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ABSTRACT 

We propose a new class of hidden Markov model (HMM) 
called asynchronous-transition HMM (AT-HMM). Opposed 
to conventional HMMs where hidden state transition occurs 
simultaneously to all features, the new class of HMM allows 
state transitions asynchronized between individual features 
to better model asynchronous timings of acoustic feature 
changes. In this paper, we focus on a particular class of 
AT-HMM with sequential constraints based on a novel con- 
cept of “state tying along time”. To maximize the advan- 
tage of the new model, we also introduce feature-wise state 
tying technique. Speaker-dependent speech recognition ex- 
periments demonstrat.ed error reduction rates more than 
30% and 50% in phoneme and isolated word recognitions, 
respectively, compared with conventional HMMs. 

1. INTRODUCTION 

Conventional Hidden Markov Models (HMMs) for speech 
recognition implicitly assume that individual acoustic fea- 
ture parameters change their statistical properties simulta- 
neously as the result of treating the feature parameters as a 
vector sequence. This assumption seems over-simplified for 
modeling the temporal behavior of acoustic features. For 
example, cepstrum and its time-derivative (delta-cepstrum) 
can not synchronize with each other by definition, since a 
stationary value of time-derivative means a constant change 
in the cepstrum value. More in general, there is no guar- 
antee that all feature parameters change at the same time; 
distinct features may have different timings of state transi- 
tion. Moreover, they do not need to have the same number 
of hidden states. Such temporal behavior of multiple fea- 
tures have to be modeled by HMM with asynchronous state 
transition timings. 

Recently, we proposed asynchronous-transition HMM 
(AT-HMM) to better model the asynchrony between fea- 
tures and discussed general classes of AT-HMMs 111. The 
present paper focuses on a particular class of AT-HMM with 
sequential constraints in hidden state transition. The main 
idea here is “state tying along time” to implement the above 
idea still utilizing the conventional HMM structures and al- 
gorithms. This is yet another scheme of parameter tying to 
be added to existing various state tying techniques between 
allophones [3], between state output probabilities [2 ,  31, be- 
tween mixture components [4], and between distribution 
parameters 151. 

This paper consists of two major parts. In the first part, 
we introduce sequential AT-HMMs where state transition 
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Figure 1: Asynchronous trajectories of 1st and 8th MFCCs 
in word /aoi/. 

timings are asynchronous but constrained by a transition 
sequence. The state transition structures (topologies) rep- 
resenting phone context dependency are common through- 
out all features here. In the second part, in contrast, the 
structure is independently optimized for each of features 
to  maximize the advantage of AT-HMM. This featurewise 
state tying technique involves a new scheme of successive 
state splitting (SSS) algorithm. In both parts, AT-HMM is 
evaluated through phoneme and isolated word recognition 
experiments. 

2. ASYNCHRONOUS-TRANSITION HMM 

I t  is often observed that the dynamic patterns of individ- 
ual feature sequences (vector components of acoustic fea- 
ture vectors) have different timings of changing their values. 
Theoretically, cepstrum and its time-derivative have differ- 
ent timings. Fig. 1 contrasts the 1st and 8th MFCCs (mel- 
scaled cepstrum coefficients) in a word utterance, where 
these distinct features change their values in different tim- 
ings. Depending on their statistical properties, they may 
require different numbers of hidden states for describing 
their trajectories along time. This fact may have increased 
the required number of hidden states in conventional HMMs 
for modeling speech signals. To represent such asynchrony 
between features, we introduced Asynchronous-Transition 
HMM (AT-HMM) [l] as a novel framework of HMM. 

Fig. 2-(a) conceptually illustrates how the conventional 
HMM models a trajectory in a two-dimensional feature 
space. This two-dimensional trajectory consists of two one- 
dimensional trajectories shown at. the middle of the figure 
where the two distinct features, CI and Cz, have differ- 
ent timings of changing their values. In representing these 
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Figure 2: Conventional and AT- HMMs representing a 2- 
dimensional trajectory. 

trajectories, for simplicity, by an HMM with a single mix- 
ture diagonal-covariance Gaussian distribution per state, we 
can point out some modeling redundancy between the four 
hidden states because feature Cl does not change through 
states 1 to  2 and through 3 to 4, and feature Cz does not 
change through states 2 to  3. This model contains an ex- 
cessive number of model parameters and thus requires ex- 
cessive amount of training data to train it. 

To reduce such redundancy and to better model the 
trajectory, we can tie states 1 and 2, and 3 and 4 for fea- 
ture C1, and tie states 2 and 3 for feature C2 as shown 
in Fig. 2-(b). Consequently, the model contains a smaller 
number of independent parameters in state output proba- 
bilities. Once the state-tying structure is established along 
time for each feature, it can be trained by the model training 
procedure with multiple-mixture Gaussian output probabil- 
ities and even with full-covariance Gaussian components. 
This means that AT-HMM is a general concept applicable 
to most types of HMMs. 

In this implementation of AT-HMM, transition timings 
are asynchronized though sequentially constrained in a cer- 
tain order. This implementation of AT-HMM has two sig- 
nificant advantages. First, the sequential constraint can re- 
duce excess freedom in a simple asynchronous scheme with- 
out any constraints. Second, since the structure is substan- 
tially same as conventional HMMs except for sequential ty- 
ing, the AT-HMM is easily adopted in most HMM-based 
speech recognition systems without any major modifica- 
tion. Apart from asynchrony of feature parameters, this 
novel idea of hidden state tying along the time axis en- 
riches available choices in acoustic modeling together with 

Calculate expected 
c2 I .  state transition timings 

t .  

. .  . .  . .  
c 3  . .  

time 

Cluster state 
+ v  
I I  1 transition timings 

Retrain 
the new AT-HMM 

Figure 3: Algorithm for obtaining an AT-HMM temporally 
tied structure. 

existing tying techniques. 

2.1. Algor i thm for Designing AT-HMMs 

There are more than one possible algorithm for obtaining 
the AT-HMM tying structure for phones with time resolu- 
tion of N points, though they are approximations to  the 
strictly optimal structure. Some of them are as follows: 

Method 1: Train an N-state, left-to-right, diagonal-covari- 
ance single Gaussian HMM. Cluster adjacent hidden 
state outputs for individual features to  find appropri- 
ate tying. 

Method 2: Train an left-to-right, scalar-output HMM with 
appropriate number of stat,es for each of all features. 
Cluster the expected transition timings into N-point 
time resolution. 

The latter method is simple as described below and depicted 
in Fig. 3: 
Step 

Step 

Step 

1: Given a conventional phone HMM, re-train the 
model for each of the individual features, i.e., re- 
train 1-dimensional (scalar-output) phone HMM for 
each feature (vector component of acoustic feature 
sequence) to  obtain state transition probabilities for 
individual features. 

2: Calculate expected transition timings for all fea- 
tures and states (utilizing that E[state duration] = 
l/(state transition probability)), cluster them into a 
given resolution N of timings to obtain the temporal 
tying structure for each phone model. 
3: Re-train the new AT-HMM to update the model 
parameters under the obtained structure. 

Note that the number of hidden states, N ,  provides the 
time resolution in representing the asynchronous structure. 
There is a trade-off: the larger number allows the more 
precise modeling of sequential structure, while it constrains 
the minimum phone duration. 

2.2. Phone Recogni t ion  Exper imen t s  

To compare the performances of AT-HMM and conven- 
tional HMMs, speaker-dependent phone recognition experi- 
ments were conducted. For training HMMs and AT-HMMs, 
odd-numbered words out of 5240 common Japanese words 

1006 



81 I 1 st component 2nd component Dth component 

pq **** 
Initial model 

0 Conventional HMM 
El AT-HMM 

L 

2 
& 4  
C 0 

c 
a 2  

Q) 

.- .- - 
8 
a 

0 
345678 345678 345678 345678 

200 Distnbutions 400 Distnbutions 600 Distnbutions 800 Distnbutions 

Number of states per model 

Figure 4: Phone recognition results of AT-HMM compared 
with conventional HMM (by ML-SSS) 

Table 1: Isolated word recognition results by AT-HMM 
compared with conventional HMM (generated by ML-SSS) 

Method I #distributions I %errors I %reduction 
- HMM I 200 I 8.1 I 

AT-HMM 1 200 1 4.3 I 46.9 
- HMM I 400 I 6.2 I I AT-HMM 1 400 I 3.8 1 38.7 I 

and 516 phonetically balanced words uttered by four (2 
male f 2 female) speakers and sampled at 12kHz (ATR's 
set-A) were used. Acoustic features consisted of 12 MFCCs, 
12 AMFCCs, log-power and Alog-power obtained with a 
frame length of 25ms and period of 5ms. The same train- 
'ing algorithm called Maximum-Likelihood Successive State 
Splitting (ML-SSS) [6] was applied to generate context- 
dependent phone HMMs and AT-HMMs. As the result, 
both models have the same state transition topologies rep- 
resenting phonetical context dependencies. 

Even-numbered word utterances in the 5240-word set 
were used for evaluation. Phone recognition was done for 
hand-segmented and labeled data. Fig. 4 shows the results 
of the speaker-dependent phoneme recognition task. AT- 
HMM with five states per model reduced error rate by more 
than 20%. As already discussed, the number of hidden 
states is slightly related to the performance; the AT-HMM 
with five states per model gave a little higher recognition 
rates than ones with other numbers of states from 3 to 8. 

I t  should be noted, in the overall comparison between 
HMM and AT-HMM in this figure, that AT-HMMs with 
sequential constraints achieved higher performances with 
lower model complexities (fewer model parameters) than 
conventional HMMs. 

2.3. Isolated Word Recognition Experiments 

Table 1 shows the experimental results of speaker-dependent 
subword-based isolated word recognition task, where 2620- 
word lexicon was used to  recognize the same size of speech 
data. In the experiment, the number of states for each 
AT-HMM was fixed to five. As is seen in the table, the 
AT-HMM successfully reduced the recognition error rates 
of the conventional HMM by approximately 40%. 

JI 
1st comoonent 2nd comoonent Dth comoonent 

Select a state to split 

%lit in the temporal domain 

contextual domain 
I 

I 

Retrain the model 

1 st component 2nd Component 0th component 

Figure 5: FW-SSS algorithm for designing the AT-HMM 
topology with optimized hidden-state allocation over fea- 
tures and allophones 

3. FEATURE-WISE ALLOPHONE 
CLUSTERING 

In the previous section, as for allophone (context-dependent 
phone) clusters, all feature share the same state-clustered 
structure (allophone network topology). The optimal allo- 
phone clusters, however, may differ among individual fea- 
tures. In other words, optimal allocation of hidden states 
may depend on allophones and features. To obtain feature- 
dependent allophone clusters, we propose a feature-wise 
state tying technique called Feature-Wise Successive State 
Splitting (FW-SSS). FW-SSS is a scalar version of ML- 
SSS [6] for each feature: the state splitting operation for 
each runs almost in parallel except that the splitting state 
is chosen among all states and features. The algorithm is 
shown in Fig. 5 and outlined as follows: 

Step 1: Train a single state HMM for each feature with all 
phone samples, i.e., the output probability for each 
feature is represented by a single Gaussian with a 
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Table 2: Isolated word recognition result by AT-HMM gen- 
erated by FW-SSS 

AT-HMM 
HMM 

AT-HMM 

Method I #distributions I %errors I %reductio11 
- H h l M  I m o  I 8.1 I 

200 3.2 60.5 
400 6.2 
400 3.0 51.6 

- 

mean and a variance. 

Step 2:  Among all states, find the state that  will earn the 
largest likelihood gain when split into two states with 
single Gaussian dist.ributions. State splitting gains 
are examined both in contextual and temporal do- 
mains. 

Step 3: Re-train all states affected by the split using the 

Step 4: Repeat steps 2 and 3 until the number of all states 

Step 5:  Apply the algorithm described in 2.1 to obtain 

corresponding data subsets. 

reaches a preset number. 

AT- HM Ms. 

Through the FW-SSS algorithm, a hidden Markov net- 
work is obtained with sub-optimized combination of num- 
bers of hidden states for features reflecting the dynamic 
properties of distinct feat.ures. As the result, individual fea- 
tures have different allophone clusters and network topolo- 
gies. The number of allocated hidden states to individual 
features differ from each other. 

3.1. Phone Recognition Exper imen t s  

For evaluation of this type of AT-HMM generated by FW- 
SSS algorithm, speaker-dependent phoneme recognition was 
performed using t.he same data as used in the previous sec- 
tion. 

Fig. 6 shows the performance of AT-HMM for four dif- 
ferent model complexities. In comparison with conventional 
HMM, more than 30% of error reduction was obtained. AT- 
HMM generated from FW-SSS include asynchrony between 
features and feature-wise allophone clusters generated by 
the FW-SSS. 

3.2. Isolated Word Recognition Exper imen t s  

AT-HMM generated by FW-SSS algorithm was evaluated 
in subword-based isolated word speech recognition. Phone 
models, same as the models for phoneme recognition, were 
evaluated using 2620-word speech data and a 2620-word 
lexicon. 

Table 2 shows the experimental results of isolated word 
recognition. The acoustic model generated by the FW- 
SSS algorithm lowered the error rates by more than 50% 
compared with conventional HMM. AT-HMM generated by 
FW-SSS gave higher recognition rate than AT-HMM with- 
out being considered state sharing structure for each fea- 
tures. 

4. C O N C L U S I O N  

Focusing on asynchrony between acoustic features for HMM- 
based speech recognition, we introduced novel concepts.such 
as asynchronous transition HMM (AT-HMM), tying along 
time, and FW-SSS algorithm for the optimal context-depend- 
ent structure of AT-HMM. With these ideas combined to- 
gether, the proposed model is a highly sophisticated and 
quite general model containing feature-wise state tying along 
time and across allophones. This class of a new HMM can 
be regarded as a yet further generalization to  existing HMM 
classes with tied structures such as tied-mixture, allophone 
clust,ers, and parameter tying. 

In experimental performance evaluation of phoneme and 
isolated word recognition, AT-HMMs gave more than 20% 
and 40% lower error rates compared with conventional HMMs. 
Furthermore, the FW-SSS algorithm gave an AT-HMM re- 
ducing more than 30% and 50% errors. 

Future works will include evaluation of mixture-density 
speaker-independent AT-HMMs and experimental evalua- 
tion in continuous speech recognition. 
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