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Abstract

The neural network model (NN) comprised of relatively simple computing elements, operat¬
ing in parallel, offers an attractive and versatile framework for exploring a variety of learning
structures and processes for intelligent systems. Due to the amount of research developed in
the area many types of networks have been defined. The one of interest here is the multi-layer
perceptron as it is one of the simplest and it is considered a powerful representation tool whose
complete potential has not been adequately exploited and whose limitations need yet to be
specified in a formal and coherent framework. This dissertation addresses the theory of gen¬
eralisation performance and architecture selection for the multi-layer perceptron; a subsidiary
aim is to compare and integrate this model with existing data analysis techniques and exploit
its potential by combining it with certain constructs from computational geometry creating a
reliable, coherent network design process which conforms to the characteristics of a generative
learning algorithm, ie. one including mechanisms for manipulating the connections and/or
units that comprise the architecture in addition to the procedure for updating the weights of
the connections. This means that it is unnecessary to provide an initial network as input to
the complete training process.

After discussing in general terms the motivation for this study, the multi-layer perceptron
model is introduced and reviewed, along with the relevant supervised training algorithm, ie.
backpropagation. More particularly, it is argued that a network developed employing this model
can in general be trained and designed in a much better way by extracting more information
about the domains of interest through the application of certain geometric constructs in a pre¬

processing stage, specifically by generating the Voronoi Diagram and Delaunav Triangulation
[Okabe et al. 92] of the set of points comprising the training set and once a final architec¬
ture which performs appropriately on it has been obtained, Principal Component Analysis
[Jolliffe 86] is applied to the outputs produced by the units in the network's hidden layer to
eliminate the redundant dimensions of this space.
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Chapter 1

Introduction

1.1 The scope of this dissertation

A great deal has been written in the last decades on the subject of Neural Networks (NN) and
their many potential applications. The most important results have been obtained when em¬

ploying them as pattern classifiers, associative memories or predictors. Within this framework

many things have been said about their apparent ability to learn from examples, deal sensibly
with badly defined problems, perform generalisation, and be tolerant to faults, even though a

fair amount of work has been done in an attempt to gain a fundamental understanding of these

properties, there is as yet scope for further investigation into them. Reliable methods for AW

design are still required because, even after several decades of study, much of it is based on a

process of trial and error.

The comparison of AWwith alternative techniques, and the theoretical analysis of the properties

of the network models which are perceived to be of interest, are important areas of research as it

is a means of providing formal insights into the AWmodel's functioning. Indeed in recent years

a welcome development in neural network research has been the increase in the willingness of
researchers to address this issue. Ripley [1992] and others have compared NN with standard
statistics pointing out the weaknesses and strengths of each and also the advantages that might
be gained in AW if certain of the existing statistical techniques are applied as measuring sticks

for evaluating a network's performance. Gallinari and his research group [1991] studied the
relations between discriminant analysis and multi-layer perceptron used for classification tasks

showing the equivalence between the two models; the problem of that study is the strong

assumptions used to develop their demonstration, a matter which will be discussed in more

detail in an ensuing chapter. Oja and his collaborators,[1992], [1992b], developed a network
model which converges when the vectors comprising the weight matrix axe those corresponding

1



CHAPTER 1. INTRODUCTION 2

to the basis of the principal components of the input space. Other examples are available,
these show different types of networks applied to different areas and compared against other
models which have been created, apart from the statistical ones already mentioned. Given this

situation, it is important to accentuate, at this point, the specific type of network model that

has been looked into in this research, of which an analysis and description are contained in

chapter 2 of this dissertation. It corresponds to the multi-layer perceptron, a network with

no feedback loops, in which the nodes are arranged in layers so that only connections between

nodes in subsequent layers are allowed. Figure 1.1 depicts an example of a N-layer perceptron,
with N = 2, and it is to such structures, the term network will refer to in this work, unless

otherwise stated.

In the context of this particular model the contribution of this research concerns the integ¬
ration of: a) the theoretical elements included in some of the existing geometric constructs

defined in the last decade, b) those comprising the multi-layer perceptron, trained using rprop

[Riedmiller & Braun 93] and, c) the information provided by the application of Principal Com¬

ponent Analysis {PCA) [Jolliffe 86] to the output generated by the units of the network's hidden

layer. All these pieces of information were combined in a coherent and complete network design

process which achieves two aims: it provides a complexity measure which allows one to decide

in a reliable way whether the multi-layer perceptron is a convenient model to capture the map¬

ping of interest and results in a more effective and less ad hoc training process which generates

a reasonable architecture with an adequate expenditure of computational resources.

Two specific properties of the network model are of interest: generalisation performance and
the selection of a good network architecture. These aspects, and the reasons for studying them
are subsequently explained. In both cases, the alternative techniques employed are not only
the product of research in the NN domain, they also include theories mainly developed in the
areas of statistics and computational geometry.

The reader should note that nothing is said about any supposed relationship between NN and

actual biology. Although it is true that much can be learned by looking at the properties of
actual neurons and synapses etc, it is not relevant to the study presented, which will be based

entirely in the realms of engineering, mathematics and computer science.

1.2 Multi-layer Perceptrons

The basic principles of pattern classification and function approximation, and the use of the

multi-layer perceptron model therein, are well documented and therefore it is not necessary to

provide an exhaustive review. It is assumed that the reader has some prior knowledge of these
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areas, including for example knowledge of statistical pattern classification, standard network
models such as the perceptron, and an understanding of the concept of supervised learning.
In this review a brief description is included, mainly for the purpose of providing some basic
notation and nomenclature for what follows. Further detail can be found in, for example,

[Hertz et al. 91], [Michie et al. 94], [Muller &: Reinhardt 91], [Rumelhart et al. 86a].

1.2.1 Pattern classification

In pattern classification, the main goal is to assign sets of measurements, taken in a given

situation, to specific classes. The set of all possible measurements forms an input space /; it is
usual to deal with I = Rn for some positive integer n and this is the case of interest in the en¬

suing discussion. A specific instance provides us with an input vector x G / = Rn, the elements
of which in general correspond either to measurements taken directly from the real world, eg.

heart pulse, petal length, or perhaps the pixel values of an image, or to features derived from

it, eg. certain morphological categories, morphemes. The objective is to map input vectors

x € I = Rn to pattern classes. For a problem involving q classes a set C = {ci, eg,..., cq] of q
class indices can be defined and hence this process can be modelled by a mapping / : I —► C.

As a very simple example of this type of problem, for which q = 2, consider input vectors

x £ I = Rn which contain the symptoms of a patient. It is required that the output of the

system be cj if the set of symptoms represent a patient classed as diabetic and C2 otherwise.

Clearly the design of a pattern classifier of the type described can be regarded as the design of
a device which implements a mapping / : Rn —> C; the multi-layer perceptron provides one of

many alternative ways of designing and implementing the desired mapping.

The type of mappings that can be represented with the multi-layer perceptron depend on its

constituents. The original NN created by McCulloch and Pitts [1943] which corresponds to a

very simplistic model of the neuron has a very restricted representational scope. In subsequent

years the model has been very much developed and extended and different alternatives have

been considered, each generally providing a higher representational capacity than the previous

one. The unaltered element in all of these is the basic constituent, the neuron (using biological

terminology) or unit (in neurocomputing terms). In the multi-layer perceptron the units belong
to one of three categories: a) inputs whose only role is to feed input patterns x obtained from

Rn to the rest of the network; b) hidden units which have no direct connection to the outside

world; and c) output units from where the final computation is read off. The main difference
between them is the form of the activation function, (gi associated with unit i); for the input
units it is the input value, although some people might consider activation an inappropriate

name; for the other type of units, hidden or outputs, the activation function has a particular
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OUTPUT LAYER

HIDDEN LAYER

INPUT LAYER

Figure 1.1: Typical multi-layer perceptron with two outputs and one hidden layer

form and its selection is important because depending on the one used, the network will be

provided with a greater or lesser degree of representational power. In mathematical terms, the

forms gi can take in the different types of units that comprise an architecture can be expressed

as:

• gi = Xi is the form of gx for the units in the input layer of figure 1.1, i.e. xx E R, xx is
the ith input to the network.

• 9i — <?Ej=i wij xj "" Wio); where g(x) is the activation function (also known as a trans¬
fer function) that ought to be continuous and differentiate; the set, {wn,Wi2, ...,tUjn}
corresponds to the weights of all the connections going into unit i, Xj is the output of all
the units going into unit i through the set of connections and wxo is the threshold value

(bias) associated with unit j and which to simplify the calculations will be considered

the weight associated to am artificial unit, the threshold unit, so that the expression

Sj=i wij xj ~ wio becomes Y^Tj=owtj xj• The general form of gx applies equally to the
hidden or output units of the network, although its exact form does not necessarily have
to be the same. Many applications employ an architecture in which the hidden units use

a sigmoid activation function whilst, the output units have a linear function.

A typical network with three inputs, one hidden layer including three hidden units, and a two

unit output layer is illustrated in figure 1.1.
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The main distinguishing feature of the network when compared to the available alternatives is

its architecture. It can be considered a system of interconnected processors, directed intercon¬

nections resulting in an ordering of the processors which allows for their categorisation. The
network has n inputs which generally correspond to the elements of an input vector x (E I = Rn,

and one or more outputs which indicate the class corresponding to any input x. The processors

(nodes, units, pi) are relatively simple, and each has an associated vector wg of parameters or

weights which can be used to alter the specific function that it computes; these are real-valued
and in figure 1.1, for example, the vector Wj for hidden unit hj has the form (Wjo,Wjj,..., Wjn),
i.e. one element for each of the input units to which hj is connected. Wj0, is the strength of the
connection associated to the threshold component represented as an extra unit linked to all the

Pi comprising the network which clearly is a model able to compute a function /w : Rn —y C,
where w is a vector containing all of the available variable weights.

1.2.2 Multi-layer perceptron as general function approximators

The networks of interest have also been used to perform more general function approximation

tasks. This has been possible because of the choice of activation function associated with the

units comprising the architecture. An important work on their use as function approximators

was developed by Cybenko [1988] who proved that a continuous multi-layer perceptron with at

most three layers of weights can be used to approximate any particular set of functions to an

arbitrary degree of accuracy, if the units in the hidden layers have a sigmoid activation function.

Further evidence in relation to this matter can be found in [Funahashi 89], [Hecht-Nielsen 89].
A result that is of special interest to this investigation is the one arrived at by Cybenko [1989],
who showed that with a 2-layer perceptron model comprised of sigmoid units it is possible to

approximate any continuous mapping if enough hidden units are provided, a number that is

not generally known. Similar results were also arrived at by Hecht-Nielsen [1989].

In the context described in the previous section these cases can be modelled by allowing the
set of class indices to be C = R, such that the network computes some function /w : Rn -► R.

This type of scenario arises if one wants the network to be used to generate the value of a

particular measure, eg. wind speed, associated with a multidimensional set of other measures;

for the wind speed case it could be height of sea wave crests, rope tension on a boat's sails, etc.
A prediction task in a time series is another possible application of networks used as function

approximators.

It must be pointed out that the main results of the research described herein concern a discrete

set C of class indices given that it is for this type of task that the multi-layer perceptron with

sigmoid units has been particularly useful. Therefore the potential of the multi-layer perceptron
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as function approximators in any other context, apart form that of the classification tasks, will

not be discussed further.

1.3 Supervised learning

Obviously the actual function computed by a multi-layer perceptron network can be altered if

any of the parameter vectors w, associated with the individual processors is modified; let F
denote the class of all functions fw that can be computed by a multi-layer perceptron. The task

of designing a network using the model involves three main choices: 1) the class of functions

computed by each unit, 2) the specific architecture used and, 3) the actual values for the

parameters. In the context of NN the design of the required network is partly achieved by an

algorithm which performs the task of tuning the architecture under its control; this is realised

taking into consideration the information of the domain on which it will subsequently operate

that is available. The process of adjusting the network extracting the necessary information
from the available data, constitutes the model's learning algorithm. For the relevant network
the type required corresponds to supervised learning, in particular backpropagation as it was

the first effective learning algorithm defined to train a network based on it.

For this type of algorithm there is access to a training sequence,

Tp = {(x1,o1)y(x2,o2),...,(xp,op)}

of p training examples where xl 6 Rn are inputs to the network and o* G C axe the corres¬

ponding classifications. The sequence Tp will typically be constructed by collecting actual

inputs x for which the correct classification is known, and in general includes only a subset of
the possible inputs to the network. It may either provide a true representation of the under¬

lying problem or, more realistically, only the outlook of a portion of the complete underlying
structure. The network is designed entirely on the basis of the available examples. Usually
the network is built so that an appropriate measure of its error with respect to the available

training sequence is minimised; this idea is made more precise in subsequent chapters. Once
the network has been trained, it is hoped that it will exhibit some ability to generalise, i.e.
that it will be able to make good predictions on the outputs associated with input patterns it
did not process during training.

Given the importance of a multi-layer perceptron's generalisation ability, one of the major aims
of this dissertation is, to define a supervised learning algorithm that will allow the production
of a computationally efficient network, i.e. one requiring no more or perhaps a little more

computational cost than any other network that could handle the same problem. Computa-
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tional efficiency includes generalisation capacity and time spent on achieving the minimum
error during training. It can be phrased in these terms, because the underlying theoretical
framework corresponds to one of non-parametric optimisation, of which one of the existing

possibilities involves the minimisation of a cost function.

In relation to the time required to reach the minimum during training there are two main

components in the whole training process on which it is dependent. In the first place, there is the

network architecture chosen to tackle the problem because an adequate one will provide a more

stable minimisation process given that the number of estimators, i.e. hidden units, required to

generate a correct network's output is being accounted for. This means that, in the first instance
at least, there is no practical reason for the generation of saturated hidden units, i.e. units

with essentially fixed outputs {0,1} due to the large negative (positive) inputs, because these
constitute one of the main problems that must be contended with in the search for the minimum

in the error surface traversed during training. What must be carefully managed once this correct

decision has been made, is in relation to the avoidance of the multiple local minima populating
the error surface. To this effect the second main component comes into play. It is comprised

of the different parameters which must be defined before the training algorithm is set to work
on the network of interest. These are the learning rate (a), the momentum (/x), the derivative
term employed in the weight update process, etc. The first versions of backpropagation used
as training processes, [Rumelhart et al. 86b], [Rumelhart et al. 86a], assigned default values
to most of them and for the cases for which they were used the algorithm worked very well. As
the number of possible applications grew, some of them dealing with domains that were, for

example, not completely known or finite, comprised of classes having low inter-class correlations
and high intra-class correlations, i.e. not easily discernible clusters in the input space, the task
of producing the appropriate network for the problem of interest became more complex and,
the need for an effective supervised learning algorithm greater. It is for this reason that many
variants of backpropagation have been defined. An important review of many of the existing
alternatives can be found in [Schiffmann et al. 93].

Computational efficiency must be a major issue independent of the problem that will be solved

using the network. In this context it means achieving good training performance and good

generalisation at a reasonable computational cost. Although an adequate generaliser is not

necessarily the direct result of good training performance it is certainly the case that not

achieving the first does not help in reaching the second. Furthermore, many studies have
shown ([Alpaydin 91], [Bishop 95], [Fahlman & Lebiere 90], [Fritzke 93], [Hallam & Ross 93],
[Mezard & Nadal 89]) that the generalisation capacity of a multi-layer perceptron network is

very dependent not only on the value of the weights associated to the connections, their number



CHAPTER 1. INTRODUCTION 8

and the amount of units involved also play an important part. A way to solve this situation is

to extend the training process so that, in addition to updating the values of the weight vectors
it is able to arrange the architecture according to the difficulties encountered during the design

process, the main idea underlying a generative supervised learning algorithm, which explains it

being a better option. Its execution involves two main tasks: a) operating on different network
architectures and integrating an analysis of their performance into the training process,thereby

providing information which aids in deciding whether an adequate architecture is being created;

b) continuously updating the parameters of the learning algorithm by adapting them to the

shape of the section of the error surface being traversed during training. This type of supervised

learning algorithm can be further subdivided according to the strategy pursued to build the
different architectures:

(a) generative constructive algorithm: starts with a minimal architecture, i.e. one comprised

only of the input-output units. The algorithm grows (expands) the network until a

reasonable performance is achieved. Further details on what is understood as reasonable

in this context will be provided in chapter 2.

(b) generative pruning algorithm: in this case, the initial network is too large for the problem
of interest and the algorithm works by reducing the architecture to a more effective size.

(c) generative mixed algorithm: this type of algorithm operates integrating, pruning and
constructive techniques for manipulating the network under design.

In order to motivate the study of generalisation, as this property of networks is crucial to this

research, a summary of the issues involved is provided in the following section.

1.4 Generalisation

In an historical context, the fact that NN usually exhibit some ability to perform generalisation
has always been perceived as one of their most important properties, and it is fair to say that
this ability has been one of the major reasons for the considerable degree of interest shown in

the subject. Although there is no universally accepted definition of the term generalisation, it
is invariably used, in the context of pattern classification, to describe the ability of a network

or other pattern classifier to correctly label an input vector which was not present in the set

of examples used to train the system. There are different measures available to quantify this

property but the one mostly used corresponds to the percentage of patterns comprising the
test set that the trained network is able to correctly classify. It becomes harder to quantify as

the complexity and size of the problem domain increases because, as it is measured only on
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samples of it, larger domains require evaluations using larger samples so that the conclusions

arrived at might be considered reliable.

From the definition of generalisation it is clear that the same is closely related to the information

capacity of a network, that it depends on the degree of complexity of the network architecture
and that whatever measure is defined to quantify it, the same should be useful in the process

of answering questions such as: how many relevant features of an input space is a particular

architecture able to store? or, how many elements of the input space does it need to see during

training to be able to capture them?. In a few words, for a particular network architecture,
what is the minimum size of the training set it should process during training so that it might

be possible to assert, allowing for a certain margin of error in the assertion, that it will be able

to generate the correct output when presented with additional elements of the input space not

processed in the tuning stage?.

Much work has been done looking for answers to the aforementioned questions but it has only
been possible to provide detailed ones for very particular cases: for tasks involving binary inputs
and for network architectures comprised of only one layer of weights and threshold units, i.e.

the perceptron network model. The computation of the capacities of this type of network are

circumstantially discussed in [Gardner 87], [Gardner 88].

The concept of Network Generalisation, can comprise a greater number of restrictions depend¬

ing on whether the context of study is associated to binary input problems or if it deals with the
more general case of real-valued inputs. For the first type of problem as the domains involved

are totally specified, countable and finite, it is possible to aim for an architecture that corres¬

ponds to the smallest one required for storing the domain under consideration. In problems
that involve real-valued domains, the network generalisation capacity can at most be viewed

by measuring its performance when presented with novel inputs because it is not possible to

guarantee a minimal architecture given that, the domains cannot be completely known. A

good generalisation ability is particularly relevant for building a statistical model of the pro¬

cess which generates the data [Bishop 95] given that a network showing good performance on

data it did not process during training can be considered to have reliably captured this model.

In the NN this is reflected through the generation of a function which will be a faithful rep¬
resentation of the model that is to be captured in the architecture designed. In the particular
case of the network of interest, it is necessary to consider whether the tools available therein

really provide the means to build the type of mapping that is wanted. Given that Kolmogorov

[Kolmogorov 57] proved that it is feasible to build a continuous function of several variables by

superpositions of functions of one variable, and that it is possible to view the basic building
blocks of the multi-layer perceptron in this manner, there are formal elements which reassert
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the usefulness of considering it an alternative for generating the underlying statistical model
of the task of interest.

What is not clearly defined is how to proceed at the moment of choosing the architecture

required to represent a particular mapping. Given the close existing relation between network

modelling and non-parametric statistical inference, it is possible to guide the process by using
some of the devices this area provides. Applying some of them has made it possible to produce

a detailed definition of the problems involved in the search for a good generaliser and the means

to control them. They mainly concern the correct generation and manipulation of the relevant

information associated to the domain contained in the application of interest.

1.4.1 Structure of the problem domain

Part of the information subsumed in the statistical model of a particular application corres¬

ponds to the structure of the underlying problem domain. A true model must provide a well

specified description of the inherent properties of the space to which it is associated and, a very
common way to do this is by depicting the inter-relations between the points that populate it.

These inter-relations can take a variety of forms, of which the covariance matrix of a sample
is a good representative. Depending on the diversity of the existing associations between the
elements of a particular problem's domain, the form of the elements describing its inherent

properties will be more or less complex, which means it will be easier or harder to build the

statistical model.

In the context of the multi-layer perceptron, and in that of many similar methods, this is

achieved through the optimisation of a function. For this reason, the training of a network

proceeds so that a cost function is minimised. The function can take different forms, but the

one of interest in this study corresponds to the mean square error (MSE), which is an average

measure over the number of patterns comprising the training set, of the difference between the
desired output pattern oP associated to each of the input patterns xp and, that computed by
the network architecture netp designed to perform the mapping. Assuming that the output

space is N-dimension the error measure is computed with the following expression:

When creating the network, given that the training corresponds to a case of supervised learning,
it is necessary to compute various of these errors, one associated with each of the data sets

extracted from the problem domain. There are different types of sets for each of the existing

(i.i)
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implementations of the network training algorithm, but for the most part the ones considered
are: the training set which is the one used for computing the amount by which the weights

should be updated so as to reach the minimum error, the validation set and the test set, both

of which provide a clearer idea of the degree of generalisation achieved with the architecture

that is being trained. The validation set allows one to exert control over the overtraining

phenomenon and, the test set is used to check on the generalisation level achieved by the final
network. Ideally, the optimal architecture would be that with which all the different error

measures computed are minimised, i.e. the network achieves correct classification of all the

elements comprising any of the sets under consideration, but given the intrinsic nature of the

optimisation process and, because the aim is to produce a good generaliser, the most adequate
architecture usually corresponds to one which generates appropriate values for the errors and

recognition rates of the different intervening sets and, which do not necessarily have to be the

optimal values. This is achieved by building a sufficiently complex architecture to deal with
the problem, one comprising the number and type of elements needed to correctly represent

the inherent properties of the space to which it is related. A similar situation is present in

the process of curve fitting using polynomials, in which it has been shown [Bishop 95] that
using a polynomial with too few coefficients gives poor predictions for new data, i.e. poor

generalisation, a phenomenon that is also manifest in a polynomial with too many coefficients
because in this case it fits too much of the noise on the training data.

To better understand what is meant by the number of required elements for describing the
inherent properties of a problem's domain consider the XOR. problem, shown in figure 1.2,
where I is comprised of four points, two having 0 output, these are associated to the filled circles

in the figure, and two having output 1 which are denoted with the empty circles contained in

1.2. Due to the manner the points in I are placed, it is not possible to compute a line that
will correctly separate the points with 0 output from those with unitary output, the only way

to achieve a proper partition of the plane is through the computation of at least two lines
such as the dotted ones shown in the figure, those or any other two with a similar orientation

would produce the appropriate partition, i.e. the problem domain corresponds to a not linearly

separable space. The example, used by Papert and Minsky [1969] to describe the inadequacies
of the simple linear perceptron in the sixties, identified as the main cause for the restrictiveness

in its use, its lack of representational capacity of domains that were not linear separable. The

situation was subsequently overcome by the introduction of the hidden layer in the network's

architecture. With a multi-layer perceptron the condition of linear separability is no longer

required because there are more building blocks available for describing more complex inter¬

relations that might exist between the elements of a problem's domain.



CHAPTER 1. INTRODUCTION 12

(0,1L 0<1'1>

o-

/

(0,0) 0.0)
/
/

Figure 1.2: Input space to the XOR problem.

The difficulty that now needs to be surmounted is how to go about computing the number of

required basic building blocks provided by the network model from the training set available
and it is at this point that the procedures associated with many existing optimisation processes

become useful.

1.4.2 Generalisation and a priori knowledge

A generally perceived advantage of NN was that they did not usually need to be supplied
with a great deal of a priori knowledge regarding the task to be solved. This was a definite

improvement when compared against other knowledge representation forms, which required

relatively complex processes to subtract enough information that would permit the creation

of an adequate model. For example, when creating a rule-based knowledge base for an expert

system for a diagnosis task, extensive studies have to be performed so as to build the most

informative set of rules for the system.

Nowadays, this view has changed and it is very much an open problem to what extent it will in

general be necessary to incorporate a priori knowledge of a particular problem when designing
a network in order to build an appropriate architecture, i.e. one showing a good degree of

generalisation [Bishop 95]. It can be done in different ways, all of which will require either
pre-processing of the input data, post-processing of the network's output or both.
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The pre-processing might result in a transformation of the input data or in an elicitation of
information providing an insight into the kind of architecture needed to solve the problem
under consideration. Post-processing mainly refers to transforming the network's outputs to

produce the desired ones.

Part of the alternative solution provided in this dissertation, is comprised of a set of pre¬

processing techniques. These produce a more manageable input to the network and provide
an initial maximal network architecture that is very easily trained and subsequently pruned

through an iterative process which finally results in an adequate generaliser.

A priori knowledge has also been used in the form of an extra term which is added to the
error function that has to be minimised during training. It corresponds to the technique

of regularization, eg. Hinton's work on learning in parallel architectures [Hinton 87], which
even though it has been implemented in different ways, can be summarized as a process that

encourages smoother mappings by adding a penalty term Q to the error function to give:

E = E + vQ (1.2)

Here E is the standard error function described before, and the parameter v controls the extent

to which the penalty term ft influences the form of the solution. The resulting network mapping
is a compromise between fitting the data and minimising ft which itself can take various forms.

The type of decision involves the same type of problem that was described when trying to fit
a polynomial to a particular error curve.

1.4.3 Generalisation and network architecture

The different issues which have been mentioned up to now, as important elements to take into
account when building a network showing a good degree of generalisation, are relevant because
the kind of goals to be achieved generally match those of statistical inference [Bishop 95]: the
multi-layer perceptron and the training algorithms used to adjust the weights of a particular
instance can be interpreted as algorithms for this type of reasoning.

The aforementioned fact brings into relevance a failing in many of the existing training al¬

gorithms. Viewing learning as a method of nonparametric inference enables it to be character¬

ized by the property of consistency: in the appropriate asymptotic limit, these methods achieve

the best possible performance for any learning task given to them however difficult this task

may be [Geman et al. 92a]. This result guarantees convergence of mean-square error towards
zero in the large-sample-size limit if the smoothing parameters associated with the estimation

method of interest are properly adjusted. For the multi-layer perceptron, the hidden units play
the role of smoothing parameters, therefore deciding on the number of them that might be
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required is crucial and partly explains the reason for the inappropriate results generated by

many of the existing training implementations, as they limit their update process to adjustment
of the weights and expect the designers to decide on the matter of the number of units that
should comprise the architecture. The appropriateness of the majority of these methods relies

on the assumption that the network architecture is the correct one, which leaves the real bulk

of the decision process in the network generation with no guidelines on how to proceed.

This state of affairs explains the reason why the learning algorithms which include mechanisms

to update a network's architecture generally show much better results. The main problem

this new type of algorithm is confronted with, concerns the asymptotic nature of the results
described because it means there are little guidelines for smoothing-parameter selection when

faced with a fixed and finite training set and is what has led to a search for smoothing paramet¬

ers based on some function of the data itself. The most relevant theoretical material developed

on this subject concerns mainly multi-layer perceptrons with binary inputs. For such networks,
a theorem defined by Vapnik and Chervonenkis [1971] provides an upper bound on the num¬

ber of training patterns required so that a particular architecture will in effect capture some

of the structure of the data and can therefore be considered to be a good generaliser. This

limit, denoted as the Vapnik-Chervonenkis dimension (dvc) of the network, corresponds to the

largest set of data points shattered by it. Further results have been brought forward by Baum
and Haussler [Baum Haussler 89] which give an upper bound on the VC-dimension of a feed
forward network of M threshold units having a total of W weights,

dvc < 2W log2(eM) (1.3)

where e is the base of natural logarithms.

In the context of sigmoid multi-layer perceptrons there are no such results but a few mechanisms

developed for the analysis of nonparametric estimation in statistics have been heavily exploited

(and sometimes improved on) for the study of certain learning algorithms, especially least-

squares algorithms to train such networks. For this particular case, it has been possible to

divide the error measure into the bias and variance components [Geman et al. 92a] and to

subsequently explain the problem that has to be solved through the reconciliation of these
two terms. In order to achieve a minimum error, which in terms of the bias and variance

is expressed as error = bias + variance, [Geman et al. 92b], it is necessary to perform a

balancing process because it is only possible to reach the desired optimum by sacrificing a

small amount of the bias given that this is the most effective way to get rid of most of the
variance. Therefore an optimum, at least an appropriate result, i.e. a reasonable network

generaliser is only possible through an adequate reconciliation procedure. Further information
on how this has been tackled in the development of multi-layer perceptrons will be provided in
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a subsequent chapter.

1.5 Benchmarking

One of the reasons for the limited progress of research in NN learning algorithms and related

issues such as specification of appropriate architectures, etc. is due to the disordered state

of affairs in this area. A recent study of the evaluation performed in journal papers on the

subject, [Prechelt 96], showed that most of them present performance results of the algorithm
they describe only for a very small number of problems - rarely more than three. In most

cases, one or several of these problems are purely synthetic problems, for instance from the

parity/symmetry/encoder family.

Different researchers have tried to create a set of standard benchmarks for some areas of NN

training algorithm research, with the aim of alleviating this situation. The ones analysed were

those described in [Dietterich 94], [Prechelt 94] and because the network model of interest in
the present study is the multi-layer perceptron, it was finally decided that the methodology

proposed in [Prechelt 94], i.e. Probenl was the most appropriate.

Probenl is a collection of problems for neural network learning in the realm of pattern clas¬
sification and function approximation plus a set of rules and conventions for carrying out

benchmark tests with these or similar problems. It contains fifteen data sets from twelve differ¬

ent domains. All datasets represent realistic problems which could be called diagnostic tasks
and all but one consist of real world data. The datasets are all presented in the same simple

format, using an attribute representation that can directly be used for neural network train¬

ing. Along with the datasets it defines a set of rules for how to conduct and document neural
network benchmarking. The collection of problems for neural network learning in the realm
of pattern classification plus the set of rules and conventions for carrying out benchmark tests

with these or similar problems included in Probenl constitutes the framework for realizing
the set of experiments presented in this dissertation. The choice of method was based on the

detail it provided, in relation to the rules that had to be followed so as to be able to perform a

reliable comparison of the results obtained, and because at the time of requiring a benchmark
it was one of the most recent and complete available in the public domain. It is worth noting,

that this collection does not pretend to be a complete sample of the space of possible problems,

rather it presents a varied number of cases for which the multi-layer perceptron is an adequate

modeling tool which was the aim of its designer.
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The task of classification occurs in a wide range of human activity. At its broadest, the term

could cover any context in which some decision or forecast is made on the basis of currently

available information, and a classification procedure is then some formal method for repeatedly

making such judgements in new situations.

In this dissertation the term is restricted to the description included in section 1.2.1 but due

to the broadness of the context in which a classification task is fundamental, many problems

can be regarded as classification or decision ones often using complex and very extensive data,
a wide variety of approaches have been created to support it. A set of techniques which
are particularly useful for this task, is the set of existing data analysis techniques because

they have all been defined with the precise aim of providing information. Most of them have

originated in statistics but there are other areas, such as computational geometry, that also
include mechanisms for producing certain types of information which were considered to be

particularly useful in the context of multi-layer perceptron design and which can be considered

as a subset of the available data analysis techniques.

In this research, the statistical methods considered to be of use are those that provide informa¬

tion of the important dimensions of an input space. Applying them to the study of the hidden

units that constitute part of a network architecture, requires viewing each unit as a dimen¬
sion of a particular space, i.e. the space of the outputs of the hidden units of the network.

Subsequently it is generally possible to detect whether there are superfluous dimensions by

measuring how many of them are really important for characterizing the space to which they
are associated.

The set of techniques taken from computational geometry provide information on the existing

degree of proximity of the points comprising the problem's domain, i.e. those contained in

the training set. This is relevant for the design of a network because in conjunction with
details of the network's expected output associated with each of these points a mechanism has
been devised for deciding on an initial maximal network architecture that can be trained very

quickly to completely recognise the elements of the training set. Also it is possible to measure

the degree of complexity linked to it regarding the possibilities of producing a multi-layer

perceptron that might be considered a good generalises

The succeeding sections give a brief description of the techniques selected together with the
main bibliographical references studied to understand their potential.
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Given Cybenko's proof described in [Cybenko 89], i.e. that a multi-layer perceptron with one

layer of hidden units can approximate any continuous function if enough units are provided
in the hidden layer, it is reasonable to restrict the network design process to one hidden layer
architectures which means that the decision to make concerns the number of hidden units that

should comprise it. An additional argument supporting this approach stems from the fact that,

if there is need for more than one layer of units, as such a requirement is induced by a high

degree of complexity of the elements comprising the problem's domain, for such cases there
are other representation forms that are much more convenient, therefore the network design

process need concern itself only with the determination of the number of units in one hidden

layer.

The key condition in Cybenko's proof, i.e. that enough hidden units be employed, can be

expressed in geometric terms as there being enough surfaces to correctly partition the input

space. This means generating enough hyperplanes for dividing that space in regions such that,
the set of points associated to a particular region all belong to the same class. An estimate on

the number of surfaces required can be obtained through the analysis of the domain's structure,
an approach already pursued in many current supervised learning algorithms [Alpaydin 91],
[Bose &: Garga 93], [Fritzke 93], [Karnin 90], [Riedmiller 94], [Romaniuk &: Hall 93]. A certain

group of geometric constructs which have recently become important concepts in the area

of computational geometry, the Voronoi Diagram and its dual the Delaunay Triangulation

[O'Rourke 94], [Okabe et al. 92], have proven particularly effective in this context as they both

provide information on the degree of proximity of the points in an input space, making it

possible to assess the degree of difficulty involved in generating a suitable network, and provide
the means to compute a reasonable estimate of an initial maximal architecture.

Given a set of points P = {p1,?2, • • • ,pn), such that each pl is taken to be a site of the space

containing it, it is possible to partition such a space generating a series of convex regions, each

containing all the points that are nearest to a site, p\ The union of all these regions (there
is one for each of the elements of P) is what constitutes the Voronoi diagram of P and its

dual structure, i.e. the Delaunay triangulation, contains the boundaries of each region which
when computed can be used to derive a good initial estimate of the number of hidden units the
network architecture should have together with a reasonable initialisation of the weight vectors

in the input-hidden layer.

The major drawback with this particular set of techniques lies in the computational costs in¬

volved in their calculation. Very efficient algorithms have been defined to generate the Delaunay
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triangulation, Voronoi diagram of a set of points in a 2-dimensional and 3-dimensional space,

[O'Rourke 94], but for higher dimensions the only algorithms available are of an exponential
nature [Barber et al. 95] which is not very convenient for the design of multi-layer perceptron
networks. This difficulty has been solved by generating the geometric constructs always in a 3-

dimensional space and using quickhull, an algorithm with a computational cost of 0(n log(r))
for an input of n points and an output of r sites. Subsequently the components comprising
the geometric structure generated with quickhull are expanded to an (N+l)-dimension space

through a process described in Chapter 5 which also includes the computation of the number
and value of initial elements comprising the network architecture considered to be necessary to

deal with the problem at hand. Although it involves many complicated steps, given that they

generate essential information for determining the kind of network required, the computational

cost involved is more than justified.

Finally, it is worth noting that there is an alternative implementation for building the geometric
constructs required which, at least theoretically, allows for the generation of the Delaunay

triangulation of a set of n points in the plane in O(n), i.e. the randomised incremental algorithm

[Motwani & Raghavan 95]. Nevertheless, as the empirical results described in [Barber et al. 95]
show that their performance is very similar to that of the one selected in this research, that

there is better support for quickhull and, that the randomised algorithm used did not provide as

good a level of floating point manipulation as the quickhull program, it did not seem favourable

to opt for the randomised alternative.

1.6.2 Principal component analysis, PCA

The central idea of PCA is to reduce the dimensionality of a data set which consists of a large
number of interrelated variables, while retaining as much as possible of the variation present

in the data; [Jolliffe 86] provides a very detailed and complete study of the method and its

possible applications.

This reduction is achieved by transforming the data set to a new basis comprised of those
dimensions which provide important information concerning the domain of interest. The new

basis corresponds to the eigenvectors of the covariance matrix of the data set being analysed and

there is a complete theory explaining and demonstrating the properties which make principal

components such useful elements.

In the development of NN they are useful at two different stages of the network design process:

a) the initial data set might be more manageable if it is transformed and reduced to the basis

comprised of a subset of its principal components. This alternative requires careful consideration



CHAPTER 1. INTRODUCTION 19

* x/

x 4

* X/

V

X. Y: original coordinate syxtem
■CA_2: principal component bans

X X/
X

A

iPWjfr— ^ocdt^^jobcxc^g-x-xx x-XX.)wt-X*x ;

X: dements class I

PCA_I. PCA_2: principal component basts

(a) (b)

Figure 1.3: Badly behaved input set after transforming to the PCA basis

as it might be the case that the transformation process complicates the shape and separability

of the regions comprising the input therefore increasing the degree of difficulty for achieving a

correct classification with a network; such a situation is shown in the 2-dimension input space

presented in figure 1.3, in which if ail the points axe projected to the highest dimension of
the covariance matrix it becomes extremely difficult to distinguish which of those points are

members of class 1 and which of class 2, something that was easy to discern in the original

space; b) during the training process the output of the hidden units can be analysed and
the eigenvectors/eigenvalues of the covariance matrix of this particular set can be calculated

providing insight into whether there are superfluous units or if the number is too restricted
and they have reached saturation point which means the architecture being trained is not large

enough for the problem of interest. A more detailed description of the information provided by
this technique and the ways in which it is used to guide the network design process is included
in Chapter 4.

1.6.3 Other Data Analysis Techniques

Although there are many methods for data analysis aside of the ones described in the preceding

subsection, most of them rely on a small set of fundamental sources of information, which
for each method are combined in a particular way and may be applied in conjunction with

other types of information. This fundamental set of sources includes: the sample mean, the
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covariance/correlation matrix, between-class matrix and the within-class matrix. For a sample
X such that:

X = {x',x2, ...,x"},X C Rn, |X| = n, (1.4)

xp = (xp,xp, • • • ,x{\ ■ • • , x^), attribute xf e R

p £ [l,n],xp € Ck,\Ct\ = nk,k £ [l,c];

the terms considered to be basic sources of information are computed using the following

expressions:

1 "
fi = — xp sample mean

p=l

y = ——— ^^(£p — A*) (xp — a^)T covariance matrix

T.
T{j = ,R = [rjj], i 6 [l,iV],jf € [1, iV] correlation matrix

c rn

iv = - Hk) ~ Ph)T within-class matrix
k=l p=i

n*, number of elements in class k
C nfc

T = ^2(xtk — Hk) {xtk — /ifc)T total-sum of squares
*=i 1=1

B = T — W between-class matrix

(1.5)

where, correspond to the square roots of the variances of the attributes xp,xp- and,
~ measures the extent to which the two attributes xp,xp are linearly

related. In the previous equations it is also possible to identify a main sub-expression and

variable, i.e. (x\ — Hk) ~ Hk)T and n respectively. The existing equivalence of some of the
fundamental terms used in geometry and statistics partly explains the reason for considering
them to be useful tools to solve the problem described. A detailed discussion supporting the
set of techniques selected and the manner in which they were used in the realm of multi-layer

perceptrons is provided in subsequent chapters.

1.7 Organisation of the dissertation

This work is divided into four parts, each containing the following information:
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Part I: composed of the present chapter and, chapter 2 which provides a detailed description of
the multi-layer perceptron and of conventional backpropagation together with its vari¬

ants, including those operating on a fixed architecture and those which add/delete units

and/or connections during its execution. Finally a detailed argument favouring gener¬

ative learning algorithms is presented which will be clearly supported by the examples

described at the end of this work.

Part II: formed by chapters 3, 4, provides details of the set of techniques on which the gen¬

erative supervised learning algorithm defined is founded. Chapter 3 contains the kind

of information that can be elicited from the geometric constructs generated during the

design process of a network, explaining how it might be used together with the reasons

behind the particular way in which it is obtained, finally it describes how it is possible to

build a complexity measure with this information which shows the degree of difficulty of

designing a network for correctly partitioning the problem domain. Chapter 4 provides a

detailed discussion of PCA describing how it might be applied to decide on the number

of hidden units comprising the network architecture.

Part III: considers in detail the problem of designing a good training algorithm for the multi-layer

perceptron and of showing its usefulness. Chapter 5 includes a detailed description of it

which provides an explanation of the integration process of the complete set of inform¬

ation handled. Chapter 6 provides a description of the kind of benchmark methodology

employed and includes various examples that give empirical proof of the advantages ob¬
tained by using the algorithm defined; all of them comply with the rules specified in the
benchmark procedure followed.

Part IV: is composed of chapter 7 which provides conclusions and suggestions for future research.



Chapter 2

The Multi-layer perceptron and
Supervised learning

2.1 Introduction

In common with most research areas the field of NNhas a vast literature, and an encyclopaedic

review would not be feasible or appropriate. This chapter therefore summarises what is con¬

sidered to be the most important and pertinent work in the context of this dissertation, and

attempts to give a representative sample of the published theoretical and experimental results
for the different types of multi-layer perceptrons, together with the most relevant learning al¬

gorithms that have been designed to train such networks. Given the properties the model has
been shown to have [Cybenko 89], [Kolmogorov 57], in relation to the kinds of function that it
can implement, it is believed that the main problems found in designing networks using it, lie
with the different existing training algorithms. In the subsequent discussion it will be shown
that an appropriate algorithm can be specified if the following measures are put into practice:

ml: allow the algorithm to manipulate the complete network architecture. This requires the

definition of a set of rules for deciding on the issue of the number of connections and/or
units that need to be included and/or deleted.

m2: define a reliable and effective pre-processing phase that will shape the data into a more

manageable form for the network building procedure.

m3: proceed from a maximal architecture to a simpler version because there are much more

reliable reasons for pruning units than for incorporating units. The initial network that
should be input to a pruning process is already a solution to the problem, i.e. it is at

least able to completely recognise the elements of the training set, therefore the process

of eliminating redundant components is able to proceed in a consistent manner stopping

22
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when the network under consideration is not able to achieve such a good recognition
rate. The possibility of proceeding in this consistent manner when deleting units is not

attainable with a constructive-generative algorithm because, when building a network it
is not only important to have enough units, the position of the weight vectors associated
to each of those units is also crucial otherwise it will not be an effective classifier. If

it is possible to grow an architecture so that, each new unit will be linked to a weight
vector situated in an adequate position, then the pruning and the constructive learning

algorithms are equally effective. Assuming that it is viable to generate the amount of

space required by a generic maximal network, at present it is easier to build more than

enough well-situated weight vectors and corresponding hidden units, than it is to work
in the other direction.

The multi-layer perceptron can be considered to be the most popular and most frequently
used network model but there are still unanswered questions in relation to the behaviour an

application using it shows. In order to provide a detailed description of the different forms it
can have, the most important types are described in Section 2.2. The simplest of them, a linear

perceptron with no hidden layers, is discussed in Subsection 2.2.1. Subsection 2.2.2 contains a

definition of other types of perceptron which differ from each other on the activation function

used. Subsection 2.2.3 is comprised of a precise definition of the type of network model which

is investigated in detail in this research, i.e. the multi-layer perceptron comprised of hidden

layers incorporating sigmoid units.

Section 2.3 includes all the information concerning the learning algorithms that have been
defined to train networks based on the model of interest. Given the amount of material on

this issue, it is further subdivided in more specific concepts. Subsection 2.3.1 includes a review

of the first fundamental training algorithm, i.e. backpropagation, outlining its shortcomings.
Subsection 2.3.2 provides a description of the first group of important variants that have been

defined to tackle these problems which are generally based on the definition of particular ways
of manipulating the algorithm's parameters. Their effectiveness, in the literature reviewed, is

for the most part explained under the assumption that the network's architecture on which

the algorithm is operating is comprised of an appropriate number of hidden units therefore

it is not surprising that they only provide better alternatives in very few cases and did not

supply an overall solution to the problem of properly training a multi-layer perceptron network.
Subsection 2.3.3 includes a detailed description of the implementation which is used as part

of the network design method defined in this research. Finally, subsection 2.3.4 contains a

discussion on the most relevant network design methods that have been defined in the last
decade which, in addition to incorporating a training process, have a set of rules which operate
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on the network architecture creating and/or deleting units and/or connections.

In Section 2.4 the relevance of the task of building an adequate architecture is discussed in

detail, pointing out how much the success of the task depends in the relative disposition
of the points comprising the problem domain, examining the difficulties encountered in the

determination of the minimum network required for an application, and outlining a set of

arguments supporting the construction of a generative supervised learning algorithm. The
contents in Section 2.5 explain the reasons for incorporating an effective pre-processing phase,

given that the network construction is based on the exploitation of the geometric information of
the problem domain. The relevance of this issue is shown in a specially constructed problem.

Section 2.6 includes an example requiring a multi-layer perceptron network that is solved

using certain geometric information, in this manner the core concern of this study is effectively

exemplified. Finally, Section 7.1 summarises the conclusions reached with the analysis described

throughout the chapter.

2.2 Multi-layer perceptron

A multi-layer perceptron network takes as input a vector Xp € Rn,

(XP)* = (2.1)

where p indexes the occurrence of X in a training set and (Xp)* represents its transpose.

The network produces as output a class index C = (ci, ~,Cj, C{ € {0,1} and C € C-

Every class index, is represented in the set of possible outputs, £, with a binary pattern

(0,0, 1, ",0,0), in which only one of the components has a unitary value. Cj = 1 in the

pattern, indicates that the binary label is associated to class i. It should be remarked that it

is possible to define £ in this manner because the multi-layer perceptron is being designed for
a classification task otherwise, as already mentioned in section 1.2.2, if the network is used as

a function approximator, then the appropriate definition would be, £ = R,m > 1.

The ensuing description of the model is divided in three parts, each corresponding to a particu¬

lar type of perceptron and each incorporating more general and complex building components

than the previous one.
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Figure 2.1: Linear Perceptron with n inputs and m outputs

2.2.1 Linear perceptron

The linear perceptron has the simplest kind of feedforward structure as illustrated in figure
2.1. Each node : of a linear perceptron computes the function,

n

ci - X w>> ~ w'° t2-2'
i=l

the terms x\• are the components of {X?)*, and the vector of variable weights associated with

the jth node is Wj = (wj\,Wj2, • • -,tUjn). If unit j's threshold vsilue, Wjo, is represented as the
weight of a connection coming from an additional input unit io with a fixed input value of — 1,
as shown in figure 2.1, the actual computation performed by a linear perceptron network can

be formulated as:

W (8) (Xp)fc = (? (2.3)

where:

a.- Xp is a known element of the expression as it is part of the training set employed in the

design process of the network. This means, that there is a tuple (Xp,op), where of € C
is Xp,s expected output.

c.- c? is the result of evaluating equation 2.3 using the vector Xp.
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b.- W is an [m x (n + 1)] matrix, whose components are unknown. It has as many rows m,

as there are output units in the linear perceptron and, each row is an (n + 1) vector that
must be estimated.

It is possible to compute W using equation 2.3, taking into account the information contained
in the training set, i.e. the tuples (Xp,op). In this context, the matrix W should be comprised
of elements such that, at the moment of computing equation 2.3 for a specific A"p, the resulting
cp will be sufficiently close to o*\ i.e. cp « cP. This condition must be satisfied with all the

elements in the training set.

The learning algorithm is the network model's device responsible for performing this estimation
which consists of the minimisation of an error measure. It can be implemented as a non-

parametric estimation method because there exists a training set providing information about

the relevant problem domain. There are many measures available, all potential candidates
for the minimisation process [Hertz et al. 91], [Bishop 95], [Rumelhart et al. 86b]. Since the
measure used in the majority of existing implementations is the error sum of squares (SSE),
and given that it is the one that has been mostly used in the literature reviewed, the design
method described herein is also based on SSE. Assuming that the training set is:

Tp = {(z1,o1),(x2,o2),...,(x'\op)} (2.4)

The SSE has the following form:

£ = 5l>t-<:t)2 = 5X>t-wrl®*t)2 (2-5)
k=l k—1

and its minimisation by the learning algorithm is achieved through an iterative procedure that
modifies the W's components until SSE is sufficiently close to zero.

The formal definition of the linear perceptron is very similar to that of the model on which the

linear regression analysis estimation process is based.

The linear regression analysis model involving n independent variables {x\,X2, ...,rn} required
to approximate the dependent variable Y has the form:

Y = 00 + 01 X\ + 02X2 + .... + 0n xn + E (2.6)

where (0o, 0i,..., 0n) is the vector of parameters; estimates that must be calculated. This is

done making use of a sample set of the problem organised as a matrix of observations X and

subsequently applying the least squares solution, which means using the same kind of error
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function as in the case of the linear perceptron. If the domains involved in the linear regression

analysis process satisfy certain conditions, this solution ensures the minimisation of the error E.

Assuming the set of observations contains p occurrences of the model's independent variables

{xi,X2, in algebraic terms it can be written as:

Xt(S>P + E (2.7)

which allows one to express the least-squares solution for the estimates of the regression coef¬
ficients in the parameter vector P in a compact way. This least-squares solution, in matrix

terms, is that vector (3 which minimises the SSE:

SSE = (Y—Xt®J3)t®(Y-Xt ®0) (2.8)

The solution to this minimisation problem, which is obtained by applying Matrix Calculus,

yields the following expression (see [Kleinbaum et al. 88] for further details):

3 = (Xt®X)"1®(Xt®Y) (2.9)

Considering the linear perceptron model with m = 1 outputs, the set of unknowns also cor¬

responds to a vector of estimates which differ from those included in linear regression analysis

only in the terminology used. In the linear perceptron the unknown is a weight matrix (W)
while in linear regression analysis the least square estimates comprise the vector {Po,Pi,..., Pn)-
The computations performed for the linear perceptron model yield values for the variable C{

whereas linear regression analysis calculates the dependent variable Y. Equation 2.3 is the

expression employed for generating d, whilst Y is obtained by solving equation 2.6. Taking
this information into account, renaming the appropriate variables and reorganising the set of

equations described, i.e. the least squares result in linear regression analysis, in the linear

perceptron case the SSE is computed with the following expression:

SSE = (Cl - X' ®W)' ® (C* - X' ®W) (2.10)

which means that the most adequate W can be calculated directly by:

W = (X'®X)-1®(Xt®Ct) (2.11)

The W computed in equation 2.11, is a much more adequate way of initialising the W matrix

associated with a linear perceptron network, definitely much more reliable than the random

initialisation used in most applications. Nevertheless, care must be taken when proceeding
in accordance with the set of computations described above. The possibility of obtaining

adequate results depends on whether the domains involved in the task of interest, satisfy the
sel uf assumptions on which the feasibility of a linear regression analysis estimate is based.
These can be summarised as follows:
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hi: Existence. For any value of X, it is possible to calculate a specific Y. All these
calculations show a behaviour that makes it possible to consider Y as a random variable

with a certain probability distribution having finite mean and variance.

h2: Independence. The Y-values are statistically independent of one another. Thus the

outcome of the calculation obtained using a specific A'1 should not be conditioned in any

way to the results achieved by using another X value.

h3: Linearity. The mean value of Y is a straight-line function of X. The model on which

linear regression is based, in mathematical terms, complies with a linear function and, as
the aim of the analysis is to reproduce the underlying mapping that exists between the

variables X and Y, this will only be possible if that mapping is naturally linear because,

being the simplest type of mathematical model, it cannot be used to reproduce more

complex functional relations, eg. a quadratic dependence.

h4: Homoscedasticity. The variance of Y is the same for any X.

h5: Normal distribution. For any value ofA, Y has a normal distribution. An assumption

that makes it possible to evaluate the statistical significance of the relationship between
X and Y as reflected by the fitted line. It is not a compulsory condition to satisfy in

the search for an appropriate solution since it is possible to rely on the results computed

even if the normal condition is not satisfied.

A complete and detailed discussion of these assumptions can be found in [Kleinbaum et al. 88].
Of them all, the most important one, in the context of the linear perceptron model, is h3 be¬

cause the other conditions are easily satisfied by applying the central limit theorem [Freund 92],
given that what is modeled with the linear perceptron network is a classification task. In this

context, the linearity assumption can be expressed in terms of the possibility of producing as

many regions as there axe classes in the problem so that one region is comprised only of input

points belonging to one class. The partitioning is achieved through the generation of appropri¬
ate hyperplanes, defined with the weight vectors connecting the input and output units, and
the feasibility of their calculation depends on the relative disposition of the points that consti¬

tute the input space. For example, in the binary XOR problem it is not possible to produce

appropriate hyperplanes because, the disposition of the points does not allow the computation
of the ones required to correctly partition the input space.

The main advantage of the equivalence described, is that it provides a sound technique to

compute an initial set of values for the weight matrix. If the linear perceptron network that
results from this initialisation does not recognise the elements comprising the different sets
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associated with the complete training process, i.e. training, validation and test sets, as it

should according to linear regression analysis theory, then one or more of the regression model's

assumptions are being violated in which case a linear perceptron is not an adequate option to

solve the problem. An alternative solution must be sought.

Extending the output domain to an m-dimensional space, m > 1, the estimation problem can

be expressed with:

Xt(g)W = Ct (2.12)

and, as the results of linear regression analysis can be easily extended to higher dimension

spaces, the desired optimum for the linear perceptron in this case is computed with the following
W:

W = (X8X'}-1 ®X®C' (2.13)

if the set Tp satisfies the assumptions of interest.

Once again initialising W with the values obtained by applying equation 2.13, subsequently

presenting the available data to the network, and calculating the error measure for each pattern,
is a reliable, theoretically sound way of determining if the model is a good alternative to solve

the problem of interest. A more detailed description of the linear perceptron can be found

in [Gallinari et al. 91), [Georgiou 93] and particularly [Baldi & Hornik 94] which includes a

very detailed analysis of the equivalence of the model and its learning algorithm with linear

regression analysis theory.

2.2.2 Non-linear Perceptron

The difference between the non-linear perceptron and the linear perceptron described earlier

is restricted to the form of the activation function. There are no hidden units, only forward
connections and each and every one if the input units is connected to the complete set of inter¬

vening output units. Therefore the network shown in figure 2.1 also represents the architecture
of a non-linear perceptron.

In this case the activation function does not have to take a particular form, the only restriction

being that it be non-linear. Of all the existing functions that comply with this restriction the
ones that have been employed most often are:

• a(neti)

• o(neti)

=

(1+.XP(-Dneu)) for net' € R and D G R+
= tanh(—Dneti) for neti € R and D £ R+
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in both cases,
n

(2.14)

I XjI a(netj) (2.15)

the form of a,j varies according to the type of source, if the connection is coming from an input
unit, Xj, or from a hidden unit, a(netj) and, D is a steepness parameter.

The development of applications employing the non-linear perceptron with no hidden units

has not been very widespread since the usefulness of non-linear functions makes more sense

in this context as the activation function of the hidden units. It is well known [Werbos 74],
[Rumelhart et al. 86b], that the condition for requiring a hidden layer in a network is that the

pertinent problem domain be not linearly separable because the hidden units make it possible

for a network to deal with the situation, whereas just changing the form of the activation func¬

tion does not produce the transformation required by a problem to become linearly separable.

Additionally as can be seen in figure 2.6 the range of both these functions is very limited,

(i+exp(—x>) ^ (0»1)» tanh(x) € (—1,1), which greatly reduces the applicability of the model,
at least as function approximators; the objection does not apply in those cases in which the

model is employed as a classifier. Each of the output units of a non-linear perceptron with n

inputs and m outputs, using the sigmoid as an activation function is computed by:

with cr(x) = 1/(1 + exp(—D x)).

As before the SSE is the measure most frequently used in the learning algorithm to decide
whether the level of performance shown by the network is appropriate and also to determine
the amount by which W must be updated so as to achieve better performance. With a sigmoid
function its form now becomes:

Clearly equation 2.17 has no equivalence with linear regression analysis as in the case of the
linear perceptron which means that the set of results therein cannot be extended to this case.

Given that this particular type of model is not very useful it was not analysed in great detail
and will not be discussed any further.

(2.16)

(2.17)
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2.2.3 Multi-layer Perceptron with hidden layers

This type of perceptron model allows the specification of more complex networks which can

represent more general functions than the ones that could be replicated with the previously

described perceptron alternatives. This enhanced representation capacity makes it the most

powerful of all the models described in this chapter and, the one that has been used most

frequently in the network applications developed in recent years, therefore the one that is of
real interest in this research.

It originated as a result of the set of alterations effected on the linear perceptron which, together
with the learning algorithm defined to operate on it, were the main reasons for the renewal
of interest in the network model. Of all the applications that have been developed using

this new definition the most important one, or at least the one more widely known about, is

the network created to solve the binary XOR problem [Werbos 74], [Rumelhart et al. 86b],
because it provided a very effective counter-example to attack the limitations concerning the
linear perceptron which were depicted by Minsky and Papert [1969]. The fundamental changes
which resulted in a representation form with a much wider applicability were:

1. The flexibility regarding the number of hidden units and, the type of activation function
that can be specified for each of them. It is valid to define various layers of such units

between the network's inputs and outputs, organised and connected in a feedforward

manner. A different activation function can be associated to each of the ones defined in

an architecture. For simplicity, the units of any single layer are usually assumed to have

the same activation function.

2. The learning algorithm defined to iteratively update the weight matrix W until the de¬
sired estimate (W) is computed. As this algorithm employs the first derivative of the
activation function for updating the different u/y it is necessary that the function be
differentiate. This is one of the reasons for the appearance of the alternative activa¬

tion functions described in the preceding section. Other reasons for the choice of those

functions may be found in [Hertz et al. 91].

These changes were the result of independent work developed by various authors, [Werbos 74],
[Rumelhart et al. 86b], in the years following Papert's and Minsky's disheartening discovery

[Minsky & Papert 69]. The architecture of a multi-layer perceptron is shown in figure 2.2 and
it is usually the case, that the number of connections increases considerably with the definition

of a hidden layer. Defining a hidden layer of h units in the network requires the definition of:

h x {(num{units)prev-iayer -I-1) + num{units)next-iayer) (2.18)
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number of connections whose associated weight values (u/y) have to be appropriately tuned.
This means that care must be taken at the moment of deciding whether or not to create a

hidden unit and even more when the issue concerns a hidden layer. Consider a network with m

inputs and n outputs, this means that there are n x (m + 1) connections, taking into account

the threshold of each output unit. Incorporating a layer of h hidden units to the architecture,

the new total number of connections becomes: /ix(m + n + l) + n. Looking at the difference
between the number of connections in both cases, i.e. nx(m + l)-/ix(m + n + l), there is

a particular type of network architecture for which incorporating a hidden layer might result
in a simpler network, at least, one with fewer connections. This type of multi-layer perceptron

has many more input and output units than hidden units. It is an extreme and very unrealistic

kind of example, taking into account that in the majority of the real-world problems, the larger
number of units are either in the input space or the hidden layer, which ascertains the need to

be careful when deciding on whether or not to incorporate a hidden layer to an architecture.

Since the model first appeared, different authors have provided detailed studies of its rep¬

resentation capacities which show that it is worthwhile to consider it as a useful alternative

for knowledge representation. Of all the existing analysis, Cybenko's [1988], which showed
that a sigmoid multi-layer perceptron with one layer of hidden units could approximate any

continuous mapping is one of the most important given it was one of the first to appear. In

[Cybenko 89] he proved that the same model but with two layers of hidden units and, linear
activation function for the output units, could approximate any function to an arbitrary de¬

gree of accuracy. Similar studies which discuss these properties can be found in [Funahashi 89],
[Hecht-Nielsen 89], [Hornik 91], [Judd 87]. The general idea underlying many of them is based
on the possibility of expressing any function as a linear combination of step functions whose ar¬

guments are linear combinations of the variables associated to the input domain of the function
that is to be represented, i.e. the universality property [Blum & Li 91]. This property is ap¬

plicable in the context of sigmoid activation functions because it is possible to approximate the

step function using a sigmoid by providing it with sufficiently large-valued arguments, which
in the network model is easily achieved by using sufficiently large weights in the connections

involved [Bishop 95].

The results described suggest that the efforts should be concentrated on the development of a

learning algorithm that will generate an adequate architecture of at most two hidden layers for
the application of interest which was the approach taken in this study.

As in the previous cases at the moment of defining a multi-layer perceptron network there is a

well-specified training set,

rp = {(il,o1),(x2,o2) (s'.o")} (2.19)
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Figure 2.2: Multilayer perceptron
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and the mathematical definition of the one-hidden layer network that has to be created for

recognising such a training set. has the following form:
i

ci = cr(*T{Wik hk)) (2.20)
j=o

where

hk = xj)) (2.21)
j=o

corresponds to the output of a generic hidden unit hk of the architecture; a represents the
activation function employed, which subsequently will be considered to be the sigmoid unless

otherwise stated, and Ci is the value produced by the ith output unit of the network.

In the same way as with the previous models, the set of unknowns are all the wxj and the
related learning algorithm performs the estimation of the most appropriate W through the

minimisation of some kind of cost function. At present, even though the type of objects,
i.e. functions, that can be represented with this type of network model have been extensively

studied and, are pretty well defined, there has been little advancement towards achieving the

complete specification of sin effective process for building network instances for particular prob¬
lems. It has not yet been proven that any of the existing supervised learning algorithms is the
most effective tool, in a computational sense, for generating the most appropriate multi-layer

perceptron network for a particular task. Furthermore, there is no unequivocal specification
of what the term most appropriate multi-layer perceptron really implies. It is clear that as its

generation is governed by a minimisation process, to be able to consider a particular network
a reasonable solution it must minimise the cost function used during its creation. This in itself
is a problem because it might very well be the case that for some data the network seems to

have reached the minimum, for example, when presented with the elements of the training set

after a training process has been successfully completed but, looking at the error achieved by
the same network working on data it did not process during training, its value might be far
from the desired minimum, a network showing this kind of behaviour is labeled in this context
a bad generaliser and, it is towards the achievement of good generalises that most learning

algorithms are designed at this time.

From the above, it is possible to discern that the optimal learning algorithm, is the one with

which, using the smallest amount of time and memory resources, it is possible to build the best

generaliser. A network is a good generaliser if it achieves the smallest error when working on

data not processed during training, smallest relative to the error computed by other similar
networks designed for the same classification problem but, built by other learning algorithms
of the same type. The difficulty of providing this sort of algorithm still concerns this research
area and, the way in which it has been tackled since the appearance of the network model and,
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an outline of the most popular solutions is the topic of discussion in the following sections.

2.3 Supervised Learning vs. Generative Supervised Learn¬
ing

The sort of learning that takes place when training a multi-layer perceptron network, as men¬

tioned previously, can be expressed as a minimisation problem over a many dimensioned para¬

meter space, namely the vector space spanned by the weights. A typical technique to perform

this kind of optimisation is gradient descent and it is the principle on which the learning rule

of backpropagation {BP), defined by various authors [Rumelhart et al. 86b], [Werbos 74] is
based. Many variants of the first BP algorithm have been defined with the aim of trying to

solve the different problems that have been detected when applying it. This section includes

a review of the major work developed in relation to the detection and explanation of these

problems and a description of the most important variants defined, important as they provide
an adequate context to this dissertation.

Any of them can be considered to be comprised of two basic elements: 1) the architecture's

components, 2) the learning algorithm. The existing differences between them generates the

ensuing classification:

Ml Methods requiring that the network architecture be specified before the learning al¬

gorithm can operate on the training set in search of the appropriate weight values for the
network's connections. BP belongs to this class.

M2 This type of method is comprised of two modules: one responsible for adjusting the net¬

work's architecture (units and/or connections) in view of the actual network performance

during training, the other is comprised of the learning algorithm that effectively controls
the process of traversing the training set and updating the weight values. Both functions
can be viewed as a whole, i.e. a special type of learning algorithm, in which the set of
actions that perform both the training and architecture adjustment constitute one global
task. Alternatively, some methods consist of compact modules, each having a special

function, these are subsequently integrated into one highly structured learning system in
which it is relatively easy to discern the steps that make up the modules.

Both of the previous categories can be further classified according to the following criteria:

1. The amount of information that must be specified before the learning algorithm is ex¬

ecuted. This refers to the number of parameters requiring an adequate initialisation to
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ensure a successful network design. Each learning algorithm has its particular set of

parameters and includes the rules for controlling their manipulation but, as there is a

lot of overlap on these two elements, across all the existing learning alternatives, it is

possible to build a global set admitting all the existing variants, or at least the ones

found in the literature reviewed. A description of this global set of parameters and an

analysis of the effectiveness of this type of design method is included in the subsequent
section. Given that Ml and M2, both comprise a learning algorithm, this classification

criteria applies to both of them. Examples of this particular type of learning algorithm
are quickpropagation (QP) described in [Fahlman 88] and rprop [Riedmiller 94].

2. The design methods of class M2 can be further categorised depending on the rules gov¬

erning the evolution process of the network architecture. Some start with a minimal
network, the number of units comprising the initial model are restricted to those re¬

quired for the input/output layer which are exclusively dependent on the dimensions of
the problem domains; a more complex architecture is evolved (constructed) depending
on the outcome of the training process, the ease with which a particular architecture re¬

cognises the elements comprising the training set. The other type of criteria requires the
definition of a large network and a pruning process is what basically takes place, given
that too many hidden units and/or layers have been defined the redundant ones are de¬
tected and deleted, finally producing an adequate architecture. A detailed discussion of
the M2 type methods is included in the second part of this section.

As it is easier to explain the behaviour shown by applications developed using the multi-layer

perceptron with practical examples, part of the discussions concerning the relevant learning

algorithm will include different executions performed on the continuous parity task. This is

a classification problem with an input domain comprised of n-dimension continuous patterns,

of the form described in equation 2.1, such that the x*- that constitute a particular pattern
Xx all correspond to real numbers in the interval (0,1). Pattern i is assigned to one of two
classes depending on whether the total number of its components satisfying the requirement,

xlj > 0.5, is even or odd following a scheme similar to the one that governs the n-parity binary
domain. The details of the exact procedure used to generate training and test sets for this

type of problem axe included in appendix A. The continuous parity problem is relevant in

this area given its background which originates in the binary XOR problem, the example
used by Minsky and Papert [1969] to outline the limitations of the perceptron. In an initial

stage of development in network research, the important benchmark was the binary parity

problem because it is the generalisation to a n-dimension (n > 2) space of the XOR problem.
This situation made it the most appropriate example for showing the effectiveness of a training
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algorithm given that at the time, [McCulloch & Pitts 43], it had already been proved that a

multi-layer perceptron with one layer of hidden units could represent any boolean function, if

enough hidden units were defined, an amount which happens to grow exponentially with the
number of inputs and is therefore not very practical [Hertz et al. 91]. The situation provoked
a line of research in the search for efficient network solutions, i.e. architectures for representing
boolean functions which grew only polynomially in the number of inputs, the Network Effi¬

ciently Representable Functions (NERF) functions [Denker et al. 87]. This class has still not
been clearly specified but, as it seems to be the case that it is hard to find a useful boolean

function that is not NERF, it becomes more necessary to define mechanisms for building
efficient network architectures.

In the context of the NERF functions the binary parity class is specially interesting because

the rule by which each of its input patterns is associated to a particular class, generates the

most complex space a network must operate on given that the amount of class separability
is minimal. This constitutes the main reason for the popularity this type of problem had
as benchmark, for measuring the level of performance of a particular learning algorithm on

problems defined in n-dimensional binary domains.

An important limitation when aiming for the achievement of efficient network representations

lies in the fact that the minimal, i.e. the smallest, architecture required to represent the
elements of a training set does not necessarily correspond to the best generaliser therefore,
a compromise must be reached at the time of defining a learning algorithm regarding these

properties, [Fahlman & Lebiere 90], [Hertz et al. 91], [Bishop 95]. It constitutes the core in
Occam's razor principle, [Bishop 95], which is concerned with modeling complexity and reflects
the fact that the best fit to the training data in a maximum likelihood setting represent over-

flexible, over-complex models which do not give the best generalisation.

If the most important inputs to the relevant learning process correspond to binary-valued
domains it makes sense to aim for a method that will guarantee the generation of efficient
network architectures because, for this type of domain, assuming noise-free inputs, all its
elements can be generated and included in the training set, therefore the level of generalisation
can be relinquished as it does not make sense to consider the possibility of having to process

data not available at training time. On the other hand, if the most important problem domains
are continuous-valued, given the impossibility of enumerating all the elements of a particular

problem, it is more pertinent to define a learning algorithm that will guarantee the generation

of better network generalises because, it is certain that any network built with it, will have to
handle patterns not available at the time the architecture was being designed.

Given that, the most interesting problems in this research correspond to classification tasks
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set in continuous-valued domains, when analysing the difficulties encountered when building

a multi-layer perceptron to represent the domain of any of such problems, those associated

to the design of networks showing a good generalisation level become particularly important.

For this reason, even though the n-dimensional binary parity problem has been so relevant
to researchers in the neural network area, the n-dimension continuous parity was regarded as

more pertinent for discussing the issues related to the definition of a learning algorithm that

will guarantee the generation of reasonable network generalises.

It is worth noting that, although the rule used to classify the elements of the n-parity con¬

tinuous problem corresponds to the one used to create instances of the n-parity problem in

the binary domain, it does not produce the same sort of complex input structures for the con¬

tinuous case and, in general, there are other much more interesting problems, eg. the 2-spiral,

[Hwang et al. 94]. This is evidenced in the plots presented in figure 2.7. The one contained
in figure 2.7.a corresponds to a sample of a 2-continuous parity problem, i.e. the continuous

XOR, and it is clear from the manner the points belonging to different classes are placed with

respect to each other, i.e. the degree and structure of class intersection, that the task of design¬

ing a network for this case is much simpler than it would be for either, its binary counter part

or, the 2-spiral problem. Nevertheless, the specific architecture will require a layer of hidden

units which, depending on how closely the clusters are placed, will have to be comprised of
a larger or smaller number of them, thereby providing a useful framework for discussing the

points considered in sections 2.4 and 2.5.

2.3.1 The Backpropagation algorithm

In a multi-layer perceptron network each unit t computes an activation cr, with respect to

the input it receives and the weights of the connections through which it receives this input,

complying with the mathematical expressions of equations 2.20, 2.21. As the training set

has the form described in equation 2.2.1, performing BP consists in presenting each input

pattern Xp to the network, propagating the information forward through all the layers of the
architecture by means of the calculation of the activation of the different units comprising it

and, once the last output of the units in the output layer is obtained, the outcome of each
is used to compute the error function. This last usually takes the form of the SSE specified

in equation 6.3 and provides a measure of the level of learning achieved and the amount by

which the strength of each of the connections should be updated so as to improve the network's

performance. This process is repeated for each of the elements of the training set and various
times over the complete set until the learning goal is attained, i.e. the global minimum of the
cost function is reached. To this end the weights in the network are changed along a search
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direction d(t), driving the weights in the direction of the estimated minimum:

= —17 d(t) (2.22)

Wij (t + 1) = Wij(t) + AWij(t) (2.23)

where the learning parameter 7/ scales the size of the weight step and the variable t indexes

the number of times the training set has been presented to the network. To determine the

search direction d(t), first order derivative information, namely the gradient V2? = ■££-, is
commonly used following the principle of gradient descent. The final weight update is a scaled

step in the opposite direction of the gradient which means multiplying the negative derivative

by a constant value, the learning rate 77. Mathematically this corresponds to:

Aw(f) = -r)VE{t) (2.24)

which, for a single weight becomes:
dE

Awij(t) = -rj—(t) (2.25)

This extremely simple mathematical model is described in great detail in various references,

[Hertz et al. 91], [Bishop 95], [Schiffmann et al. 93]. It was considered a very attractive learn¬

ing process when it first appeared mainly because it did not involve much pre-processing of
the associated elements, eg. the architecture, the number of units and/or connections, before
it was put into operation. Precisely because of its inherent simplicity, it does not provide the

means to convey information of a particular problem, reducing enormously the control that can
be exerted on the training process and consequently the means by which to guarantee a good

performance independent of the problem in question. For example, consider the information

provided by the derivative term, which corresponds to the shape of the error surface that

is traversed during training and which varies from problem to problem. Given the arguments

associated with a particular instance of the training process, no information is gained at each

step on the general outlook of the error surface because it is very localised, it usually repres¬

ents just one point in time, eg. one run over the training set, and the derivative computed

at that point, 55^-, does not provide enough information to guarantee that the process is in
effect traversing the error surface towards the global minimum or if instead, it is stuck in one

of the many local minima that populate it and which hampers the process of reaching the

required goal. Many methods have been defined with the aim of trying to solve the difficulties
encountered with BP and the remainder of the section discusses the ones that were considered

the most relevant, remarking on the author(s) and the main problem being tackled in each of
them.

Finally, there is an important assumption underlying the process of gradient descent on which
BP is based, i.e. that the network architecture on which it is operating is comprised of the
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necessary terms (units and connections) required to capture the form of the mapping subsumed
in the training set. If such is not the case, this particular training algorithm will never reach
the cost function's global minimum due to the restricted representation capacity, which means

that the most it can achieve is a local minimum. Therefore, it is not surprising that BP is

successful only for certain problems as it does not incorporate means for deciding on the size

of the network architecture on which it should subsequently operate.

2.3.2 Ml Learning Algorithms: BP variants

The behaviour shown by a particular instance of the procedure for finding a weight vector

that minimises an error function, which is depicted in equation 2.22, varies with the problem

on which it is applied and is definitely shaped by the manner in which the term Awy(t) is

specified. For gradient descent it takes the general form of equation 2.23 which is, as already

explained, the basis of BP. Other methods will compute AWij(t) using other elements but

being optimisation alternatives they conform to the requirements a network training algorithm
should satisfy and is the reason why some of them have been applied to this area.

The different descriptions included in this section, granted that they correspond to learning

algorithms operating on networks of fixed architectures, will be realised assuming that the

training process is working on a sufficiently complex network for the problem to which it is

being applied.

The various minimisation methods that have been used in the definition of a learning algorithm
for training networks can operate in one of two modes which, result in two types of process:

(a) This class consists of minimisation techniques that start at a small-valued point of the
error surface and, assume that the region containing the global minimum can be reached

by gradient descent, therefore it is only necessary to continuously descend until it has

been reached. The methods that proceed under this assumption, have the restriction

that if they start operating, or fall into, a local minimum there are no means of escaping

it, [Bishop 95). Learning algorithms defined according to conjugate gradient and quasi-
Newton methods operate under this policy and their effectiveness is very dependent on
the initial working conditions, given the underlying assumption of the optimisation policy
on which they are based.

(b) This second group incorporates a stochastic component in the search for the global min¬
imum because it might be the case that the search starts in the wrong region and it is

necessary to jump out of it and proceed in another section of the error surface. Gradient

descent is this type of minimisation process and, has the advantage over methods such
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Figure 2.3: Error curves for different learning rates, 2-continuous-PARITY: (a) 77 in
(0.1,0.5), (b) 77 in (0.6,0.9)

as conjugate gradient of being more immune to the initial conditions under which the
search process starts operating.

An additional advantage the type (b) methods have, eg gradient descent, over the other type

of optimisation techniques is, that their computation is faster and simpler because, methods

like conjugate gradient use high order information, such as the second derivative of the error

function, which involve computationally intensive calculations.

Given the theoretical framework underlying BP there are two possible ways in which it can
be modified so as to obtain new learning procedures: using other optimisation methods to

compute Awij(t), or varying the steps of gradient descent employed within BP. The ensuing

analysis is divided according to this criteria and considers in the first part the implementations

that resulted from upgrading gradient descent and in its second part the alternatives obtained
from the application of the information provided by other optimisation methods.

Enhancing gradient descent

The general form of gradient descent complies with the expressions shown in equations 2.24
and 2.25 and, as the manipulation of any of the elements included therein might result in an

alternative manner of processing the weights of a network architecture, it has been the way
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learning rate SSE/u on test % correct

0.1 0.004 100

0.3 0.002 100
0.6 0.002 100
0.9 0.002 100

Table 2.1: Effect on generalisation rate of using different 77

in which much of the research aimed at improving BP applied to multi-layer perceptrons has

been conducted. The resulting versions fall into one of the following categories:

1. Update policy: given that the error has to be computed for every element of the training

set, there is a Au/y(f) value for each of them which means that t%(£) can be updated
in two different ways, after the error has been computed for the whole training set,

i.e. periodic update, or do it after the network computes an output for all the patterns

in the training set, i.e. continuous update. In most of the existing implementations
of BP and its variants it is possible to select the update policy and, although there
is some difference in the manner the process traverses the error surface for each case,

the experiments performed showed that it was not significant when compared against
the effect the variation on some of the other parameters have on the whole training,

eg. using different values for 17. Consequently, as the results obtained by using the

periodic alternative were better, this was the policy applied in the algorithm defined in

this research.

2. The manipulation of the learning rate 77: choosing a suitable value for this term in

gradient descent is important to guarantee the convergence of the whole process. Different

ways for its manipulation have been defined, given how much it influences the overall

performance, as the error curves depicted in figure 2.3 show. The possibility of producing
such varying forms of the whole training process by simple adjustments to 77, induced
various researchers to define many BP variants centered in the manipulation of this

parameter because it seemed to be an efficacious way for avoiding local minima and

accelerating the training procedure.

3. Extending the model: adding new terms to the general form, that will allow advancing
towards the minimum in alternative ways to the ones commanded by the derivative
term. For example, using a momentum term and incorporating it, to the term computed
in equation 2.25.

Detailed information on algorithms defined for improving BP through an appropriate treat¬

ment of the 77 parameter can be found in much of the literature on multi-layer perceptrons
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[Schiffmann et al. 93], [Riedmiller 94], [Hertz et al. 91] contain good summaries of the most

important alternatives. An adequate manipulation of 77 results in a considerable improvement

in the convergence time of the algorithm as a small 77 produces long convergence in a flat error

surface, whereas a large 77 might possibly lead to oscillations, preventing the error from falling
below a certain value [Hertz et al. 91]. The plots of figure 2.3 which include the error curves

generated during training of a network for a 2-continuous-parity problem give a good idea

of the effect 77 has on the learning process; each curve corresponds to a particular 77, the plot

included in part (a) of figure 2.3 contains the curves for 77 6 (0.1,0.5), whilst part (b) includes
the curves for 77 € (0.6,0.9). This particular problem required a network which achieved com¬

plete recognition of the training set in a reasonable number of iterations in all of the training

processes executed, one for each of the 77 considered, but there is a clear difference in the shape
and length of the error curve associated with each of the executions.

The errors plotted in figure 2.3 apparently indicate that a reasonable architecture was produced

given that their values reflect complete recognition of the elements included in the training set

and it allows the conclusion that a well-chosen 77 will result in a reasonable architecture in a

shorter amount of time. Nevertheless, to give more conclusive information on the importance

any element of the model has on the overall design process, considering that the aim of this
research was to provide a learning process that would result in better generalises, it is necessary
to register the performance of the network when presented with a test set, because it is the
error computed for this set, the one that provides the measure that allows consideration of

the appropriateness of the network's generalisation capacity. This means that when evaluating
the importance and effectiveness of any of the parameters involved in the learning algorithm
and in the network model, it is necessary to look at performance not only at the level of the

training set but also to look at the response of the architecture obtained when it processes the

test set. A proper selection of the parameter 77 certainly results in faster training, but as the
contents of table 3.1 show, there is no real difference on the generalisation capacity achieved
for the different learning rates employed in this example.

The interesting implementations of this particular type of BP variant for the most part oper¬

ate by checking whether a particular weight update (AWij(t)) did actually decrease the cost

function. If it didn't then the process overshot and 77 should be reduced. On the other hand

if severed steps in a row have decreased the cost, then it might be advantageous to increase 77.

They differ from each other in the strategy employed for varying 77, as is evident in each of the

descriptions found in [Cater 87], [Franzini 87], [Vogl et al. 88].

The third type of BP variant for the most part is comprised of processes which aim at faster

training through the manipulation of the derivative term, i.e. so that its overall effect in
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the Awij(t) will result in a more reliable training process. In this category falls one of the oldest
and most frequently used which is the process that adds a momentum term to tUij(t) each time
it is updated so that its value will tend to change in the direction of the average downhill force,

and training in general will prove to be more stable [Hertz et al. 91]. The equation for Awij(t)
with this additional term becomes:

dE
Awij(t) = —T) -—(t) + [iAwij{t - 1) (2.26)

OVJij

where the p parameter scales the influence of the previous weight-step on the current one. As

with the 77 parameter variants of BP have been developed based in the manipulation of the

/1 term. Some include dynamic adaptation of both 77 and /i as training progresses and they

correspond to the ones showing the best overall training performance. The most successful

implementations of this type of algorithm are:

1. Rpropagation: resilient propagation is described in [Riedmiller 94] and is an efficient

learning scheme that performs a direct adaptation of the weight step based on local

gradient information. In different analyses that compare the effectiveness of various

BP alternatives when training networks operating on the same problem, this particular

training process has provided the best set of results [Schiffmann et al. 93], [Tveter 96].
It operates by adjusting the weight values by a fixed amount depending on the sign of
the derivatives at the present iteration and the previous iteration because this way it is

possible to conclude whether there has been a favourable change in the manner the error

curve is being traversed. Considering that various examples realised in this research

showed the effectiveness of this particular type of training, it was incorporated as the

training component in the network design method defined in this study. Details on the

implementation that is used are included in the following section.

2. Quickpropagation: the algorithm was designed by Fahlman [1988] and treats the weight
values as quasi-independent terms. The idea is to approximate the error surface as a

function of each of the weights by a quadratic polynomial, i.e. a parabola, and then to

use two successive evaluations of the error function, and an evaluation of its gradient to
determine the coefficients of the polynomial. At the next step of the iteration the weight

parameter is moved to the minimum of the parabola assuming that the result of the local

quadratic fit gives a parabola with a minimum. If instead it leads to a parabola with a

maximum or, if it is nearly flat, special operations axe incorporated to ensure a correct

traversal towards the error's global minimum.

3. Delta-bar-delta: this algorithm is described in [Jacobs 88] and controls the learning
rates by observing the sign changes of an exponential averaged gradient. Different 77
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Figure 2.4: Problem of gradient descent: dependence on shape of the error surface

are manipulated at each execution and it requires the definition of further appropriate

parameters in addition to the initial rj term.

The aim in the existing BP variants, which were created through the modification of the terms

associated to the gradient descent process, has been to eliminate the counter intuitive influence
of the partial derivative on the size of the weight step. If the error function is shallow, the

derivative is quite small, resulting in a small weight step. On the other hand, in the presence of

steep ravines in the error surface, large derivatives lead to large weight steps, possibly taking
the algorithm to a completely different region of weight space as can be seen in figure 2.4

[Hertz et al. 91]. The most successful of them, i.e. quickpropagation, rpropagation, all aim
at generating additional information during the execution of a training cycle that will allow
them to detect these extreme cases so that they may be treated appropriately. Even though
the processing involves the manipulation of 77 and /x, the main objective is to override the

inadequate behaviour sometimes produced by the way the derivative term evolves during the

optimisation process.

Using other optimisation methods

The cost (error) function E(W) that is minimised in the search for the required vector ofweights
W can be expanded about ail initial Wq and rewritten in the following way [Hertz et al. 91]:

where VE is simply the vector with components and, H is the second derivative Hessian
matrix:

E(w)

w

E{W) = E0 + {W- Wo)' ® V£(W0) + W - W0)' ® H ® (W - W0) + ■ ■ ■ (2.27)

H d'E
'■> fturfmdW,dWj

(2.28)
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evaluated at W0. Differentiating the term in equation 2.27 results in a similar expansion for
the gradient:

VE{W) = VE(W0) + (W - Wo)1 ®Hh (2.29)

The desired minimum of E(W) is X7E(W0) = 0. The most relevant optimisation methods

applied to network generation differ from each other in the approach taken to reach this min¬
imum:

(a) newton's method: sets the term in equation 2.29 to zero ignoring the higher order
terms which means that the expression to optimise has the following form:

VE{W0) + H <g> {W - W0) = 0

alternatively:

W = W0 - H"1 ® V£(W0)
The method does provide a precise expression for calculating the desired optimum but

the computational costs involved, because of the mathematical expressions that comprise

it, has been the reason for its lack of use, although it served as a basis for the definition
of other, cheaper training algorithms.

(b) line search: uses only first derivative information, combined with line searches along
selected directions. The philosophy underlying a line search starting from Wq in direction

d, involves staying on the line:
W = W0 + Ad

and choosing A to minimise E(W). There are many ways of performing this one-

dimension minimisation. The different ways in which it has been specified has resulted
in various alternative learning algorithms for multi-layer perceptrons [Hertz et al. 91).

(c) steepest descent/conjugate gradient: corresponds to the simplest approach using
line search in which d = —VE(W0). Thus the minimisation takes place along a line
in the gradient direction, which is revaluated at each step until the desired minimum

is reached. The conjugate gradient method resulted from a modification to the term

comprising the steepest descent which was modified considering that a better approach
was to use a compromise between the gradient direction and the previous search direction:

dnew _ _V£neu- + 0dold
for some appropriate 0 which is chosen so that each new search direction spoils as little
as possible the minimisation achieved by the previous one.

One implementation based on these ideas that combines the information of two of the optim¬

isation methods mentioned, was developed by Leonard and Kramer [1990]. It uses conjugate
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gradient to calculate an exponential averaged gradient, and a line search process is used to

generate the most appropriate value for the learning rate, i.e. one that will minimise the error

with respect to the actual search direction. Its performance, which is compared against that of
the BP variants described in section 2.3.2 in [Schiffmann et al. 93], is quite disappointing and

explains why it has not been greatly exploited.

Further results on the application of conjugate gradient for training multi-layer perceptron net¬

works can be found in [Watrous 87], [Webb &: Lowe 88], [Kramer et al. 89]. The main draw¬
back many of them have is the type of information they require which, for the most part, is

generated by very computer intensive processes. The methods previously described show how

part of the difficulty has been solved by not computing the whole block of information the¬

oretically demanded and using instead approximations which, even though they are, at least
from the optimisation point of view, more effective than gradient descent, are still unsatisfact¬

ory in the network context because they are difficult to use and do not solve the performance

dependency on the network's initial conditions this group of methods have.

The main handicap of all the learning algorithms described up to this point, stems from the

fact that the definition of a sufficiently large architecture in a previous step is mandatory,

because if it turns out to be the case that the architecture that is being processed has limited

representation capacities then none of the BP variants mentioned will produce an effective

network, at least not in terms of a good generaliser.

2.3.3 Resilient propagation (rprop)

In the discussion, this particular BP variant receives special attention because it is the train¬

ing component incorporated to the network design method defined in this research. It was

developed by Martin Riedmiller and is discussed in detail in [Riedmiller & Braun 93].

It is a local adaptive learning scheme, that performs supervised periodic learning in multi-layer

perceptrons. The basic principle of rprop is to eliminate the harmful influence of the size

of the partial derivative on the weight step. This is done by only taking into account the

sign of the derivative in the procedure responsible for performing the weight update of each

of the network's connections. The exact amount by which each of the weights is modified is

determined by a weight-specific update-value Aij{t):

(2.30)

The second step in this learning process consists in determining the new update-values Aij.
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This is based on a sign-dependent adaptation process similar to the one employed in other

learning methods, eg quickpropagation. It evaluates how the term ^~{t) evolves during the
minimisation process for deciding on how much it should increase/decrease the update-value:

where 0 < 77 < 1 < 7]+.

The terms tj~ , rj+, correspond respectively, to a decrease and increase factor. They were in¬

corporated to the algorithm with set, fixed values to reduce the number of freely adjustable

parameters which often lead to a tedious search in parameter space. The factors used in

this implementation were chosen following the recommendations in the material reviewed

which discussed the performances achieved by using this algorithm, [Schiffmann et al. 93],
[Riedmiller & Braun 93], [Tveter 96]. This information also determined the values for the ini¬
tial Ajj(O), i.e., Ao = 0.01.

This particular choice was made based on the results achieved on a set of examples which
concerned a comparison of different learning processes. It showed that the best performance in

the majority of the problems was achieved using rprop and, as the conclusion was reinforced by

other studies of a similar kind, [Schiffmann et al. 93], [Prechelt 94], it seemed an appropriate
choice.

2.3.4 M2 Learning Algorithms: Generative Learning

This type of algorithm has shown a higher rate of success in the task of designing an adequate

network for a particular application, because it includes additional techniques for subtracting
more information about the problem that has to be solved. This additional data is used to guide
the training algorithm and is also applied to the task of tailoring the network architecture such a

process is acting upon, so that the requirements that must be met according to the information
that has been subtracted from the domain are satisfied.

The taxonomy outlined in Figure 2.5, defined and discussed in [nana & Ross 96], clearly reflects
the existence of a wide variety of approaches aimed at improving the design of a multi-layer

perceptron network through the manipulation of the architecture, in conjunction with a series
of techniques aimed at improving the optimisation performed during the training phase of a

particular network instance.

Most of the methods depicted in the taxonomy use information of a statistical nature about the
domain from which the training and test sets used for building the network have been extracted,

(2.31)
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GENERATIVE ALGORITHMS

STRATEGY 1 (chack units Importance ) -o skeletonization (Mozar,Smolensky SB)
(Karnln BO)
Optimal brain damage (La Cun at al BO)

PRUNING METHODS (Chauvln SB). (Hanson 8B). (Hertz B1)
(Ishlkawa BO). (Plaut 86)
Minimum description length (Walgand 81)
(Jl BO)
Bottlenecks algorithm (Kruachke SB)

STRATEGY 2 (decaying approach)

CONSTRUCTIVE METHODS

Cascade Correlation Algorithm (Fahlman BO.84)
Restrictive Coulomb Theory (Rellly 82)
Recruitment Learning (Dlederlch 88)
Upstart algorithm (Frean SB)
Divide and Conquer network (Romanluk S3)

NOVEL/MIXED METHODS

Grow and learn algorithm (Alpaydln 81)
Generative Learning Processes-theoretical framework (Honavar 88)
FFNN ♦ Nearest Neighbours Systems (Smyth 82)
Quasl-Newton optimisation ♦ architecture selection process (Bello B2)
Growing Cell Structures algorithm (Frltzke 83)
Computational Geometry ♦ FFNN (Boae 83)

Figure 2.5: Taxonomy of Generative (dynamic) Supervised Learning Algorithms

to decide on the appropriate number of units and/or layers that should comprise the network
architecture. In the introduction of section 2.3, two types of M2 methods were defined: the

constructive-generative algorithms, and the pruning-generative algorithms, [Reed 93], incor¬

porates an excellent discussion of this last type of generative method. It is possible to consider

the existence of a third group, as the taxonomy of figure 2.5 shows, the mixed methods which
make use of pruning and constructive techniques and try to exploit the advantages of both

philosophies.

The strategy that is common to all of them is concerned with adjusting the network architecture
so as to enhance the overall learning capacity, a major improvement when compared against
the previously ad-hoc manner in which a network architecture had to be specified for the Ml

methods. The most popular example of this type of algorithm is cascade correlation, developed

by Fahlman and Lebiere [1990]. It is applicable to problems with continuous output variables
and is based on networks of sigmoidal hidden units. To begin with there are no hidden units

and every input is connected to every output unit by adjustable connections. The output units

may be linear or may have sigmoidal non-linearities depending on the application. At this stage

the network can be trained like a normal perceptron by applying one of the learning algorithms

described in the previous section. Fahlman and Lebiere use the quickpropagation algorithm,

for tuning the network's weights for a period of time, i.e.. until a user-defined parameter

satisfies some requirement and then a sigmoidal hidden unit is added to the network. This is
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followed by further training, alternating with the addition of hidden units, until a sufficiently
small error is achieved. When a new hidden unit is incorporated to the network it takes

inputs from all of the input units and the outputs of all the existing hidden units. This

organisation enables the adaptation of the connections in two phases. In the first one, only
the connections going into the new hidden unit are updated and, once the effect of adding the
new unit has propagated over the complete set of previously existing hidden units, the second

phase, which consists in the adjustment of the connections that go from the hidden units to

the outputs, including those of the new hidden unit, is realised. This manner of adding units

to the network creates a cascade architecture and results in many hidden layers, one of the

objections against the process, surmounted in a later stage of development with the definition of
a flattening process described in detail in [Fahlman &: Baluja 94], which consists in compressing

as many of the layers generated in the first part of the building process as is possible without

deteriorating the generalisation ability of the network being developed. In the growing stage

of the cascade correlation algorithm after adding a hidden unit to the architecture, the weights
of the connections to it are computed through the maximisation of the correlation between the

output of the unit and the residual error of the network's outputs prior to its addition so that
the new unit might be guided towards the correct identification of the patterns that were not

properly classified by the previous smaller network.

Cascade correlation is an example of a constructive learning algorithm. It begins operating on a

minimal network, one comprised only of the input and output units, and subsequently proceeds

to enlarge it until an architecture that is evaluated as providing a satisfactory representation of
the application domain is found. The problem with this type of approach lies in the uncertainty

associated with each intermediate step. The process for deciding on the incorporation of a
hidden unit and/or layer to the network is made in a rather ambivalent manner because,

the two main causes that induce an inadequate architecture are reflected in the same kind of

erratic network behaviour and, each of them must be dealt with in a different way. These causes

are: (a) too simple an architecture, i.e. not enough hidden units or, (b) the weight vectors
associated to a particular network instance are not situated in the region of the input space
that will produce a correct classification of the training data. Both circumstances produce
an inappropriate network something that is evidenced by saturated hidden units resulting

from the type of activation function used, i.e. the sigmoid. In a learning environment, it
indicates that the algorithm is stuck in a local minimum which, depending on whether it has

been brought about by cause (a) or cause (b), as defined above, should be treated in a different
manner: the first by incorporating more hidden units, the other by shifting the weight vectors
to another region of the problem domain. At present, as it is not possible to locate precisely
the reasons for an inadequate network while it is being grown, it is hard to decide whether the
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better way to proceed so as to successfully complete the network design is by, adding a unit

or, moving the existing weight vectors. This uncertainty reduces the effectiveness of this type

of learning algorithm.

Given that the aim of a training algorithm should be to produce as simple an architecture as

is required in a reasonable amount of time and using an appropriate computational effort, it is
sensible to consider there is a good possibility of designing a learning process that will be more

efficient than cascade correlation in terms of the final architecture achieved and the amount

of time employed to generate the adequate simpler network. A point that is proved by the

enhanced cascade correlation algorithm described in [Fahlman &: Baluja 94]. In the first place
it is a method designed to simplify the kind of architecture generated by a cascade correlation

process which means that, in terms of network architecture, the original cascade algorithm
can be considered inefficient. In the second place the additional phase incorporated can be

viewed as a type of pruning algorithm because it proceeds by reducing the architecture to a

simpler network. Therefore if it is possible to find cheap means for building an initial maximal

architecture, it cannot be denied that the pruning algorithm will be a more reliable and simpler

means to design an adequate network.

The second type of algorithm which starts with a maximal architecture and proceeds by pruning
the superfluous units has the inconvenience of requiring an initial good network, one that is able
to recognise all the elements of the training set and in which it might be possible to measure the

generalisation capacity so as to proceed with a pruning process mainly aimed at improving this

property of the network. In the literature reviewed there were few practical examples showing
the effective performance of a pruning algorithm, most of them included a detailed theoretical
framework for such an algorithm but there were no table of results which might explain the
reason why the literature seems to look more favourably on the constructive type of learning.
It is less assumption laden, eg. size of maximal architecture does not need to be assumed.

Nevertheless, if it is possible to find a method for building an initial maximal architecture then
the following stages of the network design become much simpler because detecting saturated
hidden units, the inability to properly train a particular architecture, or a deterioration in the

generalisation capacity of the network, will simply mean that there are too few hidden units in

the architecture because the kind of uncertainty that exists with the growing algorithm is not
an issue in this case.

Further details on the assessment of the different strategies defined for the development of

applications using the multi-layer perceptron model, that aim at improving the overall design

process by manipulating the network architecture and, the learning procedure as such, can be
found in Appendix B.
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2.4 Hidden Units: the role they play in a multi-layer per-
ceptron

The manner in which the research in multi-layer perceptrons has evolved shows the importance

the hidden unit component has in the model, given that the most effective solutions that have

been found to this moment have been computed through the application of design methods

involving a strong element of architecture manipulation, i.e. hidden units addition/subtraction.

The representation capacity of a network with hidden units depends on the number of them

that comprise the architecture, the number of layers in which they are organised and, on the

type of unit employed. This last is determined by the activation function related to it which, if
it happens to be non-linear, enhances the representation capacity of the model in the same way

that a non-linear regression model is a more powerful statistical tool than a linear regression
one [Sarle 94]. The curves of the kind of activation functions mostly used for the multi-layer

perceptron are shown in figure 2.6, plot 2.6.a contains the linear function, 2.6.b corresponds
to the threshold, plots 2.6.c, and 2.6.d are the non-linear functions usually employed with the

model, plot 2.6.C is the sigmoid and 2.6.d the hyperbolic tangent. An additional reason for the
wider applicability of the non-linear networks, in particular the sigmoid network, is induced by
the fact that all of the other activation functions can be expressed in terms of the sigmoid.

When performing a modelling task with a multi-layer perceptron, apart from having to decide
on the number of units, it is necessary to determine the number of layers that will comprise the
architecture. This does not have to be a major issue if it were not for the need for generalisation

given that it has already been proved, [Cybenko 89], [Lippmann 87], [Lapedes & Farber 88]
that a network with two hidden layers of units can approximate any function to an arbitrary

degree of accuracy and, one is enough to represent any continuous function, [Cybenko 88].
This means that providing the learning algorithm with the mechanisms to decide upon the

creation of at most two hidden layers should be sufficient to tackle any problem. Furthermore,

given that one hidden layer is enough to represent any continuous function and that there
are many real-world problems that are satisfactorily simulated with a continuous function,
the whole network design process can be built around the idea of creating one-hidden layer
networks without loss of generality and adequately exploiting the capacities of the model. The
existence of various other frameworks, i.e. mathematical, statistical, etc, that might be used
for simulating purposes, some comprised of a greater representation capacity than the multi¬

layer perceptron provide additional good reasons for restricting the design of a network to just
one layer of hidden units.

In the context of the one-hidden layer perceptron, it is useful to be able to measure how many
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Figure 2.6: Form of different activation functions: (a) Linear, (b) Step, (c) Sigmoid,
(d) Hyperbolic tangent
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Figure 2.7: Form of possible problem domains for a MLP: (a) 2-continuous-parity, (b)
2-spiral

hidden units are required for a particular set of patterns, i.e. the training set, because this gives
a very good insight into the maximal architecture that can capture the form of the problem
at hand. At the same time, if it is possible to evaluate how this number varies in relation

to the size of the set, the information could be taken as a complexity measure. This will

make it possible to decide on the appropriateness of using the model for the application under

consideration, because if there is a high degree of dependency between the size of the set and

the final number of hidden units required, it is possible to conclude that the possibilities of

producing a good generaliser are not very high. If the size of the architecture is greatly affected

by the number of elements in the training set the probability of producing a poor generaliser is

greater because, a need for more hidden units strongly conditioned by the size of the training
set implies that it is relatively simple to produce a test set on which the network will show

poor performance.

If the analysis of an application's domain indicates that it is extremely difficult to produce a

good network generaliser, there are grounds for looking for an alternative representation tool.
The complexity measure computed in this type of analysis should make it possible to detect the
differences between the problem domains, set in the two-dimension space, shown in figure 2.7;
one of the diagrams (figure 2.7.a) shows a domain with a structure that will be easy to grasp in
almost any sample extracted from it. This means there will be practically no difference in the

size of the network required for completely recognising the elements of a set of such samples.

By contrast, the domain whose structure is included in figure 2.7.b corresponds to a hard

problem to solve because, performing the same type of analysis, there will be a lot of variance
in the size of the architecture required by a series of samples extracted from the domain. This
result is induced by the difficulty there is in capturing the relative disposition of the points

belonging to the different classes associated to it, the number of hidden units required for a

good network will vary greatly with the contents of the training set utilised to build it. Such
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Effect of different architectures on training

Figure 2.8: Error curves for different architectures 2-continuous-parity problem

is the type of analysis that can be generated with the complexity measure whose computation

and, information content will be discussed in greater detail in a subsequent chapter.

Figure 2.8 contains the error curves of three training processes performed on three different

network architectures designed to solve the same problem. The training and test sets are

comprised of instances of a 2-continuous parity problem. The data used to build them is shown

in figure 2.7.a and, corresponds to an output of the program described in Appendix A. Each

curve has a particular form and length even though all of the processes employed the same

training set and the same learning algorithm. The difference is produced by the type of network
architecture used to solve the problem; all three were built using the multi-layer perceptron
but each contains a different number of units in its hidden layer, 2-5-1, 2-10-1 and 2-15-1 were

the specific architectures considered. The following things are worth noting about this set of
results:

1. Even though for the 2-15-1 network a higher number of weights have to be continuously

updated, the associated error curve does not correspond, as might have been expected,
to the worst training process, therefore there is no monotonic relationship between the

number of iterations required in training and the network size.

2. Table 2.2 contains two different measures calculated using the elements of the test set.

These were obtained for each of the architectures that are being considered. The values in

column two correspond to the percentage of the test set each network correctly classified

and, the ones comprising the third column correspond to the SSE/unit. In all three cases
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hidden units correct SSE/unit
5 99.44 0.004

10 100 0.004

15 98.87 0.004

Table 2.2: Generalisation rate for different architectures in the 2-continuous parity problem

the SSE/unit registered with the test set was the same but the percentage of correctly
classified patterns is different. The best result was obtained with the 2-10-1 architecture
which also has the best error curve. The information contained in each row of the table,

granted that it was obtained using the test set, is what in this study is known as the

generalisation rate of a multi-layer perceptron network.

3. Given that the final SSE value for both the training and test sets obtained with all the

architectures is pretty similar, it seems to be the case that at the moment of deciding on

the most appropriate architecture for the application it might be convenient to also take

into consideration another measure of performance, i.e. the percentage of patterns in the
test set correctly classified, because the combined information seems to be a much better

measure of the generalisation capacity of the network that resulted from the training

process.

4. The different results obtained distinctly show how necessary it is to clearly specify what

is understood to be a good network architecture. Is it the one achieving the complete

recognition of the training and test sets, or alternatively the one with the smallest number

of hidden units that correctly classifies the training set?, maybe the one using a higher
number of layers because even though it has a more complex structure it required a lower
number of connections?

The error curves comprising the plots in figure 2.8 and those shown in figure 2.3 can be used to

compare the effect a change in architecture has on the whole learning process against the effect
induced by varying the learning rate 77. The error curves of all the training processes registered
in the figures were developed on the same instance of the 2-continuous-parity problem. Each of
the curves shown in figure 2.3 correspond to an execution of BP using a particular value for 77;

the curves included in figure 2.8 are of training processes performed on different architectures.
It is clear that the effect of changing 77 is much weaker than that of varying the architecture size

when considering the difference in the number of iterations required to achieve complete recog¬

nition of the training set. Regarding the generalisation capacity, while it remained constant

for all the processes on which the varying element was 77, it is clearly affected by a variation of
the size of the network, something which can be concluded by looking at the contents of tables

3.1 and 2.2.



CHAPTER 2. THE MULTI-LAYER PERCEPTRON AND SUPERVISED LEARNING 57

Further proof of the importance the appropriate definition of the network's hidden units com¬

ponent has is evident considering how the NN model's applicability widened following its re¬

definition and extension, together with the inclusion of the learning algorithm. Nevertheless,
not much research in this area has dwelt on the possibility of enhancing the design process of
a network by continuously measuring the state of the hidden units during training and using

this information in deciding on ways of improving it.

There has been work aimed at comparing the capacity of the multi-layer perceptron as a

classifier with that of certain data analysis techniques, by looking at the function the hidden

unit component has in the model and describing how it affects training. See [Gallinari et al. 91],
[Oja et al. 92a], [Oja et al. 92a] for particular descriptions of studies of the behaviour of the
network model pursuing this approach. All of them refer to the relevance of the hidden units

and conclude that it plays the role of the important dimensions of the input space. It is argued
that as training progresses, the weight vectors associated with each of the units defined evolve

so that when training is successfully completed, each corresponds to a source of information
on the space's variability. What is not very clear is the mechanism used for deciding on the

initial number of important dimensions.

Numerous studies specify a number of assumptions that guarantee the existence of a proof for

what is being stated: many of which are difficult to justify and which should be considered

reason enough for their invalidation. For example, Baldi and his research group [1994], study the
relations between discriminant analysis and a one-hidden layer perceptron used for classification

tasks showing the formal equivalence between the two techniques. Their proof is developed

using linear algebra. With it they express the one-hidden layer linear perceptron in terms

of the multiplication of two weight matrices: Wi the input-hidden connection's matrix, W2

the hidden-output connection's matrix. Both matrices have dimensions which depend on the
number of hidden units, important input space dimensions which are not rigorously treated
in [Baldi &: Hornik 94]. Also it is possible to generate an input space requiring more hidden
units than the input space dimension and for this case it would be impossible to produce the

required weight vectors through discriminant analysis as the process is restricted to the number

of dimensions of the input space.

A final point worth mentioning is the fact that the most successful BP variants that have

been developed are those which update the network's architecture as training proceeds. They

comprise the most interesting idea in terms of network development and it is the one pursued
herein. Of this set of studies the most interesting one is the cascade correlation algorithm de¬

veloped by Fahlman, Lebiere [1990] described in the previous section. None of these algorithms
makes direct use of the information provided by the output of the hidden units during train-
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ing. What generally happens is that decisions about the number of required units is made by

inspecting the network error on the training set or the behaviour generated by the weights of
the connections related to a particular unit as training progresses. If in addition, data analysis

techniques are applied to the output of the hidden units, a much better decision process can

be designed.

2.5 Structure of the input space

The discussion to this point has stressed the fact that, of all the parameters available in

the multi-layer perceptron network, the most important is the number of hidden units. The

examples above show how an appropriate way of proceeding to find the ones required in a

particular application is through the analysis of the structure of the problem domain, i.e. an

evaluation of the placement of the points comprising the training set.

Theoretically, the most effective tools for realising this study are the ones defined in geometry

as this mathematical science was conceived precisely for it. To be able to use them, all the data

must be represented in numerical form. This condition is already satisfied because, the multi¬

layer perceptron is itself a model requiring a numerical input. Problems that include nominal

data are pre-processed so that the nominal attributes might be replaced with numerical values
that the training process might subsequently be able to manipulate.

The usual transformation procedure replaces each of the possible values a nominal attribute

can take by a binary pattern, ensuring there is a 1 : 1 relation between the ones used and
all the possible values that can be assigned to it. According to Prechelt [1994] this type of
transformation guarantees that the unordered order relation between the different values of the
nominal representation is maintained. For example, consider the following possible values that
can be assigned to the nominal attribute vegetable:

original form: vegetable = {pepper, cauliflower, onion}

binary encoding: bin.vegi = {100, 010, 001}
continuous encoding: cont_vegi = {0.33,0.66,1}

The first one corresponds to those that can be found for it in the original dataset. According
to [Prechelt 94] care must be taken if the data is transformed to a numerical representation

because, the fact that there is no natural ordering in the nominal form should be reflected in
the transformed version. For that reason it defines the binary encoding reflected in bin_vegi

which, the author of Probenl considers is as unordered as the nominal representation. Never-
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theless, regarding the values in bin_vegi as binary patterns, which after all is what they are,

each has its numerical interpretation and an ordering can be automatically derived; therefore
the continuous encoding associated with cont.vegi is equally valid. Both endow the

nominal attribute vegetable with the same numerical qualities missing in its nominal form,

something that is disputable considering the natural ordering of any existing object.

Using a continuous transformation has various advantages over the binary transformation.
These are summarised in the following points:

(a) The available mechanisms for manipulating missing information. In the binary transform¬
ation this is usually dealt with by defining an additional pattern which the multi-layer

perceptron training process can only treat in the same way as the other possible values.

Considering that what it represents is missing information, it should really be interpreted
in a different manner. With the continuous transformation a more legitimate manipula¬

tion has been implemented as it consists in the computation of the missing attribute of
the incomplete patterns using the information provided by the available data. The type

of calculation performed varies from one application to another, sometimes the missing

information is replaced by the mean, at other times the median is the term employed,

and there are examples that use other statistical parameters. Although, it is possible
to generate the same type of terms for binary domains, as the computations involved
are intrinsically continuous, their use is more reliable in the context of continuous-valued

applications.

(b) The dimension of the input space. Using the binary transformation results in a much

higher dimension space. This means more input units in the network architecture which
never facilitates the subsequent network building procedure. Alternatively the continuous
transformation does not require the definition of additional inputs.

(c) The geometric analysis is much more effective when working on continuous data because
it involves various matrix operations which are error prone when it is very sparse, some¬

thing that has a reasonable chance of occurring with the type of binary transformation
described. If the transformation applied is the continuous one this risk is practically

non-existent.

One of the datasets used to evaluate the network design method defined is the soybean prob¬
lem. The initial data is comprised of 35 attributes, 16 of them are binary, 6 are continuous

and, 13 are nominal. [Prechelt 94] describes a network computed to handle this task. In it the
nominal attributes were transformed following the steps of the binary transformation which
resulted in a 82-dimension space. This solution is part of the benchmark defined by Prechelt
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Square error percentage and Mean error for the soybean problem
network iterations sep.tr sep.vl sep_ts merror.tr merror.vl merror.ts

GROPING 35-32-19
GROPING 82-8-19
Probenl 82-16-8-19

26
5000
665

0.0083 0.4390 0.8465
2.49741 2.85958 2.96034
0.32 0.008 0.85

0.0007 0.0060 0.0107
0.05448 0.05517 0.05482
0.07 1.03 0.05

Table 2.3: different networks for the soybean data

for evaluating the performance of learning algorithms for multi-layer perceptrons. The re¬

search described in this thesis makes use of this same benchmark and, the results achieved

are compared and discussed against those published in [Prechelt 94], in chapter 6. Part of the
results obtained with the soybean data are presented here, to provide practical evidence on

the convenience of transforming nominal data to a continuous form instead of using a binary

representation.

The data of this particular problem also required dealing with missing information in various

attributes. In the continuous transformation encoding, each of them was replaced by the
mean computed from the available data. The statistical parameter was chosen because it

is very simple to calculate and, in certain experiments realised with the aim of determining
whether better results could be obtained if the median was used instead of the mean, it turned

out that there was no important difference when using either of them. The 82-dimension

encoding used an additional binary pattern to replace all the missing instances. Appendix F
contains a detailed description of the encoding method used to generate the continuous-valued

representation. The procedure for 82-dimension encoding can be accessed at the Probenl
website. Both include the exact manner in which the missing information was processed.

The analysis of the effectiveness of each of the encodings was realised through the design of two
networks: one used as input the 82-dimension dataset, the other the 35-dimension continuous-

valued transformation. The resulting networks, and the final measures obtained from processing
the training, validation and test sets at the end of the design task, are contained in table 2.3.

In it, the columns sep_tr, sep.vl, sep.ts correspond to the values registered for the square

error percentage, the measure used by Prechelt in the Probenl benchmark. The columns

labeled merror.tr, merror.vl, merror.ts contain the mean square error computed using the
same data. The results presented in the third row were published in [Prechelt 94]. It is clear
that the best results correspond to the 35-32-19 network built with the GROPING algorithm
even though, the 82-8-19 network is simpler in terms of the number of hidden units it includes,
but as the accompanying error measures are much improved with the continuous architecture,
it is possible to conclude that the pre-processing phase used to reach this result is much more

effective.
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Figure 2.9: input space partioning rendered by Voronoi diagram

2.6 Essential idea underlying the solution built in this
study

Throughout the chapter the limitations of the multi-layer perceptron have been outlined to¬

gether with the most important approaches taken by different researchers mainly concerned

with improving and enhancing the model's applicability. The example described in this section

shows, in the simplest way possible, the main source of these limitations together with a general

description of how the tools integrated in the design process built in this research can in effect

aid a network developer in defining the appropriate architecture for a particular application.

Consider the kind of multi-layer perceptron network that will be required to partition the 2-

dimensional space shown in figure 2.9. The space corresponds to a classification task in which

each point is contained in one of three possible classes. The ones displayed in the figure,

{PI, P2, .P3, P4, P5}, each belongs to one of those classes. The subset of points {PI, P2, P3}
are inter connected by broken lines which spawn a triangle, i.e. a facet of the Deiaunay

triangulation that is possible to build from the complete set of points. The bold lines are

the perpendicular bisectors of the edges that connect {P1,P2,P3}. Each of these bisectors
contains an edge of the Voronoi diagram associated to the whole set. In figure 2.9 only a section
of the geometric constructs that can be derived from the complete set of points is shown, so as

to facilitate the understanding of the role their components can play in the task of designing a
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multi-layer perceptron network for a particular application.

It is clear from the figure that the Delaunay triangulation is constituted by edges that join the

points of the sample from which it is computed providing relevant information on the proximity
of those points. At the same time, it is possible to compute the perpendicular bisector of each of
these edges, i.e. the bold lines labeled Bij which, if the related edge happens to connect sample

points that belong to different classes, are clear candidates for operating as hyperplanes which
will separate the space into the proper regions according to the classification task to which it is

associated. This means that if they were used for initialising the weight vectors of the network

designed to classify the points of the space being considered, it would require practically no

training given that the weight vectors are already properly situated, at least those of the

input-hidden layer.

Every point of an input set is used by the process that builds the Voronoi diagram and/or
the Delaunay triangulation associated to it therefore, assuming that the computation of the

geometric constructs for the number of patterns under consideration is workable, it is certainly

possible to calculate the maximum number of hidden units and weight vectors required by a

multi-layer perceptron network being designed for that same input set so that the resulting
architecture will show an adequate performance. Although theoretically, it is always possible
to build the Voronoi diagram and Delaunay triangulation of a set of points, there are cases in

which the existing implementations of these geometric constructs encounter problems in doing
so. Most of the difficulty is due to the precision available with the floating point computation of
the machine because it makes certain of the elements of the set be coplanar. In such situations

it is possible to conclude that the generation of an appropriate architecture will be extremely

difficult, because the precision problem will apply equally to the computation of the weight
vectors that axe required. This means that, when encountering such a situation it is possible to

apply the heuristic and conclude that there are strong enough reasons to search for alternative

representation forms for that application. It might also be the case that one bisector is all that
is required to correctly classify the problem domain which means that once the edges of the
Voronoi diagram have been calculated they require further processing so as to eliminate those
that can be deemed redundant.

From the above it is plain that the Voronoi diagram and Delaunay triangulation seem to offer
effective devices to build a multi-layer perceptron network but, at the same time it raises many

questions: (a) is the architecture that can be derived from them efficient?, (b) is it better than
the one computed with more conventional methods?, (c) does it find a smaller architecture that
still generalises well?. These issues are the ones that have been addressed in this thesis, the

advantages and disadvantages of initialising multi-layer perceptron networks with this type of
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geometric information, together with additional techniques, eg. principal component analysis,
that were used to eliminate certain of the problems resulting from this type of initialisation.

2.7 Conclusions

The discussion contained in the present chapter clearly shows that, even though the represent¬

ation capacities of the multi-layer perceptron have been theoretically proved, there is a lack
of understanding regarding the most effective manner of building and imbuing a particular

instance of the model with the knowledge of the application for which it is intended. Although

many of the learning algorithms that have been defined to deal with the problem have en¬

hanced in some way the effectiveness in using the model, only the application of generative

supervised learning has resulted in an adequate alternative. This approach together with the

incorporation of an adequate pre-processing phase to the whole network design process are the

best ways of achieving a good network solution. This was supported by the set of examples

presented which also helped to describe the problems that still need to be solved and, delimited

some of the information that could be used towards their solution.

To provide a global picture of the matters discussed throughout this thesis a simple problem
that shows how the information subsumed in the Voronoi diagram and Delaunay triangulation
of a set of points might offer a reasonable basis for generating the type of network required is
described pointing out the most important points that need to be discussed.

Also, a general framework providing a tool for the categorisation of the different existing meth¬
ods for the development of networks based on the multi-layer perceptron model was outlined.

Overall the conclusions reached can be summarised in the following way:

1. The generative algorithms offer more appropriate methods for developing a network ap¬

plication given that they generally involve less ad-hoc decision making for deciding on the
form of the network architecture and the specification of the parameters of the learning

algorithm employed for the training phase.

2. There are three main types of generative algorithms: pruning methods, constructive
and mixed. The pruning alternative is the least effective unless an operating network is

generated before proceeding to execute the algorithm. On the other hand the constructive
methods usually produce architectures that are more complex than the one required,

[Fahlman &: Baluja 94].

3. Any of the methods described involved an important information processing task. The
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best results were obtained with those producing the correct amount and type of inform¬

ation. For a classification task, good information provides the algorithm with a clear

description of the structure of the network's problem domain.

4. The best data for developing multi-layer perceptron applications is the one corresponding

to continuous-valued attributes having little missing information. This means that it is

necessary to incorporate a pre-processing phase to the network design process because the
data of most real-world problems requires transformation to an appropriate continuous-

valued form.



Chapter 3

Voronoi Diagrams and Delaunay
Triangulations

3.1 Introduction

The Voronoi diagram of a set of points is a geometric construct that has been successfully

applied to different areas, particularly in the last two decades [Okabe et al. 92].

The construct is one of the core concerns of computational geometry, a study area that mainly

deals with the design and analysis of algorithms for geometrical problems. It has attracted
enormous interest because many practically oriented fields such as computer-aided design,

robotics, pattern recognition, give rise to problems that are inherently geometrical and it has
been shown that it is possible to develop efficient implementations of many geometric concepts

which can subsequently be put to good use in solving those problems.

The Voronoi diagram of a set of points in the plane, divides it according to the nearest-

neighbour rule [Aurenhammer 91]: each point is associated with the region of the plane closest
to it; creating a structure similar to the one comprised of the black lines shown in figure 3.1.
In this same figure, the set of green lines that join those points whose regions share a black

line, also constitute a structure that is the dual of the Voronoi diagram and is referred to

as the Delaunay triangulation. The edges of the Voronoi diagram correspond to bisectors of
the segments joining points of the set supplied as input therefore if the points happen to be
associated to a classification task and if they belong to two different classes, the Voronoi edge is

an appropriate candidate, to fulfill the role of weight vector, for a network architecture designed
to implement a solution to the task. At the same time, the proportion of edges in the Delaunay

triangulation connecting points of different classes provides a good indication of the level of
intra-class correlation associated to the problem domain that is being manipulated, hence it

65
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results in an effective tool for deciding on the relative convenience of developing a network for

the application of interest.

The present chapter contains a detailed description of the information subsumed in these geo¬

metric constructs and, an explanation on how it is exploited in the network design method pro¬

posed in this research. Section 3.2 includes a definition of the Voronoi diagram and Delaunay

triangulation together with their basic properties. As it involves the frequent use of various geo¬

metric terms, appendix C consists of a glossary that incorporates the meaning of the relevant
ones including the most important geometrical assumptions used in their definition. Section

3.3 provides details and examples of the specific ways in which it is applied to achieve an appro¬

priate multi-layer perceptron network. Section 3.4 discusses applications for network design,

developed by other authors which also exploit geometric information, comparing their effect¬

iveness, in the pertinent cases, against the alternative application specified in this work. The

most important implementations that exist for computing the relevant geometric constructs

are described in section 3.5, together with an explanation supporting the implementation that
was included in the network design process developed. Finally, section 3.6 summarises the

points that have been brought up, linking them to the rest of the contents of this written work.
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In the previous chapter it was indicated that the foremost input to the process for developing
a multi-layer perceptron network is a set of pairs:

Tn = {(i1. o1), (x2, o2), • • •, (x*, o*), ■ • •, (xn, on)} (3.1)

where each xk corresponds to an N-dimension vector, xk = (xk,xk, ...,xkN), xk € RN. As
it is necessary to evaluate the network performance, not only with respect to the elements

comprising the set used for training it but also with respect to sets of elements not used for
this operation, ie. the validation and test sets, the original source of n elements is usually

divided in two groups, one of p elements which will correspond to the training set and the

remaining n — p pairs will be grouped into the validation and test sets. This means that the

training set will have the form:

Tp = {(x1,o1),(*2,o2),...Axp,°p)} (3.2)

with p < n.

Once the particular contents of each of the sets required has been specified, it is possible, to

subtract all the vectors xp from Tv and, interpret them as a set of p distinct points in the
N-dimension euclidean space, ie. X = {x1, x2,..., xp}.

Assuming that N = 2, given that it corresponds to the training set of a multi-layer perceptron

design procedure, X can be the input to a partition process which labels each of its elements

xp as a site and, subsequently assigns each of the points comprising the 2-dimension euclidean

space to the region corresponding to its nearest site. All those points associated to xk will form
the Voronoi region V(xk) which will be comprised of all the points at least as close to xk as

to any other site:

V(xk) = {x I ||xfc - x|| < ||xm - x||,V* # m} (3.3)

The definition of each V(xk) corresponds to that of a closed set and is collectively exhaustive in

the plane because every element is assigned to at least one member in X. Those elements of the

plane assigned to the set of two or more sites form the boundaries of the regions, ie. the bold
lines in figure 3.1. Adjacent regions are overlapped only on their boundaries. Geometrically the

arrangement complies with that of a tessellation. The particular case described corresponds, as

mentioned in the introduction, to the planar ordinary Voronoi diagram of X and, the regions

comprising the diagram constitute ordinary Voronoi polygons, [Okabe et al. 92].

Given thai a Voronoi diagram, l/(X) consists of polygons and, that a polygon can be defined
in terms of half planes, it is also possible to define the Voronoi diagram in terms of half planes
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in the following manner:

a set X = {x^x2, ...,xp) C R2,
where 2 < p < oo and, xk ^ xm,Vfc ^ m.

The region:

V(xk) = Pi H(xm,xk), (3.4)
m€(l,p]i»*fc

where

H(xm,xk) = {x | ||x — xm|| < ||x — x*||,Vm ^ k}

corresponds to the half plane that results from the partitioning generated by each of the
bisectors that bound the resulting Voronoi regions.

V(xk) is the Voronoi polygon associated with xk and,

V(X) = {V(x1),...,V(xP)} is the Voronoi diagram generated by X.

The previous definition is particularly useful because it is easily extended to an N-dimensional

space, therefore it is possible to describe the N-dimensional Voronoi diagram, in the following
manner [Okabe et al. 92]:

If the set of points X = {x^x2, ...,xp}, is such that,
xk = (xf ,xk, ...,x%), xk € Rn,
3 < N < oo,x* ^ xm, Vm, A: € [1,p].

The region given by:

V(xk) = {x | ||z - x*|| < ||i ^ m,k,m € [l,p]}
= P H(xk,x>) (3.5)

comprises the N-dimensionad ordinary Voronoi polyhedron associated with xk, and the set,

V(X) = {V(x1),V(x2),--,V(xp)},
constitutes the N-dimensionad ordinary Voronoi diagram generated by X. The validity of this
extension immediately follows from the existing equivalence between the definitions of the

half-planes in the 2-dimensional space (equation 3.4) and the N-dimensional space (equation

3.5).

In the same way that a planar graph has its dual graph, a Voronoi diagram has its dual tessella¬

tion, called the Delaunay tessellation or, Delaunay triangulation [Okabe et al. 92]. Given that
they are dual structures, each contains the same information in some sense, but represented
in a different form [O'Rourke 94]. In the plane, the Delaunay triangulation of a set of points,
ie. sites, contains a (straight-line) edge connecting two sites in the plane if and only if their
Voronoi regions share a common edge, a fact that is evident by looking at the placement of the
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broken lines included in figure 3.1.

In the context of multi-layer perceptron design, given the existing duality between the Voronoi

diagram and the Delaunay triangulation, in the first instance, it would seem sufficient to use

only one of the two constructs but, because the same information is imbued in each of them

in a particular way, these two alternative organisations of similar information is precisely what

can be successfully exploited when building a multi-layer perceptron network. Formally, the

link between the Delaunay triangulation and the Voronoi diagram was established in 1934 by

Delaunay, [O'Rourke 94], who proved that when the dual graph of a Voronoi diagram, in 2-

dimension, is drawn with straight lines, it produces a planar triangulation of the Voronoi sites

which is the Delaunay triangulation of those same sites.

No formal proof is included in this work regarding the effectiveness of exploiting the information
contained in the geometric constructs described. Nevertheless it is possible to support this claim

by looking at certain of their properties, explaining how their application aids in improving the

performance of a learning algorithm for building a network architecture and also, through the

empirical results included in one of the subsequent chapters.

The properties of the Voronoi diagram and the Delaunay triangulation presented, correspond
to those that facilitate an understanding of the manner in which they relate to each other

and, how they support the task of building a better network architecture. A proof of their

validity is out of the scope of this work but details of them can be found in [Okabe et al. 92].
Following the approach taken in the literature consulted, [Aurenhammer 91], [Okabe et al. 92],

[O'Rourke 94], these properties are layed out in terms of the planar Voronoi diagram and

Delaunay triangulation pointing out that, for the most part, they can be readily extended to

an N-dimensional domain.

The properties of the Voronoi diagram V(X) of a set of distinct sites (points, input patterns)
X = {xl,x2, ■ • • ,xp}, X C R2, can be summarised in the following way [Okabe et al. 92]:

VI. The set V(xk) defined by:

V(xk) = {x | ||x — xm|| < ||x — xk\\,m k,m, k £ [l,p]}
is a non-empty convex polygon and V (X) = • • •, V(xk), • • •, V(xp)} satisfies:

U V(x") = R2 (3-6)
*=1

(V(xk) \ dV(xk)) n (V(xm) \ dV(xm)) = 0 (3.7)

k m, m € [1, p],

where dV(xk) corresponds to the boundary of the Voronoi region and the Voronoi Dia¬

gram V(X) thus defined, corresponds to a unique tessellation for X. The property also
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holds in RN if a polygon is replaced by a polyhedron and R2 is replaced by RN. The¬

oretically the Voronoi polygons cover the euclidean space, therefore at least one Voronoi

polygon is infinite but, because the geometric definitions that are of interest correspond
to computer implementations, the type of Voronoi diagrams used in this context are

bounded constructs. VI guarantees the existence of a network for a particular applica¬

tion on the grounds that it provides a sound theoretical basis for computing a maximal

network architecture simply by selecting all those edges that correspond to bisectors of the

points, ie. input patterns that share a boundary and, subsequently defining a one-hidden

layer network architecture with as many hidden units as there are bisectors associated

to sites belonging to different classes. For a set of P points, taking the worst case, the

size of this network is 0{P\) considering that it could be necessary to define a hidden

unit for each possible pair of points. Even though theoretically it is always possible to

derive the Voronoi diagram of a set of points, if a subset of them happen to be coplanar it

produces precision problems that limit the possibilities of an automatic generation. For
such applications, the information can be used to explain the inappropriateness of using
a multi-layer perceptron as representation form because, if the precision problems in¬

volve points of different classes, it will also be extremely difficult to compute the required

weight vectors, a situation that justifies the search for other modelling alternatives.

V2. For the Voronoi diagram generated by a set of distinct points, X = {xl,x2, • • •,xp},
(2 >p< oo):

(i) the Voronoi edges are infinite straight lines if and only if X is collinear.

(ii) the Voronoi edge e{xk ,xm)(^ 0) is a half line if and only if X is non-collinear and

xk,xm are consecutive sites of the boundary of the convex hull of X, (CH(X)).

(iii) suppose that xk and xm give a Voronoi edge e(xk,xm). Then this edge is a finite
line segment if and only if X is non-collinear and at least one of the xk, xm is in the

interior of CH(X).

The set of conditions that must be satisfied by the Voronoi edges ensure that, any weight
vector computed on the basis of one of them will always generate surfaces producing a

distinct region for each of the related sites, ie. training patterns which, if they happen
to belong to different classes, is as should be. A training process that has to operate

on a network initialised with the geometric information described is guaranteed to be
successful and short, because most of its weight vectors are properly located at the start

of its execution.

V3. The nearest neighbour of site xk, generates a Voronoi edge of V (xk). This means that the
set of bisectors considered to be proper candidates for computing a subset of the number
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of weight vectors required, will be associated with input patterns which are closer to

each other than to any other member of the training set. The creation of such weight
vectors is justified because these particular ones will be appropriately fulfilling their most

important function as conflict resolution devices, given that they effectively separate

potential problem regions of the input space.

V4. For every Voronoi vertex ql in a Voronoi diagram in R2, there exists a unique empty circle

Ci centred at ql which passes through three or more sites. Under the non-degeneracy

assumption [Okabe et al. 92], Ci passes through exactly three. In RN the circle is re¬

placed by a (hyper)sphere and the number of sites involved should be at least N + 2.

This property ascertains that, for the creation of the geometric construct the complete

set of sites provided as input are properly considered, therefore there is no risk any of

them will escape consideration in the subsequent computation of the initial set of weight
vectors which could result in a problematic training process.

V5. Let P,Pe,Pv be the number of sites, Voronoi edges and Voronoi vertices of a Voronoi

diagram in R2, respectively (2 < P < oo). Then
Pv-Pe + P = 1

Extending the property to an N-dimension space: take Pk as the number of k-dimension
Voronoi faces in an N-dimension Voronoi diagram. Then:

E£Lo(-i)^ = (—D~
The property basically ensures a maximum size to the network architecture required for
the application of interest.

The Voronoi diagram has additional properties but given that they are, either derived from the

ones already mentioned or touch on matters which are not relevant to the problem of interest

they will not be cited in this work; the interested reader can find a complete description of all
of them in [Okabe et al. 92].

In relation to the dual of the Voronoi diagram, te. the Delaunay triangulation, even though the
information content in both is practically the same, the particular way in which it is organised
in each of them has a specific application in the multi-layer perceptron design task, therefore it
is also necessary to elaborate on the properties of the Delaunay triangulation clearly depicting
how it can be employed in designing a network. It is worth mentioning that given the rules

underlying their building process is very similar and, the existing relation between them, the

generation of one or both of them involves the same computational costs. This means there is

no disadvantage in using both constructs notwithstanding the underlying redundancy.

If V(X) is the Voronoi diagram generated by a set of n distinct points, X = {a:1, x2, • • •,xn) C
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R2,3 < n < oo that satisfies the non-collinearity assumption; Q = {g1,#2, • • • ,gnv} is the set

of Voronoi vertices in V(X) and, {xM,x*a, • • • ,x,fc« } are the location vectors of the sites whose
Voronoi polygons share vertex ql. It is possible to define the following sets:

ki ki

T, = {x | x = J2 = 1,Xj > 0,j € [l.fcj]} (3.8)
j= 1 j= l

and

v — {7i,r2, • • • ,r„v}

such that, if k{ = 3,Vi 6 [l,nv], the set D is the Delaunay triangulation of the CH(X) spanning
X. If V includes Ti with ki > 4 , the tessellation is called a Delaunay pretriangulation and

requires an additional stage of processing that reduces all the Ti to triangles. As X(X) is

the dual of V(X) the properties underlying both constructs reflect this duality. The ones

that are satisfied by the Delaunay triangulation and, relevant in the context of the multi-layer

perceptron network design are the following [Okabe et al. 92]:

Dl. the set Ti defined by equation 3.8 is a unique non-empty polygon, and the set D(X) =

{T\, • • •, Tnv} satisfies:

Q Ti = CH(X)
1=1

(Ti \ dTi) n (Tj \ dTj) = 0

j ^ Ml j e [l,n»]

hence D(X) forms a unique tessellation spanning X. As in the previous case this property

guarantees that the generation of the geometric construct considers all the points com¬

prising the input set, therefore when designing a network it is possible to conclude that
all the relevant information subsumed in the training set plays some role in generating
the network architecture.

D2: The Delaunay triangulation of a set of points X in the plane, V(X) is precisely the

projection to the 2-dimensional space of the lower convex hull of the transformed points

in three dimensions, transformed by mapping upwards to the paraboloid X3 = x\ + x\.
In [Okabe et al. 92] there is an extensive discussion on how it is possible to generate

the desired geometric construct from the transformation mentioned. It should be noted
that this property holds beyond the plane, ie. the Delaunay triangulation for a set of
N-dimensional points is the projection of the lower hull of points in (N+l)-dimensions.
The importance of this result in the network context derives from the fact that the
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weight vectors comprising the input-hidden layer of a network must be defined in an

(N-f l)-dimension space, assuming the input domain is N-dimensional, given that it is

necessary to provide weights for the connections coming out of the threshold unit apart

from the ones linking each of the input units and specified hidden units. Computing a

set of weight vectors, making use of the information subsumed in the convex hull derived
from the points comprising the training set, after they have been extended to a higher

dimension provides an alternative network initialisation. One that is even more effective
than the one described previously which is restricted to the Voronoi edges, given that

these are only defined in a space that has the same dimensionality as the input.

D3: For the Voronoi diagram V(X) generated by X, and the Delaunay triangulation spanning

X, let Q and Qd be, respectively, the set of the Voronoi vertices and that of the Delaunay

vertices; E and Ed the set of Voronoi edges and that of the Delaunay edges; Cd the set

of circumcentres of the Delaunay triangles. Then:

(i) Qd = X.

(ii) Cd = Q.

(iii) \Ed\ > \E\; \Ed\ = \E\ if and only if V(X) is non degenerate, \E\ is the number of
elements in the set E.

The conditions satisfied by the elements that comprise the basic building blocks of the

Delaunay triangulation ensure the appropriateness of using them for deciding which pat¬

terns of the training set are responsible for causing an inefficient learning process. The
fact that Ed has at least, as many elements as E and, as each element of E is asso¬

ciated to Voronoi regions, eg. V(xk), V(xm), that share a boundary, the elements in

Ed guarantee the existence of enough geometric constituents to manage conflicting in¬

put patterns. Given that the Voronoi edges correspond to boundaries of the existing

Voronoi regions and, that sites sharing a boundary are nearest neighbours, being con¬

nected by an element of Ed can indicate that there might be a problem in generating

the required network architecture if the endpoints of the element in question happen to

belong to different classes. Accepting as valid the geometric interpretation of the multi¬

layer perceptron model, [Hertz et al. 91], [Hallam & Ross 93], the existence of a surface

connecting elements of the training set is practical evidence of the possibility of build¬

ing a network of this type to solve the classification task of interest granting that the
surfaces described can be used to compute the weight vectors associated to each of the

required hidden units. Once the Delaunay tessellation has been computed it is possible to
build the necessary network calculating the surfaces that intersect the Delaunay instances

connecting points of the training set associated to different classes.
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D4: For the Delaunay triangulation P(X) spanning X, which satisfies the non-circularity

assumption [Okabe et al. 92], let ne be the number of Voronoi or Delaunay edges. nt.
the number of the triangles in D(X) and nc the number of vertices on the boundary of

CH(X). Then the following equations hold:

These numeric relations guarantee the existence of a finite network architecture that will

be able to support the application of interest and will take into consideration the complete

training set.

Finally it is necessary to reflect on the relevance the set of assumptions associated to the

concepts described have, at the moment of building the Delaunay triangulation and/or Voronoi

diagram of a set of points for subsequently shaping a multi-layer perceptron network. Given
that the most effective way of computing any of them is through the generation of the convex

hull spanning the set provided as input, the issue can be viewed in terms of how the violation

of any of the underlying theoretical assumptions is treated by the algorithm applied for their

computation. The one used in this research follows the policy of merging those facets that are

comprised of problematic points, eg. collinear or co-circular points. This implies that unless

the set of points grossly violate the relevant set of assumptions, it is capable of building the

geometric constructs associated to the set provided as input. The algorithm always indicates
how difficult it was to process the input set, together with a list of the points that created

difficulties, such information can be used to explain the appropriateness of using the multi¬

layer perceptron model for a particular application. Therefore this type of approach, in the

design of a multi-layer perceptron network, will always provide useful information and a reliable

direction to pursue when building an architecture for a particular application, no matter the
form of the input space, as it is able to provide pertinent insights on this most important issue.

3.3 Computational Geometry & Multi-Layer Perceptrons

As the material described throughout the chapter is, for the most part, set in a 2-dimension

space, the examples included in this section also correspond to 2-dimension problems. The ones

discussed, which are plotted in figure 3.2.a and 3.2.b, constitute good examples for showing
the effectiveness of applying the information subtracted from the geometric constructs defined
in the preceding section, to the following network design operations:

a.- Evaluation of the convenience of using the model for the application of interest.

nv = 2 * n — nc — 2 (3.9)

(3.10)ne = 3 * n — nc — 3
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Figure 3.2: Form of discussed input spaces: (a) clouds data, (b) dgp-2 data

b.- Initialisation of the maximal network architecture required by the problem.

The plot in Figure 3.2.a represents a badly structured set for which it will be more convenient

to find alternative representation forms other than the multi-layer perceptron. By contrast,

the structure of the data plotted in Figure 3.2.b corresponds to a problem for which an ap¬

plication based on the multi-layer perceptron model will be highly convenient. The difference
between them lies in the easiness with which it is possible to identify the regions associated

to the different classes that comprise each of the problems. In the data of the cloud problem,

although there are proper clusters of points, each belonging to one class, there is a lot of overlap

which makes it extremely difficult to properly compute the number and value, of the necessary

hyperplanes that the network architecture must include to operate as a reasonable classifier.

On the other hand, the points of the 2-class problem plotted in Figure 3.2.b are structured in

two well discerned and non-overlapping clusters. This last type of data is one for which the

multi-layer perceptron is a particularly convenient representation form.

3.3.1 Measuring convenience of building a network implementation

The Delaunay triangulation of a set of points in the plane consists of a number of edges that
must satisfy an important criteria. Each of them must connect two points whose Voronoi

regions have a common boundary. This fact implies that these points are closer to each other

than to any other point in the set, excepting those with whom it shares other boundaries which,

by virtue of being in a two dimension space, cannot be greater than three.

The preceding description elucidates a possible strategy that can be pursued at the moment

of having to decide on the adequacy of designing a mutli-layer perceptron network for a par¬

ticular application. Building the Delaunay triangulation of the set of points associated to

it, subsequently counting the number of edges connecting those points, so as to compute the
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percentage of them having endpoints that belong to different classes, i.e. mixed edges, and,
also determining the proportion of edges joining points that belong to the same class. An

analysis of these two values provides an insight on the level of complexity that the required
network must have and, help decide on the adequacy of employing the multi-layer perceptron

as representation tool. Even though, there seems to be a strong similarity between this type of

computation and the nearest neighbour technique, [Bishop 95], it is worth noting that, while
there are various classifier methods founded on the nearest neighbour theory, the percentages

described simply provide an understanding of the structure of the problem domain of interest
and are not being used as main components of a classifier, the objects enumerated to compute

them axe the ones that constitute important components of the classifier being defined.

In the Delaunay triangulation of a given set of points it is possible to calculate different degrees
of class-intersection. Considering the basic components of this geometric construct, the types

of intersection that can be subtracted from it are:

(a) facets intersection: divide the points in as many groups as there are classes so that, the

points in any group all belong to the same class. Build the Delaunay triangulation of
each of these groups. As these geometric constructs are comprised of a set of facets, it is

possible to calculate how many of the ones comprising any of them, intersect with those of
each of the Delaunay triangulations generated from the other groups. For the two datasets
described at the beginning of the section, the results of this particular computation are

outlined in the summary of results presented at the end of this section.

(b) edges intersection: build the Delaunay triangulation of all the points that comprise the

training set. Count the number of mixed edges, i.e. those edges that have endpoints that

belong to different classes, and compute the percentage of the total set that is mixed.
Table 3.1 contains the values calculated for this kind of intersection on the cloud and

dgp-2 datasets.

The results on the examples presented were generated for different sizes of the same type of data

so as to determine how sensitive the measures were to the number of elements in the sample.

The values in the table and, those outlined at the end of the section, show that the intersection

measure described is not affected by the size of the sample therefore, it can be confidently used

to draw conclusions on the most appropriate manner of processing the problem domain from
which they were derived. It has a similar behaviour to that of other measures of the same sort,

e.g. the sample mean, it is more reliable the larger the sample.

Of the intersection measures defined, the one obtained from the edges is the more important of
the two because, it provides more manifest evidence of how interlaced the different classes in
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Figure 3.3: Intersection degree in Clouds dataset

the problem are. The bar plots included in figures 3.3, 3.4 were produced from the intersection

information. Plot 3.3 was built using the outcome of the intersection analysis performed on

the clouds data and, plot 3.4 was built using the information subtracted from the dgp-2 set.

The plots clearly show a much higher level of intersection in the clouds set which, agrees with

the type of structure shown in the clusters of points contained in figure 3.2. The analysis was

performed for the same type of data using samples of 500, 1500, 2500 elements, and, calculating
the values of two types of intersection for each of them. The results correspond to the 6 bars

comprising the plots in figures 3.3, 3.4. The ones labeled tot_ < nomset > reflect the edge
intersection degree (< nomset >= cl for the clouds problem, < nomset >= dgp in the dgp-2

example). Those labeled cl- < nomset >, following the same rule as in the tot_ < nomset >

bars, reflect the percentage of intersection between the facets of the geometric structures which

are being analysed. The most salient feature is the relative difference between the intersection

measures calculated in each of the samples. It is more pronounced in the dgp-2 dataset which,

together with the fact that the percentage of mixed edges in all sample's sizes is quite small

clearly indicates that the underlying structure of the problem is quite appropriate to be modeled

with the multi-layer perceptron.

The main difficulty regarding these measures stems from the computational costs involved

in building the geometric structures from which they are deduced because, for high dimension

spaces generating them is very computationally intensive. Therefore, it could be concluded that
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its use for evaluating the convenience of using the multi-layer perceptron model is impractical

given that most of the applications that make use of the model tend to be high dimensional
ones. Yet, taking into account:

(a) the existence of very efficient implementations for building the Delaunay triangulation of
a set of points in low dimension spaces and,

(b) that the projection transformation affects the position of the points but not the class

they belong to, given that the percentages computed measure the existing degree of class
intersection there is in the problem domain, it is possible to guarantee a similar conclusion

for both, the original data and its reduced version.

The above considerations are a clear indication of the practicality of performing the structural

analysis that has been described. The fact that, the geometric constructs evaluated are the

same ones subsequently used to compute the initial network's weight vectors, if the analysis
indicates that it is an appropriate representation tool, further enhances the utility of this initial

step in the multi-layer perceptron's design process.

Additionally, the implementations used in this research for computing the Delaunay triangu¬
lation of the training set generate information describing it, showing how appropriate the data

provided as input is. This information indicates whether the points satisfy or not the set of

conditions that need to be complied with to proceed with the construction of the convex

hull from which the Delaunay triangulation and Voronoi diagram of the set of input points
is derived. This initial analysis in itself clearly indicates how difficult, or otherwise, the task

of designing a network is going to be. The use of this information is of course, conditioned to

those operating spaces which are originally low-dimension given that for the high dimension
ones the geometric analysis only takes place in a projection of the input and, this particular

type of transformation can only result in spaces which originally might be very simple.

Intersection on the clouds data

size 500; avr_prt = 40.326; size 1500; avr.prt » 49.8949;

size 2500; avr.prt ■ 41.5711;
num_vl = 636; num_v2 = 614;
num_cl = 1258; num_c2 = 1214;
Class (1 into 2 -> num_inter = 523
Class (2 into l)-> num.inter * 505

num.cl = 249; num_c2 = 231;
num_vl = 129; num_v2 = 121;
Class (1 into 2) -> num.inter = 100
Class (2 into 1) -> num.inter = 93

num_vl = 383; num_v2 = 367;
num.cl = 753; num_c2 = 721;
Class (1 into 2) -> num_inter = 376
Class (2 into 1) -> num.inter = 360
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Figure 3.4: Intersection degree in DGP-2 dataset

Intersection DGP-2

size 500 avr_prt -28.523;
num_cl = 249; num_c2 - 227;
num_vl = 130; num_v2 = 120;
Class (1 into 2) -> num_inter = 71
CIas8 (2 into 1) -> num_inter - 65

size 1500 avr_prt - 22.02;
num_cl = 719; num_c2 = 751;
nnm_vl = 367; num_v2 = 383;
Class (1 into 2) -> num_inter « 158
Class (2 into 1) -> nnm_inter - 165

size 2500 avr.prt = 29.4485
num_cl = 1238; num_c2 » 1236;
num_vl = 626; num_v2 = 624;
Class (1 into 2) -> num_inter - 365
Class (2 into 1) -> num_inter = 364

set size tot_num_edges num_mix % mix

clouds dataset

500 977 226 23.132
1500 2965 593 20.00
2500 4922 852 17.310

dgp-2 dataset
500 989 35 3.54

1500 2976 45 1.512

2500 4931 46 0.933

Table 3.1: Geometric Analysis on cloud/DGP-2 data; Results complete set
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3.3.2 Specifying network architecture through geometric information

Table 3.2 contains the results of the training processes realised to adjust the maximal networks
that were subtracted from the geometric constructs of the clouds and dgp-2 problems described
in the preceding section. The guideline obeyed to setup these training processes, the manner

in which the data was divided into, training, validation and, test sets, the error measures

registered, etc, it all complies with the benchmark rules followed to evaluate the performance
of the learning algorithm defined in this research and, are clearly depicted in section 6.3.

The values included in the table correspond to the different error measures that can be cal¬

culated when training a multi-layer perceptron; there are three such evaluations associated
to each of the problems, one for every sample size used for the geometric analysis discussed.
In the results obtained, there is a clear difference between the training process that can be

realised on well-structured data, such as the one associated to the dgp-2 problem, and that

which is performed in a less properly structured sample such as the clouds data. In both cases

low values were registered when classifying the training set. This means there is a high degree
of correct classification for these sets but, looking at the values of the errors registered for

the validation and test sets, it is evident that the network architecture that was designed by

exploiting the geometric information subtracted from the less adequately structured sample is
not the most appropriate solution because, high values for this particular type of error implies
an inappropriate network generaliser. What is understood in this research as an appropriate

generaliser is described in detail in chapter 6, although the discussions presented up to now

make reasonably clear what this study understands as such.

The difficulty found when trying to generate am adequate network generaliser through the

application of geometric information might suggest that it is an inadequate source and that it
is better to consider an alternative approach. An appropriate way for deciding on this matter

consists in evaluating the possibilities of finding a better solution than the one built using the

geometry of the input space. Although there are no formal means for proving that such a

possibility is practically non-existent, it is possible to argue that, given the evident complexity
of the data structure, the amount of effort that needs to be incurred, to build such a solution,

definitely labels the multi-layer perceptron as inadequate for the type of application. The

model itself can be distinctly interpreted in geometric terms, the kind of function exercised

by each of the hidden units incorporated to a particular network is of a distinct geometric

nature, therefore it is very reasonable to conclude that no great improvement will be achieved

by looking towards other sources when building the network for a problem which can be labeled
as geometrically inadequate. Such problems are better managed with other data models.
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Computing the number of hidden units required for the network of a particular application
and the values of the weight vectors associated to each of these units, as it uses the same sort

of information as the one applied when evaluating the structure of the input space, there is

evidence of the same kind of problem, i.e. high computational costs for high dimension spaces.

To deal with the difficulty, an approach similar to the one pursued in the input structure analysis

was taken. The procedure defined to build the initial maximal architecture is comprised of the

following steps:

(a) to reduce the computational costs involved in generating the geometric constructs util¬
ised in this research, the data in the training set is projected to the 3-dimension space

spanned by the three most informative dimensions of the input as determined by PCA

which, theoretically correspond to the three eigenvectors associated to the highest three

eigenvalues of the data's covariance matrix, [Jolliffe 86]. The size of the basis is restric¬
ted to three vectors because, as the aim of the projection operation is to take advantage
of the very efficient implementations that exist for computing the necessary geometric
constructs in low dimension spaces, these can only be at most 3-dimensional. Also, (1)
for many problems a large percentage of its information variance can be explained with

very few of its eigenvectors and, (2) the very reasonable results finally achieved with the

learning algorithm.

(b) compute the Delaunay triangulation of the projected data. This information produces a

set of edges that connect all the elements of the input. There are geometric instruments
for computing the bisectors of all these edges and, it is precisely this information that is
used to determine the values of the required weight vectors. It is not possible to calculate
fewer weight vectors than the ones really required in the original input space because, a

projected version of a high dimension space will never be simpler than its original form,

given that the same information is pushed into fewer degrees of freedom. For this reason,

it is possible to affirm that the network finally computed is maximal. It is probable that
the correct and precise architecture required will not be computed but, as the subsequent

learning algorithm is of the pruning-generative type, it incorporates the mechanisms to

eliminate the superfluous hidden units.

(c) the bisectors derived from the 3-dimension space need to be expanded to the original input

space before they might be used as potential weight vectors. To calculate the required

expansions it is possible to make use of the conditions these weight vectors must satisfy,
look into the kind of values each of its components must have so that, every element of the

training set might be correctly classified by the network. It could be argued that, given
the effort invested in computing the three most informative dimensions of the problem
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domain and, in the subsequent projection, the final network design could be realised in

this reduced version of the space but as the complete set of weight vectors still needs to
be determined and, the specific network training opeiatiuii is based on an optimisation

method that can be very effective if the initial conditions on which it starts operating

are appropriate, there are strong enough reasons to consider that a more effective, final

multi-layer perceptron is produced in the original high-dimension input space.

Efficient use is made of the most appropriate type of information for designing an application for

a problem based in the multi-layer perceptron. It is not possible to prove that the architecture
that can be derived from this information might be considered the best solution but the results

obtained for the experiments described in chapter 6 show that, compared to the solutions

obtained using other learning methods for the same kind of model, the one based on the

geometric constructs described at this point is very adequate.

problem iterations sep_train sep.validation sep .test me.train me_validation me-test

Errors for clouds data
clouds-500 1480 0.02803 15.57889 19.25158 0.00548 0.17398 0.2145
clouds-1500 5004 1.67860 10.24369 14.53699 0.04149 0.12131 0.15914
clouds-2500 1251 6.43904 8.48186 10.24552 0.11167 0.13046 0.14757

Errors for dgp-2 data
dgp2-500 10 0.06343 0.06314 0.07454 0.02348 0.02352 0.02516

dgp2-1500 12 0.16598 0.61853 0.969564 0.03322 0.04328 0.053225

dgp2-2500 14 0.00208 0.04193 0.00563 0.00043 0.00142 0.00057

Table 3.2: Results published in training maximal network

3.4 Other geometric-based network applications

The literature of computational geometry, specially in the last few years, has shown substantial

interest in the geometric structures previously described, in particular in the Voronoi diagram,
an interest which can be automatically extended to the Delaunay triangulation as one is the
dual of the other. According to Aurenhammer [1991] there are three main reasons for this
state of affairs. First, Voronoi diagrams arise in nature in various situations given that there
are many natural processes that can be used to define particular classes of such geometric
constructs. Second, the interesting and surprising mathematical properties they have which
links them to various other well-known geometrical structures and, mathematical-statistical
theories. Finally, the Voronoi diagrams have proved to be a powerful tool in solving various

computational problems which explains its wide present applicability in computer science.

These causes encompass an enormous variety of possible applications which have as common

ground in the use each makes of the Voronoi diagram and/or Delaunay triangulation to support
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their development, the exploitation of the relation satisfied by the edges that comprise such

structures, ie. the nearest-neighbour rule. Information of this type is crucial for the successful
realisation of various tasks which easily explains the multitude of uses that have been found for

it. Although it would be interesting to dwell on these applications, as the main concern of this
research is the neural network model the rest of the section will be restricted to a discussion of

the ways in which network development has been and might be improved by the incorporation
of the information subsumed in both geometric structures, a detailed bibliographical review on

further applications can be found in [Aurenhammer 91].

Of the three main reasons depicted by Aurenhammer [1991], there are two which can be linked

to the network models and which help explain the applicability computational geometry has

in this particular context. In the first place there are certain network applications whose main

objective is to recreate different natural phenomenon, eg. visual perception, and it has been
shown that in Nature the underlying structure ofmany systems can be reflected with a Voronoi

diagram, a fact that could be exploited in the neural network models designed to recreate this

type of phenomena. Alternatively, in many of the applications based in this type of model,

the achievement of a successful result greatly depends in properly capturing the structure of
the domains involved in the problem of interest and, it is usually the case that either, only a

sample of such domains is accessible or, the time factor is an important component of the whole

problem. In both of these situations the application of statistics is generally the most reliable
manner for obtaining the type of information required. As an important area of work on the

statistical properties of the Voronoi diagrams has been developed and is still being developed,
see for example the research described in [Gilbert 61], [Conway & Sloane 82], there seems to be
a lot of potential in the integration of network models, statistics and computational geometry
for the development of reliable and powerful learning systems.

In terms of existing applications, Delaunay triangulations and/or Voronoi diagrams have been
used as the primary knowledge structures of algorithms aimed at function learning and, also

as supporting components in the design of neural network models, these last include a method
aimed at building multi-layer perceptron architectures which constitutes an alternative to the

kind of process described in this work.

The most important of these applications corresponds to the method described in [Bose & Garga 93]
which uses the Voronoi diagram of a set of points, ie. the training set, to build a multi-layer

perceptron network. Its main advantage rests in the possibility it offers of defining an archi¬
tecture following a series of steps, all of them clearly depicted and not requiring any ad-hoc
decision making. Given the enormous number of design procedures that have been defined
since the network model and its first learning algorithm came into existence, all comprised of
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some form of arbitrary decision making, eg. the appropriate initialisation of some convenient

parameter, having access to a method that does not incorporate any form of arbitrariness in

the first instance seems particularly attractive. Nevertheless, when considering that in present

days, the model is mostly used for implementing tasks whose domains are not completely well

known, contrary to those like the parity problem for example and, that it is more important to

achieve a multi-layer perceptron network that performs better as a generaliser, it might seem

reasonable to provide some form of uncertainty in the building procedure that will result in

more flexible architectures, ie. in better learners.

The fact that Bose and Garga, in the results described in [Bose &: Garga 93], make no mention

on the generalisation capacity of the architectures obtained by the application of their process,

opens the possibility of doubting the generalisation capacity of such networks. Although in

this research their method was not implemented to provide empirical proof of this drawback,

there are other points which also diminish its initial potential usefulness:

• The rules provided for deciding on the generation of additional units and/or layers, will

usually result in more complex architectures than the one required for the problem under

consideration. This turns out to be the case because it is not uncommon to have to

operate on an input space in which the intersection between the points belonging to

different classes is not empty, therefore more often than not, the method will generate a

network architecture with two layers of hidden units.

• Their architecture only uses units with a linear activation function as that is a reliable

manner of implementing hyperplanes, their main device for solving conflicts in the classi¬

fication process. It is a valid alternative given the type of solution they offer but most of
the history of the multi-layer perceptron model shows that networks built with sigmoid
activation function units have greater representational capacity, therefore at the end of
the day more efficient architectures for solving the same kind of problem can be achieved
with sigmoid units.

• They mention the potential of extending their solution to higher-dimension problems

given the possibility of applying fast algorithms for computing the Voronoi diagram of a
set of points. This, at least at present is not possible, given that the existing algorithms,
at least the ones reviewed, are exponential on the dimension and size of the input space,

although very fast implementations have been created for problems in 2 and 3 dimension
domains.

After reviewing Bose and Garga's work it seems reasonable to conclude there is no great ad¬

vantage in using geometric information for improving a neural network design process, given
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the computational costs involved when operating on high-dimensional domains. Yet the gen¬

erative learning algorithm described in this work clearly shows that it is possible to exploit the

very useful information contained in the geometric constructs mentioned but without being
affected by a high computational cost.

Bernd Fritzke in [1993] describes a network model that incorporates two variants. The first per¬
forms unsupervised learning and includes the ability to automatically find a suitable network

structure and size through a controlled growth process based on geometric information. The
second variant of the model is a supervised learning method which results from the combination

of the self-structuring network mentioned, together with the radial basis function approach.
The objective pursued when designing a self-structuring network based on the model is to gen¬

erate a mapping from the original input space RN onto a discrete k-dimensional topological
structure. The mapping generated must satisfy the similarity relations in the original input.

This is achieved by ensuring that when executing the network's learning process the structure

underlying it satisfies the properties associated with the Voronoi diagram of the points com¬

prising the input space. The importance of the model stems from the fact that it is providing a

very different manner of applying Voronoi diagrams to neural networks. Given the properties

associated with the Voronoi diagram, it is possible to conclude that the idea of generating
network structures that continuously evolve so that they comply with the characteristics of

the geometric construct under consideration, will certainly guarantee the preservation of the

similarity relations. What is not so obvious is how the method is an improvement in network

development given that already there axe various algorithms for computing Voronoi diagrams

and, as the main idea of the algorithm presented can be viewed not only as an innovative learn¬

ing algorithm but, also as a novel way of computing the Voronoi diagram of a set of points, to

definitely evaluate its usefulness, its performance should be compared against other methods
defined to produce such geometric constructs.

At the beginning of the section the close relation that exists between the geometric constructs
considered in this research and many natural processes is indicated as one of the reasons for

their present popularity. The association can be viewed from a function approximation per¬

spective. In this particular context the relation is engendered through the numerous motor and

perceptual systems studied in areas such as robotics, vision, speech, graphics, all of which result
in interesting emerging techniques. One such technique are the geometric learning algorithms

developed by Omohundro, [1989a], [1989b]. The underlying aim is to learn smooth non-linear

mappings from sets of random input output pairs in high dimension spaces, this is achieved by

initially organising the input points in triangles and subsequently applying linear interpolation
within each triangle. To achieve the best results it is necessary to choose appropriate triangles
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and given their properties the Delaunay triangulation is an optimal choice, something that is

formally proved in [Omohundro 89a]. As the number of triangles that must be checked at the
time of having to compute the output associated with a particular input point grows consider¬

ably with the size and dimension of the data available, to reduce the time spent in searching

for the proper triangle a support structure is defined, an N-d (N-dimensional) tree, ie a bin¬

ary tree in which each node contains information identifying the region of the input space

covered by the nodes below it, an ordering of the Delaunay triangles that guarantees a logar¬
ithmic search of any triangle when approximating an input pattern. A classification example

is described in [Omohundro 89b] to compare the learning model proposed against the network
model and, although theirs is more efficient in terms of the number of computations that must
be performed to correctly classify an input, this is due to the supporting search structure,

ie. the N-d tree, because restricting the comparison to their method without the tree against

the network model, there is not much difference given the number of computations that must

be performed for detecting the appropriate triangle and the subsequent linear interpolation

procedure. Even though the overall learning system seems to be more efficient in terms of com¬

putations, when measuring operational costs in terms of the amount of space required by the

whole system there are a number of more efficient alternatives, [Bose & Garga 93], [Fritzke 93],
the multi-layer perceptron network described in this work.

Although it is not possible to ascertain that the above discussion comprises ail the relevant ex¬

isting research in which geometric information is integrated to learning systems to improve the
overall learning process, a thorough search of the area was performed and, the cases described

correspond to what is considered to be the most important work developed in the same line as

the one pursued in this research.

3.5 Existing implementations for computing the relevant
geometric constructs

As it is possible to associate a geometric interpretation to many of the problems different

research areas have to deal with, a lot of effort has been invested in trying to reduce the

computational costs that must be incurred when using many of the existing implementations.

For the case of the Voronoi diagram and the Delaunay triangulation all the most relevant ones

exploit the relation that exists between these concepts and, the convex hull generated from the
same set of points. Suggested by Edelsbrunner, Siedel in [1986], for the 2-dimension case it
was summarised in the following theorem:



CHAPTER 3. VORONOI DIAGRAMS AND DELAUNAY TRIANGULATIONS 87

• Theorem: The Delaunay triangulation of a set of points in two dimensions is precisely
the projection to the xy-plane of the lower convex hull of the transformed points in three

dimensions, transformed by mapping upwards to the paraboloid z = x2 + y2.

As the relationship holds in higher dimensions, it is possible to state that the Delaunay trian¬

gulation for a set of N-dimension points is the projection of the lower hull of points in (N +

l)-dimensions [O'Rourke 94).

This relationship automatically suggests a means for implementing a process for the generation

of the Voronoi diagram, Delaunay triangulation, of a set of points and, is the underlying

principle of most of the existing methods for computing these geometric constructs.

The available implementations for computing the convex hull of a set of points can be classified

according to the following criteria:

(1) the arithmetic employed in the implementation which can be, exact or floating point. This
characteristic induces a second level of classification if the algorithm supports floating

point arithmetic because the amount of precision allowed plays an important role on the

type of solutions that can be generated.

(2) if it supports N-dimension spaces or only works for sets of points in 2 and/or 3 dimensions.

The majority of the implementations are restricted to exact arithmetic in 2 and 3-dimension

spaces, because managing floating point precision can be extremely difficult if the input is not

good, eg. processing coplanar points requires additional special treatment to support such

things as division by a number considered to be approximately zero because of the machine's

precision. The possibility of classifying the existing implementations according to the dimension
of the space they are able to process, stems from the fact that generally geometric operations
are exponential on the dimension of the input space, and only in 2 and 3-dimension spaces

has it been possible to produce really efficient solutions. The existence of many more useful

applications of geometry in low-dimension spaces has also played its part in bringing about
this state of affairs.

Many types of algorithms have been defined for computing the convex hull of a set of points,
each with the objective of providing a more efficient solution than the already existing altern¬
atives. The most efficient of these implementations was first provided by R. Graham [1972],
who managed to define an 0(nlog(n)) algorithm for building the convex hull of a set of points
in 2 dimensions. Given that, one of the principal operations underlying these algorithms is the

organisation of the points into a specific order, because this is the main condition that must
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be satisfied by the vertices of a polyhedra and, a convex hull is a polyhedra, furthermore it has

already been proved that it is not possible to compute a sorting operation in less time than

0(nlog(n)), the bound automatically applies to the process of generating the convex hull of a
set of points given that its generation requires a sorting operation.

In a 3-dimension space the first algorithm that was shown to be 0(n log(n)) was the incremental

algorithm. Described in [O'Rourke 94] it works adding the points one at a time, at each step

constructing the hull of the first k points, and using the hull to incorporate the next point.

The advantage underlying the philosophy of this algorithm is that it opened the possibility of

building algorithms for generating the convex hulls of points set in higher dimensions, even

though, up to this moment it has not been possible to produce one showing a 0(nlog(n))

performance in a high N-dimension space, N > 3.

To avoid the high costs involved in computing the Voronoi diagram and Delaunay triangulation
of a set of points set in a high dimension space, which is the type of space that is usually the

input to a multi-layer perceptron network, it was necessary to include additional processing of
the input data. This processing consists in projecting the training set to a 3-dimension space,

computing the Delaunay triangulation of the projected points and, subsequently calculating
the (N+l)-dimension weight vectors that will be assigned to the maximal network architecture,

using the information of the geometric construct generated from the projected points. The only

disadvantage of this process is that it will probably be the case that more weight vectors than
the ones really required will be defined but, as the subsequent phase of the design process

involves a pruning operation, this is no major drawback considering the gain in costs achieved

by limiting the generation of the geometric constructs used to low-dimension points.

In 2 and 3-dimension spaces, the fastest algorithms that have been defined to compute the

Delaunay triangulation of a set of points are the randomised algorithms, [Motwani &: Raghavan 95],
although the conditions that the input must satisfy to ensure that the algorithm will perform

efficiently greatly restrict its applicability. Such is the case of Chew's algorithm that computes
the Delaunay triangulation of a set of points in expected time O(n) if the points are the vertices

of a convex polygon and aire fed to the program in the same order as they appear in the hull.

A more applicable alternative described in [Clarkson et al. 92], corresponds to an incremental

algorithm which incorporates randomisation to the selection process of the input points when

incorporating them to the convex hull. Its main drawback concerns the amount of memory it
uses and, the fact that the existing implementations only operate with exact arithmetic.

The quickhull algorithm described in [Barber et al. 95] is also based on the incremental al¬

gorithm but, instead of selecting points in a random manner it selects them according to a
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specific order based on the distance the points that have not yet been processed are from the

convex hull that has already been built. Although this ordering makes the implementation more

computationally intensive than its randomised version, it uses less space therefore it is possible

to conclude that both implementations, ie. randomised, quickhull, are equally effective.

Quickhull has the additional advantage that it provides good support for floating point arith¬
metic ensuring the generation of the convex hull of any input. If it be the case that the points

provided as input generate degenerate facets quickhull effectively deals with the difficulty by

merging these problematic facets with a neighbouring element.

Providing an efficient 3-dimension implementation of the Delaunay triangulation of a set of

points, and an adequate manipulation of floating point arithmetic were the main reasons for

incorporating Barber's quickhull implementation to the network design process. The docu¬
mentation and source code of the program can be accessed through the WWW at the following
site: http://www.geom.umn.edu/software/qhull/ .

3.6 Conclusions

This chapter describes a novel manner of approaching the design process of a multi-layer

perceptron network for a classification problem. The examples presented are reliable evidence

of the geometric nature of the network model which explains the reason for the effectiveness of

using this type of information at the time of building solutions based on the model.

Geometry includes many concepts that have a wide applicability in other research areas. The

ones that are useful in the development ofmulti-layer perceptrons, i.e. the Voronoi diagram and

Delaunay triangulation, are discussed in detail. Particular emphasis is put on the properties

they have that make them specially useful and, the manner in which they axe derived given
the high computational costs involved when applying them to high dimension spaces which, is
the general rule in domains for which network applications are of common use.

The examples described also showed that it is possible to measure the value of using the multi¬

layer perceptron by inspecting the arrangement of the points in the geometric structures that
are generated. There are no formal proofs regarding the validity of this measure but, the

type of results described, the properties associated to the geometric constructs used and, the
fact that each theoretical device is particularly useful for certain kinds of problems, should be

evidence enough regarding the type of solution that is being offered in this study.



Chapter 4

Principal Components Analysis

The central idea of principal components analysis {PCA), is to reduce the dimensionality of

a data set which consists of a large number of interrelated variables, while retaining as much

as possible of the variation present in it. This is achieved by transforming the data to a new

set of variables, the principal components, which are uncorrected and ordered so that the first
few retain most of the variation present in all of the original variables [Jolliffe 86].

Considering the preceding definition, the most evident manner of applying PCA to the area of

multi-layer perceptrons, would be in a pre-processing phase of the network's inputs that will

produce a reduced version of the data which the learning algorithm responsible of training the
network architecture will find easier to manipulate [Bishop 95]. Although this approach might
result in a simpler architecture, the loss of information that invariably takes place because of

the dimensionality reduction, could result in a harder training process because, the algorithm
would be operating on a less manageable input space harder to classify as, it is not taking into
consideration all the information concerning the form of its input space.

Nevertheless, as PCA is a relevant technique in statistics for data analysis and, considering
that a successful multi-layer perceptron network design process is very dependent on the avail¬

ability of detailed information about the structure of the network's input space, it is reasonable
to look at other ways of applying this technique for the development of this type of network.
This chapter comprises the description of such an alternative, presenting arguments in support

of the kind of application developed in this study, at least when compared against those de¬
scribed by other authors. Section 4.2 provides details of the concepts associated to PCA that

4.1 Introduction

90
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were used in this research together with a description of the way in which they were applied
for the development of multi-layer perceptron networks. Section 4.3 discusses the alternative

applications of this statistical technique that have been developed in this area. Section 4.4

provides information on the computational costs of the implementation process and, section
4.5 summarises the contents of the chapter.

4.2 Applying PCA to the design of Multi-layer Perceptron
networks

Making the most effective use of any technique towards the achievement of a specific goal,
involves two basic steps: understanding the technique, its components and how to proceed on

its application and, having a clear idea of the goal that wants to be achieved, or rather, of how
the technique under consideration fits into the process that is being defined. For this reason

the present section can be further divided in two parts, the first one containing details on the
theoretical elements that underlie the statistical technique known as PCA. The second part

describes how it is used in the design method that is the outcome of this research.

4.2.1 Theoretical framework

The training set required by any learning algorithm employed for building a multi-layer per¬

ceptron network, that is to be applied to a classification task, has the form:

TP = {(x1,o1),(x2,o2),...,(xp,op)}

where each xl corresponds to an n — dimensional input vector and, ox is its m — dimensional

expected output. Subtracting all the available inputs from Tp it is possible to create the

following sample set:

Sp = {a?1,®2, • • -jX1, • • -,xp} (4.1)

where each x1 corresponds to an independent observation of the n — dimensional random

vectors referred to in Tp.

A reduction in the dimensionality of the elements contained in the sample set Sp, will be

accompanied by a loss of some of the information which discriminates between different classes

(or, more specifically, which determines the expected target values ol). The goal in dimension¬

ality reduction, must therefore be to preserve as much of the discriminatory information as

is possible. The manner PCA has been designed so as to achieve this kind of dimensionality

reduction, comprises the application of a particular type of linear transformation.
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The goal in the process is to map vectors x1 in an n — dimensional space (x\,i2, ...,xXj, ...,xln),
onto vectors z1 in an / — dimensional space (z{, z\,..., zf) where I << n. The first step therein,
involves representing each vector x1 as a linear combination of a set of n orthonormal vectors,

*- =V z)vij (4.2)
j=i

where the vectors Uj satisfy the orthonormality relation,

ul * Uj = 6kj (4.3)

in which Skj denotes the usual Kronecker delta symbol, [Bishop 95],

6 =1 1 : k = j^ 0 : otherwise

Explicit expressions for the coefficients zj in 4.2 can be found by using 4.3 to give:

zj = uj * x1 (4.4)

which can be regarded as a simple rotation of the coordinate system from the original fs to

a new set of coordinates given by the z's. If only a subset I « n of the basis vectors Uj

is retained, so that only I of the coefficients Zj are used, then the remaining coefficients are

replaced by constants bj so that each original vector x1 is approximated by an expression of
the form

l n

xl = zjUj + hfii <4-5)
j=i j=/+i

which represents a form of dimensionality reduction since the original vector x1 which contained
n degrees of freedom must now be approximated by a new vector z1 which has I << n degrees of
freedom. Considering the whole sample set, Sp, in PCA the basis vectors Uj and the coefficients

bj must be chosen so that the approximation given by 4.5, with the values of zj determined
by 4.4 give the best approximation to the original vector x1 on average for the whole data set.

The error in the vector x1 introduced by the dimensionality reduction is given by
n

x1 — xl = (zj — bj) * Uj (4.6)
3=1+1

In PCA the best approximation is taken to be that which minimises the sum of the square

errors over the whole data set. Therefore the expression that is minimised corresponds to:

e, = \ * (J2 n? - Jin2) = 5E E - w2 <4-7>
t=i i=i j=i+i
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where the orthonormality relation of 4.3 holds. Setting the derivative of Ei with respect to bj
to zero it turns out that

h = = <rJ* (4-8)

where the mean vector x is computed by

* = t4-9'
i=i t=i 1=1

using 4.4 and 4.8 it is possible to write the error sum of squares 4.7 as

E' = ; I EaJ^ ~*)2 = ^ E (4-1Q)
j=i+1 t=i j=/+i

where E is the covariance matrix of the sample set Sp and is given by:

p

s = -x)(? -x)T (4.ii)
i=l

The final step in the PCA processing involves the task of minimising Ei with respect to the

choice of basis vectors Uj. It is shown in [Bishop 95] that the minimum occurs when the basis
vectors satisfy:

Eilt = A iHi (4.12)

so that they are the eigenvectors of the covariance matrix. Substituting 4.12 into 4.10, and

making use of the orthonormality relation 4.3, the value of the error criterion at its minimum

has the form:

ei = \E K (4.13)
t=i+ l

Thus, the minimum is obtained by choosing the n — I smallest eigenvalues, and their corres¬

ponding eigenvectors, as the ones to discard.

The linear dimensionality reduction procedure derived above is called the Karhunen-Loeve

transformation or PCA and is discussed at length in [Jolliffe 86]. Each of the eigenvectors Uj

is called a principal component. The technique is illustrated graphically in Figure 4.1 for the
case of a sample of data points in two dimensions.
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Figure 4.1: Inappropriate data structure for PCA processing

The first step in the algorithm defined to implement this technique, involves the calculation of

the mean and covariance of the sample set that is provided as input. The set of eigenvectors
and eigenvalues subsequently derived from the covariance matrix, automatically satisfy the

orthonormality condition mentioned before given that the matrix from which they are obtained

is symmetric and real. The last step involves the selection of the / eigenvectors associated to

the I largest eigenvalues and, projecting the vectors x1 of the sample provided as input onto the

space spanned by them . Thus in Figure 4.1.a each 2-dimensional data point is transformed
to a single variable z\ representing the projection of the data point onto the eigenvector ffi as

shown in 4.1.b.

The example depicted in figure 4.1 reflects the kind of problem that can result if PCA is applied
in a pre-processing step of the complete network design process for the multi-layer perceptron
with the aim of reducing the dimension of the input space. The sample plotted is comprised

of points belonging to two classes, each associated with one of the two clusters of 4.1.a which,

because of the relative positions they have, reflect a mapping that would be easily grasped

by a perceptron network, ie. no hidden units are required in the architecture. In complete

contrast, the space spanned by the highest eigenvector shows a cloud of points in which the
elements of the two classes involved are definitely not linearly separable therefore, designing a

network architecture to grasp the form of the projection of the initial input space would require

a hidden layer which means that the pre-processing step instead of facilitating the design of an

adequate network architecture, has hampered it.
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Nevertheless, it is possible to exploit the information provided by PCA in ways that will be

completely effective, in the sense that no matter the form of the problem at hand, its application
will always produce a more satisfactory network design process and a more appropriate network

architecture.

4.2.2 How PCA is used in this study

When designing a multi-layer perceptron network it is possible to identify four spaces all of
which are integrated in the network architecture in a meaningful manner, in that it provides
a means to solve a task through a simulation process which makes use of the contents of the

network. The spaces are: the one comprising the elements of the input space, the one spanned

by the weight vectors of the network's connections, the output space and, for those cases

requiring a hidden layer, the space spanned by the output of the hidden units.

Many devices have been defined with the objective of handling, the well known problem associ¬

ated to the task of deciding on the number of units for a network's hidden layer. In the present

study, one of the applications that makes use of part of the processing elements comprising

PCA, is aimed at tackling this same problem. Given that the eigenvalues of the covariance

matrix of the input to a PCA indicate how relevant the dimensions of such an input are, the

same information , subtracted from the space spanned by the output of the hidden units during

training, could be used to conclude on whether there are redundant hidden units that could
be pruned from the architecture, as this would be reflected in the smallest, ie. least important

eigenvalues of the covariance matrix.

The important condition that must be satisfied, so that it might be possible to arrive at the

type of conclusion described, is that the output of the hidden units that has been registered, be
subtracted from a training process that has converged, otherwise the information that would
result from a PCA on that space would not be very reliable.

The other step of the network design method that incorporates elements associated with PCA
involves pre-processing of the training set aiming for an efficient execution of the subsequent

geometric analysis. The specific application consists in projecting the initial input space to

the 3-dimensional space spanned by the eigenvectors associated to the three highest eigenval¬
ues of the covariance matrix. This transformation enables the application of a very efficient

implementation of the relevant geometric concepts that exists for low-dimension spaces.

The main operation in the previous description is a projection, therefore it is probable that the

subsequent geometric analysis will provide information supporting a more complex network
architecture than the one really required. This situation is generated because, the projected
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version of an Euclidean space usually has a more complex structure than that of the space

from which it was derived. Greater complexity in the input space is dealt with through the
definition of a larger number of hidden units in the network architecture. The superfluous
elements of the hidden layer are detected and deleted in an additional processing step also
based on PCA and which was described above. At first instance, it might seem to be the case

that this final extra processing should have been avoided but, the considerable gain achieved
in the computational costs resulting from the execution of the efficient implementations of

the geometric concepts employed, more than justifies their inclusion in the overall multi-layer

perceptron design process.

4.3 Alternative applications of PCA and Multi-layer Per-
ceptrons

PCA has been used in other ways in conjunction with the multi-layer perceptron model. Each
of these alternative applications can be assigned to one of two categories. The first category
consists of those techniques defined for computing the principal components of an input space

through the application of NN. The other is comprised of additional ways of building the
architecture of a multi-layer perceptron through the execution of a PCA step.

The homogeneous neural network is a NN model developed by Oja and his group [1992],
incorporating a particular learning algorithm described in [Oja et al. 92b]. The main aim
behind the model is the parallel computation of the principal components of the sample set

provided as input. Even though, the authors solve the asymptotically stable limits of the

algorithm, showing that they correspond to the eigenvectors of the data covariance matrix,

and argue that their implementation is specially attractive as it opens the possibility of a fast

computation of the principal components of an input data set given its potential parallelism,
the fact that this input must support a linear model so that the algorithm when training such
a network might converge to a practical solution, [Oja et al. 92a], [Oja 92], greatly restricts its

potential applicability. Moreover there is little advantage to this type of implementation when

compared against the standard numerical analysis methods available for performing the same

task.

The beginning of the chapter mentions a possible data pre-processing stage for the develop¬
ment of multi-layer perceptron networks. In it, a high-dimension space is reduced to a smaller
one that is assumed will be more effectively manipulated by a multi-layer perceptron network,

thereby justifying the inclusion of PCA in the task of network development. In this context,

certain research has been aimed at defining a method for training multi-layer networks so that
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Figure 4.2: Autoassociative network for implementing PCA

they perform a dimensionality reduction at the hidden layer level, once the training process has

converged. The first type of multi-layer perceptron designed for this particular problem has the
form shown in Figure 4.2, and corresponds to a network with n inputs, a layer of h hidden units

and n output units [Rumelhart et al. 86b]. The targets used to train the network are the input
vectors themselves, therefore the network is been trained to perform an autoassociative map¬

ping [Hertz et al. 91]. For the case of linear hidden units the error function has a unique global

minimum, and at this minimum the network performs a projection onto the H — dimensional

space spanned by the first H principal components of the data which, in 4.2, correspond to the

weight vectors going into the hidden units, [Bishop 95]. Further studies of the auto-associative
network tried to exploit the representational powers of the model using non-linear hidden units.

This work was based on the assumption that such an extension to the network model should

provide a tool for implementing a non-linear PCA but in [Bourlard & Kamp 88], it was proved
that when the minimum is reached by the learning algorithm training the particular non-linear
autoassociative network, the resulting weight vectors once again correspond to the H most im¬

portant principal components. Given that this alternative implementation of, a dimensionality

reduction of the input space generates the same kind of output as the conventional PCA, it
suffers from the same limitation, ie. that the operation might produce a space in which the

discriminatory information has been lost, therefore it is not a technique that will invariably

produce an improvement in the development of multi-layer perceptron networks.

Another example applying PCA to the same area, that belongs to the second of the categories
defined at the start of the section, can be found in [Georgiou &: C 92]. It describes a learning
algorithm developed as an extension of BP, named two-phase BP. In the first phase the direc¬
tions of the weight vectors of a network with one layer of hidden units are constrained to remain
in the same direction as, either that of the linear discriminants or, the principal components

of the training data. In the second phase the restrictions are removed and standard BP takes
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over to further minimise the error. The handicap of this alternative is that there is no mention

in the written work explaining the manner in which the important dimensions of the principal

components were selected or of how the bias term of the network model is chosen, something

which will be impossible to find if the training data used for building the network is not linear.

Each of the limitations detected in the applications described were carefully taken into consid¬

eration at the time of evaluating the possibility of applying PCA as part of the network design

method defined in the study discussed in this dissertation. Therefore the manner in which it

was finally employed can only be considered as an improvement in comparison with the rest of

the work developed with the same objective.

4.4 Computational Costs

The first thing that should be noted at this point is that, although it is possible to compute

the principal components of a problem domain with a neural network [Oja et al. 92a], this
alternative method was not considered appropriate in the context of the design process defined
in this research for the following reasons:

(a) there are other implementations that are more efficient, eg. the one provided in the
MATLAB software.

(b) the networks described in [Oja et al. 92a], [Oja et al. 92b], correspond to variants of

perceptrons with no hidden layers. This means that such networks will in effect generate
the required eigenvectors if, the problem domain in which they are operating corresponds
to a linearly separable one, otherwise no solution will be found.

The implementation of PCA used in this research, corresponds to the EIG(X) operator incor¬

porated in MATLAB, the matrix calculator environment developed by MathWorks.

EIG(X) is comprised of a series of routines providing an efficient alternative for generating the

eigenvalues and/or eigenvectors of a real general matrix, whilst minimising the possibility of
roundoff errors that can result from the computer's calculations. The set of routines included

as part of the operator are:

balanc: this receives as input a square matrix of dimension N and replaces it by a balanced
matrix with identical eigenvalues. If the input corresponds to a symmetric matrix, as

it is already balanced, it is unaffected by this procedure. The proceduie is of order N2
operations.
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balbak: the procedure is a continuation on balanc that is performed in those cases requiring the

computation of the eigenvectors in addition to the eigenvalues of the matrix provided as

input to the overall process. It receives the output generated with balanc together with
a vector D with information on the permutations and scalings performed therein for the

problem at hand. With the information it generates the corresponding eigenvectors. It
is also an order N2 routine.

orthes: converts a real general matrix to Hessenberg form using orthogonal similarity transform¬
ations. This step produces a reduced matrix from which it is much cheaper to generate

the associated eigenvalues therefore resulting in an important gain in efficiency for the
overall solution of the eigensystem. The operation count for the routine is in the order

of %N3.

ortran: builds the matrix of accumulated transformations that were performed whilst executing

orthes so that the information might be available for the subsequent computation.

hqr2: this routine computes the eigenvalues and eigenvectors of a real Hessenberg matrix using
the QR method. As the typical average number of iterations per eigenvalue is « 1.8, the
total operation count for all the eigenvalues is « 3 * N3.

This set of routines belong to the EISPACK package. The package itself is part of the reusable

computer software available to scientists and engineers, for use in mathematical modeling and
statistical analysis. Extensive documentation on the particular group of routines employed can

be found in [Wilkinson &: Reinsch 71] and [Press et al. 86].

One thing to note is that, every time the process described is used as part of the design method
of multilayer perceptron networks, the input it is provided with, corresponds to the covariance

matrix of a sample set. This particular matrix is symmetric, therefore it is already normalised
which means that when EIG(X) is executed, it does not perform the first two steps. It is

used twice in the whole design method proposed in this research: (a) for reducing the high
dimensional input space to a more manageable form on which the subsequent geometrical

analysis will work in a more efficient manner and, (b) during the analysis of the outputs of
the hidden units that are part of the network architecture. The first application requires the

computation of the eigenvectors and the eigenvalues but, as for the second only the eigenvalues
axe required, its application results in a faster computation.

It is also convenient to mention that, overall the implementation is of order N3, N the dimension
of the input, sparp
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As both of the steps in the method proposed, make use of PCA to process the covariance
matrix of a sample set and, as the matrices are only computed for the purpose of performing
the analysis, it was considered reasonable to include the computational costs involved in the

generation of this information at this point. The procedure used for calculating the covariance

matrix of a particular set of data, is the one underlying the COV (X) operator that is provided
in MATLAB. The implementation is based on algorithm 2 and is of order N2 * M, N the

dimension of the sample set and M its number of elements.

Algorithm 1 Covariance(Tset,C)
Require: sample Tset contains inputs of the training set {there is one such input per row}
Outputs: C covariance matrix of elements in Tset ;

[m,n] 4- size(Tset)-,
if (min(size(x)) == 1) then
Tset 4- Tset(:);

end if

[m,n] 4— size(Tset)\
Tset 4- Tset — ones(m, l)(aum^ae^); (ones(m,l) an m-dimensional unitary vector}
if (m == 1) then
Xjdef 4- 0;

else

XAef <- T%%"t;
end if
C 4— X-def {C the computed covariance of the sample Tset}

4.5 Conclusions

The present chapter discusses the manner in which, the principal components of the training

set, that is available for building a multilayer perceptron network, is used in the learning

algorithm that resulted from this research. Therein it is possible to identify two ways:

usel: to project the original input space to the space spanned by the three eigenvectors asso¬

ciated to the three largest eigenvalues of the set's covariance matrix.

use2: to evaluate how many of the hidden units that comprise a particular architecture are

really useful. This is done by selecting only the number of hidden units that reflect at
least 90% of the variance of that space. The output of the hidden units that is analysed
is registered once the learning algorithm acting on the network has converged.

The implementation used is of order 0(N3) and corresponds to the fastest algorithm available
in the different existing mathematical software libraries. Although, the computation of the
covariance matrix is also part of the analysis described and, the procedure associated to this

specific operation is 0{N2 * M), with M size of the sample set, the overall cost is still 0(N3)
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because the existing relation between the square and cubic functions requires an extreme dif¬
ference between the dimension and size of the training set to vary the 0(N3) behaviour of the
implementation more towards a 0{N2 * M) type of performance.

Comparing the manner in which PCA is applied to those designed bv other authors it is clear

that, the one depicted herein is much more effective because, it relies heavily on the existing
efficient mathematical PCA implementations and, it is not dependent on any kind of ad-hoc

decision as, for example, the application associated to the 2-phase BP process. However, PCA

is still just a linear transformation and, given the existence of non-linear versions of PCA a

future extension of this work could be to evaluate how much improvement can be achieved in

the network design process if a non-linear version is applied in place of the one used at this
moment.



Chapter 5

GROPING

Geometric Reasoning bearing On the Production of Initial
Network Geometry

5.1 Introduction

The previous chapters describe the main weaknesses and/or strengths of the multi-layer per-

ceptron model together with those of the most relevant supervised learning algorithms that

have been defined to build such networks. Subsequently an analysis of different theoretical

sources that provide tools for surmounting the most relevant of those failings is established, in¬

cluding detailed explanations supporting the set that was finally selected to improve the design

process of a multi-layer perceptron network.

In the present chapter all those useful devices are integrated in a coherent framework and linked
with one of the existing learning algorithms, ie. rpropagation [Riedmiller &: Braun 93], result¬
ing in a very effective generative supervised learning method, ie. the Geometric Reasoning

bearing On the Production of Initial Network Geometry (GROPING) process. Given that it
is comprised of a series of steps involving different types of operations, the ensuing description

has been organised so that it might be clearly understood, how each of them enhances the

process of constructing a multi-layer perceptron network.

Section 5.2 includes a general outline of the GROPING algorithm describing its main com¬

ponents and how they are integrated so that the whole process shows a coherent behaviour at
the moment of executing it to design a network for a particular application. Section 5.3 ex¬

plains how GROPING in effect solves some of the main problems associated with the task of

designing a network architecture. Section 5.4 is comprised of an analysis of the computational
costs of the whole procedure and Section 5.5 summarises the main points delineated in the

102
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chapter.

5.2 Outline of GROPING

Certain of the conclusions reached in chapter 2, after discussing the different approaches that
have been taken in the multi-layer perceptron research area to solve the problems encountered

using it, referred to the advantages of applying generative supervised learning, over conventional

supervised learning. These advantages can be summarised in the fact that for the first type
of algorithms it is not necessary to define a reasonable initial structure because, part of the

processing involves constructing the network's architecture to satisfy the requirements of the

application of interest.

GROPING was designed in accordance with the main principles of that type of algorithm

which, as noted in chapter 2, can operate in one of two ways: begin with a minimal network,

ie. one comprised only of the units corresponding to the inputs and outputs and subsequently

growing it until the overall performance is satisfactory; alternatively start with an architecture

too large for the problem under consideration and the design process will then involve trimming
the network to a reasonable minimum size. The difficulty with the second approach is that it is

necessary to provide as input an initial maximal network solution, ie. a network architecture

that is too large for the application of interest, a task which in itself can be quite complicated.

Nevertheless, if it is at all possible to find one, the design process of the required architecture

is greatly simplified because, there is reliable information confirming the hypothesis that it is

possible to use the network model to build a solution for the problem of interest. The complex
architecture that is provided as input to the training component of the network design process,

is evidence of the feasibility of achieving a solution, something that cannot be ascertained in

a similar manner with the method that starts from a minimal architecture. In chapter 3 it is
shown how the Delaunay triangulation and the Voronoi diagram of the points comprising the

training set are sound sources for the process of creating an initial maximal network therefore,

having found an effective manner to satisfy the main constraint associated with the pruning-

generative supervised learning methods, it was possible to design GROPING as an algorithm
of this kind.

Once the theoretical framework underlying the algorithm that is going to be designed has
been clearly specified, the next step requiring careful consideration is the way in which the

available data about the problem is going to be organised so that it might be used in the
most effective manner. In conventional supervised learning it is usually divided in two sets,

ie. the training and test sets. The first one is employed for updating the weights of the
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GROPING: general outline

Figure 5.1: General outline of the GROPING algorithm

connections of the architecture during the execution of the algorithm. The other one, ie. the
test set, is used for measuring the level of generalisation achieved with the network once the

training process is completed. This manner of structuring the data available to build a network

was modified to avoid the overfitting (overtraining) phenomenon: for two networks trained on

the same problem, the one with larger training set error may actually be better, since the
other has concentrated on peculiarities of the training set at the cost of losing much of the

regularities needed for good generalisation [Prechelt 94]. For this reason, another alternative

way of partitioning the available data was created, one which included an additional division of

the training set providing the whole network design process with three types of element against
which to measure the appropriateness of the network being created. These are: the training

set, the validation set and the test set. The first one, as in the previous case, is used to compute

the amount by which each of the network's connections should be updated to reduce the error;

the validation set is provided to allow control over the overtraining phenomenon and, the test

set is used to check on the generalisation level achieved by the final network.

The GROPING algorithm was developed to operate on a training, validation and, test set.
All the available data is partitioned so that 50% comprises the training set, 25% is used for the
validation set and the last 25% is assigned as part of the test set. The three sets are used in a

manner similar to the one described above, the main difference lies in the additional processing

that the training set undergoes so as to build the initial maximal network architecture. Figure
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5.1 presents a high level description of the whole design process marking which dataset is used
as input for each of the main operations. Throughout, it is clear that the most relevant of the
sets is the training set but, as will be subsequently shown, the information extracted from it

is carefully controlled so that the final network architecture will not be over-accommodated to

its peculiarities. The amount of available data associated with each of the sets required for

constructing the network, was assigned according to the indications contained in the Probenl
benchmark which corresponds to the method followed in this study to evaluate the network

algorithm defined and, given that the results obtained with GROPING were compared against
those presented in Probenl, it was necessary to proceed with exactly the same datasets.

Another relevant issue affecting the overall performance of a multi-layer perceptron's network

training process consists of the correct definition of the different parameters related to the

training component of the design process. In chapter 2, the examples presented showing how
different values of the learning rate (77) and the momentum term (/z), affect the evolution of

the network training task are a clear indication of how important it is, for achieving a good

performance, ie. a good level of generalisation with a moderate architecture trained in a

reasonable number of iterations, to correctly tune these parameters. In view of their relevance,

the one required to ensure a correct performance of the training algorithm are defined at

the moment of creating the network and no pre-processing needs to take plaice in advance of
its application. This is a major enhancement as it means that the elements responsible for

producing an ad-hoc procedure have been successfully dealt with.

The particularities of GROPING will be discussed following the outline depicted in the dia¬

gram displayed in figure 5.1, which shows that the method is comprised of four major opera¬
tions:

(1) corresponds to the organisation of the data available about the problem. The operation
consists in ordering it in a form that is acceptable to the input's specifications of a network
model. The elements of the different problem's samples must be organised in pairs:

(xp,op), where xp 6 RN and, cP 6 Bm,Bm = {0, l}m. The form of Bm corresponds to
that of the binary patterns that reflect a classification task and, each xp is an instance of

the problem space that must be associated to one of the possible classes related to it. The
second part of the operation consists of assigning each of the (xp,op) pairs to one of the
sets needed for the task of designing the multi-layer peceptron network. Care must be
taken to clearly mark any missing values and also to avoid duplicates as they both have
a negative effect on the process of developing a network. For example, at the moment of

computing the weight vectors of the initial architecture the operations involved require
that all values of the components of the training set be clearly specified, because they
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have not been designed to manipulate missing information.

(2) consists of the steps which result in the initial maximal network architecture required to

solve the problem. It uses geometrical and statistical information, for deciding on the
number of nodes and connections that should constitute the network architecture and,

the initial values of the weights associated with those connections. Additionally it is

comprised of steps to deal with missing information because, for the particular network

model under consideration the input to the learning algorithm must be complete. Finally
it includes a step for transforming the data to zero mean and unitary variance because

various experiments performed at the beginning of the research have shown that the

learning process generally produces better results when dealing with the transformed

data and, there is a well specified mechanism to perform this type of transformation.

(3) this is probably the most relevant component of the whole design method, even though
it is certainly the case that, its successful completion is very dependent on the output

produced by the previous step because, if an appropriate maximal network is not avail¬

able it is futile to proceed with its execution. The task is a combination of a multi-layer

perceptron learning algorithm, rpropagation and, the statistical method principal com¬

ponent analysis. This last procedure provides information to decide on the number of

superfluous hidden units. The learning algorithm uses the training set to compute the

quantities by which each of the weight's connections must be updated and, the validation

set to decide at the end of the training process which is the most convenient architecture

for the problem at hand.

(4) this operation consists of computing the error made by the final network architecture

generated by the previous step when presented with the elements of the test set. It

can be considered to be mostly a simple performance measure that enables the network

developer to come to a final decision on the success of the whole training process.

Given that operations two and three involve a series of steps requiring further explanation,
each of them will be discussed in greater detail in the ensuing sections.

5.2.1 Building the maximal network architecture

This operation is mainly a data processing task which extracts the information from the training
set that is needed to perform a successful definition of the multi-layer perceptron network

required to solve the problem from which the set was obtained. The specific components of

the problem's solution that are built with the information extracted are the following:
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(1) the mean vector and covariance matrix that will be used for the transformation of the

data to mean zero and unitary variance (covariance in an N-dimension space, N > 1).

(2) the number of nodes comprising the architecture.

(3) the values for the weight vectors of the input-hidden connections of the initial maximal

network.

Algorithm 2 DataStandardisation(Tset,P,N,StandardTset)
Require: Tset {elements of the training set}
Require: P = size(Tset)
Require: N = dimension(Tset);
Outputs: Normalised data in StandardTset;
Cts 4- covariance(Tset, P, N)\ {compute sample's covariance matrix }
[RtsDts] «— eigen(Cts)-, {Rts: eigenvectors of Cts; Dts: eigenvalues of Cts }
Mts «— mean(Tset);
V <— Tset — ones(P, 1) » Mts; {extract mean from original input}
VI <— V * Rts ♦ inverse(sqrt(Dts))]
rotate using the eigenvectors of the covariance
matrix scale by the inverse of the standard deviation;
StandardTset «— VI;
{conditions satisfied by StandardTset};
mean(SttSet) == zeros(N);
covariance(StandardTset) == identity (N)

Assuming that the training set has the form:

Tp = {(x', o' ),(x2, o2),... ,(x', o'),... ,(xp, op))} (5.1)

where, i indexes the occurrence of xl in the training set, a pair (z\ol) is comprised of an input

pattern xl and its expected output ol and, the pattern xl € RN is described by the tuple:

1,(0 . (x!i,x.^,...x^) (5.2)

the mean vector and covariance matrix needed for standardising the data are estimated in the

following manner:

X = xi,x2,... ,XN (5.3)

^ (5-4)

= (5.5)

Equation 5.5 corresponds to the expression used for computing each of the terms of the train¬

ing set's covariance matrix and, X is the N-dimension mean vector, each of whose terms is
calculated using equation 5.4. Both terms are subsequently used in algorithm 2 to standardise
the data of the training set. As the transformed data is the one that is provided as input to



CHAPTER 5. GROPING 108

Algorithm 3 BuildInitialNetwork(Tset,P,N,DefWeights)
Require: Tset
Require: P = size(Tset)
Require: N = dimension{Tset);
Outputs: Number of hidden units, weights in DefWeights;
(1) M <— zeros(N);
(2) C identity(N); {initialise structures for storing Tset's mean M, covariance C}
(3) [R, D] «— eigen(C); {compute eigenvectors, eigenvalues of C}
(4) Pset <— project(Tset, R(:, 1 : 3)); {project total space to 3-dimensional subspace
spanned} {by three highest eigenvectors of C}
(5) SetWeights <— 0; {initial set of weights is empty}
(6) DT «— BuildDelTri(Pset); {build Delaunay triangulation of projected 3-dim set}
(7) SetWeights 4- ComputeWeights(DT);
use geometric construct in (N+l)-dimension to build weight vectors
(8) DefWeights 4- SubtractParallel(SetWeights); {extract the sufficiently parallel vec¬
tors}

the neural network, the computation of the initial maximal network architecture is realised

through a geometric analysis of this version of the training set.

This analysis produces the network architecture which will be subsequently trained and pruned

and will eventually result in the fined network that reflects the mapping underlying the classi¬

fication problem of interest. Algorithm 3 corresponds to a high level description of the most

important steps associated with this task. The reasoning underlying each of them runs as

follows:

(1) Given that the Delaunay triangulation is generated with a geometric algorithm, as was

discussed in chapter 3, it shows exponential behaviour on the dimension of the space when,

dimension > 3. To avoid these costs and take advantage of the efficient implementations
that exist for 2-dimension and 3-dimension spaces, it is necessary to adjust the weight
initialisation process so that it would exploit the information subsumed in the Delaunay

triangulation of the set of points calculated by one of these efficient implementations. The
structure of a space is never improved for purposes of my method when it is projected

because, as this type of transformation involves squeezing the data into a smaller number
of dimensions, there are points in the original input space that will map to the same

image or, to points that will be far closer to each other than their counterparts in the

original space, increasing the difficulty of discriminating between them. This could be
considered a drawback given that the multi-layer perceptron network is being designed
to operate as a discriminator but, as the aim at this point is to build a maximal network

architecture and, a geometric analysis of this more complex space can only result in the

generation ofmore hidden units than the number really required for the classification task
in the original input space, it seemed reasonable to reduce the input to the 3-dimension
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space spanned by the three eigenvectors of the data's covariance matrix and, compute

the Delaunay triangulation of the projected dataset applying one of the very efficient

algorithms that have been defined to process low dimension spaces. The eigenvectors
associated with the three highest eigenvalues of the covariance matrix, which correspond

to the three most important principal components of the data, was judged to be the most

appropriate basis because, it retains the highest amount of information regarding the

peculiarities of the space from which it was computed. Steps 3, 4 of algorithm 3 produce

the projected data set on which the geometric analysis will subsequently operate.

(2) The execution of steps 6, 7 in the network building procedure initialise a set structure

which will be instantiated with the Delaunay triangulation derived from the points of the

projected space. The geometric process is performed using the qhull system developed by
Barber and his research group, [Barber et al. 95], and which is an 0(N log(N)) imple¬
mentation of the process for generating the Delaunay triangulation and Voronoi diagram
of points in 2 and 3 dimension spaces. The reasons for selecting this particular imple¬

mentation were given in chapter 3.

(3) The fined operation indicated in the algorithm, corresponds to the extraction of the weight
vectors of the initial network architecture from the Delaunay triangulation generated from
the projected set of points of the training set. It is based in the solution of a set of (N+l)-
dimension linear systems, one for each of the weight vectors considered to be necessary

in the input-hidden layer of the maximal network that is being computed. As it is the
central task of the building process, the steps comprising it are expanded in the ensuing
discussion.

Algorithm 4 contains the operations designed to compute the set of weight vectors required
for the initialisation of the maximal network architecture. Most of them are basic operations

easily interpreted once the rationale of the algorithm is understood. The main loop traverses

the facets of the convex hull associated with the Delaunay triangulation obtained from the

projected points of the training set. Given that the input to the qhull algorithm, in this

particular case, is always in 3-dimensions, the structure that the weight generation process

receives is usually a convex hull created in a 4-dimension space. This means that each of the
facets that will be traversed in the main loop of the weight generation process will be comprised
of a group of interconnected points organised and ordered according to the definition of a convex

polyhedra, [O'Rourke 94].

The derivation of the weights for the input-hidden layer of a network operating in the original
N-dimension input space, N > 3, requires the computation of a set of (N+1) dimension vectors

were the additional dimension corresponds to the threshold associated with each hidden unit.
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Algorithm 4 WeightVectorsComputation(Dt3D,N,W,NumW)
Require: 3-dimensional data's DELAUNAY TRIANGULATION Dt3D;
Require: N: dimension of the original space;
Outputs: W set of weights;
Outputs: NumWts number of vectors generated;
{variables required in the procedure}
M is amatrix(N + 1, N + 1); B is a vector(1, N + 1);
Wtrap is a vector (1, N + 1);
{variable initialisation}
M 4- zeros(N + 1 ,N + 1);
NumEq 4- 0; Wtmp 4— zeros{ 1, N + 1); NumW 4— 0; F 4- FirstFacet{DtZD)]
while F ? NULL do
F 4- NextFacet(DtSD); {set of points included in facet F}
if ->(all(P) € SameClass) then
not all points in F belong to same class; might require hidden unit
for edges(F) do
look for edges with endpoints in different classes
if -i(endpoints(e) £ SameClass) then
(pl,p2) 4- endpoints(e);
if ->(pl € M) then
NumEq + +; M(NumEq,:) 4— pi; o 4- ExpectedOutput(pl)]
if -«(o) then
B(NumEq, 1) 4— log(9);

else

B(NumEq,l) < log(9);
end if

end if
if NumEq == (N +1) then
break;

end if
if ~^(p2 G M) then
numeq + +; M{numcq,:) 4- p2; o 4- ExpectedOutput{p2)\
if -«(o) then
B(numeq, 1) 4— log(9);

else

B(NumEq, 1) 4 log(9);
end if

end if
if NumEq == (N + 1) then
break;

end if
e 4— NextEdge(F)-,
if e==NULL && NumEq j (N+l) then
LookNeighbours(F,M,NumEq, N + l)]

end if
end if

end for
if NumEq == (N+l) then
Wtmp 4- LinearSystem(M, B)\
if -^infinity{Wtmp) then
NumW 4- NumW + 1; W{NumW,:) 4- Wtmp] M 4- zeros{N + l,N + 1);

end if
F— > process 4- TRUE] B 4— zeros{1, N + 1); numeq = 0;

end if
F 4— NextFacet{Dt3D)]

end if
closes if not(all(P) in SameClass)

end while
closes while (F != NULL)
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These are derived from the data structure generated by qhull to store the Delaunay triangu-

lation of the 3-dimension points it received as input. It consists of vertices, ridges and facets.
Each vertex corresponds to one of the 3-dimension points obtained from the projection of the

N-dimension training set. A ridge is a set of 3 vertices and two neighbouring facets and, a

facet is a set of ridges, a set of neighbouring facets, a set of incident vertices, and a hyperplane

equation. Of all these components the ones considered most relevant to the computation of
the required set of weight vectors, corresponds to the set of facets F because, they provide the

most adequate source to obtain the information on the adjacency relations which is the key

element in the conception of the necessary linear systems. These systems are computed in the

following manner:

(1) If the facet F is comprised of points corresponding to projections of their counterparts

which, in the original N-dimension space have different expected outputs ol then, given
that they are connected because they are closer to each other than to any other of the

elements in the training set, it is reasonable to assume that a hidden unit will be required

to generate two regions, one for each of these conflicting points.

(2) The edge connecting these conflicting points and, the facet F to which they belong,

provide useful information for computing the hyperplane that will generate the regions
desired. It can be calculated by solving a linear system that is defined using the set

of conditions the related points should satisfy. The points are those belonging to the
facet F under analysis and also to those included in the neighbouring facets which have
to be taken into account because the system must be defined in the original dimension
and this is always greater than the one associated with the convex hull on which the

procedure is at present operating. The conditions are based on the outputs the network
should compute when presented with any of the points under consideration. Taking into

account that:

(a) the activation function of any unit, apart from the inputs, is the sigmoid,

(b) the outputs can only have one of two possible values, {0,1}, in the case of the points
in the training set,

(c) the midpoint of any edge connecting two input points having different expected

outputs, can be computed as and, if presented to the network it should

generate as output an approximate value of 0.5 because of its position in the convex

hull,

Only three types of equations can be added to the linear system that is being built. These
will reflect a set of conditions that should be satisfied by the following variables:
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(a) the weight vector that requires calculation:
Wnum-eq - ^num.eq ^

(b) the threshold value WwrnJeq = —1-00, tolerance = 0.1,

(c) the input vector xl = (x\,xl2, ■. •

which means they will have one of the following forms:
N+1

£ „,?<"»-«« x} = - ln(9), if (o' = 0) (5.6)
i=o

N+1

X>rm-"*j = ln(9), »/ (of = 1) (5.7)
3-0

N+l

^ wnum-eq^ _ Q = Q 5) g)
j=0

(3) Each of the vectors obtained through the solution of the linear systems construed in the
main loop of the algorithm, constitutes a weight vector of the input-hidden layer and
will require the incorporation of an additional unit in the hidden layer of the network

architecture.

The most fundamental piece of information subsumed in the convex hull provided as input cor¬

responds to the neighbouring relation that exists between the different geometric components

that comprise it because, this is the information used for deciding whether or not to incorporate
an equation to the linear systems that are being computed. In the output of the qhull imple¬
mentation used it is possible to detect this type of relation between facets and between ridges
and facets. Each time the vertices comprising one of the hull's components are incorporated
into a system that results in a valid weight vector, the component is marked as used so that
it will not be selected for the computation of any other weight vector. This constitutes a first

step towards the control of the creation of redundant units in the hidden layer.

A final control mechanism is realised at the end of this process, whereby all the weight vectors
that have been computed are taken in pairs to produce subsets of them that axe sufficiently

parallel so that only one vector, ie. a group representative, is incorporated in the final network
architecture. Various examples, some of which are summarised in appendix E, were performed
to provide an upper limit that should be satisfied by the angle 6 computed from the weight

vectors W{,Wj that would render them sufficiently parallel and, as in most cases, it appeared
reasonable, in computational terms, to conclude that any two vectors were parallel enough
if ^ < f > this is limit used in GROPING for deciding on this matter. Finally those
weight vectors considered to be sufficiently parallel are subjected to an additional analysis
because it might be the case that, even though the angle between the two vectors renders them
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Figure 5.2: Example of sufficiently parallel and useful weight vectors

sufficiently parallel, as they are located in completely different regions of the input space and,

as each is generating useful discriminatory information in the region in which it is set, neither

should be eliminated from the final pool of weight vectors. This proximity criteria is realised

by computing the distance between the two weight vectors and checking whether it is larger
than (|)MAXIMUM-DISTANCE{train_sef); if the answer is positive then, even though
the angle between them is low, neither of them is extracted from the final network architecture.
The upper limit on the distance parameter also corresponds to an empirical boundary obtained

from a pool of experiments performed on different training sets using different values for this
measure. The training set and weight vectors displayed in figure 5.2 exemplify the problem;

vj\ and W2 are parallel enough but if either of them is eliminated, the input space ceases to be

correctly partitioned.

The elements of the initial maximal network architecture completely specified at the end of

this process axe:

(a) The units of the input and output layer;

(b) whether or not a hidden layer is necessary, if one is indeed required the number of hidden
units that should be included and;

(c) the complete set of the weight vectors associated with the connections of the input-

hidden layer. These weight vectors are all scaled to a unitary length. This additional
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processing ensures low values at the start of the training process which will guarantee a

properly behaved learning because, it greatly reduces the possibility of getting stuck in
a local minimum at the start of the training. The weighted sum of inputs, »

that is the sigmoid's input, will not have very large values given that the training set is
standardised and the weight vectors have unitary length.

Before proceeding with the next stage of the GROPING method it is necessary to calculate
the weight vectors of the connections of the hidden-output layer so that the maximal network
is completely specified. Given that, more than half of the architecture at this point has been
decided upon only taking into account the structure of the training set, to reduce the over¬

training phenomena, thereby easing the subsequent pruning procedure, the weight vectors of
the hidden-output layer were randomly initialised with values in the [—1.00,1.00] interval.

5.2.2 Evolving-pruning the network of interest

Even though, all the steps depicted in figure 5.1 play a relevant and necessary role in the task
of achieving an adequate multi-layer perceptron network within the framework of pruning-

generative learning, in the literature reviewed the discussions regarding this type of learning
are restricted to the pruning operation because, most of them assume that the learning begins
with an already available maximal network architecture.

This restricted view of what constitutes pruning-generative learning should be revised because,

the task of building the initial maximal architecture is equally, and probably harder, than
the operation of trimming, reducing its size. Nevertheless, in the context of the GROPING

algorithm, the activities that perform the pruning task have been labeled as the learning

component of the complete design process so as to comply with the general, although incorrect

view^ associated with the type of solution that is being proposed.

The diagram in figure 5.3 contains the sequence of pertinent processing involved. The algorithm
is controlled by a main loop that consists of training a particular architecture until it achieves

complete recognition of the training set subject to an allowed error limit. At the end of this

process, the output of the hidden units is computed using the final set of weight values generated
in the training step. These vectors become the input to a principal component analysis, the

operation that has been incorporated for deciding on the network's superfluous hidden units.

Subsequently the units found to be redundant are eliminated and, the task of learning to

recognise the training set is re-initiated but, with the new reduced network architecture. The

process stops the moment the network being trained fails to recognise the complete training
set after it has been working on it for a maximum number of iterations. Details of each of
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|
Figure 5.3: Flow chart of learning-pruning component

these major tasks sire provided in the ensuing discussion.

Training a particular network architecture

For the final adjustment of the weights of the connections in the network architecture un¬

der construction, the GROPING algorithm includes one of the existing supervised learning

algorithms that have been developed for training multi-layer perceptron networks.
4

The implementation is based on an algorithm described in [Riedmiller &; Braun 93]. It is the
Resilient backpropagation, a local adaptive learning scheme, performing supervised batch

learning in multi-layer perceptrons, designed to overcome the difficulties found in many applic¬
ations when using this network model and the well-known learning algorithm, backpropagation.
The implementation used in GROPING corresponds to the one found in the network simu¬

lator rbp developed by Donald Tveter [1996] which can be retrieved from the website:

http://www.mcs.com/~drt/home.html .

In the context of a generative learning algorithm the execution of rprop produces a network
architecture that captures the input-output mapping of all the elements in the training set. As
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training proceeds two errors are registered, the one associated-with the training set and, the
one associated with the validation set, this last corresponds to the information employed to

control the over-training phenomena.

The training process halts for one of two reasons:

(1) the network architecture has completely captured the input-output mapping of the train¬

ing set.

(2) amaximum number of iterations have been executed but it is not possible to capture the

input-output mapping of the training set with the present network architecture. Given
that this specific operation is taking place within a generative-pruning process, when this

situation is encountered it is possible to conclude that a complete learning is not possible
because the architecture is not large enough, that is, it does not have enough hidden
units to deal with the task.

If the training process halts because all the patterns have been completely recognised, it is
reasonable to assume that the network architecture is still too large and can be further reduced.
As the pruning task is achieved by analysing the outputs of the hidden units, the last step of |

the training procedure consists in presenting ail the training patterns to the final architecture
that rprop has computed, registering the output of all the hidden units when the network

is presented with each of them. This operation produces a set of P (size of the training set)
H-dimensional (H number of hidden units in the present architecture) vectors which will be

subsequently used in the principal component analysis process to decide how many of those

units can be considered to be superfluous and therefore pruned from the overall architecture.

If the learning is stopped because it has been operating for the maximum number of iterations
and has not yet achieved a correct classification of all the elements of the training set, in

the GROPING context it provides reasons to conclude that rprop is trying to train an

architecture that is not large enough to deal with the present application. The main reason

for reaching this conclusion rests in the fact that rprop has arrived at the upper limit of the

number of iterations. This upper limit, set at 5000 iterations, was defined following the results
obtained with a set of the experiments performed in this research.

It corresponds to a study that was realised to evaluate the behaviour shown by the training pro¬

cess when operating on network architectures built applying the geometric analysis described
in section 5.2.1. Each network was construed to capture the mapping of one of 28 artificial

datasets generated using the DGP-2 software, developed by Powell Benedict, available at the
website: http: //www. cogs. susx. ac. uk/users/christ/UCI_repository/dgp-2 .
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set-id max-feature-value range percentage

1 2 1 72
2 2 1 67
3 100 15 70
4 100 10 80
5 4 0.5 90
6 1 0.6 75
7 1 0.6 60
8 1 0.1 67
9 38 5.7 80

10 4 1.2 65
11 2 1 50
12 9 1.8 50
13 9 1.8 50
14 2 0.2 80

15 10 1 85
16 10 1 85
17 5 0.4 66
18 1.1650 0.1398 98
19 0.0931 0.014 18
20 150.0254 19.5033 35
21 607.8 81.8178 24
22 1.1650 0.1398 96
23 90.23 6.3161 81
24 0.0529 0.0069 67
25 31670048 2.5336e+06 86
26 4.4602 0.0892 81
27 95.56 13.3784 95
28 67.8865 18.6939 38.35

Table 5.1: Main properties of sets used in hypothesis testing

The selection of the sample was based on the need to generate a sufficiently large one that

would allow a sound statistical inference process, having a manageable degree of complexity

and, corresponding to a group of problems for which the multi-layer perceptron model could

be considered a legitimate representation form. The characteristics common to all the sets are:

(1) the dimensionality and size. All are subsets of 200 points, extracted from the 2-dimension
continuous space.

(2) All the datasets are examples of a boolean type classification task. This means that the

expected output associated with each input instance, corresponds to a one dimension

binary vector that indicates if the instance is positive or negative, i.e. whether or not, it
is an example of the target concept underlying the dataset to which the instance belongs.

The main properties of DGP-2, particular to each set, are presented in table 5.1. Column one is

a unique number used for identifying each of the sets. Column two is the max_feature_value and
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) (b)
Figure 5.4: Form of two problem domains: (a) dataset 12, (b) dataset 23

it is a parameter that tells DGP-2 which is the maximum value that might be assigned to any of

the features of the dataset, all of which will be generated in the range [0,max.feature .value].
The contents of the third column, i.e. the range, specifies a range around the centroids, within
which instances will be positive. This range along with percentage (number of positive instances

requested), determines the standard deviation value in the normal distribution function. The

fourth column contains the values assigned to the percentage parameter in each of the datasets.

Varying these two parameters it is possible to produce data that will be easier(harder) to process

with a network. A larger range with respect to maxJeature.value and a greater number of
centroids induces a more complex architecture because, the task of deciding if an element is

positive or negative becomes more ambiguous.

Figure 5.4 shows the manner in which the points of two of the artificial datasets generated for
this particular analysis are positioned. Plot 5.4.a corresponds to the training patterns of the
data included in set 12 and, plot 5.4.b shows those that comprise the training component of
set 23. The organisation of the points included in dataset 12 induced a harder training task
because the boundaries between the positive and negative instances are less defined, something
that is evident in the results exhibited in table 5.2. On the other hand, it was relatively easy

to train a network to model the form of dataset 23, something that is not surprising given the
clear delimitation there is between its positive and negative instances.

The choice of approach was made considering that at this point of the research, the only means

to reach reliable conclusions concerning a new method of network initialisation, was through a

procedure of experimental investigation. To this end, 30 training processes were performed on

each of the problems built with DGP-2. In all the problems, each of the training processes was

realised on a network architecture randomly initialised in the interval [—1.00,1.00]. The size
of the network complied with the size which, according to the geometric analysis, was needed
to solve the task represented by the training set being processed.
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set-id percent classified at number of iterations percent growth-level
erations 500 1000 5000 10000 15000 500-1000 1000-5000 5000-10000 10000-15000

1 87 92 96 97 97 5 4 1 0
2 100 100 100 100 100 0 0 0 0

3 89 94 96 96 96 5 2 0 0
4 95 95 95 95 96 0 0 0 1

5 100 100 100 100 100 0 0 0 0

6 98 98 98 98 98 0 0 0 0

7 94 95 96 96 96 1 1 0 0

8 79 88 95 95 96 9 7 0 1

9 100 100 100 100 100 0 0 0 0
10 100 100 100 100 100 0 0 0 0
11 95 96 97 97 97 1 1 0 0

12 79 86 93 94 94 7 7 1 0
13 98 98 98 98 98 0 0 0 0

14 100 100 100 100 100 0 0 0 0

15 100 100 100 100 100 0 0 0 0

16 98 98 98 98 98 0 0 0 0

17 100 100 100 100 100 0 0 0 0

18 100 100 100 100 100 0 0 0 0
19 100 100 100 100 100 0 0 0 0

20 97 97 98 98 98 0 1 0 0

21 97 97 97 97 97 0 0 0 0

22 98 98 98 98 98 0 0 0 0

23 100 100 100 100 100 0 0 0 0
24 100 100 100 100 100 0 0 0 0
25 96 96 97 96 96 0 1 -1 0

26 100 100 100 100 100 0 0 0 0

27 98 98 98 98 98 0 0 0 0

28 92 94 94 94 94 2 0 0 0

Table 5.2: Results in hypothesis testing concerning number of iterations

The statistical inference used was the hypothesis testing method [Kleinbaum et al. 88]. It
was centered mainly on the minimum mean square error because being an average over

a reasonably large set, the central limit theorem holds. Hence, it was possible to perform a

process of statistical inference comparing the error achieved by a training process operating

on a network initialised with the geometric information against the error achieved by the

same training process, operating on the same network architecture but, with weights randomly
initialised. Appendix D contains a description of the analysis performed together with the
results achieved concerning the error measure which showed, overall, that the training process is

greatly improved when it is operating on the network initialised with the geometric information.
Given that what is being discussed here concerns the choice in the value assigned to the
maximum number of iterations, the contents of table 5.2 provide information supporting the

one employed in GROPING. Each of the rows in 5.2 corresponds to one of the datasets built
with DGP-2. The first five numbers in row i are the percentage of elements in the training
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set of example i, correctly classified by the training process at different stages of the learning

cycle, i.e. at 500, 1000, 5000, 10000 and 15000 iterations respectively. The other four columns
contain the difference between the percentage level achieved in two subsequent intervals. For

example, the values associated with the 10th dataset, indicate that the training set has been

completely recognised by iteration 500 therefore, between 500-1000, 1000-5000, 5000-10000,

10000-15000, there is no change in the portion of the training set correctly classified by the

learning algorithm. The number of zeroes on the last four columns of table 5.2 clearly show
that it is useless to proceed with a training process over 5000 iterations if the training set has

not been completely captured by the network at that stage. Furthermore, the training could

be stopped at 500 iterations, but as there are a few results that go over 500 iterations it was

finally decided to set the upper limit at 5000.

Pruning a trained network architecture

The main task in the pruning process is the analysis of the space spanned by the vectors of the

outputs of the hidden units registered at the end of the training process. Various additional

operations have to be executed in order to achieve a reasonable, reduced network architecture.

Algorithm 5 contains an overview of the main steps that constitute the complete task.

The analysis of the space spanned by the outputs of the hidden units is performed through
the computation of the eigenvalues and eigenvectors of the underlying covariance matrix; these
items are calculated using the same routines as the ones employed in the previous section for

reducing the input space to 3 dimensions. The number of redundant units is reflected in the

percentage of eigenvalues which are close to zero. Deciding what is meant by being redundant
or rather, close to zero, can be difficult when inspecting a set of numbers, most having a value
under 0.001. In principal component analysis, the issue of deciding the number of eigenvalues
which axe sufficiently close to zero, to render the associated dimensions non-informative, is in
itself an important topic of research [Jolliffe 86]. In GROPING the problem has been dealt
with in the following manner:

(1) count the number of zeroes to the right of the decimal point of the smallest eigenvalue,
set NumZero to this value.

(2) go through the list of ordered eigenvalues counting, for each of them, how many zeros

there are to the right of the decimal point. If it is equal to NumZero proceed to the next

eigenvalue in the list. If the number of zeros for this case is less than NumZero, consider
that the number of eigenvalues which have as many zeroes to the right of the decimal

point as the smallest of them, correspond to the number of redundant hidden units that
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Algorithm 5 NetworkPruning(OutputHidden, FinalWeights, MaxArchW, H, Numln, Nu-
mOut)
Require: OutputHidden {vectors of outputs of hidden units}
Require: FinalWeights {weight vectors of input-hidden layer registered at end of network
training}

Require: MaxArchW {weight vectors of maximal architecture}
Require: H, Numln, NumOut {number of hidden units, input dimension, output dimen¬
sion}

Outputs: ReducedNetworkArchitecture;
C 4— covariance{OutputHidden);
[RD] 4- eigen(C); {R eigenvectors; D eigenvalues of covariance matrix of hidden units
outputs}
for i = 1 to H do

T(i, 1) «- D(i,i);
end for{put eigenvalues into a one-dimension vector}
sT «— sort(T)\ {sort the eigenvalues in ascending order}
NumRedundant 4— SelectRedundant (sT);
select number of units to prune checking on eigenvalues stored in sT
for 2 = 1 to H do
for j — 1 to (Numln + 1) do
Ew(i,j) 4- FinalWeights((i — 1) * (Numln + 1) + j, 1);

end for
end for

INFOw 4- 0; {Temporary variable to store information on weight vectors}
for 2 = 1 to H do

INFOw{i, 1) 4- y/(Ew(i,:) * Ew(i,{compute length of final weights}
INFOw(i, 2) 4- i;

end for

TmpW 4— InfoW; InfoW 4- sort{TmpW)\ {sort the lengths in increasing order to select
largest weight vectors}
num 4- (H — NumRedundant);
for 2 = 1 to num do

NewPw(i,:) 4- MaxArchW(InfoW(i + num, 2),:);
end for

{select the weight vectors of initial maximal architecture they correspond to the heaviest
final weight vectors};
CreateFile(NewPw, num, NumOut)-, {create file of weight vectors for reduced architec¬
ture}
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can be extracted from the network architecture. In this context, redundancy is defined
in terms of the difference in the relative sizes of the eigenvalues, it is this information the
one that indicates which are the important dimensions.

The philosophy underlying the SelectRedundant () routine was defined to reduce the costs

of computing the final network architecture and, at the same time minimise the possibility of

taking away too many hidden units in one step. Once NumRedundant has been computed it
is necessary to select the weight vectors of the input-hidden layer of the new architecture. To

select the most convenient set of weight vectors, the ones calculated at the end of the training

process are sorted in increasing order according to their length. The information of the largest

weight vectors is subsequently employed to extract the ones that will be used, to initialise the

input-hidden layer of weights in the new reduced network architecture. This new set of weights
is extracted from the complete set of vectors that were used to initialise the maximal network.

The manner of proceeding in the generation of the reduced set of weight vectors, was defined
with the aim of taking advantage of the additional information produced during a network

training process, implicit in the weight vectors of the resulting architecture. Those with a

greater length, are associated with hidden units that have been more active in the overall

training process, therefore the original weight vector from which each has been derived is prob¬

ably relevant in the correct partitioning of the input space. There is no formal demonstration

that such is the case but, performing a pruning process without a careful selection of the weight
vectors usually produced lengthier training-pruning processes.

The weight vectors of the hidden-output layer in the reduced architecture are randomly gen¬

erated numbers in the [—1,1] interval.

5.2.3 Final network evaluation

During the execution of the preceding operation, it is possible to generate a file with information

concerning the evolution of the error measure during the various training processes that have
to be executed. There are two sets of such measures for each of the intermediate architectures

that had to be tuned, one corresponds to the error the network makes when presented with

the training set and, the other is the error computed when the input provided corresponds to
the elements of the validation set.

In order to produce a final network architecture that might be considered a good generaliser, the

complete set of errors computed for each of the networks trained during the evolving/pruning

process is analysed and, the architecture that produced the smallest error when processing the

problem's validation set is selected as the final version that will be included in the application
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of interest.

The choice is made to produce a good generalises This is certainly the case considering that
it is based on the error each network that has been trained makes when processing, what can
be considered to be novel data as the information subsumed in the validation set has not been

relevant in any way during the training phase of the network design process.

To check the reliability of this procedure, the error on the test set was also measured for all

the intermediate architectures and as, in both cases, the one producing the smallest error was

the same, when building GROPING, the final network evaluation is restricted to using the
error generated on the validation set.

5.3 Managing the weaknesses of the Multi-layer perceptron
model

The causes which make the task of creating a multi-layer perceptron network hard can be

summarised with the following statement: the problem of building an optimal network using the

multi-layer perceptron for a particular application is NP-complete, [Hertz et al. 91]. Many
of the inconveniences different authors have found with the model, and subsequently tried to

solve in various ways were discussed in chapter 2, therefore the material included in this section

simply describes the manner in which most of them have been dealt with in GROPING.

The main aim in this research has been to provide a learning algorithm that will improve

the design process of a network built using the components provided with the multi-layer

perceptron model. This has been achieved by reducing the amount of uncertainty related to

the selection of the values the different parameters of the model should take when applied to

a particular task. All the mechanisms defined to reduce this uncertainty were integrated in
the algorithm described in the foregoing section and, its effectiveness is shown in the results

depicted in chapter 6.

The different improvements to the network design process are summarised in the following list:

(1) the complexity measure which provides a reliable source of information for deciding on

the value of using the multi-layer perceptron for knowledge representation. It is the
case that its computation can be very costly for high dimension spaces but given the
kind of information obtained for some cases it might be reasonable to proceed with its
calculation.

(2) the initial maximal architecture which given the importance the hidden units have in the
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overall process constitutes a significant improvement. Also the possibility of assigning a

specific and appropriate set of values to certain of the weight vectors contained in that
initial network.

(3) the maximum number of iterations that have to be performed by the training process.

This maximum is a reasonable amount, as the results presented in table 5.2 show, given
that it was generated from the execution of a concise statistical method. Knowing there
is an adequate upper limit on the number of iterations over which a learning process

should extend, greatly simplifies the task of training a multi-layer perceptron network.

(4) regarding the training component of the network design method, the one included is

rprop, therefore there is no need to provide in advance values for the learning rate (77)
or the momentum term (/i) and, it is possible to affirm that the execution of the learning

algorithm is tailored to the application at hand which guarantees faster training.

(5) the mechanism used to control the over-fitting phenomenon, a common problem in

generative-pruning algorithms [Reed 93], given that they start operating on an initial
maximal architecture which means that the initial solution provided by the design pro¬

cess is over-trained. As it was possible with the geometric analysis to provide a maximal
network that solves the task of interest it was necessary to design a proper method
for reducing this over-trained structure. The manner in which the redundant units are

eliminated, together with the fact that the final network architecture finally selected,

corresponds to the one showing the smallest error when presented with the validation

set, are proper mechanisms to deal with the main causes of the over-fitting phenomenon,
because: (a) the improvement is in effect produced by reducing the network through the
elimination of units from the hidden layer and, (b) the selection of the final architecture
is performed using criteria based on data completely novel to the network, insofar as

the training process did not use the data in any way to update the weight values of the
different connections.

(6) the fact that the algorithm's processing is centered around a network that effectively solves
the problem of interest is an overall advantage because it is always easier to improve on

an existing large solution than to attempt on building an appropriate one from a minimal
available architecture which is concluded to be less than minimal given its inability to

correctly process the elements of the training set.

The overall gain achieved with the improvements sketched is the creation of a tool with which

it is possible to: (a) reliably decide on whether or not to employ the multi-layer perceptron;
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(b) in the affirmative case, investing an appropriate amount of computational effort create a

network which is a reasonable generaliser.

5.4 GROPING: its computational costs

To determine the computational costs involved in the process of building multi-layer per-

ceptron networks using the method defined, given its complexity, it is convenient to proceed

by evaluating the costs incurred in executing each of its main steps, outlined in figure 5.1,

given that GROPING will inherit the costs of the most expensive of them. This is applic¬
able because the analysis realised corresponds to the worst case complexity as specified by
the order-of-magnitude notation. Thus, the algorithm could presumably run for much less on

certain inputs, perhaps on most inputs but, it is certain that it will never run for more than

say, k times the expression governing the order associated to the algorithm being described

[Harel 92].

Of the four main tasks mentioned in the process chart shown in figure 5.1 it is clear, that for

an input of size N, the computational burden is shared between the second and third of them

which correspond, respectively, to the construction of the maximal network architecture and,

the training/pruning task. The other two are straightforward input-output operations linear,

O(N), in the size of the input sets and, as will be made clear in the ensuing discussion, do
not come to bear in the computational costs incurred in executing GROPING because other
tasks ale more computationally intensive.

The hierarchical diagrams contained in figures 5.5 and 5.6, show respectively, the most im¬

portant sub-processes that comprise the tasks of building the maximal network architecture

and, pruning/evolving the network. The analysis of the computational costs incurred when

executing either of them, described in the following subsections, is organised according to the
contents of those diagrams.

5.4.1 Costs involved in building the maximal architecture

The input to this task is the same type of training set provided as input to a conventional

supervised learning algorithm to train a multi-layer perceptron network. This means, that it
has the form described in equations 5.1 and 5.2:

Tp = {(xl,o1),(x2,o2),...,(x,,o'),...,(xp,op))}

where each pair (rr',01) is comprised of an input pattern xl € RN and its expected output ol.

To maintain a consistent notation throughout, when referring to a linear algorithm, the term
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will appear as O(P) instead of the conventional O(N) because P is the size of the training

set and, N is already being used to denote the dimension of the input vectors comprising the

training set; ol corresponds to a C-dimension binary pattern, assuming that the classification

task, of which Tp is a sample, involves C classes.

building 'maximal' network

Figure 5.5: hierarchical diagram: building maximal architecture

Figure 5.5 shows the various subprocesses that comprise the task of building the maximal
network. Given that the analysis aims at resolving the costs of the worst-case, in the context

of this particular task, it can be calculated by selecting the highest cost incurred by any of the

sibling subprocesses depicted in its process diagram. These costs correspond to:

(1) Data standardisation: this subprocess only involves matrix manipulations. The compu¬

tation of the mean and covariance of the dataset X = {i1,!2,... ,xp} according to the

expressions specified in equations 5.4, 5.5; the subsequent calculation of the eigenvectors,

eigenvalues of the covariance matrix and, the transformation of all the input patterns.

The costs involved in each of the operations runs as follows:

Calculate mean(X), covariance(X): 0(P2),
Compute eigenvectors, eigenvalues of N-dimension positive, symmetric matrix: 0(N3)
Data transformation: subtracting mean; rotating, scaling using eigenvectors: 0(P N2)

Looking at the costs associated with each of the operations, it is clear that this subprocess
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is 0(P2).

(2) Data projection: this is also a matrix manipulation operation. It involves the transform¬

ation, projection, of all the input patterns in X to the 3-dimension space spanned by the
three strongest eigenvectors of the data's covariance matrix. It is 0(P N2).

(3) Delaunay triangulation: this operation consists of a call to the convex hull implementation
described in [Barber et al. 95] which computes the Delaunay triangulation of a set of 3-
dimension points in 0(P log(P)). A detailed discussion on the computational costs of

this implementation can be found in [Barber et al. 95].

(4) Network generation: the main structure that is input to this subprocess is the set of facets
of the Delaunay triangulation computed in the previous step and, as it consists of a main

loop that checks, whether each of the facets contained therein satisfy certain conditions,
the costs involved in its execution are dominated by its size. For each facet F, in the

worst case, this algorithm builds and solves a linear system of N + 1 equations using
a method of QR decomposition. The implementation used for computing the Delaunay

triangulation in the previous step, consists of a main loop over the set of facets it builds

therefore, given that it is 0(P log(P)), it is possible to assume, in the worst case, that
the size of the set of facets is approximately the same as the computational costs incurred

in the execution of the geometric operation. Thus, the generation of the initial network
has similar computational costs because: (a) the execution of the operation for solving
the (N + 1) linear systems that are created, is just 0{{N + l)3) and, as the dimension of
the input patterns is generally much smellier than the size of the complete set it can be
taken as a constant term; (b) the main loop in this subprocess is over the set of facets
created by the Delaunay triangulation. Therefore a,b guarantee that this subprocess is

0(P log(P)).

The previous analysis describes the first and third subprocesses as the ones involving the highest
amount of computation in the global task that is being considered at this point. Of these two,

the first one being 0(P2) is the one whose complexity governs that of the whole operation.

Therefore, it is possible to conclude that the task of building the maximal network architecture
is 0(P2).

5.4.2 Costs involved in pruning/evolving the network

This task, as the flow chart contained in figure 5.3 shows, is an iterative process over the
number of intermediate network architectures that have to be built throughout. Assuming

H units in the hidden layer of the initial maximal network, the worst case in this algorithm
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would be if the architecture were reduced on a unitary basis, i.e. each time the number of

redundant units is calculated for a particular network instance, only one unit is pruned and,

the resulting architecture at the end of the reduction procedure has no hidden layer. Thus, the

overall costs of executing one instance of the iterative process multiplied by H will correspond

to the complexity of the pruning/evolving task.
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Figure 5.6: hierarchical diagram: network pruning/evolving

The hierarchy of subprocesses in figure 5.6 which, correspond to the ones executed to complete
one instance of the iterative loop in the pruning/evolving task, can be used as a framework
to estimate the overall costs it involves. The complexity of each of them is estimated in the

following way:

(1) Rpropagation (rprop): as the main aim of this subprocess is to achieve complete recog¬

nition of the training set, with the architecture it is updating, it seems natural to define
its computational complexity in terms of the size of this structure. Assuming that W

represents the size of the architecture, measured by counting the number of connections

and, that Numlter corresponds to the maximum number of iterations rprop may per¬

form updating the weight values of those connections, its complexity can be explained by

considering the main steps that comprise it which are depicted in algorithm 6. Executing
the main set of steps is O(W). As they are contained in a while loop that runs over the
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total training set, it is possible to conclude that rprop is 0(P x W). In the worst-case,

Numlter would be held at a constant value of 5000 therefore, it only influences the con¬

stant term implicit in the O-notation and does not affect the overall complexity of this

step.

Algorithm 6 Rpropagation
i <— 0;
while (i < Numlter ->(train(W))) do
if ->(train(W)) then
must update network
compute d(ErrorMeasure)-,
compute AWij-, W™w <— Wij + AWij-, {both steps are 0(2*W)}

end if

Update(Error)-, i 4- +;
end while {loop over number of iterations}

(2) Build output of hidden units: this is achieved by presenting the training set to the
network and, storing the output computed by each of the units in the hidden layer. It is

an O(P x W) operation.

(3) Calculate redundant units: the input to this operation is a P x H structure. As the

process consists in performing a principal component analysis on P elements of an H-

dimension space, i.e. the hu.vectors, the costs involved axe:

Calculate covariance(hu.vectors): 0(P2 x H),

Compute eigenvalues of H-dimension positive, symmetric matrix: O(H3)
Considering the worst-case scenario, the number of hidden units and the size of the

training set are approximately the same therefore, the complexity of this operation is

0(P3).

(4) Reduce network architecture: two network instances are used at this stage: MaxW
the weight vectors of the initial maximal architecture, Wend the weight vectors of the
network generated by rprop. The complexity of this task is dominated by the sorting

operation of the weight vectors comprising Wend, based on the size of each of them, i.e.
the vector's length. H weight vectors must be sorted, therefore the complexity of this
task is O(H log(H)). The second part of this operation which consists in selecting the

(H — NumRedundantunits) weight vectors from MaxW which have the largest lengths
in Wendi is a trivial operation in computational terms, given the information available.

There are two important complexity expressions in the steps of the pruning task, 0(P3),
0(P x W). Given that, the network used in the worst case has only one hidden layer, taking
N as the number of inputs and, C as the number of outputs, the term W can be rewritten and,
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subsequently replaced in the 0{P x W) expression through the following set of substitutions:
W = (TV + 1) x H + {H + 1) x C

0(P x W) = 0(P x (H x (N + C + 1) + C))

0(P x (H x (N + C + 1) + C)) ~ 0(P xH xN)

considering small-valued C even in the worst case because, it is associated with the number
of classes of a classification task. Thus the complexity term O(P x W) has been reduced to

O(P x H x N) which eases the comparison against the 0(P3) complexity. In a worst-case

scenario it is also viable to assume, H » N and, H ~ P, therefore the complexity of the

pruning task has an 0(P3) complexity.

5.4.3 Summing up GROPING's complexity

Given that the fined operation of the complete design method involves selecting the best gen¬

eralise^ its complexity can be measured assuming that, H network architectures were built.
Given that, a minimum error was calculated whilst training each of them during the pruning

task, the selection procedure has a 0(H) complexity because, it simply involves finding the
smallest of these errors. The architecture associated with that smallest error will be the best

generaliser.

The analysis throughout this section has produced three complexity measures, one for each of
GROPING's main tasks:

Building maximal architecture: 0(P log(P))

Pruning/evolving final network: 0(P3)
Selecting best generaliser: 0(H)

and, under the worst-case assumptions, given that the function f(x) = x3 grows at a much
faster rate than g(x) = x log(x), it is reasonable to conclude that GROPING is an 0(P3)
algorithm.

5.5 Conclusions

The material presented in this chapter reports a pruning generative learning algorithm that

provides a reliable alternative for designing multi-layer perceptron networks. Its main advant¬

age rests in the coherent manner the different parameters involved in the design process are

manipulated. For the most part they need not be specified by the application developer be¬
cause they are instantiated and appropriately updated during execution. The manner in which
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the instantiation proceeds is absolutely dependent on the attributes shown by the underlying

problem domain. This information is extracted through the application of two types of meth¬
ods: a) Generation of a geometric construct, i.e. the Delaunay triangulation of the training

set which provides information concerning the proximity of the points included therein; b)

principal component analysis, which calculates its most important dimensions.

The reasons for the effectiveness of the method defined are provided by examining the manner

in which the multi-layer perceptron model functions. Its operating mode is of a geometric

nature given that it processes the inputs provided to it by assigning them to regions of the

problem domain; regions which result from the hidden units comprising the network architec¬
ture. Therefore the best way to decide on how many of these units are needed and, on the

form the weight vectors associated to each of them should have, is by analysing the geometric

nature of the domain, and GROPING is based on one such method.

Most of the high computational costs which might be incurred when trying to generate the

type of information that GROPING employs have been dealt with reducing the complexity of

its application. Nevertheless being a 0(P3) algorithm means it is particularly sensitive to the

size of the training set but, as it is a worst-case result, implying a polynomial-time algorithm
it is possible to conclude that GROPING is a reasonable alternative and, that much can be

gained by its application.



Chapter 6

Benchmarking and experimental
results

6.1 Introduction

Generating the optimal network architecture for a particular application is a NP-complete

problem. For this reason, when presenting a new learning algorithm, the best way of showing its

effectiveness, is by comparing its performance against that of other existing learning algorithms
which have been defined to operate on the same type of network model. To this end it is

necessary to clearly state the objects involved and the set of assumptions underlying the solution

proposed because there are many variants in the context of generative supervised learning

algorithms which have an important influence on the interpretation of the results associated
with a particular training process.

For example, the characteristics of the input and output domains associated with the mapping

that wants to be reflected with a network architecture or, the type of measure the learning

algorithm uses during a training process to decide on whether the network it is manipulating
has achieved a reasonable degree of recognition. In the first case it is fundamental to clearly
describe the domains that are supported by the type of network model and learning algorithm
defined to ensure a level of success at the start of the development process of a network

application and, also to provide an initial mechanism for deciding on the appropriateness of

using the network model for the application of interest. In relation to the measure used by
the algorithm during training, given that different types might be used and also that it might
be computed in relation to different datasets, eg. the square error of the training set or the

cross-entropy [Bishop 95] of the test set, it is necessary to depict the type ofmeasure computed,
what type of data is provided as input and how it affects the decision process underlying the
whole training task.

132
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The assumptions underlying GROPING have been described in Chapter 5 as it is comprised
of a detailed discussion of the whole algorithm. This means it is not necessary to elaborate

on them in this chapter but, some of them will be reviewed when discussing the difference in

performance shown by a network design process executed using GROPING, when compared

against the performance registered at the time of applying other learning algorithms to the same

problem. To ensure an unbiased and reliable comparison, it is necessary to describe a framework

that will ensure that the set of conditions influencing a network training process are properly

controlled otherwise the realisation of a proper evaluation becomes difficult. To this end, in

the area of neural networks different researchers have developed benchmarks which correspond

to a series of problems that comply to a particular format and organisation together with a

set of error measures. These, in conjunction with the complexity of the network architecture

generated by a learning algorithm, permit the evaluation as to which of them is the most

adequate.

The present chapter is comprised of the following parts: Section 6.2 includes a description of
the different existing benchmarks considered, together with an enumeration of their advant¬

ages and/or disadvantages and, a set of arguments in support of the framework pursued in this

study. Section 6.3 provides an outline of the problems finally selected for evaluating GROP¬
ING. Section 6.4 contains a description and discussion of the results obtained together with
a comparison of its performance against that of other learning algorithms applied to the same

set of problems. Section 6.5 summarises the main points of the chapter.

6.2 Benchmarks

In [Prechelt 94], a quantitative study of experimental evaluations of neural network learning al¬

gorithms is described, showing an interesting and not very satisfactory state of affairs in relation
to the percentage of publications produced in the research area which include a proper, detailed
and varied experimental evaluation of the learning algorithm described. In the conclusions it
is observed that, in the material published in some of the most important journals in neural

networks during the period 1993-1994, 29% of them did not include one learning example, only

8% of the articles analysed presented results for more than one problem and, one third of the

complete set of publications considered did not present any quantitative comparison with a

previously known algorithm.

This is probably the main reason for the efforts invested in the last couple of years aimed
at developing a suitable benchmark environment because, it is clear that this is the most

effective way of performing a proper evaluation of any learning algorithm, given that there
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are no formal tools available to compare one against another. Due to the possibilities of
worldwide communication provided by present technology, eg. the World Wide Web, there
is an enormous amount of data associated with different types of problems that can be used

for designing the experiments to perform the evaluation task. The real difficulty is reflected
in the set of conditions under which these experiments are performed because it is precisely,

through their proper manipulation that many different results might be achieved, and this

greatly restricts the possibility of comparing different existing alternatives.

The most important source of information on the WWW concerned with benchmarks for

learning algorithms which might be applied to neural networks is the site:

http://tnreipd.ira.uka.de/"prech«It/HIPS.bench.htal

which, at least at this time, seems to be the only one of its type available. From it, there is

access to three types of sources that might be useful in the endevour of executing a benchmark:

(1) The main neural network benchmarking data collections which correspond to repositories
of data specifically tailored for evaluating learning theories not restricted to the network

model. There are five main sources of this type:

(a) Carnegie-Mellon university benchmark.

(b) UCI machine learning databases archive.

(c) Probenl (Germany / USA).

(d) Statlog data.

(e) ELENA (Enhanced Learning for Evolutive Neural Architectures) repository.

(2) DELVE (Data for Evaluating Learning in Valid Experiments): theoretically, it is an

environment comprising a collection of datasets from many sources, which provides a set

of conditions that will ease the process of using the data to assess the performance of
methods for learning relationships from the data. It also includes a repository for the
results of such assessments. The project is developed by G. Hinton and E. Rasmussen
at the university of Toronto. It seems to provide a good set of guidelines and software
facilities to ensure the proper execution of the evaluation of a learning algorithm. Its
main problem is rooted in the fact that its success is very dependent on the use the

research community in general makes of it, as its effectiveness can only be measured in

terms of the number of datasets and learning methods that different researchers might

provide and which might be accessed by other members of the community. At the time of
developing this research, only the first release of the tool was available and, considering
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the difficulties involved in manipulating an experimental tool in addition to the set of

difficulties always associated with the final stages of a research project, it was ultimately
decided not to make use of this environment, nevertheless as a continuation of the research

described herein it seems to have great possibilities.

(3) This group includes all the data sources which have been created in other areas such as

Statistics which also require repositories of information to evaluate their methods. In

addition, it comprises collections of sets of different problems that have been created

by different research groups all over the world. The main problem with this type of
source is that generally the data requires quite a lot of pre-processing before it might
be considered a proper dataset for the task of training a neural network and, registered
results generated by other learning algorithms against which to compare the results of

your alternative are nonexistent. Additionally, given the number of data sets available
which have been adequately processed and prepared for use in the evaluation of a neural

network learning algorithm, there was no immediate need to download any of the sets

included in this group.

From the previous categorisation it is clear that the type of repositories, that could be con¬

sidered relevant to this study are those that comprise the first group. It is comprised of 5

collections of datasets, not all disjoint and some providing a better framework for evaluating

the performance of a particular learning algorithm and, comparing it against that of other

algorithms of the same type. The basic reason for considering that any two collections are

not completely disjoint is because both have some datasets in common, ie. they both include

samples associated to the same problem. The specific cause that renders them particularly

useful for the study described herein, is that many of them have been used by other researchers

for evaluating their learning algorithms. This means they provide an appropriate context for

analysing the performance achieved with a particular network design algorithm as there are

other results against which to measure its performance level.

The datasets of interest all correspond to classification tasks which, according to many of the

existing publications dealing with the benchmark problem,[Aviles-Cruz et al. 95], [Prechelt 94],

[Rasmussen et al. 96], [Prechelt 96], can be categorised on the basis of the means employed
to generate the associated samples. Even though each offers a particular typification of the
datasets that are available for building a benchmark, they generally agree on the existence of
three basic types which, according to [Prechelt 96] might be defined in the following way:

(1) Artificial data: corresponds to data that has been artificially generated , ie. syn¬

thetically, based on some simple logic or arithmetic formula, such is the case of the
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encoder/decoder problem or the datasets of the parity problem. The advantage of this
kind of data is that its behaviour is very well understood therefore it facilitates the pro¬

cess of labeling the learning algorithm under consideration as it being appropriate or not,
for data complying with certain characteristics.

(2) Realistic data: this also corresponds to synthetic data, but data generated by a model
with properties similar to those that can be found in real problems. At the present

time there are only three procedures available for generating data that might be termed

realistic, [Prechelt 94]: a.- a procedure that uses a complex and realistic mathematical
model of a physical system such as robot kinematics; b.- the generation of data by chaotic
mathematical problems such as the Mackey-Glass equation [M.C. Mackey 77]; and, c.-
data produced by stochastic processes such as mixture of Gaussian random variables.

Together with the artificial data, the realistic type offers the possibility of characterising
the kind of problem for which a learning algorithm would be particularly appropriate

because the sources of the data are clearly understood. Given that this type of data

generators allows to build samples requiring a network architecture for which it makes
sense to measure its generalisation capacity it is considered to be comprised of a more

interesting type of datasets for measuring the performance of a learning algorithm.

(3) Real Data: is that data that represents actual observations of phenomena in the physical
world. Such data tends to contain some amount of error and noise, also in many cases it

is not completely known, ie. it is not well specified. The main disadvantage is the degree
of uncertainty. If it is too high it renders the multi-layer perceptron network model an

impractical tool for building a solution to the problem because, a considerable amount

of reliable information is required, so that it might be possible to design an appropriate
architecture. Nevertheless, in many cases it is properly specified and, given that for them
the multi-layer perceptron model is a very appropriate alternative to build an application,

they constitute the most important type of datasets at the time of defining a benchmark.

All the data collections mentioned in the benchmarking webpage, at least those considered
relevant in this research, are comprised of the three types of data. The most applicable of

them for evaluating a learning algorithm for multi-layer perceptron networks is the Probenl

repository because, it is specifically designed for the analysis of this type of learning theory,

therefore it includes the most adequate set of guidelines that, if correctly pursued, result in
a proper evaluation. In addition, it provides a set of results obtained with another learning

algorithm for multi-layer perceptron networks against which to compare the performance level
of the GROPING learning algorithm. Details of the Probenl repository will be described

through the rest of the chapter as the results produced in this research are based on the
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guidelines described therein. The rest of this section contains an outline of each of the relevant

collections.

6.2.1 Carnegie-Mellon University (CMU) repository

The neural network benchmark contained in this repository can be accessed through two sites:

a.- The main directory of the CMU Artificial Intelligence re pository

http://www.c>.emu.edu/af «/cs.emu.adu/proj«ct/ai-rapository/ai/html/intro.html

b.- Its own http address:

http://www-cgi.cs.emu.edu/af»/cs.emu.edu/projact/ai-rapoaitory/ai/html/intro.html

The main CMU directory provides information on many important topics of Artificial Intelli¬

gence apart from neural networks. Browsing through the contents of all the subdirectories it
contains, shown in table 6.1, it is reasonable to conclude that it constitutes an ideal starting

point in the search for material on Artificial Intelligence. The fact that it does not provide
some general benchmark, a set of problems and, an analysis on the behaviour exhibited by
the solutions to these problems built using different AI tools, each designed on the basis of
a particular AI paradigm, eg. production rules and neural networks, could be considered a

drawback but, being set on a dynamic media like the WWW it is hoped that such a study

might be included in the short term.

The CMU neural network site is organised so that there are two files for each of the problems

comprising it: a text file describing the problem and showing tables of results generated with
different multi-layer perceptrons architectures and, the proper data file that in three of the

examples correspond to programs developed in C, which can be run to generate instances of
the associated problem. There is no homogeneity in relation to the tests performed on each

of the datasets, eg. for each problem the weights are initialised with random values in an

interval that varies from problem to problem for no particular reason, some include results

obtained by training the network with cascade correlation while others use backpropagation.
Even though this deficiency in uniformity across the handling of the different problems could
render this benchmark useless, the fact that they all include the same performance measure, ie.

the percentage of correctly classified patterns from the training and test sets and, that there
are a couple of interesting real-world problems, resulted in supporting a decision in favour of

including part of its results in this study. The datasets stored are:

(1) Nettalk, it is an updated and corrected version of the data used by Sejnowski and Rosen¬

berg in their study of speech generation using a neural network

[Sejnowski & Rosenberg 87]. It requires a considerable amount of pre-processing before a
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top level in CMU repository
directory_name general description

areas AI software packages
dod documentation relating to FTP repositories
lang AI programming languages
util compression/archiving software

areas directory
directory_name general description

Agents Agent Architectures
alife Artificial Life and Complex Adaptive Systems
anneal Simulated Annealing
areas AI Newsgroup Archives

blackbrd Blackboard Architectures
bookcode Machine readable parts of various AI textbooks.

ca Cellular Automata
classics Classical AI Programs
constrnt Constraint Processing

dai Distributed AI
discover Machine Discovery and Data-Mining
doc Documentation and other Al-related notes.

edu Educational Tools

expert Expert Systems and Production Systems
faq AI: FAQ postings for comp.ai
fuzzy Fuzzy Logic
games Game Playing
genetic Genetic Algorithms and Genetic Programming
icot IFS: ICOT Free Software
kr Knowledge Representation

learning Machine Learning
misc Miscellaneous Unclassified AI Packages
music Music
neural Neural Networks, Connectionist and Neural Systems
nip Natural Language Processing (NLU, NLG, Parsing,...)

planning Planning and Plan Recognition
reasonng Reasoning
robotics Robotics
search Search

speech Speech Recognition and Synthesis
testbeds Testbeds, Simulators, and Micro-Worlds for

Planning, Agents, and Robotics
virtual Virtual Reality
vision Computer Vision

Table 6.1: CMU Artificial Intelligence Repository
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network can be trained to deal with it. Although the accompanying document describes
the dataset, ie. the type/size of the inputs and outputs, and includes a detailed discus¬
sion on the processing the data has to undergo so that, it might be in a form that can
be provided as input to a multi-layer perceptron network, given that not many results

were registered and that the pre-processing needs to be completely implemented because

in the repository only the raw data is available, it was decided not to include it as part

of the benchmark for evaluating GROPING.

(2) Parity, is an example of an artificial benchmark problem. The task is to train a network
to produce the sum, mod 2, of N binary inputs, otherwise known as computing the odd

parity function. It is the XOR problem extended to an N-dimensional domain. Having
a binary input domain means that all its elements can be clearly specified therefore the

generalisation capacity of the network is not an essential matter, even though many stud¬
ies have been based on the analysis of the minimum requirements network architectures

designed for this task must satisfy, [Tesauro & Janssens 88]. Given the reasons discussed
in section 2.3 it did not seem useful to include this particular set in the benchmark for

assessing GROPING.

(3) Protein, is the data set contributed to the benchmark collection by Terry Sejnowski
who developed it, in collaboration with Ning Qian, to study the effectiveness of us¬

ing a neural network to predict the secondary structure of certain globular protein,

[Sejnowski &: Qian 88]. As it has the same problem the Nettalk data has regarding the
extensive preprocessing required before it might be possible to build an application based
on the multi-layer perceptron model, it was not considered useful in this research.

(4) Sonar, corresponds to another dataset donated by Sejnowski, used in a study he realised

in conjunction with Gorman, [1988b], to determine the effectiveness of developing neural
network applications for the task of classifying sonar signals. This is one of the real-
world problems included in the GROPING benchmark, therefore further details on its

characteristics will be provided in the following section.

(5) Vowel, corresponds to the other real-world problem in the CMU neural benchmark that
was incorporated into the GROPING benchmark. It was donated to Carnegie-Mellon

by Tony Robinson and, corresponds to data subtracted from a study on the possibility
of achieving speaker independent recognition of the eleven steady state vowels of British

English using a specified training set built using a number of measurements which are

described in [Robinson 89]. Further details are provided in the next section.

(6) Two-spirals, XOR, both two very well-known artificial problems which have already

being discussed at length in previous chapters.
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This particular repository although not very extensive, does include a reasonable variety of

problems and, as the performance measures registered for all cases is already computed by
the network software developed, a positive use can be made of some of its contents. Finally

it is worth noting that as an extension to the repository it includes a link to the Probenl

benchmark, the one providing the framework on which the results generated in this study are

based.

6.2.2 ELENA Project

This repository can be accessed at:

http://tnro.die*.ucl.ac.ba/naural-neta/ELENA/ELENA.htal

The datasets contained in it are the result of a project developed with the joint effort of dif¬

ferent members of the European Community. Its principal aim was the evaluation of various

neural network models designed to perform classification tasks. The choice of the databases
was guided by various parameters, such as availability of published results concerning conven¬

tional classification algorithms, size of the database, number of attributes, number of classes,

overlapping between classes and non-linearities of the borders.

6.2.3 Probenl - Set of neural network benchmark problems and rules

The website of this benchmark software and data source is:

http://mroipd.ira.uka.de/'prechelt/NIPS_b«nch.html

It consists mainly of a collection of problems designed to build neural network applications
for two types of tasks: classification and function approximation. It contains 15 datasets
from 12 different domains. As GROPING's applicability is restricted to the development of

classification networks only the datasets associated with this type of task were subtracted from

the site and used to generate the results described in a subsequent section.

Together with the datasets, Probenl includes a set of rules regarding the manner a bench¬
mark should be documented and conducted. These guidelines touch on the following objects
associated to any benchmark procedure:

(1) Type of training, test set that should be used.

(2) Input and output representations of the datasets.

(3) Training algorithm.

(4) Error measures.

(5) Procedure for building the network architectures.

(6) Method for registering training and test results.



CHAPTER 6. BENCHMARKING AND EXPERIMENTAL RESULTS 141

As it is considered a very complete proposal of guidelines, the analysis performed in this research
is partly based on it. Details on the exact structure of the elements mentioned, will be provided
in the section that includes a detailed description of the benchmark procedure followed.

6.2.4 Statlog data

The site of the repository is:

ftp://ftp.ncc.up.pt/pub/Statlog/.

It is the outcome of the joint effort of various researchers, aimed at the development of proper
devices for comparing the performance of different learning algorithms and statistical tools. It

provides quite a large number of results which include a great variety of learning and statistical
methods. A detailed description of the complete project which resulted in the Statlog repository
cam be found in [Michie et al. 94]. Even though the published results include more than twenty

datasets, only the following are available for public use:

(a) Australian credit.

(b) Diabetes of pima-indians.

(c) DNA sequence.

(d) German credit.

(e) Heart disease.

(f) Letter recognition.

(g) Image segmentation.

(h) Shuttle control.

(i) Landsat satellite image.

(j) Vehicle recognition using silhouettes.

All the datasets can be accessed at ftp.ncc.up.pt (192.26.239.52). The repository's webpage
has links to information on the original sources and structure of the datasets together with a

summary of the results obtained in the Statlog project. A table of results has been generated
for each of the datasets listing information on time, memory and, error rates. These values were

obtained for the training and test sets used in the process of capturing the form underlying
the relevant dataset with each of the classifiers that were analysed. They used two methods

for computing the error rates: train-and-test, cross-validation. In the first method the whole

dataset is divided in two, 70% of it comprises the training set and the rest is contained in the
test set; the total absolute error is computed for the training set and subsequently on the test

set and finally used for calculating the error rate listed in the table. Given that cross-validation
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involves dividing the sample into a number of subsamples, at the end of its application there

will be an error rate for each of them, therefore in the table the error rate listed corresponds to
an average over the subsamples. Given the number and diversity of classification devices that
were evaluated in this study, in relation to the multi-layer perceptron they only worked with

networks with one layer of hidden units and sigmoid activation function. Basic backpropagation
was the learning algorithm used to train the network in all cases. The analysis also includes

cascade correlation to provide an example of a classification mechanism designed to improve the

performance of the multi-layer perceptron model based on the generative learning algorithm

paradigm. This analysis has the following drawbacks:

(1) Given the enormous amount of literature providing proof of the advantage of using an

enhanced version of backpropagation instead of the basic algorithm, it seems reasonable

to consider that the multi-layer perceptron model working in conjunction with quick-

propagation or rpropagation would have produced better results than the ones provided

and, as the aim was to measure the effectiveness of the multi-layer perceptron model

as a classifier, it would have been more appropriate to evaluate it with a more effective

learning algorithm.

(2) In [Michie et al. 94] the cascade correlation algorithm is presented as an example of a
model developed for improving the drawbacks of the multi-layer perceptron and back-

propagation, nevertheless when looking at the tables of results only one third of them list
results for the cascade algorithm and there are no explanations of why this is the case.

Given that in general, constructive learning algorithms have allowed a wider applicability
of the multi-layer perceptron model to classification tasks, more efforts should have been

invested on evaluating cascade correlation over all the datasets just as it was done on the

other classifiers included in the study.

(3) There is no information on the specific network architecture used for each of the examples,
therefore it was difficult to measure the resulting Statlog multi-layer perceptron network
in terms of architecture efficiency against the one built with GROPING for the same

dataset. The same problem arises when looking at the few results registered with the
cascade correlation algorithm, ie. they do not provide information on the final architec¬
ture computed by the algorithm. The large diversity of classifiers being compared and
the differences in the data structures used by each of them deemed it necessary to define

a very general measure for comparing the classifier's efficiency in terms of amount of

space employed. This could justify the memory measure listed in all the tables of results

nevertheless, given that the network architecture is a very relevant piece of information
from the multi-layer perceptron model perspective it should have been included as part
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of the results so as to make the benchmark more widely applicable. The same argument

applies to the other classifiers and the structures generated by each of them in each of
the datasets.

These drawbacks explain why, at least in terms of benchmarks, the one associated to this

repository did not rank as the most important at the time of deciding on the best way of

evaluating the capacity of the design method described in this study but, as it does provide the

opportunity of looking at performance against that of a completely different type of classifiers,
some results were compiled using a few of the datasets provided in this site. These will be

described in the following section.

6.2.5 UCI machine learning databases archive

This is a repository of databases, domain theories and data generators used by the machine

learning community for the empirical analysis of machine learning algorithms. The site of the

repository in the WWW is:

http://mm.ic«.uci.•du/AI/ML/MLDBR«po»itory.ht«l

At this moment it contains over one hundred entries and is in continuous expansion, thanks to

the joint efforts of the different members of the scientific community. Many of the benchmarks

previously described have used part of the datasets included in their evaluation from this repos¬

itory. It is probably the largest repository of databases, domain theories and data generators

in existence. Apart from the datasets, it contains links to the most important machine learning
sites including programs and publications in the area.

Given that the main interest in this study was to find datasets already used to evaluate other

learning theories, the ones contained in this repository that were deemed interesting, were

those for which some form of learning result that could be compared against the performance
measure computed with GROPING had been registered.

6.3 Benchmarking problems and rules

The contents of this section supply information that facilitates the interpretation of the set of

results obtained. The same can be classified in two basic groups:

(1) The rules specified in Probenl that were applied in GROPING's evaluation.

(2) Descriptions of the datasets for which amulti-layer perceptron network was built applying
GROPING.
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6.3.1 Benchmarking rules

Probenl defines a set of rules to ensure that, published results on its benchmark problems can

be effectively compared and reproduced by other researchers. Its importance in the context

of this study, stems from the possibility it provides for comparing results between different

learning algorithms given that, it has been defined to evaluate neural network learning in the
realm of pattern classification.

It is necessary to note a difference in the measures that were registered during a training phase
in GROPING when compared to those computed for the same problem in Probenl. Both use

the same basic definition of the measures registered in each to reflect the behaviour of a training

process. For a particular problem, Probenl initialises at random various networks of the

same size and subsequently trains all these architectures, the final measures published, offering
evidence of the effectiveness of the training process, correspond to averages over the results
obtained from the random initialisations. The approach pursued when applying GROPING
on the same problem, also involves the creation of various architectures, given that it is a

generative learning algorithm but, the difference between all these networks is of a structural

deterministic nature, therefore the concept of averages is not practical. For this reason, as the

basic aim when designing GROPING was to build the best generaliser, the final output of any

application is one network, i.e. the architecture showing the smallest error when processing the
validation set and, the measures registered were obtained during the training process of that
architecture. In order to produce a reliable evaluation, the ones computed correspond to those
for which the result of comparing an absolute value against an average is considered valid.

The guidelines outlined in [Prechelt 94], that should be unambiguously specified at the moment

of evaluating a learning algorithm, comply with the following characteristics for the analysis of
the algorithm described in this study:

(1) The training, validation and test sets in each problem, are the same as those provided in

the benchmark's website. However, there is an important difference between the structure
of the input to a network instance designed to solve the problem in GROPING and,
that of the input to the network associated with the same problem used in Probenl. It
is caused by the fact that the first step in GROPING requires transforming the data
to zero mean and unitary variance therefore, every network is designed on the basis of

a standardised version of the same dataset that, in its original form, is the input to the

training process in Probenl. The covariance and mean matrix in every problem, needed
to realise the normalisation, were computed from the training set. Some authors might
claim the comparison invalid due to the difference in the inputs but, it could be argued
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that a learning algorithm operating on a multi-layer perceptron network working with

a sigmoid activation function always behaves better when processing normalised data,
therefore this type of pre-processing should always be part of a design method working
on this kind of model. Also, there is a reliable set of steps that must be followed and,

the initial data source is the same. Using the information subsumed in the training set

in a more effective manner, is not a strong enough reason to invalidate a better result,

labeling it as incomparable. Finally, to measure how sensitive the learning algorithm is,
to the ordering and specific instances of the patterns associated to a classification task,
three permutations of the same data are associated to each of the problems comprising

Probenl and, the set of results published were obtained from building network architec¬

tures using each of them. The same approach was pursued in this benchmark and, the

permutations used were subtracted from Probenl when applicable.

(2) All the input data is handled as real-valued otherwise it is very easy to run into problems
at the moment of executing the geometric analysis. The output data has the same

structure as the one provided in Probenl.

(3) The other important difference regarding the input structure, concerns the manner in

which the nominal attributes were manipulated. In Probenl they are replaced by binary

patterns, in GROPING they are substituted by a set of values in the interval [0,1]. If
a nominal attribute can take one of four possible values, then the interval is divided

by four producing the set {0.25,0.5,0.75,1.00} and each of the valid outcomes for the
nominal attribute is associated to one of those numbers. The usefulness of this type of
data transformation when working with the multi-layer perceptron model was discussed
in chapter 2.

(4) In Probenl missing data is explicitly reflected in the input by using an additional attrib¬
ute that is 1, only if the attribute value is missing. Given the type of data transformation
that has been defined in GROPING, the strategy for deeding with missing values con¬

sists in subtracting the indicator attribute from the original set and, instantiating the

missing elements with the mean calculated from the problem's patterns for which that

particular attribute contains a value.

(5) The training algorithm is rprop, the version used has the characteristics described in

chapter 2.

(6) Two error measures are computed throughout: the mean absolute error and, the squared
error percentage. The expressions used for each of them, assuming a classification problem
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with C classes and, a training set Tp such that:

Tp = {(i1,O1),(X2,O2),...,(I',O'),...,(Ip,Op)}
i" 6 RN-,oi € {0,1}C

(6.1)

(6.2)

have the following form:
The mean absolute error:

P c

ME = ^p(EEi°i-cii)
»=i j=I

(6.3)

The square error percentage:

SEP = 100 (
(o'.ma x - omm)2 PC' EEK cP2' i=l j=l

(6.4)

The difference between the ME and SEP rests in the dependence the first of them has

on the range of the output values and, the fact that SEP, in equation 6.4, is a squared

percentage. Aside from that, the terms required to compute both quantities are the same.

The main reason for incorporating the new error measure into GROPING lies in the
fact that the results published in [Prechelt 94] for the most part refer to SEP, which
means that only through its calculation could the benchmark be adequately used. As

the network's weight values are updated in accordance with the periodic approach, all
the patterns of the training set are presented to the network before updating any weight.
This means that it is possible to compute the error measures described at different stages

of the training process, after completing an epoch.

(7) There are two important assumptions underlying GROPING's theoretical framework
which clearly delimit the search space that has to be browsed in search of a network

solution for a particular problem, resulting in a much faster procedure:

(a) The validity of Cybenko's results, concerning the capacities of a one-hidden layer

perceptron with sigmoid activation function having enough hidden units which, in

[Cybenko 88], were shown to extend over the complete set of continuous functions.

(b) The possibility of reflecting the structure of a classification problem through an

adequate mapping involving the relevant inputs and expected outputs.

Those assumptions imply that, in the process of searching for the appropriate network
architecture to solve a particular problem, the space of possible network solutions can be
restricted to one-hidden layer perceptrons, a space which is reduced even more, by the
results obtained from the geometric analysis realised on the elements of the training set

in the first phase of the design process.
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Data availability
dataset/repository CMU ELENA Probenl Statlog UCI

cancer N N Y N Y

card N N Y N Y

diabetes N N Y Y Y

gene N N Y N N

glass N N Y N Y
heart N N Y Y Y

mushroom N N Y N Y

satimage N N N Y N

soybean N N Y N Y

thyroid N N Y N Y
vowel Y N N N N

Table 6.2: Principal datasets vs Repositories

(8) GROPING is a generative-pruning algorithm. The results presented were registered
at the end of the training process performed on the various networks built during the

pruning phase in the search for the optimal network. For each of the problems included
in this benchmark the following results are published in this written work:

(a) a list of all the architectures that had to be trained in the search for the optimal
one.

(b) the mean error, ME, the squared error percentage SEP, registered at the end of the

training process for each of the architectures. The two error measures are computed
for the three relevant datasets: the training, validation and, test set.

(c) the number of epochs through which the training process had to iterate before each
of the architectures achieved complete recognition of the training set.

(d) the results associated to the optimal network, i.e. that architecture with which
the smallest error was achieved when presenting the validation set. This solution
is compared against the average solutions published in Probenl.

(9) The completion of an execution of the GROPING algorithm occurs when, during the
architecture reduction phase, it is processing a particular network that after having been
trained for the maximum allowed number of iterations does not achieve complete recog¬

nition of the elements of the training set.

6.3.2 Benchmark datasets

Part of the work realised involved looking into different sites found in the WWW that con¬
tained collections of datasets and, included the results obtained by applying various learning
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Problem Problem attributes Inputs Probenl GROPING Classes
b c n tot b c m tot cont inputs b size

cancer 0 9 0 9 0 9 0 9 9 2 699
card 4 6 5 15 40 6 5 51 15 2 690

diabetes 0 8 0 8 0 8 0 8 8 2 768

gene 0 0 60 60 120 0 0 120 120-60 3 3175

glass 0 9 0 9 0 9 0 9 9 6 214
heartc 1 6 6 13 18 6 11 35 13 2 303

mushroom 0 0 22 22 125 0 0 125 22 2 8124

satimage 0 36 0 36 - - - - 36 6 6435

soybean 16 6 13 35 46 9 27 82 35 19 683

thyroid 15 6 0 21 9 6 6 21 21 3 7200
vowel 0 10 0 10 - - - - 10 11 990

Table 6.3: Attribute structure of datasets in its original form

algorithms on them. To achieve a rigorous analysis on the scope of GROPING's applicability
it was decided that it was necessary to add other sets to this benchmark apart from the ones

subtracted from Probenl. Each row in table 6.2 corresponds to one of the datasets for which

a network was developed using GROPING and, each column is associated to one of the sites

visited that contained the type of information required. The contents of an entry in the table,
which represents a particular (dataset, site) pair, indicates whether the dataset is available (Y)
or not (N) in the site.

Given that, in many cases it was much more effective to solve a problem applying the GROP¬
ING algorithm after the original data had undergone an adequate transformation, a series of

steps were integrated into a pre-processing phase, all of which are described in chapter 5. De¬
tails of the outcome of this pre-processing phase when applied to each of the datasets included

in the benchmark can be found in appendix F, together with other relevant details associated
to every classification problem considered. A special effort was made to avoid duplicating
information already available at the site from which the set was originally subtracted.

The following subsections contain a summary of the different examples used, including a de¬

scription of the particular actions that had to be taken to achieve appropriate training processes

when operating on any of them. The contents of table 6.3, which were partly subtracted from

[Prechelt 94], summarise the structure of the data associated to each of the problems that com¬

prise this benchmark, number and type of inputs and outputs together with the total number
of patterns and classes comprising each of them. Given that, the type of pre-processing used
in Probenl does not necessarily correspond to the one used in GROPING and, that it can

result in an input structure different from that of the original version of the data, table 6.3
contains three descriptions of the input space of each of the problems: the one associated to the

original data, columns 2-5, the number of attributes used in Probenl, for the cases in which it
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applies, columns 6-9, the number of continuous attributes that constitute the network's input

in GROPING, column 10. The other columns in the table contain information that applies

equally to all three versions of the datasets, i.e. the structure of the outputs, the number of

classes and, the size of the problem's sample.

Cancer

This sample is originally from the UCI machine learning dataset: Wisconsin breast cancer
database. The version used was extracted from the Probenl site. There are 9 continuous

inputs all scaled to the [0...1] range. In the original UCI set, there are 16 missing values for
attribute 6 which were encoded as 0.3, therefore when the data is used in this benchmark, it

is registered as not having missing values.

Given that all the inputs are continuous and that the missing values were dealt with in

Probenl, in this case there is no nominal data to transform. The data is used as is in the

following stage of the pre-processing phase which consists in subtracting the required training,
validation and test sets and, performing the subsequent data normalisation. Details of the

results obtained are contained in appendix F.

Card

This dataset is from the UCI machine learning database: credit-screening. It is interesting be¬
cause it contains a reasonable amount of missing information which required special treatment.

According to the set's description outlined in table 6.3, the original source corresponds to 690

patterns set in a space of 15 dimensions, 5 of which are nominal. To deal with the nominal

and missing data, in Probenl the structure of the input was transformed to a 51-dimension

space. This transformation is not considered to be very effective for the following reasons:

(1) The numerous additional attributes defined in the new space when compared against the

size of the original version of the data. Many of these additional dimensions will be zero

for most of the patterns because they are interpreted as tags which indicate, if the value of
the neighbouring attribute corresponds to missing information or to a proper instantiation

of the attribute. This means that, it is possible to produce a training set which has no

missing data therefore, the relevant dimension will have zero value throughout and, such
uninformative attributes do not ease the process of finding the proper weight values of a
network during training.

(2) As the geometric analysis, that is part of GROPING's operations, is performed on a

projected version of the original training set, it did not seem very efficient to proceed by
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expanding the input to a high-dimension space, that would immediately be reduced by a

projection mapping required to generate the appropriate maximal network.

(3) Comparing the results achieved with the network built for the high-dimension space with
those obtained with GROPING working on a continuous-valued version of the whole set,

having replaced the missing information with the mean of the available data, provides
the strongest reason in support of the approach underlying the pre-processing phase

incorporated in GROPING, when compared against the results achieved by applying
other strategies.

The data processed with GROPING has the same dimension as that of the original data
contained in the UCI database. The main difference lies in the fact that all the attributes in

the data for this benchmark are continuous-valued. Appendix F contains the details of the

transformation and the main results produced during the training-pruning phase.

Diabetes

This dataset is also from the UCI machine learning database, although the version that was

used in this benchmark was subtracted from the Probenl site. There are 768 patterns in the

set.

The problem is set in an 8-dimension operating space and corresponds to a 2-class classific¬
ation task. All the attributes are continuous-valued and, because they were subtracted from
Probenl instead of from their original source, the input to the GROPING algorithm cor¬

responds to attributes scaled to the [0..1] interval. The data did not require any special pre¬

processing previous to the normalisation and geometric analysis. Details of the normalisation

and, the results obtained by the learning algorithm are contained in appendix F.

Gene

This dataset is from the UCI machine learning database: splice-junction gene sequences. Each
vector of the original data represents a given position in the middle of a window of 60 DNA

sequence elements (called nucleotides or base-pairs), The aim of the classification task is to

predict into which, of the three following categories, does a gene sequence fall:
a.-intron -> exon boundary (ie) [These are sometimes called donors]
b.-exon -> intron boundary (ei) [These are sometimes called acceptors]
c.-neither (n)
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To exploit the advantages furnished by the existing statistical and mathematical techniques,
in the context of data analysis, it is necessary to define a clear policy for managing nominal

data because generally it is not numerical so, it must be transformed through an adequate

pre-processing technique before the execution of the relevant data analysis method. This issue

was extensively discussed in Chapter 2, which includes a description of the policy pursued

in GROPING. This dataset was selected as an example that shows the gains obtained in

the context of the development of multi-layer perceptron networks, when applying the pre¬

processing technique devised. To this end, two networks have been defined, one uses as input
the data encoded according to the guidelines defined in Probenl, the other was tailored to

deal with an input that was encoded according to the GROPING policy. The results of both

training processes are included in appendix F and clearly show that much better results are

achieved by transforming the nominal data to a well-specified and small set of real values.

Another reason for having built both networks for this particular dataset is that it provides
a good example for analysing the effectiveness of the GROPING algorithm on very high
dimension spaces and, the encoding defined in Probenl to deal with the dataset results in a

very high-dimension, i.e. 120-dimension space.

The output patterns are 3-dimension binary vectors, which can take one of three values ac¬

cording to the class to which the DNA-sequence belongs. There are 3175 patterns in the

complete dataset but, as an inconsistency was found in the data, i.e. two input vectors had the

same values in all the attributes but were associated to different outputs, the sample used in

GROPING consists of 3173 vectors each associated with a 3-dimension binary output vector.

Glass

The data corresponds to a classification task involving a high number of classes, given that

any input pattern has to be assigned to one of 6 possible classes. All the attributes of the

9-dimensional input space are continuous-valued so there was no need to perform any trans¬

formation before partitioning the available data into the corresponding training, validation and

test sets.

The data employed in this benchmark was obtained from Probenl but, the original source

is the UCI database. The most interesting characteristic of this problem concerns the high
number of classes that the neural network has to correctly identify given that, for the most

part, a diagnosis task only involves two classes.

The results obtained when executing the geometric analysis are based on the number of geo¬
metric constructs, i.e. edges, connecting points that do not belong to the same class. When
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there Eire only two classes it is straightforward but, a classification task involving more than
two categories, incorporates the difficulty of dealing with the additional information. It was

necessary to decide on how relevant the issue was to the task of building the initial maximal
architecture for the problem. It was concluded that, taking account of the information about

the precise class to which a point belongs, instead of simply deciding on whether connected

points were or were not, part of the same group, would not result in a better network because

the geometric complexity of the required solution is independent of the particular class to which
the points involved belonged.

Also the algorithm designed to perform the geometric analysis was greatly complicated if, in
addition to the information concerning the existence of classes, it had to consider the type of

each of the ones involved. This can be explained by viewing this information as the dimensions

of the output space and, many examples have proved, [O'Rourke 94], [Barber et al. 95], how
sensitive this type of algorithm is to the dimensionality of the operating space.

The information on the characteristics of this dataset and the results achieved during the

generation of the network required for it axe included in appendix F.

Heart

The problem's instances are associated with a heart disease diagnosis task. As the data was

collected from four different locations there axe different versions of it in the Probenl re¬

pository. The first difference between them is the original source which in Probenl resulted
in two examples: one built by uniting the data subtracted from all the locations: Cleveland
Clinic Foundation, Hungarian Institute of Cardialogy, V.A. Medical Center Long Beach, and

University Hospital Zurich. The other contains only the Cleveland data.

The output can be interpreted as a continuous domain or as a binary domain. In the first case

the network required has to perform an approximation task. For the binary case, a classifier

network solves the problem.

Table 6.3 shows that the original source is a 13-dimension set which is transformed to a 35-
dimensional space in Probenl. To train a network for the same problem with GROPING
the nominal attributes of the original source were transformed to continuous-valued ones fol¬

lowing the steps of the pre-processing stage described in chapter 2. This means that the data

finally used in this benchmark corresponds to a 13-dimensional continuous-valued classification

problem of the Cleveland data.

The other versions of the same data were not deemed interesting for the following reasons:
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(a) the multi-layer perceptron is not a good model for problems with a high percentage of

missing information. As the Cleveland data is the most complete of all the sources it was

decided that only this case could be of any value in the present study.

(b) the multi-layer perceptron was analysed in the context of a classification problem. This

implies that the interpretation of the problem as an approximation task is of no concern

in this research.

The data in Probenl was obtained from the UCI repository. The results of the pre-processing

phase, the generation of the appropriate intermediate architectures are all included in appendix
F. Although the final errors achieved with the Probenl network are better than those re¬

gistered in GROPING, the fact that the network architecture is so much more complex gives

grounds for considering the results achieved in both benchmarks as analogous, because when

describing the best solution a simpler architecture is also an important output.

It could be argued that, given the number of attributes acting as indicators for missing inform¬
ation and, the complexity of the optimal network built in Probenl, it is probably the case

that for this particular problem an alternative model will provide a better solution for the final

application. The results registered when building the architecture required could be taken to

be clear signs that the network model is not designed to deal with its particular characteristics

and, alternative representation forms will yield better implementations.

Mushroom

This dataset is a 22-dimension sample of completely nominal data. Therefore, all its attributes

had to be transformed to numerical-valued ones, before it was possible to start building a

multi-layer perceptron network for it. The strategy applied is similar to the one described in

the card problem but, adapted to the type of attributes that constitute the elements of this

example.

The results of the pre-processing phase and, the generation of the appropriate intermediate

architectures are all included in appendix F. Overall, they are particularly good which means

this type of data is very well suited to the type of network model that is being analysed.

Comparing the results obtained against those published in [Prechelt 94] for the same data, it
can be concluded that, for this particular case, both types of manipulation of the nominal data

are equally effective even though, the errors achieved with GROPING are smaller. Comparing
the results in terms of the amount of resources that had to be used in each case, GROPING's

approach is much more effective given that, it produces a much smellier input as it is comprised
of a lesser number of dimensions.
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results published in Statlog
classifier error-train error-test

KNN 0.089 0.094

LVQ 0.048 0.105

Dipol92 0.051 0.111

Radial 0.111 0.121

Alloc80 0.036 0.132
IndCart 0.023 0.138
Cart 0.079 0.138

BackProp 0.112 0.139

BayTree 0.020 0.147
Newld 0.067 0.150
Cn2 0.010 0.150
C4.5 0.040 0.150

Cal5 0.125 0.151

QuaDisc 0.106 0.155
Ac2 * 0.157
Smart 0.123 0.159

LogDisc 0.119 0.163
Cascade 0.112 0.163
Discrim 0.149 0.171
Kohonen 0.101 0.179
Castle 0.186 0.194

Bayes 0.308 0.287
Default 0.758 0.769

Table 6.4: table of results for satimage

Satimage

The data associated with this problem was subtracted from the Statlog benchmark. It consists
of the multi-spectral values of pixels in 3x3 neighbourhoods in a satellite image, and the
classification associated with the central pixel in each neighbourhood. The aim is to predict
this classification, given the multi-spectral values. The output is encoded as numeric values

in the original source but in GROPING the 6 possible classes were labeled with the binary

patterns usually associated with a classification task that is to be processed with a multi-layer

perceptron.

To compare the results obtained with this problem using GROPING which are detailed in

appendix F, against those published in [Michie et al. 94] it was necessary to assume certain

things about the published results because there was not enough detail on the exact form used
to calculate them. Table 6.4 contains the error rate on the training and test sets defined in

Statlog achieved by the different classifiers that were evaluated in that benchmark. The default
rule in the table is performed by allocating each observation to the most common class, the

symbol indicates not applicable.

Assuming that the error rate corresponds to the error measure defined in chapter 2 as the most
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commonly used in classifier theory, i.e. the sum of square errors, it is possible to compare the

performance against the mean error registered in the table of results shown at the end of the
section. Of them all, the best result was achieved with the KNN which is much worse than

the error registered with GROPING on its best network axchitecture: mean.error = 0.0780.

Taking into account that what is being compared is a squared result against an absolute value

the difference gains even more significance.

The result that is particularly important is the one achieved with Cascade correlation given

that it is the same type of classifier as GROPING.

Soybean

This dataset corresponds to another example of a high-dimension output space because, the
network must discriminate between 19 different classes which correspond to diseases of soy¬

beans. The original data as table 6.3 shows, is a good mix of nominal, continuous and binary
attributes which in the first source, i.e. the UCI database, corresponds to a 35-dimension

space.

As there axe missing values the data used in Probenl is extended to include those dimensions
that operate as indicators of missing values and, resulted in an 82-dimension space.

The data used in this benchmark was subtracted from the Probenl site. Of the 683 patterns,

many turned out to be duplicates of each other given that, when computing the distance that
existed between every pair of them, 68 are zero. This is not a problem when building a neural

network unless they happen to be associated with different expected outputs. The analysis for

determining the existence of duplicate values was realised on the data transformed according
to the stipulations of Probenl and also according to the encoding devised in this research.

As in previous cases, missing values were replaced by the mean of the available information

and, the nominal data was transformed to its corresponding values in the interval [0..1] parti¬
tioned according to the size of the set associated to the nominal version of the attribute. The

intermediate information generated during the network design process and, the results achieved
are all in appendix F.

Thyroid

This dataset is from the UCI machine learning database: thyroid disease. The original data
files were used to evaluate the performance of different learning algorithms defined to train
networks based on the multi-layer perceptron model. The results of this analysis are described
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in [Schiffmann et al. 93].

The ones obtained by building a network for this problem in this study were only compared

against those registered in the Probenl benchmark given that, the training, test sets used
and the error measures registered in [Schiffmann et al. 93] correspond to another type of ap¬

proach. The important thing to note about this set is that although some of the attributes are

simply indicators confirming the existence or, otherwise of the values of other attributes, in
the information available it is not clear which correspond to proper data and which are simply

indicators. This meant that, in this particular case it was not possible to treat missing data in

the manner specified in GROPING's pre-processing phase and, all the twenty one attributes

are processed as data in its own right.

The results contained in appendix F show that this restriction did not affect the overall network

building process but, it is worth noting that, if it were possible to deal with the missing results
in the manner specified in GROPING's general rules the chances of obtaining even better

results are good.

Vowel

The data associated with this problem was subtracted from the CMU repository. The input

patterns are 10-dimensional continuous vectors that represent examples of the eleven steady
state vowels of spoken English. This is reflected in the sample using a binary vector of the
form (1,0,0,0,0,0,0,0,0,0,0) for each of the possible vowel classes. These vectors vary from
class to class in the position the output 1 occupies.

Given that the input is continuous it did not require other pre-processing apart from the
reduction to zero mean and unitary variance. Details of the elements used for this processing
are provided in appendix F.

The final network built with GROPING to solve this problem could have been designed using

one continuous output and assigning a specific value to each of the classes but, because the

algorithm at this time only supports classification tasks in which the outputs must be binary

patterns it had to be defined as a high-dimensional output space. Results of the network

processing the alternative output representation would probably show a better behaviour as it
will be operating on a low-dimension domain.
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Pivot architectures for different datasets
Probenl GROPING

dataset architecture num.connections architecture num .connections

cancer 1 9-4-2-2 100 9-15-2 165
cardl 51-32-0-2 1832 15-27-2 488

diabetesl 8-32-0-2 370 8-94-2 1578

other_genel — — 60-216-2 7751

genel 120-4-2-3 1115 120-43-3 11659

glass1 9-16-8-6 572 9-32-6 518
heartcl 35-16-8-2 1112 13-26-2 442

horse1 58-16-8-3 1793 — —

mushroom1 125-2 252 22-38-2 952

satimage — — 36-76-6 3274

soybeanl 82-16-8-19 4153 35-28-19 1559

thyroidl 21-16-8-3 794 21-135-3 3278
vowel 1 — — 10-42-11 935

Table 6.5: Best network architectures in Probenl and GROPING

6.4 Results and discussion

At the moment of comparing the effectiveness of different learning algorithms that have been

defined to generate networks based on the same type of model, it is necessary to specify on

which parameters the decision criteria is based because, the outcome of the comparison is very

dependent on the ones selected; eg. comparing algorithms A, B tuning the same network using
the same training set, the error registered at the end of the training process might be smaller
for algorithm A but, the error on the test set can indicate that the better algorithm is B, the
difference lies in the parameter on which the decision is based. In the first case, the selection

was made evaluating the mean error on the training set, in the second case the error analysed

was the one computed on the test set.

The convenience of designing a multi-layer perceptron network using GROPING, is demon¬
strated through the values calculated for the different parameters listed in table 6.7. Each of

the rows in that table, corresponds to the results achieved by the training process operating on

the data available for a particular task, which is identified by the name registered in the first
column. Those names follow the format < namei >, where < name > is the identifier of each

of the classification tasks that constitute the benchmark and <i> indexes the permutation of

the data that was used to build the particular set of parameter values included in the same row.

Being a pruning-generative method means that different network architectures were trained for
a particular task and, the values contained in table 6.7 correspond to the ones achieved with
the most appropriate network, i.e. the architecture which registered the smallest error at the
moment of processing the validation set. Some of the parameters listed in table 6.7 were also
calculated in the training processes performed in the Probenl benchmark and, it is against
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Probenl averages and standard deviations of square error percentage
problem iterations sep.train std-dev .train sep.validation std_dev_validation sep-test std_dev-test

cancer1 152 2.87 0.27 1.96 0.25 1.60 0.41
cancer2 93 2.08 0.35 1.77 0.32 3.40 0.33
cancer3 66 1.73 0.19 2.86 0.11 2.57 0.24

diabetesl 196 14.74 2.03 16.36 2.14 17.30 1.91
diabetes2 119 13.12 1.35 17.10 0.91 18.20 1.08
diabetes3 307 13.34 1.11 17.98 0.62 16.68 0.67

genel 46 6.45 0.42 10.27 0.31 10.72 0.31

gene2 321 7.56 1.81 11.80 1.19 11.39 1.28

gene3 435 6.88 1.76 11.18 1.06 12.14 0.95

glass1 67 7.68 0.79 9.48 0.24 9.75 0.41

glass2 29 8.43 0.53 10.44 0.48 10.27 0.40

glass3 66 7.56 0.98 9.23 0.25 10.91 0.48

heartcl 45 6.82 1.20 8.75 0.71 17.18 0.79
heartc2 29 10.41 1.76 17.02 1.12 6.47 2.86
heartc3 24 10.30 1.79 15.17 1.83 14.57 2.82

mushroom 1 3000 0.014 0.00 0.014 0.00 0.011 0.00

soybean1 665 0.32 0.008 0.85 0.07 1.03 0.05

soybean2 792 0.42 0.06 0.67 0.06 0.90 0.08

soybean3 759 0.40 0.07 0.82 0.06 1.05 0.09

thyroidl 491 0.60 0.53 1.04 0.61 1.31 0.55

thyroid2 660 0.59 0.24 0.88 0.19 1.02 0.18

thyroid3 598 0.69 0.20 0.97 0.13 1.16 0.16

Table 6.6: Results published in Probenl for pivot network architecture

those results that the convenience of applying GROPING is compared.

In the Probenl benchmark various results were obtained through the execution of a series of

training processes operating on the same datasets as the ones used in the GROPING bench¬

mark. Of all the results published in [Prechelt 94] the relevant ones for this discussion are listed
in table 6.6. For each variant of each problem, 60 runs were 160 performed, each starting with
a particular random initialisation of the same architecture, i.e. the pivot network. The results

published correspond to the averages and standard deviations of the square error percentages

calculated in each of those runs. The learning algorithm used for those runs is rprop therefore,
the training parameters that had to be defined were:

- r]+ = 1.2,7?" = 0.5,
- A0 € 0.005...0.02

" Amm = 0, Amax = 50,
- initial weights, random from [—0.01.. .0.01]
- training was terminated using GL& criteria [Prechelt 94].

Given that the training component in GROPING also uses rprop, the parameters associated
with the algorithm have been explained in detail in chapter 2. The stopping criterion defined



CHAPTER 6. BENCHMARKING AND EXPERIMENTAL RESULTS 159

in [Prechelt 94] is a measure that integrates various occurrences of the square percentage error.

These were computed on the validation set at certain stages of the training process. For a

particular architecture, Prechelt [1994] refers to it as the generalisation loss of the network.
The training is stopped as it exceeds a certain threshold a, whose selection is also discussed in

[Prechelt 94].

The best (pivot) network in each classification problem corresponds to the largest topology
of all the candidate topologies trained for the task showing the smelliest validation square

percentage error at the end of the training process. The results obtained with GROPING
for the same set of tasks are compared to those achieved with this pivot architecture because,

in both benchmarks the respective network corresponds to the one showing the best results,

i.e. the smallest error at the time of processing the same validation set. Table 6.5 shows

the size and, structure of the most appropriate networks according to the results produced by
each benchmark. Looking at them it is possible to conclude that GROPING produced more

complex networks relative to the number of weights comprising each of them but, the ones built

according to the criteria set in Probenl are more complex in terms of the final shape because,

many of them use two layers of hidden units and the architectures are not restricted to simple

fully-connected feedforward networks, i.e. cross-connections between units not in subsequent

layers is permissible.

The set of values contained in table 6.7 apart from including the square percentage error

calculated on the training, validation and test sets with the optimal architecture, contain the

mean error because, it is a more common measure that make these results more accessible to

a wider range of similar studies.

Looking at the errors registered on the different types of sets, for each of the classification tasks
used for both benchmarks it is possible to note the following interesting differences:

(1) the error calculated using the training set is much smaller in any of the networks built
with GROPING when compared against the same type of error in Probenl. It could be

argued that this does not make the networks built with GROPING a better alternative
for the relevant task because, it is very often the case that, a network which is a better

recogniser of the elements of the training set, is a deficient performer when classifying
data not used in the training process. Contrary to this belief, in this analysis, although

there is not so much difference between the errors calculated using the elements of the
validation and test sets in both benchmarks, as there is between the errors of the training

set, the architectures built with GROPING are better generalises.

(2) the number of iterations required to achieve complete recognition of the training set is,
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Square error percentage and Mean error using GROPING

problem iterations sep.train sep.validation sep.test merror_train merror.validation merror.test

cancer1 101 0.0110 1.9090 1.8561 0.0025 0.0269 0.0284
cancer2 43 0.0038 1.8084 3.0743 0.0014 0.0221 0.0399
cancer3 45 0.0049 3.8262 4.1058 0.0012 0.0437 0.0467
cardl 51 3.1121 10.4174 10.8650 0.0893 0.1715 0.1875
card2 101 0.2332 11.2323 18.0754 0.0189 0.1481 0.2199
card3 51 3.5124 9.6063 16.5102 0.1027 0.1722 0.2466

diabetesl 51 9.5291 15.4510 17.6195 0.2294 0.2829 0.3143
diabetes2 51 6.2648 17.5532 20.3791 0.1599 0.2821 0.3111
diabetes3 51 8.5511 17.9033 17.7496 0.1957 0.2975 0.2991

genel 16 1.3780 6.2421 6.7345 0.0579 0.1191 0.1237

other-genel 33 0.1832 4.4745 5.4952 0.0177 0.0780 0.0904

gene2 16 1.4602 6.5589 5.7677 0.0527 0.1169 0.1068

gene3 16 1.2182 6.5021 6.2701 0.0551 0.1219 0.1199

glass1 70 0.0157 11.1582 10.8181 0.0037 0.1282 0.1278

glass2 51 0.7889 5.3123 10.9795 0.0316 0.0828 0.1449

glass3 101 0.0126 1.9750 2.1223 0.0029 0.0270 0.0302
heartcl 26 4.1335 9.3562 16.6976 0.1253 0.1681 0.2577
heartc2 26 4.1132 18.5736 5.1456 0.1216 0.2705 0.1055
heartc3 26 2.0861 17.3056 17.1746 0.0785 0.2310 0.2458

mushroom 1 25 0.0008 0.0047 0.0029 0.0006 0.0012 0.0010

satimagel 26 2.4156 4.2326 3.9235 0.0598 0.0780 0.0719

satimage2 26 2.4828 3.3480 3.5266 0.0011 0.0520 0.0708

satimage3 51 1.0587 3.4445 3.5186 0.0320 0.0583 0.0587
sonar 1 6 12.5943 20.1396 20.6354 0.3418 0.4190 0.4298
sonar2 36 0.3454 20.4049 31.5926 0.0164 0.2445 0.3746
sonar3 6 7.3142 24.0657 22.4297 0.2106 0.3817 0.3723

soybeanl 26 0.0836 1.2860 1.2878 0.0029 0.0149 0.0181

soybean2 26 0.0104 0.8952 0.8678 0.0008 0.0110 0.0107

soybean3 26 0.0144 0.9811 0.7225 0.0010 0.0120 0.0096

thyroidl 251 0.0035 0.7225 0.9237 0.0005 0.0092 0.0112

thyroid2 101 0.0901 0.9800 0.8360 0.0039 0.0144 0.0131

thyroid3 51 0.2137 0.8085 0.8527 0.0067 0.0136 0.0145
vowel 1 26 3.0363 5.7397 6.4922 0.0791 0.1069 0.1112
vowel2 129 0.0030 1.2668 1.4290 0.0012 0.0194 0.0214
vowel3 146 0.0030 1.7881 1.8352 0.0013 0.0249 0.0249

Table 6.7: Results for best network architecture using GROPING
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usually smaller if the learning algorithm is working in an architecture defined according
to GROPING guidelines. Also it varies much less between problems and, between
the different permutations of the data in each problem. This is a direct result of the

type of weight initialisation, i.e. the geometric analysis produces not only the required
number of weight vectors, the ones computed are situated in the correct positions of the

operating space. The small number of iterations executed by the training component

so that the architecture achieves complete recognition of the training set are needed to

properly adjust the random weight values of the hidden-output connections.

(3) the example showing the smallest difference between the results achieved with Probenl
and those obtained with GROPING correspond to the cancer data. This can be ex¬

plained taking into account that all the attributes of the original data are continuous-
valued and, there is no missing information. This means, that the original data is struc¬

tured in the most convenient form that should be input to a multi-layer perceptron

network, therefore the pre-processing task in GROPING is limited to the normalisation
of the data and, almost any learning algorithm should produce a reasonable network even

with random initialisation.

(4) the other example for which very similar results were produced with both learning al¬

gorithms is the diabetes set. All the attributes in this case are also continuous-valued

but, the final results achieved on the validation and test sets for both benchmarks cannot

really be considered to be exceptional. This is due to the fact that, although none of the
attributes are marked as having missing values, the accompanying documentation does

suggest that there are many non-informative zeroes not properly explained. This would

suggest that the information subtracted from the training set is not reliable therefore,

any learning algorithm for building a multi-layer perceptron network for this problem
will probably not be able to build a better generaliser.

(5) the best results in the gene problem were registered on the set whose nominal attributes
were totally transformed according to the guidelines specified in GROPING. This is not

surprising considering that the network built is operating on a continuous-valued space

constituted with as many dimensions as those found in the original source which, are half
of the number of dimensions generated using Probenl techniques. It shows that the

pre-processing operations used in this network design method are quite effective and, a

very convenient asset to this type of learning method. Further evidence supporting this
statement is provided, in the suggestions found in many publications describing research
on the multi-layer perceptron model, [Bishop 95], [Michie et al. 94], [Prechelt 94], all of
which indicate the necessity of properly preparing the data if the aim is to design a
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network of this type for the application of interest.
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6.5 Conclusions

The contents of this chapter give a clear idea of the enormous amount of material that has
been developed in the context of machine learning research, particularly in the area of neural

networks.

Executing the different activities for evaluating the performance of the GROPING algorithm,
it became very clear that the tools available for evaluating and comparing the results achieved

through the use of different learning algorithms are still in a very primitive level, although

projects such as DELVE could change this state of affairs in the near future.

It is difficult to objectively and reliably compare different learning algorithms operating on

the same type of model, such as those defined to work on the multi-layer perceptron. The

task is even harder when the goal is to compare results across different learning philosophies,

e.g. the effectiveness of a rule-based system against a multi-layer perceptron network. Nothing
much seems to have been done to override this difficulty apart from the study described in

[Michie et al. 94] which, although it must be admitted that it does try to cover a very wide

range of learning methods, publishes results which are difficult to interpret. For example, it
was never clearly understood what the measure defined representing the amount of space used
when executing any of the learning techniques analysed.

Of the different data and machine learning repositories visited during this research the one

found to be most appropriate was Probenl because:

(1) It included an extensive and clear documentation of its aims and, the manner in which

it was designed so that it was relatively easy to compare results against those contained
in it.

(2) The type of problems comprising the benchmark, because all of them correspond to real
data.

(3) The organisation of all the data associated with the different problems on which the

learning algorithm was evaluated.

(4) The detailed definition of the error measures published.

Of all the results compiled the ones that are most relevant correspond to those included in table
6.7 because, they are a clear example of the convenience of developing a multi-layer perceptron
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network using GROPING. Its effectiveness is a product of the techniques it applies to subtract
the information needed to build a network from the training set; the nature of this information
which is, for the most part, geometric is very appropriate considering the manner in which the
network model operates as, it can be interpreted in terms of a partitioning process generating

regions in the operating space, each corresponding to one of the classes relevant to the problem.

Finally, it is clear that for operating spaces which suffer from incomplete information or cannot
be properly transformed to continuous-valued form, the multi-layer perceptron model is not

the most convenient solution.



Chapter 7

Conclusions and future

developments

This thesis has examined in detail the multi-layer perceptron model so as to be able to specify

its limitations and representational capabilities. As a result of this study it was possible to

define:

(a) a measure to evaluate the structural complexity of the domain on which the fined network
of a specific application will operate. This is an estimate that provides an initial insight
into the difficulty associated with the task of designing an appropriate architecture al¬

lowing the assessment of the convenience of using the network model for the application
of interest.

(b) a generative learning algorithm (GROPING) which integrates certain geometric tech¬

niques and statistical procedures, i.e. Delaunay triangulations and principal component

analysis, that permit the definition of the network architecture for a particular application

following a series of well-defined steps.

Section 7.1 contains the conclusions that have been reached throughout the research process

which take into account the convenience of exploiting the potential offered by certain geometric

algorithms and data analysis techniques for building multi-layer perceptron networks, in addi¬
tion to those that refer to the specific learning capabilities of the network model. Section 7.2
includes an outline of possible future research that might be developed to extend the results
achieved in this work.
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To perform a reliable study of the multi-layer perceptron, it was necessary to specify a theor¬

etical framework on which to base the analysis of the model's functionality. In this particular

case, it was decided that a geometric interpretation provided an effective theoretical tool be¬
cause previous analysis realised by other researchers, [Hertz et al. 91], [Bose &: Garga 93], give
good geometric interpretations of this type of model and, in this study it was possible to build
a learning algorithm based on geometric constructs that provides effective means to generate

reasonable architectures for different kinds of applications.

The literature review and the subsequent set of experiments realised throughout this research

provided material supporting the following set of conclusions regarding the representational

capabilities and ease of use of the multi-layer perceptron model:

(1) Different types of activation functions can be used for specifying the network's units.

Considering the complete set of choice available a reasonable one is the sigmoid function
because any of the others can be represented in terms of it, the form of the function

imbues the model with a better representational capability and, it complies with the

conditions that must be satisfied by the activation function of a network that must be

subsequently trained by an optimisation procedure.

(2) Of the existing learning algorithms for this network model, the ones supporting some form
of generative supervised learning are the most effective because they include mechanisms

for an automatic adaptation of the network's architecture which is a definite advantage,

given the arbitrary means by which this model's component had to be defined with the

first type of algorithms that were available.

(3) It was possible to distinguish three types of generative algorithms: pruning methods,
constructive and mixed . The pruning algorithms are the least effective of the three
unless a proper mechanism for defining an architecture that might be considered too large
is provided as part of the whole design process. At the same time, the most adequate
constructive method will be one that not only expands the architecture, i.e. incorporates
more hidden units, but also includes ways of setting the weight vectors associated to each
new unit in the correct position.

(4) Any network design process must incorporate an adequate data pre-processing phase
because the model and associated devices for its manipulation are very dependent on the

type of data that is provided as input. It is with continuous data in small intervals with
which it shows the best behaviour. Although many mechanisms have been defined to
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deal with missing information, the different examples realised showed that in general the
model does not deal well with this phenomenon.

(5) Apart from the fact that it is possible to interpret the network model in geometric terms,

another reason supporting the convenience of defining a learning algorithm based on this

type of device stems in the vast amount of research that is being done at this time aimed
at developing geometric algorithms that are easy to use and axe comprised of a clear set

of steps that incorporate no ad-hoc procedure.

(6) The manner in which principal component analysis is used in the network pruning process

is particularly appropriate because, it makes the most of the functional capabilities of

the data analysis technique by applying it to that part of the network building method in

which it will have a better use, i.e. the detection of redundant and important dimensions.

(7) Using principal component analysis for initialising the weight vectors of an architecture
is not always the best alternative considering that there are many applications requiring
more weight vectors than those that could be generated with this type of procedure.

(8) The organisation of an architecture so that there are various layers of units between

the inputs and the outputs often results in a better generaliser but, as it is possible to

reduce a deeply nested structure to a one-hidden layer network, it was reasonable to base

the efforts of improving a network design process for multi-layer perceptron networks
with at most one hidden layer. Also, considering that there axe other representation
tools available it is important to understand that for those applications requiring more

complex architectures looking at those alternative representations will generally produce
better results.

(9) There is a simple tradeoff between achieving a network able to correctly process all the
elements in the training set and, one that will perform as an effective generaliser on
the same problem. This means that, at the time of building a particular network it is

necessary to clearly specify the kind of application requiring the architecture, whether it
is more important to produce as simple a network as possible able to correctly process

the elements of the training set or, if the aim is towards the best generaliser.

(10) Further work needs to be done towards the definition of generalisation because different

interpretations can be given to the same property. It is necessaxy to clearly establish what

type of measure should be used for determining the generalisation capacity of a network,
the mean square error, the percentage of patterns correctly classified, the square error

percentage, etc. Each of them has been used by different researchers to evaluate the same

property and, even though for the most part it is possible to arrive at the same conclusion
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by using any of them, it is also the case that when comparing two different architectures

operating on the same problem, one can appear much better than the other when looking,
for example, at the percentage of correctly classified patterns instead of comparing the

performance through the mean square error achieved by each. Additionally, this property

is very dependent on the quality of the training set used for building the architecture

and, although it might seemed evident, the definition of the generalisation term should

incorporate an explicit indication of this dependency so that it might be possible to assess

the possibilities of achieving a good generaliser in view of the available training data.

(11) The benchmarks that exist for evaluating the performance of learning algorithms defined
to create multi-layer perceptron networks only include results for algorithms that oper¬
ate on fixed architectures therefore, it is not possible at this time to realise a proper

comparison between generative learning algorithms operating on the same model.

The most useful outcome of this research is the generative learning algorithm defined to tackle

the weaknesses that were detected on other existing algorithms found in the literature that op¬
erate on the same kind of network model. GROPING was designed once the representational

capacities of the multi-layer perceptron had been carefully understood and it incorporates a

series of mechanisms to deal effectively with the hardest task of any network building process,

i.e. the definition of the number of hidden units that should be incorporated.

The way in which the geometric information is generated and manipulated is also an interesting
achievement of this study considering the difficulties that exist at present for finding a geometry

implementation for building the Delaunay triangulation of a set of points that does not grow

exponentially with the dimensionality of the input when it is higher than 3.

It could be possible to change the particular algorithm that is used at present to generate

the geometric constructs used in GROPING but, given that its computational complexity is

governed by the pruning/evolving phase of the method rather than by the geometric component
that is being used there will be no real gain in replacing the implementation that is used at

present by another, faster, algorithm.

The study also allowed to discern the complexity of the task of building the network for a

particular application. The same cannot be restricted to the execution of a training process

because the chances of achieving a successful implementation are minimal unless the problem
is very simple. A complete design method must incorporate:

(a) An adequate pre-processing phase so that the data might be tailored to the form on which
a learning algorithm is at its best, i.e. a continuous standardised form.
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(b) The training, validation and test set must be specified previous to the process of properly

building the network.

(c) An initial phase that will produce a maximal architecture so that it might be possible to

make the best use of a generative-pruning learning algorithm.

(d) The algorithm responsible for properly training the network that will be the final output
of the whole process.

(e) In a generative learning algorithm various networks Eire created to solve the same problem,
therefore a phase must be included to choose from all of them the most appropriate for

the particular application. The most important component of this phase is the selection
criteria used.

The results contained in table 6.7 Eire a practical demonstration of the effectiveness of using
GROPING to generate the multi-layer perceptron network for a pEtrticulax application be¬
cause it is cleEir that reasonable network generalises were achieved for a variety of classification

tasks. When compared against the results obtained for the same problems by the developer
of the Probenl benchmark it is easy to see that it was possible to achieve better solutions

with GROPING. It might be argued that this comparison is not sufficient to claim the ef¬
fectiveness of the algorithm because it is taking plEice between a learning algorithm operating
on a fixed architecture against a generative learning procedure given that, the second type of

learning is always better thsm the first. It was not possible to realise an evEiluation agELinst
other generative algorithms because there is no proper set of results agELinst which to compare,

at least none were found in the literature reviewed. A few results obtained from generating

networks with the cascade correlation algorithm were found in the STATLOG benchmark

and, when compared against them, GROPING fared better. Nevertheless, as there are only

a small set of results a useful next step to this reseELrch could be the design and execution of a

proper benchmark evaluating the performance capacity of different generative Eilgorithms. The
list could include the optimal brain damage algorithm [Lecun et al. 90], optimal brsiin surgery

[B. Hassibi 93], apart from GROPING, the cascade correlation algorithm and, other type of
classification techniques such as the ones found in the C4.5 software, [Quinlan 93], an example
of a decision-tree classifier.

The other contribution provided by this reseELrch concerns the measure that gives Em indication
of the convenience of using the multi-layer perceptron model to build an implementation. It is
not an absolute well-proved parameter providing a certain yes/no answer on the effectiveness
of proceeding with the use of the model but, it does try to make the best use of the information
that is automatically generated in the first stages of the network design process, organising it in
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such a way that a better indication of the adequacy of the task that is being executed is made
evident before expending computational resources that could be put to a better use. It might
also be the case that a bad result is produced because the training set that is being evaluated is
a bad sample of the general structure of the operating domain but, this inconvenience applies
equally well to ail of the network design process because there is no algorithm that will generate
a reasonable network with an inadequate training set. The other objection that could be made
against the measure is that it evaluates a projected version of the original set, therefore the
conclusions reached might be invalid in the authentic setting. Nevertheless, considering that
a projected space is never simpler than its original version because the same information is
squeezed in a smaller space, achieving a good result guarantees the adequacy of using the
model for the extended space and a negative result could be taken as a warning whose validity
will be proved as the network development process progresses.

7.2 Possible continuations

The previous discussion clearly shows that although important steps have been taken in the
advancement of the process for building a better learning algorithm for multi-layer perceptrons
a lot of work still needs to be realised in the area. The ensuing points describe the tasks that
are worth pursuing as their outcome will produce important gains in the development of the
kind of application for which a multi-layer perceptron is a good alternative.

Of the various paths that might be followed in the next stage of the research that up to this
moment has resulted in the definition of the generative-pruning algorithm, GROPING, there
are two which are considered to be particularly important. Both can be performed in parallel
because, the outcome of each does not depend on the outcome of the other. Their description
is organised according to the goal that is to be pursued in each case:

(1) enhancing the GROPING algorithm by improving the complexity measure. Such a
measure needs to be better specified and it is necessary to prove that it does in effect
correspond to a reliable parameter for deciding on the issue of the convenience of devel¬
oping the application of interest with the multi-layer perceptron model. The tasks that
are necessary to successfully complete this goal are:

(a) study other existing geometric mechanisms available for analysing the structure of
an input space. Alternatively it might be the case that if the present measure is
integrated with some form of statistic it may become more reliable than it is at the
present time.
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(b) it will be necessary to show the effectiveness of this enhanced version of the com¬

plexity measure. To fulfill this goal it is necessary to setup the experiments that will
allow a proper evaluation of its effectiveness. As it can only be of a strict statistical

nature, given the kind of problem that is being attacked, it is necessary to define as

many experiments as possible each comprised of reasonable sized sets of data. This

data could correspond to real world problems or, it could be artificially generated

to analyse how the measure behaves with data complying with different properties.

(c) implementation of the exact form of the complexity measure finally used integrating
it to the already existing implementation of GROPING. This task can involve

the development of a user-friendly platform for evaluating the structural details

of the input space of an application that need not be restricted to the multi-layer

perceptron model because, the measure concept is applicable to the general context
of knowledge representation.

(2) developing a benchmark that will allow the comparison, not only of different learning

algorithms for the same network model but also the possibility of measuring the effect¬
iveness of different knowledge representation forms for the same kind of application. The

tasks that must be completed to achieve this goal are much more complex than the ones

required for the previous one because, it is a much more ambitious aim but, it can be

partitioned in stages each of which, when completed, will facilitate the realisation of the

ensuing stage. Limiting the definition of a benchmark at this point to generative learning

algorithms for the multi-layer perceptron and maybe, learning algorithms for the radial
basis function networks, the tasks that should be executed are the following:

(a) familiarisation with the radial basis function model to clearly understand the dif¬
ferences with the multi-layer perceptron and the kind of requirements that a bench¬

mark for such a model should fulfill.

(b) design of the benchmark platform, this step involves comparing the requirements

that must be fulfilled to properly evaluate the multi-layer perceptron and the radial
basis functions, clearly specifying the common ones and the particular ones. A

study of platforms that are already under development to reduce redundant effort
is an additional important activity for achieving this goal.

(c) building the data sets for the platform. This is similar to the second task of the

previous goal, therefore its outcome could be used in both cases. As the goal

pursued at this point is much more ambitious its realisation is more complicated.
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(d) a proper implementation of the whole platform. This operation requires a very care¬

ful design of the user interface so that the benchmark might fulfill the requirements
of the research community in the long term.

Other interesting extensions regarding the improvement of the pruning phase of GROPING,
could correspond to any of the following alternatives:

(1) the application of other types of principal component analysis. Using a non-linear version
of this technique could result in a faster implementation and maybe a better final network
architecture.

(2) introducing a simple similarity-based filter to decide on the number of redundant dimen¬
sions in the hidden units space, whilst still operating on its principal components.

Finally, the algorithm has only been applied to the design of networks for classification tasks
and it would be interesting to evaluate and extend its applicability to the design of networks
for function approximation.
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Appendix A

Generating sets of the
Continuous parity problem

The C source code included in this appendix corresponds to the implementation developed in
the research to generate patterns for the parity problem with a continuous input domain.

It computes a set of n-dimensional continuous patterns in the interval [0,1] using the pseudo¬
random generator functions of the C library, drand48() and srand48(). These functions produce
pseudo-random numbers using the linear congruential algorithm and 48-bit integer arithmetic.

Given the type of problem that is being simulated, the output of the program will be a set of P
input-output patterns complying with the structure required by a multi-layer perceptron net¬
work, as described in chapter 2. The output is one-dimensional and binary. An N-dimensional
input pattern xp = (x^xj, ...,xf, ...,xp), will have associated a unitary output if the number
of elements x? of xp such that, xf > 0.5 is odd, otherwise the output associated to xp will be
zero.

Call with arguments: parity_gen npoints dim > nomJile
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#include <stdio.h> #include <math.h>

#include <string.h> #include <malloc.h>

extern double drand48();
extern void srand48();
extern long timeO;
extern double atofO;
extern int atoiO;

main(argc,argv)
chair *«argv;
{
int def_tr, i, j, k, npoints, dim, tmp_num, def.ts;
int tam_tr=0, tam_ts=0, point_tr=0, num.ones;
double tmp.rand, abs.rand;
float print_rand, width.min, width.mauc, dif;
FILE *net_tr;

dim = 4; width.min=0.0; width.mauc=0.4; dif=0.0;
num_ones=0;

if (argc > 1)
npoints = atoi (aurgv [1] ) ;

if (argc > 2)
dim = atoi (argv [2] ) ;

if (argc == 1 I I argc > 3) {
fprintf (stderr, "usage: 7.s [npoints [dim [min_w [max_v ]]]]]\n",argv[0]);
exit (1) ;

>

srand48(time (0));
taun.tr = abs(irint (dramd48()♦npoints)) ; tam.ts = npoints - taun.tr;

if (tam.tr < taun.ts) {
tmp.num = tam.tr; tam.ts = taun.tr; tam.tr = tmp.num;

>;
setbuf(stdout, NULL);
def_tr=0; point_tr=0;

do {
num_ones=0;
for (j=0; j<dim; j++) {
tmp.ramd = dramd48();
if (tmp.rand > 0.5) num_ones++;
print.rand = (float) tmp.ramd; fprintf (stdout, "7,8. 4f " .print .ramd) ;
>;

def_tr++;
if (num_ones7,2 == 0) fprintf (stdout," 0\n");
else fprintf(stdout," l\n");

> while (def.tr < taun.tr) ;

printf ("TRAIN SET SIZE = 7,4d\n" ,tam.tr); for (i=0;i<3;i++) printf ("\n");
def_ts=0;
do {.
num_ones=0;
for (j=0; j<dim; j++) {

tmp.rand = drauid48();
if (tmp.ramd > 0.5) num_ones++;
print_ramd= (float) tmp.rand; fprintf (stdout, "7,8.4f ".print.rand) ;

>;
def_ts++;
if (num_ones7.2 == 0) fprintf (stdout," 0\n");
else fprintf(stdout," l\n");

> while (def_ts < tam.ts);
printf ("TEST SET SIZE = 7.4d\n" .tam.ts) ;

>



Appendix B

Methods for building Multi-layer
Perceptrons

The majority of the pruning/constructive methods mentioned throughout this work use inform¬
ation generated by the learning algorithm itself during training. This is produced by modifying
the associated cost function or through the definition of additional measuring elements, in both
cases it is the result of the integration of statistical and optimisation methods complying with
the theoretical elements on which the initial multi-layer perceptron model and related learning
algorithm are based. The constructive methods use special control mechanisms to ensure that
the evolving architecture does so in an organised way because it is very easy to miss the best ar¬
chitecture and produce one which is not such a good generaliser as the training set becomes too
subsumed in it. To this end proper new techniques have been defined many of them based on
novel geometrical concepts which have been successfully applied in areas such as robotics and
image processing. This type of approach has not been used for improving the results achieved
when applying the pruning strategy although it might be worth considering, at least for the
definition of the initial MAXIMAL architecture required. Section B.l contains a survey of
the pruning/constructive methods based on the same theoretical foundations as multi-layer
perceptron and backpropagation, whilst section B.2 comprises a description of the ones de¬
veloped using new information sources about the structure of the operating space, section B.3
discusses the existing limitations and advantages in the area stressing the importance in the
underlying existing relation between Computational Geometry and the multi-layer perceptron
model and, section B.4 is composed of the conclusions reached with this study.

B.l Conventional pruning/constructive methods

Dynamic processes for the generation of an appropriate multi-layer perceptron network for a

particular problem have only existed in the literature during the last decade when it became
clear that restricting the improvement of the learning process of a network to the manipulation
of the learning algorithm's parameters only provided an effective solution to a reduced number
of alternatives.

Given that some of these processes have been defined by extending the existing theoretical
basis of the multi-layer perceptron model and backpropagation with elements of the same type
whilst others incorporate thoroughly novel techniques it is possible to speak of conventional or
novel configuration processes and this has been the basis for structuring this publication. This
section includes a survey of the conventional pruning/constructive algorithms that have been
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defined, the novel ones are described in the succeeding section.

B.l.l Pruning algorithms

The main drawback this type of approach has is the achievement of an initial SUFFICIENTLY
BIG NETWORK. In a particular problem it is only possible to consider a network as being
too large once the learning algorithm operating on it has already converged as this is the only
situation that allows for the generation of information conducing to the fact that the archi¬
tecture comprises redundant elements. This limitation might be overcome if it is possible to
apply some technique to the known elements of the problem of interest so that the definition of
a maximal network, at least in terms of this particular set, can be ensured. It must be pointed
out that even though this step in the network development through a pruning process is crucial
it is very little mentioned in the literature reviewed.

Generally for this type of algorithm the main idea is that the weights of all unnecessary con¬
nections and the output of all unnecessary units will approach zero. It is possible to detect
this in two ways [Alpaydin 91]:

• Explicitly computing how important the existence of a connection/unit is in keeping
the error low after the network has been trained so that a number of the least import¬
ant may be deleted. The information generated for deciding on the importance of the
units/connections is generally of a heuristic nature.

1. The skeletonisation procedure [Mozer &: Smolensky 89] trains a network till a cer¬
tain performance criterion is met. The relevance of each connection is then com¬

puted in terms of the partial derivative of the absolute error with respect to the
connection, a more reliable calculation than the conventional squared error given
the manner in which its derivative decreases when the error is low.

2. [Karnin 90] computes the sensitivity in the same way but sums the values computed
throughout learning instead of computing once at the end. The advantage it has
over the skeletonisation procedure is that it requires less additional computations
as the same type of error measure as backpropagation is employed when generating
the sensitivity factors.

3. Optimal brain damage [Lecun et al. 90] uses an information theoretic measure to
compute the saliencv of a connection using the second derivative of the error func¬
tion. Training proceeds until the error comes down to a certain value at which
point saliencies are computed, a number of the least salient are deleted and the
remaining network is retrained.

• Instead of approximating how much the error will change if the unit/connection is elim¬
inated, it is possible to modify the related learning algorithm so that after training, the
unnecessary connections/units will have zero weight/output.

1. It is possible to build a tendency in the learning algorithm to have those weights
that are not relevant decay to zero by decrementing them by a certain factor at
each weight update, an approach described by [Hertz et al. 91] . The important
weights are set away from zero whilst the useless ones simply decay to zero value.
Other variants of the weight decay rule can be found in (Chauvin 1989; Hanson
1989; Ishikawa 1990; Plaut 1986). The main methodological difference between
them, apart from the fact that each defines a unique decay rule, is that some favour
decaying weights whilst others explicitly involve decaying hidden units.
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2. Another alternative is to use the information theoretic idea of minimum descrip¬
tion length and add a term to the cost function that penalises network complexity
(Weigend, Rumelhart, Huberman 1991). During gradient descent, the algorithm
will settle to the network that has the best trade-off between error and complexity.

3. [Ji et al. 90] modify the error function to minimise the number of hidden nodes
and the magnitude of the weights. They consider a single-hidden-layer network
with one input and one linear output. The error is defined as the sum of two terms,
eo, the normal sum of squared errors, and ei, a term measuring node significance.
The second term makes the algorithm favour solutions with fewer significant hidden
units. Once an acceptable level of performance is achieved, small magnitude weights
can be removed and training resumed. They note that the modified error functions
increase the training time.

4. [Kruschke 91] describes the local bottlenecks method in which the hidden units
compete to survive. The degree to which a unit participates in the cost function
computed by the network is measured by the magnitude of its weight vector. Units
are redundant when their weight vectors are nearly parallel /antiparallel and they
compete with others having similar directions. To detect this the weight vector is
treated as a separate parameter designated the gain, a positive term that approaches
zero as the associated unit's usefulness decreases.

As has already being mentioned the main problem with all these algorithms is the need to
operate on an architecture that must be initially too large otherwise it is not possible to detect
which of the units and/or connections are in effect redundant and a network can only be said
to be too large if the learning algorithm processing it manages to converge, ie. if it is at least
able to recognise all the elements in the training set. Another drawback is in relation to the
nature of the heuristic information any of them uses as it makes the decision process extremely
subjective and not very reliable. The concepts of saliency, acceptable level of performance,
sensitivity are all extremely volatile therefore easily tailored to anybody's preference.

B.1.2 Constructive algorithms

All these processes start from a simple network and add units and/or connections to decrease
the error. The building process cannot be done in a straightforward manner (Alpaydin 1991)
especially in networks where associations are distributed over a number of shared connections.
It is necessary to define mechanisms whereby addition of a new unit improves success without
corrupting the harmony normally expected in a distributed environment, a difficult task that
might be considered the main component in any of these methods and should therefore receive
the utmost attention by any potential user.

The advantage they have over the pruning methods is that no important a-priori decision
with respect to the network architecture needs to be taken. Also many of these constructive
alternatives include a pruning phase to clean the architecture of possibly useless elements which
means there are particular cases which take into account the advantages of both approaches.

1. The first incremental learning algorithm is the Restricted Coulomb Energy (RCE) model
(Reilly, Cooper, Elbaum 1982). Associated with each unit is a number of prototypes
where a prototype gets activated only if the input falls into its domination region, de¬
termined by a distance computation followed by a thresholding. If an input does not
activate any prototype, a new prototype is created at that position with an initially large
domination region. Prototypes activated for inputs that belong to different classes are
penalised by having their regions decreased which is done by modifying the threshold. It
also includes a tuning process for adjusting units closer to class boundaries.
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2. Recruitment learning (Diederich 1989), is used in the case of structured connectionist
networks where a previously free unit is committed to represent a new concept and
required connections are built up dynamically. This is a one-shot learning algorithm, i.e.
one iteration is sufficient to learn a new concept.

3. The upstart algorithm (Frean 1989), was developed to build reasonable multi-layer per-
ceptron to solve classification tasks in the binary domain; the networks it develops have
a threshold activation function in all its layers. The basic idea is that a unit builds other
units to correct its mistakes, these new units are termed daughter units of the one that
induced their creation and because the whole operation is taking place in the binary
domain and due to the type of activation function employed it is possible to estimate the
value the new connections should have so that the network classifies correctly a greater
number of patterns. The final architecture has a hierarchical tree structure which was
a point against the strategy, whereupon the authors in [Frean 89] extended it so that it
will generate a one-hidden layer network and be able to manage multiple outputs. It is
a convenient algorithm but only for building networks that express boolean mappings.

4. The Cascade correlation algorithm developed by [Fahlman &; Lebiere 90] evolves its ar¬
chitecture so that the hidden units establish high-order non-linearity in approximating
the residual error. The connection weights associated to each new candidate unit are
trained while freezing those of existing units. In fact, in cascade correlation only a single
layer of weights (either hidden/output) associated with each candidate hidden unit is
being trained at any given time based on a maximum correlation criterion for hidden
weights and a minimum mean square error criterion for output weights, considerably
speeding the training process. Its main disadvantage lies in the complex architecture
finally developed as there is just one hidden unit in each layer. This shortcoming has
been recently solved [Fahlman &: Baluja 94] with a variant of cascade correlation which
allows the creation of more than one unit in a hidden layer.

5. The divide and conquer neural network algorithm (DCN) described in (Romaniuk, Hall
1993), creates a network architecture combining a divide phase and a conquer phase
into the learning process which begins operating on a minimal architecture comprised
only of the input nodes because the hidden and the outputs required are created during
training. The learning algorithm is independent of the (learning rule, activation function)
pair chosen. In the conquer phase a new cell is added, and it serves as the first cell on
a new layer of the network, if its output correctly classifies all the examples for the
output currently being processed it serves as an output cell. The divide phase adds a
cell in the same hidden layer as the last conquer cell, it concentrates on learning only
the examples that were not already learned by cells on the same hidden layer. The final
network architecture does not exactly conform to the multi-layer perceptron given it
permits connections between nodes not complying with the feedforward rule in a similar
way as the topologies produced by the CCN. Its general structure guarantees maximum
pattern recognition rate, at least for the training set and the experiments performed by
the authors show a good degree of generalisation.

Even though in the first instance this approach seems to be more appropriate than the pruning
strategy because it does not require the initial definition of a complete and correct network
architecture most of the alternatives effectively developed tend to generate more complex ar¬
chitectures than the one needed for the problem under consideration. This is due to the kind
of information used in the decision process concerned with the generation of additional connec¬
tions and/or units. As the state of the network at that moment does not allow one to decide
whether it is enough to add a unit and/or connection to solve the problem or if a more drastic
change, ie the introduction of an additional layer is a better action, the applications defined
usually perform the second one given that it is always the case that the introduction of an
additional layer greatly improves the learning capacity of a network based on the multi-layer
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perceptron model. The inefficiency of this action stems from the little concern it takes of
Cybenko's results in relation to the capacity of a one hidden layer multi-layer perceptron and
is what makes the pruning algorithms seem more effective if it is possible to define an initial
network showing a high pattern recognition rate.

B.2 Novel Generative algorithms

The methods described in this section differ from those previously mentioned in the type of
information and approach employed when creating/deleting an element of a network. The
most arresting characteristics many of them show are: a) the use of more than one type of
network model resulting in a hybrid architecture; b) the integration of constructive and pruning
elements within one approach, trying to profit from the advantages of both. The ones reviewed
are:

1. [Alpaydin 91] describes the grow and learn algorithm, a combination of constructive
and pruning operations. It generates a hybrid architecture, the input and output layer
conforming to the multi-layer perceptron whilst the hidden layers comprise a winner take
all network which is empty at the start of the training process. When presented with
a new pattern if the architecture in its present form is unable to correctly classify it
the generation of a new element within the hidden layers takes place and the weights of
the different connections are calculated in such a way as to produce a one-shot LA. Its
pruning phase is performed during a sleep mode in which the network is closed to the
environment, the inputs are generated by the system itself, and units that are no longer
necessary due to recent additions are removed.

2. [Honavar & Uhr 88] provide a theoretical framework for generative learning processes
which are able to produce parallel architectures of simple computing elements whose
particular form and size is a function of experience. It includes the different mechanisms
that any generative algorithm might include emphasising those they believe are the most
appropriate for a coherent, sound and effective algorithm. A control mechanism based
on an error-driven minimal generation strategy is considered the most adequate way
for striking a suitable balance between the existing nodes and the nodes that will be
subsequently incorporated and which are not restricted to a particular layer because the
algorithm includes conditions that must be satisfied for the creation of units and/or layers.
Each new unit is connected to all the existing units in the previous layers. It also includes
a pruning phase within the global generative process to eliminate possible ineffectual
network components. The method they implemented is based on the generation of a
recognition cone able to modify its own topology by growing links and recruiting units
whenever the related learning algorithm ceases to improve its performance during the
traversal of the training set and subsequent update of the existing connection's weights.

3. The algorithm developed by [Smyth 92] is the result of the integration of multi-layer
perceptron techniques and nearest-neighbour systems (NNS) theory, this last for determ¬
ining the number of hidden units that a one hidden layer network might require to solve
the problem of interest and, the values of the weight vectors associated to each of these
units. The estimation process involves generating the cluster centers from the train¬
ing set, calculating the boundaries between the regions these produce and which were
defined as the perpendicular bisectors of the inter-center segments. Special considera¬
tions aire used to initialise the connections associated with the network's bias term. All
this information is used to build a sorted boundary list which will be the input to an
iterative process that runs through it generating a hidden unit to deal with each border
so that a greater number of the elements in the training set might be correctly classified
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ensuring no redundant hyperplanes are created. The weights of the hidden-output con¬
nections are obtained by inverting the sigmoid activation function and considering the
desired targets of the training set. A problem with this strategy is that the matrix that
must be calculated to correctly determine the values of the hidden-output connections
is not invertible therefore an additional step comprising a singular value decomposition
process is required. Another problem is that there is no guarantee that the weight vectors
calculated with the NNS will always result in the space separators required but it per¬
mits the generation of an initial architecture whose weight vectors will generally be much
closer to the desired global minimum than a random initialisation, therefore the learning
algorithm selected to train and fine-tune the network has a good chance of reaching a
good solution in a reasonable amount of time. This implementation can provide a good
alternative for the network design if the number of regions (clusters) does not have to be
specified as part of the input but is a product of the NNS, if this is not the case there is
an important element of information associated to the operating space which should be
part of the architecture estimation process and is not.

4. [Bello 92] provides an example of what a dynamic generation process of a multi-layer
perceptron should not be. It employs non-linear least squares and quasi-Newton optim¬
isation techniques in its learning algorithm and integrates it with an estimation process
that selects the best network architecture for the problem of interest from an initial
pool of possible solutions. The first thing that is not adequate is the selected learning
algorithm because various analysis have shown that second-order techniques, eg. the
quasi-Newton process, axe not the most efficient of alternatives for training multi-layer
perceptron. Moreover the architecture generation process requires an initial SET of pos¬
sible solutions, a very difficult condition to satisfy given the amount of work involved in
coming up with just one feasible alternative. The fact that it does not provide an option
for dealing with the situation of choosing a completely wrong initial set can also be taken
as a point against this particular implementation.

5. The growing cell structures algorithm (GCS) defined by [Fritzke 93] integrates not only
the pruning and constructive strategies but also the supervised and unsupervised philo¬
sophies of the learning algorithm for training a network model. The unsupervised learn¬
ing is used to train the network's hidden layer which is comprised of a set of radial basis
function units whose synaptic vectors are in principle adapted according to the strategy
proposed by [Kohonen 82]. The variations introduced by the algorithm were designed
to ensure that throughout the training process the existing units and connections in
the hidden layer satisfy the specifications associated with a Voronoi tessellation, a geo¬
metrical arrangement representing minimum distances between sets of points which has
great applicability in a network design process. The fact that at any moment the hidden
units must comply with the requirements of a voronoi tessellation means that the genera¬
tion/deletion of a unit must be carefully controlled, therefore this particular set of update
operations is a fundamental constituent of the GCS. The supervised algorithm trains the
hidden-output connections ensuring that a balance is maintained with the structure gen¬
erated in the hidden layer. The error produced during the supervised phase is used to
determine whether more units are required in the hidden layer and because different
and somewhat independent network components are updated in each phase it is possible
to perform both tasks in parallel. There are no formal proofs showing that the GCS
strategy always produces a voronoi diagram at the hidden layer but the 2-dimensional
problems described show that such is the case and the authors mention that it might be
possible to extend the results to higher dimensions. GCS is an adequate contribution
to generative algorithms not only because it tries to exploit many of the strategies and
possible alternatives that have been defined in this area but also because it presents a
possible application of certain geometrical mechanisms to solve the problem of generating
an appropriate network architecture which seems to be a very reasonable option.

6. [Bose & Garga 93] describe an approach which draws upon some results in computa-
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tional geometry and graph theory to provide a solution to the multi-layer perceptron
design problem. The learning algorithm initially calculates from the points of every class
comprising the problem of interest the associated convex hull. From each of them it is
possible to generate a voronoi diagram occupying a particular region in feature space
that might have a certain degree of intersection with the regions occupied by the voronoi
diagram of the other classes. The authors differentiate two types of intersection each
requiring a particular solution. The first one occurs between a pair of classes; the other
type involves more than two classes and corresponds to the case where the intersection of
every pair taken separately is empty but not that of the set of joint classes, the pairwise
linearly separable problem, which is solved in [Bose & Garga 93] with two layers in the
network, one comprised of the units producing the hyperplanes required by each pair of
classes and the second containing as many units as there are classes. The connections
between the hidden layers guarantees the units will be correctly activated, ie. each of the
hyperplanes in the first layer will activate the unit in the second layer corresponding to
the class of interest. To solve the intersection problem between a pair of classes requires
the construction of a cluster of clusters through the generation of an intersection of hy¬
perplanes if the resulting cluster is convex or the union of a set of convex regions in the
case of a non-convex cluster. Each of the last two alternatives requires a particular archi¬
tecture, for the convex cluster a two hidden layer architecture solves the problem whilst
a non-convex one is tackled with a three-hidden layer network. Although the learning
algorithm is not exactly one-shot it does require a much shorter number of iterations
than the standard backpropagation because the precise value of each of the connections
can be explicitly calculated using information about the position of each of the convex
hulls generated. The inconvenience with this approach is the great number of layers it
is generating probably due to the fact that its units use simple threshold functions, the
simplest and most reliable way to generate hyperplanes. It should be possible to improve
on this approach introducing an element of non-linearity through the use of sigmoid func¬
tions without forgetting to exploit on the new sources of information suggested, ie. the
computational geometry concepts.

B.3 Discussion of the alternatives considered

To ensure the successful completion of any algorithm it is necessary to clearly specify its initial
operating conditions. In the particular case of the pruning approach it is compulsory they begin
to work on a network architecture that provides a solution to the problem because only then
is it possible to conclude anything in relation to the appropriateness of its size. This situation
favours the constructive algorithms but for the majority of tasks these methods usually generate
network architectures that are more complex them the one required.

This state of affairs has been tackled in (Alpaydin 1991; Honavar 1988; Fritzke 1993), with
the development of integrated learning algorithms, trying to profit from the advantages each
approach offers. To this end it is necessary to produce a complete and reliable block of know¬
ledge from which it might be possible to conclude whether the inherent degree of complexity of
a particular architecture is the one really required to effectively solve the problem of interest.
Many different mechanisms are employed in the generative algorithms described for producing
this kind of knowledge, each has its advantages and seems specially appropriate mainly because
of the way its developers apply it in the network context.

Of all the set of possibilities the most useful are the ones subtracted from computational
geometry given the close link that exists between its underlying philosophy and that of the
multi-layer perceptron, a matter that has been shown in various studies advanced in the last
couple of years not only within the realm of generative algorithms and not only restricted to
computational geometry as the potential of the different existing geometrical theories has been
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exploited in various studies . [Hu 90a], [Hu 90b] describe works that use convex-cone geometry
to study the conditions the one-hidden-layer, threshold function network model should satisfy so
that it might capture the form of binary mappings in n-dimensional input-output domains. In
this case it is possible to write the form of the hyperplanes required in terms of the inner-product
of all the input-output pairs comprising the training set and a group of vectors generated
through other associations between the elements of the same set. If this new group of vectors
forms a convex-cone then it is possible to define a network to represent the mapping expressed
by the training set under scrutiny.

[Amari 92] describes the equivalence between a set of Boltzmann machines with a fixed topology
and a geometrical manifold of high dimension establishing the convenience of studying the
geometry of a neural manifold over the behaviour of a single network for achieving a better
understanding of the capabilities and limitations of networks of a fixed topology .

[Martinetz &: Schulten 94] describe the Topology Representing Network model which is based
on the fact that for a number of information processing tasks the problem that has to be solved
efficiently can be reduced to a geometric one dealing with the proximity of points in a metric
space, for this reason they designed a learning algorithm comprised of a hebbian adaptation rule
with winner-take-all like competition which when it is executed develops connections between
a given set of neural units with neighbouring receptive fields whilst eliminating those existing
between non-neighbouring units, the resulting network architecture coincides with the Delaunay
Triangulation of the points in the training set. The delaunay triangulation is a concept in
computational geometry very closely related to the voronoi diagram, one is the dual of the other,
both provide very good information on the existing proximity between the points from which
they are generated and this is what makes them particularly attractive sources of information
for the design process of a network.

The work developed by [Omohundro 89b], (1989b) is not based on a particular network model
or generative algorithm, nevertheless it is an important contribution to this research because it
emphasises the existing potential in using Geometrical concepts in the specification of a learning
process. It describes a learning algorithm in [Omohundro 89b] which combines k-d trees and
delaunay triangulation arguing that their usefulness stems from the point proximity information
embedded in them given that this is the main device responsible for the generalisation property
found in any kind of biological learning.

B.4 Conclusions

A general framework providing a tool for the categorisation of the different existing methods
for the development of a multi-layer perceptron model was presented. Within it many different
alternatives were outlined, describing the reasons which made a particular type ofmethod more
convenient with respect to the others by pointing out its main advantages and/or weaknesses
from a theoretical perspective given the properties of the concepts upon which it is based.

Overall the conclusions reached can be summarised in the following way:

1. The generative algorithms offer more appropriate methods for developing a network ap¬
plication given that they require much less data pre-processing and network/learning
algorithm parameter specification before they are applied to the task of interest.

2. There are three main types of generative algorithms: pruning methods, constructive and
mixed. The pruning alternative is the least effective given that an operating network
must be generated before proceeding to execute the algorithm. On the other hand the
constructive methods usually produce architectures that are more complex than the one

required. This situation makes an integrated approach the most adequate given it tries
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to benefit from the qualities provided by both the building/pruning alternatives.

3. Any of the methods described involves an important information processing task. The
best results were obtained with those producing the correct amount and type of inform¬
ation. For a classification task good information is the one providing the algorithm with
a clear description of the structure of the network's operating space and the best devices
that have been provided to produce it belong to Geometry. Some use sources defined in
Classifiers theory given that this area is also concerned with the structure of its operating
space. Even though these concepts have other names and seem to require special pro¬
cesses for their calculation the underlying philosophy makes use of a few basic geometric
concepts, eg. euclidean distance, therefore it is a much cleaner and direct approach to
apply geometry theory in the first place.

4. The algorithms that make use of geometry concepts either operate different network
models or are applied to the simplest of multi-layer perceptron models, ie. the threshold
activation function model. Given the potential such application should be extended to
the more powerful non-linear multi-layer perceptron.



Appendix C

Geometry terminology

As a major part of this research is based in geometry, the present appendix includes the basic
terminology on which most of the ideas applied is based. The concepts were for the msot part
subtracted from [O'Rourke 94] and [Okabe et al. 92].

1. Non-collinearity assumption: for a given set of points X = {x1 ,x2, • ■ • ,xn} G RN,
(n > 2), x1 ,x2, - • ■ ,xn are not on the same line.

2. Non-circularity assumption: given a set of points X = {x1,!2, • • • ,xn} G R2, (4 <
n < oo), there does not exist a circle, C, such that xl1, • • •, xxk G X, k > 4, are on C, and
all points X \ {xl1, • • • ,x1*} are outside C.

3. N-dimensional cartesian product: if X\tX2t ■ • • are non-empty sets, then the
N-dimensional cartesian product X\ x X2, • • ■, ATw-i x Xn is the set of ordered N-tuples
(xi,i2,...,xjv) with Xi G Ar*, Vi G [l,Af]. When X{ = R,Vi G [1,iV], the cartesian product
is called the N-dimensional real Cartesian space.

4. point xp: in the N-dimensional real cartesian space R", an N-tuple or the cartesian
coordinates (xj,x£, ...,xpN) indicate a point denoted by xp.

5. norm(xp): the norm of vector xp G RNt ||xp||, is given by
Ml = V~((*p)T*xp) = v/(E.=iW)2)

6. euclidean-distance(xp,xm): the euclideEin distance from point to
point xm = (I™,!™, ...,x]v) is given by:

||xp — Xm|| = y/(xp — Xm)T * (xp — Xm)
= %/(Ei,w-xn2)

The N-dimensional real cartesian space with the euclidean distance is denoted the N-
dimensional euclidean space.

7. open ball: for a point c G RN and e > 0, the set: N( = {x \ ||x — c|| < e} is called an
open ball with radius t centred at c. Using the definition , the set X C RN is open if
every point in X is the centre of some open ball entirely contained in X; the set X G RN
is closed if RN \ X is open in RN.

8. boundary point xp: a point xp G RN is a boundary point of X, if every open ball
centred at xp contains a point of X and a point of RN \ X. The set of all boundary
points of X is the boundary of A' and it is denoted by dX.

9. hyperplane H: the set
H = {x I x = EfeT1 X'x' + (1 - EteT1 Ai)iw, Ai € R,i 6 [1, N - 1]},
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where x2 — x1, • • •, a? — x1 are linearly independent, corresponds to a hyperplane in
RN. Alternatively, the hyperplane H can be written as:

H = {x | ATx = 6, A,x G RN,||A|| ^ 0}
10. half-space R^: a hyperplane R splits a space into two disjoint regions. The region

defined by:
Rh = {x | ATx < 6, A,x G RN,||A|| ^ 0},

is referred to as a closed half space.

11. bisector(x*,xm): given two points xm,x* G X, the line 6(xm,x*) is referred to as the
bisector of the segment xmxk, if every point in the line 6(xm,x*) is equidistant from xm
and xk. Formally 6(xm,x*) cam be written as:

b(xm,xk) = {x | ||x — x*|| = ||x — xm||},fc / m

12. convex set X: a set X G RN is convex, if for any two given points, x*,xm, such that,
xk G X,xm G X, the line segment xkxm joining the points is contained in X, ie.

\xk + (1 - A)xm G X,V0 < A < 1,
otherwise X is a non-convex set. In particular if for any two points x*,xm G X, the
relation

Ax* 4- (1 - A)xm G X \ dX, V0 < A < 1,
holds, the set X is said to be strictly convex.

13. convex hull: of a set of points X G RN, CH(X), is the set of all convex combinations
of N + 1 (or fewer) points of X. Alternatively it is the intersection of all convex sets that
contain X. An important characteristic of this geometric construct is that it corresponds
to the smallest convex set that contains the set X, therefore if X is a convex set, the
convex hull of X is X itself.

14. simplex: in RN, a simplex is the convex hull of any set of iV + 1 points which do not
lie on one hyperplane in RN.

15. tessellation: let S be a closed subset of RN and S = {Si,52>• • • >£*} where Si is a
closed subset of S. If the elements in S satisfy

[Sj \ dSj] fl [Sj \ dSj] = 0,i^ j, i,j G (1, £), and
uL ■?. = s

then the set S is a tessellation of S.



Appendix D

Hypothesis testing on the error
measure

Once the idea of initialising the network architecture with the information subtracted from the
geometric constructs, generated from the training set associated to the problem of interest,
had been clearly specified, it was necessary to devise an adequate mechanism to prove its
usefulness. In this context, a statistical inference procedure that will allow the comparison of,
the error achieved during training operating on the network instantiated with the geometric
initialisation against, the average of the error achieved by the same training process working on
the same network architecture but, instantiated with various random initialisations provided
an appropriate tool.

As the statistical inference used is the hypothesis testing method, it involves performing a stat¬
istical test of a null hypothesis concerning a parameter that complies with certain properties.
In this context, the sample data is used to test whether the estimated value for the parameter
is different enough from a hypothesised value to conclude that the null hypothesis is unlikely
to be true. The general procedure followed when executing this test corresponds to the one
described in [Kleinbaum et al. 88] and, is comprised of the following steps:

1. Check the assumptions concerning the properties of the underlying variable being meas¬
ured that are needed to justify the use of the testing procedure being considered.

2. State the null hypothesis H0 and the alternative hypothesis HA.

3. Specify the significance level a.

4. Specify the test statistic to be used and its distribution under Ho-

5. Form the decision rule for rejecting and not rejecting Ho, i.e. specify the rejection and
acceptance regions for the test.

6. Compute the value of the test statistic from the observed data.

7. Generate the conclusions concerning the rejection or non-rejection of Ho-

For the case of interest in this research, the previous steps were realised in the following way:

1. Assumptions: the error measure corresponds to the minimum square error registered
at different stages of the training process; the value taken into consideration for this
analysis is the error registered at the end of the training procedure. There is one such value
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setJd mse-tr std-dev(mse.tr) mse_gm_tr num_iter

1 0.0104 0.0003 0.0101 15000
2 0.0037 0.0001 0.0039 205

3 0.0481 0.0082 0.0120 15000

4 0.0141 0.0002 0.0140 15000
5 0.0076 0.0014 0.0057 23
6 0.0039 0 0.0039 15000
7 0.0205 0.0088 0.0111 15000

8 0.0179 0.0004 0.0167 15000
9 0.0083 0.0003 0.0070 437
10 0.0094 0.0024 0.0031 38
11 0.0085 0.0002 0.0082 15000

12 0.0657 0.0078 0.0149 15000
13 0.0050 0.0002 0.0049 15000
14 0.0082 0.0031 0.0084 9
15 0.0068 0.0014 0.0055 15000

16 0.0040 0.0005 0.0036 15000
17 0.0520 0.0118 0.0066 16

18 0.0772 0.0531 0.0045 26

19 0.0082 0.0037 0.0087 38
20 0.0058 0.0001 0.0056 15000
21 0.0058 0.0002 0.0052 15000
22 0.0040 0 0.0040 15000
23 0.0168 0.0074 0.0043 14
24 0.0180 0.0135 0.0176 18
25 0.0125 0.0004 0.0121 15000
26 0.0286 0.0099 0.0348 8
27 0.0113 0.0002 0.0048 15000
28 0.0138 0.0004 0.0135 15000

Table D.l: data collected on training set for hypothesis testing

for each of the random initialisations and, one minimum square error value associated
with the training process when operating on the architecture initialised with the weight
vectors that resulted from the geometric analysis. As there are 28 problems, 28 possible
conclusions regarding the null hypothesis and the alternative hypothesis can be built
with the statistical procedure. The network architecture in each case was initialised with
30 different sets of randomly generated weight vectors, using values in the [—1.00,1.00]
interval. It is feasible to assume that the distribution underlying the error measure
that is of interest, is the normal distribution applying the results of the central limit
theorem, which concern the distribution governing the mean of a sufficiently large sample.
Therefore a hypothesis testing procedure is applicable.

2. Hypotheses H0: there is no significant difference between, the error achieved at the end
of training the network architecture initialised with the geometric information and, the
error achieved training the same network for the same number of iterations but, randomly
initialised at the beginning of the training process; Ha- there is a significant difference
between the error measures of interest, i.e. the error achieved at the end of training the
architecture initialised with the geometric information is smaller, than the error achieved
training the same network but using weights randomly initialised at the beginning of the
training process. Considering:

mse: average of the minimum square error obtained with random initialisations,
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msegm: minimum square error computed in the training process working on the
network

initialised with the geometric analysis, the hypotheses can be mathematically ex¬

pressed as:

H0 : msegm = mse Ha • msegm < mse (Dl)

3. Significance a: The significance level a = 0.025. It represents the probability of making
a type I error during the inference procedure. Type I error refers to, incorrectly rejecting
the null hypothesis Ho.

4. Test statistic: considering that the parameter being analysed is normally distributed
and, that there is information of the mean, standard deviation, of a randomly selected
sample of that parameter, it is possible to define the random variable T using the same
variables as in steps 2 and 3:

T= (mse-mse^ ^
V^9

T has the t distribution with 29 degrees of freedom. For this reason, the subsequent
analysis of the error consists in looking up tabulated percentiles of this distribution for
each of the 28 artificial datasets built with DGP-2.

5. Decision rule: it is defined dividing the possible values of T into two sets: one of them is
the rejection region, and consists of those values of T for which Ho is rejected. The other
set, the acceptance region consists of the T-values for which H0 is accepted as true. The
critical region is determined by choosing a point from the t tables, called the critical
point which defines the boundary of the acceptance and rejection regions. The value
chosen for this study was <29,0.975 = 2.045. Thus reject Ho if the following condition is
satisfied:

5
mse > (mse.gm + (-7^) * 2.045) (D-3)

v 29

A conclusion was reached regarding the previously defined hypothesis test for each of the 28
problems built with DGP-2. Furthermore, given that in supervised learning the same error is
computed for two different types of data, i.e. the training and, test data, it was possible to
obtain 2 types of results with the same inference procedure:

1. using the minimum square error achieved with the training set at the end of the
training operation. Table D.l contains the errors computed on the training set of each
of the problems considered. The last column in the table contains the iteration at which
the error was registered.

2. using the error measured on the test set. The values obtained in each problem for this
particular measure are in table D.2.

Table D.3 contains the outcome of the statistical analysis. The fourth and fifth columns of the
table indicate whether the null hypothesis H0 was or not rejected according to the evidence
available. The first three columns correspond to a confidence interval test that provides addi¬
tional information on how similar or otherwise the errors turned out to be. The one used in
this evaluation was defined by the formula:

mse-)-f29,0.975 (D.4)

which gives the 100(1 —a)% confidence interval for rnse when the standard deviation is obtained
from a sample of the data. The lower and upper limits of this interval for each case correspond
to the contents of columns 1 and 2 in table D.3 and, the third column indicates whether the
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set-id mseJs std_dev(mse_ts) mse-gm_ts

1 0.1079 0.0102 0.0896
2 0.0138 0.0004 0.0131
3 0.1504 0.0081 0.1496
4 0.0900 0.0060 0.0857

5 0.0019 0.0007 0.0073

6 0.0029 0 0.0029
7 0.1254 0.0100 0.1159
8 0.0871 0.0044 0.0958
9 0.1226 0.0045 0.1279

10 0.0273 0.0030 0.0175
11 0.0165 0.0004 0.0176
12 0.0617 0.0075 0.0562
13 0.0238 0.0005 0.0240

14 0.0116 0.0044 0.0079

15 0.0221 0.0020 0.0238
16 0.0302 0.0075 0.0369
17 0.0716 0.0097 0.0353

18 0.0940 0.0563 0.0106

19 0.0042 0.0020 0.0061
20 0.0050 0.0003 0.0056
21 0.0012 0.0001 0.0012
22 0.0133 0 0.0133
23 0.0259 0.0067 0.0146
24 0.0222 0.0140 0.0263
25 0.0254 0.0007 0.0256
26 0.0207 0.0084 0.0361
27 0.0295 0.0027 0.0292
28 0.0955 0.0108 0.1025

Table D.2: data collected on test set for hypothesis testing

error obtained with the networks initialised with the geometric information, i.e. msegrn, fell
within its limits. A positive answer provides evidence that the error of the random initialisation
and the geometric error have approximately the same kind of value.

Looking at the values in table D.3 it is possible to conclude that the geometric initialisation
does in effect produce a better training procedure because the error reached at the end is
significantly lower than the error obtained with networks randomly initialised. This important
result set the base for developing GROPING in the following stages of the research.
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setad lowerJimit upperJimit confidence-test t_test_train t-test-test

1 0.0103 0.0105 NO YES YES

2 0.0035 0.0039 NO NO YES

3 0.0445 0.0517 NO YES NO
4 0.0140 0.0142 NO YES YES

5 0.0070 0.0082 NO YES NO
6 0.0039 0.0039 NO NO NO
7 0.0166 0.0244 NO YES YES
8 0.0177 0.0181 NO YES NO
9 0.0082 0.0084 NO YES NO
10 0.0083 0.0105 NO YES YES
11 0.0084 0.0086 NO YES NO
12 0.0623 0.0691 NO YES YES
13 0.0049 0.0051 NO YES NO
14 0.0068 0.0096 YES NO YES
15 0.0062 0.0074 NO YES NO
16 0.0038 0.0042 NO YES NO
17 0.0468 0.0572 NO YES YES
18 0.0539 0.1005 NO YES YES
19 0.0066 0.0098 YES NO NO
20 0.0058 0.0058 NO YES NO
21 0.0057 0.0059 NO YES NO
22 0.0040 0.0040 NO YES YES
23 0.0136 0.0200 NO YES YES
24 0.0121 0.0239 YES NO NO
25 0.0123 0.0127 NO YES NO
26 0.0243 0.0329 NO NO NO
27 0.0112 0.0114 NO YES NO
28 0.0136 0.0140 NO YES NO

Table D.3: results of various statistical inference procedures
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Assessing parallelism varying 6

As the initial stage of the network design method defined in this research produces a max¬
imal architecture, it seemed reasonable to provide a first reduction step that would involve the
elimination of those weight vectors considered to be sufficiently parallel given that it implies
redundancy. This evaluation facilitates the subsequent pruning stage of the network develop¬
ment.

As there are no well defined rules indicating what corresponds to sufficiently parallel weight
vectors, to provide an appropriate upper limit, it was necessary to generate different network
architectures for various of the data sets included in the benchmark and, measure the perform¬
ance of the learning process in each case. A convenient upper limit on the angle measure would
be the one producing the better overall network generaliser in the first instance. Nevertheless,
it was also necessary to take into account the number of intermediate architectures that would
be subsequently generated because, this influences the possibility of producing a better network
given that, a larger sample always gives more guarantee of a better result.

As there is a lot of symmetry in the range of possible angles that can be measured between
any two vectors, in this evaluation it was termed sufficient to take into account the angles in
the interval [0, J], i.e. all the possible values of the first quadrant in the 2-dimensional circle
domain. As the angle value that divides this interval in two equal parts corresponds to 9 =
the final set of possible angle values used to perform the set of learning processes this specific
experiment required was:

In all the experiments, once the geometric analysis of the training set had been performed and,
the initial set of weight vectors had been defined, it was possible to measure the angle that
existed between all the possible pairs, grouping them according to their degree of parallelism.
The general form of the rule used corresponds to:

if (angle(wi,Wj) > 9) thentablejparallel(wi,Wj) = TRUE (E.2)

Finally, one weight vector was selected from each of these groups and, taken to be the repres¬
entative vector of all the others contained in the same group.

The specific evaluation consisted in producing initial maximal architectures changing the value
of 9 in E to each of the possible instances described in E.l. Subsequently, each of these initial
architectures was trained using rprop. The performance of the final network produced by the
training process was measured through the computation of the error achieved on the training

197



APPENDIX E. ASSESSING PARALLELISM VARYING 9 198

Square error percentage and Mean error

angle num.units iterations sep.train sep.validation merror-train merror-validation

CANCER DATA SET
173 52 0.01153 3.10520 0.00285 0.03965
76 62 0.00876 2.75144 0.00207 0.02497

3 26 85 0.00930 3.56227 0.00192 0.04075

CARD DATA SET

90 463 0.00462 15.94941 0.00072 0.17061
7T 55 150 0.00505 12.78892 0.00147 0.15097

3 20 481 0.00493 18.44226 0.00110 0.19721

DIABETES DATA SET
265 500 3.76000 23.67182 0.13144 0.33961

7T 94 338 0.0241 23.0699 0.0075 0.2773

3 29 405 0.02555 27.73760 0.00808 0.31291

THYROID DATA SET

194 149 0.14199 1.02759 0.00682 0.01907
79 233 0.00186 0.9985 0.00049 0.01203

3 48 273 0.00200 1.26620 0.00052 0.01524

Table E.l: Results for initial architectures obtained with different 6

and validation sets. The results presented in table E.l were obtained on the classification prob¬
lems: {CANCER, CARD, DIABETES, THYROID}. As they all reflect similar characteristics,
they can be summarised in the following way:

• In all cases the best maximal architecture, at least in terms of the error measure computed
with the validation set, was produced with an an angle 9 = J.

• The largest architectures were computed with 9 — ^ and the smallest with 9 = j which,
considering the form of rule is as should be because, a lower limit on the value of 9 will
always result on a larger number of vector pairs being labeled as parallel.

• Selecting the value of the most appropriate 9 in terms of the error measure of the val¬
idation set, is reasonable considering that: (a) the design method is aimed at building
better network generalises and, (b) there is not much variation between the values of
other possible parameters that could have been selected as decision components such as,
the total number of iterations needed for training the network.

To provide further proof on the convenience of having selected 9 = J as relevant limit for the
parallelism criteria, table E.2 shows the error measures registered with the best networks and,
table ?? contains the size of those same networks, they correspond there is one set of values
for each of the classification problems used. In all cases, the results tabulated were obtained
with 9 — Comparing the network sizes with those included in table E.l it is clear that if
the angle value selected for the rule finally used in GROPING had been | instead of J, the
chances of achieving an appropriate generaliser would have been greatly hampered because,
the size of the maximal architectures for 9 = J is, for the majority of the problems, smaller.
Finally, looking at the error measures achieved on the validation sets with the best networks
produced with 9 = J it is evident that these correspond to better generalises and, although for
the other angle values analised only the maximal architectures were built there is no possibility
of loosing on a better network generalises because, with either the larger or smaller angle, the
only possible architectures that could have been missed belong to the group of less effective
networks.
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Square error percentage and Mean error

problem iterations sep.train sep-validation merror.train merror .validation

CANCER 43 0.0038 1.8084 0.0014 0.0221

CARD 101 0.2332 11.2323 0.0189 0.1481
DIABETES 51 6.2648 17.5532 0.1599 0.2821
THYROID 51 0.2137 0.8085 0.0067 0.0136

Table E.2: Results for best network architecture using GROPING

Pivot architectures for different data sets

data set architecture num.connections
CANCER
CARD

DIABETES
THYROID

9-15-2 165
15 27 2 488
8-94-2 1578
21-135-3 3278

Table E.3: Best network architectures produced with 9 — \
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Benchmark details

The creation of an appropriate multi-layer perceptron network for a particular classification
task using GROPING, involves an extensive manipulation of the training set resulting, in
the generation of various intermediate composite variables. These provide knowledge to the
algorithm, on the structure of the space on which the network will be operating. Following
the guidelines described in [Prechelt 94], to achieve a proper evaluation of the performance of
a learning algorithm working on the data sample of a particular problem, it is necessary to
repeat the learning process on different permutations of the same data so as to measure how
sensitive the algorithm is to the specific sample it has to work on. To this end, in Probenl's
website there are three permutations of the data associated to a particular classification task
and, the results published include the performance achieved by their learning algorithm in each
of these sets.

The same approach has been pursued in this research but, because so much intermediate
information is produced in one execution, in the ensuing description of how it evolves in each
of the classification tasks comprising this benchmark, only the most important data subtracted
from the first permutation of the dataset is presented. The table that summarises the best
results obtained in ail cases does include the networks generated in each of the permutations.
The intermediate structures that were built when designing a network for the same problem
but using the other permutations of the data are all available at GROPING's ftp address:

ftp://ftp.dai.ed.ac.uk/pub/uaar/alanapa/.

Although the construction of a network for a classification task, results in the generation of
numerous structures at different stages of the design process, it is worthwhile noting that almost
none are required throughout, therefore it is possible to build one, use it and, immediately
discard it, this way there is no need to utilise enormous amounts of memory in any one instant
of the execution. The intermediate structures generated and their contents are summarised in
the ensuing list:

1. a matrix of the transformed data which is comprised only of real-valued attributes.

2. number of inputs, number of outputs of transformed version.

3. the covariance matrix and mean vector of the training set.

4. matrices with normalised versions of the training, validation and test sets calculated using
the mean vector and, covariance matrix of the training set.

5. eigenvectors, eigenvalues of the training set's covariance matrix. Projected elements of
the training set to the 3-dimension space spanned by the first three eigenvectors of this
matrix.

200
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6. delaunay triangulation of the projected training set.

7. initial maximal architecture.

8. intermediate networks produced during the pruning phase.

Given that listing all the intermediate elements built for each of the problems is not essential
for understanding the algorithm's functioning, only the ones included in the following list will
be mentioned here, the complete set related to each problem are available by ftp at site:

1. dimensions of the continuous version of the data.

2. covariance matrix and mean vector of the training set.

3. eigenvectors used in projection.

4. initial maximal architecture.

5. values of the performance measures registered at the end of the training process of the
intermediate network architectures.

F.l Cancer

There are 699 patterns in the original dataset. 350 of them were assigned to the training
set, 175 were used to build the validation set and, 174 were included in the test set. The
resulting sizes correspond to 50%, 25%, 25% of the complete available dataset, as required in
the guidelines contained in Probenl. All the attributes of the input are continuous-valued.
The covariance matrix that was computed from the training set has the following values:

Cov(cancer) —

( 0.0793
0.0554
0.0548
0.0391
0.0325
0.0596
0.0383
0.0461

\ 0.0169

0.0554
0.0931
0.0822
0.0615
0.0508
0.0755
0.0562
0.0674
0.0240

0.0548
0.0822
0.0883
0.0580
0.0474
0.0760
0.0533
0.0653
0.0224

0.0391
0.0615
0.0580
0.0815
0.0379
0.0684
0.0464
0.0526
0.0205

0.0325
0.0508
0.0474
0.0379
0.0490
0.0464
0.0333
0.0425
0.0182

0.0596
0.0755
0.0760
0.0684
0.0464
0.1297
0.0594
0.0635
0.0209

0.0383
0.0562
0.0533
0.0464
0.0333
0.0594
0.0595
0.0496
0.0144

0.0461
0.0674

0.0653
0.0526
0.0425
0.0635
0.0496
0.0932
0.0224

0.0169 \
0.0240
0.0224
0.0205
0.0182
0.0209
0.0144
0.0224
0.0294 ]

The input to the training process has the same number of dimensions as the original version
of the data, therefore for this particular problem the network will be processing a 9-dimension
input space. The mean vector of the original data and, the three eigenvectors that were used
to project the normalised training set to a 3-dimension space are:
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mean(cancer)

( 0.4418 \
0.3134
0.3207
0.2807
0.3216
0.3544
0.3438
0.2867

\ 0.1589 /

eigen.vectors(C)

/ -0.2119
-0.1213
0.1581
0.3131
-0.1548
-0.0626
-0.8845
0.0290

\ 0.0797

0.2880 0.0730 \
0.1670 -0.0472
0.5131 0.5147
-0.1289 -0.2696
0.1768 0.3351
-0.0126 0.0402
-0.1231 -0.0055
0.3623 0.2371
-0.6568 0.6962

The geometric analysis produced the weight vectors for a perceptron with one hidden layer of
76 units:

maximal network: 9-76-2

Table F.l contains the results achieved by the training processes performed on the different in¬
termediate architectures generated by GROPING during the pruning phase. The first column
contains the network architecture, the second column is the number of iterations required by
rprop to tune the weights and achieve complete recognition of the training set, columns 3-4-5
contain the value of SEP calculated using the weights registered at the end of the training
process for each of the sets involved in a training phase, i.e. the training, validation and test
set: columns 6-7-8 also correspond to information obtained from these sets but, this time the
measure calculated is the ME.

The results obtained at the time of processing the other datasets comprising this benchmark,
will be discussed following the same format as the one used for presenting the results achieved
on the cancer problem.

Results on cancer

architecture iterations sep.tr sep.val sep-test me.train me.val me.test

9-76-2 62 0.00876 2.75144 2.07059 0.00257 0.03871 0.03198
9-64-2 73 0.00667 2.01956 1.65336 0.00176 0.02746 0.02398
9-54-2 73 0.00483 2.8188 2.90104 0.00155 0.03529 0.03827
9-48-2 70 0.00517 3.27405 2.82909 0.00188 0.04018 0.03823
9-33-2 69 0.01197 3.13170 3.12122 0.00309 0.04147 0.04142
9-23-2 76 0.00371 4.78909 5.21594 0.00134 0.05697 0.06265
9-19-2 77 0.01414 2.96891 2.92377 0.00323 0.03759 0.03592
9-16-2 121 0.00467 3.49898 2.33060 0.00130 0.04531 0.03099
9-15-2 102 0.00994 1.93021 1.93679 0.00241 0.02702 0.02926
9-9-2 296 0.00512 4.79185 4.19679 0.00169 0.05603 0.05035
9-6-2 365 0.00570 4.32876 4.36088 0.00175 0.04803 0.04862

Table F.l: intermediate results of pruning phase in cancer dataset

F.2 Card

The original dataset is comprised of 690 patterns and, corresponds to instances of a 2-class
classification task. The most interesting characteristic of this problem, has to do with the
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results that were achieved with the network design process compared, to the ones obtained in
Probenl. The improvement is due to:

a.- the strategy pursued in the network development task,
b.- the policies designed to deal with the missing data,
c.- the mechanism defined to manipulate the nominal attributes.

Results on card
architecture iterations sep-tr sep_val sep.test me.train me.val me-test

15-47-2 217 0.00536 18.97300 14.77909 0.00113 0.21110 0.16433
15-45-2 230 0.00480 15.60022 16.68119 0.00094 0.18077 0.19301
15-44-2 224 0.00633 15.45970 15.94236 0.00219 0.17595 0.18924
15-37-2 229 0.00660 15.05630 14.06518 0.00212 0.16483 0.16864

15-35-2 149 0.00648 18.76504 19.94952 0.00177 0.21432 0.22946
15-31-2 184 0.00499 16.02935 16.27374 0.00119 0.18015 0.18813
15-27-2 412 0.00579 16.17959 18.52422 0.00115 0.17754 0.19573
15-26-2 319 0.00548 15.39461 16.81764 0.00152 0.16831 0.19695
15-25-2 246 0.00510 15.58955 15.26747 0.00101 0.17429 0.17545

Table F.2: intermediate results of pruning phase in card dataset

The transformation of the nominal data to a continuous-valued form was realised with the perl
program listed in the following page.
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encoding:
0. binary, values: b, a, ?. (12 missing) positions (0,1,2)

b=l 0 0=0, a=0 1 0=1, ?=0 0 1=-1
1. continuous, values 13.75...80.25 (12 missing) positions (3,4)

treated the missing as having initial value -1 which will be
replaced at the moment of transforming the data to zero mean and
unit variance.

2. continuous, values 0...28 position (5)
obtained by replacing the data with the value read v scaled to v»28

3. nominal, values: u, y, 1, t, ?. (6 missing) positions (6,7,8,9,10)
1/4 2/4 3/4 1; missing: -1

4. nominal, values g, p, gg, ?. (6 missing) positions (11,12,13,14)
1/3 2/3 1 -1

5. values c, d, cc, i, j, k, m, r, q,
1/14, 2/14, 3/14, 4/14, 5/14, 6/14, 7/14, 8/14, 9/14
w, x, e, aa, ff, ?. (9 missing)
10/14, 11/14, 12/14, 13/14, 1, -1

6. nominal, values v, h, bb, j, n, z, dd, ff, o, ?. (9 missing)
positions(30,31,32,33,34,35,36,37,38,39)

7. continuous, values 0...28.5 positions (40)
8. binary, values t—>1, f—>0. positions (41)
9. binary, values t—>1, f—>0. positions o(42)
10. continuous, values 0...67 positions (43)
11. binary, values t—>1, f—>0. positions (44)
12. nominal, values g, p, s positions (45,46,47)

1/3, 2/3, 1
13. continuous, values 0...2000 (13 missing) positions (48,49)
transformed the missing digit to -1
14. continuous, values 0...100000 (must be log-transformed to be useful) positions (50)

15 inputs
15. binary, values: +, -
2: +=1 0, -=0 1

2 outputs

Encoding for transforming card sample to continuous-valued form

For this problem 345 patterns were assigned to the training set, 173 to the validation set and,
172 comprise the test set. The original space is 15-dimension with 5 nominal attributes, the
pre-processing phase in GROPING produces a 15-dimension sample of only continuous-valued
attributes. There is no missing data at the moment of designing the network because, each
of the attributes whose value is not known in some of the patterns available, was subtracted
from the original set, subsequently the mean was computed from the available information
and, finally all the missing slots in the data took on the relevant mean value. The covariance
matrix is a 15-dimension square matrix whose values can be accessed at GROPING's ftpsite.
The values of the mean vector used in the normalisation process and, the eigenvectors of the
covariance matrix of the normalised data used to generate the 3-dimension projection required
for the geometric analysis are:
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mean(card) =

0.3176 \ / -0.1563 -0.0054 0.3921
31.7658 0.3969 0.4347 -0.0235
4.3589 -0.3019 0.2863 -0.0057
0.3112 -0.2019 0.0805 -0.1402
0.4149 0.0215 -0.1209 0.3143
0.5017 -0.2148 0.4811 0.2179
0.2463 -0.0073 0.1389 -0.3375
2.1888 eigen.vectors(C) = -0.0169 -0.0063 0.3954
0.5304 0.2241 -0.0605 0.3923
0.4551 0.4299 0.4726 -0.1242
2.6464 0.2798 0.1122 0.1963
0.4667 -0.2036 0.2738 0.2797
0.3903 -0.5064 0.2035 -0.1980
228.6308 -0.1661 0.1866 0.2794
0.2559 / \ -0.0191 -0.2575 0.0786

The geometric analysis produced the weight vectors for a perceptron with one hidden layer of
27 units:

maximal network: 15-27-2

Table F.2 contains the results achieved by the training processes performed on the different
intermediate architectures generated by GROPING during the pruning phase, its contents
follow the same format as that of the table of results associated to the cancer dataset.

F.3 Diabetes

The 768 patterns of the sample are partitioned in the following way: a subset of 384 patterns
for the training set, 192 are assigned to the validation set and, the final 192 comprise the test
set.

The covariance matrix computed from the training set that was used for the normalisation
phase has the following values:

Cov(diabetes) =

/ 0.0419 0.0032 0.0038 -0.0043 -0.0041 -0.0008 -0.0005 0.0222
0.0032 0.0248 0.0041 0.0024 0.0071 0.0051 0.0038 0.0058
0.0038 0.0041 0.0258 0.0064 0.0020 0.0050 0.0018 0.0069
-0.0043 0.0024 0.0064 0.0240 0.0096 0.0082 0.0052 -0.0033
-0.0041 0.0071 0.0020 0.0096 0.0189 0.0040 0.0047 -0.0038
-0.0008 0.0051 0.0050 0.0082 0.0040 0.0144 0.0029 0.0014

-0.0005 0.0038 0.0018 0.0052 0.0047 0.0029 0.0217 0.0005

V 0.0222 0.0058 0.0069 -0.0033 -0.0038 0.0014 0.0005 0.0326 )

The values of the mean vector used in the normalisation process and, the eigenvectors of the
covariance matrix of the normalised data used to generate the 3-dimension projection required
for the geometric analysis are:
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mean(diabetes)

/ 0.2301 N / 0.1697 -0.2633 0.1496
0.6129 0.0415 -0 3000 -00202
0.5696 -0.1445 0.0529 0.5026
0.2073

eigenjuectors(C) =
-0.4374 0.3034 0.6584

0.0987 0.0869 -0.3982 0.2990
0.4846 -0.7690 -0.3082 -0.3544
0.1706 0.3725 0.2348 -0.0028

\ 0.1903 / ^ -0.1398 0.6612 -0.2761 )

Results on diabetes

architecture iterations sep.tr sep.val sep.test me .tram me.val me.test

8-94-2 338 0.0241 23.1456 23.0699 0.0075 0.2716 0.2773
8-79-2 283 0.0238 22.3380 26.2648 0.0082 0.2707 0.3118
8-65-2 304 0.0269 22.1743 26.1677 0.0085 0.2651 0.3032
8-59-2 235 0.0374 21.1668 26.6364 0.0104 0.2546 0.3154
8-53-2 310 0.0317 19.9044 25.3269 0.0093 0.2458 0.3070
8-52-2 294 0.0285 21.0189 23.3261 0.0093 0.2566 0.2782
8-48-2 284 0.0316 21.6262 24.2384 0.0095 0.2604 0.2830
8-47-2 267 0.0478 22.3727 23.2685 0.0122 0.2718 0.2851
8-45-2 276 0.0320 21.5280 23.9538 0.0094 0.2538 0.2833
8-42-2 354 0.0182 22.2592 26.6948 0.0068 0.2578 0.3172
8-39-2 314 0.0322 21.9558 25.9429 0.0095 0.2640 0.3007
8-34-2 362 0.0396 25.8881 26.4978 0.0100 0.2935 0.3029
8-33-2 320 0.0273 20.8643 29.7587 0.0087 0.2472 0.3396
8-29-2 351 0.0384 26.3311 31.2916 0.0101 0.3033 0.3521
8-26-2 338 0.0207 21.9152 26.3073 0.0069 0.2533 0.2967

Table F.3: intermediate results of pruning phase in diabetes dataset

The geometric analysis produced the weight vectors for a perceptron with one hidden layer of
94 units:

maximal network: 8-94-2

Table F.3 contains the results achieved by the training processes performed on the different
intermediate architectures generated by GROPING during the pruning phase.

F.4 Gene

The information about the mean and covariance matrices together with that of the eigenvectors
used in the projection of the space for the geometric analysis for this example, can be accessed
at the GROPING site. They were not included in this work due to the high dimensionality
of the data which renders their publication particularly useless also, the additional evaluations
realised with this set provided enough material for the discussion at this point.

It was selected to compare the effectiveness of treating the nominal data of a classification
problem, according to the specifications outlined in probenl against the steps defined in
GROPING.
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Results on gene 120-dimension
architecture iterations sep-tr sep-val sep.test me.train me.val me.test

120-96-3 29 0.00614 7.15348 7.31555 0.00284 0.09452 0.09671
120-43-3 31 0.03250 7.80001 8.59946 0.00541 0.10171 0.10950
120-25-3 56 0.00172 9.15788 9.71865 0.00096 0.10553 0.10986
120-15-3 64 0.00525 7.87928 9.11470 0.00212 0.09672 0.10548
120-9-3 137 0.00456 10.73599 9.99343 0.00180 0.11906 0.11266
120-6-3 265 0.00138 12.11847 11.01021 0.00090 0.12797 0.11655

Table F.4: intermediate results of pruning phase for 120-dimension gene dataset

Results on gene 60-dimension
architecture iterations sep.tr sep.val sep.test me.train me.val me.test

60-216-3 153 0.02356 5.07204 6.22152 0.00085 0.06486 0.07738
60-173-3 47 0.01174 4.82230 5.76796 0.00485 0.07441 0.08345
60-157-3 48 0.01090 5.15989 5.90132 0.00428 0.07686 0.08409
60-52-3 65 0.00234 5.84905 7.08987 0.00165 0.07760 0.09037
60-27-3 86 0.00130 5.98098 8.14680 0.00076 0.07182 0.09441
60-15-3 176 0.00155 7.95636 8.36351 0.00090 0.09050 0.09559

Table F.5: intermediate results of pruning phase for 60-dimension gene dataset

The comparison concerns the results that can be achieved with the same learning algorithm
used for building a multi-layer perceptron network for both versions of the data. Tables F.4
and F.5, contain the different networks that were obtained with GROPING, those included
in F.4 were the product of searching for an appropriate network for the gene data formatted
according to the rules described in probenl which resulted in a 120-dimension sample. The
results in F.5, were obtained with the gene sample built according to the rules specified in
GROPING, which resulted in a 60-dimension sample. The differences in the results, even
though the algorithm is working on the same problem, are explained in the following points:

a.- number of intermediate architectures: the higher-dimension space required a larger
number of intermediate architectures because, it is possible to generate an initial maximal
architecture more in accordance to the particularities of the training set given that there
are a larger number of dimensions describing it. This also, encourages the generation of
training processes achieving a complete recognition of the patterns included in the set
used for that task, when operating on the different intermediate network architectures.

b.- errors on training set: the errors achieved at the end of the training processes are
much smaller in the 120-dimension sample than in those obtained when training the data
in the 60-dimension space.

c.- errors on validation, test sets: these errors are much smaller in the 60-dimension
sample, which is not surprising given that, when working in this space there is less
redundancy. This means that the method in charge of building the network works on
much more effective information, i.e. one providing a better description of the structure
of all the input space, not just of the region from which the training sample has been
subtracted.

d.- number of hidden units: due to the amount of description incorporated in the higher
dimension space it is also possible to reduce the number of conflicting regions that require
a higher number of weight vectors for an appropriate partitioning of the space. This res¬
ults in less units in the hidden laver and, is the reason for achieving complete recognition
of the elements of the training set with less hidden units in the 120-dimension sample.
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In each case the initial maximal architectures required according to the results of the geometric
analysis are:

60-dim maximal net: 60-216-3
120-dim maximal net: 120-96-3

Of the set of differences described above, the most important one concerns the results achieved
with the validation and test sets. Processing the 60-dimension sample, it was possible to
generate networks which are better at processing data not available during training, therefore
they are better generalisers. This means that, the steps defined in GROPING to transform
nominal data, so that it might be used by a multi-layer perceptron network, are more effective
than those included in other approaches.

F.5 Glass

This is a small dataset of 214 patterns, 107 of which constitute the elements of the training set,
54 were assigned to the validation set and the last 53 were put into the test set. The input space
is a subset of R9 and, as there is no missing data it was possible to realise the normalisation
process without any pre-processing. The covariance matrix of the original training set that was
used in the normalisation has the following form:

/ 0.0000 -0.0006 -0.0005 -0.0005 -0.0015 -0.0003 0.0036 -0.0002 0.0001 \
-0.0006 0.7015 -0.4305 0.0501 0.0307 -0.1615 -0.3341 0.1746 -0.0185
-0.0005 -0.4305 2.1997 -0.3074 -0.3342 0.1269 -0.8927 -0.3895 0.0031
-0.0005 0.0501 -0.3074 0.1907 0.0877 -0.0015 -0.1123 0.0937 0.0001
-0.0015 0.0307 -0.3342 0.0877 0.5234 0.0724 -0.4366 0.0655 -0.0159
-0.0003 -0.1615 0.1269 -0.0015 0.0724 0.1268 -0.1493 -0.0237 0.0035
0.0036 -0.3341 -0.8927 -0.1123 -0.4366 -0.1493 2.0547 -0.1273 0.0272
-0.0002 0.1746 -0.3895 0.0937 0.0655 -0.0237 -0.1273 0.2177 -0.0050

V 0.0001 -0.0185 0.0031 0.0001 -0.0159 0.0035 0.0272 -0.0050 0.0102 )
The mean vector of the original data and, the three eigenvectors that were used to project the
normalised training set to a 3-dimension space are:

mean(glass) =

1.5186
13.4579
2.6447
1.4123
72.6892
0.4223
9.0450
0.1595
0.0567

eigen.vectors(C) =

0.2300
0.0169
-0.0804
-0.0090
0.4777
-0.5741
-0.6029
-0.0537
0.1267

0.3787 0.3147 \
0.0439 0.0853
0.0119 0.0603
0.0334 0.0468
0.4791 0.1004
-0.1364 -0.1059
0.7181 0.1136
-0.1962 0.7487
0.2261 -0.5413

The geometric analysis produced the weight vectors for a perceptron with one hidden layer of
39 units:

maximal network: 9-39-6
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Table F.6 contains the errors registered on completion of the training process for each of
the intermediate architectures. There is a strong difference between the values registered for
the error on the training set and those registered for the error of the other two sets, i.e. the
validation and test set. Nevertheless, as they are very similar to those published in [Prechelt 94]
it is possible to conclude that the final network obtained with GROPING is better. The reason
for the low level of generalisation can be explained by the small size of the training set and
the high number of classes, there was not enough information for the algorithm to grasp the
structure of the operating space.

Results on glass
architecture iterations sep.tr sep.val sep.test me.train me.val me.test

9-32-6 109 0.00789 2.03624 2.22773 0.00789 0.00221 0.02632
9-28-6 334 0.01067 2.51391 2.89014 0.00262 0.02822 0.03341
9-27-6 155 0.01575 3.00347 5.37734 0.00369 0.03671 0.06175
9-25-6 92 0.01746 2.12573 3.33627 0.00399 0.03007 0.04371
9-22-6 163 0.01551 2.70598 3.93015 0.00349 0.03409 0.04934
9-21-6 291 0.01781 2.60600 3.71805 0.00375 0.03298 0.04435

Table F.6: intermediate results of pruning phase for 9-dimension glass dataset

F.6 Heart

The two versions of the problem available in the Probenl site are stored in the directories
labeled heart and heartc. The one that was brought to the GROPING benchmark is the
one contained in heartc. It corresponds to the 303 examples of the Cleveland dataset. As in
the previous cases, the data was partitioned so that 152 patterns were assigned to the training
set, 76 to the validation set and, the 75 remaining patterns are included in the test set.

The interesting feature of this example is the number of additional attributes used in Probenl
to indicate missing information. As can be seen by the mean vector presented in the following
page, the particular data that was processed in that benchmark there are many null attrib¬
utes because most of the data is known. Nevertheless, these additional features greatly affect
the training process, given the complex architecture required for achieving the set of results
presented in the general tables 6.5, 6.6 in chapter 6. For this reason, the pre-processing phase
in GROPING approaches the manipulation of missing information in a different manner and,
even though the results are not as good, they certainly compare well considering the difference
in the network architectures.

The 13 attributes of the UCI data format, one binary, six continuous and six nominal were
pre-processed in GROPING through the following encoding procedure:
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encoding:
(continuous) 28...77 —> 0...1
in probenl attribute 2 indicates missing
(sei) 1 (binary) no missing
(cp) chest pain type

1: typical angina, 2: atypical angina
1/4 1/2

3: non-anginal pain 4: asymptomatic
3/4 1

4 continuous; attrmissing -1,
in probenl attrib 8 indicates this data is missing
(trestbps) trestbps: resting blood pressure
1 (continuous) 80...200; attrmissing = -1; in probenl missing attrib 10
(chol) serum cholestoral in mg/dl
1 (continuous) 85...603; attrmissing -1; in probenl missing attrib 12
(fbs) (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
1 (continuous); -1 attrmissing; in probenl missing attrib 15
(restecg) resting electrocardiographic results

1/3: normal 2/3: ST-T wave abnormality 1: left ventricular hypertrophy
attrmissing -1; missing attrib in probenl 19

. (thalach) maximum heart rate achieved
1 (continuous) 60...202 —> 0...1
-1 attrmissing; missing attrib in probenl 21
(exang) exercise induced angina (1 = yes; 0 ■ no)
prechelt(21-23) code2(15-16)

-1 attrmissing; probenl attrib 23
(oldpeak) ST depression induced by exercise relative to rest
2 (continuous) -2.6...6.2—>0...1
(0 -1) attrmissing ('/.g 0) good value; probenl attrib 25 missing
(slope) the slope of the peak exercise ST segment

1: upsloping 2: flat 3: dovnsloping
1/3 2/3 1

1 (continuous); -1 attrmissing ; 29 is probenl missing
. (ca) number of major vessels (0-3) colored by flourosopy

1 (continuous) 0...3—>0...1; -1 attrmissing; attrib 31
(thai) 3: normal; 6: fixed defect; 7: reversable defect

1/3 2/3 1
1 continuous; -1 attrmissing; probenl attrib 35

probenl 35 inputs
groping 1 inputs

. (output) (the predicted attribute: 0=healthy, 1-4: increasingly sick)
two versions: a) as function approximator 0,1,2,3,4 —> 0.1, 0.6, 0.7, 0.8, 0.9

b) as classifier 0 -> 1 0 other ->01

1 or 2 ooutputs

The mean vector of the 35 dimension data used to train the network in the Probenl benchmark
has the following values:
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mean(heartc) =

/ 0.5334 \
0.6645
0.0987
0.1776
0.2961
0.4276

0
0.4407
0

0.2985
0
0

0.1579
0

0.5658
0.0132
0.4211

V 0 )

cont-mean{heartc) =

/ 0.6037
0
0

0.2895
0

0.4037
0

0.4737
0.4605
0.0658

0
0.2083
0.0132
0.5461
0.0724
0.3684

V 0.0132

The mean vector of the training set obtained after applying the transformation procedure and,
the three eigenvectors that were used to project the normalised data to a 3-dimension space

mean(heartc)

/ 0.5334 \
0.6645
0.7632
0.4407
0.2985
0.1579
0.6184
0.6037
0.2895
0.4037
0.5307
0.2111

\ 0.6067

eigenjuectors(C) —

0.5149
-0.0982
0.0996
-0.3620
0.1572
0.0421
0.1683
-0.4083
0.0226
-0.3077
0.5134
-0.0280
0.0557

0.1030
0.3231
-0.0478
-0.3738
0.3929
0.3575
0.1942
0.3466
0.3585
0.3558
-0.0513
-0.2097
0.0353

-0.1921 \
-0.0239
0.0450
-0.4717
0.3866
-0.1576
-0.4538
-0.3283
-0.2153
0.0511
-0.3574
0.0434
0.2672

The geometric analysis of the continuous-valued attributes produced the weight vectors for a
perceptron with one hidden layer of 76 units:

maximal network: 13-76-2

Table F.7 contains the results achieved by the training processes performed on the different
intermediate architectures generated by GROPING during the pruning phase. It is clear from
those results that achieving a good generalisation level with this data is a extremely difficult
task.

F.7 Mushroom

The original source for this dataset is the UCI machine learning database: mushroom but, the
set used in this benchmark was subtracted from the Probenl site. The resulting network
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Results on heart

architecture iterations sep.tr sep.val sep.test me.train me_val me.test

13-76-2 45 0.02940 12.05531 20.92150 0.00953 0.16653 0.25049
13-47-2 46 0.03438 14.38860 19.58661 0.00962 0.18851 0.24779
13-36-2 65 0.01782 16.92880 22.20152 0.00651 0.21665 0.25813
13-29-2 53 0.01741 18.53175 20.43714 0.00614 0.21873 0.23744

13-26-2 56 0.01822 14.50076 22.62753 0.00664 0.17858 0.26367

13-21-2 58 0.01896 13.61210 21.06830 0.00634 0.18141 0.25514
13-16-2 84 0.02756 16.66950 21.51554 0.00781 0.19902 0.26758

13-9-2 169 0.01513 16.61367 21.83818 0.00471 0.19240 0.25131

Table F.7: intermediate results of pruning phase in the heart dataset

architecture was very simple and, as the developers of the Probenl benchmark only processed
one permutation of the data available on the problem, the same approach was followed in this
study.

The original dataset is comprised of 22 nominal attributes which, following the rules defined in
Probenl were encoded to a 123-dimension binary space and, following the guidelines specified
in GROPING resulted in a subspace of R22, i.e. it is conformed of 22 continuous-valued
attributes. The dataset is comprised of 8124 patterns which means that, it was possible to
build the training set with 4062 elements, the validation set using 2031 and, the test set using
the remaining 2031 patterns.

One third of the data has unknown value for the 11th attribute, a factb that was indicated
with the '?' symbol. It was replaced by zero in GROPING's encoding mechanism. These
null values during the normalisation of the data were replaced by the mean of the available
information. One thing that was noted is that there is no variance on the 16th attribute
which meant an almost null dimension for the normalised data but as it did not create major
difficulties during the geometric analysis it was not processed in any special way. The encoding
used for transforming the data from its original form, of nominal attributes to real-valued ones,
is depicted in the following page.
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1. cap-shape:

associated set:

2. cap-surface:
associated set:

3. cap-color:

associated set:

4. bruises?:

associated set:

5. odor:

bell=b,conical=c,convex=x,flat=f,
knobbed=k,sunken=s

{b=0.1667,c=0.333,x=0.5,f=0.667,k=0.833,s=1.00}
fibrous=f,grooves=g,scaly=y,smooth=s

{f=0.25,g=0.5,y=0.75,s=l.00}
brown=n,buff=b,cinnamon=c,gray=g,green=r,
pink=p,purple=u,red=e,uhite=w,yellow=y

{n=0.1, b=0.2, c=0.3, g=0.4, r=0.5, p=0.6, u=0.7, e=0.8
bruises=t,no=f

{t=0,f=l}

=0.9, y=l.0}

almond=a,anise=l,creosote=c,fishy=y,foul=f,
musty=m,none=n,pungent=p,spicy=s

1=0.222, c=0.333, y=0.444,
{f=0.556, m=0.667, n=0.778, p=0.889, s=1.00>

6. gill-attachment: attached=a,descending=d,free=f,notched=n
associated set: {a=0.25, d=0.5, f=0.75, n=1.00}

close=c, crowded=w, distant=d
<c=0.333, w=0.667, d-1.00}

broad=b,narrow=n
<b=0, n=l>

black=k,brown=n,buff=b,chocolate=h,gray=g,
green=r,orange=o,pink=p,purple=u,red=e,
white=w,yellow=y

associated set: {k=0.083, n=0.1667, b=0.25, h=0.333, g=0.4167, r=0.5,
o=0.5833, p=0.667, u=0.75, e=0.833, w=0.916, y=1.00>

enlarging=e,tapering*t
{e=0, t=l}

bulbous=b,club=c,cup=u,equal=e,
rhizomorphs=z,rooted=r,missing=?

missing=replace missing value with the mean
over the existing values; at first instant when creating
the encoding simply replace the missing character with the
value zero

12. stalk-surface-above-ring: ibrous=f,scaly=y,silky=k,smooth=s
associated set: {f=0.25, y=0.5, k=0.75, s=1.00}

13. stalk-surface-below-ring: ibrous=f,scaly«y,silky=k,smooth=s
associated set: {f=0.25, y=0.5, k=0.75, s=1.00>

14. stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,
pink=p,red=e,white=w,yellow=y

associated set: {n=0.111, b=0.222, c=0.333, g=0.444, o=0.556, p=0.667,
e=0.779, w=0.889, y=1.00>

associated set: {a=0.111,

7. gill-spacing:
associated set:

8. gill-size:
associated set:

9. gill-color:

10. stalk-shape:
associated set

11. stalk-root:

15. stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=
pink=p,red=e,white=w,yellow=y

associated set:

16. veil-type:
associated set:

17. veil-color:

associated set:

18. ring-number:
associated set:

19. ring-type:

associated set: {c=0.125,
20. spore-print-color:

associated set: {k=0.111,

21. population:

associated set:

22. habitat:

associated set: {g=0.143

{n=0.Ill, b=0.222, c=0.333, g=0.444, o=0.556, p=0.667,
e=0.779, w-0.889, y=1.00>

partial*p,universal=u
{p=0, u=l>

brown=n,orange*o,white=w,yellow=y
{b=0.25, o=0.5, w=0.75, y=1.00>

none=n,one=o,two=t

{n=0.333, o=0.667, t=1.00>
cobwebby=c,evanescent=e,flaring=f,large=l,
none=n,pendant=p,sheathing=s,zone=z

0.25, f=0.375, 1=0.5, n=0.625, p=0.7500, s=0.875, z=1.00>
black=k,brown=n,buff=b,chocolate=h,green=r,
orange=o,purple=u,white=w,yellow=y

0.222, b=0.333, h=0.444, r=0.556, o=0.667,
u=0.779, w=0.889, y=1.00>

abundant=a,clustered=c,numerous=n,

scattered=s,several=v,solitary=y
{a=0.167, c=0.333, n=0.5, s=0.667, v=0.833, y=1.00>

grasses=g,leaves=l,meadows=m,paths=p,
urban=u,waste=w,woods=d

1=0.286, m=0.429, p=0.571, u=0.714, w=0.857, d=1.00>

Given the dimensionality of the real-valued input it did not seem useful to publish the covari-
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ance matrix used in the normalisation process but, to give an idea of the overall structure of
the transformed data the mean of the original real-valued version of the training set and, the 3
eigenvectors that span the space unto which the data was projected to perform the geometric
analysis are shown in the following vectors:

mean(mushroom)

( 0.5826 \ ( 0 0 0 \
0.6864 -0.2917 0.1339 -0.1767
0.5348 0.3901 -0.1446 0.4227
0.5812 -0.1827 -0.1545 0.2919
0.6412 -0.2381 -0.2450 -0.3240
0.7362 -0.1373 -0.1997 -0.0370
0.3859 -0.0683 0.1863 -0.2263
0.3038 0.4473 -0.0401 -0.1780
0.4801 -0.0249 -0.0223 0.1556
0.5702 -0.2114 -0.2144 -0.0030
0.2157

eigen.vectors(C) =
0.3302 0.0002 -0.2246

0.8756 -0.0324 0.1532 0.1241
0.8572 0.1087 -0.2084 0.1643
0.7177 -0.0529 -0.0628 0.1060
0.7126 -0.1906 0.0440 -0.0895

0 0.1365 0.0839 0.1864
0.7405 -0.4000 0.0287 0.2689
0.6902 -0.0829 -0.5050 -0.1477
0.5374 -0.0638 0.0534 0.0570
0.4515 -0.1303 -0.2211 -0.1136
0.7739 0.1579 -0.5702 -0.1337

\ 0.5991 \ -0.1059 -0.2051 0.4654 /

The geometric analysis of the projected training points produced the following maximal archi¬
tecture for this case:

maximal network: 22-165-2

Table F.8 contains the errors obtained at the end of the different training processes realised on
the various intermediate network architectures that were produced by GROPING to reflect
the mapping underlying this dataset. The results clearly indicate that it is a very easy problem,
i.e. particularly appropriate to the underlying philosophy of the multi-layer perceptron model.

F.8 Satimage

The mean vector of the continuous-valued training set and, the eigenvectors spanning the space
on which the data is projected into 3-dimension have the following values:
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Results on mushroom

architecture iterations sep.tr sep.val sep.test me-train me_val me.test

22-165-2 31 0.00173 0.14255 0.08974 0.00112 0.00550 0.00480
22-84-2 28 0.00200 1.72083 1.51221 0.00140 0.02689 0.02364
22-59-2 31 0.00193 0.02264 0.02104 0.00108 0.00351 0.00335
22-48-2 25 0.00206 0.32319 0.25427 0.00106 0.00865 0.00779
22-43-2 29 0.00064 0.25080 0.20434 0.00064 0.25080 0.20434
22-38-2 25 0.00083 0.00471 0.00294 0.00056 0.00122 0.00101
22-36-2 27 0.00109 1.12088 1.17224 0.00079 0.01702 0.01731
22-35-2 26 0.00230 0.05346 0.05285 0.00127 0.00517 0.00502
22-20-2 27 0.00055 1.56228 1.49141 0.00036 0.02033 0.01914
22-15-2 31 0.00123 0.39053 0.28111 0.00075 0.00886 0.00729
22-11-2 60 0.00102 0.18376 0.07724 0.00056 0.00593 0.00371
22-6-2 74 0.00233 1.54594 1.36306 0.00113 0.02013 0.01817

Table F.8: intermediate results of pruning phase in mushroom dataset

mean(satimage)

/ 70.8648 \ f 0.0047 0.0115 0.0194 \
82.4969 -0.0066 -0.0334 0.0237
98.3984 -0.0462 -0.0076 -0.0181
81.8216 -0.0098 -0.1199 -0.0621
70.5183 -0.0036 -0.0777 -0.0004
82.0087 0.0064 0.0624 0.0634
98.2085 -0.0235 -0.0141 -0.0393
81.6976 0.0027 -0.0680 0.1440
70.1852 -0.0380 -0.0130 -0.1158
81.5553 0.0092 0.0438 0.0275
97.9490 -0.0148 -0.0377 -0.0548
81.5966 0.0163 -0.1121 -0.0025
70.6992 -0.0121 -0.0214 -0.0717
82.3863 -0.0231 0.1321 0.0185
98.4553 0.0060 0.0589 0.0723
81.8266 -0.0037 0.0261 -0.0070
70.3707 0.0035 0.0672 0.0935
81.9310

eigenjjectors(C) =
0.0085 -0.0173 0.0842

98.2088 -0.0066 -0.1492 0.0767
81.7371 -0.0790 0.0642 0.0497
70.0963 -0.0135 0.1638 0.0384
81.4913 0.0175 -0.2040 -0.0165
97.8605 0.0110 -0.1292 0.0642
81.5715 0.0334 -0.1975 -0.1149
70.4686 -0.0265 -0.0481 -0.0492
82.2582 0.0404 0.0515 0.0967
98.2483 0.0240 0.0404 0.2074
81.7769 -0.0190 -0.4796 0.2415
70.1796 0.0246 0.3354 -0.0255
81.9105 0.2244 0.1378 0.8028
98.0569 -0.1543 0.0130 -0.0727
81.6790 -0.2409 -0.4969 -0.0212
69.8757 0.0529 0.3257 -0.2782

81.4667 -0.0178 -0.1408 0.0801

97.8369 -0.9201 0.1869 0.2043

\ 81.5466 ^ I -0.0223 -0.0007 -0.0890 /
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Results on satimage
architecture iterations sep.tr sep.val sep.test me.train me.val me.test

36-543-6 451 0.14049 5.25130 5.33440 0.01238 0.07138 0.07125
36-257-6 451 0.33209 5.19432 5.24138 0.01877 0.07347 0.07346
36-180-6 451 0.01638 4.87056 4.98537 0.00358 0.06184 0.06164
36-115-6 179 0.00664 5.77055 6.00753 0.00239 0.07134 0.07309
36-90-6 158 0.00519 5.82593 6.42386 0.00194 0.06901 0.07442
36-76-6 169 0.00687 5.99362 6.85241 0.00225 0.07099 0.07926
36-40-6 322 0.00265 6.45666 7.26779 0.00109 0.07197 0.08035

Table F.9: intermediate results of pruning phase for 36-dimension satimage dataset

The output of the geometric analysis realised on the projected satimage data corresponds to
the following multi-layer perceptron:

maximal network: 36-543-6

Table F.9 contains the different error measures computed in this benchmark. These were re¬

gistered at the end of the training processes of the intermediate network architectures generated
during the pruning phase.

F.9 Soybean

In this dataset there are 683 examples Of these, 342 were assigned to the training set, 171 to
the validation set and, the remaining 170 constitute the test set.

There is a high number of possible outputs which could easily complicate the generation of
an appropriate network architecture but, because there is a lot of redundancy in the data
available, the task was not as hard as was originally expected. There is a fair mix of nominal,
binary and continuous data also, a significant degree of missing values in certain attributes. The
transformation process to generate an input comprised only of continuous-valued attributes was
realised according to the rules described in the following encoding procedure. It is necessary
to mention that in this encoding missing information is denoted with the value -1 which will
be subsequently replaced by the attribute's mean computed from the available data at the
moment of the normalisation procedure. The transformation resulted in an input space which
is a subset of R35.
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Attribute encoding:
. date: april.may,june,july,august.September,October,?. [miss:l]

0...6 -> 0...1, ? -> -1
. plant-stand: normal,It-normal,?. [miss: 36] —> (0 1 -1)
. precip: lt-norm,norm,gt-norm,?. [miss: 38]

1/3 2/3 3/3 -1
. temp: lt-norm,norm,gt-norm,?. [miss: 30]

1/3 2/3 1 -1
. hail: yes.no,?. [miss: 121] —> (1 0 -1)
. crop-hist: diff-lst-year,same-lst-yr,same-lst-tvo-yrs,

1/4 1/2 3/4

same-lst-sev-yrs, ?. [miss: 16] —> (1 -1)
. area-damaged: scattered,low-areas,upper-areas,whole-field,?. [miss: 1]

1/4 1/2 3/4 1 -1
. severity: minor,pot-severe,severe,?. [miss: 1]

1/3 2/3 1 -1
. seed-tmt: none.fungicide,other,?. [miss: 121]

1/3 2/3 3/3 -1
10. germination: 90-1007,,80-89'/.,lt-80'/,,?. [miss: 112]

1/3 2/3 1 -1
11. plant-growth: norm.abnorm,?. [miss: 16] —> (0 1 -1)
12. leaves: norm.abnorm. [miss: 0] —> (0 1)
13. leafspots-halo: absent,yellow-halos,no-yellow-halos,?. [miss: 84]

1/3 2/3 1 -1
14. leafspots-marg: v-s-marg,no-w-s-marg,dna,?. [miss: 84]

1/3 2/3 1 -1
15. leafspot-size: lt-l/8,gt-l/8,dna,?. [miss: 84]

1/3 2/3 1 -1
16. leaf-shread: absent.present,?. [miss: 100]

0 1 -1

17. leaf-malf: absent.present,?. [miss: 84]
0 1 -1

18. leaf-mild: absent,upper-surf,lower-surf,?. [miss: 108]
1/3 2/3 1 -1

19. stem: norm.abnorm,?. [miss: 16]
0 1 -1

20. lodging: yes.no,?. [miss: 121]
1 0 -1

21. stem-cankers: absent,below-soil,above-soil,above-sec-nde,?. [miss: 38]
1/4 1/2 3/4 1 -1

22. canker-lesion: dna,brown,dk-brown-blk,tam,?. [miss: 38]
1/4 1/2 3/4 1 -1

23. fruiting-bodies: absent.present,?. [miss: 106]
0 1 -1

24. external decay: absent.firm-and-dry,watery,?. [miss: 38]
1/3 2/3 1 -1

25. mycelium: absent.present,?. [miss: 38]
0 1-1

26. int-discolor: none,brown,black,?. [miss: 38]
1/3 2/3 1 -1

27. sclerotia: absent.present,?. [miss: 38]
0 1-1

28. fruit-pods: norm,diseased,few-present,dna,?. [miss: 84]
1/4 1/2 3/4 1 -1

29. fruit spots: absent.colored,brown-w/blk-specks,distort,dna,?. [miss: 106]
1/5 2/5 3/5 4/5 1 -1

30. seed- norra.abnonn.?. [miss: 92] -> (0 1 -1)
31. mold-growth: absent.present,?. [miss: 92] -> (0 1 -1)
32. seed-discolor: absent.present,?. [miss: 106] -> (0 1 -1)
33. seed-size: norm,lt-norm,?. [miss: 92] -> (0 1 -1)
34. shriveling: absent.present,?. [miss: 106] -> (0 1 -1)
35. roots: norm,rotted,galls-cysts,?. [miss: 31] -> (1/3 2/3 1

-1)

The mean vector of the continuous-valued training set and, the eigenvectors spanning the space
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on which the data is projected into 3-dimension have the following values:

mean(soybean)

/ 0.5814 \ / 0.2853 -0.1649 -0.0446 \
0.4581 0.0164 0.0724 -0.2659
0.8520 0.2907 -0.1742 -0.0776
0.7025 0.2959 -0.2112 0.2473
0.2133 0.2199 0.2004 0.0679
0.7097 -0.1114 -0.0522 -0.0592
0.6488 -0.2630 0.1422 0.3052
0.6100 -0.1051 -0.0719 0.0677
0.5122 0.0228 -0.1176 -0.0085
0.6842 0.1682 -0.2933 0.1932
0.4064 -0.1070 -0.1047 0.1131
0.8772 0.0981 0.0741 0.0559
0.6730 -0.0246 0.1059 0.2460
0.6519 -0.0127 -0.2221 0.0066
0.7928 0.0228 0.1204 -0.0181
0.1519 0.0082 -0.1728 0.0539
0.0442 0.2048 0.3047 0.0026
0.3654 eigen.vectors(C) = 0.1658 -0.0689 -0.2474
0.5894 0.0969 0.3409 0.0639
0.0800 -0.1155 -0.2798 0.1620
0.5023 -0.2667 0.0708 0.3236
0.5045 0.0466 0.0681 -0.0543
0.1830 -0.1854 0.0424 -0.1122
0.4199 0.0885 -0.0105 0.2248
0.0181 0.2719 -0.0049 -0.0916
0.3938 0.2270 0.0363 0.2260
0.0604 0.1570 -0.3170 0.2719
0.4059 0.1878 0.0790 0.0325
0.4817 0.2760 0.0277 -0.1978
0.1635 0.0469 0.0471 -0.1348
0.0994 0.0491 0.2300 0.0660
0.0915 0.1059 0.1007 0.3170
0.0865 0.0624 0.0513 -0.0791
0.0523 0.2409 0.3350 0.2635

V 0.3811 / I -0.0841 0.1022 -0.0507 /

The output of the geometric analysis realised on the projected soybean data corresponds to
the following multi-layer perceptron:

maximal network: 35-28-19

Table F.10 contains the different error measures computed in this benchmark. These were re¬

gistered at the end of the training processes of the intermediate network architectures generated
during the pruning phase.

F.10 Thyroid

This example consists of a set of vectors comprised of 21 real-valued attributes, each repres¬

enting a point that is classified into one of 3 possible classes. The complete sample has 7200
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Results on soybean
architecture iterations sep.tr sep.val sep.test me.train me.val me.test

35-51-19 33 0.00055 0.54222 1.12183 0.00014 0.00678 0.01244
35-44-19 28 0.00051 0.62995 1.05059 0.00015 0.00763 0.01267
35-35-19 26 0.00101 0.64416 0.90787 0.00029 0.00770 0.01089
35-32-19 33 0.00055 0.54222 1.12183 0.00014 0.00678 0.01244

35-27-19 32 0.00100 0.80849 0.92507 0.00897 0.01097 0.00997
35-22-19 50 0.00029 0.95937 1.41129 0.00007 0.01012 0.01483
35-28-19 70 0.00076 1.76229 1.36577 0.00020 0.01855 0.01567
35-17-19 60 0.00062 1.73967 1.86405 0.00017 0.01857 0.02002

Table F.10: intermediate results of pruning phase for 35-dimension soybean dataset

pairs of inputs and expected outputs thus, the training set was built using 3600 of them, the
validation set has 1800 and, the remaining 1800 were assigned to the test set.

There was no need to define an Encoding procedure as there are no nominal attributes and,
there is no information concerning which of them represent simple indicators of missing in¬
formation, therefore the complete dataset was processed as one in which all the information is
available. The pre-processing was limited to generating the normalised version of the sample
using the mean and covariance of the training set. The mean vector used and, the three
eigenvectors spanning the space on which the data was projected to 3-dimensions are:

mean(thyroid)

/ 0.5211 \ / 0.0217 0.2363 0.2234 \
0.3057 -0.0450 -0.0008 0.0629
0.1355 0.1859 -0.4690 0.1366
0.0167 0.0190 0.2827 0.0428
0.0133 0.2474 -0.0872 0.1296
0.0392 0.1630 0.1997 0.4292
0.0119 0.0488 0.1521 -0.1634
0.0170 0.1285 0.4828 0.2058
0.0186 -0.0901 -0.1894 0.5320
0.0636 -0.0214 0.0992 -0.4051
0.0665 eigenvectors(C) = -0.5017 0.0415 0.1144
0.0117 0.6184 -0.0420 -0.0777
0.0095 0.2598 -0.1639 0.0975
0.0231 0.1396 0.2062 -0.2329
0.0003 0.2805 -0.0323 0.0490
0.0517 0.0164 -0.0592 -0.1323
0.0048 -0.0678 -0.0137 0.1454
0.0200 -0.1396 0.0247 -0.0380
0.1089 -0.0943 -0.4264 -0.0208
0.0976 -0.1196 -0.1135 0.0587

\ 0.1128 j \ -0.0042 -0.1481 -0.2815 /

The geometric analysis produced the following initial maximal architecture:

maximal network: 21-441-3

Table F.ll contains the errors computed with the different intermediate architectures built
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Results on thyroid
architecture iterations sep-tr sep-val sep-test me.train me-val me_test

21-79-3 233 0.00186 1.03465 0.99850 0.00049 0.01265 0.01203
21-60-3 282 0.00168 1.00974 0.97583 0.00047 0.01267 0.01227
21-37-3 253 0.00168 0.97152 1.00025 0.00045 0.01142 0.01158
21-35-3 380 0.00117 1.06187 1.09569 0.00032 0.01226 0.01192

Table F.ll: intermediate results of pruning phase for 21-dimension thyroid dataset

during the pruning phase.

F.ll Vowel

This example consists of a set of vectors comprised of 10 real-valued attributes, each represent¬
ing a point that is classified into one of 11 possible classes. The complete sample has 990 pairs
of inputs and expected outputs. The training set was built using 528 of them, the validation
set has 231 and, the remaining 231 were assigned to the test set.

There was no need to define an Encoding procedure as there are no nominal attributes and,
there is no information concerning which of them represent simple indicators of missing in¬
formation, therefore the complete dataset was processed as one in which all the information is
available. The pre-processing was limited to generating the normalised version of the sample
using the mean and covariance of the training set and to the transformation of the phonemes
associated to each of the possible output classes to the binary encoding described in section
6.3.2. The mean vector used and. the three eigenvectors spanning the space on which the data
was projected to 3-dimensions are:

mean(vowel)

( -3.1667 \
1.7353
-0.4480
0.5250
-0.3893
0.5850
0.0175
0.4174
-0.2681
-0.0846 ]\

eigenvectors{C) —

-0.1529
-0.5313
0.1327
-0.3601
0.0417
0.1730
-0.3132
0.5306
-0.3686
0.0000

0.2996
-0.0823
0.1312
0.2548
0.3489
-0.1361
0.1049
-0.2942
-0.7444
-0.1712

-0.3400 \
-0.3794
0.1735
0.4656
-0.0713
-0.0105
-0.4854
-0.4148
0.0978
0.2669 /
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Results on vowel
architecture iterations sep.tr sep.val sep.test me.train me.val me.test

10-62-11 117 0.00125 7.34236 8.39973 0.00054 0.08270 0.09444

10-49-11 138 0.00243 7.18118 7.47880 0.00091 0.07961 0.08234
10-42-11 147 0.00175 7.11968 7.88264 0.00074 0.07760 0.08704
10-38-11 161 0.00149 7.78821 8.39018 0.00058 0.08701 0.09249
10-24-11 415 0.00356 8.98707 9.60646 0.00112 0.09824 0.10544

Table F.12: intermediate results of pruning phase for 10-dimension vowel dataset

The geometric analysis produced the following initial maximal architecture:

maximal network: 10-62-11

Table F.ll contains the errors computed with the different intermediate architectures built
during the pruning phase.


