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Abstract. 

In continuously irrigated, commercial horticultural glasshouses in Britain, the surplus mineral 

nutrient solutions usually enter local watercourses. Recirculation of "spent" irrigation solution is 

environmentally desirable, but also would recirculate pathogen propagules and thereby increase 

the potential for disease. With the aim of finding simple and effective disease-control measures, 

laboratory experiments described in this thesis tested the effects of various cations (Ca 2 , Mg2 , 

K) and potentially fungitoxic compounds (saponins, gramicidin S, ethanol) on different stages 

of the life cycle of two pathogenic zoospore-forming fungi, Pythium aphanidermatum and 

Phytophthora parasitica. Also, nutrient irrigation solutions from various experimental 

treatments in a large tomato-cropping glasshouse trial at Horticultural Research International 

(HRI, Yorkshire) were tested for effects on the two fungi in laboratory conditions. Cations, 

fungitoxic compounds and experimental irrigation solutions were tested for effects on the 

following aspects of fungal behaviour: mycelial growth, production of sporangia, release of 

zoospores from sporangia, zoospore motility, zoospore encystment and cyst germination. 

When tested on individual stages of the life cycle, high concentrations of Ca 2  and Mg' in 

nutrient broth reduced mycelial growth by Py. aphanidermatum but not Ph. parasitica. 

Sporangial production by Ph. parasitica in mineral salts• solution was unaffected by 

supplements of Ca2 , Mg2  or K, but these supplements suppress the ability of sporangia to 

subsequently liberate zoospores into water; the exception was 5 mM Ca2  which markedly 

enhanced subsequent zoospore release. Increasing concentrations of Ca 2 , Mg2  and K in the 

solution that bathed pre-formed sporangia of either fungus reduced the number of zoospores that 

were released. These three cations also suppressed the proportion of zoospores that remained 

motile, and increased the proportion of vortex-encysted zoospores that would germinate. 

When tested cumulatively on all stages of the life cycle, K was more effective than Ca 2  in 

suppressing the infection related behaviour of both fungi. These experiments suggest that 

increasing the ratio of K to Ca 2  in bathing solutions should suppress the ability of both fungi to 

spread and cause disease. 

The trial undertaken by HRI failed to demonstrate natural suppression in a semi-commercial 

irrigation system, which was the principal trial objective. Consequently the analyses presented 

in this thesis were unable to determine at which points of the infection sequence the agents of 

natural suppression might act. However, it was found that the duration of zoospore motility was 
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greater in some irrigation solutions than in distilled water; also, in treatments where disease was 

observed, the associated irrigation solutions promoted the production of sporangia in laboratory 

experiments. 

Different stages of the life cycle of both fungi were exposed experimentally to various 

concentrations of ethanol. Naked zoospores and germinating cysts were relatively insensitive to 

ethanol; mycelial growth was only slightly sensitive, but low ethanol concentrations markedly 

suppressed the formation of sporangia, and the release of zoospores. 

The saponin, 3-escin and the cyclic oligopeptide gramicidin S lysed or killed motile, naked 

zoospores. Gramicidin S also was toxic to zoospore cysts, but the presence of a cyst wall 

markedly reduced the toxic effect of -escin. The toxicity of gramicidin S to zoospores or cysts 

was reduced in the presence of divalent cations (Ca 2 , Mg2  or Sr), but not with monovalent 

cations (Nat  and K 4). The toxicity of 3-escin was reduced in the presence of C2 or IC, but not 

with Mg 2+  or Na. The toxicity of -escin (but not of gramicidin S) on zoospores can be 

partially relieved by the addition of calcium five minutes after exposure to the toxin. When 

zoospore suspensions were supplemented with both -escin and gramicidin S the combined 

toxicity was greater than expected, suggesting that these toxins act synergistically. The effect of 

5 mM Ca2  in promoting sporangiogenesis was antagonised by ethanol. Several irrigation 

solutions and extracts from oat tissues negated the effects of cations on various life cycle stages 

related to infection by the zoosporic fungi. 

Overall, the work in this thesis indicates that several factors might suppress the infection-related 

behaviour of Py. aphanidermatum and, to a lesser degree, Ph. parasitica. Some of these factors 

act synergistically and might be used as combination treatments, but some antagonise each 

other's effects. 
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Chapter 1  

Introduction. 



1.1 General Introduction. 

The zoosporic pathogens of the family Pythiaceae are of economic importance in irrigated 

British glasshouse systems. Consequently there is pressure to develop methods to control 

these pathogens. For biological and economic reasons non-toxic chemical control is an 

option. An understanding of the biology of the closely related genera Phytophthora and 

Pythium may open up commercial methods of acceptable control. 

Infection by zoospores is a multi-stage process. The resource base for zoospore production is 

the hyphal mycelium. Therefore, the greater the resource base the greater the potential 

disease pressure. Sporangia are the structures in which cytoplasm differentiates into 

zoospores and from where zoospores are released. Once zoospores are released into the 

bathing medium their helical swimming pattern is modified by exogenous factors to facilitate 

taxis to the host. Prior to encystment a zoospore locates a suitable infection site and 

orientates its fixed point of future germination relative to the infection site. After encystment 

and adhesion to the host surface a single germ tube is produced which is capable of tropism 

to the site of host penetration. The germ tube ultimately develops into a hypha, which infects 

the host. 

1.2. Biology of the family Pythiaceae. 

1.2.1. General biology. 

Mycelium of the Pythiaceae is coenocytic with no or few septa. Oomycetes differ from the 

Eumycota in having 01 ,3-glucans, 3- 1 ,6-glucans and f- 1 ,4-glucans (cellulose) instead of 

chitin as the principal cell wall components (Bartnicki-Garcia & Wang, 1983). Another 

feature that is unique to the Oomycetes is mycolaminarin (a 13-1 ,3-glucan) being the storage 

carbohydrate (Wang & Bartnicki-Garcia, 1973). The Pythiaceae require an exogenous 

supply of 13-hydroxyl sterols for reproduction because of their inability to synthesis sterols de 

novo (Elliott, 1983). However, this peculiarity does confer insensitivity to the polyene 

antibiotics (Eckert & Tsao, 1962). The polyene antibiotics target sterol synthesis pathways. 
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1.2.1.1. Biology of Pythium aphanidermatum. 

On agar Py. aphanidennatum is woolly in appearance and grows rapidly between 10 °C and 

40 °C, with the optimum temperature being between 35 and 40 °C. However, zoospore 

production is optimal between 25 and 30 °C. Py. aphanidermatum is homothallic with the 

sexual organs, oogonia and antheridia, being produced in a ratio of one-to-one or 

occasionally one-to-two. Although usually found juxtaposed, the reproductive structures can 

originate from different hyphae. The smooth globose oogonia terminate from straight stalks 

and have an average diameter of 23 p.m. Antheridia are usually intercalary, sometimes 

terminal, are broadly sac shaped and 10 to 14 p.m long and wide. The resulting oospores 

loosely fit in the oogonium and have an average diameter of 20 p.m with wall thickness being 

between 1 and 2 p.m. An encysted zoospore is typically less than one quarter the size of an 

oospore (in terms of volume) with an approximate diameter of 12 p.m. Sporangia, the 

structures that release zoospores, are terminal complexes of swollen hyphal branches of 

varying length and up to 20 p.m wide. The morphology of sporangia is highly variable, but 

they are generally inflated, lobe-forming structures (Plaats-Niterink, 1981). 

1.2.1.2. Biology of Phytophthora parasitica. 

Ph. parasitica has a similar temperature tolerance range to Py. aphanidermatum, but the 

optimum temperature range is lower at between 30 and 32 °C (Waterhouse, 1956). However, 

the temperature range for sporangia formation is between 15 and 30 °C, with the optimum 

temperature being between 20 and 25°C (Ribeiro, 1983). Mycelial growth of Ph. parasitica 

is annulate on agar and not woolly. Oogonia when produced are globose, honey coloured, 

smooth or wrinkled structures between 18 and 25 p.m in size. The resulting oospores are 

smooth, honey coloured, thick walled, globose structures with a diameter between 15 and 20 

p.m. The sporangia of Ph. parasitica are more consistent in morphology than of Py. 

aphanidermatum and are terminal ovoid structures with dimensions of 25 to 50 p.m long by 

20 to 40 p.m wide. Although sporangial morphology is conservative the distribution within 

the hyphal mat is variable. Motile zoospores of Ph. parasitica are 9 to 12 p.m long and 5 to 8 

p.m wide (Waterhouse, 1956). 
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1.2.2. Genetics. 

Generally fungi (Ascomycetes, Basidomycetes, Zygomycetes) are haploid. For a time 

Oomycetes were also believed to be haploid (Dick and Win-Tin, 1973). However, it is now 

known that they are diploid in the vegetative state (Shaw, 1983). In the young gametangia 

(antheridia and oogonia), the DNA content per nucleus is twice that of a nucleus in a 

vegetative cell because of meiosis, that is, there are a tetrad of haploid nuclei. Meiosis occurs 

after karyogamy, which in turn occurs immediately after gametangial union (Shaw & Khaki, 

1971; Khaki & Shaw, 1974). This high DNA content per nucleus is subsequently reduced 

through meiosis and the resulting gametes each have a haploid nucleus, or one quarter the 

DNA content of the young gametangia (Mortimer & Shaw, 1975). 

Peronosporales can either be homothallic or heterothallic (Fincham et al., 1979). 

Homothallism is probably the commonest mode of sexual reproduction in fungi as a whole 

(Burnett, 1975). Both Ph. cryptogea and Ph. parasitica are heterothallic, although some 

isolates of Ph. parasitica have been found to produce oogonia and oospores in single 

cultures (Erwin & Ribeiro, 1996). 

1.2.3. Taxonomy. 

Both Phytophthora and Pythium genera are placed in the family Pythiaceae in the class 

Oomycota. The Oomycota are one of the five groups of fungi that produce zoospores 

(Alexopoulos et al., 1996). Traditionally the Oomycota have been grouped into four primary 

orders: the Lagendiales; the Leptomitales; the Peronosporales and the Saprolegniales. 

However, the latter two groups have recently been elevated to form the basis of two new 

sub-classes, the Peronsporomycetidae and the Saprolegniomycetidae (Beakes et al., 1995). 

The morphological plasticity of the Oomycota causes classification, by traditional methods, 

to be difficult. The presence of tubular mitochondrial cristae, tripartite mastigonemes and the 

presence of P-1,3 or P-1,6 linked glucans in the cell wall of Oomycota are features common 

with the chromophyte algae, but not common to the Basidiomycetes and Ascomycetes. The 

sequencing of 16s RNA and of the NAD sub-unit 5 places the chromophyte algae, the 

diatoms and Oomycota in proximal phylogenetic groups (Bhattacharya and Medlin, 1992; 

Parquin et al., 1995). Dick (1995), based on phylogenetic studies, placed the Oomycota in 

the Chromista kingdom. This kingdom, which also contains the brown algae and all the 

protists, is characterised by the presence of tripartite tubular hairs (mastigonemes) arranged 
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in two rows along the flagellar shaft or chioroplast reticulum or both (Cavalier-Smith, 1986). 

Therefore, the Pythiaceae are not phylogenetically close (Figure 1.1) to the eumycetes, but 

do exhibit physiology, morphology and life cycle that is consistent with the eumycetes. The 

genetic variability, based on nuclear ribosomal DNA, is more conservative for Phytophthora 

than Pythium (Levesque et al., 1999). 

Figure 1.1. Qualitative phylogenetic placement of the Oomycetes. 

Animals 
Chytrids 
Basidomycetes 
Ascomycetes 
Green algae 
Higher plants 
Brown algae 
Diatoms 
OOMYCETES 
Ciliates 
Cellular slime molds 

(Based on Judleson, 1997.) 

1.3. Ecology. 

Pythium spp. are found in tropical, temperate and even cold regions of the world. Species 

have been isolated from soils of arable land, pastures, forests, nurseries, fresh water marshes, 

swamps and fresh water. In contrast, dry sandy places, dry forests and salt marshes are 

generally poor in Pythium spp. They occur most abundantly in the superficial rhizosphere of 

cultured soils, but have also been recorded at a depth of 3.55 in (Plaats-Niterink, 1981). The 

abundance of Pythium spp. is very low in non-cultivated or very acidic soils where 

Trichoderma viride is present (Barton, 1958). However, Barton (1958) did not implicate T. 

virde as a biological control agent, but concluded that the low pH was responsible for the 

absence of Pythium spp. 
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Pythium spp. with filamentous non-swollen sporangia have been found to be good pioneer 

fungi. For example, 89% of fungal isolates in 1968 from the newly reclaimed polder of 

Zuidelijk Flevoland (the Netherlands) were identified as Pythium spp. with filamentous non-

swollen sporangia. After four years the number of isolates in this group had fallen to 9% 

(Plaats-Niterink, 1975). Further evidence of Pythium spp. as pioneer fungi is found in the 

ability to isolate Pythium spp. from the initial stages of marshes, but not from established 

marshes and swamps (Apinis, 1964). 

Animals (including man) can facilitate the distribution of Pythium species. Pythium has also 

been isolated from the nests, intestines, feathers and droppings of free-living birds in the 

former Czechoslovakia and Yugoslavia (Plaats-Niterink, 1981). Thornton (1970) implicated 

earthworms in transporting aquatic phycomycetes. Out of 15 earthworm casts analysed three 

harboured species of Pythium. The external surfaces of earthworms are also believed to 

transport aquatic phycomycetes, including Pythium spp. In Scotland, Hutchinson and Kamel 

(1956) isolated Pythium spp. from the alimentary canal of the earthworm (Lumbricus 

terrestus Linn.) 

1.4. General pathology. 

Zoospores of Pythium spp. and Phytophthora spp. have been demonstrated to be propagules 

of disease in recirculating irrigation systems (Stanghellini et al., 1996a; 1996b; von 

Broembsen & Deacon, 1997). The host range for both Pythium and Phytophthora is large. 

For Phytophthora, with 43 species and four varieties, over a thousand pathogen-host 

combinations have been cited (Gregory, 1983). The economic and social importance of these 

two genera is significant, with the greatest historic example being potato blight caused by 

Phytophthora infestans in Western Europe in the nineteenth century. 

Py. aphanidermatum as a pathogen has an extensive host range, causing diseases of various 

seedlings including damping off of the Cucurbitaceae and Solanaceae families (Waterhouse 

and Waterston, 1964b). The host range of Ph. parasitica comprises of 58 families and the 

diseases include damping off of seedlings of tomato (Lycopersicum esculentum) and brown 

stem rot of tobacco (Nicotiana spp.) (Waterhouse and Waterston, 1964a) 



1.5. Generalised life cycle for the Pythiaceae. 

Mycelium of Phytophthora grows well on complex media. When the mycelium becomes 

stressed due to environmental changes one of three possible reproductive structures can be 

produced. Which structures form is dependent on which environmental factors have altered. 

If mycelia are starved then zoosporangia are produced. However, production of sporangia 

requires light, high humidity and sterols, and is inhibited by sugars and ionic copper. When 

subjected to a cool solution with a high matric potential sporangia will germinate (Elliott, 

1983). Direct sporangial germination (the production of germ-tubes directly from the 

sporangium) occurs in environments with high nutrition (particularly sugars and amino 

acids) and at the optimal temperature for vegetative growth. Germ tubes will subsequently 

grow with the support of exogenous nutrition. However, if germinating sporangia are subject 

to sub-optimal temperature and lack of nutrients (typical of an irrigation system based on 

nutrient film technique - see Section 1.7.1) then zoospores are produced (indirect 

germination) and subsequently liberated. Zoospores after a period of motility will encyst and 

germinate (Elliott, 1983). 

Chlamydospore production occurs when mycelia are subject to low nutrition, aeration and 

the presence of sterols. Light and temperature also govern chlamydospore production. In the 

presence of amino acids chlamydospores germinate. If the germinating spore is in an 

environment high in nutrients - namely sugars and a suitable nitrogen source - then a germ 

tube forms which will subsequently develop into a mycelium. Otherwise, under low 

nutrition, the chlamydospore produces a germ tube and a sporangium, which under the 

influence of temperature and cations produce encysted zoospores (Elliott, 1983). 

The third option for a stressed mycelial mat is to produce oospores. Oospore production 

occurs in darkness, low nutrition but in the presence of sterols and at the optimal 

temperature. For an oospore to germinate blue light, particular enzymes and cations, a 

temperature change and the elapse of a time-period are required. A germinating oospore in a 

balanced nutritional state produces both germ tubes and sporangia (Elliott, 1983). 

1.6. The infection sequence of zoosporic fungi. 

The infection sequence of the zoosporic fungi in irrigation systems based on NFT is 

essentially as follows (Figure 1.2). Zoosporangia form from a mycelial network. Once the 
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cytoplasm of the sporangia has differentiated into zoospores, the zoospores are liberated and 

locate a host by taxis. At a suitable location on a host the zoospore will encyst and proceed 

to germinate. Zoospore germination can either be direct or indirect (diplanetism). 

Diplanetism is the release of a secondary zoospore, whereas direct germination is the 

production of a germ tube which, facilitated by tropism, will infect the host. 

Figure 1.2. The homing sequence of a zoosporic fungus in an irrigation system 

based on NFT. 

Secondary zoospore release 
(diplanetism) 

Motility & Taxis 	Encystment 	Adhesion 	Germination 	Germ-tube tropism 

(Adapted from Deacon and Donaldson, 1993) 

1.6.1. Vegetative growth. 

Growth by Phytophthora and Pythium is typically fungal, that is, filamentous growth is 

achieved by tip growth coupled with branching. The nutrients that drive both vegetative 

growth and reproduction are derived from absorbing simple nutrients directly across the cell 

wall and membrane. Complex polymers are degraded extracellularly by enzymes prior to 

absorption (Erwin and Ribierio, 1996). 

Apical growth involves the controlled expansion of the cell wall and plasmalemma (Heath, 

1995). This polarised cell growth only occurs when the expansion of the cell surface is 

focused at one point (Gow, 1994). The model proposed by Robertson (1958 and 1959), one 

of the first workers to suggest a feasible explanation of tip growth, envisaged a system were 

a plastic deformable tip is produced and extends apically, while wall rigidification occurs 

behind the extending tip. This model was refined by Wessels in 1993. This new model 

assumes a continuous secretion at the apex of an expansible mixture of wall polymers, that is 

continuously removed ventrically towards the base of the extension zone, where a rigid 
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complex arises by interactions between and among the constituent wall polymer chains. As 

new wall material is added it becomes progressively more cross-linked and able to resist 

turgor pressure. 

Robertson's (1958 and 1959) suggestion that tip growth is driven by turgor pressure is 

negated by recent advances in knowledge. In Achyla bisexualis it was found that at low 

turgor pressure hyphal growth was maintained by softening the apical wall (Money and 

Harold, 1992). Later work by these workers found that the Oomycete Saprolegnia ferax 

could generate tip-growing hyphae in the absence of measurable turgor (Money and Harold, 

1993). It appears that there is an interplay between turgor pressure and wall biogenesis, 

which ultimately is controlled by the cytoplasm and the cytoskeleton (Harold, 1997). 

1.6.2. Sporangiogenesis. 

In the sporangia of Ph. cinnamomi structural integrity was found by Hyde and Hardham 

(1992) to be maintained through extensive microtubule arrays using the nuclei as nodes of 

microtubule attachment. 

Sporangia formation in Oomycete fungi requires high moisture levels, either in the form of 

high relative humidity (circa. 100%) or a matric potential approaching zero (Ribeiro, 1983). 

Pfender et al. (1977) working with Ph. megasperma in soil found maximum 

sporangiogenesis in flooded soils with a matric potential of -0.28 MPa. Sidebottom and 

Shew (1984) found that for Ph. parasitica the optimum matric potential for sporangial 

production was between -4 and -20 kPa. Similar results were seen in their follow-up work 

(Sidebottom & Shaw, 1985). In 1982, Bernhardt and Grogan reported that both Ph. capsici 

and Ph. parasitica failed to form sporangia in saturated soils unless incubated for two days at 

a high matric potential (-20 to -30 kPa). However, a degree of water salinity has been found 

to enhance sporangial production in Ph. parasitica (Blaker & MacDonald, 1982). 

Low nutrient levels also encourage sporangial formation; for example, a glucose 

concentration greater than 2.8 mm is inhibitory (Ribeiro, 1983). The nitrogen source also has 

a major influence on sporangiogenesis. Singh (1973) found, of the nitrogen sources tested, 

that L-a-alanine was the greatest promoter of sporangiogenesis of Phytophthora palmivora, 

while other L-amino acids and ammonium sulphate caused complete suppression of 

sporangial formation. However, with respect to L-aspartic acid and L-glutamic acid there are 



conflicting reports (see Ribeiro, 1983). Some workers found that these amino acids inhibited 

sporangial formation, while others observed a stimulatory effect. However, these differences 

could be due to different concentrations being used. 

Halsall and Forrester (1977) demonstrated that certain cations (Ca', Fe 3+'  Mg2  and K') 

influenced sporangia numbers in four Phytophthora species. For example, Ph. cinnamomi 

produced maximum sporangia numbers in solutions when cation concentrations were 0.71 

mm for Ca2 , 0.16 mm for Mg2 , 0.62 mlvi for K and 0.11 mM for Fe 3 . Halsall (1977) found 

that the presence of Cu 2  and Mo2  suppressed sporangial numbers while elevated levels of 

Zn2  enhanced sporangial formation. 

One of the distinctive characteristics of the Pythiaceae is the inability to synthesise sterols de 

novo, although they are essential for asexual and sexual reproduction (Webster, 1980). Low 

concentrations of exogenous sterols increase vegetative growth, stimulate asexual 

reproduction, influence zoospore formation and play a role in the formation of sexual 

reproductive structures (Ribeiro, 1983). Vegetative growth of Ph. lateralis is unaffected by 

3-sitosterol concentration up to 200 tg.ml', but sporangial formation is highly dependent on 

13-sitosterol concentration; a concentration of 10 tg.ml' was found to be optimal for 

sporangiogenesis. Hendrix (1964) also found that various sterols at low concentrations 

induced asexual and sexual reproduction in species of both Pythium and Phytophthora; in 

the case of Py. aphanidermatum sterol supplements were associated with the production of 

large zoosporangia. 

Limitation of atmospheric oxygen significantly reduces sporangial formation (Ribeiro, 

1983). Mitchell & Zentmyer (1971) also found that either decreasing oxygen or increasing 

carbon dioxide concentration reduced sporangial formation. However, the sporangia under 

investigation went on to produce oospores - suggesting that the structures observed were, in 

fact, not sporangia. 

For Phytophthora lateralis Englander & Roth (1980) noted that illumination of cultures 

produced four times as many sporangia as in cultures that were not illuminated. Hendrix 

(1967) found that Ph. palmivora and Ph. capsici respond to light in a similar manner as Ph. 

lateralis. Similarly, Hendrix (1967) observed that sporangia of Ph. capsici did not liberate 

zoospores in a dark regime and that sporangial morphology was affected by the absence of 

light. In addition, Harrish (1965) found that light enhanced the formation of sporangia of 
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many species of Phytophthora with the exception of Ph. syringae, where light was found to 

inhibit sporangial formation. There are a few species of Phytophthora where light has no 

apparent effect on sporangiogenesis. Brasier (1969) observed that two isolates of Ph. 

palmivora responded positively to light while a third isolate failed to respond. 

Other factors which affect sporangia formation include colony size (Davison & Tay, 1986), 

aeration (Mitchell & Zentmyer, 1971; Davison & Tay, 1986), the presence of 

microorganisms (Marx & Bryan, 1969; Ayres & Zentmyer, 1971), age of mycelium (Ayres 

& Zentmyer, 1971), UV (Ribeiro et al., 1976) and culture medium (Blaker & MacDonald, 

1983; Sidebottom & Shew, 1984; Sidebottom & Shew, 1985). The suggestion that the 

presence of microorganisms affects sporangia formation can be explained by their ability to 

remove sporangia-suppressing nutrients by catabolism, or by the production of metabolites 

which stimulate sporangial formation. 

1.6.2.1. Germination of sporangia. 

The contents of a sporangium can either germinate directly by producing germ tubes (direct 

germination) (Figure 1.3) or by the cytoplasm differentiating and cleaving into zoospores 

which subsequently are liberated into the surrounding liquid medium (indirect germination) 

(Figure 1.4). 

Clerk (1972) identified several factors that promote direct germination of sporangia of 

Phytophthora palmivora. These factors were: a temperature similar to or greater than for 

optimal mycelial growth (22 °C); 1% peptone or yeast extract; cocoa pod extract and 

exudate; 10 mm CaCl 2; 1-10 mM MgSO4; 0.5% fructose, galactose, glucose, lactose, maltose 

or sucrose; 100 ppm arginine, aspartic acid, glutamic acid, glycine, leucine, tryptophan or 

thiamine. In contrast, zoospore formation was inhibited by cocoa pod extract, peptone and 

yeast extract, several amino acids, carbohydrates and inorganic salts. Ribeiro (1983) has 

confirmed that these factors are conducive to direct germination for other species of 

Phytophthora. In addition to these factors, Pfender et al. (1977) report that the matric 

potential of soil also governs whether sporangia of Ph. megasperma germinate directly or 

release zoospores. MacDonald & Duniway (1978) also found that high matric potential (M' < 

5 mbar) inhibited zoospore release, but solute potential had little influence of zoospore 

release. 
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Figure 1.3. Direct germination of a sporangium of Phytophthora palmivora. 
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Four germ tubes (G.t.) originating from a single sporangium (S). The sporangium is attached to a stalk 
(Ss.), which can be seen in the bottom-left of the photomicrograph. 

Photomicrograph supplied by D. Grayson. 

Figure 1.4. Indirect germination (zoospore release) of a sporangium of 

Phytophthora palmivora. 
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Over the series of photomicrographs (1-8) the papillium (F) of a sporangium with clitterentiated 
cytoplasm (S) can be seen to dissolute and a zoospore (Z) released. Proximal to this sporangium is a 
sporangium with undifferentiated cytoplasm (U). 

Photomicrographs supplied by D. Grayson. 
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In the nutrient solution of an irrigation system based on NFT, the matric potential is low and 

cations are present (Appendices 8 to 13). The concentrations of amino acids and other 

organic compounds are dependent on the age of the crop, whether the system is run-to-waste 

or recirculated, and presence of sterilisation equipment. In a recirculating system, the 

electrical conductivity (solute potential) is kept constant, but organic compounds will 

accumulate. 

Zoospores are formed through the processes of sporangial cytoplasmic differentiation and 

cleavage. Discharge of zoospores from sporangia of Phytophthora is driven by high relative 

turgor pressure in the sporangium, which can only occur in a hypotonic medium. When the 

limit of elasticity for the sporangium wall (papillium) is exceeded then it ruptures allowing 

the ejection of zoospores into the environment (Gisi, 1983). In Pythium, zoospores are 

released from a vesicle that forms out of a sporangium. 

Although the apparent cause of zoospore release is high turgor pressure there are other 

factors which have been correlated with zoospore release. In Pythium spp. Shipton (1987) 

discovered that a range of cations, including calcium, regulates zoospore release. 

Transmission electron micrographs suggest that both calcium and potassium can cause as 

much as an eight fold thickening of the sporangial vesicle wall. This elevated wall stability 

undermines the mechanism of zoospore release. Personal observations of Py. 

aphanidermatum revealed that the vesicle inflates rapidly (-j 2s) from the sporangium. It is 

hard to conceive that a fully formed wall, as suggested by Shipton (1987), binds the vesicle. 

However, some gelatinous material probably surrounds the vesicle. The thickness of the 

vesicle 'wall', as observed by Shipton (1987) was 35-115 nm (in the absence of cations), but 

170-970 nm in the presence of cations. A typical phospholipid bilayer is about 10 nm thick 

(Gennis, 1989), therefore it can be assumed that the vesicle is more than membrane-bound 

cytoplasm. 

In earlier work Shipton (1985) noted that young (one-day old) colonies had greater releases 

of zoospores than older colonies. Hendrix (1967) found in addition to sterols being a 

requirement for sporangia production that sterol deficiency inhibited differentiation of 

cytoplasm into zoospores. 
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1.6.3. Motile zoospores. 

Zoospores of Oomycetes are biflagellate with the point of insertion for both flagella in the 

deep groove on the zoospore ventral surface (Figure 1.5). The anterior 'tinsel' flagellum 

generates 90% of the swimming thrust (Carlile, 1983); its appearance is due to mastigonemes 

(tubular hairs) on the flagella which act like oars of a boat (Holwill, 1982). The posterior 

flagellum is longer than the anterior and lacks mastigonemes. The action of the posterior 

flagellum has given rise to the name 'whiplash flagellum'; this action is responsible for 

zoospore turning (Carlile, 1983). 

Figure 1.5. Simplified diagram of a typical zoospore of the Oomycota. 

Ventral 
groove 

Posterior 	 Anterior 
Soma 

Tinsel 

	

Whiplash 	
flagellum 

	

\flagellum 	
Tubular tritartate hairs 

Adapted from Warburton, 1997. 

During swimming acyl glycerides and free fatty acids provide the major energy source for 

zoospores of Ph. palmivora (Bimpong, 1975). These lipid reserves are large enough to 

supply the energy required for swimming up to several days in the absence of exogenous 

nutrients (Hickman & Ho, 1966). However, zoospores of Ph. drechsleri have been reported 

to utilise exogenous sugars, albeit at a low rate compared to during cyst germination (Barach 

et al. 1965). More recent work by Penington et al. (1989) found that zoospores and cysts of 

Ph. palmivora were impermeable to amino acids, glucose and inorganic phosphate. Uptake 

of these substances was observed only after the emergence of germ tubes. The consumption 

of carbohydrates and proteins during motility is negligible; however, during cyst germination 

usage of these nutrients increases (Bimpong, 1975). During motility the regulation of the 

tricarboxylic acid cycle is modified as indicated by NAD-isocitrate and malate 

dehydrogenase concentration increasing slightly, while NADP-isocitrate and succinate 

dehydrogenase concentration decreases slightly. 
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Extended zoospore motility is also reported by Bimpong and Clerk (1970) for Ph. palmivora 

zoospores in distilled water at 17 °C. They found that the motility time was reduced in dense 

zoospore populations, in the presence of calcium chloride, low pH, various salts solutions, 

amino acids and sugars. They, along with Benjamin and Newhook (1982), found that 

motility is curtailed through frequent contact with surfaces, although the magnitude of this 

effect is species specific. Most of these factors (Ca 2 , amino acids, and sugars) are present, at 

varying concentrations, in the nutrient solution of an irrigation system. 

The default swimming movement of Oomycete zoospores in vitro is a helical path with the 

soma rotating about the long axis (Carlile, 1983). A 'random walk' was believed to be an 

inherent property of biflagellated zoospores (for example, Allen & Newhook, 1973); 

however, Warburton (1993) found this only in Phytophthora spp., whereas Pythium spp. did 

not make random turns in the absence of obstacles. 

Donaldson and Deacon (1993a) found that zoospore swimming behaviour of Py. 

aphaniderinatum was modified through calcium-modulating drugs to cause five distinct 

swimming modes. The implication of this work is that calcium plays a major regulatory role 

in zoospore swimming. Other group II cations such as magnesium have also been cited as 

influencing swimming of flagellate cells (Tamm, 1989; Bloodgood, 1991). 

Deacon and Donaldson (1993) have reviewed the homing sequence of zoospores. It is 

evident that many factors are involved during each phase of the homing sequence. Zoospore 

chemoattractants include certain amino acids and sugars, with various cations being essential 

for processes that facilitate the zoosporic homing sequence; for example, calcium is required 

for motility and encystment. 

Taxis of zoospores of Phytophthora spp. was reviewed by Carlile (1983), updated and 

extended to include zoospores of Pythium spp. by Deacon and Donaldson (1993). Swimming 

zoospores of Oomycete fungi exhibit various taxes including geotaxis, electrotaxis, rheotaxis 

and chemotaxis. The chemotactic nature of Pythium aphanidermatum is well studied - for 

example, by Royle & Hickman (1964) and Donaldson & Deacon (1993c). 

The in vitro studies on the effects of electric currents on zoospore motility are extensive 

(Troutman & Wills, 1964; Ho & Hickman, 1967; Katsura & Miyata, 1971; Khew & 

Zentmyer, 1974; Miller etal., 1988; Morris etal., 1992). In vivo this phenomenon may cause 
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zoospores to accumulate at root tips, which are known to generate electric fields (Salisbury 

& Ross, 1991). The relevance of these in vitro findings is contentious. Hickman (1970) 

argues they are of little or no significance, whereas Gow et al. (1992) believe electrotaxis 

may contribute to host location. Deacon and Donaldson (1993) suggest that electrotaxis 

works only in conjunction with chemotaxis. The observations of Hawes et al. (1987) who 

found that Ph. dissotocum zoospores are attracted to single root cap cells in suspension 

supports the view that electrotaxis is non-essential in host location. 

Morris and Gow (1993) suggest the possible mechanism of electrotaxis to be a combination 

of modulated turning frequency and electrophoresis. They observed that electrical fields of 

physiological magnitude increased the turning frequency of zoospores of Ph. palmivora 

three-fold and that the charge on the posterior flagellum relative to the charge on the anterior 

flagellum dictates whether the zoospore is attracted to the anode or cathode. In Py. 

aphanidermatum the posterior flagellum has a relative negative charge and was orientated to 

the cathode in an applied electric field while Py. palmivora with a relative positive charge on 

the posterior flagellum was generally orientated to the anode. 

Various taxes may influence the swimming direction of zoospores in relation to the surface 

of the medium. For Phytophthora spp. Carlile (1983) suggests that negative geotaxis is 

responsible for keeping zoospores near plant rootlets, as observed by Cameron and Carlile 

(1977). This increases proximity of zoospores to the host and improves the chance of 

infection. 

Chemotaxis of zoospores of Phytophthora and Pythium species have been extensively 

researched in vitro. Donaldson and Deacon (1993c) working with three species of Pythium 

reported significant positive chemotaxis to five out of the 19 L-amino acids tested, but not to 

any of the equivalent D-amino acids. Chemotactic response to sugars was varied, with D-

mannose being the strongest attractant tested. Ethanol is also a chemoattractant for zoospores 

of some fungi (Allen & Newhook, 1973; 1974; Cameron & Carlile, 1978). In terms of 

infection, ethanol might serve as a signal that a plant is compromised through anaerobic 

conditions. In the development of a dipstick immunoassay of Ph. cinnamomi that exploits 

zoospore taxis, Cahill and Hardham (1994) found that in addition to amino acids, sugars and 

alcohols, various phenolics, isovaleraldehyde, abscisic acid (a phytohormone) and pectin are 

all chemoattractants. Allen and Harvey (1974), working with Ph. cinnamomi, and Cameron 

and Carlile (1980), working with Ph. palmivora, found negative chemotaxis to low 
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molecular weight cations. Both groups concluded that effectiveness of the cation as a 

repellent was proportional to its ionic conductivity (position in the Hofmeister lyotropic 

series'). 

Host specific taxis of Oomycete zoospores cannot only operate at the species level (for 

example, Goldberg et al., 1989) but zoospores of some species can also differentiate between 

different plant cultivars (Chi & Sabo, 1978). Plants when wounded release a spectrum of 

compounds including amino acids and sugars. Some of these compounds are general 

attractants, while others may be fungus-specific non-attractants which interfere with 

chemotaxis (Donaldson & Deacon, 1993b). 

1.6.4. Zoospore encystment. 

Anatomical changes that occur during zoospore encystment have been reported for species of 

both Pythium (Grove, 1970; Lunny & Bland, 1976; Grove & Bracker, 1978) and 

Phytophthora (Reichle, 1969; Hemmes & Hohi, 1971; Bimpong & Hickman, 1975; 

Hardham et al., 1991). During encystment the naked zoospore soma becomes spherical in 

shape. In Blastocladiella emersonii (a zoospore producing Chytridimycete) a glycoprotein 

cyst coat is exuded through the zoospore membrane and beneath this a microfibrillar cyst 

wall forms (Truesdell & Cantino, 1971). During encystment the flagella are either shed or 

retracted (Ho & Hickman, 1967; Reichle, 1969; Grove & Bracker, 1978), and cytoplasmic 

organelles are reorganised, and occupy positions different from those found in the motile 

zoospore. Certain organelles, such as the water expulsion vacuole, though present in the 

naked zoospore, are absent in the walled cyst. 

1.6.4.1. Factors involved in inducing zoospore encystment. 

The process of zoospore encystment is closely coupled with site-selection. The chemical 

nature of a substrate can induce zoospore encystment. Zoospores of Py. coloratum were 

observed by Shishkoff (1989) to encyst on hypodermal cells of onion (Alluim cepa L.), and it 

was found that more zoospores encyst (i) next to killed plant cells than living cells, (ii) next 

to short cells of the hypodermis than could be statistically expected by chance and (iii) on 

Hofmeister lyotropic series: K > Na> Cs 4 > Li4  > Mg2 > Ca2 > Ba2  
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non-fluorescent long cells than fluorescent long cells - autofluorescence is caused by 

suberination of the lamella. Thus Py. coloratum showed site selection. 

Chemotaxis to root exudates is well established (for example, Zentmyer, 1961). Fucosyl 

residues present in root surface slime of plant roots have been implicated in the binding of 

cysts of Py. aphanidermatum (Hinch & Clarke, 1980; Longman & Collow, 1987; Estrada-

Garcia et al., 1990b). Root surface slime is rich in uronic acids and uronate-rich compounds 

(such as poly-D-galacturonic acid, pectin and alginate) which have been shown to cause 

encystment of zoospores (Irving & Grant, 1984; Grant et al., 1985; Hardham & Su.zaki, 

1986; Zhang et a!; 1990; Jones eta!; 1991; Donaldson and Deacon, 1993b). Zoospores of the 

pathogenic Py. marinum readily encyst on thalli of Porphyra spp. (red algal host), but have 

not been observed to encyst on green or brown algae which are not hosts (Kerwin et al., 

1992). Py. graminicola also discriminates between hosts (graminaceous) and non-hosts (non-

graminaceous), albeit not to the same degree as Py. marinum (Mitchell and Deacon, 1987). 

Other host surface factors implicated in the encystment of fungal zoospores include chitin 

and cellulose (Mitchell & Deacon, 1986). Hydrostatic pressure (Held, 1972), temperature, 

pH, dilution and mechanical agitation (Ho & Hickman, 1967) are some of the known 

physical treatments which induce zoospore encystment. Chemical factors that are ubiquitous 

in irrigation solutions and induce zoospore encystment are ions (Bryt et al., 1982), amino 

acids (Donaldson & Deacon, 1993c), lectins (Hardham & Suzaki, 1986; Longman & Callow, 

1987) and phosphatidic acid (a phospholipid) (Zhang et al., 1992). Cysts of Phytophthora 

are able to adhere to a wide range of solid, non-biological surfaces including glass, 

polystyrene plastic, cellophane, and to a lesser extent Teflon and Parafilm (Bartnicki-Garcia 

& Sing, 1987). 

1.6.4.2. The mechanics of zoospore encystment. 

Within zoospores during encystment the pre-formed peripheral vesicles fuse with the plasma 

membrane and deposit a coat on the spore surface that is principally glycoprotein (Sing & 

Bartnicki-Garcia, 1975a, b). Calcium has been implicated in triggering the fusion of 

peripheral vesicles to the plasma membrane and the exocytosis of coat material (Hemmes & 

Pinto da Silva, 1980). From underneath the cell coat a cell wall develops over the following 

several minutes (Sing & Bartnicki-Garcia, 1975a). 

18 



Using monoclonal antibodies and lectins, other types of vesicles, and their fate, have been 

identified in encysting zoospores of Ph. cinnamomi (Hardham et al., 1986; Gubler & 

Hardham, 1988). Small peripheral dorsal vesicles exocytose the glycoprotein that forms the 

cell coat, whereas small peripheral ventral vesicles exocytose an adhesive material, which 

mediates attachment to the adjacent surface. This adhesive material (high molecular weight 

proteins and glycoproteins) covers approximately one third of the cell surface and binds non-

specifically to a large range of substrates (Gubler et al., 1989). A third category of vesicles, 

the large peripheral vesicles, do not exocytose their contents, but move away from the 

plasma membrane and disperse throughout the cytoplasm (Gubler & Hardham, 1988). These 

large vesicles are believed to contain proteins for later use by the cyst (Gubler et al., 1990; 

Estrada-Garcia, 1990a), although Grant et al. (1986) had previously supposed that the 

contents of these vesicles formed the cyst wall. Also during encystment the nucleus becomes 

spherical and relocates to the centre of the cyst, and the water expulsion vesicle disappears 

approximately 4 min after the onset of encystment (Mitchell & Hardham, 1999). Hardham 

(1995), reviewing the immunocytochemical studies on these vesicles, concludes that the 

smaller dorsal and ventral vesicles contain secretory material used for cyst adhesion, whereas 

the large peripheral vesicles are nutrient storage structures. Figure 1.6 shows schematically 

the changes that occur during encystment. 

Grant et al. (1986) hypothesised that calcium had a central role in the encystment of 

zoospores. During zoospore motility endogenous calcium concentration is relatively high 

whereas sodium concentration is relatively low. This cation status was related to an active 

water expulsion vacuole. In hypo-osmotic conditions an active water expulsion vacuole is 

essential for the wall-less zoospore to avoid rupturing. 

Early in the encystment sequence Grant et al. (1986) postulate that endogenous calcium level 

is reduced through expulsion of calcium to the environment. This is followed by sodium 

uptake, which coincides with reduced water expulsion vacuole activity. Some of the 

exogenous calcium binds to the zoospore surface. Calcium gated monovalent ion 

translocators are believed to regulate sodium uptake, and consequently influence water 

expulsion vacuole activity. Reduced water expulsion vacuole activity in hypo-osmotic 

conditions causes the zoospore turgor pressure to increase and the cell to swell, causing 

rupturing of peripheral vesicles - this has been recently confirmed by Mitchell and Hardham 

(1999). 
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Figure 1.6. 	Schematic diagram of the ultrastructural changes that occur in a 

zoospore during encystment. 
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The small ventral vesicles (A) discharge their adhesive contents at the ventral groove. The small 
dorsal vesicles (X) discharge their glycoprotein contents around the rest of the spore to from a cyst 
coat. The large peripheral vesicles and nucleus (N) assume a central location within the cyst, and the 
water expulsion vesicle (WEV) disappears. 

Adapted from Warburton (1997). 

In the presence of EGTA (a calcium chelator) adhesion is suppressed in newly encysted 

zoospores. In older cysts, which have lost adhesive properties, the addition of C restores 

adhesion (Donaldson & Deacon, 1992). Deacon and Donaldson (1993), in a review, analyse 

the in vitro data of four papers (Irving et at., 1984; Mitchell & Deacon, 1986; Iser et al. 
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1989; Donaldson & Deacon, 1992) and proposed a model of autoregulation of infection from 

zoospores with Ca2  holding a central role. Their model is: 

Glycoprotein adhesive is fixed to surfaces by released Ca 2+  Adhesion 
prevents dispersion of released Ca 2 , enabling reabsorbtion and triggering of 
germination via a control centre, the fixed germination point. Otherwise, 
high (7 mM) Ca 2+  is needed (e.g. suspended cysts). Orientation of 
encystment ensures that the Ca 2  signal is received by the control centre, 
causing autonomous germination after zoospore docking. Specific amino 
acids (host derived) can synergize Ca 2+  uptake from low external levels, 
leading to germination of non-adhered or 'disorientated' cysts. 

1.6.5. Diplanetism. 

Diplanetism is the release of a secondary zoospore from a walled cyst. Cerenius & Söderhäll 

(1985) believe repeated zoospore emergence (diplanetism) in the genus Aphanomyces is an 

adaptation to parasitism. In the absence of nutrients (SDW), the majority of adhered cysts of 

Py. aphanidermatum will undergo diplanetism within 16h (Jones et al., 1991), but in the 

presence of nutrients (bacteriological peptone) virtually all cysts will produce a germ-tube, 

and therefore are unable to undergo diplanetism. Von Broembsen and Deacon (1996) suggest 

that diplanetism requires no specific trigger, and is therefore the default mechanism in an 

adhered cyst. External calcium alone suppresses cyst diplanetism (von Broembsen & 

Deacon, 1996 & 1997). In contrast, calcium has a central role in the direct germination of 

cysts for species of both Pythium and Phytophthora. Donaldson and Deacon (1992) 

confirmed this hypothesis by chelating free ionic calcium and finding that direct germination 

was suppressed 

1.6.6. Cyst germination. 

Observation of encysted zoospores invariably germinating from the side of the cyst nearest 

to an attractant has given rise to the supposition that zoospores have a predetermined point of 

germination, and that during encystment the point of germination is orientated towards the 

attractant (e.g. Royle & Hickman, 1964; Allen & Newhook, 1973). 

Mitchell and Deacon (1986) working with two Pythium species (Py. aphanidermatum and 

Py. graminicola) confirmed the above observations. When pre-encysted zoospores were 

placed near an attractant there was no preferential germination towards the attractant. 
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However, the germ-tubes often changed direction and grew towards the attractant. That is, 

germ tubes exhibited positive chemotropism; chemotropism was not found in vegetative 

hyphae. 

Jones et al. (199 1) found cysts germinated rapidly and with almost 100% efficiency on roots, 

in contrast to the maximum of approximately 70% germination in vitro found by Donaldson 

and Deacon (1992). This suggests exogenous factors promote cyst germination. However, 

zoospores and cysts are impermeable to amino acids, glucose and inorganic phosphate 

(Pennington et al., 1989). But after germination, that is when a germ tube is present, the up-

take of these low molecular weight molecules occurs. Therefore, it is expected that the 

exogenous triggers only bind to the cyst surface. 

The inability of the cyst to uptake amino acids as exogenous triggers coupled with the 

central role of calcium in germination precludes the uptake of calcium by symport, but 

amino acids might act through receptors on the cyst membrane to open Ca 2  channels. Ca2 -

channel-linked glutamate receptors are widely reported in other organisms (e.g. Gilbertson et 

al., 1991; Hollmann et al., 1991) and might be expected to occur in Oomycete zoospores. 

However, Ca 21  channels linked to aspartate, asparagine or alanine receptors have not been 

reported (Warburton, 1997). A receptor-mediated role of amino, acids would be consistent 

with the species-specific effects, as found for alanine by Donaldson and Deacon (1992). 

During germination of cysts the large peripheral vesicle contents (glycoprotein) are 

degraded. This observation led Gubler and Hardham (1990) to suggest that these 

glycoprotein deposits are endogenous nitrogen stores for germ-tube formation. Energy for 

germ-tube formation is liberated from acyl glycerides and free fatty acids by the glyoxylate 

cycle and indirectly through the citric acid cycle, although both these cycles are more active 

during zoospore motility (Bimpong, 1975). 

In parallel to energy liberation and glycoprotein degradation the amount of mRNA present is 

elevated; prior to germination zoospores contain a low level of translational mRNA 

(Penington et al., 1989). The implication of this is that germ tube synthesis requires de novo 

protein synthesis; this is not a universal phenomenon in fungal spore germination (van Etten 

et al., 1983). In addition to mRNA translation the nuclei of cysts undergo multiplication as 

the germ tube extends (Hooley etal., 1982). 
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Exogenous nutrition is required to a far greater extent by germinating cysts than by motile 

zoospores. Barach et al. (1965) working with Ph. drechsleri suggested that exogenous 

nutrition is of little significance to motile zoospores; and that the availability of external 

nutrition (e.g. root exudates) enhances germ tube elongation. The uronic acids present in 

pectins and other complex uronates of root slime are inducers of germination (Grant et al., 

1985). Donaldson and Deacon (1993c) found for Pythium and Phytophthora species that 

amino acids and simple sugars also enhance germ tube elongation. The study of Byrt et al. 

(1982) concludes with stating that the presence of simple sugars or amino acids is a 

prerequisite for germ tube elongation. For germination oxygen was believed not to be 

required, but oxygen concentration has been positively correlated with germ tube growth 

(Davison & Tay, 1986). 

1.6.7. Infection. 

Infection of glasshouse crops is poorly researched. Literature on the diseases caused by the 

Pythiaceae predominantly covers which factors suppress or enhance disease. One of the best 

documented diseases caused by the Pythiaceae is black shank of tobacco (Nicotiana 

tabacum); this is due to the high value of tobacco and the potential destructiveness of black 

shank (MacKenzie et al., 1983). This disease system is particularly relevant to infection of 

tomatoes (Lycopersicon esculentum) by Ph. parasitica because the pathogen is the same 

(species) and the hosts are in the same putative dade of the Solanaceae (Olmstead & Sweere, 

1994). 

1.6.7.1. Factors affecting infection. 

The development level of tobacco plant root systems has influence on the infection by the 

pathogen (English & Mitchell, 1988 & 1989). Root tips possessing a meristem are more 

susceptible than older, larger roots. The soil matric potential has a large effect on infection of 

susceptible tobacco seedlings (Shew, 1982 & 1983). Although the major propagule of 

infection in soil is unknown, Shew (1982 & 1983) suggests that under higher matric 

potentials (close to saturation) the conditions are conducive to zoospore production and 

hence elevate infection. In addition to soil matric potential, Sidebottom and Shew (1985) 

correlated soil texture, soil drainage class, fumigation and nutrient status (calcium, 

magnesium, zinc and phosphorous) with black shank incidence. It is therefore suggested that 

disease expression is influenced by a combination of microbial, phytological, physical and 
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chemical factors. Kannwischer and Mitchell (1981) found that 300 zoospores per tobacco 

plant were the minimum number of zoospores required to achieve infection of a plant. 

However, the number of zoospores required to cause infection in other environments would 

be different. 

1.6.7.2. Penetration of host. 

De Zoeten et al. (1982) visualised infection of tobacco callus tissue by Ph. parasitica. var. 

nicotianae (although this varietal epithet is no longer valid - Hall, 1993) by transmission and 

scanning electron microscopy. When incubated with callus material it was observed that 

zoospores encyst and germinate on the material within three hours of introduction. The germ 

tubes often penetrated callus cells some distance from the place of germination. By 24 hours 

the host cells were still turgid in the susceptible callus yet collapsed in the 'resistant' callus 

because of a hypersensitive reaction. In this collapsed 'resistant' tissue, penetration by the 

fungus at 48 hours was to a depth of 5 to 8 layers of cells, whereas in the susceptible turgid 

tissue penetration was greater than 50 layers. 

Benhamou and Côté (1992) using more advanced electron microscopical techniques showed 

that within 24 hours the epidermis of tobacco roots is colonised. The entire cortex is 

colonised (but not the xylem vessels) by the time the pathogen has reached the paratracheal 

parenchyma at 96 hours. The pathogen produces a battery of extracellular enzymes, 

particularly pectinases that diffuse extracellularly and break down the middle lamella. 

Cellulases are also present, but are of less significance. This is possibly because the pathogen 

cell wall contains cellulose (Bartnicki-Garcia & Wang, 1983). The host plant responds to 

infection by i) filling intercellular spaces with fibrillar pectin material, ii) plugging of sieve 

pores and plasmodesmata with amorphous material and iii) occluding non-invaded xylem 

vessels by using a coating material of undetermined chemical nature. 

1.6.7.3. Host reaction to infection. 

In stems and leaves challenged with Ph. parasitica the de novo synthesis of endo- 1 ,3-3-

glucosidases and endochitinases is activated (Meins & Ahl, 1989). This response is non-

specific to the pathogen. The effect of a chitinase on an Oomycete pathogen is questionable 

in light of its cell wall biochemistry, that is, Oomycetes generally lack chitin in their cell 

walls (Bartnicki-Garcia & Wang, 1983). In callus material the production of phytoalexins 
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was found when infected with Ph. parasitica, although the stimulus for production is not a 

primary response to infection, but due to cell stress (Budde & Helgeson, 1981). 

The hypersensitive reaction of the host plant to pathogens, involving rapid cell death and 

subsequent necrosis constitutes the primary mechanism of resistance to infection (Goodman 

& Novacky, 1994). Phytophthora spp. produce elicitins that cause non-host plants to display 

a hypersensitive reaction. For example, Ph. cryptogea secretes cryptogein (a haloprotein 

elicitin). Cryptogein is stored within the mycelium in the mature form; that is, a signal 

peptide of the preprotein is removed cotranslationally with no post-translational 

modifications, and can only be synthesised while the mycelium has a nitrogen source 

(Tercelaforgue et al., 1992). Panabieres et al. (1995) have characterised a cluster of four 

genes in the Ph. cryptogea genome, of which two encode for cryptogeins, and the other two 

for other elicitins. These proteinaceous elicitins induce hypersensitive-like necroses in non-

host tobacco plants. 

Cryptogeins are lethal to tobacco cell cultures at low (100 nM) concentrations, with the sub-

lethal concentrations causing the production of ethylene and phytoalexins (Blein et al., 

1991). Ethylene biogenesis has been implicated in activation of genes responsible for the 

plant defence response (Kim & Hwang, 2000). Increased extracellular pH and electrical 

conductivity were also observed in tobacco cells incubated with cryptogein. This activity has 

been correlated with decreased intracellular pH and depolarization of the plasma membrane, 

although membrane integrity is maintained. These observations are consistent with 

cryptogein targeting plasmalemma ATPase (Blein et al., 1991), and other hypersensitive 

reactions (for example, see Goodman & Novacky, 1994). The invasion of tomato roots by 

Pythium group F (a minor ubiquitous pathogen in soil-less cultures) also causes massive 

induction of host responses (Rey et al., 1998). 

Ph. infestans also produces extracellular protein elicitors of similar molecular weight to 

cryptogein. A particular elicitor of Ph. infestans is LNF 1. Like cryptogein, it induces a 

hypersensitive-like response in non-host tobacco (Kamoun et al. 1998). However, in two 

major hosts of Ph. infestans, potato and tomato, a hypersensitive-like response is not induced 

by Ph. infestans (Kamoun et al., 1997). During the early stages of infection of potato by Ph. 

infestans the production of INF 1 does not occur, although other genes are translated in 

response to initial plant infection (Pieterse et al., 1994). The infi gene found to be expressed 
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at a late stage of infection has been correlated with extended leaf necrosis, saprophytic 

growth and profuse sporulation (Kamoun et al., 1997). 

The late expression of this elicitor may be to evade plant defences, such as the hypersensitive 

reaction. Although elicitor production is essential for completion of infection they are not 

known to have catalytic ability, but they can bind to other molecules such as carbohydrates, 

proteins and lipids (Templeton et al., 1994). In liquid culture elicitins are the most abundant 

secretory proteins, but their function is still unknown. However, Yu (1995) suggests their 

function may be similar to cerato-ulmin toxin of Ceratocystis ulmi - that is, to increase the 

non-polarity or hydrophobicity of the microbial cell wall, and in the production of aerial 

hyphae, fruiting bodies, conidia and appressoria. The evidence presented by Kamoun et al. 

(1997) of maximum infi expression concurrent to sporulation supports Yu's (1995) 

hypothesis. 

Tobacco plants are highly sensitive to elicitins of Phytophthora spp. In the review by 

Templeton et al. (1994), it is stated that Ph. nicotinanae var. nicotinae (=Ph. parasitica) 

does not produce elicitins. However, there is substantial evidence that the black shank 

pathogen does synthesis elicitins (for example, parasiticein - Capasso, 1999). 

1.7. Glasshouse irrigation systems. 

This project was partially in collaboration with Horticultural Research International (HRI), 

Stockbridge House (Yorkshire), where the modern, well-equipped greenhouse unit 

comprises approximately 50 individual compartments ranging in size from 15 m2  to 900 m2 . 

The glasshouses include a 16 section multifactorial unit, which was ideal for detailed 

replicated studies of the greenhouse environment. A computer individually controls the 

heating, ventilation, carbon dioxide, irrigation and nutrients supplied to each greenhouse. 

Readings were taken every few minutes to ensure that a constant computer record of all 

environmental factors was logged. 

Most of the British industry involved in growing fruit and vegetables under glass uses the 

nutrient film technique. Irrigation rates are generally 30% greater than required to overcome 

variances in the system, resulting in run-off to the environment. In the run-off phosphates 

and nitrates are present. It is inevitable that for environmental reasons legislation will be 

passed to stop the present practice of run-to-waste (see Section 1.10). The main option would 
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be to recirculate the irrigation water. Received wisdom suggests that in these systems disease 

inoculum build-up would be rapid. However, in trials at Stockbridge it was found that 

although there is occasional build up of Pythium and Phytophthora disease inoculum, it 

disappears rapidly. It would appear that in closed irrigation systems natural control . of 

Pythium and Phytophthora spp. operates. 

1.7.1. Nutrient film technique. 

Nutrient film technique (NFT) has been described as the World's first method of crop 

production without a solid rooting medium (Cooper, 1979). In NFT, solid rooting medium, 

such as soil or peat, is replaced with a shallow stream of nutrient solution. This arrangement 

permits the root mat to develop above the solution in moist air, which forms a film on the 

aerial roots. This confers the advantages of having available to the roots at all times 

nutrients, water and air (oxygen). In conventional solid rooting medium systems abundant 

water has the detrimental effect of anaerobiosis or if water is lacking then water stress can 

occur. The availability of nutrients in solid rooting media can be limited by slow rates of 

diffusion and high affinity with the rooting medium. In NFT systems nutrients are proximal 

and available to roots because of a rapidly flowing medium. 

1.7.1.1. Construction of a recirculating NFT installation. 

A NFT installation is laid out with the channels discharging directly into a collection trench. 

The collection trench is dug along the lowest of the four sides of the site. At the lowest 

corner of the site, which coincides with an end of the collection trench, is located the nutrient 

circulating pump. Small bore tubing (one per channel) delivers the nutrient solution to the 

head of each channel from the recirculation pump. Very little filtration is required in NFT 

systems because the collection trench/tanks act as sedimentation tanks. Fresh solution is 

added to the recirculated solution to maintain the volume of liquid in the system and the 

concentration of nutrients. A schematic representation of a recirculating NFT installation can 

be seen in Figure 1.7. 
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Figure 1.7. Schematic representation of a recirculating NET installation. 
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Nutrient solution is delivered to the top of each NFT channel, with excess solution draining into a 
collection trench and tank, which is at the lowest point in the glasshouse. The excess nutrient solution 
is recirculated and topped-up with fresh nutrient solution as necessary. 

A suitable nutrient film is achieved when the gradient down the water channel is uniform and 

not subject to local depressions, the water flow is not rapid so deep flow builds up, the 

channel width is adequate so the root mass does not dam the nutrient solution, and the 

channel base is flat and not curved. The depth of the nutrient solution is typically only a few 

millimetres, so that most of the root mat develops in the NFT channel and roots are above the 

surface of the nutrient solution. 
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1.7.1.2. Operation of a NFT installation. 

The calculation of water consumption by crops in a NFT system is complicated by the 

interaction of many factors, including plant size, growth stage, flux of solar radiation and 

solution temperature. Water consumption of over 1.5 1 per day per plant is not uncommon 

(Cooper, 1979). - 

The optimal pH of the nutrient solution is between pH 6.0 and 6.5. Suitable acids for 

lowering pH are phosphoric acid and nitric acid. In systems where calcium is present in high 

concentrations nitric acid is recommended because the addition of phosphoric acid to a 

solution with free calcium causes calcium to be precipitated out as calcium phosphate. The 

nutrient solution should have an electrical conductivity greater than 2.0 mfl, but less than 3.0 

m.Q with most crops showing optimal growth in nutrient solutions with an electrical 

conductivity of 2.5 mQ. 

The theoretically ideal concentrations for elements in nutrient solution for NFT cropping are: 

nitrogen as nitrate 14.3 ram; phosphorus 1.9 mm; potassium 7.7 mm; calcium 4.3 mm; 

magnesium 2.1 mm; iron 214 j.tM; manganese 36 .tM; boron 27tM; copper 2 p.M; 

molybdenum 2 l.LM; and zinc 2 gm. Nitrogen is supplied as nitrate ions and not ammonium 

ions because ammonium is damaging to young tomato plants (Cooper, 1979). 

The ratio of potassium to nitrogen uptake by tomatoes varies throughout the season. The 

ratio of potassium to nitrogen in the nutrient solution affects both fruit quality and yield. If 

the ratio is too low then fruit quality is affected whereas a ratio that is too high is detrimental 

to yield. However, it has been found that a wide tolerance to the potassium to nitrogen ratio 

exists between 26:1 and 1:10 with the effect on both yield and fruit quality minimal as long 

as the amount of either potassium and nitrogen was not too high to be toxic or too low to be 

deficient (Cooper, 1979).. For three main nutrients (nitrogen, phosphorus and potassium) the 

concentrations at which deficiency becomes evident is 715 LM nitrogen; 160 tM for 

phosphorus; and 510 J.LM for potassium. There is little information available on toxicity and 

deficiency of nutrients in NFT systems. However, The tolerances are believed to be large 

because of the nature of the NFT. That is, the lack of solid rooting medium and continuous 

flow of solution does not permit localised build up of nutrient salts around roots. 



Plants require little sodium and very little chloride, consequently in recirculating irrigation 

systems sodium chloride build-up occurs. For tomatoes a water supply with less than 1.3 mm 

sodium should be used to avoid salt build-up (Cooper, 1979). However, in Barbados the 

water has a high calcium content (10 mm) and has been successfully used for NFT tomato 

and cucumber production. 

1.8. Microbiology of irrigation systems. 

Hydroponic systems at the beginning of the growing season are relatively free of disease 

causing organisms. However as the growing season progresses disease causing organisms 

build up in the irrigation water. By 1994 four viral, three bacterial and 21 fungal pathogens 

had been identified as causal agents of root disease in hydroponically grown crops with 13 of 

the fungal pathogens listed being able to produce zoospores (Table 1.1). 

Although Stanghellini and Rasmussen (1994) describe hydroponic systems as lacking 

microbiological buffering, Berkelmann and Wokanka (1993) carried out quantitative and 

qualitative examination of bacterial flora in circulating nutrient solutions of hydroponic 

systems where tomatoes were grown, in rockwool. Twenty hours after planting the tomatoes 

the population of aerobic heterotrophic bacteria was between 10 5  and 106  cfu.ml'. In a 

control system lacking tomato plants the bacterial population was between 500 and 900 

cfu.m1 1 . Over the 12 week experimental period there were no significant changes in bacterial 

population densities. By a random process 160 bacterial strains were isolated from the 

experiment and subsequently identified (Table 1.2) 
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Table 1.1. Infectious agents isolated from roots of hydroponically grown crops. 

Pathogen Proof of pathogen spread by 
recirculating of infested nutrient 

solution. 
Bacterial 
Clavibacter michiganese - inconsistent 
Erwinia carotovora no 
Pseudomonas sólanacearum yes 

Viral 
Lettuce Big Vein Virus (transmitted by Olpidium brassicae) yes 
Melon Necrotic Spot Virus (transmitted by Olpidium radicale) yes 
Tomato Mosaic Virus yes 
Cucumber Green Mottle Mosaic Virus yes 

Fungal (non-zoosporic) 
Colletotrichum coccodes inconsistent 
Fusarium oxysporum f.sp. lycopersici inconsistent 
F. oxysporum Esp. radicis-lycopersici inconsistent 
F. oxysporum Esp. cucumerinum no 
Pythium ultimum inconsistent 
Verticillium dahliae no 
Verticillium tricorpus no 
Thielaviopsis basicola not tested 

Fungal (zoosporic) 
Phytophthora cryptogea yes 
Phytophthora nicotianae (Ph. parasitica) yes 
Plasmopara lactucae-radicis yes 
Pythium aphanidermatum yes 
Pythium debaryanum yes 
Pythium dissotocum yes 
Pythium intermedium yes 
Pythium irregulare not tested 
Pythium myriotyum yes 
Pythium sylvatcum not tested 
Olpidium brassicae yes 
Olpidium radicale yes 
Spongospora subterranea no 	- - 

raken from Stanghellini & Rasmussen (1994). 
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Table 1.2. Bacterial flora of a hydroponic system. 

Genera Proportion of isolates 

Pseudomonas spp. 40% 
(Ps. facilis) (29%) 

Agrobacterium spp. 13% 
Xanthomonas spp. 9% 
Comamonas spp. 8% 
Azospirillum spp. 4% 
Enterobacter spp. 3% 
Flavobacterium spp. <2% 
Alcaligenes spp. <2% 
Rhodococcus spp. <2% 
Yersinia spp. <2% 
Cytophagaspp. <2% 
Aureobacterium spp. <2% 

Other 18% 
isolates that could not be identified with certainty or could not be identified. 

Adapted from Berkelmann and Wokanka (1993) 

1.8.1. Susceptibility of nutrient solutions to root pathogens. 

Stanghellini and Rasmussen (1994) list several routes of pathogen introduction into 

greenhouse irrigation systems. In general, root-infecting pathogens are seldom airborne. 

However, Fusarium oxysporum f.sp. radicis-lycopersici, the most destructive of the non-

zoospore producing pathogens of hydroponic systems, is airborne. 

From the list of pathogens (Table 1.1) only Clavibacter michiganese and melon necrotic spot 

virus are seed-borne. However, melon necrotic spot virus is transmitted by zoospores of 

Olpidium radicale. Soil is not intentionally present in hydroponic systems. However, soil is 

constantly being introduced into irrigation system through shoes on personnel. In some 

greenhouses, washed river sand is used as ground cover or in pathways between production 

areas. However, this sand can be infected with plant pathogens including Pythium species. 

Peat and peat-mixtures are also major sources of disease inoculum for hydroponic systems. 

Species of Fusarium and Pythium along with Olpidium brassicae and Thielaviopsis basicola 

have been isolated from peat. Reservoir and surface water, such as rivers and streams, which 

can be used in NFT systems, are naturally infested with many potential plant pathogens. 

River water has been found to be a source of Pythium dissotocum. Fungus gnats (Bradysia 

inpatiens) and shore flies (Scatella stagnalis) are common insect pests in glasshouses. Both 
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insects have been shown to be capable of aerial transmission of Pythium aphanidermatum 

and other phytopathogens. 

Stanghellini and Rasmussen (1994) describe the environmental factors that influence disease 

in hydroponic systems. In field conditions it is temperature and soil moisture that have the 

greatest influence on disease occurrence. However, in all hydroponic systems the zoosporic 

fungal pathogens are favoured because of the abundance of water. Therefore, temperature is 

the most important environmental factor governing disease onset and prevalence in 

hydroponic systems. For example, Pythium aphanidermatum is most destructive at nutrient 

temperatures above 25 °C, whereas below 20 °C it is of little concern. Similarly, Plasmopara 

lactucae-radicus is also favoured by warm temperatures, but inhibited below 18 °C. In 

contrast, Phytophthora cryptogea is most destructive at 15 °C and causes little or no damage 

at 25 °C. 

Disease spread in irrigation systems is more rapid than in soil based systems for several 

reasons. The substrate in irrigation systems (nutrient solution) lacks the microbial diversity 

that is found in soils, and consequently does not have the same degree of biological buffering 

(Stanghellini and Rasmussen, 1994). That is, microorganisms in natural soils limit pathogens 

by antagonism, nutrient competition and fungistasis. 

The lack of microbiological buffering in hydroponic systems permits a small amount of 

disease inoculum to lead to substantial infection of disease and subsequent crop loss. For 

example, Menzies et al. (1996) found that two million zoospores of Pythium 

aphanidermatum per hundred litres of nutrient solution (20 zoospores per ml) caused all the 

cucumber plants in the experiment to die 28 days post-inoculation. 

Staunton (1978), perceiving that many growers fear that if disease enters a NFT system it 

may spread quickly through the nutrient system, set-up a demonstration to show that these 

fears were mainly unfounded. This demonstration consisted of five tomato diseases 

(fusarium wilt2 , verticillium wilt3 , didymella4, brown root-rot 5  and bacterial canker) being 

2  Causal agent: Fusarium oxysporum f.sp. lycopersici (Valenzuelaureta etal., 1996). 
Causal agent: Verticillium dahliae (Bender & Shoemaker, 1984). 
Causal agent: Didymella lycopersici (Fagg & Fletcher, 1987). 
Causal agent: Pyrenochaeta lycopersici (Hockey & Jeves, 1984). 

6  Causal agent: Corynebacterium michiganensis subsp. michiganensis (Chang et al., 1992). 
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introduced into separate NFT systems and the spread of disease was observed over a four-

month period. 

Overall this demonstration was convincing, that is little disease was observed. However, 

both fusarium wilt and verticillium wilt pose little threat in NFT systems because 

commercial varieties of tomato are resistant to these diseases. Staunton (1978) failed to 

include zoospore-producing pathogens in his demonstration. In the year of that 

demonstration, Evans (1977) found that many tomato crops growing poorly in NFT had 

phytophthora rot, with Ph. cryptogea being the most frequent causal agent, and less often Ph. 

parasitica. 

In addition to Phytophthora spp. being responsible for poor root growth in NFT systems, 

Evans (1977 & 1979) found Colletotrichum coccodes to be rotting the tomato cortex with 

characteristic scierotia being present. Colletotrichum atramentarium was also associated 

with the rotting of tomato roots. In addition to these pathogens Pythium spp. were also 

isolated. However Pythium spp. are more prevalent in cucumbers than tomatoes grown in 

NFT systems; for example, Pythium ultimum causes wilting in cucumbers to an extent that is 

of commercial significance. 

Moulin et al. (1994) assessed the relative pathogenicity of 39 isolates of Pythium spp. from 

four species (Py. aphanidermatum, ?y. irregulare, Py. sylvaticum and Py. ultimum) on 

cucumbers grown in rockwool, hydroponically (without a solid substrate) and in sand-peat 

mix. All four Pythium species were found to be pathogenic to cucumbers grown in the sand-

peat mix, but only Py. aphanidermatum was pathogenic to cucumbers grown in rockwool 

and hydroponically. However, pathogenicity was greater in rockwool than in the hydroponic 

system. 

Van Voorst et al. (1987) grew tomatoes in a greenhouse by NFT and inoculated the plants 

with Ph. nicotinae (=Ph. parasitica) either by direct inoculation or by adding fungal spores 

to a container within the recirculating nutrient solution. In the case of direct inoculation a 

polycyclic epidemic seemed to establish. However, the addition of fungal spores seemed to 

cause a monocyclic epidemic. In both cases inoculum freely circulated throughout the NFT 

system, and was present in the nutrient solution at least 6 days post-inoculation. It is this 

freedom for inoculum to circulate freely and rapidly throughout the NFT system that is 

concerning to growers. 
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1.9. Disease control. 

The opinion that hydroponic systems are not overtly susceptible to pathogens (for example, 

Staunton, 1978) is contrary to the evidence suggesting that hydroponic systems are innately 

susceptible to root pathogens. With the present legislative trend (Section 1.10) fuelled by 

environmental concerns it is apparent that recirculation technology is likely to be adopted. 

Consequently methods for controlling disease will have to be found. 

Below (Sections 1.91 to 1.9.4) the control options are grouped into four categories: plant 

breeding, fungicides, biological control, and natural control. The fungicide control category 

is simply the chemical control methods that predominate in contemporary agriculture and 

horticulture. The third, biological control, is the use of microorganisms to control disease. 

Waecher-Kristensen et al. (1993) identify three kinds of microbial control that are aimed at 

improving the microbiological stability of hydroponic cultures. These are plant growth 

promoting rhizobacteria, microbial antagonists to phytopathogens and bacteria that remove 

unwanted organic compounds, such as phenolic acids, from the nutrient solution. The fourth 

ambiguous category (natural control) includes physical treatments such as filtration and 

pasteurisation. This final group also includes non-toxic chemical control such as the 

supplement of silicates to control root diseases. 

1.9.1. Plant breeding. 

Breeding for resistance to Ph. infestans in tomato began over 50 years ago (Richards & 

Barratt, 1946). A dominant resistance gene specific to Ph. infestans race 0 was identified in 

Lycopersicon pimpinellfolium and transferred to L. esculentum (Bonde & Murphy, 1952), 

but this resistance was overcome by a new race of the pathogen (Conover & Walter, 1953). 

Subsequent breeding has focused on selecting partial resistance to the pathogen (Moreau et 

al., 1998a). 

1.9.2. Chemical control. 

Chemical fungicides are usually the main component of any disease control program in 

agriculture or horticulture. However, these are mainly used to control foliar diseases. Soil 
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pathogens are difficult to control with fungicides because of the problems of introducing the 

fungicide into the soil and achieving contact between the pathogen and fungicide. Some 

fungicides once in the soil leach away and have environmental implications, while 

microbiological processes break down other fungicides. Some fungicides are systemic and 

can be redistributed by the plant from above ground portions to the roots. Examples of 

systemic fungicides used in drenches in nurseries and horticulture are benomy1 7  and 

metalaxyly8 . 

However, no fungicides are currently registered for use against root diseases in hydroponic 

systems in the United States or Canada for food or horticultural crops (Paulitz, 1997). The 

reason for non-registration is phytotoxicity by fungicides in hydroponic systems. In soil 

systems the soil provides a buffer, which may bind the fungicide and reduce uptake by 

plants. In addition to this, microbial breakdown of fungicides occurs in soil, but may be less 

efficient in hydroponic systems, therefore leading to a build-up of fungicide in the nutrient 

solution. Also in greenhouse systems where crops are harvested daily the normal pre-harvest 

fungicide free period cannot be achieved. Rapid acquired fungicide resistance by fungi is 

also a reason for non-registration. Phenylamide (metalaxyl) fungicides are specifically active 

against the Peronosporales (including Pythium and Phytophthora species). However, strains 

of these organisms have been resistant to metalaxyl fungicides for at least a decade (Staub, 

1991), and Zoquier and Young (1985) found in vitro sensitivity of the fungicide metalaxyl 

by Ph. infestans during vegetative growth, although the release of zoospores was relatively 

insensitive. 

The chemical control of diseases caused by zoosporic fungi of the Oomycetes presents 

several problems. The unique biochemical properties of the Oomycetes, namely substitution 

of cellulose for chitin in the cell wall and the absence of de novo sterol synthesis render 

many traditional fungicides useless. The Oomycetes are diploid and thus can exhibit high 

phenotypic plasticity through recombination at sexual reproduction (oospore production). 

The problems of chemical control of the Oomycetes and the reasons underlying these 

problems are shown in Table 1.3. 

' Also known as Benlate or Methyl 1 (butycarbamoyl)-2-(benzimidozolecarbamate) 
8  Also known as Ridomil, Subdue or N(2,6Dimethylphenyl)-N-(methoxyaCetYl)-alaflifle methyl 
ester. 
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Table 1.3. The problems of chemical control of the Oomycetes and the reasons that 

underlie these problems. 

Problem Reason 

Insensitive to polyoxm antibiotics. Cell walls contain cellulose and not chitin. 

Insensitive to potent sterol synthesis inhibitory Sterols are not synthesised de novo. 
fungicides. 

Insensitive to systemic benzimidazole, oxathiin Structural proteins and enzymes active in energy 
and hydroxypyrimids fungicides production are structurally different from other 

fungi. 

Some biochemical pathways are not typical. Utilisation of enzymes with distinctly different 
Therefore 	Oomycetes 	are 	tolerant 	to 	some properties to other fungi, including some that are 
fungicides. active in RNA synthesis 

Oomycetes are highly versatile and adaptable. Oomycetes are diploid 

Summarised trom I3ruin & bdgrngton (19&) pp 193-194. 

The commercial use of fungicides to control disease in recirculating irrigation systems is not 

promising. Commercially it is not wise to register a fungicide for use in recirculating 

irrigation systems because of the high selection pressure on the pathogen to develop 

fungicide tolerance. 

1.9.3. Biological control. 

Pythium spp. have poor viability in soil relative to other root-colonising organisms, and often 

can only act as primary colonisers (Kommedahl & Windels, 1979). However, in hydroponic 

systems where the initial level of microbiological life is low, and there is efficient 

dissemination of zoospores in the nutrient solution, then there are opportunities for diseases 

caused by Pythium to become established. A control option for Pythium spp. in hydroponic 

systems would be the introduction of competitive root colonising microorganisms. Rankin & 

Paulitz (1994) isolated five rhizo-bacterial species from cucumber roots of which two had 

several favourable indices of control; for example, one bacterial isolate indirectly caused the 

plant to produce 88% more fruit than the Pythium aphanidermatum inoculated control 

plants. Other aspects of cucumber production that are affected positively through the 

suppression of Pythium spp. infection by rhizo-bacteria are fruit weight, shoot dry weight 

and fruit quality. 
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Zhou and Paulitz (1993) showed that Pseudomonas corrugata and Ps. fluorescens interfered 

with the chemotactic properties of cucumber root exudate. Generally, the presence of these 

pseudomonads significantly reduced attraction of zoospores of Py. aphanidermatum to 

cucumber roots, zoospore encystment at the root and germination of cysts on the roots. 

Presumably the mechanism for these phenomena was the catabolism by pseudomonads of 

chemoattractants and chemicals which induce zoospore encystment and germination. 

However, direct antibiosis of zoospores by chemicals like pyronitrin is another possible 

mechanism of control. 

Cassinelli et al. (1993) collected 253 bacterial strains from the rhizosphere of cultivated and 

non-cultivated plants grown in Pythium ultimum suppressive soils of different northern 

regions of Italy. In a preliminary in vitro screen 18 strains inhibited Py. ultimum. Nine of the 

strains belonged to the species Pseudomonas fluorescens and Ps. putida. The in vitro 

mechanism of inhibition by fluorescent pseudomonads was by siderophore production, 

whereas for non-fluorescent pseudomonads the production of antibiotic-like substances was 

found to be responsible for inhibition of Py. ultimum. Buysens et al. (1996) suggested that it 

is not competition for iron (mediated by siderophore chelation) that is responsible for 

inhibition of Pythium by various pseudomonads, but certain siderophores (for example, 

pyoverdin or pyochelin) directly antagonise Pythium spp. Pseudomonas spp. have also been 

implicated in suppressing infection of cucumber roots by Py. aphanidermatum by inducing 

systemic resistance in the host (Chen et al., 1998). 

Arbuscular mycorrhiza on the apices of tomato roots protect the apices from pathogenic 

infection by Ph. parasitica (Fusconi et al., 1999). However, these observations were made in 

soil systems, and the relevance in soil-less systems is unknown. 

1.9.4. Natural control. 

'Natural' control of zoospore-producing fungi may be achieved by the use of 'soft' 

chemicals, for example, calcium supplements to irrigation water to control diseases caused 

by Pythium and Phytophthora (von Broembsen and Deacon, 1997). 

Non-toxic control options have been investigated in small scale recirculating irrigation 

systems. Stanghellini et al. (1996a) demonstrated that supplementing irrigation water with 

non-ionic surfactants caused the elimination of zoospores and 100% control of the spread of 
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Ph. capsici from a point source; in the absence of the supplement all pepper plants died 

within two weeks. Stanghellini et al. (1996b) also found that spread of Py. aphanidermatum 

was completely controlled with the supplement of a non-ionic surfactant. 

Garibaldi and Gullino (1993) advocate that maintaining contaminant free systems is the 

method for keeping hydroponic systems disease free. However, the authors recognise that 

"the large number of plants per m 2  might create conditions favouring the multiplication of 

pathogens" and that "pathogens contaminating these soil or soil-mix starter blocks multiply 

quickly and then spread rapidly into the nutrient system". It would seem that contamination 

is inevitable in hydroponic systems and consequently prevention of pathogen introduction 

alone cannot be the sole strategy of disease control. 

An option for control of zoospores investigated by Goldberg et al. (1992) is the filtration of 

irrigation water prior to recirculation. They found that the use of a 7 tm filter with a 20 gm 

pre-filter removed all zoospores from the system. However, the commercial viability of such 

a control technique is questionable because the filters were only operated for three cycles of 

irrigation water. 

Chérif and Belanger (1992) supplemented recirculating nutrient solutions with potassium 

silicate and found that Pythium ultimum was suppressed. The supplements significantly 

reduced plant mortality, root decay and yield losses, and increased root dry weight and 

number of fruit. Results from the controls suggested that potassium silicate acted as a disease 

suppression agent rather than a fertiliser. However, the phenomenon by which potassium 

silicate confers disease suppression is not understood, but induced systemic resistance is a 

possibility (Fawe et al., 1998). The presence of potassium silicate did not reduce the viability 

of the pathogen, because throughout the trial it could be reisolated from the nutrient solution. 

Purified milled chitosan from crab shell suppresses Py. aphanidermatum zoospores from 

causing root-rot of cucumbers (Ghaouth et al., 1994). The suppression of infection was 

associated with the triggering of several host defence responses, including the induction of 

structural barriers in root tissues and the stimulation of the non-specific antifungal 

hydrolases (chitinase and -i ,3-glucanase). Chitosan also induced mechanical defensive 

structures - papillae were impregnated with electron-opaque substances. Chitosan has some 

firngicidal activity; for example, Ghaouth et al. (1994) demonstrated that chitosan inhibited 
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biomass gain of the pathogen. Microscopic examination of hyphae grown in the presence of 

chitosan revealed alteration of the plasma membrane and modifications to the cell wall. 

Calcium has been shown to be involved at many stages of the homing sequence (Figure 1.2). 

This led von Broembsen & Deacon (1997) to supplement irrigation water with calcium; this 

caused a significant level of disease control. This is a promising finding because calcium acts 

at several points of the zoospore homing sequence, and is therefore broad acting. 

The role of saponins has been suggested to be, in part, antifungal (Osbourn, 1996). Deacon 

and Mitchell (1985) demonstrated that intact oat roots, which are known to synthesis 

saponins, can both attract and cause lysis of zoospores from a range of fungi; this is probably 

why oats are less susceptible to zoosporic pathogens than other cereals (Hampton & 

Bucholtz, 1962; Kilpatrick, 1968). 

1.10. Legislation. 

Financial and environmental constraints have caused the UK industry to consider the 

utilisation of recirculation technology to ensure that the nutrient solution is retained and re-

used, but not lost to the environment. However, the perceived threat from root pathogens 

disseminated in recirculating solution currently prevents the adoption of recirculation 

technology in the UK (McPherson et al., 1995). In Sweden, pending environmental 

legislation is expected to impose restrictions on the release of nutrient solution from 

greenhouses. Such legislation would force recirculation technology and other non run-to-

waste technologies to be adopted by the Swedish industry (Waecher-Kristensen, et al., 1993) 

1.11. Summary 

The Pythiaceae although morphologically similar to the eumycota have different cell wall 

biochemistry and require an exogenous supply of 3-hydroxyl sterols for reproduction. 

Taxonomically, the Pythiaceae are phylogenetically closer to diatoms and brown algae than 

Basiodomycetes or Ascomycetes. 

Mycelial growth is typically fungal, with hyphae absorbing simple nutrients across the 

plasmamembrane, while complex polymers are degraded to simple molecules by 

extracellular enzymes prior to absorption. Primarily, nutrient stress and high levels of 
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moisture induce sporangial production. Sporangia will germinate directly in a warm nutrient-

rich environment, whereas zoospores are released into cool wet nutrient-poor environments 

as found in irrigation systems based on NFT. 

The naked, motile zoospore relies on endogenous nutrient supplies for energy. The normal 

helical path is modified by various stimuli (nutrients, electric fields, gravity etc.). At a 

suitable location, typically one proximal to a host, the zoospore encysts. Simple nutrients, 

cations and various plant-specific polymers induce encystment. Similar factors prompt the 

cyst to germinate, but in the absence of nutrients the cyst is likely to undergo diplanetism. 

The germ-tube will locate a suitable infection point principally by chemotropism. Various 

enzymes, particularly pectinases, facilitate penetration of the host. 

The biology of the Pythiaceae enables them to be suitable pathogens in irrigation systems 

based on NFT. In NFT irrigation systems the abundance of moving water and the lack of 

microbial competition facilitates the production and dissemination of the major pathogen 

propagule - the zoospore. Environmental and economic pressures are conducive to the 

adoption of recirculating technology, which would possibly increase disease pressure. 

Traditional methods for controlling fungal diseases, that is the use of fungicides, are not 

appropriate for the control of the pathogenic species of the Pythiaceae in irrigation solutions. 

Biological control, particularly the use of pseudomonads, is an option. The supplements of 

natural chemicals (for example, calcium, silicates and saponins) are also potential control 

options. 
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1.12. Aims of the project. 

Judged on the need of industry for non-fungicidal control of the Pythiaceae in irrigation 

systems based on NFT, this project assayed the effects of several potential control methods 

on two major pathogens in the Pythiaceae. The pathogens were Py. aphanidermatum and Ph. 

parasitica. The potential control methods are: 

Cationic supplements to the irrigation solution. 

• Natural suppression in recirculating irrigation systems. 

• The supplement of natural toxins (13-escin, gramicidin S and ethanol). 

The synergism or antagonism between these potential control methods. 

1.13. Major findings of this project. 

The major findings of this project were: 

• Overall, potassium is superior to calcium at suppressing the in vitro infection related 

behaviour of both Py. aphanidermatum and Ph. parasitica. 

• It is possible to suppress infection-related behaviour of both fungi by altering the 

potassium to calcium ratio, while maintaining constant nitrate concentration and 

electrical conductivity. 

• A calcium concentration of approximately 5 mM during sporangiogenesis markedly 

increases the subsequent release of zoospores into water. 

The cationic supplement made during sporangiogenesis affects the behaviour of the 

zoospores that are subsequently released. 

• When nitrate is the counter-ion the effect of the cation is more distinct than when the 

counter-ion is chloride. 

• There are chemicals present in commercial irrigation solutions and oat extracts that 

extend the motile period of zoospores. 

• There are chemicals present in commercial irrigation solutions that antagonise the 

effectiveness of cationic supplements, but not the effectiveness of ethanol. 

• Ethanol at very low concentrations suppresses sporangiogenesis and zoospore release. 

• The toxicity of J3-escin is antagonised by Ca 2' and K, but not Mg2  and Nat 

• The presence of a cyst wall reduces the toxicity of -escin, but not of gramicidin S. 
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• The toxicity of gramicidin S is antagonised by divalent cations, but not monovalent 

cations. 

• Overall Ph. parasitica was less susceptible to the various treatments than was Py. 

aphanidermatum. 
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Chapter 2. 

General materials and methods. 
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21. Media 

All media were sterilised by autoclaving at 121 °C (18 psi) for 15 minutes. 

2.1.1 Agars. 

Clarified V8 agar (CV8A): 330 ml of centrifuged (20 mm. at 1000 g) V8 juice (Campbells 

Soups Co.) diluted 1:5 (v/v) with distilled water; 1.5 % (w/v) Bacto Difco agar added prior to 

being autoclaved. 

V8 agar (V8A): 100 ml V8 juice (Campbels Soups Co.), 20g Oxoid No. 3 agar and 900 ml of 

distilled water. 

Potato dextrose agar (PDA): Oxoid potato dextrose agar (39g) was added to distilled water to 

give a final volume of 1 litre. 

Nutrient Agar (NA): Oxoid nutrient agar (28g) was added to distilled water to give a final 

volume of 1 litre. 

Blood Agar (BA): NA plus 6% sterile fresh horse blood. Plates were supplied by Mr. M. Dye, 

Institute of Cell, Animal and Population Biology, the University of Edinburgh. 

2.1.2. Broths 

Yeast Extract Broth (1% v/v): 10 g of Oxoid Yeast extract in I L of DW. 

Neutralised Bacteriological Peptone Broth (1% v/v): 10 g of Oxoid Neutralised Bacteriological 

Peptone in 1 L of DW. 

Bacteriological Peptone Broth (1% v/v): 10 g of Oxoid Bacteriological Peptone in 1 L of DW. 

Peptone P Broth (1% v/v): 10 g of Oxoid Peptone P in 1 L of DW. 

Gelatine Broth (1% v/v): 10 g of Oxoid Gelatine in 1 L of DW. 

Potato Extract Broth (1% v/v): 10 g of Difco Potato Extract (dehydrated) in 1 L of DW. 

Malt Extract Broth (1% v/v): 10 g of Sigma Malt Extract (from starch digestion) in 1 L of DW. 

Nutrient Broth (1% v/v): 10 g of Difco Nutrient Broth in 1 L of DW. 
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Clarified V8 Broth (CV8B): As for CV8A, but without agar. 

Concentrated CV813: As for CV813, but undiluted with DW. 

2.1.3. Mineral salts solution (MSS). 

The mineral salts solution comprised: 3.08 g Ca(NO 3)2 4H20; 1.49 g MgS04 7H20; 0.51 g 

KNO3  in 11 of distilled water. After being autoclaved 1 ml of chelated iron (II) solution was 

added. This comprised 0.65 g Ethylenediaminetetraacetic acid (EDTA), 0.38 g KOH and 1.25 g 

FeS04 4H2O dissolved sequentially in 50 ml of distilled water; this solution was filter sterilised 

through a sterile 0.22 pm Millipore membrane prior to being added to the salt solution. 

2.1.4. Mineral nutrient solution. 

The mineral nutrient solution comprised: 10 g Na 2HPO4; 39 KH2PO4; 1 g K2 SO4 ; 1 g NaCl; 200 

Mg MgS04 7H20; 1 mg CaC12 2H20; 100 ng FeS04 7HO in 11 of distilled water. Mineral 

nutrient solution was made up from stock solutions. 

2.1.5. Preparation of crude oat extracts. 

In a tray (15 x 25 x 6 cm) with the base covered to a depth of 2 cm with washed sterile sand 

(approximate grain diameter of 500 tm), oat seeds were liberally sprinkled (approximately 2 

seeds per cm2) over the sand and then covered with a 1 cm layer of sand. The tray was incubated 

on the bench-top (ambient temperature was approximately 19 °C) and watered as required. 

When seedlings were 6 to 8 cm tall the sand was washed away with tap water. 

For each seedling the terminal 5 mm of each root was removed with a sharp razor blade. For the 

remaining portion of each seedling the leaves were removed, again with a sharp razor blade. This 

left the remains of the seed attached to the majority of the root system. Therefore, each seedling 

was divided into three parts: 1) terminal root portions, 2) leaves, and 3) seed attached to the 

roots. 
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2.1.5.1. Terminal root tip extract. 

To each 1 g of terminal root tips 20 ml of DW was added, then homogenised (Ultra Turrax at 

24000 rpm for 1 mm). The homogenate was then diluted one-to-one (v/v) with DW and clarified 

by centrifugation (1400 g for 5 mm). The supernatant was boiled for 10 min and then frozen (-11 

°C) until required. 

2.1.5.2. Leaf extract. 

To each 15 g of leaves 100 ml of DW was added, then homogenised in a mortar with a pestle (2 

g of clean sand was added to aid this process). The homogenate was diluted one-to-one (v/v) 

with DW and then clarified by centrifugation (1400 g for 5 mm), boiled for 10 mm, filtered 

through Whatman No. 1 paper to remove the green precipitate, and the filtrate was then frozen (-

11 °C) until required. 

2.1.5.3. Seed and root complex extract. 

To 58 g of oat seeds attached to roots 125 ml of DW was added, then homogenised in a mortar 

with a pestle (2g of clean sand was added to aid this process). The homogenate was then made 

up to 500 ml with DW, blended in a kitchen blender (for 1 mm), boiled for 15 mm, clarified by 

centrifugation (1400 g for 5 mm.), and then frozen (-11 °C) until required. 

2.2 Origin, maintenance and preservation of strains. 

2.21 Phytophthora parasitica. 

The isolate of Phytophthora parasitica Dastur (=Ph. nicotianae van Breda de Haan) originated 

from diseased Cantharanthus roseus (L.) G. Don (bedding 'ymca') in a commercial glasshouse in 

Oklahoma, USA. The fungus was maintained on clarified V8 agar. Ph. parasitica was preserved 

in McCartney bottles on PDA squares (1 cm x 1 cm) in SDW at room temperature. 
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2.2.2. Pythium aphanidermatum. 

The isolate of Pythium aphanidermatum (Edson) Fitz. (CBS 634.70) was originally isolated 

from Lycopersicon esculentum and was maintained on V8 agar. Py. aphanidermatum was 

preserved in McCartney bottles on PDA squares (1 cm x 1 cm) in SDW at room temperature. 

2.2.3. Brevibacillus brevis. 

Both strains of B. brevis, the wild type and a gramicidin-S-deficient mutant (E-1), were supplied 

by Dr. B. Seddon, the Department of Agriculture, the University of Aberdeen, Scotland. Both 

strains were maintained on NA. 

2.3. Standard techniques. 

2.3.1. Production of zoospores. 

2.3.1.1. Ph. parasitica. 

The mycelium of a mature plate of Ph. parasitica (7-14 days old) (Section 2.2. 1) was covered 

with a layer of CV8B (12 ml) and aerial hyphae dislodged by a sterile glass spreader. The 

inoculated broth was dispensed in 3 ml aliquots into small (5 cm diameter) Petri dishes (Sterilin, 

UK). After 48h incubation in the dark at 23 °C mats were washed with three aliquots of 3m1 of 

MSS per plate and then returned to a second incubator (20 °C with constant light) for 24h then 

washed once more with MSS. This was followed by the final incubation of 48 to 72h at 20 °C 

with constant illumination. For zoospore release the MSS was removed with three washes of 

SDW (3 ml) before a pre-chilled (11 °C) release solution (4 ml) was added. This was followed 

by a cold shock of 30 mm (11 °C). Synchronous zoospore release occurred over 2h in a 23 °C 

incubator in the dark. 

2.3.1.2. Py. aphanidermatum. 

The method for zoospore production was essentially as for Ph. parasitica except that an intact 

mycelial mat of Py. aphanidermatum was transferred to a 250 ml medicine bottle containing 100 
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ml of CV8B, shaken vigorously to produce inoculated broth which was subsequently decanted 

into Petri dishes. If mycelial growth in the broth was good the first wash with MSS was at 24h, 

otherwise the first wash was at 48h. The time between the second MSS wash and zoospore 

release was consistently 48h. 

2.3.1.3. Bulk zoospore production. 

For bulk production of zoospores for motility and germination experiments larger (standard 9 cm 

diameter) Petri dishes were employed which would contain 10 ml of inoculated broth. The 

volume of wash solution was increased proportionally to 10 ml and the volume of release 

solution increased to 13 ml. All other factors were identical to the standard protocol for zoospore 

production (Sections 2.3.1.1 and 2.3.1.2). 

2.3.2. Mechanical induction of zoospore encystment. 

Motile zoospores were induced to encyst synchronously by transferring aliquots of the spore 

suspension to 1 .5m1 Eppendorf tubes and holding them against a vortex mixer for 70 seconds. 

Immediately after vortexing the spores were added to the required treatments. The exception was 

in the experiments of Chapter 6, where a distinction between immature and mature cysts was 

made. Immature cysts are cysts that were immediately used in experiments after vortexing, 

whereas cysts that were added 10 minutes post-vortexing were classed as mature. Immature cysts 

were presumed to have cell walls that were still forming, whereas mature cysts were assumed to 

have fully formed cell walls (Hardham et al., 1991). 

2.3.3. Effects of treatments on mycelial growth. 

To each pre-weighed small Petri dish was added 1 ml of CV813 inoculated with mycelial 

fragments and 3 ml of supplemented CV813. The supplement depended on the particular 

experiment. Dishes were swirled around to mix the two broths and cause them to cover the entire 

base of the dish. The Petri dishes were then sealed with Parafilm and incubated in the dark at 23 

°C for 48 hours. After the incubation period, the mats were washed with three 3 ml aliquots of 

distilled water and then placed in an incubator (23 °C) without lids for 72h to dehydrate the 

mycelial mats before re-weighing to establish the gain in biomass. 



2.3.4. Effects of treatments on zoosporangiogenesis. 

The standard protocol for zoospore production (Section 2.3. 1) was followed with the MSS being 

supplemented with the various treatments. However, when assaying the effect of irrigation 

solutions on sporangiogenesis (Chapter 4), the MSS was substituted with various irrigation 

solutions. For assays on the effect of either Ca(NO 3)2  or KNO3  on sporangiogenesis the 

concentration of the salt was simply adjusted. In the assays on the effect of CaCl 2  on 

sporangiogenesis, Ca(NO 3)2  was substituted with various concentrations of CaC1 2. For the effect 

of the concentration of Mg(NO 3)2  on sporangiogenesis the concentration of Ca(NO 3)2  was 

reduced from 13mM to 7mM and the 6 mM MgSO4  was replaced with 6mM CaSO 4  to maintain 

constant SO4  and Ca2  concentrations across the series of experiments. 

Because Py. aphanidermatum sporangia are morphologically highly variable and difficult to 

differentiate from hyphae, enumeration of sporangial production and viability was by an indirect 

measurement; namely the number of zoospores subsequently liberated into SDW. This indirect 

measurement indicated the cumulative effect on sporangial production and ability to liberate 

zoospores, which is a useful epidemiological index. 

It was observed that Ph. parasitica released zoospores prior to the cold-shock treatment, so 

before washing off the MSS, an aliquot (500 111) of MSS was removed and fixed (100 tl 16% 

(v/v) formaldehyde and 12% (v/v) glutaldehyde) and zoospore density was later enumerated by 

haemacytometer counts. Direct video recordings of sporangial density and the fraction of 

sporangia discharged were also made. Three random microscope fields of view for each plate 

were video recorded with a Panasonic F15 video (CCD) camera mounted on a Leitz Wetzlar 

research microscope (4x objective) attached to a Panasonic AG6720 SVHS video recorder and a 

Panasonic BT-M142OPY colour video monitor. A 1 .25x magnification lens in the objective 

turret increased the effective magnification. 

The number of sporangia and percent of empty sporangia were enumerated from the video 

recordings. Frequently part of the field of view was obscured or out of focus. To compensate for 

this, the screen of the monitor was divided into 20 equal sized squares and sporangia were only 
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counted in the squares that were in focus. Then the number of sporangia per square was 

determined and multiplied by 20 to give sporangia per screen. After washing the mats free of 

MSS with SDW and liberation of zoospores into SDW, a further aliquot of zoospores was 

removed for enumeration and the mats were videoed for a second time to determine the post-

shock density of sporangia and the percentage of.sporangia that had discharged their contents. 

2.3.5. Effects of treatments on zoospore release. 

The zoospore release solution (SDW) was supplemented with various test treatments. After a 2 

hour release period the fungal mat was removed, the dish contents swirled and 875 tl of the 

zoospore suspension was transferred by pipette to an Eppendorf tube containing 1 25j.tl of 20% 

(v/v) formaldehyde and 15% (v/v) gluteraldehyde aqueous solution to fix the spores. 

Enumeration of zoospores was achieved by loading a heamocytometer slide with a sample 

(circa. 100 .tl) of the zoospore suspension and counting while illuminated with dark field optics 

with a UNILUX-12 bifocal microscope at a final magnification of I 00 (I Ox objective and lOx 

eyepiece). 

2.3.6. Effects of treatments on zoospore motility. 

Test solutions were added to either 1 ml of zoospore suspension of Py. aphanidermatum or 2 ml 

of zoospores of Ph. parasitica in a small Petri dish. The final volume of solution in all cases was 

4 ml. After 2 hours incubation at 23°C in the dark three random fields of view from the base of 

each Petri dish were recorded as before (Section 2.3.1), but with a lOx objective. 

Once recordings of zoospores had been made, the videotape was replayed frame by frame and 

zoospore motility was assessed by marking directly on the monitor screen the location of all 

zoospores in sequential frames. For those zoospore (cysts) that were stationary the proportion 

that had germinated was recorded. 
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2.3.7. Effects of treatments on cyst germination. 

In Eppendorf tubes, 800 tl of test solution was added to 200 tl of vortex-encysted spores. The 

contents of the tubes were mixed by 2 s of vortexing and then incubated at 23 °C in the dark for 

2 hours. Then the cysts were examined microscopically and the proportion that had germinated 

was determined. A cyst was deemed to have germinated when the germ tube length was greater 

than the cyst diameter. 

2.4. Culturing of Brevibacillus brevis in various liquid media. 

To 500 ml of broth (in 11 conical flask) a loop-full of B. brevis was inoculated. The type of 

broth was dependent on the particular experiment. However, incubation was always at 30 °C on 

a rotary shaker (112 rpm). When required, the broth was clarified by centrifugation (1800 g for 

20 minutes). Adjustments from this protocol, when made, are indicated in the text. 

2.5. Source of reagents. 

All reagents were obtained from Sigma (Sigma-Aldrich Company Ltd., Fancy Road, Poole, 

Dorset, BH 12 4QH, UK) and were ACS reagent grade or equivalent. 

2.6. Statistics. 

All statistics were performed using Microsoft Excel (version '97). All data expressed as a 

percentage were arcsine transformed prior to data analysis. 
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Chapter 3. 

The effects of cations on the 
zoosporic infection sequence. 
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3.1. Introduction. 

The effects of cations, particularly Ca 2 , on aspects of zoospore biology and cyst germination are 

well established (Donaldson & Deacon, 1992; Donaldson & Deacon, 1993a; Bloodgood, 1991; 

Tamm, 1989; Grant et al., 1986; Warburton & Deacon, 1998). Calcium is one of the principal 

cations added to irrigation systems and is known to curtail zoospore motility and promote the 

germination of encysted zoospores. Both these phenomena in an irrigation system theoretically 

suppress inoculum dispersal and re-dispersal through diplanetism. This has recently been 

demonstrated in small-scale trials by von Broembsen and Deacon (1997). 

The major cations present in irrigation systems are Ca 2 , Mg2  and K. Calcium and potassium 

are usually added as nitrate salts, whereas magnesium is added as a sulphate salt. Virtually all 

research on the effects of these cations on zoospore biology has been with chloride salts. The 

accumulation of chloride in irrigation systems can lead to phytotoxicity. Consequently any 

prescribed cationic supplement would not be in the form of chloride salts. The addition of nitrate 

salts or possibly sulphate salts would be agronomically acceptable, but the higher demand for 

nitrogen by plants, suggests that nitrate salts are the more likely candidates. 

The work presented in this chapter assessed the effect on several stages of the zoosporic 

infection sequence of Py. aphanidermatum and Ph. parasitica in vitro of various supplements of 

Ca 2+'  Mg2  and IC. Nitrates were used because of the applied focus of this work, and to contrast 

with previous findings where chlorides were used. The infection by zoosporic fungi is 

polycyclic. Consequently all stages of the infection sequence can be present in an irrigation 

system at one time. Therefore, an understanding of the cumulative effect of cationic supplements 

on the infection sequence is required. The cumulative effect of cation supplements on zoosporic 

fungi is also assessed in this chapter. 

3.2. Effects of supplementing CV8 broth with cations on mycelial growth. 

Curtailment of mycelial growth in irrigation solutions would reduce the resource base for the 

production of the principal infection unit, the zoospore. The vegetative growth of Py. 

aphanidermatum and Ph. parasitica was assessed by biomass production in cation-supplemented 

CV8 broth (see Section 2.3.3) (Figures 3.1 to 3.8). Py. aphanidermatum grown in 
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unsupplemented broth formed a complete mat - the hyphal fragments grew and interlaced to 

form a single mat. In contrast, Ph. parasitica produced many small, dense, distinct colonies, with 

each colony presumably formed from a small viable mycelial fragment. 

Supplements up to 80 mM KNO3  or CaCl2  to CV8B had no significant (P ~: 0.093) effect on 

biomass gain of Py. aphanidermatum when compared to the unsupplemented broth (Figures 3.1 

and 3.3). Supplements of Mg(NO 3)2  and Ca(NO 3)2  (Figures 3.2 and 3.4) were both negatively 

correlated with biomass gain in the range of 0 to 80 mM (Table 3.1). Suppression of mycelial 

growth was greater when the broth was supplemented with calcium than with magnesium nitrate. 

Table 3.1. Correlation statistics and the equations for lines of best fit for the effects of 

Ca(NO3)2  and Mg(NO3)2  concentration on mycelial growth of Py. aphanidermatum. 

Salt Line of best fit R F df 

Ca(NO3)2  

Mg(NO3)2  

y= 13.86- 0.17x 

y= 11.00-0.1lx 

-0.92 

-0.85 

1.38 x 10b 0  

1.07 x 10 

24 

23 

Supplements up to 80 mM of KNO 3  or CaC12  to CV813 had no significant (P ~: 0.182) effect on 

biomass gain of Ph. parasitica when compared to the unsupplemented control broth (Figures 3.5 

and 3.7). However, 40 mM Ca(NO 3)2  very significantly (t-test, P = 0.005) increased biomass 

gain of Ph. parasitica compared to the unsupplemented control (Figure 3.8). The other three 

supplements of Ca(NO 3)2  (10, 20 and 80 mM) were not significantly different (P < 0.05) from 

the control. Supplements of Mg(NO 3)2  of 20 mM or more significantly suppressed biomass gain 

of Ph. parasitica (ANOVA, P = 0-0 11, ad = 1.9 mg) compared to the unsupplemented control 

(Figure 3.6). 

Thus, these experiments indicated that biomass production by both of the fungi was unaffected 

by KNO3  (up to 80 mM) and was progressively suppressed by increasing the concentration of 

Mg(NO3)2  supplement. Only Py. aphanidermatum was adversely affected by Ca(NO 3)2  

supplements. In contrast biomass production by Ph. parasitica was unaffected by these calcium 

supplements up to 80 mM. 
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A 330 ml can of V8 typically contains 1.49 g of potassium, 106 mg of calcium and 2.3 mg of 

iron (Anon., 1997). If partitioning of salts is assumed to be equal between the supernatant and 

pellet, then the background concentrations of cations in CV8B are 1.6 mM Ca 2 , 23 mM IC and 

25 iM Fe. 
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Figures 3.1 - 3.4. Effect of salt concentration on biomass gain*  of Pythium 

aphanidermatum during a 48h incubation at 23 °C in the dark. 

Figure 3.1 Effect of KNO 3 . 
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Figure 3.3 Effect of CaCl 2 . 

Figure 3.2 Effect of Mg(NO 3)2 . 
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Figure 3.4 Effect of Ca(NO 3 )2 . 
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Figures 3.5 - 3.8. Effect of salt concentration on biomass gain*  of Phytophfhora 

parasitica during a 48h incubation at 23 °C in the dark. 

Figure 3.5 Effect of KNO3 . 
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Figure 3.7 Effect of CaCl 2 . 
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Figure 3.6 Effect of Mg(NO3 )2 . 
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Figure 3.8 Effect of Ca(NO 3)2 . 
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3.3. Zoosporangiogenesis and subsequent zoospore liberation in cation 

supplemented mineral salt solutions. 

3.3.1. Effect on Pythium aphanidermatum. 

Py. aphanidermatum under nutrient-stress produces morphologically highly variable sporangia 

that are generally inflated, lobe fonning structures (Plaats-Niterink, 1981). Because they are 

complexes of swollen hyphal branches, visualisation and enumeration of these sporangia was 

difficult. Therefore, an indirect measurement of zoosporangiogenesis that had epidemiological 

relevance was chosen. The number of zoospores subsequently liberated into SDW was used as a 

measurement of the cumulative effect of the Mineral Salts Solution (MSS) on sporangial 

production and the ability to liberate zoospores. 

Supplements of Ca2 , Mg2  or K to MSS (as in Section 2.3.4) did not significantly (P> 0.11) 

affect subsequent zoospore release from Py. aphanidermatum sporangia into SDW (Table 3.2). 

In the light of other findings reported in this chapter, the effect of a 5 mM Ca(NO3)2  supplement 

to MSS on subsequent zoospore release was compared to calcium-free MSS. It was found that 

the 5 mM Ca 2+  test supplement caused a four-fold increase in the number of zoospores released 

compared to the Ca 2  free control. This was highly significant (P = 3.32 x 10-3) (Table 3.3). 
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Table 3.2. Effect of various supplements to Mineral Salt Solution on 

zoosporangiogenesis, assessed indirectly by measurement of subsequent zoospore 

release (zoospores.,.tr 1 ) from sporangia-bearing mycelia of Py. aphanidermatum. 

Supplement 

concentration Ca(NO3)2  

Supplement salt 

Mg(NO3)2 	KNO3  CaC12  

0 m 488±56 463± 136 348±39 220±23 

10 mm 505 ±76 517±97 227±37 342± 102 

20 	m 423±38 325±32 413± 114 255±93 

30 	m 428±30 252±70 277± 134 365 ±66 

40 m 109± 16 300± 18 355±90 335±47 

P(ANOVA) 	1.05 x 10.1 	1.92 x 10' 	6.52 x 10' 	5.83 x 10 

ad 	 143 	 262 	 129 	 102 

Mean ± s.e.m for (3 replicates dishes), based on two haemocytometer counts per replicate. 

Table 3.3. Effect of Mineral Salt Solution supplemented with 5 mM Ca(NO 3)2  on 

zoosporangiogenesis, assessed indirectly by measurement of subsequent zoospore 

release (zoospores.tl 1)*  from sporangia-bearing mycelia of Py. aphanidermatum. 

Treatment 	 Zoospore release (zoospores. p1') 

Control (no added Ca 2) 	 138 ±48 

Test (5 mM Ca2 ) 	 563 ±43 

P(t-test) 	 3.32 x 10.1  

Mean ± s.e.m (for 3 replicates dishes), based on two haemocytometer counts per replicate. 

60 



3.3.2. Effect on Phytophthora parasitica. 

3.3.2.1. Effect on sporangial density. 

The sporangial morphology of Ph. parasitica was more consistent than for Py. aphanidermatum. 

Sporangia of Ph. parasitica are distinct terminal, ovoid structures that are easy to enumerate in 

vitro. Although sporangial morphology is regular the distribution within the hyphal mat was 

observed to be highly variable and clustered; this was consistent with previous observations 

(Waterhouse, 1956). 

Supplementation of MSS with any of the three nitrate salts (up to 40 mM) had no significant (P 

> 0.05) effect on sporangial density (Figures 3.9, 3.10 and 3.12). However, CaC1 2  concentrations 

up to 15 mM noticeably suppressed sporangial density, whereas between 15 mM and 40 mM the 

trend was reversed. There was significant (t-tests, P :!~ 0.025) suppression of sporangial density 

by 15 mM CaCl 2  compared to the Ca 2tfree control and the 40 mM supplement. 

In another experiment (Figure 3.13), higher concentrations of KNO 3  were used. MSS 

supplemented with up to 168 mM KNO 3  did not significantly (ANOVA, P > 0.05) affect 

sporangial density, although 0.5 M KNO3  suppressed sporangiogenesis (as assessed by 

sporangial density) to 5% of the K+-free control. 
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Figures 3.9 - 3.12. Effect of salt type and salt concentration in MSS on the sporangial 

density of mats of Phytophthora parasitica. 

Figure 3.9 Effect of KNO 3 . 
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Figure 3.12 Effect of Ca(NO3)2 . 
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Figure 3.13. Effect of KNO3  concentration in MSS on the sporangial density of mats of 

Phytophthora parasitica. 
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3.3.2.2. Effect on zoospore release. 

It was observed that Ph. parasitica released zoospores prior to washing with the SDW release 

solution. That is, zoospores were released into the modified MSS prior to the cold shock. This 

pre-shock zoospore release into MSS was enumerated (as in Section 2.3.4) (Figures 3.14 to 

3.17). The concentrations of Mg(NO 3)2 and KNO3  supplement were negatively correlated with 

zoospore release, whereas the concentration of CaC1 2  supplement was positively correlated with 

zoospore release (Table 3.4). The peak in zoospore release in the 5 mM Ca(NO 3)2  supplement 

was found to be significantly different from all other supplements (ANOVA P = 0.001, Cyd  = 3.3 

zoospores..tr'). All other supplements of Ca(NO 3)2  (excluding the 5 mM) were not significantly 

different from each other (P> 0.05). The number of zoospores released into 5 mM Ca2  MSS 

was at least fifteen times greater than the number released into the Ca 2'-freecontrol, and three 

times greater than into the 10 mM Ca 2  treatment. 
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Table 3.4. Correlation statistics and the equations for lines of best fit for the effects of 

KNO3, Mg(NO3 )2  and CaCl 2  concentration on zoospore release into MSS from 

sporangia of Ph. parasitica. 

Salt Line of best fit 	 R F df 

KNO3  y = 3.6 - 0.07x 	-0.49 4.13 x 10 2  17 

Mg(NO3)2  y = 6.9 - 0.18x 	-0.75 1.06 x 10 20 

CaCl2  y=0.9+0.09x 	0.73 1.33 x 10 20 

All KNO3  supplements to MSS had no significant (P > 0.05) effect on post-shock zoospore 

release (Figure 3.14) - that is, the number of zoospores released into SDW after the modified 

MSS had been removed. The number of zoospores released post-shock into the 5 MM CaC12  

supplement was significantly greater (P < 0 .05) than for all other CaC1 2  supplements (Figure 

3.16). Again, a peak in zoospore numbers was observed in the 5 mM Ca(NO3)2  supplemented 

MSS treatment. There was a very highly significant (y = 12.7 - 0.26x, F = 6.61 x iO4, R = 0.77, 

df = 14) negative correlation between Ca(NO 3)2  supplements from 10 mM to 40 MM and 

zoospore release. Zoospore release into all Mg(NO 3)2  supplements except for the 10 mM 

supplement was not significantly different from each other (P> 0.05). The peak in zoospore 

numbers in 10 mM Mg(NO 3)2  MSS was significantly (P = 0.037) greater than in the Mg 2  free 

control. 
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Figures 3.14 - 3.17. Effect of salt type and salt concentration in MSS on zoospore 

release from mats of Phytophthora parasitica. 
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Figure 3.16 Effect of CaCl 2 . 
	 Figure 3.17 Effect of Ca(NO 3)2 . 
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3.3.2.3. Effects of treatments on sporangial discharge. 

In addition to the indirect measurement of sporangiogenesis (zoospore release) two direct 

measurements of the effect of salt and salt concentration on zoosporangiogenesis were made. 

The first measurement was sporangial density (Section 3.3.2.1). The second was microscopic 

examination of sporangia to determine if they had released their contents. The concentrations of 

CaCl2  and KNO3  supplement were both negatively correlated with the fraction of sporangia that 

had discharged their contents prior to the removal of MSS (Figures 3.18 and 3.20 and Table 3.5). 

The relationship between pre-shock sporangial discharge and Mg(NO 3)2  concentration was 

exponential (y = 12.4- 1 00.027  1) (Figure 3.19). The fitted data and the original data were very 

highly significantly correlated (F = 4.98 x 10 6 ,  R = 0.82). In the Ca(NO 3)2  free MSS and MSS 

supplemented with 20 mM or greater concentrations of Ca(NO 3)2, few (< 1%) sporangia had 

discharged their contents. However, a peak (-13%) in sporangial discharge was observed when 

Ca(NO3)2  supplements were between 5 and 15 mM. 

Table 3.5. Correlation statistics and the equations for lines of best fit for the effect of 

KNO3  and CaCl2  concentration on pre-cold-shock sporangial discharge of Ph. 

parasitica. 

- Salt Line of best fit R F df 

K1NO3  

CaC12  

y = 6.3 - 0.2x 

y = 11.3 - 0.2x 

-0.62 

-0.66 

6.19 x 10 

9.97 x 10 

17 

20 

Post-cold-shock sporangial discharge was assessed when the MSS had been removed and 

replaced with SDW. Significant differences were not observed (P = 0.928) in the fraction of 

sporangia that had discharged their contents after being bathed in MSS supplemented with 

various concentrations of KNO 3  (Figure 3.18). The relationship between post-shock sporangial 

discharge and Mg(NO 3)2  concentration was again exponential (y = 23.9i 75x) (Figure 3.19). 

The correlation between observed and fitted data was very highly significant (F = 1.56 x 10 6 ,  R 

= 0.84, df = 20). The various Ca(NO 3)2 supplements did not significantly (P> 0.05) affect 

sporangial discharge (Figure 3.21). Although a peak (28% of sporangia with discharged 

66 



contents) was distinctly observed in the 5 mM supplement, in all other Ca(NO 3)2  supplements 

the fraction of discharged sporangia was between 5% and 14%. The lack of significance can be 

attributed to high variation in the results for supplements with 20 and 30mM Ca(NO 3)2. There 

was also a peak in sporangial discharge in the 5 mM CaCl2  supplement (Figure 3.20). After this 

peak, all subsequent supplements further suppressed sporangial discharge - that is, there was 

negative correlation between sporangial discharge and CaC1 2  concentration between 5 and 40 

mM (y = 29.2- 0.5x, F= 4.67 x His , R = 0.81, df= 16). 
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Figures 3.18 - 3.21. Effect of salt type and salt concentration in MSS on sporangial 

discharge in mats of Phytophthora parasitica. 

Figure 3.18 Effect of KNO3. 	 Figure 3.19 Effect of Mg(NO3)2. 
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3.4. Zoospore release into various salt solutions. 

Mycelia of both Py. aphanidermatum and Ph. parasitica when bathed in MSS (13 mM Ca2 , 6 

MM Mg 2+'  5 mM K, 90 tM Fe2) at 20 °C in light produced sporangia. After Pythium has been 

subjected to cold shock the sporangia formed vesicles containing undifferentiated cytoplasm. 

After the cytoplasm has differentiated into zoospores the vesicle ruptured and zoospores were 

released. In contrast, in Phytophthora the vesicular stage is absent and cytoplasmic 

differentiation occurs within the sporangia. To establish the effect of the various salts at several 

concentrations on the release of zoospores from pre-formed sporangia of Phytophthora and 

Pythium the release solution was supplemented with one of the four salts (Ca(NO 3)2 , CaC12 , 

Mg(NO3)2  and KNO3) at test concentrations of 0, 5, 15, 20, 30 or 40 mM. 

Only CaC12  did not significantly (P > 0.05) suppress zoospore release from pre-formed 

sporangia of Py. aphanidermatum, but the lack of significance was due to the high variation in 

zoospore release from sporangia bathed in 10 mM CaCl 2  (Figure 3.22). The overall trend was 

that increasing CaC1 2  concentration suppressed zoospore release. It was consistently noted that 

zoospore release from sporangia was highly variable. The three nitrate salts all significantly 

suppressed zoospore release from pre-formed sporangia (P < 0.05) (Figures 3.22, 3.23 and 3.24). 

A concentration of 40 mM of any tested salt reduced zoospore release to between 10 and 20% of 

the salt-free control (SDW). 

The effects of salts on suppressing zoospore release from pre-formed sporangia of Ph. parasitica 

were less noticeable. Ph. parasitica released fewer zoospores than Py. aphanidermatum. 

Typically Ph. parasitica released approximately 100 zoospores. .il 1  into SDW, whereas Py. 

aphanidermatum releases approximately 500 zoospores.ff'. Zoospore release from pre-formed 

sporangia of Ph. parasitica was negatively correlated with calcium concentration irrespective of 

the counter ion (Cl - or NO3 ) (Figures 3.28 and 3.29 and Table 3.6). The fitted lines were very 

similar. Overall, increasing the KNO 3  or Mg(NO3)2  concentration reduced the number of 

zoospores released (Figures 3.26 and 3.27). The most effective salt at suppressing zoospore 

release from sporangia of Ph. parasitica was KNO3, with 40 mM of this salt reducing zoospore 

release to 26% of the control value. In contrast, the calcium salts were the least effective, with 40 

mM reducing zoospore release to about half that of the control. 
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Table 3.6. Correlation statistics and the equations for lines of best fit for the effect of 

calcium salts on zoospore release from pre-formed sporangia of Ph. parasitica. 

Salt 	Line of best fit 	 R 	 F 	 df 

CaC12 	y = 99 - 1.3x 	 -0.57 	 8.2 x 10-3 20 

Ca(NO3)2 	y 101 - 1.2x 	-0.52 	 1.60 x 10 2 	 20 
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Figures 3.22 - 3.25. Effect of salt type and salt concentration in release solution on 

zoospore release from pre-formed sporangia of Pythium aphanidermatum. 

Figure 3.22 Effect of KNO 3 . 
	 Figure 3.23 Effect of Mg(NO3)2 . 
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Figure 314 Effect of CaCl 2 . 
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Figure 3.25 Effect of Ca(NO3)2 . 
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Figures 3.26 - 3.29. Effect of salt type and salt concentration in release solution on 

zoospore releasé from pre-formed sporangia of Phytophthora parasitica. 

Figure 3.26 Effect of KNO3 . 
	 Figure 3.27 Effect of Mg(NO 3)2 . 
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Figure 3.28 Effect of CaCl 2 . 
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Figure 3.29 Effect of Ca(NO 3)2 . 
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3.5. Motility of zoospores and subsequent cyst germination in various salt 

solutions. 

Zoospores released into SDW were transferred to Petri dishes supplemented with various salts at 

various concentrations (see Section 2.3.6). After 2h the base of the Petri dish was examined 

microscopically to determine the fraction of zoospores that had retained motility and the fraction 

of cysts that had germinated. 

Increasing salt concentration caused increased suppression of zoospore motility by inducing 

encystment of zoospores of Py. aphanidermatum (Figures 3.30 to 3.33). A 5 mM KNO3  or 

Mg(NO3)2  supplement significantly (t-tests, P = 1.5 x 10 -4  and P = 0.031, respectively) reduced 

zoospore motility compared to the SDW control. Although 5 mM CaC12  did significantly (t-test, 

P = 0.029) reduce zoospore motility compared to the control, the same concentration of 

Ca(NO3)2  did not significantly (t-test, P = 0.093) reduce zoospore motility. A concentration of 

15 mM of either KNO3  or Ca(NO3)2  caused all observed zoospores to encyst within the 2h 

incubation period. To achieve complete suppression of zoospore motility with CaC1 2  required a 

concentration of 20 mM. 

After 2h swimming in the SDW controls approximately 40% of zoospores of Py. 

aphanidermatum were still motile. The comparable value for Ph. parasitica was 10% after a one 

hour incubation (Figures 3.34 to 3.37). The effectiveness of the tested salts to suppress zoospore 

motility was less with Ph. parasitica than with Py. aphanidermatum. To significantly reduce 

zoospore motility required either 10 mM KNO 3  (t-test, P = 3.4 x 10 -4  ),  20 mM Ca(NO3)2  (t-test, 

P =0.018), 20 mM Mg(NO3)2  (t-test, P = 5.6 x 10) or 15 mM CaC12  (t-test, P = 0.021). To 

completely suppress zoospore motility required either 40 mM CaCl 2, 40 KNO 3  or 30 MM 

Ca(NO3)2 . Concentrations of Mg(NO 3)2  up to 40 mM did not completely suppress motility of 

zoospores of Ph. parasitica. 

Once zoospores had encysted they had the potential to germinate. In SDW controls 

approximately 20% of all cysts of Py. aphanidermatum had germinated during the 2h incubation 

(Figures 3.38 to 3.41). Overall, Mg(NO 3)2, Ca(NO3)2  and CaC12  supplements increased the 

proportion of cysts that had germinated. The highest mean levels of germination were 79% in 

73 



40mM Ca(NO3)2 , 71% in 30 mM Mg(NO 3)2  and 26% in 40 mM CaC12. Low concentrations of 

KNO3 (5 and 10 mM) noticeably increased the proportion of cysts that had germinated, although 

higher concentrations (15 mM and above) did not significantly (P> 0.05) affect the proportion 

of cysts germinating compared to the SDW control. 

KNO3  concentrations up to 40 mM had no noticeable affect on the germination of cysts of Ph. 

parasitica (Figure 3.42). Similarly, increasing concentrations of Mg(NO 3)2  had no significant (P 

> 0.05) effect on cyst germination, but the proportions of cysts germinating in the Mg(NO 3)2  

supplements were all lower than in the SDW control (Figure 3.43). The highest level of 

germination observed in the Mg(NO 3)2  supplements was 16%, whereas in the control 31% of 

cysts had germinated; this difference was significant (t-test, P = 0.021). Increasing Ca 2  

concentration increased cyst germination (Figures 3.44 and 3.45). CaCl2  was more effective at 

promoting cyst germination than Ca(NO 3)2, with 51% of cysts germinating in 40 mM CaC1 2, but 

only 33% germinating in the 40 mM Ca(NO 3)2  treatment. 
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Figures 3.30 - 3.33. Effects of salt type and salt concentration on motility*  of zoospores 

of Pythium aphanidermatum. 
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Figure 3.32 Effect of CaCl 2 . 
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Figure 3.31 Effect of Mg(NO 3)2 . 
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Figure 3.33 Effect of Ca(NO 3 )2 . 
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Figures 3.34 - 3.37. Effect of salt type and salt concentration on motility of zoospores 

of Phytophthora parasitica. 
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Figures 3.38 - 3.41. Effect of salt type and salt concentration on spontaneous 

germination' of encysted zoospores of Pythium aphanidermatum. 
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Figure 3.40 Effect of CaCl 2 . 
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Figures 3.42 - 3.45. Effect of salt type and salt concentration on spontaneous 

germination' of encysted zoospores of Phytophthora parasitica. 
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Figure 3.43 Effect of Mg(NO3)2 . 
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Figure 3.44 Effect of CaCl2 . 
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Figure 3.45 Effect of Ca(NO3)2 . 
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3.6. Germination of vortex-encysted zoospores in various salt solutions. 

In the motility assays zoospores naturally encysted and had the potential to germinate. In the 

following experiments, zoospores were mechanically induced to encyst by vortexing (Section 

2.3.2). Without an exogenous supplement, typically 20 to 30% of Py. aphanidermatum cysts 

germinated during the 2h incubation (Figures 3.46 to 3.49). Supplements of KNO 3  up to 40 mM 

did not significantly effect the proportion of cysts that germinated. For the other three salts, the 

overall affect was for increasing salt concentration to increase the proportion of cysts that 

germinated. The maximum level of germination achieved was 50 to 60% in the 30 to 40 mM salt 

supplements. 

The percentage germination of cysts of Ph. parasitica in SDW was typically below 10% 

(Figures 3.50 to 3.52). All supplements of KNO 3  significantly (t-tests, P < 0.05) increased cyst 

germination levels to at least 20%, but the differing concentrations of the supplement had little 

effect on the proportion of cysts germinating (Figure 3.50). Similarly, all Mg(NO3)2  supplements 

significantly (t-tests, P < 0.05) increased the proportion of cysts germinating to at least 7.5%, but 

the differing concentrations of the supplement had little effect on the proportion of cysts 

germinating (Figure 3.51). Increasing concentrations of Ca(NO 3)2  caused increased levels of cyst 

germination, with 45% of cysts germinating in 40 mM Ca(NO 3)2  (Figure 3.52). 
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Figures 3.46 - 3.49. Effects of salt type and salt concentration on germination of 

encysted zoospores of Pythium aphanidermatum. 
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Figure 3.47 Effect of Mg(NO3)2  
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Figure 3.48 Effect of CaCl2 
	 Figure 3.49 Effect of Ca(NO3 )2  
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Figures 3.50 - 3.52. Effects of salt type and salt concentration on germination of 

encysted zoospores of Phytophthora parasitica. 
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Figure 3.52 Effect of Ca(NO3)2  
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3.7. Summary of effects of cations on individual stages of the zoosporic 

infection sequence. 

In the foregoing experiments five stages of the zoosporic infection sequence of two fungi were 

exposed to three cations at various concentrations. A summary of results is shown in Table 3.7. 

In some assessments there was consistency in the trends. For example, all three cations (Ca 2 , 

Mg 2+  and IC) suppressed zoospore release from pre-formed sporangia of both Ph. parasitica and 

Py. aphanidermatum. Also, all three cations enhanced germination of vortex-encysted spores of 

both fungi. In other assessments the effect of the cations was different for the two fungi. 

Potassium did not affect mycelial growth of either species, whereas calcium clearly suppressed 

mycelial growth of Py. aphanidermatum, but there was evidence to suggest that calcium 

enhanced mycelial growth of Ph. parasitica. 

The cations tested did not generally affect sporangial density of Ph. parasitica or 

sporangiogenesis of Py. aphanidermatum. However, the effect of cations on the subsequent 

liberation of zoospores and the proportion of sporangia of Ph. parasitica that discharged was 

dependent on cation species. Magnesium and potassium, in general, suppressed sporangial 

discharge. At low concentrations calcium caused more zoospores to be released than in the SDW 

control. 

Cation valency was not consistently related to effect on zoospore biology. The divalent cations 

suppressed mycelial growth of Py. aphanidermatum, whereas the monovalent potassium ion did 

not. However, in several cases, the effects of magnesium and potassium were similar, but 

different from the effect of calcium. For example, magnesium and potassium had no effect on 

the pre-shock emptying of sporangia of Ph. parasitica, whereas calcium did have a noticeable 

effect on this. 

Germination of cysts was assessed under two different protocols. Under the first protocol, 

encystment was either spontaneous or salt-induced. The results from these experiments were 

highly variable, although calcium promoted cyst germination in both fungi. Although high 

concentrations of potassium had no noticeable effect on germination of cysts of Ph. parasitica, a 

peak in cyst germination in low concentrations of potassium was observed. Under the second 
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protocol encystment was by mechanical agitation and the effect of the three species of cation on 

cysts from both fungi was always to increase the proportion of cysts that germinated. 
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Table 3.7. Summary of effects of cations on individual stages of the zoosporic infection sequence. 

Stage Fungi Cations Effect of increasing cation concentration 

Mycelial growth Py. aphanidermatum Cal  & Mg2  Suppression 

Mycelial growth Both IC No effect 

Mycelial growth Ph. parasitica Ca Possibly enhance 

Mycelial growth Ph. parasitica Mg2  Suppression 

Sporangiogenesis (indirect measurement) Py. aphanidermatum Ca24, Mg24  & IC No effect 

Sporangial density Ph. parasitica Ca2 , Mg24  & K' No effect 

Sporangial discharge (zoospores) - pre shock and post shock Ph. parasirica Ca2  Peak at 5 mM 

Sporangial discharge (zoospores) - pre shock Ph. parasitica Mg2  & IC Suppression 

Sporangial discharge (zoospores) - post shock Ph. parasitica Mg2  & IC No effect 

Empty sporangia - pre shock Ph. parasitica Ca24  Peak at 5 mM 

Empty sporangia - pre shock Ph. parasitica Mg24  & K' Suppression 

Empty sporangia - post shock Ph. parasitica Ca24  Peak at 5 mM 

Empty sporangia - post shock Ph. parasitica Mg24  Suppression 

Empty sporangia - post shock Ph. parasitica IC No effect 

Zoospore release Both Ca24, Mg24  & IC Suppression 

Zoospore motility Both Ca2+  , Mg2+  & K+  Suppression 

Subsequent germination Py. aphanidermatum Ca24  & Mg2  Enhance 

Subsequent germination Py. aphanidermatum IC Peak at 5-10 mM 

Subsequent germination Ph. parasitica Ca24  Enhance 

Subsequent germination Ph. parasitica Mg2  Possible suppression 

Subsequent germination Ph. parasitica IC No effect 

Germination of vortex encysted zoospores. Both Ca2 , Mg24  & IC Enhance 
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3.8. The compounded effects of cationic supplements on aspects of 

zoospore biology 

A cationic supplement to an irrigation system would target all stages of the infection sequence 

concurrently: from mycelial growth to infection of a host by a germ tube. To simulate this in 

vitro, the standard protocol was modified so that test salts at the test concentrations was constant 

in the treatments throughout the experiments. That is, the same concentration of the salt was 

added to the CV8 broth, the MSS and the release solution. At several stages throughout the 

experiments, aspects of fungal biology were quantified. These were the number of zoospores 

released, the proportion of zoospores motile after the incubation period and the proportion of 

cysts that had germinated during the motility period. In addition to these aspects, a portion of the 

zoospore suspension was drawn-off after zoospore release, and zoospores were mechanically 

encysted. After a period of time the proportion of cysts that had germinated after mechanically 

induced encystment was assessed. 

3.8.1. Pythium aphanidermatum. 

The first aspect of zoospore biology to be assessed was the number of zoospores released into 

the release solution. The release solution was the test salt at the test concentration. In the KNO 3  

and Mg(NO3)2  free controls the number of zoospores released was approximately 552 and 773 

zoospores.il', respectively (Figures 3.53 and 5.54). In the 5 mM KNO3  treatment the number of 

zoospores released was reduced very significantly (t-test, P = 0.0031) to 150 zoospores.tl, that 

is 27% of the K-free control value. The 40 mM Mg(NO 3)2  treatment reduced the number of 

zoospores released to 1% of the Mg 21  free control, but the effectiveness at suppressing zoospore 

release at lower concentrations was not as noticeable as for KNO 3 . Increasing concentrations of 

CaC12  reduce the number of zoospores released (Figure 3.55). The 40 mM CaC1 2  treatment 

reduced the number of zoospores released to 5% of the calcium-free control. When the 40 mM 

calcium supplement was supplied as the nitrate salt, the number of zoospores released was 0.5% 

of the control (Figure 3.56). However, there was a peak in zoospore release numbers in the 5 

mM Ca(NO3)2  treatment that was 65% greater than in the Ca 21  free control. 
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After the release period, the mycelial mats were removed from the Petri dishes and the number 

of spores (zoospores and cysts) observed in the bases of the dishes were then scored (Figures 

3.57 to 3.60). There was good correlation between the number of zoospores released as assessed 

by the first method and this method. 

The fraction of zoospores observed to be motile after this 2h incubation followed a similar 

pattern to the release of zoospores (Figures 3.61 to 3.64). In the KNO 3  control 58% of zoospores 

were motile, but only 5% were motile when 5 mM KNO3  was present (Figure 3.61). Increasing 

supplements of KNO 3  had little additional effect on the proportion of zoospores remaining 

motile. Increasing concentrations of Mg(NO 3)2  caused the proportion of zoospores that remained 

motile to decrease (Figure 3.62). In the Mg 2  free control 86% of spores were observed to be 

motile, while only 2% were motile in the 40 mM Mg(NO 3)2  treatment. Similarly, increasing 

concentrations of CaC1 2  caused the proportion of zoospores that remained motile to decrease 

(Figure 3.63). In the CaCl2  free control 95% of spores remained motile during the incubation 

period, while no zoospore were observed to be motile after being incubated in 40 MM CaC1 2. In 

the Ca(NO3)2  free control 36% of spores were motile, but only 1.4% were motile in the 20 MM 

treatment. There was a peak in zoospore motility in the 5 mM treatment with 61% of spores 

remaining motile during the incubation period. 

For the controls of the KNO3, Mg(NO 3)2 and CaCl2  of (Figures 3.65 to 3.67) the fraction of 

encysted zoospores that germinated during the 2h incubation was between 17% and 28%.. The 

lower concentrations of KNO 3  (5 to 15 mM) increased cyst germination levels to at least 65%, 

whereas in the treatments with 20 mM or greater concentrations of KNO 3, the proportion of 

cysts germinating was not significantly (P> 0.11) different from the IC-free control (Figure 

3.65). Although there was significant (ANOVA, P = 0.027) variation in the proportion of cysts 

germinating in various concentrations of Mg(NO 3)2 , there was not an obvious relationship 

between the proportion of cysts germinating and Mg(NO 3)2  concentration (Figure 3.66). There 

was not significant (ANOVA, P = 0.081) variation in the proportion of cysts germination 

between the treatments of CaCl 2  (Figure 3.67). The effect of increasing Ca(NO 3)2  supplements 

on cyst germination was complex, with the highest germination levels observed in the control 

and the lowest in the 5 mM supplement (Figure 3.68). There was also a noticeable peak in the 15 

86 



mM treatment which is significantly (t-test, P = 0.037) greater than the level in the 10 mM 

treatment. 

The sample of zoospore suspension that was removed prior to the incubation for spontaneous 

zoospore encystment was vortexed and incubated for 2h. The proportion of cysts that germinated 

was then enumerated. All supplements of KNO 3  significantly (P < 0.05) increased the proportion 

of cysts that had germinated when compared to the IC free control (Figure 3.69), but there was 

no significant (ANOVA, P = 0. 12) variation in the proportion of cysts germinating between the 

different supplements of KNO 3. In the Mg2  free control 17% of cysts had germinated, whereas 

in the 40 mM Mg(NO3)2 treatment the percentage germinated had increased to 62% (Figure 

3.70). The level of cyst germination in the 40 mM CaCl 2  treatment just failed to be not 

significantly (P = 0.053) different from the CaC1 2  free control (Figure 3.71). However, the 

overall trend of increasing CaCl 2  supplement was to increase the proportion of cysts that 

germinated. The effect of increasing Ca(NO3)2 supplements on cyst germination was again 

complex, with the highest germination levels observed in the control and the lowest in the 5 MM 

supplement (Figure 3.72). Also there was a noticeable peak in the 15 mM treatment. The 

correlation between the proportion of cysts germinating in Ca(NO 3)2  recorded in the two graphs 

(Figures 3.68 and 3.72) was very highly significant (R = 0.70, F 8.76 x 10, n = 25). The data 

analysed were not arcsine transformed. Transformation of the data would have had negligible 

affect on the correlation statistics. 
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Figures 3.53 - 3.56. Effect of salt type and salt concentration on zoospore release*  from 

sporangia of Pythium aphanidermatum. 
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Figures 3.57 - 3.60. Effect of salt type and salt concentration on the number of spores 

of Py. aphanidermatum observed at the bases of the Petri dishes after 2 h incubation. 
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Figure 3.58 Effect of Mg(NO 3)2  
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Figure 3.59 Effect of CaCl2  
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Figure 3.60 Effect of Ca(NO 3)2  
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Figures 3.61 - 3.64. Effect of salt type and salt concentration on the proportion of 

spores of Py. aphanidermatum remaining motile after 2 h incubation. 
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Figure 3.63 Effect of CaCl2  
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Figure 3.64 Effect of Ca(NO3)2  
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Figures 3.65 - 3.68. Effect of salt type and salt concentration on the proportion of 

naturally encysted zoospores of Py. aphanidermatum that had germinated during 2 h 

incubation. 
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Figure 3.66 Effect of Mg(NO3 )2  
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Figure 3.67 Effect of CaCl2  
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Figures 3.69 - 3.72. Effect of salt type and salt concentration on the proportion of 

vortex-encysted zoospores of Py. aphaniderm aturn that had germinated during 2 h 

incubation. 
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3.8.2. Phytophthora parasitica. 

Parallel experiments investigating the compounded effects of cationic supplements were 

performed using Ph. parasitica. However, only KNO 3  and Ca(NO 3)2  salts were used, and at 

fewer concentration levels. Also, two additional aspects of sporangiogenesis were quantified - 

sporangial density and the proportion of sporangia discharging their contents. 

The 5 mM KNO3  supplement at all stages of the protocol did not significantly suppress pre-

shock zoospore release (P = 0.628), pre-shock sporangial discharge (P = 0.495), post-shock 

zoospore release (P = 0.074), post-shock sporangial discharge (P = 0. 143), sporangial density (P 

= 0.45 1), zoospore motility (P = 0.106) or the germination of vortex encysted spores (P = 0.646) 

of Ph. parasitica (Table 3.8). However, the 5 mM KNO3  supplement did significantly (P = 

0.039) suppress germination of cysts that had naturally encysted during the zoospore motility 

assay. Although the results were not always significant the general trends were consistent with 

the results from the corresponding experiment with Py. aphanidermatum. That is, a 5 mM KNO3  

supplement suppressed both zoospore release and zoospore motility. 

In the pre-shock zoospore release assay the 5 mM Ca(NO3)2  supplement significantly (P < 0.05) 

increased zoospore release in comparison to both the calcium-free control and 20 mM 

supplement (Table 3.9) - there was no significant (P> 0.05) difference between the control and 

20 mM supplement. This was not reflected in the degree of pre-cold shock sporangial discharge 

where the control and 5 mM did not significantly (P < 0.05) differ for each other, but sporangial 

discharge was significantly (P >0.05) increased by the 20 mM supplement. 

There was no significant (P> 0.05) effect on post-shock zoospore release, post-shock sporangial 

discharge or sporangial density by 5 mM Ca(NO3)2  when compared to the Ca 2 -free control, 

whereas zoospore release, post-shock sporangial discharge and sporangial density were all 

significantly (t-tests, P < 0.05) greater in the control than in the 20 mM supplement. 

The fraction of zoospores motile in the Ca 2tfree control was 16%; this rose to 26% in the 5 mM 

Ca 2+  treatment. However, in the 20 mM Ca2  supplement, no zoospores were found to be motile. 

Once the zoospores had encysted they had the potential to germinate. In the control 23% of the 

encysted spores had germinated. This was not significantly (P> 0.05) increased by the 5mM 
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Ca21  supplement, but in the 20 mM supplement 55% of spores had germinated - this was 

significantly (multiple range test, P < 0.05) greater than in the control and the 5 mM supplement. 
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Table 3.8. Effects of applications of 5 mM KNO3  on aspects of biology of Ph. parasitica. 

Aspect Units 0 mM IC 5 mM IC P (West) 

Pre-shock zoospore release a zoospores..tl' 10.3 ± 1.6 9.0 ± 2.0 0.628 

Post-shock zoospore release a zoospores..Ll' 22.3 ± 1.9 17.8 ± 0.9 0.074 

Vortex encysted zoospore germination b % (and Arcsine) 22.8 ± 5.3 (28.0 ± 3.8) 25.2 ± 2.6 (30.0 ± 1.8) (0.646) 

Pre-shock empty sporangia '  % (and Arcsine) 14.4 ± 2.2 (22.1 ± 1.8) 17.6 ± 3.6 (24.5 ± 2.7) (0.495) 

Post-shock empty sporangia C  % (and Arcsine) 26.1 ± 3.9 (30.5 ± 2.6) 17.4 ± 3.3 (24.3 ± 2.5) (0.143) 

Sporangia density d sporangia per video screen 26.3 ± 2.7 28.9 ± 1.7 0.451 

Motile zoospores e % (and Arcsine) 45.3 ± 3.7 (42.3 ± 2.1) 27.9 ± 8.0 (31.0 ± 5.6) (0.106) 

Subsequent cyst germination e % (and Arcsine) 22.4 ± 2.7 (28.1 ± 1.9) 12.8 ± 2.2 (20.7 ± 2.1) (0.039) 

a Means ± s.e.m. for 4 replicates, based on 2 haemocytometer counts per replicate. 
Means ± s.c.m. for 4 replicates, based on 100 counts per replicate. 

C  Means ± s.e.m. for 4 replicates, based on 3 fields of view per replicate. 
d Means ± s.e.m. for 4 replicates, based on 6 fields of view per replicate. Three fields of view observed prior to cold shock and three fields of view 
observed post cold shock. 
C  Means ± s.c.m. for 4 replicates, based on 3 fields of view per replicate. 
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Table 3.9. Effects of applications of 5 mM and 20 mM Ca(NO 3)2  on aspects of biology of Ph. parasitica. 

Aspect Units 0 mM Ca 2+ 5 mM Ca2  20 mM Ca2  ad P 

(ANOVA) 

Pre-shock zoospore releases zoospores.d 2.1 ± 0.6 6.5 ± 0.8 2.3 ± 0.4 0.7 1.64 x iO 

Post-shock zoospore release zoospores.il 9.9± 1.0 7.1±0.6 1.1±0.3 1.0 3.97 x 10 

Pre-shock empty sporangia   %(and Arcsine) 12.7 ± 1.3 (20.8 ± 1.1) 11.5 ± 0.7 (19.8 ± 0.6) 4.4 ± 1.0 (11.8 ± 1.4) (1.5) (4.62 x 10) 

Post-shock empty sporangia t' % (and Arcsine) 15.2 ± 1.3 (22.9 ± 1.1) 19.4 ± 3.3 (25.9 ± 2.3) 7.1 ± 0.5 (15.5 ± 0.5) (2.1) (2.48 x 10) 

Sporangia density 	 sporangia per video screen 
	

36.4 ± 5.0 
	

28.0 ± 5.3 
	

15.9 ± 1.3 	 6.1 	2.50 x 10 

Motile zoospores 4 
	

% (and Arcsine) 
	

17.9 ± 8.5 (23.6 ± 6.0) 
	

27.5 ± 8.6 (30.3 ± 6.4) 
	

0.0 ± 0.0(0.0 ± 0.0) 	 (7.1) 	(5.24 x 10) 

Subsequent cyst germination d  % (and Arcsine) 
	

22.6 ± 2.4 (28.3 ± 1.6) 
	

28.8 ± 3.0 (32.4 ± 2.0) 
	

54.4 ±1.9 (47.5 ± 1.1) 	(2.3) 	(3.19 x 10) 

a Means ± s.e.m. for 4 replicates, based on 2 haemocytometer counts per replicate. 
b Means ± s.c.m. for 4 replicates, based on 3 fields of view per replicate. 

Means ± s.c.m. for 4 replicates, based on 6 fields of view per replicate. Three fields of view observed prior to cold shock and three fields of view observed post cold 
shock. 
d  Means ± s.c.m. for 4 replicates, based on 3 fields of view per replicate. 
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3.9. Summary of the effects of cations on various stages of the zoosporic 

infection sequence when the test supplement was constant throughout the 

experimental protocol. 

Each cation affected the infection sequence differently (see the summary in Table 3.10). Both 

magnesium and potassium suppressed zoospore release, the number of spores observed on the 

Petri dish base, and zoospore motility, but enhanced the germination of vortex encysted 

zoospores. of Py. aphanidermatum. In contrast, 5 mM Ca(NO3)2  increased zoospore release, the 

proportion of zoospores remaining motile and the number of spores observed on the Petri dish 

base. The effect of increasing calcium concentration on cyst germinating is complex, but 

identical patterns were seen in the results from the two assessments of cyst germination (Figures 

3.68 and 3.72). 

The biology of Ph. parasitica in treatments supplemented with 5 mM KNO3  was generally 

similar to that in the K free control. Only in the assessment of cyst germination did 5 mM 

KNO3  cause a significant difference. Five mM Ca(NO 3)2  caused a peak in pre-shock zoospore 

release and the proportion. of zoospores remaining motile. 

When zoospores of Py. aphaniderinatum had encysted either spontaneously or induced by 

KNO3, a peak in subsequent cyst germination was observed (Figure 3.65). This observation was 

also made in the assessment of individual stages of the infection sequence (Figure 3.34). That is, 

approximately 10 mM K increased the level of cyst germination, but higher concentrations 

(circa. 30 mM) of K the level of germination was comparable to the K free control. 
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Table 3.10. Summary of effects of cations on stages of the zoosporic infection sequence when the test supplement was 

constant throughout the experimental protocol 

Stage Fungi Cations Effect of increasing cation concentration 
Zoospore release Py. aphanidermatum Mg 2+ & K Suppression 
Zoospore release Py. aphanidermatum Ca'  Suppression, but peak at 5 mM 
Zoospore release (pre- & post-shock) Ph. parasitica IC No effect 
Zoospore release (pre-shock) Ph. parasitica Ca2  Peak at 5 mM 
Zoospore release (post-shock) Ph. parasitica Ca2  Suppression 
Empty sporangia (pre-shock) Ph. parasitica Ca2  Suppression 
Empty sporangia (pre- & post-shock) Ph. parasitica IC No effect 
Empty sporangia (post-shock) Ph. parasitica Ca2  Suppression 
Sporangial density Ph. parasitica Ca2  Suppression 
Sporangial density Ph. parasitica IC No effect 
Spores observed on Petri dish base. Py. aphanidermatum Mg2  & IC Suppression 
Spores observed on Petri dish base. Py. aphanidermatum Ca2  Suppression, but peak at 5 mM 
Zoospore motility Py. aphanidermatum Mg2  & IC Suppression 
Zoospore motility Py. aphanidermatum Ca' Suppression, but peak at 5 mM 
Zoospore motility Ph. parasitica Ca2  Suppression 
Zoospore motility Ph. parasitica IC Possible suppression 
Subsequent cyst germination Py. aphanidermatum Ca2  Complex 
Subsequent cyst germination Py. aphaniderinatum Mg2  No effect 
Subsequent cyst germination Py. aphanidermatum IC Peak at 10 mlvi 
Subsequent cyst germination Ph. parasitica Ca2  Peak at 5 mM 
Subsequent cyst germination Ph. parasitica IC Suppression 
Germination of vortex encysted zoospores Py. aphanidermatum Ca2  Complex 
Germination of vortex encysted zoospores Py. aphanidermatum Mg2  & IC Enhance 
Germination of vortex encysted zoospores Ph. parasitica Ca2  Enhance 
Germination of vortex encysted zoospores Ph. parasitica IC No effect 
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3.10. The effect of zoospore density on zoospore motility. 

To establish the effect of the density of zoospores of Py. aphanidermatum on the proportion 

of zoospores that remain motile, a population of zoospores was first diluted with various 

quantities of SDW. Prior to incubation, an aliquot of zoospores from each dilution was taken 

and the zoospore density enumerated by heamocytometer counts. After 2h incubation the 

proportion of motile zoospores was determined (as in Section 2.3.6). Eight dilutions were 

used and for each dilution two Petri dishes were incubated. The lowest density of zoospores 

was 66 zoospores.j.tF' of which 9.8% were motile after the incubation period (Figure 3.73). 

The highest population density was 685 zoospores.tF' of which 19.3% were motile at the 

termination of the experiment. There was a very significant positive correlation (y = 10.89 + 

0.015x, F = 0.0043, R = 0.64, n = 18) between zoospore density and the proportion of 

zoospores motile after the incubation period. 

Figure 3.73. The effect of zoospore density on zoospore motility. 
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3.11. Modification of the potassium to calcium ratio. 

Cooper (1979) suggested that the ideal concentrations of principal ions in a NFT system are 

200 ppm (14.3 mM) for nitrogen, 300 ppm (7.7 mM) for potassium and 170 ppm (4.3 mm) 

for calcium. Therefore, the suggested millimolar potassium to calcium ratio is 7.7:4.3. The 

cumulative effect of this potassium to calcium ratio (control) on the biology of zoosporic 

fungi was determined and compared with a modified (test) ratio of 13.3:1.5. The method was 

as in Section 3.8. The nitrate concentration was 16.3 mM in both the control and test 

treatments. The cumulative effect of the test solution on the biology of Ph. parasitica was 

not significantly (t-tests, P ~! 0.21) different from the control for most aspects of zoospore 

biology (Table 3.11). However, the test treatment (high potassium to calcium ratio) caused a 

very highly significant (P = 9.00 x 10) suppression of zoospore motility compared to the 

control. In the control 59% of spores were motile after incubation, whereas only 5% were 

motile in the test treatment. 

The same protocol was employed, but using Py. aphaniderinatum. The experiment was 

repeated twice and analysed by two-way ANOVA with the experiment being the second 

factor (Table 3.12). However, for the second experiment cyst germination was not assessed 

and consequently the data from experiment 1. was analysed by a t-test. In all assessments no 

significant (P ~t 0.234) interaction between the experiments was observed, although 

significant differences between the experiments were found for the assessment of zoospore 

motility (Pex ,jment  = 9.11 x 10-v) and subsequent cyst germination (Pexpenment = 8.79 X 10.6). 

The test treatment (high potassium to calcium ratio) significantly (P = 0.037) suppressed 

zoospore release in comparison to the control (low potassium to calcium ratio). In 

experiment 1 the test suppressed zoospore release to 51% of the control and in experiment 2 

this value was 71%. Also in both experiments there was some reduction by the test treatment 

of zoospore motility and enhancement of subsequent cyst germination, although the effects 

were not quite significant (P = 0.0589 and P = 0.0749, respectively). 
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Table 3.11. The effect of modifying the potassium to calcium ratio on the biology of Ph. parasitica. 

Aspect Units Controlt Testtt P (t-test) 

Post-shock zoospore release 8  Zoospores.j.t1' 5.1 ± 1.7 7.7 ± 2.2 3.87 x 10' 

Pre-shock empty sporangia b % (and Arcsine) 3.2 ± 1.9 (8.5 ± 3.5) 6.1 ± 2.5 (13.4 ± 3.0) (3.27 x 10') 

Post-shock empty sporangia b % (and Arcsine) 14.8 ± 5.8 (19.6 ± 6.9) 11.9 ± 2.0 (20.0 ± 1.8) (9.59 x 10) 

Sporangial density C  Sporangia per video screen 12.2 ± 4.1 15.3 ± 1.2 4.93 x 10' 

Zoospore motility d % (and Arcsine) 58.4 ± 6.4 (50.0 ± 3.8) 4.9 ± 1.0 (12.6 ± 1.3) (9.00 x 10) 

Subsequent cyst germination e % (and Arcsine) 23.3 ± 9.3 (25.1 ± 9.0) 5.1 ± 1.8 (11.4 ± 3.8) (2.10 x 10) 

a Means ± s.e.m. for 4 replicates, based on 2 haemocytometer counts per replicate. 
b Means ± s.c.m. for 4 replicates, based on 3 fields of view per replicate. 
c Means ± s.e.m. for 4 replicates, based on 6 fields of view per replicate. Three fields of view observed prior to cold shock and three fields of view observed post cold 
shock. 
d Means ± s.c.m. for 4 replicates, based on 3 fields of view per replicate. 

77 mM IC, 4.3 mM Ca', 16.3 mM NO 3  
tt 13.3 mM IC, 1.5 mM Ca 2 , 16.3 mM NO3  
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Table 3.12. The effects of modifying the potassium to calcium ratio on the biology of Py. aphanidermatum. 

Zoospore release a Cyst germination b Motile zoospores C  Subsequent cyst germination c 

Units Zoospores.pt' % (and Arcsine) % (and Arcsine) % (and Arcsine) 

Controlt - Experiment 1 148.6 ± 31.6 57.7 ± 8.8 (49.7 ± 5.3) 73.3 ± 5.5 (59.2 ± 3.6) 13.7 ± 3.8 (20.8 ± 3.7) 

Controlt - Experiment 2 193.1 ± 34.3 n.d. 29 ± 5 (32.6 ± 3.8) 46.2 ±5.8 (52%) 

Testtt - Experiment 1 76.4 ± 24.8 70.5 5 ± 2.3 (7.2 ± 1.5) 68.8 ± 3.5 (56.2 ± 2.2) 16.7 ± 3.6 (23.7 ± 2.9) 

Test 	-Experiment2 137.5± 15.8 n.d. 14±4(21.8±3.5) 59.5±3.6(74%) 

P(Treatment) 3.73 x 10.2  (2.19 x 10') (5.89 x 10.2) (7.49 x 10 2) 

P (Experiment) 8.34 x 10 -2 (NA) (9.11 x 10) (8.79 x 10) 

P (Interaction) 7.87 x 10.1 (NA) (2.67 x 10') (2.34 x 10') 

a Means ± s.e.m. for 4 replicates, based on 2 haemocytometer counts per replicate. 
Means ± s.e.m. for 4 replicates, based on 100 counts per replicate. 

C  Means ± s.e.m. for 4 replicates, based on 3 fields of view per replicate. 

7.7 mM IC, 4.3 mM Ca2 , 16.3 mM NO3  
tt 13.3 mM IC, 1.5 mM Ca2 , 16.3 mM NO3  
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3.12. Comparison of the effects of the anions: Cl - v NO3. 

A noticeable trend observed in the results presented in this chapter was that generally, when 

calcium was added as a nitrate the effect on the biology of zoosporic fungi was greater than 

when calcium is added as a chloride. For example, calcium suppressed the fraction of 

zoospores motile at 2h, but the result was more noticeable with Ca(NO3)2 than for CaC12 

(Figures 3.32 and 3.33). Calcium also increased the fraction of vortex-encysted zoospores 

that germinated, but the result for Ca(NO 3)2  was greater than for CaCl 2  (Figures 3.48 and 

3.49). To confirm this trend several experiments were performed that directly compared the 

effects of Ca(NO3)2 and CaCl 2. The net charge on each species of anion (Cl -  and NO3) is the 

same so straightforward comparisons were made. 

The effect on motility was assessed as in Section 2.3.6. The proportion of zoospores motile 

in 10 mM CaC12 was 10.8%, and, of the encysted zoospores, 7.8% had germinated (Table 

3.13.). The corresponding values in Ca(NO3)2 were not significantly different from those 

with CaCl2  (t-tests, P ~! 0.156). 

Table 3.13. Direct comparison between the effect of Cl- and NO3  on suppression of 

zoospore motility and subsequent spontaneous cyst germination for spores of 

Pythium aphanidermatum in the presence of 10 mM Ca 2 . 

	

Treatment 	 -- Motile zoospores 	 Germinated cysts 

	

% (and Arcsine) 	 % (and Arcsine) 

	

20mMCF 	 10.8±1.1 	 7.8±1.0% 
(19.1 ± 1.0) 	 (16.1 ± 1.1) 

	

20 m NO3 	 8.6 ± 1.4 	 10.3 ± 1.2 
(16.9±1.4) 	 (18.6±1.1) 

	

P(t-test) 	 (2.25 x 10') 	 (1.56x 10') 

Means ± s.c.m. for 5 replicates, assessed after 2h, based on scoring 3 fields of view per replicate. 

The effect on the germination of vortex-encysted zoospores was assessed as in Section 2.3.7. 

There was a very significant (t-test, P = 1.03 x 10-3  ) difference between the proportion of 

vortex-encysted zoospores that germinated in Ca(NO3)2 and CaCl2 (Table 3.14). Likewise, 

there was a very significant (t-test, P = 5.74 x 10-3  ) difference between the level of 
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germination in Mg(NO3) 2  and MgCl2. In both cases germination was higher when the nitrate 

salt was used. 

Table 3.14. Comparison of the effects of Cl -  and NO3  salts of Ca 2' and Mg2  (30 

mM) on germination cysts of Pythium aphanidermatum. 

30 m Ca2 ' 	 15 MM Mg 2+ 
 

Units 	 % (and Arcsine) 	 % (and Arcsine) 

C1 	 25.1 ±2.1 	 33.7 ±2.2 
(30.0 ± 1.4) 	 (35.5 ± 1.3) 

NO3 	 41.8±2.6 	 47.2±2.4 
(40.2 ± 1.5) 	 (43.4 ± 1.4) 

P (t-test) 	 (1.04x 10- ) 	 (5.74x 10-3) 

n 	 5 	 4 

Means ± s.e.m. for n replicates, assessed after 2h, based on scoring at least 100 cysts per replicate. 
T-tests performed on arcsine transformed data. 

It has already been observed that the presence of 5 mM Ca2  during sporangiogenesis 

increased sporangial discharge and subsequent zoospore release, whereas 40 mM Ca 2  

suppressed sporangial discharge and zoospore release compared to the calcium-free control. 

The effect of 5 mM and 40 mM Ca2  with Cl and NO3  as the counter-ion was tested as in 

Section 2.3.4. There were no significant differences between 5 mm CaC12  and 5 MM 

Ca(NO3)2 on sporangiogenesis and subsequent zoospore release from Ph. parasitica (Table 

3.15), although pre-cold shock zoospore release was almost significantly (P = 0.09) greater 

when calcium was added as a nitrate. However, 40 mM Ca(NO3)2 did significantly (P = 

0.048) reduce post-shock sporangial discharge when compared to the 40 mM CaC1 2  

treatment. All other differences were not significant (P 2: 0.15). 

Table 3.16 shows a summary of the direct comparisons between the effect of Cl -  and NO3  on 

aspects of Phytophthora parasitica and Pythium aphanidermatum biology. Also shown are 

predications based on previous observations reported in this chapter. The arithmetic 

differences in the direct comparisons, although mostly not significant, were as predicted. The 

only comparison that was not as predicted concerned post-shock sporangial discharge in 5 

mM Ca24 . It was predicted that higher discharge would be seen in the Ca(NO 3)2 treatment 

than for the CaC12 treatment, but the direct comparison showed otherwise. 
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Table 3.15. Direct comparison between the effect of Cl -  and NO3  on aspects of Phytophthora parasitica sporangiogensis 1  and 

subsequent zoospore release in the presence of 5 mM and 40 mM Ca 2+  salts. 

[Ca`] 	Pre-shock zoospore Post-shock zoospore Pre-shock sporangial Post-shock sporangial 	Sporangial density '  

release a release a discharge b discharge b 

Units 	mM 	Zoospores.pt' Zoospores41l % (and Arcsine) % (and Arcsine) 	Sporangia per video screen 

10 111M C1 	5 	 68.1 ± 10.0 55.7 ± 5.8 17.8 ± 1.9 19.2 ± 3.3 	 7.4 ± 0.7 
(24.9 ± 1.4) (25.7 ± 2.3) 

10mMN0 3 	5 	91.5±6.8 	 59.1 ±3.1 	 20.9±4.2 	 17.8±3.4 	 7.5±0.8 
(26.8 ± 3.0) 	 (24.8 ± 2.5) 

P (t-test) 	 9.0 x 10.2 	 6.2 x 10 	 (5.7 x 10') 	 (7.5 x 10) 	 9.0 x 10 

80mM Cl- 40 	 6.5 ± 1.0 	 10.9 ± 1.2 	 5.5 ± 1.2 	 6.3 ± 1.4 	 8.7 ± 0.7 
(13.2± 1.5) 	 (14.2± 1.6) 

80mMN03 	40 	 4.6±0.7 	 10.2± 1.4 	 2.2±0.4 	 2.8±0.8 	 7.7±0.9 
(8.3 ± 0.9) 	 (9.3 ± 1.4) 

P(t-test) 	 1.5 x 10' 	 7.2 x 10' 	 (2.2 x 102) 	 (4.8 x 102) 	 3.9 x 10' 

a Means ± s.e.m. for 5 replicates, based on 2 haemocytometer counts per replicate. 
b Means ± s.e.m. for 5 replicates, based on 3 fields of view per replicate. 
C  Means ± s.c.m. for 5 replicates, based on 6 fields of view per replicate. Three fields of view observed prior to cold shock and three fields of view observed post cold 
shock. 
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Table 3.16. Summary of direct comparisons between the effect of Cl - and NO3  on aspects of Phytophthora parasitica and Pythium 

aphanidermatum zoosporic infection sequences in various concentrations of Ca 2+  and Mg2  salts. 

Aspect Fungi [Cation] Predicted 
Result 

Outcome Significant 
difference 

Zoospore motility ?y. aphanidermatum 10 mM Ca' Cl- > NO3 As expected 

Subsequent cyst germination Py. aphanidermatum 10 mM Ca2  NO3  > Cl-  As expected 

Cyst germination (vortex encysted) Py. aphanidermatum 30 mM Ca2  NO3  > Cl- As expected I 

Cyst germination (vortex encysted) Py. aphanidermatum 15 mM Mg 2+ NO3  > Cr As expected 

Sporangiogenesis - Pre-shock zoospore release Ph. parasitica 5 mM Ca 2+ NO3  > Cl' As expected 

Sporangiogenesis - Post-shock zoospore release Ph. parasitica 5 mM Ca2  NO3  > Cr As expected 

Sporangiogenesis - Pre-shock discharged sporangia Ph. parasitica 5 mM Ca21  NO3  > Cr As expected 

Sporangiogenesis - Post-shock discharged sporangia Ph. parasitica 5 mM Ca 2+ 
NO3-  > Cl- Not as expected 

Sporangiogenesis - Sporangial density Ph. parasitica 5 mM Ca 2+ NO3  = Cl P = 0.90 n.a. 

Sporangiogenesis - Pre-shock zoospore release Ph. parasitica 40 mM Ca2  Cr > NO3  As expected 

Sporangiogenesis - Post-shock zoospore release Ph. parasitica 40 mM Ca2  Cl- > NO3  As expected 

Sporangiogenesis - Pre-shock discharged sporangia Ph. parasitica 40 mM Ca2  Cl- > NO3  As expected I 

Sporangiogenesis - Post-shock discharged sporangia Ph. parasitica 40 mM Ca2  Cl- > NO3  As expected I 

Sporangiogenesis - Sporangial density Ph. parasitica 40 mM Ca2  Cr = NO P = 0.39 n.a. 

n.a. not applicable. 

I when P:5 0.05. 
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3.13. Discussion 

The modification of the cationic concentrations in irrigation solutions is an elegant method 

for disease control, especially when the effect on the crop is negligible. This method of 

disease control is economically attractive, straightforward in terms of legislation and 

implementation, and highly compatible with present biological control of insects in British 

horticultural glasshouse irrigation systems. Nutrient solution manipulation does not target a 

single site, but is broad acting and consequently has long term potential. 

The results presented in this chapter show that suppression of mycelial growth of Py. 

aphanidermatum is not solely mediated by increased osmotic potential, nor is growth 

retarded by nitrate toxicity. This was illustrated by supplements up to 80 mM KNO 3  failing 

to suppress mycelial growth of both fungi. This result supports other findings (for example, 

Money & Harold, 1993) that mycelial growth in Oomycetes is not solely driven by turgor 

pressure. In contrast, 80 mM Ca(NO 3)2  or Mg(NO3)2  markedly suppressed growth of Py. 

aphanidermatum, but not Ph. parasitica. Moreover, there is evidence in the results to 

suggest that Ca(NO3)2 enhances mycelial growth of Ph. parasitica. In an infection, mycelial 

growth that is inpianta would be buffered from cationic supplements by the host tissue. 

Halsall and Forester (1977) found maximal sporangial numbers of Ph. cinnamomi in 

solutions with sub-millimolar concentrations of Ca 2 , Mg2  and K. The various supplements 

presented in this Chapter had no noticeable effect on sporangial density of Ph. parasitica, 

nor any effect on sporangiogenesis of Py. aphanidermatum when measured indirectly by 

subsequent zoospore release. Leaching of salts from the fungal mats could raise the 

concentration of cations in the bathing medium of the SDW controls to a level where 

maximum sporangiogenesis occurs, with additional supra-optimal supplements having 

negligible effect on sporangial density. The exception being that MSS with a calcium 

concentration of 5 mM increased subsequent zoospore release from Py. aphanidermatum 

four-fold, compared to the Ca 2'-freeMSS (Table 3.3). Similarly, MSS supplemented with 5 

mM Ca2  increased zoospore release from sporangia of Ph. parasitica. This increased level 

of zoospore release was also reflected in the proportion of sporangia that discharged their 

contents. Therefore, it appears that circa. 5 mM Ca2  is the optimum concentration for 

sporangiogenesis of both species. The average concentration of calcium in the glasshouses of 

Stockbridge House was approximately 8 mM (Appendices 8 to 13). However, during the 

first few weeks of the season calcium levels were near 5 mM. 
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Von Broembsen and Deacon (1997) found that increasing concentrations of calcium (up to 

50 mM) visually increased sporangial cleavage of Ph. parasitica, but suppressed zoospore 

release. The observations made in this chapter are that concentrations up to 40 mM Ca 2+  do 

not affect sporangial density, but do generally suppress sporangial discharge. Therefore, 

although increasing concentrations of calcium do not affect sporangia formation, increasing 

concentrations of calcium do facilitate the cleavage of cytoplasm into zoospores, but inhibit 

the ability of sporangia to subsequently liberate zoospores. 

In contrast to sporangiogenesis, the motile zoospore is the target of many potential 

approaches to disease control in glasshouse irrigation systems (for example, Deacon & 

Mitchell, 1985; Ghaouth et al., 1994; Stanghellini et al., 1996a & 1996b). Suppression of 

sporangiogenesis and the mechanisms of zoospore release are also potential targets for 

disease control. 

Hill et al. (1998) found that 5 mM CaC12  suppressed both the direct and indirect (zoospore 

liberation) germination of sporangia of Ph. infestans. Results presented in this chapter show 

this to also be true for Ph. parasitica and Py. aphanidermatum. All salts tested did suppress 

zoospore release (indirect germination) in a concentration dependent manner. Whether this is 

due to increased electrical conductivity or osmotic potential cannot be answered here. 

Grayson (1999) found that 10 mM CaC12  completely suppressed zoospore release of two 

strains (8 1/1/1 and EUPi1) of Ph. infestans, but found that this concentration of calcium did 

not affect the direct germination of sporangia. In contrast, complete suppression of zoospore 

release from pre-formed sporangia of Ph. parasitica was not achieved with the highest 

concentration of calcium tested (40 mM). If the linear relationship between calcium 

concentration and zoospore release were assumed then approximately 80 mM Ca 2  would be 

required to completely suppress zoospore release from pre-formed sporangia. 

The suppression by cationic supplements of zoospore release from Py. aphanidermatum is 

greater than for Ph. parasitica. This may be due to the differing physiology of zoospore 

release. Zoospores are released from sporangia of Phytophthora by the dissolution of the 

papillar plug (Gisi, 1983), whereas zoospore release from sporangia of Pythium first requires 

the formation of a membrane-bound vesicle that contains undifferentiated cytoplasm. After 

the cytoplasm has differentiated into zoospores their release can proceed. Therefore, cationic 

suppression of zoospore release has potentially more points to target in zoospore release 
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from Pythium than from Phytophthora. The ability of 10 mM calcium to completely 

suppress sporangial discharge by Ph. infestans as reported by Grayson (1999) could either be 

an indication of the sensitivity of this species to calcium or be a reflection on the different 

methodologies employed to assess sporangial discharge. 

Cations have been implicated in the regulation of termination of zoospore motility in the 

water mould Achlya heterosexualis (Thomas & Butler, 1989). For zoospores of Ph. 

cinnamomi Bryt et al. (1982) also found that cations curtailed zoospore motility. In general, 

they found that the sensitivity of zoospores to the cationic species was related to the charge 

density of the cation. Of the anions tested by Bryt et al. (1982) only F and CH3COO 

inhibited zoospore motility, whereas nitrate, chloride and sulphate - the major three anions 

found in irrigation systems - were found not to affect zoospore motility. The results of this 

chapter found that for all three cations the degree of suppression of motility was directly 

related to salt concentration. Py. aphanidermatum was slightly more sensitive to cation 

supplements than Ph. parasitica. This is similar to findings for Ph. cinnamomi (Bryt et al., 

1982) and Ph. palmivora (Bimpong and Clerk, 1970). Soll and Sonneborn (1972) concluded 

that ionic effects on the monoflagellate zoospores of Blastocladiella emersonii were not due 

to osmotic shock, as a sugar had no effect in the test system. Bimpong and Clerk (1970) also 

found that of the three sugars tested none noticeably suppressed motility of zoospores of Ph. 

palmivora. However, one of the nitrogen sources tested, L-glutamine, did suppress zoospore 

motility. 

Both monovalent and divalent cations act as counterions to the net negative charge caused by 

the presence of acidic phospholipids in the plasmamembrane (Gennis, 1989). Increased 

concentrations of cations reduce the transmembrane potential of the zoospore and this has 

the potential to induce zoospore encystment. Monovalent potassium was more effective than 

divalent calcium or magnesium at suppressing motility of zoospores of both species when 

the concentration of ionic products is taken into account. This was clearly demonstrated 

when the potassium to calcium ratio was modified (and the anion concentration stayed 

constant). Altering the potassium to calcium ratio from 7.7:4.3 to 13.3:1.5 halved the 

proportion of zoospores of Py. aphanidermatum that remained motile in both experiments 

(Table 3.12). The effect in the corresponding experiment with Ph. parasitica was that the 

proportion of zoospores remaining motile dropped from 59% to 5%. This large increase in 
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suppression of zoospore motility was achieved by only slightly increasing the sum of ionic 

conductivities from 224 m2.nS.mol' to 232 m2.nS.moF1t.  Therefore, there is potential to 

suppress zoospore motility in irrigation systems without increasing electrical conductivity by 

manipulating the potassium to calcium ratio, and this modified ratio is only marginally (2%) 

more expensive then the control ratio (based on prices from Anon, 2000a). The effect of 

modifying the potassium to calcium ratio without altering the electrical conductivity of the 

solution on the biology of Py. aphandidermatum and Ph. parasitica demonstrates that the 

observed effect is not due to altering the ionic strength of the bathing solution. Bouchibi et 

al. (1990) also found that variable Ca 2  concentration in a constant ionic concentration 

(varied Na to Ca 2+  ratio) was negatively correlated with zoospore motility and cyst 

germination, whereas zoospore lysis and encystment were positively correlated with calcium 

concentration. 

The level of subsequent germination of cysts after spontaneous zoospore encystment was 

dependent on the concentration of cations in the media. Increasing concentrations of calcium 

caused increased levels of germination of cysts of both species. Calcium is known to have a 

central role in cyst germination (Donaldson & Deacon, 1992). Many in vitro studies have 

shown Ca 21  to trigger germination of Phytophthora (for example, Bryt et al., 1982; Grant et 

al., 1986; Deacon & Saxena, 1998). The observation that increasing concentrations of Mg 2  

also increase subsequent cyst germination of Py. aphanidermatum could be attributed to the 

cation acting as a surrogate for calcium (Donaldson & Deacon, 1992). The observation of a 

peak in subsequent cyst germination of Py. aphanidermatum between 5 and 10 mM KNO3  

might be discarded as erroneous if the same phenomenon had not been observed in a later 

experiment (see Figures 3.38 and compare with Figure 3.65). 

Germination of vortex-encysted zoospores in the absence of any salt was lower for Ph. 

parasitica than for Py. aphanidermatum. This may be due to the higher densities of Py. 

aphanidermatum cysts elevating the exogenous salt concentrations through leaching, and 

consequently raising the control level of germination. Potassium had a large influence on the 

germination of cysts of Ph. parasitica. In SDW the germination level was 3.7% and in 5 MM 

KNO3  the level was increased to 30.5%, although higher concentrations of K did not 

significantly improve this, suggesting that a low concentration of K acts as a germination 

The molar (equivalent) conductivity ?. (lO m2.S.mol') at infinite dilution at 25 °C for K is 73.48, 
Y2Ca2  is 59.47 and 71.42 for NO 3 . 
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trigger. However, potassium had no noticeable effect on cyst germination of Py. 

aphanidermatum which is consistent with the previous findings by Donaldson (1992) who 

worked with the same isolate (CBS 634.70). Magnesium, like potassium, appears to trigger 

the germination of Ph. parasitica at a low concentration (less than 5 mM). This contrasts 

with other work where magnesium was found not to promote the germination of spores of 

Ph. palmlvora (Bryt etal., 1982). 

From a theoretical standpoint, based on in vitro results described in this chapter, the 

compound effect of potassium is superior to that of calcium. The maximum supplement that 

would be commercially acceptable would be approximately 10 MM. However, this 

concentration could be further increased to the detriment of another cation. The compound 

effect of 10 mM K was to reduce zoospore release of Py. aphanidermatum to 23% of the 

control and suppress zoospore motility to 7% of the control, the equivalent values for 

calcium being 58% and 42%, respectively. The ionic conductivity of KNO 3  is 55% of that of 

Ca(NO3)2 . Therefore, a commercial irrigation system could tolerate a higher KNO 3  

supplement mole-for-mole than Ca(NO 3)2 . 

A constant supplement of 5 mM Ca(NO3)2  clearly promotes zoospore release from Py. 

aphanidermatum and Ph. parasitica. Whether this phenomenon is observed in commercial 

irrigation systems is yet to be established. The presence of calcium in irrigation solutions is 

justified on two fronts. First, it is essential for healthy plant growth, and second, it facilitates 

the addition of nitrogen (as nitrate) to the system. Nitrogen can be added in other forms, 

although ammonium can increase pH to a phytotoxic level. Potassium or magnesium nitrates 

are possible substitutes for calcium nitrate. Calcium is required by vegetable crops as a 

component of cell walls and for meristematic activity (Fordham & Biggs, 1985). Calcium 

deficiency in tomatoes is typically shown as blossom-end rot. Blossom-end rot can also be 

induced by high concentrations of magnesium or potassium, because these elements compete 

with calcium (Adams & Ho, 1993). In addition to these factors, excess potassium can also 

cause a reduction in magnesium and calcium uptake (Fordham & Biggs, 1985). The 

recommendation of ideal concentrations of the principal cations in irrigation solutions is 

beyond the scope of this thesis. However, from a mycological perspective the elevation of 

potassium levels to the detriment of calcium concentration theoretically would suppress 

inoculum density and zoospore motility. Bres and Weston (1992) have already found that 

elevating IC levels from 3.8 mM to 5.8 mM in a NFT system had no effect on lettuce 
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(Lactuca sativa L.) yield or tipbum incidence. Tipburn in lettuce is the equivalent of 

blossom-end rot in tomatoes. 

The correlation between zoospore release numbers and the proportion of zoospores 

remaining motile in the experiment on cumulative effects of Ca 2+  (Section 3.8.1) can only be 

partially explained by the observation in another experiment (Section 3.10) that there is 

positive correlation between zoospore density and the proportion of zoospores remaining 

motile. This correlation is consistent with the observation of Ho and Hickman (1967) that 

dilution of zoospores induces zoospore encystment. The relationship between zoospore 

density and the proportion of zoospores remaining motile is not strong enough to explain the 

phenomenon observed in the cumulative effect assay. The usual effect of calcium on 

zoospore motility is that increased cation concentration is associated with suppressed 

motility (for example, Figure 3.33). The most likely explanation is that these zoospores are 

conditioned to high calcium concentrations by virtue of the sporangia and mycelia being 

previously exposed to elevated calcium concentrations. Based on this explanation, these 

zoospores would be expected to have modified plasma membranes. That is, the environment 

of zoosporangiogenesis may affect the behaviour of the zoospores that are subsequently 

liberated. 

Bryt et al. (1982) observed that the germination of Ph. cinnamomi was higher in Ca(NO 3)2  

than in CaC12. Inspection of the data presented by von Broembsen and Deacon (1997) shows 

that CaC1 2  suppressed sporangial discharge of Ph. parasitica, but the effect was more 

noticeable when calcium nitrate was added. Similarly, they found that calcium suppressed 

diplanetism of Ph. parasitica and increased the percentage germination of cysts. The effect 

was more pronounced with calcium nitrate than with calcium chloride. This trend is 

confirmed by the results of this chapter. The observation of this phenomenon can now be 

extended to the magnesium cation - germination of cysts of Py. aphanidermatum was 33.7% 

in 15 MM  MgCl2, but germination (47.2%) was very significantly higher in Mg(NO 3)2  

(Table 3.14). These observations cannot be simply explained by the relative ionic 

conductivities of these two anions: X for Cl - is 763 m2.mS.mol' and 714 m2.mS.mo1 1  for 

NO3 . 

The ATP-dependent acidification of the interior of vesicles of barley (Hordeum vulgare L.) 

roots is strongly dependent on the presence of chloride and nitrate (Yamashita et al., 1996). 

However, the same research group later found that vesicles were more permeable to nitrate 
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than chloride (Yamashita et al., 1997). The increased permeability of nitrate was associated 

with greater activity of HtATPase  and H+-transport. If the same is true in zoosporic fungi 

then anion-induced disruption of the transmembrane potential could account for the differing 

effects of chloride and nitrate, although in other species the differences in the mechanism of 

uptake of chloride and nitrate cannot be resolved. The permeability of rat liver lysosomes to 

inorganic anions does not seem to be mediated by any known anion transporter (Klemm et 

al., 1998). The ability of anions to permeate the membrane was attributed to their position in 

the lyotropic series, but chloride is slightly higher than nitrate in the lyotropic series. The 

lamprey (Lampetra fiuviatilis) erythrocyte membrane is suggested to have an electroneutral 

furosemide-sensitive anion-exchange pathway that accepts both chloride and nitrate 

(Bogdanova et al., 1998). Therefore, there appears to be little consistency in the interaction 

with anions and biological membranes. 

The work presented in this chapter confirms and extends the findings of von Broembsen and 

Deacon (1997). That is, calcium at a supplement of 20 mM affects several stages of the 

infection sequence and the cumulative effect has the potential to reduce the inoculum for 

primary infection and the secondary spread of infection. The results in this Chapter have also 

demonstrated the magnitude of the speculated cumulative effect. Py. aphanidermatum was 

more sensitive to cation supplements in vitro than Ph. parasitica, which has already been 

shown to be controlled effectively by calcium supplements in small-scale glasshouse trials 

(von Broembsen and Deacon, 1997), although the level of supplement found to be effective 

by von Broembsen and Deacon (1997) could be detrimental to water up-take in large 

horticultural crops (tomatoes and cucumbers). However, no effects were detected in the 

small ymca plants of their trial. Ideally the modification of the nutrient solution for disease 

control purposes should not increase the electrical conductivity of a nutrient solution. 

Cooper (1979) recommends that the electrical conductivity of irrigation solutions should be 

above 2.0 mif', but less than 3.0 mfi'. The electrical conductivity of the nutrient solutions 

at Stockbridge House ranged from 2.1 to 4.3 mif', with the mean being 3.16 ± 0.05 m92- ' 

(Appendices 8 to 13). Concentrations of the principal cations (Ca 2 , Mg2  and IC) and 

nitrogen were also greater than recommended by Cooper (1979). The average concentrations 

of these ions were 8.2 mM for Ca 2+'  9.6 mM for IC, 5.2 mM for Mg2  and 22.4 mM for 

nitrogen. Virtually all nitrogen was present in the nitrate form, with only 26 LM of nitrogen 

present as ammonium. Ultimately, the upper limit of cation supplements for the control of 

pathogenic Oomycetes will depend on agronomic factors. The results of this chapter suggest 
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that the greater the supplement the greater the disease suppression. Therefore, there will be 

trade-off between disease control and plant stress through increased salt concentrations. 

Calcium is essential for normal zoospore behaviour (Halsall and Forester, 1977; Gubler et 

al., 1989; Donaldson and Deacon, 1992; Deacon and Donaldson, 1993; Donaldson and 

Deacon, 1993a; von Broembsen and Deacon, 1996; Warburton and Deacon, 1998) and 

supra-optimal levels profoundly interfere with zoospore biology. However, similar 

supplements of either potassium or magnesium in most cases also have a noticeable effect on 

the infection sequence. Magnesium has been reported to surrogate calcium in several 

physiological processes in Pythium (Donaldson & Deacon, 1992). In this study Mg 2  was 

generally less effective than Ca 2 , although Mg(NO3)2  was the only salt tested that 

significantly suppressed biomass gain of Ph. parasitica. Magnesium, unlike calcium, did not 

elevate sporangial discharge at concentrations that are commercially used. The effectiveness 

of IC in suppressing the infection sequence prompted the manipulation of the potassium to 

calcium ratio in favour of potassium, but without increasing the overall nitrate level. This 

manipulation suppressed zoospore release from Py. aphanidermatum and suppressed 

zoospore motility in both species, thus demonstrating that simple manipulation of nutrient 

balance has potential as a disease control method. Coincidentally, certain complete fertilisers 

designed for growing of tomatoes or cucumbers in NFT based systems by amateurs lack 

calcium (Anon, 2000b). 

Generally Py. aphanidermatum was more susceptible to cationic manipulation than Ph. 

parasitica. A strong contrast was seen between the effect of salt supplements on suppression 

of biomass gain in Py. aphanidermatum and the relative insensitivity of Ph. parasitica. The 

compound effect of 5 mM KNO3  clearly suppressed the theoretical infection potential of Py. 

aphanidermatum, but the effect on the biology of Ph. parasitica was only marginal. In 

laboratory conditions Ph. parasitica grows slower and liberates fewer zoospores than Py. 

aphanidermatum. Most species of Phytophthora, including Ph. parasitica, are moderately 

resistant to hymexazol (Tay et al., 1983), whereas all species of Pythium are sensitive to 

hymexazol (Masago et al., 1977). These differences in biology may be indicative of life 

strategy. 
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Chapter 4. 
The effects of recirculating horticultural irrigation 

solutions on the biology of zoosporic fungi. 
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4.1. Introduction. 

Presently, an estimated 90 to 95% of British tomatoes and 80 to 85% of cucumbers are 

grown in glasshouse irrigation systems; together the area covers approximately 700 ha. All 

these irrigation installations presently operate 'run-to-waste' systems: that is, nutrient solution 

is applied to the crop and all the excess solution is discarded. Crops are irrigated to excess 

(25-35%) to counter both potential variation in the irrigation supply and the individual 

plant's demand for nutrients (McPherson et al., 1995). The discarded solution contains a 

range of chemicals including nitrates, phosphates and potentially pesticides. Not only does 

this practice have environmental implications, but also it represents a waste of resources. 

The practice of run-to-waste is employed because of the relative ease of management and to 

minimise the danger of recirculating pathogen propagules. 

Conventional wisdom suggests that the recirculation of irrigation solution containing disease 

propagules will increase disease pressure and result in increased disease incidence. This 

would consequently reduce the quantity and quality of the yield. However, it has been found 

that, contrary to expectation, the recirculation of contaminated irrigation solution does not 

necessarily increase the incidence of disease (McPherson et al., 1995). That is, a closed, 

recirculating irrigation system can enable natural disease suppression to occur. This 

phenomenon is poorly understood, and perhaps unpredictable, so there is unwillingness by 

commercial operators to adopt recirculation technology. 

Horticulture Research International (HRI) at Stockbridge House (North Yorkshire) has 

attempted to investigate the suppressive potential of irrigation solutions from closed 

(recirculating) irrigation systems against the tomato root pathogen Ph. cryptogea. The 

objectives of their work included the following (McPherson, 1998): 

• To determine whether a suppressive potential develops in the irrigation solution in the 

absence of the pathogen. 

• To determine how quickly a suppressive solution develops in 'closed' systems. 

• To determine if the suppressive potential is enhanced by the application of specific 

treatments e.g. slow sand filtration. 

• To determine if any applied treatments, e.g. pasteurisation, are detrimental to the 

suppressive potential. 
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• To investigate whether a suppressive solution, generated against Ph. cryptogea, is 

effective against other root pathogens. 

• To determine the maximum dilution factor for continued efficacy of the suppressive 

solution. 

• To determine whether irrigation solution from commercial 'closed' systems is equally 

suppressive. 

To determine the persistence of the suppressive potential of used solution. 

A collaboration with Stockbridge House was agreed whereby irrigation samples were taken 

regularly from the trial and submitted to me for further analysis. The analyses in Edinburgh 

were intended to identify where the agents of suppression acted in the infection sequence of 

the zoospore-producing fungi (Py. aphanidermatum and Ph. parasitica). 

4.2. The experimental protocol at Stockbridge House. 

4.2.1. An overview. 

In a large glasshouse (1000 m 2) all treatments were present in a semi-replicated format (see 

later). The treatments were: 

Uninoculated 'open' rockwool system. 

Uninoculated 'closed' rockwool system. 

Inoculated 'open' rockwool system. 

Inoculated 'closed' rockwool system. 

Inoculated 'closed' rockwool system, solution pasteurised. 

Inoculated 'closed' rockwool system, solution slow-sand filtered. 

All inoculated treatments had Ph. cryptogea artificially introduced once the plants were 

established (see later). Two disinfection treatments were employed in this trial. 

Pasteurisation represented an active and physical form of disinfection, whereas slow-sand 

filtration was passive and biological. Rockwool is an inert solid rooting medium that is 

commonly used in commercial operations. 

Once the plants were established and the relevant treatments inoculated with the pathogen 

the irrigation solution was 'harvested' from each treatment at regular intervals and used to 

'prime' a series of mini-NFT (nutrient film technique) systems. Small samples of the 
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'harvested' solution were sent to Edinburgh, to test their effects on different stages of the 

zoosporic infection sequence. The mini-NFl systems were designed to determine the 

suppressive potential of each solution taken from the treatments in the main glasshouse. That 

is, the systems of the large glasshouse principally generated suppressive solutions for 

assessment in the mini-NFT trials, and at Edinburgh. At Stockbridge House the assessments 

were primarily agronomic, whereas the results presented in this Chapter focus on the effects 

of irrigation solutions on the zoosporic fungi Ph. parasitica and Py. aphanidermatum. In 

addition, F. Lewis and J. Friend (University of Hull), and J. Taylor (HRI, Wellesbourne) 

sought to partially characterise the bacterial populations present in the treatments and 

tentatively identify the mechanism of suppression. In Figure 4.1, a flow diagram represents 

schematically how the work at Edinburgh, Hull and HRI are related. 

Figure 4.1. Schematic representation of the relationship between the work 

performed at various locations. 
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I was not involved with the experimental design, trial implementation and results gathering 

at Stockbridge House. However, I solely performed all the analyses at Edinburgh along with 

the interpretation of the results derived from both Edinburgh and Stockbridge House that are 

presented in this thesis. 

4.2.2. The experimental set up of the large glasshouse. 

Tomato (cultivar Ferrari) seed was sown into small rockwool blocks during mid April of 

1997. These blocks were transferred to the large glasshouse in mid May. Three plants were 

planted out into each rockwool trough (Figure 4.2). Each treatment was present as four 

randomly allocated double rows of plants. Each double row contained 20 rockwool troughs, 

with each plant being individually drip irrigated and each slab draining into the channel 

between the double row (Figures 4.3, 4.4 and 4.5). 

Figure 4.2. The arrangement of rockwool blocks on rockwool slabs. 
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Figure 4.3. The arrangement of rockwool slabs in a double row. 
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The glasshouse contained a total of 28 double rows with a north-south pathway dividing the 

double rows into two sides of 14 rows. The single rows at the north and south ends of the 

glasshouse were not included in the trial, but acted as guard rows. Plants grown in these 

outer rows perform better than the other rows because of increased exposure to solar 

radiation. Each treatment was represented by two double rows in each side of the glasshouse; 

row allocation was fully randomised. The run-off from each treatment was captured and 

pooled in a collection tank according to treatment (Figure 4.5). Therefore, the trial was not 

fully replicated - this was due to financial constraints. A couple of weeks after planting (at 

the end of May) the appropriate plants were inoculated with a virulent isolate of Ph. 

cryptogea by placing a 2 x 1 cm agar block containing the fungus beneath the propagation 

block of the central plant in each slab. 

Figure 4.5. Diagram of the layout of the double rows (east half of the glasshouse 

only) and the collection of irrigation solution. 
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From the collection tanks the irrigation solution was pumped to, and stored in, 1000 1 

covered containers. Once a container was full the contents were then pumped to a second 

1000 1 covered container. However, for the slow sand filtered and pasteurised treatments the 

pumping from the first to the second container was via the relevant apparatus (that is, either a 

sand filter or a pasteuriser). Irrigation solution in the second container was then discarded for 

the 'open' run-to-waste treatments or recirculated for the 'closed' treatments. All recirculated 

irrigation solutions before being re-irrigated passed through a Vocom unit which adjusted the 

pH of irrigation solution by adding nitric acid, and the electrical conductivity of the solution 

was adjusted by either diluting with fresh water or adding concentrated nutrient solution. 

At fortnightly intervals irrigation solution from each treatment was sampled and analysed for 

nutrient content, electrical conductivity and pH (Appendices 8 to 13). From these analyses 

any nutrient deficiencies could be rectified. As the tomato plants grew they were trained onto 

supports according to standard commercial practice. 

Irrigation solutions were harvested from each treatment at five time points: early July (1), 

mid July (150),  late July (30th)  early September (9 th) and late October (20) The irrigation 

solution was harvested from the second container - that is, prior to adjustment for pH and 

electrical conductivity - but after slow sand filtration and pasteurisation in the treatments 

where these processes occurred. The volume of solution harvested from each treatment was 

approximately 250 1, of which 250 ml to 500 ml was sent to Edinburgh. 

4.2.3. The set up of the mini-NFT systems. 

In the large glasshouse the tomato plants were grown in rockwool slabs for the duration of 

the trial. Roots growing in this solid substrate cannot be assessed for development or 

indications of disease. Similarly, the height of the plants would be difficult to obtain in the 

large glasshouse because of the spiral training of the plants. However, in mini-NFT systems, 

which lack solid substrate, it is easy to make observations of root development and disease 

incidence. 

The harvested irrigation solution from each treatment was used to prime three fully 

replicated mini-NFT systems. Each mini-NFT system was a single channel and contained six 

to eight plants (Figure 4.6). The irrigation solution was recirculated for the duration of the 

experiment, which was typically about a month. 
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Figure 4.6. The set up of a single mini-NFT system. 

Inclined mini-NFT channel 

Floor 

The positioning of the mini-NFT systems was completely randomised within a small 

glasshouse that contained eight tables. Each table supported five mini-NFT systems (Figure 

4.7). Guard rows were employed at the south end of the four south tables. In these short-term 

experiments using mini-NFT systems it was occasionally necessary to top-up the solution 

reservoirs with fresh solution. This mirrors what would be done in a commercial NFT 

system. 

Figure 4.7. Diagram of the allocation of the mini-N FT trials. 

	

Mini-NFT T1 1P2, 		4 i —Guards 
channel  

	

8641 	65 

i!1 	427 	i38LI 
281 Li,_1 

'Trials that are unnumbered or numbered 7 and 8 are not relevant to this thesis. 
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4.2.4. Assessment of plants grown in the mini-NFT systems and number 

of Phytophthora propagules recirculating. 

At the initiation of each mini-NFT trial the number of Ph. cryptogea propagules per litre of 

irrigation solutions was determined by two different methods performed by staff at HRJ. The 

first method used a serological probe (dipstick) and the second, more reliable but more time-

consuming method, used a dilution plate method. In this second method a solution sample 

was passed through a membrane filter, then the filter was resuspended in a small quantity of 

water before diluting and plating out on selective media. However, the results from both 

techniques reported low propagule numbers - for example, the membrane method failed to 

find a zoospore in any of the 9th  September samples. Consequently all treatments (except the 

fresh nutrient solution control) were inoculated with Ph. cryptogea at the initiation of the 

NFT trial and propagule numbers reassessed at the termination of the mini-trial. Propagule 

numbers determined by the probe method are in Appendix 1 and the propagule numbers as 

determined by the membrane method are in Appendix 2. 

At the termination of the mini-NFT trials an index of root development (0 to 100) was 

determined by randomly taking four roots per plant from each channel (replicate) and 

measuring the length of the roots (Appendix 3). Similarly, for these randomly selected roots 

the length of discolouration was measured to allow the determination of the percentage root 

area with Ph. cryptogea infection (Appendix 4.). Also from these roots the number of visible 

lesions per unit area of root was determined (Appendix 5). Five 1 cm root pieces per plant 

were also taken and plated onto a Phytophthora selective medium and the number of 

infection sites of Phytophthora determined by the number of plated root pieces from which 

the fungus grew (Appendix 6). 

In the final mini-NFT trial that started on the 24th  October additional agronomic data were 

obtained (Appendix 7). The dry weight of the roots was determined. A single leaf per plant 

from a standard position on each plant was selected in all NFT channels (replicates) and then 

leaf length was measured in situ from the stem to the tip of the leaf. The leaf was then 

excised and the leaf area was determined using a Planimeter. Plant height and stem diameter 

were also determined. 
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4.2.5. Summary of results from Stockbridge House. 

Root infection by Ph. cryptogea in the main glasshouse was extensive, but disease symptoms 

did not become visibly apparent in the aerial portion of the crop until September, although 

the high temperatures and high incidence of solar radiation in August subjected the crops to 

stressful conditions. The aerial symptoms were limited to wilting of the tomato plant 'heads' 

during bright sunny days with recovery being made at night. With the advance of the 

disease, increased incidence of wilting was observed, but only a few plant losses were 

reported by the termination of the experiment. The most severe wilt was reported in the two 

inoculated plots (treatments 3 and 4) with the higher incidence of wilting occurring in the 

closed system (treatment 4). During the whole growing season low incidence of wilting was 

reported when the irrigation solution passed through the slow sand filter (treatment 6), 

whereas noticeably more wilting was reported in the plots where the solution was pasteurised 

prior to recirculation (treatment 5). 

A reason cited by Stockbridge House for the lack of build up of natural suppression in the 

closed system is that the removal of large quantities of potentially suppressive irrigation 

solution for the miniNFT trials caused a dilution of the potentially suppressive solution by 

the introduction of fresh non-suppressive nutrient solution. Earlier studies had observed that 

when a system is switched from 'closed' to 'open' and refreshed with new nutrient solution a 

peak in zoospore release is observed. In an auxiliary treatment during the trial, evidence was 

found to suggest that the removal of irrigation solution may have compromised the build up 

of natural suppression. 

The number of Ph. cryptogea propagules enumerated at the termination of the mini-NFT 

trials was consistently higher when determined by the membrane method. Generally, lower 

propagule numbers were recovered from the 'closed' solutions than from the 'open' solutions. 

Towards the end of the season there were ten times as many zoospores recorded in the 

uninoculated open mini-NFT trial than in the uninoculated closed trial (treatments 1 and 2). 

A similar effect was not observed in the corresponding solutions from the inoculated 

treatments (treatments 3 and 4). Higher levels of zoospores were observed in the solutions 

from the pasteurised treatment than the slow-sand filtered treatment (treatments 5 and 6). 

Low levels of Ph. cryptogea were recorded in the uninoculated fresh irrigation solution 

control. 
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In general, the infections of Phytophthora spp. per 1 cm of root followed a similar trend to 

propagule numbers in the solution. There was lower infection from 'closed' solutions than 

'open' solutions. However, in solutions from the inoculated closed (treatment 4) treatment 

there was higher infection than in the corresponding open treatment (3). There was little 

difference in root infection between the two disinfection treatments. 

Overall, root development was highest in the fresh irrigation solution. Greater root 

development was seen in the uninoculated closed solutions than in the open solutions, with 

the trend, again, reversing for the corresponding inoculated solutions. Like root infection 

incidence, there was little difference in root development between the two disinfection 

treatments. With the exception of the fresh irrigation solution control, root development was 

lowest in all treatments during the final mini-NFT trial. 

No root discolouration was observed on any roots from the fresh irrigation solution control. 

Greater discolouration was observed generally in the uninoculated open solutions than the 

closed solutions, with the overall trend being reversed for the corresponding inoculated 

solutions. Root discolouration for all treatments was highest during the final mini-NFT trial. 

In the fresh irrigation solutions no lesions per unit area of root were observed. The greatest 

number of lesions for all other treatments was found in the final mini-NFT trial. Again, 

generally a higher incidence of lesions was observed in the uninoculated open solutions than 

the closed solutions, and in the corresponding inoculated solutions the trend was reversed. 

The numbers of lesions observed in the two disinfection treatments were similar. 

There was high correlation between the five agronomic factors assessed in the final mini-

NFT trial. Overall, the healthiest plants were in the control trial with the plants being the 

tallest, having the largest leaves and the heaviest roots. The least healthy plants were in the 

trial with uninoculated open solution, with the plants in the uninoculated closed solution 

being slightly healthier. There were only marginal differences between the indices of health 

for the plants grown in the two corresponding inoculated solutions. The plants grown in the 

solution from the slow sand filtered treatment were noticeably healthier than plants grown in 

the pasteurised solution. 
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4.3. The work performed at Edinburgh. 

When irrigation samples from Stockbridge House were received they were stored at 4 °C in 

the dark until required. When solutions were required the amount needed was filter sterilised 

through a 0.22 j.tm millipore membrane immediately before the experiment. The effects of 

the irrigation solutions on the various aspects of the infection sequences of Py. 

aphanidermatum and Ph. parasitica were determined using the standard protocols (see 

Chapter 2). The assays were: 

The proportion of zoospores of Ph. parasitica that remain motile in 

irrigation solutions during 1 h incubation. 

The proportion of cysts (from 1) that spontaneously germinated during the 

I  incubation. 

The proportion of zoospores of Py. aphanidermatum that remain motile in 

irrigation solutions during 2h incubation. 

The proportion of cysts (from 3) that spontaneously germinated during the 

2h incubation. 

The number of zoospores of Ph. parasitica released into irrigation solutions 

from pre-formed sporangia. 

The proportion of vortex-encysted zoospores of Py. aphanidermatum that 

had germinated after 2h in irrigation solutions. 

The subsequent release of zoospores into SDW from sporangia of Ph. 

parasitica that had formed in irrigation solutions. 

The density of sporangia of Ph. parasitica after incubation in irrigation 

solutions. 

The proportion of sporangia of Ph. parasitica that had discharged their 

contents after incubation in irrigation solutions 

4.3.1. Summary of 'Edinburgh' data. 

In Section 4.4 details of the various analyses are reported. However, neither temporal nor 

other trends were clearly identified in the data series. Therefore, the results are summarised 

here. 

To summarise the overall suppressive effect of each treatment on the biology of Py. 

aphanidermatum and Ph. parasitica the means of each treatment were ranked between 1 and 
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8 (Table 4.1). The highest rank (1) was attributed to the solution that was theoretically the 

least suppressive for the particular aspect of zoospore biology over the sampling period. A 

theoretically suppressive solution is a solution that suppresses zoospore motility, sporangia 

formation, sporangial discharge and the number of zoospores liberated. Promotion in cyst 

germination levels was also categorised as an indication of a suppressive solution. This is 

based on the assumption that all cysts are viable and that a germinated cyst only has the 

potential to infect locally, whereas a non-germinated cyst has the potential to release a 

secondary zoospore and infect a distant host plant. 

Table 4.1. Ranking of irrigation solutions based on theoretical suppressiveness. 

Treatment 

0 

a 9 2 
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0 Zi u 
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0 0 • • 
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1 	3 665 2 8 	3 
1 	3 2 6 3 7 8 	5 
4 	1 6 7 2 5 8 	3 
4. 	1 2 5 8 6 7 	3 
2 	1 3 5 4 7 8 	6 
2 	7 5 6 1 4 8 	3 
8 	2 3 1 4 5 7 	6 
1 	4 5 3 7 2 6 	8 
1 	3 7 8 5 4 2 	6 

Aspect of zoospore biology 

Zoospore motility (Ph. parasitica) - Table 4.4. 

Subsequent cyst germination (Ph. parasitica) - Table 4.5. 

Zoospore motility (Py. aphanidermatum) - Table 4.6. 

Subsequent cyst germination (Py. aphanidermatum) - Table 4.7. 

Zoospore release (Ph. parasitica) - Table 4.8. 

Germination of encysted spores (Py. aphanidermatum) - Table 4.9 

Zoospore release (sporangiogenesis) (Ph. parasitica) - Table 4.10. 

Sporangial density (Ph. parasitica) - Table 4.11. 

Sporangial discharge (Ph. parasitica) - Table 4.12. 

Mean rank - 	 3.2 2.7 4.2 4.8 4.3 4.7 6.9 4.9 

Within each treatment the range of theoretical suppressiveness was large. For example, the 

uninoculated closed treatment was the most suppressive of sporangial discharge and also the 

least suppressive of the numbers of zoospores released from pre-formed sporangia. However, 

overall the most suppressive treatment was the inoculated closed (pasteurised) treatment with 

a mean rank of 6.9, and the lowest mean rank of 2.7 was for the fresh irrigation solution 

control. 

In Table 4.2 the mean rank is displayed along with the mean pH of the treatment (from Table 

4.3). Overall the four most theoretically suppressive treatments were the four that were from 
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closed systems, and the least overall suppressive treatments were the two control treatments. 

The treatments from the two open systems both had the same level of overall theoretical 

suppressiveness. 

Table 4.2. Overall theoretical suppressiveness in each treatment and associated 

mean solution pH. 

Overall theoretical 	- 	 Treatment 	 Mean rank 	PH 
suppressiveness 

Most Pasteurised (Inoculated and closed) 6.9 4.8 
Filtered (Inoculated and closed) 4.9 6.4 

Uninoculated Closed 4.8 6.7 
Moderate Inoculated Closed 4.7 6.2 

Inoculated Open 4.3 6.7 
Uninoculated Open 4.2 7.0 

Least SDW 3.2 6.8 
Fresh Irrigation solution 2.7 7.0 

4.4. Details of 'Edinburgh' results. 

4.4.1. Determination of the pH of irrigation solutions. 

The pH of irrigation solutions was determined at Edinburgh with an AGB-75 laboratory 

pH/mV/temperature meter (Table 4.3, page 136). The pH range of irrigation solutions was 

from 4.3 to 7.5. For each of the sampling times the inoculated closed (pasteurised) solution 

had the lowest pH with the mean pH for the four sampling times being 4.8. In the inoculated 

closed (pasteurised) solution there was a negative correlation (R = 93%) between pH and 

sampling date. In all other irrigation solutions no temporal trends were observed. Overall the 

solutions from closed systems were more acidic than solutions from the non-recirculated 

systems, that is, from open systems and the two controls (SDW and fresh irrigation solution). 

4.4.2. The effects of irrigation solutions on the motility of zoospores of 

Ph. parasitica and subsequent cyst germination. 

Two ml of zoospore suspension of Ph. parasitica (prepared as in Section 2.3.1.1) was diluted 

with 2 ml of irrigation solution and then incubated for 1 h. After incubation the proportion of 

spores that were motile was determined (see Section 2.3.6) (Table 4.4, page 137), along with 

the proportion of cysts that had subsequently germinated (Table 4.5, page 138). The duration 
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of the incubation was only one hour because in a 2h incubation almost all zoospores encyst 

(results not shown). 

The proportion of motile zoospores in the SDW control varied significantly (P = 6.9 x 10- ) 

between the dates when irrigation solutions were collected. Also, in the fresh irrigation 

solution control there was significant (P = 4.8 x 10-3) variation in the proportion of motile 

zoospores between the dates of solution harvesting. However, there was no significant (P > 

1.8 x 10 1 ) difference in zoospore motility between the sampling times for the uninoculated 

open, uninoculated closed, inoculated open and inoculated closed (pasteurised) treatments. 

The other two treatments (inoculated closed (filtered) and inoculated closed) both showed 

significant (P :!~ 8.1 x 10) differences in zoospore motility between the sampling times. 

Although there were no significant temporal trends in any of the treatments, overall the 

lowest levels of zoospore motility were found in the inoculated closed (pasteurised) 

treatments, and the highest levels of zoospore motility were found in the SDW controls. The 

proportion of motile zoospores in inoculated closed (filtered) irrigation solutions collected 

on 1St  July and 1 5 'h  July was 5.4% and 15.0%, respectively, whereas in closed (filtered) 

irrigation solutions for the last three sampling times no motile zoospores were observed. In 

the inoculated closed irrigation solutions harvested on 30th  July and 961  September the level 

of zoospore motility was less than 1%. However, in the sample harvested on 2461  October the 

level of motility was 14.6%. 

The proportion of cysts spontaneously germinating in the SDW control did not significantly 

differ (P = 0.29) between the harvesting dates. In the uninoculated open and inoculated open 

treatments there were also no significant differences (P> 0.20) in the proportion of cysts 

germinating between the dates of harvesting. In the other five treatments, including the fresh 

irrigation solution control, significant (P :!~ 0.015) differences in cyst germination were 

observed between the dates of solution harvesting. The overall highest levels of cyst 

germination were observed in samples from the inoculated closed (pasteurised) system. The 

lowest overall levels of cyst germination were observed in the SDW control. Generally, 

higher germination levels were observed in solutions from closed systems. 
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4.4.3. The effects of irrigation solutions on the motility of Py. 

aphanidermatum and subsequent cyst germination. 

One ml of zoospores suspension of Py. aphanidermatum (prepared as in Section 2.3.1.1) was 

diluted with 3 ml of irrigation solution and then incubated for 2h. After incubation the 

proportion of spores that were motile was determined (see Section 2.3.6) (Table 4.6, page 

139), along with the proportion of cysts that had subsequently germinated (Table 4.7, page 

140). Only one ml of zoospore suspension was required because Py. aphanidermatum 

produces more zoospores than Ph. parasitica. 

The proportion of motile zoospores in the SDW control varied very highly significantly (P = 

5.6 x 10-4) between the dates of irrigation solution harvesting. However, in the control 

consisting of fresh irrigation solution there was no significant (P = 0.23) variation in the 

proportion of motile zoospores between the dates of solution harvesting. Similarly, there was 

no significant (P ~! 0.10) variation in the proportion of zoospores motile between dates of 

solution harvesting for solutions from the i.minoculated open, uninoculated closed, inoculated 

open and inoculated closed systems. In contrast, there were highly significant (P :!~ 1.2 x 10 

3) differences in the proportion of motile zoospores between sampling dates for solutions 

from the pasteurised and slow sand filtered inoculated closed systems. The mean proportion 

of zoospores motile over the growing season in each treatment was greater than 42%, except 

for the inoculated closed (pasteurised) treatment where the mean was 2%. 

There were significant (P :5 0.028) differences in the proportion of cysts germinating 

between sampling dates in SDW controls, fresh irrigation solution controls, inoculated open 

solutions, inoculated closed solutions and inoculated closed (pasteurised) solutions. In 

contrast, there were no significant (P ~: 0.17) differences between the proportion of cysts 

germinating in the other three treatments (uninoculated open, uninoculated closed and 

inoculated closed (filtered)). 

4.4.4. The effects of irrigation solutions on the release of zoospores 

from pre-formed sporangia of Ph. parasitica. 

After washing with aliquots of SDW, pre-chilled irrigation solutions were added to 

sporangia-bearing fungal mats of Ph. parasitica. Then after the cold shock and release 

period, an aliquot of zoospore suspension was taken, fixed and enumerated (as in Section 

2.3.5 (Table 4.8, page 141). 
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In all but two treatments and in both the controls there were no significant (P ~: 0.11) 

differences in zoospore release between the dates of solution harvesting. There were 

significant (P :!~ 0.011) differences in zoospore release between harvesting dates for the 

inoculated closed and inoculated closed (filtered) treatments. Although temporal trends were 

not observed there were very highly significant (P = 3.4 x 10) differences between the 

treatments. Overall the greatest zoospore release numbers were observed in the fresh 

irrigation solutions and the lowest values were observed in the inoculated closed 

(pasteurised) treatment. Generally lower numbers of zoospores were released into solutions 

from closed systems than from the corresponding open systems. 

4.4.5. The effects of irrigation solutions on germination of vortex-

encysted zoospores of Py. aphaniderm aturn. 

To Eppendorf tubes, 200 tl of encysted zoospores of Py. aphanidermatum were added with 

800 1il of irrigation solution. The tubes were inverted to mix the liquids and then incubated 

for 2h. After the incubation period the spores were fixed and later the proportions of cysts 

that had germinated were determined (see Section 2.3.7) (Table 4.9, page 142). 

There were no significant (P = 0.71) differences in the proportion of spores germinating 

between the dates of harvesting for the SDW control. In the second control (fresh irrigation 

solutions) there were significant (P = 8.7 x 10-3  ) differences in the proportion of spores 

germinating between harvesting dates. In five out of the six other treatments there were 

significant (P :5 0.046) differences in the proportion of spores germinating between 

harvesting dates. Out of the treatments only the inoculated closed treatment had no 

significant (P = 0.078) difference between harvesting dates. Overall the highest germination 

levels were seen in the inoculated closed (pasteurised) treatment with a mean germination 

level of 62%, whereas the overall lowest level of 27% was seen in the inoculated open 

treatment. Generally higher levels of germination were observed in solutions from closed 

systems than from the corresponding open systems. 
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4.4.6. The effects of irrigation solutions on sporangiogenesis of Ph. 

parasitica. 

The standard protocol for inducing sporangiogenesis (Section 2.3.1.1) was followed, but the 

MSS was substituted with an irrigation solution. The sporangia were induced to liberate 

zoospores into SDW, and then an aliquot (500 j.tl) of zoospore suspension was removed and 

fixed. The zoospore concentration was enumerated later by haemocytometer counts (Table 

4.10, page 143). Direct video recordings were made of the mycelial mats to determine 

sporangial density (Table 4.11, page 144) and the proportion of sporangia with discharged 

contents (as in Section 2.3.4) (Table 4.12, page 145). 

There were no significant (P = 0.50) differences in the number of zoospores subsequently 

released between the harvesting dates for the SDW control. Similarly, in the uninoculated 

open, uninoculated closed, inoculated open, inoculated closed and inoculated closed 

(pasteurised) treatments there were no significant (P 2! 0.11) differences in the number of 

zoospores subsequently released between the harvesting dates. However, in the fresh 

irrigation solutions and inoculated closed (filtered) treatment there were significant (P ~ 

0.028) differences in the number of zoospores subsequently released between the harvesting 

•dates. The lowest overall level of zoospore release was 18.6 zoospores..tF', which was in the 

SDW control. Out of the seven irrigation solutions the lowest overall level of zoospore 

release was 36.4 zoospores..tl' which were released into the inoculated closed (pasteurised) 

treatment. The overall highest level of zoospore release was in the uninoculated closed 

treatment with a mean zoospore release level of 96.7 zoospores..t1 4 . 

There were no significant (P 2! 0.094) differences in the sporangial density between the 

harvesting dates within any of the treatments. However, there was a very highly significant 

(P = 4.8 x 1 04)  difference between the treatments. The highest overall sporangial density 

was in the SDW control with 48.6 sporangia per video monitor screen and the lowest overall 

sporangial density was in the inoculated closed (filtered) treatment with 20.1 sporangia per 

screen. Generally higher sporangial densities were observed when mats were bathed in 

solutions from closed systems than the corresponding open systems. 

There were no significant (P = 0.35) differences in the proportion of sporangia that had 

discharged between the harvesting dates for the SDW control. The fresh irrigation solution, 

uninoculated open, inoculated closed and inoculated closed (pasteurised) treatments had 
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significant (P :5 0.046) differences in the proportion of sporangia that had discharged 

between the harvesting dates. The uninoculated closed, inoculated open and inoculated 

closed (filtered) did not have significant (P ~: 0.095) differences in the proportion of 

sporangia that had discharged between the harvesting dates. Overall the highest level of 

sporangial discharge was in the SDW control with 23%, and the lowest overall level of 

sporangial discharge was in the uninoculated closed treatment with 8%. 
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Table 43. 	The pH of irrigation solutions from HRI. 

Solution 

Sterile distilled water 

Fresh Irrigation Solution 

Uninoculated Open 

Uninoculated Closed 

Inoculated Open 

Inoculated Closed 

Inoculated Closed (Pasteurised) 

Inoculated Closed (Filtered) 

1St July 

Date of harvesting irrigation solution from large glasshouse. 

15th July 	30th  July 	9th  September 24th October Mean 

6.8 6.8 6.8 6.8 6.8 6.8 

7.2 7.5 6.7 7.5 5.9 7.0 

n.d. n.d. 7.3 7.0 6.8 7.0 

6.7 6.4 6.7 6.9 6.8 6:7 

n.d. 6.9 6.7 6.8 6.4 6.7 

n.d. n.d. 6.2 6.3 6.0 6.2 

n.d. 5.5 4.9 4.7 4.3 4.8 

n.d. 6.0 6.2 6.9 6.6 6.4 

Mean 
	 6.9 	 6.5 	 6.4 	 6.6 	 6.2 	 6.4 

n.d. Not done. 
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Table 4.4. 	Percentage of zoospores of Ph. parasitica that were motile after I h incubation in various irrigation solutions*. 

Date of harvesting irrigation solution from large glasshouse. 

Solution Mean P (ANOVA) Ud l' July 15"  July 30th July 9th September 24th  October 

Sterile distilled water 12.6 ± 1.2 3.5 ± 0.4 5.4 ± 0.1 4.8 ± 1.3 3.6 ± 1.8 6.0 ± 1.0 
(20.7±1.0) (10.7±0.6) (13.4±0.2) (12.3±2.0) (10.3±2.8) (13.5±1.2) (6.9x 10) (2.3) 

Fresh irrigation Solution 0.9 ± 0.5 11.9 ± 2.4 5.8 ± 2.3 0.5 ± 0.3 1.6 ± 0.8 4.1 ± 1.3 
(4.5 ± 2.3) (20.0 ± 2.1) (13.0 ± 3.5) (3.1 ± 1.8) (6.0 ± 3.0) (9.3 ± 2.0) (4.8 x 10) (3.7) 

Uninoculated Open 0.7 ± 0.4 0.6 ± 0.0 0.7 ± 0.3 0.5 ± 0.2 0.3 ± 0.3 0.6 ± 0.1 
(3.8± 1.9) (4.5±0.2) (4.5±1.0) (4.2±0.6) (1.9± 1.9) (3.8±0.6) (6.1 x 10') (1.8) 

Uninoculated Closed 0.8 ± 0.0 0.8 ± 0.4 0.5 ± 0.4 0.6 ± 0.4 0.5 ± 0.3 0.6 ± 0.1 
(5.0 ± 0.0) (4.1± 2.1) (3.3 ± 1.8) (3.5 ± 1.9) (3.3 ± 1.7) (3.9 ± 0.7) (9.4 x 10. 1 ) (2.4) 

Inoculated Open n.d. 0.4 ± 0.2 0.4 ± 0.2 0.7 ± 0.4 1.2 ± 0.4 0.7 ± 0.2 
(3.0± 1.5) (2.9± 1.4) (3.8±2.0) (6.2±1.0) (4.0±0.8) (4.3 x 10) (2.2) 

Inoculated Closed nd. n.d. 0.9 ± 0.2 0.4 ± 0.4 14.6 ± 0.6 5.2 ± 2.3 
(5.4±0.5) (2.2±2.2) (22.4±0.5) (10.0±3.2) (8.1 x 10) (1.9) 

Inoculated Closed (Pasteurised) nd. 0.9 ± 0.5 0.3 ± 0.0 0.3 ± 0.2 0.0 ± 0.0 0.4 ± 0.1 
(4.5 ± 2.3) (3.4 ± 0.1) (2.7 ± 1.4) (0.0±0.0) (2.6 ± 0.8) (1.8 x 10) (1.9) 

Inoculated Closed (Filtered) 5.4 ± 0.8 15.0 ± 2.6 0.0± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.1 ± 1.6 
(13.3± 1.0) (22.7 ±2.1) (0.0±0.0) (0.0±0.0) (0.0±0.0) (7.2±2.5) (4.8x 10) (1.5) 

Mean 4.1 ± 1.3 4.7 ± 1.3 1.8 ± 0.5 1.0 ± 0.3 2.7 ± 1.0 2.7 ± 0.4 
(Mean of arcsine transformed data). (9.5 ± 1.9) (9.9 ± 1.8) (5.8 ± 1.1) (4.0 ± 0.9) (63 ± 1.5) (6.8 ± 0.7) 	(1.7 x 10.2) 

P(ANOVA) (3.5 x 10) (1.8 x10) (7.2 x 10) (4.2 x 10) (1.9 x 10) (9.3 x 
ad (2.1) (2.4) (2.3) (2.3) - 	(2.5) 

Means ± s.c.m. for three replicates, based on three random fields of view per replicate. Results in parentheses are arcsine transformed data. 
n.d. Not done. 
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Table 4.5. 	Percentage of encysted zoospores of Ph. parasitica that had germinated after I h incubation in various irrigation solutions. 

Date of hat-vesting irrigation solution from large glasshouse. 

Solution 	 i July 	15 th  July 	30th July 	9th  September 	24th October 	Mean 	P (ANOVA) 	ad 

Sterile distilled water 7.4±2.5 3.4±2.5 7.0±0.8 8.2± 1.1 4.8± 1.7 6.2±0.8 
(15.3 ± 2.8) (8.3 ± 4.8) (15.3 ± 0.8) (16.6 ± 1.2) (12.4 ± 2.2) (13.6 ± 1.3) (2.9 x 10. 1 ) (39) 

Fresh Irrigation Solution 2.6 ± 0.3 5.4 ± 2.4 5.1 ± 1.0 3.0 ± 0.6 19.1 ± 5.2 7.1 ± 1.9 
(9.3 ± 0.5) (12.9 ± 3.0) (13.0 ± 1.3) (9.9 ± 1.1) (25.5 ± 3.8) (14.1 ± 1.8) (3.1 x 10) (3.2) 

Uninoculated Open 3.6± 1.8 4.7± 1.2 6.2± 1.3 8.0±2.6 10.7±2.5 6.6±1.0 
(8.9 ± 4.5) (12.3 ± 1.7) (14.3 ± 1.6) (16.0 ± 2.7) (18.8 ± 2.5) (14.1 ± 1.4) (2.0 x 10) (3.9) 

Uninoculated Closed 5.6 ± 3.1 4.8 ± 1.5 23.7 ± 5.7 9.9 ± 1.6 16.5 ± 0.9 12.1 ± 2.2 
(11.1 ± 5.7) (12.3 ± 1.9) (28.8 ± 3.9) (18.2 ± 1.6) (24.0 ± 0.7) (18.9 ± 2.2) (1.5 x 10 .2) (4.7) 

Inoculated Open n.d. 5.9 ± 1.1 6.3 ± 2.2 10.0 ± 0.5 6.2 ± 2.0 7.1 ± 0.9 
(13.9 ± 1.4) (14.1 ± 2.6) (18.4 ± 0.5) (14.1 ± 2.3) (15.1 ± 1.0) (3.3 x 10) (2.7) 

Inoculated Closed n.d. n.d. 25.4 ± 5.2 7.9 ± 0.5 9.5 ± 2.2 14.3 ±3.2 
(30.0±3.6) (16.3±0.5) (17.8±2.0) (21.4±2.5) (1.3 x 10.2) (3.4) 

Inoculated Closed (Pasteurised) n.d. 9.7 ± 1.5 12.2 ± 1.9 51.3 ± 5.6 14.3 ± 2.0 21.9 ± 5.3 
(18.0 ± 1.5) (20.4 ± 1.6) (45.8 ± 3.2) (22.1 ± 1.6) (26.6 ± 3.5) (4.7 x 10t) (3.0) 

Inoculated Closed (Filtered) 5.4 ± 2.1 7.4 ± 0.9 10.7 ± 1.0 13.0 ± 1.3 13.5 ± 0.8 10.0 ± 1.0 
(12.8±3.0) (15.7±1.1) (19.1±1.0) (21.1±1.1) (21.5±0.7) (18.0±1.1) (1.3x 10.2) (2.2) 

Mean 4.9 ± 0.9 5.9 ± 0.7 12.1 ± 1.8 13.9 ± 3.1 11.8 ± 1.2 10.2 ± 0.9 
(Mean of arcsine transformed data). (11.5 ± 13) (13.3 ± 1.0) (19.4 ± 1.5) (20.3 ±2.2) (19.5 ±13) (17.3 ± 0.8) (2.1 x 10) 

P (ANOVA) (5.0 x 10.1) (2.6 x 10') (2.4 x 10) (9.0 x 10) (6.0 x 10) (3.8 x 10) 
ad (5.3) (3.5) (3.3) (2.5) (3.1) 

* Means ± s.e.m. for three replicates, based on three random fields of view per replicate. Results in parentheses are arcsine transformed data 
n.d. Not done. 
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Table 4.6. 	Percentage of zoospores of Py. aphanidermatum that were motile after 2 h incubation in various irrigation solutions*. 

Solution 

Sterile distilled water 

Fresh Irrigation Solution 

Date of harvesting irrigation solution from large glasshouse. 

1" July 15" July 30th July 9th  September 24th October Mean P (ANOVA) 	Ud 

23.9±4.9 67.6±4.8 35.6±5.7 49.4±3.7 58.0±4.1 46.9±4.5 

(29.1 ± 3.3) (55.4 ± 3.0) (36.5 ± 3.5) (44.7 ± 2.1) (49.6 ± 2.4) (43.1 ± 2.7) (5.6 x 104) 	 (4.1) 

65.3 ± 6.7 52.6 ± 2.6 59.3 ± 3.8 49.3 ± 3.9 49.0 ± 8.2 55.1 ± 2.7 

(54.0 ± 4.0) (46.5 ± 1.5) (50.4 ± 2.2) (44.6 ± 2.2) (44.4 ± 4.8) (48.0 ± 1.6) (2.3 x 10') 	(4.5) 

Uninoculated Open n.d. 57.6 ± 1.9 41.9 ± 5.1 41.8 ± 4.1 42.5 ± 6.0 42.5 ± 4.3 
(49.4 ± 1.1) (40.3 ± 2.9) (40.3 ± 2.9) (40.6 ± 3.5) (42.6 ± 1.6) (1.0 x 10 1 ) (3.7) 

Uninoculated Closed 47.6 ± 2.3 54.4 ± 3.0 43.1 ± 3.8 26.2 ± 6.5 39.8±11.6 42.2 ± 3.5 

(43.6± 1.3) (47.5± 1.7) (41.0±2.2) (30.4±4.4) (38.6±7.2) (40.2±2.2) (1.1 x 10) (5.7) 

inoculated Open n.d. 58.1 ±4.7 58.7±6.6 43.1±3.9 46.2±3.8 51.5±3.0 
(49.7 ±2.7) (50.1 ±3.9) (41.0±2.3) (42.8 ±2.2) (45.9± 1.7) (1.2x 10) (4.1) 

Inoculated Closed n.d. n.d. 51.1 ± 2.0 42.8 ± 5.6 37.2 ± 9.8 43.7 ± 3.9 

(45.6 ± 1.1) (40.8 ± 3.2) (37.3 ± 5.8) (41.3 ± 2.3) (3.7 x 10- ') (5.5) 

Inoculated Closed (Pasteurised) n.d. 5.2 ± 1.1 2.5 ± 1.1 0.1 ± 0.1 0.4 ± 0.0 2.1 ± 0.7 

(13.0± 1.5) (8.4±2.5) (1.2± 1.2) (3.8±0.1) (6.6±1.5) (3.5 x 10) (2.2) 

Inoculated Closed (Filtered) 53.6 ± 2.7 68.3 ± 2.8 50.0 ± 4.4 35.7 ± 5.5 46.5 ± 0.3 50.8 ± 3.1 
(47.1 ± 1.6) (55.8± 1.7) (45.0±2.5) (36.6±3.3) (43.0±0.2) (45.5± 1.9) (1.2 x 10) (3.0) 

Mean 47.6 ± 4.9 52.0 ± 4.6 42.8 ± 3.8 36.1 ± 3.5 40.0 ± 3.9 42.6 ± 1.9 

(Mean of arcsine transformed data). (43.5 ±3.0) (45.3 ± 3.1) (39.7 ±2.8) (34.9 ± 2.9) (37.5 ± 3.0) (39.7 ± 1.4) (1.1 x 10 -1 ) 

P(ANOVA) (1.4x 10) (7.0x10) (2.2x 10) (1.2x 10) (2.4x 10) (2.6x 10.26) 

ad (3.9) (2.8) (3.9) (4.0) (5.7)  

Means ± s.c.m. for three replicates, based on three random fields of view per replicate. Results in parentheses are arcsme transformed data. 
n.d. Not done. 
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Table 4.7. 	Percentage of encysted zoospores of Py. aphanidermatum that had germinated after 2 h incubation in various irrigation 

solutions. 

Solution l 	July 

Date of harvesting irrigation solution from large glasshouse. 

15th July 	30th July 	9th September 20  October Mean P (ANOVA) ad 

Sterile distilled water 31.4±2.6 18.8±2.8 37.5±6.9 16.8±4.1 22.1 ±2.4 25.3±2.6 
(2.2 x 10.2) (3.8) 

(34.1 ± 1.6) (25.6 ± 2.0) (37.6 ± 4.1) (23.9 ± 3.2) (28.0 ± 1.7) 1.7) (29.8 ± 

Fresh Irrigation Solution 27.1 ±4.2 20.9±6.7 16.5 ±3.5 7.6±2.4 28.6±3.1 20.1±2.6 
10.2) (4.6) 

(31.3 ± 2.7) (26.5 ± 5.0) (23.7 ± 2.8) (15.5 ± 2.9) (32.2 ± 2.0) (25.8 ± 2.0) (2.8 x 

Uninoculated Open n.d. 17.4±5.9 31.8±3.1 21.0± 1.2 18.2±6.1 22.3±2.4 
(2.1 x 10) (4.8) 

(23.9 ± 4.8) (34.3 ± 1.9) (27.2 ± 0.8) (24.7 ± 4.4) ± 1.9) (27.5 

Uninoculated Closed 31.2 ± 5.1 28.2 ± 2.7 36.6 ± 2.7 23.4 ± 1.1 31.2 ± 4.0 30.1 ± 1.7 
(1.7 x 10. 1 ) (3.0) 

(33.8 ± 3.3) (32.0 ± 1.7) (37.2 ± 1.6) (28.9 ± 0.8) (33.9 ± 2.4) 1.1) (33.2 ± 

Inoculated Open n.d. 45.2 ± 2.4 34.4 ± 0.6 26.2 ± 3.8 38.6 ± 2.7 36.1 ± 2.4 
(7.3 x 10) (2.4) (42.2 ± 1.4) (35.9 ± 0.3) (30.7 ± 2.6) (38.4 ± 1.6) 1.5) (36.8 ± 

Inoculated Closed n.d. n.d. 12.5 ± 0.4 34.8 ± 3.8 53.1 ± 6.8 33.4 ± 6.3 
x l0) (1.3 (3.8) (20.7 ± 0.3) (36.1 ± 2.3) (46.8 ± 3.9) 4.0) (34.5 ± 

Inoculated Closed (Pasteurised) n.d. 62.6 ± 3.7 33.4 ± 1.7 20.7 ± 1.3 19.5 ± 2.6 34.0 ± 5.3 
1od) (2.2) (52.4 ± 2.2) (35.3 ± 1.0) (27.0 ± 0.9) (26.1 ± 1.8) (35.2 ± 3.2) (8.7 x 

Inoculated Closed (Filtered) 27.4 ± 3.8 27.4 ± 10.7 28.6 ± 5.2 21.8 ± 3.5 19.4 ± 4.1 24.9 ± 2.5 

(31.5 ± 2.5) (30.9 ± 6.7) (32.1 ± 3.4) (27.7 ± 2.4) (25.8 ± 3.1) (29.6 ± 1.6 (7.6 x l0) (5.6) 

Mean 28.9 ± 1.7 313±3.9 28.9 ± 2.1 21.5 ± 1.7 28.8 ± 2.7 	27.7 ± 1.2 

(Mean of arcsine transformed data). (32.6 ± 1.2) (33.4 ± 2.5) (32.1 ± 1.4) (27.1 ± 1.3) (32.0 ± 1.7) 	(31.3 ± 0.8) 	(8.0 x 10.2) 

P (ANOVA) (8.0 x 10) (1.4 x 10) (4.2 x 10) (6.0 x lO) (4.9 x 10) 	(2.6 x 10- ) 

ad (3.6) (5.5) (3.3) (3.1) (4.0) 

* Means ± s.e.m. for three replicates, based on three random fields of view per replicate. Results in parentheses are arcsine transformed data. 

n.d. Not done. 
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Table 4.8. 	Number of zoospores (zoospores..tr 1 ) of Ph. parasitica released into various irrigation solutions from pre-formed 

sporangia. 

Date of harvesting irrigation solution from large glasshouse. 

Solution Mean P (ANOVA) ad 1st July 15th July 30th  July 9th  September 24th  October 

Sterile distilled water 13.2 ± 1.8 13.2 ± 2.1 16.5 ± 2.9 14.0 ± 3.5 16.9 ± 2.1 14.7 ± 1.1 7.4 x 10.1  3.6 

Fresh Irrigation Solution 25.7 ± 9.0 10.3 ± 1.7 30.7 ± 10.4 19.3 ± 2.4 7.4 ± 2.2 18.7 ± 3.4 1.1 x 10.1  9.0 

Uninoculated Open 18.9 ± 3.9 16.7 ± 2.5 15.6 ± 2.9 8.8 ± 1.4 12.3 ± 0.6 14.5 ± 1.3 1.2 x 10' 3.6 

Unmoculated Closed 11.9±1.4 12.6 ±2.6 13.0±0.9 7.6 ±0.8 7.4 ±2.3 10.5±0.9 1.2 x 10_ I  2.5 

Inoculated Open n.d. 15.2 ± 1.8 16.7 ± 4.9 15.6 ± 2.4 8.2 ± 1.8 13.9 ± 1.6 2.6 x 10' 4.3 

Inoculated Closed 13.2 ± 1.8 n.d. 3.7 ± 0.7 7.8 ± 2.5 3.3 ± 1.3 7.0 ± 1.4 1.1 x 10 2  2.4 

Inoculated Closed (Pasteurised) n.d. 5.3 ± 2.4 6.8 ± 1.2 6.2 ± 0.6 7.0 ± 0.5 6.3 ± 0.6 8.4 x 10' 2.0 

Inoculated Closed (Filtered) 14.8 ± 0.4 10.5 ± 2.2 6.2 ± 0.7 9.1 ± 1.5 6.0 ± 0.2 9.3 ± 1.0 3.0 x 10.1  1.8 

Mean 16.3 ± 1.8 12.0 ± 1.0 13.6 ± 2.1 11.1 ± 1.1 8.6 ± 0.9 12.1 ± 0.7 8.3 x 10.1  

P(ANOVA) 2.5 x 10' 4.9 x 10 2  1.2 x 10.2 3.9 x 10.1 6.6 x 10-4 3.4 x i0 
ad 5.9 3.1 6.2 3.0 2.2 

Means ± s.e.m. for three replicates, based on four haemocytometer counts per replicate. 
n.d. Not done. 
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Table 4.9. 	Percentage of vortex-encysted zoospores of Py. aphanidermatum that had germinated after 2 h incubation in various 

irrigation solutions. 

Date of harvesting irrigation solution from large glasshouse. 

Solution Mean P (ANOVA) Od I" July 15th July 30th July 9th September 24 October 

Sterile distilled water 33.0±5.7 27.1 ±5.7 39.9±3.5 31.7±2.0 35.2±2.9 31.4±1.8 

(34.9 ± 3.5) (31.1 ± 3.7) (33.1 ± 2.2) (34.2 ±1.3) (36.4 ± 1.7) (33.9 ± 1.1) (7.1 x 10.1 ) (3.8) 

Fresh Irrigation Solution 64.6 ± 2.3 42.8 ± 4.0 43.0 ± 6.0 45.3 ± 1.8 39.7 ± 4.4 47.1 ± 2.8 

(53.5 ± 1.4) (40.8 ± 2.3) (40.9 ± 3.5) (42.3 ± 1.0) (39.0 ± 2.6) (43.3 ± 1.6) (8.7 x 10) (3.3) 

Uninoculated Open 31.9 ± 2.4 33.3 ± 2.8 38.5 ± 3.1 21.5 ± 3.5 47.6 ± 7.5 34.6 ± 2.8 

(34.4 ± 1.5) (35.2 ± 1.7) (38.3 ± 1.8) (27.5 ± 2.5) (43.6 ± 4.4) (35.8 ± 1.7) (1.6 x 10.2) (3.7) 

Uninoculated Closed 53.4 ± 3.3 40.8 ± 3.2 31.6 ± 2.6 43.5 ± 8.5 34.0 ± 1.6 40.6 ± 2.7 

(46.9 ± 1.9) (39.7 ± 1.9) (34.2 ± 1.6) (41.2 ± 5.0) (35.7 ± 1.0) (39.5 ± 1.6) (4.6 x 10 2) (3.8) 

Inoculated Open n.d. 25.1 ± 4.7 17.4 ± 0.8 27.2 ± 2.8 39.4 ± 0.5 27.3 ± 2.7 

(29.8 ± 3.2) (24.7 ± 0.6) (31.4 ± 1.8) (38.9 ± 0.3) (31.2 ± 1.7) (4.8 x 10) (2.7) 

Inoculated Closed 36.4 ± 3.8 n.d. 31.0 ± 7.5 25.7 ± 0.9 45.0 ± 2.8 34.5 ± 2.9 

(37.0 ± 2.3) (33.5 ± 4.7) (30.5 ± 0.6) (42.1 ± 1.6) (35.8 ± 1.8) (7.8 x 10.2) (3.9) 

Inoculated Closed (Pasteurised) 49.2 ± 2.4 52.9 ± 2.9 72.4 ± 3.0 74.3 ± 2.0 60.2 ± 5.3 61.8 ± 3.0 
(44.5 	± 1.4) (46.7 ± 1.7) (58.3 ± 2.0) (59.6 ± 1.3) (51.0 ± 3.1) (52.0 ± 1.8) (9.8 x 10) (2.8) 

Inoculated Closed (Filtered) 48.8 ± 1.8 33.1 ± 1.3 21.5 ± 1.1 42.2 ± 3.6 26.4 ± 1.4 34.4 ± 2.8 

(44.3 ± 1.0) (35.1 ± 0.8) (27.6 ± 0.8) (40.5 ± 2.1) (30.9 ± 0.9) (35.7 ± 1.7) (1.5 x 10) (1.8) 

Mean 453 ± 2.7 36.4 ± 23 35.7 ± 3.5 38.9 ± 3.5 40.9 ± 23 39.4 ± 1.3 
(Mean of arcsine transformed data). (42.2 ± 1.6) (36.9 ± 1.4) (36.3 ± 2.1) (38.4 ± 2.1) (39.7 ± 1.4) (38.7 ± 0.8) (1.6 x 10. 1 ) 

P(ANOVA) (6.5 x 10) (2.6 x 10) (2.5 x 10) (1.2 x 10) (7.8 x 10) (1.8 x I0) 

ad (2.8) (3.4) (3.5) (3.3) (3.3) 

Means ± s.e.m. for three replicates, based on counts of 100 spores per replicate. Results in parentheses are arcsine transformed data. 
n.d. Not done. 
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Table 4.10. Subsequent zoospore release (Zoospores.tI 1 ) into SDW from sporangia of Ph. parasitica that had formed in various 

irrigation solutions. 

Date of harvesting irrigation solution from large glasshouse. 

Solution Mean P (ANOVA) CFd 1st July 15th July 30th  July 9th  September 24th  October 

Sterile distilled water 14.5 ± 1.4 16.8 ± 4.2 21.4 ± 1.3 21.4 ± 4.5 18.7 ± 2.8 18.6 ± 1.4 5.0 x 10' 4.5 

Fresh Irrigation Solution 139.6 ± 15.0 79.5 ± 9.6 137.9 ± 16.2 60.1 ± 10.5 33.7 ± 2.9 90.2 ± 12.1 2.4 x 104 16.7 

Uninoculated Open 88.2 ± 13.2 83.2 ± 8.2 58.2 ± 13.1 135.3 ± 37.4 64.0 ± 8.6 85.8 ± 10.3 1.1 x 10' 27.5 

UnmoculatedClosed 117.8±23.8 131.6±41.7 93.5± 14.2 71.4±21.6 69.3±8.3 96.7±11.4 3.5x 10' 34.9 

Inoculated Open n.d. 81.8 ± 3.1 93.7 ± 22.5 90.2 ± 5.9 88.0 ± 21.4 88.4 ± 6.9 9.6 x 10' 22.4 

Inoculated Closed n.d. n.d. 88.7 ± 8.6 75.6 ± 16.0 58.2 ± 8.6 74.2 ± 7.3 2.5 x 10' 16.4 

Inoculated Closed (Pasteurised) n.d. 57.1 ± 20.2 27.3 ± 1.2 25.7 ± 0.9 35.7 ± 17.7 36.4 ± 6.9 3.9 x 10' 19.1 

Inoculated Closed (Filtered) 85.3 ± 13.6 83.2 ± 26.8 38.6 ± 11.8 82.6 ± 4.6 20.3 ± 4.3 62.0 ± 9.2 2.8 x 10 2  20.8 

Mean 89.1 ± 12.7 76.2 ± 9.7 69.9 ± 8.8 70.3 ± 8.7 48.5 ± 5.9 69.1 ± 4.1 4.6 x 10 2  

P(ANOVA) 1.8 x 10 5.8 x 10 2  1.1 x 104  5.5 x 10-3 4.0 x 10-3 3.1 x 10 
cy. 21.5 29.6 18.4 24.0 16.0 

Means ± s.e.m. for three replicates, based on four haemocytometer counts per replicate. 
n.d. Not done. 
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Mean P (ANOVA) ad 

48.6 ± 5.9 8.8 x 10_ I  20.9 

35.0±4.5 1.3 x 10_ I  12.3 

28.3 ± 5.0 9.4 x 10.2  12.9 

39.2 ±4.1 3.0x 10_ I  12.3 

27.8 ±3.5 6.7 x 10' 10.6 

40.0 ± 5.8 3.2 x 10 1  13.6 

28.1 ±4.3 8.5 x 10_ I  13.6 

20.1 ± 2.8 2.7 x 10' 8.2 

33.3± 1.8 	4.1 x 10' 

4.8 x 10 

Table 4.11. The density of sporangia (sporangia per video monitor screen) of Ph. parasitica after incubation in various irrigation 

solutions. 

Date of harvesting irrigation solution from large glasshouse. 

1 	July 15' July 30' July 9' September 24' October 

53.7 ± 30.7 44.0 ± 6.4 60.0 ± 4.4 43.9 ± 8.6 41.2 ± 3.6 

45.5 ± 14.4 31.0 ± 5.3 49.5 ± 7.8 32.7 ± 6.7 16.4 ± 6.2 

31.4 ± 12.3 32.4 ± 1.4 5.8 ± 2.6 47.4 ± 15.0 24.5 ± 4.4 

448 ± 6.8 53.6 ± 5.9 37.5 ± 10.0 27.7 ± 8.4 32.4 ± 11.1 

n.d. 28.0 ± 11.4 25.5 ± 5.0 22.3 ± 6.9 35.2 ± 4.4 

n.d. n.d. 41.5 ± 3.8 50.4 ± 15.9 28.0 ± 2.9 

n.d. 31.6± 12.1 27.7±5.0 21.2±7.7 31.7± 11.7 

20.3 ±4.4 16.8 ± 2.6 29.0 ± 8.8 24.1 ± 8.1 10.2 ± 1.0 

39.1 ± 7.0 33.9 ± 3.4 34.6 ± 3.7 33.7 ± 3.8 27.4 ± 2.8 

6.5 x 10' 7.9 x 10.2 8.3 x 10 2.9 x 10' 8.1 x 10.2  

23.3 10.8 9.1 14.5 9.5 

Solution 

Sterile distilled water 

Fresh Irrigation Solution 

Uninoculated Open 

Uninoculated Closed 

Inoculated Open 

Inoculated Closed 

Inoculated Closed (Pasteurised) 

Inoculated Closed (Filtered) 

Mean 

P (ANOVA) 
ad 

Means ± s.c.m. for three replicates, based on three fields of view per replicate. 
n.d. Not done. 
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Table 4.12. Percentage of sporangia of Ph. parasitica that had discharged contents after incubation in various irrigation solutions. 

Date of harvesting irrigation solution from large glasshouse. 

Solution 
l 	July 151h July 30th July 9th September 24th October Mean P (ANOVA) Crd 

Sterile distilled water 33.2± 12.2 14.9±3.3 23.4±4.5 20.9±3.0 21.0± 1.8 22.7±2.8 
(34.7±7.3) (22.4±2.8) (28.7±3.1) (27.1 ±2.1) (27.2± 1.3) (28.0±1.8) (3.5 x 10. 1 ) (5.6) 

Fresh Irrigation Solution 6.8 ± 1.8 10.6 ± 0.6 7.8 ± 2.0 22.4 ± 5.8 21.4 ± 4.6 13.8 ± 2.2 
(14.9±2.0) (19.0±0.6) (15.9±2.3) (27.9±3.9) (27.3±3.2) (21.0±1.8) (1.3 x 10.2) (38) 

Uninoculated Open 6.1 ± 1.6 19.2 ± 8.5 1.0 	± 1.0 4.1 ± 1.2 13.9 ± 1.2 8.9 ± 2.3 
(14.0 ± 1.8) (27.5 ± 8.7) (3.3 ± 3.3) (11.4 ± 1.9) (21.8 ± 1.0) (15.6 ± 2.8) (2.3 x 10.2) (6.2) 

Uninoculated Closed 7.7 ± 1.8 6.1 ± 2.2 10.4 ± 2.9 4.5 ± 1.8 12.3 ± 3.5 8.2 ± 1.2 
(15.9 ± 1.9) (13.8 ± 2.6) (18.5 ± 2.9) (11.7 ± 2.5) (20.1 ± 3.2) (16.0 ± 1.3) (2.4 x 10. 1 ) (3.7) 

Inoculated Open n.d. 5.5±0.3 19.6± 10.7 16.5±3.0 3.9± 1.0 11.4±3.1 
(13.5±0.4) (24.8±7.6) (23.8±2.2) (11.2± 1.4) (18.3±2.5) (9.5 x 10.2) (5.7) 

Inoculated Closed nd, n.d. 5.8 ± 0.5 8.3 ± 3.2 25.9 ± 5.5 13.3 ± 3.7 
(13.9±0.6) (16.2±3.2) (30.4±3.6) (20.2 ±2.9) (1.2x 10.2) (4.0) 

Inoculated Closed (Pasteurised) n.d. 20.3 ± 1.9 16.4 ± 0.7 26.6 ± 4.0 15.3 ± 2.4 19.6 ± 1.7 
(26.7 ± 1.3) (23.9 0.5) (30.9 ± 2.6) (22.9 ± 1.9) (26.1 ± 1.2) (4.6 x 10.2) (2.5) 

Inoculated Closed (Filtered) 12.5 ± 5.3 12.4 ± 5.0 8.1 ± 4.4 8.6 ± 2,9 8.6 ± 2.0 10.0 ± 1.6 
(19.8±4.6) (19.8±4.4) (13.5±6.9) (16.6±2.9) (16.8±2.2) (17.3±1.8) (8.4x 10") (6.4) 

Mean 13.3±3.6 12.7±1.8 11.6±2.0 14.0±2.0 15.3±1.7 	13.4±0.9 
(Mean of arcsine transformed data). (19.9 ± 2.6) (20.4 ± 1.7) (17.8 ± 2.0) (20.7 ± 1.7) (22.2 ± 1.4) 	(20.2 ± 0.8) 	(5.1 x 10") 

P(ANOVA) (2.9 x 10.2) (1.4 x 10") (1.5 x 10.2) (3.6 x lO') (7.9 x 10) 	(3.9 x 10's) 
Ud (5.9) (5.7) (5.9) 3.9) (3.4)  

Means ± s.e.m. for three replicates, based on three random fields of view per replicate. Results in parentheses are arcsine transformed data. 
n.d. Not done. 
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4.5. The effect of pH on zoospore motility and subsequent cyst 

germination. 

4.5.1. Modification of irrigation solution pH. 

In order to test the effect of irrigation solution pH on zoospore motility the October sample 

of the inoculated closed (pasteurised) irrigation solution with a pH of 4.3 (the lowest of all 

samples in the trial) was increased to pH 7.0 with NaOH. An equivalent amount of NaCl was 

added to a second portion of the irrigation solution to act as a control. Zoospores of Py. 

aphanidermatum were introduced to both the test and control solutions with the aim of later 

determining the proportion of zoospores motile after the incubation period. However, a white 

precipitate immediately formed in the control upon the addition of NaCl, and the precipitate 

rapidly immobilised the motile zoospores. It was hoped that the effect of neutralising the 

irrigation solution and comparing the level of zoospore motility with the control would have 

been ascertained by this experiment. A modified protocol lacking the NaCl supplement could 

not be performed because of the lack of suitable irrigation solution. 

4.5.2. Zoospore motility and subsequent cyst germination in solutions 

of various pH. 

In three experiments (summarised in Table 4.13) the effect of HNO 3  and Ca(NO 3)2  

concentration on the motility and subsequent germination of encysted zoospores of Py. 

aphanidermatum was determined. The data for the three experiments were pooled and trend 

lines were fitted to the data (Table 4.14). The expected pH of the nitric acid treatment was 

based on pH - log io[H30I. Both the observed pH of Ca(NO 3)2  and the proportion of cysts 

germinating in nitric acid were unaffected by the concentration of Ca(NO 3)2  and acid, 

respectively. Therefore, the fitted lines for these sets of data were the arithmetic means of the 

data set. A suitable line of best fit was not found for the observed pH in the nitric acid and 

consequently the mean pH at each concentration of nitric acid was used. For the other three 

lines (zoospore motility with nitric acid, zoospore motility with Ca(NO 3)2  and cyst 

germination with Ca(NO 3)2) the lines of best fit were all very highly significant (F < 7.47 x 

104) .  The line of best fit for the proportion of zoospores motile in nitric acid treatment was 

one of exponential decay, whereas there was a sigmoid relationship between Ca(NO 3)2  

concentration and proportion of zoospores motile. The proportion of cysts germinating in 
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Ca(NO3)2  increased with Ca(NO 3)2  concentration up to 16 mM, but this was followed by a 

very highly significant (P = 1.1 x 10-4) decrease in germination with 32 mM Ca(NO 3)2 . 

Therefore, a quadratic function (y = a + bx + cx 2) was used to describe the line of best fit. 

Table 4.13. Concentrations of HNO3  and Ca(NO3 )2  for the experiments on the 

effects of HNO 3  and Ca(NO3)2  concentration on zoospore motility and subsequent 

cyst germination. 

Experiment 	 HNO3  concentrations 	 Ca(NO3)2  concentrations 	n 

I 	 0,4,8,l6 and 32mM 	 0,4,8,l6 and 32mM 	 3 

II 	0, 0.05, 0.1, 0.25, 0.5, 1, 2 and 5 mM 	0, 100, 250, 1000 and 5000 iM 	2 

III 	0, 1, 2, 5, 10, 25, 50, 100 and 250 i.tM 	 n.d. 	 2 

n.d. Not done. 

Although the effects of HNO 3  and Ca(NO3)2  on zoospore motility and cyst germination were 

tested simultaneously the results are displayed separately (Figures 4.8 and 4.9). The 

proportion of motile zoospores and the proportion of cyst germination was constant in 

Ca(NO3)2  up to -400 tM. From -400 LM to 16 mM the proportion of zoospores motile 

declined while the proportion of cysts germinating increased. In nitric acid the proportion of 

cysts germinating was consistently low (1.5%) in all concentrations of acid up to 32 mM. 

The proportion of zoospores motile in 0 mM nitric acid was 20%, but the value decayed 

exponentially to -0% in 250 ltM nitric acid. An observed pH of -7 was recorded in all 

treatments of nitric acid up to a 50 .tM, then from 50 tM to 500 j.tM the observed pH tended 

towards the expected theoretical pH. Between 500 tM and 32 mM nitric acid the observed 

and expected pH values were similar. 
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Figures 4.8 and 4.9. The effect of increasing Ca(NO 3)2  and nitric acid concentration 

on zoospore motility and subsequent zoospore release. 
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Table 4.14. The data transformation method, formula of relationship and correlation statistics for lines of best fit between either Ca(NO 3)2  

or HNO3 concentration and zoospore motility, cyst germination, expected pH and observed pH. 

Line 	 Line type 	Transformation 	 Formula of fitted line 	 Correlation between 	Correlation 	n 
method 	 x=[H or Ca21 .LM 	 transformed line and between observed 

concentration 	and fitted 
Expected pH (HNO 3) 	Inverse log 	NA 	 = logi0[10 x+10 7]t 	 n.a. 	 100.0% 	49 

F= 10'  

Observed pH (HNO 3) 	Linear 	None 	 n.a. 	 n.a. 	 99.4% 	22 
F=9.61 )< 10-21 

Observed pH (Ca(NO 3)2) 	Linear 	Mean of data 	 = 6.77 ± 0.04 	 n.a. 	 n.a. 	10 

Motile (HNO 3) 	 Exponential 	Log jo(x+0.01) a 	 = 0.200 * 10 000675 x 	 79.0% 	 85.9% 	18 
decay 	 F=9.63x 10 	F=5.08x 10 

Motile (Ca(NO 3)2) 	 Sigmoid 	Probitb 	 n.a. 	 86.2% 	 66.4% 	22 
F=2.51 x 10-7 F=7.47x 10 

Germ (HNO 3) 	 Linear 	Mean of data 	 = 0.0 15 ± 0.003 	 n.a. 	 n.a. 	49 

Germ (Ca(NO 3)2) 	 Quadratic 	Excel Solver 	= 3.32 x 10-5 + 3.41 x 10 5x - 9.70 x 1040x2 	n.a. 	 89.7% 	25 
function 	 F= 1.33 x 10 

- Data for line fitting are from experiments I, II and III (Table 4.13). 
The addition of 10 7  is required for when x = 0 because there is no log 10  for zero. 

a Only data from experiment III was used because no motile zoospores were observed in the majority of treatments in experiments I and II. 
b  All data except when values are zero (that is, 32 mM Ca(NO 3)2) were used. Zeros can not be probit transformed. The excel worksheet function NORMINV (x, .t = 5, 
a = 1) was used to convert percentages into probits 
C  Excel Regression analysis tool used to predict probit values, these were then back transformed into percentages to give the fitted line. The conversion of probits into 
percentages was done by the Excel worksheet function NORMDIST (x, .t = 5, a = 1, cumulative = TRUE) x 100. 
n.a. - Not appropriate. 
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4.6. Correlations between characteristics of irrigation samples. 

By combining results from Edinburgh and Stockbridge House up to 16 characteristics can be 

attributed to each irrigation sample (Table 4.15). These variables include the pH of the 

sample, the effects on sporangiogenesis, and the discolouration of roots of the plants grown 

in the irrigation samples. In total there were 35 irrigation samples (seven samples per month 

for five months). 

Table 4.15. Summary of characteristics associated with each irrigation sample. 

Characteristics associated with irrigation samples Location of characteristic 

detennination. 

Physical chemistry of solution 
 Solution pH Edinburgh 

Effects on zoospore motility and subsequent cyst germination. 
 Motility of zoospores of Ph. parasitica. Edinburgh 
 Subsequent germination of cysts of Ph. parasitica. Edinburgh 
 Motility of zoospores of Py. aphanidermatum. Edinburgh 
 Subsequent germination of cysts of Py. aphanidermatum. Edinburgh 

Effect on zoospore release from pre-formed sporangia. 
 Release of zoospores from pre-formed sporangia of Ph. parasitica. Edinburgh 

Effect on germination of vortex encysted zoospores. 
 Germination of vortex encysted spores of Jy. aphanidermatum. Edinburgh 

Effects on zoosporangiogenesis of Ph. parasitica. 
 Zoospore release from sporangia. Edinburgh 

 Sporangial density. Edinburgh 

 Fraction of sporangia that had discharged. Edinburgh 

Number of Ph. cryptogea propagules in mini-NFF system. 
 Determined by membrane method. Stockbridge House 
 Determined by dip-stick method. Stockbridge House 

Indicators of infection in mini-NFl systems. 
Incidence of infection per 1cm of root. 	 Stockbridge House 
Index of root development. 	 Stockbridge House 
Index of root decolouration. 	 Stockbridge House 
Lesions per unit area of root. 	 Stockbridge House 

The sixteen characteristics were all correlated against each other for all combinations (Table 

4.16). For all correlation values greater than 50% the significance of regression value was 

also determined (Table 4.18). A square-root transformation was used on Ph. cryptogea 

(membrane method) propagule number because of the high variance within the data 

(Appendix 1). None of the other data sets was transformed. 
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Additional agronomic data were available from Stockbridge House for the October irrigation 

samples. These additional characteristics were plant height, stem diameter, leaf area, leaf 

length and root weight (Appendix 7). This increased the maximum number of characteristics 

per irrigation sample to 21. A separate analysis of the October solutions was carried out 

(Table 4.17). Significance of correlation was only determined for values of R greater than 

75% for correlations between a characteristic determined in Edinburgh and one of the 

additional agronomic characteristics (Table 4.19). 
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Table 4.16. Correlation values for correlations between characteristics for all irrigation samples. 

00 
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Maximum observations 28 31 31 31 31 31 31 31 31 31 27 29 29 29 29 29 
Irrigation solution pH 28 1000/9 

Ph. parasitica. %motile 31 3% 100% 

Ph. parasitica %germinated (motility exp.) 31 I 	-53% I - 17% 100% 

Py. aphanidermatum %motile 31 71% 27% = 100% 

Py. aphanidermatum %germ. (motility exp.) 31 -20% 16% -11% -20% 100% 

Ph. parasitica zoospore release 31 49% -3% -46% I 	52% I -27% 100% 

Py. aphanidermatum vortex-encysted %germ. 31 -49% 2% 30% -% -1% 1000/. 

Ph. parasitica % sporangial discharge 31 47% 20% 36% -36% 12% .18% 34% 100% 

Ph. parasitica sporangial density 31 10% -12% -200/a 15% -3% 23% 0% -27% 100% 

Ph. parasilica subsequent zoospore release 31 52% 7% -45% 57% -7% 59% -21% -47% 68% 100% 

Ph.cryptogea propagules (membrane) 27 -10% 1% 100/9 -39% 8% -39% -7% 91/o -28% -27% 100% 
Ph.cryptogea propagules (dip-stick) 29 10% -5% -2% 1% 30% -13% .31% 15% -18% -5% 18% 100% 

Infection per 1cm root 29 -12% -9% 12% -29% 8% j -50% 31% .1% .16% -22% I 51% I 28% 100% 

Root development index 29 17% 00/0 -11% 28% -13% 32% 5% .11% 13% 26% I -62% 41% I -61% 1 100% 

Root discoloration index 29 -19% 11% 13% -24% 30% -50% -13% 60/6 -25% -32% 59% I 44%  I 68% -88% I 100% 

Lesion no/unit area 29 -18% 32% 1% -201/o 32% -37% 7% 23% -20°/a -29% 60°,'. 51% 42% go;/—.l 100°/a 

Highlighted values are lxi ~! 50%. (P:5 0.01). 
Square root transformed. 
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Table 4.17. Correlation values for correlations between characteristics for October irrigation samples only. 
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Maximum observations 7 7 7 7 7 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7 	7 

Irrigation solution pH 7 180% 

Ph. parasitica. %motile 7 00% 

Ph. parasitica %germinated (motility exp.) 7 .18% .32% 180% 

Py. aphanidermatum %motile 7 	 5% 	4% 00% 

Py. aphanidermatum %germ. (motility exp.) 7 0% 85%] 41% 23% 100% 

Ph. parasitica zoospore release 7 29% .66% .5% 13% .62% 180% 

Py. aphanidermatum vortex-encysted %germ. 7 	
F776% 

11% 11% -6% 6% 100% 

Ph. parasitica % sporangial discharge 7 -31% 69% 34% .14% 39% 42% 35% 00% 

Ph. parasitica sporangial density 7 .21% 13% 43% .61% 39% 8% 50% .14% 100% 

Ph. parasitica subsequent zoospore release 14% .41% 22% 48% 30% 6% .29% 100% 

Ph.cryptogea propagules (membrane) 6 49% 28% 28% 4% 34% 1% 4% 6% 38% 00% 

Ph.cryptogea propagules (dip-stick) 7 46% -1% 9% 15% 25% -7% -38% -20% 43% 49% .11% 100% 

Infection per 1cm root 7 2% 0% -13% 41% .23% 20% 34% 13% 17% 2% 67% 22% 100% 

Root development index .16% 69% 9% -20% .35% -25% 24% -67% 	-76% -69% 41% .63% 100% 

Root discoloration index 76% 2% 29% 11% 6% .11% 43% 59% 81% 34% 66%  

Lesion no/unit area 7 29% 52% 41% 3% 38% 15% 26% 14% 39% 2% 63% -86% ii] 100% 

Root dry weight 7 23% .15% 67% 18% -15% .31% .29% 23% .65% .69% 406 9% . -86% I 100% 

Plant height 7 -25% 41% 62% 13% -18% 40% -29% 27% .76% -81% 91% 100% 

Stem diameter 7 16% 42% 73% 43% .45% 6% -63% .44% 42% 41% 40% 86% 83% 00% 

Leaf area 7 -6% -15% 61% 30% -20% -33% -47% 14% 80% -75% -52% -36% -62% 40% 100% 

Leaf length y -13% .21% 49% 24% -23% -fl6 -74% " " 81% I 	100% 

Values high-lighted are significant correlations (P < 0.05). 
Square root transformed. 
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Table 4.18. Correlation values (R) and corresponding values of significance (F) for the 

major correlations between characteristics of irrigation samples based on data from all 

months. 

Pair of characteristics R F n 

Pp %germ (motility. exp.) & Irrigation solution pH -53% 3.4 x 10-' 28 

Pa %motile & Irrigation solution pH 71% 2.0 x 10-' 28 

Pa %motile & Pp %germ (motility exp.) -52% 2.8 x 10-3 31 

Pa zoospore release & Pa %motile 52% 2.4 x 10-3 31 

Pa vortex-encysted %germ. & Pa %motile -58% 5.5 x 10 31 

Pp subsequent zoospore release & Irrigation solution pH 52% 4.7 x 10 28 

Pp subsequent zoospore release & Pa %motile 57% 7.7 x 104 31 

Pp subsequent zoospore release & Pa zoospore release 59% 4.4 x 104  31 

Pp subsequent zoospore release & Pp sporangial density 68% 2.4 x 10 31 

Infection per 1cm root & Pa zoospore release -50% 1.0 x 10 2  26 

Infection per 1cm root & Pc propagules (membrane) 51% 6.0 x 10 27 

Root development index & Pc propagules (membrane) -62% 6.1 x 104  27 

Root development index & Infection per 1cm root -61% 4.0 x 10-4  29 

Root discolouration index & Pa zoospore release -50% 9.0 x 10-1  26 

Root discolouration index & Pc propagules (membrane) 59% 1.1 x 10-3 27 

Root discolouration index & Infection per 1cm root 68% 5.8 x 10 29 

Root discolouration index & Root development index -88% 4.0 x 10 10  29 

Lesion no/unit area & Pc propagules (membrane) 60% 9.1 x 104  27 

Lesion no/unit area & Infection per 1cm root 51% 4.8 x 10-' 29 

Lesion no/unit area & Root development index -88% 4.0 x 10 29 

Lesion no/unit area & Root discolouration index 90% 1.8 x 10.11  29 

Pa 	Py. aphanidermatum. 

Pp 	Ph. parasitica. 

Pc 	Ph. cryptogea. 
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There was significant positive correlation (R = 0.71, F = 2.0 x 10-5  ) between the irrigation 

solution pH and the proportion of zoospores of Py. aphanidermatum that remained motile after 

the 2h incubation. However, there was negligible (R = 0.03) correlation between irrigation 

solution pH and the comparable experiment using zoospores of Ph. parasitica. In all three 

experiments that measured the proportion of cysts germinating there was negative correlation 

with irrigation solution pH. However, only the germination of spontaneously encysted zoospores 

in the motility experiment using zoospores of Ph. parasitica had an R value greater than 50%. 

The only other characteristic for which the pH of irrigation solution had a significant correlation 

(R = 0.52, F = 4.7 x 10-3) was the level of subsequent zoospore release in the 

zoosporangiogenesis experiment. 

Generally, an irrigation solution that suppressed zoospore motility increased the level of cyst 

germination. There was a very highly significant correlation (R = 0.59, F = 4.7 x 10  -4  )  between 

zoospore release from pre-formed sporangia of Ph. parasitica and zoospore release from 

sporangia of Ph. parasitica that had formed in the irrigation solution. Similarly there was a very 

highly significant correlation (R = 0.68, F = 2.4 x 10) between sporangial density and 

subsequent zoospore release from those sporangia. However, there was negative correlation (R = 

-0.47) between the proportion of sporangia liberating their contents and the number of zoospores 

liberated from those sporangia. That is, overall, from mycelial mats with dense sporangial 

populations the number of zoospores released per sporangium was less than from mats with a 

low density of sporangia. 

There was a consistency in the correlation analysis of the Stockbridge House data. Very 

significant positive correlations (R ~: 0.51, F :~ 6.0 x 10-3) were found between the following 

characteristics: infections per unit length of root; lesions per unit area of root; root discoloration 

and the number of Ph. cryptogea propagules (membrane method). These four characteristics 

were all very significantly negatively correlated (R :5 -0.61, F :5 6.1 x 10-4) with the root 

development index. 

There were only two very significant correlations between the characteristics determined in 

Edinburgh and those determined at Stockbridge House. Both correlations (R = -0.50, F :~ 0.01) 

were negative and concerned zoospore release from pre-formed sporangia of Ph. parasitica. 

154 



These data correlated with the Stockbridge House determined characteristics of 'infections per 1 

cm root' and 'root discolouration index'. 

Table 4.19. Correlation values (R) and corresponding significance (F) for the major 

correlations between characteristics determined in Edinburgh and the additional 

agronomic factors for the October irrigation samples. 

Pair of characteristics R F n 

Plant height & Sporangial density -76% 4.7 x 10.2  7 

Plant height & Zoospore release (sporangiogenesis) -81% 2.6 x 10-2  7 

Stem diameter & Sporangial density -80% 3.0 x 1 0-'  7 

Leaf area & Sporangial density -80% 2.9 x 10.2  7 

Leaf length & Sporangial density 77% 4.3 x 10 7 

In the correlation analysis incorporating the additional agronomic data for October, five 

• significant correlations were observed between these agronomic characteristics and Edinburgh 

determined characteristics. Sporangial density was negatively correlated (R :~ -0.76, F:5 0.047) 

with plant height, stem diameter, leaf area and leaf length. The fifth correlation (R = -0.81, F = 

0.026) was between plant height and zoospore release from sporangia of Ph. parasitica that had 

formed in the irrigation samples. 
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4.7. Discussion. 

When the sampling of irrigation solutions from the Stockbridge House experiments was begun 

in 1997, for analysis of the effects of these solutions on zoospore producing fungi, it was 

expected that a build-up of disease, and of disease suppression, would occur in the glasshouse 

during the growing season. Then, in the experiments carried out at Edinburgh, it was hoped to 

determine which aspects of fungal biology were affected by the factors in irrigation solutions 

associated with disease conduciveness and suppressiveness. Unfortunately, there was very little 

disease development in the glasshouse trial at Stockbridge House in 1997, unlike 1996 when 

clear trends of disease progression and major differences between treatments (open versus 

closed) were observed. Even though the tomato plants in the treatments were artificially 

inoculated with a proven pathogenic strain of Ph. cryptogea, symptoms of the disease did not 

become apparent in the aerial portion of the crop until September, although the crop was 

subjected to stressful conditions (high temperatures and high incidence of solar radiation) during 

August. 

Therefore, the principal objectives of the experimental work at Edinburgh could not be achieved. 

Nevertheless, the experiments presented in this chapter did reveal a number of differences in the 

effects of the irrigation solutions on different aspects of infection-related behaviour, such as 

zoospore production, zoospore motility and cyst germinability. 

In three data sets (Tables 4.4, 4.6 and 4.7) there were significant differences within the five 

SDW controls. These significant variations within SDW controls complicate interpretation of 

these data sets. The finite quantity of irrigation solution supplied for analysis unfortunately did 

not permit the repetition of any experiments. 

In six of the data sets there were also significant differences within the fresh irrigation solution 

controls. The fresh irrigation solutions harvested during early July would be approximately five 

months older than those harvested at the end of October. These solutions when shipped were 

effectively sterile. However, with the passing of time, microbial populations and their associated 

metabolites would presumably change, even though the samples were incubated at a low 

temperature. These differing incubation times coupled with variable initial micro-organisms 

populations might account for the different characteristics associated with the five fresh 

156 



irrigation samples. Similarly, the other treatments would be incubated for differing durations 

depending on date of harvesting. However, the microbial populations in these samples would be 

established by the date of harvesting, and therefore less prone to alter during storage. 

The option of analysing each batch of samples (same harvesting date) at a fixed duration after 

the harvesting date would impose uniform incubation duration on all samples. However, this 

would be logistically hard and impose an impossibly rigid timetable. In addition, there would be 

difficulty in comparing the results between the different harvesting dates as zoospore density and 

consequently zoospore behaviour is highly variable between zoospore populations. 

The observation that the disease did not become visibly apparent in the aerial portion of the crop 

until September is borne out in the results from the mini-NFT trials. The solutions harvested at 

the end of October generally contained the highest number of Ph. cryptogea propagules. The 

plants grown in these solutions also generally had the most infections per 1 cm of root tissue, the 

lowest level of root development, the greatest level of root discolouration and the greatest 

number of lesions per unit area of root. However, none of the Edinburgh determined 

characteristics consistently showed solutions harvested on the 24th  October to be significantly 

different from the solutions harvested on the other four dates. Significant negative correlations 

between sporangial density and four of the agronomic characteristics (plant height, stem 

diameter, leaf area and leaf length) initially suggest that sporangiogenesis may be a target for the 

agent(s) of natural suppression. However, no significant differences in sporangial density were 

observed between solutions harvested at the end of October and solutions harvested during the 

preceding months. 

The highly significant negative correlations between zoospore release and two measurements of 

infection: - infections per 1 cm of root and root discolouration - imply that irrigation solutions 

that support healthy roots also promote zoospore release from pre-formed sporangia. 

In the calculation of theoretical suppressiveness of irrigation solutions two major assumptions 

were made. These were that each month's data had the same weighting and each characteristic 

also had equal weighting. However, some characteristics were similar and could consequently 

over represent that aspect of the infection sequence, for example; cyst germination was assessed 
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in three different experiments. Similarly, the characteristic that may represent the 'weak link' in 

the infection sequence could be under represented in the calculation. The assumption that a non-

germinated cyst had the potential to undergo diplanetism was challenged by McPherson (1998) 

who speculates that cysts in suppressive solutions were less capable of regermination 

(germination or diplanetism) than cysts found in non-suppressive solutions. It was also 

suggested by McPherson (1998) that zoospore motility was maintained in suppressive irrigation 

solutions. Therefore, negative correlation between zoospore motility and cyst germination would 

have to be assumed. In all correlations between proportion of zoospores maintaining motility and 

the proportion of cysts that had germinated negative correlations were found. The exception was 

the positive correlation between motility of Ph. parasitica zoospores and germination of vortex-

encysted zoospores of Py. aphanidermatum. In this exception the positive correlation was far 

from significant (R = 0.02, F = 0.90). Therefore, my assumption that a theoretically suppressive 

solution would increase direct germination of cysts is challenged, and McPherson's hypothesis is 

supported. Therefore, further experiments on the effect of suppressive irrigation solutions on 

cyst viability and diplanetism are required. 

The observation that the two least theoretically suppressive treatments were the two controls, 

that the four most theoretically suppressive treatments were from closed systems, and that the 

two open treatments were intermediate in theoretical suppressiveness was consistent with 

expectation. That is, in closed systems suppressive compounds can accumulate, whereas in open 

systems accumulation was not possible, but trace levels of suppressive compounds could be 

present. In either SDW or fresh nutrient solution an absence of suppressive compounds would be 

expected. 

The relationship between the mean rank of theoretical suppressiveness and mean solution pH 

suggests that reduced pH was a mechanism of suppression in the irrigation system. However, no 

significant correlations exist between solution pH and any of the characteristics determined at 

Stockbridge House. Additionally, pH is continuously monitored and adjusted in the irrigation 

system and therefore could not function in disease suppression. The optimal pH of the irrigation 

solution is between pH 6.0 and 6.5 (Cooper, 1979). The pH range of solutions excluding those 

that had passed through the pasteuriser is from pH 5.9 to 7.5. Both these extreme pHs were 

recorded in samples of fresh irrigation solutions. All the low pHs (5.5 and below) were recorded 
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in irrigation samples that had passed through the pasteuriser. Therefore, this active process of 

pasteurisation could modify the solution and render it more acidic. It is possible that acidity 

accumulation occurred during cold storage at Edinburgh, but this would not account for the 

acidity in the pasteurised samples to decrease with the age of the sample - the converse would be 

expected. The overall trend in five out of the seven treatments (SDW control excluded) is for pH 

to increase (tend to neutrality) with ageing of stored solutions. 

Zoospore motility was completely curtailed when the observed pH in the experiment was 

reduced to pH 4 by the addition of nitric acid. Low pH has been reported to curtail zoospore 

motility in Ph. palmivora (Bimpong & Clerk, 1970). The established relationship between 

bathing medium pH and zoospore motility explains firstly the very highly significant positive 

correlation between zoospore motility (of Py. aphanidermatum) and irrigation solution pH, and 

secondly the very low motility levels of zoospores of Py. aphanidermatum in the irrigation 

solutions that had been pasteurised. The effect of irrigation solution pH on motility of zoospores 

of Ph. parasitica was less because the ratio of zoospore suspension to irrigation solution was one 

to one, whereas in the corresponding experiment that used Py. aphanidermatum the ratio was 

one to three. The high levels of germination of vortex-encysted spores were probably not the 

result of low pH. The proportion of cysts found germinating in various concentrations of nitric 

acid was constant and therefore independent of pH over the range tested (up to 32 mM nitric 

acid pH 1.5). Elevated germination levels in the pasteurised irrigation solutions was probably 

due to liberation of germination-promoters by the process of pasteurisation. During 

pasteurisation cell contents will be liberated and might contain the particular L-amino acids and 

sugars that are known to promote germination in Py. aphanidermatum (Jones et al., 1991; 

Donaldson & Deacon, 1993b). 

In commercial glasshouses unusual pH drift is generally attributed to a change in nutrient up-

take by the plants, and this can be an indication of the presence of disease. However, the lack of 

correlation between solution pH and any plant health indicators suggests that irrigation solution 

pH is not an indicator of disease. 

Holdemess and Pegg (1986) observed greater density of sporangia of Ph. nicotianae var. 

parasitica (= Ph. parasitica) in irrigation solutions than in distilled water. They also observed 
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that sterilisation of the irrigation solution reduced the sporangial density, but not to the level 

found in distilled water. The irrigation samples received from Stockbridge House failed to 

increase sporangial density compared to the SDW control. However, it was observed that from 

these mats with less sporangial density significantly more zoospores were released. The 

irrigation solutions would contain cations (principally C?, Mg 2 , K and Fe 3)that are known 

to increase sporangial density in Phytophthora (Halsall, 1977; Halsall & Forester, 1977). The 

presence of microorganisms and their metabolites also been found to increase sporangial 

numbers (Marx & Haasis, 1965; Marx & Bryson, 1969; Ayers, 1971; Ayres & Zentmyer, 1971; 

Ribeiro, 1983). The mechanism of increased sporangia numbers in the presence of micro-

organisms is two fold. First, microbial metabolites promote sporangiogenesis - for example, of 

several nitrogen sources tested L-a-alanine was the greatest promoter of sporangiogenesis in Ph. 

palmivora (Singh, 1973). Second, micro-organisms can remove substances that are inhibitory to 

sporangiogenesis - for example, glucose (Ribeiro, 1983). 

However, sugars also function as chemoattractants for zoospores (Donaldson & Deacon, 1993b). 

The metabolism of sugars by pseudomonads in the rhizoplane of target plants has a reportedly 

detrimental effect on zoospore chemotaxis (Zhou & Paulitz, 1993). In irrigation systems used for 

the production of tomatoes the principal heterotrophic bacterial genus present is Pseudomonas 

with Ps. facilis being the most abundant species (Berkelmann & Wohanka, 1993). F. Lewis 

(McPherson, 1998) found that bacterial populations in the Stockbridge House irrigation 

solutions were greater for closed systems than for open, and that pasteurisation markedly 

reduced population numbers. In vivo it was found by F. Lewis (McPherson, 1998) that 

fluorescent yellow pseudomonads displayed the strongest antagonism, and siderophores were 

implicated in the antagonism. If siderophores are an agent of antagonism then iron limitation is 

implicated. There is growing evidence that indigenous microflora suppress Py. aphanidermatum 

in cucumbers grown on Rockwool (Postma et al., 2000). Also there is growing acceptance by 

commercial (Dutch) growers of the merits of recirculating irrigation solutions in the production 

of tomatoes and cucumbers (van Os, 1999). 
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Chapter 5. 
The effects of ethanol on Py. aphaniderma turn 

and Ph. parasitica. 
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5.1. Introduction. 

The presence of ethanol in a horticultural irrigation system based on the nutrient film 

technique (NFT) will be as a by-product of fermentation. Ethanol released by plants can act 

as an indicator to Oomycete phytopathogens that plants are stressed and therefore susceptible 

to attack (Allen & Newhook, 1973; Cahill & Hardham, 1994). The zoosporic fungi 

(particularly Phytophthora and Pythium spp.) are suitably adapted to infecting plants in 

systems based on NFl. The effect of ethanol on these fungi is generally unknown. Positive 

chemotaxis to ethanol is established in several species of Phytophthora (Halsall, 1976). The 

induction of cyst germination in Ph. cinnamomi by ethanol also occurs, albeit at a higher 

concentration than for the threshold for chemoattraction (Biyt et al., 1982). 

Although zoospores are believed to be essential for successful host infection their existence 

is dependent on the production of sporangia, differentiation of sporangial cytoplasm into 

zoospores and the successful liberation of zoospores from the sporangia. Zoosporangia in 

turn require the mycelial network for nutrition. Consequently these pre-zoosporic stages of 

the infection sequence are also potential targets of any control approach. 

The results presented in this chapter summarise the effects of ethanol on several aspects of 

the infection sequence of two zoosporic fungi. Ethanol supplements to a closed irrigation 

solution would be a radical proposition. However, ethanol is a renewable, biodegradable and 

inexpensive chemical. 

5.2. Effect on mycelial growth. 

Mycelial fragments of Py. aphanidermatum when grown in CV813 in the absence of ethanol 

for 48h (as in Section 2.3.3) form a complete mat that covers the base of the Petri dish. 

Increasing the concentrations of ethanol supplemented to CV813 reduced the extent of the 

mycelial mat and the density of the mycelia. This was reflected in the biomass produced over 

the 48h incubation period (Figure 5.1). There was very highly significant negative 

correlation (y = 9.83 - 0.065x, F = 3.73 x 10 4, R = -0.75, n = 18) between ethanol 

concentration and final biomass. In a parallel experiment with Ph. parasitica many small 

dense colonies were observed in the ethanol-free control. Each colony was presumably 

derived from a small mycelial fragment. Again, increasing concentrations of ethanol 

suppressed biomass gain. Significant (ANOVA P < 0.05, ad  = 0.4 mg) suppression of 
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biomass production was achieved with the 87.9 and 176 mM ethanol treatments compared to 

the ethanol-free control. In the 176 mM treatment the mean biomass production was 5.0 mg; 

this was less than half of the mean biomass recorded in the ethanol-free control, although 

this contrasts strongly with Py. aphanidermatum which did not grow in 176 mM ethanol. 

Figure 5.1. The effect of supplementing CV8B with ethanol on final biomass' of Py. 

aphanidermatum and Ph. parasitica. 

-- Ph. parasitica. 
—U--- Py. aphanidermatum. 
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* Means ± s.e.m. for 3 replicates, assessed by arithmetic dry mass gain of pre-weighed Petri-dishes. 

5.3. Effect of supplementing MSS with ethanol at different times during 

sporangiogenesis of Py. aphaniderma turn. 

Five different treatments were used in this experiment. The first treatment employed the 

standard protocol for producing sporangia-bearing mats of Py. aphanidermatum (Section 

2.3.1.2), although an additional wash with MSS was included on the day between the second 

MSS wash and the induction of zoospore release. For the second treatment the MSS for all 

three washes was supplemented with 35.2 mM ethanol. In treatment three the first wash was 

with MSS supplemented with 35.2 mM ethanol, whereas the other two washes used the 

ethanol-free MSS. In the fourth treatment the first two washes were with MSS supplemented 

14 

12 

10 

0) 

Cn 

E6 
0 
.0 

. 	4 
U- 

2 

0 

163 



with ethanol and the third wash was with ethanol-free MSS. In the fifth treatment the first 

two washes with ethanol-free MSS and the third wash was with MSS supplemented with 

35.2 mM ethanol. The induction of zoospore release in all treatments employed the standard 

protocol. That is, the release solution was SDW. Table 5.1 shows the results of this 

experiment. 

In the first treatment (all washes were with ethanol-free MSS) a mean zoospore density of 

241 zoospores4lF' was found, whereas in treatment two (all washes with ethanol-

supplemented MSS) no zoospores were observed. The addition of ethanol to the MSS wash 

of day 1 only (treatment 3) reduced the number of zoospores to 59% of that in the ethanol-

free control (treatment 1), but this reduction was not significant (P> 0.05). When ethanol 

was added to MSS on day 1 and day 2 (treatment 4) or only on day 3 (treatment 5) then 

significant suppression was observed (t-tests, P = 0.032 and P = 0.024, respectively). The 

addition of ethanol to the MSS of day three reduced the number of zoospores released to 5% 

of the ethanol-free control (treatment 1). 

Table 5.1. The effect of ethanol added to wash solutions at different times on 

sporangiogenesis of Py. aphanidermatum when assessed by subsequent zoospore 

release into SDW. 

MSS treatment 

Treatment 	 Day 1 	Day 2 	Day 3 	Zoospores.t1' 

I 	 - 	 - 	 - 	 241±65 

2 	 + 	 + 	 + 	 0±0 

3 	 + 	 - 	 - 	 143±69 

4 	 + 	 + 	 - 	 26±18 

5 	 - 	 - 	 + 	 13±4 

P(ANOVA) 	0.011 

Gd 	 61 

Means ± s.e.rn. for 3 replicates, determined by two haemocytometer counts per replicate. 
- Ethanol free MSS 
+ MSS supplemented with 35.2 mM ethanol. 
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5.4. Effect of various ethanol concentrations in MSS on zoospore 

release from Py. aphanidermatum. 

The standard protocol for production of zoospores of Py. aphanidermatum (Section 2.3.1.2) 

was employed, but the MSS was supplemented with various concentrations of ethanol. After 

sporangiogenesis had occurred the ethanol supplemented MSS was removed by washes of 

SDW and the sporangia were induced to release zoospores into SDW. Increasing 

concentrations of ethanol in MSS to 35.2 mM or above significantly suppressed the numbers 

of zoospores released into SDW (Figure 5.2) with no zoospores being released when MSS 

was supplemented with 176 mM ethanol. 

Figure 5.2. The effect of supplementing MSS with various concentrations of ethanol 

on subsequent zoospore release from Py. aphanidermatum into SOW. 
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Means ± s.c.m. for 3 replicates, determined by two haemacytometer counts per replicate. 

5.5. Effect of various ethanol concentrations in MSS on zoospore 

release from Ph. parasitica. 

A parallel experiment was performed with Ph. parasitica. That is, the standard protocol for 

production of zoospores of Ph. parasitica (Section 2.3.1.1) was used, but the MSS was 

supplemented with various concentrations of ethanol. Because the sporangial morphology of 

Ph. parasitica is distinct and zoospores are released pre-shock into MSS then additional 

characteristics of sporangiogenesis were recorded. These additional characteristics were 
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sporangial density, pre-shock zoospore release (into ethanol supplemented MSS), and 

percentage pre- and post-shock sporangial discharge. 

MSS supplemented with various concentrations of ethanol affected sporangial density, 

sporangial morphology, proportion of sporangia discharging their contents, number of 

zoospores released and specific zoospore release (that is, zoospores released per sporangium) 

in Ph. parasitica (Figures 5.3 to 5.8). Concentrations of 17.6 mM ethanol and above 

significantly (P < 0.032 determined by t-tests) reduced sporangial density compared to the 

ethanol-free control (Figure 5.3). In MSS supplemented with 87.9 mM ethanol the sporangial 

density was 27% of that of the ethanol-free control. 

Sporangia that form in ethanol-free MSS were distinct, terminal, ovoid structures (Figure 

5.4). This is typical morphology for this species (Waterhouse, 1956). However, sporangia 

that had formed in MSS supplemented with 176 mM ethanol were visibly deformed and 

frequently the anterior of the sporangium was elongated and curved (Figure 5.5). 

Figure 5.3. The effect of supplementing MSS with various concentrations of ethanol 

on sporangial density of Ph. parasitica. 
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Means ± s.e.m. for 3 replicates, based on 6 random fields of view (3 fields prior to cold-shock and 3 
fields after zoospore release) per replicate. 
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Figure 5.4. The morphology of sporangia of Ph. parasitica that formed in ethanol-

free MSS (lOOx total magnification). 
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Figure 5.5. The morphology of sporangia of Ph. parasitica that formed in MSS 

supplemented with 176 mM ethanol (lOOx total magnification). 
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Increasing ethanol concentrations suppressed the proportion of sporangia that discharged 

zoospores both before and after the cold shock (Figure 5.6). In the control, before the cold 

shock, 18.4% of sporangia had discharged, but only 1.4% of sporangia had discharged their 

contents in the 87.9 mM ethanol treatment. A similar pattern occurred for post-cold shock 
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sporangial discharge. In the ethanol free-control 32.5% of sporangia were observed to have 

discharged their contents, whereas in the 87.9 mM treatment only 2.0% had discharged. 

Zoospore release into the pre-shock ethanol-free control was significantly greater than into 

MSS supplemented with either 8.8 mM or 17.6 mM ethanol (t-tests, P = 0.026 and P = 

0.006, respectively) (Figure 5.7). When MSS was supplemented with either 35.2 or 87.9 mM 

ethanol no zoospores were observed to have been released. The post-shock ethanol-free 

control had a significantly (P < 0.05) greater concentration of zoospores than in all the 

treatments with ethanol supplements greater than 8.8 mM. In the treatment with an ethanol 

supplement of 87.9 mM the number of zoospores released was less than 0.5% of the ethanol-

free control. 

Figure 5.6. Effect of ethanol concentration in MSS on the proportion of sporangia of 

Phytophthora parasitica that discharge their contents before and after the induction 

of zoospore release. 
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* Means ± s.e.m. for 3 replicates, assessed before the cold shock and after zoospore release, based on 
scoring 3 fields of view per replicate. 
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Figure 5.7. Effect of ethanol concentration in MSS on the zoospore release from 

sporangia of Phytophthora parasitica * before and after the induction of zoospore 

release. 
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Means ± s.e.m. for 3 replicates, assessed before the cold shock and after zoospore release, based on 
2 heamocytometer counts per replicate. 

An index of specific zoospore release (an indication of the number of zoospores released per 

sporangium) was calculated from the above results (sporangial density, sporangial discharge 

and zoospore release). The calculation was the mean zoospore release divided by the product 

of sporangial density and percentage of sporangia that had discharged their contents. The 

results were then scaled so that the maximum value was 100. The overall trend was that 

increasing ethanol concentration suppressed the number of zoospores released per 

sporangium irrespective of whether it was pre- or post-shock (Figure 5.8). Although the 

trends are similar for pre- and post-shock the magnitude of the effect on specific zoospore 

release is greater for post-shock than for pre-shock. 
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Figure 5.8. Effect of ethanol concentration in MSS on the specific zoospore release 

of zoospores from sporangia of Phytophthora parasitica before and after the 

induction of zoospore release. 
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* Specific zoospore release at each supplement of ethanol was calculated by dividing mean zoospore 
release by the product of mean sporangial density and mean proportion of sporangia that had 
discharged their contents. The values were then linearly scaled so that the highest value of specific 
zoospore release was 100. 

5.6. Effect of various ethanol concentrations in the release solution on 

zoospore release from pre-formed sporangia of Py. -aphanidermatum 

and Ph. parasitica. 

Pre-formed sporangia of Py. aphanidermatum were produced (Section 2.3.1.2) and then the 

release solution (SDW) was supplemented with various concentrations of ethanol. After the 

standard release period the number of zoospores released into the ethanol-supplemented 

SDW were enumerated by haemocytometer counts. This experiment was repeated twice. 

The results of the second of two experiments showed that 880 l.LM ethanol significantly (P < 

0.05) suppressed zoospore release from pre-formed sporangia to 21% of the control (Figure 

5.9) Concentrations of ethanol of 8.8 mM and above in the first experiment completely 

suppressed zoospore release; that is, no zoospores were detected. 
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Figure 5.9. Effect of ethanol concentration in the release solution on zoospore 

release from pre-formed sporangia of Py. aphanidermatum . 
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* Means ± s.e.m. for 3 replicates, based on 2 heamocytometer counts per replicate. 

The same experimental design was employed, but with pre-formed sporangia of Ph. 

parasitica being exposed to various ethanol concentrations. A solution of up to 1.4 M 

ethanol did not significantly (P > 0.05) suppress percentage sporangial discharge or the 

number of zoospores released when compared to the ethanol-free control (Figure 5.10 and 

5.11). In both experiments sporangial discharge and zoospore release peaked in the 87.9 mM 

ethanol solution. The only peak that was significantly (t-test, P = 0.0027) different from the 

ethanol-free control was the number of zoospores released in experiment 1. 
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Figures 5.10 and 5.11. The effect of ethanol concentration in the release solution 

on zoospore release from pre-formed sporangia of Ph. parasitica. 

Figure 5.10 Experiment 1. 	 Figure 5.11 Experiment 2. 

90 

80 

70 jF 

60 

50: 

40 

30, 

20 

10 

0 

0 20406080100120140160180 	 0 1002003004005006007006009001000 

Ethanol concontmlion (rv*l) 	 Ethanol concentration (MM) 

* Means ± s.e.m. for 3 replicates, based on 2 heamocytometer counts per replicate for zoospore release 
numbers or three fields of view for fraction of sporangia that had discharged their contents. 

5.7. Effects of various ethanol concentrations on zoospore motility and 

cyst germination of Py. aphanidermatum. 

Zoospores of Py. aphanidermatum were introduced into SDW or SDW supplemented with 

176 mM ethanol. After 2h the proportion of zoospores motile and the proportion of cysts that 

had germinated was determined (as in Section 2.3.6). The proportion of zoospores that 

remained motile in 176 mM ethanol during the 2h incubation period was not significantly (P 

= 0.48) different from the ethanol-free control (Table 5.2). Similarly, the proportion of cysts 

that subsequently germinated in the 176 mM ethanol was not significantly (P = 0.29) 

different from the ethanol-free control. In a separate experiment it was found that the 

proportion of vortex-encysted zoospores that germinated in the 176 mM ethanol treatment 

did not significantly (P = 0.46) differ from the SDW control (method as in Section 2.3.7). 
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Table 5.2. The effect of 176 mM ethanol on the proportion of zoospores of Py. 

aphaniderrnatum that remain motile, that subsequently germinate and the proportion 

of vortex-encysted zoospores that germinate. 

Motile 	Subsequent 	 Vortex encysted 
zoospores' 	cyst germination * 	zoospore germination 

Units % (and Arcsine) % (and Arcsine) % (and Arcsme) 

Ethanol free 35.6 ± 6.5 2.7 ± 0.7 44.2 ± 2.7 
(36.5 ± 3.9) (9.3 ± 1.2) (41.6 ± 2.7) 

176 	m Ethanol 41.0 ± 3.3 4.2 ± 1.0 47.0 ± 2.1 
(39.8±1.9) (11.6±1.4) (43.2±2.1) 

P (t-test) (0.48) (0.29) (0.46) 

Means ± s.e.m. for 3 replicates, based on 3 fields of view per replicate. 
Means ± s.e.m. for 3 replicates, assessed after 2h, based on score of at least 100 spores per 

replicate. 

5.8. The effect of ethanol on zoospore and cyst nutrient induced 

germination of Py. aphanidermatum. 

Naked, motile zoospores or encysted zoospores of Py. aphanidermatum were introduced into 

various concentrations of ethanol in SDW. Then after 20 minutes concentrated CV813 was 

added. The addition of the broth caused all motile zoospores to lose motility and encyst. The 

high concentration of nutrients caused most cysts to germinate (fuller details of -this method 

are described in Section 6.3). The proportion of cysts that germinated was then scored. 

The mean nutrient supplemented germination of zoospores and mature cysts (vortex-

encysted) of Py. aphanidermatum in the ethanol-free control was 84% for zoospores and 

79% for mature cysts (Figure 5.2). In 2.25 M ethanol a few spores were recorded to be viable 

however, these spores were likely to have spontaneously encysted and germinated during the 

release period and prior to the addition of ethanol. The relationship between spore 

germination and ethanol concentration was sigmoid in both cases. The regression of the 

probit transformed lines was very highly significant in both cases (F !~ 3.67 x 108)  (Table 

5.3 and Figure 5.13). The LD 50  was calculated to be 633 mM ethanol for zoospores and 862 

mM for mature cysts. Before fitting of the lines all data were linearly scaled so that 

germination in the ethanol-free controls was 100%. 
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Figures 5.12. and 5.13. The effect of ethanol concentration on zoospore and 

cyst viability of Py. aphanidermatum*. 

Figure 5.12 Non-transformed data. 
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Figure 5.13 Fitted lines. 
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Table 5.3. Correlation statistics for lines of best fit for the effect of ethanol 

concentration on zoospore and cyst nutrient induced germination of Py. 

aphanidermatum. 

Zoospores 	 Cysts 

F 	 3.67 x 10 8 	 6.67 x 10 -'0  

R (transformed and concentration) 	 0.80 	 0.90 

R (Fitted and observed) 	 0.93 	 0.93 

df 	 26 	 26 
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5.9. Summary of the effects of ethanol on the biology of Py. 

aphanidermatum and Ph. parasitica. 

In Table 5.4 the effects of ethanol on the biology of the two fungi is summarised. The most 

sensitive stages to ethanol were sporangiogenesis of Ph. parasitica and the release of 

zoospores from pre-formed sporangia of Py. aphanidermatum. High concentrations of 

ethanol did not affect zoospore release from pre-formed sporangia of Ph. parasitica. 

Mycelial growth of Ph. parasitica was less affected by ethanol than Py. aphanidermatum. 

Motile zoospores and cysts were not affected by concentrations of ethanol used in the assay; 

this is reflected in the relatively high LD 50  
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Table 5.4. Summary of the effects of ethanol on the biology of Py. aphanidermatum and Ph. parasitica. 

Aspect 	 Py. aphanidermatum 	 Ph. parasitica 
Mycelial growth 	 176 mM completely reduced growth 	 176 mM reduced to 50% of control' 

Sporangiogenesis 

Sporangial density 

Proportion of sporangia discharging. 

Zoospores subsequently released 

Specific zoospore release 

Zoospore release 

Proportion of zoospores remaining motile 

Cyst germination 

Zoospore viability 

Control refers to the ethanol-free solution. 
n.d. Not done. 

n.d. 

n.d. 

35 mM reduced to 1% of control 

n.d. 

35 mM completely suppresses release 

176 m had no effect 

176 mM had no effect 

LD50 = 633 m 

35 mM reduced to 30% of control' 

35 mM reduced to 20% of control *  

35 mM reduced to 10% of control *  

18 mM reduced to 30% of control *  

880 mM had no affect. 

n.d. 

n.d. 

LD50 =862mM 
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5.10. Discussion. 

These experiments show that ethanol is generally toxic to both Py. aphanidermatum and Ph. 

parasitica. However, the degree of toxicity is dependent on species and stage of the infection 

sequence. 

Wall-less zoospores, believed to be the stage of the infection sequence most susceptible to 

disruption, have been targeted by several novel approaches, for example, by non-ionic 

surfactants (Stanghellini et al., 1996a and 1996b). However, zoospores are not as sensitive to 

ethanol as are the pre-zoospore stages. Also, zoospore motility was not significantly 

suppressed by 176 mM ethanol. Likewise encysted zoospores were relatively insensitive to 

ethanol. However, the LD50  for zoospores was slightly lower than for cysts, which suggests 

that zoospores are slightly more sensitive to ethanol than cysts. 

Overall, the most susceptible stage of the infection sequence to ethanol was 

zoosporangiogenesis. Although the release of zoospores from pre-formed sporangia of Ph. 

parasitica was insensitive to ethanol, release from Py. aphanidermatum was highly sensitive, 

with a sub-millimolar concentration of ethanol noticeably suppressing zoospore release. This 

difference between genera can possibly be attributed to differing physiology, of zoospore 

release.: Pythium produces a vesicle prior to zoospore release. Undifferentiated cytoplasm 

enters this vesicle where it differentiates into zoospores. In Phytophthora the vesicular stage 

is absent and cytoplasmic differentiation occurs within the sporangia. Therefore, the 

dissolution of the papillar plug might be assumed to be relatively insensitive to ethanol. 

The sporangia of Py. aphanidermatum were able to recover from ethanol toxicity, although 

for almost full recovery a period of at least 48 h was needed in an ethanol free media. From a 

commercial perspective the longevity of ethanol toxicity on the zoosporic fungi will need to 

be ascertained. A factor yet to be determined is the effect of nutrient solution supplemented 

with ethanol on the crop plants, although ethanol vapour is known to affect the ripening of 

tomatoes (Beaulieu and Saltveit, 1997). 

When tomatoes (Lycopersicon esculentum M.) were hypoxically induced with an external 

sucrose source, ethanol accumulation in the roots reached 30 nmol.mg' of fresh tissue 

(Germain et al., 1997). This equates to an approximately 50 mM concentration. The results 
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of this chapter suggest that the cumulative effect of 50 mM ethanol in vitro on the infection 

sequence of both fungi would be to completely inhibit zoospore release. 

The tolerance of both Ph. parasitica and Py. aphanidermatum to ethanol is low compared to 

other fungi, particularly isolates of Saccharomyces cerevisiae which can grow in ethanol 

solutions up to 3 M for short durations (Chi et al., 1999). Oral isolates of Candida albicans 

can tolerate an ethanol concentration of 475 mM, with growth completely suppressed by 

circa. 1.3 M (Botha et al., 1997). Isolates of Clostridium thermocellum can tolerant up to 

—850 mM (6% v/v) ethanol (Rani and Seenayya, 1999). 

In general terms the degree of membrane fluidity confers ethanol tolerance. In S. cerevisae 

the sterols and not the phospholipids specifically confer ethanol tolerance (Agudo, 1992). 

Sterols, especially ergosterol, promote ethanol tolerance by increasing the barrier effect of 

the plasma membrane to entry of ethanol into the cell (Thomas et al., 1978). However, work 

by Novotny et al. (1992) failed to find positive correlation between ethanol tolerance in a 

strain of S. cerevisae and &-5,7—sterol content. However, it has been known for a long time 

that ethanol tolerance is highly variable within each genus of yeast and even between strains 

of a single species (Gray, 1941). 

The pythiaceae require an exogenous supply of f3-hydroxyl sterols for reproduction 

(including asexual) because of their inability to synthesise sterols de novo (Elliott, 1983): 

The sterols present in the membranes of the pythiaceae will consequently be ultimately of 

host (plant) origin. These sterols are used as precursors to satisfy various sterol synthesis 

pathways. The superior protectant properties to ethanol of ergosterol in S. cerevisae over 

cholesterol are attributed to the A 22  unsaturated alkyl chain (Thomas et al., 1978). The sterols 

prevalent in the Oomycetes are cholesterol which has a A 22  saturated alkyl chain and 

fucosterol which is unsaturated, but at carbon-28 and not at carbon-22 as in ergosterol. 

Phospholipids are the major components of all membranes and also confer tolerance to 

ethanol in yeast (Chi et al., 1999). In yeast, unsaturated fatty acids are crucial for enhanced 

ethanol tolerance. In three species representative of the Pythiaceae the most abundant polar 

lipids were phosphatidylethanolamine and phosphatidylcholine (Moreau et al., 1998b). Both 

these types of phospholipids are mono-unsaturated (Gennis, 1989). Of the major classes of 

inositol sphingophospholipids from Ph. parasitica all were mono-unsaturated (Bruneteau et 

al., 1997). Any explanation of ethanol tolerance based on degree of sterol and phospholipid 
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saturation, and relative sterol abundance, fails to explain the tolerance of naked zoospores to 

ethanol, which is comparable to the ethanol tolerant-yeasts, and the high sensitivity of 

sporangiogenesis to ethanol. 

It is generally agreed that the toxicity of ethanol involves the interaction of ethanol with 

membrane processes. One hypothesis is that ethanol acts by directly binding to membrane 

proteins (for example see, Covarrubias and Rubin, 1993). A second hypothesis suggests that 

the phospholipid membrane-water interface is a potential Site for non-specific interactions 

with ethanol (for example see, Barry and Gawrisch, 1994). The work presented here clearly 

indicates that certain stages of the zoosporic infection sequence are highly susceptible to 

ethanol toxicity. The naked zoospore stage is relatively insensitive to ethanol, yet the plasma 

membrane is highly exposed, whereas the walled zoosporangiogenesis stage of Ph. 

parasitica is sensitive and the wall-less vesicle of Py. aphanidermatum is also highly 

sensitive. The deformation of Phytophthora sporangia in ethanol demonstrates that ethanol 

also interferes with the formation of sporangia. These findings consequently accord with the 

hypothesis of Covarrubias and Rubin (1993) that ethanol toxicity is mediated by direct 

interaction with particular membrane bound proteins. 

It. is to be noted that the trend identified in chapter 3 is also present in the results of this 

chapter. That is, Py. aphanidermatum is much more susceptible to ethanol supplements than 

Ph. parasitica. 

The suggestion that recirculating irrigation systems could be supplemented with ethanol is 

novel, but much research is still required. Once an effective concentration has been 

determined, then the detriment, if any, to crop yield and quality of yield will also need to be 

determined. Whether the zoosporic fungi can adapt to high ethanol environments has yet to 

be considered. 

The addition of ethanol to an irrigation system would undoubtedly affect the microfauna and 

microflora of the system, with the possible selection of organisms that can use ethanol as an 

energy or carbon source. The rates of ethanol degradation and evaporation from the system 

would require constant monitoring and appropriate supplements would have to be made if 

ethanol were ever to be used as a component of control of zoosporic fungi in NFT. 
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Chapter 6. 
The effects of natural toxins on aspects of the 

infection sequences of Py. aphanidermatum and Ph. 

parasitica. 
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6.1. Introduction. 

For commercial reasons fungicides are not registered for use in irrigation systems based on 

nutrient film technology. Therefore, there is potential for exploitation of natural compounds 

to control the most economically important diseases in these systems - the diseases caused by 

zoospore-producing Oomycetes. 3-escin and gramicidin S are both naturally occurring toxins 

that have the potential to control zoospore-mediated infection in soil-less irrigation systems. 

Although these compounds cause cell death by membrane disruption, their origin, structure 

and mode of action are different. Zoospores of the major pathogens in these systems 

(Pythium spp. and Phytophthora spp.) are wall-less and potentially highly susceptible to 

disruption by gramicidin S and 13-escin. 

The target site of gramicidin S is the phospholipid component of the membrane (Katsu, et 

al., 1988) whereas 13-escin (triterpeneglycoside saponin from Castanea sativa) targets the 

membrane-bound sterols (Osbourn, 1996). So there is potential for synergism in using these 

two naturally occurring toxins in the control of zoosporic fungi in glasshouse irrigation 

systems. This chapter looks at the susceptibility of various stages of the zoosporic infection 

sequence to these two naturally occurring toxins and assesses the potential for their use in 

soil-less irrigation systems. Both chemicals were obtained from Sigma. Gramicidin S is a 

misnomer and really a tyrocidine (cyclic decapeptide). All other gramicidins are linear 

peptides. 

The inhibition of unpurified solutions is also investigated. Saponins are present in oats and 

the inhibition of crude oat extracts is presented in this chapter, as is the inhibition of culture 

filtrates of Brevibacillus brevis', which is known to produce gramicidin S. 

6.2. The effects of dimethy suiphoxide on aspects of biology of 

zoosporic fungi. 

Neither 13-escin nor gramicidin S is water soluble. In previous work with 13-escin, ethanol 

was used as the solvent (Deacon & Mitchell, 1985). However, results presented in this thesis 

(Chapter 5) clearly demonstrate that ethanol affects sporangiogenesis. Consequently ethanol 

was not used as the solvent for either f3-escin or gramicidin S in the experiments reported in 

'Brevibacillus brevis until recently was know as Bacillus brevis (Shido et al., 1996). 
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this chapter. The solvent chosen was dimethyl suiphoxide (DMSO). A DMSO concentration 

of 28 mM did not significantly affect the proportion of zoospores of py. aphanidermatum 

remaining motile (P = 0.899), the proportion of cysts that subsequently germinated (P = 

0.075), the density of sporangia of Ph. parasitica that formed in the presence of DMSO (P = 

0.34 1), the proportion of sporangia that subsequently liberated their contents into SDW (P = 

0.907) or the number of zoospores released pre- and post-shock (P ~! 0.570) (Table 6.1). 

Table 6.1. The effects of 28 mM DMSO on zoospore motility and subsequent cyst 

germination of Py. aphanidermatum and on sporangiogenesis of Ph. parasitica. 

Units 0 mM DMSO 28 mM DMSO P (t-test) 

Zoospore motility' Arcsine 34.5 ± 1.5 34.2 ± 1.5 0.899 

Subsequent cyst germinati on 8  Arcsine 8.0 ± 0.1 9.8 ± 0.8 0.075 

Pre-shock zoospore release b Zoospores4tl' 16.7 ± 2.0 15.9 ± 3.0 0.832 

Post-shock zoospore release b Zoospores4tl' 31.3 ± 4.9 27.4 ± 3.9 0.570 

Post-shock empty sporangia C  Arcsine 22.2 ± 1.8 21.9 ± 1.6 0.907 

Sporangial density Sporangia.screen' 93.5 ± 2.7 114.7 ± 19.4 0.341 

8 Means ± s.c.m. for 3 replicates, assessed after 2h, based on scoring 3 fields of view per replicate. (Data for Py. 
aphanidermatunc see 2.3.6 for methods). 
b Means ± s.e.m. for 3 replicates, based on 2 haemocytometer counts per replicate. (Data for Ph. parasitic<r, see 
2.3.4 for methods). 

Means ± s.c.m. for 3 replicates, assessed after 2h, based on scoring 3 fields of view per replicate. (Data for Ph. 
parasitica; see 2.3.4 for methods). 

6.3. Effects of -escln and gramicidin S on zoospore, immature cyst and 

mature cyst nutrient induced germintation. 

To 1 ml of zoospores of py. aphanidermatum or 2 ml of zoospores of Ph. parasitica various 

concentrations of 13-escin and gramicidin S were added, so that the total volume was 4 ml. 

After a 20 min incubation in the dark at 23 °C, 444 t1 of concentrated CV813 was added to 

each Petri dish. The addition of the broth to the Petri dishes immediately induced encystment 

of all motile zoospores. The proportion of encysted zoospores that subsequently germinated 

was assessed after a further 2h incubation by microscopically examining a random selection 

of spores (see section 2.3.7). The nutrient content of the broth consistently caused high 

germination levels in populations of spores in control (toxin-free) treatments. 

In the f3-escin-free control 70% of zoospores germinated (Figure 6.1). The addition of 32 j.tM 

J3-escin reduced this value to 23%; 128 laM f3-escin reduced nutrient induced germination to 

less than 2%. A concentration of 2.0 .tM gramicidin S was required for complete suppression 
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of nutrient induced germination of zoospores of Py. aphanidermatum (Figure 6.2). 

Zoospores of Ph. parasitica were more tolerant to both f3-escin and gramicidin S (Figures 

6.3 and 6.4). Although 32 l.LM 3-escin reduced zoospore nutrient induced germination to 

10%, this still represented substantial relative germination because only 25% of zoospores 

were germinable in the -escin-free control of the experiment. For complete suppression of 

nutrient induced germination of zoospores of Ph. parasitica a gramicidin S concentration of 

4 j.tM was required 

The nutrient induced germination of pre-encysted zoospores in various concentrations of 3-

escin and gramicidin S was also assessed. The same protocol as above was used, but 

immature cysts or mature cysts were substituted for zoospores. Immature cysts were classed 

as cysts that were immediately added to the experiment after vortexing. Cysts that were 

added 10 minutes post-vortexing were classed as mature. The primary difference between 

immature and mature cysts was that immature cysts had cell walls that were still forming, 

whereas mature cysts were presumed to have fully formed cell walls. 

Concentrations up to 256 i.tM -escin had no effect on the nutrient induced germination of 

immature cysts of py. aphanidermatum (Figure 6.5). However, 512 tM 13-escin reduced the 

proportion of cysts that germinated to just 5%, compared with 74% germination in the 

control. The presence of an immature cyst wall had little effect on the tolerance of cysts of 

Py. aphanidermatum to gramicidin S (Figure 6.6). The 2.0 tM treatment of gramicidin S 

completely suppressed cyst germination - the same concentration that completely suppressed 

when added to motile zoospores. Treatments of up to 512 .tM f3-escin had no effect on the 

nutrient induced germination of immature cysts of Ph. parasitica (Figure 6.7). 

The germination of mature cysts of Py. aphanidermatum in 2.0 mm 3-escin was 20% 

(Figure 6.8). This concentration of t3-escin had no noticeable effect on the nutrient induced 

germination of mature cysts of Ph. parasitica (Figure 6.10). The germination of mature cysts 

of Fy. aphanidermatum in 1.5 .tM gramicidin S was 3% (Figure 6.9). This level of 

suppression is comparable to that in experiments that used zoospores and immature cysts of 

Py. aphanidermatum (Figures 6.2 and 6.6). 

From Figures 6.1 to 6.10, lines of best fit can be used to determine LD 50  values (Table 6.2). 

The effect of up to 2.0 mM 13-escin on cysts (immature and mature) of Ph. parasitica was not 
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significant, and a suitable line of best fit could not be found. Consequently the LD 50  of 1-
escin for cysts of Ph. parasitica cannot be predicted, but was greater than 2.0 mM. All other 

lines of best fit were statistically significant (correlation of all transformed lines was F :5 

0.017 and R ~! 0.672). 

The LD50  values for gramicidin S were in the same order of magnitude for zoospores, 

immature cysts and mature cysts, with the range of LD 50  values being between 457 nM and 

763 nM. All lines of best fit for assessments with gramicidin S were sigmoid, except for 

mature cysts of Py. aphanidennatum when a straight line returned the best correlation. 

The best relationship between zoospore nutrient induced germination and 3-escin 

concentration for both species of fungi was exponential. The LD 50  for zoospores of Py. 

aphaniderinatum was 24.3 tM; the corresponding value for Ph. parasitica was higher at 

45.5 .tM. The relationship between f-escin concentration and germinated immature cysts of 

Py. aphaniderinatum was sigmoid, with LD50  being 271 j.tM. The corresponding value for 

mature cysts was 1.2 mM. 
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Figures 6.1 and 6.2. The effects of -escin and gramicidin S concentration on the nutrient 

induced germination of zoospores of Py. aphanidermatum. 

Figure 6.1. 13-escin. 	 Figure 6.2. Gramicidin S. 
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Means ± s.c.m. for 3 replicates, assessed 2h after the addition of concentrated CV8B, based on score 
of at least 100 spores per replicate. The concentration of DMSO in all treatments for Figure 6.1 was 
60 mM and 341 p.M for Figure 6.2. 

Figures 6.3 and 6.4. The effects of -escin and gramicidin S concentration on the nutrient 

induced germination * of zoospores of Ph. parasitica. 

Figure 6.3. rI-escin. 	 Figure 6.4. Gramicidin S. 
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Means ± s.c.m. for 3 replicates, assessed 2h after the addition of concentrated CV8B, based on score 
of at least 100 spores per replicate. The concentration of DMSO in all treatments for Figure 6.3 was 
60 mM and 3.2 mM for Figure 6.4. 
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Figures 6.5 and 6.6. The effects of -escin and gramicidin S concentration on the nutrient 

induced germination of immature cysts of Py. aphanidermatum. 

Figure 6.5. f3-escin. 
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Figure 6.6. Gramicidin S. 
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* Means ± s.e.m. for 3 replicates, assessed 2h after the addition of concentrated CV8B, based on score 
of at least 100 spores per replicate. The concentration of DMSO in all treatments for Figure 6.5 was 
81 mM and 3.2 mM for Figure 6.6. 

Figure 6.7. The effect of 3-escin concentration on the nutrient induced germination of 

immature cysts of Ph. parasitica. 
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* Means ± s.e.m. for 3 replicates, assessed 2h after the addition of concentrated CV8B, based on score 
of at least 100 spores per replicate. The concentration of DMSO in all treatments was 81 mM. 
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Figures 6.8 and 6.9. The effects of J3-escin and gramicidin S concentration on the nutrient 

induced germination of mature cysts of Py. aphanidermatum. 

Figure 6.8. 3-escin. 	 Figure 6.9. Gramicidin S. 

100 

so- 

70- 

So-

50- 

40- 

30- 

10- 

0 	500 	1000 	1500 	2000 	2500 

3-E9 Concentration (pM)  

70 

60 

50 

40 

30 

20 

10 

0 	I I 	 I I 

0.00 0.25 0.50 0.75 	1.00 	1.25 	1.50 	1.75 

Gramiddin S concentration (MM) 

* Means ± s.c.m. for 3 replicates, assessed 2h after the addition of concentrated CV813, based on score 
of at least 100 spores per replicate. The concentration of DMSO in all treatments for Figure 6.8 was 
324 mM and 2.7 mM for Figure 6.9. The high concentration of DMSO the experiment in Figure 6.8 
was required so that 2 mM f3-escin would be fully dissolved. 

Figure 6.10. The effect of -escin concentration on the nutrient induced germination of 

mature cysts of Ph. parasitica. 
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Means ± s.c.m. for 3 replicates, assessed 2h after the addition of concentrated CV813, based on score 
of at least 100 spores per replicate. The concentration of DMSO in all treatments was 324 mM. The 
high concentration of DMSO was required so that 2 mM -escin would be fully dissolved. 

187 



Table 6.2. LD50  values for 13-escin and gramicidin S on various forms of spore of Py. aphanidermatum and Ph. parasitica. 

Figure Fungus 	- Spore type Toxin Line type LD50a PO  R 

(transformed data) 

df 

(observed & fitted) 

6.1. Py. aphanidermatum Zoospores -escin Exponential 24.3 j.tM 1.3 x 10 40  0.944 20 0.973 

6.3. Ph. parasitica Zoospores 3-escin Exponential 45.5 tM 5.62 x 10 0.764 20 0.783 

6.5. Py. aphanidermatum Immature cysts 3-escin Sigmoid 271 isM 2.08 x 10 0.838 20 0.860 

6.7. Ph. parasitica Immature cysts -escin n.a. > 2.0 mM n.a. n.a. 20 n.a. 

6.8. Py. aphanidermatum Mature cysts -escin Linear .  1.2 mM 1.8 x 10 0.950 17 0.950 

6.10. Ph. parasitica Mature cysts 3-escin n.a. >2.0mM n.a. n.a. 17 n.a. 

6.4. Ph. parasitica Zoospores Gramicidin S Sigmoid 547 nM 8.57 x 10 0.939 17 0.597 

6.2. Py. aphanidermatum Zoospores Gramicidin S Sigmoid 462 nM 8.67 x 10 0.849 17 0.958 

6.6. Py. aphanidermatum Immature cysts Gramicidin S Sigmoid 457 nM 3.22 x 10 0.902 17 0.960 

6.9. Py. aphanidermatum Mature cysts Gramicidin S Linear 763 nM 1.66 x 10 .2  0.672 11 0.672 

a  Calculated from fitted line. 
b Significance of regression line. 
C  Correlation between observed points and fitted points. 
n.a. Not applicable. 
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6.4. Visual observations of the effects of -escin and gramicidin S on 

zoospores of Py. aphanidermatum. 

In small Petri dishes, motile zoospores of Py. aphanidermatum were added to a range of 

concentrations of -escin and gramicidin S. The ratio of zoospore suspension to treatment 

added was 1 ml to 3 ml. Then after an incubation period (75 min for gramicidin S and 110 

min for -escin) in the dark at 23 °C a representative proportion (at least 100 spores per 

replicate) of non-motile spores were examined microscopically and scored for their 

appearance. The non-motile spores included those that might have encysted before the 

treatment was applied and those that had become immobilised after the treatments were 

applied. The four classes of appearance were: 

Visibly healthy cells. 

Granular cytoplasm (but intact cells). 

Ruptured cells (cytoplasmic leakage). 

Lysed cells (non-membrane-bound granular cytoplasm). 

In 80 tM 3-escin approximately 10% of non-motile spores were healthy (Figure 6.11). Out 

of the three classes of 'unhealthy' cells most were intact, but 23% of all cells examined in 80 

tM -escin were not intact. In 2.0 j.tM gramicidin S all cells were unhealthy, but only 8% of 

spores were not intact (Figure 6.12). In the higher concentration (4.0 tM) of gramicidin S 

the proportion of unhealthy spores that were not intact was only 9%. The other 91% had 

granular contents, but the cells were intact. 
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Figures 6.11 and 6.12. The effects of 13-escin and gramicidin S on the appearance of non-

motile cells of Py. aphanidermatum. 

Figure 6.11 f3-escin. 	 Figure 6.12 Gramicidin S. 
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Means ± s.e.m. for 3 replicates, assessed after 110 min. for Figure 6.11 and 75 min. for Figure 6.12, 
based on score of at least 100 spores per replicate. The concentration of DMSO in all treatments for 
Figure 6.11 was 8.3mM and 341 j.tM for Figure 6.12. 

6.5. The effects of f-escin and gramicidin S on sporangiogenesis and 

sporangial discharge of Ph. parasitica. 

When mats of Ph. parasitica were bathed in mineral salts solution at 20 °C and illuminated 

(24 h.d') sporangia production occurred. During the later stages of the incubation period a 

proportion of sporangia discharge their contents. Therefore, zoospores were observed 

swimming in the mineral salts solution prior to removal of the mineral salts solution. 

To test the effects of 3-escin and gramicidin S on sporangiogenesis and sporangial discharge 

the mineral salts solution was supplemented with various concentrations of either 3-escin or 

gramicidin S. The DMSO concentration was kept constant across all treatments for each 

experiment. At the end of the incubation in mineral salts solution the density of sporangia, 

the proportion of sporangia that had discharged and the concentration of motile zoospores in 

the mineral salts solution was determined (see section 2.3.4). These assessments were classed 

as pre-shock assessments. 
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After the supplemented mineral salts solution had been removed with washes of SDW and 

the plates had been cold shocked, zoospores were liberated into SDW and assessments were 

made of sporangial density, proportion of sporangia that had discharged their contents and 

the density of motile zoospores. These assessments were classed as post-shock assessments. 

The removal of mineral salts solution and the induction of zoospore release into SDW had no 

noticeable effect on sporangial density. That is, the density of sporangia pre- and post-shock 

was identical. Therefore, the data from these two assessments were pooled for each replicate. 

Supplements of 13-escin up to 128 j.tM and gramicidin S up to 32 tM to mineral salts solution 

were found to have no significant (P> 0.05) effect on sporangial density of Ph. parasitica 

(Figures 6.13 and 6.14). 

Treatments of gramicidin S of 8 i.tM or greater reduced the proportion of sporangia that had 

discharged their contents to approximately 6%, from 15% in the pre-shock gramicidin S-free 

control at pre-shock (Figure 6.15). The proportion of sporangia that had discharged after the 

induction of zoospore release (post-shock) was unaffected by gramicidin S treatments up to 

32 tM. Increasing concentrations of 3-escin led to a reduction of sporangial discharge 

(Figure 6.16), from 13% in the 3-escin free control and 18% in the post-shock control. The 

128 .tM treatment of 3-escin reduced the proportion of sporangia that had discharged at pre-

shock to less than 1% and to about 2% post-shock. 

The number of zoospores released into the gramicidin S-free control (pre-shock) was 10.3 

zoospores4tl' (Figure 6.17). In the 32 tM gramicidin S treatment this number was 

significantly (P = 0.010) reduced to 4.6 zoospores.tF'; 32 l.LM gramicidin S caused a similar 

post-shock reduction in zoospore release. For post-shock assessments the gramicidin S-free 

controls had 41.7 zoospores. tl 1 , whereas only 25.8 zoospores.il' were found in the 32 tM 

gramicidin S treatment. No zoospores were seen in the 128 .tM 3-escin treatment (pre-shock) 

(Figure 6.18). However, 12.0 zoospores.j.tt' were seen in the 128 j.tM f3-escin treatment 

(post-shock). 
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Figures 6.13 and 6.14. The effects of -escin and gramicidin S concentration on sporangial 

density of Ph. parasitica. 

Figure 6.13. Gramicidin S. 	 Figure 6.14. 3-escm. 
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Means ± s.e.m. for 3 replicates, based on 6 random fields of view (3 fields prior to cold-shock and 3 
fields after zoospore release) per replicate. The concentration of DMSO in all treatments for Figure 
6.13 was 27 m and 22 mM for Figure 6.14. 

Figures 6.15 and 6.16. The effects of f3-escin and gramicidin S concentration on the 

proportion of sporangia of Ph. parasitica discharging their contents. 

Figure 6.15. Gramicidin S. 	 Figure 6.16. J3-escin. 

80 
75 

- 70 
C 

65 
60 

55 

. 50 
8 45 

& 40  
35 

. 30 
25 
20 
15 

10 

5 
0 

0 

24 

22 

20 

18 

16 

14 

12 

1 10  

-•- Paho 
—U— Post-s1odc 

24 

22 

20 

18 

16 

14 

12 

10 

a 
6 

4 

2 

0 

—U— Pre-tho 
—U— Post-shock 

0 	5 	10 	15 	20 	25 	30 	35 
	

0 	20 	40 	60 	80 	100 	120 	140 

Grarniddin S concentration (IN) 
	

B-EScln concentration (tiM) 

* Means ± s.e.m. for 3 replicates, based on 3 random fields of view per replicate. The concentration of 
DMSO in all treatments for Figure 6.15 was 27 mM and 22 mM for Figure 6.16. See text for 
explanation of pre-shock and post-shock. 
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Figures 6.17 and 6.18. The effects of -escin and gramicidin S concentration on the number 

of zoospores released from sporangia of Ph. parasitica. 

Figure 6.17 Gramicidin S. 	 Figure 6.18 -escin. 
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Means ± s.e.m. for 3 replicates, based on 2 haemocytometer counts per replicate. The concentration 
of DMSO in all treatments for Figure 6.17 was 27 mM and 22 mM for Figure 6.18. See text for 
explanation of pre-shock and post-shock. 

6.6. Effect of j3-escin on zoospore discharge from pre-formed sporangia 

of Ph. parasitica. 

This assessment for Ph. parasitica differed from above (section 6.5), in that the release 

solution was supplemented with f-escin instead of mineral salts solution so that 

sporangiogenesis occurred in unsupplemented mineral salts solution for all treatments. Thus, 

this experiment determined the effect of 13-escin on the ability of pre-formed sporangia of 

Ph. parasitica to discharge their contents. f3-escin up to 256 tM had no significant (P = 

0.562) effect on sporangial discharge, which ranged from 25% to 41% after 2h (Figure 6.19). 
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Figure 6.19. The effect of 13-escin on the proportion of pre-formed sporangia of Ph. 

parasitica that empty their contents. 
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* Means ± s.c.m. for 3 replicates, assessed after 2h, based on score of at least 100 sporangia per 
replicate. The concentration of DMSO in all treatments was 40 mM. 

6.7. The Effect of frescin and gramicidin S on zoospore motility and 

subsequent cyst germination of Py aphanidermatum. 

Zoospores of Py. aphanidermatum were incubated for 2h in various concentrations of 3-

escin and gramicidin S, then the proportion of spores that were motile was determined (see 

section 2.3.6), along with the proportion of cysts that had subsequently germinated. In the 

control (no gramicidin S) 30% of zoospores had retained motility (Figure 6.20). A 

gramicidin S concentration of 200 nM reduced this value to 10% and 4 tM gramicidin S 

completely suppressed zoospore motility. The concentration of DMSO was proportional to 

gramicidin S concentration. The maximum concentration of DMSO was 341 1.tM, but 28 mM 

DMSO had been shown not significantly to affect zoospore motility (see Table 6.1). Only 

9% of zoospores retained motility during the 2h incubation in the f3-escin free control 

(Figure 6.21). However, in the treatment with 16 p.M f3-escin the proportion was 42%. 

Concentrations of 64 p.M or above caused all zoospores to lose motility. 
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Figures 6.20 and 6.21. The effects of -escin and gramicidin S on the proportion of 

zoospores of Py. aphanidermatum that remain motile during the 2h incubation period s . 

Figure 6.20 Gramicidin S. 	 Figure 6.21 f3-escm. 
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* Means ± s.e.m. for 3 replicates, based on 3 random fields of view per replicate. The concentration of 
DMSO in all treatments for Figure 6.21 was 26 mM and in Figure 6.20 the concentration of DMSO 
was 85 jiM per jiM of gramicidin S, so the maximum DMSO concentration was 341 jiM. 

The immotile cells (presumed to be cysts) were scored for germination after the 3-escin and 

gramicidin S treatments were applied. Only the 4 jiM gramicidin S treatment noticeably 

suppressed subsequent cyst germination of Py. aphanidermatum; no cells had germinated 

after 2h (Figure 6.22). A concentration of 64 jiM -escin increased the proportion of cysts 

that germinated (Figure 6.23), from 2% in the controls to 18% in the 64 jiM treatment. But 

less than 1% had germinated in the 256 jiM 13-escin treatment. 
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Figures 6.22 and 6.23. The effects of -escin and gramicidin S on the proportion of cysts of 

Py. aphanidermatum that subsequently germinate during the 2h incubation period • . 

Figure 6.22 Gramicidin S. 	 Figure 6.23 13-escin. 
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'Means ± s.e.m. for 3 replicates, based on 3 random fields of view per replicate. The concentration of 
DMSO in all treatments for Figure 6.23 was 26 mM and in Figure 6.22 the concentration of DMSO 
was 85 .tM per pM of gramicidin S. so the maximum DMSO concentration was 341 .tM. 

6.8. Effects of 13-escin and gramicidin S on germination of vortex-

encysted zoospores of Py. aphanidermatum. 

Vortex-encysted zoospores of Py. aphanidermatum (200 pi) were added to various 

concentrations of f3-escin and gramicidin S (800 i.tl) immediately after vortexing. After a 2 h 

incubation in the dark at 23 °C the proportion of cysts that had germinated was determined 

(see section 2.3.7). Concentrations up to 160 .tM of 3-escin had no significant (P = 0.412) 

effect on the germination of vortex-encysted zoospores of Py. aphanidermatum (Figure 

6.24). However, the 320 l.LM treatment did significantly (t-test, P = 0.0048) reduce cyst 

germination to 21% compared with 61% in the t3-escin free control. In the gramicidin S free 

control 59% of cysts had germinated (Figure 6.25). The 500 nM gramicidin S treatment 

significantly (t-test, P = 0.033) increased germination to 71%, but all higher concentrations 

reduced the proportion of cysts germinating. No germination occurred in the 4 and 8 ltM 

gramicidin S treatments. 
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Figures 6.24 and 6.25. The effects of 3-escin and gramicidin S on the proportion of vortex- 

encysted zoospores of Py. aphanidermatum that germinate during the 2h incubation period. 

Figure 6.24. -escin. 	 Figure 6.25. Gramicidin S. 

80 

75 

70 

65 

60 

,55 

. 50 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0 

0 	50 	laO 150 200 250 300 350 

3-Esdn nconfration (SM) 

80 

75 

70 

65 

60 

55 

;so 
45 

40 

35 

ç ao 
25 

20 

15 

10 

0 

0 	1 	2 	3 	4 	5 	8 	7 	8 

Gramiddin S concer*adon (SM) 

* Means ± s.e.m. for 3 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 
The concentration of DMSO in all treatments for Figure 6.24 was 33 mM and 682 AM for Figure 
6.25. 

6.9. The effects of. t3-escin and gramicidin S with various cationic 

supplements on germination of zoospores, immature cysts and mature 

cysts. 

The germination of zoospores and mature cysts of Py. aphanidermatum were assessed in 

various 20 mM cationic treatments in either the presence or absence of 3 p.M gramicidin S 

(Tables 6.3 and 6.4). The experiments were done as in Section 6.3. That is, 20 minutes after 

the treatment was applied to spores concentrated CV8B was added to each Petri dish and 

germination was assessed after a further 2h. The addition of the broth immediately induced 

encystment of any motile zoospore and promoted high levels of germination in the 

gramicidin S-free controls. 

Originally motile zoospores of Py.  aphanidermatum showed 86% germination in SDW 

controls. The addition of 20 mM Ca2 , Mg2  or Na alone had marginal effect on zoospore 

germination (Table 6.3). The presence of 3 p.M gramicidin S in the absence of cations 

reduced zoospore germination to 0.3%. Gramicidin S also reduced zoospore germination to 

0.3% in the presence of Na'. However, the presence of 20 mM Ca 2+  with gramicidin S did 

not cause a reduction in zoospore germination. Mg 2  also counteracted the effect of 3 p.M 
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gramicidin S, bit only partly so - to 57% germination. In another experiment (results not 

shown 20 mM K was as ineffective as Na in counteracting the effect of gramicidin S. 

The same experiment was done with 'mature' cysts, pre-vortexed and incubated for 10 mm. 

before the treatments were applied. The germination of mature cysts in SDW was not 

significantly (P = 0.0874) affected by the addition of 20 mM Ca 2 , Mg2 , IC or Na 

supplements (Table 6.4): the mean germination in the absence of 3 LM gramicidin S was 

91%. The addition of gramicidin S to the SDW treatment reduced cyst germination to 7%. 

The presence of either 20 mM Na or IC only partially ameliorated the effect of gramicidin 

S. However, when gramicidin S was added with either 20 mM Ca 2  or Mg2  the viability of 

the cysts was not significantly (t-tests, P ~t 0.764) different from that in the equivalent 

gramicidin S-free treatment. 

Table 6.3. The effect of gramicidin S in the presence and absence of cations on germination 

of originally motile zoospores of Py. aphanidermatum. 

Cation 
	 No gramicidin S 	 + 3 jtM Gramicidin S 

% (and Arcsine) % (and Arcsine) 

SDW 86.2 ± 2.6% 0.3 ±0.3% 
(68.3±2.1) (1.9±1.9) 

Ca' 87.9 ± 1.6% 84.4 ± 2.3% 
(69.7 ± 1.4) (66.9 ± 1.8) 

Mg2  68.9±3.7% 56.8±2.1% 
(56.2 ± 2.3) (48.9 ± 1.2) 

Na 80.1 ± 1.2% 0.3 ± 0.3% 
(63.5 ± 0.8) (1.9 ± 1.9) 

CFd 	 (2.5) 

F(ANOVA) 	 (2.04 x 10.15) 

* Means ± s.e.m. for 3 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 
The concentration of DMSO in all treatments was 1.2 mM. All cations were added as nitrate salts. 
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Table 6.4. The effect of gramicidin S in the presence and absence of cations on the 

germination of mature cysts of Py. aphanidermatum. 

Cation 	 No Gramicidin S 	 +3 gM Gramicidin S 

% (and Arcsine) % (and Arcsme) 

SDW 91.3±2.1% 7.3±0.5% 
(73.1 ± 2.2) (15.6 ± 0.5) 

Ca 2+ 92.5 ± 0.8% 90.3 ± 4.2% 
(74.1 ± 0.9) (72.7 ± 4.2) 

Mg 2+ 91.6±0.1% 89.7±6.9% 
(73.1±0.1) (73.3±6.5) 

Na 93.8 ± 1.3% 16.5 ± 4.5% 
(75.7 ± 1.4) (23.6 ± 3.5) 

87.8 ± 1.2% 26.9 ± 4.8% 
(69.6±1.1) (31.1±3.1) 

Gd 	 (4.3) 

P(ANOVA) 	 (7.96 x 10 - ') 

* Means ± s.c.m. for 3 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 
The concentration of DMSO in all treatments was 3.2 mM. All cations were added as nitrate salts. 

Similar experiments to those above were done with Py. aphanidermatum and -escin (Table 

6.5). The germination in the SDW control or 20 mM cation treatments was greater than 55%. 

The addition of -escin alone (600 l.LM) reduced germination to only 14%. Supplements of 

Na or Mg2  only partly ameliorated this effect, but the addition of either Ca 21  or K at 20 

mM concentration completely overcame the inhibitory effect of f3-escin. 
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Table 6.5. The effect of 3-escin in the presence and absence of cations on the germination 

of originally motile zoospores of Py. aphanidermatum. 

Cation 	 No 13-.Escm 	 + 600 .LM 13-Escm 

% (and Arcsine) % (and Arcsine) 

SDW 82.5 ± 7.9% 14.4 ± 1.6% 
(66.2.± 5.8) (22.2 ± 1.3) 

Ca 2+ 68.5 ± 4.6% 61.4 ± 7.9% 
(56.0 ± 2.9) (51.8 ± 4.8) 

Mg2  59.4 ± 8.0% 16.9 ± 2.5% 
(50.6 ± 4.8) (24.1 ± 2.0) 

Na 55.8 ± 6.4% 29.2 ± 1.5% 
(48.4±3.7) (32.7± 1.0) 

66.8±3.5% 57.3±4.1% 
(54.9 ± 2.1) (49.2 ± 2.4) 

ad 	 (4.9) 
P(ANOVA) 	 1.12 x 10 

* Means ± s.e.m. for 3 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 
The concentration of DMSO in all treatments was 93 mM. All cations were added as nitrate salts. 

Further tests examined the effects of different cation concentrations in overcoming the 

inhibition of gramicidin S and f3-escin for Py. aphanidermatum (Figures 6.26 and 6.27). In 

the absence of ions, gramicidin S (3 .LM) wholly suppressed zoospore germination (assessed 

as in Section 6.3) (Figure 6.26). Neither K nor Na overcame this suppression at ionic 

concentrations up to 20 mM. In contrast, Mg2  at 5 mM partly overcame the effect of 

gramicidin S, but 20 mM Mg 2+  had no further effect in overcoming suppression. Ca 2+  had a 

more pronounced concentration dependent effect in overcoming the suppression; the effect 

was greatest at 20 mM Ca 21  concentration. When the experiment was repeated with mature' 

cysts (Figure 6.27), high concentrations (up to 20 mM) of Na and K partly overcame the 

effect of 3 1tM gramicidin S. Supplements of Ca 2'  and Mg2  were much more effective, such 

that even 2 mM supplements almost completely overcame the inhibitory effect of gramicidin 

S. 

A similar experiment was done to test the effect of 25 tM 13-escin on zoospores of Ph. 

parasitica in the presence and absence of cations (Figure 6.28). The percentage nutrient 

induced germination of cells was between 30 and 40% in ion-free treatments. Supplements 
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up to 20 mM Na or Mg2  did not increase the percentage germination, but K or Ca 2  

supplements of 5 mM or higher significantly increased germination to 60 to 70%. 

Figures 6.26 and 6.27. The effects of increasing cation concentration in solutions of 3 AM 

gramicidin S on the germination of zoospores and mature cysts of Py. aphan!dermatum. 

Figure 6.26 Zoospores. 	 Figure 6.27 Mature cysts. 
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* Means ± s.e.m. for 2 replicates (except for the Ca 2  plot in Figure 6.26 when the number of 
replicates was 3), assessed after 2h, based on score of at least 100 cysts per replicate. The 
concentration of DMSO in all treatments was 1.2 mM. All cations were added as nitrate salts. 
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Figure 6.28. The effect of increasing cation concentration in solutions of 25 l.LM -escin on 

the germination of zoospores of Ph. parasitica. 
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Means ± s.e.m. for 2 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 
The concentration of DMSO in all treatments was 3.9 mM. All cations were added as nitrate salts. 

In two further experiments with zoospores of Py. aphanidermatum the effects of Sr2  w'ere 

compared with those of Ca 2 . Both of these ions, at 2 mM concentration or higher, markedly 

relieved the inhibition caused by 1 iM gramicidin S (Figure 6.29). These ions might have 

been effective at even lower concentrations, but this was not tested. In contrast, only Ca 2  

(and not Sr) was effective in overcoming the suppression caused by 80 tM f3-escin (Figure 

6.30). The effect of Ca2  was greatest at the highest tested concentration, but it still only 

enabled about 25% of the cells to germinate. In the absence of 13-escin, but in the presence of 

20 mM Ca 2+  it would be expected that at least 80% of the zoospores would germinate. This 

value was determined in a separate experiment. 
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Figures 6.29 and 6.30. The effect of increasing Ca 2+  or Sr-2+  concentrations in solutions of I 

.tM gramicidin S or 80 LM -escin on the germination of zoospores of Py. aphan!dermatum. 

Figure 6.29 Gramicidin S. 	 Figure 6.30 f3-escin. 
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'Means ± s.e.m. for 2 replicates in Figure 6.29 and for 3 replicates in Figure 6.30, assessed after 2h, 
based on score of at least 100 cysts per replicate. The concentration of DMSO in all treatments in 
Figure 6.29 was 232 tM and 13 mM in Figure 6.30. All cations were added as chloride salts. 

In another experiment (Figure 6.31), zoospores of Py. aphanidermatum were exposed to 

either SDW or 20 mM Ca 21  mixed with various concentrations of gramicidin S. In the 

gramicidin S-free solutions with 20 mM Ca2  or without Ca2  the proportion of zoospores 

that germinated was approximately 91%. Even 2 tM gramicidin S caused an almost total 

suppression of germination in the absence of Ca 2 . In contrast, 5 luM gramicidin S was 

required to cause an apparent (but not significant) reduction of germination in the presence 

of 20 mM Ca. 2+  A concentration of 20 tM gramicidin S was found to completely suppress 

germination, even in the presence of 20 mM Ca 2 . 
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Figure 6.31. The effect of increasing gramicidin S concentration in solutions of either no 

Ca 2+  or 20 mM Ca 2+  on the nutrient induced germination of zoospores of Py. 

aphanidermatum. 
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* Means ± s.e.m. for 2 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 
The concentration of DMSO in all treatments was 11 mM. Calcium was added as a nitrate salt. 

6.9.1. The effects of different times of addition of cations on the 

germination of zoospores of Py. aphanidermatum in the presence of - 

escin or gramicidin S. 

In all the previous experiments (Table 6.3 to 6.5, and Figures 6.26 to 6.31) ions that were 

tested for their ability to overcome the inhibition of f3-escin and gramicidin S were added at 

the same time as these compounds. Further experiments, described here, were done to 

determine whether a delayed addition of ions could overcome the effects of the toxic 

compounds. In each experiment zoospores of F)'. aphanidermatum were exposed initially to 

a cation and/or a toxin. Then, after five minutes incubation, the concentration of either the 

cation or toxin was altered by the addition of an appropriate solution. After a further 20 mm 

incubation concentrated CV8B was added, then after a final 2h incubation the proportion of 

cells that germinated was determined. 

Each treatment initially comprised 1 ml of zoospore suspension to which 3 ml of the 

treatment (toxin and/or cation solution) was added. After 5 min incubation all treatments 
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received 200 .tlof another solution. After 20 min incubation 466 i.tl of concentrated CV8B 

was added to each Petri dish. The determination of germination was as in section 6.3. 

Throughout the experiment the DMSO concentration in all treatments was constant. 

When zoospores were initially exposed to SDW, Ca 2+  (20 mM) or gramicidin S (1 tM) and 

Ca2  (20 mM) the proportion of zoospores that germinated was at least 63% (Table 6.6). 

When cells were initially exposed to 1 j.tM gramicidin S, with no further treatment, their 

germination was reduced to 16%. The addition of 20 mM (final concentration) Ca 2  to these 

cells caused no reversal of the effect of gramicidin S. In contrast, gramicidin S (1 j.tM) 

caused no toxic effect when added after 5 mm. to cells already exposed to 20 mM Ca 2 . 

Table 6.6. The effect of timing on the ability of calcium to overcome the inhibition of 

gramicidin S to zoospores of Py. aphanidermatum. 

Initial treatment 	Treatment after 5 mm. 	Zoospore germination 

% (and Arcsine) 

SDW 	 No change 	 83.5 ± 2.4% 
(66.2 ± 1.9) 

ljtM Gramicidin S 	 No change 	 16.4 ± 5.4 %. 
(23.4 ±4.0) 

26 m Ca' 	 No change 	 63.7 ± 3.3% 
(53.0 ± 2.0) 

ltM Gramicidin S 	 No change 82.9 ± 5.1% 
+ 20 	m Ca 2+ (66.0 ± 3.7) 

1 	g Gramicidin S 	 + 20 	m Ca' 10.2 ± 3.7% 
(18.1 ± 3.3) 

20 	m Ca' 	 + 1 jiM gramicidin S 72.3 ± 3.6% 
(58.3 ± 2.3) 

ad 	 (4.2) 

P (ANOVA) 	 (1.19 x 10-1) 

Means ± s.e.m. for 3 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 

The concentration of DMSO in all treatments was 803 l.LM. Calcium was added as a nitrate salt. 

The effects of potassium supplements on suppression caused by f-escin were assessed in two 

experiments (Table 6.7). There was no significant difference between the experiments (2- 

way ANOVA, Pex jm ,,t = 0.0582) and there was no significant (2-way ANOVA, Pinlemlion = 
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0.080) interaction between the data of the two experiments. In both experiments the presence 

of IC alone, when added initially, did not affect the proportion of zoospores that germinated 

compared to the SDW control. The initial addition of 13-escin caused a substantial reduction 

of zoospore germination. The initial addition of IC (20 mM) and f3-escin (51 AM) led to 

some reduction of germination, although not as great as for 3-escin alone. The addition of 0-

escin, after 5 mm, to cells exposed to 20 mM IC also caused some (low) reduction of 

germination. The addition of IC, after 5 mm, to cells exposed to f3-escin caused some 

reversal of the toxic effect of f3-escin. 

Table 6.7. The effect of timing on the ability of potassium to overcome the inhibition of f3-

escin to zoospores of Py. aphanidermatum. 

	

- Initial treatment 	Treatment after 5 min 	Experiment 1 	 Experiment 2 

Zoospore germination 	Zoospore germination 

% (and Arcsine) 	% (and Arcsine) 

SDW 	 No change 	 87.4 ± 1.6% 	 83.9 ± 3.1% 
(69.3 ± 1.3) 	 (66.6 ± 2.4) 

	

50.8 tM 3-escin 	 No change 	 52.2 ± 5.2% 	 32.9 ± 0.6% 
(46.3 ± 3.0) 	 (35.0 ± 0.4) 

20 m IC 	 No change 	 90.9 ± 2.2% 	 88.1 ± 3.9% 
(72.6 ± 2.1) 	 (70.3 ± 3.4) 

50.8 tM p-escin+20mMK 	No change 	 71.8 ± 4.2% 66.6 ±2.1% 
(58.0±2.7) (54.7± 1.3) 

50.8 iM 13-escin 	 + 20 mM IC 	 62.3 ± 5.0% 64.8 ± 3.6% 
(52.2 ± 2.9) (53.6 ± 2.1) 

20 mM IC 	 + 50.8 .tM f3-escin 	69.6 ± 4.4% 73.8 ± 0.5% 
(56.7 ± 2.8) (59.2 ± 0.3) 

cyd 	 (3.6) 	 (2.8) 

P(ANOVA) 	 (7.24 x 10) 	 (4.66 x 10) 

Means ± s.e.m. for 3 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 
The concentration of DMSO in all treatments was 8 mM. Potassium was added as a nitrate salt. 
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In a similar experiment (Table 6.8) Ca 21  largely overcame the toxic effect of f3-escin if Ca 2+ 
 

(20 mM) was added to the zoospore suspension at the same time as -escin or 5 minutes after 

-escm was added. 

Table 6.8. The effect of timing on the ability of calcium to overcome the inhibition of -escin 

to zoospores of Py. aphanideimatum. 

Initial treatment 	Treatment after 5 min 	Zoospore germination 

% (and Arcsine) 

SDW No change 83.2 ± 3.6% 
(66.1 ± 2.8) 

50.8 tM 3-escin No change 45.0 ± 5.0% 
(42.1 ± 2.9) 

20 mM Ca2  No change 77.4 ± 0.9% 
(61.6 ± 0.6) 

50.8 pM J3-escin + 20 mM Ca 2+ No change 70.1 ± 2.7% 
(56.9 ± 1.7) 

50.8 pM 	-escin +20 mM Ca' 73.4 ± 2.6% 
(59.0 ± 1.7) 

20 mM Ca 2+ + 50.8 .tM 13-escin 73.8 ± 1.7% 
(59.2±1.1) 

Gd 	 (2.8) 

P (ANOVA) 	 (4.62 x 10) 

- Means ± s.e.m. for 3 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 
The concentration of DMSO in all treatments was 8 mM. Calcium was added as a nitrate salt. 

6.10. The effect of zoospore population density on susceptibility to - 

escin and gramicidin S. 

Zoospore suspensions of 15'. aphanidermatum were prepared with various concentrations of 

zoospores by successive 2-fold dilutions of an originally dense suspension, then a standard 

concentration of gramicidin S or 3-escin was added (Figures 6.32 and 6.33). In the absence 

of f3-escin or gramicidin S dilution of the zoospore suspension had no significant effect on 

germination assessed as in Section 6.3. In contrast, the degree of inhibition of both 3-escin 

and gramicidin S depended on the zoospore population density. The inhibitive effects were 

progressively greater at progressively lower zoospore concentrations. In the experiment with 
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I MM gramicidin S there was an almost inverse linear relationship with zoospore 

concentration (Figure 6.32). In the case of -escin (20 MM), a distinct transition was 

apparent: a high percentage of cells germinated at zoospore concentrations of 591, 280 and 

140 zoospores.l', but further dilution of the zoospore population to 67 or fewer per Ml 

caused a marked increase in cell death caused by -escin. 

Figures 6.32 and 6.33. The effects of gramicidin S and -escin on the germination of 

various population densities of zoospores of Py. aphanidermatum. 

Figure 6.32 Gramicidin S. 	 Figure 6.33 13-escin. 
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Means ± s.e.m. for 2 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 
The concentration of DMSO in all treatments in Figure 6.32was 398 .tM and 1.6mM for Figure 6.33. 

6.11. The degradation of 3-escin by bacterial isolates from soil. 

Four strains of soil bacteria were isolated from single colonies on nutrient agar and used to 

inoculate 100 ml batches of Mineral Nutrient Solution (see Section 2.1.4) containing 10 mM 

13-escin. An uninoculated control batch of 3-escin was also used. After 9 days at 30 °C in the 

dark on a rotary shaker (112 rpm) the 3-escin solutions were clarified by centrifugation (30 

min at 16000 g). Then the solutions at various dilutions were added to suspensions of 

zoospores of Py. aphanidermatum. Only the lOx and 20x dilutions are shown in Table 6.9. 

In both dilutions the concentration of DMSO was 158 mM, and the concentration of mineral 

nutrient salts was constant in all treatments and in both dilutions (see Table 6.9). The 

proportion of cells that germinated was determined after adding concentrated CV813 to each 

replicate to induce zoospore encystment and germination of viable cells (as in section 6.3). 
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The 13-escin solution that had not been inoculated with bacteria was most inhibitive to 

zoospores, whereas the 3-escin solution pre-incubated in the presence of three bacterial 

strains was significantly less inhibitive. A fourth bacterial strain, however, did. not 

significantly reduce the inhibition of the original 3-escin solution. The four bacteria were not 

fully characterised but were large, rod-shaped cells typical of Bacillus spp. 

Table 6.9. The effect of axenic bacterial cultures amended with f3-escin at two dilutions on 

the nutrient induced germination of zoospores of Py. aphanidermatum. 

Bacterial strain. 	 20x dilution 
	

lOx dilution 

% (and Arcsine) % (and Arcsine) 
Strain  47.1±1.1 41.5±1.7 

+ 3-escin. (43.3 ± 0.6 a) (40.1 ± 1.0 a) 

Stain  21.0±6.6 14.3±8.5 
+ 0-escin. (27.0 ± 4.7 b) (21.3 ± 7.3 b) 

Strain 8 46.9 ± 4.4 33.3 ± 0.0 
+ 13-escin. (43.2 ± 2.5 a) (35.3 ± 0.0 a) 

Strain 10 44.1 ± 2.0 28.8 ± 1.8 
+13-escin. (41.6±1.1a) (32.5±1.2a) 

Control (no bacteria) 18.7 ± 0.3 11.9 ± 1.6 
+3-escin. (25.6±0.2b) (20.1 ± 1.4b) 

P(ANOVA) 	 (6.91 x 10-i) 	 (2.97 x 10.2) 

ad 	 (3.5) 	 (4.8) 

LSD005 	 (7.9) 	 (10.8) 

Means ± s.e.m. for 2 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 
Concentration of salts in each treatment were 3.7 mM of Na 2HPO4, 2.2 MM  of KH2PO4, 574 j.tM of 
K2SO4, 1.7 mM of NaCl, 81 J.LM of MgS0 4 7H20, 680 tiM of CaC1 2 2H20 and 36 nM of 
FeSO4 7H2O. 
Values followed by the same letter do not differ significantly at P = 0.05. 

6.12. The effect of crude saponin extracts from oat seedlings on the 

motility of zoospores, the germination of cysts and the nutrient induced 

germination of zoospores. 

Crude oat extracts were prepared from the root tips, leaves and seeds with roots, but with the 

root tips removed, as explained in Section 2.1.5. The extracts were added at either their 

original strength or at one-tenth strength to suspensions of zoospores of Py. 
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aphanidermatum. After 2 h incubation the proportion of the original zoospores that were 

motile and the proportion of cysts that had germinated were determined (as in Section 2.3.7) 

(Table 6.10). After a further 2h incubation an aliquot of each treatment was removed, 

vortexed and the number of cysts enumerated by haemocytometer counts. 

The proportion of spores observed to be motile after two hours of incubation in the SDW 

control was 27%. In treatments with either 6.10 mg.mr' of root tip extract or 32.6 mg.mF' of 

leaf extract no zoospores were observed to be motile at 2h. However, one-tenth dilutions of 

these solutions did not completely suppress zoospore motility. A solution containing 29 

mg.mF' of 'seed-root' extract caused no reduction of zoospore motility compared to the 

control, but a one-tenth dilution of this extract raised the proportion of motile spores 

compared to the SDW control. The results of the assessment of zoospore numbers at 4h were 

significantly correlated (R = 0.90, F = 3.46 x 10-8 ,  df= 20) with the results of the assessment 

of motility at 2h (based on analysis of the non-transformed data). When cyst germination 

was measured at 2h only 2.6% of cysts had germinated in the SDW control. All types and 

concentrations of the oat extracts significantly increased the proportion of cysts that had 

germinated. The proportion of cysts that germinated in an extract did not necessarily 

correlate with concentration of the extract. For example, 68% of cysts had germinated in 29 

mg.ml' of seed and root extract, whereas 90% had germinated in 6 mg.ml' of root tip 

extract. 
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Table 6.10. The effect of crude oat extracts on the motility and subsequent germination of 

zoospores of Py. aphanidermatum. 

Oat extract 	 Motility (2h) 	Motility (4h)" 	Subsequent 

germination (2h) 

% (and Arcsine) 	zoospores.tl' 	% (and Arcsine) 

Control 26.9 ± 0.2 7.5 ± 0.8 2.6 ± 1.3 
(31.2 ± 0.1) (7.6 ± 3.8) 

610 1g,nil 43.0 ± 1.4 21.5 ± 1.8 a 60.4 ± 8.5 
root tip (40.9±0.8a) (51.2±5.1b) 

6.10mg.ml' 0.0 ±0.0 0.8±0.2b 89.8±2.0 
root tip (0.0±0.0b) (71.5±1.9a) 

3.26 mg.ml' 42.2± 1.1 36.9 ±4.7 62.4 ±4.5 
leaves (40.5 ± 0.6 a) (52.3 ± 2.7 b) 

32.6 mg.m1 0.0 ± 0.0 1.7 ± 1.2 b 91.4 ± 0.4 
leaves (0.0 ± 0.0 b) (73.0 ± 0.4 a) 

2.90 mg.m1' 44.5 ± 0.5 29.8 ± 3.1 54.2 ± 4.2 
seeds and roots (41.8 ± 0.3 a) (47.4 ± 2.4 b) 

29.0 mg.mt' 31.2 ± 1.1 22.4 ± 4.2 a 	68.3 ± 3.5 
seeds and roots (34.0 ± 0.7) (55.8 ± 2.2 b) 

P(ANOVA) (4.47 x 10') 6.48 x 1010 	 (7.77 x 10) 

Cyd (0.7) 2.3 	 (4.2) 

LSD0.05  (1.5) 4.9 	 (9.0) 

* Means ± s.e.m. for 3 replicates, assessed after 2h, based on three fields of view per replicate. 
** Means ± s.e.m. for 3 replicates, assessed after 4h, based on two haemocytometer counts per 
replicate. 
Values followed by the same letter do not differ significantly at P = 0.05. 

The same treatments as above were applied to suspensions of vortex-encysted zoospores of 

Py. aphaniderinatum. Cysts in the SDW control showed only 29% germination after 2h 

incubation at 23 °C in the dark (Table 6.11). All crude oat extracts significantly increased the 

proportion of cysts that had germinated when compared to the control, the lowest level of 

cyst germination in any crude oat extract being 87%. As before, the level of cyst germination 

was not simply related to the amount (mg.mi') of crude extract. 
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Table 6.11. The effect of crude oat extracts on percentage germination of vortex-encysted 

zoospores of Py. aphanidermatum. 

Crude extract % germination Arcsine. 

Control 29.2 ± 2.3 32.7 ± 1.4 

610 j.tg,mt' root tip 87.0 ± 1.8 68.9 ± 1.6 c 

6.10 mg.mF' root tip 96.7 ± 0.9 79.7 ± 1.4 a 

3.26 mg.m1' leaves 91.9 ± 2.7 73.8 ± 2.8 b,c 

32.6 mg.mt' leaves 97.0 ± 1.3 80.3 ± 2.0 a 

2.90 mg.m1 seeds and roots 91.2 ± 0.5 72.7 ± 0.5 b,c 

29.0 mg.m1' seeds and roots 95.4 ± 0.5 77.6 ± 0.6 a,b 

P (ANOVA) 
	

8.41 x 10 

ad 	 2.3 

LSD0.05 	 4.9 
S 

 Means ± s.e.m. for 3 replicates, assessed after 2h, based on 100 cysts per replicate. 
Values followed by the same letter do not differ significantly at P = 0.05. 

Serial dilutions of 'oat root tip' extract and 'root and seed' extract were also tested for their 

effects on the germination of zoospores of Py. aphanidermatum (germination being 

determined as in Section 6.3). High concentrations of both types of extract caused a marked 

suppression of cell germination; whereas lower concentrations had little effect (Figures 6.34 

and 6.35). The conversion of percent germinated to probits resulted in very highly significant 

(F :5 21.9 x 1 O, R ~! 0.85, df= 19) correlations between probit value of cell germination and 

oat extract concentration. From lines of best fit, LD 50 values were determined to be 9.3 

mg.mF' of root tip extract, and 38.0 mg.mt' of 'seed and root' extract. 
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Figures 6.34 and 6.35. The effects of crude oat extracts on the nutrient induced germination 

of zoospores of Py. aphanidermatum. 

Figure 6.34 Extract from seeds and roots. 
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Means ± s.e.m. for 3 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 

6.13. Production of zoospore-inhibitive compounds by Brevibacillus 

brevis. 

A strain of B. brevis (w.t.) known to produce gramicidin S was cultured in various liquid 

media (Section 2.4), then the crude culture filtrates were assessed for effects on zoospore 

germination (method as in Section 6.3) (Table 6.12). For comparison, a mutant strain of B. 

brevis known to lack the ability to produce gramicidin S was also used to inoculate some 

broths and their effects on zoospore germination were also tested. 

When B. brevis (w.t.) was cultured in CV8B, malt extract broth, a gelatine solution, potato 

extract broth or nutrient broth, the germination of zoospores was not significantly (t-tests, P 

~! 0.202) different from that of the corresponding uninoculated broth control. In all 

uninoculated broths except potato extract broth (which seemed to be inhibitory to zoospores) 

the proportion of zoospores viable was at least 57%. 

In several cases the broths inoculated with the wild-type strain of B. brevis, and incubated for 

2 days, were highly inhibitory to zoospores, compared with the corresponding uninoculated 
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broth. This was true for inoculated neutralised bacteriological peptone broth, peptone P 

broth, bacteriological peptone broth, and yeast extract broth. However, little or no inhibition 

was observed for inoculated CV8 broth, malt extract broth, gelatine broth and potato extract 

broth. Only a few types of broth were inoculated with the gramicidin S-negative mutant 

strain of B. brevis, but in all of these cases there was either no evidence of inhibition to 

zoospores or significantly less inhibition than that of the corresponding broth inoculated with 

wild-type B. brevis. 

In one test, 4-thy-old yeast extract broths were compared for their effects on zoospores of 

both Ph. parasitica and Py. aphanidermatum (Table 6.12). Both fungi were found to be 

sensitive to the broth inoculated with the wild-type strain of B. brevis. But only Ph. 

parasitica was sensitive to the broth inoculated with the mutant strain of B. brevis (and even 

then the degree of inhibition was less than that caused by the broth inoculated with the wild-

type strain). 

Yeast extract broth was inoculated with B. brevis (w.t.), incubated for 4 days, then clarified 

by centrifugation (15000 g for 30 mm) and diluted with uninoculated yeast extract broth. To 

these dilutions of inoculated broth zoospores of Py. aphanidermatum were introduced, and 

the proportion that germinated was assessed after 2h (as in Section 6.3). In uninoculated 

broth 96% of zoospores were found to germinated (Figure 6.36). Increasing the ratio of 

inoculated to uninoculated broth caused the proportion of zoospores that germinated to 

decrease. In quarter-strength (ratio 1:3) inoculated broth only 1.5% of zoospores were found 

to be germinated. The relationship between the concentration of inoculated broth (% v/v) and 

germination was sigmoid (Figure 6.37). The regression of the probit transformed line was 

very highly significant (R = 0.96, F = 4.89 x df= 19) and gave a probit value of 5.0 

(LD50) corresponding to a concentration of 8.52% inoculated yeast broth. 

The LD50  of gramicidin S with zoospores of Py. aphanidermatum was previously (Table 6.2) 

determined as 462 nM. Assuming that the suppression of zoospore germination was wholly 

caused by gramicidin S production and that the yeast extract broth does not affect the 

efficacy of gramicidin S, then production of gramicidin S by B. brevis in yeast extract broth 

is equivalent to 6.6 mg.F' (5 tM) over four days. 
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Table 6.12. The effects of different broth cultures of Brevibacillus brevis on the germination [arcsine (and %)] of zoospores*.  The broths were either 

tested alone (uninoculated) or after a wild-type (w.t.) strain of B. brevis had grown in them. In some cases the broths had been inoculated with a strain 

of B. brevis (E-1) that does not produce gramicidin S. 

Broth Clarified Fungus Incubation Volume Control' B.brevis (w.t.) B.brevls (E. 1.) P (ANOVA) LSD0 .05  

Length 
Neutralised bacteriological Peptone No Py. aphanidermalum 2 days 200 ml 66.8 ± 6.7 (84%) 43.8 ± 2.9 (48%) n.d. 3.43 x 10.2  n.a. 

Neutralised bacteriological Peptone No Py. aphanidermalum 2 days 200 ml 70.2 ± 1.0(89%) 21.0 ± 2.6(13%) 64.0 ± 1.6(81%) 3.07 x 10 6.5 

Peptone P. No Fy. aphanidermatum 2 days 200 ml 68.9 ± 3.2(87%) 9.0 ± 1.7(2%) n.d. 7.62 x 10 n.a. 

Bacteriological Peptone No Py. aphanidermalum 2 days 200 ml 63.8 ± 3.6 (81%) 9.7 ± 1.6(3%) n.d. 1.63 x 104  n.a. 

CV813 No Py. aphanidermalum 2days 200 ml 56.1 ±0.8(69%) 53.8± 1.6 (65%) n.d. 2.73 x lOt n.a. 

Malt Extract No Py. aphaniderm alum 2 days 200 ml 58.4 ± 3.3 (73%) 62.9 ± 3.4 (79%) nd. 4.06 x 10' n.a. 

Gelatine No Py. aphanidermatum 2 days 200 ml 48.9 ± 2.2 (57%) 55.5 ± 2.2(68%) n.d. 2.02 x 10 n.a. 

Potato extract No Py. aphanidermatum 2 days 200 ml 8.5 ± 1.4 	(2%) 7.3 ± 0.9(2%) n.d. 4.80 x 10 n.a. 

Nutrient Broth No Py. aphaniderm alum 2 days 200 ml 71.7 ± 2.1(90%) 70.3 ± 2.0 (89%) 69.1 ± 2.1(87%) 6.92 x 10- ' n.a. 

Yeast Extract No Py. aphaniderm alum 2 days 200 ml 64.7 ± 0.5 (82%) 0.0 ± 0.0(0%) n.d. 1.75 x iO n.a. 

Yeast Extract No Py. aphanidermalum 2 days 200 ml 80.5 ± 1.7(97%) 8.5 ± 1.4(2%) 49.5 ± 3.4(58%) 2.04 x I0 8.2 

Yeast Extract No Py. aphanidermatum 3 days 500 ml 77.2 ± 1.4(95%) 4.6 ± 2.4(1%) 70.9 ± 1.8 (89%) 2.97 x iO 6.6 

Yeast Extract Yes Py. aphanidermatum 4 days 500 ml 75.0 ± 1.5 (93%) 0.0 ± 0.0(0%) 60.9 ± 1.6(76%) 2.82 x iO 4.4 

Yeast Extract Yes Ph. parasilica 4 days 500 ml 52.0 ± 2.9(62%) 1.9 ± 1.9(0%) 23.9 ± 2.9(18%) 3.04 x I0 9.0 

Means ± s.e.m. for 3 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 
a Clarified by centrifugation (15000 g for 30 mm). 
b Uninoculated broth. 
n.d. Not determined. 
n.a. Not applicable. 
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Figures 6.36 and 6.37. The effect of diluting yeast extract broth inoculated with B. brevis 

(wild type) on the viability of zoospores of Py. aphanidermatum. 

Figure 6.36 Untransformed data. 
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Figure 6.37 Probit transformed data. 
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* Means ± s.c.m. for 2 replicates, assessed after 2h, based on score of at least 100 cysts per replicate. 

6.14. Brevibacillus brevis (wild-type) produces a haemolytic compound. 

When B. brevis (wild-type) was cultured on blood agar (at 23 °C in the dark for 7 days), a 

zone of haemolysis appeared around the colonies (Figure 6.38), whereas no such zone was 

observed when the mutant strain (E-1) was cultured under identical conditions (Figure 6.39). 
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Figure 6.38. Brevibacillus brevis (wild-type) cultured on blood agar for 7 days. 

B. brevis (wild-type) cultured for 7 days at 23 °C in the dark on 6% (v/v) horse blood agar. Agar 
plate was scanned using a flat-bed scanner (Hewlett Packard ScanJet 61 OOC/T) to produce the image. 

Figure 6.39. Brevibacillus brevis (El) cultured on blood agar for 7 days. 

* B. brevis (E-1) cultured for 7 days at 23 °C in the dark on 6% (v/v) horse blood agar. Agar plate was 
scanned using a flat-bed scanner (Hewlett Packard ScanJet 6100CIT) to produce the image. 
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6.15. Discussion. 

In the majority of experiments presented in this chapter DMSO concentration was constant in 

each treatment of the experiment. Although 28 mM DMSO was shown not to affect significantly 

sporangiogenesis of Ph. parasifica or the motility and subsequent germination of zoospores of 

Py. aphaniderinatum, there is considerable evidence that DMSO does affect biological 

membranes. DMSO up to 40% w/w (5.3 M) is commonly employed in long-term 

cryopreservation of cells by virtue of its cryoprotectant properties (Lovelock & Bishop, 1959). 

DMSO also increases solute permeability across cell membranes (Anchordoguy et al., 1992). 

Increased solute permeability is due, in part, to DMSO reducing the diffusion pathway across the 

membrane (Yu & Quinn, 1998). DMSO could also enhance the partition coefficient of solutes 

between the aqueous phase and the membrane. These findings were determined with DMSO at 

molar concentrations. The maximum concentration of DMSO used in the experiments of this 

chapter was 324 mM, and this was an exceptional case. In most experiments the DMSO 

concentration was less than 40 mM. Reports that DMSO increases membrane permeability do 

not suggest that a consequence of increased permeability is reduced membrane stability 

(Anchordoguy etal., 1992). 

In Table 6.13 are summarised the main findings of this chapter. The LD 50  of 3-escin is three to 

five orders of magnitude greater than of gramicidin S. The LD 50  of gramicidin S is relatively 

unaffected by the maturity of cyst wall, whereas increase of maturity of cyst wall makes the cells 

less susceptible to -escin. All three divalent cations tested (Ca 2 , Mg' and S?) antagonised the 

effect of gramicidin S, whereas the two monovalent cations (Na and K) did not alter the 

effectiveness of gramicidin S. Calcium and potassium cations could antagonise the effect of - 

escin, but their effectiveness was not as marked as the antagonism of gramicidin S by divalent 

cations. 

Neither toxin at concentrations tested could suppress the formation of sporangia of Ph. 

parasitica. However, -escin did noticeably suppress the emptying of sporangia and the number 

of zoospores released. Both 3-escin and gramicidin S suppressed zoospore motility, but at 60 

.tM -escin significantly increased the proportion of cysts that subsequently germinated. 

However, both toxins suppressed the germination of vortex-encysted zoospores. 
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Table 6.13 Summary of the effects of p-escin and gramicidin S. 

13-escm Gramicidin S 

LD50  of zoospores -35 IM - 500 nM 

LD50  of immature cysts > 270 pM —500 nM 

LD50  of mature cysts > 1.0 mm - 750 nM 

Antagonised by Ca 2+ Yes Yes 

Antagonised by Sr2  No Yes 

Antagonised by Mg2  No Yes 

Antagonised by K Yes No 

Antagonised by Na No No 

Sporangial density No effect No effect 

Subsequent zoospore release (sporangiogenesis) Suppressed No effect 

Sporangia discharging their contents (sporangiogenesis) Suppressed Slight suppression 

Zoospore release from pre-formed sporangia No effect Not tested 

Zoospore motility Suppress Suppressed 

Subsequent cyst germination Peak at 60 j.tM Suppressed 

Germination of vortex-encysted zoospores Suppressed Suppressed 

Degraded by soil bacteria Yes Not tested 

The effect of membrane disruption by either 13-escin or gramicidin S is increased leakage of 

cytoplasmic material and loss of membrane integrity (Katsu et al., 1988). The mechanism by 

which these two toxins operate is different. It was microscopically observed that, at 

concentrations above the LD50 concentration the non-viable (that is, non-functioning water 

expulsion vesicle) cells were different for the two toxins. With gramicidin S virtually all 

unhealthy cells were intact, whereas with f3-escin a third of the unhealthy cells were not intact. 

-escin, a triterpeneglycoside saponin from Castanea sativa, binds irreversibly to sterols of 

membranes and forms an insoluble complex. This complexing to membrane-bound sterols 

causes pore formation, loss of electrochemical concentration gradients and the loss of membrane 

integrity (Fenwick et al., 1992). So the primary mode of action of saponins is similar to that of 

the polyene macrolide antibiotics (Osbourn, 1996). 13-escin has already been shown to be 

effective at reducing zoospore viability - as determined by cytological examination (Deacon & 

Mitchell, 1985). However, Olsen (1971a, 1971b, 1971c) found that the triterpeneglycosides were 
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unable to inhibit mycelial growth, reduce endogenous respiration, induce leakage of inorganic 

ions, or inhibit uptake of potassium, magnesium and inorganic phosphate in hyphae of Py. 

irregulare. In other fungi tested, particularly Gaeumannomyces graminis var. tritici, the 

triterpeneglycoside was highly inhibitory to mycelial growth. Later work by Olsen (1973) found 

a correlation between the sterol content of fungi and the inhibitory effect of avenacin, another 

triterpeneglycoside saponin. A characteristic of the oomycota is the inability to synthesise sterols 

de novo (Elliott, 1983). Arneson and Durbin (1968) found that Pythium and Phytophthora were 

resistant to a-tomatine (a steroidal glycoalkaloid). The insensitivity of the oomycetes to a-

tomatine was attributed to the absence of membrane sterols. However, reproduction by the 

Pythiaceae, including the asexual production of zoospores, requires sterols; and so zoospores 

have sterols in their membranes. 

The presence of a cell wall conferred increased tolerance to J-escin on zoospores of Ph. 

parasitica and Py. aphanidermatum. Also a noticeable increase in tolerance was observed 

between cysts with immature and mature cell walls. Furthermore, the production of sporangia of 

Ph. parasitica was not affected by J3-escin concentration up to 128 AM. These results suggest 

that the cell wall acts as a barrier to -escin. Oomycetes differ from the eumycetes in having 3-

glucans (cellulose) instead of chitin as the principal cell wall component artnicki-Garcia & 

Wang, 1983). Therefore, it is possible that the differences in the sensitivity to f3-escin between 

the oomycetes and the eumycetes are not only attributed to the differing quantities of membrane 

bound sterols, but also to the different components of the cell walls. The observation that 64 AM 

13-escin increased the proportion of cysts that germinated when encystment had occurred in the 

presence of j3-escin, but failed to affect germination of pre-encysted zoospores, supports the 

hypothesis that walls of the oomycetes act as a barrier to J3-escin. The ability of -escin to 

increase the level of cyst germination cannot be explained here, but may possibly be attributed to 

the glucose moiety of 13-escin inducing germination. D(+)glucose was clearly shown to induce 

germination of three species of Pythium by Donaldson (1992). 

Gramicidin S is a cyclic decapeptide, (L-Val-L-OM-L-Leu-D-Phe-L-Pro-) 2 , produced by 

Brevibacillus brevis (Katsu et al., 1988). The n-sheet structure is well characterised with the two 

cationic ornithine residues on one side of the molecular plane and the hydrophobic residues on 

the other side (Katsu et al., 1988). Many hydrophobic antibiotics cannot permeate the compound 
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structure of the cell envelope of Gram-negative bacteria (Nikaido and Vaara, 1995). Their action 

is usually limited to disruption of the outer (lipopolysaccharide) membrane. However, 

gramicidin S increases the permeability of both the outer and the inner cytoplasmic membrane of 

Escherichia coli (Katsu et al., 1986). This adsorbtion of gramicidin S damages and prevents the 

functioning of the plasmamembrane of both Gram-positive and Gram-negative bacteria 

(Yonezawa et al., 1981), although the accumulation of gramicidin S is predominantly in the 

outer leaflet of the phospholipid bilayer (Katsu et al., 1989; Lewis et al., 1998). Gramicidin S 

forms salt bridges with phosphate groups of two neighbouring phospholipid molecules. The 

effectiveness of the antibiotic is attributed to the rigidity of the peptide. The result of gramicidin 

S-phospholipid bridges is a mosaic structure in the membrane, in which phospholipid clusters 

are surrounded by lipid-gramicidin S complexes. In turn, this facilitates the formation of a 

collodial solution (Ovchinnikov and Ivanov, 1982). Katsu et al. (1988) investigating the action 

of gramicidin S on human erythrocytes, observed the formation of a collodial solution, and 

reported that this was facilitated by gramicidin S stimulating the movement ofacyl chains of the 

lipids. Therefore, the mechanism of gramicidin S is debatable, but clearly involves interaction 

with the phospholipids and not the membrane bound sterols (Mihailescu & Horvath, 1999). 

The ability of gramicidin S to interfere with the internal membrane of Gram-negative bacteria is 

mirrored by the observations that the presence of the cell wall does not affect the inhibition of 

gramicidin S. That is, gramicidin S passes across the cell wall unaffected. The ability of 

gramicidin S to move across the cell wall of zoospore cysts suggests that it also will affect the 

membrane of hyphae and sporangia. It was clear that gramicidin S inhibited the germination of 

vortex-encysted zoospores, but had negligible effect on sporangiogenesis of Ph. parasitica or the 

subsequent discharging of zoospores from sporangia. This paradox can be resolved by the 

finding (Figure 6.32) that the inhibition of a given concentration of gramicidin S was inversely 

proportional to the numbers of fungal zoospores in a suspension. That is, increasing the area of 

zoospore membrane in a fixed quantity of gramicidin S results in the amount of gramicidin S 

being too low to cause lethal damage to a membrane. Therefore, it is not surprising that when a 

whole mycelial mat is subjected to 32 iM gramicidin S there is little effect on sporangiogenesis. 

Mycelial mats exposed to increasing concentrations of f3-escin did show suppressed 

sporangiogenesis. However, the range of 13-escin concentrations used included higher 

concentrations than were used for gramicidin S. A second way to resolve the paradox is based on 
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differing wall components in germinating cysts and sporangia. That is, gramicidin S can inhibit 

the biogenesis of wall material in germ tubes, but not in sporangia. 

Zoospores of Py. aphanidermatum were more susceptible to both toxins than were the spores of 

Ph. parasitica. Generally the zoospore populations of Py. aphanidermatum were approximately 

fifty times more dense than the populations from Ph. parasitica. It has been clearly shown that 

the lower the zoospore density the greater the sensitivity to either 3-escin or gramicidin S. 

Zoospores of both species are similar in size (approximately 10 gm long), so the observed 

difference in toxin tolerance between these species cannot be explained by experimental factors. 

Therefore, it can be concluded that zoospores of Ph. parasitica are markedly more tolerant of J-

escin and gramicidin S than zoospores ofPy. aphanidermatum. 

For the steroidal saponins, 26-desgiucoavenacides A and B, of oat tissues, the pathogen Septoria 

avenae f. sp. avenae detoxifies the saponin by enzymatic hydrolysis of L-rhamnose and D-

glucose (Wubben et al., 1996). Armah et al. (1999) have shown that an intact sugar moiety of 

avenacin A-1 is required to reorganise membrane cholesterol into pores, and that saponin 

activity was abolished by the removal of any of the monosaccharide residues. The detoxification 

of the saponin a-tomatine by Botrytis cinerea is also by deglycosylation (Quidde et al., 1998). 

The enzymic detoxification of the saponins, avenacin A-i and a-tomatine, is by 

physicochemically similar, immunologically identical and highly homologous steroidal 

glycoalkaloid enzymes (Osbourn et al., 1995). The degradation of -escin by three isolates of 

soil bacterium is perhaps due to the cleavage of the glucose moiety from -escin, although there 

is also a possibility that some f-escin was physically absorbed onto bacterial cell components. 

The inability of the other strain (strain 2) to detoxify 13-escin could be attributed to either 

inability to remove the glucose moiety or lack of 3-escin absorption. 

The production of a gramicidin S-like substance by the wild type B. brevis was established. 

However, the quantity of presumptive compound that was calculated to be produced (6.6 mgi') 

is probably a conservative estimate. In the broths where gramicidin S was produced divalent 

cations were present and would antagonise the effectiveness of gramicidin S. Uninoculated 

potato broth was the only broth tested that was inhibitive to zoospores of Py. aphanidermatum, 

and was the broth with the highest carbohydrate to total nitrogen ratio. However, this correlation 

does not explain the observed inhibition. All other broths with the exception of CV813 are high 
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in protein or protein digests. Dry peptone P, neutralised bacteriological peptone and 

bacteriological peptone all have a similar concentration (2.4 to 2.7 % w/w) of nitrogen in amino 

form. The concentration of amino nitrogen in yeast extract before the addition of water is 5.1% 

w/w; however, this broth contained the lowest concentration of total nitrogen of the 'digest' 

broths. Although the pH of the broths was not identical, it was not correlated with gramicidin S 

production. Why gramicidin S production by B. brevis in yeast extract was superior to that in the 

other broths is unknown, but antibiotic production and spoliation are influenced by the 

composition of growth media (Edwards, 1993). 

The sporangia of Phytophthora spp. are walled structures with zoospores being liberated when 

the papillum ruptures. In Saprolegnia terrestris high turgor pressure in the sporangial lumen 

forces the papillum to rupture (Money and Webster, 1989). Both gramicidin S and 3-escin 

destabilise membranes and it would be assumed that they would facilitate increased sporangial 

discharge. In this work no evidence was found to support this hypothesis. On the contrary, both 

toxins suppressed sporangial discharge. Increased permeability of the sporangial membrane may 

explain how the toxins inhibit sporangial discharge. Elevated membrane permeability could 

dissipate the turgor difference across the membrane. However, Olsen (1971 a, 1971 b) found that 

-escin caused inorganic ions and UV-absorbing material to leak from several genera of fungi, 

but not from Py. irregulare where -escin-induced leakage was nil. 

Both toxins suppressed zoospore motility, with a LD 50  concentration, based on subsequent cyst 

germination, being enough to immobilise most zoospores. Low concentrations of -escin 

elevated the fraction of spores that were motile. Encystment of zoospores can be induced by 

many chemicals in vitro, including high concentrations of salts or specific amino acids (Jones et 

al., 1991), lectins (Hardham and Suzaki, 1986) and various polysaccharides (Irving and Grant, 

1984; Grant etal., 1985; Estrada-Garcia etal., 1990; Zhang etal., 1990). Donaldson and Deacon 

(1993c) found that all the monosaccharides and the disaccharides they tested, including 25 MM 

D(+)glucose, induced encystment in Pythium spp. The curtailment of zoospore motility by 1-

escin could be mediated by the glucose moiety. However, the disruption of transmembrane 

potentials by either f3-escin or gramicidin S would also perturb normal motile behaviour. 

3-escin destabilises the membrane by interaction with membrane bound sterols. Calcium and 

potassium, but not magnesium, strontium or sodium suppressed the inhibition of 13-escin. 
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Calcium and potassium are in the same chemical series (series 4); likewise magnesium and 

sodium (series 3). It was expected that strontium, a divalent cation in series 5, would act as a 

surrogate for calcium in this respect, but it did not do so. Therefore, the effects of calcium and 

potassium may be due to their ionic radii (a steric effect). Toxicity of avenacin A-i is dependent 

on the presence of the monosaccharide residues (Armah et al., 1999). 

The toxic effect of gramicidin S was irreversible by the delayed addition of calcium. However, 

the addition of either potassium or calcium up to five minutes post-13-escin addition could almost 

completely negate f3-escin action. This latter observation supports the above hypothesis that 

calcium and potassium do not compete with f3-escin for the same point of interaction with 

membranes. Multivalent cations, particularly calcium, are known to induce dramatic structural 

changes in model membranes composed of acidic phospholipids (for example, Hauser & 

Shipley, 1984). Increasing concentrations of calcium ions increase the packing of 

phosphatidyicholine-phosphatidic acid mixtures (Kouaouci et al., 1985). This calcium-induced 

packing will increase the membrane stability, and counteract the effect of -escin. This might 

explain how delayed addition of calcium to 13-escin treated cells reverses most of the effects of 

-escin. Calcium might not reverse the action of gramicidin S because they have similar or 

identical sites of interaction, and the affinity of gramicidin S for phospholipids is very high, as 

indicated by the sub-millimolar LD 50 . 

Calcium, strontium and to a lesser degree magnesium were able to reduce the effectiveness of 

gramicidin S. The mode of action of gramicidin S is by interaction with membrane 

phospholipids. The intrinsic dissociation constants for calcium and magnesium ion binding to 

phospholipids are much lower than for monovalent cations (Gennis, 1989). The binding of either 

monovalent (Cunningham et al., 1986) or divalent (Bone and Seelig, 1985; Akutsu et al., 1986) 

cations appears to have little effect on the conformation of the lipid polar headgroup. In most 

cases calcium binding with phospholipid is 1:1 (Altenbach and Seelig, 1984). The inhibition of 

gramicidin S by divalent cations is therefore probably by cations, particularly divalent cation 

occupying the sites of interaction of the cationic omithine residues of gramicidin S. 

With the target site of gramicidin S being the phospholipids of the membrane and f3-escin 

targeting the membrane bound sterols, there is potential for synergism in using these two 
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naturally occurring toxins in the control of zoosporic fungi in glasshouse irrigation systems. 

Although both gramicidin S and 13-escm have similar molecular weights (M = 1.2 kg.mol' and 

1.1 kg.moi', respectively) and both are hydrophobic (they do not dissolve in water), only - 

escin activity is reduced by the presence of a cell wall. In irrigation systems there are abundant 

non-fungal sterols and phospholipids to potentially absorb the toxins. Therefore, for disease 

control, the effective concentration of -escin or gramicidin S in an irrigation system is yet to be 

established. 

The presence of cations in irrigation systems will suppress the effectiveness of the toxins against 

zoospores and other stages of the infection sequence. The phytotoxicity of 3-escin and 

gramicidin S is yet to be determined. f-escin and gramicidin S could only be used to control 

zoosporic fungi in irrigation systems if the tolerance of plants is considerably greater than for the 

zoosporic fungi. In this chapter it has been shown that the action of gramicidin S is unaffected by 

the presence of the cellulose cell wall of cysts, and that -escin is affected by the cell walls of 

cysts. The cell walls of tomatoes and cucumbers are principally of cellulose, so the prospect of 

f3-escin or gramicidin S being effective and useful in irrigation systems is unknown. 

Stanghlliñi (1998) proposed the addition of bacterial cultures along with mycotoxic secondary 

metabolites to irrigation systems. Therefore, the addition of B. brevis culture to an irrigation 

system would not be novel. However, the proposition of adding crushed oat seedlings is yet to be 

considered. The discovery of high concentration of compounds (presumably avenacins) that 

were inhibitive to zoospores in the root tip confirms that preformed toxic compounds are found 

in oat root tips. The high levels of germination of cysts in crude saponin extracts can be 

attributed to known germination triggers, such as, amino acids and sugars (Donaldson & 

Deacon, 1993c). Similarly, the encystment of zoospores by the crude saponin extracts can also 

be attributed, partially, to the presence of known encystment triggers. However, the ability of 6.1 

mg.mr' of root tip extract to completely suppress the motility of zoospores of Py. 

aphanidermatum could be due to the relative high concentration of inhibition compounds. 

Although crude saponin extracts from oats contain compounds that are inhibitive to zoospores, 

the presence of amino acids and sugars might be detrimental to an irrigation system. These 

topics merit further work in commercial or model glasshouse irrigation systems. 
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Chapter 7. 
The effect of combining potential control techniques on 

aspects of the infection sequence of zoosporic fungi. 
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7.1. Introduction. 

In the preceeding chapters several potential methods for disease control were presented. These 

methods were the manipulation of cation concentrations, the addition of natural toxins 

(gramicidin S, -escin and ethanol) and the phenomenon of natural suppression in recirculating 

irrigation systems. In a couple of these proceeding chapters the interaction between different 

control methods was partially investigated - for example, the effect of certain cations on the 

toxicity of 13-escin and gramicidin S. The putative control methods that are described in the 

previous four chapters may interact either synergistically or antagonistically. 

Each potential control method targets the infection sequence of zoosporic fungi at different 

points, and by various mechanisms. For example, ethanol is particularly toxic to 

sporangiogenesis and zoospore release, but relatively ineffective at suppressing zoospore 

motility. In contrast, elevated concentrations of IC do not affect sporangiogenesis, but markedly 

suppress zoospore motility. So it can be speculated that this particular pair of control approaches 

would work synergistically. However, potential antagonism between control approaches has also 

been exposed in the proceeding chapters. For example, ethanol suppresses sporangiogenesis, 

whereas Ca 2+  at a concentration of approximately 5 mM enhances sporangiogenesis. The work 

presented in this chapter examines in vitro antagonism and synergism between the various 

approaches of controlling zoosporic fungi that have been presented in this thesis. 

7.2. Synergism between f-escin and gramicidin S. 

3-escin and gramicidin S mediate cell inhibition by interaction with different cell surface 

membrane components. 3-escin interacts with membrane-bound sterols, and gramicidin S 

interacts with phospholipids. In the previous chapter the LD 50  values for f3-escin and gramicidin 

S for zoospores of Py. aphanidermatum were determined to be 50.8 tM and 740 nM, 

respectively (Table 6.2). 

To determine whether 13-escin and gramicidin S would act synergistically, five treatments were 

prepared to which zoospores of Py. aphanidermatum were added, and then zoospore nutrient 

induced germination was assessed (as in Section 6.3). In the absence of either toxin the nutrient 
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induced germination of zoospores was 93% (Table 7.1). The addition of 50.8 l.tM 13-escin 

reduced zoospore nutrient induced germination to 15%, and to 84% in 740 nM gramicidin S. 

Assuming the effects of gramicidin S and f3-escin on nutrient induced germination were additive 

then the proportion of zoospores expected to be germinable in a mixture of 740 nM gramicidin S 

and 50.8 tM 3-escin would be 13% (that is, 83.6% x 15.4%). However, the actual proportion of 

zoospores found to be germinable in this mixture was lower than expected at 4%. In a mixture of 

13-escin and gramicidin S at half LD 50 concentration (25.4 jiM -escin and 370 nM gramicidin S) 

the proportion of zoospores germinable was 56%. 

Table 7.1. Synergism between J3-escin and gramicidin S assessed by the nutrient 

induced germination of zoospores of Py. aphanidermatum. 

Treatment 
	

Germination 

Arcsine (and %) 

SDW 	 74.9±1.8a 
(93.0± 1.5) 

50.8 1tM Escin 	 22.7 ± 3.2 
(15.4 ± 3.8) 

740 nM Gramicidin 	 66.8 ± 4.6 a 
(83.6± 5.4) 

25.4 Escin + 370 nM Gramicidin 	 48.3 ± 4.4 
(55.7± 7.6) 

50.8 Escin + 740 tiM Gramicidin 	 12.0 ± 0.4 
(4.3 ±0.3) 

ad 	 4.7 

LSD0.05 	 10.4 

P(ANOVA) 	 3.19 x 10 

* Means ± s.e.m. for 3 replicates, assessed after 2h, based on score of at least 100 spores per replicate. The 
concentration of DMSO in all treatments was 16.3 mM. 
Values followed by the same letter do not differ significantly at P = 0.05. 

7.3. Synergism between natural suppression and 10 mM K supplement on 

the motility of zoospores of Py. aphanidermatum and the subsequent 

germination of encysted zoospores. 

In each of the following five experiments (Sections 7.3 to 7.7) a poorly suppressive irrigation 

solution and highly suppressive irrigation solution from Stockbridge House was used. The 
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designation of an irrigation solution as either poorly or highly suppressive was based on the 

analyses performed in Chapter 4. The designations refer to the ability of the irrigation solution to 

suppress (or inability to suppress) the particular aspect of the infection sequence examined in the 

experiment. Determination of significant effects was by two-way ANOVA, unless the 

employment of one-way ANOVA was more appropriate. 

Zoospores of Py. aphanidermatum were incubated for 2h in either inoculated open irrigation 

solution harvested on the 30th  of July (poorly suppressive irrigation solution) or the inoculated 

closed (pasteurised) irrigation solution harvested on the 9th  of September (the highly suppressive 

irrigation solution) and in the presence or absence of 10 mM IC (final concentration). After 

incubation the proportion of zoospores that had remained motile and the proportion of encysted 

zoospores that had germinated was determined as in Section 2.3.6. 

The proportion of zoospores motile after incubation in the poorly suppressive irrigation solution 

not supplemented with IC was 34% (Table 7.2), whereas only 14% of zoospores were motile in 

the highly suppressive irrigation solution. The effect of adding 10 mM IC to either of these 

irrigation solutions was very highly significant (PK suppInt = 1.65 x 10 -4  ),  but there was also 

significant (P1 10  = 0.040) interaction between the irrigation solution sample and the IC 

supplement. Adding 10 mM IC to the poorly suppressive irrigation solution had negligible 

affect, whereas adding 10 mM IC to the highly suppressive irrigation solution caused 

considerable additional suppression of zoospore motility. 

The proportion of zoospores that had encysted and subsequently germinated during the 

incubation period was very significantly (Pjmgatjon  = 1.95 x 10-3 )  greater in the highly 

suppressive irrigation solution than the poorly suppressive irrigation solution (Table 7.3). The 

effect of the 10 mM IC supplement was to increase cyst germination very highly significantly 

(PK supplement = 1.48 x 1 0') in both irrigation solutions. There was no significant = 

0.355) interaction between irrigation solution and potassium supplement. 

229 



Table 7.2. Synergism between irrigation solutions and a 10 mM K 
4,  supplement, as 

assessed by the proportion of zoospores of Py. aphanidermatum that remained motile*. 

Treatment 	 Poorly suppressive Highly suppressive Mean 

irrigation solution'. irrigation solutionb. 

Arcsine (and %) Arcsine (and %) 

NoKadded 	 35.3±5.7 21.4±2.5 
(34.0 ± 9.6) (13.6 ± 2.9) (23.8) 

10 	m K added 	 32.0 ± 1.5 1.7 ± 1.7 
(28.2 ± 2.4) (0.3 ± 0.3) (14.3) 

Mean 	 - 	(31.1) 	 (7.0) 	1 	(19.0) 

ad 	 - 4.7 

LSD0.05  10.9 

Pimgation solution 8.84 x 1 

PKsuppment 1.65 x 10 

Pintelation 4.00 x 10 

Means ± s.c.m. for 3 replicates, based on 3 random tields 01 view per replicate. 
a Inoculated open irrigation solution harvested on the 30 th  of July. 
b Inoculated closed (pasteurised) irrigation solution harvested on the 9 th  of September. 
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Table 7.3. Synergism between irrigation solutions and a 10 mM W supplement, as 

assessed by the proportion of spontaneously encysted zoospores of Py. 

aphanidermatum that subsequently germinated. 

Treatment 	 Poorly suppressive 	Highly suppressive 	Mean 

irrigation solution'. 	irrigation solution". 

Arcsine (and %) 	Arcsme (and %) 

No K' added 	 22.5 ± 0.8 	 38.2 ± 0.7 
(14.7± 1.0) 	 (38.3± 1.1) 	 (26.5) 

10 mM K added 	 33.7 ± 2.0 	 45.4 ± 3.4 
(30.9 ± 3.2) 	 (50.7 ± 5.9) 	 (40.8) 

Mean 	 (22.8) 	 (44.5) 	1 	(33.7) 

Cyd 2.9 

LSD0.05  6.7 

Pirrig tionsolutRon 1.95 x 10 

PK supplement 1.48 x 10 

Pinteration 3.55 x 10 

Means ± s.e.m. for 3 replicates, based on 3 random tieicts 01 view per replicate. 
8 lnoculated open irrigation solution harvested on the 30th  of July. 
b Inoculated closed (pasteurised) irrigation solution harvested on the 9th  of September. 

7.4. Synergism between natural suppression and Ca 21  supplement on the 

release of zoospores from pre-formed sporangia of Py. aphanidermatum. 

Sporangia-bearing mats of Py. aphanidermatum were produced as in Section 2.3.1.2, but the 

release solution was substituted with either inoculated irrigation solution harvested on the 24 0' of 

October (the highly suppressive irrigation solution) or the uninoculated open irrigation solution 

harvested on the 15t  of July (the poorly suppressive irrigation solution) and in the presence or 

absence of a 20 mM Ca 2  supplement. After the standard release period (2h) the numbers of 

zoospores liberated by the pre-formed sporangia were enumerated as in Section 2.3.5. 

The highly suppressive irrigation solution significantly (Pimgation  solution = 0.0243) suppressed the 

number of zoospores that were released from pre-formed sporangia compared to the poorly 

suppressive irrigation solution irrespective of the calcium supplement (Table 7.4). The addition 

231 



of 20 mM C2 to either irrigation solution did not significantly (Pc8  supp lement = 0.126) affect the 

number of zoospores liberated. 

Table 7.4. Synergism between irrigation solutions and a 20 mM Ca 2+  supplement, as 

assessed by the number of zoospores that are released from pre-formed sporangia of 

Py. aphanidermatum. 

Treatment 	 Poorly suppressive 	Highly suppressive 	Mean 

irrigation solution'. 	irrigation solution'. 

Zoospores. .tl' 	 Zoospores. j.d' 

No Ca` added 	 147±37 	 90±15 	 119 

20mMCa2 added 	 198±22 	 121± 17 	 160 

Mean 	 173 	 106 	1 139 

ad 	 34 

LSD005 	 75 

Pirrigationsohition 	 2.43 x 10 2  

PCs supplement 	 1.26 X 10 

Pinteration 	 6.87 x 10 

Means ± s.e.m. for 3 replicates, based on 2 haemocytometer counts per replicate. 
a Uninoculated open irrigation solution harvested on the 15t  of July. 
b Inoculated open irrigation solution harvested on the 24 th  of October. 

7.5. Synergism between natural suppression and Ca 2*  supplement on the 

germination of vortex-encysted zoospores of Py. aphanidermatum. 

To 200 gI of pre-encysted zoospores of Py. aphanidermatum was added either 800 .tl of open 

inoculated irrigation solution harvested on the 30 th  of July (poorly suppressive irrigation 

solution) or inoculated closed (pasteurised) irrigation solution that was harvested on the 9t' of 

September (the highly suppressive irrigation solution) in the presence or absence of 20 mM Ca"  

(final concentration) supplement. After 2h incubation, the proportion of cysts that had 

germinated was assessed as in Section 2.3.7. Neither the irrigation solution nor the presence or 

absence of Ca2  affected the proportion of cysts that germinated (Table 7.5). In all treatments the 

percentage germination was between 55 and 68%. 
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Table 7.5. Synergism between irrigation solutions and a 20 mM Ca 2* supplement, as 

assessed by the proportion of vortex-encysted zoospores of Py. aphanidermatum that 

germinated. 

Treatment 	 Poorly suppressive 	Highly suppressive 	Mean 

irrigation solution'. 	irrigation solutionb.  

Arcsine (and %) 	Arcsine (and %) 

No Ca" added 	 55.6±2.8 	 51.3±4.3 
(67.9 ± 4.6) 	 (60.7 ± 7.2) 	 (64.3) 

20 mM Ca2  added 	54.0 ± 2.2 	 48.3 ± 3.2 
(65.3 ±3.6) 	 (55.6± 5.4) 	 (60.5) 

Mean 	 (66.6) 	 (58.2) 	1 	(62.4) 

ad 4.5 

Pirngasion solution 1.56 x 10' 

PCs supplement 4.87 x 10 

Pjntcratjon  8.35 x 10' 

* Means ± s.e.m. for 3 replicates, based on 100 cysts per replicate. 
Inoculated open irrigation solution harvested on the 30 th  of July. 

b Inoculated closed (pasteurised) irrigation solution harvested on the 9 th  of September 

7.6. Synergism between natural suppression and either 5 mM K or 35 mM 

ethanol on the infection sequence of Py. aphanidermatum. 

The experimental protocol for producing zoospores of Py. aphanidermatum (see Section 2.3.1.2) 

was modified in the following way. All stages, except the establishment of mycelial mats in 

CV8B, the mineral salts solution and the zoospore release solution were substituted with either 

inoculated open irrigation solution that was harvested on the 24 0,  of October (the poorly 

suppressive irrigation solution) or inoculated closed (pasteurised) solution harvested on the 24th 

of October (the highly suppressive irrigation solution). The experiments also tested the effects of 

presence or absence of either 35 mM ethanol or 5 mM K. 

The number of zoospores that were liberated into the unsupplemented poorly suppressive 

irrigation solution was 105 zoospores.tl 1  (Table 7.6), whereas only 0.3 zoospores.j.t1' were 

released into the unsupplemented highly suppressive irrigation solution. The effect of 
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supplementing the irrigation solutions with either 5 mM IC or 35 mM ethanol was dependent on 

the suppressiveness of the irrigation solution, as indicated by the very highly significant 

= 6.66 x 1 0) interaction between the irrigation solution and the supplement. 

Irrespective of the supplement, there were very few zoospores released into the highly 

suppressive irrigation solution. However, the 5 mM K supplement significantly (P < 0.05) 

increased the number of zoospores released into the poorly suppressive irrigation solution 

compared to the unsupplemented control, whereas the 35 mM ethanol supplement significantly 

(P < 0.05) suppressed the number of zoospores released compared to the unsupplemented 

control. 

Table 7.6. Synergism between irrigation solutions and either 5 mM K or 35 mM 

ethanol, as assessed by the number of zoospores released from sporangia of Py. 

aphanidermatum. The effect was assessed when the treatment was applied to the 

whole experimental protocol**. 

Treatment Poorly suppressive 	Highly suppressive Mean 

irrigation solution'. 	irrigation solutiont .  

Zoospores.tl' 	Zoospores. .tl' 

No IC or ethanol added. 105.0 ± 55.4 	0.3 ± 0.2 52.7 

5 mM IC added 252.7 ± 11.8 	0.4 ± 0.1 126.6 

35 mM ethanol added 8.6 ± 2.5 	 2.5 ± 1.3 5.6 

Mean 122.1 	 1.1 61.6 

LSD0 .05  69.1 

ad 32.8 

0 
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Means ± s.e.m. for 3 replicates, based on 2 haemocytometer counts per replicate. 
** Except mycelial growth, which occurred in CV8B. 
a  Inoculated open irrigation solution harvested on the 24th  of October. 
b  Inoculated closed (pasteurised) irrigation solution harvested on the 24 th  of October 

After the release period (2h) and the assessment of zoospore numbers (above) the mycelial mats 

were removed from the Petri dishes and were incubated for a further 2h (that is, 4h in total). 
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After this the proportion of zoospores motile and the proportion of encysted zoospores that had 

germinated was assessed (as in Section 2.3.6). 

In two out of three treatments employing the highly suppressive irrigation solution, there were 

too few spores for the assessments of zoospore motility and cyst germination to be worthwhile. 

However, in the unsupplemented poorly suppressive irrigation solution 89% of zoospores were 

motile throughout the incubation, whereas 44% were motile when the irrigation solution was 

supplemented with 5 mM IC, and 55% were motile when the supplement was 35 mM ethanol 

(Table 7.7). The proportion of cysts that subsequently germinated in the poorly suppressive 

irrigation solutions was between 26 and 50% (Table 7.8). Neither the K nor ethanol supplement 

significantly (P = 0.0544) affected the proportion of cysts that germinated. 

Table 7.7. Synergism between irrigation solutions and either 5 mM K or 35 mM 

ethanol, as assessed by the proportion of zoospores of Py. aphanidermatum that 

remain motile.*  The effect was assessed when the treatment was applied to the whole 

experimental protocol**. 

Treatment Poorly suppressive Highly. suppressive Mean 

irrigation solution'. irrigation solutio&'. 

Arcsine (and %) Arcsine (and %) 

No K or ethanol added. 71.1 ± 2.5 n.d. 
(89.2 ± 2.7) (89.2) 

5mMKadded 41.5±8.7 n.d. 
(44.1 ± 14.6) (44.1) 

35 mM ethanol added 48.1 ± 7.1 69.2 ± 10.4 
(55.3 ± 12.1) (82.1 ± 9.0) (68.7) 

Mean (62.9) (82.1) (67.8) 

ad 11.0 

P 6.21 x 10r2  

Means ± s.e.m. for 3 replicates, based on 3 fields of view per replicate. 
Except mycelial growth, which occurred in CV8B. 

a Inoculated open irrigation solution harvested on the 24 th  of October. 
b Inoculated closed (pasteurised) irrigation solution harvested on the 24th  of October 
n.d. Not done. 

235 



Table 7.8. Synergism between natural suppression and either 5 mM K or 35 mM 

ethanol, assessed by the proportion of spontaneously encysted zoospores of Py. 

aphanidermatum that subsequently germinated. The effect was assessed when the 

treatment was applied to the whole experimental protocol. 

Treatment Poorly suppressive Highly suppressive Mean 

irrigation solution'. irrigation solution'. 

Arcsine (and %) Arcsme (and %) 

No K and ethanol added. 34.0 ± 4.5 n.d. 
(31.7±7.3) (31.7) 

5 mM K added 30.5 ± 3.8 n.d. 
(26.3 ±5.6) (26.3) 

35 mM ethanol added 45.2 ± 1.1 n.d. 
(50.4 ± 1.9) (50.4) 

Mean (36.1) n.a. (36.1) 

ad 4.9 

P 5.44 x 10 2  

* Means ± s.c.m. for 3 replicates, based on 3 fields of view per replicate. 
Except mycelial growth, which occurred in CV8B. 

a Inoculated open irrigation solution harvested on the 24 th  of October. 
b  Inoculated closed (pasteurised) irrigation solution harvested on the 24th  of October 
n.d. Not done. 
n.a.. Not applicable. 

Immediately after the mycelial mats were removed an aliquot (500 j.tl) of zoospores from each 

Petri dish were removed and mechanically encysted by vortexing (70s). The encysted zoospores 

were incubated for 2 h and then the proportion of cysts that had germinated was determined as in 

Section 2.3.7. That is, the incubation of vortex-encysted zoospores was concurrent with the 

incubation of motile zoospores (Tables 7.7 and 7.8). 

The K supplement in the poorly suppressive irrigation solution significantly (P < 0.05) 

suppressed the proportion of cysts that germinated compared to either the unsupplemented 

control or the ethanol supplemented treatment (Table 7.9). Again, in two out of three treatments 

employing the highly suppressive irrigation solution, there were too few spores for the 

assessment of cyst germination to be worthwhile. 
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Table 7.9. Synergism between irrigation solutions and either 5 mM K or 35 mM 

ethanol, as assessed by the proportion of vortex-encysted zoospores of Py. 

aphanidermatum that germinated. The effect was assessed when the treatment was 

applied to the whole experimental protocol. 

Treatment Poorly suppressive Highly suppressive Mean 

irrigation solution'. irrigation solution'. 

Arcsine (and %) Arcsine (and %) 

No K or ethanol added. 54.8 ± 4.8 n.d. 
(66.2 ± 7.6) (66.2) 

5 mM K added 38.2 ± 2.8 n.d. 
(38.4 ± 47) (38.4) 

35mM ethanol added 52.1 ± 1.8 50.3 ± 3.1 
(62.2 ±3.1) (59.1 ± 5.4) (60.7) 

Mean (55.6) (59.1) (56.5) 

LSD0 . 05  10.3 

ad 4.7 

P 3.25 x 10 2  

Means ± s.e.m. for 3 replicates, based on 3 fields of view per replicate. 
Except mycelial growth, which occurred in CV8B. 

Inoculated open irrigation solution harvested on the 24th  of October. 
b Inoculated closed (pasteurised) irrigation solution harvested on the 24 th  of October. 
n.d. Not done. 

7.7. Synergism between natural suppression and 35 mM ethanol on 

sporangiogenesis of Ph. parasitica. 

The protocol for the production of zoospores of Ph. parasitica (Section 2.3.1.1) was modified in 

the following way. The mineral salts solution was substituted with either uninoculated open 

irrigation solution harvested on the 9 th  of September (the poorly suppressive irrigation solution) 

or inoculated closed (filtered) irrigation solution harvested on the 24th  of October (the highly 

suppressive irrigation solution) and in the presence or absence of a 35 MM ethanol supplement. 

So sporangiogenesis occurred in an irrigation solution that was either unsupplemented or 

supplemented with ethanol. 
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Prior to the removal of the irrigation solution the number of zoospores in the bathing medium 

was enumerated by haemocytometer counts (Table 7.10). In the unsupplemented poorly 

suppressive irrigation solution 39.4 zoospores.tl' were enumerated, which was significantly (P 

<0.05) more than in the unsupplemented highly suppressive irrigation solution, where only 3.1 

zoospores.tt' were enumerated. The supplement of either irrigation solution with 35 mM 

ethanol very significantly (Pj 0 1 = 6.45 x 1 0-3)  suppressed the number of zoospores that were 

released. 

Table 7.10. Synergism between irrigation solutions and 35 mM ethanol, as assessed by 

the number of zoospores that were released prior to cold shock from sporangia of Ph. 

parasitica that had formed in the treatment. 

Treatment Poorly suppressive 	Highly suppressive Mean 

irrigation solution'. 	irrigation Solution t). 

Zoospores.il' 	Zoospores4tl' 

No ethanol added 39.4 ± 11.5 	. 	3.1 ± 0.2 21.3 

35 mM Ethanol added 0.4 ± 0.1 	 0.0 ± 0.0 0.2 

- Mean 19.9 	 1.6 10.7 

Gd 8.1 

LSDO.o5  17.9 
0 

irrigationsoIution 
1 	 -2 
1.Z0 X LU 

PEthan.1 supplement 6.45 x l0 

Pinteration 1.43 X 10 

Means ± s.c.m. for 3 replicates, based on 2 haemocytometer counts per replicate. 
B  Uninoculated open irrigation solution harvested on the 9th  of September. 
b Inoculated closed (filtered) irrigation solution harvested on the 24 th  of October. 

Similarly, the number of zoospores that were released after the cold shock into SDW was greater 

when the mineral salts solution had been substituted with the poorly suppressive irrigation 

solution than the highly suppressive irrigation solution (Table 7.11). The supplement of 35 MM 

ethanol to either irrigation solution caused the number of zoospores to be released to be very 

significantly (PE ,OI= 3.78 x 10) suppressed. 
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Table 7.11. Synergism between irrigation solutions and 35 mM ethanol, as assessed by 

the number of zoospores that were released after the cold shock from sporangia of Ph. 

parasitica that had formed in the treatment. 

Treatment 	 Poorly suppressive 	Highly suppressive 	Mean. 

irrigation solution'. 	irrigation solutionb.  

Zoospores..tl' 	Zoospores. tl' 

No ethanol added 	 42.3 ± 11.3 	 18.4 ± 9.5 	 30.4 

35 mM Ethanol added 	1.2±0.6 	 0.1±0.1 	 0.7 

Mean 	 21.8 	 9.3 	 15.5 

ad 10.4 

LSD005  22.9 

PuTigationsolutIofl 1.28 x 10' 

PEthanol supplement 3.78 X 10 

Punteration 1.43 x 10' 

- Means ± s.e.m. for 3 replicates, based on 2 haemocytometer counts per replicate. 
5 Uninoculated open irrigation solution harvested on the 9th  of September. 
b Inoculated closed (filtered) irrigation solution harvested on the 24 th  of October. 

The addition of 35 mM ethanol to the irrigation solutions very significantly (Pethanol supplement = 

2.68 x 10) suppressed the density of sporangia that had formed during the experiment in both 

irrigation solutions (Table 7.12.). When the effect of the ethanol supplement is taken into 

account then the suppressiveness of the irrigation solution does not significantly (Pimgation  solution 

0.187) affect the density of sporangia that formed on the mycelial mats. 
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Table 7.12. Synergism between irrigation solutions and 35 mM ethanol, as assessed by 

the density of sporangia of Ph. parasitica that had formed in the treatment. 

Poorly suppressive 	Highly suppressive 	Mean 

irrigation solutiona. 	irrigation solutio&'. 

Sporangia.screen' 	Sporangia.screen' 

No ethanol added 	 6.8 ± 1.6 	 4.6 ± 1.0 	 5.7 

35 mM Ethanol added 	1.5 ± 0.9 	 0.6 ± 0.4 	 1.1 

Mean 	 4.2 	 2.6 	 3.4 

ad 	 1.5 

LSD0.05 	 3.4 

Pirrigation solution 	 1.87 x 10 1  

PEI,OISUPPICIICIIt 	 2.68 x 10 

Pinteration 	 5.58 x 10' 

Means ± s.e.m. for 3 replicates, based on 3 fields of view per replicate. 
a Uninoculated open irrigation solution harvested on the 9th  of September. 
b  Inoculated closed (filtered) irrigation solution harvested on the 24 th  of October. 

7.8. Antagonism between 5 mM Ca 2*  and 35 mM ethanol on the 

sporangiogenesis of Ph. parasitica. 

The protocol for the production of zoospores of Ph. parasitica (Section 2.3.1.1) was modified in 

the following way. Mineral salts solution free of Ca(NO 3)2 was either unsupplemented or 

supplemented with 5 mM Ca 2+  and/or 35 mM ethanol. 

The number of zoospores that were released in calcium and ethanol free MSS (the control 

treatment) prior to cold shock was 29.3 zoospores. tl', while 27.5 zoospores..ti' were released 

into SDW after the cold shock (Table 7.13). The supplement of MSS with 5 MM Ca 2+ 
 

significantly (P < 0.05) increased the number of zoospores released (both pre- and post-cold 

shock). The addition of 35 mM ethanol to the calcium-free MSS also significantly (P < 0.05) 

suppressed the number of zoospores to be released (both prior and post-cold shock) compared to 

the control treatment. However, when the MSS was supplemented with both 5 mM Ca 2  and 35 

mM ethanol, the number of zoospores released (both pre- and post-cold shock) was not 

significantly (P> 0.05) different from the calcium-free, ethanol supplemented MSS. That is, 
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there was significant 	:!~ 3.90 x 102)  interaction between the effects of calcium and 

ethanol on the release of zoospores. 

The proportion of . sporangia that had discharged their contents (both pre- and post-cold shock) 

was not significantly (P ~: 0.705) affected by the Ca 2  concentration in the mineral salts solution. 

However, the supplement of MSS with 35 mM ethanol, irrespective of calcium concentration, 

significantly (P,(,1 :5 7.84 x 1 0-5) reduced the proportion of sporangia that discharged their 

contents (both pre- and post-shock) when compared to the calcium-free, ethanol-free control. 

The density of sporangia in all four treatments was not significantly (Pa 0.127) different. 
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Table 7.13. Antagonism between 5 mM Ca 2+  and 35 mM ethanol as assessed by 

aspects of sporangiogenesis of Ph. parasitica. 

Ca2 '-free MSS Pre-cold shock results Post cold-shock results 
supplement 

Zoospore Discharged Zoospore Discharged Sporangia 
release' sporangiat' release" sporangia t' density' 

Zoospores.tl' Arcsine (%) Zoospores.il' Arcsine (%) Sporangia.screen" 

None 29.3 ± 2.1 25.8 ± 4.6 a 27.5 ± 2.5 38.5 ± 2.1 a 23.3 ± 2.8 
(19.7 ± 6.6) (38.7 ± 3.5) 

Ca 2+ 50.3 ± 8.2 26.0 ± 2.8 a 55.3 ± 6.6 34.6 ± 3.3 a 32.1 ± 3.2 
(19.5 ± 3.7) (32.5 ± 5.5) 

Ethanol 2.0± l.Oa 2.6±2.6b 2.0±2.0 a 14.9±3.1 b 25.4±5.6 
(0.6 ± 0.6) (7.1 ± 2.6) 

Ca 2+  4.1 ± 2.7 a 0.0 	± 0.0 b 9.2 ± 3.5 a 19.3 ± 1.6 b 16.2 ± 4.0 
+ Ethanol (0.0 ±0.0) (11.0± 1.7) 

ad 6.2 4.2 5.1 3.7 5.7 

LSD005  13.2 9.3 11.2 8.2 n.a. 

Pc82  3.62 x 10.2 7.05 x 10' 3.85 x i -  9.13 x 10 9.58 x 10" 

PE,OI 1.37 x 10 5  3.59 x 10 2.94 x 10 7.84 x 10 1.27 x 10 

PIntemction 3.90 x 10.2 6.60 x 10 5.11 x 10 1.57 x 10" 5.80 x 10.2  

± s.c.m. for 3 replicates, based on 2 haemocytometer counts per replicate. 
b Means ± s.e.m. for 3 replicates, based on 3 fields of view per replicate. 
c Means ± s.c.m. for 3 replicates, based on 6 fields of view per replicate (3 fields prior to cold-shock and 3 
fields after cold shock). 
n.a. Not applicable. 
Values, in the same column, followed by the same letter do not significantly differ significantly at P = 
0.05. 

242 



7.9. Discussion. 

The results in chapter 3 suggested the possibility that modifying the potassium to calcium ratio 

in favour of potassium while maintaining nitrate concentration would suppress the infection 

sequence of zoosporic fungi. In a direct comparison of two ratios of potassium and calcium it 

was found that although there was evidence to support the hypothesis, the extent of suppression 

was not as a great as expected. This contrasts with the compound effect of gramicidin S and 3-

escin at LD50  concentrations (Table 7.1). The additive suppression of zoospore nutrient induced 

germination was greater than expected. This mutual enhancement of toxicity is possibly 

observed because the target sites for the two toxins are different, and so competition for sites of 

interaction on the membrane is minimal. These two examples, modified potassium to calcium 

ratio and the compound effect of 3-escin and gramicidin S, illustrate that the degree of 

synergism between two putative disease control methods will not necessarily be as predicted. 

Sporangiogenesis of Ph. parasitica when measured by zoospore release was enhanced by 5 mM 

Ca 2', thus confirming the observations presented in Chapter 3. Similarly, ethanol was shown to 

suppress sporangiogenesis of Ph. parasitica, also confirming previous observations (Chapter 5). 

When 5 mM Ca2  MSS was supplemented with 35 mM ethanol the proportion of sporangia that 

discharged their contents and the number of zoospores that were liberated were not significantly 

different from the calcium-free MSS supplemented with ethanol. This demonstrates that 35 mM 

ethanol can inhibit the promotion of sporangiogenesis induced by 5 mM Ca 2+  Although the 

concentration of calcium is appropriate to commercial irrigation systems the concentration (35 

mM) of ethanol is probably greater than what would be commercially acceptable. 

The work at Stockbridge House referred to in this thesis did not clearly demonstrate the 

phenomenon of natural suppression in recirculating irrigation systems. In this chapter the criteria 

for determining whether an irrigation solution was suppressive was solely based on the in vitro 

assays of Chapter 4. The majority of the experiments presented in this chapter investigated the 

potential for synergism between theoretical suppressiveness and suppressive supplements. In 

Chapter 3 potassium ions were found to be particularly effective at suppressing the motility of 

zoospores of Py.  aphanidermatum. However, when 10 mM IC was added to an irrigation 

solution that poorly suppressed zoospore motility the effect of the potassium supplement was 
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negligible, but the effect of adding the same supplement to an irrigation solution that was highly 

suppressive of zoospore motility was to further reduce zoospore motility. That is, there was 

significant interaction between the mechanism of theoretical suppressiveness and potassium-

mediated suppression of zoospore motility. It would appear that the poorly suppressive, irrigation 

solution had the ability to negate the ability of potassium to suppress zoospore motility. 

Fifty-nine percent of zoospores of Py. aphanidermatum remained motile in inoculated open 

irrigation solution harvested on the 30 th  of July (Table 4.6), whereas the average proportion of 

zoospores to remain motile in SDW in the same analysis was 47%. This poorly suppressive 

irrigation solution according to an analysis on the 29 0'  of July had a pH of 7.0, an electrical 

conductivity of 3.5 mfi' and the concentrations of calcium and potassium were 7.4 and 12.5 

mM, respectively (appendix 10). It therefore would be expected, based on previous results, that 

this irrigation solution would significantly suppress motility of zoospores when compared to 

SDW. Therefore, it has to be concluded that this irrigation solution, along with other solutions, 

has the ability to negate the ability of cations to suppress the motility of zoospores. However, 

this ability to negate cation-mediated zoospore suppression was not observed in the highly 

suppressive irrigation solution. Interaction between natural suppression and suppression 

mediated by an supplement was not observed in any of the other experiments. That is, when the 

supplement affected the suppressiveness of a poorly suppressive irrigation solution, a similar 

affect was observed with the highly suppressive irrigation solution. For example, ethanol 

suppressed zoospore release (pre- and post-cold shock) and sporangial density when added to 

either an irrigation solution that was poorly suppressive of sporangiogenesis or highly 

suppressive of sporangiogenesis. 

Increasing calcium concentration has been demonstrated to suppress zoospore release from pre-

formed sporangia of Py. aphanidermatum (see Figure 3.25). However, when 20 mM Ca2+  was 

supplemented to either a poorly suppressive irrigation solution or a highly suppressive irrigation 

solution the number of zoospores that were released was -30% greater than in the 

unsupplemented irrigation solutions, although these increases were not significant (P = 0.126). 

Therefore, it appears that both irrigation solutions had the ability to negate the ability of calcium 

to suppress zoospore release from pre-formed sporangia of Py. aphanidermatum. 
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A similar observation was found when 5 mM IC was supplemented to the inoculated open 

irrigation solution harvested on the 24th  of October. When MSS and the release solution was 

substituted with this irrigation solution the number of zoospores released was 105 zoospores.tl', 

but when this irrigation solution was supplemented with 5 mM IC the number of zoospores 

released was almost two and half times as many (253 zoospores.tl'). However, when 35 mM 

ethanol was supplemented to the irrigation solution instead of 5 mM IC the number of zoospores 

released was less than 10 Ll1. 

Therefore, in three separate experiments where cations were added to irrigation solutions the 

effect was contrary to what was expected from the results of experiments testing single factors. 

These observations do not undermine the suggestion to either supplement the fresh irrigation 

solution with cations or alter the potassium to calcium ratio, but show there is complexity in the 

interactions between zoospore biology, irrigation solutions and cationic supplements. However, 

when ethanol was added to an irrigation solution the result was as expected. 

Donaldson and Deacon (1993c) showed that L-aspartic acid and L-glycine at 25 MM induced 

100% of zoospores of Py. aphanidermatum to encyst. In oat tissue extracts, L-aspartic acid and 

L-glycine can be assumed to be present, along with other inducers of encystment, such as pectins 

(Hardham and Suzaki, 1986) and cations (Donaldson, 1992). Therefore, it would be assumed 

that oat tissue extracts should induce zoospore encystment. However, in full strength oat 'seed 

and root' extract 22 zoospores4tF' were found to be motile after four hours of incubation, 

whereas only 8 zoospores.tl were motile in SDW, although in the other two full-strength oat 

tissue extracts the number of zoospores enumerated was markedly less than in SDW (Table 

6.10). Therefore, it would appear that there are substances in oat tissues that not only enhance 

the motility of zoospores, but also counteract zoospore encystment that is mediated by certain 

amino acids, cations and pectins. 
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Chapter 8. 

Concluding discussion. 
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8.1. Discussion. 

.jf not a present remedy, at least a patient sufferance." t 

Several stages of infection-related biology of Py. aphanidermatum and Ph. parasitica have 

been assessed for their sensitivity to various potential control methods. 

When tested on individual stages of the infection sequence potassium was superior to 

calcium and magnesium at suppressing zoospore release and zoospore motility. However, 

suppression of mycelial growth and enhancement of cyst germination were relatively 

insensitive to potassium supplements. Overall, of the three cations (Ca 2 , Mg2  and IC), 

magnesium was the least effective at suppressing individual stages of the infection sequence. 

The suppression of zoospore motility by cations has previously been demonstrated 

(Donaldson, 1992). However, this project has demonstrated that this phenomenon was also 

true when the counter-ion was nitrate. Nitrate supplements are commercially more 

acceptable than chlorides. This project also demonstrated that when the counter-ion was 

nitrate the cation effect was markedly greater than with chloride. However, the explanation 

for this observation here and in other work (for example, Bryt et al., 1982; von Broembsen & 

Deacon, 1997) is unknown. 

When the same cationic supplements was made sequentially to each stage of the infection 

sequence the cumulative effect was significant. Again, potassium, of the three cations, was 

the most suppressive of the infection sequence. Although it has been demonstrated 'that 

calcium supplements markedly suppress infection by Ph. parasitica in small-scale trails (von 

Broembsen & Deacon, 1997), the results of this project suggest that potassium supplements 

would be more effective than calcium. However, this is yet to be demonstrated in small-scale 

plant trails. A second potential weakness in calcium supplements has also been highlighted 

in this project. That is, circa. 5 mM Ca2  is optimal for sporangiogenesis of both Py. 

aphanidennatum and Ph. parasitica when assessed by the epidemiologically relevant 

characteristic of the number of zoospores that are subsequently released from sporangia. 

Coincidentally, the approximate concentration of calcium in commercial NFT systems is 5 

mM. Therefore, the reduction of calcium concentration in NFT systems may also suppress 

infection by zoospore-releasing pythiaceous pathogens. 

From 'Much ado about nothing.' by William Shakespeare. 
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Finding that not only were in vitro potassium supplements superior to calcium at suppressing 

infection related biology of the two fungi, but also that reducing calcium concentration could 

also suppress infection, the effect of altering the potassium to calcium ratio was investigated. 

The results of this investigation found that the infection sequence was suppressed by 

increasing the ratio of potassium to calcium, while maintaining constant nitrate levels and 

electrical conductivity. The monetary cost of altering this ratio would be marginal. 

The cationic supplements to Mineral Salts Solutions appeared to modify the swimming 

behaviour of the zoospores that were subsequently liberated, suggesting that the environment 

for sporangiogenesis affects the biology of the subsequent zoospores. If this suggestion were 

confirmed then it would have significant implications for future research into the control of 

zoospore-producing pathogens in irrigation systems. 

The trial undertaken by HRI failed to demonstrate natural suppression in a semi-commercial 

irrigation system, which was the principal trial objective. Consequently the analyses 

presented in this thesis were unable to determine at which points of the infection sequence 

the agents of natural suppression might act. However, it was found that in treatments where 

disease was observed, the associated irrigation solutions promoted the production of 

sporangia in laboratory experiments; also, that the duration of zoospore motility was greater 

in some irrigation solutions than in distilled water, even though in the irrigation solutions 

known suppressers of motility would be found, for example, cations (Bryt et al., 1982; 

amino acids (Donaldson & Deacon, 1993c; lectins (Hardham & Suzaki, 1986; Longman & 

Callow, 1987) and phosphatidic acid (a phospholipid) (Zhang et al., 1992). Similarly, certain 

crude oat root extracts extended the period of zoospore motility compared to the SDW 

control. Therefore, it is concluded that although certain chemicals suppress zoospore 

motility, there are also compounds which antagonise this effect. Certain irrigation solutions 

were shown to antagonise the effect of cations on sporangiogenesis and zoospore release. 

It was discovered during this project that ethanol had a noticeable effect on sporangiogenesis 

of Ph. parasitica. Subsequent experiments found that zoospore release from pre-formed 

sporangia of Py. aphanidermatum was also highly sensitive to ethanol, but zoospore motility, 

germinability and cyst germination were relatively insensitive to ethanol supplements. 

Ethanol was able to antagonise the effect of 5 mM Ca 2+  on sporangiogenesis, yet the efficacy 

of ethanol was not compromised by irrigation solutions. The perceived sensitivity of the 
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Pythiaceae to ethanol has the potential for the basis of a novel control method in NFT 

systems. 

The saponin, 3-escin and the bacterial exopeptide gramicidin S lysed or killed motile, naked 

zoospores. Gramicidin S was also toxic to zoospore cysts, but the presence of a cyst wall 

markedly reduced the toxic effect of -escin. The toxicity of gramicidin S to zoospores or 

cysts was reduced in the presence of divalent cations (Ca 2, Mg 
 2+ or Sr), but not with 

monovalent cations (Na and K 4). The toxicity of 3-escin was reduced in the presence of 

Ca 21  or K (both series 4 cations), but not with Mg 2  or Na (both series 3 cations). The 

toxicity of f3-escin (but not of gramicidin S) on zoospores can be partially relieved by the 

addition of calcium five minutes after exposure to the toxin. When zoospore suspensions 

were supplemented with both -escin and gramicidin S the combined toxicity was greater 

than expected, suggesting that these toxins act synergistically. Although toxicity of f3-escin 

and gramicidin S in zoospores has been demonstrated, the potential for control agents in 

irrigation systems is not proven. 

An observation made throughout this thesis was the consistent difference between the 

biology of Py. aphanidermatum and Ph. parasitica. Although the former grows faster under 

laboratory conditions and liberates more zoospores, the latter is less sensitive to cationic 

supplements, natural toxins and suppressive irrigation solutions. These observations may be 

indicative of their different infection strategies. 
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8.2. Further work. 

I suggest that future work based on the findings of this project would be: 

• Small-scale trials to investigate the effectiveness of altering the potassium to calcium 

ratio (while maintaining constant nitrate levels) on the infection of ymca (Catharanthus 

roseus) seedlings by Ph. parasitica. The experimental protocol would be based on the 

one employed by von Broembsen & Deacon (1997). 

• In bench-top experiments, determine the sensitivity of tomato seedlings to 3-escin, 

gramicidin S and ethanol. Then only if the sensitivity to these natural toxins is markedly 

greater than for Py. aphanidermatum should small-scale trials be performed. 

• To determine whether ethanol does interfere with 1) the production of vesicles from pre-

formed sporangia of Py. aphanidermatum, 2) the differentiation of cytoplasm in vesicles 

into zoospores or 3) the release of zoospore from vesicles. 

• To establish whether the environment for sporangiogenesis affects the subsequent 

behaviour of zoospores. This could be ascertained by supplementing MSS with various 

treatments (for example, pharmacological agents that interfere with calcium, cations 

• amino acids, or toxins) and then using videomicroscopy record the swimming pattern 

(speed, amplitude and wavelength) of the released zoospores in SDW. In addition to 

swimming behaviour the chemotactic abilities of the zoospores should be compared to 

control populations of zoospores. The procedure for recording zoospore swimming 

behaviour is established (for example, Warburton, 1997). 

• It is clear from the results presented in this thesis that there are chemicals in irrigation 

solutions and oat extracts that increase zoospore motility (when compared to motility in 

SDW). The determination of these chemicals would require a large screening 

experiment. Because simple chemicals (cations, amino acids, monosaccharides and 

disaccharides) have been shown not to extend the motile period of zoospores the 

screening should perhaps start with stable, common, soluble peptides of microbial and 

plant origin. 
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Appendices. 

The results presented in these appendices refer to characteristics of irrigation solutions from 

the experiments at Horticultural Research International (Stockbridge House). The 

determination of values was performed at Stockbridge House by HRI staff. 
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Appendix 1. 	Number of propagules of Ph.' cryptogea in hydroponic solutions as determined by the 

membrane method. 

Solution l I,  July 

Date of harvesting hydroponic solution from large glasshouse. 

15th July 	30 	July 	9th September 246'  October Mean 

Fresh Hydroponic Solution 0.0 0.0 0.0 0.0 20.8 4.2 
(0.0) (0.0) (0.0) (0.0) (4.6) (0.9) 

Uninoculated Open 417.5 50.0 16.8 283.3 1187.5 391.0 
(20.4) (7.1) (4.1) (16.8) (34.5) (16.6) 

Uninoculated Closed 75.0 16.8. ' 	 41.8 341.8 91.7 113.4 
(8.7) (4.1) (6.5) (18.5) (9.6) (9.5) 

Inoculated Open 795.0 2.5 29.3 241.8 n.d. 267.2 
(28.2) (1.6) (5.4) (15.5) (12.7) 

Inoculated Closed 452.5 8.3 8.3 108.3 579.2 231.3 
(21.3) (2.9) (2.9) (10.4) (24.1) (12.3) 

Inoculated Closed (Pasteurised) n.d. n.d. n.d. n.d. 58.3 58.3 
(7.6) (7.6) 

Inoculated Closed (Filtered) n.d. n.d. n.d. 408.2 362.5 385.4 
(20.2) (19.6) (19.6) 

Mean 348.0 15.5 	' 19.2 230.6 383.3 207.3 
(15.7) (3.1) (3.8) (13.6) (16.6) . - 	 (10.9) 

Values in parentheses are square-root transformed. 
n.d. Not done. 
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Appendix 2. 	Number of propagules of Ph. ctyptogea in hydroponic solutions as determined by the dip- 

stick method. 

Date of harvesting hydroponic solution from large glasshouse. 

Solution 1St July 15"  July 30th July 9 th  September 	24th October Mean 

Fresh Hydroponic Solution 1.0 0.0 0.5 1.7 0.0 0.6 

Uninoculated Open 10.3 0.0 1.3 7.3 9.0 5.6 

Uninoculated Closed 4.7 0.0 0.7 6.0 62.7 14.8 

Inoculated Open 5.3 8.0 40.3 23.7 17.3 18.9 

Inoculated Closed 4.0 0.3 0.3 0.0 17.0 4.3 

Inoculated Closed (Pasteurised) n.d. n.d. n.d. 2.3 3.0 2.7 

Inoculated Closed (Filtered) n.d. n.d. n.d. 14.7 10.0 12.4 

Mean 5.1 1.7 8.6 8.0 17.0 8.7 

n.d. Not done. 
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Appendix 3. 	Incidence of root infection by Ph. cryptogea per 1 cm root in hydroponic solutions. 

Solution 1st July 

Date of harvesting hydroponic solution from large glasshouse. 

15"  July 	30th July 	9th  September 	24th October Mean 

Fresh Hydroponic Solution 0.0 0.0 0.0 0.0 0.5 0.1 

Uninoculated Open 0.0 0.6 2.1 2.8 2.9 1.7 

Uninoculated Closed 0.0 0.1 1.7 0.6 2.2 0.9 

Inoculated Open 1.9 0.2 1.2 1.3 0.8 1.1 

Inoculated Closed 0.7 0.6 2.2 2.4 2.2 1.6 

Inoculated Closed (Pasteurised) n.d. n.d. n.d. 0.0 2.3 1.2 

Inoculated Closed (Filtered) n.d. n.d. n.d. 2.3 1.8 2.1 

Mean 0.5 0.3 1.4 1.3 1.8 1.2 

n.d. Not done. 
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Appendix 4. 	Index of root development (0-100) in hydroponic solutions. 

Solution 1St July 

Date of harvesting hydroponic solution from large glasshouse. 

15"  July 	30th July 	9th September 	24th October Mean 

Fresh Hydroponic Solution 68.2 77.6 68.4 59.2 75.6 69.8 

Uninoculated Open 53.4 57.2 57.8 56.6 18.9 48.8 

Uninoculated Closed 79.2 72.2 49.0 58.8 32.2 58.3 

Inoculated Open 57.6 72.2 60.0 56.6 30.0 55.3 

Inoculated Closed 41.8 62.2 50.0 55.6 33.3 48.6 

Inoculated Closed (Pasteurised) n.d. n.d. n.d. 62.2 45.3 53.8 

Inoculated Closed (Filtered) n.d. n.d. n.d. 58.6 57.8 58.2 

Mean 60.0 68.3 57.0 58.2 41.9 56.1 

n.d. Not done. 
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Appendix 5. 	Index of root decolouration (0-100) in hydroponic solutions. 

Solution 1st July 

Date of harvesting hydroponic solution from large glasshouse. 

15th July 	30th July 	9th September 	240'  October Mean 

Fresh Hydroponic Solution 0.0 0.0 0.0 0.0 0.0 0.0 

Uninoculated Open 16.7 20.8 35.6 28.4 98.7 40.0 

Uninoculated Closed 10.0 7.8 42.2 31.2 73.3 32.9 

Inoculated Open 32.6 21.2 32.2 35.6 79.3 40.2 

Inoculated Closed 31.8 22.2 58.8 20.0 96.3 45.8 

Inoculated Closed (Pasteurised) n.d. n.d. n.d. 14.4 50.2 32.3 

Inoculated Closed (Filtered) n.d. n.d. n.d. 20.0 60.9 40.5 

Mean 18.2 14.4 33.8 21.4 65.5 33.1 

n.d. Not done. 
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Appendix 6. 	Lesion number per unit area of root in hydroponic solutions. 

1St July 

Date of harvesting 

15 th  July 

hydroponic solution from large glasshouse. 

30th July 	9th  September 	24th  October Mean 

0.0 0.0 0.0 	 0.0 0.0 0.0 

1.3 3.6 2.0 	 2.7 28.4 7.6 

0.6 0.2 3.0 	 3.1 12.4 3.9 

4.5 3.8 2.4 	 4.3 16.3 6.3 

3.5 2.7 4.2 	 0.9 27.9 7.8 

n.d. n.d. n.d. 	 1.5 9.5 5.5 

n.d. n.d. n.d. 	 1.3 7.7 4.5 

2.0 	 2.1 	 2.3 	 2.0 	 14.6 	 5.1 

Solution 

Fresh Hydroponic Solution 

Uninoculated Open 

Uninoculated Closed 

Inoculated Open 

Inoculated Closed 

Inoculated Closed (Pasteurised) 

Inoculated Closed (Filtered) 

Mean 

n.d. Not done. 
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Appendix 7. 	Agronomic factors for tomatoes grown in hydroponic solutions harvested on the 24th 

October. 

Solution Height Stem diameter Leaf Area Leaf Length Root weight 
(cm) (mm) (cm2) (mm) (g) 

Fresh Irrigation Solution 91.7 10.0 415.2 407.3 6.56 

Uninoculated Open 57.0 7.7 153.6 272.0 1.33 

Uninoculated Closed 61.9 8.0 206.5 291.0 2.52 

Inoculated Open 61.9 7.3 199.9 316.2 2.49 

Inoculated Closed 67.8 6.9 212.7 301.4 2.51 

Inoculated Closed (Pasteurised) 71.4 7.4 223.1 323.4 3.27 

Inoculated Closed (Filtered) 84.3 9.2 376.3 401.2 4.50 

Mean 	 70.9 	 8.1 	 255.3 	 330.4 	 3.31 
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Appendix 8. 	Analysis of inorganic chemical composition of the uninoculated open irrigation solution 

throughout the trial. 

Element 3 rd 17 15 29" 12th 26th 16" 23r( 

June June July July July August August September September 

Ammonium as N (jpm) 0.5 0.8 0.4 0.1 0.1 0.3 0.3 0.3 0.2 
Boron (ppm) 0.3 0.15 0.3 0.19 0.34 0.73 0.34 0.34 0.36 
Calcium (ppm) 288 274 196 290 333 305 209 219 265 
Carbonate (ppm) 93 32 47 24 32 109 41 46 42 
Chloride (ppm) 57 43 38 37 50 80 38 51 48 
Conductivity(mS) 3243 2833 2590 2112 3501 4049 3066 3010 3598 
Copper (ppm) 0.05 0.03 0.05 0.05 0.11 0.26 0.11 0.22 0.24 
Iron (ppm) 2.01 3 1.52 2.1 3.43 7.45 5.5 4.36 5.66 
Magnesium (ppm) 89 77 82 69 93 149 88 93 89 
Manganese (ppm) 0.07 0.01 0.05 0.04 0.12 0.02 0.06 0.05 0.03 
Molybdenum (ppm) 0 0 0 0 0 0 0.04 0 0 
Nitrate asN(ppm) 311 296 245 301 452 412 368 341 412 
pH 6.3 6.6 6.7 7 7.1 7.8 7.2 7.3 7.1 
Phosphorus (ppm) 104 32 46 11 15 18 19 10 9 
Potassuim(ppm) 679 437 384 351 485 804 578 516 587 
Sodium (ppm) 38 34 43 34 43 64 37 39 45 
Sulphate (ppm) 83 44 64 45 44 140 55 27 64 
Zinc (ppm) 0.45 0.27 0.26 0.24 0.34 0.84 0.48 0.43 0.45 
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Appendix 9. 	Analysis of inorganic chemical composition of uninoculated closed the irrigation solution 

throughout the trial. 

Element 	 3 rd 17 	1st 	15th 	29th 	12th 	26th 	16th 	23'' 
June 	June 	July 	July 	July 	August 	August 	September September 

Ammonium as N (ppm) 0.5 0.2 0.4 0.2 0.1 0.3 0.3 0.2 0.2 

Boron (ppm) 0.39 0.12 0.33 0.39 0.31 0.58 0.35 0.32 0.29 

Calcium (ppm) 209 246 189 314 403 641 348 337 359 
Carbonate (ppm) 112 27 48 39 29 65 43 78 70 
Chloride (ppm) 77 52 65 84 80 132 72 73 67 
Conductivity(mS) 2840 2833 2680 3018 3043 4287 3388 3349 3466 
Copper(ppm) 0.17 0.05 0.11 0.14 0.1 0.18 0.12 0.16 0.17 
Iron (ppm) 1.79 2.7 1.97 2.32 2.14 5.85 3.32 2.79 3.46 
Magnesium (ppm) 98 70 107 155 132 205 124 141 136 
Manganese (ppm) 0.06 0.03 0.04 0.01 0.09 0.12 0.06 0.04 0.02 
Molybdenum (ppm) 0 0 0 0 0 0 0.05 0 0 
Nitrate asN(ppm) 206 311 199 266 364 481 404 388 382 
pH 6.4 6.4 6.2 6.5 6.9 7.6 7.4 7.5 7.5 
Phosphorus (ppm) 142 41 74 48 17 3 6 5 3 
Potassuim(ppm) 643 465 326 280 182 240 264 210 166 
Sodium (ppm) 53 35 74 106 81 132 88 103 103 
Sulphate (ppm) 109 48 105 131 87 146 87 45 89 
Zinc (ppm) 0.75 0.34 1.03 0.9 0.8 1.3 0.7 0.84 0.87 
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Appendix 10. Analysis of inorganic chemical composition of the inoculated open irrigation solution 

throughout the trial. 

Element 	 3 r 	17" 	1st 	 15 th 	29" 2 th 26 th 	16 th 	23rd  

June 	June 	July 	July 	July 	August 	August 	September September 

Ammonium as N (ppm) 0.8 0.1 0.2 0.2 0.3 0.3 0.2 0.1 0.2 

Boron (ppm) 0.31 0.22 0.28 0.36 0.41 0.51 0.33 0.34 0.27 

Calcium (ppm) 234 260 170 328 295 288 189 217 209 

Carbonate (ppm) 80 38 42 59 35 37 39 40 37 

Chloride (ppm) 57 138 32 24 44 45 45 48 47 

Conductivity(mS) 2925 3187 2412 3363 3501 3572 2864 2946 3247 

Copper (ppm) 0.06 0.14 0.05 0.02 0.14 0.28 0.11 0.2 0.21 

Iron (ppm) 1.79 2.47 1.3 2.15 2.97 6.06 4.33 4.42 3.89 

Magnesium (ppm) 86 97 78 126 81 117 72 75 69 

Manganese (ppm) 0.11 0.12 0.07 0.03 0.25 0.31 0.15 0.16 0.18 

Molybdenum (ppm) 0 0 0 0 0 0 0.04 0 0 

Nitrate asN(ppm) 262 282 221 339 466 433 326 320 359 
pH 6.4 6.3 7 7.5 7 6.9 7.4 7.1 7 

Phosphorus (ppm) 87 70 30 7 23 26 16 17 15 

Potassuim (ppm) 590 570 344 435 487 680 543 493 527 

Sodium (ppm) 35 50 36 65 37 49 33 34 38 

Sulphate (ppm) 87 64 65 97 61 87 57 59 59 
Zinc (ppm) 0.34 0.75 0.16 0.27 0.5 1.05 0.46 0.43 0.49 
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Appendix 11. 	Analysis of inorganic chemical composition of the inoculated closed irrigation solution 

throughout the trial. 

Element 3 rd 17" Vt 
15th 29th 12th 26th 16th 23rd  

June June July July July August August September September 

Ammonium as N (ppm) 0.7 0.4 0.4 0.4 0.2 0.2 0.3 0.2 0.1 

Boron (ppm) 0.34 0.27 0.3 0.45 0.33 0.3 0.29 0.23 0.18 

Calcium (ppm) 271 262 231 445 403 405 350 301 327 

Carbonate (ppm) 85 40 27 29 29 21 22 22 26 

Chlonde(ppm) 88 106 52 68 52 61 60 52 56 
Conductivity(mS) 3031 3276 2590 3449 2939 2977 2904 2501 2764 

Copper (ppm) 0.14 0.14 0.11 0.14 0.11 0.11 0.1 0.16 0.15 

Iron (ppm) 1.98 1.99 1.92 3.26. 2.1 3.12 3.2 2.99 3.29 

Magnesium (ppm) 92 118 86 158 113 113 102 80 93 

Manganese (ppm) 0.3 0.12 0.21 0.05 0.14 0.17 0.16 0.27 0.22 

Molybdenum (ppm) 0 0 0 0 0 0 0.01 0 0 

Nitrate asN(ppm) 248 281 222 321 296 323 351 282 300 

pH 6.2 5.9 5.9 5.8 6.4 6.7 6.8 6.3 6.3 

Phosphorus (ppm) 151 123 88 107 39 19 14 20 15 

Potassuim(ppm) 636 711 332 274 157 160 230 220 230 

Sodium (ppm) 49 75 58 100 73 80 70 50 54 

Sulphate (ppm) 99 79 69 125 86 88 69 57 56 
Zinc (ppm) 0.75 1.02 0.82 1.44 0.79 0.72 0.7 0.64 0.6 
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Appendix 12. Analysis of inorganic chemical composition of the inoculated closed (pasteurised) irrigation 

solution throughout the trial. 

Element 3 rd 17th Pt  15 th  29th  12 th  26th  16'  23' 
June June July July July August August September September 

Ammonium as N (ppm) 0.7 0.6 0.7 0.5 0.4 0.5 0.6 0.4 0.6 

Boron (ppm) 0.49 0.25 0.33 0.59 0.39 0.64 0.5 0.35 0.34 

Calcium (ppm) 261 224 208 440 404 618 395 385 339 

Carbonate (ppm) 82 63 43 45 38 48 40 37 40 

Chloride (ppm) 105 114 62 84 86 129 111 85 91 

Conductivity(mS) 3497 3099 2680 3535 3064 3612 3429 2671 3423 

Copper (ppm) 0.3 0.22 0.16 0.34 0.27 0.54 0.35 0.37 0.37 

Iron (ppm) 1.08 1.8 2.13 4.05 3.09 8.52 6.12 4.74 5.12 

Magnesium (ppm) 122 115 104 226 141 218 172 143 134 

Manganese (ppm) 0.08 0.14 0.08 0.03 0.13 0.2 0.11 0.13 0.56 

Molybdenum (ppm) 0 0 0 0 0 0 0 0 0 

Nitrate asN(ppm) 262 177 189 276 294 444 335 240 322 

pH 6.1 6.3 6 5.6 5.8 5.7 5.8 5.8 5.7 
Phosphorus (ppm) 200 113 119 205 137 156 114 104 122 

Potassuim(ppm) 788 583 356 342 152 344 176 43 264 

Sodium (ppm) 66 80 75 150 98 158 141 107 115 

Sulphate (ppm) 136 81 82 192 121 178 138 102 113 
Zinc (ppm) 0.72 0.89 0.82 1.57 1.1 1.97 1.68 1.27 1.3 
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Appendix 13. Analysis of inorganic chemical composition of the inoculated closed (filtered) irrigation 

solution throughout the trial. 

Element 	 3 rd 17th 	 1st 	 15th 	29th 	12th 	26th 	16th 	23k' 
June 	June 	July 	July 	July 	August 	August 	September September 

Ammonium as N (ppm) 0.6 0.3 0.5 0.4 0.2 0.2 0.4 0.2 0.2 

Boron (ppm) 0.35 0.32 0.35 0.44 0.4 0.36 0.33 0.29 0.16 

Calcium (ppm) 233 241 254 393 406 514 476 447 366 

Carbonate (ppm) 40 55 31 29 33 49 40 27 37 

Chloride (ppm) 81 155 111 81 102 130 107 82 104 

Conductivity(mS) 3052 3718 3037 3406 3501 3612 2622 3073 3510 

Copper (ppm) 0.17 0.09 0.09 0.15 0.07 0.08 0.04 0.05 0.03 

Iron (ppm) 1.68 2 1.52 1.6 1.83 3.56 2.86 1.89 2.95 
Magnesium (ppm) 101 149 121 205 119 181 180 154 140 

Manganese (ppm) 0.19 0.03 0.04 0.05 0.05 0.12 0.03 0.2 0.32 

Molybdenum (ppm) 0 0 0 0 0 0 0.03 0 0 
Nitrate asN(ppm) 245 213 221 250 410 370 382 342 436 

pH 5.8 6.2 6 5.8 6.4 7.3 7.2 7 7 

Phosphorus (ppm) 144 109 99 110 40 10 8 7 8 
Potassuim(ppm) 607 672 380 233 58 102 35 55 282 

Sodium (ppm) 56 110 98 143 138 169 156 121 147 

Sulphate (ppm) 108 159 92 187 152 161 144 113 103 

Zinc (ppm) 0.64 0.96 0.73 1.08 0.94 1.04 0.75 0.64 0.61 
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