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Abstract 

            Numerical simulation of wave behaviour in shallow and deep water is often a 

key aspect of ocean, coastal, and river hydrodynamic studies.  This thesis derives 

nonlinear one- and two-dimensional level I Green-Naghdi (GN) equations that model 

the motions of free surface waves in shallow water over non-uniform bed topography.  

By assuming fitted velocity profiles through the depth, GN equations are simpler than 

Boussinesq equations, while retaining the wave dispersion property.  Implicit matrix 

solvers are used to solve the spatially discretised 1D and 2D GN equations, with a 4th 

order Runge Kutta scheme used for time integration. To verify the developed 

numerical solvers of 1D GN equations, a series of simulations are undertaken for 

standard benchmark tests including sloshing in a tank and solitary wave propagation 

over a flat bed.  In all cases, grid convergence tests were conducted.  In the sloshing 

test, both numerical schemes and the analytical solution were in complete agreement 

for small-amplitude free surface motions. At larger values of initial sloshing 

amplitude, the nonlinear effects caused the free surface waves to steepen, and 

eventually the numerical simulations became unstable.  This could be resolved in 

future using a shock-capturing scheme.  Excellent agreement was achieved between 

the numerical predictions and analytical solution for solitary waves propagating. 

The 2D GN equation solver was then verified for the benchmark tests of 

Gaussian hump sloshing and solitary wave propagation in closed basin.  The predicted 

free surface motions for Gaussian hump sloshing were in good agreement with linear 

Fourier analytical solutions for a certain initial period, after which nonlinear effects 

started to dominate the numerical solution.  A reversibility check was undertaken.  

Nonlinear effects were investigated by increasing the amplitude of the hump, and 

applying harmonic separation (by comparison against slosh predictions for a 

corresponding Gaussian trough).  It was found that the even harmonic components 

provided a useful indication of the nonlinear behaviour of the 2D GN equations. 2D 

GN simulations of a 0.6 m amplitude solitary wave propagation in 1 m deep water over 

a flat, horizontal bed confirmed that nonlinear interaction was correctly modelled, 

when the solitary wave hit a solid wall and its runup reached 2.36 m which was 0.36m 

more than the linear analytical solution and almost identical to a second order solution.  
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This paper presents a verified model of weakly nonlinear wave sloshing in shallow basins, based on Level I 

Green-Naghdi (GN) mass and momentum equations derived for mild-sloped beds.  The model is verified for 

sloshing of an initially sinusoidal free surface perturbation in a square tank with a horizontal bed.  The 

model is also used to investigate free surface sloshing of an initial Gaussian hump in closed square basins, 

over horizontal and non-uniform bed topographies.  Analysis of the free surface slosh motions demonstrates 

that the model gives predictions in satisfactory agreement with the analytical solution obtained by [Lamb H. 

(1916) Hydrodynamics. 4
th
 Ed., Cambridge University Press, Cambridge, UK] from linearised shallow water 

theory. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of 

wave nonlinearities arising from the wave amplitude itself and wave-wave interactions.  

1. Introduction  

Slosh motions occur in the liquid ballast tanks of ships, LNG tankers, and containers subject to seismic 

excitation. The response of the liquid free surface depends on the amplitude of the initial disturbance and the natural 

frequencies of motion, and involves complex fluid-structure interactions (Ibrahim, 2005). In practice, civil 

engineers may use sloshing tests to assess the likelihood of such phenomena occurring in oil tanks, elevated water 

towers, and in reservoirs. The earliest theories of progressive and sloshing waves were developed by Airy (1841) 

and Stokes (1847, 1880), and which were based on potential theory idealisations. Airy’s theory was linear, so that 

it was strictly derived for waves of zero amplitude. Stokes extended the theory to deal with waves of finite 

amplitude, and he obtained series solutions that were later computed to high order by many hydrodynamicists in 

the late 20thC (Sarpkaya and Isaacson, 1981). To extend to more realistic domains, computational methods have 

become widely used. These include: (1) boundary element and finite element potential flow solvers; (2) CFD – 

Navier-Stokes solvers with volume of fluid treatment of the free surface, Navier-Stokes solvers with level-set 

treatment of the free surface, Navier-Stokes solvers with mappings of the free surface; and (3) smoothed-particle-

hydrodynamics. The above- mentioned 3D computational methods undergo inherently high computational expense, 

therefore, considerable effort has gone into depth-averaged approaches being cheaper to compute and yet capturing 

much of the physics.  Examples of such approaches include Shallow Water Equations (SWEs) (see e.g. Lamb 

1879), and more recently Green-Naghdi (GN) equations (1974). Nonlinear SWEs are the depth-averaged form of 

continuity and Navier-Stokes momentum equations. Since SWEs neglect vertical motions and the consequent 

hydrostatic pressure, these equations are usually restricted to long wave behaviour. Thus, SWEs is limited to 

shallow depth (surf zone) of the ocean (Bonneton et al., 2011 and Nadiga et al., 1996). Green and Naghdi (1976) 

pioneered the development of nonlinear equations for two-dimensional incompressible inviscid fluid sheets. Green 

https://www.staffmail.ed.ac.uk/imp/message.php?mailbox=INBOX&index=20865
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and Naghdi proposed a theory of fluid sheets known as (GN theory) to model the two dimensional continuum of 

unsteady inviscid three-dimensional flows. The theory facilitated prediction of unsteady, non-periodic, free surface 

flows. GN theory utilises some aspects of perturbation analysis in building up first-, second-, and higher-order 

approximations (called levels) to layer-averaged mass and momentum equations.  According to Webster and 

Shields (1991) the GN approach assumes a particular flow kinematic structure in the vertical direction for shallow 

water problems. The fluid velocity profile is a finite sum of coefficients depending on space and time multiplied 

by a weighting function. GN fluid sheet theory reduces the dimensions from three to two, yielding equations that 

can be solved efficiently so that no scale is introduced and no term is deleted (Webster and Shields, 1991). 

Nevertheless, the lowest level of GN theory permits the kinematic boundary conditions to be satisfied. There are 

two types of GN theory: restricted and unrestricted. The former successfully models irrotational shallow water flow 

field.  Restricted GN theory was derived from the first level of the direct theory by means of a constrained director 

(Shields and Webster, 1988). Later, this procedure was extended to the kth level theory (Demirbilek and Webster, 

1992). In other words, in a restricted GN theory, the k components of the two-dimensional velocity components are 

constrained.  Demirbilek and Webster (1992) developed an unrestricted version of GN theory of shallow water by 

enforcing conservation of mass and momentum in the vertical direction and implementing exact boundary 

conditions. They demonstrated that GN theory can appropriately predict the behaviour of nonlinear numerical wave 

tank. According to Webster and Shields (1991), Green-Naghdi (GN) sheet theory is placed between classical 

perturbation methods and pure numerical schemes.  Webster and Shields note that for classical perturbation 

methods, there is usually no evidence that the assumed series is convergent.  However, in certain flow problems, 

such as two-dimensional water waves in both shallow and deep water addressed by GN theory, there is ample 

evidence of convergence. There is another difference between classical perturbation methods and GN theory. The 

former exactly satisfies field equation but partially satisfy boundary conditions. Thus, the classical perturbation 

methods show inconsistencies, while GN theory is self-consistent since the boundary conditions are exactly 

satisfied, when the field equations are partially approximated. With regard to Coastal Engineering, the present GN 

model is merely applicable to the shallow depth (before the surf zone) and the intermediate depth of ocean (Jalali, 

2016). GN levels higher than I can be used for the deep water ocean (Webster and Shields (1991)). The present 

paper describes the application of 2D and 1D level I GN equations (according to Jalali, 2016) to free surface 

sloshing in closed square basins, with horizontal and non-uniform bed topographies.  Sections 2 and 3 present the 

derivation of governing equations.  Section 4, 5 and 6 outline the numerical implementation. Section 7 presents the 

results for initial sinusoidal and Gaussian free surface perturbations. Section 8 is the summary of the main findings.  

 

2. Derivation of continuity equation of level I GN equation 

 

In a 3D Cartesian system, the classical mass conservation equation is applied to drive GN continuity equation:  

1.          
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 

In which 𝑢, 𝑣, 𝑤 are the velocity components in the x, y, z directions. In present derivation of GN Eqns the 

total depth, ℎ, is ℎ = ℎ0 + ζ. Here ℎ0 is the still water depth and 𝜁 is the free surface elevation above still water 

level. The elevation of free surface above the fixed horizontal datum, 𝜂, is 𝜂 = ℎ + 𝑧𝑏 . Here, 𝑧𝑏 is the bed elevation 

above a fixed horizontal datum.  

 

 



vi 

 

The kinematic bed and free surface boundary condition are as follows: 

2.           𝑑│𝑏 =
𝜕𝑧𝑏

𝜕𝑡
+ 𝑢

𝜕𝑧𝑏

𝜕𝑥
+ 𝑣

𝜕𝑧𝑏

𝜕𝑦
 

3.           𝑑│𝑠 =
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
 + 𝑣

𝜕𝜂

𝜕𝑦
 

where 𝑑│𝑏 is kinematic bed boundary condition and 𝑑│𝑠 is kinematic free surface boundary condition. In order to 

derive the GN continuity equation, it is assumed that the velocity vector, 𝑽, can be written as follows:  

4.          𝑽(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝑊𝑛
⃑⃑ ⃑⃑  ⃑

𝑒

𝑛=0

(𝑥, 𝑦, 𝑡) 𝜆𝑛(𝑧) 

where �⃑⃑⃑� 
𝑛 = (𝑢𝑛, 𝑣𝑛, 𝑤𝑛) is a vector of velocity component approximations at level n, 𝜆𝑛are assumed shape 

functions depending on z-direction, and e is the level of approximation of GN theory. Expansion of Eqn. (4) for 

level I gives the following velocity parameters: 

               𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) 

5.           𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) 

              𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) + 𝑤1(𝑥, 𝑦, 𝑧, 𝑡) (𝑧 − 𝑧𝑏) 

In which: 

𝜆0 𝑥 = 𝜆0 𝑦 = 𝜆0 𝑧 = 1 , 𝜆1 𝑥 = 𝜆1 𝑦 = 𝜆1 𝑧 = (𝑧 − 𝑧𝑏)  

and 

𝑢1(𝑥, 𝑦, 𝑡) = 𝑣1(𝑥, 𝑦, 𝑡) = 0 (for more details see Demirbilek and Webster, 1992) 

By applying Eqn. (5) in Eqn. (1), (2) values of 𝑤1 and 𝑤0 are obtained: 

6.          𝑤1 = −(
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) 

7.          𝑤0 =
𝜕𝑧𝑏

𝜕𝑡
+ 𝑢0

𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0

𝜕𝑧𝑏

𝜕𝑦
  

By using Eqn. (5) in Eqn. (3) and replacing Eqn. (6) and (7) into the resulted Eqn, the 2D level I GN continuity 

Eqn is derived: 

8.          
𝜕ℎ

𝜕𝑡
+

𝜕𝑢0ℎ

𝜕𝑥
+

𝜕𝑣0ℎ

𝜕𝑦
= 0 

in which h is the total depth, and (u0, v0) are horizontal velocity components at a particular point (x,y) and time t. 

3. Derivation of x-direction momentum of level I GN equation  

The general momentum conservation equation expanded in the x-directions is as follows: 

9.          
𝜕𝜌𝑢

𝜕𝑡
+

𝜕𝜌𝑢𝑢

𝜕𝑥
+

𝜕𝜌𝑢𝑣

𝜕𝑦
+

𝜕𝜌𝑢𝑤

𝜕𝑧
= −

𝜕𝑃

𝜕𝑥
 



vii 

 

in which 𝜌 is water density. Depth integration of Eqn. (9), then using the chain rule for fourth term and applying 

the Leibnitz Rule for right hand side term yields: 

10.    ∫
𝜕𝜌𝑢

𝜕𝑡

𝜂

𝑧𝑏

𝜆𝑛𝑑𝑧 + ∫
𝜕𝜌𝑣

𝜕𝑡

𝜂

𝑧𝑏

𝜆𝑛𝑑𝑧 + 𝜌𝑢𝑤𝜆𝑛│𝑧𝑏

𝜂
− ∫ 𝜌𝑢𝑤𝜆𝑛

′
𝜂

𝑧𝑏

𝑑𝑧 = −
𝜕𝑃𝑛

𝜕𝑥
+ �̂�

𝜕𝜂

𝜕𝑥
𝜆𝑛│𝜂 − �̅�

𝜕𝑧𝑏

𝜕𝑥
𝜆𝑛│𝑧𝑏

 

where 𝑃𝑛 =
𝜕(∫ 𝑃𝜆𝑛𝑑𝑧

𝜂

𝑧𝑏
)

𝜕𝑥
 , �̂�  is pressure at the free surface (here �̂� = 0), and �̅� is pressure at the bottom. Applying 

Eqn. (4) for Eqn. (10) 

11.    ∑ 𝜌

𝑒=1

𝑚=0

𝜕𝑢𝑚

𝜕𝑡
𝑦𝑚𝑛 + ∑ ∑𝜌

𝜕𝑢𝑚𝑢𝑟

𝜕𝑥
𝑦𝑚𝑟𝑛 + ∑ ∑ 𝜌

𝜕𝑢𝑚𝑣𝑟

𝜕𝑦
𝑦𝑚𝑟𝑛 + ∑ ∑ 𝜌𝑢𝑚𝑤𝑟  𝜆𝑚𝜆𝑟𝜆𝑛│𝑧𝑏

𝜂
 

𝑒=1

𝑟=0

𝑒=1

𝑚=0

𝑒=1

𝑟=0

𝑒=1

𝑚=0

𝑒=1

𝑟=0

𝑒=1

𝑚=0

 

           − ∑ ∑𝜌𝑢𝑚𝑤𝑟  𝑦𝑚𝑟
𝑛

𝑒=1

𝑟=0

𝑒=1

𝑚=0

= −
𝜕𝑃𝑛

𝜕𝑥
+ �̂�

𝜕𝜂

𝜕𝑥
𝜆𝑛│𝜂 − �̅�

𝜕𝑧𝑏

𝜕𝑥
𝜆𝑛│𝑧𝑏

 

where  𝑦𝑚𝑛 = ∫  𝜆𝑚𝜆𝑛
𝜂

𝑧𝑏
𝑑𝑧 , 𝑦𝑚𝑟𝑛 = ∫  𝜆𝑚𝜆𝑟𝜆𝑛

𝜂

𝑧𝑏
𝑑𝑧  

and 𝑦𝑚𝑟
𝑛 = ∫  𝜆𝑚𝜆𝑟𝜆𝑛

′𝜂

𝑧𝑏
𝑑𝑧 (for more details see chapter 2 of PhD thesis by Jalali, 2016 and chapter 4 of PhD thesis 

by Haniffah, 2013). 

Applying Eqn. (4) in Eqn. (1) and using the Krylov-Kantorovich method for third term of the obtained Eqn result: 

12.  ∑
𝜕𝑢𝑟

𝜕𝑥
𝜆𝑟 + ∑

𝜕𝑣𝑟

𝜕𝑦
𝜆𝑟 + ∑𝑤𝑟𝜆𝑛

′ = 0

𝑒=1

𝑟=0

𝑒=1

𝑟=0

𝑒=1

𝑟=0

 

Here, the index n changes to r in Eqn. (4).   By summing over m, then applying depth integrating Eqn. (12) becomes: 

13.   ∑ ∑
𝜕𝑢𝑟

𝜕𝑥

𝑒=1

𝑟=0

𝑒=1

𝑚=0

𝑦𝑚𝑛𝑟 = − ∑ ∑
𝜕𝑣𝑟

𝜕𝑦

𝑒=1

𝑟=0

𝑒=1

𝑚=0

𝑦𝑚𝑟𝑛 − ∑ ∑ 𝑤𝑟

𝑒=1

𝑟=0

𝑒=1

𝑚=0

𝑦𝑚𝑛
𝑟  

By inserting Eqn. (13) in Eqn. (11) and implementing the chain rule for the second and third terms of Eqn. (11), 

the constrained x-direction momentum equation of level I GN Eqn is derived: 

14.    ∑ 𝜌

𝑒=1

𝑚=0

𝜕𝑢𝑚

𝜕𝑡
𝑦𝑚𝑛 + ∑ ∑𝜌

𝜕𝑢𝑚

𝜕𝑥
𝑢𝑟  𝑦𝑚𝑟𝑛

𝑒=1

𝑟=0

𝑒=1

𝑚=0

+ ∑ ∑𝜌
𝜕𝑢𝑚

𝜕𝑦
𝑣𝑟 𝑦𝑚𝑟𝑛

𝑒=1

𝑟=0

𝑒=1

𝑚=0

+ ∑ ∑𝜌𝑢𝑚𝑤𝑟 𝑦𝑛𝑟
𝑚

𝑒=1

𝑟=0

𝑒=1

𝑚=0

 

           = −
𝜕𝑃𝑛

𝜕𝑥
− �̅�

𝜕𝑧𝑏

𝜕𝑥
𝜆𝑛│𝑧𝑏

 

Derivation of GN Eqn in z-direction is similar to the derivation of GN Eqn in x-direction, therefore; detailed 

derivation is not included here for brevity. The constrained z-direction momentum equation of level I GN Eqn is: 

15.    ∑ 𝜌
𝜕𝑤𝑚

𝜕𝑡
 

𝑒=1

𝑚=0

𝑦𝑚𝑛 + ∑  ∑𝜌
𝜕𝑤𝑚

𝜕𝑥
𝑢𝑟  𝑦𝑚𝑟𝑛

𝑒=1

𝑟=0

𝑒=1

𝑚=0

+ ∑  ∑𝜌
𝜕𝑤𝑚

𝜕𝑦
𝑣𝑟  𝑦𝑚𝑟𝑛 + ∑  ∑𝜌 𝑤𝑚 𝑤𝑟  𝑦𝑟𝑛

𝑚

𝑒=1

𝑟=0

𝑒=1

𝑚=0

𝑒=1

𝑟=0

𝑒=1

𝑚=0

 

           = �̅�𝜆𝑛│𝑧𝑏
+ 𝑃𝑛

′ − 𝜌𝑔𝑦𝑛 
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where  𝑃𝑛
′ = ∫ 𝑃𝜆𝑛

′𝜂

𝑧𝑏
𝑑𝑧  and  𝑔 is the gravitational acceleration. 

(To learn more about the derivation of GN momentum Eqns in this paper, refer to PhD theses by Jalali, 2016 and 

Haniffah, 2013).  

Eqn. (14) and Eqn. (15) are expanded for level I {(u0, u1), (v0, v1), (w0, w1)}.  In z-momentum GN Eqn. (15), w0  and 

w1 are replaced by Eqns. (6) and (7). Two sets of Eqns are derived for x- and z-momentum GN Eqns (n = 0, level 

0, and n = 1, level I,). In z-momentum GN Eqn.(15) ,  𝑃0
′ = 0 and  𝑃1

′ = 𝑃0. For eliminating the effect of 𝑃0  

differentiation is applied with respect to x for n = 1 set of z-momentum GN Eqn and the obtained Eqn is added to 

the n = 0 set of x-momentum GN Eqn. Also, the effect of bottom pressure term, �̅�, is eliminated by multiplying 

(
𝜕𝑧𝑏

𝜕𝑥
) to the n = 0 set of z-momentum GN Eqn and adding the resulted Eqn to the n = 1 set of z-momentum GN 

Eqn. Finally, the 2D level I x-momentum GN Eqn for stationary bed, (
𝜕𝑧𝑏

𝜕𝑡
=

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
=

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
= 0), and non-uniform 

bathymetry is derived: 

16.          
𝜕𝜂

𝜕𝑥
[
𝜕𝑧𝑏

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
− 𝑢0

𝜕𝑣0

𝜕𝑦
) + 𝑢0

2  
𝜕2𝑧𝑏

𝜕𝑥2 +
𝜕𝑧𝑏

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
− 𝑣0  

𝜕𝑢0

𝜕𝑥
) + 𝑣0

2  
𝜕2𝑧𝑏

𝜕𝑦2  

                      +2𝑢0𝑣0  
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 𝑔] +

ℎ

2
[
𝜕𝑧𝑏

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑥𝜕𝑡
+

𝜕𝑣0

𝜕𝑥

𝜕𝑢0

𝜕𝑦
+ 𝑣0

𝜕2𝑢0

𝜕𝑥𝜕𝑦
−

𝜕𝑢0

𝜕𝑥

𝜕𝑣0

𝜕𝑦
− 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) 

                     +
𝜕2𝑧𝑏

𝜕𝑥2 (
𝜕𝑢0

𝜕𝑡
+ 2𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0 

𝜕𝑢0

𝜕𝑦
− 𝑢0

𝜕𝑣0

𝜕𝑦
) +

𝜕𝑧𝑏

𝜕𝑦
(
𝜕2𝑣0

𝜕𝑥𝜕𝑡
+ 𝑢0  

𝜕2𝑣0

𝜕𝑥2 − 𝑣0  
𝜕2𝑢0

𝜕𝑥2 ) 

                     +
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
+ 3𝑢0  

𝜕𝑣0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑥
) + 𝑢0

2  
𝜕3𝑧𝑏

𝜕𝑥3  + 2𝑢0𝑣0  
𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
+2𝑣0  

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑦2 + 𝑣0
2  

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦2] 

                     +ℎ 
𝜕 (ℎ +

𝑧𝑏

2
)

𝜕𝑥
[−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
−

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2
+ (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

                  +
ℎ2

3
[−

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
−

𝜕3𝑣0

𝜕𝑥𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕3𝑢0

𝜕𝑥3
−

𝜕3(𝑢0𝑣0)

𝜕𝑥2𝜕𝑦
− 𝑣0  

𝜕3𝑣0

𝜕𝑥𝜕𝑦2
−

𝜕𝑣0

𝜕𝑥
(

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2
) 

                    + (
𝜕𝑢0

𝜕𝑥
+ 2

𝜕𝑣0

𝜕𝑦
)(

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕2𝑢0

𝜕𝑥2 )] + (
𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
) = 0 

By simplifying Eqn. (16), the 2D level I x-momentum GN equation for uniform bathymetry is: 

17.          𝑔
𝜕𝜂

𝜕𝑥
+ ℎ (

𝜕ℎ

𝜕𝑥
) [−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2 − 𝑣0

𝜕2𝑣0

𝜕𝑦2 −
𝜕2𝑢0𝑣0

𝜕𝑥𝜕𝑦
+ (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

                         +
ℎ2

3
[−

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
−

𝜕3𝑣0

𝜕𝑥𝜕𝑦𝜕𝑡
− 𝑢0

𝜕3𝑢0

𝜕𝑥3
−

𝜕3𝑢0𝑣0

𝜕𝑥2𝜕𝑦
−𝑣0

𝜕3𝑣0

𝜕𝑥𝜕𝑦2
−

𝜕𝑣0

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2
) 

                         +(
𝜕𝑢0

𝜕𝑥
+ 2

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕2𝑢0

𝜕𝑥2
)] + (

𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
) = 0 

2D level I y-direction momentum GN Eqn and its derivation are not included here for brevity (For complete detailed 

derivations of level I GN Eqns see PhD theses by Jalali 2016 and Haniffah 2013). The corresponding 1D level I x-

momentum GN Eqn for and uniform bathymetry is:  

18.          𝑔
𝜕𝜂

𝜕𝑥
+ ℎ (

𝜕ℎ

𝜕𝑥
) [−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2 + (
𝜕𝑢0

𝜕𝑥
)
2

] +
ℎ2

3
[−

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
− 𝑢0  

𝜕3𝑢0

𝜕𝑥3 +
𝜕𝑢0

𝜕𝑥

𝜕2𝑢0

𝜕𝑥2 ] 

                          + (
𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
) = 0 



ix 

 

The corresponding 1D level I GN continuity Eqn is: 

19.          
𝜕ℎ

𝜕𝑡
+

𝜕𝑢0ℎ

𝜕𝑥
= 0 

4. Numerical implementation 

To develop a valid numerical solver of 2D level I GN Eqns, the researchers discretised Eqns. (8) and (17) using 

second-order central finite differences (numerical solver of 2D level I GN momentum equation for non-uniform 

bathymetry, Eqn. (16), is presented  in chapter 3 of PhD thesis by Jalali, 2016).  In the present numerical solver two 

different sections were developed to deal with the continuity equation and momentum equations. Continuity 

equation do not have any cross-derivative terms; therefore, an explicit second-order finite difference solves the 

equations properly. On the other hand, momentum equations contain cross-derivatives terms (
𝜕2𝑢0

𝜕𝑥𝜕𝑡
 and 

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
). Since 

an explicit predictor-corrector scheme is incapable of solving this kind of equations, implicit finite difference 

scheme is used to solve the GN momentum equations. Herein, implicit tridiagonal matrix inversion scheme is 

utilised to solve GN momentum equations (for more details see Chapter 3 of PhD thesis by Jalali, 2016). 

Nevertheless, other numerical schemes such as finite volume or finite element may be capable of solving the 

continuity and momentum equations simultaneously. The developed numerical solver is based on finite difference 

that cannot solve these equations simultaneously. The 2D GN continuity Eqn (8) is discretised by applying second-

order central difference:    

20.          
𝜕ℎ

𝜕𝑡
│𝑖𝑗

𝑡 = − [(
𝑢0𝑖+1 𝑗

𝑡  ℎ𝑖+1 𝑗
𝑡 − 𝑢0𝑖−1 𝑗

𝑡  ℎ𝑖−1 𝑗
𝑡

2∆𝑥
) + (

𝑣0𝑖 𝑗+1
𝑡  ℎ𝑖 𝑗+1

𝑡 − 𝑣0𝑖 𝑗−1
𝑡  ℎ𝑖 𝑗−1

𝑡

2∆𝑦
) ] 

The 2D level I GN x-direction momentum Eqn. (17) are rearranged and solved using an implicit scheme.  To handle 

Eqn. (17), let 

21.          F =
𝜕𝑢0

𝜕𝑡
− ℎ (

𝜕ℎ

𝜕𝑥
) 

𝜕

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
) −

ℎ2

3

𝜕2

𝜕𝑥2  (
𝜕𝑢0

𝜕𝑡
) 

In second-order central differences this becomes 

22.          F𝑖𝑗
𝑡 = [ℎ𝑖𝑗

𝑡 (
ℎ𝑖+1 𝑗

𝑡 − ℎ𝑖−1 𝑗
𝑡

4∆𝑥2
) −

(ℎ𝑖𝑗
𝑡 )2

3∆𝑥2
] �̂�0𝑖−1 𝑗

𝑡 + [1 +
2(ℎ𝑖𝑗

𝑡 )2

3∆𝑥2
] �̂�0𝑖𝑗

𝑡  

                            + [−ℎ𝑖𝑗
𝑡 (

ℎ𝑖+1 𝑗
𝑡 − ℎ𝑖−1 𝑗

𝑡

4∆𝑥2 ) −
(ℎ𝑖𝑗

𝑡 )2

3∆𝑥2 ] �̂�0𝑖+1 𝑗

𝑡  

where  �̂�0𝑖𝑗

𝑡 =
𝜕𝑢0

𝜕𝑡
│𝑖𝑗

𝑡  .  The discretised equation is rewritten as 

23.          F𝑖𝑗
𝑡 = 𝑎𝑖𝑗

𝑡  �̂�0𝑖−1 𝑗

𝑡 + 𝑏𝑖𝑗
𝑡  �̂�0𝑖𝑗

𝑡 + 𝑐𝑖𝑗
𝑡  �̂�0𝑖+1 𝑗

𝑡  

 

where 𝑎𝑖𝑗
𝑡  , 𝑏𝑖𝑗

𝑡  and 𝑐𝑖𝑗
𝑡   are the tridiagonal matrix coefficients for x-direction. Here, 𝑖 refers to x-direction, 𝑗 is y-

direction and t is time. F is also equal to the remaining spatial derivative terms in Eqn. (17). These terms are also 

discretised in Eqn. (17) by using second-order central differences, giving: 
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24.    F𝑖𝑗
𝑡 = −[𝑢0𝑖𝑗

𝑡
𝜕𝑢0

𝜕𝑥
│𝑖𝑗

𝑡 + 𝑣0𝑖𝑗
𝑡

𝜕𝑢0

𝜕𝑦
│𝑖𝑗

𝑡 + 𝑔
𝜕𝜂

𝜕𝑥
│𝑖𝑗

𝑡 ] + ℎ𝑖𝑗
𝑡 𝜕ℎ

𝜕𝑥
│𝑖𝑗

𝑡 𝜕

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
) │𝑖𝑗

𝑡 +
ℎ𝑖𝑗

𝑡 2

3

𝜕2

𝜕𝑥𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
)│𝑖𝑗

𝑡  

                      +ℎ𝑖𝑗
𝑡  

𝜕ℎ

𝜕𝑥
│𝑖𝑗

𝑡 [𝑢0𝑖𝑗
𝑡  

𝜕2𝑢0

𝜕𝑥2 │𝑖𝑗
𝑡 +

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
│𝑖𝑗

𝑡 + 𝑣0𝑖𝑗
𝑡  

𝜕2𝑣0

𝜕𝑦2 │𝑖𝑗
𝑡 − (

𝜕𝑢0

𝜕𝑥
│𝑖𝑗

𝑡 +
𝜕𝑣0

𝜕𝑦
│𝑖𝑗

𝑡 )
2

] 

                      +
ℎ𝑖𝑗

𝑡 2

3
[𝑢0𝑖𝑗

𝑡  
𝜕3𝑢0

𝜕𝑥3 │𝑖𝑗
𝑡 +

𝜕3𝑢0𝑣0

𝜕𝑥2𝜕𝑦
│𝑖𝑗

𝑡 +
𝜕𝑣0

𝜕𝑥
│𝑖𝑗

𝑡 (
𝜕2𝑢0

𝜕𝑥𝜕𝑦
│𝑖𝑗

𝑡 +
𝜕2𝑣0

𝜕𝑦2 │𝑖𝑗
𝑡 ) + 𝑣0𝑖𝑗

𝑡  
𝜕3𝑣0

𝜕𝑥𝜕𝑦2 │𝑖𝑗
𝑡  

                      − (
𝜕𝑢0

𝜕𝑥
│𝑖𝑗

𝑡 + 2
𝜕𝑣0

𝜕𝑦
│𝑖𝑗

𝑡 ) (
𝜕2𝑣0

𝜕𝑥𝜕𝑦
│𝑖𝑗

𝑡 +
𝜕2𝑢0

𝜕𝑥2 │𝑖𝑗
𝑡 )] 

The above sets of discretised equations form the tridiagonal matrix system. The unknown values �̂�0𝑖𝑗

𝑡   are obtained 

for j = 2, …, jmax-1 and  i = 1, …, imax using the Thomas algorithm (Press et al. 2007). It should be mentioned that 

imax and jmax refer to the max number of grid points in x- ad y-directions. Similar numerical approach was applied 

to 2D level I GN y-momentum Eqn (for detailed development of GN numerical solver refer to chapter 3 of PhD 

thesis by Jalali, 2016). Iteration is then used to centre correctly (in space and time) the cross-derivative terms that 

appear in both the x- and y-direction momentum Eqns. Runge-Kutta fourth-order (Rk4) time-integration is used to 

update the total depth and horizontal velocity components each time step.  

5. Boundary conditions  

To solve the 2D GN equations, it is necessary to impose flexible and compatible boundary conditions.  For instance, 

solid wall boundaries are located at the ends of the domain when simulating sloshing of waves in a tank. The surface 

elevation at the boundary obtained by cubic Lagrange interpolation of interior values is assigned according to 

Haniffah, 2013. The velocity is set to zero at solid wall boundaries. Additional ghost grid points are located outside 

the boundaries, with anti-symmetry imposed for horizontal velocity (u) on y-direction and symmetry on x-direction.  

The velocity boundary conditions on x-direction for numerical solver of 2D GN Eqns are: 

𝜕𝑢0

𝜕𝑡
│1,𝑗

𝑡 = 0,   
𝜕𝑢0

𝜕𝑡
│0,𝑗

𝑡 = −
𝜕𝑢0

𝜕𝑡
│2,𝑗

𝑡 ,   
𝜕𝑢0

𝜕𝑡
│−1,𝑗

𝑡 = −
𝜕𝑢0

𝜕𝑡
│3,𝑗

𝑡  

   
𝜕𝑢0

𝜕𝑡
│𝑖𝑚𝑎𝑥,𝑗

𝑡 = 0 ,
𝜕𝑢0

𝜕𝑡
│𝑖𝑚𝑎𝑥+1,𝑗

𝑡 = −
𝜕𝑢0

𝜕𝑡
│𝑖𝑚𝑎𝑥−1,𝑗

𝑡  

   
𝜕𝑢0

𝜕𝑡
│𝑖𝑚𝑎𝑥+2,𝑗

𝑡 = −
𝜕𝑢0

𝜕𝑡
│𝑖𝑚𝑎𝑥−2,𝑗

𝑡     ,
𝜕𝑢0

𝜕𝑡
│𝑖,1

𝑡 = 0          

   
𝜕𝑢0

𝜕𝑡
│𝑖,0

𝑡 =
𝜕𝑢0

𝜕𝑡
│𝑖,2

𝑡  ,    
𝜕𝑢0

𝜕𝑡
│𝑖,−1

𝑡 =
𝜕𝑢0

𝜕𝑡
│𝑖,3

𝑡  ,   
𝜕𝑢0

𝜕𝑡
│𝑖,𝑗𝑚𝑎𝑥

𝑡 = 0   

   
𝜕𝑢0

𝜕𝑡
│𝑖,𝑗𝑚𝑎𝑥+1

𝑡 =
𝜕𝑢0

𝜕𝑡
│𝑖,𝑗𝑚𝑎𝑥−1

𝑡    ,
𝜕𝑢0

𝜕𝑡
│𝑖,𝑗𝑚𝑎𝑥+2

𝑡 =
𝜕𝑢0

𝜕𝑡
│𝑖,𝑗𝑚𝑎𝑥−2

𝑡  

Here, index 1, imax and jmax, presents the location of wall, index 2, 3, imax-1, imax-2, jmax-1 and jmax-2 indicate grid 

points located in side of computational boundary (before the wall), and index -1, 0, imax+1, imax+2, jmax+1 and jmax+2 

show ghost points located outside of computational boundary (after the wall). The velocity boundary conditions on 
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y-direction are not included here for brevity (for more details see Jalali, 2016). The symmetry boundaries imposed 

for surface elevation are: 

    
𝜕ℎ

𝜕𝑡
│0,𝑗

𝑡 =
𝜕ℎ

𝜕𝑡
│2,𝑗

𝑡   ,
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥+1,𝑗

𝑡 =
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥−1,𝑗

𝑡   

    
𝜕ℎ

𝜕𝑡
│1,𝑗

𝑡 = 4
𝜕ℎ

𝜕𝑡
│2,𝑗

𝑡 − 6
𝜕ℎ

𝜕𝑡
│3,𝑗

𝑡 + 4
𝜕ℎ

𝜕𝑡
│4,𝑗

𝑡 −
𝜕ℎ

𝜕𝑡
│5,𝑗

𝑡    

    
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥,𝑗

𝑡 = 4
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥−1,𝑗

𝑡 − 6
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥−2,𝑗

𝑡 + 4
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥−3,𝑗

𝑡 −
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥−4,𝑗

𝑡  

    
𝜕ℎ

𝜕𝑡
│𝑖,0

𝑡 =
𝜕ℎ

𝜕𝑡
│𝑖,2

𝑡   ,
𝜕ℎ

𝜕𝑡
│𝑖,𝑗𝑚𝑎𝑥+1

𝑡 =
𝜕ℎ

𝜕𝑡
│𝑖,𝑗𝑚𝑎𝑥−1

𝑡   

    
𝜕ℎ

𝜕𝑡
│𝑖,1

𝑡 = 4
𝜕ℎ

𝜕𝑡
│𝑖,2

𝑡 − 6
𝜕ℎ

𝜕𝑡
│𝑖,3

𝑡 + 4
𝜕ℎ

𝜕𝑡
│𝑖,4

𝑡 −
𝜕ℎ

𝜕𝑡
│𝑖,5

𝑡  

    
𝜕ℎ

𝜕𝑡
│𝑖,𝑗𝑚𝑎𝑥

𝑡 = 4
𝜕ℎ

𝜕𝑡
│𝑖,𝑗𝑚𝑎𝑥−1

𝑡 − 6
𝜕ℎ

𝜕𝑡
│𝑖,𝑗𝑚𝑎𝑥−2

𝑡 + 4
𝜕ℎ

𝜕𝑡
│𝑖,𝑗𝑚𝑎𝑥−3

𝑡 −
𝜕ℎ

𝜕𝑡
│𝑖,𝑗𝑚𝑎𝑥−4

𝑡  

 

In 1D level I GN numerical solver, Eqn. (18) and Eqn. (19) are governing Eqns. The 1D GN continuity Eqn (19) is 

discretised by applying second-order central difference:    

25.          
𝜕ℎ

𝜕𝑡
│𝑖

𝑡 = −(
𝑢0𝑖+1

𝑡  ℎ𝑖+1
𝑡 − 𝑢0𝑖−1

𝑡  ℎ𝑖−1
𝑡

2∆𝑥
) 

In Eqn. (18), cross -derivative terms of x and t are rearranged and solved by using an implicit scheme. Similar to 

the procedure followed for Eqn. (21). The discretised equation is: 

26.         F𝑖
𝑡 = 𝑎𝑖

𝑡  �̂�0𝑖−1

𝑡 + 𝑏𝑖
𝑡  �̂�0𝑖

𝑡 + 𝑐𝑖
𝑡  �̂�0𝑖+1

𝑡  

F is also equal to the remaining spatial derivative terms in Eqn. (18). Using second-order central differences 

discretisises the terms in Eqn. (18) and gives: 

27.          F𝑖
𝑡 = −𝑢0𝑖

𝑡  
𝜕𝑢0

𝜕𝑥
│𝑖

𝑡 − 𝑔
𝜕𝜂

𝜕𝑥
│𝑖

𝑡 + ℎ𝑖
𝑡  

𝜕ℎ

𝜕𝑥
│𝑖

𝑡 [𝑢0𝑖
𝑡  

𝜕2𝑢0

𝜕𝑥2 │𝑖
𝑡 −(

𝜕𝑢0

𝜕𝑥
)
2

│𝑖
𝑡]       

+
ℎ𝑖

𝑡2

3
[𝑢0𝑖

𝑡  
𝜕3𝑢0

𝜕𝑥3
│𝑖

𝑡 −
𝜕𝑢0

𝜕𝑥
│𝑖

𝑡 𝜕2𝑢0

𝜕𝑥2
│𝑖

𝑡] 

The velocity boundary conditions for solver of 1D GN Eqn are:  

    
𝜕𝑢0

𝜕𝑡
│1

𝑡 = 0 ,   
𝜕𝑢0

𝜕𝑡
│0

𝑡 = −
𝜕𝑢0

𝜕𝑡
│2

𝑡  ,    
𝜕𝑢0

𝜕𝑡
│−1

𝑡 = −
𝜕𝑢0

𝜕𝑡
│3

𝑡  

    
𝜕𝑢0

𝜕𝑡
│𝑖𝑚𝑎𝑥

𝑡 = 0 ,
𝜕𝑢0

𝜕𝑡
│𝑖𝑚𝑎𝑥+1

𝑡 = −
𝜕𝑢0

𝜕𝑡
│𝑖𝑚𝑎𝑥−1

𝑡  ,         
𝜕𝑢0

𝜕𝑡
│𝑖𝑚𝑎𝑥+2

𝑡 = −
𝜕𝑢0

𝜕𝑡
│𝑖𝑚𝑎𝑥−2

𝑡  
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    In 1D GN numerical solver the symmetry boundaries imposed for surface elevation are: 

     
𝜕ℎ

𝜕𝑡
│0

𝑡 =
𝜕ℎ

𝜕𝑡
│2

𝑡       ,         
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥+1

𝑡 =
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥−1

𝑡  

     
𝜕ℎ

𝜕𝑡
│1

𝑡 = 4
𝜕ℎ

𝜕𝑡
│2

𝑡 − 6
𝜕ℎ

𝜕𝑡
│3

𝑡 + 4
𝜕ℎ

𝜕𝑡
│4

𝑡 −
𝜕ℎ

𝜕𝑡
│5

𝑡  

     
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥

𝑡 = 4
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥−1

𝑡 − 6
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥−2

𝑡 + 4
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥−3

𝑡 −
𝜕ℎ

𝜕𝑡
│𝑖𝑚𝑎𝑥−4

𝑡  

 

For more details details see chapter 3 of PhD thesis by Jalali, 2016 and chapter 4 of PhD thesis by Haniffah, 2013.  

6. Numerical Procedure 

The GN program comprises four main subroutines: input, calculation, update and output. For each test case, the 

following initial values are put into the program: bed elevation, initial water depth, amplitude, length and width of 

the study basin, number of grid points, time step, and duration of simulation time. The initial conditions supply for 

the bed elevation above fixed horizontal datum, local depth, and local horizontal velocity components throughout 

the tank. Solving the discretised continuity equation provides new water depth values throughout the grid. Then, 

the discretised momentum equations are solved. Iteration is used to solve the cross-derivative velocity terms in the 

momentum equation. Next, boundary conditions are invoked. The values of u, v and h are updated after each time 

step. The calculation process is repeated until the simulation is complete. The two benchmark tests comprise: 

sloshing in a square tank and free surface sloshing of an initial Gaussian hump in a square basin. In sloshing in a 

square tank to test for grid independence, the time history of wave elevation at the corner of the tank (in positive x-

direction) was obtained on grids of increasingly fine resolution (∆x = 25 m (coarse grids), ∆x = 10 m  (medium 

grids), and ∆x = 1 m (fine grids)) and a fixed time step ∆t = 1 s. The results demonstrated that ∆x = 1 m was 

sufficient to achieve a converged solution. Three time steps are chosen (∆t = 0.25, 1.0 and 2.0 s) on the converged 

grid with ∆x = 1 m. There was a close agreement between the results, therefore; ∆t = 1 s was selected as a fixed 

time step in simulation of sloshing in the tank (see chapter 4 of PhD thesis by Jalali, 2016). To determine the number 

of the grid points required to produce accurate simulation of free surface sloshing of an initial Gaussian hump, grid 

convergence test was performed. To this end, 3D visualisations and contour maps of the free surface elevation 

patterns in the basin were obtained on increasingly grid size with ∆x = ∆y = 0.15 m (coarse grids), ∆x = ∆y =  

0.0375 m (medium grids), and ∆x = ∆y = 7.5×10-3 m (fine grids). The medium grid size ∆x = ∆y = 0.0375 m is 

sufficient to convergence. Therefore, ∆x = ∆y = 0.0375 m were chosen for numerical simulations. The numerical 

predictions of free surface sloshing of an initial Gaussian hump for different time steps (∆t = 0.05, 0.1 and 0.2 s) 

showed that ∆t = 0.05 s was sufficient for producing an accurate simulations (see chapter 5 of PhD thesis by Jalali, 

2016). 

 

7.  Model verification against analytical solution  

7.1 Sloshing in a Tank 

First, the benchmark test of sinusoidal free surface sloshing in a square tank is considered. The wavelength L is 

1000 m and the still water depth h0 is 5 m.  Sloshing motions may even occur by using very small number of 

amplitude disturbance. For the present test case the amplitudes are a = 0.005 m and 0.05 m. These small numbers 
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of wave amplitude are applied in order to create minimum nonlinear behaviour by the sloshing wave. The first 

order analytical solution for the depth profile evolution in space and time of a standing wave in a tank (see e.g. 

Dean and Dalrymple, 2004) is 

28.          𝜁𝑐 = ℎ𝑐 − ℎ0 = 𝑎 cos(𝑘𝑥) cos(𝜔𝑡 + 𝜙)                                          

Here, 𝜁𝑐  refers to the crest-induced free surface elevation time series, a is the amplitude of the standing wave, k is 

the wave number, ω is the angular frequency of the wave, x is distance along the tank, t is time, and 𝜙 is the phase. 

Wave angular frequency 𝜔 is obtained by means of dispersion relation: 

 29.          𝜔 = √𝑔𝑘 tanh 𝑘ℎ0    

In this case: 𝜔 = 0.044 rad/s, T (period) = 2𝜋/𝜔 = 142.8 s and f = (frequency) = 0.007 Hz. 

Figure 1and Figure 2 are obtained by applying the numerical solver of 1D GN equations. This program was 

specifically developed to deal with sloshing in the tank, so it is necessary to measure free surface elevation of time 

history at two different locations: (a) the corner of tank (b) the centre of the tank.  Figure 1 (a) presents crest-

induced water level time histories at the corner of the tank (in positive x-direction) for a sloshing wave of a small-

amplitude disturbance 𝑎 = 0.005 m with phase 𝜙 = 0.  Here, 𝜁𝑐/𝑎  = 1 at time t = 0 s for free surface elevation of 

time history at corner of tank. Excellent agreement is obtained between the first-order analytical solution and the 

numerical prediction in which cross symbols (numerical prediction) essentially overlay the solid line (analytical 

solution). The standing wave behaviour is periodic and of constant amplitude. This case verifies that the numerical 

scheme gives a correct representation of the underlying mathematical description, provided the waves are nearly 

linear. Figure 1 (b) depicts the numerical prediction of the crest-induced free surface elevation time history at the 

corner of the tank for 𝑎 = 0.05 m. The free surface elevation time history displayed in Figure 1 (b) is shorter than 

that in Figure 1 (a) because nonlinear effects eventually cause shock-like steepening of the wave profiles (becoming 

visible at about t = 2000 s) in the larger amplitude case leading to the numerical model becoming unstable. A shock-

capturing scheme would be needed to overcome this problem, and is recommended for future implementation. 

Figure 1 (c) presents the numerically predicted trough-induced free surface elevation time history at the corner of 

the tank in which 𝜁𝑡 = −𝑎 cos(𝑘𝑥) cos(𝜔𝑡). The results are qualitatively almost the same as for the crest-induced 

case (i.e. Figure1 (b)). Nonlinearity can be presented by even harmonics (
𝜁𝑐+𝜁𝑡

2𝑎
). To separate even harmonics, 

harmonics are treated as orthogonal functions.  Figure 1 (d) shows the numerically predicted free surface elevation 

time history of the even harmonic components (obtained by taking the average of results obtained for 𝜙 = 0 and 

𝜋) for the amplitude 𝑎 = 0.05 m. Here, the amplitude of the second-order harmonics grows monotonically with 

time until the point at which numerical instability occurs. It is worth noting that the (linear) analytical solution is 

not capable to show the nonlinear behaviour of even harmonics. The developed numerical model is also applied to 

simulate other possible predictions for sloshing wave in the centre of tank. In this case, the wavelength is 1000 m 

and the still water depth h0 is 1 m. Two values of wave amplitude, 𝑎 = 0.005 m and 0.015 m, are selected.  In this 

case: 𝜔 = 0.0197 rad/s, T = 319.28 s and f =  0.003 Hz. 

Figure 2 (a) shows satisfactory agreement between numerical prediction (cross symbols) and analytical solution 

(solid line) of the crest-induced free surface elevation time histories at the centre of the tank by applying a = 0.005m. 

Here,  𝜁𝑐/𝑎 = −1 at time t = 0 s for the crest-induced free surface elevation of time history at the centre of the tank. 

Figure 2 (b) depicts numerically predicted crest-induced free surface elevation time history for 𝑎 = 0.015 m.  It is 

clear that the numerical solver is unable to simulate the long term sloshing behaviour of wave, with high-order even 
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harmonic oscillations appearing after t = 1735 s. The nonlinear effects eventually caused shock-like steepening of 

the wave profiles. Therefore, a shock-capturing scheme is required to overcome this problem. Figure 2 (c) reveals 

the numerically predicted free surface elevation time history of the trough-induced sloshing at the centre of the tank 

for 𝑎 = 0.015 m. The results are qualitatively almost the same as for the crest-induced case (i.e. Figure 2 (b)). 

Figure 2 (d) shows the numerically predicted free surface elevation time history of the even harmonic components 

(obtained by 
𝜁𝑐+𝜁𝑡

2𝑎
) for 𝑎 = 0.015m. The effect of nonlinearity increases as the initial slosh amplitude increases, as 

would be expected (for more details see Chapter 4 of PhD thesis by Jalali, 2016). 

7.2 Free surface sloshing of an initial Gaussian hump in a closed square, flat-bottomed basin   

The numerical solver of the 2D GN equations is now verified for nonlinear free surface sloshing motions arising 

from an initial Gaussian hump free surface profile in a closed basin. The well-established analytical solution (Lamb 

1916, Wei and Kirby 1995, Yao 2007) of the linearised shallow water equations for the evolution of an initial hump 

in a closed square basin is 

30.          𝜁(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜁𝑝𝑞𝑒
−𝑖𝜔𝑡

𝑟=∞

𝑞=0

𝑟=∞

𝑝=0

∗ cos (
𝑝𝜋

𝐿𝑥
𝑥) cos (

𝑞𝜋

𝐿𝑦
𝑦) 

Here, 𝜁 is the free surface elevation above still water level, 

where: 

31.          𝜁𝑝𝑞 =
4

(1 + 𝜎𝑝0)(1 + 𝜎𝑞0)𝐿𝑥𝐿𝑦

∫ ∫ 𝜁0(𝑥, 𝑦)
𝐿𝑥

−𝐿𝑥

𝐿𝑦

−𝐿𝑦

cos (
𝑝𝜋

𝐿𝑥
𝑥) cos (

𝑞𝜋

𝐿𝑦
𝑦) 𝑑𝑥𝑑𝑦   

In Eqn. (30), 𝑖 = √−1,  𝐿𝑥 and 𝐿𝑦 are the length and width of the basin, ω is angular frequency, p and q are the 

number of wave components, 𝜎𝑝𝑞 is the Kronecker delta function, and  

32.          𝜁0(𝑥, 𝑦) =  𝑎 exp {−𝑏 [(𝑥 −
𝐿𝑥

2
)
2
+ (𝑦 −

𝐿𝑦

2
)
2
]}   

where 𝑎 is the wave amplitude and 𝑏 is spreading parameter. 

Consider a basin of 7.5 m length and 7.5 m width.  The constant water depth is h0 = 0.45 m. The initial amplitude 

of the hump 𝑎 is 0.045 m and the spreading parameter b = 2 m-2. In order to obtain an accurate estimate of the 

analytical solution, different numbers of wave components (p and q) and grid size (∆x and ∆y) are selected to solve 

the double Fourier series in Eqn. (30). Table 1 presents initial elevation of analytically predicted free surface 

perturbation 𝜁𝑐/𝑎 at the centre of the basin at time t = 0 s for different numbers of wave components (p, q) and grid 

size (∆x, ∆y).  This table reveals that using p = q = 51 and ∆x = ∆y = 0.075 m is sufficient to obtain a converged 

analytical solution. In the present GN numerical solver, 4 iterations on the medium grid size, ∆x = ∆y = 0.0375 m, 

are sufficient for the numerical predictions to be in satisfactory agreement with the analytical results. A time step 

of ∆t = 0.05 s is found to be sufficient to achieve accurate and stable results.  Figure 3 compares the numerical free 

surface elevation time history with the analytical solution at the centre of the basin for a total simulation time of 

70s after release of the initial hump.  Here, 𝜁𝑐/𝑎  = 1 at time t = 0 s for free surface elevation of time history at 

centre of basin. There is close agreement between the numerical and analytical results for about 10 s after the initial 

hump is released, after which differences are discernible between the numerical predictions and analytical solution. 

The foregoing discrepancies are largely due to nonlinear (second- and higher-order) wave interactions which are 

modelled by the 2D level I GN equations, but neglected in the analytical solution of the linearised shallow water 

equations. The even harmonics of the sloshing motions induced by the initial Gaussian hump can be determined by 
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simulating the free surface time series resulting from releasing the initial hump, and the corresponding free surface 

time histories driven by an initial trough of equal but opposite shape to the hump (following the separation of 

harmonics method utilised by Johannessen and Swan (2001), Hunt et al. (2004), and Borthwick et al. (2006) 

amongst others). Here, the harmonics are treated as orthogonal functions, and the even harmonics obtained by 

addition as (
𝜁𝑐+𝜁𝑡

2
) where 𝜁𝑐 refers to the free surface elevation time series of the initial Gaussian hump and 𝜁𝑡 to 

the equivalent time series for the initial Gaussian trough. Figure 4 reveals that for a relatively large amplitude hump 

(a = h0/2 = 0.225 m), it is possible to see evidence of the nonlinear effect produced by even harmonics, which are 

non-dimensionalised with respect to the amplitude of the initial hump. The even harmonics have amplitudes of up 

to about 20% that of the initial hump, and are perhaps growing slightly over the duration of the simulation.  Figure5 

presents comparison of analytically predicted FFT spectrum for the free surface elevation time history of the initial 

Gaussian hump and numerically predicted FFT spectrum for the free surface elevation time history of even 

harmonic components. It can be observed that all five peaks of numerical even harmonics occur at the same 

frequency of the analytically predicted peaks of Gaussian hump. Table 2 lists the resonant frequencies associated 

with different modes for the basin (r and s): the first peak occurs at mode r = 2 and s = 0; the second peak at mode 

r = 2 and s = 2, the third peak at mode r = 3 and s = 2, the fourth peak at mode r = 4 and s = 0; and finally the fifth 

peak at mode r = 5 and s = 1.  

Figure 6 and Figure 7 compare the numerical simulations with the analytical solutions for sloshing in the basin, 

using 3D visualisations of the water surface at times t = 1, 5, 10, and 20 s.  Corresponding contour maps are given 

in Figure 8 and Figure 9. Although satisfactory agreement is achieved between the numerical predictions and 

analytical solution at t = 1 and 5 s, discrepancies between the numerical and analytical simulations become evident 

at t = 10 s, and grow with simulation time, as can be seen at t = 20 s where phase differences are observable.  

Figure10 shows numerically predicted velocity vectors and magnitude contours for the water surface at times t = 

1, 5, 10, and 20 s after releasing the Gaussian hump in the flat-bottomed basin. Here, the velocity vectors indicate 

the direction of water particles and magnitude contours show the value of velocity in different sections of the basin.  

Slosh motions evolve in the basin from the initial hump as it rapidly drops under its own weight, causing a deep 

trough at the centre of the basin with an associated circular wave front. The initial free surface motions are 

remarkably similar to those generated by the collapse of a liquid column, as modelled by Toro (2001) amongst 

others, except that the central oscillations do not die away as quickly.  The balance between potential and kinetic 

energy drives repeated up and down motions at the centre of the basin, generating circular waves that propagate 

radially away from the centre of the basin and reflect with the basin walls. The repeated reflections between the 

waves with each other and the walls promote increasingly complicated sloshing modes dominated by waves whose 

wavelength is half the length of the basin. 

Figure 11 compares long time simulation of the numerical free surface elevation time history with the analytical 

solution at the centre of the basin for very small-amplitude disturbance (a = 0.001 m) and spreading parameter (b 

= 0.2 m-2).  Here, complete agreement between the numerical and analytical simulations are obtained since the 

effect of nonlinear second-order wave interactions is quite small. Corresponding FFT plots are given in Figure 12. 

The reversibility of the simulations is now considered. The Gaussian hump is released at  t = 0 s and the numerical 

solution then propagated forward in time until 20 s, after which the time step is made negative and the numerical 

scheme forced to simulate the backward propagation of the water surface until time zero is again reached. The 

results should be in almost identical agreement, given that the problem is thermodynamically reversible.  There is 

no viscosity present, no turbulence, no surface tension, and no sources of friction (e.g. from the basin walls or bed).  
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Figure 13 examines reversibility by plotting the free surface elevation time history at the centre of the basin. The 

forward part of the simulation is shown by the solid line, the backward by means of cross symbols.  For the vast 

majority of the simulation, the agreement between the forward and backward processes is excellent.  Discrepancies 

only occur when recovering the last 3 s of simulation.  It seems likely that by travelling forward and backward in 

time, the accumulated dissipative error of the numerical scheme is responsible for causing the recovered hump to 

lose amplitude. Increasing number of grid, increasing number of iterations and selecting very small time step did 

not reduce the magnitude of this accumulated dissipative error at the last 3 s of simulation. Figures 14 indicates the 

effect of reversibility on free surface elevation time history simulation at the centre of the basin for very small-

amplitude disturbance, a = 0.001m, and spreading parameter b = 0.2 m-2. Excellent agreement is obtained between 

forward and backward propagations of the water surface since the effect of nonlinearity is neglected. 

7.3 Parameter tests for sloshing in a square basin with non-uniform bathymetry 

Simulations are now considered of the sloshing behaviour of an initial Gaussian hump of water released in a square 

basin with non-uniform bathymetry. Here, the bed elevation is given by 

33.     𝑧𝑏(𝑥, 𝑦) =  𝑎𝑧𝑏
exp {−𝑏𝑧𝑏

[(𝑥 −
𝐿𝑥

2
)
2

+ (𝑦 −
𝐿𝑦

2
)
2

]} 

where 𝑎𝑧𝑏
 is the bed amplitude and 𝑏𝑧𝑏

 = 2 m-2 is a bed spreading parameter.  The initial local free surface elevation 

is: 

34.       𝜁0(𝑥, 𝑦) = −𝑎𝑧𝑏
exp {−𝑏𝑧𝑏

[(𝑥 −
𝐿𝑥

2
)
2

+ (𝑦 −
𝐿𝑦

2
)
2

]} +  𝑎 exp {−𝑏 [(𝑥 −
𝐿𝑥

2
)
2

+ (𝑦 −
𝐿𝑦

2
)
2

]} 

where 𝑎 is the amplitude of the initial Gaussian hump in free surface elevation, and b = 2 m-2 is a measure of its 

spread.  Figure 15 and Figure 16 respectively depict 3D visualisation and contour maps of the water surface at times 

t = 1, 5, 10 and 20 s for relatively large values of bed hump amplitude (𝑎𝑧𝑏
 = 0.225 m) and Gaussian hump amplitude 

(𝑎 = 0.225 m). It is worth mentioning that bed hump amplitude, 𝑎𝑧, is obtained through trial-error method (for more 

details see chapter 5 of PhD thesis by Jalali, 2016).  Figure 17 presents velocity vectors and magnitude contours 

for the water surface at times t = 1, 5, 10, and 20 s where the bed topography contains a central hump. The effect 

of the bed hump on the evolution of the water free surface is most obvious at the centre of the basin exactly where 

the bed hump has its peak. At first the Gaussian free surface hump drops rapidly to form a trough at the centre of 

the basin, releasing a circular ring-like wave that propagates towards the basin walls, where reflections occur.  The 

plunging free surface at the centre of the basin interacts with the bed hump, leading to the recovery of a second 

clapotis-like hump which peaks and releases a second circular wave. After several cycles of central peaks and 

troughs, the water surface motions immediately above the hump degenerate into a patch of small waves that heave 

up and down over the hump (after t ~ 10 s); elsewhere the sloshing behaviour is similar to that of the corresponding 

case without a bed hump, particularly the presence of sloshing components whose wavelength is half the length of 

the basin.  

Figure 18 and Figure 19 respectively show 3D visualisation and contour maps of the evolution of the water surface 

over a Gaussian trough in the bed (𝑎𝑧𝑏
= −0.225 m). Figure 20 shows velocity vectors and magnitude contours for 

the water surface at (a) t = 1 s, (b) t  = 5 s, (c) t = 10 s and (d) t = 20 s where the bed topography contains a central 

trough. The bed trough has greatest effect at the centre of the basin, coincident with the peak position of the initial 

Gaussian free surface hump. The water free surface at the centre of the basin is able to fall further than for the 
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corresponding bed hump case, before interacting with the bed; localised sloshing of circular waves develops above 

the bed trough; the slosh behaviour away from the basin centre is similar to that in the corresponding basin with a 

flat bed, with modes at half basin wave length dominating.  

8.  Conclusions 

This study has presented Level I GN equations for shallow flow over uniform and non-uniform bed topography in 

the context of slosh motions in a container.  It has been demonstrated that level I GN equations can represent 

sloshing in a closed square basin resulting from initial sinusoidal and initial Gaussian free surface perturbations. 

Satisfactory agreement was obtained between the model predictions and the linear analytical solution for relatively 

small initial wave amplitude (a ≤ 0.005 m). At larger amplitudes of initial disturbance, the numerically predicted 

free surface elevation time history steepened up and eventually began to develop a saw-tooth profile. Nonlinear 

effects were particularly noticeable in the even harmonic slosh components.  For a = 0.045 m and b = 2 m-2 

satisfactory agreement was also obtained between the numerical predictions and semi-analytical solution of the 

early stages of free surface motions in a square, flat-bottomed basin after the initial release of the Gaussian hump. 

Discrepancies later evolved partly because of nonlinear wave interaction effects which were not described by the 

analytical theory. It was found that the non-uniform bathymetry has a localised effect on the slosh motions. 
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Figure 1. Sinusoidal free surface sloshing at the corner of a square tank: (a) analytical (solid 

line) and GN predicted (cross symbols) crest-induced free surface time histories for a = 

0.005 m; (b) GN predicted crest-induced free surface time history for a = 0.05 m; (c) GN 

predicted trough-induced free surface time history for a = 0.05m;  and (d) GN predicted even 

harmonics time history for a = 0.05 m. 
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Figure 2. Sinusoidal free surface sloshing at centre of a square tank: (a) analytical (solid line) 

and GN predicted (cross symbols) crest-induced free surface time histories for a = 0.005 m; 

(b) GN predicted crest-induced free surface time history for a = 0.015 m; (c) GN predicted 

trough-induced free surface time history for a = 0.015 m; and (d) GN predicted even 

harmonics time history for a = 0.015 m. 
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Table 1: Initial Gaussian free surface hump in a square basin: elevation of free surface 

perturbation 𝜁𝑐/𝑎  at the centre of basin at time t = 0 s for different numbers of wave 

components (p, q) and grid size (∆x, ∆y). 
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Table 2: Analytical fundamental sloshing frequencies in a square basin (all values in Hz) 
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Figure 3. Analytical and predicted free surface elevation time histories at the centre of a 

basin for sloshing of an initial Gaussian hump in a square, flat-bottomed basin applying a = 

0.045 m and b = 2 m-2. 

 

 

 

Figure 4. Free surface elevation time history of even harmonics component of an initial 

Gaussian hump for amplitude a = h0/2 = 0.225 m at the centre of a square, flat-bottomed 

basin. 

 

 

 

Figure 5. Comparison between analytically predicted FFT spectrum for the free surface 

elevation time history of the initial Gaussian hump with the numerically predicted FFT 

spectrum for the free surface elevation time history of even harmonics component. 
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Figure 6.  Predicted 3D visualisations of the sloshing of an initial Gaussian hump in a square, 

flat-bottomed basin: (a) t = 1 s; (b) t = 5 s; (c) t = 10 s; and (d) t = 20 s. 
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Figure 7. Analytical 3D visualisations of the sloshing of an initial Gaussian hump in a 

square, flat-bottomed basin: (a) t = 1 s; (b) t = 5 s; (c) t = 10 s; and (d) t = 20 s. 
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Figure 8. Predicted free surface contour maps of the sloshing of an initial Gaussian hump in 

a square, flat-bottomed basin: (a) t = 1 s; (b) t = 5 s; (c) t = 10 s; and (d) t = 20 s. 
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Figure 9. Analytical free surface contour maps of the sloshing of an initial Gaussian hump in 

a square, flat-bottomed basin: (a) t = 1 s; (b) t = 5 s; (c) t = 10 s; and (d) t = 20 s. 
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Figure 10. Numerically predicted velocity vectors and magnitude contours for the water 

surface in a square, flat-bottomed basin: (a) t = 1s; (b) t = 5 s; (c) t = 10 s; and (d) t = 20 s. 
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Figure 11.  Analytical and predicted free surface elevation time histories at the centre of a 

basin for sloshing of an initial Gaussian hump in a square, flat-bottomed basin applying a = 

0.001 m and b = 0.2 m-2. 

 

 

 

Figure 12. Comparison between analytically predicted FFT spectrum with the numerically 

predicted FFT spectrum for the free surface elevation time history of initial Gaussian hump 

applying a = 0.001m and b = 0.2m-2. 
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Figure 13. Reversibility test for Gaussian hump sloshing in a square, flat-bottomed basin: 

free surface elevation time history at the centre of basin for a = 0.045 m and b = 2 m-2. 

 

 

 

Figure 14. Reversibility test for Gaussian hump sloshing in a square, flat-bottomed basin: 

free surface elevation time history at the centre of basin for a = 0.001 m and b = 0.2 m-2. 
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Figure 15. Predicted 3D visualisations of sloshing of an initial Gaussian hump in a square 

basin where the bed contains a central hump: (a) t = 1s, (b) t = 5s, (c) t = 10s; and (d) t = 20s. 
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Figure 16. Predicted free surface elevation contour plots of sloshing of an initial Gaussian 

hump in a square basin where the bed contains a central hump: (a) t = 1 s, (b) t = 5 s, (c) t = 

10 s; and (d) t = 20 s. 
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Figure 17. Predicted velocity vectors and magnitude contours for the water surface in a 

square basin where the bed topography contains a central hump: (a) t = 1s; (b) t = 5 s; (c) t = 

10 s; and (d) t = 20 s. 
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Figure 18. Predicted 3D visualisations of sloshing of an initial Gaussian hump in a square 

basin where the bed contains a central trough: (a) t = 1 s, (b) t = 5 s, (c) t = 10 s; and (d) t = 

20 s. 
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Figure 19. Predicted free surface elevation contour plots of sloshing of an initial Gaussian 

hump in a square basin where the bed contains a central trough: (a) t = 1 s, (b) t = 5 s, (c) t = 

10 s; and (d) t = 20 s. 
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Figure 20. Predicted velocity vectors and magnitude contours for the water surface in a 

square basin where the bed topography contains a central trough: (a) t = 1s; (b) t = 5 s; (c) t = 

10 s; and (d) t = 20 s. 
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Chapter 1 

Introduction and literature review 

 

1.1. Introduction 

           The hydrodynamics of free surface motions in the ocean, closed tanks, and open 

channels are highly important in the assessment of offshore structures, sloshing in 

tanks, long waves in channels and rivers, etc.  This chapter will consider different 

examples of such motions, leading to a description of different modelling strategies 

used to estimate free surface hydrodynamics. 

1.1.1 Ocean waves 

Free surface waves are formed as the gravitational response of a liquid to a 

disturbance, for example the wind blowing on the surface of the ocean, or a tsunami 

created by a submarine earthquake.  Progressive waves in the ocean can be categorised 

according to their frequency as tides, swell, gravity waves, and capillary waves.  These 

have oscillatory motions, and are created by gravitational attraction (tides), wind 

(gravity waves), etc.  Waves of translation can also occur in the ocean, such as the 

tsunami, which is generated by a sudden displacement of the water mass.  Such waves 

origins in seismic disturbance, volcanic action, landslides, etc. Tsunami can be 

simulated by numerical predictions. Tsunami wavelengths can reach hundreds of 

kilometres. Planetary (or Rossby) waves are another type of low amplitude, slowly 

propagating wave generated by oceanic density and wind-induced shear driven by the 

rotation of earth. 

As waves enter shallow water, they refract, shoal, and break.  Pre-breaking 

ocean waves are dispersive (i.e. waves of different wavelengths propagate with 

different phase speeds) whereas post-breaking waves tend to be non-dispersive and 

behave like hydraulic bores.  
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As waves approach breaking in shallow water, their behaviour becomes 

increasingly nonlinear until the wave becomes too steep and water particles on the 

surface move at a speed exceeding the celerity of the wave causing breaking to occur.  

Wave energy is dissipated through breaking, bed friction and turbulence.  At the coast, 

waves can interact with the shoreline to cause edge waves and generate currents, such 

as the undertow, longshore current, rip current, and circulation cells.  Waves diffract 

when they encounter large obstacles, causing energy to transfer from high energy 

zones to low energy zones (such as the lee of a breakwater). 

            Ocean waves have been responsible for many disasters in recorded history.  

Major coastal inundation has resulted from tsunamis, hurricane-induced storm surges 

on top of spring tides, extreme wave overtopping, and freak (rogue) wave interaction 

with maritime structures.  Such disasters have caused very large numbers of fatalities 

and huge economic damage to certain coastal cities.  Several examples follow.   

Since 2000, tsunamis have caused enormous numbers of fatalities.  A 

catastrophic example is that of the Indian Ocean tsunami which occurred on 26 

December 2004 at the west coast of Sumatra. This tsunami resulted from an earthquake 

related to movement of the Burma Plate. The tsunami caused 230,000 fatalities and it 

was the deadliest tsunami in history (in terms of loss of life).  The Indian Ocean 

tsunami also caused enormous environmental damage to mangroves, coral reefs, 

forests, coastal wetlands, vegetation, and groundwater 1. 

 

Figure 1.1:  Indian Ocean Tsunami (schools-wikipedia.org/images/1573/157307.jpg.htm) 

                                                           
1 https://en.wikipedia.org/wiki/2004_Indian_Ocean_earthquake_and_tsunami 
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The Tōhoku earthquake and tsunami occurred on 11 March 2011, at 2:46 p.m. 

local time in Japan. The epicentre was located 373 km (231 miles) northeast of Tokyo. 

The seabed level off the coast of Japan dropped several metres due to the earthquake. 

Tsunami waves travelling towards the east coastline of the Japan and overwhelmed the 

4 m sea protection walls. Tsunami wave heights reached 40.5 m in Miyako in Tōhoku's 

Iwate Prefecture and waves travelled 10 km inland in the Sendai. The Japanese 

National Police Agency reported 15,891 deaths, 6,152 injured, 2,584 people missing, 

and 228,863 displaced people. Vast structural damages occurred in the railways, roads 

and buildings.  Dams collapsed and different part of city, even airports, went under the 

water 2.  Notably, the Tōhoku tsunami caused extensive damage to the Fukushima 

Daiichi nuclear plant. Equipment failures in cooling devices caused the nuclear 

reactors to start to melt down, and radioactive material was released into the 

environment.  Since 2011, local residents experienced increased incidences of different 

types of cancer such as leukemia, thyroid cancer and breast cancer 3.  Figure 1.2 shows 

typical images of the Tōhoku tsunami and the destruction it wreaked on Japan. 

                 

                 

Figure 1.2: Tōhoku tsunami’s damages. Photographs of, (a) tsunami wave overtopping sea 

defences (telegraph.co.uk), (b) destruction at the coastal area (bulicip.comule.com), (c) 

destruction at the airport (telegraph.co.uk), (d) destruction at the nuclear reactor 

(prn.fm/tag/fukushima-daiichi-nuclear-disaster/).  

                                                           
2 https://en.wikipedia.org/wiki/2011_T%C5%8Dhoku_earthquake_and_tsunami  
3 https://en.wikipedia.org/wiki/Fukushima_Daiichi_nuclear_disaster 

https://en.wikipedia.org/wiki/Nuclear_and_radiation_accidents#Equipment_failure
https://en.wikipedia.org/wiki/2011_T%C5%8Dhoku_earthquake_and_tsunami
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 Large-scale weather systems can cause differences in atmospheric pressure that 

drive surge waves.  Many examples of such surges are provided by hurricanes and 

typhoons which are characterised by air rotating around a low pressure point.  

Hurricane Katrina was perhaps the deadliest hurricanes to impact the United States in 

recorded history. Hurricane Katrina formed from the interaction between a tropical 

wave and the remains of a tropical depression on 23 August 2005.  The resulting storm 

surge inundated New Orleans. About 80% of New Orleans was inundated by water 

after the levees failed, with water depth reaching ~ 3m (10 ft) in some areas of the city.  

A total of 1,836 people lost their lives 4. Katrina affected 90,000 square miles, causing 

huge economic damage to Louisiana, New Orleans and Mississippi states5. Katrina 

was one of the costliest hurricanes in the United States’ history 6. 

 

Figure 1.3:  Hurricane Katrina and associated destruction in New Orleans (theguardian.com) 

Hurricane Sandy developed in the Carribean in October 2012, with windspeeds 

reaching 500-700 m.p.h.  Hurricane Sandy impacted on Haiti, killing ~54 people and 

making ~200,000 homeless. In Cuba, Sandy destroyed 15,000 homes and caused 

$2 billion economic damage.  In US, Sandy created tragedy in 24 states, specifically, 

in New Jersey and New York7.  Widespread disruption of the electricity network 

occurred in New York City and large areas of Manhattan went under water. The 

economic damage to the United States was about $65 billion 8.   

                                                           
4 https://en.wikipedia.org/wiki/Hurricane_Katrina 
5 https://www.dosomething.org/facts/11-facts-about-hurricane-katrina 
6 http://www.cnbc.com/2015/08/30/-and-now-in-pictures.html 
7 https://en.wikipedia.org/wiki/Hurricane_Sandy 
8 http://earthobservatory.nasa.gov/Features/ClimateStorms/ 

http://earthobservatory.nasa.gov/Features/ClimateStorms/
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            Freak (rogue) waves are large waves observable in the ocean, which can be 

extremely hazardous to ships and maritime structures 9. Freak waves contain enormous 

amounts of energy and their heights have been known to exceed 20 m, an example 

being the Draupner wave that occurred in the north sea on New Year’s Day 1995.    

 

   Figure 1.4: Time history of the Draupner wave (en.wikipedia.org/wiki/Rogue_wave)   

 

1.1.2 Application of numerical modelling in prediction of oceanic disasters  

As mentioned before, people’s life is threatened by oceanic disasters. 

Therefore, a model that can predict the behaviour of gravity waves in the ocean is 

critical to scientists, and engineers who are in charge of understanding hazardous 

behaviour of extreme ocean waves, and thereby planning mitigation or evacuation 

strategies. To develop a numerical model, appropriate governing equations should be 

selected in the first place. Next, capable numerical solver should be developed to solve 

the governing equations. Finally, numerical predictions are compared with the 

experimental data in order to determine how well these two are in agreement.  

The present 1D and 2D Level I GN models permit realistic simulations of the 

free surface hydrodynamic motions of water in tanks and channels, and can incorporate 

the effect of non-uniform bed topography. The model could potentially be useful in 

simulating the behaviour of freak waves, ship waves, tsunami waves and the 

interaction of such waves with marine structures, ships, oil platforms and renewable 

energy devices. The present GN model is not capable of simulating hurricane-induced 

storm surges. 

                                                           
9 https://en.wikipedia.org/wiki/Rogue_wave 
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1.1.3  Sloshing in Tanks 

            When liquid with a free surface starts to move in a container, this behaviour is 

known as slosh.  Examples of slosh occur when water in a closed tank is set in motion 

by a free surface displacement, or liquid natural gas in a container is vibrated by an 

external driving force, such as an earthquake or movement induced from transport, or 

the resonant seiching in a natural basin.  In large tankers which carry oil and liquid 

gas, sloshing in the storage tanks may cause unexpected rolling motions of the tankers. 

The response of the liquid free surface is affected by amplitude and motion frequencies 

of its container; therefore, sloshing involves complex fluid-structure interactions.  

During sloshing, different types of motions are produced by energy exchange between 

the liquid and its container. In small containers, surface tension plays an important role 

in the behaviour of liquid as it moves up and down the tank wall, undergoing wetting 

and drying.   

 Free surface slosh motions can be categorised as simple planar, rotational, 

symmetric, asymmetric and chaotic (Ibrahim, 2005). In a basic sloshing problem the 

hydrodynamic pressure distributions, natural frequencies, and dynamic motions of the 

liquid free surface have to be estimated in order to evaluate the performance of the 

moving container.  At the wall of a moving tank, the flow velocity must match the 

velocity of the wall, and so the hydrodynamic pressure of liquid in the vicinity of the 

wall is directly related to the tank velocity.  

A 2-D flow tank can be classified into low and high liquid fill depths (Ibrahim, 

2005). Low liquid fill depth tanks can experience the formation of hydraulic jumps 

and travelling waves for excitation periods around liquid resonance, when high 

pressures occur. In high liquid fill depth tanks, large standing waves are produced in 

the resonance frequency range.  

In practice, civil engineers use sloshing tests to assess the likelihood of such 

phenomenon occurring in oil tanks, elevated water towers and large dams. For 

example, a water tank may be installed on the roof of a skyscraper to monitor building 

oscillations during an earthquake. The results of sloshing tests are also used to inform 

the design of stable liquefied oil containers in tankers and offshore platforms.   
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In the present thesis, a numerical model will be used to simulate sloshing tests 

in order to achieve better understanding of nonlinear even harmonic oscillations of free 

surface sloshing of an initial disturbance to the free surface of a liquid in a closed 

square basin.  Figure 1.5 shows typical sloshing phenomenon that occur at different 

scales ranging from a cup of coffee, a moving tanker truck, and oceanic tankers 

transporting liquid natural gas.   

         

(a)                                            (b)                                           (c) 

Figure 1.5: (a) sloshing in a cup of coffee (huffingtonpost.com) 

 (b) tank sloshing (blog.pointwise.com/2013/10/11/this-week-in-cfd-125/)  

(c) stable liquefied oil containers in tankers (mossww.com/technologies/lng.php) 

 

1.1.4   Waves in an Open Channel 

            Propagation of gravity waves in an open channel is influenced by the channel 

geometry, in particular the bed slope. Such waves are usually created by the head 

differences in the channel, and may result from heavy rainfall events upstream (flood 

waves), tides (e.g. tidal surges and bores), the movement of ships along a canal, river 

flow interactions with the bed, etc.  

Different types of waves including regular progressive waves, irregular 

progressive waves and solitary waves of displacement are formed in open channel, the 

type of wave depending on the mode of creation (i.e. shear or displacement 

mechanisms). Such waves offer interesting case studies for hydraulic and 

environmental engineers and researchers.   
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Figure 1.6 shows the River Lee in Cork, Ireland, as it experiences a flood wave, where 

the flow regime changes from subcritical to transcritical (Van Te Chow, 1959). 

 

       

(a)                                                                         (b) 

Figure 1.6: Flood wave propagation along the River Lee in Cork, Ireland. Photograph (a) a 

hydraulic jump as the flow transitions from supercritical to subcritical as it passes a weir, 

taken from joanfrankham.wordpress.com (b) taken from darkroomdave.com 

 

Solitary waves propagate along the channel without any change in their form, 

elevation and velocity.  In 1834 John Scott Russell was the first person to discover this 

type of wave when he observed a solitary-type wave released by a boat as it 

manoeuvred in the Union Canal at Hermiston. He observed that the solitary wave 

moved without deformation. He estimated the wave was about 9 m long, and 

propagated about 2 – 3 km at a constant speed of about 14 km/h with amplitude about 

0.3 – 0.45 m along the channel. Scott Russell called this solitary wave or soliton a 

“Wave of Translation”.   

Later, he built a wave tank at his residence to investigate further the behaviour 

of nonlinear solitons. Scott Russell reported that: (a) a stable solitary wave can 

propagate a large distance; (b) the wave speed is dependent on the ratios of wave 

amplitude and wave width with respect to the water depth; (c) interaction of solitary 

waves with each other does not change their original features and they will never 

merge or combine; and (d) in a tank of small depth, a high-amplitude wave will split 

into medium- and small-amplitude waves.  

 

http://www.darkroomdave.com/tutorial/trip-planning/
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In 1871, Joseph Boussinesq (who developed one of the most applicable 

nonlinear theories of waves) utilised Scott Russell’s results in his study of the 

nonlinear behaviour of solitons 10. The present study will examine the use of Green-

Naghdi equations to represent the behaviour of nonlinear solitary waves in an open 

channel and a closed basin. Figure 1.7 displays solitary wave propagation in a 

laboratory wave channel and the interaction between two solitary waves in the sea.   

 

 

                   

 (a)                                                                         (b) 

Figure 1.7: Photograph (a) solitary wave in a laboratory wave channel  

(en.wikipedia.org/wiki/John_Scott_Russell) 

 (b) interaction of a pair of solitons (scitation.aip.org) 

 

 

 

 

 

 

 

 

 

 

                                                           
10 https://en.wikipedia.org/wiki/John_Scott_Russell 
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1.2    Review of Literature for Mathematical Models of waves  
 

            Free surface waves can be categorised as progressive, sloshing and solitary 

waves of displacement depending on whether they are excited as free or forced surface 

responses in a container, or shear driven waves in an open domain, or displacement 

waves (see e.g. Dean and Dalrymple (1991) for a fundamental textbook on the 

mechanics of such categories of waves).  Gravity waves in the open ocean and in liquid 

containers and channels are often approximated by infinite Fourier series of sine and 

cosine waves which are dispersive and may travel in different directions depending on 

the mode of generation (Stewart, 2008). This linear representation of ocean sea states 

ignores inherently nonlinear pre-breaking wave behaviour (peaked crests and broad 

troughs) and nonlinear wave-wave interactions.  

The earliest theories for progressive waves were developed by Airy (1841) and 

Stokes (1847, 1880), and were based on potential theory idealisations (i.e. that the fluid 

was inviscid, and the flow irrotational).  Airy’s theory was linear, in that it was strictly 

derived for waves of zero amplitude.  Stokes extended the theory to deal with waves 

of finite amplitude, and he obtained series solutions that were later computed to high 

order by many hydrodynamicists in the late 20th C (e.g. Skjelbraia and Hendrickson 

1960, etc.).  Nonlinear shallow water wave theories were developed from the 1800s 

onwards; examples being cnoidal wave theory by Korteweg and de Vries (1895) and 

later Fenton (1979).  Turning to solitary waves, Russell (1844), Boussinesq (1871), 

and Rayleigh (1876) made pioneering contributions to the early understanding of such 

waves of displacement.  By the 1970s, major advances were made in the development 

of high order solutions of solitary waves (see e.g. Fenton (1972,1974), Longuet-

Higgins and Fenton (1974) and Byatt-Smith and Longuet-Higgins (1976)).  There are 

several other wave theories that should be noted such as trochoidal wave theory 

(Gerstner 1802), linearised long wave theory (Stoker 1957), stream function wave 

theory (Dean 1965), and computational wave theories (e.g. Schwartz 1974).  A detailed 

description of the different wave theories is given by Sarpkaya and Isaacson (1981). 

Linearised fluid flow mass and momentum equations can be used to study the 

lowest modes of liquid motion for a tank undergoing forced harmonic oscillations of 

low amplitude. Sloshing theories originated from fluid field equations for behaviour 
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of free surface waves whereby mass and momentum hydrodynamics equations which 

are used as governing equations. Linear analytical solutions of small-amplitude 

sloshing behaviour have been derived that are applicable to regular geometric tanks 

(usually of cylindrical or rectangular shape).  Relevant analytical solutions have been 

derived by many researchers such as Ewart (1956), Bauer (1962), Lomen (1965), 

Ibrahim (1969), Henrici et al. (1970), Kornecki (1983) and Bauer (1999).   

It should be noted that the linearised solution of sloshing behaviour is not 

exactly realistic since not only does the position of free surface vary but also the 

combined free surface boundary condition is nonlinear, involving mixed kinematic and 

dynamic boundary conditions. The nonlinear behaviour of sloshing is particularly 

affected by the initial wave amplitude (which is assumed zero in linear models). 

Application of perturbation techniques permits approximate nonlinear solutions to the 

governing equations that could be helpful to obtain better understanding of rotary 

sloshing, nonlinear liquid interaction with elastic structures, internal resonance effects, 

stochastic dynamics of liquid bridges, cross-wave and spatial resonance. At high 

amplitudes, nonlinearity in the free surface motions can lead to amplitude jumps, 

chaotic motions and internal resonances (Ibrahim, 2005). Resonant excitation at the 

lowest frequency is extremely important, since it can change stable 2-D motions to 

unstable 3-D and chaotic motions (Ibrahim, 2005).  

The foregoing analytical solutions are very particular to idealised situations.  

To extend to more realistic domains, computational methods have become widely 

used.  These include: (1) boundary element and finite element potential flow solvers; 

(2) CFD – Navier-Stokes solvers with volume of fluid treatment of the free surface, 

Navier-Stokes solvers with level-set treatment of the free surface, Navier-Stokes 

solvers with mappings of the free surface; and (3) smoothed-particle-hydrodynamics. 

The drawback of 3D computational methods is in their inherently high computational 

expense, and so considerable effort has gone into depth-averaged approaches which 

are cheaper to compute and yet capture much of the physics.  Examples include the 

shallow water equations (see e.g. Lamb 1879), Boussinesq-type equations (Madsen 

and Sørensen, 1992), and more recently the Green-Naghdi (GN) equations (1974). The 

nonlinear shallow water equations (SWEs) are derived as the depth-averaged form of 
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continuity and Navier-Stokes momentum equations, and are usually restricted to long 

wave behaviour because of the neglect of vertical motions and the consequent 

hydrostatic pressure assumption.  Boussinesq equations are more complicated, and 

incorporate treatment of the vertical motions. GN equations are in a sense an 

intermediate form between SWEs and Boussinesq equations.  

Figure 1.8 shows the behaviour of water particles in the shallow section, 

intermediate section and deep section of the ocean. In shallow depth, Figure 1.8 (a), 

the effect of vertical acceleration is quite small and nonlinear shallow water equations 

present accurate simulation of wave behaviour. However, in the intermediate depth, 

Figure 1.8 (b), since the effect of vertical acceleration becomes more significant the 

nonlinear shallow water equations are not capable of simulating wave behaviour in 

this section of the ocean. Green-Naghdi equations (low-level) and Boussinesq 

equations, both have the capability to simulate the wave behaviour in the intermediate 

depth section of the ocean. In deep water, Figure 1.8 (c), where the effect of vertical 

acceleration is much stronger than the intermediate depth, high-level of GN equations 

provides accurate prediction of the wave behavior (for more details see Sarpkaya and 

Isaacson (1981) and Nadiga et al. (1996)).  

 

  

 

 

 

 

 

 

 

 

 

 

 

(a)                                                    (b)                                                 (c) 

Figure 1.8: Effect of vertical acceleration in (a) shallow depth, (b) intermediate 

depth and (c) deep depth of ocean  
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1.3 Review of Literature  of Green-Naghdi (GN) Theory 

Green and Naghdi (1976) pioneered the development of nonlinear equations 

for two-dimensional incompressible inviscid fluid sheets. Green and Naghdi found that 

the exact solutions of a directed fluid sheets were similar to the equations obtained by 

Longuet-Higgins (1972). They investigated the exact time-dependent free surface 

flows of incompressible inviscid fluid provided that gravity and surface tension are 

ignored.  In 1986, Green and Naghdi proposed a theory of fluid sheets known as (GN 

theory) to model the two dimensional continuum of unsteady inviscid three-

dimensional flows.  The theory facilitated prediction of unsteady, non-periodic, free 

surface flows.  GN theory utilises some aspects of perturbation analysis in building up 

first-, second-, and higher-order approximations (called levels) to layer-averaged mass 

and momentum equations.  According to Webster and Shields (1991) the GN approach 

assumes a particular flow kinematic structure in the vertical direction for shallow water 

problems. The fluid velocity profile is given by a finite sum of coefficients depending 

on space and time, multiplied by a weighting function. GN fluid sheet theory reduces 

the dimensions from three to two, yielding equations that can be solved efficiently.  No 

scale is introduced and no term is deleted (Webster and Shields, 1991).  

 Fluid sheet theory is ideal for application to steady and unsteady two- 

dimensional fluid problems. The lowest level of GN theory nevertheless permits the 

kinematic boundary conditions to be satisfied. The theory is applicable to problems 

include shallow water waves, bow waves generated by marine vehicles, waterfalls, and 

wave reflection by obstacles (Webster and Shields, 1991).  Green and Naghdi 

introduced a dispersive term in the momentum equation to model traveling solitary 

wave solutions. According to Demirbilek and Webster (1992) the difference between 

the classical shallow water equations and GN theory lies in the fact that since the 

dynamic and kinematic boundary conditions are met, GN theory is self-consistent; 

whereas, in Stokes and Boussinesq theories in which the dynamic and kinematic 

boundary conditions are not satisfied simultaneously, the equations show 

inconsistencies.  
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There are two types of GN theory: restricted and unrestricted. To draw a line between 

unrestricted and restricted GN theories of shallow water, it should be mentioned that 

the latter can successfully model an irrotational shallow water flow field.  

Restricted GN theory was derived from the first level of the direct theory by 

means of a constrained director (Shields and Webster, 1988). Later, this procedure was 

extended to the kth level theory (Demirbilek and Webster, 1992). In other words, in a 

restricted GN theory, the k components of the two-dimensional velocity components 

are constrained.  

Demirbilek and Webster (1992) developed an unrestricted version of GN 

theory of shallow water by enforcing conservation of mass and momentum in the 

vertical direction and implementing exact boundary conditions, and demonstrated that 

GN theory can appropriately predict the behaviour of nonlinear numerical wave tank. 

Demirbilek and Webster found that the original GN theory had certain shortcomings, 

particularly when the crest velocity equals the wave speed.    

According to Webster and Shields (1991), Green-Naghdi (GN) sheet theory 

lies between classical perturbation methods and pure numerical schemes.  Webster and 

Shields note that for classical perturbation methods, there is usually no evidence that 

the assumed series is convergent.  However, in certain flow problems, such as two-

dimensional water waves in both shallow and deep water (which is addressed by GN 

theory), there is ample evidence of convergence. Another difference between classical 

perturbation methods and GN theory is that, in the former, the exact field equation is 

satisfied but the boundary conditions are only approximately satisfied. However, in 

GN theory the boundary conditions are met exactly but the field equations are 

approximated. GN theory simplifies free surface flow problems by reducing them from 

three- to two-dimensions.  

Certain problems cannot be solved without using a nonlinear, time domain 

model of fluid flow.  Examples include the shoaling of a shallow water wave as it 

approaches a beach, and the transition of a group of steep deep water waves when they 

collide with an obstacle such as a vertical wall (Webster and Shields, 1991). Unlike 

Boussinesq approximations, GN theories (especially, those of higher level) are more 
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accurate and effective modeling of shoaling waves. Furthermore, GN theories are valid 

for large-amplitude waves travelling over a sloping bottom (Webster and Shields, 

1991).       

            Demirbilek and Webster (1992) categorised the one-, two-, and three- 

dimensional GN equations; for example, the GN equations reduce to the KdV equation 

assuming wave propagation is one-directional and the amplitude is finite. Demirbilek 

and Webster also found that 3D GN theory is superior to the 2D version in describing 

amplitude nonlinearity, frequency dispersion, fraction, shoaling, reflection, 

diffraction, seabed topography, wave-breaking and wave formation.    

GN level ІІ theory for deep water predicts linear and nonlinear waves to quite 

good accuracy for a wide variety of steepness (Webster and Shields (1991)), and is 

applicable if the spectrum of the waves remains within a narrow band. Moreover, 

numerical approximations by Webster and Shields confirmed the application of high 

level GN theory to determine the group velocity of moderately nonlinear waves for the 

evolution of the envelope of an incoherent wave-packet. Webster and Shields applied 

high level GN theory to the shoaling of water waves on a beach, and the collision of a 

finite group of deep water waves against a vertical wall, and found good agreement 

with a perturbation approximation.   

            Nadiga et al. (1996) compared GN, general Boussinesq (gB) and shallow water 

equation solvers for shallow fluid flow over a two-dimensional ridge, similar to 

oceanic flow over a seamount.  The results demonstrated that the GN approximations 

were accurate for both deep and shallow water, whereas gB approximations were 

limited to shallow water.  In addition, the GN approximations which ignored the scale 

of nonlinearity were also more applicable to deep water than gB approximations.    

            Xu et al. (1997) developed two-dimensional and three-dimensional GN models 

with a wave-absorbing beach for nonlinear irregular wave propagation by adding a 

numerical damping term into the GN equations, hence extending their applicability to 

unbounded flows.  Kim and Ertekin (2000) developed an irrotational Green-Naghdi 

(IGN) model of large-amplitude nonlinear wave propagation and irregular wave-wave 

interactions in deep water. To this end, they transformed Lagrangian and Eulerian 
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variables for the water free surface.  Kim and Ertekin observed that IGN Level II and 

GN Level III attained similarly accurate results for nonlinear regular and irregular 

wave simulations.  Examining the IGN model from levels 1 to 12, Kim and Ertekin 

indicated that IGN level III can predict periodic, maximum-height waves better than 

the original GN model. It was found that with the increase of the level of IGN model 

the model converges to the exact solution.  Kim and Ertekin concluded that although 

the IGN model could not fully reproduce freak waves, the model could be fruitfully 

applied to nonlinear wave-interaction in three dimensions.   

Wu and Chen (2003) used the GN equations to study unsteady ship waves in 

shallow water of varying depth.  Unlike wind and ocean waves, ship waves are hardly 

dissipated and may cause resonance. This increases the wave height, and the resulting 

energy could in turn damage ports, harbor infrastructure, and disturb ships. Wu and 

Chen incorporated the moving pressure disturbance to the free surface of an advancing 

ship in the GN equations in order to model ship-induced waves in shallow water over 

uneven bed topography. Hayir (2006) used GN theory to model near-field tsunami 

propagation.   

Xia et al. (2008) extended nonlinear GN level І theory to fluid-structure 

interaction, and tested their model for cases involving a very large floating structure 

(VLFS) and solitary waves.  Their results revealed that both the nonlinearity of the 

fluid motion and the stiffness of the structures played key roles in the hydro-elastic 

response of a VLFS to solitary waves.   

Métayer et al. (2009) proposed a hybrid numerical method employing a 

Godunov-type scheme to solve the GN model for dispersive shallow water waves in 

transcritical flows, including dam-breaks.   

Zhao and Duan (2010) found that the higher the GN level, the more accurate 

the simulation of fully nonlinear shallow water waves as they shoal and interact with 

a plane beach.  By comparing level II and level III GN restricted theories, Zhao and 

Duan revealed that restricted level III gave results that agreed better than restricted 

level II with stream-function theory.  Zhao et al. (2010) also conducted a study of 

tsunami simulation using level ІІ GN theory. The results obtained from the three 

various seabed movements (impulsive, creeping and transitional) matched well with 
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earlier test results (Hayir (2006)).  Moreover, Zhao et al. applied GN theory to examine 

the three-dimensional near-field tsunami amplitudes caused by submarine landslides 

and slumps spreading in two orthogonal directions.  The GN results fully matched the 

linear solution.   

Pearce and Esler (2010) wrote a pseudo-spectral algorithm to solve the two-

dimensional GN shallow water equations for rotating flows, such as those at meso-

scale in the ocean.  Webster et al. (2011) applied GN equations of level > IV to shallow 

water waves, and found that dispersion was more accurately modelled at increasing, 

odd levels (i.e. V, VІІ, etc.).   

Bonneton et al. (2011) used a shock-capturing scheme to solve the fully 

nonlinear, weakly dispersive GN equations for shallow water waves of large 

amplitude. To handle wave breaking, the Green–Naghdi equations were transformed 

to the NSWE, locally in time and space, by eliminating the dispersive step when the 

wave is ready to break. The approach was demonstrated to be highly applicable to 

wave transformation in coastal areas: shoaling, wave breaking and run-up.  In a similar 

study, Chazel et al. (2011) also used a high order finite volume shock-capturing 

scheme to solve the Green–Naghdi equations and hence simulate strongly nonlinear, 

dispersive wave propagation.  Recently, Zhang et al. (2012) derived Boussinesq–

Green–Naghdi rotational water wave theory for nonlinear water wave transformation 

over different depths.  

 The foregoing literature review has described advances in the development and 

application of GN equations, the aim being to achieve more accurate simulations.  The 

bulk of research effort has been in extending the GN equations to higher levels rather 

than to multi-dimensions.  In certain cases, to achieve stable results with reasonable 

computer requirements, researchers found it necessary to eliminate certain 

complicated, problematic terms from the original 1-D GN equations. Most existing 

GN solvers are based on second-order spatial discretisations even though the order of 

the equations may be higher.  Previous solvers tend to have been developed for shallow 

flow domains where the bed is horizontal.  There is clearly scope for development of 

high order solvers of multi-dimensional GN equations incorporating all terms that 

apply to weakly nonlinear shallow flows over non-uniform, mild-sloped beds, such as 

characterise flow in many rivers, lakes, estuaries and coastal situations. 
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1.4 Aim and objectives 

            The aim of the present thesis is to develop a verified model of weakly nonlinear 

wave propagation in shallow flow domains by applying 1D and 2D level I GN 

equations.  The objectives are 

 To derive the 1-D and 2-D Level I GN equations for shallow flow over an 

uneven bed. 

 To develop numerical solvers of the Level I GN equations which are stable, 

convergent, and accurate. 

 To verify the solvers using standard benchmark tests. 

 To carry out a parameter study of nonlinear sloshing in a square basin with a 

horizontal bed.  

 To examine nonlinear sloshing in a square basin with non-uniform bathymetry. 

 To examine the interaction of a solitary wave with a wall in a channel. 

 

 

1.5 Applications of the developed level I GN model 

 

The developed GN model is merely applicable to the shallow water of the 

ocean. However, it is recommended that the higher level of GN equations be used as 

governing equations for the deep water of the ocean for the future research. The present 

1D and 2D level I GN equations are capable of modeling nonlinear behaviour of wave 

before the surf zone. In order to have correct predictions of  breaking waves in the surf 

zone, the researcher proposes a hybrid numerical solver be developed in which GN 

equations are applied to the pre-breaking wave domain and the nonlinear shallow water 

equations are used for the post-breaking waves for further investigations. The present 

GN models are capable of simulating wave behaviour over uniform and non-uniform 

bathymetries. 
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1.6 Thesis outline 

           Chapter 2 describes the mathematical derivation of the governing 1D and 2D 

level I GN equations. Chapter 3 lays out the finite difference discretisation of the 

equations and relevant boundary conditions, and describes implicit second-order 

tridiagonal and fourth-order pentadiagonal matrix solvers used to solve 1D and 2D GN 

equations.  Chapter 4 presents numerical results for sloshing in a square tank and 

solitary wave propagation over a flat–bed channel, these benchmark test cases being 

used to verify and validate the numerical schemes. Grid convergence and stability 

checks are undertaken.  Chapter 5 presents parameter study simulations of Gaussian 

hump in a closed basin, and a Fast Fourier Transform (FFT) is applied to examine the 

nonlinear sloshing modes.   Chapter 6 presents the results for solitary wave propagation 

in a channel, and its nonlinear behaviour of the solitary wave is also examined as it 

interacts with a wall.  Chapter 7 lists the main conclusions and recommendations.
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Chapter 2 

Mathematical Formulation of 1D and 2D  

Level I GN Equations 

 

2.1   Introduction and Mathematical Description 

           The Green-Naghdi (GN) theory provides a model for two and three dimensional 

steady and unsteady flows. The theory simplifies analysis of shallow and deep water 

problems by reducing three dimensions to two. GN theory yields governing equations 

that may be readily solved numerically.  GN theory is potentially more capable for 

engineering applications than and the shallow flow equations. Nadiga et al. (1996) 

compared GN, general Boussinesq (gB) and shallow water equation solvers for 

shallow fluid flow over a two-dimensional ridge, similar to oceanic flow over a 

seamount.  The results demonstrated that the GN approximations were accurate for 

both deep and shallow water, whereas gB approximations were limited to shallow 

water.  In addition, the GN approximations which ignored the scale of nonlinearity 

were also more applicable to deep water than gB approximations. The GN method 

partially represents vertical motions, unlike the shallow water equations. Demirbilek 

and Webster (1992) applied GN theory to the prediction of unsteady, non-periodic, 

free surface problems using perturbation approximations.  

Herein the general 2D level І GN equations are derived (1D GN equations 

derived for different levels by Demirbilek and Webster (1992)). It is assumed that 

water is inviscid and incompressible.  

Figure 2.1 illustrates the key variables that define the flow geometry in the x-z 

plane. Here 𝑧𝑏 is the elevation of the bottom surface boundary above a fixed horizontal 

datum, ℎ𝑠 is the still water depth, 𝜉 is the free surface elevation above still water level, 

ℎ is the total depth (ℎ = ℎ𝑠 + 𝜉), and 𝜂 is the stage, the elevation of free surface above 

the fixed horizontal datum (𝜂 = ℎ + 𝑧𝑏). 
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Figure 2.1: Key variables that define the flow geometry in the x-z plane 

 

 

2.1.1   Derivation of 2D Level I Green-Naghdi Equations 

The 2D Level I GN equations model wave propagation over non-uniform bed 

topography, and incorporate coupled spatial advection effects expressed as cross-

derivative terms that are not modelled in one-dimensional space. The GN equations 

represent wave amplitude nonlinearity, frequency dispersion, refraction, shoaling, 

reflection, and diffraction.    
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2.1.2   3-D Continuity and Momentum Equations and Kinematic Boundary 

Condition for a Free Surface Flow of Inviscid, Incompressible Liquid 

In a 3-D Cartesian system, the velocity vector 𝑽 may be written as:  

                                                      𝑽 = (𝑢, 𝑣, 𝑤) = 𝑖 𝑢 + 𝑗 𝑣 + �⃗⃑� 𝑤                       (2.1) 

In which 𝑢, 𝑣, 𝑤 are the velocity components in the x, y, z directions and 𝑖, 𝑗, �⃗⃑� are 

unit vectors in Cartesian system. 

Similarly the vector of gravitational acceleration is: 

                                                   𝑮 = (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) = 𝑖 𝑔𝑥 + 𝑗 𝑔𝑦 + �⃗⃑� 𝑔𝑧                (2.2) 

where 𝑔𝑥, 𝑔𝑦, 𝑔𝑧 are the Cartesian components.  

In vector notation, the continuity equation is: 

  ∇. 𝑽 = 0                                                 (2.3)                                          

where  ∇ = 𝑖
∂

𝜕𝑥
+ 𝑗

∂

𝜕𝑦
+ �⃗⃑�

∂

𝜕𝑧
 ,  such that 

                                      ( 𝑖  
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ �⃗⃑�

𝜕

𝜕𝑧
) . ( 𝑖 𝑢 + 𝑗 𝑣 + �⃗⃑� 𝑤) =  0                    (2.3a) 

giving 

                                                          
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
=  0                                    (2.3b) 

The momentum conservation equation is as follows: 

                                                  (
𝜕

𝜕𝑡
+ 𝑽. ∇) 𝜌𝑉 = −∇𝑃 − 𝜌𝑔                                (2.4) 

where P is pressure, ρ is density, and t is time.       

 

The momentum conservation equation can be expanded in the x, y and z directions as 

follows: 
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(x-direction momentum)      
𝜕𝜌𝑢

𝜕𝑡
+

𝜕𝜌𝑢𝑢

𝜕𝑥
+

𝜕𝜌𝑢𝑣

𝜕𝑦
+

𝜕𝜌𝑢𝑤

𝜕𝑧
= −

𝜕𝑃

𝜕𝑥
                  (2.4a) 

(y-direction momentum)      
𝜕𝜌𝑣

𝜕𝑡
+

𝜕𝜌𝑣𝑢

𝜕𝑥
+

𝜕𝜌𝑣𝑣

𝜕𝑦
+

𝜕𝜌𝑣𝑤

𝜕𝑧
= −

𝜕𝑃

𝜕𝑦
                   (2.4b) 

(z-direction momentum)      
𝜕𝜌𝑤

𝜕𝑡
+

𝜕𝜌𝑤𝑢

𝜕𝑥
+

𝜕𝜌𝑤𝑣

𝜕𝑦
+

𝜕𝜌𝑤𝑤

𝜕𝑧
= −𝜌𝑔                 (2.4c) 

 

There is no flow through the bed, and so the kinematic bed boundary condition is as 

follows:  

                                                            𝑤│𝑏 =
𝜕𝑧𝑏

𝜕𝑡
+

𝑑𝑥

𝑑𝑡

𝜕𝑧𝑏

𝜕𝑥
+

𝑑𝑦

𝑑𝑡

𝜕𝑧𝑏

𝜕𝑦
                          (2.5) 

where 𝑧𝑏 is the elevation of the bottom boundary above the fixed horizontal datum.   

By definition,  𝑢𝑏 =
𝑑𝑥

𝑑𝑡
│𝑧𝑏

    and     𝑣𝑏 =
𝑑𝑦

𝑑𝑡
│𝑧𝑏

 .   Then, at the bed, 

                                                            𝑤│𝑏 =
𝜕𝑧𝑏

𝜕𝑡
+ 𝑢𝑏

𝜕𝑧𝑏

𝜕𝑥
+ 𝑣𝑏

𝜕𝑧𝑏

𝜕𝑦
                           (2.6) 

At the free surface there are two boundary conditions. The kinematic free surface 

boundary condition is: 

                                                              𝑤│𝑠 =
𝜕𝜂

𝜕𝑡
+

𝑑𝑥

𝑑𝑡

𝜕𝜂

𝜕𝑥
+

𝑑𝑦

𝑑𝑡

𝜕𝜂

𝜕𝑦
                              (2.7) 

where 𝜂 is the elevation of the top surface boundary above the fixed horizontal 

datum. By definition,  𝑢𝑠 =
𝑑𝑥

𝑑𝑡
│𝜂    and     𝑣𝑠 =

𝑑𝑦

𝑑𝑡
│𝜂 , and so  

                                                              𝑤│𝑠 =
𝜕𝜂

𝜕𝑡
+ 𝑢𝑠

𝜕𝜂

𝜕𝑥
+ 𝑣𝑠

𝜕𝜂

𝜕𝑦
                                (2.8) 

The dynamic free surface boundary condition is 𝑃 = 𝑃𝑎 at 𝑧 = 𝜂. 
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2.1.3 GN Continuity Equation for Free Surface Flow of Inviscid, Incompressible 

Liquid 

In order to derive the GN continuity equation, it is assumed that the velocity vector 

can be written as follows: 

𝑽 = �⃑� (𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝑊𝑛
⃑⃑ ⃑⃑  ⃑

𝑘

𝑛=0

(𝑥, 𝑦, 𝑡) 𝜆𝑛(𝑧)                                                                     (2.9) 

where  �⃑⃑⃑� 
𝑛 = (𝑢𝑛, 𝑣𝑛, 𝑤𝑛) is a vector of velocity component approximations at level n, 

𝜆𝑛  are assumed shape functions depending on z, and k is the level of approximation 

of GN theory. Expansion of Eqn. (2.9) for level I leads to the following velocity 

parameters: 

 

   𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑧, 𝑡) 

   𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑧, 𝑡)                                                                                 (2.10) 

   𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑧, 𝑡) + 𝑤1(𝑥, 𝑦, 𝑧, 𝑡) (𝑧 − 𝑧𝑏) 

 

The boundary conditions (2.6) and (2.8) become  

𝑤0(𝑥, 𝑦, 𝑧, 𝑡) =
𝜕𝑧𝑏

𝜕𝑡
+ 𝑢0

𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0

𝜕𝑧𝑏

𝜕𝑦
                                                                      (2.11) 

𝑤0(𝑥, 𝑦, 𝑧, 𝑡) + 𝑤1(𝑥, 𝑦, 𝑧, 𝑡) (𝜂 − 𝑧𝑏) =
𝜕𝜂

𝜕𝑡
+ 𝑢0

𝜕𝜂

𝜕𝑥
+ 𝑣0

𝜕𝜂

𝜕𝑦
                              (2.12) 

 

By inserting the velocity parameters (2.10) into (2.3b): 

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
+

𝜕[𝑤0(𝑥, 𝑦, 𝑧, 𝑡) + 𝑤1(𝑥, 𝑦, 𝑧, 𝑡) (𝑧 − 𝑧𝑏)]

𝜕𝑧
= 0                                  (2.13) 

𝑤1 = −
𝜕𝑢0

𝜕𝑥
−

𝜕𝑣0

𝜕𝑦
  .                                                                                                        (2.14) 
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When Eqns. (2.11) and (2.14) are inserted into (2.12), the 2D level I GN Eqn, Eqn. 

(2.16), is obtained: 

𝜕𝑧𝑏

𝜕𝑡
+ 𝑢0

𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0

𝜕𝑧𝑏

𝜕𝑦
−

𝜕𝑢0

𝜕𝑥
(𝜂 − 𝑧𝑏) −

𝜕𝑣0

𝜕𝑦
(𝜂 − 𝑧𝑏) =

𝜕𝜂

𝜕𝑡
+ 𝑢0

𝜕𝜂

𝜕𝑥
+ 𝑣0

𝜕𝜂

𝜕𝑦
     .     (2.15) 

or 

𝜕𝜂

𝜕𝑡
+

𝜕[𝑢0(𝜂 − 𝑧𝑏)]

𝜕𝑥
+

𝜕[𝑣0(𝜂 − 𝑧𝑏)]

𝜕𝑦
=

𝜕𝑧𝑏

𝜕𝑡
   .                                                         (2.16) 

 

If (𝜂 − 𝑧𝑏) = ℎ, then  the 2D level I GN continuity equation is rewritten as: 

𝜕𝜂

𝜕𝑡
+

𝜕(𝑢0ℎ)

𝜕𝑥
+

𝜕(𝑣0ℎ)

𝜕𝑦
=

𝜕𝑧𝑏

𝜕𝑡
                                                                                     (2.17) 

𝜕ℎ

𝜕𝑡
+

𝜕(𝑢0ℎ)

𝜕𝑥
+

𝜕(𝑣0ℎ)

𝜕𝑦
= 0        .                                                                                 (2.18)  

 

By inserting Eqn. (2.9) into Eqn. (2.3b) the upper level of GN continuity equation 

becomes: 

∑(
𝜕𝑢𝑛

𝜕𝑥

𝑘

𝑛=0

+
𝜕𝑣𝑛

𝜕𝑦
) 𝜆𝑛(𝑧) + ∑ 𝑤𝑛  

𝜕𝜆𝑛(𝑧)

𝜕𝑧

𝑘

𝑛=0

= 0     .                                                     (2.19) 

Similarly inserting Eqn. (2.9) into the kinematic boundary conditions Eqns. (2.6) and 

(2.8) gives: 

∑ 𝑤𝑛𝜆𝑛(𝑧𝑏) =
𝜕𝑧𝑏

𝜕𝑡
+ ∑ 𝑢𝑛

𝑘

𝑛=0

𝑘

𝑛=0

𝜆𝑛

𝜕𝑧𝑏

𝜕𝑥
+ ∑ 𝑣𝑛 𝜆𝑛

𝜕𝑧𝑏

𝜕𝑦

𝑘

𝑛=0

                                           (2.20) 

∑ 𝑤𝑛𝜆𝑛(𝜂) =
𝜕𝜂

𝜕𝑡
+ ∑ 𝑢𝑛

𝑘

𝑛=0

𝑘

𝑛=0

𝜆𝑛

𝜕𝜂

𝜕𝑥
+ ∑ 𝑣𝑛 𝜆𝑛

𝜕𝜂

𝜕𝑦

𝑘

𝑛=0

     .                                            (2.21) 

Eqn. (2.20) is the bottom boundary condition and Eqn. (2.21) is the free surface 

kinematic boundary condition. 
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2.1.4   GN Momentum Equations for Free Surface Flow of Inviscid, 

Incompressible Liquid 

Consider the general momentum conservation equations Eqn. (2.4). Integrating (2.4a), 

gives: 

   ∫ (
𝜕𝜌𝑢

𝜕𝑡
+

𝜕𝜌𝑢𝑢

𝜕𝑥
+

𝜕𝜌𝑢𝑣

𝜕𝑦
+

𝜕𝜌𝑢𝑤

𝜕𝑧
) 𝜆𝑛𝑑𝑧 = −∫ (

𝜕𝑃

𝜕𝑥
) 𝜆𝑛𝑑𝑧

𝜂

𝑧𝑏

𝜂

𝑧𝑏

 .                      (2.22) 

 

The left hand side of the Eqn. (2.22) can be rewritten as:  

                   ∫ (
𝜕𝜌𝑢

𝜕𝑡
𝜆𝑛 +

𝜕𝜌𝑢𝑢

𝜕𝑥
𝜆𝑛 +

𝜕𝜌𝑢𝑣

𝜕𝑦
𝜆𝑛 +

𝜕𝜌𝑢𝑤

𝜕𝑧
𝜆𝑛)𝑑𝑧

𝜂

𝑧𝑏

                            (2.23) 

 

Using the chain rule for fourth term gives 

       ∫ (
𝜕𝜌𝑢

𝜕𝑡
𝜆𝑛) 𝑑𝑧 +

𝜂

𝑧𝑏

∫ (
𝜕𝜌𝑢𝑢

𝜕𝑥
𝜆𝑛) 𝑑𝑧 + ∫ (

𝜕𝜌𝑢𝑣

𝜕𝑦
𝜆𝑛)𝑑𝑧 + 𝜌𝑢𝑤

𝜂

𝑧𝑏

𝜂

𝑧𝑏

𝜆𝑛│𝑧𝑏

𝜂

− ∫ (𝜌𝑢𝑤𝜆𝑛
 ′) 𝑑𝑧                                                                                                              (2.24)

𝜂

𝑧𝑏

 

where  𝜆𝑛
 ′ =

𝑑𝜆𝑛

𝑑𝑧
 . 

 

Then, the Leibnitz Rule is applied to the right hand side of Eqn. (2.22), giving 

−∫ (
𝜕𝑃

𝜕𝑥
) 𝜆𝑛𝑑𝑧

𝜂

𝑧𝑏

= −
𝜕 (∫  𝜌𝜆𝑛 𝑑𝑧

𝜂

𝑧𝑏
)

𝜕𝑥
+ [𝑃𝜆𝑛]│𝜂

𝜕𝜂

𝜕𝑥
− [𝑃𝜆𝑛]│𝑧𝑏

𝜕𝑧𝑏

𝜕𝑥
               (2.25) 

 

Eqns. (2.24) and (2.25) are combined to give 

∫ (
𝜕𝜌𝑢

𝜕𝑡
𝜆𝑛) 𝑑𝑧 +

𝜂

𝑧𝑏

∫ (
𝜕𝜌𝑢𝑢

𝜕𝑥
𝜆𝑛) 𝑑𝑧 + ∫ (

𝜕𝜌𝑢𝑣

𝜕𝑦
𝜆𝑛)𝑑𝑧 + 𝜌𝑢𝑤

𝜂

𝑧𝑏

𝜂

𝑧𝑏

𝜆𝑛│
𝑧𝑏

𝜂

− ∫ (𝜌𝑢𝑤𝜆𝑛
′ )𝑑𝑧

𝜂

𝑧𝑏

= −
𝜕𝑃𝑛

𝜕𝑥
+ �̂�𝜆𝑛│𝜂

𝜕𝜂

𝜕𝑥
− �̅�𝜆𝑛│𝑧𝑏

𝜕𝑧𝑏

𝜕𝑥
              (2.26) 
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where  𝑃𝑛 = (∫  𝑃𝜆𝑛 𝑑𝑧
𝜂

𝑧𝑏
), �̂�  is pressure at the free surface, and �̅� is pressure at the 

bottom.  Inclusion of the kinematic assumed parameters, Eqn. (2.10), on the left hand 

side of Eqn. (2.26) leads to 

 

∫ (
𝜕𝜌∑  𝑢𝑚

𝑘
𝑚=0 𝜆𝑚𝜆𝑛

𝜕𝑡
) 𝑑𝑧

𝜂

𝑧𝑏

+ ∫ (
𝜕𝜌∑  𝑢𝑚

𝑘
𝑚=0 𝜆𝑚  ∑  𝑢𝑟  𝜆𝑟 𝜆𝑛

𝑘
𝑟=0

𝜕𝑥
)𝑑𝑧

𝜂

𝑧𝑏

 

+∫ (
𝜕𝜌∑  𝑢𝑚

𝑘
𝑚=0 𝜆𝑚  ∑  𝑣𝑟 𝜆𝑟 𝜆𝑛

𝑘
𝑟=0

𝜕𝑦
)𝑑𝑧 + 𝜌 ∑ 𝑢𝑚 𝜆𝑚

𝑘

𝑚=0

𝜂

𝑧𝑏

∑𝑤𝑟 𝜆𝑟

𝑘

𝑟=0

𝜆𝑛│𝑧𝑏

𝜂
  

−∫ (𝜌 ∑ 𝑢𝑚 𝜆𝑚
𝑘
𝑚=0 ∑ 𝑤𝑟 𝜆𝑟

𝑘
𝑟=0 𝜆𝑛

 ′) 𝑑𝑧
𝜂

𝑧=𝑧𝑏
. 

 

= ∑ 𝜌
𝜕𝑢𝑚

𝜕𝑡
 ∫ 𝜆𝑚𝜆𝑛 𝑑𝑧

𝜂

𝑧𝑏

+ ∑  ∑𝜌 
𝜕𝑢𝑚𝑢𝑟

𝜕𝑥

𝑘

𝑟=0

𝑘

𝑚=0

𝑘

𝑚=0

∫ 𝜆𝑚𝜆𝑟𝜆𝑛 𝑑𝑧
𝜂

𝑧𝑏

 

+ ∑  ∑𝜌 
𝜕𝑢𝑚𝑣𝑟

𝜕𝑦
∫ 𝜆𝑚𝜆𝑟𝜆𝑛𝑑𝑧

𝜂

𝑧𝑏

𝑘

𝑟=0

𝑘

𝑚=0

+ ∑ ∑ 𝜌𝑢𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

 

             − ∑ ∑𝜌𝑢𝑚𝑤𝑟 ∫ 𝜆𝑚𝜆𝑟𝜆𝑛
 ′  𝑑𝑧

𝜂

𝑧𝑏

𝑘

𝑟=0

𝑘

𝑚=0 

 

 

= ∑ 𝜌
𝜕𝑢𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑ ∑ 𝜌 
𝜕𝑢𝑚𝑢𝑟

𝜕𝑥

𝑘

 𝑟=0

𝑘

𝑚=0

 𝑦𝑚𝑟𝑛 + ∑ ∑ 𝜌 
𝜕𝑢𝑚𝑣𝑟

𝜕𝑦

𝑘

 𝑟=0

𝑘

𝑚=0

 𝑦𝑚𝑟𝑛 

+ ∑  ∑ 𝜌𝑢𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧=𝑧𝑏

𝜂

𝑘

𝑚=0

− ∑  ∑𝜌𝑢𝑚𝑤𝑟 𝑦𝑚𝑟
𝑛

𝑘

𝑟=0

                                      (2.27)

𝑘

𝑚=0 

 

 

where 

𝑦𝑚𝑛 = ∫ (𝜆𝑚𝜆𝑛)𝑑𝑧
𝜂

𝑧=𝑧𝑏
 ,  𝑦𝑚𝑟𝑛 = ∫ (𝜆𝑚𝜆𝑟𝜆𝑛)𝑑𝑧

𝜂

𝑧=𝑧𝑏
  and  𝑦𝑚𝑟

𝑛 = ∫ (𝜆𝑚𝜆𝑟𝜆𝑛
 ′)𝑑𝑧

𝜂

𝑧=𝑧𝑏
 . 

 

Rewriting Eqn. (2.26) gives, 
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             ∑ 𝜌
𝜕𝑢𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑ ∑ 𝜌 
𝜕𝑢𝑚𝑢𝑟

𝜕𝑥

𝑘

 𝑟=0

𝑘

𝑚=0

 𝑦𝑚𝑟𝑛 + ∑ ∑ 𝜌 
𝜕𝑢𝑚𝑣𝑟

𝜕𝑦

𝑘

 𝑟=0

𝑘

𝑚=0

 𝑦𝑚𝑟𝑛

+ ∑  ∑ 𝜌𝑢𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧=𝑧𝑏

𝜂
− ∑ ∑𝜌𝑢𝑚𝑤𝑟 𝑦𝑚𝑟

𝑛

𝑘

𝑟=0

𝑘

𝑚=0

𝑘

𝑚=0

= −
𝜕𝑃𝑛

𝜕𝑥
+ �̂�𝜆𝑛│𝜂

𝜕𝜂

𝜕𝑥
− �̅�𝜆𝑛│𝑧𝑏

𝜕𝑧𝑏

𝜕𝑥
                                                (2.28) 

 

Eqn. (2.28) is simplified using the Krylov-Kantorovich method to give the continuity 

equation Eqn. (2.19).   If the index n is changed to r, Eqn. (2.19) becomes 

∑
𝜕𝑢𝑟

𝜕𝑥

𝑘

𝑟=0

𝜆𝑟 + ∑
𝜕𝑣𝑟

𝜕𝑦
𝜆𝑟

𝑘

𝑟=0

+ ∑𝑤𝑟 𝜆𝑟
 ′

𝑘

𝑟=0

= 0                                                                     (2.29) 

 

Multiplying Eqn. (2.29) by 𝜆𝑛 , 𝜆𝑚  and summing over m and then depth integrating 

gives  

∫ (∑  ∑
𝜕𝑢𝑟

𝜕𝑥

𝑘

𝑟=0

𝑘

𝑚=0

𝜆𝑟𝜆𝑚𝜆𝑛)
𝜂

𝑧𝑏

𝑑𝑧 + ∫ (∑  ∑
𝜕𝑣𝑟

𝜕𝑦

𝑘

𝑟=0

𝑘

𝑚=0

𝜆𝑟𝜆𝑚𝜆𝑛)
𝜂

𝑧𝑏

𝑑𝑧 

+∫ (∑  ∑𝑤𝑟 𝜆𝑟
 ′

𝑘

𝑟=0

𝑘

𝑚=0

𝜆𝑚𝜆𝑛)
𝜂

𝑧𝑏

𝑑𝑧 = 0                                                                                     

or 

∑ ∑
𝜕𝑢𝑟

𝜕𝑥
 [∫ (𝜆𝑟𝜆𝑚𝜆𝑛) 𝑑𝑧

𝜂

𝑧𝑏

]

𝑘

 𝑟=0

𝑘

𝑚=0

+ ∑ ∑
𝜕𝑣𝑟

𝜕𝑦
 [∫ (𝜆𝑟𝜆𝑚𝜆𝑛) 𝑑𝑧

𝜂

𝑧𝑏

]

𝑘

 𝑟=0

𝑘

𝑚=0

 

+ ∑ ∑ 𝑤𝑟  [∫ (𝜆𝑚𝜆𝑛𝜆𝑟
 ′) 𝑑𝑧

𝜂

𝑧𝑏

]

𝑘

 𝑟=0

𝑘

𝑚=0

= 0    .                                                                     (2.30) 
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Next, the order of summation and integration is interchanged. 

   ∑  ∑
𝜕𝑢𝑟

𝜕𝑥
 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑
𝜕𝑣𝑟

𝜕𝑦
 𝑦𝑚𝑟𝑛 + ∑  ∑𝑤𝑟𝑦𝑚𝑛

𝑟 = 0

𝑘

𝑟=0

𝑘

𝑚=0

𝑘

𝑟=0

𝑘

𝑚=0

    , 

   or                                                                                                                                     (2.31) 

   ∑  ∑
𝜕𝑢𝑟

𝜕𝑥
 𝑦𝑚𝑟𝑛 = −

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑
𝜕𝑣𝑟

𝜕𝑦
 𝑦𝑚𝑟𝑛 − ∑  ∑𝑤𝑟𝑦𝑚𝑛

𝑟

𝑘

𝑟=0

𝑘

𝑚=0

𝑘

𝑟=0

𝑘

𝑚=0

 

where  

𝑦𝑚𝑛
𝑟 = ∫ (𝜆𝑚𝜆𝑛𝜆𝑟

 ′)
𝜂

𝑧=𝑧𝑏

𝑑𝑧 . 

Implementing the chain rule, the second and third terms on the left hand side of Eqn. 

(2.28) are expanded and then the second term replaced by Eqn. (2.31)  

     ∑ 𝜌
𝜕𝑢𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑  ∑𝜌
𝜕𝑢𝑚

𝜕𝑥
𝑢𝑟 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑢𝑟

𝜕𝑥
𝑢𝑚 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

 

     ∑  ∑𝜌
𝜕𝑢𝑚

𝜕𝑦
𝑣𝑟  𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑣𝑟

𝜕𝑦
𝑢𝑚 𝑦𝑚𝑟𝑛 + ∑  ∑ 𝜌𝑢𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

𝑘

𝑟=0

𝑘

𝑚=0

 

     − ∑ ∑𝜌𝑢𝑚𝑤𝑟 𝑦𝑚𝑟
𝑛

𝑘

𝑟=0

𝑘

𝑚=0

 

     = ∑ 𝜌
𝜕𝑢𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑  ∑𝜌
𝜕𝑢𝑚

𝜕𝑥
𝑢𝑟  𝑦𝑚𝑟𝑛 −

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑣𝑟

𝜕𝑦
𝑢𝑚 𝑦𝑚𝑟𝑛 −

𝑘

𝑟=0

𝑘

𝑚=0

 

         ∑  ∑𝜌 𝑤𝑟𝑢𝑚 𝑦𝑚𝑛
𝑟

𝑘

𝑟=0

𝑘

𝑚=0

+ ∑  ∑𝜌
𝜕𝑢𝑚

𝜕𝑦
𝑣𝑟 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑣𝑟

𝜕𝑦
𝑢𝑚 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

 

         ∑  ∑ 𝜌𝑢𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

− ∑  ∑𝜌 𝑢𝑚 𝑤𝑟 𝑦𝑚𝑟
𝑛

𝑘

𝑟=0

                                (2.32)

𝑘

𝑚=0
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= ∑ 𝜌
𝜕𝑢𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑  ∑𝜌
𝜕𝑢𝑚

𝜕𝑥
𝑢𝑟 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑢𝑚

𝜕𝑦
𝑣𝑟  𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

 

− ∑  ∑𝜌 𝑢𝑚 𝑤𝑟 (𝑦𝑚𝑛
𝑟 + 𝑦𝑚𝑟

𝑛 )

𝑘

𝑟=0

𝑘

𝑚=0

+ ∑  ∑ 𝜌𝑢𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

                       (2.33) 

 

Integration by parts leads to the determination of (𝑦𝑚𝑛
𝑟 + 𝑦𝑚𝑟

𝑛 )  

  (𝑦𝑚𝑛
𝑟 + 𝑦𝑚𝑟

𝑛 ) = ∫ (𝜆𝑚𝜆𝑛𝜆𝑟
 ′)

𝜂

𝑧𝑏

𝑑𝑧 + ∫ (𝜆𝑚𝜆𝑟𝜆𝑛
 ′)

𝜂

𝑧𝑏

𝑑𝑧 = ∫ 𝜆𝑚(𝜆𝑛𝜆𝑟)
′

𝜂

𝑧𝑏

𝑑𝑧

= 𝜆𝑚𝜆𝑛𝜆𝑟│𝑧𝑏

𝜂
− ∫ (𝜆𝑛𝜆𝑟𝜆𝑚

 ′ )
𝜂

𝑧𝑏

𝑑𝑧 = 𝜆𝑚𝜆𝑛𝜆𝑟│𝑧𝑏

𝜂
− 𝑦𝑟𝑛

𝑚                 (2.34) 

 

The x-direction momentum equation is obtained by inserting Eqn. (2.34) into Eqn. 

(2.33) and combining it with right hand side as in Eqn. (2.28)  

∑ 𝜌
𝜕𝑢𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑  ∑𝜌
𝜕𝑢𝑚

𝜕𝑥
𝑢𝑟 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑢𝑚

𝜕𝑦
𝑣𝑟  𝑦𝑚𝑟𝑛

𝑘

𝑟=0

𝑘

𝑚=0

 

− ∑  ∑ 𝜌𝑢𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

+ ∑  ∑𝜌 𝑢𝑚 𝑤𝑟 𝑦𝑟𝑛
𝑚

𝑘

𝑟=0

𝑘

𝑚=0

+ ∑  ∑ 𝜌𝑢𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

 

= ∑ 𝜌
𝜕𝑢𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑  ∑𝜌
𝜕𝑢𝑚

𝜕𝑥
𝑢𝑟 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑢𝑚

𝜕𝑦
𝑣𝑟  𝑦𝑚𝑟𝑛

𝑘

𝑟=0

𝑘

𝑚=0

 

+ ∑  ∑𝜌 𝑢𝑚 𝑤𝑟 𝑦𝑟𝑛
𝑚

𝑘

𝑟=0

𝑘

𝑚=0

= −
𝜕𝑃𝑛

𝜕𝑥
+ �̂�𝜆𝑛│𝜂

𝜕𝜂

𝜕𝑥
− �̅�𝜆𝑛│𝑧𝑏

𝜕𝑧𝑏

𝜕𝑥
                           (2.35) 
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2.1.5   2D level I GN Momentum equation in vertical (z) direction 

By multiplying Eqn. (2.4c) in 𝜆𝑛 and then depth-integrating from the bottom to the 

free surface, the z-direction GN Momentum equation is obtained 

   ∫ (
𝜕𝜌𝑤

𝜕𝑡
+

𝜕𝜌𝑤𝑢

𝜕𝑥
+

𝜕𝜌𝑤𝑣

𝜕𝑦
+

𝜕𝜌𝑤𝑤

𝜕𝑧
) 𝜆𝑛𝑑𝑧 = −∫ (

𝜕𝑃

𝜕𝑧
+ 𝜌𝑔𝑧) 𝜆𝑛𝑑𝑧  

𝜂

𝑧𝑏

𝜂

𝑧𝑏

       (2.36) 

 

The left hand side of the Eqn. (2.36) can be rewritten as:  

                 ∫ (
𝜕𝜌𝑤

𝜕𝑡
𝜆𝑛 +

𝜕𝜌𝑤𝑢

𝜕𝑥
𝜆𝑛 +

𝜕𝜌𝑤𝑣

𝜕𝑦
𝜆𝑛 +

𝜕𝜌𝑤𝑤

𝜕𝑧
𝜆𝑛)𝑑𝑧

𝜂

𝑧𝑏

                           (2.37) 

 

Using the chain rule for fourth term gives 

  ∫ (
𝜕𝜌𝑤

𝜕𝑡
𝜆𝑛) 𝑑𝑧 +

𝜂

𝑧𝑏

∫ (
𝜕𝜌𝑤𝑢

𝜕𝑥
𝜆𝑛) 𝑑𝑧 + ∫ (

𝜕𝜌𝑤𝑣

𝜕𝑦
𝜆𝑛)𝑑𝑧 + 𝜌𝑤𝑤

𝜂

𝑧𝑏

𝜂

𝑧𝑏

𝜆𝑛│𝑧𝑏

𝜂
 

− ∫ (𝜌𝑤𝑤𝜆𝑛
 ′) 𝑑𝑧                                                                                                              (2.38)

𝜂

𝑧𝑏

  

 

Then, Leibnitz Rule is applied to the right hand side of Eqn. (2.36), giving  

−∫
𝜕𝑃

𝜕𝑧
𝜆𝑛𝑑𝑧

𝜂

𝑧𝑏

− ∫ 𝜌𝑔𝑧𝜆𝑛𝑑𝑧
𝜂

𝑧𝑏

= −(𝑃𝜆𝑛 − ∫ 𝑃𝜆𝑛
′

𝜂

𝑧𝑏

𝑑𝑧) − ∫ 𝜌𝑔𝑧𝜆𝑛

𝜂

𝑧𝑏

𝑑𝑧

= −[𝑃𝜆𝑛]│𝑧𝑏

𝜂
+ ∫ 𝑃𝜆𝑛

′
𝜂

𝑧𝑏

𝑑𝑧 − 𝜌𝑔𝑧 ∫ 𝜆𝑛

𝜂

𝑧𝑏

𝑑𝑧                                    (2.39) 

 

Eqn. (2.38) and (2.39) are combined to give 

∫ (
𝜕𝜌𝑤

𝜕𝑡
𝜆𝑛) 𝑑𝑧 +

𝜂

𝑧𝑏

∫ (
𝜕𝜌𝑤𝑢

𝜕𝑥
𝜆𝑛) 𝑑𝑧 + ∫ (

𝜕𝜌𝑤𝑣

𝜕𝑦
𝜆𝑛)𝑑𝑧 + 𝜌𝑤𝑤

𝜂

𝑧𝑏

𝜂

𝑧𝑏

𝜆𝑛│𝑧𝑏

𝜂
  

−∫ 𝜌𝑤𝑤𝜆𝑛
′  𝑑𝑧

𝜂

𝑧𝑏

= −�̂�𝜆𝑛│𝜂 + �̅�𝜆𝑛│𝑧𝑏
+ 𝑃𝑛

′ − 𝜌𝑔𝑧 ∫ 𝜆𝑛

𝜂

𝑧𝑏

𝑑𝑧                               (2.40)  

where  𝑃𝑛
′ = ∫ 𝑃𝜆𝑛

′𝜂

𝑧𝑏
𝑑𝑧 . 
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Insertion of the kinematic assumed parameters Eqn. (2.10) on the left hand side of Eqn. 

(2.40) leads to 

∫ (
𝜕𝜌∑  𝑤𝑚

𝑘
𝑚=0 𝜆𝑚𝜆𝑛

𝜕𝑡
) 𝑑𝑧

𝜂

𝑧𝑏

+ ∫ (
𝜕𝜌 ∑  𝑢𝑟 𝜆𝑟 𝜆𝑛  ∑  𝑤𝑚

𝑘
𝑚=0 𝜆𝑚

𝑘
𝑟=0

𝜕𝑥
)𝑑𝑧

𝜂

𝑧𝑏

 

+∫ (
𝜕𝜌 ∑  𝑣𝑟 𝜆𝑟 𝜆𝑛  ∑  𝑤𝑚

𝑘
𝑚=0 𝜆𝑚

𝑘
𝑟=0

𝜕𝑦
)𝑑𝑧 + 𝜌 ∑ 𝑤𝑚 𝜆𝑚

𝑘

𝑚=0

𝜂

𝑧𝑏

∑𝑤𝑟 𝜆𝑟

𝑘

𝑟=0

𝜆𝑛│𝑧𝑏

𝜂
  

−∫ (𝜌 ∑ 𝑤𝑚 𝜆𝑚

𝑘

𝑚=0

∑𝑤𝑟 𝜆𝑟

𝑘

𝑟=0

𝜆𝑛
 ′)  𝑑𝑧

𝜂

𝑧𝑏

 

 

= ∑ 𝜌
𝜕𝑤𝑚

𝜕𝑡
 ∫ (𝜆𝑚𝜆𝑛)𝑑𝑧

𝜂

𝑧𝑏

+ ∑  ∑𝜌 
𝜕𝑤𝑚𝑢𝑟

𝜕𝑥

𝑘

𝑟=0

𝑘

𝑚=0

𝑘

𝑚=0

∫ (𝜆𝑚𝜆𝑟𝜆𝑛)𝑑𝑧
𝜂

𝑧𝑏

 

+ ∑  ∑𝜌 
𝜕𝑤𝑚𝑣𝑟

𝜕𝑦
∫ 𝜆𝑚𝜆𝑟𝜆𝑛 𝑑𝑧 + ∑ ∑ 𝜌𝑤𝑚𝑤𝑟  𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

𝜂

𝑧𝑏

𝑘

𝑟=0

𝑘

𝑚=0

 

           − ∑ ∑𝜌𝑤𝑚𝑤𝑟 ∫ 𝜆𝑚𝜆𝑟𝜆𝑛
 ′  𝑑𝑧

𝜂

𝑧𝑏

𝑘

𝑟=0

𝑘

𝑚=0 

 

= ∑ 𝜌
𝜕𝑤𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑ ∑ 𝜌 
𝜕𝑤𝑚𝑢𝑟

𝜕𝑥

𝑘

 𝑟=0

𝑘

𝑚=0

 𝑦𝑚𝑟𝑛 + ∑ ∑ 𝜌 
𝜕𝑤𝑚𝑣𝑟

𝜕𝑦

𝑘

 𝑟=0

𝑘

𝑚=0

 𝑦𝑚𝑟𝑛 

+ ∑  ∑ 𝜌𝑤𝑚𝑤𝑟  𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

− ∑  ∑𝜌𝑤𝑚𝑤𝑟 𝑦𝑚𝑟
𝑛

𝑘

𝑟=0

𝑘

𝑚=0 

                                      (2.41) 

 

Rewriting Eqn. (2.40) gives, 

               ∑ 𝜌
𝜕𝑤𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑ ∑ 𝜌 
𝜕𝑤𝑚𝑢𝑟

𝜕𝑥

𝑘

 𝑟=0

𝑘

𝑚=0

 𝑦𝑚𝑟𝑛 + ∑ ∑ 𝜌 
𝜕𝑤𝑚𝑣𝑟

𝜕𝑦

𝑘

 𝑟=0

𝑘

𝑚=0

 𝑦𝑚𝑟𝑛

+ ∑  ∑ 𝜌𝑤𝑚𝑤𝑟  𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂
− ∑ ∑𝜌𝑤𝑚𝑤𝑟 𝑦𝑚𝑟

𝑛

𝑘

𝑟=0

𝑘

𝑚=0

𝑘

𝑚=0

= −�̂�𝜆𝑛│𝜂 + �̅�𝜆𝑛│𝑧𝑏
+ 𝑃𝑛

′ − 𝜌𝑔𝑧𝑦𝑛                                                (2.42) 

where  𝑦𝑚𝑛 = ∫ (𝜆𝑚𝜆𝑛)𝑑𝑧
𝜂

𝑧𝑏
 .    
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Implementing the chain rule, the second and third terms on the left hand side of Eqn. 

(2.42) are expanded and then the second term replaced by Eqn. (2.31) 

∑ 𝜌
𝜕𝑤𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑  ∑𝜌
𝜕𝑤𝑚

𝜕𝑥
𝑢𝑟 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑢𝑟

𝜕𝑥
𝑤𝑚 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

 

∑  ∑𝜌
𝜕𝑤𝑚

𝜕𝑦
𝑣𝑟  𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑣𝑟

𝜕𝑦
𝑤𝑚 𝑦𝑚𝑟𝑛 + ∑  ∑ 𝜌𝑤𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

𝑘

𝑟=0

𝑘

𝑚=0

 

− ∑ ∑𝜌𝑤𝑚𝑤𝑟 𝑦𝑚𝑟
𝑛

𝑘

𝑟=0

𝑘

𝑚=0

 

= ∑ 𝜌
𝜕𝑤𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑  ∑𝜌
𝜕𝑤𝑚

𝜕𝑥
𝑢𝑟  𝑦𝑚𝑟𝑛 −

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑣𝑟

𝜕𝑦
𝑤𝑚 𝑦𝑚𝑟𝑛 −

𝑘

𝑟=0

𝑘

𝑚=0

 

∑  ∑𝜌 𝑤𝑚 𝑤𝑟𝑦𝑚𝑛
𝑟

𝑘

𝑟=0

𝑘

𝑚=0

+ ∑  ∑𝜌
𝜕𝑤𝑚

𝜕𝑦
𝑣𝑟 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑣𝑟

𝜕𝑦
𝑤𝑚 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

 

∑  ∑ 𝜌𝑤𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

− ∑  ∑𝜌 𝑤𝑚 𝑤𝑟 𝑦𝑚𝑟
𝑛

𝑘

𝑟=0

𝑘

𝑚=0

 

= ∑ 𝜌
𝜕𝑤𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑  ∑𝜌
𝜕𝑤𝑚

𝜕𝑥
𝑢𝑟  𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑤𝑚

𝜕𝑦
𝑣𝑟 𝑦𝑚𝑟𝑛

𝑘

𝑟=0

𝑘

𝑚=0

 

− ∑  ∑𝜌 𝑤𝑚 𝑤𝑟 (𝑦𝑚𝑛
𝑟 + 𝑦𝑚𝑟

𝑛 )

𝑘

𝑟=0

𝑘

𝑚=0

+ ∑  ∑ 𝜌𝑤𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

                     (2.43) 

Integration by parts leads to the determination of (𝑦𝑚𝑛
𝑟 + 𝑦𝑚𝑟

𝑛 )  

  (𝑦𝑚𝑛
𝑟 + 𝑦𝑚𝑟

𝑛 ) = ∫ (𝜆𝑚𝜆𝑛𝜆𝑟
 ′)

𝜂

𝑧𝑏

𝑑𝑧 + ∫ (𝜆𝑚𝜆𝑟𝜆𝑛
 ′)

𝜂

𝑧𝑏

𝑑𝑧 = ∫ 𝜆𝑚(𝜆𝑛𝜆𝑟)
′

𝜂

𝑧𝑏

𝑑𝑧

= 𝜆𝑚𝜆𝑛𝜆𝑟│𝑧𝑏

𝜂
− ∫ (𝜆𝑛𝜆𝑟𝜆𝑚

 ′ )
𝜂

𝑧𝑏

𝑑𝑧 = 𝜆𝑚𝜆𝑛𝜆𝑟│𝑧𝑏

𝜂
− 𝑦𝑟𝑛

𝑚              (2.44) 
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The z-direction momentum equation is obtained by inserting Eqn. (2.44) into Eqn. 

(2.43) and combining it with right hand side as in Eqn. (2.42)  

∑ 𝜌
𝜕𝑤𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑  ∑𝜌
𝜕𝑤𝑚

𝜕𝑥
𝑢𝑟 𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑤𝑚

𝜕𝑦
𝑣𝑟  𝑦𝑚𝑟𝑛 −

𝑘

𝑟=0

𝑘

𝑚=0

 

∑  ∑ 𝜌𝑤𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

+ ∑  ∑𝜌 𝑤𝑚 𝑤𝑟 𝑦𝑟𝑛
𝑚

𝑘

𝑟=0

𝑘

𝑚=0

+ ∑  ∑ 𝜌𝑤𝑚𝑤𝑟 𝜆𝑚𝜆𝑟

𝑘

 𝑟=0

𝜆𝑛│𝑧𝑏

𝜂

𝑘

𝑚=0

 

= ∑ 𝜌
𝜕𝑤𝑚

𝜕𝑡
 

𝑘

𝑚=0

𝑦𝑚𝑛 + ∑  ∑𝜌
𝜕𝑤𝑚

𝜕𝑥
𝑢𝑟  𝑦𝑚𝑟𝑛 +

𝑘

𝑟=0

𝑘

𝑚=0

∑  ∑𝜌
𝜕𝑤𝑚

𝜕𝑦
𝑣𝑟 𝑦𝑚𝑟𝑛

𝑘

𝑟=0

𝑘

𝑚=0

 

+ ∑  ∑𝜌 𝑤𝑚 𝑤𝑟 𝑦𝑟𝑛
𝑚

𝑘

𝑟=0

𝑘

𝑚=0

= −�̂�𝜆𝑛│𝜂 + �̅�𝜆𝑛│𝑧𝑏
+ 𝑃𝑛

′ − 𝜌𝑔𝑧𝑦𝑛                               (2.45) 

 

Writing out in full for Level I, the following parameters are defined (noting their 

presence in the GN continuity equation): 

      𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑧, 𝑡) 𝜆0 𝑥 + 𝑢1(𝑥, 𝑦, 𝑧, 𝑡) 𝜆1 𝑥 

 

      𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑧, 𝑡) 𝜆0 𝑦 + 𝑣1(𝑥, 𝑦, 𝑧, 𝑡) 𝜆1 𝑦                                       (2.46) 

 

     𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑧, 𝑡) 𝜆0 𝑧 + 𝑤1(𝑥, 𝑦, 𝑧, 𝑡) 𝜆1 𝑧 

 

where, in this case: 

𝜆0 𝑥 = 𝜆0 𝑦 = 𝜆0 𝑧 = 1 , 𝜆1 𝑥 = 𝜆1 𝑦 = 𝜆1 𝑧 = (𝑧 − 𝑧𝑏) , 𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣1(𝑥, 𝑦, 𝑧, 𝑡) = 0 

as in Eqn. (2.10). 
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For n = 0, 1, 2 … k 

𝑦𝑚𝑛 = ∫ (𝜆𝑚𝜆𝑛)𝑑𝑧
𝜂

𝑧𝑏
 ,    𝑦𝑚𝑟𝑛 = ∫ (𝜆𝑚𝜆𝑟𝜆𝑛)𝑑𝑧

𝜂

𝑧𝑏
  ,    𝑦𝑚𝑟

𝑛 = ∫ 𝜆𝑚𝜆𝑟(
𝜕𝜆𝑛

𝜕𝑧
)𝑑𝑧

𝜂

𝑧𝑏
 , 

   𝑦𝑛 = ∫ (𝜆𝑛)𝑑𝑧
𝜂

𝑧=𝑧𝑏

 ,    𝑃𝑛 = ∫ (𝑃𝜆𝑛)𝑑𝑧
𝜂

𝑧=𝑧𝑏

   and   𝑃𝑛
′ = ∫ (𝑃

𝜕𝜆𝑛

𝜕𝑧
) 𝑑𝑧

𝜂

𝑧=𝑧𝑏

   (2.47)     

When shape functions of 𝜆0 = 1  and  𝜆1 = 𝑧   are incorporated into the above,  

𝑦000 = 𝑦00 = 𝑦0 = ∫ 1 𝑑𝑧
𝜂

𝑧𝑏

= 𝜂 − 𝑧𝑏 = ℎ   , 

𝑦100 = 𝑦001 = 𝑦10 = 𝑦01 = 𝑦1 = ∫ (𝑧 − 𝑧𝑏)𝑑𝑧
𝜂

𝑧𝑏

=
(𝜂 − 𝑧𝑏)

2

2
=

ℎ2

2
    , 

𝑦110 = 𝑦101 = 𝑦011 = 𝑦11 = ∫ (𝑧 − 𝑧𝑏)
2𝑑𝑧

𝜂

𝑧𝑏

=
(𝜂 − 𝑧𝑏)

3

3
=

ℎ3

3
     , 

    𝑦𝑚𝑟
0 = ∫ 𝜆𝑚𝜆𝑟

𝜕1

𝜕𝑧
 𝑑𝑧

𝜂

𝑧𝑏

= 0 ,   𝑦00
1 = ∫ 1

𝜂

𝑧𝑏

 
𝜕(𝑧 − 𝑧𝑏)

𝜕𝑧
 𝑑𝑧 = ∫ 1

𝜂

𝑧𝑏

𝑑𝑧 = ℎ     (2.48𝑎) 

 𝑦10
1 = 𝑦01

1 = ∫ (𝑧 − 𝑧𝑏)
𝜕(𝑧 − 𝑧𝑏)

𝜕𝑧
 𝑑𝑧 =

(𝜂 − 𝑧𝑏)
2

2
=

ℎ2

2

𝜂

𝑧𝑏

      , 

𝑦11
1 = ∫ (𝑧 − 𝑧𝑏)

2
𝜕(𝑧 − 𝑧𝑏)

𝜕𝑧
 𝑑𝑧 =

(𝜂 − 𝑧𝑏)
3

3
=

ℎ3

3

𝜂

𝑧𝑏

     , 

    𝑃0 = ∫ 𝑃 𝜆0

𝜂

𝑧𝑏

𝑑𝑧 = ∫ 𝑃
𝜂

𝑧𝑏

𝑑𝑧     ,     𝑃1 = ∫ 𝑃 𝜆1

𝜂

𝑧𝑏

𝑑𝑧 = ∫ 𝑃(𝑧 − 𝑧𝑏)
𝜂

𝑧𝑏

𝑑𝑧   ,      

and 

𝑃0
′ = ∫ 𝑃 

𝜕𝜆0

𝜕𝑧
 𝑑𝑧

𝜂

𝑧𝑏

= 0    ,     𝑃1
′ = ∫ 𝑃 

𝜕𝜆1

𝜕𝑧
 𝑑𝑧

𝜂

𝑧𝑏

= ∫ 𝑃
𝜂

𝑧𝑏

𝑑𝑧 = 𝑃0  .                  (2.48𝑏) 

If the x-momentum equation, Eqn. (2.35), is considered for n = 0 and n = 1  
 

n = 0: 

𝜌
𝜕𝑢0

𝜕𝑡
𝑦00 + 𝜌

𝜕𝑢0

𝜕𝑥
𝑢0 𝑦000 + 𝜌

𝜕𝑢0

𝜕𝑦
𝑣0 𝑦000 + 𝜌 𝑢0 𝑤0 𝑦00

0 + 𝜌 𝑢0 𝑤1 𝑦10
0  

= −
𝜕𝑃0

𝜕𝑥
+ �̂�𝜆0│𝜂

𝜕𝜂

𝜕𝑥
− �̅�𝜆0│𝑧𝑏

𝜕𝑧𝑏

𝜕𝑥
    ,                                                                    (2.49𝑎) 
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and 

n = 1: 

𝜌
𝜕𝑢0

𝜕𝑡
𝑦01 + 𝜌

𝜕𝑢0

𝜕𝑥
𝑢0 𝑦001 + 𝜌

𝜕𝑢0

𝜕𝑦
𝑣0 𝑦001 + 𝜌 𝑢0 𝑤0 𝑦01

0 + 𝜌 𝑢0 𝑤1 𝑦11
0  

= −
𝜕𝑃1

𝜕𝑥
+ �̂�𝜆1│𝜂

𝜕𝜂

𝜕𝑥
− �̅�𝜆1│𝑧𝑏

𝜕𝑧𝑏

𝜕𝑥
    .                                                                    (2.49𝑏) 

The y-momentum equation and z-momentum equation (Eqn. (2.45)) undergo the same 

expansions for n = 0 and n = 1.  

In the y-direction,  

n = 0: 

𝜌
𝜕𝑣0

𝜕𝑡
𝑦00 + 𝜌

𝜕𝑣0

𝜕𝑥
𝑢0 𝑦000 + 𝜌

𝜕𝑣0

𝜕𝑦
𝑣0 𝑦000 + 𝜌 𝑣0 𝑤0 𝑦00

0 + 𝜌 𝑣0 𝑤1 𝑦10
0  

= −
𝜕𝑃0

𝜕𝑦
+ �̂�𝜆0│𝜂

𝜕𝜂

𝜕𝑦
− �̅�𝜆0│𝑧𝑏

𝜕𝑧𝑏

𝜕𝑦
    .                                                                    (2.50𝑎) 

and 

n = 1: 

𝜌
𝜕𝑣0

𝜕𝑡
𝑦01 + 𝜌

𝜕𝑣0

𝜕𝑥
𝑢0 𝑦001 + 𝜌

𝜕𝑣0

𝜕𝑦
𝑣0 𝑦001 + 𝜌 𝑣0 𝑤0 𝑦01

0 + 𝜌 𝑣0 𝑤1 𝑦11
0  

= −
𝜕𝑃1

𝜕𝑦
+ �̂�𝜆1│𝜂

𝜕𝜂

𝜕𝑦
− �̅�𝜆1│𝑧𝑏

𝜕𝑧𝑏

𝜕𝑦
    .                                                                    (2.50𝑏) 

In the z-direction, 

n = 0: 

𝜌
𝜕𝑤0

𝜕𝑡
𝑦00 + 𝜌

𝜕𝑤1

𝜕𝑡
𝑦10 + 𝜌

𝜕𝑤0

𝜕𝑥
𝑢0 𝑦000 + 𝜌

𝜕𝑤1

𝜕𝑥
𝑢0 𝑦100 + 𝜌

𝜕𝑤0

𝜕𝑦
𝑣0 𝑦000

+ 𝜌
𝜕𝑤1

𝜕𝑦
𝑣0 𝑦100 + 𝜌 𝑤0 𝑤0 𝑦00

0 + 𝜌 𝑤0 𝑤1 𝑦10
0 + 𝜌 𝑤1 𝑤0 𝑦00

1 + 

                             𝜌 𝑤1 𝑤1 𝑦10
1 = −�̂�𝜆0│𝜂 + �̅�𝜆0│𝑧𝑏

+ 𝑃0
′ − 𝜌𝑔𝑦0                       (2.51𝑎) 



37 
 

and 

n = 1: 

𝜌
𝜕𝑤0

𝜕𝑡
𝑦01 + 𝜌

𝜕𝑤1

𝜕𝑡
𝑦11 + 𝜌

𝜕𝑤0

𝜕𝑥
𝑢0 𝑦001 + 𝜌

𝜕𝑤1

𝜕𝑥
𝑢0 𝑦101 + 𝜌

𝜕𝑤0

𝜕𝑦
𝑣0 𝑦001

+ 𝜌
𝜕𝑤1

𝜕𝑦
𝑣0 𝑦101 + 𝜌 𝑤0 𝑤0 𝑦01

0 + 𝜌 𝑤0 𝑤1 𝑦11
0 + 𝜌 𝑤1 𝑤0 𝑦01

1 + 

                             𝜌 𝑤1 𝑤1 𝑦11
1 = −�̂�𝜆1│𝜂 + �̅�𝜆1│𝑧𝑏

+ 𝑃1
′ − 𝜌𝑔𝑦1                       (2.51𝑏) 

 

Substituting for  𝑦000 , and so on; gives: 

 

x-momentum equations, 

𝑛 = 0 ∶      𝜌
𝜕𝑢0

𝜕𝑡
ℎ + 𝜌

𝜕𝑢0

𝜕𝑥
𝑢0 ℎ + 𝜌

𝜕𝑢0

𝜕𝑦
𝑣0 ℎ = −

𝜕𝑃0

𝜕𝑥
+ �̂�

𝜕𝜂

𝜕𝑥
− �̅�

𝜕𝑧𝑏

𝜕𝑥
    ,   (2.52𝑎) 

 𝑛 = 1 ∶     𝜌
𝜕𝑢0

𝜕𝑡

ℎ2

2
+ 𝜌

𝜕𝑢0

𝜕𝑥
𝑢0  

ℎ2

2
+ 𝜌

𝜕𝑢0

𝜕𝑦
𝑣0  

ℎ2

2
= −

𝜕𝑃1

𝜕𝑥
+ �̂�ℎ

𝜕𝜂

𝜕𝑥
         ,    (2.52𝑏) 

 

y-momentum equations, 

𝑛 = 0 ∶     𝜌
𝜕𝑣0

𝜕𝑡
ℎ + 𝜌

𝜕𝑣0

𝜕𝑥
𝑢0 ℎ + 𝜌

𝜕𝑣0

𝜕𝑦
𝑣0 ℎ = −

𝜕𝑃0

𝜕𝑦
+ �̂�

𝜕𝜂

𝜕𝑦
− �̅�

𝜕𝑧𝑏

𝜕𝑦
     ,    (2.53𝑎) 

𝑛 = 1 ∶     𝜌
𝜕𝑣0

𝜕𝑡

ℎ2

2
+ 𝜌

𝜕𝑣0

𝜕𝑥
𝑢0  

ℎ2

2
+ 𝜌

𝜕𝑣0

𝜕𝑦
𝑣0  

ℎ2

2
= −

𝜕𝑃1

𝜕𝑦
+ �̂�ℎ

𝜕𝜂

𝜕𝑦
           ,    (2.53𝑏) 

 

z-momentum equations, 

𝑛 = 0 ∶     𝜌
𝜕𝑤0

𝜕𝑡
ℎ + 𝜌

𝜕𝑤1

𝜕𝑡

ℎ2

2
+ 𝜌

𝜕𝑤0

𝜕𝑥
𝑢0 ℎ + 𝜌

𝜕𝑤1

𝜕𝑥
𝑢0  

ℎ2

2
+ 𝜌

𝜕𝑤0

𝜕𝑦
𝑣0 ℎ 

               +𝜌
𝜕𝑤1

𝜕𝑦
𝑣0  

ℎ2

2
+ 𝜌 𝑤1 𝑤0 ℎ +  𝜌 𝑤1 𝑤1  

ℎ2

2
= −�̂� + �̅� − 𝜌𝑔ℎ    ,         (2.54𝑎) 

𝑛 = 1 ∶     𝜌
𝜕𝑤0

𝜕𝑡

ℎ2

2
+ 𝜌

𝜕𝑤1

𝜕𝑡

ℎ3

3
+ 𝜌

𝜕𝑤0

𝜕𝑥
𝑢0  

ℎ2

2
+ 𝜌

𝜕𝑤1

𝜕𝑥
𝑢0  

ℎ3

3
+ 𝜌

𝜕𝑤0

𝜕𝑦
𝑣0  

ℎ2

2
 

             +𝜌
𝜕𝑤1

𝜕𝑦
𝑣0  

ℎ3

3
+ 𝜌 𝑤1 𝑤0  

ℎ2

2
+  𝜌 𝑤1 𝑤1  

ℎ3

3
= −�̂�ℎ + 𝑃0 − 𝜌𝑔

ℎ2

2
   .  (2.54𝑏) 
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Let the surface pressure  �̂� = 0  everywhere (i.e. no storm surges).  Note that  𝑃1
′ = 𝑃0. 

Then 
𝜕𝑃0

𝜕𝑥
   and  

𝜕𝑃0

𝜕𝑦
   are eliminated from the equation along with �̅�. 

 

Thus Eqn. (2.52), (2.53) and (2.54) become 

 

x-momentum equations, 

𝑛 = 0 ∶              𝜌
𝜕𝑢0

𝜕𝑡
ℎ + 𝜌

𝜕𝑢0

𝜕𝑥
𝑢0 ℎ + 𝜌

𝜕𝑢0

𝜕𝑦
𝑣0 ℎ = −

𝜕𝑃0

𝜕𝑥
− �̅�

𝜕𝑧𝑏

𝜕𝑥
    ,         (2.55𝑎) 

 𝑛 = 1 ∶              𝜌
𝜕𝑢0

𝜕𝑡

ℎ2

2
+ 𝜌

𝜕𝑢0

𝜕𝑥
𝑢0  

ℎ2

2
+ 𝜌

𝜕𝑢0

𝜕𝑦
𝑣0  

ℎ2

2
= −

𝜕𝑃1

𝜕𝑥
           ,          (2.55𝑏) 

 

y-momentum equations, 

𝑛 = 0 ∶               𝜌
𝜕𝑣0

𝜕𝑡
ℎ + 𝜌

𝜕𝑣0

𝜕𝑥
𝑢0 ℎ + 𝜌

𝜕𝑣0

𝜕𝑦
𝑣0 ℎ = −

𝜕𝑃0

𝜕𝑦
− �̅�

𝜕𝑧𝑏

𝜕𝑦
    ,         (2.56𝑎) 

𝑛 = 1 ∶              𝜌
𝜕𝑣0

𝜕𝑡

ℎ2

2
+ 𝜌

𝜕𝑣0

𝜕𝑥
𝑢0  

ℎ2

2
+ 𝜌

𝜕𝑣0

𝜕𝑦
𝑣0  

ℎ2

2
= −

𝜕𝑃1

𝜕𝑦
              ,        (2.56𝑏) 

z-momentum equations, 

𝑛 = 0 ∶              𝜌
𝜕𝑤0

𝜕𝑡
ℎ + 𝜌

𝜕𝑤1

𝜕𝑡

ℎ2

2
+ 𝜌

𝜕𝑤0

𝜕𝑥
𝑢0 ℎ + 𝜌

𝜕𝑤1

𝜕𝑥
𝑢0  

ℎ2

2
+ 𝜌

𝜕𝑤0

𝜕𝑦
𝑣0 ℎ

+ 𝜌
𝜕𝑤1

𝜕𝑦
𝑣0  

ℎ2

2
+ 𝜌 𝑤1 𝑤0 ℎ +  𝜌 𝑤1 𝑤1  

ℎ2

2
= �̅� − 𝜌𝑔ℎ    ,       (2.57𝑎) 

 

𝑛 = 1 ∶             𝜌
𝜕𝑤0

𝜕𝑡

ℎ2

2
+ 𝜌

𝜕𝑤1

𝜕𝑡

ℎ3

3
+ 𝜌

𝜕𝑤0

𝜕𝑥
𝑢0  

ℎ2

2
+ 𝜌

𝜕𝑤1

𝜕𝑥
𝑢0  

ℎ3

3
+ 𝜌

𝜕𝑤0

𝜕𝑦
𝑣0  

ℎ2

2

+ 𝜌
𝜕𝑤1

𝜕𝑦
𝑣0  

ℎ3

3
+ 𝜌 𝑤1 𝑤0  

ℎ2

2
+  𝜌 𝑤1 𝑤1  

ℎ3

3
= 𝑃0 − 𝜌𝑔

ℎ2

2
  .  (2.57𝑏) 
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Substituting for 𝑤0 and 𝑤1: 

    𝑊0 =
𝜕𝑧𝑏

𝜕𝑡
+ 𝑢0

𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0

𝜕𝑧𝑏

𝜕𝑦
      

                                                  𝑤1 = −
𝜕𝑢0

𝜕𝑥
−

𝜕𝑣0

𝜕𝑦
                                                         (2.58) 

 

Thus, the z-momentum equations become 

n = 0: 

𝜌ℎ (
𝜕2𝑧𝑏

𝜕𝑡2
+

𝜕𝑢0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+

𝜕𝑣0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0  

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
) 

+
𝜌ℎ2

2
(−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
) + 𝜌𝑢0ℎ (

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+

𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕2𝑧𝑏

𝜕𝑥2
+

𝜕𝑣0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
) 

+𝜌𝑢0  
ℎ2

2
(−

𝜕2𝑢0

𝜕𝑥2
−

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) + 𝜌𝑣0ℎ (

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
+

𝜕𝑢0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0  

𝜕2𝑧𝑏

𝜕𝑦2 ) 

+𝜌𝑣0

ℎ2

2
(−

𝜕2𝑣0

𝜕𝑦2
−

𝜕2𝑢0

𝜕𝑥𝜕𝑦
) − 𝜌ℎ (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) (

𝜕𝑧𝑏

𝜕𝑡
+ 𝑢0

𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0

𝜕𝑧𝑏

𝜕𝑦
) 

+
𝜌ℎ2

2
(
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

= �̅� − 𝜌𝑔ℎ                                                                                   (2.59𝑎) 

and 

n = 1: 

𝜌ℎ2

2
(
𝜕2𝑧𝑏

𝜕𝑡2
+

𝜕𝑢0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+

𝜕𝑣0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0  

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
) +

𝜌ℎ3

3
(−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
) 

+𝜌𝑢0  
ℎ2

2
(
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+

𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕2𝑧𝑏

𝜕𝑥2
+

𝜕𝑣0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
) 

+𝜌𝑢0

ℎ3

3
(−

𝜕2𝑢0

𝜕𝑥2
−

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) +

𝜌ℎ3

3
(
𝜕𝑢0

𝜕𝑥
 
𝜕𝑢0

𝜕𝑥
+ 2

𝜕𝑢0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑦
 
𝜕𝑣0

𝜕𝑦
) 

+𝜌𝑣0

ℎ2

2
(
𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
+

𝜕𝑢0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0  

𝜕2𝑧𝑏

𝜕𝑦2 ) 

−
𝜌ℎ2

2
(
𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0

 𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
+

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0  

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑦
) 

+𝜌𝑣0

ℎ3

3
(−

𝜕2𝑣0

𝜕𝑦2
−

𝜕2𝑢0

𝜕𝑥𝜕𝑦
) = 𝑃0 − 𝜌𝑔

ℎ2

2
     .                                                             (2.59𝑏) 
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When Eqn. (2.59b) is differentiated with respect to x and added to Eqn. (2.55a), then 
 

𝜌ℎ (
𝜕ℎ

𝜕𝑥
)(

𝜕2𝑧𝑏

𝜕𝑡2
+

𝜕𝑢0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+

𝜕𝑣0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0  

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
) + 

𝜌ℎ2

2
(

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑡2
+

𝜕2𝑢0

𝜕𝑥𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑥
+

𝜕𝑢0

𝜕𝑡
 
𝜕2𝑧𝑏

𝜕𝑥2
+

𝜕𝑢0

𝜕𝑥

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+ 𝑢0  

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑡
+

𝜕2𝑣0

𝜕𝑥𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑦
+

𝜕𝑣0

𝜕𝑡
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
 

+
𝜕𝑣0

𝜕𝑥

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
+ 𝑣0

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦𝜕𝑡
) + 𝜌ℎ2 (

𝜕ℎ

𝜕𝑥
)(−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
) +

𝜌ℎ3

3
(−

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
−

𝜕3𝑣0

𝜕𝑥𝜕𝑦𝜕𝑡
) 

+𝜌𝑢0ℎ (
𝜕ℎ

𝜕𝑥
)(

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+

𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕2𝑧𝑏

𝜕𝑥2
+

𝜕𝑣0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
) + 

𝜌ℎ2

2
(𝑢0

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑡
+

𝜕𝑢0

𝜕𝑥

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+

𝜕𝑢0

𝜕𝑥

𝜕𝑢0

𝜕𝑥

𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0

𝜕2𝑢0

𝜕𝑥2

𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0

𝜕𝑢0

𝜕𝑥

𝜕2𝑧𝑏

𝜕𝑥2
+ 2𝑢0

𝜕𝑢0

𝜕𝑥

𝜕2𝑧𝑏

𝜕𝑥2
 

+𝑢0
2
𝜕3𝑧𝑏

𝜕𝑥3
+

𝜕𝑢0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑢0  

𝜕2𝑣0

𝜕𝑥2
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 𝑣0  

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 𝑢0𝑣0

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
 

+𝑢0  
𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
) +

𝜌ℎ3

3
(−

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑢0

𝜕𝑥2
− 𝑢0  

𝜕3𝑢0

𝜕𝑥3
−

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑣0

𝜕𝑥𝜕𝑦
− 𝑢0  

𝜕3𝑣0

𝜕𝑥2𝜕𝑦
) 

+𝜌𝑣0ℎ (
𝜕ℎ

𝜕𝑥
)(

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
+

𝜕𝑢0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0  

𝜕2𝑧𝑏

𝜕𝑦2 ) + 

𝜌ℎ2

2
(
𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
+ 𝑣0  

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦𝜕𝑡
+

𝜕𝑣0

𝜕𝑥
 
𝜕𝑢0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0  

𝜕2𝑢0

𝜕𝑥𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑧𝑏

𝜕𝑥2
 

+𝑢0  
𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 𝑣0  

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 𝑢0𝑣0  

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑦
 

+𝑣0  
𝜕𝑣0

𝜕𝑦
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 2𝑣0  

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑦2
+ 𝑣0

2  
𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦2) + 𝜌𝑢0ℎ
2 (

𝜕ℎ

𝜕𝑥
)(−

𝜕2𝑢0

𝜕𝑥2
−

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) 

+
𝜌ℎ3

3
(−

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑢0

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
−

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑣0

𝜕𝑦2
− 𝑣0  

𝜕3𝑣0

𝜕𝑥𝜕𝑦2) − 

𝜌ℎ (
𝜕ℎ

𝜕𝑥
) (

𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0

 𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
+

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0  

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑦
) 

−
𝜌ℎ2

2
(
𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑧𝑏

𝜕𝑡
+

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+

𝜕𝑢0

𝜕𝑥
 
𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥2
  

+
𝜕𝑣0

𝜕𝑥
 
𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0  

𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑡
+

𝜕𝑣0

𝜕𝑦
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
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+
𝜕𝑢0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0  

𝜕𝑣0

𝜕𝑦
 
𝜕2𝑧𝑏

𝜕𝑥2
+

𝜕𝑣0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑦
 

+𝑣0  
𝜕𝑣0

𝜕𝑦
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
) +

𝜌ℎ3

3
(2

𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑢0

𝜕𝑥
+ 2

𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑣0

𝜕𝑦
+ 2

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 2

𝜕𝑣0

𝜕𝑦
 
𝜕2𝑣0

𝜕𝑥𝜕𝑦
) 

+𝜌ℎ2 (
𝜕ℎ

𝜕𝑥
) (

𝜕𝑢0

𝜕𝑥
 
𝜕𝑢0

𝜕𝑥
+ 2

𝜕𝑢0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑦
 
𝜕𝑣0

𝜕𝑦
) + 𝜌ℎ (

𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
) 

+𝜌𝑣0ℎ
2 (

𝜕ℎ

𝜕𝑥
)(−

𝜕2𝑣0

𝜕𝑦2
−

𝜕2𝑢0

𝜕𝑥𝜕𝑦
) = −𝜌𝑔ℎ (

𝜕ℎ

𝜕𝑥
) − �̅�

𝜕𝑧𝑏

𝜕𝑥
                                                   (2.60) 

 

The pressure �̅� is now eliminated by using Eqn. (2.59a) ×  
𝜕𝑧𝑏

𝜕𝑥
 and adding it to (2.60) 

  𝜌ℎ 
𝜕ℎ

𝜕𝑥
(

𝜕𝑢0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑥
+ 2𝑢0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+

𝜕𝑣0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑦
+ 2𝑣0  

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
+ 𝑢0

2  
𝜕2𝑧𝑏

𝜕𝑥2 + 𝑢0  
𝜕𝑣0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
+ 2𝑢0𝑣0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦

𝜕2𝑧𝑏

𝜕𝑡2 + 𝑣0  
𝜕𝑢0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0

2  
𝜕2𝑧𝑏

𝜕𝑦2 −
𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑡
− 𝑣0  

𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
−

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑡
− 𝑢0  

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥

) 

+ 

𝜌ℎ 
𝜕𝑧𝑏

𝜕𝑥

(

 
 

𝜕𝑢0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑥
+ 2𝑢0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+

𝜕𝑣0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑦
+ 2𝑣0  

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
+ 𝑢0

2  
𝜕2𝑧𝑏

𝜕𝑥2
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
+ 2𝑢0𝑣0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
 

𝜕2𝑧𝑏

𝜕𝑡2
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0

2  
𝜕2𝑧𝑏

𝜕𝑦2
−

𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑡
− 𝑣0  

𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
−

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑡
− 𝑢0  

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥 )

 
 

 

+ 

𝜌ℎ2

2
(

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑡2
+

𝜕2𝑢0

𝜕𝑥𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑥
+

𝜕𝑢0

𝜕𝑡
 
𝜕2𝑧𝑏

𝜕𝑥2
+

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+ 2𝑢0

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑡
+

𝜕2𝑣0

𝜕𝑥𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑦
+

𝜕𝑣0

𝜕𝑡
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
 

+2 
𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
+ 2𝑣0  

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦𝜕𝑡
+ 2𝑢0  

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥2
+ 𝑢0

2  
𝜕3𝑧𝑏

𝜕𝑥3
+ 𝑢0  

𝜕2𝑣0

𝜕𝑥2
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0

2  
𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦2
 

+3𝑢0  
𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 2𝑢0𝑣0  

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
 
𝜕𝑢0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0  

𝜕2𝑢0

𝜕𝑥𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0 

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑧𝑏

𝜕𝑥2
 

+𝑣0  
𝜕𝑢0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 2𝑣0  

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑦2
−

𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑧𝑏

𝜕𝑡
− 𝑣0  

𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑧𝑏

𝜕𝑦
−

𝜕2𝑣0

𝜕𝑥𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑡
−

𝜕𝑣0

𝜕𝑦
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
 

−
𝜕𝑢0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
− 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
−𝑢0

𝜕𝑣0

𝜕𝑦
 
𝜕2𝑧𝑏

𝜕𝑥2 ) 

+ 

𝜌ℎ2 (
𝜕ℎ

𝜕𝑥
)(−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
− 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑢0

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2
+

𝜕𝑢0

𝜕𝑥
 
𝜕𝑢0

𝜕𝑥

+ 2
𝜕𝑢0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑦
 
𝜕𝑣0

𝜕𝑦
) 
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+ 

𝜌ℎ2

2
(
𝜕𝑧𝑏

𝜕𝑥
)(−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
− 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑢0

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2
+

𝜕𝑢0

𝜕𝑥
 
𝜕𝑢0

𝜕𝑥

+ 2
𝜕𝑢0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑦
 
𝜕𝑣0

𝜕𝑦
) 

+ 

𝜌ℎ3

3
(−

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
−

𝜕3𝑣0

𝜕𝑥𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕3𝑢0

𝜕𝑥3
− 𝑢0  

𝜕3𝑣0

𝜕𝑥2𝜕𝑦
−

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑢0

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
−

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑣0

𝜕𝑦2
 

−𝑣0  
𝜕3𝑣0

𝜕𝑥𝜕𝑦2
+

𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑢0

𝜕𝑥
+ 2

𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑣0

𝜕𝑦
+

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑣0

𝜕𝑥𝜕𝑦
+2

𝜕𝑣0

𝜕𝑦
 
𝜕2𝑣0

𝜕𝑥𝜕𝑦
) 

+ 

𝜌ℎ (
𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
) = −𝜌𝑔ℎ (

𝜕ℎ

𝜕𝑥
) − 𝜌𝑔ℎ (

𝜕𝑧𝑏

𝜕𝑥
)                     .                         (2.61) 

 

Simplifying the above equation, 

𝜌ℎ
𝜕𝜂

𝜕𝑥

(

 
 

𝜕𝑢0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑥
+ 2𝑢0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+

𝜕𝑣0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑦
+ 2𝑣0  

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
+ 𝑢0

2  
𝜕2𝑧𝑏

𝜕𝑥2
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
+ 2𝑢0𝑣0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦

𝜕2𝑧𝑏

𝜕𝑡2
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0

2  
𝜕2𝑧𝑏

𝜕𝑦2
−

𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑡
− 𝑣0  

𝜕𝑢0

𝜕𝑥
 
𝜕𝑧𝑏

𝜕𝑦
−

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑡
− 𝑢0  

𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑔

)

 
 

 

+
𝜌ℎ2

2
(

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑡2
+

𝜕2𝑢0

𝜕𝑥𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑥
+

𝜕𝑢0

𝜕𝑡
 
𝜕2𝑧𝑏

𝜕𝑥2
+

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+ 2𝑢0

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑡
+

𝜕2𝑣0

𝜕𝑥𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑢0

2  
𝜕3𝑧𝑏

𝜕𝑥3
 

+
𝜕𝑣0

𝜕𝑡
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 2 

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
+ 2𝑣0  

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦𝜕𝑡
+ 2𝑢0  

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥2
+ 𝑢0  

𝜕2𝑣0

𝜕𝑥2
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0

2  
𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦2
 

+3𝑢0  
𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 2𝑢0𝑣0  

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
 
𝜕𝑢0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0  

𝜕2𝑢0

𝜕𝑥𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑣0 

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑧𝑏

𝜕𝑥2
 

+𝑣0  
𝜕𝑢0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 2𝑣0  

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑦2
−

𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑧𝑏

𝜕𝑡
− 𝑣0  

𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑧𝑏

𝜕𝑦
−

𝜕2𝑣0

𝜕𝑥𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑡
−

𝜕𝑣0

𝜕𝑦
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
 

−
𝜕𝑢0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
− 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
 
𝜕𝑧𝑏

𝜕𝑥
−𝑢0

𝜕𝑣0

𝜕𝑦
 
𝜕2𝑧𝑏

𝜕𝑥2 ) 

+ 

𝜌ℎ2  
𝜕 (ℎ +

𝑧𝑏
2 )

𝜕𝑥
 (−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
− 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑢0

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2
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+2
𝜕𝑢0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑦
 
𝜕𝑣0

𝜕𝑦
) 

+ 

𝜌ℎ3

3
(−

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
−

𝜕3𝑣0

𝜕𝑥𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕3𝑢0

𝜕𝑥3
− 𝑢0  

𝜕3𝑣0

𝜕𝑥2𝜕𝑦
−

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑢0

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
−

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑣0

𝜕𝑦2
 

−𝑣0  
𝜕3𝑣0

𝜕𝑥𝜕𝑦2
+

𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑢0

𝜕𝑥
+ 2

𝜕2𝑢0

𝜕𝑥2
 
𝜕𝑣0

𝜕𝑦
+

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑣0

𝜕𝑥𝜕𝑦
+2

𝜕𝑣0

𝜕𝑦
 
𝜕2𝑣0

𝜕𝑥𝜕𝑦
) 

+ 𝜌ℎ (
𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
) = 0            .                                                                           (2.62) 

 

By factoring similar terms, the following simpler equation results, 

𝜌ℎ (
𝜕𝜂

𝜕𝑥
) [

𝜕2𝑧𝑏

𝜕𝑡2
+

𝜕𝑧𝑏

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
− 𝑢0

𝜕𝑣0

𝜕𝑦
) + 2𝑢0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+ 2𝑣0  

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡

+
𝜕𝑧𝑏

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
− 𝑣0  

𝜕𝑢0

𝜕𝑥
) + 𝑢0

2  
𝜕2𝑧𝑏

𝜕𝑥2
+ 2𝑢0𝑣0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 𝑣0

2  
𝜕2𝑧𝑏

𝜕𝑦2

−
𝜕𝑧𝑏

𝜕𝑡
(
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) + 𝑔]  

+ 

𝜌ℎ2

2
[
𝜕3𝑧𝑏

𝜕𝑥𝜕𝑡2
+

𝜕𝑧𝑏

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑥𝜕𝑡
+

𝜕𝑣0

𝜕𝑥
 
𝜕𝑢0

𝜕𝑦
+ 𝑣0  

𝜕2𝑢0

𝜕𝑥𝜕𝑦
−

𝜕𝑢0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
− 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) 

          + 
𝜕2𝑧𝑏

𝜕𝑥2
(
𝜕𝑢0

𝜕𝑡
+ 2𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0 

𝜕𝑢0

𝜕𝑦
− 𝑢0

𝜕𝑣0

𝜕𝑦
) +

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
(
𝜕𝑢0

𝜕𝑥
−

𝜕𝑣0

𝜕𝑦
) + 2𝑢0

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑡
 

          +
𝜕𝑧𝑏

𝜕𝑦
(
𝜕2𝑣0

𝜕𝑥𝜕𝑡
+ 𝑢0  

𝜕2𝑣0

𝜕𝑥2
− 𝑣0  

𝜕2𝑢0

𝜕𝑥2 ) +
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
+ 3𝑢0  

𝜕𝑣0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑥
) 

          +2 
𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
+ 2𝑣0  

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦𝜕𝑡
+ 𝑢0

2  
𝜕3𝑧𝑏

𝜕𝑥3
+ 2𝑢0𝑣0  

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
+ 2𝑣0  

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑦2
 

          +𝑣0
2  

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦2
−

𝜕𝑧𝑏

𝜕𝑡
(
𝜕2𝑢0

𝜕𝑥2
+

𝜕2𝑣0

𝜕𝑥𝜕𝑦
)] 

+ 

𝜌ℎ2  
𝜕 (ℎ +

𝑧𝑏
2 )

𝜕𝑥
[−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
−

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2
+ (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+ 
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𝜌ℎ3

3
[−

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
−

𝜕3𝑣0

𝜕𝑥𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕3𝑢0

𝜕𝑥3
−

𝜕3(𝑢0𝑣0)

𝜕𝑥2𝜕𝑦
−

𝜕𝑣0

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 ) − 𝑣0  
𝜕3𝑣0

𝜕𝑥𝜕𝑦2

+ (
𝜕𝑢0

𝜕𝑥
+ 2

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕2𝑢0

𝜕𝑥2 )] 

+ 

𝜌ℎ (
𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
) = 0                          .                                                                  (2.63) 

 

2D level I x-momentum GN equation for a fixed bed (
𝜕𝑧𝑏

𝜕𝑡
=

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
=

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
= 0) is 

𝜌ℎ (
𝜕𝜂

𝜕𝑥
) [

𝜕𝑧𝑏

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
− 𝑢0

𝜕𝑣0

𝜕𝑦
) +

𝜕𝑧𝑏

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
− 𝑣0  

𝜕𝑢0

𝜕𝑥
) + 𝑢0

2  
𝜕2𝑧𝑏

𝜕𝑥2

+ 2𝑢0𝑣0  
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 𝑣0

2  
𝜕2𝑧𝑏

𝜕𝑦2
+ 𝑔] 

+ 

𝜌ℎ2

2
[
𝜕𝑧𝑏

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑥𝜕𝑡
+

𝜕𝑣0

𝜕𝑥
 
𝜕𝑢0

𝜕𝑦
+ 𝑣0  

𝜕2𝑢0

𝜕𝑥𝜕𝑦
−

𝜕𝑢0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
− 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) + 𝑢0

2  
𝜕3𝑧𝑏

𝜕𝑥3
+ 𝑣0

2  
𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦2
 

         +
𝜕2𝑧𝑏

𝜕𝑥2
(
𝜕𝑢0

𝜕𝑡
+ 2𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0 

𝜕𝑢0

𝜕𝑦
− 𝑢0

𝜕𝑣0

𝜕𝑦
) +

𝜕𝑧𝑏

𝜕𝑦
(
𝜕2𝑣0

𝜕𝑥𝜕𝑡
+ 𝑢0  

𝜕2𝑣0

𝜕𝑥2
− 𝑣0  

𝜕2𝑢0

𝜕𝑥2 ) 

         +
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
+ 3𝑢0  

𝜕𝑣0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑥
) + 2𝑢0𝑣0  

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
+2𝑣0  

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑦2
] 

+ 

𝜌ℎ2  
𝜕 (ℎ +

𝑧𝑏
2 )

𝜕𝑥
 [−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
−

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2
+ (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+ 

𝜌ℎ3

3
[−

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
−

𝜕3𝑣0

𝜕𝑥𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕3𝑢0

𝜕𝑥3
−

𝜕3(𝑢0𝑣0)

𝜕𝑥2𝜕𝑦
−

𝜕𝑣0

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 ) − 𝑣0  
𝜕3𝑣0

𝜕𝑥𝜕𝑦2

+ (
𝜕𝑢0

𝜕𝑥
+ 2

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕2𝑢0

𝜕𝑥2 )] 

+ 

𝜌ℎ (
𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
) = 0    .                                                                                        (2.64) 
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For a flat horizontal bed, 

𝜕𝑧𝑏

𝜕𝑥
=

𝜕2𝑧𝑏

𝜕𝑥2
=

𝜕3𝑧𝑏

𝜕𝑥3
=

𝜕𝑧𝑏

𝜕𝑦
=

𝜕2𝑧𝑏

𝜕𝑦2
=

𝜕3𝑧𝑏

𝜕𝑦3
=

𝜕𝑧𝑏

𝜕𝑥𝜕𝑦
=

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
= 0  , 

 

Then we have 

𝜌ℎ (
𝜕𝜂

𝜕𝑥
)𝑔 + 𝜌ℎ2 (

𝜕ℎ

𝜕𝑥
) [−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
−

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2

+ (
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+ 

𝜌ℎ3

3
[−

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
−

𝜕3𝑣0

𝜕𝑥𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕3𝑢0

𝜕𝑥3
−

𝜕3(𝑢0𝑣0)

𝜕𝑥2𝜕𝑦
−

𝜕𝑣0

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 ) − 𝑣0  
𝜕3𝑣0

𝜕𝑥𝜕𝑦2
 

+(
𝜕𝑢0

𝜕𝑥
+ 2

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕2𝑢0

𝜕𝑥2 )] + 𝜌ℎ (
𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
) = 0    .                 (2.65) 

 

By simplifying the above equation, the two-dimensional level I GN momentum 

equation for fixed-flat horizontal bed in x-direction is achieved: 

𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
= 

−𝑔
𝜕𝜂

𝜕𝑥
+ ℎ (

𝜕ℎ

𝜕𝑥
) [

𝜕2𝑢0

𝜕𝑥𝜕𝑡
+

𝜕2𝑣0

𝜕𝑦𝜕𝑡
+ 𝑢0  

𝜕2𝑢0

𝜕𝑥2
+

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
+ 𝑣0  

𝜕2𝑣0

𝜕𝑦2
− (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+
ℎ2

3
[
𝜕3𝑢0

𝜕𝑥2𝜕𝑡
+

𝜕3𝑣0

𝜕𝑥𝜕𝑦𝜕𝑡
+ 𝑢0  

𝜕3𝑢0

𝜕𝑥3
+

𝜕3(𝑢0𝑣0)

𝜕𝑥2𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 ) + 𝑣0  
𝜕3𝑣0

𝜕𝑥𝜕𝑦2

− (
𝜕𝑢0

𝜕𝑥
+ 2

𝜕𝑣0

𝜕𝑦
)(

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕2𝑢0

𝜕𝑥2 )]             .                                                (2.66) 
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Similar to the momentum equation for x-direction, the momentum equation for y-

direction is as follows (The derivation of the 2D level I GN momentum equation in y-

direction is essentially the same as for the x-direction and so the final equations are 

summarized): 

 

𝜌ℎ (
𝜕𝜂

𝜕𝑦
) [

𝜕2𝑧𝑏

𝜕𝑡2
+

𝜕𝑧𝑏

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
− 𝑢0

𝜕𝑣0

𝜕𝑦
) + 2𝑢0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+ 2𝑣0  

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡

+
𝜕𝑧𝑏

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
− 𝑣0  

𝜕𝑢0

𝜕𝑥
) + 𝑢0

2  
𝜕2𝑧𝑏

𝜕𝑥2
+ 2𝑢0𝑣0  

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 𝑣0

2  
𝜕2𝑧𝑏

𝜕𝑦2

−
𝜕𝑧𝑏

𝜕𝑡
(
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) + 𝑔] 

+ 

𝜌ℎ2

2
[
𝜕3𝑧𝑏

𝜕𝑦𝜕𝑡2
+

𝜕𝑧𝑏

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑦𝜕𝑡
+ 𝑣0  

𝜕2𝑢0

𝜕𝑦2
− 𝑢0  

𝜕2𝑣0

𝜕𝑦2 ) + 2
𝜕𝑢0

𝜕𝑦
 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
+ 2𝑢0

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦𝜕𝑡
 

+
𝜕𝑧𝑏

𝜕𝑦
(
𝜕2𝑣0

𝜕𝑦𝜕𝑡
+

𝜕𝑢0

𝜕𝑦
 
𝜕𝑣0

𝜕𝑥
+ 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
−

𝜕𝑣0

𝜕𝑦
 
𝜕𝑢0

𝜕𝑥
− 𝑣0  

𝜕2𝑢0

𝜕𝑥𝜕𝑦
) + 𝑣0

2  
𝜕3𝑧𝑏

𝜕𝑦3
+ 2𝑣0  

𝜕3𝑧𝑏

𝜕𝑦2𝜕𝑡
 

+ 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
( 
𝜕𝑢0

𝜕𝑡
+ 3𝑣0  

𝜕𝑢0

𝜕𝑦
+ 𝑢0  

𝜕𝑣0

𝜕𝑦
) +

𝜕2𝑧𝑏

𝜕𝑦2
(
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
+ 2𝑣0  

𝜕𝑣0

𝜕𝑦
− 𝑣0  

𝜕𝑢0

𝜕𝑥
) + 

2𝑢0  
𝜕𝑢0

𝜕𝑦

𝜕2𝑧𝑏

𝜕𝑥2
+ 𝑢0

2  
𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
+ 2𝑢0𝑣0  

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦2
+

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
(
𝜕𝑣0

𝜕𝑦
−

𝜕𝑢0

𝜕𝑥
) −

𝜕𝑧𝑏

𝜕𝑡
(
𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 )] 

+ 

𝜌ℎ2  
𝜕 (ℎ +

𝑧𝑏
2 )

𝜕𝑦
[−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
−

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2
+ (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+
𝜌ℎ3

3
[−

𝜕3𝑢0

𝜕𝑥𝜕𝑦𝜕𝑡
−

𝜕3𝑣0

𝜕𝑦2𝜕𝑡
−

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑢0

𝜕𝑥2
− 𝑢0  

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
−

𝜕𝑢0

𝜕𝑦

𝜕2𝑣0

𝜕𝑥𝜕𝑦
− 

𝜕3(𝑢0𝑣0)

𝜕𝑥𝜕𝑦2
− 𝑣0  

𝜕3𝑣0

𝜕𝑦3

+ (2
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 )] 

+ 𝜌ℎ (
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
+ 𝑣0  

𝜕𝑣0

𝜕𝑦
) = 0             .                                                                           (2.67) 
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The 2D level I y-momentum GN equation for a fixed bed (
𝜕2𝑧𝑏

𝜕𝑡2
= 

𝜕2𝑧𝑏

𝜕𝑥𝜕𝑡
=

𝜕2𝑧𝑏

𝜕𝑦𝜕𝑡
= 0) is  

𝜌ℎ (
𝜕𝜂

𝜕𝑦
) [

𝜕𝑧𝑏

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
− 𝑢0

𝜕𝑣0

𝜕𝑦
) +

𝜕𝑧𝑏

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
− 𝑣0  

𝜕𝑢0

𝜕𝑥
) + 𝑢0

2  
𝜕2𝑧𝑏

𝜕𝑥2

+ 2𝑢0𝑣0  
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+ 𝑣0

2  
𝜕2𝑧𝑏

𝜕𝑦2
+ 𝑔] 

+ 

𝜌ℎ2

2
[
𝜕𝑧𝑏

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑦𝜕𝑡
+ 𝑣0  

𝜕2𝑢0

𝜕𝑦2
− 𝑢0  

𝜕2𝑣0

𝜕𝑦2 ) + 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
( 
𝜕𝑢0

𝜕𝑡
+ 3𝑣0  

𝜕𝑢0

𝜕𝑦
+ 𝑢0  

𝜕𝑣0

𝜕𝑦
) + 𝑣0

2  
𝜕3𝑧𝑏

𝜕𝑦3
 

+
𝜕𝑧𝑏

𝜕𝑦
(
𝜕2𝑣0

𝜕𝑦𝜕𝑡
+

𝜕𝑢0

𝜕𝑦
 
𝜕𝑣0

𝜕𝑥
+ 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
−

𝜕𝑣0

𝜕𝑦
 
𝜕𝑢0

𝜕𝑥
− 𝑣0  

𝜕2𝑢0

𝜕𝑥𝜕𝑦
) + 2𝑢0  

𝜕𝑢0

𝜕𝑦

𝜕2𝑧𝑏

𝜕𝑥2
 

+
𝜕2𝑧𝑏

𝜕𝑦2
(
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
+ 2𝑣0  

𝜕𝑣0

𝜕𝑦
− 𝑣0  

𝜕𝑢0

𝜕𝑥
) + 𝑢0

2  
𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
+2𝑢0𝑣0  

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦2
] 

+ 

 𝜌ℎ2  
𝜕 (ℎ +

𝑧𝑏
2 )

𝜕𝑦
[−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
−

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2
+ (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+ 

𝜌ℎ3

3
[−

𝜕3𝑢0

𝜕𝑥𝜕𝑦𝜕𝑡
−

𝜕3𝑣0

𝜕𝑦2𝜕𝑡
−

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑢0

𝜕𝑥2
− 𝑢0  

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
−

𝜕𝑢0

𝜕𝑦

𝜕2𝑣0

𝜕𝑥𝜕𝑦
− 

𝜕3(𝑢0𝑣0)

𝜕𝑥𝜕𝑦2
− 𝑣0  

𝜕3𝑣0

𝜕𝑦3

+ (2
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 )] 

+ 𝜌ℎ (
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
+ 𝑣0  

𝜕𝑣0

𝜕𝑦
) = 0                 .                                                                       (2.68) 
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For a flat horizontal bed,  

𝜕𝑧𝑏

𝜕𝑥
=

𝜕2𝑧𝑏

𝜕𝑥2
=

𝜕3𝑧𝑏

𝜕𝑥3
=

𝜕𝑧𝑏

𝜕𝑦
=

𝜕2𝑧𝑏

𝜕𝑦2
=

𝜕3𝑧𝑏

𝜕𝑦3
=

𝜕𝑧𝑏

𝜕𝑥𝜕𝑦
=

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
= 0 ∶ 

𝜌ℎ 
𝜕𝜂

𝜕𝑦
𝑔 + 𝜌ℎ2 (

𝜕ℎ

𝜕𝑦
) [−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
−

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2
+ (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+
𝜌ℎ3

3
[−

𝜕3𝑢0

𝜕𝑥𝜕𝑦𝜕𝑡
−

𝜕3𝑣0

𝜕𝑦2𝜕𝑡
−

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑢0

𝜕𝑥2
− 𝑢0  

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
−

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑣0

𝜕𝑥𝜕𝑦
−

𝜕3(𝑢0𝑣0)

𝜕𝑥𝜕𝑦2
− 𝑣0  

𝜕3𝑣0

𝜕𝑦3

+ (2
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 )] 

+ 𝜌ℎ (
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
+ 𝑣0  

𝜕𝑣0

𝜕𝑦
) = 0    .                                                                                    (2.69) 

 

By simplifying the above, the two-dimensional level I GN momentum equation for 

fixed-flat horizontal bed in y-direction is derived: 

𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
+ 𝑣0  

𝜕𝑣0

𝜕𝑦
= 

−𝑔
𝜕𝜂

𝜕𝑦
+ ℎ (

𝜕ℎ

𝜕𝑦
) [

𝜕2𝑢0

𝜕𝑥𝜕𝑡
+

𝜕2𝑣0

𝜕𝑦𝜕𝑡
+ 𝑢0  

𝜕2𝑢0

𝜕𝑥2
+

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
+ 𝑣0  

𝜕2𝑣0

𝜕𝑦2
− (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+
ℎ2

3
[

𝜕3𝑢0

𝜕𝑥𝜕𝑦𝜕𝑡
+

𝜕3𝑣0

𝜕𝑦2𝜕𝑡
+

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑢0

𝜕𝑥2
+ 𝑢0  

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
+

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕3(𝑢0𝑣0)

𝜕𝑥𝜕𝑦2
+ 𝑣0  

𝜕3𝑣0

𝜕𝑦3

− (2
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 )]           .                                                 (2.70) 

 

Then by applying Eqn. (2.64) in 1-D we have: 

𝜌ℎ (
𝜕𝜂

𝜕𝑥
) [

𝜕𝑢0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑥
+ 𝑢0

2  
𝜕2𝑧𝑏

𝜕𝑥2
+ 𝑔] +

𝜌ℎ3

3
[−

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
− 𝑢0  

𝜕3𝑢0

𝜕𝑥3
+

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑢0

𝜕𝑥2
] 

+𝜌ℎ2  
𝜕 (ℎ +

𝑧𝑏
2 )

𝜕𝑥
 [−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
+ (

𝜕𝑢0

𝜕𝑥
)
2

] + 𝜌ℎ [
𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
]  

+
𝜌ℎ2

2
[
𝜕2𝑢0

𝜕𝑥𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑥
+

𝜕2𝑧𝑏

𝜕𝑥2
(
𝜕𝑢0

𝜕𝑡
+ 2𝑢0  

𝜕𝑢0

𝜕𝑥
) + 𝑢0

2  
𝜕3𝑧𝑏

𝜕𝑥3
] = 0           .                                (2. 71) 
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For a flat horizontal bed, 

𝜕𝑧𝑏

𝜕𝑥
=

𝜕2𝑧𝑏

𝜕𝑥2
= 0  , 

 

and so the, 1D level І GN momentum equation for fixed-flat horizontal bed in x-

direction is obtained as: 

𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
= −𝑔

𝜕𝜂

𝜕𝑥
+ ℎ (

𝜕ℎ

𝜕𝑥
) [

𝜕2𝑢0

𝜕𝑥𝜕𝑡
+ 𝑢0  

𝜕2𝑢0

𝜕𝑥2
− (

𝜕𝑢0

𝜕𝑥
)
2

] 

                                +
ℎ2

3
[
𝜕3𝑢0

𝜕𝑥2𝜕𝑡
+ 𝑢0  

𝜕3𝑢0

𝜕𝑥3
−

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑢0

𝜕𝑥2
]                .                                     (2.72) 

 

Here, The 1D level I GN continuity equation is: 

𝜕ℎ

𝜕𝑡
+

𝜕(𝑢0ℎ)

𝜕𝑥
= 0                                                                                                                           (2.73)  

By applying Eqn. (2.68) in 1-D we have: 
 

𝜌ℎ (
𝜕𝜂

𝜕𝑦
) [

𝜕𝑣0

𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑦
+ 𝑣0

2  
𝜕2𝑧𝑏

𝜕𝑦2
+ 𝑔] +

𝜌ℎ3

3
[−

𝜕3𝑣0

𝜕𝑦2𝜕𝑡
− 𝑣0  

𝜕3𝑣0

𝜕𝑦3
+

𝜕𝑣0

𝜕𝑦
 
𝜕2𝑣0

𝜕𝑦2
] 

+𝜌ℎ2  
𝜕 (ℎ +

𝑧𝑏
2 )

𝜕𝑦
 [−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2
+ (

𝜕𝑣0

𝜕𝑦
)
2

] + 𝜌ℎ [
𝜕𝑣0

𝜕𝑡
+ 𝑣0  

𝜕𝑣0

𝜕𝑦
] 

+
𝜌ℎ2

2
[
𝜕2𝑣0

𝜕𝑦𝜕𝑡
 
𝜕𝑧𝑏

𝜕𝑦
+

𝜕2𝑧𝑏

𝜕𝑦2
(
𝜕𝑣0

𝜕𝑡
+ 2𝑣0  

𝜕𝑣0

𝜕𝑦
) + 𝑣0

2  
𝜕3𝑧𝑏

𝜕𝑦3
] = 0             .                               (2.74) 

  

For a flat horizontal bed, 

𝜕𝑧𝑏

𝜕𝑦
=

𝜕2𝑧𝑏

𝜕𝑦2
= 0   , 

 

1D level І GN momentum equation for fixed-flat horizontal bed in y-direction is: 

𝜕𝑣0

𝜕𝑡
+ 𝑣0  

𝜕𝑣0

𝜕𝑦
= −𝑔

𝜕𝜂

𝜕𝑦
+ ℎ (

𝜕ℎ

𝜕𝑦
) [

𝜕2𝑣0

𝜕𝑦𝜕𝑡
+ 𝑣0  

𝜕2𝑣0

𝜕𝑦2
− (

𝜕𝑣0

𝜕𝑦
)
2

] 

                                +
ℎ2

3
[
𝜕3𝑣0

𝜕𝑦2𝜕𝑡
+ 𝑣0  

𝜕3𝑣0

𝜕𝑦3
−

𝜕𝑣0

𝜕𝑦
 
𝜕2𝑣0

𝜕𝑦2
]                                                     (2.75) 

Here, the 1D level I GN continuity equation is: 

𝜕ℎ

𝜕𝑡
+

𝜕(𝑣0ℎ)

𝜕𝑦
= 0                                                                                                                           (2.76)  
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2.2 Summery 

 2D and 1D level I GN equations were derived in this chapter. A mathematical 

Level I GN model has been formulated based on the 3-D continuity and 

momentum equations and kinematic boundary condition applicable to the free 

surface flow of inviscid, incompressible liquid over a fixed bed.   

 

 For the first time, to the author’s knowledge, the GN Level I mass and 

momentum equations have been derived in two horizontal dimensions for non-

uniform beds.  These equations are summarised by Eqn. (2.18) for mass 

conservation and Eqns. (2.64) and (2.68) for momentum conservation.  The 2D 

level I GN equations for a horizontal bed were also obtained as a reduced 

version of the non-uniform bed equations, and are summarised as Eqns. (2.18), 

(2.66) and (2.70). 1D level I GN equations of a horizontal bed were obtained 

as Eqns. (2.72) and (2.73).  
 

 

 1D level I GN equations are solved numerically. The details of discretisations 

are presented in chapter 3 (section 3.2). 2D level I GN numerical discretisations 

are presented in sections 3.3 and 3.4 of chapter 3.  Wave predictions of 1D and 

2D level I GN numerical solvers are presented in chapter 4 and chapters 5, 

respectively.  
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Governing GN 

Equations 

Discretised 

applying 2nd or 

4th order FD 

Using Tri- or 

Penta-diagonal 

Matrix Solver 

Applying 

Boundary 

Conditions 

4th order Runge-

Kutta time 

stepping 

Post-processing 

of output files 

in Matlab 

Chapter 3 

Numerical Implementation of 1D and 2D  

Level I GN Equations 

 

3.1   Finite Difference Solvers of Green-Naghdi Equations 

3.1.1   Introduction 

This chapter presents the implicit numerical schemes used for spatial discretisation of 

the level I GN equations. Two matrix solvers, second-order tridiagonal and fourth-

order pentadiagonal matrix, will be introduced.  A Runge-Kutta fourth-order scheme 

is used for time integration. The boundary conditions are outlined. The numerical 

procedure used to solve the 1D and 2D level I GN equations is explained.   

 

Flowchart 1 presents the steps of developing numerical solver of GN equations: 

 

  

 

 

 

 

 

 

Flowchart 1: Steps of developing numerical solvers 
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3.2   Finite Difference Solver of 1-D Green-Naghdi Equations 

Herein, the nonlinear Green-Naghdi equations are discretised using finite differences 

and solved on a uniform Cartesian grid for specific initial and boundary conditions. 

The Finite Difference method (FDM) involves approximation of the derivatives within 

the PDEs by algebraic differences using Taylor series. Figure 3.1 is a definition sketch 

showing the node indexing system for the one-dimensional finite difference grid used.  

 

 

 

Figure 3.1: Finite Difference Grid 

 

By Taylor Series expansions, finite differences are obtained. Second-order central 

differences of the first, second, and third derivatives are respectively as follows: 

 

                                                                   
𝜕𝑓

𝜕𝑥
|𝑖
𝑘 =

𝑓𝑖+1
𝑘 − 𝑓𝑖−1

𝑘

2∆𝑥
                                       (3.1𝑎) 

                                                         
𝜕2𝑓

𝜕𝑥2
|𝑖
𝑘 =

𝑓𝑖+1
𝑘 − 2 𝑓𝑖

𝑘 + 𝑓𝑖−1
𝑘

∆𝑥2
                                 (3.1𝑏) 

                                                  
𝜕3𝑓

𝜕𝑥3
|𝑖
𝑘 =

𝑓𝑖+2
𝑘 − 2 𝑓𝑖+1

𝑘 + 2 𝑓𝑖−1
𝑘 − 𝑓𝑖−2

𝑘

2∆𝑥3
                      (3.1𝑐) 

 

where X = (𝑖 − 1)∆𝑥, 𝑡 = 𝑘∆𝑡 , ∆x is the spatial increment, and ∆t is the time step. 

Fourth-order central difference approximations to the first, second, and third 

derivatives are respectively: 

                                              
𝜕𝑓

𝜕𝑥
|𝑖
𝑘 =

1

12∆𝑥
 (𝑓𝑖−2

𝑘 − 8𝑓𝑖−1
𝑘 + 8𝑓𝑖+1

𝑘 − 𝑓𝑖+2
𝑘 )              (3.2𝑎) 

                       
𝜕2𝑓

𝜕𝑥2
|𝑖
𝑘 =

1

12∆𝑥2
 (−𝑓𝑖−2

𝑘 + 16 𝑓𝑖−1
𝑘 − 30 𝑓𝑖

𝑘 + 16 𝑓𝑖+1
𝑘 − 𝑓𝑖+2

𝑘 )      (3.2𝑏) 

           
𝜕3𝑓

𝜕𝑥3
|𝑖
𝑘 =

1

8∆𝑥3
 (𝑓𝑖−3

𝑘 − 8  𝑓𝑖−2
𝑘 + 13 𝑓𝑖−1

𝑘 − 13 𝑓𝑖+1
𝑘 + 8 𝑓𝑖+2

𝑘 − 𝑓𝑖+3
𝑘 )       (3.2𝑐) 
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It is demonstrated later that both the second-order and the fourth-order central 

difference approximations are sufficient to represent accurately the derivative terms in 

the Green-Naghdi equations. From before, the GN equations for 1-D flow over a flat, 

horizontal, non-erodible bed are given by:  

continuity:  

                                                                      
𝜕ℎ

𝜕𝑡
+

𝜕(𝑢0ℎ)

𝜕𝑥
= 0                                        (3.3𝑎) 

in which h is the total depth and u0 is horizontal velocity component.  

momentum: 

𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
= −𝑔

𝜕𝜂

𝜕𝑥
+ ℎ (

𝜕ℎ

𝜕𝑥
) [

𝜕2𝑢0

𝜕𝑥𝜕𝑡
+ 𝑢0  

𝜕2𝑢0

𝜕𝑥2
− (

𝜕𝑢0

𝜕𝑥
)
2

] 

                                                          +
ℎ2

3
[
𝜕3𝑢0

𝜕𝑥2𝜕𝑡
+ 𝑢0  

𝜕3𝑢0

𝜕𝑥3
−

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑢0

𝜕𝑥2
]                            (3.3𝑏) 

where 𝜂 is the free surface elevation above a fixed horizontal datum, 𝑧𝑏 is the bed 

elevation above the same datum, and 𝑔 is the acceleration due to gravity. 

Rearranging these equations gives, 

                                                                     
𝜕ℎ

𝜕𝑡
= −

𝜕(𝑢0ℎ)

𝜕𝑥
                                            (3.4𝑎) 

and  

𝜕𝑢0

𝜕𝑡
= −𝑢0  

𝜕𝑢0

𝜕𝑥
− 𝑔

𝜕𝜂

𝜕𝑥
+ ℎ (

𝜕ℎ

𝜕𝑥
) [

𝜕2𝑢0

𝜕𝑥𝜕𝑡
+ 𝑢0  

𝜕2𝑢0

𝜕𝑥2
− (

𝜕𝑢0

𝜕𝑥
)
2

] 

                                       +
ℎ2

3
[
𝜕3𝑢0

𝜕𝑥2𝜕𝑡
+ 𝑢0  

𝜕3𝑢0

𝜕𝑥3
−

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑢0

𝜕𝑥2
]                                              (3. 4𝑏) 

 

Eqn. (3.4b) contains two terms ( 
𝜕2𝑢0

𝜕𝑥𝜕𝑡
 and 

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
) that are cross-derivatives involving 

space and time. An explicit predictor-corrector scheme is incapable of solving this kind 

of equation, and so an implicit finite difference scheme is used to solve the 1-D GN 

momentum equation (Eqn. 3.4b). Herein, both implicit tridiagonal and pentadiagonal 

matrix inversion schemes are utilised to solve Eqn. (3.4b) using second-order and 

fourth-order differences, respectively. 
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3.2.1   Second-order tridiagonal scheme for 1D GN equations 

Rearranging Equation (3.4b), we have 

𝜕𝑢0

𝜕𝑡
− ℎ

𝜕ℎ

𝜕𝑥
 
𝜕

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
) −

ℎ2

3

𝜕2

𝜕𝑥2
 (

𝜕𝑢0

𝜕𝑡
) 

= −𝑢0  
𝜕𝑢0

𝜕𝑥
− 𝑔

𝜕𝜂

𝜕𝑥
+ ℎ (

𝜕ℎ

𝜕𝑥
) [𝑢0  

𝜕2𝑢0

𝜕𝑥2
− (

𝜕𝑢0

𝜕𝑥
)
2

] +
ℎ2

3
[𝑢0  

𝜕3𝑢0

𝜕𝑥3
−

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑢0

𝜕𝑥2
]        (3.4𝑐) 

Now let 

𝐹 = −𝑢0  
𝜕𝑢0

𝜕𝑥
− 𝑔

𝜕𝜂

𝜕𝑥
+ ℎ (

𝜕ℎ

𝜕𝑥
) [𝑢0  

𝜕2𝑢0

𝜕𝑥2
− (

𝜕𝑢0

𝜕𝑥
)
2

] +
ℎ2

3
[𝑢0  

𝜕3𝑢0

𝜕𝑥3
−

𝜕𝑢0

𝜕𝑥
 
𝜕2𝑢0

𝜕𝑥2
]   (3.4𝑑) 

Then, Eqn. (3.4c) becomes: 

                                                𝐹 =
𝜕𝑢0

𝜕𝑡
− ℎ

𝜕ℎ

𝜕𝑥
 
𝜕

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
) −

ℎ2

3

𝜕2

𝜕𝑥2
 (

𝜕𝑢0

𝜕𝑡
)                           (3.4𝑒) 

Discretising this equation using second-order central differences leads to:  

𝐹𝑖
𝑘 =

𝜕𝑢0

𝜕𝑡
│𝑖

𝑘 − ℎ𝑖
𝑘
ℎ𝑖+1

𝑘 − ℎ𝑖−1
𝑘

4∆𝑥2
(
𝜕𝑢0

𝜕𝑡
│𝑖+1

𝑘 −
𝜕𝑢0

𝜕𝑡
│𝑖−1

𝑘 ) −
(ℎ𝑖

𝑘)2

3∆𝑥2
(
𝜕𝑢0

𝜕𝑡
│𝑖+1

𝑘 − 2
𝜕𝑢0

𝜕𝑡
│𝑖

𝑘 +
𝜕𝑢0

𝜕𝑡
│𝑖−1

𝑘 ) 

or      (3.5) 

𝐹𝑖
𝑘 = [ℎ𝑖

𝑘 ℎ𝑖+1
𝑘 − ℎ𝑖−1

𝑘

4∆𝑥2
−

(ℎ𝑖
𝑘)2

3∆𝑥2
] �̂�𝑖−1

𝑘 + [1 +
2(ℎ𝑖

𝑘)2

3∆𝑥2
] �̂�𝑖

𝑘 − [ℎ𝑖
𝑘 ℎ𝑖+1

𝑘 − ℎ𝑖−1
𝑘

4∆𝑥2
+

(ℎ𝑖
𝑘)2

3∆𝑥2
] �̂�𝑖+1

𝑘  

where �̂� =
𝜕𝑢0

𝜕𝑡
. The discretised equation is rewritten as 

                                              𝐹𝑖
𝑘 = 𝑎𝑖 �̂�𝑖−1

𝑘 + 𝑏𝑖 �̂�𝑖
𝑘 + 𝑐𝑖 �̂�𝑖+1

𝑘                                 (3.6) 

in which 

𝑎𝑖 = [ℎ𝑖
𝑘 ℎ𝑖+1

𝑘 − ℎ𝑖−1
𝑘

4∆𝑥2
−

(ℎ𝑖
𝑘)2

3∆𝑥2
] , 𝑏𝑖 = [1 +

2(ℎ𝑖
𝑘)2

3∆𝑥2
] , 𝑐𝑖 = −[ℎ𝑖

𝑘 ℎ𝑖+1
𝑘 − ℎ𝑖−1

𝑘

4∆𝑥2
+

(ℎ𝑖
𝑘)2

3∆𝑥2
] (3.7) 

 

The right hand side of Eqn. (3.4c) is also discretised using second-order central 

differences, giving: 

𝐹𝑖 = −𝑢0𝑖
 
𝜕𝑢0

𝜕𝑥
⃒𝑖 − 𝑔

𝜕𝜂

𝜕𝑥
⃒𝑖 + ℎ𝑖  

𝜕ℎ

𝜕𝑥
⃒𝑖 [𝑢0𝑖

 
𝜕2𝑢0

𝜕𝑥2
⃒𝑖 − (

𝜕𝑢0

𝜕𝑥
)
2

⃒𝑖]                                   

         +
ℎ𝑖

2

3
[𝑢0𝑖

 
𝜕3𝑢0

𝜕𝑥3
⃒𝑖 −

𝜕𝑢0

𝜕𝑥
⃒𝑖

𝜕2𝑢0

𝜕𝑥2
⃒𝑖]                                                                              (3.8)    
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The above set of discretised equations form the following tridiagonal matrix system: 

   

[
 
 
 
 
 
 
 
 
 
 𝑏2       𝑐2                             …                            
𝑎3      𝑏3     𝑐3                    …                          

⋱     
𝑎𝑖      𝑏𝑖     𝑐𝑖

             ⋱   
                       ⋱   

                             ⋱ 
                     𝑎𝑖𝑚𝑎𝑥−2    𝑏𝑖𝑚𝑎𝑥−2    𝑐𝑖𝑚𝑎𝑥−2 
                                         𝑎𝑖𝑚𝑎𝑥−1    𝑏𝑖𝑚𝑎𝑥−1 ]

 
 
 
 
 
 
 
 
 

  .  

[
 
 
 
 
 
 
 
 

�̂�2

�̂�3

⋮
⋮
�̂�𝑖

⋮
⋮

�̂�𝑖𝑚𝑎𝑥−2

�̂�𝑖𝑚𝑎𝑥−1]
 
 
 
 
 
 
 
 

 =   

[
 
 
 
 
 
 
 
 
 

�̂�2 − 𝑎2 �̂�1

�̂�3

⋮
⋮
�̂�𝑖

⋮
⋮

�̂�𝑖𝑚𝑎𝑥−2

�̂�𝑖𝑚𝑎𝑥−1 − 𝑐𝑖𝑚𝑎𝑥−1 �̂�𝑖𝑚𝑎𝑥]
 
 
 
 
 
 
 
 
 

 

The unknown values �̂�𝑖
𝑘 =

𝜕𝑢0

𝜕𝑡
│

𝑖

𝑘
  are obtained by for i = 2, …, imax-1 using the 

Thomas algorithm (Press et al. 2007). 

 

3.2.2   Fourth-order pentadiagonal scheme for 1D GN equations 

Applying fourth order central differences to Eqn. (3.4e) leads to:  

𝐹𝑖
𝑘 =

𝜕𝑢0

𝜕𝑡
│𝑖

𝑘 −
(ℎ𝑖

𝑘)2

36∆𝑥2
(−

𝜕𝑢0

𝜕𝑡
│𝑖−2

𝑘 + 16 
𝜕𝑢0

𝜕𝑡
│𝑖−1

𝑘 − 30 
𝜕𝑢0

𝜕𝑡
│𝑖

𝑘 + 16 
𝜕𝑢0

𝜕𝑡
│𝑖+1

𝑘 −
𝜕𝑢0

𝜕𝑡
│𝑖+2

𝑘 ) 

  −ℎ𝑖
𝑘
ℎ𝑖−2

𝑘 − 8 ℎ𝑖−1
𝑘 + 8 ℎ𝑖+1

𝑘 − ℎ𝑖+2
𝑘

144∆𝑥2
(
𝜕𝑢0

𝜕𝑡
│𝑖−2

𝑘 − 8 
𝜕𝑢0

𝜕𝑡
│𝑖−1

𝑘 + 8 
𝜕𝑢0

𝜕𝑡
│𝑖+1

𝑘 −
𝜕𝑢0

𝜕𝑡
│𝑖+2

𝑘 )   (3.9) 

 

or 

𝐹𝑖
𝑘 = [

(ℎ𝑖
𝑘)2

36 ∆𝑥2
+

ℎ𝑖
𝑘

12 ∆𝑥
(
−ℎ𝑖−2

𝑘 + 8 ℎ𝑖−1
𝑘 − 8 ℎ𝑖+1

𝑘 + ℎ𝑖+2
𝑘

12 ∆𝑥
)]  �̂�𝑖−2

𝑘  

        + [
−16 (ℎ𝑖

𝑘)2

36 ∆𝑥2
+

8 ℎ𝑖
𝑘

12 ∆𝑥
(
ℎ𝑖−2

𝑘 − 8 ℎ𝑖−1
𝑘 + 8 ℎ𝑖+1

𝑘 − ℎ𝑖+2
𝑘

12 ∆𝑥
)]  �̂�𝑖−1

𝑘  

        + [1 +
30 (ℎ𝑖

𝑘)2

36 ∆𝑥2
] �̂�𝑖

𝑘                                                                                                 (3.10) 

       + [
−16 (ℎ𝑖

𝑘)2

36 ∆𝑥2
+

8 ℎ𝑖
𝑘

12 ∆𝑥
(
−ℎ𝑖−2

𝑘 + 8 ℎ𝑖−1
𝑘 − 8 ℎ𝑖+1

𝑘 + ℎ𝑖+2
𝑘

12 ∆𝑥
)]  �̂�𝑖+1

𝑘  

       + [
(ℎ𝑖

𝑘)2

36 ∆𝑥2
+

ℎ𝑖
𝑘

12 ∆𝑥
(
ℎ𝑖−2

𝑘 − 8 ℎ𝑖−1
𝑘 + 8 ℎ𝑖+1

𝑘 − ℎ𝑖+2
𝑘

12 ∆𝑥
)]  �̂�𝑖+2

𝑘  
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where  �̂�𝑖
𝑘 =

∂𝑢0

𝜕𝑡
   hence, 

                            𝐹𝑖
𝑘 = 𝑎𝑖 �̂�𝑖−2

𝑘 + 𝑏𝑖 �̂�𝑖−1
𝑘 + 𝑐𝑖 �̂�𝑖

𝑘 + 𝑑𝑖 �̂�𝑖+1
𝑘 + 𝑒𝑖  �̂�𝑖+2

𝑘                 (3.11) 

where    

       𝑎𝑖 = [
(ℎ𝑖

𝑘)2

36 ∆𝑥2
+

ℎ𝑖
𝑘

144 ∆𝑥2
(−ℎ𝑖−2

𝑘 + 8 ℎ𝑖−1
𝑘 − 8 ℎ𝑖+1

𝑘 + ℎ𝑖+2
𝑘 )] 

       𝑏𝑖 = [
−4 (ℎ𝑖

𝑘)2

9 ∆𝑥2
+

ℎ𝑖
𝑘

18 ∆𝑥2
(ℎ𝑖−2

𝑘 − 8 ℎ𝑖−1
𝑘 + 8 ℎ𝑖+1

𝑘 − ℎ𝑖+2
𝑘 )] 

       𝑐𝑖 = [1 +
5 (ℎ𝑖

𝑘)2

6 ∆𝑥2
]                                                                                                    (3.12) 

       𝑑𝑖 = [
−4 (ℎ𝑖

𝑘)2

9 ∆𝑥2
+

ℎ𝑖
𝑘

18 ∆𝑥2
(−ℎ𝑖−2

𝑘 + 8 ℎ𝑖−1
𝑘 − 8 ℎ𝑖+1

𝑘 + ℎ𝑖+2
𝑘 )] 

       𝑒𝑖 = [
(ℎ𝑖

𝑘)2

36 ∆𝑥2
+

ℎ𝑖
𝑘

144 ∆𝑥2
(ℎ𝑖−2

𝑘 − 8 ℎ𝑖−1
𝑘 + 8 ℎ𝑖+1

𝑘 − ℎ𝑖+2
𝑘 )] 

 

The right hand side of Eqn. (3.4c) is discretised using fourth-order central difference: 

𝐹𝑖 = −𝑢0𝑖
 
𝜕𝑢0

𝜕𝑥
⃒𝑖 − 𝑔

𝜕𝜂

𝜕𝑥
⃒𝑖 + ℎ𝑖  

𝜕ℎ

𝜕𝑥
⃒𝑖 [𝑢0𝑖

 
𝜕2𝑢0

𝜕𝑥2
⃒𝑖 − (

𝜕𝑢0

𝜕𝑥
)
2

⃒𝑖]         

          +
ℎ𝑖

2

3
[𝑢0𝑖

 
𝜕3𝑢0

𝜕𝑥3
⃒𝑖 −

𝜕𝑢0

𝜕𝑥
⃒𝑖

𝜕2𝑢0

𝜕𝑥2
⃒𝑖]                                                                (3.13) 

 

The resulting pentadiagonal matrix equation is as follows: 

   

[
 
 
 
 
 
 
 
 
 

𝑐2       𝑑2      𝑒2                           …                            

𝑏3       𝑐3        𝑑3      𝑒3               …                            

⋱     

𝑎𝑖     𝑏𝑖     𝑐𝑖     𝑑𝑖     𝑒𝑖

                ⋱    

                         ⋱     

                              ⋱   

                     𝑎𝑖𝑚𝑎𝑥−2    𝑏𝑖𝑚𝑎𝑥−2    𝑐𝑖𝑚𝑎𝑥−2    𝑑𝑖𝑚𝑎𝑥−2    𝑒𝑖𝑚𝑎𝑥−2
 

                                      𝑎𝑖𝑚𝑎𝑥−1    𝑏𝑖𝑚𝑎𝑥−1    𝑐𝑖𝑚𝑎𝑥−1    𝑑𝑖𝑚𝑎𝑥−1]
 
 
 
 
 
 
 
 
 

  .  

[
 
 
 
 
 
 
 
 

�̂�2

�̂�3

⋮

⋮

�̂�𝑖

⋮
⋮

�̂�𝑖𝑚𝑎𝑥−2

�̂�𝑖𝑚𝑎𝑥−1]
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
 

�̂�2 − 𝑎2 �̂�0 − 𝑏2 �̂�1

�̂�3 − 𝑎3 �̂�1 − 𝑏3 �̂�2

⋮

⋮

�̂�𝑖

⋮

⋮

�̂�𝑖𝑚𝑎𝑥−2 − 𝑎𝑖𝑚𝑎𝑥−2 �̂�𝑖𝑚𝑎𝑥−4 − 𝑏𝑖𝑚𝑎𝑥−2 �̂�𝑖𝑚𝑎𝑥−3

�̂�𝑖𝑚𝑎𝑥−1 − 𝑏𝑖𝑚𝑎𝑥−1 �̂�𝑖𝑚𝑎𝑥−3 ]
 
 
 
 
 
 
 
 
 

 

 

�̂�𝑖
𝑘 =

∂𝑢0

∂𝑡
│

𝑖

𝑘
  is obtained by using matrix inversion (Press et al. 2007).  
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Runge-Kutta fourth-order time-integration is used for time integration where total 

depth and horizontal velocity are updated each times.  

                                          ℎ𝑖
𝑘+1 = ℎ𝑖

𝑘 +
1

6
∆𝑡(𝑘11 + 2 𝑘12 + 2 𝑘13 + 𝑘14)             (3.14𝑎) 

                                           𝑢𝑖
𝑘+1 = 𝑢𝑖

𝑘 +
1

6
∆𝑡(𝑘21 + 2 𝑘22 + 2 𝑘23 + 𝑘24)           (3.14𝑏) 

where  

          𝑘11 = [
𝑑ℎ

𝑑𝑡
(𝑡𝑖, ℎ𝑖)]                            ,       𝑘21 = [

𝑑𝑢

𝑑𝑡
(𝑡𝑖, 𝑢𝑖)]                     

          𝑘12 = [
𝑑ℎ

𝑑𝑡
(𝑡𝑖 +

∆𝑡

2
, ℎ𝑖 +

𝑘11

2
)]     ,      𝑘22 = [

𝑑𝑢

𝑑𝑡
(𝑡𝑖 +

∆𝑡

2
, 𝑢𝑖 +

𝑘21

2
)]         

          𝑘13 = [
𝑑ℎ

𝑑𝑡
(𝑡𝑖 +

∆𝑡

2
, ℎ𝑖 +

𝑘12

2
)]     ,     𝑘23 = [

𝑑𝑢

𝑑𝑡
(𝑡𝑖 +

∆𝑡

2
, 𝑢𝑖 +

𝑘22

2
)]         

         𝑘14 = [
𝑑ℎ

𝑑𝑡
(𝑡𝑖 + ∆𝑡, ℎ𝑖 + 𝑘13)]       ,     𝑘24 = [

𝑑𝑢

𝑑𝑡
(𝑡𝑖 + ∆𝑡, 𝑢𝑖 + 𝑘23)]      (3.15)  

 

           The fourth-order pentadiagonal matrix scheme is inherently more accurate 

than the second-order tridiagonal matrix scheme. However, the tridiagonal approach 

involves less complicated formulae and leads to better computational performance 

than the pentadiagonal matrix scheme. In order to assess the relative merits and 

drawbacks of both matrix approaches, the present study implements both the 

tridiagonal and pentadiagonal schemes and compares results obtained from the 

different schemes for standard benchmark tests in Chapters four, five and six.    
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3.3   Finite Difference Solver of 2D GN Equations for uniform bed 

3.3.1   Second-order tridiagonal scheme for 2G GN equation 

Rearranging the 2D level I GN momentum equation for a uniform bed in x-direction, 

Eqn. (2.66), we have: 

𝜕𝑢0

𝜕𝑡
− ℎ

𝜕ℎ

𝜕𝑥
 
𝜕

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
) −

ℎ2

3

𝜕2

𝜕𝑥2
 (

𝜕𝑢0

𝜕𝑡
) = −𝑢0  

𝜕𝑢0

𝜕𝑥
− 𝑣0  

𝜕𝑢0

𝜕𝑦
− 𝑔

𝜕𝜂

𝜕𝑥
+ ℎ

𝜕ℎ

𝜕𝑥
 
𝜕

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
) 

 +
ℎ2

3
 

𝜕2

𝜕𝑥𝜕𝑦
 (

𝜕𝑣0

𝜕𝑡
) + ℎ (

𝜕ℎ

𝜕𝑥
) [𝑢0  

𝜕2𝑢0

𝜕𝑥2
+

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
+ 𝑣0  

𝜕2𝑣0

𝜕𝑦2
− (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

 +
ℎ2

3
[𝑢0  

𝜕3𝑢0

𝜕𝑥3
+

𝜕3(𝑢0𝑣0)

𝜕𝑥2𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 ) + 𝑣0  
𝜕3𝑣0

𝜕𝑥𝜕𝑦2
     

− (
𝜕𝑢0

𝜕𝑥
+ 2

𝜕𝑣0

𝜕𝑦
)(

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕2𝑢0

𝜕𝑥2 )]                                                            (3.16)   

Now let 

𝐹 = −[𝑢0

𝜕𝑢0

𝜕𝑥
+ 𝑣0

𝜕𝑢0

𝜕𝑦
+ 𝑔

𝜕𝜂

𝜕𝑥
] + ℎ

𝜕ℎ

𝜕𝑥
[𝑢0

𝜕2𝑢0

𝜕𝑥2
+

𝜕2𝑢0𝑣0

𝜕𝑥𝜕𝑦
+ 𝑣0

𝜕2𝑣0

𝜕𝑦2
− (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+
ℎ2

3
[𝑢0

𝜕3𝑢0

𝜕𝑥3
+

𝜕3𝑢0𝑣0

𝜕𝑥2𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2
) + 𝑣0

𝜕3𝑣0

𝜕𝑥𝜕𝑦2
− (

𝜕𝑢0

𝜕𝑥
+ 2

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕2𝑢0

𝜕𝑥2
)] 

+ℎ
𝜕ℎ

𝜕𝑥
 
𝜕

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
)  +

ℎ2

3
 

𝜕2

𝜕𝑥𝜕𝑦
 (

𝜕𝑣0

𝜕𝑡
)                                                                                                 (3.17) 

 

Then, Eqn. (3.16) becomes: 

  𝐹 =
𝜕𝑢0

𝜕𝑡
− ℎ

𝜕ℎ

𝜕𝑥
 
𝜕

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
) −

ℎ2

3

𝜕2

𝜕𝑥2
 (

𝜕𝑢0

𝜕𝑡
)                                                                         (3.18) 

 

Discretising this equation using second-order central differences leads to:  

   𝐹𝑖𝑗
𝑘 =

𝜕𝑢0

𝜕𝑡
│𝑖𝑗

𝑘 − ℎ𝑖𝑗
𝑘

ℎ𝑖+1𝑗
𝑘 − ℎ𝑖−1𝑗

𝑘

4∆𝑥2
(
𝜕𝑢0

𝜕𝑡
│𝑖+1𝑗

𝑘 −
𝜕𝑢0

𝜕𝑡
│𝑖−1𝑗

𝑘 ) −
(ℎ𝑖𝑗

𝑘 )2

3∆𝑥2
(
𝜕𝑢0

𝜕𝑡
│𝑖+1𝑗

𝑘 − 2
𝜕𝑢0

𝜕𝑡
│𝑖𝑗

𝑘 +
𝜕𝑢0

𝜕𝑡
│𝑖−1𝑗

𝑘 ) 
 

  or       (3.19) 

   𝐹𝑖𝑗
𝑘 = [ℎ𝑖𝑗

𝑘
ℎ𝑖+1 𝑗

𝑘 − ℎ𝑖−1 𝑗
𝑘

4∆𝑥2
−

(ℎ𝑖𝑗
𝑘 )2

3∆𝑥2
] �̂�𝑖−1 𝑗

𝑘 + [1 +
2(ℎ𝑖𝑗

𝑘 )2

3∆𝑥2
] �̂�𝑖𝑗

𝑘 − [ℎ𝑖𝑗
𝑘

ℎ𝑖+1 𝑗
𝑘 − ℎ𝑖−1 𝑗

𝑘

4∆𝑥2
+

(ℎ𝑖𝑗
𝑘 )2

3∆𝑥2
] �̂�𝑖+1 𝑗

𝑘  

where  �̂�𝑖𝑗
𝑘 =

∂𝑢0

∂𝑡
│𝑖𝑗

𝑘 .  The discretised equation is rewritten as 

                                          𝐹𝑖𝑗
𝑘 = 𝑎𝑖 �̂�𝑖−1 𝑗

𝑘 + 𝑏𝑖 �̂�𝑖 𝑗
𝑘 + 𝑐𝑖 �̂�𝑖+1 𝑗

𝑘                              (3.20) 
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in which 

𝑎𝑖 = [ℎ𝑖𝑗
𝑘

ℎ𝑖+1 𝑗
𝑘 − ℎ𝑖−1 𝑗

𝑘

4∆𝑥2
−

(ℎ𝑖𝑗
𝑘 )2

3∆𝑥2
] , 𝑏𝑖 = [1 +

2(ℎ𝑖𝑗
𝑘 )2

3∆𝑥2
] , 𝑐𝑖 = − [ℎ𝑖𝑗

𝑘
ℎ𝑖+1 𝑗

𝑘 − ℎ𝑖−1 𝑗
𝑘

4∆𝑥2
+

(ℎ𝑖𝑗
𝑘 )2

3∆𝑥2
] (3.21) 

 

The right hand side of Eqn. (3.16) is also discretised using second-order central 

differences, giving: 

𝐹𝑖𝑗 = −[𝑢0𝑖𝑗

𝜕𝑢0

𝜕𝑥
⃒𝑖𝑗 + 𝑣0𝑖𝑗

𝜕𝑢0

𝜕𝑦
⃒𝑖𝑗 + 𝑔

𝜕𝜂

𝜕𝑥
⃒𝑖𝑗] + ℎ𝑖𝑗

𝜕ℎ

𝜕𝑥
⃒𝑖𝑗

𝜕

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
)⃒𝑖𝑗  

            +ℎ𝑖𝑗  
𝜕ℎ

𝜕𝑥
⃒𝑖𝑗 [𝑢0𝑖𝑗

 
𝜕2𝑢0

𝜕𝑥2
⃒𝑖𝑗 +

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
⃒𝑖𝑗 + 𝑣0𝑖𝑗

 
𝜕2𝑣0

𝜕𝑦2
⃒𝑖𝑗 − (

𝜕𝑢0

𝜕𝑥
⃒𝑖𝑗 +

𝜕𝑣0

𝜕𝑦
⃒𝑖𝑗)

2

] 

      +
ℎ𝑖𝑗

2

3
[𝑢0𝑖𝑗

 
𝜕3𝑢0

𝜕𝑥3
⃒𝑖𝑗 +

𝜕3(𝑢0𝑣0)

𝜕𝑥2𝜕𝑦
⃒𝑖𝑗 +

𝜕𝑣0

𝜕𝑥
⃒𝑖𝑗 (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
⃒𝑖𝑗 +

𝜕2𝑣0

𝜕𝑦2
⃒𝑖𝑗) + 𝑣0𝑖𝑗

 
𝜕3𝑣0

𝜕𝑥𝜕𝑦2
⃒𝑖𝑗 

                     − (
𝜕𝑢0

𝜕𝑥
⃒𝑖𝑗 + 2

𝜕𝑣0

𝜕𝑦
⃒𝑖𝑗)(

𝜕2𝑣0

𝜕𝑥𝜕𝑦
⃒𝑖𝑗 +

𝜕2𝑢0

𝜕𝑥2
⃒𝑖𝑗)] +

ℎ𝑖𝑗
2

3

𝜕2

𝜕𝑥𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
)⃒𝑖𝑗    (3.22) 

 

The above set of discretised equations forms the following tridiagonal matrix system: 

   

[
 
 
 
 
 
 
 
 
 
 𝑏2       𝑐2                             …                            
𝑎3      𝑏3     𝑐3                   …                          

⋱     
𝑎𝑖      𝑏𝑖     𝑐𝑖

             ⋱   
                       ⋱   

                             ⋱ 
                     𝑎𝑖𝑚𝑎𝑥−2    𝑏𝑖𝑚𝑎𝑥−2    𝑐𝑖𝑚𝑎𝑥−2 
                                         𝑎𝑖𝑚𝑎𝑥−1    𝑏𝑖𝑚𝑎𝑥−1 ]

 
 
 
 
 
 
 
 
 

  .  

[
 
 
 
 
 
 
 
 
 

�̂�2 𝑗

�̂�3 𝑗

⋮
⋮

�̂�𝑖𝑗

⋮
⋮

�̂�𝑖𝑚𝑎𝑥−2 𝑗

�̂�𝑖𝑚𝑎𝑥−1 𝑗]
 
 
 
 
 
 
 
 
 

 =   

[
 
 
 
 
 
 
 
 
 

�̂�2 − 𝑎2 �̂�1 𝑗

�̂�3

⋮
⋮
�̂�𝑖

⋮
⋮

�̂�𝑖𝑚𝑎𝑥−2

�̂�𝑖𝑚𝑎𝑥−1 − 𝑐𝑖𝑚𝑎𝑥−1 �̂�𝑖𝑚𝑎𝑥  𝑗]
 
 
 
 
 
 
 
 
 

 

The unknown values �̂�𝑖𝑗
𝑘 =

∂𝑢0

∂𝑡
│𝑖𝑗

𝑘   are obtained for j = 2, …, jmax-1 and i = 1, …, imax 

using the Thomas algorithm (Press et al. 2007). The 2D level I GN momentum 

equation for a uniform bed in y-direction is as follows: 

𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
+ 𝑣0  

𝜕𝑣0

𝜕𝑦
= 

−𝑔
𝜕𝜂

𝜕𝑦
+ ℎ (

𝜕ℎ

𝜕𝑦
) [

𝜕2𝑢0

𝜕𝑥𝜕𝑡
+

𝜕2𝑣0

𝜕𝑦𝜕𝑡
+ 𝑢0  

𝜕2𝑢0

𝜕𝑥2
+

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
+ 𝑣0  

𝜕2𝑣0

𝜕𝑦2
− (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+
ℎ2

3
[

𝜕3𝑢0

𝜕𝑥𝜕𝑦𝜕𝑡
+

𝜕3𝑣0

𝜕𝑦2𝜕𝑡
+

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑢0

𝜕𝑥2
+ 𝑢0  

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
+

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕3(𝑢0𝑣0)

𝜕𝑥𝜕𝑦2
+ 𝑣0  

𝜕3𝑣0

𝜕𝑦3

− (2
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 )]                                                             (3.23) 

Similarly, rearranging the 2D level I GN momentum equation for a uniform bed in y-

direction, Eqn. (3.23), gives: 
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𝜕𝑣0

𝜕𝑡
− ℎ (

𝜕ℎ

𝜕𝑦
)

𝜕

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
) −

ℎ2

3

𝜕2

𝜕𝑦2
 (

𝜕𝑣0

𝜕𝑡
) 

= −𝑢0  
𝜕𝑣0

𝜕𝑥
− 𝑣0  

𝜕𝑣0

𝜕𝑦
− 𝑔

𝜕𝜂

𝜕𝑦
+ ℎ (

𝜕ℎ

𝜕𝑦
) [𝑢0  

𝜕2𝑢0

𝜕𝑥2
+

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
+ 𝑣0  

𝜕2𝑣0

𝜕𝑦2
− (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+
ℎ2

3
[
𝜕𝑢0

𝜕𝑦
 
𝜕2𝑢0

𝜕𝑥2
+ 𝑢0  

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
+

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕3(𝑢0𝑣0)

𝜕𝑥𝜕𝑦2
+ 𝑣0  

𝜕3𝑣0

𝜕𝑦3
 

             − (2
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 )] + ℎ (
𝜕ℎ

𝜕𝑦
) 

𝜕

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
) +

ℎ2

3

𝜕2

𝜕𝑥𝜕𝑦
 (

𝜕𝑢0

𝜕𝑡
)     (3.24) 

Now let 

𝐺 = − [𝑢0  
𝜕𝑣0

𝜕𝑥
+ 𝑣0  

𝜕𝑣0

𝜕𝑦
+ 𝑔

𝜕𝜂

𝜕𝑦
] + ℎ

𝜕ℎ

𝜕𝑦
[𝑢0  

𝜕2𝑢0

𝜕𝑥2
+

𝜕2𝑢0𝑣0

𝜕𝑥𝜕𝑦
+ 𝑣0

𝜕2𝑣0

𝜕𝑦2
− (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

         +
ℎ2

3
[
𝜕𝑢0

𝜕𝑦
 
𝜕2𝑢0

𝜕𝑥2
+ 𝑢0  

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
+

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕3(𝑢0𝑣0)

𝜕𝑥𝜕𝑦2
+ 𝑣0  

𝜕3𝑣0

𝜕𝑦3
 

         − (2
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 )] + ℎ (
𝜕ℎ

𝜕𝑦
) 

𝜕

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
) +

ℎ2

3

𝜕2

𝜕𝑥𝜕𝑦
 (

𝜕𝑢0

𝜕𝑡
)        (3.25) 

Then, Eqn. (3.24) becomes: 

  𝐺 =
𝜕𝑣0

𝜕𝑡
− ℎ (

𝜕ℎ

𝜕𝑦
)

𝜕

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
) −

ℎ2

3

𝜕2

𝜕𝑦2
 (

𝜕𝑣0

𝜕𝑡
)                                                                   (3.26) 

  

Discretising this equation using second-order central differences results in:  

   𝐺𝑖𝑗
𝑘 =

𝜕𝑣0

𝜕𝑡
│𝑖𝑗

𝑘 − ℎ𝑖𝑗
𝑘

ℎ𝑖 𝑗+1
𝑘 − ℎ𝑖𝑗−1

𝑘

4∆𝑦2
(
𝜕𝑣0

𝜕𝑡
│𝑖𝑗+1

𝑘 −
𝜕𝑣0

𝜕𝑡
│𝑖𝑗−1

𝑘 ) −
(ℎ𝑖𝑗

𝑘 )2

3∆𝑦2
(
𝜕𝑣0

𝜕𝑡
│𝑖𝑗+1

𝑘 − 2
𝜕𝑣0

𝜕𝑡
│𝑖𝑗

𝑘 +
𝜕𝑣0

𝜕𝑡
│𝑖𝑗−1

𝑘 ) 

  or                                                                                  (3.27) 

   𝐺𝑖𝑗
𝑘 = [ℎ𝑖𝑗

𝑘
ℎ𝑖 𝑗+1

𝑘 − ℎ𝑖 𝑗−1
𝑘

4∆𝑦2
−

(ℎ𝑖𝑗
𝑘 )2

3∆𝑦2
] �̂�𝑖  𝑗−1

𝑘 + [1 +
2(ℎ𝑖𝑗

𝑘 )2

3∆𝑦2
] �̂�𝑖𝑗

𝑘 − [ℎ𝑖𝑗
𝑘

ℎ𝑖 𝑗+1
𝑘 − ℎ𝑖 𝑗−1

𝑘

4∆𝑦2
+

(ℎ𝑖𝑗
𝑘 )2

3∆𝑦2
] �̂�𝑖 𝑗+1

𝑘  

where  𝑣𝑖𝑗
𝑘 =

∂𝑣0

∂t
│𝑖𝑗

𝑘  . The discretised equation is rewritten as: 

                                           𝐺𝑖𝑗
𝑘 = 𝑎𝑎𝑗  𝑣𝑖 𝑗−1

𝑘 + 𝑏𝑏𝑗  𝑣𝑖 𝑗
𝑘 + 𝑐𝑐𝑗  𝑣𝑖 𝑗+1

𝑘                          (3.28) 

in which 

𝑎𝑎𝑗 = [ℎ𝑖𝑗
𝑘

ℎ𝑖𝑗+1
𝑘 − ℎ𝑖𝑗−1

𝑘

4∆𝑦2
−

(ℎ𝑖𝑗
𝑘 )2

3∆𝑦2
] , 𝑏𝑏𝑗 = [1 +

2(ℎ𝑖𝑗
𝑘 )2

3∆𝑦2
] , 𝑐𝑐𝑗 = −[ℎ𝑖𝑗

𝑘
ℎ𝑖𝑗+1

𝑘 − ℎ𝑖𝑗−1
𝑘

4∆𝑦2
+

(ℎ𝑖𝑗
𝑘 )2

3∆𝑦2
] (3.29) 
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The right hand side of Eqn. (3.24) is also discretised using second-order central 

differences,  

𝐺𝑖𝑗 = −[𝑢0𝑖𝑗
 
𝜕𝑣0

𝜕𝑥
⃒𝑖𝑗 + 𝑣0𝑖𝑗

 
𝜕𝑣0

𝜕𝑦
⃒𝑖𝑗 +𝑔

𝜕𝜂

𝜕𝑦
⃒𝑖𝑗] + ℎ𝑖𝑗

𝜕ℎ

𝜕𝑦
⃒𝑖𝑗  

𝜕

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
)⃒𝑖𝑗 

      +ℎ𝑖𝑗 (
𝜕ℎ

𝜕𝑦
) ⃒𝑖𝑗 [𝑢0𝑖𝑗

 
𝜕2𝑢0

𝜕𝑥2
⃒𝑖𝑗 +

𝜕2𝑢0𝑣0

𝜕𝑥𝜕𝑦
⃒𝑖𝑗 + 𝑣0𝑖𝑗

 
𝜕2𝑣0

𝜕𝑦2
⃒𝑖𝑗 − (

𝜕𝑢0

𝜕𝑥
⃒𝑖𝑗 +

𝜕𝑣0

𝜕𝑦
⃒𝑖𝑗)

2

] 

+
ℎ𝑖𝑗

2

3
[
𝜕𝑢0

𝜕𝑦
⃒𝑖𝑗  

𝜕2𝑢0

𝜕𝑥2
⃒𝑖𝑗 + 𝑢0𝑖𝑗

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
⃒𝑖𝑗 +

𝜕𝑢0

𝜕𝑦
⃒𝑖𝑗

𝜕2𝑣0

𝜕𝑥𝜕𝑦
⃒𝑖𝑗 +

𝜕3𝑢0𝑣0

𝜕𝑥𝜕𝑦2
⃒𝑖𝑗 + 𝑣0𝑖𝑗

𝜕3𝑣0

𝜕𝑦3
⃒𝑖𝑗 

−(2
𝜕𝑢0

𝜕𝑥
⃒𝑖𝑗 +

𝜕𝑣0

𝜕𝑦
⃒𝑖𝑗) (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
⃒𝑖𝑗 +

𝜕2𝑣0

𝜕𝑦2
⃒𝑖𝑗)] +

ℎ𝑖𝑗
2

3

𝜕2

𝜕𝑥𝜕𝑦
 (

𝜕𝑢0

𝜕𝑡
)⃒𝑖𝑗                     (3.30) 

 

The above set of discretised equations forms the following tridiagonal matrix system: 

   

[
 
 
 
 
 
 
 
 
 
  𝑏𝑏2       𝑐𝑐2                              …                            
𝑎𝑎3      𝑏𝑏3     𝑐𝑐3                   …                          

⋱     
𝑎𝑎𝑖      𝑏𝑏𝑖     𝑐𝑐𝑖

             ⋱   
                       ⋱   

                             ⋱ 
                     𝑎𝑎𝑗𝑚𝑎𝑥−2    𝑏𝑏𝑗𝑚𝑎𝑥−2    𝑐𝑐𝑗𝑚𝑎𝑥−2 
                                         𝑎𝑎𝑗𝑚𝑎𝑥−1    𝑏𝑏𝑗𝑚𝑎𝑥−1 ]

 
 
 
 
 
 
 
 
 

  .  

[
 
 
 
 
 
 
 
 
 

�̂�𝑖 2

�̂�𝑖 3

⋮
⋮

�̂�𝑖𝑗

⋮
⋮

�̂�𝑖 𝑗𝑚𝑎𝑥−2

�̂�𝑖 𝑗𝑚𝑎𝑥−1]
 
 
 
 
 
 
 
 
 

 =   

[
 
 
 
 
 
 
 
 
 

�̂�2 − 𝑎𝑎2 �̂�𝑖 1

�̂�3

⋮
⋮
�̂�𝑗

⋮
⋮

�̂�𝑗𝑚𝑎𝑥−2

�̂�𝑗𝑚𝑎𝑥−1 − 𝑐𝑐𝑗𝑚𝑎𝑥−1 �̂�𝑖 𝑗𝑚𝑎𝑥]
 
 
 
 
 
 
 
 
 

 

The unknown values 𝑣𝑖𝑗
𝑘 =

𝜕𝑣0

𝜕𝑡
│𝑖𝑗

𝑘   are obtained for i = 2, …, imax-1 and  j = 1, …, jmax 

by means of the Thomas algorithm. Iteration is used to centre correctly (in space and 

time) the cross-derivative terms that appear in both the x- and y- momentum equations. 
 

3.3.2   Fourth-order pentadiagonal scheme for 2G GN equation  

Pentadiagonal matrix solvers for x- and y-direction are: 

 

[
 
 
 
 
 
 
 
 
 

𝑐2       𝑑2      𝑒2                           …                            
𝑏3       𝑐3        𝑑3      𝑒3               …                            

⋱     
𝑎𝑖      𝑏𝑖      𝑐𝑖      𝑑𝑖     𝑒𝑖

                ⋱    
                         ⋱     
                              ⋱   

                     𝑎𝑖𝑚𝑎𝑥−2    𝑏𝑖𝑚𝑎𝑥−2    𝑐𝑖𝑚𝑎𝑥−2    𝑑𝑖𝑚𝑎𝑥−2    𝑒𝑖𝑚𝑎𝑥−2 
                                       𝑎𝑖𝑚𝑎𝑥−1    𝑏𝑖𝑚𝑎𝑥−1    𝑐𝑖𝑚𝑎𝑥−1    𝑑𝑖𝑚𝑎𝑥−1]

 
 
 
 
 
 
 
 
 

  .  

[
 
 
 
 
 
 
 
 
 

�̂�2 𝑗

�̂�3 𝑗

⋮
⋮

�̂�𝑖𝑗

⋮
⋮

�̂�𝑖𝑚𝑎𝑥−2  𝑗

�̂�𝑖𝑚𝑎𝑥−1  𝑗]
 
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
 

�̂�2 − 𝑎2 �̂�0 𝑗 − 𝑏2 �̂�1 𝑗

�̂�3 − 𝑎3 �̂�1 𝑗 − 𝑏3 �̂�2 𝑗

⋮
⋮
�̂�𝑖

⋮
⋮

�̂�𝑖𝑚𝑎𝑥−2 − 𝑎𝑖𝑚𝑎𝑥−2 �̂�𝑖𝑚𝑎𝑥−4  𝑗 − 𝑏𝑖𝑚𝑎𝑥−2 �̂�𝑖𝑚𝑎𝑥−3  𝑗

�̂�𝑖𝑚𝑎𝑥−1 − 𝑏𝑖𝑚𝑎𝑥−1 �̂�𝑖𝑚𝑎𝑥−3  𝑗 ]
 
 
 
 
 
 
 
 
 

 

   

[
 
 
 
 
 
 
 
 
 

𝑐𝑐2       𝑑𝑑2      𝑒𝑒2                            …                            
𝑏𝑏3      𝑐𝑐3        𝑑𝑑3      𝑒𝑒3               …                            

⋱     
𝑎𝑎𝑗      𝑏𝑏𝑗      𝑐𝑐𝑗      𝑑𝑑𝑗      𝑒𝑒𝑗

                ⋱    
                         ⋱     
                              ⋱   

              𝑎𝑎𝑗𝑚𝑎𝑥−2    𝑏𝑏𝑗𝑚𝑎𝑥−2     𝑐𝑐𝑗𝑚𝑎𝑥−2    𝑑𝑑𝑗𝑚𝑎𝑥−2    𝑒𝑒𝑗𝑚𝑎𝑥−2 
                         𝑎𝑎𝑗𝑚𝑎𝑥−1    𝑏𝑏𝑗𝑚𝑎𝑥−1    𝑐𝑐𝑗𝑚𝑎𝑥−1    𝑑𝑑𝑗𝑚𝑎𝑥−1 ]

 
 
 
 
 
 
 
 
 

  .  

[
 
 
 
 
 
 
 
 

�̂�𝑖 2

�̂�𝑖 3

⋮
⋮

�̂�𝑖𝑗

⋮
⋮

�̂�𝑖 𝑗𝑚𝑎𝑥−2

�̂�𝑖 𝑗𝑚𝑎𝑥−1]
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
 

�̂�2 − 𝑎𝑎2 �̂�𝑖 0 − 𝑏𝑏2 �̂�𝑖 1

�̂�3 − 𝑎𝑎3 �̂�𝑖 1 − 𝑏𝑏3 �̂�𝑖 2

⋮
⋮
�̂�𝑗

⋮
⋮

�̂�𝑗𝑚𝑎𝑥−2 − 𝑎𝑎𝑗𝑚𝑎𝑥−2 �̂�𝑖 𝑗𝑚𝑎𝑥−4 − 𝑏𝑏𝑗𝑚𝑎𝑥−2 �̂�𝑖 𝑗𝑚𝑎𝑥−3

�̂�𝑗𝑚𝑎𝑥−1 − 𝑏𝑏𝑗𝑚𝑎𝑥−1 �̂�𝑖 𝑗𝑚𝑎𝑥−3 ]
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3.4 Finite Difference Solver of 2D GN Equations for non-uniform 

bed 

2D level I x-momentum GN equation for a non-uniform bed is 

 (
𝜕𝜂

𝜕𝑥
) [

𝜕𝑧𝑏

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
− 𝑢0

𝜕𝑣0

𝜕𝑦
) +

𝜕𝑧𝑏

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
− 𝑣0  

𝜕𝑢0

𝜕𝑥
) + 𝑢0

2  
𝜕2𝑧𝑏

𝜕𝑥2
 

             +2𝑢0𝑣0  
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+𝑣0

2  
𝜕2𝑧𝑏

𝜕𝑦2
+ 𝑔] + [

𝜕𝑢0

𝜕𝑡
+ 𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
] 

+ 
ℎ

2
[
𝜕𝑧𝑏

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑥𝜕𝑡
+

𝜕𝑣0

𝜕𝑥
 
𝜕𝑢0

𝜕𝑦
+ 𝑣0  

𝜕2𝑢0

𝜕𝑥𝜕𝑦
−

𝜕𝑢0

𝜕𝑥
 
𝜕𝑣0

𝜕𝑦
− 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
) + 𝑢0

2  
𝜕3𝑧𝑏

𝜕𝑥3
 

+
𝜕2𝑧𝑏

𝜕𝑥2
(
𝜕𝑢0

𝜕𝑡
+ 2𝑢0  

𝜕𝑢0

𝜕𝑥
+ 𝑣0 

𝜕𝑢0

𝜕𝑦
− 𝑢0

𝜕𝑣0

𝜕𝑦
) +

𝜕𝑧𝑏

𝜕𝑦
(
𝜕2𝑣0

𝜕𝑥𝜕𝑡
+ 𝑢0  

𝜕2𝑣0

𝜕𝑥2
− 𝑣0  

𝜕2𝑢0

𝜕𝑥2 ) 

+
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
+ 3𝑢0  

𝜕𝑣0

𝜕𝑥
+ 𝑣0  

𝜕𝑢0

𝜕𝑥
) + 2𝑢0𝑣0  

𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
+2𝑣0  

𝜕𝑣0

𝜕𝑥
 
𝜕2𝑧𝑏

𝜕𝑦2
+ 𝑣0

2  
𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦2
] 

+ℎ 
𝜕 (ℎ +

𝑧𝑏
2

)

𝜕𝑥
 [−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
−

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2
+ (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+
ℎ2

3
[−

𝜕3𝑢0

𝜕𝑥2𝜕𝑡
−

𝜕3𝑣0

𝜕𝑥𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕3𝑢0

𝜕𝑥3
−

𝜕3(𝑢0𝑣0)

𝜕𝑥2𝜕𝑦
−

𝜕𝑣0

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2
) − 𝑣0  

𝜕3𝑣0

𝜕𝑥𝜕𝑦2

+ (
𝜕𝑢0

𝜕𝑥
+ 2

𝜕𝑣0

𝜕𝑦
)  (

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+

𝜕2𝑢0

𝜕𝑥2
)] = 0     .                                              (3.31) 

Discretising this equation using second-order central differences leads to:  

𝑎𝑖 = [ℎ𝑖𝑗
𝑘 (

ℎ𝑖+1 𝑗
𝑘 − ℎ𝑖−1 𝑗

𝑘

4∆𝑥2
+

𝑧𝑏𝑖+1 𝑗
𝑘 − 𝑧𝑏𝑖−1 𝑗

𝑘

8∆𝑥2
) −

ℎ𝑖𝑗
𝑘

∆𝑥2
(
ℎ𝑖𝑗

𝑘

3
+

𝑧𝑏𝑖+1 𝑗
𝑘 − 𝑧𝑏𝑖−1 𝑗

𝑘

8
)]    

 𝑏𝑖 = [1 +
2(ℎ𝑖𝑗

𝑘 )2

3∆𝑥2
+ ℎ𝑖𝑗

𝑘
𝑧𝑏𝑖+1 𝑗

𝑘 − 2𝑧𝑏𝑖𝑗
𝑘 + 𝑧𝑏𝑖−1 𝑗

𝑘

2∆𝑥2
+

(𝜂𝑖+1 𝑗
𝑘 − 𝜂𝑖−1 𝑗

𝑘 )(𝑧𝑏𝑖+1 𝑗
𝑘 − 𝑧𝑏𝑖−1 𝑗

𝑘 )

4∆𝑥2
] (3.32)  

  𝑐𝑖 = [−ℎ𝑖𝑗
𝑘 (

ℎ𝑖+1 𝑗
𝑘 − ℎ𝑖−1 𝑗

𝑘

4∆𝑥2
+

𝑧𝑏𝑖+1 𝑗
𝑘 − 𝑧𝑏𝑖−1 𝑗

𝑘

8∆𝑥2
) +

ℎ𝑖𝑗
𝑘

∆𝑥2
(−

ℎ𝑖𝑗
𝑘

3
+

𝑧𝑏𝑖+1 𝑗
𝑘 − 𝑧𝑏𝑖−1 𝑗

𝑘

8
)]    
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The 2D level I y-momentum GN equation for a non-uniform bed is 

(
𝜕𝜂

𝜕𝑦
) [

𝜕𝑧𝑏

𝜕𝑥
(
𝜕𝑢0

𝜕𝑡
+ 𝑣0  

𝜕𝑢0

𝜕𝑦
− 𝑢0

𝜕𝑣0

𝜕𝑦
) +

𝜕𝑧𝑏

𝜕𝑦
(
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
− 𝑣0  

𝜕𝑢0

𝜕𝑥
) + 𝑢0

2  
𝜕2𝑧𝑏

𝜕𝑥2
 

            +2𝑢0𝑣0  
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
+𝑣0

2  
𝜕2𝑧𝑏

𝜕𝑦2
+ 𝑔] + [

𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
+ 𝑣0  

𝜕𝑣0

𝜕𝑦
] 

+ 
ℎ

2
[
𝜕𝑧𝑏

𝜕𝑥
(
𝜕2𝑢0

𝜕𝑦𝜕𝑡
+ 𝑣0  

𝜕2𝑢0

𝜕𝑦2
− 𝑢0  

𝜕2𝑣0

𝜕𝑦2 ) + 
𝜕2𝑧𝑏

𝜕𝑥𝜕𝑦
( 
𝜕𝑢0

𝜕𝑡
+ 3𝑣0

𝜕𝑢0

𝜕𝑦
+ 𝑢0

𝜕𝑣0

𝜕𝑦
) + 𝑢0

2  
𝜕3𝑧𝑏

𝜕𝑥2𝜕𝑦
 

+
𝜕𝑧𝑏

𝜕𝑦
(
𝜕2𝑣0

𝜕𝑦𝜕𝑡
+

𝜕𝑢0

𝜕𝑦
 
𝜕𝑣0

𝜕𝑥
+ 𝑢0  

𝜕2𝑣0

𝜕𝑥𝜕𝑦
−

𝜕𝑣0

𝜕𝑦
 
𝜕𝑢0

𝜕𝑥
− 𝑣0  

𝜕2𝑢0

𝜕𝑥𝜕𝑦
) + 2𝑢0  

𝜕𝑢0

𝜕𝑦

𝜕2𝑧𝑏

𝜕𝑥2
+ 𝑣0

2  
𝜕3𝑧𝑏

𝜕𝑦3
 

+
𝜕2𝑧𝑏

𝜕𝑦2
(
𝜕𝑣0

𝜕𝑡
+ 𝑢0  

𝜕𝑣0

𝜕𝑥
+ 2𝑣0  

𝜕𝑣0

𝜕𝑦
− 𝑣0  

𝜕𝑢0

𝜕𝑥
)+2𝑢0𝑣0  

𝜕3𝑧𝑏

𝜕𝑥𝜕𝑦2
] 

+ℎ 
𝜕 (ℎ +

𝑧𝑏
2 )

𝜕𝑦
[−

𝜕2𝑢0

𝜕𝑥𝜕𝑡
−

𝜕2𝑣0

𝜕𝑦𝜕𝑡
− 𝑢0  

𝜕2𝑢0

𝜕𝑥2
−

𝜕2(𝑢0𝑣0)

𝜕𝑥𝜕𝑦
− 𝑣0  

𝜕2𝑣0

𝜕𝑦2
+ (

𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
)
2

] 

+
ℎ2

3
[−

𝜕3𝑢0

𝜕𝑥𝜕𝑦𝜕𝑡
−

𝜕3𝑣0

𝜕𝑦2𝜕𝑡
−

𝜕𝑢0

𝜕𝑦
 
𝜕2𝑢0

𝜕𝑥2
− 𝑢0  

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
−

𝜕𝑢0

𝜕𝑦

𝜕2𝑣0

𝜕𝑥𝜕𝑦
− 

𝜕3(𝑢0𝑣0)

𝜕𝑥𝜕𝑦2
− 𝑣0  

𝜕3𝑣0

𝜕𝑦3

+ (2
𝜕𝑢0

𝜕𝑥
+

𝜕𝑣0

𝜕𝑦
) (

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+

𝜕2𝑣0

𝜕𝑦2 )] = 0                                                     (3.33) 

Discretising this equation using second-order central differences leads to:  

 

 𝑎𝑎𝑗 = [ℎ𝑖𝑗
𝑘 (

ℎ𝑖 𝑗+1
𝑘 − ℎ𝑖 𝑗−1

𝑘

4∆𝑦2
+

𝑧𝑏𝑖 𝑗+1
𝑘 − 𝑧𝑏𝑖 𝑗−1

𝑘

8∆𝑦2
) −

ℎ𝑖𝑗
𝑘

∆𝑦2
(
ℎ𝑖𝑗

𝑘

3
+

𝑧𝑏𝑖 𝑗+1
𝑘 − 𝑧𝑏𝑖 𝑗−1

𝑘

8
)]    

 𝑏𝑏𝑗 = [1 +
2(ℎ𝑖𝑗

𝑘 )2

3∆𝑦2
+ ℎ𝑖𝑗

𝑘
𝑧𝑏𝑖 𝑗+1

𝑘 − 2𝑧𝑏𝑖𝑗
𝑘 + 𝑧𝑏𝑖 𝑗−1

𝑘

2∆𝑦2
+

(𝜂𝑖 𝑗+1
𝑘 − 𝜂𝑖 𝑗−1

𝑘 )(𝑧𝑏𝑖 𝑗+1
𝑘 − 𝑧𝑏𝑖 𝑗−1

𝑘 )

4∆𝑦2
] (2.34) 

  c𝑐𝑗 = [−ℎ𝑖𝑗
𝑘 (

ℎ𝑖 𝑗+1
𝑘 − ℎ𝑖 𝑗−1

𝑘

4∆𝑦2
+

𝑧𝑏𝑖 𝑗+1
𝑘 − 𝑧𝑏𝑖 𝑗−1

𝑘

8∆𝑦2
) +

ℎ𝑖𝑗
𝑘

∆𝑦2
(−

ℎ𝑖𝑗
𝑘

3
+

𝑧𝑏𝑖 𝑗+1
𝑘 − 𝑧𝑏𝑖 𝑗−1

𝑘

8
)]    

Similar to 2D GN momentum equations for uniform bed, the foregoing results in two 

matrix equations in the x- and y-directions.  As above, the matrix equations are solved 

using the Thomas algorithm in each case, with iteration used to centre the discretised 

cross-derivative terms. The 1D tests show (see Chapter 4) that second-order 

differences are sufficient to obtain satisfactory results, and so the 2-D solver was 

restricted to second-order differences.  
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3.5   Boundary conditions 

          To solve the 2D GN equations accurately, it is necessary to impose flexible and 

compatible boundary conditions (see figure 3.2).  For instance, solid wall boundaries 

are located at the ends of the domain when simulating sloshing of waves in a tank. The 

surface elevation at the boundary is obtained by cubic Lagrange interpolation of 

interior values, following Haniffah (2013). The velocity is set to zero at solid wall 

boundaries. Additional ghost grid points are located outside the boundaries, with anti-

symmetry imposed for horizontal velocity (u) on y-direction and symmetry on x-

direction.    

 

 

         

 Figure 3.2: Boundary conditions for 2-D GN equations 
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The boundary conditions for u are:  

𝜕𝑢0

𝜕𝑡
⃒1,𝑗 = 0 ,

𝜕𝑢0

𝜕𝑡
⃒0,𝑗 = −

𝜕𝑢0

𝜕𝑡
⃒2,𝑗       ,

𝜕𝑢0

𝜕𝑡
⃒−1,𝑗 = −

𝜕𝑢0

𝜕𝑡
⃒3,𝑗    

𝜕𝑢0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥,𝑗 = 0 ,

𝜕𝑢0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥+1,𝑗 = −

𝜕𝑢0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−1,𝑗    ,    

𝜕𝑢0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥+2,𝑗 = −

𝜕𝑢0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−2,𝑗   

𝜕𝑢0

𝜕𝑡
⃒𝑖,1 = 0 ,

𝜕𝑢0

𝜕𝑡
⃒𝑖,0 =

𝜕𝑢0

𝜕𝑡
⃒𝑖,2      ,

𝜕𝑢0

𝜕𝑡
⃒𝑖,−1 =

𝜕𝑢0

𝜕𝑡
⃒𝑖,3   

 
𝜕𝑢0

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥

= 0    ,   
𝜕𝑢0

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥+1 =

𝜕𝑢0

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥−1    ,    

𝜕𝑢0

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥+2 =

𝜕𝑢0

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥−2   (2.35) 

 

Anti-symmetry boundary imposed for horizontal velocity (v) on x-direction and 

symmetry on y-direction.   The boundary conditions for v are:  

 

𝜕𝑣0

𝜕𝑡
⃒𝑖,1 = 0         ,         

𝜕𝑣0

𝜕𝑡
⃒𝑖,0 = −

𝜕𝑣0

𝜕𝑡
⃒𝑖,2        ,       

𝜕𝑣0

𝜕𝑡
⃒𝑖,−1 = −

𝜕𝑣0

𝜕𝑡
⃒𝑖,3    

𝜕𝑣0

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥

= 0 ,
𝜕𝑣0

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥+1 = −

𝜕𝑣0

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥−1      ,

𝜕𝑣0

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥+2 = −

𝜕𝑣0

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥−2   

 
𝜕𝑣0

𝜕𝑡
⃒1,𝑗 = 0         ,         

𝜕𝑣0

𝜕𝑡
⃒0,𝑗 =

𝜕𝑣0

𝜕𝑡
⃒2,𝑗        ,       

𝜕𝑣0

𝜕𝑡
⃒−1,𝑗 =

𝜕𝑣0

𝜕𝑡
⃒3,𝑗   

    
𝜕𝑣0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥,𝑗 = 0 ,

𝜕𝑣0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥+1,𝑗 =

𝜕𝑣0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−1,𝑗       ,

𝜕𝑣0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥+2,𝑗 =

𝜕𝑣0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−2,𝑗    (2.36) 

 

The symmetry boundaries imposed for surface elevation are:  
 

 
𝜕ℎ

𝜕𝑡
⃒0,𝑗 =

𝜕ℎ

𝜕𝑡
⃒2,𝑗             ,         

𝜕ℎ

𝜕𝑡
⃒1,𝑗 = 4

𝜕ℎ

𝜕𝑡
⃒2,𝑗 − 6

𝜕ℎ

𝜕𝑡
⃒3,𝑗 + 4

𝜕ℎ

𝜕𝑡
⃒4,𝑗 −

𝜕ℎ

𝜕𝑡
⃒5,𝑗   

 
𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥,𝑗

= 4
𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−1,𝑗 − 6

𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−2,𝑗 + 4

𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−3,𝑗 −

𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−4,𝑗   

 
𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥+1,𝑗 =

𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−1,𝑗   

                    (2.37) 

𝜕ℎ

𝜕𝑡
⃒𝑖,0 =

𝜕ℎ

𝜕𝑡
⃒𝑖,2             ,          

𝜕ℎ

𝜕𝑡
⃒𝑖,1 = 4

𝜕ℎ

𝜕𝑡
⃒𝑖,2 − 6

𝜕ℎ

𝜕𝑡
⃒𝑖,3 + 4

𝜕ℎ

𝜕𝑡
⃒𝑖,4 −

𝜕ℎ

𝜕𝑡
⃒𝑖,5   

 
𝜕ℎ

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥

= 4
𝜕ℎ

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥−1 − 6

𝜕ℎ

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥−2 + 4

𝜕ℎ

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥−3 −

𝜕ℎ

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥−4   

𝜕ℎ

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥+1 =

𝜕ℎ

𝜕𝑡
⃒𝑖,𝑗𝑚𝑎𝑥−1   
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In 1D GN equations boundaries with symmetry imposed for surface elevation, and 

anti-symmetry for velocity are taken into consideration (see figure 3.3).  

 

 

 

 Figure 3.3: Boundary conditions for 1-D GN equation 

  

The boundary conditions for 1D GN equations are:   

 

 
𝜕𝑢0

𝜕𝑡
⃒1 = 0         ,         

𝜕𝑢0

𝜕𝑡
⃒0 = −

𝜕𝑢0

𝜕𝑡
⃒2        ,       

𝜕𝑢0

𝜕𝑡
⃒−1 = −

𝜕𝑢0

𝜕𝑡
⃒3   

𝜕𝑢0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥

= 0      ,    
𝜕𝑢0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥+1 = −

𝜕𝑢0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−1      ,     

𝜕𝑢0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥+2 = −

𝜕𝑢0

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−2   

 
𝜕ℎ

𝜕𝑡
⃒0 =

𝜕ℎ

𝜕𝑡
⃒2             ,          

𝜕ℎ

𝜕𝑡
⃒1 = 4

𝜕ℎ

𝜕𝑡
⃒2 − 6

𝜕ℎ

𝜕𝑡
⃒3 + 4

𝜕ℎ

𝜕𝑡
⃒4 −

𝜕ℎ

𝜕𝑡
⃒5   

 
𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥

= 4
𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−1 − 6

𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−2 + 4

𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−3 −

𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−4   

                                                               
𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥+1 =

𝜕ℎ

𝜕𝑡
⃒𝑖𝑚𝑎𝑥−1                                   (2.38) 

 

3.6 Limitations of the present numerical solver 

The present finite difference solver is not capable of simulating dam-break. Thus, the 

finite volume method could be applied for simulating this phenomenon. Moreover, the 

developed numerical scheme cannot capture the behaviour of hydraulic bore after the 

breaking wave in the surf zone. Godunov-type shock-capturing scheme can address 

this problem in the future studies. 
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3.7   Numerical Procedure 

            The 2D GN program comprises four main subroutines: input, calculation, 

update and output. For each test case the following initial values are input to the 

program: bed elevation, initial water depth, amplitude, length and width of the study 

basin, number of grid points, time step, and duration of simulation time. Initial 

conditions are supplied for the bed elevation above fixed horizontal datum, local depth, 

and local horizontal velocity components throughout the tank. The three benchmark 

tests comprise: sloshing in a square tank, solitary wave propagation, and free surface 

sloshing of an initial Gaussian hump in a square basin. These test cases provide 

adequate evidence to indicate that the predictions of the developed numerical solver 

are in good agreement with the linear theory of wave.   

The calculation steps are as follows.  The discretised continuity equation is 

solved to provide new water depth values throughout the grid.  The discretised x-

momentum and y-momentum equations are solved using either a second-order 

tridiagonal scheme or a fourth-order pentadiagonal scheme, as prescribed.  Iteration is 

used to solve for the cross-derivative velocity terms in the momentum equation.  

Boundary conditions are then invoked. 

The values of u, v, h and η are updated after each time integration, time advanced one 

time step, and the calculation process repeated until the simulation is completed. 

The output comprises: channel geometry of channel, and time histories of free surface 

elevation, and horizontal velocity components.  

 

3.8 Summery 

 In this chapter 1D and 2D Level I GN equations were discretised using second-

order and fourth-order finite differences in space and time integration through 

applying a Runge-Kutta fourth-order scheme.  The numerical model utilised a 

tridiagonal matrix solver and a pentadiagonal matrix solver, the former for the 

second-order space discretisation, the latter for the fourth order. A detailed 

explanation of the numerical procedure and the boundary conditions required 

to close the model is provided.   
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Chapter 4   

1D Model Verification and Parameter Tests 

 

4.1   Introduction 

In this chapter the numerical schemes for 1D level I GN equations are validated 

for two benchmark problems: sloshing in a tank and propagation of solitary wave over 

a flat-bed. For sloshing in a tank, the effect of grid convergence and time step on the 

accuracy and stability of simulations is studied, and the results compared against 

analytical solutions of the linearised shallow water equations (originally proposed by 

Lamb, 1916). Nonlinear behaviour is investigated through spectral analysis of the even 

and odd harmonics components of the sloshing motions. Grid convergence and time 

step stability tests are also conducted for propagation of solitary wave over a flat bed, 

and results compared against a published analytical solution (Metayer et al. 2010).  

 

4.2     1D GN equations numerical solver validation test cases 

4.2.1 Sinusoidal sloshing in a tank 

 

            In order to examine the capability of the spatially second-order tridiagonal 

and fourth-order pentadiagonal matrix solvers of the 1D GN equations, we first 

consider the benchmark test of sinusoidal free surface sloshing in a square tank. The 

wavelength L is 1000 m and the still water depth h0 is 5 m. The first order analytical 

solution for the depth profile evolution in space and time of a standing wave in a 

channel (see e.g. Dean and Dalrymple, 2002) is 

                                           ℎ = ℎ0 + 𝑎 cos(𝑘𝑥 + 𝜙) cos(𝜔𝑡 + 𝜙)                             (4.1) 

where a is the amplitude of the standing wave, k is the wave number, ω is the angular 

frequency of the wave, x is distance along the tank, t is time, and 𝜙 is the phase. The 

wave number k and the wave angular frequency ω are given by 

                                       𝑘 =
2π

𝐿
                 and           𝜔 =

2π

𝑇
                                    (4.2)      
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in which L is the wavelength and T is the period of oscillation of the wave in the tank.  

The wavelength L is the distance between two successive wave crests or troughs at 

particular time. The wave period T is the time it takes for the two successive wave 

crests or troughs to pass a particular point. 

At time t = 0 the initial depth at the i-th computational node along the tank is given by 

                                                       ℎ𝑖
0 = ℎ0 + 𝑎 cos(𝑘𝑥𝑖 + 𝜙)                                         (4.3) 

Figure 4.1 shows numerically predicted sloshing wave profile at t = 0 s. 

Wave frequency 𝜔 is related to wave number k by the dispersion relation 

                                                         𝜔2 = 𝑔𝑘 tanh(𝑘ℎ0)                                            (4.4) 

where g is the acceleration due to gravity and h0  is the still water depth. For this case: 

                                              𝜔 = √9.81 (
2𝜋

1000
) tanh (

𝜋

100
) = 0.044 

rad

s
                    (4.5)       

                             𝑇 =
2𝜋

𝜔
= 142.8 s     and    𝑓(frequency) =

1

𝑇
= 0.007 Hz          (4.6) 

            To test for grid independence, simulations were performed using the second-

order tridiagonal and fourth-order pentadiagonal schemes on different numbers of grid 

nodes.  Results are presented here for the tridiagonal solver, for brevity because of the 

very close similarity to the pentadiagonal grid results.  

Figure 4.2 shows the time histories of wave elevation at the corner of the tank 

(in positive x-direction) for an initially small-amplitude disturbance 𝑎 = 0.0005 m 

obtained on grids of increasingly fine resolution (𝑖𝑚𝑎𝑥 = 41, 101, 201 and 1001) with 

phase 𝜙 = 0 and a fixed time step ∆𝑡 = 0.25 s.  The results presented in Figure 4.2 

demonstrate that 𝑖𝑚𝑎𝑥 = 101 is sufficient to achieve a converged solution of the 1D 

GN equations.    

Next, we consider the effect of altering the time step on the converged grid.  

Figures 4.3 depicts the sloshing wave time histories at the corner of the tank for 

different time steps (∆𝑡 = 0.25, 1.0 and 2.0 s) on the converged grid with 𝑖𝑚𝑎𝑥 = 101. 

It is obvious that the time step does not have significant effect on the results for a 

small-amplitude disturbance 𝑎 = 0.0005 m. As a result, ∆𝑡 = 1 s is adequate for 

accurate simulation. 
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            Figure 4.4 reveals the corresponding water level time histories obtained for 

an initially medium-amplitude disturbance 𝑎 = 0.005 m. Once again it is observed that 

𝑖𝑚𝑎𝑥 = 101 is sufficient, for a time step ∆𝑡 = 0.25 s. Figure 4.5 shows the close 

agreement between the results obtained using the second-order scheme for three values 

of time step (∆𝑡 = 0.25, 1.0 and 2.0 s) on the grid with 𝑖𝑚𝑎𝑥 = 101.   

Figure 4.6 presents the sloshing motions obtained for an even larger amplitude 

disturbance 𝑎= 0.05 m. In this case, the grid resolution is such that 𝑖𝑚𝑎𝑥 = 201, and 

results are presented for ∆𝑡 = 0.1 s and ∆𝑡 = 1 s.  It is clear that the numerical solver 

is unable to simulate the long term sloshing behaviour of such steep waves, with high-

order even harmonic oscillations appearing after 2200 s.  The corresponding results on 

a finer grid with 𝑖𝑚𝑎𝑥 = 1001 and smaller time steps of ∆𝑡 = 0.2 and 0.02 s did not 

lead to any significant change in the sloshing behaviour, indicating that this finding is 

grid independent. 

            Figure 4.7 presents a direct comparison of the sloshing motions of waves of 

increasing initial amplitude (and hence nonlinearity) on a relatively coarse grid with 

𝑖𝑚𝑎𝑥 = 201 and relatively large time step of ∆𝑡 =  1 s.  All the time histories follow 

essentially the same trend with increasing initial wave amplitude. The smallest waves 

𝑎 = 0.0005 m and 0.005 m retain almost linear behaviour. The results for larger 

amplitude 𝑎 = 0.05 m showed a breakdown into higher order components of increasing 

amplitude with time.  

These simulations, figures 4.1 to 4.7, indicated that relatively coarse grid, 

𝑖𝑚𝑎𝑥 = 101, and relatively large time step of ∆𝑡 = 1 s are adequate for GN numerical 

solver to produce accurate simulations of time histories of wave elevation for an 

initially small-amplitude (𝑎 = 0.0005 m) and medium-amplitude disturbance (𝑎 = 

0.0005 m) at the corner of the tank.    

            Figure 4.8 depicts the excellent agreement in free surface motions at corner of 

the tank obtained for medium-amplitude (𝑎 = 0.005 m) using the first-order analytical 

solution, the second-order tridiagonal scheme, and the fourth-order pentadiagonal 

scheme. In this case, 𝑖𝑚𝑎𝑥 = 101 and ∆𝑡 = 1 s. This case verifies that the numerical 

schemes give a correct representation of the underlying mathematical description, 

provided the waves are nearly linear. 
 



71 
 

4.2.2   Spectral analysis for the sinusoidal sloshing in a tank  

            To understand better the resonant free surface sloshing in the tank, it is useful 

to carry out spectral analysis using a Fast Fourier Transform (FFT) of the free surface 

elevation components of time series. Peaks in the spectra indicate important 

frequencies and wavelengths where resonant behaviour may be occurring. The free 

surface motion time series are now interpreted using Fast Fourier Transforms for 

medium and large amplitude initially sinusoidal sloshing events in a 1000 m x 1000 m 

square tank with still water depth of 5 m. The code for spectrum analysis developed as 

M-file of Matlab softeware and FFT analysis is performed by using FFT toolbox of 

Matlab.   

The 2D GN solver is applied on a grid (imax = jmax = 101) with time step 0.5 s.  

Figure 4.9 shows the numerical prediction of the free surface elevation time history at 

the corner of the tank and the corresponding FFT plot obtained for medium amplitude 

(a=h0/1000=0.005 m) sloshing.  In Figure 4.9 two peaks appear at 0.007 and 0.014 Hz. 

It is worth mentioning that the smaller peak results from the effect of reflection of 

waves from the tank wall.  Here, 𝜉𝑐 refers to the free surface elevation time series of 

the hump-induced sloshing. Figure 4.10 shows the corresponding plots for large 

amplitude (a = h0/100 = 0.05 m) sloshing.  The first peak in both medium and large 

amplitude simulations appears at 0.007 Hz which is the same as that obtained 

analytically using linearised shallow water theory (Lamb 1879).   

It can be seen by comparing Figure 4.10 (b) with Figure 4.9 (b) that an increase 

in the value of amplitude increases the effect of nonlinearity.  The free surface 

elevation time history displayed in Figure 4.10 (a) is shorter than that in Figure 4.9 (a) 

because the nonlinear effects eventually caused shock-like steepening of the wave 

profiles (becoming visible at about t = 1425 s) in the larger amplitude case leading to 

the numerical model becoming unstable.  A shock-capturing scheme would be needed 

to overcome this problem, and is recommended for future work.  For the large 

amplitude, a = 0.05 m, case in Figure 4.10 (b), three peaks can be seen at 0.007, 0.014 

and 0.021 Hz.  
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            Figures 4.11 (a) and 4.11 (b), respectively, show the numerically predicted free 

surface elevation time histories of the trough-induced sloshing at the corner of the tank 

and the corresponding FFT spectrum for the medium amplitude initial condition (a = 

h0/1000 = 0.005 m).  Here, 𝜉𝑡 refers to the free surface elevation time series of the 

trough-induced sloshing.  The results are qualitatively almost the same as for the crest-

induced case (i.e. Figure 4.9).  Figure 4.12 shows the time evolution of large amplitude 

(a = h0/100 = 0.05 m) sloshing in the tank, and the corresponding FFT spectrum. The 

slosh motions sharpen up into a saw-tooth profile more quickly than for the medium 

slosh case.  

Figures 4.13 and 4.14 show the numerically predicted free surface elevation 

time histories of the even harmonic components (obtained by [
𝜉𝑐+𝜉𝑡

2𝑎
] taking the average 

of results obtained for 𝜙 = 0 and 𝜋) and the corresponding FFT spectrum for the 

medium amplitude (a = h0/1000 = 0.005 m) and large amplitude (a = h0/100 = 0.05 

m) slosh cases, respectively. The effect of nonlinearity increases as the initial slosh 

amplitude increases, as would be expected. Furthermore, an even harmonic peak 

appears at the same frequency of the second peak in the hump-induced FFT plot at 

0.014 Hz (compare figure 4.9 (b) with 4.13 (b) and figure 4.10 (b) with 4.14 (b)).  

 Figures 4.15 plots the numerically predicted free surface elevation time history 

of the odd harmonic components (obtained by [
𝜉𝑐−𝜉𝑡

2𝑎
]) at the corner of the tank and the 

corresponding FFT plot for the medium amplitude (a = h0/1000 = 0.005 m) case. The 

odd harmonics are dominated by a single peak corresponding to the linear sloshing 

mode at 0.007 Hz (compare figure 4.9 (b) with 4.15 (b)).  Figure 4.16 presents the 

equivalent plots for large amplitude (a = h0/100 = 0.05 m) sloshing; the spectrum 

contains two peaks corresponding to the first and third peaks in the hump-induced 

sloshing spectrum at 0.007 and 0.021 Hz (compare figure 4.10 (b) with 4.16 (b)).  
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4.2.3   Solitary Wave Propagation over a Flat Bed 

            The second verification case concerns the propagation of a solitary wave in a 

1D channel over a horizontal, frictionless bed. In this case, the solitary wave is 

nonlinear, uniform, and at steady state, such that its form does not change with time. 

Figure 4.17 shows key variables that define the solitary wave flow geometry. The free 

surface profile of the solitary wave is given by Drazin and Johnson, 1989: 

                                                     𝜉(𝑥, 𝑡) = 𝑎 sech2(𝑏 (𝑥 − 𝑐𝑡))                                    (4.7) 

where 𝜉 is the free surface elevation above still water level, a is amplitude, b is the 

inverse width, and c is the solitary wave speed. Metayer et al. (2010) derive the 

following definition of b and c for a GN solitary wave: 

                                                            𝑏 =
1

2
 √(

3𝑎

ℎ0
2(ℎ0+𝑎)

)    ,                                          (4.8)   

 

                                                             𝑐 = √𝑔(ℎ0 + 𝑎)     ,                                               (4.9)  

and 

                                                                 ℎ = ℎ0 + 𝜉                                                         (4.10)  
 

where ℎ0 is the still water depth and ℎ is the total water depth. Metayer et al. (2010) 

also derive the following expression for horizontal fluid velocity component: 
 

                                                              𝑢(𝑥, 𝑡) = 𝑐 (1 −
ℎ0

𝜉+ℎ0
)                                      (4.11)   

 

            To examine grid convergence, the second-order and fourth-order solvers were 

used to simulate the propagation of a solitary wave of 2 m initial amplitude in 

otherwise still water of depth 10 m along the 10000 m channel on increasingly fine 

grids with imax = 1001, 2001, 5001 and 10001 and a fixed time step ∆𝑡 = 0.5 s. The 

position of the initial wave crest is set to be 1000 m away from the west wall (𝐿𝑥𝑝𝑜 = 

1000 m).   Figures 4.18 and 4.19, respectively, show the free surface profiles simulated 

by second-order and fourth-order solvers at time t = 480 s corresponding to the 

different grids.  In second-order simulations, on the coarser grids, the solitary wave 

loses amplitude as it dissipates energy into the production of trailing waves (connected 

to numerical error from lack of spatial resolution). The trailing waves almost disappear 

and the solitary wave retains its amplitude on the finer grids with imax = 5001 and 
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10001. As a result, imax = 10001 appears to satisfy grid convergence when simulating 

the solitary wave using the second-order solver. On the other hand, in the fourth-order 

simulations using coarser grids the solitary wave does not lose amplitude as it does in 

second-order simulations. Thus, trailing waves are not produced (figure 4.19).  

Figures 4.20 and 4.21, respectively, present the evolved profiles of the solitary 

wave on the converged grid using second-order tridiagonal and fourth-order 

pentadiagonal solvers for time steps ∆𝑡 = 0.01, 0.05, 0.1, 0.5 and 1.0 s. The results for 

∆𝑡 = 0.5 s are in agreement with the results for the smaller time steps, and so is selected 

for the remainder of the solitary wave study.  

            Figures 4.22 shows the excellent agreement obtained between the second-order 

solver predictions and the analytical solution of the solitary wave profile at t = 480 s 

on the converged grid with imax = 10001 for ∆𝑡 = 0.1 s and ∆𝑡 = 0.5 s. To illustrate 

again the effect of grid convergence, figure 4.23 shows the corresponding profiles of 

increasing accuracy obtained at t = 480 s for imax = 1001, 2001, 5001 and 10001 and  

∆𝑡 = 0.1 s. Figures 4.24 and 4.25 depict the solitary wave profiles obtained on the 

same grids of increasing fineness for ∆𝑡 = 0.5 s and 1.0 s. The results confirm that 

increasing the number of grid nodes for ∆𝑡 = 0.5 s improves the accuracy of the 

tridiagonal solver results. For ∆𝑡 = 1.0 s, however, the accuracy of the second-order 

simulation does not increase beyond a certain point by increasing the number of grids. 

The value of time step should be selected carefully, since using big time steps in the 

numerical model may lead to inaccurate simulations. 

            Similar tests were performed using fourth-order pentadiagonal solver, the 

results of which are reported in figures 4.26, 4.27 and 4.28. The fourth-order 

simulations are in complete agreement with the analytical solution of the solitary wave 

profile at t = 480 s on the converged grid with imax = 10001 for ∆𝑡 = 0.1 s and ∆𝑡 = 

0.5 s (figures 4.26). To demonstrate the effect of grid convergence, figure 4.27 shows 

the corresponding profiles of increasing accuracy obtained at t = 480 s for imax = 1001, 

2001, 5001 and 10001 and ∆𝑡 = 0.1 s.  Figures 4.28 depicts the solitary wave profiles 

obtained on the same grids of increasing fineness for ∆t = 0.5 s.  The results indicate 

that increasing the number of grid nodes for ∆𝑡 = 0.5 s improves the accuracy of the 

fourth-order solver results.  



75 
 

            Figure 4.29 and Figure 4.30 show the evolution in space and time of the solitary 

wave of initial amplitude 2 m on otherwise still water of depth 10 m as predicted by 

the spatially fourth-order pentadiagonal solver on a fine grid with 𝑖𝑚𝑎𝑥= 10001 and 

∆𝑡 = 0.5 s. Figure 4.29 provides an x-t plot of the free surface evolution. Figure 4.30 

depicts the propagation of the solitary wave profile as it moves along the channel at 

times t = 0, 80, 160, 240, 320,400, and 480 s. It is obvious that the wave shape does 

not change with time, in accordance with the analytical solution, thus providing further 

verification of the fourth-order solver of the GN equations.  

            The same simulation was performed using second-order solver on a coarser 

grid with 𝑖𝑚𝑎𝑥= 1001 and time step of ∆𝑡 = 0.5 s. Figure 4.31 again shows snapshots 

of the solitary wave profile at different times. However, the results are not as accurate 

as those in Figure 4.30, due to the coarse grid being used.  

            Figure 4.32 and Figure 4.33 taken together offer a comparison between the 

results obtained using the second-order tridiagonal and fourth-order pentadiagonal 

solvers on a grid with 𝑖𝑚𝑎𝑥= 10001 and time step ∆𝑡 = 0.01 s. Both figures present the 

solitary wave profiles simulated at times t = 0 and t = 480 s, and focus on the trailing 

oscillatory waves that occur behind the solitary wave (and are a measure as to how 

accurate the solver is at representing the analytical solution which is without trailing 

waves). In both cases, the trailing waves are very small, though those obtained using 

the tridiagonal scheme are rather larger than by the pentadiagonal scheme (as would 

be expected given that the former is second-order accurate and the latter is fourth-

order).    

Figures 4.34 shows the free surface profiles of the solitary wave, respectively, 

simulated by linear analytical solution (black line), second-order tridiagonal solver 

(blue line) and fourth-order pentadiagonal solver (cross symbols) at time t = 480 s on 

the converged grid with imax = 10001 for ∆𝑡 = 0.1 s. An excellent and in complete 

agreement respectively obtained for second-order and fourth-order numerical 

predictions against the linear analytical solution of the solitary wave profile in which 

the cross symbols essentially overlay the black line.  
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4.3 Summery 

 

 In this chapter, the verification tests undertaken for the 1D level I GN equations 

comprised of free surface sloshing of an initial sinusoidal wave in a tank and 

the propagation of solitary wave over a flat-bed.  

 

 For sloshing in a tank, excellent agreement was obtained between the model 

predictions using both second-order and fourth-order schemes and the standard 

first-order analytical solution for relatively small initial wave amplitude (a ≤ 

0.005 m).  At larger amplitudes of initial disturbance, the free surface elevation 

time history developed saw-tooth profiles. A shock-capturing scheme would 

be needed to overcome this problem, and is recommended for future work.  By 

means of the FFT analysis, it was found that nonlinear behaviour was 

particularly pronounced in the even harmonic slosh components.   
 

 

 In the second verification test, it was found that both second- and fourth-order 

solvers produced accurate simulations of solitary wave propagation when the 

results were compared against a standard solution.     
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Figure 4.1: Predicted sloshing wave profile at t = 0 s. 

 

 

 

Figure 4.2: Predicted free surface elevation time history for a small-amplitude disturbance  

(a = 0.0005 m) at the corner of the tank: imax = 41, 101, 201, and 1001. 

 
 

 

 

Figure 4.3: Predicted free surface elevation time history for a small-amplitude disturbance  

(a = 0.0005 m) at the corner of the tank: imax = 101 for ∆t = 0.25, 1, and 2 s. 
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Figure 4.4: Predicted free surface elevation time history for a medium-amplitude disturbance 

(a = 0.005 m) at the corner of the tank: imax = 41, 101, 201, and 1001. 

 

 

Figure 4.5: Predicted free surface elevation time history for a medium-amplitude disturbance 

(a = 0.005 m) at the corner of the tank: imax = 101 for ∆t = 0.25 s, 1 s, and 2 s. 

 

 

 

Figure 4.6: Predicted free surface elevation time history for a large-amplitude disturbance   

(a = 0.05 m) at the corner of the tank: imax = 201 for ∆t = 0.1 and 1 s. 
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Figure 4.7: Predicted free surface elevation time history for different initial disturbance 

amplitude (a = 0.0005, 0.005, and 0.05 m) at the corner of the tank: imax= 201, ∆t=1 s. 

 

 

 

Figure 4.8: Predicted free surface elevation time histories for a medium-amplitude 

disturbance (a = 0.005 m) at the corner of the tank: imax = 101, ∆t = 1 s; analytical solution 

for im= 101.  
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         (b) 

 

  

 

Figure 4.9: Prediction of hump-induced sloshing in the tank for a = 0.005 m: (a) free surface 

elevation time history at the corner of the tank; and (b) FFT spectrum.  

      (a) 

 

       

  

       (b) 

 

       

 

Figure 4.10: Prediction of hump-induced sloshing in the tank for a = 0.05 m: (a) free surface 

elevation time history at the corner of the tank; and (b) FFT spectrum. 
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(a1): Numerical free surface elevation time history for the crest (amp = h0/1000 = 0.005 m)
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(b1): Numerical free surface elevation time history for the troughs (amp = h0/1000 = 0.005 m)
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(c1): Numerical free surface elevation time history for the even harmonic (amp = h0/1000 = 0.005 m)
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(d1): Numerical free surface elevation time history for the odd harmonic (amp = h0/1000 = 0.005 m)
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Figure 4.11: Prediction of trough-induced sloshing in the tank for a = 0.005 m: (a) free 

surface elevation time history at the corner of the tank; and (b) FFT spectrum. 
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Figure 4.12: Prediction of trough-induced sloshing in the tank for a = 0.05 m: (a) free surface 

elevation time history at the corner of the tank; and (b) FFT spectrum. 
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(a1): Numerical free surface elevation time history for the crest (amp = h0/1000 = 0.005 m)
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(b1): Numerical free surface elevation time history for the troughs (amp = h0/1000 = 0.005 m)
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(c1): Numerical free surface elevation time history for the even harmonic (amp = h0/1000 = 0.005 m)
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(d1): Numerical free surface elevation time history for the odd harmonic (amp = h0/1000 = 0.005 m)
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(a1): Numerical free surface elevation time history for the crest (amp = h0/100 = 0.05 m)
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(b1): Numerical free surface elevation time history for the troughs (amp = h0/100 = 0.05 m)
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(c1): Numerical free surface elevation time history for the even harmonic (amp = h0/100 = 0.05 m)
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Figure 4.13: Predicted even harmonics for sloshing of initial a = 0.005 m: (a) free surface 

elevation time history at the corner of the tank; and (b) FFT spectrum.  
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Figure 4.14: Predicted even harmonics for sloshing of initial a = 0.05 m: (a) free surface 

elevation time history at the corner of the tank; and (b) FFT spectrum.  
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(c1): Numerical free surface elevation time history for the even harmonic (amp = h0/1000 = 0.005 m)
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(b1): Numerical free surface elevation time history for the troughs (amp = h0/100 = 0.05 m)
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(c1): Numerical free surface elevation time history for the even harmonic (amp = h0/100 = 0.05 m)
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(d1): Numerical free surface elevation time history for the odd harmonic (amp = h0/100 = 0.05 m)
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Figure 4.15: Predicted odd harmonics for sloshing of initial a = 0.005 m: (a) free surface 

elevation time history at the corner of the tank; and (b) FFT spectrum.  
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Figure 4.16: Predicted odd harmonics for sloshing of initial a = 0.05 m: (a) free surface 

elevation time history at the corner of the tank; and (b) FFT spectrum.  
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Figure 4.17: Key variables that define the solitary wave flow geometry 

 

 

Figure 4.18: Solitary wave propagation over a flat-bed: predicted free surface elevation 

profiles at t=480 s using second-order solver for imax=1001, 2001, 5001, and 10001, ∆t=0.5 s. 

 

 

Figure 4.19: Solitary wave propagation over a flat-bed: predicted free surface elevation 

profiles at t= 480 s using fourth-order solver for imax= 1001, 2001, 5001, and 10001, ∆t=0.5 s. 
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Figure 4.20: Solitary wave propagation over a flat-bed: predicted free surface elevation 

profiles at t=480 s using second-order solver for imax= 10001, ∆t= 0.01, 0.05, 0.1, 0.5 and 1 s. 

 

 

Figure 4.21: Solitary wave propagation over a flat-bed: predicted free surface elevation 

profiles at t= 480 s using fourth-order solver for imax= 10001, ∆t = 0.01, 0.05, 0.1, 0.5 and 1 s. 

 

 

 

Figure 4.22: Solitary wave propagation over a flat-bed: predicted free surface elevation 

profiles at t = 480 s using linear analytical solution, second-order solver for imax = 10001, ∆t 

= 0.1 s, and second-order solver for imax = 10001, ∆t = 0.5 s. 
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Figure 4.23: Solitary wave propagation over a flat-bed: predicted free surface elevation 

profiles at t = 480 s using linear analytical solution (blue solid line), second-order solver for 

imax = 1001 (yellow), 2001 (red), 5001 (green), and 10001 (black), all with ∆t = 0.1 s. 

 

Figure 4.24: Solitary wave propagation over a flat-bed: predicted free surface elevation 

profiles at t = 480 s using linear analytical solution (blue solid line), second-order solver for 

imax = 1001 (yellow), 2001 (red), 5001 (green), and 10001 (black), all with ∆t = 0.5 s. 

 

 

Figure 4.25: Solitary wave propagation over a flat-bed: predicted free surface elevation 

profiles at t = 480 s using linear analytical solution (blue solid line), second-order solver for 

imax = 1001 (yellow), 2001 (red), 5001 (green), and 10001 (black), all with ∆t = 1.0 s. 
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Figure 4.26: Solitary wave propagation over a flat-bed: predicted free surface elevation 

profiles at t = 480 s using linear analytical solution, fourth-order solver for imax = 10001, ∆t = 

0.1 s, and fourth-order solver for imax = 10001, ∆t = 0.5 s. 

 

Figure 4.27: Solitary wave propagation over a flat-bed: predicted free surface elevation 

profiles at t = 480 s using linear analytical solution (blue solid line), fourth-order solver for 

imax = 1001 (yellow), 2001 (red), 5001 (green), and 10001 (black), all with ∆t = 0.1 s. 

 

 

Figure 4.28: Solitary wave propagation over a flat-bed: predicted free surface elevation 

profiles at t = 480 s using linear analytical solution (blue solid line), fourth-order solver for 

imax = 1001 (yellow), 2001 (red), 5001 (green), and 10001 (black), all with ∆t = 0.5 s. 
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Figure 4.29: Solitary wave propagation: x-t plot of free surface profiles at t = 0, 80, 160, 240, 

320,400, and 480 s predicted using the fourth-order solver for imax = 10001, ∆t = 0.5 s. 

 

 

Figure 4.30: Solitary wave propagation over a flat-bed: free surface profiles at t = 0, 80, 160, 

240, 320,400, and 480 s predicted using the fourth-order solver for imax = 10001, ∆t = 0.5 s. 

 

 

Figure 4.31: Solitary wave propagation over a flat-bed: free surface profiles at t = 0, 80, 160, 

240, 320, 400, and 480 s predicted using the second-order solver for imax = 1001, ∆t = 0.5 s. 
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                          × 10-3 

 

Figure 4.32: Trailing oscillatory waves behind the solitary wave at t = 480 s predicted using 

the second-order scheme: imax = 10001, ∆t = 0.01 s.  
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Figure 4.33: Trailing oscillatory waves behind the solitary wave at t = 480 s predicted using 

the fourth-order scheme: imax = 10001, ∆t = 0.01 s. 

 

 

Figure 4.34: Solitary wave propagation over a flat-bed: predicted free surface elevation 

profiles at t = 480 s using linear analytical solution (black solid line), second-order solver for 

imax = 10001, ∆t = 0.1 s (blue solid line), and fourth-order solver for imax = 10001, ∆t = 0.1 s 

(cross symbols).
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Chapter 5  

2D Model Verification and Parameter Tests 

Simulation of Free Surface Sloshing of an Initial 

Gaussian Hump 

 

5.1 Introduction 

            In this chapter, free surface sloshing of an initial Gaussian hump in wall-

bounded basin are selected as benchmark test cases to validate the developed 

numerical schemes for 2D level I GN equations.  Double Fourier series semi-analytical 

solutions for the evolution of the Gaussian hump are applied against numerical scheme 

simulations to indicate the capability of the developed 2D GN model in simulating 

nonlinear behaviour of waves. Reverse simulations of the Gaussian hump as well as 

the even and odd harmonics of forward simulations reveal the nonlinear behaviour of 

the developed 2D GN numerical model. Moreover, the Fast Fourier Transform (FFT) 

is applied for spectral analysis of Gaussian hump simulations.  

 

5.2 Verification tests for numerical solver of 2D GN equations 

5.2.1 Free surface sloshing of an initial Gaussian hump in a closed square, flat-

bottomed basin   

            The 2-D numerical solver is first verified for nonlinear free surface sloshing 

motions arising from an initial Gaussian hump in a closed square, flat-bottomed basin 

(for which an analytical solution is available).  The sloshing of free surface waves is 

commonly used as a verification test for numerical models, given that there is a well-

established analytical solution to this problem (see e.g. Lamb 1879).  Figure 5.1 depicts 

a square basin of plan dimensions, 0 ≤ 𝑥 ≤ 𝐿𝑥  and  0 ≤ 𝑦 ≤ 𝐿𝑦, which is bounded 

by solid walls at  𝑥 = 𝐿𝑥 and, 𝑦 = 𝐿𝑦 . Figure 5.2 illustrates the computational mesh 
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plotted in physical domain.  The basin contains water of still depth (in the absence of 

the hump), h0, and an initial free surface profile above still water level given by 𝜁(x, y, 

t = 0).  From the linearised shallow water equations we have: 

                                                           
𝜕𝜁

𝜕𝑡
+

𝜕(𝑢ℎ)

𝜕𝑥
+

𝜕(𝑣ℎ)

𝜕𝑦
= 0                                       (5.1) 

 

Here 𝜁 is the free surface elevation above still water level, ℎ is the total depth (ℎ =

ℎ𝑠 + 𝜁), 𝑢 is the horizontal velocity component in the x-direction, and 𝑣 is the 

horizontal velocity component in the y-direction.  Assuming ≪ ℎ , then we can 

approximate (5.1) by 

                                                            
𝜕𝜁

𝜕𝑡
+

𝜕(𝑢ℎ𝑠)

𝜕𝑥
+

𝜕(𝑣ℎ𝑠)

𝜕𝑦
= 0                                  (5.2) 

 

Considering the flat horizontal bed (i.e. uniform still water depth) then, 

                                                             
𝜕𝜁

𝜕𝑡
+ ℎ𝑠 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) = 0                                        (5.3) 

 

When the above equation is differentiated with respect to t: 

                                                         
𝜕2𝜁

𝜕𝑡2
+ ℎ𝑠 (

𝜕2𝑢

𝜕𝑥𝜕𝑡
+

𝜕2𝑣

𝜕𝑦𝜕𝑡
) = 0                                 (5.4) 

 

From the linearised momentum equation (without second order term), we have: 

                                                   
𝜕𝑢

𝜕𝑡
= −𝑔

𝜕𝜁

𝜕𝑥
     and      

𝜕𝑣

𝜕𝑡
= −𝑔

𝜕𝜁

𝜕𝑦
                           (5.5) 

Hence, eliminating 𝑢 and 𝑣 from Eqn. (5.4), 

                                                               
𝜕2𝜁

𝜕𝑡2
+ 𝑐2 (

𝜕2𝜁

𝜕𝑥2
+

𝜕2𝜁

𝜕𝑦2
) = 0                               (5.6) 

where  𝑐2 = 𝑔ℎ.  Letting  𝜁(𝑥, 𝑦, 𝑧, 𝑡) = 𝜂(𝑥, 𝑦) 𝑒𝑖𝜔𝑡   , then: 

      
𝜕𝜁

𝜕𝑥
=

𝜕𝜂

𝜕𝑥
 𝑒𝑖𝜔𝑡   ⟹    

𝜕2𝜁

𝜕𝑥2
=

𝜕2𝜂

𝜕𝑥2
 𝑒𝑖𝜔𝑡    ,     

𝜕𝜁

𝜕𝑦
=

𝜕𝜂

𝜕𝑦
 𝑒𝑖𝜔𝑡   ⟹    

𝜕2𝜁

𝜕𝑦2
=

𝜕2𝜂

𝜕𝑦2
 𝑒𝑖𝜔𝑡 

     and   
𝜕𝜁

𝜕𝑡
= 𝜂 𝑖𝜔𝑒𝑖𝜔𝑡       ⟹       

𝜕2𝜁

𝜕𝑡2
= −𝜔2𝜂 𝑒𝑖𝜔𝑡                                                    (5.7) 
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By replacing the above parameters (5.7) in Eqn. (5.6) and then dividing both sides of 

Eqn. (5.6) by 𝑒𝑖𝜔𝑡  we obtain: 

                    −𝜔2 𝜂 = 𝑐2  (
𝜕2𝜂

𝜕𝑥2
+

𝜕2𝜂

𝜕𝑦2
)         or        

𝜕2𝜂

𝜕𝑥2
+

𝜕2𝜂

𝜕𝑦2
+

𝜔2

𝑐2
𝜂 = 0          (5.8)  

 

As a result, the basic equation that governs the behaviour of the hump is as follows:  

  (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+ 𝑘2) 𝜂 = 0  

                                            or                                                                                  (5.9) 

                                                        (∇2 + 𝑘2) 𝜂 = 0                                               

where  𝑘 =
𝜔

𝑐
=

2𝜋

𝑇
 . 

To solve Eqn. (5.9), the following boundary conditions are taken into consideration 

(No flux condition at lateral walls): 

𝜕𝜂

𝜕𝑥
= 0            at            𝑥 = 0            and            𝑥 = 𝐿𝑥   

                            
𝜕𝜂

𝜕𝑦
= 0            at            𝑦 = 0            and            𝑦 = 𝐿𝑦                  (5.10) 

 

Separation of variables is applied to solve Eqn. (5.9), giving: 

                                                 𝜂𝑚𝑛(𝑥, 𝑦, 𝑡) = ∑ ∑ �̃�𝑚𝑛 �̅�𝑚𝑛

𝑘=∞

𝑛=0

𝑘=∞

𝑚=0

                                 (5.11) 

where  

                                                 �̅�𝑚𝑛 = (cos 𝑛𝜆𝑥  cos𝑚𝜆𝑦 𝑒−𝑖𝜔𝑡)                                (5.12) 

and 

    �̃�𝑚𝑛 =
4

(1 + 𝜎𝑚0)(1 + 𝜎𝑛0)𝐿𝑥𝐿𝑦
∫ ∫ 𝜂0(𝑥, 𝑦)

𝐿𝑦

−𝐿𝑦

𝐿𝑥

−𝐿𝑥

cos(𝑛𝜆 𝑥) cos(𝑚𝜆 𝑦)𝑑𝑥𝑑𝑦         (5.13) 

Here λ is wavelength (λ =
𝜋

𝐿𝑥
=

π

Ly
), 𝜎𝑚𝑛 is Kronecker’s delta function of m and n 

(Kronecker’s delta represents 1 if 𝑚 = 𝑛  and 0 if 𝑚 ≠ 𝑛).   
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Each of the (m, n) modes has a corresponding natural frequency that is given by: 

                                                           𝜔2
𝑚𝑛 = 𝑔𝑘𝑚𝑛  tanh(𝑘𝑚𝑛ℎ0)                              (5.14) 

where ℎ0 is still water depth in the basin. 

The wave numbers are given by: 

                                                              𝑘2
𝑚𝑛 = (

𝜋

𝐿𝑥
)
2
(𝑚2 + 𝑛2)                                  (5.15)   

The initial surface elevation is of a Gaussian shape 𝜂0(𝑥, 𝑦) as follows: 

                                𝜂0(𝑥, 𝑦) = ℎ0 + 𝑎 exp {−𝑏 [(𝑥 −
𝐿𝑥

2
)
2

+ (𝑦 −
𝐿𝑦

2
)
2

]}        (5.16)                                 

where 𝑎 is the wave amplitude and 𝑏 is spreading parameter. 

Thus, the analytical solution for hump in the closed square basin is: 

                                      𝜂(𝑥, 𝑦, 𝑡) = ∑ ∑ �̃�𝑚𝑛𝑒
−𝑖𝜔𝑡 cos(𝑛𝜆𝑥) cos(𝑚𝜆𝑦)

𝑘=∞

𝑛=0

𝑘=∞

𝑚=0

                (5.17) 

 
 

 

 

Consider a basin of 7.5 m length and 7.5 m width.  The mean depth of the water 

without the hump, h0 is 0.45 m. The initial amplitude of the hump 𝑎 is 0.045 m and the 

spreading parameter in (5.16) is b = 2 m.  The analytical solution is derived by first 

extending the domain using method of images in both 𝑥 and 𝑦 directions. Thus, a 

waveform is developed which is periodic over 2𝐿𝑥, 2𝐿𝑦 and even about any image of 

reflecting walls.  

             In order to obtain an accurate estimate of the analytical solution, different 

numbers of wave components (n and m) and integration points (𝑖𝑚 and  𝑗𝑚) are 

selected to solve the double Fourier series.  Table (5.1) reveals that use of 51 

components (n = m = 51) and 201 integration points (𝑖𝑚 = 𝑗𝑚 = 201) is sufficient to 

obtain a converged solution. Application of higher numbers of integration points (𝑖𝑚 =

𝑗𝑚 = 401 and 1001) does not have any significant effect on the estimates of the 

analytical solution (see figure 5.3 a). When a higher number of components (n = m = 

101) is examined for 𝑖𝑚 = 𝑗𝑚 = 401 and 1001, similar results are again achieved (see 

figure 5.3 b).  Therefore, 51 components (n = m = 51) and 201 integration points (𝑖𝑚 =

𝑗𝑚 = 201) are selected for the remaining estimates of the analytical solution. 
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            The second-order solver of the two-dimensional GN equations is applied at 

different times (t = 0, 0.05, 0.1, 015, 0.2, 0.25, …, 19 s) and animations of these 

simulations are presented in a video file as supplementary material.  To determine 

which number of iterations are required for the numerical solver to obtain converged 

results, different values of r (number of iteration) are selected. Figure 5.4 compares 

the numerical model predictions with the analytical estimates of the water free surface 

in the basin 4 s after release of the hump.  It is obvious that a r value of 4 is sufficient 

for the numerical predictions to be in complete agreement with the analytical result. 

            Furthermore, to identify how many grid points are required to produce an 

accurate simulation (using the second-order solver), a grid convergence test has been 

performed for different numbers of grid points. To this end, 3D plots and contour maps 

of the free surface elevation patterns in the basin obtained using the tridiagonal solver 

for fixed numbers of iteration r = 4 and 10 on increasingly grid points with imax =  jmax 

= 51, 201, and 1001 at t = 4.0 and 10.0 s are simulated.  Figures 5.5 and 5.6 illustrate 

how the results converge at t = 4 s as the grid becomes finer for r = 4 and 10, 

respectively.  It is evident that the medium grid imax = jmax = 201 is sufficient to 

convergence. Figures 5.7 and 5.8, respectively, show the corresponding results at t = 

10 s.  Again, there is no difference between the free surface distributions for r = 4 and 

r = 10 iterations, and grid convergence is achieved for imax = jmax = 201.   Therefore, r 

= 4 and imax = jmax = 201 are chosen for the rest of numerical simulations.  

            To compare the second-order numerical simulations with the analytical 

solutions, Figures 5.9 to 5.14 plot the water surface using 3D visualisations and 

contour maps at times t = 0, 1, 2, 4, 6, 8, 10, 12, and 14 s.  As can be seen in Figures 

5.9 and 5.10, there the numerical and analytical results at t = 0, 1 and 2 s are in excellent 

agreement. Figures 5.11 and 5.12, show the corresponding results at t = 4, 6 and 8 s.  

Discrepancies between the numerical and analytical simulations become evident at t = 

6 and 8 s, and grow with simulation time as can be seen in Figures 5.13 and 5.14 at 

t=10, 12 and 14 s where phase differences can be observed. It is likely that these 

discrepancies are largely due to nonlinear (second- and higher-order) wave interactions 

which are modelled by the GN equations, but neglected in the analytical solution of 

the linearised shallow water equations.  
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            Slosh motions evolve in the basin from the initial hump as it rapidly drops 

under its own weight, causing a deep trough at the centre of the basin with an 

associated circular wave front.  The very initial free surface motions are remarkably 

similar to those generated by the collapse of a liquid column, as modelled by Toro 

(2001) amongst others, except that the central oscillations do not die away as quickly.  

The balance between potential and kinetic energy drives repeated up and down 

motions at the centre of the basin, driving circular waves that propagate radially away 

from the centre of the basin and reflect with the basin walls.  The repeated reflections 

between the waves with each other and the walls promote increasingly complicated 

sloshing modes dominated by waves whose wavelength is half the length of the basin.   

            Figure 5.15 depicts the numerical free surface elevation time history for r = 4 

at the centre of the basin for an initial Gaussian hump of amplitude 𝑎 = 0.045 m 

obtained on grids of increasingly fine resolution (𝑖𝑚𝑎𝑥 = 𝑗𝑚𝑎𝑥  = 51, 101, 201, 401 

and 1001) and a fixed time step ∆𝑡 = 0.05 s.  This figure confirms that 𝑖𝑚𝑎𝑥 = 𝑗𝑚𝑎𝑥 =

 201 is sufficient to obtain a converged solution of the 2D GN equations.  Figure 5.16 

shows the numerical free surface elevation time history for r = 4 iterations and 𝑖𝑚𝑎𝑥 =

  𝑗𝑚𝑎𝑥 = 201 for different time steps (∆𝑡 = 0.05, 0.1 and 0.2 s), where it can be seen 

that ∆𝑡 = 0.05 s is sufficient for accurate results.   

            Figure 5.17a and figure 5.17b, respectively, compare the numerical free 

surface elevation time history for r = 4 (𝑖𝑚𝑎𝑥  =   𝑗𝑚𝑎𝑥 = 201) with the analytical 

solution (n = m = 51 and 𝑖𝑚 =  𝑗𝑚 = 201) at the centre and corner of the basin for a 

total simulation of 70 s after release of the hump.  Excellent agreement exists between 

the numerical simulation and the analytical solution for the first 10 s after release of 

the elevation, after which differences are discernible between the numerical 

predictions and analytical solution, due in part to nonlinear wave interaction effects 

which are not described by the analytical theory.  
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5.2.2      Reverse simulations of free surface sloshing of an initial Gaussian hump 

            We now turn to the reversibility of the simulations.  In order to carry out the 

reverse simulation, the Gaussian hump is released and the water surface propagated 

forward in time until a prescribed time is reached, after which the time step is made 

negative and the numerical scheme allowed to simulate the backward propagation of 

the water surface until time zero is again reached.  The results should be in almost 

identical agreement, given that the problem is thermodynamically reversible.  There is 

no viscosity present, no turbulence, no surface tension, and no sources of friction (e.g. 

from the basin walls or bed).   

            Figure 5.18 depicts the 3D plot and contour map when the simulation travelled 

5 s, 10 s and 20 s forward then backward in time.  The results are generally similar, 

with the shape of the original hump being largely recovered, though as the amount of 

time spent travelling forward and backward increases, there is an increasing amount 

of spurious error evident in the plots, particularly in the vicinity of the basin corners. 

            Figures 5.19 and 5.20 indicate effect of reversibility on free surface elevation 

time history simulations at two locations: the centre and corner of the basin. The total 

duration of the simulated time is 40 s, of which 20 s is forward in time (blue line) and 

20 s is backward in time (red dots). It is evident that by travelling forward and 

backward in time, the accumulated dissipative error causes the recovered hump to 

experience loss of amplitude compared to its original value at t = 0 s.  Increasing the 

number of iterations to r = 10 did not reduce the magnitude of this accumulated 

dissipative error.  
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5.2.3     Even and odd harmonics component of an initial Gaussian hump 

            A second group of simulations was undertaken in order to separate out the even 

and odd harmonics Gaussian hump. To achieve this, the harmonics are treated as 

orthogonal functions. Hence, the even harmonics are obtained additively from 

(
𝜉𝑐+𝜉𝑡

2
) in which 𝜉𝑐 refers to the free surface elevation time series of the initial 

Gaussian hump and 𝜉𝑡 to the equivalent time series for the initial Gaussian trough. The 

odd harmonics are determined by subtraction from (
𝜉𝑐−𝜉𝑡

2
). It is worth noting that the 

(linear) analytical solution is not capable to show the nonlinear behaviour of even 

harmonics.   

Figure 5.21 (a) depicts the time history of even harmonic components of free 

surface elevation at the centre of basin for a small-amplitude initial hump/trough (amp 

= h0/10 m).  Figure 5.21 (b) shows the even harmonic free surface profiles along the 

basin at times t = 59, 60, 62 and 65 s.  The deviations from zero in all the subplots of 

Figure 5.21 indicate that nonlinear effects are quite small in this case, which is to be 

expected given the small-amplitude of the initial disturbance.  

Figure 5.22 depicts (a) the odd harmonic free surface elevation time history at 

the centre of the basin, and (b) odd harmonic profiles along the basin at different times 

t= 0, 0.65, 6.45 and 17.8 s for the initial small-amplitude disturbance (amp = h0/10 m).  

The results are very similar to free surface motions of the linear solution.  

 Figure 5.23 shows the equivalent even harmonic results obtained for a larger-

amplitude initial disturbance (amp=h0/2 m).  Now, the effect of nonlinearity is more 

evident, as can be seen by the wave motions in the even harmonics.  The results for 

odd harmonics are very similar to those for the small-amplitude case, and so are not 

plotted here.   

Figures 5.24 and 5.25 present 3D plots and contour maps of even harmonics, 

showing their evolution at different times (selected to coincide with the largest crests 

and troughs observed in figure 5.23 (a)). Figures 5.26 and 5.27 show the corresponding 

patterns obtained for the odd harmonics (again at times when the crests and troughs 

are largest in Figure 5.22 (a)). 
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5.2.4     Spectral analysis for sloshing of an initial Gaussian hump 

 To understand better the resonant free surface motions driven by an initial 

Gaussian disturbance in the square flat-bottomed basin, it is useful to carry out spectral 

analysis using a Fast Fourier Transform (FFT) of the free surface elevation component 

time series and spatial profiles.  The FFT reveals the variance of the signal within a 

given frequency or wave number bandwidth.  The area of the overall spectrum is 

therefore equal to the variance of the input signal in time or space (depending on which 

signal is selected). Peaks in the spectra indicate important frequencies and wavelengths 

where resonant behaviour may be occurring.  

            The fundamental frequencies can be determined from the free surface elevation 

time histories. Each FFT plot includes a series of magnitude peaks, each associated 

with a particular frequency.  From the analytical solution for free surface sloshing in a 

closed square flat-bottomed basin, the mode corresponding to a given peak can be 

determined. Each mode (m, n) has a corresponding natural frequency.   
 

                          𝑘𝑚𝑛 = √(
𝜋

𝐿𝑥
)
2

(𝑚2 + 𝑛2)        and   𝜔𝑚𝑛 = √𝑔ℎ0 𝑘𝑚𝑛               (5.18) 

The natural periods and frequencies are:       𝑇𝑚𝑛 =
2𝜋

𝜔𝑚𝑛
   and   𝑓𝑚𝑛 =

1

𝑇𝑚𝑛
       (5.19) 

 

            Table 5.2 lists the resonant frequencies associated with different modes for the 

basin of interest (n and m). The frequency at the lowest fundamental mode is            

0.140 Hz.  The predicted frequency (0.571 Hz) obtained from free surface elevation 

time histories data coincides with the fundamental frequency at m = 4 and n = 0.  

Figure 5.28 (a) shows the analytical predictions of the free surface elevation 

time histories of the initial hump at the centre of the basin where the initial amplitude 

amp = h0/2 = 0.225 m. Figure 5.28 (b) is the corresponding FFT plot obtained from 

the analytical hump time series, and contains 7 significant peaks. The first peak at        

0.273 Hz occurs at almost half the fundamental frequency at m = 4 and n = 0. Figure 

5.29 (a) and figure 5.29 (b), respectively, reveal the numerically predicted free surface 

elevation time history and the FFT plot of the free surface motions at the centre of the 
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basin driven by the initial hump of amplitude amp = h0/2 =0.225 m.  In figure 5.29 (a) 

5 major peaks are observable, the first four of which are similar to those in the 

analytical spectrum.  The magnitudes of the first, second and fifth peaks of the 

analytical spectrum are less than the numerical ones; however, the magnitudes of the 

third and fourth peaks of the analytical spectrum are larger than the corresponding 

numerical peaks. Looking at Table 5.2, it can be seen that for both analytical and 

numerical results: the first peak occurs at mode m = 2 and n = 0; the second peak at 

mode m = 2 and n = 2, the third peak at mode m = 3 and n = 2; and the fourth peak at 

mode m = 4 and n = 0.  The fifth peak of the numerical spectrum at mode m = 5 and   

n = 1, whereas that in the analytical spectrum occurs at mode m = 4 and n = 3. The 

sixth and seventh peaks in the analytical spectrum occur at mode m = 5 and n = 2, and 

mode m = 5 and n = 3, respectively. 

            Figure 5.30 shows the analytical free surface elevation time history and FFT 

spectrum for the initial troughs of amplitude amp = h0/2 = 0.225 m.  Figure 5.31 show 

the corresponding results obtained using the numerical model.  The first four peaks in 

the analytical and numerically predicted trough spectra occur at almost the same 

frequencies. However, the first four peaks predicted numerically have lower 

magnitudes than the corresponding analytical peaks.  

The effect of even harmonics is not visible in the analytical time series (Figure 

5.32).  Figure 5.33 reveals that for a relatively large amplitude hump (amp = h0/2 = 

0.225 m), it is possible to see evidence of the nonlinear effect produced by even 

harmonics. By comparing figures 5.33 (b) with 5.29 (b), it can be seen that all five 

peaks of numerical even harmonics occur at the same frequency, regardless of whether 

the initial free surface profile is a hump or a trough.  

Figures 5.34 depict the analytically predicted free surface elevation time 

histories of the odd harmonics and the FFT plot of the odd harmonic components. 

Moreover, Figure 5.35 presents the numerically predicted free surface elevation time 

history and FFT spectrum of the numerical odd harmonic. Like the trough simulations, 

the first four spectral peaks of the numerical and analytical odd harmonics occur at the 

same frequencies, with the magnitudes of the peaks being lower in the numerical 

spectrum.  
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            To understand whether FFT simulations are produced correctly or not, the area 

under the spectrum is calculated and the result compared with variance of the mean-

zero series.  The mean of the series is given by 𝜉̅ =
1

𝑁
∑ 𝜉𝑁

𝑖=1   and so the mean-zero 

series becomes 𝜉 = 𝜉 − 𝜉̅ . where 𝜉 =
ℎ−ℎ0

𝑎𝑚𝑝
  (ℎ is the elevation of water, ℎ0 is the still 

water depth and 𝑎𝑚𝑝 is the amplitude).  The variance is given by 𝜎𝜂
2 =

1

𝑁−1
 ∑ 𝜉2𝑁

𝑖=1  .  

It is obvious from Table 5.3 that there is no significant difference between the 

calculated variance and the value of the area under FFT plots. 

 

5.2.5 Comparison between second-order and fourth-order simulations of free 

surface sloshing of an initial Gaussian hump in a square, flat-bottomed basin   

            A series of test cases are performed to compare results from the second-order 

tridiagonal matrix solver scheme with those produced by the fourth-order 

pentadiagonal solver.  Again, a closed basin of 7.5 m length and 7.5 m width is 

considered.  The mean depth of the water without the hump, h0 is 0.45 m.  The initial 

amplitude of the hump 𝑎 is 0.045 m and the spreading parameter is b = 2 m. The 

number of grid points is given by imax = jmax = 201, and the time step ∆t = 0.05 s.  

            Figures 5.36 and 5.37 present 3D plots and contour maps of the sloshing 

motions driven by the initial Gaussian hump at different times, showing that there are 

no significant differences between the results obtained using the two numerical 

schemes over the duration of the simulations.  Figure 5.38 shows the excellent 

agreement in the free surface elevation time histories at the centre of the basin as 

predicted by the second-order and fourth-order scheme.  This confirms that the use of 

a second-order difference scheme is acceptable. 
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5.3 Parameter tests for sloshing in a basin with non-uniform 

bathymetry 

          Simulations are now considered of the sloshing behaviour of an initial Gaussian 

hump of water released in a basin with non-uniform bathymetry. Figure 5.39 presents 

parameters which govern the Gaussian hump.  Here, the bed elevation above a fixed 

horizontal datum is given by 

                               𝑧𝑏(𝑥, 𝑦) = 𝑧𝑏0
+  𝑎𝑧𝑏

exp {−𝑏𝑧𝑏
[(𝑥 −

𝐿𝑥

2
)
2

+ (𝑦 −
𝐿𝑦

2
)
2

]}            (5.20)                

where 𝑎𝑧𝑏
 is the bed amplitude, 𝑏𝑧𝑏

 = 2 m is a bed spreading parameter and 𝑧𝑏0
=2 m.   

The initial local water depth is: 

                                     ℎ(𝑥, 𝑦) = ℎ0 − 𝑎𝑧𝑏
exp {−𝑏𝑧𝑏

[(𝑥 −
𝐿𝑥

2
)
2

+ (𝑦 −
𝐿𝑦

2
)
2

]} 

                                                          +𝑎 exp {−𝑏 [(𝑥 −
𝐿𝑥

2
)
2

+ (𝑦 −
𝐿𝑦

2
)
2

]}                   (5.21) 

 

where h0 = 0.45 m,  𝑎 is the amplitude of the initial Gaussian hump in free surface 

elevation, and b = 2 m is a measure of its spread.   

Figure 5.40 depicts 3D visualisations and contour maps of the water surface at 

times t = 2, 4, 6, 8, 10 and 12 s for relatively small value of bed amplitude (𝑎𝑧𝑏
 = 0.015 

m) and large value of Gaussian hump amplitude (𝑎 = 0.225 m).  Figure 5.41 shows 3D 

visualisations and contour maps of the water surface at times t = 2, 4, 6, 8, 10 and 12s 

for relatively large values of bed amplitude (𝑎𝑧𝑏
 = 0.225 m) and Gaussian hump 

amplitude (𝑎 = 0.225 m). The effect of the bed hump on the evolution of the water free 

surface is most obvious at the centre of the basin exactly where the bed hump has its 

peak. The large values of bed amplitude (𝑎𝑧𝑏
 = 0.225 m) exerts more effect on each 

simulation.  

            At first the Gaussian free surface hump drops rapidly to form a trough at the 

centre of the basin, releasing a circular ring-like wave that propagates towards the 

basin walls, where reflections occur.  The plunging free surface at the centre of the 
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basin interacts with the bed hump, leading to the recovery of a second clapotis-like 

hump which peaks and releases a second circular wave. After several cycles of central 

peaks and troughs, the water surface motions immediately above the hump degenerate 

into a patch of small waves that heave up and down over the hump (after t ~ 10 s); 

elsewhere the sloshing behaviour is similar to that of the corresponding case without 

a bed hump, particularly the presence of sloshing components whose wavelength is 

half the length of the basin.  

            The following test case concerns the time-dependent motions of an initial 

Gaussian free surface hump in a basin containing a bed trough at its centre (mirroring 

the bed hump that has just been considered). Relatively large bed trough amplitude 

(𝑎𝑧𝑏
= −0.225 m, the negative sign denoting a trough) and initial Gaussian hump 

amplitude (𝑎 = 0.225 m) are selected. Figure 5.42 depicts 3D visualisations and 

contour maps of the evolution of the water surface at times t = 2, 4, 6, 8, 10 and 12 s. 

            In a similar manner to the case involving a bed hump in the basin, the presence 

of the bed trough has greatest effect at the centre of the basin, coincident with the peak 

position of the initial Gaussian free surface hump. In this case, the water free surface 

at the centre of the basin is able to fall further before interacting with the bed; localised 

sloshing of circular waves develops above the bed trough; again the slosh behaviour 

away from the basin centre is again similar to that in the corresponding basin with a 

flat bed, with modes at half basin wave length dominating.   

The third test case in this section considers the effect of a bed hump located at the 

south-west corner of basin.  Figure 5.43 shows contour maps at times t = 6, 8, 10 and 

12 s for 𝑎𝑧𝑏
= 𝑎 = 0.225 m.  

         Figure 5.44 compares the numerically predicted free surface elevation time 

history of an initial Gaussian hump in closed square basin with flat-bottomed and 

centred bed hump bottomed for a total simulation of 70 s after release of an initial 

Gaussian hump. Difference between two simulations becomes more evident especially 

18 s after releasing the Gaussian hump. 
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5.4 Parameter tests for sloshing in a rectangular, flat-bottomed 

basin 

            The final case considered involves a channel of 15 m length and 7.5 m width 

in which the mean depth of the water without the hump, h0 is 0.45 m.  Figure 5.45 

shows snapshots of the water surface motions using 3D visualisations and contour 

maps at times t = 4, 6, 8, 10, 12 and 14 s.  In this case, the north and south extremes of 

the initial Gaussian hump are much closer to the walls than the east and west extremes.  

After the first radial wave is released, it undergoes reflection by the north and south 

walls before the east and west.  After reflection, the combined radial and reflected 

waves form pairs of humps at the south and north walls that travel in opposite east and 

west directions along walls.  Meanwhile the east and west fronts of the initial radial 

wave straighten up and to become aligned with the east and west walls by the time 

they are reached.  By t = 4 s, the second and third radial waves have been released, as 

can be discerned by the ring-like patterns discernible in Figure 5.45(a).  A pattern of 

reflected and re-reflected waves develops progressively dominated by longitudinal and 

transverse sloshing modes, as can be seen in Figures 5.45(d), (e) and (f).  

 

5.5 Summery 

 In this chapter, 2D GN numerical model was verified for nonlinear free surface 

sloshing motions arising from an initial Gaussian hump in a closed basin. 

Numerical simulations of initial Gaussian hump were compared with Fourier 

series semi-analytical solutions of the linearised shallow water equations.  

Excellent agreement was achieved between the numerical simulation and the 

analytical solution of the overall free surface patterns in the basin during the 

first four seconds after the initial release of the hump, after which discrepancies 

became discernible, in part due to nonlinear wave interaction effects which 

were not described by the analytical theory.  Satisfactory agreement between 

the numerical and semi-analytical solutions of free surface elevation was 

achieved for about 10 s at the centre of the basin.  

 



104 
 

 A reversibility check of the developed numerical code indicated that the 

reversed hump returned almost to exactly the same shape as the original 

Gaussian hump, although as the amount of time spent travelling forward and 

backward lengthened, spurious error tended to accumulate in the vicinity of the 

basin corners.  There was some loss of amplitude at the centre of the basin 

when the hump was reversed.  
 

 

 The even and odd harmonics of the initial Gaussian profile were separated from 

initial crest and trough simulations, with the profiles treated as orthogonal 

functions.  For a small-amplitude initial hump or trough (amp=h0/10=0.045 m) 

the negligible deviations from zero in the free surface motions of even 

harmonics indicated that nonlinear effects were quite small. In the equivalent 

even harmonic results obtained for a larger-amplitude initial disturbance (amp 

= h0/2 = 0.225 m), it was possible to see evidence of the nonlinearity.  

 

 To understand better the resonant free surface motions driven by an initial 

Gaussian disturbance in the square basin, an FFT of the free surface elevation 

component time series was carried out.  
 

 

 Parameter tests for sloshing of an initial Gaussian hump were carried out in a 

basin with non-uniform bathymetry with bed humps at the centre of the basin. 

The deformation in the water free surface Gaussian shapes became more 

obvious at the centre exactly where the bed hump was located. 
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Table 5.1:  ℎ − ℎ0  (m) at the centre of the basin at  𝑡 = 0 𝑠 

      imax= jmax 

n=m  

 

51 
 

101 
 

201 
 

401 
 

1001 

 

51 
 

0.00125 
 

0.08682 
 

0.04500 
 

0.04500 
 

0.04500 

 

101 
 

0.00125 
 

0.36136 
 

0.01679 
 

0.04500 
 

0.04500 

 

 

 

Table 5.2: Analytical values of fundamental frequency (Hz) for different modes 
  

 

 

     m 

 

  n 

 

1 

 

2 

 

3 
 

4 
 

5 
 
6 

 
7 

 
8 

 

0 

 

 

 0.140  

 

 

 0.280   

 

 0.420  
 
0.560   

 
0. 700   

 
0.840  

 
0.980    

 
1.120 

 

1 

 

 0.198   

 

 0.313   

 

0.442   
 
0.577 

 
0.714 

 
0.851 

 
0.990 

 
1.129 

 

2 

 

 

0.313 

 

 0.396  

 

 

0.505   

 

0.626 

 

0.754 

 

0.885 

 

1.019 

 

1.155 

 

3 

 

 

0.442 

 

0.505 

 

0.594 

 

0.700  

 

0.816 

 

0.939 

 

1.066 

 

1.196 

 

4 

 

0.577 

 

0.626 

 

0.700 

 

0.792  

 

 0.896  

 

1.010  

 

1.129   

 

1.252 

 

5 

 

0.714 

 

0.754 

 

0.816 

 

0.896 

 

0.990  

 

1.093  

 

1.204  

 

1.165 

 

6 

 

0.851 

 

0.885 

 

0.939 

 

0.891 

 

1.093 

 

1.188  

 

1.291  

 

1.140 

 

7 

 

0.990 

 

1.019 

 

0.941 

 

1.129 

 

1.204 

 

1.291 

 

1.386  

 

 

1.488 

 

 

8 

 

 

1.129 

 

1.155 

 

1.196 

 

1.252 

 

1.321 

 

1.400 

 

1.488 

 

1.584 
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Table 5.3: Comparison of calculated variance with the area under the FFT spectrum for 

initial hump of amplitude = h0/2 = 0.225 m 

 

 
 

 

Analytical 

solution 
(amp = ℎ0/2 m ) 

 

 

 

 

 

𝜎𝜂
2

 

 

Area under FFt’s 

plots 

 

           Crest 
 

  19.074 

 

       17.639 

 

Troughs 
 

  19.074 

 

17.639 

 

Odd harmonic 
 

  19.074 

 

17.639 

 

 

 

Numerical 

solver 
(amp = ℎ0/2 m) 

 

 

 

Crest 

 

 

 14.198 

 

13.931 

 

Troughs 

 

 13.461 

 

14.838 

 

Even harmonic 
 

 3.107 

 

7.040 

 

Odd harmonic 
 

 10.722 

 

12.603 
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                                           z                                                      Ly = 7.5 m 

                                                   y               x 

                                                                                                    𝜁      

                                                

                                                       h                               

                                   

  

𝐿𝑥 = 7.5 𝑚  

                 𝐿𝑥 = 7.5 m 

 

Figure 5.1: A sketch of square basin 

 

 

 

Figure 5.2: Square basin: computational mesh plotted in physical domain 
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Figure 5.3: Convergence test for analytical solution of different numbers of integration 

points (𝑖𝑚, 𝑗𝑚) and numbers of wave components (a) n = m = 51; (b) n = m = 101. 

 

Contours of the analytical solution at t = 4 s (n = m = 51 and 𝑖𝑚 , 𝑗
𝑚

= 201) 

 

                   r = 1                                   r = 2                                   r = 4                                  r = 10 

Figure 5.4: The effect on convergence of number of iterations r for numerical solver on a 

constant grid of 𝑖𝑚𝑎𝑥 =  𝑗
𝑚𝑎𝑥

= 201 at t = 4 s. 
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Figure 5.5: Grid convergence results for Gaussian hump in a square, flat-bottomed basin for 

r = 4 at t = 4 s: (a) imax = jmax = 51; (b) imax = jmax = 201; (c) imax = jmax = 1001. 

  

          

Figure 5.6: Grid convergence results for Gaussian hump in a square, flat-bottomed basin for 

r = 10 at t = 4 s: (a) imax = jmax = 51; (b) imax = jmax = 201; (c) imax = jmax = 1001. 
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Figure 5.7: Grid convergence results for Gaussian hump in a square, flat-bottomed basin for 

r = 4 at t = 10 s: (a) imax = jmax = 51; (b) imax = jmax = 201; (c) imax = jmax = 1001. 

  

        

Fig 5.8: Grid convergence results for Gaussian hump in a square, flat-bottomed basin for r = 

10 at t = 10 s: (a) imax = jmax = 51; (b) imax = jmax = 201; (c) imax = jmax = 1001. 
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    Figure 5.9: Numerical simulations of Gaussian hump sloshing in a square, flat basin for    

r = 4 and imax = jmax = 201: 3D plots and contour maps at (a) t = 0 s, (b) t = 1 s; and (c) t = 2 s. 

 

 

         

Figure 5.10: Analytical solution of Gaussian hump sloshing in a square, flat basin: 3D plots 

and contour maps at (a) t = 0 s, (b) t = 1 s; and (c) t = 2 s. 
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    Figure 5.11: Numerical simulations of Gaussian hump sloshing in a square, flat basin for  

r = 4 and imax = jmax = 201: 3D plots and contour maps at (a) t = 4 s, (b) t = 6 s; and (c) t = 8 s. 

 

    

                  

Figure 5.12: Analytical solution of Gaussian hump sloshing in a square, flat-bottomed basin: 

3D plots and contour maps at (a) t = 4 s, (b) t = 6 s; and (c) t = 8 s. 
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    Figure 5.13: Numerical simulations of Gaussian hump sloshing in a square, flat basin for  

r= 4 and imax= jmax= 201: 3D plots and contour maps at (a) t= 10 s, (b) t= 12 s; and (c) t= 14 s. 

 

    

         

Figure 5.14: Analytical solution of Gaussian hump sloshing in a square, flat basin: 3D plots 

and contour maps at (a) t = 10 s, (b) t = 12 s; and (c) t = 14 s. 
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Figure 5.15: Free surface elevation time history at the centre of the basin for Gaussian hump 

sloshing: numerical results for r = 4 on different mesh densities (imax = jmax = 51, 101, 201, 

401, and 1001); analytical solution for n = m = 51 and 𝑖𝑚 =  𝑗𝑚 = 201. 

 

 

Figure 5.16: Free surface elevation time history at the centre of the basin for Gaussian hump 

sloshing: numerical results for r = 4 and 𝑖𝑚𝑎𝑥 =  𝑗𝑚𝑎𝑥 = 201 using different time steps (∆t 

= 0.05 s, 0.1 s, and 0.2 s); analytical solution for n = m = 51 and 𝑖𝑚 =  𝑗𝑚 = 201 . 

 

 

Figure 5.17a: Free surface elevation time histories at the centre of a basin for sloshing of an 

initial Gaussian hump in a square, flat-bottomed basin: numerical solution for r = 4 (𝑖𝑚𝑎𝑥 =

 𝑗𝑚𝑎𝑥 = 201) and analytical solution (n = m = 51 and 𝑖𝑚 =   𝑗
𝑚

= 201). 
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Figure 5.17b: Free surface elevation time histories at the corner of a basin for sloshing of an 

initial Gaussian hump in a square, flat-bottomed basin: numerical solution for r = 4 (𝑖𝑚𝑎𝑥 =

 𝑗𝑚𝑎𝑥 = 201) and analytical solution (n = m = 51 and 𝑖𝑚 =   𝑗
𝑚

= 201).                               

 

             

  

         

Figure 5.18: Free surface elevation time histories for Gaussian hump sloshing: reversibility 

tests where the time step is reversed at: (a) t1 = 5 s; (b) t2 = 10 s; and (c) t3 = 20 s. 
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Figure 5.19: Free surface elevation time history at the centre of the basin for Gaussian hump 

sloshing: reversibility tests where the time step is reversed at t = 20 s.  

         

Figure 5.20: Free surface elevation time history at the corner of the basin for Gaussian hump 

sloshing: reversibility tests where the time step is reversed at t = 20 s. 

(a) 

        
 (b) 

        

     Figure 5.21: Numerically predicted even harmonics of the free surface motions: (a) even 

harmonic time history for amp = h0/10 = 0.045 m at the centre of the basin; and (b) even 

harmonic profiles along the centerline of the basin at times t = 59, 60, 62 and 65 s.  
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 (a) 

      
                                                                          (b) 

        

Figure 5.22: Numerically predicted odd harmonics of the free surface motions: (a) odd 

harmonic time history for amp = h0/10 = 0.045 m at the centre of the basin; and (b) odd 

harmonic profiles along the centerline of the basin at times t = 0, 0.65, 6.45 and 17.8 s. 

    (a) 

     

      (b) 

                     

Figure 5.23: Numerically predicted even harmonics of the free surface motions: (a) even 

harmonic time history for amp = h0/2 = 0.225 m at the centre of the basin; and (b) even 

harmonic profiles along the centerline of the basin at times t = 0.55, 1.05, 1.5 and 1.95 s. 
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Figure 5.24: Numerical simulations of Gaussian sloshing in a basin for an initial disturbance 

of amplitude amp = h0/2: 3D plots and contour maps of even harmonics at (a) t = 0.55 s, (b)  

t = 1.05 s; (c) t = 1.5 s; and (d) t = 1.95 s.  

 

  

  

 

Figure 5.25: Numerical simulations of Gaussian sloshing in a basin for an initial disturbance 

of amplitude amp = h0/2: 3D plots and contour maps of even harmonics at (a) t = 37.55 s, (b) 

t = 59 s; (c) t = 60.05 s; and (d) t = 65.35 s  
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Figure 5.26: Numerical simulations of Gaussian sloshing in a basin for an initial disturbance 

of amplitude amp = h0/2: 3D plots and contour maps of odd harmonics at (a) t = 0 s, (b) t = 

0.65 s; (c) t = 17.05 s; and (d) t = 17.8 s.  

 

  

  

 

Figure 5.27: Numerical simulations of Gaussian sloshing in a basin for an initial disturbance 

of amplitude amp = h0/2: 3D plots and contour maps of odd harmonics at (a) t = 20.45 s, (b) t 

= 21.3 s; (c) t = 37 s; and (d) t = 38.15 s. 
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  (a) 

 

        

 

 

    (b) 

         

  

 

 

Figure 5.28: Analytical prediction for the initial Gaussian hump for amp = h0/2 = 0.225 m at 

the centre of the basin: (a) free surface elevation time series; and (b) FFT spectrum  
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Figure 5.29: Numerical prediction for the initial Gaussian hump for amp = h0/2 = 0.225 m at 

the centre of the basin: (a) free surface elevation time series; and (b) FFT spectrum 
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Figure 5.30: Analytical prediction for the initial Gaussian trough for amp = h0/2 = 0.225 m at 

the centre of the basin: (a) free surface elevation time series; and (b) FFT spectrum 
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             (b) 

         

   

 

Figure 5.31: Numerical prediction for the initial Gaussian trough for amp = h0/2 = 0.225 m at 

the centre of the basin: (a) free surface elevation time series; and (b) FFT spectrum 
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(c1): Analytical free surface elevation time history for the even harmonic (amp = h0/2 = 0.225 m)
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Figure 5.32: Analytical prediction of even harmonic free surface elevation time history for 

amp = h0/2 = 0.225 m at the centre of the basin  
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Figure 5.33: Numerical prediction of even harmonic components of sloshing of an initial 

hump of amplitude amp = h0/2 = 0.225 m at the centre of the basin: (a) free surface elevation 

time history; and (b) FFT spectrum 
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Figure 5.34: Analytical prediction of odd harmonic components of sloshing of an initial 

hump of amplitude amp = h0/2 = 0.225 m at the centre of the basin: (a) free surface elevation 

time history; and (b) FFT spectrum 
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Figure 5.35: Numerical prediction of odd harmonic components of sloshing of an initial 

hump of amplitude amp = h0/2 = 0.225 m at the centre of the basin: (a) free surface elevation 

time history; and (b) FFT spectrum 
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(c1): Analytical free surface elevation time history for the even harmonic (amp = h0/2 = 0.225 m)
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    Figure 5.36: Fourth-order simulations of Gaussian hump sloshing in a square, flat-

bottomed basin for r = 4 and imax = jmax = 201: 3D plots and contour maps at (a) t = 1 s, (b) t = 

4 s, (c) t = 10 s; and (d) t = 14 s. 

 

   

   

    Figure 5.37: Second-order simulations of Gaussian hump sloshing in a square, flat-

bottomed basin for r = 4 and imax = jmax = 201: 3D plots and contour maps at (a) t = 1 s, (b) t = 

4 s, (c) t = 10 s; and (d) t = 14 s. 

 

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7



125 
 

 

 

 

 

Figure 5.38: Free surface elevation time history at the centre of the basin for Gaussian hump 

sloshing: second-order solution for r = 4 (𝑖𝑚𝑎𝑥 = 𝑗𝑚𝑎𝑥 = 201) and fourth-order solution for 

r = 4 (𝑖𝑚𝑎𝑥 = 𝑗𝑚𝑎𝑥 = 201) at the centre of the basin. 

      

 

 

 

Figure 5.39: illustrates the key variable that defined the flow geometry in the x-z plate: (a) 

motions of an initial Gaussian free surface hump in a basin containing a bed hump at its 

centre (b) motions of an initial Gaussian free surface hump in a basin containing a bed 

trough at its centre. 
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Figure 5.40: Numerical simulations of the sloshing of an initial Gaussian hump in a square 

basin where the bed topography contains a central hump for a small bed amplitude 

disturbance 𝑎𝑧𝑏
=0.015 m at (a) t= 2 s, (b) t=4 s, (c) t=6 s, (d) t=8 s, (e) t=10 s; and (f) t=12 s. 
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Figure 5.41: Numerical simulations of the sloshing of an initial Gaussian hump in a square 

basin where the bed topography contains a central hump for a large bed amplitude 

disturbance 𝑎𝑧𝑏
=0.225 m at (a) t=2 s, (b) t=4 s, (c) t=6 s, (d) t=8 s, (e) t=10 s; and (f) t=12 s.                                                                                                                                                            
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Figure 5.42: Numerical simulations of the sloshing of an initial Gaussian hump in a square 

basin where the bed topography contains a central trough for a large bed amplitude 

disturbance 𝑎𝑧𝑏
=-0.225m at (a) t=2 s, (b) t=4 s, (c) t=6 s, (d) t=8 s, (e) t=10 s; and (f) t=12 s.   
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Figure 5.43: Numerical simulations of the sloshing of an initial Gaussian hump in a square 

basin where the bed topography contains a hump at the south-west corner: contour plots of 

free surface elevation at (a) t = 6 s, (b) t = 8 s, (c) t = 10 s; and (d) t = 12 s. 

 

 

 

 

Figure 5.44: Free surface elevation time histories at the centre of a basin for sloshing of an 

initial Gaussian hump: in a square, flat-bottomed basin (blue line) and in a basin where the 

bed topography contains a central hump (red line) for a large bed amplitude disturbance 

𝑎𝑧𝑏
= 0.225 m.  
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 Figure 5.45: Numerical simulations of the sloshing of an initial Gaussian hump in a 

rectangular, flat-bottomed basin: 3D plots and contour maps of free surface elevation at (a)    

t = 4 s, (b) t = 6 s, (c) t = 8 s, (d) t = 10 s, (e) t = 12 s; and (f) t = 14 s.
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Chapter 6  

2D Model Verification and Parameter Tests 

Simulation of Solitary Wave Propagation 

 

6.1 Introduction 

            In this chapter, the horizontal, vertical and oblique propagations of a nonlinear 

2D GN solitary wave are simulated. Then, forward and reversed simulations of the 

solitary wave are compared, and finally interaction between two solitary waves 

through applying second-order and fourth-order solvers are presented.    
 

 

6.2   Solitary wave in wall-bounded square channel 

The second verification test concerns the simulation of a solitary wave in a closed 

square basin of plan dimensions 𝐿𝑥 = 𝐿𝑦 = 25 m. The still water depth is h0 = 1 m.  

The free surface profile of a solitary wave is given by [Metayer et al. (2010)]: 

                                                 𝜉(𝑥, 𝑦, 𝑡) = 𝑎 sech2(𝑏 (𝑥 − 𝑐𝑡))                           (6.1) 

 

where 𝜉 is the free surface elevation above still water level, a is amplitude, b is the 

inverse width and c is the solitary wave speed (see Figure 6.1). The inverse width is 

defined as 

                                                         𝑏 =
1

2
 √(

3𝑎

ℎ0
2(ℎ0+𝑎)

)                                        (6.2) 

 

and the wave celerity is 

                                                          𝑐 = √𝑔(ℎ0 + 𝑎)                                            (6.3) 

The local total water depth is given by  

                                                     ℎ(𝑥, 𝑦, 𝑡) = ℎ0 + 𝜉(𝑥, 𝑦, 𝑡)                                (6.4) 
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            Three solitary wave tests were undertaken; one where the wave propagated 

from west to east (in the positive x-direction); one where the wave propagated from 

south to north (in the positive y-direction); and one where the wave propagated at an 

angle 𝜃 = 30o to the x-axis.  The analytical solutions (Metayer et al. 2010) for the flow 

velocity components are as follows: 
 

Case S1:  Solitary wave from west to east:                 

                     𝑢(𝑥, 𝑦, 𝑡) = 𝑐 (1 −
ℎ0

𝜉(𝑥,𝑦,𝑡)+ℎ0
) 

                                                            𝑣(𝑥, 𝑦, 𝑡) = 0                                                      (6.5) 
 

Here, 𝑢 is the fluid velocity component in the x-direction, and 𝑣 is the fluid velocity 

component in the y-direction. 

Case S2: Solitary wave from south to north:                

                                                              𝑢(𝑥, 𝑦, 𝑡) = 0 

                                                                  𝑣(𝑥, 𝑦, 𝑡) = 𝑐 (1 −
ℎ0

𝜉(𝑥,𝑦,𝑡)+ℎ0
)                             (6.6) 

Case S3: Oblique solitary wave, where the coordinate axis is transformed as follows: 

              [
𝑥′

𝑦′] = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] . [
𝑥
𝑦]       ⟹       {

𝑥′ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃

𝑦′ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃
             (6.7) 

 

Hence, 𝑢 and 𝑣 are as follows: 

          𝑢(𝑥′, 𝑦′, 𝑡) = 𝑐 (1 −
ℎ0

𝜉(𝑥′,𝑦′,𝑡)+ℎ0
) . cos 𝜃 

                                          𝑣(𝑥′, 𝑦′, 𝑡) = 𝑐 (1 −
ℎ0

𝜉(𝑥′,𝑦′,𝑡)+ℎ0
) . sin 𝜃                            (6.8) 

In all cases the solitary wave has amplitude of a = 0.6 m. The position of the 

initial wave crest is set to be 7 m away from the west wall (𝐿𝑥𝑝𝑜 = 𝐿𝑦𝑝𝑜 = 7 m). The 

time step is set to Δt = 0.05 s.  The first test case examines the movement of solitary 

wave in the x-direction from west to east.  The second test case considers solitary wave 

propagation in the y-direction from south to north.  In the third case, the model is used 

to reproduce the behaviour of an oblique solitary wave (𝜃 = 30o
).  Figure 6.2 illustrates 

the computational mesh plotted in physical domain.  
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            A grid convergence test is now performed. Figure 6.3 depicts the non-

dimensional free surface profiles obtained for the solitary wave in Case S1 at t = 10 s 

for three different grids.  At this time the solitary wave has reflected at the east wall 

and is travelling back in the reverse direction from east to west.  It can be seen that 

converged results are obtained on the medium grid (imax = jmax = 251) and fine grid (imax 

= jmax = 451); the results are inaccurate on the coarse grid (imax = jmax = 51).   Figure 6.4 

shows the free surface visualisations and contour patterns obtained respectively for a 

solitary wave propagating from west to east at t = 3 s on the coarse, medium and fine 

grids.  At this time, a trailing wave has appeared behind the main crest on the coarse 

grid, unlike the results on the medium and fine grids where no trailing wave is evident.  

Figure 6.5 shows the free surface visualisations and contours at t = 5 s, just as the 

solitary wave interacts with the solid wall. The spurious trailing wave persists on the 

coarse grid. These test results that the medium grid is sufficient for accurate 

simulations. At t = 5 s, the numerically predicted run up reaches 2.355 m which was 

0.355 m more than the predicted linear analytical solution due to nonlinear interactions 

within the wave.   

Comparison between the numerical predictions and results from perturbation analysis 

(Taylor, 2015) confirms that nonlinear interaction between a solitary wave and a solid 

wall is correctly modelled.  The total depth behind the reflected wave (hw) is: 

                   ℎ𝑤 = [1 + 2𝑛 +
𝑛2

2
−

𝑛3

4
+

𝑛4

4
−

𝑛5

4
+

7𝑛6

32
−

9𝑛7

64
+

𝑛8

128
+ O[n]9] ℎ             (6.9)  

 

in which n is upstream amplitude (a) divided by upstream depth (h).  By including the 

second order perturbation term, the approximate analytical solution for the reflected 

solitary wave elevation is 2.3454 m, a quite similar value to that predicted by the GN 

model (2.355 m). This analytical approximation was obtained by personal contact with 

P. H. Taylor on 18 Dec 2015.   

It should be noted that identical results and findings were obtained for a solitary wave 

propagating from south to north, Case S2, only that the axis was rotated.  These results 

are not presented here, for brevity. 
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Figure 6.6 shows the predicted evolution of the solitary wave at times t = 1, 3, 

5, 9, 17, and 19 s on the converged medium grid with imax = jmax = 251 and time step 

Δt = 0.05s. At first, the solitary wave propagates with its free surface profile 

unchanging in shape (see results at t = 1 and 3 s) as it moves along the channel. At t ~ 

5 s, the solitary wave crest hits the wall, and its elevation reaches 2.355 m which is 

more than twice the elevation prior to contact. The reflected wave sheds some trailing 

waves which are evident behind the reflected wave as it travels from east to west as 

shown in the plot for t = 9 s.  At t ~ 11 s the solitary wave reflects at the west wall and 

its elevation again reaches 2.355 m.  Figure 6.6e shows the situation at t = 17 s, just 

before the re-reflected wave reaches the east wall, where the trailing waves are 

growing in scale as they interact with the channel (through sloshing modes).  The final 

plot in Figure 6.6f shows the wave after it has reflected the second time with the east 

wall and channel sloshing is even more evident.   

Case S3 comprises the simulation of an oblique solitary wave (𝜃 = 30o
) in a 

25m by 25m channel.  Figure 6.7 shows the predicted surface elevation visualisations 

and contour maps at t = 0, 0.1 and 0.3 s.  The oblique wave retains its shape with time 

as it moves from west to east, except at the boundaries where wall interactions take 

place. This indicates that the model can cope properly with a wave at an angle 𝜃 = 30o 

to the grid. 

 

6.3 Comparison of GN model simulations and Boussinesq model 

predictions of solitary wave propagation  

The above-mentioned predictions by 2D level I GN model are in reasonable 

agreement with 1D simulations by Orszaghova (2011) who used  Boussinesq model. 

The present study confirms that the 2D GN second-order numerical solver is able to 

predict solitary wave behaviour properly. It is worth mentioning that both level I GN 

equations and Boussinesq equations provide accurate predictions of the post-breaking 

waves. 
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6.4   Reverse simulations of solitary wave 

           In order to test for reversibility, the similar to the aforementioned time travelling 

tests designed for Gaussian hump simulations, a series of simulations are designed for 

solitary wave based on time travelling idea.  Figure 6.8 shows the free surface elevation 

time history at the centre of the channel.   The total duration of the simulated time is 

40 s, of which 20 s is forward in time (blue line) and 20 s is backward in time (red 

dots). The red dots essentially overlay the blue line.  Figure 6.9 shows the solitary 

wave profiles at t = 0, 0.5, 1, 1.5, 2, 2.5 and 3 s.  It is observed that the original profiles 

(Just going forward in time) and reverse profiles (going forward and backward in time 

till reaching the specific tn = 3 s) again overlay each other. Figure 6.10 indicates the 

excellent agreement between the initial profile from the original simulation and the 

final profile from the reverse simulation.  The foregoing results indicate that the GN 

simulation of the solitary wave is fully reversible with no energy dissipation evident, 

as would be expected in the absence of viscosity, turbulence, and bed friction. 

 

6.5   Interaction of two solitons by applying 2th and 4th order solvers 

           The solitary wave propagations of 0.6 m and 0.3 m initial amplitudes in 

otherwise still water of depth 1 m along the 100 m x 100 m channel were investigated. 

Medium grids imax = jmax = 251 and a fixed time step ∆𝑡 = 0.05 s are selected for 

second-order and fourth-order numerical simulations. Figure 6.11 presents predicted 

free surface elevation profile of solitary waves at t = 15.5 s using second-order and 

fourth-order schemes. In the second-order simulation (Figure 6.11a), large amplitude 

solitary wave loses amplitude as it dissipates energy into the production of trailing 

waves (connected to numerical error from lack of spatial resolution). On the other 

hand, in the fourth-order simulation (Figure 6.11b) the large amplitude solitary wave 

does not lose amplitude as it does in second-order simulation. Thus, the fourth-order 

scheme is opted for the remaining simulations, and the second-order results are ignored 

here, for brevity.  Figures 6.12 to 6.14 show the predicted evolution of the solitary 

wave at times t = 0, 5, 15.5, 15.85, 16.25, 17, 17.75, and 18.1 s. At t = 15.5 s, the large 
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amplitude solitary wave reaches to the small amplitude one. At t = 16.25 s, interaction 

occurs between the two solitary waves. The two waves become fully merged at t=17 s 

and the elevation of the merged wave is ~ 0.9 m. At t = 17.75 s, the two solitary waves 

start to separate from each other. At t = 18.1 s, they are completely separated, and each 

of them propagates by its own amplitude.  

 

6.6     Summery 

 In this chapter, the numerical model was applied to simulate solitary wave 

propagation in a closed flat-bottomed channel.  Comparison between the 

numerical predictions and results from perturbation analysis (Taylor, 2015) 

confirmed that nonlinear interaction between a solitary wave and a solid wall 

was correctly modelled. When the solitary wave hit a wall, the numerically 

predicted run up reached 2.355 m which was 0.355 m more than the predicted 

linear analytical solution. By including the second order perturbation term 

(Taylor 2015), the approximate analytical solution for the reflected solitary 

wave elevation was 2.3454 m, a quite similar value to that predicted by the GN 

model. 

 

 A reversibility check revealed that the original and reverse profiles of solitary 

wave simulations overlay each other.  In the final simulations for 2D level I 

GN developed model, the interaction between two solitary waves was 

investigated through applying second- and fourth-order numerical schemes. 

Both numerical schemes presented accurate simulations for the interaction 

between the two solitary waves. 
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Figure 6.1: Key variables that define the solitary wave flow geometry 

 

Figure 6.2: Solitary wave problem: computational mesh plotted in physical domain 
 

 

Figure 6.3: Effect of grid convergence on solitary wave simulation 
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Figure 6.4: Grid convergence results for solitary wave moving west to east at t = 3 s: (a) imax 

= jmax = 51; (b) imax = jmax = 251; (c) imax = jmax = 451. 

 

  

         

Figure 6.5: Grid convergence results for solitary wave moving west to east at t = 5 s: (a) imax 

= jmax = 51; (b) imax = jmax = 251; (c) imax = jmax = 451. 
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                    (a) t = 1 s                                   (b) t = 3 s                                 (c) t = 5 s 

 

 

                   

                      (d) t = 9 s                                (e) t = 17 s                               (f) t = 19 s 

 

Figure 6.6: 3D plots and contour maps of solitary wave moving west to east at t = 1, 3, 5, 9, 

17, and 19 s. 
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Figure 6.7: 3D plots and contour maps of oblique solitary wave profile (θ = 30o) at t = 0, 0.1 

and 0.3 s. 

 

 

 

 

Figure 6.8: Free surface elevation time history indicating the reversibility of the solitary 

wave simulation. 
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Figure 6.9: Comparison between original and reverse simulations of solitary at different 

times (t = 0, 0.5, 1, 1.5, 2, 2.5; and 3 s). 

 

 

 

Figure 6.10: Reversibility comparison between original profile and final profile of reverse 

simulation. 
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                                           (a)                                                                  (b) 

Figure 6.11: Solitary wave propagation: (a) second-order predicted free surface elevation 

profile at t = 15.5 s; and (b) fourth-order predicted free surface elevation profile at t = 15.5 s.  

     

 

Figure 6.12: Solitary wave propagation: predicted free surface elevation profiles at (a) t =0 s, 

(b) t = 5 s; and (c) t = 15.5 s using fourth-order solver for imax = jmax = 251, ∆t = 0.05 s. 
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Figure 6.13: Solitary wave propagation: predicted free surface elevation profiles at (a) t = 

15.85 s, (b) t=16.25 s; and (c) t=17 s using fourth-order solver for imax = jmax = 251, ∆t=0.05s. 

 

                                     

                

Figure 6.14: Solitary wave propagation: predicted free surface elevation profiles at (a) t = 

17.75 s and (b) t = 18.1 s using fourth-order solver for imax = jmax = 251, ∆t = 0.05 s.
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Chapter 7  

Conclusions and Recommendations  

 

7.1    Introduction 

            Free surface flows in channels and containers are almost ubiquitous, and 

include tides in estuaries, flood wave propagation in rivers, seismic-induced sloshing 

in tanks, etc.  Such flows are characterised by free surface waves and currents, the 

former acting as the liquid’s gravitational response to a disturbance.  This study has 

examined the use of Green-Naghdi (GN) Level I equations to represent solitary wave 

propagation in a channel and free surface sloshing in a basin, both of which were 

selected as benchmark tests for verification purposes.  The thesis has presented a 

detailed derivation of the 1D and 2D level I GN equations, their discretisation using 

second- and fourth-order finite differences in space and a fourth-order Runge-Kutta 

scheme in time.  The numerical model utilised a tridiagonal matrix solver and a 

pentadiagonal matrix solver, the former for the second-order space discretisation, the 

latter for fourth order. A detailed explanation was given of the numerical procedure, 

and the boundary conditions necessary to close the model.  The results from the two 

test cases (sloshing in a tank and propagation of a solitary wave in a flat-bottomed 

channel) demonstrated the model was working satisfactorily by comparison against 

analytical solutions obtained from linearised shallow water theory.  Discrepancies 

between the GN predictions and the linear analytical solutions were primarily due to 

the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave 

interactions.  After convergence and stability tests were carried out a parameter study 

was undertaken to examine the nonlinear behaviour of an initial Gaussian free surface 

hump in a closed basin.  In addition to verification, the GN model was used to test 

reversibility by simulating the motion of the Gaussian hump first forward, then 

backward in time, and checking how well the initial conditions were recovered.  



145 
 

In order to understand better the hydrodynamic behaviour of the wavelets 

comprising the Gaussian hump, both initial hump and hole tests were undertaken (the 

latter involving a trough instead of a crest).  By addition and subtraction of the initial 

crest and trough signals as they evolved, time series of even harmonics and odd 

harmonics were extracted.  Fast Fourier transform (FFT) analyses were performed to 

highlight the frequency content of the results. The behaviour of an initial Gaussian 

hump released in a basin of non-uniform bed topography was also studied, and the 

results compared against those for sloshing over a flat-bottomed square basin.  The 

second major benchmark test concerned the propagation of a solitary wave in a closed 

channel. After suitable convergence and stability tests were undertaken, solitary wave 

propagation was simulated in the positive x-direction, in the y-direction and at an angle 

𝜃 = 30o to the x-axis. The model was found to be reversible, again via forward, then 

backward time-stepping.  The interaction between a single solitary wave and a solid 

wall, and two solitary waves with a wall (and each other) were also studied. 

 

7.2   Conclusions 

 A mathematical GN Level I model has been formulated based on the 3-D 

continuity and momentum equations and kinematic boundary condition applicable 

to the free surface flow of inviscid, incompressible liquid over a fixed bed.  For 

the first time, to the author’s knowledge, the GN Level I mass and momentum 

equations have been derived in two horizontal dimensions for mild-sloped beds.  

These equations are summarised by Eqn. (2.18) for mass conservation and Eqns. 

(2.64) and (2.68) for momentum conservation.  The 2D GN level I equations for a 

horizontal bed were also obtained as a reduced version of the non-uniform bed 

equations, and are summarised as Eqns. (2.18), (2.66) and (2.70). 

 

 The 1D and 2D GN Level I equations were discretised using second-order and 

fourth-order schemes, and time integration undertaken using a Runge-Kutta 

fourth-order scheme.  
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 Verification tests undertaken for the 1D level I GN equations comprised free 

surface sloshing of an initial sinusoidal wave in a tank and the propagation of 

solitary wave over a flat-bed. For sloshing in a tank, excellent agreement was 

obtained between the model predictions using both second-order and fourth-order 

schemes and the standard first-order analytical solution for relatively small initial 

wave amplitude (a ≤ 0.005 m).  At larger amplitudes of initial disturbance, the free 

surface elevation time history developed saw-tooth profiles. A shock-capturing 

scheme would be needed to overcome this problem, and is recommended for future 

work.  By means of the FFT analysis, it was found that nonlinear behaviour was 

particularly pronounced in the even harmonic slosh components.  In the second 

verification test, it was found that both second- and fourth-order solvers produced 

accurate simulations of soliton propagation when the results were compared 

against a standard solution.     

 
 

 The 2D GN numerical model was verified for the case of nonlinear free surface 

sloshing motions arising from an initial Gaussian hump in a closed basin. 

Numerical simulations of initial Gaussian hump were compared with Fourier 

series semi-analytical solutions of the linearised shallow water equations.  

Excellent agreement was achieved between the numerical simulation and the 

analytical solution of the overall free surface patterns in the basin during the first 

four seconds after the initial release of the hump, after which discrepancies became 

discernible, in part due to nonlinear wave interaction effects which were not 

described by the analytical theory.  Satisfactory agreement between the numerical 

and semi-analytical solutions of free surface elevation was achieved for about 10 

s at the centre of the basin.  A reversibility check of the developed numerical code 

indicated that the reversed hump returned almost to exactly the same shape as the 

original Gaussian hump, although as the amount of time spent travelling forward 

and backward lengthened, spurious error tended to accumulate in the vicinity of 

the basin corners.  There was some loss of amplitude at the centre of the basin 

when the hump was reversed. The even and odd harmonics of the initial Gaussian 

profile were separated from initial crest and trough simulations, with the profiles 
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treated as orthogonal functions.  For a small-amplitude initial hump or trough (amp 

= h0/10 = 0.045 m) the negligible deviations from zero in the free surface motions 

of even harmonics indicated that nonlinear effects were quite small. In the 

equivalent even harmonic results obtained for a larger-amplitude initial 

disturbance (amp = h0/2 = 0.225 m), it was possible to see evidence of the 

nonlinearity. To understand better the resonant free surface motions driven by an 

initial Gaussian disturbance in the square basin, an FFT of the free surface 

elevation component time series was carried out. Parameter tests for sloshing of 

an initial Gaussian hump were carried out in a basin with non-uniform bathymetry 

with bed humps at the centre and corner of the basin. The deformation in the water 

free surface Gaussian shapes became more obvious at the centre exactly where the 

bed hump was located. The corner bed hump did not have such a significant effect 

on the free surface simulations. 
 

 Finally, the numerical model was used to simulate solitary wave propagation in a 

closed flat-bottomed channel. Comparison between the numerical predictions and 

results from perturbation analysis (Taylor, 2015) confirmed that nonlinear 

interaction between a solitary wave and a solid wall was correctly modelled. When 

the solitary wave hit a wall, the numerically predicted run up reached 2.355 m 

which was 0.355 m more than the predicted linear analytical solution. By including 

the second order perturbation term (Taylor 2015), the approximate analytical 

solution for the reflected solitary wave elevation was 2.3454 m, a quite similar 

value to that predicted by the GN model. A reversibility check revealed that the 

original and reverse profiles of solitary wave simulations overlay each other.  In 

the final simulations for 2D level I GN developed model, the interaction between 

two solitary waves was investigated through applying second- and fourth-order 

numerical schemes. Both numerical schemes presented accurate simulations for 

the interaction between the two solitary waves with a wall and also with each other. 
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7.3 Recommendations 

            The present 2D GN Level I model permits realistic simulations of the free 

surface hydrodynamic motions of water in tanks and channels, and can incorporate the 

effect of uneven bed topography. The model represents nonlinear hydrodynamic 

behaviour, but not wave breaking – for which a hybrid model with shock-capturing 

would be necessary.  On the whole, the results obtained using second-order spatial 

discretisation were almost as accurate as those using fourth-order.  The GN equations 

have a role as intermediate equations between shallow water equations (which are 

hydrostatic and non-dispersive) and the more complicated Boussinesq-type equations 

(which are somewhat dispersive depending on the version utilised).  The main 

recommendations arising from the research conducted in this thesis are as follows: 

 Substantial future research effort should be directed towards assessing the 

applicability of high-level GN equations.  At the time of writing, the 1D GN 

equations are often used for deep water applications where a higher level of 

GN equations would be more appropriate.  In future, it would be worth 

investigating 2D GN level II, III, and higher equations, noting the greatly 

increased difficulty that would be encountered in their numerical solution 

(owing to the presence of high-order cross-derivative terms in time and space). 

 

 In cases where the free surface waves break, such as in shallow coastal waters, 

the present GN Level I solver could be switched to a Godunov-type shallow 

water equation solver with a ramping function used to smooth the behaviour 

between both sets of equations.  This would be similar to work undertaken by 

Orszaghova et al. (2012, 2014) who developed a hybrid Boussinesq-shallow 

water equation solver.  By also including a wetting and drying algorithm, the 

resultant hybrid GN model could be applied to flow inundation. 

 

 To apply the GN Level I solver to typical environmental flow situations, further 

attention should be paid to boundary-fitting, perhaps either by means of 

curvilinear systems mappings (as used in curvilinear shallow water simulations 
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of flows in rivers and lakes) or by cut-cell techniques with hierarchical or 

unstructured grids. 

 

 The GN methodology could be extended to deal with flows over erodible beds, 

and sediment entrainment, transport, and deposition.  Similarly, the model 

could be extended to incorporate the transport of materials, including water 

quality parameters. 
 

 The present thesis restricted applications to sloshing in tanks and solitary wave 

propagation in idealised domains.  It is recommended that the GN level I solver 

be applied to more extensive tests including the propagation of regular wave, 

irregular waves and NewWave groups in the sea and at the coast (where 

seawall overtopping on beach runup are very important).   It would be worth 

investigating the neting of a 3D CFD code or a smoothed particle 

hydrodynamics solver within the GN solver. The model could potentially be 

useful in simulating the behaviour of freak waves, ship waves, tsunami waves 

and the interaction of such waves with marine structures, ships, oil platforms 

and renewable energy devices.   
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