as that between te& and te4. The domain of these variables comes from the

thirteen possible IA relations.

2. Another kind of variable arises from the labels on the arcs linking two time points

such as that between teg and teg . The domain of these variables are the possible
intervals from (-00, 00).

3. The third kind of variable arises from the labels on the arcs linking a time point

and a time interval. The domain of these variables are the possible relations that

can hold between a time point and a time interval. These relations are given in
table 5.3.

In the next section, we discuss algorithms from work in temporal reasoning that can
be applied to solve a ciN+9U<m.

5.2.2 Analysing the Temporal Reasoning Requirements of ciN+?"a™

In this section, we are interested in algorithms that can solve the CSP corresponding
to the set of qualitative and quantitative relations between time intervals discussed
above. A solution tuple to the CSP constitutes a temporal structure for the text from
which the set of qualitative and quantitative relations are derived.
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Some Preliminaries

231

Typically, a constraint propagation algorithm employs network consistency methods
whose goal is to refine the value domains as much as possible so that values which
cannot be part of a global solution to the problem are eliminated. There are two

properties of a constraint propagation algorithm that are of interest to us:

1. The algorithm must be able to detect whether the CSP is consistent, i.e. whether
there exists at least one solution-tuple.

2. If the CSP is consistent, we would like to know whether all possible combinations

of values from the resultant domains of each variable are solution tuples. If this
is so, we say that the resultant CSP is a MINIMAL NETWORK. Given a minimal

network, it is easy to obtain the possible solution tuples. To illustrate, assume

that there are three variables in a CSP (say var\, var2 and var^) and that in the
minimal network of the CSP, the domains of the respective variables are {1, 2},

{3} and {4}. The possible solution tuples are then the possible combination of
values from the three domains:

Solution Number vari var2 varz

1 1 3 4

2 2 3 4

For ease of exposition, we will call an algorithm which detects inconsistency and
returns minimal network an EXACT algorithm.

Thus, given a CSP and an exact constraint propagation algorithm to solve it, the
solution tuples and thus the temporal structures can be read off from the minimal

network. However, if there is no exact constraint propagation algorithm to solve a

CSP, then the solution tuples cannot be read off directly. Instead, backtracking has
to be employed after constraint propagation to find the solution tuples. For instance,
assume that the network containing var\, var<i and var^ discussed in the paragraph
above is not minimal after constraint propagation. In this case, there is no guarantee

that every value in the domain of each variable takes part in a solution tuple. To obtain
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the solution tuples, backtracking is carried out. To illustrate, assume that assigning
a value of 3 to var-i is incompatible with assigning a value of 1 to var\. When this

happens, backtracking occurs to try to reassign a value to var^. Since there are no

more possibilities for var2, backtracking again occurs to reassign a value of 2 to var\.

Assuming that this is consistent with a value of 3 for var-z, the algorithm continues to

assign a value of 4 to var^. If this is consistent, the solution tuple will be simply:

Solution Number VCLT\ var2 varz

1 2 3 4

Temporal Reasoning Requirements of ciN+91ta"

In this section, we analyse the temporal reasoning requirements of ciN+?wm in order
to determine whether there exists exact constraint propagation algorithms for solving
it.

Work in temporal reasoning [Vilain et al 89, Meiri 91] has shown that there exists a

subset of ciN+9Uan which can be transformed into an equivalent csp involving time

points instead of time intervals. In this equivalent csp, variables are labels on arcs

linking time points instead of time intervals and the domain of these variables are one

of the following: {>}, {<}, {=}, <, =}, {>, =}, {<, >, =}. For ease of exposition,
we will call this equivalent csp cpn+<?ua™.

Meiri [Meiri 91] shows that a slightly modified version of the constraint propagation

algorithm of Allen [Allen 83] is exact for CPN+?tton. Unfortunately, not all ciN+9titm
can be transformed into an equivalent cPN+9"an. For instance, a ciN+9"an where the
domains of the variables include set of possible ia relations that denotes disjointedness

such as {<, >, m, mi) or {<, >} cannot be transformed into an equivalent CPN+9"an.
In such ciN+?"°" where there is no equivalent cPN+?uan, Meiri [Meiri 91] shows that
the ciN+9"an cannot be solved 'exactly'.

Now, recall from section 5.1.1 that it is possible to derive {<, >, m, mi) as the set

of possible ia relations between two time intervals in our ta2 framework. This means

that there are some clN+9"an from our texts that cannot be solved 'exactly'. As noted,
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the usual approach is to first apply the constraint propagation algorithm followed by
a backtracking search.

We are now in a position to describe the approach we use to solve the ciN+?"a™ ex¬

tracted from a text.

Solving CIN+9"an

Given that there are some ciN+?uari from a text which cannot be solved exactly, our

approach to solving the csp is as follows:

1. First, we employ a preprocessing strategy to refine the domains of each variables

in the csp.

2. Next, we employ a backtracking search to search for the solution tuples among

the reduced domains of the variables in the csp.

Preprocessing Strategy In our work, we adopt the preprocessing strategy pro¬

posed by Kautz and Ladkin [Kautz & Ladkin 91]. In this strategy, Kautz and Ladkin

suggests splitting clN+<?uan into two networks: a network of time intervals whose labels
take values from the set of IA relations (an IA network) and a network of time points

(a metric network) whose labels take value from (-oo, oo). The network of time in¬
tervals can be processed using the constraint propagation of Allen [Allen 83] (for ease
of exposition, we will call this algorithm all3) while the network of time points can

be solved in polynomial time using the all-pairs shortest path algorithm (aps) of Aho

[Aho et al 76, 198]. The approach can be described as follows:

1. Separately propagate the constraints in the ia network using ALL3 and in the
metric network using aps.

2. Derive a set of new ia relations from the metric network and add these to the ia

network. Propagate with all3. For instance, in the following metric network:
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(5.52) end(I) — start(I) G (3, oo)
end(J) — start(J) G (-oo, 2)

where I and J are time intervals, we can deduce that I cannot be during, start,
finish or equal to J. This is because the duration of I is at least 3 and the duration

of J is at most two. Hence, the set of possible IA relations between I and J is {<,

>, o, oi, m, mi, c, fi, si}.

3. Derive new quantitative relations from the IA network and add these to the metric

network. Propagate with APS. For instance, in the following IA network where
the set of possible IA relations between time interval I and J is:

(5.53) I {<} J

the quantitative relations between I and J can be obtained from the following

equivalence:

(5.54) I {<} J = end(I) < start(J) A

start(I) < end(I) A

start(J) < end(J)

That is, the quantitative relations derived are:

(5.55) end(I) - start(J) G (-oo, 0)
start(I) — end(I) G (—oo, 0)

start(J) — end(J) G (—oo, 0)

4. Repeat step (2) to (3) until there is no change in the IA network and metric
network.

Backtracking Search The result of preprocessing is typically a more constrained
clN+9"an. We can then initiate backtracking search for possible solution tuples. To
do this, we sequentially assign a single value to each of the possible labels in the IA

network. At each step, the chosen IA relation is propagated and any new derived metric
relations are propagated as described above. This continues until no more new metric
or IA relations are derived. If a conflict is detected, backtracking is initiated.
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In our work, we order the choice of IA relations during backtracking using the following

ordering:

1. {=}

2. {s,si,f,fi}

3. {o,oi}

4. {d,di}

5. {m,mi}

6- {<,>}

The above ordering is a heuristic for ensuring that the first solution tuple found is one

where the intervals are packed as tightly as possible. Currently, we only return this
solution tuple although it would be possible to return the remaining solution tuples.
As noted, these solution tuples represent the possible temporal structures of a text.

5.2.3 Summary

In this section, we have shown how a set of qualitative and quantitative relations

extracted from a text can be viewed as a constraint satisfaction problem. The possible

solution tuples to the CSP constitute the possible temporal structures for the text.

In general, the set of qualitative and quantitative relations extracted from an instruc¬

tional text maps into a class of CSP called CIN+?uan. In some cases, a ciN+?uon can be
transformed into an equivalent cPN+9"on for which an exact algorithm exists to solve
it. However, in the general case, no such exact algorithm exists and the usual approach
is to have a preprocessing stage of constraint propagation to try to reduce the size of
the variable domains. This is then followed by a backtracking search.

In the next section, we will work through a simple example to illustrate how solution

tuples and thus the temporal structures for an instructional text can be obtained. This
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Figure 5.7: The QTS of example (5.56)

example also illustrates how different temporal structures can be obtained from the

same QTS in different circumstances.

5.3 A Worked Example

We will consider the simple example in (5.56) to illustrate the extraction of temporal
structures from its QTS.

(5.56) a. ci: Chop a carrot.

b. e2: Chop a potato.

c. 63: Boil the potato.

The QTS of example (5.56) is shown in figure 5.7. We will divide our discussion into
two scenarios to show how different temporal structures can be obtained from the same

QTS.

5.3.1 Case 1

In this case, we shall assume that the agent does not need to look after the potatoes

while they are boiling. The set of qualitative relations derived are as follows:

1. The precedes label on the arc from e2 to e3 means that the set of possible IA

relations between fe2 an(i ^e3 is {<> m}•
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2. We reason about the none arc between e\ and e2. Since both chopping action in

t\ and e2 require the agent to bring it to completion and there is only one agent,

rule (5.11) given above and reproduced below is applicable:

(5.11) IF none(ei, e2)
and resource-contention(ei, e2)
then tei {<,>,m,mi} te2

The possible IA relations between te\ and te2 is then {<,>,m,mi}.

3. Next, we reason about the none arc between e\ and e3. Since the agent does
not need to look after the potatoes while they are boiling, there is no resource

contention between e\ and e3. Rule (5.10) given above and reproduced below:

(5.10) IF none(ei,e2)
AND -i resource-contention(ei, e2)
THEN tei {<,>,m,mi,o,oi,=,s,si,f,fi,d,di} te2

is now applicable and the possible IA relations between tei and fe3 is {<, >, m,

mi, o, oi, =, s, si, f, fi, d, di}.

Together with the quantitative information regarding the duration of e\, e2 and e3, the
set of qualitative and quantitative information that can be extracted for this case are

as follows:

(5.57) te\ {<,>,m,mi,o,oi, =,s,si,f,fi,d,di} te3
tei {<,>,m,mi} te2

te2 {<,m} te3

tef — te]" = 5

te~2 — tej = 5

te^ — tej = 20

The set of qualitative and quantitative relations in (5.57) can be transformed into the
IA network of (5.58a) and the metric network of (5.58b) where a, b and c are nodes
representing tei, te2 and fe3 respectively, a~, b~ and c~ are nodes representing the start
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time points of tei, te2 and te3 respectively, and a+, 5+ and c+ are nodes representing
the end time points of te1, te2 and te3 respectively.

(5.58) a. rac G {<,>,m,mi,o,oi,=,s,si,f,fi,d,di}
Tab €

r&c e {<,m}

b. ra_a+ € [5,5]

^6-6+ € [5,5]

rc-c+ G [20,20]

(5.58) is preprocessed with Kautz and Ladkin's algorithm and the IA network is now:

(5.59) rac G {<,>,m,mi,o,oi,s,f,d}
rab G {<,>
He € {<,m}

Note that the reduced domain in rac is due to the effect of the quantitative relation

encoded in the metric network. More specifically, since the duration of e\ is less than

the duration of e3, it is not possible for e\ to be equal to (=), started by (si), finished

by (fi) or contained in (di) e3.

We now carry out the backtracking search. The trace is as follows:

1. We choose first to assign a value to rac. The possible values are from the set {<,

>, d, s, /, m, mi, o, 01}. Following the heuristic, we choose the value s.

2. Upon propagating the above choice, the domain of rab is reduced to {>, mi} and
that of rbc to {<}. Again, following the heuristic, we assign the value mi to rab-

3. No inconsistency is detected and thus a solution-tuple is found in which rac is

assigned s, rab is assigned mi and rbc is assigned m.

The solution tuple translates into the temporal structure for example (5.56) in fig¬
ure 5.8.
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e3
I I

Figure 5.8: A temporal structure for example (5.56)

5.3.2 Case 2

In this case, we shall assume that the agent needs to look after the potatoes while

they are boiling. The set of qualitative and quantitative relations are then as in (5.57)

except for

(5.60) tei {<, >, m, mi} te3

since now there is a resource contention between the chop-a-carrot event and the boiling

event. This set is given in (5.61).

(5.61) a. rac € {<,>,m,mi}
rab € {<,>,m,mi}
rbc e {<,m}

b. ra~a+ € [5,5]

rb-b+ € [5,5]

rc-c+ € [20,20]

After preprocessing (5.61), there is no change in the IA network. We now carry out
the backtracking search. The trace is as follows:

1. We choose first to assign a value to rac. The possible values are {<, >, m, mi}
and according to the heuristic, we choose the value m.

2. Upon propagation, the domain of rab is reduced to {>, mi} and that of rbc to

{<}. According to the heuristic, we assign mi to rab.
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c-2 ei e3
■ ■ ■ 1

Figure 5.9: Another temporal structure for example (5.56)

3. Upon propagation, no inconsistency is detected. Thus, we have a solution-tuple,

in which rac is assigned m, rab is assigned mi and rj,c is assigned <.

The solution tuple obtained above translates into the temporal structure shown in

figure 5.9.

5.4 Conclusion

In this chapter, we have established the connection between temporal analysis and

temporal reasoning. We accomplished this by showing that the set of qualitative and

quantitative relations from a text can be transformed into a constraint satisfaction

problem and solved using algorithms developed in the field of temporal reasoning.

By successfully integrating temporal analysis with temporal reasoning, we show how

qualitative and quantitative information can be used together in temporal analysis.
Previous work on temporal analysis has only focused on qualitative information.

We have also shown how different temporal structures for the same text can be derived
in different environments.



Chapter 6

The TASTE System

This chapter presents taste, a system implemented using the ta2 framework for the

Temporal Analysis of inSTructional tExt. taste takes as its input the sequence of

sentences in a text and outputs the text's temporal structure.

taste is implemented in Common Lisp and has been tested on nine cookery recipes.

These recipes are taken from two cookbooks (namely The Electric Casserole Cook Book

by the Good HouseKeeping Institute and the Harvest Traditional British Cooking) and
from the Internet newsgroup rec.food.recipes. One of these recipes and the result
of processing it by taste is given in chapter 1. The remaining eight recipes and the
result of their processing by taste are given in Appendix A. The output of taste is

to be interpreted as follows:

• The top diagram indicates the quasi-temporal structure which is a network whose
nodes are the indices of the events (such as El) and states (such as stl) mentioned
in the text and the arcs between the nodes are the relations between the events

and states. The sentences describing the events and states are given to the left
of the diagram. Finally, as the graphic routine we used do not permit directed

arrow, we adopt the convention that the direction of the arrow on the arc between

nodes is from the node associated with the larger index to the node associated

with the smaller index. For instance, if the arc between El and E2 is labelled a,

241
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this is taken to mean that E2 is after El.

• The bottom diagram indicates the temporal structure where the horizontal lines

are time lines with time increasing from left to right and the black boxes represent
time intervals occupied by events and states. Note that if the index of an event

is El, then the time intervals assigned to El is given by TEl.

Although taste is tested only on cookery recipes, we believe its architecture is general

enough to handle other instructional texts as well. We will now give an overview of
the architecture of taste before outlining the structure of the rest of this chapter.

6.1 An Overview Of System Architecture

Figure 6.1 gives an overview of the architecture of TASTE.1

taste accepts a recipe text as input. The system's operation can be thought of as

occurring in two phases.

In the first phase, taste builds up the qts of the text and records any quantitative

information found in it. This phase implements the build-qts algorithm given in

figure 4.1 (see chapter 4). As can be seen from figure 6.1, the build-qts algorithm
takes as input the set of sentences found in the text. Each sentence goes through the

following steps:

1. taste invokes the build-intermediate-rep module to build an intermediate

representation of the sentence. This intermediate representation represents the
semantic content of the sentence and is called a Recoverable Semantic Struc¬

ture (rs). We will further discuss the working of the build-intermediate-rep

algorithm in section 6.4.

2. The rs structure of a sentence is passed to the incremental-build-qts al¬

gorithm (see figure 4.2, figure 4.3 and figure 4.4 in chapter 4). The algorithm
lIn the figure, slender rectangular boxes and the dotted line box denote processes while the wider

boxes denote data. A directed arrow from box A to box B means that data flows from A to B.
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senti ... sent{ ... sentn

Temporal Structure

Figure 6.1: The architecture of TASTE
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extracts any quantitative information found in the sentence and incrementally
builds up the QTS via the following steps:

(a) It first builds up the representation of the situations underlying a sentence:

i. If the sentence is a simple clause, the algorithm will invoke the build-
situation-rep (see figure 4.11 in chapter 4) to build up the underlying
situation representation. If the situation is an event, it is sent to the do¬

main modeller for simulation. After simulation, the world model is

updated accordingly. The discourse model provides the information
needed in reference resolution.

ii. If the sentence is complex with more than one clause, the build-

situation-rep will be successively invoked to build up the situation

representation underlying each clause. In this case, the individual situ¬
ation representations may be further 'composed' into a composite event

representation (see chapter 3). The situation representation is called a

Knowledge Based Entity (kbe).

(b) Once the kbe underlying a clause has been constructed, it is integrated into
the preceding qts by the integrate algorithm (see figure 4.5 in chapter

4).

In the second phase, taste extracts the qualitative Interval Algebra (ia) relations
between the time intervals assigned to the situations at the nodes of the qts built up
in the first phase.

1. It first decides whether to decompose those events in the qts which are repetitive

and where the actions in the events act on plural objects. Currently, taste

has no knowledge to determine whether an event should be decomposed or not.

Instead, it simply queries for such information. If the decomposition is needed,
it computes the necessary number of repetitions based on durational information

(see section 4.4 in chapter 4).

2. The 'decomposed' qts is now traversed by the qualitative extractor module
to extract the qualitative ia relations. The algorithm implemented is that given



CHAPTER 6. THE TASTE SYSTEM 245

in figure 5.3 in chapter 5. The algorithm invokes rule reasoning about resources
when traversing those arcs in the QTS with the none label. As noted in chapter 4,

the rules need access to environmental information. In taste, this information

is obtained through querying.

The set of qualitative ia relations extracted from the qts is now combined with the

set of quantitative relations extracted from the text. As explained in chapter 5, we can

regard this combined set as constituting a constraint satisfaction problem (csp). The
csp is solved by a temporal reasoner which carries out the preprocessing algorithm
of Kautz and Ladkin [Kautz & Ladkin 91] and subsequent backtracking searches for
the 'best' ordering of events (see chapter 5).

The rest of the chapter is structured as follows.

Section 6.2 discusses the implementation of the various kinds of representation found
in TASTE. In this implementation, feature structures serve as a core representation

mechanism for the following:

1. to implement the KBE structure;

2. to implement the various intermediate levels of representation (namely the AS

and RS level of representation) needed in mapping a sentence into its KBE and

3. to implement structures encoding the relations that hold between pairs of sit¬
uations (as will be explained in the section, this in turn allows the QTS to be
represented simply as a list of feature structures).

Section 6.3 discusses the rule mechanism implemented in TASTE. This rule mechanism
is used to implement the knowledge required in the following tasks:

1. to map a sentence into its kbe structure;

2. to determine the set of previous events whose relations with the current situation

can be deduced;

3. to determine the relations between situations and
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4. to determine the qualitative ia relations between the time intervals of the situa¬

tions described in the text.

Section 6.4 will discuss how the rule mechanism is used to implement the mapping

from a sentence to the kbe structure of the situation underlying the sentence. These

mappings are done in the build-intermediate-rep, incremental-build-qts and

build-situation-rep modules. For ease of exposition, we will call these modules the

Natural Language Front End (nlfe) of taste.

Section 6.5 will discuss how the rule mechanism is used to implement the reasoning

needs of the modules after nlfe. In particular, we show how the rule mechanism is used
to determine the set of previous events whose relations with the current situation can

be deduced (see section 4.1.2), the determination of the relations between situations
and the determination of the qualitative ia relations between the time intervals of
situations.

Section 6.6 takes a step back and presents an evaluation of the taste system in terms of
data coverage, the methodology employed for evaluation and the nature of the results
obtained by the system.

Finally, section 6.7 ends with a conclusion and summary.

6.2 The Representation Structures

There are different kinds of representation needed in taste:

1. First, we need to represent the various levels of representation required in the
nlfe. There are three such levels since a sentence in taste is processed in

three stages to obtain the representation of the situation underlying the sen¬

tence. These three levels of representation are similar to that used in Dale's
epicure system [Dale 92], a Natural Language Generation System. At the first
level, we have the Abstract Syntactic Structure (as) which is mapped into the
Recoverable Semantic Structure (rs). The rs structure is finally mapped into a
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Knowledge Base

Figure 6.2: The levels of representation in the NLFE

Knowledge Base Entity (kbe). The levels of representation involved in extracting
the representation of the situation underlying a sentence are given in figure 6.2.

2. We need to represent the qts built up by TASTE. In terms of KBEs, the QTS can

be thought of as encoding the relations between the various KBEs.

To implement the representations indicated above, we use feature structures as the
core representation mechanism. This has the following advantages:

1. There exist unification-based chart parsers which can work with a grammar and
lexicon written using the PATR notation to produce the initial AS structure com-

positionally. PATR is a well-defined formalism where atomic categories such as

NP and V are replaced by sets of feature specifications. Such a formalism enables
the grammar and lexical entries to be written in a declarative and perspicuous
fashion.
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2. Feature structures can be easily manipulated (i.e. accessed and extended). In

fact, one can define a notion of a path to pick out a certain portion of a feature

structure. The common notation for a path is (F a b c) where F is an identifier
for the feature specification and the second and subsequent symbols are feature

names. This easy manipulation facilitates the design of a rule reasoning system

over the feature structures (see section 6.2).

We will now describe the three levels of representation used in the nlfe as well as the

representation of the qts in terms of the representation of the relations between the

KBEs. In discussing the feature structure implementation of these representations, we

will be using a BNF-like notation to define the grammars which describe the feature
structures. The various conventions used in this notation have the following interpre¬

tations (taken from [Dale 92]):

In each rule of the form

A Bj B2 Bn

the left-hand side is the name of an attribute which appears in a feature structure,

and the right hand side specifies the possible values of that attribute. The symbols
used to specify the right-hand sides of these rules should be understood as follows:

• Values in italics, as in

state ::- Si

are atomic values. Thus, this rule states that the attribute state has as its value

some symbol s,-. A subscripted item such as s; is intended to indicate that any

symbol of this form can be used, where i is replaced by an integer.

• Values which are in roman type, as in

occurs ::- begin end

are themselves attributes. Thus, this rule states that the attribute, occurs, has
as its value a structure that itself consists of two attributes, begin and end.
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• Where a number of different values are possible, the symbol '|' is used to indicate

disjunction. Thus, the rule

index X{ | e,-

states that the attribute INDEX may have as its value either a symbol of the form

x,- or a symbol of the form e,.

• Where there are a potentially infinite set of values, these are represented either

by a gloss in brackets, as in

prop (an attribute-value pair)

or by one or more example values followed by ellipsis, as in

out result ...

• The symbol attached to an item signifies that the expression of that item in

the grammar may appear zero or more times.

• An item within square brackets indicates that the item is optional.

• An item in small capitals, as in

spec structure substance packaging PROP*

is shorthand for the expansion of that item expressed elsewhere in the grammar,

i.e., it is neither an attribute or an atomic value.

6.2.1 Abstract Syntactic Structure

An Abstract Syntactic Structure (as) is close to the syntax of the linguistic form of a
sentence. For instance, the as structure of a clause such as chop the potatoes is:



CHAPTER 6. THE TASTE SYSTEM 250

mood: imperative

tense: present

(6.1) sem:
agent: hearer

tprop: action: chop
prop: - K .

args: obj: ...

where the various features have the following meanings:

• The mood feature indicates whether the clause is imperative or declarative. In

our domain, the clauses are imperative.

• The tprop feature indicates the tense of the clause and the prepositional content
of the clause. The prop feature mirrors the subject-predicate form of a clause

and contains the following features:

- The agent feature indicates the agent which is to carry out the imperative

clause. This is by default the hearer of the clause.

- The action feature indicates the action to be carried out and is given by the
verb in the clause.

- The args feature contains the AS structure of the objects involved in the
action. For our current example, the object involved is that described by
the NP the carrots.

The ellided object in (6.1) is the AS structure of the definite NP the potatoes [Dale 92]:

status: given: +

(6.2)
spec:

countable: +
number: pi

desc: head: potato

where the various features have the following meanings:
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• The status feature indicates whether the np is describing a given object i.e. re¬

lated to a previously mentioned object. For instance, the value of the given

feature for a definite np is + while that for an indefinite np is —.

• The spec features indicates whether the np is countable or not (the countable

feature) and singular or plural (the number feature). In addition, it contains the
head noun in the np and any modiher of this noun (for the NP the potatoes, there
is no mod feature).

This closeness facilitates the use of compositional interpretation during parsing to build

up the as structure (see section 6.4).

In addition to simple clauses such as Chop the potatoes discussed above, we also han¬

dle sentences which contain more than one clause and sentences containing adverbial
clauses. We will now discuss how the as structures of these sentences can be formed

from the basic as structure of a simple clause described above.

Example 1 We consider sentences that have more than one clause connected by a

temporal adjunct. For example, the as structure corresponding to Before you mash
the potatoes, take out the chicken leg is as follows:

(6.3)
connector:

subord: ...

main: ...

type: before

where the ellided subord and main features are the as structures of the subordinate

clause and the main clause respectively. The subord feature is as follows:

(6.4)

mood: imperative

tense: present

tprop:
prop:

agent: hearer
action: mashing

args: obj: ...
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where the ellided object is the as structure of the np the potatoes (see (6.2)).
MAIN feature is similar and is as follows:
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The

(6.5)

mood: imperative

tense: present

tprop:
prop:

agent: hearer
action: taking-out

args: obj:

where the ellided object is the as structure of the the NP the chicken leg:

(6.6)

status: given: +

spec:

agr:

desc:

countable: +
number: sg

head: chicken

iod: head: leg

If the sentence is instead 30 minutes before you mash the potatoes, take out the chicken

leg, then the as structure is as in (6.3) except that the connector feature is replaced

by:

(6.7) connector:
time:

unit: minute

quant: 30

type: before

Finally, consider what happens if the sentence is Then, take out the chicken leg. We

analyse this sentence as though it is After <f>, take out the chicken leg where (f> is to be
retrieved from context. The as structure is thus:

(6.8)
connector:

subord: []
main: ...

type: after
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where the ellided MAIN value is as in (6.5).
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Example 2 We now consider sentences which contain adverbial clauses. For instance,

the AS structure of the sentence stir (f> occasionally is:

mood: imperative

tense: present

(6.9) sem: tprop:
prop:

agent: hearer
action: stir

args: obj: ..

frequency: occasionally

where the frequency feature indicates the frequency adverbial used in the clause, namely

occasionally. Note that the ellided object in (6.9) is the AS structure of <f> in stir f>

occasionally [Dale 92]:

(6.10)
status:

spec: Q

given: +

Finally, consider the AS structure of a sentence with a /or-adverbial. For instance, the
AS structure of the sentence steam the fish for 10 to 20 minutes is:

mood: imperative

tense: present

(6.11) sem:

tprop:
prop:

agent: hearer
action: stem

args: obj: ..

duration:

min:
unit: minute

quant: 10

unit: minute

quant: 20
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where the duration feature indicates the duration of carrying out the steaming action

given in the /or-adverbial. The ellided object in (6.11) is the object described by the
definite n p the fish.

The Grammar For AS

Based on the discussion above, we can now give the grammar which defines the set

of possible as structures in taste in (6.12). The part of the grammar for the as

structures of objects described by NPs is taken from [Dale 92].

(6.12) as sem | [connector] subord main | conne
connector [time] type
type before, after, progressive-adjunct, and
sem :- sem

main sem | and-clauses
subord sem

and-clause (a list of sem structure)
sem [as-np] | [as-clause]
as-clause mood tprop [adv-clause]
as-np status spec

adv-clause frequency | cardinal-count | duration
mood :- imperative
tprop :- tense prop

tense :- present \ perfect \ progressive
prop :- agent action args

agent :- hearer

action :- (a lexical symbol)
args :- [obj][indobj]...
obj :- status spec

indobj :- status spec

frequency :- (a frequency term)
cardinal-count :- (a number)
duration :- min max

min :- time

max :- time

time :- unit quant
unit :- minute \ hour
quant (a number)
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status : :- given
given : :- + | -
spec : :- agr desc | (a list of spec structure)
agr : :- countable [number]
countable :

number : :- sg | pi | 1 ... n
desc : :- head [mod] | speci spec2 | spec set
head : :- (a lexical symbol)
mod : :- head [mod]
set : :- status spec

6.2.2 Recoverable Semantic Structure

The recoverable semantic structure (rs) is intermediate between the as structure and
the final KBE structure. It can be thought of as representing the semantic content of
a sentence. In going from the as level to the rs level, reasoning (such as access to

real-world knowledge) might be needed (more on this below). Note that no reasoning
is required in building up the as structure.

The mapping from as structure to rs structure is many-to-one, i.e. many as structures
can correspond to one rs structure.

To illustrate the rs structure, we will contrast it with the as structure to bring out

their differences. This will also indicate that the mapping from as to rs is not purely
structural but may involve reasoning:

1. The propositional content of the rs structure is similar to a predicate-argument
structure. For instance, the propositional content in the rs structure of chop the

potatoes is:

(6.13) prop:

action: chop

participants: agent: hearer
obj: ...

where the ellided object is the RS structure of the object described by the NP the

potatoes [Dale 92]:
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(6.14)

status:

spec:

given: +

agr:

type:

countable: +
number: pi

category: potato

Compare (6.13) with the prepositional content in the as structure of chop the

potatoes given in (6.1):

(6.15) prop:

agent: hearer
action: chop

args: obj:

which mirrors the standard subject-predicate form of the clause. Thus, in going

from as structure to rs structure, there is a rearrangement of information: for

instance, the agent and arg attribute in as are now moved to the participants

attribute in rs.

2. Given nps like some sea salt and a celery stick, the rs structure indicates correctly

the modifier and the modified. For example, in some sea salt, salt is modified by

sea while in a celery stick, celery is modified by stick. To derive such distinction,

reasoning is needed during the mapping from the as structure to the rs structure

since in the as structure the relationship between the modifier and the modified

is simply based on the syntactic position of the word. For instance, in the as

structure of the nps some sea salt and a celery stick, the noun to the left is taken
as modifying the noun to the right. Consider the as structure of some sea salt:
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(6.16) sem:

status: given: —

spec:

agr:

desc:

countable: +
number: pi

lod: head: sea

head: salt

which is similar to the AS structure of a celery stick:

(6.17) sem:

status: given: —

spec:

agr:

desc:

countable: +
number: pi

lod: head: celery

head: stick

However, their rs structures are different. To derive the rs structure of some

sea salt from its as structure, the mapping needs access to real-world knowledge

that sea is a source for obtaining salt. The rs structure is as follows:

(6.18) sem:

status: given:

spec:

agr:

type:

countable:

subst: salt-matter

props: come-from: sea

where the lexical symbols salt and sea have been 'disambiguated' and sea is taken

as a property in the rs structure. Compare this rs structure with that for the

NP a celery stick:
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(6.19) sem:

status: given: —

spec:

agr:

type:

number: sg
countable: +

subst: celery-matter

props: shape: stick

where the lexical symbols celery and stick have been disambiguated and stick is
taken as a property indicating the shape of the object.

3. Given a partitive NP of the form NPi 0/NP2, the RS structure indicates the relation

between NPi and np2 in the AS structure. As noted in [Dale 92], a partitive np

such as the skin of the avocado describes an entity which is derived from (usually,
is part of) some other entity. Consider, for instance, the as structure of the skin

of the avocado:

(6.20) sem:

status: given: +

spec:

agr:

desc:

countable: +
number: sg

set: .

spec:

where the ellided SET value is given in (6.21) and the ellided SPEC value is that

given in (6.22).

(6.21)

status:

spec:

given: +

agr:

desc:

countable: +
number: sg

head: avocado
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(6.22)

status:

spec:

given: +

agr:

desc:

countable: +
number: sg

head: skin

In the mapping from the AS structure to the RS structure, we determine whether

the set-part relation holds between the skin and the avocado (see section 6.3).
For the N P the skin of the avocado, the set-part relation holds and therefore the

RS structure is as follows:

(6.23) sem:

status:

spec:

given: -f

agr:

part:
set: .

countable: +
number: sg

where the ellided part and set value is given in (6.24) and (6.25) respectively.

(6.24)

status:

spec:

given: 4-

agr:

type:

countable: -f
number: sg

subst: skin-matter

(6.25)

status:

spec:

given: +

agr:

type:

countable: +
number: sg

subst: avocado-matter

4. We analyse a pseudo-partitive NP of the form NPi of Ni as describing a quantity
of some substance. Consider for instance the pseudo-partitive NP a stick of celery.
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The AS structure of this np is as given in (6.26).
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(6.26)

status: given: —

spec:

agr:

desc:

number: sg
countable: +

speci:

spec2:

where the ellided spec\ and spec-i is given in (6.27) and (6.28) respectively:

(6.27)
agr:

number: sg
countable: +

desc: head: stick

(6.28)
agr:

desc:

number: sg
countable: +

head: celery

In the mapping from the as structure to the rs structure, we determine that the
np a stick of celery is describing a quantity (specifically one) of celery which is

packaged in the shape of a stick. The corresponding rs structure is as in (6.19).

The Grammar for RS

We can now give the grammar which defines the set of possible rs structures. This is

found in (6.29). The part of the grammar which defines the rs structures of objects
described by NPs is taken from [Dale 92],

(6.29) rs sem | [connector] subord main | connector and-clauses
connector [time] type
type before, after, progressive-adjunct, and ...
sem sem

subord sem
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main

and-clauses

sem

rs-np

rs-clause

adv

cardinality
duration

min

max

illocforce

tprop
tense

prop

action

participants
agent
obj
indobj
time

unit

quant
status

given
spec

agr
number

countable

type
category
subst

props

quantity
part
set

quant
unit

sem | and-clauses
(a list of sem structure)
[rs-np] | [rs-clause]
status spec

illocforce tprop [adv]
cardinality | duration
(a frequency term) | (a number)
min max

time

time

requesting, informing, ...
tense prop

present \ perfect \ progressive
action participants
(a lexical symbol)
agent [obj] [indobj]...
hearer

status spec

status spec

unit quant

minute, hour ...
(a number)
given
+ I -
agr type | agr quantity category | agr part set
[number] countable
sg | pi | 1 ... n
+ I ~
category [props] | subst [props]
(a lexical symbol)
(a substance)
(oij iq), ... (an, vn)
unit quant
status spec

status spec

(a number)
pounds, gram, ...
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6.2.3 Knowledge Base Structure
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The knowledge base structure (kbe) is the final representation of the situation under¬

lying a sentence. It can be thought of as the feature structure equivalent of the FOL

representation presented in chapter 3.

The mapping from a RS structure to a kbe structure is many-to-one. The main pro¬

cessings carried out to the RS structure to obtain the kbe structure are as follows:

• We resolve NPs to physobj and sentences to situations. This is carried out si¬

multaneously with the lexical disambiguation of any verb and nouns within the
same framework of constraint satisfaction.

• We determine the participants in the kbe.

If a sentence or NP describes a new entity, a new index is assigned to the entity and

appropriate information predicated of this index. We will now show the kbe structure

of some illustrative sentences.

Example 1

We consider the KBE structure of a simple example add the salt to the soup. The FOL

representation of this sentence is:

(6.30) event(ei) A structure^, simple) A occurs(so, «i, ^i) A telic(ei, +) A

actional, adding) A agent(ei, hearer) A

addendum(ej, zi) A base(ei, x%)

and the corresponding KBE structure is:
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index: ei

type: event

occurs:
begin: s0
end: si

(6.31)
structure: simple
action: adding
telic: +

spec: agent: hearer

participants: . addendum: x\
base: X2

where x\ and are the indices of the KBE structure corresponding to the object
described by the salt and the soup respectively. Note that the index of an entity is

essentially extensions! whereas the SPECification is essentially intensional. No two

entities can have the same index although they may have the same specification. We

will now show the KBE structure of the salt (that for the soup is similar):

Example (6.31) is that of an event. To be complete, we show the KBE structure of a

typical state, expressed by the sentence the meat is tender. Recall from chapter 4 that

the FOL representation of the meat is tender is :

(6.33) state(si) A hold(si, tender(a:1, +))

where ari is the object described by the meat. The corresponding feature structure is:

index: x\
state: sq

(6.32) structure: mass

substance: salt-matter

index: s\

type: state
(6.34)

arg: xi
spec:

tender: +
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Example 2

We consider the kbe structure of soak and drain some beans whose fol representation

is

(6.35) event(ei) A structure^, composite) A occurs(.so, Si, e\) A

constituent(ei, [ e2, e3 ]) A

[ event(e2) A structure(e2, simple) A action(e2, soaking) A

telic(e2, +) A agent(e2, hearer) A obj(e2, Xi) ] A
[ event(e3) A structure(e3, simple) A action(e3, draining) A

telic(e3, +) A agent(e3, hearer) A obj(e3, xi) ]

The corresponding feature structure representation is:

(6.36)

index: e\

type: event

spec:

begin: s0
end:

constituents: [e2, 63]

where e2 and e3 are the indices of the kbe structures corresponding to the soaking
event and the draining event respectively.

Example 3

We now consider repetitive events. Consider first the event described by stir occasion¬

ally whose fol representation is:

(6.37) [ event(ei) A structure^, repetition) A no-of-repetition(ei, occasionally) A

[ Ve elemental, e) D

event(e) A structure(e, simple) A telic(e, —) A

action(e, stirring) A agent(e, hearer) A obj(e, xi) ] ]

The equivalent kbe structure is:
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index: e\

type: event

occurs:
begin: s0
end: si

structure: repetition
cardinality: occasionally

(6.38)
structure: simple
action: stirring
telic: —spec:

elements:

participants:
agent: hearer

in: obj: x\

where x\ is the index of the KBE structure of the object which is being stirred. Recall
from chapter 4 that xi is the index of the current center in the discourse model since

the NP in stir occasionally is ellided.

Now, consider the case where the number of repetitions is specified implicitly as in beat

the eggs one at a time. The FOL representation is:

(6.39) event(ei) A structure^, repetition) A occur(so, si, ei) A

[ Vx egg(x) A element-of(x, X\) D

3e element(ei, e) A event(e) A

where x\ is the object described by the NP the eggs. The corresponding KBE structure

is:

structure(e, simple) A telic(e, +) A

action(e, beating) A agent(e, hearer) A

obj(e, x) }



CHAPTER 6. THE TASTE SYSTEM 266

index: e\

type: event

occurs:
begin: s0
end:

structure: repetition
(6.40)

structure: simple
action: beating

spec: telic: +
elements:

participants: agent: hearer
in: ...

where the ellided value is the SPEC of the object involved in the beating action and is

given below:

The index x\ in (6.41) is that of the kbe structure of the object described by the np

the eggs.

Observe that in (6.40), only the intension of the object that is being beaten is given
in (6.41). If the beating event is to be decomposed (see chapter 4), then we will work
out the actual specific events that are to be repeated in e\. In each of these individual

beating events, the object to be beaten is an individual egg whose kbe structure can

be created from the specification given in (6.41).

The Grammar For KBE

The grammar defining the set of possible kbe structures is shown in (6.42).

(6.42) kbe situation I physobj

structure: individual

substance: egg-matter

(6'41') packaging:

element-of: xi
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situation

physobj

index

state

type
occurs

begin
end

spec

sim-spec

com-spec

rep-spec

prop-spec

props

structure

telic

cardinality
constituents

elements

substance

participants
agent
object

indiv-spec

set-mass-spec

index type [occurs] spec
index state spec

e,- Xi

other-spec

props

structure

action

quantity
unit

number

min

max

event \ state
begin end

Si

sim-spec | com-spec | rep-spec | prop-spec
indiv-spec [other-spec] |
set-mass-spec [other-spec]
structure telic action participants
structure constituents

structure [cardinality] elements
arg prop*
(ax, Vi) ... (an, vn)
simple | composite \ repetition
+ I -
(frequency adverbial) | (a number)
(a list of indices)
sim-spec i com-spec
(a substance in the substance kb)
agent [object] ...
hearer

(an index) | indiv-spec [other-spec] |
set-mass-spec [other-spec]
structure substance packaging prop*
structure substance props*

structure cardinality elements |
structure quantity elements |
structure quantity constituents
part-of | element-of | subset-of
(fli, tq) ... (an, un)
individual | mass | set
(an action in the action kb)
unit number | min max

pound, gram ...

1 ... n

unit number

unit number
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packaging : :- shape size
shape : :- (an atomic semantic category)
size : :- (an atomic semantic category)
cardinality : :- 1 . . . n

constituents : :- (a list of indices)
part-of : :- (an index)
element-of : :- (an index)
subset-of : :- (an index)
elements : :- indiv-spec [other-spec] |

SET-MASS-SPEC [OTHER-SPEC]

6.2.4 The QTS

The qts can be thought of as encoding the relations between the KBEs. We represent

the relations between the KBEs as feature structures defined by the simple grammar

below:

(6.43) relation index spec
index r2-

spec relation sitl sit2
sitl (an index of a situation)
sit2 (an index of a situation)
relation (a possible relation between situations)

For example, the feature structure corresponding to

(6.44) enable(ej, e2)

is as follows:

index: r\

relation: enable

sitl: ei

sit2: e2

(6.45)
spec:
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where e\ and e2 are indices.

Notice that the qts can now be defined by the set of rt- where rt- is the index of

the feature structure associated with each possible relation between situations. This

means that in traversing the qts (see chapter 5), we can simply iterate over the r,-.

The fact that the r,- is also a feature structure means that the same reasoning system

for mapping a sentence into its KBE structure can be applied to reason over the r,-.

We will now describe the reasoning system employed in TASTE.

6.3 The Rule System

This section describes the reasoning system implemented in TASTE for carrying out the

following tasks:

1. to map a sentence into its kbe structure;

2. to determine the set of previous events whose relations with the current situation

can be deduced;

3. to determine the relations between situations; and

4. to determine the qualitative ia relations between the time intervals of the situa¬

tions described in the text.

The reasoning system uses rules as its main mechanism for representing procedural

knowledge (see Appendix B for the bnf of our rule language). Consider, for instance,
the rule which is invoked when mapping the spec feature of the as structure of a

partitive NP into the spec feature of the corresponding rs structure. To ground the

discussion, consider the spec feature of the partitive np the skin of the avocado extracted
from (6.20):
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(6.46)

agr:

desc:

countable: +
number: sg

set: ...

spec: ..

where the ellided set and spec feature is given respectively in (6.21) and (6.22) above
and reproduced below:

(6.21)

(6.22)

status:

spec:

given: +

countable: +
agr: ,

number: sg

desc: head: avocado

status:

spec:

given: +

agr:

desc:

countable: +
number: sg

head: skin

This is mapped by the rule into the following spec feature of the RS structure (extracted
from (6.23)):
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(6.47)

set:

status:

spec:

given: +

agr:

type:

countable: +
number: sg

subst: avocado-matter

part:
agr:

type:

countable: +
number: sg

subst: skin-matter

Now, if we let x be the identifier for the feature structure given in (6.46), then the rule
which maps (6.46) into (6.47) is as follows:

(6.48) ?headl = (x desc set spec desc head)
?head2 = (x desc spec desc head)
(constraint-find ?substl

?subst2

:where

(get-concepts ?headl)
(get-concepts ?head2)
constraints

(frame-query (part-of ?subst2 Tsubstl)))

(y set status given) = (x desc set status given)
(y set spec agr) = (x desc set spec agr)
(y set spec type subst) = Tsubstl
(y part agr) = (x desc spec spec agr)
(y part type subst) = ?subst2

where symbols preceded by '?' such as ?headl are variables and the symbol y is the
identifier of the feature structure output by the rule. The meanings of the various

clauses in the lhs and rhs of the rule are as follows:

• The first and second clause assign ?headl and ?head2 to that part of the feature

structure X picked out by the path indicated. If no such paths exist, the clauses
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fail. For our current example, ?headl is bound to the lexical symbol avocado and

?head2 to the lexical symbol skin.

• The third clause invokes a constraint-satisfaction process (see chapter 4) via the
constraint-find clause (see Appendix B) to solve the csp involving the vari¬
ables ?substl and ?subst2. The domain of these variables are given respectively
after the -.where keyword. The possible values of ?headl and ?head2 are given

by the get-concepts function which returns the set of possible concepts in

the substance knowledge base (see Appendix C for how such a knowledge base
is defined) that can be described using ?headl and ?head2. The constraint is
derived from the possible relations between ?substl and ?subst2 suggested by

the syntactic structure of the partitive np the skin of the avocado. As noted, a

partitive NP describes an entity which is derived from (usually, is part of) some
other entity. Therefore, in our work, we only consider the set-part relation and

thus the part-of constraint in (6.48). In order to verify this constraint, a check
is made with the hierarchical substance knowledge base via the frame-query

function. The clause fails if constraint satisfaction fails. For our current exam¬

ple, the clause succeeds since constraint satisfaction successfully assigns ?substl
to avocado-matter and ?subst2 to skin-matter. This is because in the substance

knowledge base, skin-matter is indicated to be a part of avocado-matter.

• The various actions on the right hand side of the rule build up the feature struc¬

ture to be output by the rule. Each action in rule (6.48) assigns the feature
structure picked out by the path on the right hand side of the '=' symbol to be
the value of the path on the left hand side. The resultant structure is that shown
in (6.47).

6.3.1 Organising Rules into Rulesets

taste organises rules into rulesets (see Appendix B for the bnf of our ruleset lan¬

guage). Rulesets collect together rules that either reason over the same part of a
feature structure or which perform the same task. For example, rules which suggest
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Name kbe-sent-top

Input (rs)
Output (kbe)
Instructions 0
Strategy First-Tried-Succeed

Rules

1. (rs connector)
(kbe) = (invoke-ruleset kbe-comp-cl (rs))

2. (default) —►

(kbe) = (invoke-ruleset kbe-cl (rs))

Figure 6.3: The kbe-sent-top ruleset

referents for pronouns and ellided NPs are grouped together. This gives modularity to

the system and any ruleset can be easily replaced with another one without affecting
the rest of the system. For example, the current ruleset for pronoun resolution is a

simple one based on the model proposed in [Dale 92]. This ruleset can be replaced
with one based on a more complicated model, if required. An example of a ruleset is

given in figure 6.3.

The various components of a ruleset are as follows:

• The name component specifies the name of the ruleset.

• The input component specifies the feature structure that the ruleset should look
at.

• The output component specifies the feature structure to be output by the rule-
set.

• The instructions component specifies a list of functions to be called when the
ruleset is successful in producing an output feature structure. These functions
can either keep track of the output feature structure or pass control to other
modules. For instance, the ruleset responsible for mapping the rs structure of
an indefinite np into its kbe structure is told to add the index of the kbe to the
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discourse model (since an indefinite NP describes a new object).

• The strategy component specifies a rule firing strategy. Currently, we have
the first-tried-succeed strategy where the first rule in the ruleset that fires

causes the ruleset to report success and returns the output given in the rule.

Subsequent rules are then not tried.

• The rules component contains the rules collected together in the ruleset.

The kbe-sent-top ruleset given in figure 6.3 is in fact the top level ruleset invoked

by the incremental-build-qts module. The ruleset thus basically implements the

algorithm which is given in figure 4.2 and continued in figure 4.3 and figure 4.4. The
second rule in the ruleset handles the case in the algorithm of figure 4.2 where the rs

structure is that of a simple sentence. This rule invokes the kbe-cl ruleset to build

up the kbe structure of the simple sentence (which we also call a clause). That is, the
kbe-cl ruleset implements the build-situation-rep algorithm (see section 6.4.3).
On the other hand, the first rule in the ruleset handles the case where the rs structure

is that of a sentence containing more than one clause. It invokes the kbe-comp-cl

ruleset which in turn invokes other appropriate rulesets depending on the type of the
connector linking the clauses.

Based on the discussion above, we note that a ruleset can invoke other rulesets to

carry out its task (via the invoke-ruleset function). This means that we can define
a hierarchy of rulesets where higher level rulesets invoke the lower level ones. Typically,
the higher level ruleset invokes lower level rulesets to look at subparts of the feature
structure they are entrusted with.

The ruleset hierarchy enables us to define a simple success-failure reporting strategy.

If a lower level ruleset is successful, it reports its success to the higher level ruleset
that calls it. On the other hand, if it not successful, the lower level ruleset reports

the failure directly to the calling module. This success-failure reporting strategy is

depicted graphically in figure 6.4.

What is the advantage of the scheme presented above ? Since lower level rulesets typ¬

ically reason over subparts of the feature structure the higher level ruleset is entrusted
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Calling Module

11

i Failure Return

Success Return

Invocation

Ruleset 2 Ruleset 3

Ruleset 4

Figure 6.4: The success-failure reporting strategy

with, our success-failure reporting strategy reflects the notion that in going from one

feature structure to another feature structure, the production of a meaning represen¬

tation relies on the meaning representation of the subphrases [Gazdar & Mellish 89].
In addition, an advantage of this scheme is that failure can be immediately localised
to a particular ruleset. For example, given the rs structure of chop the juice, the kbe-

sent-top ruleset invokes the kbe-cl ruleset (rule 2 in figure 6.3). The kbe-cl ruleset

(shown in figure 6.5) will itself invoke the kbe-cl-info ruleset which is responsible for
disambiguating the verb and resolving nps in the clause. For this current case, type

restriction failure would cause the kbe-cl-info ruleset to report failure directly to the

incremental-build-qts module.

6.3.2 Summary

In the section above, we have presented the rule reasoning system employed in taste.

In this system, rules are organised into rulesets which are themselves organised into
an invocation hierarchy. Using such organisation, taste is highly modular so that

replacing one ruleset with another is less likely to affect the overall system.
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Name

Input
Output

kbe-cl

(X)
(V)

Strategy
Rules:

First-Tried-Succeed

1. (invoke-ruleset kbe-cl-info (x tprop)) = ?cl-info —»•

(y) = (invoke-ruleset det-cl-given-new ?cl-info)

Figure 6.5: The kbe-cl ruleset

The BNFs of the rules and rulesets language are given in Appendix B while that for

defining the object substances and actions are given in Appendix C.

6.4 Natural Language Processing

In this section, we discuss the various stages involved in mapping a sentence into its

final kbe. These stages are:

1. Sentence —► as

2. as —► rs

3. rs -* kbe

The first two stages occur in the build-intermediate-rep module while the third

stage occurs in the incremental-build-qts module. The build-intermediate-rep
module consists of two modules:

• the parsing module; and

• the as—^rs module.



CHAPTER 6. THE TASTE SYSTEM

6.4.1 From Sentence to AS Structure
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This is carried out in the parsing module. A unification-based chart parser [Gent 87]
is used together with a grammar and lexicon written in patr notation to produce the

initial as structure.

In the taste system, we maintain a clear distinction between the information stored

in the lexicon and the information stored in the more conceptual knowledge base. For

us, information like selectional restrictions is better thought of as type restriction and
maintained in the conceptual knowledge base. The lexicon then contains only syntactic
information. For instance, an example of a lexical entry in taste is as follows:

(6.49) Put
(Put syn cat) = v

(Put syn tense) = present
(Put syn type) = finite
(Put argl cat) = np

(Put arg2 cat) = pp

(Put arg2 pform) = in
(Put lex) = putting-in

Maintaining a clear distinction between lexicon and conceptual knowledge base means

that there is no duplication of information in taste: in nlp systems that store se¬

mantic information for selectional restrictions in the lexicon, there is duplication of

such information in the conceptual knowledge base. Moreover, as pointed out in

[Gazdar & Mellish 89, page 312], the use of features to encode semantic information
in the grammar and lexicon is a relatively unprincipled technique.

To complete the above discussion, we will briefly describe how the as structure can be
built up by unification for the n p the skin of the avocado. The grammar and lexicon
needed for this example is given in figure 6.6.

It is simplest to think of the as structure of the skin of the avocado as being built

bottom-up. The steps involved are as follows:

1. First, the phrase the skin is analysed by Rule 2 and Rule 3 and the corresponding
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Rule 1

NPi—» NP2 PP[+of]
(npi sem status) = (np2 sem status)
(NPi sem spec agr) = (np2 syn agr)
(npi sem spec desc spec) = (np2 sem spec)
(npi sem spec desc set) = (pp sem)
Rule 2

NP -» DET N2

(np sem status) = (det sem status)
(np sem spec) = (n2 sem spec)
Rule 3

N2 —» N

(n2 sem spec desc head) = (n lex)
(n2 sem spec agr) = (n syn agr)
Rule 4

pp —» prep np

(pp sem) = (np sem)
skin

(syn cat) = noun

(syn agr countable) = +
(syn agr number) = sg

(lex) = skin
avocado

(syn cat) = noun

(syn agr countable) = +
(syn agr number) = sg

(lex) = avocado
the

(syn cat) = DET
(sem status given) = +
(lex) = the
of

(syn cat) = prep
(lex) — of

Figure 6.6: A grammar and lexicon fragment used in TASTE
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AS structure for this phrase is constructed from the path equations as given in
Rule 2:

(6.22)

status:

spec:

given: +

agr:

desc:

countable: +

number: sg

head: skin

2. Next, the PP of the avocado is analysed by Rule 4 and the feature structure

corresponding to this phrase is built up from the NP the avocado which is itself

analysed by Rule 2 and Rule 3. This results in the following feature structure

for the phrase as specified in the path equations of Rule 4:

(6.21)

status:

spec:

given: +

agr:

desc:

countable: +
number: sg

head: avocado

3. Now, Rule 1 combines the above two feature structures into the final AS structure

for the whole NP:

(6.20) sem:

status: given: +

spec:

agr:

desc:

countable: +
number: sg

set: ...

spec: ..

where the ellided SET value is given by the SEM value in (6.21) and the ellided
SPEC value is that given in (6.22).
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The mapping from AS to RS is relatively straightforward and involves the tasks men¬

tioned in section 6.2.2:

• rearrangement of information;

• determination of the relation between modifier and modified in a noun-noun np

such as some sea salt;

• determination of the relation between npi and np2 in a partitive np of the form

NPi 0/NP2 such as the skin of the avocado; and

• analysing a pseudo-partitive NP like a stick of celery as a quantity of some sub¬

stance.

The ruleset hierarchy used in mapping from as to rs is shown in figure 6.7. In the

figure, a directed arrow indicates an invocation call.

The topmost ruleset in the hierarchy is RS-sent-top and this is invoked by the as—^rs

module. Depending on whether the sentence consists of a simple clause or multiple
clauses with a connector, the rs-sent-TOP ruleset invokes either the RScl or the RS-

comp-cl ruleset respectively. The RScl ruleset is itself invoked by the RS-comp-cl ruleset
for each clause in the sentence. Notice that the RS-comp-cl ruleset can also invoke the

RSnp ruleset. This happens in sentences like the following:

(6.50) 30 minutes before the end of cooking time, take out the chicken leg.

where the RSnp ruleset is invoked by the RS-comp-cl ruleset to build up the feature
structure of the the N P the end of cooking time.

The rs-cl ruleset builds up the rs structure of a simple clause. It does this by calling
the RSnp ruleset to build up the RS structure from the as structure of the various nps

in the clause. If there exists an adverbial clause in the sentence like /or-adverbial and

urafi/-adverbial, the RSadverbial ruleset is invoked by RScl to build up the appropriate
feature structure.
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RSprops

Figure 6.7: The ruleset hierarchy for AS to RS
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The ruleset hierarchy used in mapping the rs structure into the KBE structure is given
in figure 6.8. As in figure 6.7, a directed arrow in the figure indicates an invocation
call. As noted previously, the KBE-SENT-TOP ruleset is the topmost ruleset invoked by

the incremental-build-qts module. The presence of temporal adjuncts causes the

appropriate ruleset (for example, KBEduring, KBEbefore) to be invoked.

The KBEcl ruleset is responsible for building up the KBE structure of a simple clause

(i.e. implementing the BUILD-SITUATION-REP algorithm in figure 4.11). It does this by
first invoking the KBEcl-info to determine the content of the clause. A clause content

can either be that of a state or an action to be performed and the objects involved

in the action. In the latter case, the KBEparticipant-action is invoked to carry out

constraint satisfaction to disambiguate the verb and resolve the NPs. An example

of a rule in the KBEparticipant-action ruleset appropriate for determining the clause

content of the clause, add the carrot to the potato is given in (6.51). To gloss in English,
the rule carries out lexical disambiguation of the verb (Taction) in the instruction and
reference resolution of the two nps (?obj and Tindobj) in the instruction via constraint
satisfaction invoked by the constraint-find clause. When successful, the rule builds

up the SPEcification feature structure of the kbe with the substance which Taction is

disambiguated to. In addition, the rule carries out a simple mapping via the case-attr-

mapping function (see Appendix B), of the cases of the two NPs into the respective
roles which the objects they described play in the KBE.

(6.51) Taction = (x action)
Tobj = (x participants in obj)
Tindobj = (x participants in indobj)
(constraint-find Tevent-subst Tobj-ent Tindobj-ent

:where

(get-concepts Taction)
(invoke-ruleset KBEnp Tobj)
(invoke-ruleset KBnp Tindobj)
constraints

(action-constraints Tevent-subst Tobj-ent Tindobj-ent))
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Figure 6.8: The ruleset hierarchy for RS to KBE
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(kbe spec subst) = ?event-subst
(kbe spec participants) = (case-attr-mapping ?event-subst

(obj ?obj-ent)
(indobj ?indobj-ent))

In rule (6.51), X is the feature identifier of the feature structure picked out by the

path, (rs spec tprop prop) where rs is the feature identifier of the rs structure of
the clause. If the clause is add the carrot to the potato, then rule (6.51) applies by

binding Taction to adding, ?obj to the RS structure of the carrot and Tindobj to the RS

structure of the potato. A CSP is then set up as described in chapter 4. The domain for

?obj-ent and ?indobj-ent are the set of possible objects returned by the KBEnp ruleset.

In TASTE, an indefinite np is taken to refer to a new object while a definite np is taken

as given (in the sense that it is related to a previously mentioned object). The KBEnp

ruleset invokes three other rulesets depending on whether the np is new (KBEnew),

given (KBEgiven), or the np is a pronoun or is missing (KBEpronoun).

For our current example, we have two definite NPs and thus, the KBEdef ruleset is

invoked. The appropriate rule in this ruleset is given in rule (6.52). This rule applies
to a singular definite NP. It initiates a constraint satisfaction process to lexically

disambiguate the noun in the NP (the corresponding variable is Tsubst) and determine
the referent of the NP (the corresponding variable is Tentity). The domains for these
variables are respectively the set of possible substances that can be described by the
noun and the set of objects in the discourse model.

(6.52) (x spec agr countable) is +
(x spec agr number) is sg
?cat = (x spec type category)
(constraint-find Tsubst

Tentity
:where

(get-concepts ?cat)
Discourse Model

:constraints

(Tentity spec structure) is individual
(Tentity spec substance) is Tsubst)
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In the case of the carrot and assuming that there is a carrot entity in the discourse
model (a>i), rule (6.52) applies by binding ?cat to carrot. The function get-concepts
returns carrot-matter. Constraint satisfaction succeeds with ?entity bound to {mi}.

When the kbe-cl-info returns successfully, the det-cl-given-new ruleset is invoked to

determine if the clause content is that of a new event or linked to an existing event (see
chapter 4). If the clause content is new, a new event is created, otherwise, the det-

aspect ruleset is invoked to determine which aspect of the given event the current

clause content is mentioning. Recall from chapter 4 that we use the presence and
absence of the progressive, perfect and /or-adverbial to determine whether the aspect

is one of perfect, progressive or neutral perfective.

A successfully built new event will be sent to a domain modeller module where the

effects of the event will be simulated (see chapter 4).

6.5 Beyond Natural Language Processing

We now consider how the rule system can be used to implement the reasoning needs

of modules that manipulate on the KBEs returned by the NLFE. These are as follows:

1. to determine the set of previous events whose relations with the current situation

can be deduced;

2. to determine the relations between situations; and

3. to determine the qualitative ia relations between the time intervals of the situa¬

tions described in the text.

The first two needs given above occur in the integrate module whose role is to inte¬

grate the kbe of the current situation into the preceding qts. This module implements
the algorithm given in figure 4.5.
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The first thing the module does is to determine the initial reference event for the current
KBE. It then invokes the DET-RELATION ruleset to determine the relation between the

current KBE and the KBE of the initial reference event. This ruleset takes the two KBEs

and returns the feature structure representing the relation between them. An example
of a rule in this ruleset is as follows:

(6.53) (enable-p (kbeI) (kbe2))
(r index) = (generate-relation-index)
(r spec relation) = enable
(r spec sitl) = (kbeI index)
(r spec sit2) = (KBE2 index)

where the function GENERATE-RELATION-INDEX creates a new index for the relation.

The above rule determines whether an enablement relation exists between KBEl (the
KBE structure of the initial reference event) and KBE2 (the KBE structure of the current

sentence). The predicate enable-p is verified as follows. Recall that the action which an

agent performs in an event is represented as a STRIPS operator with preconditions and

postconditions. An event e is taken to enable an event / if e brings about a condition
that is needed for the performance of the action in /. The algorithm used is as follows:

1. Using the information stored in the postcondition of the operator corresponding
to the action in KBE 1, determine the properties which the entity involved in KBE 1

will have after modelling KBEl.

2. Similarly, using the information stored in the precondition of the operator cor¬

responding to the action in kbe2, determine the properties which the entity
involved in kbe2 needs to have before modelling kbe2.

3. Check (1) and (2) above to see if there is any match. If there is, KBEl enables
kbe2. Otherwise, KBEl does not enable KBE2.

For instance, if KBEl is the KBE structure of the event described by boil the rice (ei)
and kbe2 is the kbe structure of the event described by cool the rice (e2), then e\

enables e2 since a postcondition of e\ is as follows (x\ is the object described by the

rice):
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which is the precondition for the operator corresponding to the cooling action in e2.

The feature structure returned by rule (6.53) is thus as below:

(6.55)

The next step is to determine whether kbe2 needs to be further integrated. The

algorithm used is the choose-further-reference algorithm given in figure 4.7.

Recall that this algorithm works by removing from the set of remaining previous events

(further) those events whose relations with kbe2 can be deduced. If further is

empty, integration stops; otherwise, an event is chosen from further to integrate

kbe2.

The function for removing those events whose relations with kbe2 can be deduced is

the temporally-inferrable-events function. As noted in chapter 4, the working

of this function can be implemented as a process of forward rule chaining. We will now
illustrate how this process can be implemented.

To illustrate, consider a QTS of three events, namely ei, e2 and e%. The QTS is defined

by the set of relation feature structures (ri, r2} where r\ and r2 are as follows:

(6.56) a.

index: r2

relation: after
sitl: ez

sit2: ei

index: r\

spec:

relation: enable
sitl: e\

sit2: e2

index: rx

spec:

relation: include

sitl: ei
sit2: e2

b.
spec:
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Now, suppose that the current event is e4 and the initial reference event is e3. We

further suppose that e4 is after e3 and that the relation between e4 and e3 is represented

by the following feature structure:

V3

relation: after

sitl: e4

sit2: e3

We now invoke the temporally-inferrable-events function to determine the pre¬

vious events whose relations with e4 can be deduced. The set further for this example

is as follows:

(6.58) further = {ei, e2}

The temporally-inferrable-events function will invoke the det-temporally-

inferrable-events ruleset with r3 to carry out its task. The relevant rule in this

ruleset for our current example is given in (6.59). This rule collapses the three rules

given in (4.55).

(6.59) (r spec relation) is either after, met-by, enabled-by
?current = (r spec sitl)
?intermediate = (r spec sit2)
(constraint-find ?relation

:where

(get-qts-rel)
constraints

(?relation spec relation) is either after or met-by or
or enabled-by or include or simultaneous or

generates or constituents
(?relation spec sitl) is ?intermediate)

—>

(store-event (?relation spec sit2))
(invoke-ruleset det-temporally-inferrable-events

(make-relation-fs after ?current (?relation spec sit2)))

(6.57)

index:

spec:
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Note that in rule (6.59), the function get-qts-rel gets all the relations in the qts
built up so far and the function store-event takes an event as argument and store it
into a variable result. Finally, the function make-relation-fs takes a relation and

two situations and construct a feature structure representing the relation between the
two situations (we do not add this feature structure to the qts since we are building
a reduced qts (see chapter 4)).

We now work through the steps involved in choosing further reference events for e4:

1. Rule (6.59) is applicable to since ?current is bound to e4 and ?intermediate
to e$. The constraint-find clause is true since constraint satisfaction returns

with ?relation bound to r2 reproduced below:

(6.56b)

index: r2

spec:

relation: after

sitl: e3

sit2: e\

The rule therefore stores e4 into result:

(6.60) result = {ex}

and invokes the det-temporally-inferrable-events ruleset with:

(6.61) spec:

relation: after
sitl: e4

sit2: e\

2. Rule (6.59) is again applicable to (6.61) with ?current bound to e4 and ?in-
termediate bound to e4. The constraint-find clause is true since constraint

satisfaction returns with ?relation bound to r\ reproduced below:
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(6.56a)

index: rq

spec:

relation: include

sitl: ei

sit2: e2

The rule therefore stores e2 into RESULT:

(6.62) result = {e2, ei}

and invokes the det-temporally-inferrable-events ruleset with:

(6.63) spec:

relation: after
sitl: e4

sit2: e2

3. No more rules fire and the processing stops.

Thus, the temporally-inferrable-events algorithm returns {ci, e2}. These events

are to be excluded from consideration as possible reference events for e±. Since the

set of possible further reference events is also {ei, e2} (given in further), no further
reference events are needed for e4.

Finally, we consider how the reasoning mechanism can be used to determine the qual¬

itative IA relations between the time intervals of the situations described in the text.

Recall that the qts is implemented as a set of relation feature structures {rq ...

rn). The traversing of the qts required in the event decomposer module and the

qualitative extractor module can then be implemented as an iteration over {?r,
... rn}. The reasoning over the r,- required in the qualitative extractor module
is carried out using the det-qual-relation ruleset. This ruleset takes r,- as an input

and returns the possible qualitative relations between the two situations in r,-. An

example of a rule is that used for reasoning over the none relation:

(6.64) (r spec relation) is none
?sitl = (r spec sitl)
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?sit2 = (r spec sit2)
(goal (resource-contention ?sitl ?sit2))

?sitl (<, >, m, mi) ?sit2

In the rule above, the goal predicate is verified using the RESOURCE ruleset. This
ruleset determines whether there is a resource contention between ?sitl and ?sit2. If

there is a resource contention between ?sitl and ?sit2, then the above rule fires and the

time intervals associated with ?sitl and ?sit2 are marked as being non-overlapping.

6.6 Evaluation of TASTE

In this section, we evaluate the TASTE system in the following areas:

• Data

• Methodology

• Results

6.6.1 Data

In our work, the focus is on a processing framework for temporal analysis. We therefore

chose cookery recipe texts for the variety of temporal phenomena they exhibited.

Altogether, we formed a corpus of nine cookery recipes chosen from the Internet news¬

group rec.food.recipes and the cookbooks The Electric Casserole Cook Book by the
Good HouseKeeping Institute and the Harvest Traditional British Cooking.

These nine recipes contain a total of eighty seven sentences resulting in an average

of about ten sentences per recipe. The sentences range over the six kinds of sentence

type handled by TASTE (see page 142). These sentence types cover a reasonable set
of temporal phenomena. For example, the sentences contain temporal connectives like
when and meanwhile, temporal adverbials like occasionally and quantitative temporal

expressions like ten minutes before.
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Out of the nine recipes, three recipes (recipes in A.7, A.8 and A.9) were used as a

'training' set for building up the system's grammar and lexicon as well as the concep¬

tual knowledge base and also for testing the various components of the system. The

remaining six recipes were then tested on the system. The typical reason for the sys¬

tem's failure to handle the test data was insufficient grammar and lexicon coverage.

This is easily corrected by increasing the coverage.

The corpus collected is not big (as compared to the large corpus used in the Third

Message Understanding Evaluation and Conference (muc-3) [Sundheim 91]) either in
quantity or the length of each text. However, we believe that the corpus contains

enough temporal phenomena to test our temporal analysis framework.

6.6.2 Methodology

As noted, taste takes a cookery recipe text as input and outputs the temporal struc¬

ture of the text. Recall from chapter 5 that the temporal structure is a total order on

the start and end time points of the time intervals associated with the events and states

mentioned in the text. This raises the question of how we can go about evaluating the
results achieved.

Our methodology for evaluating the system can be said to be corpus-based, i.e. a

corpus of inputs is given to the system and measurements are made based on the

system outputs [Neal & Walter 91]. In addition, we focus on what the system does, i.e.

measuring performance based on well-defined input/output pairs without considering
how the system processes the input and generates the output.

We did not employ any formal criteria of measuring the outputs of taste (such as the
criteria of recall and precision used in muc-3 for information extraction). Instead, we

simply use an informal criteria, namely whether the ordering of the events and states

given by the system is a plausible one based on the author's (and his fellow colleagues)
understanding of the text. Here, a temporal structure is said to be plausible if it
satisfies the constraints on the order of the events and states given in the text and the
environment.
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Another possible way ofmeasuring the outputs of TASTE would be to extract a schedule

specifying the order of the actions which an agent has to carry out. This schedule can

then be simulated (for example using the simulator developed at the University of

Pennsylvania for instruction understanding [Webber et al 91]) and the correctness of
the output determined from looking at the simulation. Recall from chapter 5 (page

205) that a possible way of obtaining this schedule is to remove any states, composite

events and events that can be generated by other events from the temporal structure.

However, we did not investigate this measurement method.

As can be seen from the description above, our method of assessing the output of
TASTE is rather limited and there is much room for further work here.

6.6.3 Results

The testing of TASTE shows that the system does produce plausible temporal structure

(according to our discussion in section 6.6.2) for each of the nine recipes in the corpus.

In addition, by varying the environmental information (such as number of agents), we
obtain different plausible temporal structures from the same QTS of a text.

The temporal structure output by TASTE shows the time intervals assigned to the
events and states mentioned in the input text. In addition, it also shows the start and

end time points of the time intervals. We believe that such an output is more precise
than the temporal structure produced in work like [Webber 87, Song & Cohen 91b].

However, since our measurement criteria is informal, we do not have a formal mean of

verifying the test results. In addition, as we focus on what the system does and not
on how the system processes the input and generates the output, we are not able to

ascertain how much the data used exercise the capabilities of the system. For instance,

we do not have any statistics regarding the rules that were fired or not fired by the

system when it carried out the temporal analysis.
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This chapter has presented taste, a system for carrying out the temporal analysis of
instructional texts.

The input to taste is a natural language text. In term of linguistic coverage, taste

currently handles a reasonable set of linguistic phenomena needed in temporal analysis.
For example, it can handle clauses containing temporal adverbials like the /or-adverbial
and the unf«7-adverbial. It also handles temporal adjuncts like before, meanwhile and

when. In particular, linguistic expressions involving both qualitative and quantitative

information can be handled.

taste handles both qualitative and quantitative information. Typically, previous sys¬

tems carrying out temporal analysis only consider qualitative information. In addition,

taste is able to produce different temporal structures under different assumptions of
resources.

The taste system is highly modular as reasoning rules are grouped together into
rulesets which are in turn organised into an invocation hierarchy. The rulesets look
at different parts of a feature structure and arranging them into an invocation hi¬

erarchy allows us to define a simple success-failure reporting strategy reflecting the
notion that in going from feature structure to another feature structure, the produc¬
tion of a meaning representation relies on the meaning representation of the subphrases

[Gazdar &: Mellish 89].

taste has been implemented and tested on nine cookery recipes. However, as discussed
in section 6.6, this testing is still rather limited.
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Conclusions and Future

Directions

7.1 Conclusions

This thesis has addressed the problem of temporal analysis for natural language dis¬

course. We propose a processing framework for carrying out temporal analysis called

ta2. In this framework, the input is a natural language text and not some form of
internal representations of sentences in the text. Temporal analysis proceeds in two

steps.

In the first step, we take situations (i.e events or states) as the basic temporal on¬

tology and build up a reduced and fully-integrated quasi-temporal structure encoding
the representation of the situations described in the text and the relations between a

situation and its reference events. For cookery recipes, we identify seven kinds of re¬
lations between situations: precede, simultaneous, include, meet, enablement, generation

and constituency. When none of these relations are explicitly mentioned or inferred

from the text, we mark the relation between two situations as none.

In the second step, we associate each situation with a unique time interval and take
time intervals and time points as the basic temporal ontology. We then work out the

295
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qualitative ia relations between time intervals from the relations that hold between the

situations associated with the time intervals. Of the eight possible relations between
situations mentioned above, six of these have direct temporal imports in the sense

that there is a direct correspondence between the relations and a set of IA relations.

However, this is not the case for the constituency and none relations. In fact, the none

relation can give rise to different temporal imports in different environments.

Finally, the set of qualitative ia relations is combined with the set of quantitative

relations extracted from the text. This combined set can be viewed as a constraint

satisfaction problem and solved using techniques developed in the field of temporal

reasoning.

The framework is a computational one and has been successfully implemented in a

system called taste. In working out ta2, our contributions are as follows:

• ta2 integrates both qualitative and quantitative temporal information to work
out the temporal structure of a text. Previous models of temporal analysis con¬

sider only qualitative temporal information. Thus, ta2 is more complete and

precise than previous models.

• ta2 shows that information from outside a text can affect temporal analysis. For

instance, in the context of cookery recipes, different assumptions about resources
can give rise to different temporal structures for the same text. Previous models
of temporal analysis do not consider such information and thus do not show
how the same text can correspond to different temporal structures in different
environments.

• ta2 uses a novel approach to the integration problem that makes explicit the
notion of a reference event for the current situation. More specifically, the set

of reference events for the current situation are those preceding events whose

relations with the current situation have to be determined from both linguistic

and real-world knowledge. Two heuristics are proposed for choosing the refer¬
ence events. One heuristic is based on the 'similarity' between objects where the

similarity measure is computed from information obtained during reference reso-
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lution. When this heuristic produces more than one possible candidate event, we

use another heuristic based on the notion of an event being temporally further
than another event to pick the reference event.

• In applying ta2 to cookery recipes, we introduce the notion of a generalised

physical event as a way of representing simple events, composite events with

sub-events and repetitive events. This knowledge representation for events has
a strong parallel with that for objects used in epicure [Dale 92]. As noted in

[Wilensky 91], the representation of situations, on the whole, has been relatively

neglected and when they are provided at all, the ontology of situations has gen¬

erally been limited to simple events.

• ta2 is a computational framework and a system called taste has been success¬

fully built using the framework. taste carries out temporal analysis of cookery

recipes and has been tested on nine naturally occurring recipes. As pointed out

in section 6.6, the testing is still somewhat limited since we do not have a formal
measurement criteria for assessing the system's outputs and the corpus does not

fully exercise the capabilities of the system.

• ta2 shows how constraint-satisfaction based temporal reasoning algorithms can

be incorporated into temporal analysis. We analyse the temporal reasoning re¬

quirement of instructional texts and show that no exact algorithms exist to sat¬

isfy this requirement. The usual strategy then is to have a preprocessing stage

of constraint propagation followed by backtracking search.

7.2 Future Directions

There are a number of possibilities for future work arising from the work reported in

this thesis.
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As noted in chapter 1, previous work on temporal analysis has used simple narratives

as their domain of study. On the other hand, the design of ta2 is motivated by the

study of instructional texts and in particular cookery recipes. An immediate future

work is then to show how ta2 can be extended to the temporal analysis of simple
narratives. We believe this is possible since our algorithm for building up the qts

and extracting the temporal structure is domain independent (the domain dependent

part is that the set of relations that holds between situations might vary in different

domains).

In this section, we outline how ta2 can be applied to analyse the following simple

narrative (adapted from [Webber 87]):

(7.1) a. e\: John went over to Mary's house.

b. e2: They talked about her brother.

c. e^: He had spent five weeks in Alaska with a friend.

d. e4: Together, they climbed Mt. McKinley.

e. e5: Mary asked John whether he would want to go to Alaska some time.

In applying ta2 to example 7.1, the first task is to compute the qts. Glossing over

details, the steps involved in this task are as follows:

1. At the end of processing the first sentence, the QTS is as follows:

(7.2) qts0 = ({ex}, {})

2. The second sentence describes e2 and the initial reference event for e2 is ei. We

now determine the relation between e2 and e\. From world knowledge that one

can only talk after they meet, we have the talking event to be after the event of
John's going over to Mary's house. The updated QTS is now as follows:

(7.3) QTSi = ({cj,e2}, {(after, e2, ci)})
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3. We now process the third sentence which describes e3. Following our integration

algorithm, we first decide on an initial reference event for e3. Recall from chapter

4 that this is carried out by determining the degree of similarity between e3 and

each of the preceding events and taking the preceding event which is most 'similar'
to the current event. The degree of similarity is computed as follows:

(4.45) degree-of-similarity(curr, prev) = J2i T2j f(prev, c-obji, P-°bjj)

where c-obji and p-objj are the objects in the event curr and prev respectively.
The function / itself is defined as follows:

1 if c-obji and p-objj are semantically related
1 if c-obji and prev are semantically related

0 otherwise

Using the above formula, we arrive at the following degree of similarity between

ez and e2 and between e3 and e\:

• degree-of-similarity(e3, e-j) = 1

• degree-of-similarity(e3, ei) = 0

since e3 and e2 share one 'similar' entities: Mary's brother, while e3 and c\ share

no 'similar' entities. We therefore choose e2 as the initial reference event for

e3 and determine their relation. This makes use of the following rule encoding

linguistic knowledge [Lascarides & Asher 91] to determine that e3 precedes e2:

(7.4) If the current event e is described in the past perfect tense
and the reference event / is described in the simple past tense

then e precedes /

Since e3 occurs before e2 and e2 occurs after ei, it is not possible to deduce the
relation between e3 and e\. We therefore take e\ as further reference for e3 and

determine their relation. Using rule (7.4), we again have e3 precedes ei. The
updated QTS is now as follows:

(7.5) QTS3 = ({ei,e2,e3}, {(after, e2, ei), (precedes, e3, e2),
(precedes, e3, ei)})
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4. We next process the fourth sentence which gives rise to e4. The degree of simi¬

larity between e4 and each of the preceding events are as follows:

• degree-of-similarity(e4, 63) = 3

• degree-of-similarity(e4, e2) = 1

• degree-of-similarity(e4, e4) = 0

since e4 and e3 share three 'similar' entities: Mary's brother, the friends of Mary's

brother and Mt. McKinley which is semantically related to Alaska (Mt. McKin-

ley is situated within Alaska), e4 and e2 share one 'similar' entity: Mary's brother
and e4 and e4 have no common entity. We therefore choose e3 as the initial refer¬

ence for e4 and determine their relation. From world knowledge that the climbing
must occur during their 5-week stay in Alaska, we can determine that e4 is in¬

cluded in 63. Since e3 precedes both e2 and e4, the relations between e4 and each

of e2 and e4 can be deduced. No further reference events are needed for e4 and

the updated QTS is as follows:

(7.6) QTS4 = ({ei,e2,e3,e4}, {(after, e2, ei), (precedes, e3, e2),
(precedes, e3, ei), (included-in, e4, 63)})

5. Finally, we process the last sentence which describes e5. As before, we need to

determine the initial reference event for e4. From information collected during

reference resolution that was carried out when processing e4, e2, e3 , e4 and es,

we know the following:

• The event es shares two objects with e\, namely the person Mary and John.

• The event e$ shares two objects with e2, namely the person Mary and John.

• The event es shares one object with e3, namely the place Alaska.

• The event es shares one object with e4 since Mt. McKinley mentioned in

e4 is semantically related to Alaska mentioned in es.

In addition to the above, we also note that the person Mary and John in es

are described respectively using the proper noun Mary and John. Similarly, the
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person Mary and John in e4 are mentioned respectively using the proper noun

Mary and John. However, the person Mary and John in e2 are mentioned using

the pronoun they which is a different form of referring expression from Mary and

John.

Here, we make the hypothesis that the same form of the referring expressions
used for the person Mary and John in es and e\ indicates another kind of links

between objects. Such a link is called a lexical link by Halliday and Hasan

[Halliday &; Hasan 76]. One way of making use of this link is to expand the
function / needed in formula (4.45) to the following:

1 if c-obji and p-objj are semantically related
1 if c-obji and prev are semantically related

1 if c-obji and p-objj are described by the same

proper name

0 otherwise

The degree of similarity between es and each of the preceding events e4, e2, e3

and e4 are then as follows:

• degree-of-similarity(e5, ei) = 4

• degree-of-similarity(e5, e2) = 2

• degree-of-similarity(e5, 63) = 1

• degree-of-similarity(e5, e4) = 1

We thus choose e4 as the initial reference event for es and determine the relation

between e5 and e4. From world knowledge, we can determine that the asking in

es must come after the going over event in e4. Since es is after e4 and e2 is after

ei, our choose-further-reference algorithm given in figure 4.7 will take e2

as a further reference for e5. We therefore compute the relation between e5 and e2

and from world knowledge determine that es comes after e2. From this relation
between e5 and e2, our choose-further-reference algorithm can determine

that the relation between es and e3 and that between es and e4 can be deduced.

It is therefore not necessary to take e3 and e4 as reference events for es. The QTS

is then as follows:
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(7.7) qts5 = ({ei,e2,e3,e4,e5}, {(after, e2, ei), (precedes, e3, e2),
(precedes, e3, ei), (included-in, e4, e3)

(after, e5, ea), (after, e5, e2)})

Notice that all the relations in the qts are those with direct correspondence with a set

of IA relations:

• after(e2, ei) = fe2 {>, mi} te\

• precedes(e3, e2) = te3 {<, m} te2

• precedes(e3, ei) = te3 {<, m} te 1

• included-in(e4, 63) = te4 {s, /, d} te3

• after(e5, ei) = te5 {>, mi} te 1

• after(e5, e2) = te5 {>, mi} te2

This set of ia relations can then be combined with any quantitative information via

constraint propagation and the possible temporal structures extracted.

The qts and one of the temporal structures for example (7.1) are given in figure 7.I.1

Our approach as described above differs from the temporal analysis approach proposed

in [Webber 87, Song 91a, Hwang &: Schubert 91]. That approach uses tense change
information to determine the reference events of a current situation. This produces

the wrong result for example 7.1 that e4 takes reference from e2 and that e^ takes
reference from e4 (see chapter 2). On the other hand, in our approach, we choose
reference events based on the link that can exist between objects in events. Using this

approach, we determine correctly that e4 takes reference from e3 and that es takes
reference from ei.

'The symbols 'a', 'p' and 'd' are abbreviations respectively for the after, precedes and included-in
relation.
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e2

, —A , te i te2 te5I i ill ii II i

te4

Figure 7.1: The qts and temporal structure of example (7.1)

7.2.2 Temporal Structure and Discourse Structure

Another interesting area for future work is to investigate the interaction between the
determination of discourse structure and that of temporal structure. To ground our

discussion, we assume the notion of discourse structure given by Grosz and Sidner

[Grosz & Sidner 86]. In Grosz and Sidner's theory, a discourse can be segmented into

many distinct discourse segments (ds) which in turn may be segmented into a number
of discourse segments and so on. A sequence of sentences constitutes a ds if they

together serve to realise a particular discourse purpose.

Using the notion of discourse structure of Grosz and Sidner, an important task in

determining the discourse structure is that of identifying the appropriate discourse

segments. As has been noted in the literature [Grosz & Sidner 86, Allen 87], discourse
segmentation makes use of the following kinds of information:

• Information from cue phrases
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• Information from tense and aspect

• Information from reference resolution

• Real-World Knowledge

However, as shown in this thesis, the last three kinds of information given above are

used in temporal analysis also. This seems to imply at least some kinds of synergy

between temporal analysis and discourse segmentation. The nature of this synergy

and how the information flows between the two processes is an area left for further

investigation.

In conclusion, we hope that the work reported in this thesis can provide a foundation
which further work in temporal analysis can be based on.
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Appendix A

Recipes Processed By TASTE

In this appendix, we present the remaining 8 recipes processed by TASTE together
with the results of the processing. The recipes are first preprocessed before passing to
TASTE. The various simplifications made to the recipes are given in section A.l.

Recall from chapter 6 that the output of TASTE is to be interpreted as follows:

• The top diagram indicates the quasi-temporal structure which is a network whose
nodes are the indices of the events (such as El) and states (such as STl) mentioned
in the text and the arcs between the nodes are the relations between the events

and states. The sentences describing the events and states are given to the left
of the diagram. Finally, as the graphic routine we used do not permit directed
arrow, we adopt the convention that the direction of the arrow on the arc between
nodes is from the node associated with the larger index to the node associated
with the smaller index. For instance, if the arc between El and E2 is labelled a,
this is taken to mean that E2 is after El.

• The bottom diagram indicates the temporal structure where the horizontal lines
are time lines with time increasing from left to right and the black boxes represent
time intervals occupied by events and states. Note that if the index of an event
is El, then the time intervals assigned to El is given by TEl.

A.l Simplifying the Recipes

We catalogue here the simplifications that are made to the recipes before passing to
TASTE. The simplifications made to the instructions part of the recipes are:

1. We remove any constraints that are specified on actions. For example, the in¬
struction reheat the soup, but don't let it boil is simplified to reheat the soup.

2. We remove any mention of the manner and speed in which an action is to be
carried out. For instance, the instruction stir well is simplified to stir.
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3. We remove disjunctions where they appear since we are unable to represent them.
For instance, the instruction, Cook on high for 2-3 hours or low for 4-6 hours is
simplified to Cook for 2 to 3 hours (note that on high is also removed since it is
indicating the manner in which the cooking is to be carried out).

4. We omit any cue words like oh. Thus, the sentence, Oh, before you mash the
potatoes, take the chicken leg out, cut it into little pieces and add it back in
simplifies to Before you mash the potatoes, take the chicken leg out, cut it and
add it back in.

In addition, we make the following simplifications to the ingredient list part of a recipe:

• We round any fractional quantity of an ingredient to 1. For instance, ^ teaspoon
of salt becomes 1 teaspoon of salt.

The original recipes and their simplified forms are given below. The qts and the
temporal structure resulting from processing the recipes are also shown.

A.2 Broccoli Cheese Soup

Source: From rec.food.recipe

| pound fresh broccoli
1 pint half-and-half (that's half milk, half cream for the non-US people, or substitute
to your liking)
2 cups water
1 pound pasteurized cheese spread (like Velveeta)
| teaspoon salt
| teaspoon pepper
| cup cornstarch
Steam broccoli until tender (can cook in microwave on high power, 6 minutes per
pound). Place half-and-half and water in the top of a double boiler. Add cheese
(cut in pieces), salt and pepper. Heat until the cheese is melted. Add broccoli. Mix
cornstarch and water in a small bowl. Stir into the cheese mixture in the double boiler,
and heat over simmering water until the soup is thick.

Interesting Features

• The order in which the events are presented may not tally with the order in
which the events are to be carried out. For example, the event described by Mix
cornstarch and water is better done before the event described by Add broccoli.

• There is a state expression the cheese is melted.
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Other Kinds of Simplifications

In addition to the 'general' simplifications mentioned in section A.l, we also made the
following simplification:

• We replace the NP the cheese mixture with the NP the soup. This is because
currently TASTE uses hardwired knowledge to decide on the result of actions that
produce new objects from existing objects. For instance, in this current recipe,
after modelling the action of the mixing action mentioned in mix the cornstarch
and some water, TASTE determines that the result is a soup entity.

Simplified Target

\ pound of fresh broccoli
| pint of milk
1 pint of cream
2 cups of water
1 pound of pasteurized cheese spread
1 teaspoon of salt
1 teaspoon of pepper
\ cup of cornstarch
Steam the broccoli until it is tender.
Place the milk, cream and water in the top of a double boiler.
Add the cheese, salt and pepper.
Heat until the cheese is melted.
Add the broccoli.
Mix the cornstarch and some water.

Stir into the soup.
Heat until the soup is thick.
The result of processing the simplified recipe is given in figure A.l. The QTS is given
at the top of the figure. The system extracts the qualitative Allen relations between
the time intervals and any quantitative relations. The system transcript during this
stage is given below (In such transcripts, durational information is given as ((min),
(max)) and the default time unit is minutes. Notations like TR(E8 E7) mean the
Allen relations between the time interval assigned to event E8 and E7.)

Starts dribbling to ../recipe/rl-query (1993/6/18, 14:0:54).

> (start-interval-reasoner *relation-space*)

Asserting : TR(E8 E7) = (A MI)
Asserting : TR(E8 ST3) = M
Asserting : TR(E7 E5) = (A MI)
Asserting : TR(E7 E6) = (A MI)
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El ; Steal* the broccoli
ST1 5 The broccoli is tender

E2 ; Place the milk, cream and water in a pot
E3 : fidd the cheese, salt and pepper

E4 : heat

ST2 } The cheese is melted

E5 ; fidd the broccoli

E6 i Mix the cornstarch and some water

E7 ; Stir into the soup

E8 : Heat the soup

ST3 { The soi* is thick

TE3

TE7

TST3

TE5

TES

TE1

TE2

TE3

TST2

TST1

Figure A.l: The qts and temporal structure of the broccoli cheese soup recipe
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System : Does E6 require an agent to bring it to completion ?
User : yes

System : Does El require an agent to bring it to completion ?
User : no

Asserting : TR(E6 El) = (ANY) /* The set of thirteen Allen relations */

/* Resource Contention Reasoning */

System : Does E2 require an agent to bring it to completion ?
User : yes

Asserting : TR(E6 E2) = (DISJOINT)

System : Does E3 require an agent to bring it to completion ?
User : yes

Asserting : TR(E6 E3) = (DISJOINT)

System : Does E4 require an agent to bring it to completion ?
User : no

Asserting : TR(E6 E4) = (ANY)

System : Does E5 require an agent to bring it to completion ?
User : yes

Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting

TR(E6 E5) = (DISJOINT)
TR(E5 El) = (A MI)
TR(E5 E4) = (A MI)
TR(E4 El) = (ANY)
TR(E4 E3) = (A MI)
TR(E4 ST2) = M
TR(E3 El) = (ANY)
TR(E3 E2) = (A MI)
TR(E2 El) = (ANY)
TR(E1 ST1) = M

Finished Qualitative Relations Extraction.

System : How long do you take to do E8 ?
User : (20 20)
System : How long do you take to do E7 ?
User : (3 3)
System : How long do you take to do E6 ?
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User (3 3)
System How long
User (3 3)
System How long
User (20 20)
System How long
User (3 3)
System How long
User (3 3)
System How long
User (20 20)

Starting the temporal reasoner

Asserting : TR(E8 E7) = (MI)

Asserting : TR(E4 El) = (-)
Asserting : TR(E4 E6) = (SI)

Asserting : TR(E4 E3) = (MI)
Asserting : TR(E7 E5) = (MI)
Asserting : TR(E5 El) = (MI)
Asserting : TR(E3 E2) = (MI)

Notice from the temporal structure that TASTE determines that the broccoli should be
steamed during the heating of the mixture comprising milk, cream, water, cheese and
salt and pepper (the steaming is during the heating since we specify to TASTE that the
duration of the steaming is less than the duration of the heating). This is in spite of
the fact that the instruction to steam the broccoli is placed at the front.

A.3 Spiced Minced Lamb with Pasta Shells

Source: From The Electric Casserole Cook Book

1 large onion, skinned and sliced
1 clove of garlic, skinned and crushed
1 lb minced mutton

1 tablespoon ground coriander
1 tablespoon ground ginger
1 tablespoon ground cummin
1 tablespoon plain flour
2 5 ounce cartons natural yogurt
61 ounces tomatoes
1 small green pepper, seeded and chopped
salt and freshly ground pepper
3 ounces pasta shells

Fry the onion and garlic for 5 minutes. Add the minced lamb and cook for 5 minutes.
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Stir in the spices and flour and cook for 1 minute. Stir in the yogurt, tomatoes, and
seasoning. Pour into the electric casserole and place the lid in position. Cook on high
for 2-3 hours or low for 4-6 hours. 45 minutes before the end of cooking time, turn the
electric casserole to high, stir in the pasta shell and continue cooking.

Interesting Features

• This recipe contains a lot of quantitative information such as for 5 minutes and
4-5 minutes before the end of cooking time.

Other Kinds of Simplifications

In addition to the 'general' simplifications, we also made the following simplifications:

• We remove the instruction place the lid in position and turn the electric casserole
to high. Such removal does not affect the temporal analysis task.

• We remove the instruction continue cooking to simplify our processing.

Simplified Target

1 large onion
1 clove of garlic
1 lb of minced mutton

1 tablespoon of ground coriander
1 tablespoon of ground giner
1 tablespoons of ground cummin
1 tablespoon of plain flour
2 cartons of natural yogurt
61 ounces of tomatoes
1 small green pepper
some salt and freshly ground pepper
3 ounces of pasta shells

Fry the onion and garlic for 5 minutes.
Add the minced lamb.
Cook for 5 minutes.
Stir in the spices and flour. Cook for 1 minute.
Stir in the yogurt, tomatoes and seasonings.
Pour into the electric casserole.
Cook for 2 to 3 hours.
45 minutes before the end of cooking time, stir in the pasta shell.
The result of processing the simplified recipe is given in figure A.2. The system's
transcript when extracting the qualitative Allen relations and the quantitative relations
is as follows:

Starts dribbling to r5-ques (1993/6/11, 11:33:28).
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Ei : Fry the onion and 9arlic for 5 minutes

E2 : Add the mutton

E3 : Cook for 5 minutes

E4 : Stir in the spices and flour
E5 : Cook for 1 minute

E6 : Stir in the yogurt, the tomatoes and the seasonings
E7 : Pour into the electric casserole

E8 : Cook for 1 hoir

E9 : Stir in the pasta shells

TE9

TE7

TE8

TE6

TE5

TE4

TE3

TE1

Figure A.2: The QTS and temporal structure of the SPICED MINCED LAMB WITH PASTA
SHELLS recipe
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> (start-interval-reasoner *relation-space*)

Asserting : TR(E9 E7) = (A MI)

System : Does E9 require an agent to bring it to completion ?
User : yes

System : Does E8 require an agent to bring it to completion ?
User : no

Asserting : TR(E9 E8) = (ANY)
Asserting : TR(E8 E7) = (A MI)
Asserting : TR(E7 E6) = (A MI)
Asserting : TR(E6 E5) = (A MI)
Asserting : TR(E5 E4) = (A MI)
Asserting : TR(E4 E3) = (A MI)
Asserting : TR(E3 E2) = (A MI)
Asserting : TR(E2 El) = (A MI)

Finished Qualitative Relations Extraction

System How long do you take to do E9 ?

User (3 3)
System How long do you take to do E7 ?

User (3 3)
System How long do you take to do E6 ?

User (3 3)
System How long do you take to do E4 ?

User (3 3)
System How long do you take to do E2 ?

User (3 3)

Asserting Quantitative Info : (45 <= RIGHT TE8 - LEFT TE9 <= 45)

Starting the temporal reasoner

Asserting : TR(E8 E7) = (MI)
Asserting : TR(E3 E2) = (MI)
Asserting : TR(E7 E6) = (MI)
Asserting : TR(E6 E5) = (MI)
Asserting : TR(E4 E3) = (MI)
Asserting : TR(E2 El) = (MI)
Asserting : TR(E5 E4) = (MI)
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A.4 Lemon Dressing

321

Source: From rec.food. recipe

1 lemon
1 clove garlic
| teaspoon French or German mustard
3 tablespoons oil
salt and freshly ground black pepper

Remove some strips of lemon skin with a potato peeler or sharp knife. Cut into fine
strips. Crush the garlic and put into a bowl, stir in the mustard, then add 1 tablespoon
lemon juice and the oil. Add the salt and pepper, mix well, and add the lemon skin.

Simplified Target

1 lemon
1 clove of garlic
| teaspoon of French mustard
3 tablespoons of oil
some salt and freshly ground black pepper

Remove some strips of lemon skin.
Cut.
Crush the garlic and put into a bowl.
Stir in the mustard.

Then, add one tablespoon of lemon juice and the oil.
Add the salt and pepper.
Add the lemon skin.

The result of processing the simplified recipe is given in figure A.3. The system's
transcript when extracting the qualitative Allen relations and the quantitative relations
is as follows:

Starts dribbling to ../recipe/r6-ques (1993/6/25, 9:26:23).
NIL

> (start-interval-reasoner *relation-space*)

Asserting : TR(E8 E2) = (A MI)
Asserting : TR(E8 E7) = (A MI)

System : Does E7 require an agent to bring it to completion ?
User : yes

System : Does El require an agent to bring it to completion ?
User : yes
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El : Remove some strips of lemon skin
E2 : Cut

E3 : Crush the garlic
E4 : Place in a bowl

E5 : Stir in the mustard
E6 : Add one tablespoon of lemon juice and the oil
E7 : Add the salt and pepper

E8 : Add the lemon skin

_L

_1

_L

1_

Figure A.3: The QTS and temporal structure of the LEMON DRESSING recipe
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Asserting : TR(E7 El) = (DISJOINT)

System : Does E2 require an agent to bring it to completion
User : yes

Asserting : TR(E7 E2) = (DISJOINT)
Asserting : TR(E7 E6) = (A MI)

System : Does E6 require an agent to bring it to completion
User : yes

Asserting : TR(E6 El) = (DISJOINT)
Asserting : TR(E6 E2) = (DISJOINT)
Asserting : TR(E6 E5) = (A MI)

System : Does E5 require an agent to bring it to completion
User : yes

Asserting : TR(E5 El) = (DISJOINT)
Asserting : TR(E5 E2) = (DISJOINT)
Asserting : TR(E5 E4) = (A MI)

System : Does E4 require an agent to bring it to completion
User : yes

Asserting : TR(E4 El) = (DISJOINT)
Asserting : TR(E4 E2) = (DISJOINT)
Asserting : TR(E4 E3) = (A MI)

System : Does E3 require an agent to bring it to completion
User : yes

Asserting : TR(E3 El) = (DISJOINT)
Asserting : TR(E3 E2) = (DISJOINT)
Asserting : TR(E2 El) = (A MI)

Finished Qualitative Relations Extraction

System How long do you take to do E8

User (3 3)
System How long do you take to do E7 ?

User (3 3)
System How long do you take to do E6 7

User (3 3)

System How long do you take to do E5 7
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User (3 3)
System How long do you take to do E4
User (3 3)
System How long do you take to do E3 7

User (3 3)
System How long do you take to do E2 7

User (5 5)
System How long do you take to do El 7

User (5 5)

Starting the temporal reasoner

Asserting : TR(E2 El) = (MI)
Asserting : TR(E2 E7) = (M)
Asserting : TR(E1 E6) = (MI)
Asserting : TR(E8 E7) = (MI)
Asserting : TR(E6 E5) = (MI)
Asserting : TR(E5 E4) = (MI)
Asserting : TR(E4 E3) = (MI)

A.5 Corn Soup

Source: From rec.food.recipe

2 tablespoons butter or margarine
1 teaspoon chili powder
1 cup each seeded and diced green and red peppers

l| cups fresh or frozen thawed corn kernels
6 cups chicken broth
1 cup whipping cream

| teaspoon salt
In a 3 quart pan, melt butter over medium heat. Add chili powder and peppers; cook,
stirring, for 3 minutes. Add corn and broth. Bring to a boil. Simmer, uncovered,
for about 5 minutes. Whip cream with salt until stiff. Pour soup into a tureen, add
whipped cream, and stir lightly. Makes 8 to 10 servings.

Interesting Features

• This recipe contains interesting linguistic constructions like Cook stirring for 3
minutes. There is also a state expression like it is stiff.

Simplified Target

2 tablespoons of butter
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1 teaspoon of chilli powder
1 cup of green peppers and 1 cup of red peppers
1 \ cups of fresh corn kernels
6 cups of chicken broth
1 cup of whipping cream

| teaspoon of salt
Melt the butter.
Add the chilli powder and the peppers.
Cook stirring for 3 minutes.
Add the corn and broth.

Bring to a boil.
Simmer for 5 minutes.

Whip cream with salt until it is stiff.
Pour the soup into a tureen.
Add whipped cream.
Stir.

The result of processing the simplified recipe is given in figure A.4. The system's
transcript when extracting the qualitative Allen relations and the quantitative relations
is as follows:

Starts dribbling to r7-ques (1993/6/25, 9:55:52).

> (start-interval-reasoner *relation-space*)

Asserting : TR(E12 Ell) = (A MI)
Asserting : TR(E11 E9) = (A MI)
Asserting : TR(E11 E10) = (A MI)

System : Does E10 require an agent to bring it to completion ?
User : yes

System : Does E9 require an agent to bring it to completion ?
User : yes

Asserting : TR(E10 E9) = (DISJOINT)
Asserting : TR(E10 E8) = (A MI)

System : Does El require an agent to bring it to completion ?
User : no

Asserting : TR(E9 El) = (ANY)

System : Does E2 require an agent to bring it to completion ?
User : yes
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Melt the butter

Add the chilli powder and peppers

Cook

Stirring
Cook stirring for 3 minutes
Add the corn and the broth

Boil

Sinner for 5 minutes

Whip the cream with the salt
ST1 { The cream is stiff

E10 { Pour the soup into a bowl
Ell i Add the cream

E12 : Stir

TE12

TE11

TE9

TE10

TE8

TE1

TE2

TE4

TEG

TE7

TST1

TE3

TE5

Figure A.4: The QTS and temporal structure of the CORN SOUP recipe
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Asserting : TR(E9 E2) = (DISJOINT)

System : Does E4 require an agent to bring it to completion
User : yes

Asserting : TR(E9 E4) = (DISJOINT)

System : Does E3 require an agent to bring it to completion
User : no

Asserting : TR(E9 E3) = (ANY)

System : Does E6 require an agent to bring it to completion
User : yes

Asserting : TR(E9 E6) = (DISJOINT)

System : Does E7 require an agent to bring it to completion
User : no

Asserting : TR(E9 E7) = (ANY)

System : Does E8 require an agent to bring it to completion
User : no

Asserting : TR(E9 E8) = (ANY)
Asserting : TR(E9 ST1) = M
Asserting : TR(E8 E7) = (A MI)
Asserting : TR(E7 E6) = (A MI)
Asserting : TR(E6 E4) = (A MI)
Asserting : TR(E3 E2) = (A MI)
Asserting : TR(E4 E3) = =
Asserting : TR(E2 El) = (A MI)
Asserting : TR(E5 E3) = =
Asserting : TR(E5 E4) = =

Finished Qualitative Relations Extraction

System : How long do you take to do E12 ?
User : (3 3)

System : How long do you take to do Ell ?
User : (3 3)
System : How long do you take to do E10 ?
User : (3 3)
System : How long do you take to do E9 ?
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User (5 5)
System How long does E7 takes ?
User (20 20)
System How long do you take to do E6 ?
User (3 3)
System How long do you take to do E2 ?
User (3 3)
System How long does El takes ?
User (15 15)

Starting the temporal reasoner

Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting

TR(E7 E9) = (SI)
TR(E7 E6) = (MI)
TR(E8 E7) = (MI)
TR(E12 Ell) = (MI)
TR(E11 E10) = (MI)
TR(E10 E8) = (MI)
TR(E6 E4) = (MI)
TR(E3 E2) = (MI)
TR(E2 El) = (MI)

A.6 Chicken and Oyster Sauce Piquant

Source: From rec.food.recipe

2 tablespoons flour
6 tablespoons oil
3 large onions, finely chopped
| cup chopped ham
8 to 10 chicken breasts, skinned
1 6-ounce can tomato paster
| can water
3 cloves garlic
| cup celery, finely chopped
| cup parsley, finely chopped
| bunch green onions, thinly sliced
1 3-ounce bottle pitted green olives, finely chopped
1 small jar sour pickles, finely chopped
| rind of a lemon, grated
2 6-ounce cans slice mushrooms with liquid
salt and pepper to taste
1 pint oysters
5 cups white wine
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Brown flour in oil very slowly, until dark brown. This takes about 30 minutes. Add
chopped onions and cook slowly until tender. Then add chopped ham and cook a few
minutes. Add raw chicken breasts and stir thoroughly to coat each piece. Add tomato
paste and water. Simmer for 30 to 45 minutes.

Add olives, sour pickle, lemon rind and cook for a few minutes, turning chicken to
coat. Add mushrooms with the liquid. Season with salt and peppers. Simmer (over
low heat) for 4 to 5 hours. Stir occasionally to keep chicken from sticking.
About 30 minutes before serving, add | cup wine and bring to a simmer. Add oysters
with juice and cook until oysters curl at the edges. Just before serving, add another
4\ cup of wine. Serve chicken on a bed of rice with sauce poured over.

Interesting Features

• This recipe contains many expressions on quantitative information in this recipe
like 30 minutes before and for f to 5 hours.

Other kinds of simplifications

• We replace the NP a few minutes with three minutes.

Simplified Target

2 tablespoons of flour
6 tablespoons of oil
3 large onions
| cup of chopped ham
8 to 10 chicken breasts
1 can of tomato paste
| can of water
3 cloves of garlic
| cup of celery
| cup of parsley
| bunch of green onions
1 bottle of pitted green olives
1 jar of sour pickles
^ rind of a lemon
2 cans of slice mushrooms
some salt and pepper
1 pint of oysters
5 cups of white wine
Brown flour for 30 minutes until it is dark brown.
Add the onions.
Cook until it is tender.
Then add the ham.
Cook for 3 minutes.
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Add the chicken breasts.
Stir.
Add the tomato and the water.

Simmer for 30 to 45 minutes.
Add the olives, the pickle and the lemon rind.
Cook for 3 minutes turning the breasts.
Add the mushrooms.
Season with salt and peppers.
Simmer for 4 to 5 hours.
Stir occasionally.
30 minutes before serving, add the wine and simmer.
The result of processing the simplified recipe is given in figure A.5.

The system's transcript when extracting the qualitative Allen relations and the quan¬
titative relations is as follows:

Starts dribbling to r9-query (1993/6/25, 10:35:7)

> (start-interval-reasoner *relation-space*)

Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting

TR(E25 E24)
TR(E24 E23)
TR(E20 E18)
TR(E22 E19)
TR(E21 E20)
TR(E19 E18)
TR(E18 E17)
TR(E17 E16)
TR(E16 E15)
TR(E15 E13)
TR(E12 Ell)
TR(E13 E12)
TR(E11 E10)
TR(E10 E9) =

TR(E9 E8) =

TR(E8 E7) =

TR(E7 E6) =

TR(E6 E3) =

TR(E5 E4) =

TR(E3 E2) =

TR(E3 ST2) =

TR(E2 El) =

TR(E1 ST1) =

TR(E18 E23)
TR(E18 E24)

= (A MI)
= (A MI)
= (A MI)
= (B 0 D
= (A MI)
= (A MI)

= (A MI)
= (A MI)
= (A MI)
= (A MI)

= (A MI)
' (A MI)
(A MI)
(A MI)
(A MI)
(A MI)
(A MI)
(A MI)
M

(A MI)
M

= SI
= DI

M)
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TE25

TE24

TE23

TE20

TE18

TE22

TE19

TE21

TE17

TE18

TE15

TE13

TE12

TE11

TE10

TE9

TE8

TE7

TE6

TE3

TE5

TE4

TE2

TST2

TE1

TST1

TE14

El J

ST1

E2 :

E3 :

ST2

E4 :

E5 :

E6 :

E7 :

E8 :

E9 :

E10

Ell

E12

E13

E14

E15

E16

E17

E18

E19

E20

E21

E22

Brown the flour for 30 minutes

The flour is dark brown

Add the onions

Cook

The onion is tender

Add the ham

Cook for 3 minutes

Add the ham and cook for 3 minutes

Add the chicken breasts

Stir

Add the tomato and the water

Simmer for 30 to 45 minutes

Add the olives, the pickles and the lemon rind
Cook for 3 minutes

Turn the breasts

Cook for 3 minutes turning the breasts
Add the mushrooms

Season with the salt and pepper

Simmer for 4 to 5 hours

Stir occasionally
Serve

Add the wine

Simmer

Add the wine and simmer

Figure A.5: The qts and temporal structure of the chicken and oyster sauce
piquant recipe
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Asserting : TR(E18 E25) = FI
Asserting : TR(E22 E20) = SI
Asserting : TR(E22 E21) = FI
Asserting : TR(E14 E12) = =

Asserting : TR(E14 E13) = =

Asserting : TR(E6 E4) = SI
Asserting : TR(E6 E5) = FI

Finished Qualitative Relations Extraction

System
User

How long
(20 20)

do you take to do E21 ?

System
User

How long
(3 3)

do you take to do E20 ?

System
User

How long
(3 3)

do you take to do E19 ?

System
User

How long
(3 3)

do you take to do E16 ?

System
User

How long
(3 3)

do you take to do E15 ?

System
User

How long
(3 3)

do you take to do Ell ?

System
User

How long
(3 3)

do you take to do E9 ?

System
User

How long
(3 3)

do you take to do E8 ?

System
User

How long
(3 3)

do you take to do E7 ?

System
User

How long
(3 3)

do you take to do E4 ?

System
User

How long
(20 20)

do you take to do E3 ?

System
User: (c

How long
3)

do you take to do E2 ?

Asserting Quantitative Info : (30 <= LEFT TE19 - LEFT TE22 <= 30)

Starting the temporal reasoner

Asserting : TR(E17 E16) = (MI)
Asserting : TR(E10 E9) = (MI)
Asserting : TR(E22 E19) = (0)
Asserting : TR(E3 E2) = (MI)
Asserting : TR(E6 E3) = (MI)
Asserting : TR(E25 E24) = (MI)
Asserting : TR(E20 E18) = (MI)
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Asserting : TR(E16 E15) = (MI)
Asserting : TR(E15 E13) = (MI)
Asserting : TR(E12 Eli) = (MI)
Asserting : TR(E11 E10) = (MI)
Asserting : TR(E9 E8) = (MI)
Asserting : TR(E8 E7) = (MI)
Asserting : TR(E7 E6) = (MI)
Asserting : TR(E5 E4) = (MI)
Asserting : TR(E2 El) = (MI)

For this recipe, the EVENT-DECOMPOSER decomposes E18 (the event described by stir
occasionally). The system's transcript at this point is as follows:

> (decomposition-reasoner *event-stack*)

System : Can you carry out E18 in one go ?
User : no

System : How long does it takes to do one repetition of E18 ?
User : (5 5)

Modelling the action of STIRRING-MATTER \* the first stirring *\

Finish Modelling

Modelling the action of STIRRING-MATTER \* the second stirring *\

Finish Modelling

Modelling the action of STIRRING-MATTER \* the third stirring *\

Finish Modelling

A.7 Cream of Butter Bean Soup

Source: Rose Elliot's The Bean Book

4 oz butter beans
1 large onion
1 medium-sized potato
2 carrots
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2 sticks celery
1 oz butter

l| pints water or unsalted stock
^ pint milk
a bouquet garni: a couple of sprigs of parsley, a sprig of thyme and a bayleaf, tied
together
4-6 tablespoons of cream
sea salt

freshly ground black pepper

grated nutmeg

Soak the butter beans, then drain and rinse them. Peel and chop the onion and potato;
scrape and chop the carrots; slice the celery. Melt the butter in a large saucepan and
add the vegetables; saute them for 7-8 minutes, but don't them brown, then add the
butter beans, water or stock, the milk and the bouquet garni. Simmer gently, with
a lid half on the saucepan, for about 1.25 hours or until the butter beans are tender.
Remove the herbs, then liquidise the soup, stir in the cream and add the sea salt,
freshly ground black pepper and nutmeg to taste. Reheat the soup, but don't let it
boil. Serve each bowl sprinkled with croutons.

Simplified Target

4 oz of butter beans
1 large onion
1 medium potato
2 carrots

2 sticks of celery
1 ounce of butter
1.5 pints of unsalted stock
0.5 pints of milk
four tablespoons of cream
some sea salt
some freshly ground black pepper
some grated nutmeg

Soak the butter beans.

Then, drain and rinse them.
Peel and chop the onion and potato.
Scrape and chop the carrots.
Slice the celery.
Melt the butter.
Add the vegetables.
Saute them for 7-8 minutes.
Then add the butter beans, the stock and the milk.
Simmer for about 1.25 hours.

Liquidise the soup.
Stir in the cream.

Add the sea salt, freshly ground black pepper and nutmeg.
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Reheat the soup.

The result of processing the simplified recipe is given in figure A.6. The system's
transcript when extracting the qualitative Allen relations and the quantitative relations
is as follows:

Starts dribbling to r4-query (1993/6/25, 11:9:9)

> (start-interval-reasoner *relation-space*)

Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting

TR(E20
TR(E19
TR(E18
TR(E17
TR(E16
TR(E15
TR(E15

E19) =

E18) =

E17) =

E16) =

E15) =

E4) =

(A MI)
(A MI)
(A MI)
(A MI)
(A MI)

(A MI)
E14) = (A MI)

System : Does E14 require an agent to bring it to completion ?
User : no

System : Does El require an agent to bring it to completion ?
User : no

Asserting : TR(E14 El) = (ANY)

System : Does E3 require an agent to bring it to completion ?
User : yes

Asserting : TR(E14 E3) = (ANY)

System : Does E2 require an agent to bring it to completion ?
User : yes

Asserting : TR(E14 E2) = (ANY)
Asserting : TR(E14 E13) = (A MI)

System : Does E13 require an agent to bring it to completion ?
User : yes

Asserting : TR(E13 El) = (ANY)
Asserting : TR(E13 E3) = (DISJOINT)
Asserting : TR(E13 E2) = (DISJOINT)
Asserting : TR(E13 E7) = (A MI)
Asserting : TR(E13 E10) = (A MI)
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El i Soak the butter beans
E2 J Drain the beans

E3 i Rinse the beans

E4 : Drain and Rinse the beans

E5 : Peel the onion and potato
E6 : Chop the onion and potato
E7 : Peel and chop the onion and potato
E8 : Scrape the carrots

E9 ; Chop the carrots

E10 J Scrape and chop the carrots
Ell J Slice the celery
E12 J Melt the butter

E13 J Add the vegetables
E14 J Saute them for 7 to 8 minutes

E15 J Add the butter beans, the stock and the milk

E16 J Simmer the soup for about 1»25 hours
E17 J Liquidise the soup

E18 J Stir in the cream

E19 J Add the sea salt, freshly ground black pepper and nutmeg

E20 J Reheat the soup

TE20

TE19

TE18

TE17

TE16

TE15

TE4

TE14

TE1

TE3

TE2

TE13

TE7

TE10

TE11

TE12

TE6

TE5

TE9

TE8

Figure A.6: The qts and temporal structure of the cream of butterbean soup
recipe
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Asserting : TR(E13 Ell) = (A MI)
Asserting : TR(E13 E12) = (A MI)

System : Does E12 require an agent to bring it to completion
User : no

Asserting : TR(E12 El) = (ANY)
Asserting : TR(E12 E3) = (ANY)
Asserting : TR(E12 E2) = (ANY)

System : Does E6 require an agent to bring it to completion
User : yes

Asserting : TR(E12 E6) = (ANY)

System : Does E5 require an agent to bring it to completion
User : yes

Asserting : TR(E12 E5) = (ANY)

System : Does E9 require an agent to bring it to completion
User : yes

Asserting : TR(E12 E9) = (ANY)

System : Does E8 require an agent to bring it to completion
User : yes

Asserting : TR(E12 E8) = (ANY)

System : Does Ell require an agent to bring it to completion
User : yes

Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting

TR(E12 Ell) = (ANY)
TR(E11 El) = (ANY)
TR(E11 E3) = (DISJOINT)
TR(E11 E2) = (DISJOINT)
TR(E11 E6) = (DISJOINT)
TR(E11 E5) = (DISJOINT)
TR(E11 E9) = (DISJOINT)
TR(E11 E8) = (DISJOINT)
TR(E9 El) = (ANY)
TR(E9 E3) = (DISJOINT)
TR(E9 E2) = (DISJOINT)
TR(E9 E6) = (DISJOINT)
TR(E9 E5) = (DISJOINT)
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Asserting TR(E8 El) = (ANY)
Asserting TR(E8 E3) = (DISJOINT)
Asserting TR(E8 E2) = (DISJOINT)
Asserting TR(E8 E6) = (DISJOINT)
Asserting TR(E8 E5) = (DISJOINT)
Asserting TR(E9 E8) = (A MI)
Asserting TR(E6 El) = (ANY)
Asserting TR(E6 E3) = (DISJOINT)
Asserting TR(E6 E2) = (DISJOINT)
Asserting TR(E5 El) = (ANY)
Asserting TR(E5 E3) = (DISJOINT)
Asserting TR(E5 E2) = (DISJOINT)
Asserting TR(E6 E5) = (A MI)
Asserting TR(E4 El) = (A MI)
Asserting TR(E3 E2) = (A MI)
Asserting TR(E10 E8) SI

Asserting TR(E10 E9) FI

Asserting TR(E7 E5) = SI

Asserting TRCE7 E6) = FI

Asserting TR(E4 E2) = SI

Asserting TR(E4 E3) = FI

Finished Qualitative Relations Extraction

System How long do you take to do E20 ?

User (10 10)
System How long do you take to do E19 ?

User (3 3)
System How long do you take to do E18 ?

User (3 3)

System How long do you take to do E17 ?

User (5 5)

System How long do you take to do E15 ?

User (3 3)
System How long do you take to do E13 ?

User (3 3)
System How long does E12 takes ?

User (5 5)
System How long do you take to do Ell ?

User (3 3)
System How long do you take to do E9 ?

User (5 5)

System How long do you take to do E8 ?

User (5 5)
System How long do you take to do E6 ?

User (5 5)
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System : How long do you take to do E5 ?
User : (5 5)
System : How long do you take to do E3 ?
User : (3 3)
System : How long do you take to do E2 ?
User : (3 3)
System : How long does El takes ?
User : (15 15)

Asserting : TR(E16 E15) = (MI)
Asserting : TR(E1 E14) = (SI)
Asserting : TR(E1 E13) = (MI)
Asserting : TR(E20 E19) = (MI)
Asserting : TR(E4 El) = (MI)
Asserting : TR(E17 E16) = (MI)
Asserting : TR(E12 E6) = (=)
Asserting : TR(E12 E5) = (MI)
Asserting : TR(E12 E9) = (M)
Asserting : TR(E12 Ell) = (P)
Asserting : TR(E9 Ell) = (M)
Asserting : TR(E8 E5) = (M)
Asserting : TR(E19 E18) = (MI)
Asserting : TR(E18 E17) = (MI)
Asserting : TR(E15 E4) = (MI)
Asserting : TR(E13 Ell) = (MI)
Asserting : TR(E3 E2) = (MI)

A.8 Instant Soup

Source: From the back of an Instant Soup Packet

Empty the contents from the packet.
Add one pint of cold water.
Boil stirring constantly.
Reduce the heat.
Simmer for twenty minutes stirring occasionally.

Simplified Target

There are no simplifications made to this recipe.

The result of processing the simplified recipe is given in figure A.7. The system's
transcript when extracting the qualitative Allen relations and the quantitative relations
is as follows:
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E5 c

El

E2

E3

E4

E5

E6

E7

E8

E9

E10

Ell

E12

E13

E14

E15

Empty the content from the packet
Add one pint of cold water

Boil

Stirring constantly
Boil stirring constantly
Reduce the heat

Simmer

Stirring occasionally
Simmer stirring occasionally
Stir

Stir

Stir

Stir

Stir

Stir

TE15

TE14

TE13

TE12

TE11

TE10

TE7

TEG

TE8

TE4

TE3

TE2

TE1

TE9

TE5

Figure A.7: The qts and temporal structure of the instant soup recipe
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Starts dribbling to ../recipe/r2-query (1993/6/25, 11:25:13)

> (start-interval-reasoner *relation-space*)

Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting
Asserting

TR(E15 E14)
TR(E14 E13)
TRCE13 E12)
TR(E11 E10)
TR(E7 E6) =

TR(E8 E7) =

TR(E6 E4) =

TR(E3 E2) =

TR(E4 E3) =

TR(E2 El) =

TR(E4 E12) =

TR(E4 E13) =

TR(E4 E14) =

TR(E4 E15) =

TR(E8 E10) =

TR(E8 Ell) =

TR(E9 E7) =

TR(E9 E8) =

TR(E5 E3) =

TR(E5 E4) =

= (A MI)
= (A MI)
= (A MI)
= (A MI)
(A MI)

(A MI)
(A MI)

(A MI)
: SI
: DI
: DI
< FI

SI

FI

Finished Qualitative Relations Extraction

System : How long do you take to do E6 ?
User : (3 3)
System : How long do you take to do E2 ?
User : (3 3)
System : How long do you take to do El ?
User : (5 5)

Starting the temporal reasoner

Asserting : TR(E3 E2) = (MI)
Asserting : TR(E7 E6) = (MI)
Asserting : TR(E15 E14) = (MI)
Asserting : TR(E14 E13) = (MI)
Asserting : TR(E6 E4) = (MI)
Asserting : TR(E2 El) = (MI)
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For this recipe, the event decomposer decomposes E8 (the event described by stir¬
ring occasionally) and E4 (the event described by stirring constantly). Note that E4
has more decompositions than E8. The system's transcript is as follows:

> (decomposition-reasoner *event-stack*)

System : Can you carry out E8 in one go ?
User : no

System : How long does it takes to do one repetition of E8 ?
User : (5 5)

Modelling the action of STIRRING-MATTER \* First Stirring *\

Finish Modelling

Modelling the action of STIRRING-MATTER \* Second Stirring *\

Finish Modelling

System : Can you carry out E4 in one go ?
User : no

System : How long do you take to do E3 ?
User : (30 30)

System : How long does it takes to do one repetition of E4 ?
User : (5 5)

Modelling the action of STIRRING-MATTER \* First Stirring *\

Finish Modelling

Modelling the action of STIRRING-MATTER \* Second Stirring *\

Finish Modelling

Modelling the action of STIRRING-MATTER \* Third Stirring *\

Finish Modelling

Modelling the action of STIRRING-MATTER \* Fourth Stirring *\

Finish Modelling
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A.9 A Partial Recipe

343

Source: From [Dale 92]

Cook the rice, cool. Sprinkle apple and banana with lemon juice and add to rice. Steep
raisins in a little boiling water for half an hour to plump; drain, and add to rice with
sunflower seeds.

Simplified Target

some rice

an apple
a banana
some lemon juice
some raisins

Cook the rice.

Cool.

Sprinkle the apple and banana with the lemon juice.
Add to the rice.

Steep the raisins in some water for thirty minutes.
Drain
Add to the rice.

The result of processing the simplified recipe is given in figure A.8. The system's
transcript when extracting the qualitative Allen relations and the quantitative relations
is as follows:

Starts dribbling to ../recipe/r3-query (1993/6/25, 11:45:18).

> (start-interval-reasoner *relation-space*)

Asserting : TR(E7 E4) = (A MI)
Asserting : TR(E7 E6) = (A MI)

System : Does E6 require an agent to bring it to completion ?
User : yes

System : Does El require an agent to bring it to completion ?
User : no

Asserting : TR(E6 El) = (ANY)

System : Does E2 require an agent to bring it to completion ?
User : no
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Cook the rice

Cool

Sprinkle the apple and banana with sowe lemon juice

Add to the rice

Steep the raisins in some water for thirty minutes
Drain

Add to the rice

El

E2

E3

E4

E5

EG

E7

TE7

TE4

1

Figure A.8: The QTS and temporal structure of the PARTIAL recipe
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Asserting : TR(E6 E2) = (ANY)

System : Does E3 require an agent to bring it to completion
User : yes

Asserting : TR(E6 E3) = (DISJOINT)

System : Does E4 require an agent to bring it to completion
User : yes

Asserting : TR(E6 E4) = (DISJOINT)
Asserting : TR(E6 E5) = (A MI)

System : Does E5 require an agent to bring it to completion
User : no

Asserting : TR(E5 El) = (ANY)
Asserting : TR(E5 E2) = (ANY)
Asserting : TR(E5 E3) = (ANY)
Asserting : TR(E5 E4) = (ANY)

Asserting : TR(E4 E2) = (A MI)
Asserting : TR(E4 E3) = (A MI)
Asserting : TR(E3 El) = (ANY)

Asserting : TR(E3 E2) = (ANY)
Asserting : TR(E2 El) = (A MI)

Finished Qualitative Relations Extraction

System How long do you take to do E7 ?
User (3 3)
System How long do you take to do E6 ?
User (5 5)
System How long do you take to do E4 ?
User (3 3)
System How long do you take to do E3 ?
User (3 3)
System How long does E2 takes ?
User (10 10)
System How long does El takes ?
User (20 20)

Starting the temporal reasoner

Asserting : TR(E5 El) = (SI)
Asserting : TR(E5 E2) = (FI)
Asserting : TR(E5 E3) = (SI)
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Asserting : TR(E5 E4) = (M)
Asserting : TR(E6 E4) = (MI)
Asserting : TR(E7 E6) = (MI)



Appendix B

The Ruleset and Rule Language

In this appendix, we present the language used to specify a ruleset and the rules in
the ruleset. The language will be expressed in a bnf grammar using the following
notations:

• An item in small cap such as RULESET is a non-terminal.

• An item in italic such as labeli is an atomic value.

• Where there are a potentially infinite set of values, these are represented by a

gloss in brackets.

• An item enclosed in braces ({}) indicates that the item is optional.

• An item suffixed with a '+' means that the expansion of that item in the grammar
may appear one or more time.

• The symbol | is used to indicate disjunction.

B.l The Ruleset Language

The bnf of the ruleset language is as follows:

ruleset

header

input

output

strategy

::- header rule+
::- (in-ruleset (name)) (input-node-label inputi ... input„)

(output-node-label output) {(firing-strategy strategy)}
{(maintain-kbe-history output)} {(domain-modeller output)}
{(integrate-situation output)}

::- (a feature identifier) |
(a variable)

::- (a feature identifier)
::- first-tried-succeed

347
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The possible expansion of rule is given in section B.2. We now explain the meaning
of the constructs appearing in header:

(in-ruleset (name)) This specifies the name of the ruleset.

(input-node-label inpuTi ... input„) This specifies the input 'parameters' which
the rules in the ruleset reason about.

(output-node-label output) This specifies the identifier of the feature structure
output by the ruleset.

(maintain-kbe-history output) This maintains the discourse model by adding any
new object or event represented in output to the model.

(firing-strategy strategy) This specifies the strategy used for rule firing. The de¬
fault strategy is first-tried-succeed which means that the ruleset returns the result
of the first rule in the ruleset which fires. If no rules in the ruleset fire, then the
ruleset returns failure.

(domain-modeller output) This invokes the domain modeller to simulate the event
represented in output.

(integrate-situation output) This invokes the integrator module to integrate the
current situation represented in output into the preceding qts.

B.2 The Rule Language

rule

premise

pred

f-path

pred-eq

kb-query
pred-var-cl

csp-cl

VARi
DOM

CONSTRAINTS

RULESET-CL

INPUTj
ITERATIVE-CL

RULESET-NAME

ACTION

ACTION-VALUE

- premise+ :- action+
pred | pred-eq | pred-var-cl | csp-cl
f-path | -f-path | kb-query |
ruleset-cl | (a Lisp Predicate)
(f a b c)
pred is (a value) | pred isnot (a value)
(a query to the frame knowledge base of substances)
(a variable) = pred
(constraint-find vari ... var„

:domain domi ... domn
:constraints constraints)

(the ith variable)
(the domain of the ith variable)
pred | pred-eq | (action-constraints vari ••• var„)
(invoke-ruleset ruleset-name inpuTi ... input„) | iterative-cl
(a feature identifier) | (a variable)
(iterate-ruleset ruleset-name (inputi ... inputn)+)
(the name of a ruleset)
f-path = action-value | (a Lisp Function)
f-path i action-fn
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action-fn (invoke-ruleset ruleset-name inputs ... input„) |
(case-attr-mapping (an event substance) (case case-value)+) |
iterative-cl

case (the possible cases of the np)

We will now explain the meanings of the constructs found in a rule premise and action.

Premise Clause

We divide the possible clauses in a rule premise into four different classes. As taste
is implemented in Lisp, we say that a premise clause is true if the clause returns a
non-null value. Otherwise, the premise clause is false.

The four classes are described below:

PRED

In this class are the following predicates:

(f a b c): This predicate is true if there exists such a path in the feature structure
whose feature identifier is f.

-(f a b c): This predicate is true if there does not exist such a path in the feature
structure whose feature identifier is f.

kb-query: This includes those predicates which query the frame knowledge base of
substances.

(invoke-ruleset RULESET-NAME INPUTi ... iNPUT-n): This predicate is true if the
ruleset invoked reports success.

(iterate-ruleset ruleset-name (inputi ... inputn)+): This iteratively invokes
the ruleset indicated by ruleset-name over the list of input parameters given
by (INPUTi ... INPUT„). The predicate is true if each iteration of the ruleset
reports success.

(a Lisp Predicate): The predicate is true if the Lisp function returns a non-null
value.

PRED-EQ

In this class are the following predicates:

PRED is (a value): This predicate is true if the value returned by PRED is equal to
the value indicated.
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pred isnot (a value): This predicate is true if the value returned by pred is not
equal to the value indicated.

PRED-VAR-CL

In this class, we have the following predicate:

pred = (a variable): This predicate is true if pred is true. In addition, there is a
side effect of binding the indicated variable to the value returned by pred.

CSP-CL

This sets up a constraint satisfaction problem and the construct is:

• (constraint-find VARi ... VAR„
:domain domi ... dom„
constraints constraints)

The predicate is true if the csp can be solved. Depending on the type of the variables
in VARj , the domain of VAR; can be:

1. If var,- is that associated with a verb or a noun, then the domain is the possible
lexical senses of the verb or noun. For an ambiguous verb or noun, the domain
will be a set of cardinality greater than 1.

2. If VAR,- is that associated with an NP, then the domain is the list of objects in
the discourse model.

3. If VARj is that associated with a CLAUSE, then the domain is the list of situations
in the discourse model.

The constraints in the csp are either pred, pred-eq or the constraint given by:

• (action-constraints VARi ... VAR„)

This constraint is verified by verifying the constraints stored in the action which VARi
gets bound to.

Action Clause

The action part of the rule is executed when the premise succeeds. The possible
actions that can be carried out are:
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f-path = action-value: This assigns that part of the output feature structure in¬
dicated by f-path to the value given by action-value. The value assigned can
be from one of the following sources:

f-path: The value is simply retrieved from that part of the input feature struc¬
ture indicated by f-path.

(invoke-ruleset ruleset-name inputx ...input„): The value is the value
returned by the ruleset.

(case-attribute-mapping (an event substance) (case case-value)-}-):
This maps the case role of the objects to the frame role of the event sub¬
stance.

(a Lisp Function): This is any Lisp function.

B.3 Examples

We give some examples of the rulesets and rules employed in taste in this section:

;;; ****************************************************
;;; KBE-Sent-Top Ruleset
> > *

;;; Comment:
> » >

;;; a) The top-level ruleset is responsible for building up
;;; the KBE structure of the sentence
;;; **************************************************

(in-ruleset kbe-sent-top)

(input-node-label RS)

(output-node-label KBE)

(invoke-component (integrate-situation output-node-label))

(rule kbe-sent-top-rulel
< RS subordination >

< KBE > = (invoke-ruleset KBE-COMP-CL < RS >))

(rule kbe-sent-top-rule2
(default)

< KBE > = (invoke-ruleset KBE-CL < RS >))

;;; ************************************
;;; KBE-COMP-CL RULESET
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;;; ***********************************

(in-ruleset kbe-comp-cl)

(input-node-label RS)

(output-node-label KBE)

(maintain-KBE-history KBE)

(rule kbe-comp-cl-rl
< RS subordination type kind > is before

< KBE > = (invoke-ruleset KBE-before < RS >))

(rule kbe-comp-cl-r2
< RS subordination type > is progressive-adjunct

< KBE > = (invoke-ruleset KBE-progressive-adjunct < RS >))

(rule kbe-comp-cl-r3
< RS subordination type > is before

< KBE > = (invoke-ruleset KBE-before < RS >))

(rule kbe-comp-cl-r4
< RS subordination type > is then

< KBE > = (invoke-ruleset KBE-then < RS >))

(rule kbe-comp-cl-r5
< RS subordination type > is during

< KBE > = (invoke-ruleset KBE-during < RS >))

(rule kbe-comp-cl-r6
< RS subordination type > is until

< KBE > = (invoke-ruleset KBE-until < RS >))

(rule kbe-comp-cl-r7
< RS subordination type > is when

< KBE > = (invoke-ruleset KBE-when < RS >))



Appendix C

The Frame Knowledge Base
Language

In this appendix, we present the language used to represent the knowledge about the
substances which physobjs and events consist. This language is specified in a bnf
grammar using the same notation as that used in Appendix B.

C.l The Object Substance Language

The bnf of the representation language for object substance is:

obj-subst

subst-name

lexical

superclass

part-of

attributes

attr

attr-value

(define-class subst-name
rsuperclass superclass
:lexical lexical

:part-of part-of
attributes attributes)

(a substance)
(the possible lexical forms of a substance)
(a list of substances)
(a list of substances)
(attr attr-value)+

- (an attribute of a substance)
- (the possible values of the attribute)

To summarise, an object substance is defined as a frame with various slots or attributes.
These substances are arranged into a is-a hierarchy using the superclass slot and into
a part-of hierarchy by a part-of slot. The various possible lexicalisations of the object
substance are given via the lexical slots. Note that two different object substances
may have the same lexicalisation giving rise to lexical ambiguity. Other attributes of
the object substance are stored in the attributes slot.

353
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Examples

We give some examples of object substances defined in taste:

(define-class solid-matter
:lexical (solid))

(define-class vegetable-matter
:superclass solid-matter
:lexical (vegetable))

(define-class carrot-matter

:superclass vegetable-matter
:lexical (carrot))

(define-class salt-matter

:superclass seasoning-matter
rlexical (salt)
:attributes

(source (one.of sea))
(receptacle (one.of tablespoon-matter)))

(define-class skin-matter
:name (skin)
:superclass solid-matter
:part-of (avocado-matter lemon-matter)

:attributes

(shape (one.of strip)))

C.2 The Action Language

The bnf of the representation language for action is:

action

action-name

superclass

participants

role

in-role

::- (define-action action-name
superclass superclass
:participants participants
:case-mapping case-mapping
constraints constraints
:telic telic

preconditions precond
:delete delete-list
:add add-list)

::- (an action)
::- (a list of substances)
::- (rolei = vari) ... (role„ = var„)
::- agent | in-role | out-role
::- in : role-name
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out-role ::- out : role-name

role-name ::- (the name of a role)
var ::- (a variable)
case-mapping ::- (verb (case —>■ in-role))
case ::- (a verb case)
constraints ::- pred I pred-eq | (invoke-ruleset ruleset-name vari . . . var„)
pred ::- As in section 2.2 of Appendix B
pred-eq ::- As in section 2.2 of Appendix B
telic ::- + | - | (invoke-ruleset ruleset-name varx ... varn)
preconditions ::- clause-)- | (not-spec-value f-path f-value)
add-list ::- clause-j-
delete-list ::- clause+
clause (working-set-member var;) | (spec-value f-path f-value)
f-path ::- As in section 2.2 of Appendix B
f-value ::- (a path value) | (invoke-ruleset ruleset-name varx ... var„)

To summarise, an action is defined as a frame with slots. It is organised into a is-a
hierarchy via the superclass slot.

Three particular slots are borrowed from the strips representation of operators:

Preconditions: This specifies the state of the world which has to be true before the
action can be executed.

Add-list: This specifies the propositions that are to be added to the world after the
action is executed. Note that the content of the propositions to be added may
be derived by invoking the appropriate ruleset. This is the case for actions like
adding and mixing where the result of the action is determined by invoking rule
reasoning.

Delete-list: This specifies the propositions that are to be removed from the world
after the action indicated by the event substance is executed.

The constructs appearing in these three slots have the following meanings:

(working-set-member var;) In the precondition slot, it tests whether the object
which var; is bound to is in the working set. In the add-list slot, it add the
object bound to var; to the working set. In the delete-list slot, it deletes the
object bound to var; from the working set.

(spec-value f-path f-value) In the precondition slot, it tests that the value ac¬
cessed by f-path is equal to f-value. In the add-list slot, it adds f-path and
f-value to the feature structure. In the delete-list slot, it removes f-path
and f-value from the feature structure.

(not-spec-value f-path f-value) This only appears in the precondition slot. It
checks that the value accessed by f-path is not equal to f-value.
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The other slots in the frame representation of an action are as follows:
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Participants This slot specifies the entities that are involved in the event. The spec¬
ification includes the entity as well as the role they plays in the action. For
example, in the sentence add the seasoning to the soup, the object described by
the seasoning plays the addendum role while that described by the soup plays the
base role. The agent role is by default taken to be the hearer.

Constraints This holds the set of constraints which the objects involved in the event
must satisfy. Recall that this is the set which is verified by the call to action-
constraints (see Appendix B).

Telic This indicates the telicity of the event. The telicity can either be explicitly
indicated or derived from reasoning by invoking appropriate ruleset.

Case-Mapping This contains the information for mapping from a verb case to a
frame role.

Examples

We give some examples of actions defined in TASTE:

(define-action produce-no-change
:superclass action)

(define-action produce-new-entity
:superclass action)

(define-action placing-in
:superclass produce-no-change
rparticipants
(in : addendum = PI)
(in : base = P2)
(out : result = PI)
:case-mapping
(placing-in (obj -> in : addendum)

(indobj -> in : base))
:telic +)

(define-action adding
:superclass produce-new-entity
:participants
(in : base = PI)
(in : addendum = P2)
(out : result = P3)
:case-mapping
(adding (obj -> in : addendum)

(indobj -> in : base))
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:telic +

:delete

(working-set-member PI)
(working-set-member P2)
:add

(working-set-member P3)
(spec-value < P3 >

(invoke-ruleset determine-mixture Pi P2)))


