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ABSTRACT

Linear and nonlinear steady-state, baroclinic, primitive
equation, numerical models of forced stationary waves in
the atmosphere are developed. Newtonian cooling, Rayleigh
friction and biharmonic horizontal diffusion are included in
both models. The vertical as well as horizdntal structure
is described by truncated series of analytical orthogonal
functions. The steady-state, convergent, nonlinear solution
is obtained by using Newton—Raphson iteration, and the
transform method is used to evalu.ate the nonlinear terms
in the governing eqﬁations.

The Eliassen-Palm (EP) cross-section and the
three-dimensional wave activity flux, ;Nhich was derived by
Plumb (1985) for linear, quasi-geostrophic stationary waves
on a zonal flow, are used as diagnostics for the vertical
and horizontal propagation of the waves, the interaction
between the mean flow and the waves, and the significance
of the nonlinearity.

Comparison of nonlinear model solutions witﬁ
corresponding linear model solutions, and the diagnostic
analyses show that the nonlinear effects are significant
and of primary importance in simulation of the stationary
waves in the real atmosphere. The model’s nonlinear
response torthe Northern Hemispheric topography and the
actual diabatic heating is, in general, consistent with the
observed climatologicalv stationary waves in the northern

winter and makes a substantial improvement over the



deficiencies of the linear solution. It is also shown that
nonlinear effects are important for investigating wave
propagation and the interaction between the 2zonal mean
flow and the stationary waves.

Resu'lts of the numerical‘experiments suggest that the
Tibetan Plateau plays the most important role ih the
maintenance of orographically forced stationary waves in
the northern winter, while the orographic effect of the
Rocky mountains or the Greenland Plateau seems to be of
secondary importance.

The stationary waves induced by the actual thermal
forcing in winter have a comparable amplitude and more
baroclinic nature than those produced 'by the Northern
Hemispheric orographic forcing.

The mid-latitude orographic forcing, especia‘lly that by
the Tibetan Plateau, makes a substantial contribution to
the maintenance of the 'cyclonic circulation over the
eastern tropical and sub—trépical Pacific in the upper
troposphere. On the other hand, the longitudinal variation
of diabatic heating in the +tropics has a significant
influence on the wintertime stationary waves in middle ana

high latitudes.
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CHAPTER 1

INTRODUCTION

From monthly or seasonally averaged weather maps it is
clear that iﬁ addition to the transient eddies in the
atmosphere, there are planetary scale waves which rémain
stationary with respect to the earth. 'Thes.e statiénary
planetary waves are responsible for the climatic variation
around a latitude circle. For example, Reiter (1963)
des'f:ribed a great deal of evidence which shows the
meridional position of the jet stream is related to the
stormy cyclogenetic belts near the ground. He has also
suggested that the gquasi-stationary troughs in the lee of
the two large mountain ranges in the Northern Hemisphere
(namely Tibetan Plateau and Rocky Mountains) have a Qery
obvivous effect upon the arrangement of climatic 2zones.
Particularly, ‘an anomalous pattern of climate around the
_globe is usually associated with an abnormal variation of
the stationary waves. Such relationships have been found
by a number of meteorologists, e.é., Namias (1966) related
the drought in the northeaster;n United States during
1962-65 to the contemporary uppef-level wind _‘patterns and
the implied ‘storm tracks and air masses. Some weather
forecasters have noticed that ‘ the variation of the
stationary waves could not only be used to explain the
climatic change over a large region, they have also some
predictive value in operational .long—range weather
forécasting (see, e.g.,, Ratcliffe 1968, 1974). |
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The diagnoses of local, time averaged budgets of
momentum and kinetic energ'y by Lau' (1978, 1979a) showed
that stationary waves play a dominant-role in the balances,
whereas the effects of the transient eddies were seen to
be of secondary impo?rtance. The study clearly suggested
that a better understanding of' the stationary wave
structure and its maintenance is of primary concern in our
effort to provide a comprehensive description of the
general circulation. |

The existence of stationary disturbances in the general
circulation has been attributed primarily to two categories
of forcing: a) the geographical distribution of +topographic
variations of the Earth’s surface, and b) the differential
mean diabatic heating at the boundaries and within the
atmosphere, which mainly reéults from the contrast
between the surface thermal properti;as of the continents
and oceans. The problem of ‘explaining the atmospheric
stationary waves is complicated by a number of inteiaction
processes, which are little understood so far, such as the
interactions between various scales of eddies., mid-latitude
and tropical regions, the surface and the atmosphere and so
on.

An ability faithfully to reproduce the essential features
of stationary disturbances in numerical models and to
interpret the results clearly, in terms of basic dynamical
principles, would demonstrate the validity of the dynamical
principles and parameterizations used in numerical weather
prediction and general circulation models, é.nd ‘help improve
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these models. Therefore +the problem of explaining the
atmospheric stationary disturbances has been one of the
most 1important Subjects of general circulation research in
" the period since the pioneering work of Charney and

Eliassen (1949).
1.1 Historical Review

Cham"ley and Eliassen (1949) used a barotropic model on a
'bieta-?p‘lane, linearized about a uniform westeriy zonal wind
flowing over surface topography and obtained a 500 mb
stationary geopotential field along 45°N which is quite
consistent with the wintertime observatiop. It was shown
that the large-scale quasi-stationary distu:bances of the
middle-latitude westerlies are produced by the forced
ascent of the westefly current over the continental land
masses. Friction was found to have an important modifying
effect on the motion.

Bolin (1950) extended the analysis given by Charney and
Eliassen (1949) by considering the north—south extent of
the mountain ranges and width of the 2zonal curr.ent. He
concluded that the only mountains which mé.y be of real
importance in generating planetary w.aves in the westerlies
are the Rocky Moun’tains and the mountains in the interior
of Asia. He also found the splitting tendency of the basic
current caused by a circular mountain. This is consistent
with the fact revealed in a simultaneous paper by Yeh
(1950) that the Asian wintertime westerly jet is split into
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fwo.branches due to the Tibetan Plate.au.

Sooh after, the influence of large-scale asymmetries of
non-adiabatic heating and cooling on .mid-tropospheric flow
was calculated to be o©of the same magnitude as the
influence of broad mountain areas by Smagc;rinsky (1953).

In the following years more complicated models were
used to investigate the separate or combined éffec,ts of
the.rmal'and orographic forcing. Kasahara (1966) used the
time-dependent . shallow-water equations in 4a beté—plane
chann'e.l and showed fhét westerly .flows' past an obstacle,
which is placed at the bottom in the middle of the channel,
produced a train of .planetary waves on the lee side. On
the other hand, easterly flows vliere little disturbed by the
6bstacle. Derome and Wiin-Nielsen (1971) used a beta-plane
quasi-geostrophic model to study the effect of the two
forcings. Their calculation suggested that the stationary
wé.ves forced by the topography are in a,bout.th.e same
position as those produced by the diabatic forcing and that
the former have somewhat larger amplitudes +than the
latter. Egger (1976a, b) used a beta-plane, two-lavyer,
primitive equation model for the same purpose. He found
that. thé ridge on the windward side of the Himalayas and
the strong trough over eastern Asia 'at 400 mb are’
orographically induced, whereas the heat sources play an
almost dominant role over North America and determine the
position of the ridge over the Atlantic.

The results for barotrdpic or Dbaroclinic flow in a
beta-plane channel are substantially modified when
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spherical geometry and mean flow variationr with laij.itude
are taken into account. The shallow-water equations on
the.sphere were .used to study the steady state, linear
Rossby wave pattern on mean zonal flow induced by Various
simple mountains by Grose and Hoskins (1979). It was foun_d
that there was a tendency to a split wavetrain
downstream of a ‘mountain range. Subsequently, a
linearized, steady-state, five-layer, baroclinic model was
used by Hoskins and Karoly (1981) and the results showed
that in the ,ubper troposphere the thermal and orographic
sources dgenerate wavetrains which are very similar to
those given by barotropic models. Huang ahd Gambo (1981,
1982) used a quasi-ggostrophic, steady state model with a
high vertical resolution (34 vertical levels) in the
stratosphere ‘and found +that the topography at high
latitude, such; as the Greenland Plateau, plays an important
role in the stationary waves responding to forcing by
hemispherical topography.

Simmons (1982) used a high resolution, steady, linear,
primitive equation model to examine both the extratropical
and tropical response to an isolaﬁed region‘ of steady
thermal forcing in the tropics. The ‘results was largely in
agreement with those obtc-.tined from much lower resolution
models by a number of authors (Egger 197'7; Opsteegh and
Van den dool 1980; Hoskins and Karoly 1981; Webster 1981).
These results suggested that an isolated tropical region of
heating may excite a wavetrain with a substa:ntial
poleward direction of propagation.
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As to the nonlinear response of the model atmosphere to
topography and heat sources, Ashe (1979) using a steady,
two layer linear balance equétion model, and Frederikson
and Sawford (1981) using nonlinear and linear s‘pherical
barotropic models, found that the nonlinear effect is very
important for the heating solution as well as the
topography solution. The stationar'y flow field simulated by
the nonlinear mbdel is in Dbetter agree‘ment with the
observed fig—:ld than that ofv the linear model. It was shown
vby Wu (1584) vthatvthere exists a cfitical mountain he‘ight,
which 1is only about one-,kilometre: only if the mountain
height is less than this critical valﬁe, can the deflection
effect of the mountain be neglected and the response be
regarded as approximately linear. Therefore most of the
atmospheric response to large-scale mountains must be
nonlinear. | |

General circulation models have been used to try to
isolate the role of mountains (Manabe and Terpstra, 1974;
Kasahara et al, 1973) and anomalous thermal sources
(Rowntree, 1972; Chervin et al.,, 1980). By using the
multi-level general circulati'on model at GFDL, Manabe and
Terpstra (1974) found that the stationary waves computed
in the ‘mountain’® case were closer to those observed than
the counﬁerpart in the ‘no-mountain’ case, particularly in
the upper troposphere. The thermal forcing effect was
more important in the lower troposphere. Kasahara et al.
(1973) used the NCAR atmospheric general circulation model
and found that there was enhanced verti;al transport of
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wave energy, particularly for zonal wavenumber one, in thé
stratosphere when mountains were included. They found
that the orographical forcing was dominant in determining
the stratospheric circulation, but the thermal forcing was
more important in determining the tropospheric circulation.
It has been pointed out (see, Karoly, 1980; Held, 1983) that
the differer;c_e between the mountain and no-mountain
circulations cannot be interpreted as simply due to the
mechanical diversion ‘of flow by the mountains, since the
insertion of the mountains has some effect on the
distribution of the diabatic heating as well. In a complex
generél' circulation model there are so many feedback
processes which link together all model variables tl;lat it is
not possible to isolate the various factors affecting the
structure of stationary disturbances.

For the extratropical and tropical response +to an
isolated tropical thermal forcing, a time-dependent,
nonlinéar primitivé equation model has been . utilized by
Grose et al. (1984). The response can be characterized by
two distinct components: a gquasi-stationary disturbance
which extends eastward and poleward away from the source
regiori, and.“a growing baroclinic wave propégating.zonally
at mid-latitudes.

The structure of the stationary waves haé also been
investigated in many observational sfudies.' The traditional
way of studying the general circulation was based on zonal
averages. One excellent example of many such studies is
the compilation of Oort and Rasmusson (1971) which included
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extensive. statistics of stationary waves. Van Loon et al.
(1973) described. the structure of the stationary waves in
terms of the amplitudes and phases of thev first three
zonal harmonic components. During the last decade the
observatfonal studies have emph::-.lsized the longitudinal
inhomogeneity of the flow (see, for example, Blackmon 1976;
Blackmon et al. 1977; Lau 1978,° 1979b; Lau and Wallace
1979). Some essential characteristics of the
three~dimensional structure of the stationary waves in the
extra~-tropics of both'.hemispheres during both winter and
summer seasons has been summarized in-a review by Wallace

(1983).

1.2 Present Study

The aim of this study is to develop a .more precise
\rf\emisfberica.l ‘
steady-state, nonlinear,\model, in which primitive equations

based on a three-dimensional spectral representation will

be adopted, to investigate the atmospheric response to

topographic and thermal‘ forcings. A linearized model is

‘also used which corresponds to the nonlinear one in all

aspects except that the basic equations are linearized by
the perturbation method. The solutions of the linear model
can provide a reasonable initial guess for the nonlinear
model, which is then solved by Newton-Raphson iteration.
Compared to previous steady-state nonlinea-r models (e.g.,
Ashe, 1979; Frederikson and Sawford, 1981) the- present
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nonlinear model has the following characteristics:

a) The primitive -equations with a spherical geometry
are used as the governing model equations, which
are more precise for describing the hemispherical
or global circulation;

b) A three-dimensional spectral representation is
employed and ‘therefore +the resolution in all
three directions can be = changed easily by
altering the associated truncation wavenumbers
to fit the computer's éapacity. .Because the
nonlinear model is quite expensive in computing
resources, the present study used an expansion
series truncated at indices 3, 11 and 4 in the
zonal, meridional and vertical directions
respectively. . Although this is still a low
resolution, - the basic features of. full
three—dimensidnal propagation of wave activity
should be retained;

c) The nonlinear and linear model differ only through
linearization, a direct comparison for nonlinear
and linear responses of the model atmosphere is
therefore possible. |

In Chapters 2 and 3 the nonlinear and linear models are
described in detail. In both models the goverﬁing equations
are tﬂe primitive equations in which Ra}_l_leigh friction, the
effect of Newtonian <cooling and scale selective V4
smoothing are included. The vertical as well as the
horizontal structure of the dependent variables is described
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by a truncated series of orthogonal functions, i.e., the

vertical structure is represented in terms of normalized
’ on the hemiephere

Legendre polynomials and,‘the horizontal structure of each

vertical mode Is represented iﬁ terms of . spherical

‘harmonics.

The wave activity flux constitutes a useful diagnostié of
~the three-dimensional propagation of stationary wave
activity for both the linear and nonlinear model solutions.
This . 'flux‘ appears in a locally. aéplicable
(non-zonally~averaged) consérvation relation which was
derived by Plumb (1985) for gquasi-geostrophic stationary‘
waves on a zonal flow, a generalization of the
Eliassen-Palm relation. In additioh, the Eliassen-Palm (EP)
cross-section is also used in this study to diagnose both
the propagation of wave activity ‘and the interaction
between waves and the mean flow. The basic definitions
and calculation procedures relevant to | the
three-dimensional wave activity and the EP cross-section
are outlined, and the experimental design is described in
Chapter 4.

In chapter 5, éome preliminary experiments are done to
examine both the _linear and nonlinear response of the
model - atmosphere to forcing by idealized large-scale
topography or diabatic heating. ‘These ‘exXxperiments may
provide an elementary understanding of the model
atmosphere behaviourr. Attention is particularly paid to the
differences between nonlinear a.nd ‘linear responses. The
sensitivity of the model solution to different dissipation
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conditions is reported for a case where the only forcing is
provided by a large scale mountain in mid-latitudes. .

The'forcing vby the Northern Hemispheric topography and
the actual diabatic heating in January 1979 is subsequently
discussed in Chapter 6 for the linear -'solution, and in
Chapter 7 for ,the nonlinear solution.- Before .the combined
effect of fhese two categories of forcing is considered, the
response to the pure orographic orx the'rmal forcing is
qalculated separaﬁely. In order to investigaté the relative
:.importance of the tl{ree large scaie mountains of the
Northern 'Hemisphere (i.e., the Tibetan Plateau, Rocky
mountains and the Greenland Plateau) in the maintenance of
orographically forced stationary' waves in the winterx
season, some numerical experiments are performed for the
idealized cases where the topography either in North
America or 1in Greenland 1is removed. The comparison
between the linear solution, the nonlinear solution and theA
observed climatological stationary> waves shows that the
nonlinear effect is significant and the nonlinear model gives
‘a more realistic result than the linear one.

Finally, some conclusions and possible extensions to the

-present study are put forward in Chapter 8.
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CHAPTER 2

NONLINEAR PRIMITIVE EQUATION MODEL
2.1 Introduction

Since the pioneering wo_rk‘ 0of Charney and Eliassen (1949),
Bolin (1950) and Smagorinsky (1953),‘ there has beeﬁ a steady
increase in the sophistication and accuraéy of numerical
models.used to investigate the atmospherié response to
orographic and thermal forcing. This is not only due to the
progressive reduction of the approximation used in deriving
the model equations and reinfinement of the model
resolution, but also due to improvement of the numerical
techniqueé ﬁsed to discretize the continuous edquations ‘of
the meoedels. Until 1972 almost all sophisticaﬁed numerical
models were based on finite-difference techniques, which -
represent the dependent variable fields in space and time
on a finite difference grid. An alternative method, which
represents the variable fields, in part, by truncated series
of analytic spectral functions and is commonly referred to
as the spectral method, has now been used in many
operatipnal weather forecasting models and general
circulation studies. This method offers a number of
significant advantages in global and hemispheric scale
simulation and prediction as discﬁssed in detail by élatzman
(1960), Elsaesser (1966), Orszag (1970, 1974), Bourke et al.

(1977) and Jarraud and Simmons (1983).

18



An important breakthrough in the development of t.he
spectral method was the adaptation of the transform
”method in numerical spectral models, which was formulated
independently by Eliasen et al. (1970) and Oxszag (1970).
The idea o©f the transform method is to transfdrm all
variable fields to an associated grid of points where all
nonlinear terms can then be computed as in a classical grid
point model, and then transform back to spectral space.
This method has c\onside:rably_reducéd the requirements for
stérage and computation. compared with the interaction
coefficient method, and has made it possible to include
physical processes in a straightforward way. This method
‘is used to evaluate the nonlinear terms in the present
model.

In this ‘chapter a steady-state, primitive equation,
spectral model is formulated. The model egquations are
specified in the next section. The spectral representation
of basic variable fields and associated derivatives, and the
evaluation of vertical velocity and geopotential are
described in sections 2.3 and 2.4 respectively. Finally,
section 2.'5 gives a description of the method. used to

obtain the steady solution of this nonlinear model.
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2.2 Model Equations

The vertical coordinate in this model is defined by

P . .
c =2 — -1 (2.1)
P

where P is pressure at any level, and Ps is the surﬁace

- pressure. It may be noted that
{ c =1 at P=P_
g =-1 at P=0 : (2.2)
Following Machenhauer and Daley (1972), the primitive

equations in this system may be written

du 1 du 1 du tan ¢ s U
— = -4 —————— — - ¥V — — + Uuv - o —
ot a cos ¢ OA a oy a do
1 o¢ RT 1 dPs
+fv - —m— — - — + F
a cos ¢ oA Ps a cos ¢ 9OA A
(2.3)
v 1 ov 1 ov -5, tan ¢ e I3V
—_— = -y —— — - vV - — - u - c —
ot a cos ¢ OA a d¢ a da
1 04 RT 1 oPs
-fu - - — = — — —— + F
a dy Ps a Ay ¢
(2.4)
3T 1 3T 18T o [,BT R T’}
—_—= -y ——— - - — -0 _— — —
ot a cos ¢ OA a dyp o] Cp t1+0
[ ]
RT [ 1 ou 1 ov tan ¢ 3o ] Q
— —_— et - — - — 4 - + —
Cp a cos ¢ OA a v a 3o Cp
(2.5)
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1 3dPs 1 ] 1{ 1 du 1 dv tan o
—_— = - - _— - — - v
Ps ot 2 -1 a cos ¢ oA a op a
u 1 0Ps v 1 OPs
+ — - + — = do
Ps a cos ¢p oA Ps a duw
(2.6)
. Ja [ 1 du 1 v tan ¢ u 1 OPs
a = - —_— 4 - — - ¥ + —
. 1 a cos ¢ oA a g a Ps a cos ¢ OA
v 1 0Ps 1-0 9Ps
+ — - dao + (2.7)
" Ps a o¢ Ps ot
d¢
(1+g) — = - RT . (2.8)
: Ao '
. with the following notations:
® latitude
A longitude
a radius of the earth
t time
u zonal component of velocity
v meridional component of velocity
. .
a =do/dt, individual time derivative of o
T temperature (in °K)
$ geopotential
F)\ zonal component of friction forxrce per unit
' mass
Fl.p meridional component of friction force perx

unit mass

Q diabatic heating per unit. mass per unit time
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f =2Q8iny, the coriclis parameter, Q being
angular velocity of the earthv
R the gas constant for dry air

specific heat at constant pressure for dry air

9!

The equations (2.3) and (2.4) are the momentum equations
and (2.5) is the thermodynamic equation,>the equations (2.6)
and (2.7) are referred +to as "ten@ency egquation" and
“vertical velocity equation" respectively, which are obtained
by vertical integration of the continuity equation using the

boundary condition

3=0 at o=1 and ao=-1. (2.9)
Finally the equation (2.8) is the hydrostatic equation, the

" solution of which should satisfy the boundary condition

g=1 s (2.10)
where ¢s is the surface geopotential.
For later convenience, the following variables are

introduced:

V =v cos ¢y
J
q = 1ln Ps (2.11)
a . '
S = . a
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The egs. (2.3);—(2.8) are suitable for prediction but now
we wish to find a set’ of equations with which to
investigate the steady response of atmosphere to large
scale topography and stationary diabatic heating_. We
assume in this connection that all partial derivatives with
respect to time in these equations equal zéro, and obtain
the following steady-state primitive equations, which will

be used as the basic equations of the nonlinear model:

.
- (- o™ 4+ voM)y 4 sul9) 4 20apv
2 .
1 - u
S AEAL N R+ o ) u=o0
(2.12)
2 2
1 (u? +v?)
— (- v M) pyv )y 4 gyla) ET—___T_
- _ - p
- 20apu + ¢ M) 4 RTq(“) -a (R +a vy v=0
(2.13)
,
— (= o) o) o () - vy s (@)

. |
+5 (T 4 k(1+am+ Eg - a (K +v vy T =0
p

(2.14)

,
J (o) -y g g ) g = o

(2.15)
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K]
1 ¢ o™ o v g - yg™M Yy ao
S = - ] ] » 1
(1-p2) (1-02)
(2.16)
o¢ .
(14g) — = - RT (2.17)
d0
Here the following notations are used:
B = Sin ¢
R
K = —
C
p
(n) aa
4 A = — (2.18)
AA
dA
all) = 2oy =
ou
oA
A(O) = (6%-1) =
L toXe;

where A stands for any of the variables. Additionally, we
include Rayleigh friction and Newtonian cooling with
spatially—.varying decay ratés Rf and Kt. Thus in (2.14)
aQ/Cp denotes the diabatic heating rate (in K 5—1)
v excepting Newtonian cooling. Scalé—oelective smoothing may
also be included by diffusion terms -qV[' and vVl'. The
specification of coefficients Rf, Kt, a and v is described in
Section 4.1. For the =zonally averaged components, this
dissipation is apuplied only to- the deviation from the initi_al
state. These 2zonally averaged components of the initial
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state are simply those representing} the basic state for the
linear model.
| should be able in Ibrtacc‘F/erto‘

The stationary solution of eqgs. (2.12)-(2.17) -ean” provide
an adequate representation for the atmospheric stationary
waves. However, it must be no'ticed that there 1is a
diff.érehce between the stationary solution and the time‘
mean of a time varying solution. For a steady-state model,
the latter case may be considered in this way: Instead of
assuming dU/dt, aV/at, a8T/ot and dg/dt equal zero, we may
take a time average for a long per;iod (e.g., one month or
longer) firstly and then let the partial derivatives of the
time mean variables with respect to time‘equal zero. In
such a formulation some fofcing terms which indicate the
effect of mean convergence of heat and momentum
transport by transient waves' will appear in eds.

(2.12)-(2.14). ° This will not be considered further in this

study.

2.3 Spectral Regrésentation of the Dependent

Variables and Associated Derivatives

2.3.1 Normalized Orthogonal Functions

Each of the dependent variable fields in +this model is
r‘epresent'ed by a truncated series in terms of orthogonal
functions. As a basis for the vertical representation, the
normalized Legendre polynomials with o as argumént are
chosen. These are defined by
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o (o) (2k+1)1 /2 gk o
a = g
k 2 k! dg®

k

-1) (2.19)

The representation of horizontal structure of each vertical

mode is based on the surface spherical harmonics

¥ nw) =R () et | (2.20)

where the normalized associated Legendre function Pm (w)

is defined by

(n—[ml)!]1/z(1_u2)lml/zdn+1m|

- 2 n
Pm n(;_1) = [(2n+1) P dpn*]mt(p 1)

(ntimi)!
(2.21)
and illustrated in Fig.2.1 for m=0, 1, 2 and 3. Here |m]| is

the planetary wavenumber and n-|m| is the number of

zexros between the poles.

With the definition above, the functions are normalized

as well as orthogonal, namely

1 [ 1 : 1 for k=1

— P (o) P (o) do =

2 -1 Kk 1 0 for k#l

1 2w - . 1 for m=m’

— '™ (el MTan = { ) (2.22)
2w J o 0 for m#m

1 [ 1 1 for m=m”° and n=n’
= P () P . . (u) du = ,

2 J- ™. n m N 0 otherwise

. « * . .
where (e!™ represents the complex conjugate of e'™ .

In bractice, the Pm r‘(u) can be calculated using the

following properties:

P (p) =0 when n<m,

m,n

P () =P () (2.23)

-m,n m,n

together with the recursion relationships:
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P (0) = (2m+3)'7% up (u) (2.24)

m,m+1 m,m

2m+3 v/2

P () = [ (1-p%) P () (2.25)
m+1,m+1 2m+2 . m,m
m,n+1. m.n+1(“) =“Pm.n(p) —Dm,n Pm.n—1(p)
(2.26)
where
1/2
2 2
D _jn -m
MmN 4n" -1

The Legendre polynomials Pk (5) are simply a subset of the
Pm’k(o), therefore similar formulae can be used for their
calculation. |

Another recurrence formula given by Belousov (1962) has
the advantage of being mathematically stable when m and n
ihcrease, and is prefe.rable for high resolution spectral

models.

2.3.2 Spectral representation of the dependent variables

The associated Legendre polynomials have the property

P (-p) = (-1 P () (2.27)
m,n m,n
This property shows that n-m must be even for a
hemispherical symmetric field or odd for an antisymmetric
field. Hence in our hemisphere model, using a rhomboidal

truncation, the basic dependent variables are represented

approximately by the following truncated series
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L M fm +2+1 : N
U(AN,p,0) = L L R Pk(o)e“" P (W)
k=0 m=-M ji=|m} AL v ]
(2.28)
. L M LRER imA
V(AN,pu,a0) = L L Li2}) Vk n ,Pk(o)e P ()
k=0 m=-M j= |mjet P d '3 .
(2.29)
& M |m|+3—1 Cm A
T(A,u,0) = L L Lty T, P (0)e"TP (u)
k=0 m=-M j=|m| r®ad mo
(2.30)
M |m{+3-1 .
q(a,p) = T £e2) q e'" P (u) (2.31)
m=-M j=|-m] med "

where J hgs been chosen to be én odd integer. The "(2)"
attached to the summation signs indicates that the
summation should bé t;aken only for each second value of
the index, that is in (2.28), (2.30) and (2.31) for even values
of n-{m|, in (2.29) for odd values of n-|m}.

In view of the orthogonal property of spherical
harmonics and Legendre polynomials, the expansion
coefficients on the right hand sides of (2.28)-(2.31) are easy
to evaluate if the spatial distribution of the relevant
variables is known. For example, the coefficient Uk’m'j is.

the orthogonal projection of U(Azupe) on the -sub-spectral

space generated by 1?k (o)e“‘)\Pm J,(|.1). In other words,

»

30



1 1 [ 1 2w -
= — J J U(A,H,0)P (ag)e 1m)\P (p) dadudo
k,m,j 8“' 0 k m.d

(2.32)

The expressions for V and q, § are analogous

knmrj' Tktm)j
to that for Uk'

s m,§

Each of these series may be split up as shown below for
U, in which the notation for the different expansion
coefficients will be used in the following text without

further explanation.

L
U(A,p,0) = L U (Au) P (a)
. k= k k

o

M ;
1 u w = I U (u) et (2.33)

m |+
8] () = (2
m = m

| K. j U P (u)

k,m,j m,J

J+1
)
|

As shown by Eliasen et al. (1970), this representation of
" the velocity field is iden£ical with a velocity field
represented in terms of streamfunction Y and velocity
potential x provided that so called "truncation relations"
are employed. In order to derive these relations, let us
consider the velocity field given by the following truncated

series of ¥ and yx:

[ M Im|+3
Y = L L2y hd (o) Y (A, W)
m=-M j=|m|+1 ) m.J
) (2.34)
M im|+3-1
x = L t2) X, (o) ¥ (A, i)
m=-M j= ml (e m, ]
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Substituting these series into the relations

( 1
U = '(X(MH’(“))
a .
. ' (2.35)
] .
v = _W()\)_X(p))
a
L

we obtain finally

( : M jm|+3+1
u= t L2y U (o) Y (A, )
m-M j=‘m| m, ) m, ]
4 ) (2.36)
M {m|+3 :
Vv = 1L L2y V.  (a)y Y _(Au)
m-M j=|m|+1 m.J may
L -

where
F Ly 1) D i j ﬂ
Um.,]‘ ;L(J ) m, m.j-1+ im Xm.j— (3+2) Dm,j+1 'm.j+1‘
<
10 . : | | -
\_vm.i_ 25(1-3) Dm.j Xm.j—1+ im me,j+ (j+2) Dm.j+1 Xm.j+1‘
(2.37)
and
172
.2 2
D .
LR 43° -1

For each zonal wave number m, relations (2.37) forms a
system of (J+2) equations, in which the (J+2) coefficients of
U‘and V are determined by (J+1) coefficients of Y and x.
We therefore have a Vrelation befvveen the U and V
coefficients, which can be obtained by elimination of the V¥
and yx coefficients. In .the case of mz#1, the coefficients
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may be expressed by the other U and V

~

m,m+J+1

coefficients, i.e,

]
= L2y (-C . §) T + 1iC v )
m,m+J+1 j=1 m, j-1 m,m+j-1 m, j m, m+j
(2.38)
where
J
c = T K
m, j o m, i
i=j
K = -
m, o m,m+1
(m+1)D e
K o= - LIRS for i>0
"t m-K (m+i+1)D ,
m,i-1 " m,m+i
1/2
2 2
b ) n -m
mon o lan® -1

In the special case m=0, relation (2.38) becomes

: 1 1-1 i /2 ,
o3 (23+3) 3= | o
(2.39)
Since the spectral coefficient Xg o is an integration

constant, which is usually set to be zero, the number of ¥
and_x coefficients which determine the (J+2) coefficients of
U and V are reduced to J. Therefore an additional relation

may be derived by elimination, that ‘is

! 1-1 ' 1/2
v . = = NN E) Lt2y (23+1) v
e (23+3) i=e el

(2.40)
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The relations (2.38), (2.39) and (2.40) are referred to as

“truncation relations".

2.3.3 Evaluation of Spatial Partial Derivatives

In the spectral model the dJdependent variables are
represented by a sum of functions that have a prescribed
spatial structure. Therefore the spatial partial derivatives

of the dependent variables can be easily expressed in the

spectral form, for example, as indicated below for U:

L M LRERES . ] ,
u'M - ¢ g Li2) im U P (a) " ()
k=0 m=-M j=|m| P . med
(2.41)
: L M jm|+3+1 .
ot = ¢ ¢ Li2) u, P, (a) LA D
k‘=0 n=-M j:‘ml ,m--J m, ]}
(2.42)
L M |m|+J+1 .
U(U) - L T . Ti2) [_']‘< Hk(d) elm)\ P (lJ)
k=0 m=-M j='ml (LU m, g,
(2.43)
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S, de n(H)
Hm n(u) = (p -1)———
' du
= n Dm.n+1 Pm,n+1(p) - (n+1) Dm.n Pm.n-1(u)
(2.44)
dP (o)
Hk(o) = (02-1) x
do
= kD e Pt - Gy Do R (e)
(2.45%)
172
[2 2
D S L (2.46)
m.n 4n" -1 ~ '

Since spherical harmonics Ym . are eigenfunctions of the
equation
VY +bY = O (2.47)

where V2 is the two-dimensional Laplacian operator on the

sphere, i.e.,

SR { ! —9; 0 2 [(1 2)8'] } (2.48)
T a? 1-u° AA du " Ay .

and the eligenvalues are given by

N n(n+1)

= ——— : ' 0 (2.49)
o

the diffusion +term in (2.12) can be evaluated by the

following éxpression:

. a L M fm | +3+1 ) m A
av U= — I L £(2) sREGESDRRIN ,Pk(a)e‘m P (p)
a4 k=0 m=-M j=|m| P '
(2.50)
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2.4 Vertical Integration of Continuity and Hydrostatic Equation

2.4.1 Evaluation of Vertical Velocity

The remaining quantities to be calculated in terms of
the spectral coefficients of U, V, T and g are vertical
velocity S and geopotential ¢ as well as their partial
derivatives. Evaluation of $§ and ¢ involves the vertical
integration of the continuity and hydrostatic equations
’ré;s.pectively. S is determined from eq. (2.16). Substituting
the vertical expansions of U ana V in (2.16), integrating the

finite series term by term and using eq. (2.15) we obtain

1 L (A) v(p) . tA) v R K -
ST OTTE L C Y T T T A ) Ko
(2.51)
where
1 -[a :
K (0) = 5 P (o) da (2.52)
k a“-1 J1 k

Kk (g) are found to be polynomials in o of degree k-1. The

formula for evaluating S(G) may be derived from (2.51)
directly, that is
S (o) 1 L tA) v(u) u tA) () .
TR e oV e - Ve ) G, (o)
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where

dK (o)
G, (o) = (a°-1) ——0
da
. 20 o
= Pk(o) - Pk(o). do (2.54)
o -1 1

is a polynomial in o of degree k. The lower index in (2.53)

is 2 because (31 (o0)=0.

2.4.2 Evaluation of Geopotential

The geopotential field ¢ is determined £from the
.temperature field by integrating the hydrostatic equation

(2.17) with the lower boundary condition (2.10). Thus

.o T
¢ = ¢ - R do (2.55)
: s 1 1+o

Substituting +the vertical expansion of T in (2.55) and

integrating term by term we have

L ' ,
¢ =¢ - R [ T I (o) ' (2.56)
s k=0 k k
where
o Pk(c) :
Ik(o) = do : (2.57)
1 1+a

Ik(o) is not a polynomial in o, but may be calculated
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approximately by numerical integration for each vertical
level o, (cka_tO). The Gauss-Legendre quadrature described in
section 2.6.3 is used to calculate Ik(ok).

A temperature correction procedure suggested by
Machenhauer and Daley (1972) leads to another scheme of
eva_lua.ting geopotential and insures there are no spurious
energy sources introduced during time intégration. That

correction procedure 1is not necessary 1in the present

steady-state model where no time integration is performed.
2.5 Method of Solution

2.5.1 General Description

Since vertical velocity and geopotential fields can be
diagnosed explicitl_y from U,‘ V and q fields with use of
(2.16) and (2.17) as described in section 2.4, we may consider
that the equations (2.12), (2.13), (2.14) and (2.15) comprise a
complete system of four equations and four‘ unknowns, U, V,
T and q. | |

Let the left hand side of (2.12), (2.13), (2.14) and (2.15) be
f1 (A u0), fz()\,p,o), f3()\,|.1,0), and f4(>\;p) respectively. These
‘functions include a number of nonlinear terms. When each
field is represented by finite series, a nonlinear term
involves multiplication of two series, which is very
time-consuming if it 1is «calculated by the interaction
coefficient method. The <transform method is far superior
to the interaction chfficient method for handling the
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nonlinear-terms if there are very many components in the
system. With this method, we transform firstly the
representation ©of each field from spectral form to a
certain spatial grid of points, then the two fields are
multiplied at each point to form a nonlinear term. Finally
these functions are calculated by adding all individual
terms together at grid points. Then they must be
transférmeci baék to spectral space. This is done by making

an orthogonal projection of f1, f £. and fl' on the sub

2! 3
spectral space denerated by Pl(c)eim )‘P .. h(“) with respect
m ¥ *

to various combinations of index value of 1, m" and n,

namely
(1) 1 1 12w -im A
Fl.m',n = 30 J_1J,_1J0 fI(A,p,c)Pl(o)e Pm",n(“')d)\d“do
(I =1,2,3)
(2.58)
(4) 1 1 (2w —im A '
Fm on A4y J-1 Jﬂ fl'()\,p).e P ,n(“) dr du
(2.59)
The projections ‘x?1 non ancl"x?m are functions of unknown
spectral “coefficients U S,V ., T ~.,and @ . The
. k,m,j k,m,j k,m,j m, j

problem raised in this nonlinear model is to seek a set of
spectral coefficients for U, V, T and q, which satisfies the

following equations

(1)
F . = 0 (I=1,2,3)

l,m ,n

(2.60)

-

If we choose the projection indices 1, m" and n in
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correspondence with the variable indices X, m and j a
complete system may be comprised.

The method for evaluating the integrals‘ in (2.58) and
(2.59) will be described in the next section. The structﬁre-
‘of +he computational grid will be discusséd in section 2.5.3.

The steédy—state solution of +the nonlinear equation
system‘ (2.60) for a prescribed forcing function (topography,
diabatic heating or both) is obtained in terms of an
iteration procedure, which is described in section 2.5.4. The
Jaﬁuary mean statistics calculated from the FGGE IIIb
" (ECMWTF) analysis, and the linear model’s solution
corresponding to the same forcing are used as an initial
guess for the basic state and the disturbance portion

respectively.

2.5.2 Numerical. Integration

The triple integral (2.58) may be split up into three

single integrals, i.e.

im A g (2.61)

. 2m -
gl(ulo;m ) = > JO £, (Ap,0) e
h (o;m’ -1 ) p a
Lloim yn) = > 1oy gl(u.o.m ) m",n(“) M (2.62)
g 1 1 . 2 6
T h, (o;m",n) P (o) do (2.63)

The integral (2.61) can be calculated very efficiently with
use of the fast Fourier transform (FFT) method, which was

developed by Cooley and Tukey (1965). The number of
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operations required for the FFT method applied over N
points is of order NlogzN, while for the direct method, it
is of order N2. The FFT method is much faster than the
direct method, especially for large wvalues of N. Of course,
fhis method can also be used to calculate the summation
for m in (2.28)-(2.31) in order‘to transform the spectral
coefficients into .grid point values. |

The Gauss-Legendre formula has been used to calculate

the integrals in (2.57), (2.58), (2.47) and (2.52). this formula

may be written

1 N
J f(x) dx = L w f(x ) (2.64)
-1 = 1 .

where the abscissas X, ‘s are sample points, which are the
zero points of the Legendre polynomial PN (x). The weighting

coefficients w_  can be found by

2(1—x? Y{2N-1)
w o= - - (2.65)

i 2
(NP, (x))

In order to find the sample points X Newton iteration is
used to solve the nonlinear equation

Px)=20 (2.06)

N i :

In this iteration procedure, if the (k)th estimate of X, is

given by xi(k) then the next estimate xi(k”) is obtained
by
(k)
(x. )
xfk+1) = xfk) N T (2.67)
1 1
. (k)
P N(xi )
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{

where the derivative P'N (x.l k)) may be calculated by ﬁsing

the recurrence formula

N(P (x)-xP (x) ) :
P’ (k) = Nag F Ea— (2.68)
N 1-x

(a)

The initial guess X, has been taken as

{a) ) w(i-0.5) w )
X = sin [ N 5 ] (2.69)

In real calculation only half of the points are required to
be found in this way due to symmetry. If the sample
points in the meridional direction are “j’ (}=1,2,...,N), then
¢j=arc$in(uj) where uj’s are called'Gaussian latitudes. In.
the vertical direction the sample points o~ are called
Gaussian levels.

For evaluating the integrals in '(2.52) and (2.57) a
substitution of independent variable can be made in order

to transform the integral intervals into a standard one.

For example, (2.52) can be transformed into

K (g) = ——o J ' [°+1 il t} at (2.70)
1'% T 26+ -1 1 2 2 '

Applying the Gauss-Legendre gquadrature formula (2.64) to

this integral, for each Gaussian level o, Wwe have

n
K (o) = ——— [ w P (x) S (2.71)
2(c. +1) i=1 !
k
where
g +1 g -1
x = S 4k ¢ (2.72)
1 2 2 1
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and ti are the zeros of the Legendre polynomial PN ('t), that
is,

PN (ti) = Q.
2.5.3 Computational Grid ) _ .

The physical space grid points are the intersections of

N1 equally spaced meridians where )\=>\i, the N2 Gaussian
latitude circles where u=uj, and the N3 Gaussian -levels
where o=g, . The total number of grid points is determined
by the product of N, N, and N, each of which should be
determined 50 that the _Fourier transform and .
Gauss-Legendre dquadrature formula become exact for the
integrals involved in the computation éf the nonlinear
terms in order to avoid aliasing. The following two
criferia

-coretusterr are useful to determine the minimum values of

N N and N3: a) The Gauss-Legendre gquadrature formula

172
(2.64) is exact for all polynomials with degree smaller than

or equal to 2N-1; and b) The trapezoidal quadrature formula

1 2 1 2
L J T f(x)dx = —~ 1} f[li] (2.73)
0 N i=1 N '

is exact for any function which is a truncated Fourier

series with minimum .wavenumber smaller than 61: equal to

N-1. As explained by Eliasen et al. (1970), Machenhauer and

Rasmussen (1972), and 'Machenhauer and 'Daley’ (1972), for all
(a)

nonlinear terms, except those which include S and S, the

grid point numbers N1, N_ and N3 should satisfy

2
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N > 3M + 1

3.
4 N b 5J+M+1 , ' (2.74)

N ? 3L+1
2 2

3
‘where M, J end L denote truncation 'indices as represented
in (2.28)-(2.31).

Much larger values of N1 and N2 must be' used for those

(o)

terms which include S and S since it is seen from (2.51)

(o)

and (2.53) that § and S are quadratic in variables which

vary in the horizontal directions. For these terms N1 and

N2 should satisfy

- N > 4M + 1

(2.75)

N

3
5 2(M+J) +§'

W

It should be noticed that the terms which require the
largest values of N1 and N2 determine the minimum values
which must be used for all the terms. It is, however,
possible to reduce the minimum values to those given by
(2.74) if S and S(o) are truncated before they are used in
the computation of the nonlinear terms in (2.12)—(2.14>).
Different very low resolutions have been used during
testing of the model program, finally the truncation indices
are increased and fixed with M=3, J=11 and L=4 to fit the
computational resource available._ This is intended to
represent the vertical' and horizontal propagation of the
ultralong stationary planetary waves which have been
generally considered to be forced by topography and
land-sea heating contrasts. Although 1t is still- a low
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resolution model, the experimentalresults show that it has
the ability to simulate the essential features of £full
three~dimensional propagation of the stationary planetary
wave activity. Corresponding to these truncation indices a
fixed computational grid of points is used to calculate the
nohline_ar térms, in which there are 10 and 11 points in the
longitudinal and latitudinal direction respectively on a
hemisphere, and 7 levels in the vertical direction. The
vertical levels " used in the Gauss-Legendre quadrature
fofmula are given in Table‘ 2.1, wﬁere Pk is pressure at k
level, which is calculated by assuming surface pressure

equal to 1000 mb and gives a rough idea only.

Table 2.1: Vertical Levels

k a, | ‘E’k (mb)
1 -0.9491079 25.45
2 -0.7415312 ~ 129.23
3 -0.4058452 297.08
4 0.0000000 500.00
5 0.4058452 702.92
6 0.7415312 870.77
7 0.9491079 9‘74.55

2.5.4 Newton-Raphson Iteration

Newton-Raphson iteration, the steepest-descent method
and a variable metric method for minimization described by
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Fletcher and Powell (1963) have been coded and used to
solve the nonlinear equation system (2.60). It was found
that the Newton-Raphson procedure is the most efficient
one for this particular problem. The convergence of
va‘riable metric méthod is also quite rapid, but it is much
n}ore complex than the Newton-Raphson iteratié:n. Therefore
only the Newton-Raphson method is déscribed here. More
details can be found in standard mathematics texts, see,
e.g., Gill et al. (1981).

We consider a system ‘of N equations for N unknowns.
For the sake of notation, we shall discuss the case N=2,
whicl} can-be easily. extended to arbitrary N. Given the

nonlinear equations

i
O

f1(x,y)
(2.76)

il
O

fz(x,y)

and an initial guess X0 Yy for +the solution, at the
neighbourhood of this initial guess, f1 and f2 can then be

represented approximately by the following linear function

| of, - | Bf,
£o(x,y) = £ (x ,y )+ (x=x )—(x ;¥ )+({y-y )—(x vy )
dx dy
ot dE
£, (x,y) = £,(x ¥y ) + (x-xo)———(xo,yo)+(y—y°)——L(x°,yo)
. dx dy
(2.77)

In fact these expressions are obtained by truncating the
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Taylor series expansions. Thus we can obtain a linear

equation system

" 3f ‘ 8f1
3—1-(x°.y°) Ax o+ ——H(x, 0¥ ) Ay = oE (X y)
X )
) : (2.78)
af df ’
—2(x ,y ) Ax + —%(x_,y ) Ay = -f_ (X ,¥ )
L Ax o Q ay ) o 2 o o

where Ax=x—x0, and Ay=y—'y0. We assume the determinant of

the Jacobian matrix

of of
—1
9x dy
of of
Ox Jdy

L )

is not equal to zero at the neighbourhood of the solﬁtion.
If the initial guess is reasonably good, the determinant of
the coefficient matrix of (2.78) should also be nonzero. Ax
and Ay can hence be easily found by elimination. From the

definition of Ax and Ay we may write

(2.80)

Then we may replace X, and Y, with X, and Y, and repeat
the above procedure. The iteration process is terminated

when
max ( 6x, dy ) < = (2.81)
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where

Ix ., x| ly, .,y |

8x = - ' oy = - '
ly

or

max ( {£ 1, I£,1) < & . (2.82)

2
¢ and & are prescribed tolerance errors. Newton-Raphson
iteration is a second-order process, which.converges very
rapidly if a reasonably good initial guess is given. I #e WW"M&"*S
e hove done, 3-5 erations are maﬂj relw‘«.reJ for €= 10 and d= P

Scaling often has a significant influence on the
performance of this kind of iteration algorithm. One
method of scaling is to transform the variables from their
original representation, which may reflect the physical
nature of thé problem, to variables that have certain
desirable properties, é.g., the variables are all of similar
magnitude in the region of interest.‘ In the model program,

only a linear transformation of variables has been used,

which is of the form
X =D X + V (2.83)

- where X is the solution vector, D is a diagonal matrix and
V. a constant vectbr. Since the solution of linear model
produces a- reasonable initial guess for the nonlinear
solution, so the elements of D and V aré chosen according
to the linear solution. For example, if the variable X_i
represent a zonal mean component, it is expected that this
variable only changes its value slightly after the iteration
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procedure, e.g. only increase or decrease 20% of its initial
value xi“?’. One possible scaling would be to define a new
variable X’i, given by

x -x (0

X' = S .
1 0.2X _
1
Thus we may choose the associated _diagonal element of D

as

For a variable XJ_ which represents wave component, it may

lie in -a larger range than Xi and then we choose

"and
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CHAPTER 3

LINEAR PRIMITIVE EQUATION MODEL

3.1 _Introduction

In chapter two we have discussed the .numerical
techniques for solving the steady-state primitive equat‘ions
governing 1arge—s‘cale atmospheric motions. As previously
mentioned, the iteration procedure for solving the nonlinear
equation system requires a reasonably good initial guess.
An unrealistic initial guess‘ mély cause difficulties for the
iterative algorithm. The solution of a linearized model is
easily obtained and hence provides a first approximation to
the solution of the nonlinear problem, which can be used as
an initial guess of the nonlinear solution. _At the same
time a direct comparison between the linear and nonlinear
responses to various forcing functions 1is possible. This
enables us to gain more physical insight into the
fundamental nature of atmospheric métions.

The perturbation method 1is used +to simplify the
complicated nonlinear system of equations. In this method
all field variables are divided into two parts, a basic state
portion which is assumed to be independent of longitude
(and possibly time also in some problems) and a
perturbation portion which is the local deviation of the
field from the basic state. For example, if [u] denotes a
longitudinally averaged zonal velocity and u* is the
deviation from the average, then +the complete zonal
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velocity field is
*
u(A,p,0) = [LI](L]!G) + u (Au,0). (3.1
Thus the 1inertial acceleration term 1in +the momentum

~ equation, u(du/acosgpdr), can be written

du 9{[ul+u*}
gy ———— = {[{u]j+u*} ——
acosgp OA acosyp oA
du* du* (3.2)
= (u]——— + u¥———
acosyp oA acosy oA

According to the assumptions of the ;;erturbation theory,
the -second term on the right hand side of (3.2) is much
smaller than the first term and therefore can be neglected.

By neglecting all terms which are’- nonlinear in the
perturbation, the nonlinear governing equations are reduced
to linear differential equations in thé perturbation
variables. The linear model equations derived in this way '
will be described in the next section. Sections 3.3 and 3.4
describe the basic state and the method of solution

respectively.

3.2 Model Equations

The linearized primitive vequations, corresponding to

(2.12)-(2.17) in the nonlinear model, ‘may be written

A

* * * *
— {—[u]u AR AR R }_+ s (u1'® +20ap v - ¢

tN)

* 4 *
-R[T]g —a(Rf+aV yu =20

(3.3)
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1 T x x x - *
— { ~tuIv ™ —2u(ulu } - 20ap U+ ¢ ‘M 4r[T]q M
U

x x
+RT [q1'" +RT [q]'M ;a(R + a¥) VT = 0

(3.4)

- {—[U]T*(A’ R S L LT S DEel E S A § RN }
-u |
* ta) ~*(a)
+S {[T] + k(1+0)[T] } + «[T] S
+ 28 a(R  + vty T =0
, P
(3.5)

1
J { R A A SR A -0 R } do = 0 (3.6)

1 o
%= _ , ] J {U*(5)~ V*(U)+[U]q*(A)_v*[q](p)} do
(1-p" ) (1-0") 11 } ‘.
(3.7)
*
o+ x .
(1+a) = - RT (3.8)
- Qo -

where a pair of square brackets indicates the longitudinal
average, and a superscript asterisk indicates the local
deviation from this average. Other notations have the
same meaning as those in the nonlinear model of Chapter
two. |

In Chapter two U, V, T and g fieldsv are represented by
truncated series of orthogonal functions. The normalized
Legendre polynofnials and the. surface spherical harmonics’

are chosen as the basis functions in the vertical and
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horizontal directions respectively. In this linear model
these field ﬁariables "are divided into a basic state portion
and a perturbation portion, the basic state corresponds to
those components with 2zonal wavenumber m=0 | and the
perturbation portion correSponds to those components with

*
m#0. For example, zonal velocity U=[{U]+U 1is represented by

L J+1
ful = ¢ Le2) Uk Pk(o) P (W) (3.9)
k=0 j=0 1o o
and
* L M Im|+3+1 Con
u = L L(2) u, P (0) e'™ P (p)
k=0 m=-M j={m| el : my
(m#0)
(3.10)

The expressions for V, T and q are analogous to those for
U. Since the basic state is prescribed in_ this model, only
those spectral coefficients for perturbation are unknowns.
The truncation relation (2.34) is still empioyed to make
the velocity field consistent with that represented by
truncated series of streamfu“nction and velocity potential.
The method for evaluating the geopoteﬁtial, vertical
velocity and various spatial derivatives is the same -gse that

in the nonlinear model.
3.3 Basic State
The zonal mean temperature field (Fig. 3.1) was calculated

for January 1979 based on the ECMWF FGGE IIIb analysis.
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The zonal means were taken on pressure surfaces. They
differ insignificantly from the means taken on ‘sigma
surfaces if there is no topography assumed. The zonally
averaged logériﬁhm of surface pressure was approximately

calculated by

h ,
"[q] = lnPo - —E—ﬂ-—]— (3.11)

H
‘where [ho] is +the =zonally averaged topography height,
°=1000 mb and scale height H=8000 m. Then the zonal
mean eastward wind component (Fig. 3.2) were determined

by the following nonlinear equations

. |
i [U1? - 20ay [ul + [¢1'* + R{TI(a1'" =0
i, |
- ' (3.12)
B[4)
(1+a) = - R[T] (3.13)
: da

This system of equations is solved with the aid of the
transform method and Newton-Raphson iteration, the
fundamentals of which have been described in Chaptexr two.
Therefore the basic state prescribed in this linear model is

well balanced.

3.4 Method of Solution

The following procedures have been taken in order to
obtain a linear algebraic equation system:
a) add the diagnostic equations for vertical velocity
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and geopotential to egs. (3.3)—(3.6_) to vield a
complete system for unknown variables U*, v, T, g
and diagnostic varibles ¢* and S*;

b) insert the spectral expressions of the unknown
variable fields into those -equations;

c) make an orthogonal projection on the sub-spectral

"')\Pm n(u) with respect to

space generated by I?l(cr)ei
various combinations of index values of 1 and n.
After laborious manipulation, the linear equations for each

zonal wavenumber m may be written in the form

X1 X2 X3 X4 U F1
Y1 Y2 Y3 Y4 v | | F2
T1 T2 T3 T4 r | | F3
c1 C2 €3 c4 Q 0

(3.14)

where U lisfthe column vector with the element Uk‘m,j
(k=0,1,...... ,L; j=m,m+2,...... ,m+J-1.) and V, T, Q are similar column
vectors. O is a zero column vector. The elements of the
coefficient matrix and the other column vectors in the

right side may be expressed as

o 1L [ (AR o . ak® (k+1)2
= - — + aR, +
1,nik.j 4 J-1 )-1 T:F f a’ ’
Pm'ijPm.nPIdudc
+5° m —l—f ul1'®'p K ‘P dpd
k.olmz -1 1-1 71"“ (o) m, kpm,npl waa
(3.15)
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< 1 1 1-yp
Pm.jK Pm.npldpdo
+d 2 ! P P d
Qa
ki R PRI A : (3.16)
X3, iiely T S dy,, MR (3.17)
%4 im 1 1 1 “”G* R[T
Lonsd =2 Jor)or 17522 (ul [Tl Pm'ij,nPldudc
(3.18)
Y1 1 1,1__7_1 [ulp d
l.n:k.j - -2- _1.‘-11_“ u[U] m;j Pkpm.npl “do
- [ 4
6k.l Qa -1 H Pm.j m,n H
(3.19)
- 1 [1 J1 {im 0] . aK® (K+1)° }
= - — — + a +
linsk,j 4 f-1 J-1 1-u f a’
m’ijPh’nPl dy do
(3.20)
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Y3 = & R

1 [ 1 { :
J n
Lonik,j R J_1 (al Py F du

m, j m,n

+ek.1{—6j,n_1(n—1)RDm’n -6, ., (n+DRD_ }

(3.21)
Y4 ol IR I d 3
Lonss = 3 o1y (Tis, (P, ,B, du do (3.22)
1 imk{ 1 1 1
T ey T 7 T _1?j:7[T] I A

‘+a‘ m [ 1J 1-1-7 {[T](d).+ (146)[T)] }
kioyg -1)-11-p “ °

K P P du do

m,j k m,n 1

) 5 imk 11 1 o o 4
+ .
& B TTHTET] n. 3% Pn P a0 do

(3.23)

K 1 1 1 . 4

- 1 1 1 1 {9
-8 Ko Z J_ J_ S {[T] +k (1+a0)[T] }

H KP P dp da

m,j k m,n 1
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T3

T4

l,nsk,j

1.n3j

1 1 1 1 L 9)
3 T [T] " +x(1+0)[T]
[q1'"p K P P du do
. m,j k m,n 1
) . k [ 1] 11 4
& e kit 4 -1 S11-p2 [T]Hm.ijPm.nPl W do
. .ok [fr ] ()
ORI & I I vl
P, ,GP P dudo
(3.24)
10 11 {im - . vk? (k+1)2 }
= - — — + a +
4 |-1])-1 1-p t a
Pm'ijPm'nPIdudc
(3.25)
im 1{ 11 ( 9)
Z_ . 1?—:;-2- [T] . +K(1+C)[T]‘
p—
uPp P P dp .do
m,j m,n 1
i B R R X T
4 -1)-11-q m,j m,n 1 nae
(3.26)
Bk,o Bj’n im (3.27)
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c2 = -5 2 [q1'* P P dy
nsk,j k.o 2 -1 m,.) m;n
- 6k,o{63.n—1(n_1) D, o = 8, .. (n*2) D }
(3.28)
C3 i = 0 . (3.29)
nsk,j
im 1
ca = _..._J u P P du (3.30)
nsl 2 -1 0,0 m, ) m,Nn
F1 = & im ¢ : (3.31)
1.n 1,0 s m,n .
le,'n = —61.0{(11-1) Dm.n ¢s m,n=-1 - (n+2) l3m,n+1 ¢s m.n+1}
(3.32)
a Q
F3 = - —Ll.m,n (3.33)
» N C
P
where
% L )
U = L U K (a) (3.34)
k,o k ;
k=1
—% % L ’ .
4] = L ¢ G (ag) (3.35)
k,o k
k=2
U '
0 o 5 . [u] do (3.36)
1 r
&, = 5 ) Ik(c)Px(U) do (3.37)
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1 when 1=k

6 =t i
1,k 0 otherwise
5 {0 when 1=k
Lok s otherwise
1 =0,1,2,...,L
m+1,m+3,...,m+J for §3.19)—(3.22)
and (3.32)
n = ' :
m,m+2,...,m+J-1 ‘for (3.15)—(3.18),(3.23)
—(3.31) "and (3.33]
k =0,1,2,...,L
m+1,m+3,...,m+J  for §3.16),(3.20),(3.24)
. and (3.28)
'y = .
m,m+2,...,m+J-1 otherwise

VVe‘ can see from the above expressions fhat the
elements of the coefficient matrix ére mainly calculated by
evaiuating-the integrals with res'pect to p and o. If .vthe
basic state is represented. by truncated series, theée
integrals can be calculated exactly in terms of the
Gauss-Legendre gquadrature formula described in secfion
2.5.2. |

The linear equation system (3.14) cén be easily solved by:“
matrix inversion, e.g., Gauss elimination. The solution. for
several zonal wavenumbers -.is_ just a linear superimposition

of solutions for every individual wavenumber.
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CHAPTER 4

DIAGNOSTICS AND EXPERIMENTAL DESIGN

Since the work of Andrews and .Mclntyre (1976),'thev
Eliassen-Palm (EP) cross-sections have been increasingly
used as a diaénostic both of the propagation of wa}\'re
activity and of the interaction between waves and mean
flow (e.g., Edmon et al.,, 1980; Dunkerton et al, 1981; Palmer,
1981). Since the EP flux is a zonally-averaged gquantity it
can provide insight only into zonally-averaged latitudinal
and vertical wave propagation characteristics. Besides the
EP cross-section, a three dimensional wave ‘activity flux,
which was derived by Plumb (1985) for . linear,
quasi-geostrophic stationary waves on a zonal flow, is used
in this study to diagnose the propagation of wave activity
for both linear and nonlinearA model solutions. The basic
definitions and calculatidn procedures relevant to the wave
activity flux and the EP cross-section are outlined in
Sections 4.1 and 4.2 respectively. Finally the experimental

design is described in Section 4.3.-
4.1 Stationary Wave Activity Flux
4.1.1 Basic Definitions

For plotting convenience we use ’‘pressure height” z as

vertical coordinate, which is defined by
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P
z =-H 1ln — : ' (4.1)
P

[}

where H is a constant scale height and set to 8 km, and Po
is a standard constant pressure, taken to be 1000 mb. In
an isothermal atmosphere, in which the temperature was
equal to gH/R everywhere, z would be equal to geometric
height, measured from the level at which P=P°. With this
coordinate, the quasi-geostrophic approximation to the
wave activity flux for linear, stationary waves on a zonal

flow (Plumb, 1985) may be written as

F/\
F = F
@
F
4
_ x * "2 *
1 { Y \P* Ay }
2a2 coszq: AN OA axz
. * * 5 %
P 1 {6‘1’ Y x 07 VY }
= — COSs ¢ 7 - V¥
‘r"0 2a” cosg AN  Ju ONJY
20%sin’e {aw avy” « 3%y” }
- - VY
LNza cosyp (ON 9Oz ONdzZ

(4.2)
where Y is the streamfunction for nondivergent geostrophic
flow, an asterisk indicates deviation from the zonal fnean, Q
the angular velocity of the earth and N the buoyancy
frequency.

The wave activity flux F exhibits all the advvar.xtages of
the EP flun.c as an indicator of the propagation of wave
activity. Plumb (1985) summarized the properties of F as

the following:
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a) F is a conservable measure of the flux of wave
activity. _This means that F is nondivergent for
.steady, conservative linear waves. ﬂ

b) For westerly flo.ws, the convergence of F
indicates the piling-up of wave activity, while
divergence of F indicates its export.

c) In the limit of almost-plane -waves, F is a
phasé—independent quantity which is par‘allel to
the group velocity.

d) If zonal averages are taken, F reduces to the EP
flux, except for +the addition of a zonal
component which is of no particular consequence
for the zonally-averaged case.

e) The divergence of F, and therefore the generation
or dissipation of wave activity, is directly
related to nonconservative effects or nonlinerity.
In addition, boundaries may also be sources or
sinks of the flux. |

It is worth noting that the conservation relation for
wave activity (Plumb, 1985) was based on a linearized
equation system for small perturbations to a steady zonal
flow, but we may férmally render it wvalid "at finite
" ampli.tude by incorporating nonlinear effects into the term
which originally represents sources and sinks of'potential
vorticity due +to nonconservative effects. This suggests
that a comparison of wave activity fluxes evaluated from
linear solution and from nonlinear solution may contribute
to diagnoses of nonlinear effects.
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4.1.2 Evaluation Procedure

The wave activity flux is evaluated by using the formula
(4.2) where all derivatives are taken on pressure height
surface, i.e., isobaric surface. Therefore a compu;:ational
grid on 9 vertical levels with pressure equal to 850, 700,
500, 400, 300, 250, 200, 150 and 100 mb, is used for
evaluating the flux. On each level the grid consists of the
intéArsections >of 32 eqﬁally spaced meridians and 36 Gaussian
latifudes, thus the horizontal derivativeé may be evaluated
by a spectral method similar to that described in Section
2.3.3. The calculatioh procedure is outlined as ‘follows:

(1) Calculate'the velocity components U and V at grid
points by .using "(2.28) and (2.29) »where o is not only a
function of P but also a function of A and .

(2) Calculate the streamfunction ¥ which is represented
by
Im|+2 LmA

Li2) Y e P (u) - (4.3)
M j=fmjer ™03 m. 3

-€
it
HhMX

where the spectral coefficients

a 1 1{2w 1 -
Y= - — ——J J —,[U‘“’ + v”"]e imhp - W gay
a3 J(3+1) 4nw)-1) o01-p m,j

(4.4)
Since some grid points on the lowest one or two levels may
be located under the ground if topography is inseited into
the model, an approximation is made for simplicity: if the

value of the integrand at a grid point is unknown, it will
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be dropped out from the summation of +the Fourier
transformation and then the total number of grid points
along that latitude circle, by which the summation is
divided (seé, e.q., (2.73), is décremented by one
correspondingly.

(3) Calculate the wave activity flux by using (4.2).
4.2 EP Cross-Section
With the pressure height z as vertical coordinate, the

quasi-geostrophic approximation to +the Eliassen-Palm (EP)

wave flux may be defined as

E
E = [ ® ] (4.5)
E
r4
where
* *
E (z)_1[a‘l’ a‘l’] (4.5a)
= exp(- — a —_— .5a
p = % SEPIT H an 3o
* *
E ' (- 2y 49%sin®p N2 [aw oY ](4 5b)
= ex - - Y sin —_—— .
z - % S¥PLT E M dn 3z

Here square brackets denote zonal mean and

P
g = = (4.6)
gH

-]

1s the standard density. This definition is consistent with
that of Dunkerton et al. (1981), but slightly different from

that of Edmon et al. due to the use of z coordinate defined

by (4.1).
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As mentioned in the last section, if zonal averages are

taken, IE‘(p and Fz reduce to E‘pA and Ez respectively.

According to the definitions (4.2) and (4.5) we have

{ Eg = ¢, 3 [F,] (4.7)
E = e, @ [Fz]

z
whére brackets denote zonal mean and the factor e a is

simply a constant.

EP flux has the fundamental advantage that its

divergence
1 3 ) ‘
Ve E = — —(E cosgp) + — (E ) (4.8)
a cosgp dp @ dz z

is Zero under ‘nonacceleration conditions’ (steady,
conservative waves on a steady mean flow). Thus an EP
cross-section, in which E is represented. by arrows and VeE
by contours, displays infor’mation not only about the net
direction of wave propagation, but also about the locations
where nonacceleration conditions are violated.

The dgraphical conventions follow, in essence, those of
Edmon et al. (1980), with appropriate modifications for the
preésure height . coordinate. The volume element for
integrating' (4.8) over a zonaily symmetric portion of the.

atmosphere is

dv = 2ra’ cosy d¢ dz (4.9)

"From (4.8) and (4.9)

JV'E dv = JA dp dz (4.10)
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where

0 0 : '
A=——{2na cosmE}+———{2na2cosmE} (4.11)
Ay ¢ 0z z

A is the natural form of the divergence of E for contouring
in the (¢,z) plane and the arrows will be drawn with
horizontal and vertical components proportional +to the

guantities within the curly brackets in (4.11), that is

{ﬁ‘. . ﬁ}=2na2 cosy {a—1 E , E,}
i z ® z

2wa’ e, cosy {a"1[Fw],[Fz]}

(4.12)
In order +to calculate the horizontal and vertical arrow

components as measured on the diagram, [Fq)] and [Fz] are

2 2

evaluated in m°s” and then multiplied by d1a'1coscp and
d2 cosyp respectively, where' d1 ana dz' are ‘scale factors
proportional to the distanvces occupied on th_e diagram by 1
radians or 57.3° of latitu’de,. and one metre of pressure
heighit. Thus the eq. (4.10) implies that the pattern of

arrows will look nondivergent in the (p,z) plane if and only

if VeE is zero.
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4.3 Experimental Design

4.3.1_Forcing Functions

Orographic forcing is included into the model by means of
the lower boundary condition (2.10). Thermal forcing is
pres_ente_d explicitly in the thermodynamic equation. In
Chapter 5 some idealized cases of forcintj function are
tested for both linear and nonlinear mddels. The aimv of
these fests is not only to check if the program codes are
correct, ﬁt“’ also provide;. a preliminary understanding of the
model atmosphere behaviour. Then the response of the
model atmosphere to actual topography or/and‘diabatvic
heating in January is investigated. The Northern
Hemisph_ere smoothed topography on'the FGGE grid is used
to obtain a spectral representation of ‘the actual
topography. The vertically integrated heating rates for
January 1979 prepared from NMC FGGE Level Illa operational
data set and also ECMWF FGGE. Level IlIIb analysis by Johnson

et al. (1985) are used as the horizontal distribution of

diabatic heating and its vertical variation is given by

T(o-ag )
sin —1— ,0. < g < a
(o,-0,) 2
2 1 . (4.13)
0 otherwise

where o, =-0.84 and 02=1. This vertical pm[i'e cf d'c‘aéat}. /vea,/ini
o Aimidar b these waed 6/ Grose of ol (1984) and Simmons (/§82)

( The ZLafter divcusted the mhw% 4 the vetical distribulion . )
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4.3.2 Dissipation Parameters

It is necessary to include some appropiiate dissipation
processes in a steady-state model in order to remove tﬁe
sensitivity implied by resonance. This is done in this model
by means of Newtonian cooling and Rayleigh friction with
spatially varying decay rates. The vertical distribution of
Rayleigh friction coefficient, Rf, ‘and Newtonian cooling
coefficient, Kt, are similar in nature to those of Simmons
(1982). Rf was set to (20 d)_1 above 0=0.6 -but increased
below this level linearly with pressure to reach a value of

1

(2 4)°' at the surface (o=1). This is expected to represent

boundary layer drag in the absence of an Ekman layer in
the model. K _ was set to (20 d)"' pelow o=-0.6 but
increased linearly above this level with thé logarithm of

1

the pressure to reach a value of (5.3 d) at the highest

model level (0=-0.9491). These dissipations are enhanced in
.the - polar Aregion by multiplying?eabove coefficients by
(cosq:o /cosq:)2 when ¢ is greater than cpo, where @, was set
to 60°. This is intended to remove the resonance which
may occur in poiar region when sbme wave activity source
region is located in high latitude (tests using the nonlinear
model showed that insufficient dissipation in the polar
region may lead to failure of the iteration procedﬁre
convergence).

VSingular—line dissipation is i_ncluded by increasing the
above decay rates to {2([u]/cosq>)2 dr', where [u]l is the

zonal mean flow in ms'1, whenever they are less than this
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value.
Both the coefficients of biharmonic horizontal diffusion,

a and v, were set to 1.169x10'’ m*s™'

Linear diffusion of
the form aV* is very simply inclﬁded in a spectral model
and hé.s a known scale selectivitﬁz. The e-folding diffusive
time at total wavenumber n (the order of the associated

Legendre function Pm n(sJ) in the spectral expansion) is given

by
4
a
t(n) = —5g——— _ (4.14)
an (n+1)
where a is the radius of the earth. Table 4.1 shows the

scale selectivity of the diffusion formulation used in the

model.

Table 4.1: e-folding dissipation time

as a function of total wavenumbexr

n T (day)

1 53778.9

2 5975.4

3 1493.9

4 537.8

5 239.0

6 121.9

] 7 68.6
8 41.5

9 26.6

10 17.8

11 12.3

' 12 8.8
13 6.5

14 4.9
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All dissipation parameters described above have been
used for both linear and nonlinear models in order. to make
their results more comparable. The wvalue of these
parameters was set firstly according to Simmons. (1982) and
Grose et al. (1984) and testgd for actual topography and
thermal forcing, a small modification, i.e., the enhanced
dissipatioh in. the polar region, was then chosen to enable
the model solution to be a close approximation to the
observed climatological stationary waves in the winter
seasoﬁ and meet t"he requirement of convergence of the
nonlinear model. Then these parameters are fixed for all
other experiments except those for sensitivity tests

described in Section 5.1.3.

4.3.3 Graphics

The following diagrams have béen, plotted for each
experiment but only some of them are shown in this thesis:
1) Contour maps for topography height and horizontal

\ variationA of diabatic heating rate.

2) Contour maps for streamfunction, which represents
the rotational components of stream £field, with
horizontal vélocity vectors superimposed at 700, 500,
200 and 100 mb levels.

3) Wave activity flux. maps at 850, 700, 500 and 200

. mb, in which arrows represent horizontal component
and contours vertical component.

4) Latitude-height projection of F at selected

12 , :



5)

6)

7)

longitudes, usually through centre of the forcing.
Longitude-height projection of F at' selected
latitudes, usually through centré of forcing.

EP cross-section.

Longitudinal cross-sections for the departure from
the zonal mean of geopotential height and vertical

velocity in the pressure system which is calculated

by
dp
w = —
at
u [ oP ] v [ oP ] e 9P
= —— —_ + - — + o —
a cosy oA o a oy G do

o+1 { u 9Ps v OPs } oPs
= : + - +

2 cosyp OA a dop

(4.15)
or, using the notations introduced in Chapter 2 it

can be written

exp(q) 1+a ‘
w = { =~ (ug'™ - va'"H+ (1-6%) s }
. 2a 1-u
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.CHAPTER 5
PRELIMINARY EXPERIMENTS FOR BOTH MODELS

Before we discuss the response of a model atmosphere to
forcing by the actual Northern Hemispheric topography and
the.rnean diabatic heating in January 1979, we examine in
this chapter the response of a model atmosphere to forcing
by idealized | topography or diabatic heating. These
préhnﬂﬁary éxpeinnents for _both linear énd nonlinear
models may provide -us an elementary understanding of the
model atmosphere behaviour.

In section 5.1 we consider the case in which there is no
stationary heat source included in the model and an
idealized large scale mountain in middle latitudes Iis
assumed. The results of a sensitivity test for different
values of dissipation parameters are also described. In
section 5.2 a similar idealized mountain is moved from
mid-latitudes to high latitudes, this is 1intended to
simulate 1the effects ©f the Greenland Plateau on the
hemispheric stationary waves. Finally ;ections 5.3 and 5.4
discuss the response to an idealized thermal forcing where
no topography is inserted into the model and the diabatic
heating region i3 located in middle and low latitudes

respectively.
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5.1 Response to a Large Scale Mountain in Mid-latitudes

In this experiment ‘there is no stationary asymmetrical
heat source included in the model and the stationary waves
are induced only by an idealized large scale mountain in

mid-latitudes. The surface gecpotential is specified by

2

_TT((D‘(P1)_ , TT()\')\1)
;0 << A A,

'goA sin sin
((02 “e,) (N, =X, )

0 otherwise
(5.1)

where g 9.80665 ms % is the global average of the

'acceleratioﬁ due to gravity at mean sea level. Before

inserting this topography into the model, it is transformed

into an expansion in truncated series similar as (2.30) with

truncation indices M=3, J=11 and L=4. This is illustrated in
o

Fig. 5.1 for the: values A=2500 m, (p1=200. ¢ ,=50", )\1=3O°

and A2='150°.
5.1.1 Linear Solution

The perturbation stream fields at the 700 mb and 200 mb
levels fpr .the linear response to an idealized large scale
mountain in mid-latitudes (as shown in Fig. 5.1) are
displayed in Figs.5.2 and 5.3 respéctively. At 700 mb there
is an anticyclonic circulation in the upslope region to the
northwest of the mountain top and a cyclonic circulation in

the downslope region to the northeast of the mountain top
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.......

Fig. 5.1

..... « b
e . PR S
The horizontal distribution of surface
geopotenfial height, expressed as truncated
series of spherical harmonics, for an idealized
mountain in the mid-latitudes. Contours
represent  the geopAotential height/(300m). The

zero contours have been suppressed for clarity.
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700 mb perturbation stream field for the linear.
response to an idealized topography in

mid-latitudes. . Contours represent the

2 1

perturbation streamfunction/(105m s ') with an
interval of 10 units. The negative contours aré
dashed. Vectors represent the horizontal
velocity. An arrow scale for velocity in units of
ms™ ' is indicated at bottom right, where
exponents are plotted as a character @ followed
by an integer (e.g, 1.0081 =1.00x10").
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Fig. 5.3 As Fig. 5.2, but for 200 mb. Contours are at

intervals of 20 units.
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(it is worth noting that the westerly winds poleward of
30°N, see Fig. 3.2, produce an upslope region to the west of
the mountain, whereas the low level easterly winds on the
equatorward side produce an upslope region to the east of
fhe mountain). Another anticyclonic circulation is located
farther downstream and extends to high latitudes. At 200
mb the subtropical response is much stronger than at the
_lower level, an anticyclonic circulation is centred 60° east
of the mountain top while a cyclonic circulation is centred.
30° west of the mountain top. The rotational
(nondivergent) component of .velocity field is dominant at
middle and high latitudes, whereés the divergent
(irrotational) component mainly concentrates in the tropiéal
region. The longitudinal cross-sections’ of perturbation
geopotential height and vertical velocity at 35°N are shown
in Figs. 5.4 and 5.5. In Fig. 5.4 the upstream ridge and the
downstream ¢trough of the mountvain appear clearly ‘at the
low levels. At the upper levels a major ﬁrough is found
over the mduntain associated with a ridge to the east. All
these systems are inclined slightly_ to the west with
increasing height up to the tropopause. In Fig. 5.5 the
vertical yelocity field is dominated by upward motion (v is
negative) over and to tﬁe west of the mbuntain and a
downward motion (w is positive) to the east of the
mountain. This is consistent with the g-plane channel
barotropic theory (Hoskins and Karoly, 1981), which says for
long. wavelengths the B term in the vorticity equation 1is
dom-inant and there is a cyclone over the mountain ridge.
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Fiés. 5.6 and 5.7 illustrate the wave activity flux F at
the 850 mb and 500 mb levels. The major feature
highlighted by these figures is a wavetrain propagating
upward, eastward and predominantly equatorward from the

northern slope of the mountain. At low level there is also

. a smaller and less intense wavetrain propagating poleward

from the northwest and the southeast of the mountain. As
explained by Plumb (1985) the diAvergence of F from a
topographic source does not necessarily coincide with the
highest topography. The locations of the apparent origins
of the wavetrain extend to some distance downstream of
tﬁe mountain. This can be seen more clearly from the
longitudinal section of F at 45°N (not shown here). 'The
latitudinal anEl vertical components of F reduce to EP flux
when they’ are zonally averaged. The corresponding EP
cross-section 1is plotted 1in Fig. 5.8, which shows the .
greatest EP flux is near the lower surface in the middle
latitudes (40-60°N). The strongest coﬁvergence of the EP
flux is at the same location, whefeas a secondary maximum

convergence is found in the middle troposphere at high

latitudes (about 75°N).
5.1.2 Nonlinear Solution

Comparing the perturbation stream field for the
nonlinear solution (Figs. 5.9 and 5.10) with the counterpart
for the linear solution, we find the obvious difference is in

the sub-tropical region at the lower} level and in high
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Longitudinal -cross—s‘ection of perturbation

geopotential height at 35°N for the linear
response to an idealized topography in
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surface pressure at 35 °N is superimposed.

~
-

.
-~
-

R e

teao

“~eo

LONGITUDE
As Fig. 5.4 but for perturbation vertical velocity

w. Contour interval is 3 mb day-1.

81




%
l

3

N
S0

Wave activity flux F at 850 mb for the linear
response to an idealized topography in
mid-latitudes. Contours denote the vertical

2s-z) with an interval of 20

component Fz/(10’3m
units (positive upward). Arrows. denote the
horizontal component with a scale plotted at
bottom right (unit: m°s ).
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Fig. 5.7 ' As Fig. 5.6, but for 500 mb. Contours are at

intervals of 10 units.
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units.
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latitudes at the upper level. If we consider the
assumptions of the perturbation theory (see, e.g.,, Holton,
1979) and note that the basic state flow (Fig. 3.2) is weak
in the p(:)lar and tropical regions as well as in the lower
troposphere at mid-latitudes, we may expect that the
orographically forced disturbances should be highly nonlinear
in these regions due to the weak basic flow. At 700 mb
low latitudes the upslope anticyclonic circ'ulation and the
downslope cyclonic circulation are evident for the nonlinear
solution (Fig. 5.9) but their linear counterparts is not clear.
On the other hand at 200 mb the high latitude response for
the nonlinear solution 1is significantly weakened. The
longitudinal cross-section of geopotential height at 35°N
for the nonlinear solution (Fig. 5.11) is similar to that for
linear solution, but the upper level response is greatly
weakened and the westward tilt of phase with height
occurs only below 300 mb level. In addition the .nonlinear
solution has a weaker vertical velocity field in the same
section (Fig. 5.12). These results suggest that the
nonlinearity for the response to this idealized large scale
mountain is significant, especially in high or low latitudes.
This can be séén also in the wave activity flux maps (Fig.
5.13-5.14) and E“.P cross-section (Fig. 5.15).

The first point to note from Fig. 5.15 1is that the
vertical component of EP flux in high latitudes is
substantially weakened compared wfth the linear results,
especially at low levels. Another interesting feature shown
by Fig. 5.15 is that there is an apparent source of EP flux
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700 mb perturbation stream field as in Fig. 5.2,

Fig. 5.9

but for the nonlinear response.
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Fig. 5.10 200 mb perturbation stream field as in Fig. 5.3,

but for the nonlinear response.
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Fig. 5.12 As Fig. 5.5, but for the nonlinear response.
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the nonlinear response.
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Fig. 5.14 500 mb wave activity flux as in Fig. 5,7, but for

the nonlinear response.
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Fig. 5.15 EP cross-section as in Fig. 5.8, but for the

nonlinear response.
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in the upper troposphere in middle latitudes. Since 1t was
not predicted by the linear model before and there is no
diabatic heating process included in the model, this net
upper tropospheric source of EP flux associated with
orographically forced stationary waves must arise from the
nonlinear effect. Associated with this source region more
wave activity is propagating ;/ertically into the
stratosphere in the nonlinear solutiqn than that in the

linear solution.

’

5.1.3 Sensitivity to the dissipation parameters

Some sensitivity studies were performed for different
specifications’of dissipation parameters, they are
Case A: Rf and kt are increased everywhere by 50% of
their normal value specified in section 4.3.2.
Case B: Rf and kt are decreased everywhere by 50% of
their normal value.
Case C: Set +the biharmonic horizontal diffusion
coefficients:, I and Y, equal to zero.
Case D: Remove the enhanced dissipation in the polar
region, i.e., Rf and kt are independerit of latitude.
In each case all ﬁarameters other than those described
above are kept unchanged. Cases A, B and C were performed
for both the linear and nonlinear models, but case D was
perfoimed for the linear model only.
From cases A and B, we find that neither increasing nor
decreasing the value of Rf and kt by 50% changes ob;\fiously
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the pattern of stationary waves forced by topography, but
the amplitude of the wave éatterns is usually increased
(decreased) when Rf and kt are decreased (increased). This
can be seen, for example, from Figs. 5.16 and 5.17 for the
linear solution; Similar results were obtained for the
nonlinear response but are not shown here. The pattern of
wave activity flux and EP flux 1is also remarkably
insensitive in these two cases (not shown here), but their
amplitudes are evidently affected.

Again in case C where the biharmonic horizontal diffusion
'is completely removed, the pattern of perturbation stream
field has not been modified evidently, only small changes in
the amplitude are produced (not shown here). A possible
cause for this insensitivity to the diffusion 'parameters is
due to the high truncation of this model, while these
parameters have a much stronger effect on the wave
components with smaller horizontal scale (see eq.(4.14)).

Since the linear and nonlinear models developed in this
study have a low resolution and no transient wave effect
included explicitly, it is impossible to simulate acéurately
the stationary waves in the real atmosphere. The main
subject of this study 1is qualitatively investigating the
wave patterns excited by topography and thermal forcing,‘
we may therefore consider the sensitivity of amplitude of
the model atmospheric response to dissipation parameters
as unimportant. In order to compare the response to
different forcing, all dissipation parameters are fixed after
this section. |
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If the enhanced dissipation in polar latitudes is removed
(case D), the response is much stronger, especially in high
latitudes than before. For example, comparing Fig. 5.18
with Fiqg. .5.3 shows that the amplitude of wave pattern in
high latitudes at 200 mb is increased by a factor of more
than 3. There is an evident source of 'EP flux in middle and
upper troposphere between 66°N and 80°N (Fig. 5.19). It is
difficult to relate this source region of EP flux with the
orographical forcing in middle latitudes. No convergent
solution was obtained for the nonlinear model in this caSe
by using the iteration procedures mentioned in section 2.5.4,

but this does not preclude the possibility of its existence.

7

5.2 Response to a Large Scale Mountain in High Latitudes

In this experiment we move the idealized topo.graphy to
high lati_tudes in order to simulate, to a certain extent,
the effect of the Greenland Plateau. The surface
geopotential is still represented in the form of (5.1). and
reset at ¢1=55°, ¢2=85°. )\1=—90° and )\2=O° (where the

amplitude A is still equal to 2500 m).

5.2.1 Linear Solution

Since in the lower troposphere in polar regions there is
a weak easterly in the model’s basic flow‘(Fig. 3.2), the
vertical structure of the peirturbation stream field for the
linear response to an idealized large scale mountain in high
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Fig. 5.16 200 mb perturbation stream field as in Fig. 5.3
except for case A, where the Rayleigh friction
and Newtonian cooling coefficients are increased

by 50%.
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Fig. 5.17 200 mb perturbation stream field as in Fig. 5.3
except for case B, where the Rayleigh friction
and Newtonian cooling coefficients are decreased

by 50%.
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Fig. 5.18 200 mb perturbation stream field as in Fig.5.3

- except for case D, where no enhanced dissipation

is employed in polar latitudes.
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latitudes is complicated. At 700 mb in polallr region there
is a anticyclonic circulation to the east of the mountain
top and a cyclonic c¢irculation td the west of the mountain
(not shown here). At 200 mb (Fig. 5.20) a fairly strong
anticyclonic circulation is oﬁer the mountain and the major
wavetrain is propagating eastward and upward,'while.the
latitudinal pro.pagation is relatively weaker. In middle
latitudes major cyclonic circulations are found in North
America and North Africa and anticyclonic circulation in the
Atlantic. ‘The response 1n Asia. and the Pacific is weak.
The corresponding wave activity flux appears to originate
primarily (Sn the western side of the mountain and
iaropagate vertically and eastward (s‘ee, for example, Fiqg.

5.21).

5.2.2 Nonlinear Scolution

Since the basic flow in high latitudes is much weaker
compared with that in middle ‘tl‘atitudes, the difference
between linear and nonlinear respbnse to an idealized
topography located in high latitudes is more evident than
that in middle latitudes. Comparing Fig. 5.22 with Fig. 5.20,
we find that the wavetrain for the nonlinear solution in
the polar region is obviously weakened. O©On the other hand,
the propagation equatorward of wave activity is relatively
strbnger than the linear solution. This is seen from the
diagrams of wave activity flux (e.g, Fig. 5.23). The EP
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cross-sections for linear and nonlinear response are also
considerably different (compare Fig. 5.24 with Fig.5.25). The
largest EP flux :arrows for the nonlinear scolution are even
more concentrated in the southern slope of the mountain,
propagate vertically and split into two branches. .One
branch is trapped and turns equatorward in the middle
troposphere, another major branch propagates to higher
levels and turns poleWard. Although the vertical component
of EP flux for the npnlinear solution 1is generally smaller
than that for the linear solution, 3<% 1its horizontal
component is relatively larger. The results of this
experiment suggest that the nonlinearity is particula‘rly‘

important when a forcing source is located in high

latitudes than in middle latitudes.
5.3 Response to Mid-latitude Heating

In this experiment we consider the case in which the
only forcing is provided by an isolated region of diabatic
heating located in middle latitudes and there is no
topography inserted into the model. The horizontal and

vertical variation of diabatic heating rate is given by

X 2
w (- (A=A (o-
A Sln—w—ﬂL) s:.n“ y) sin“ °79;) } '
(¢2 %, ) (Az “AL) (02—01 )

Lp1<cp<tp2, )\1 <)\<)\2, o1<0<02

e otherwise :
(5.2)

where (912300, ¢2=6o°, ;\1=9o°, )\2=1800, o, =-0.84 and o,=1.
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Fig. 5.20

200 mb perturbation stream field for the linear
response to an idealized topography in high
latitudes. Contours represent the perturbation
streamfunction/(10° m®s™ ') with an interval of 10

units.
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L
Fig. 5.21 500 mb wave activity flux as in Fig. 5.7 except

for an idealized topography in high latitudes.

Contours are at intervals of 4 units.
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Fig. 5.22 200 mb perturbation stream field as in Fig. 5.20,»

but for the nonlinear solution.
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Fig. 5.23 500 mb wave activity flux as in Fig. 5.21, but for

the nonlinear solution.
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As Fig. 5.24, but for the nonlinear response.

Fig.5.25

105



The amplitude A is set to 5 Kd_1, which implies a relatively
large heating maximum value corresponding to a
precipitation rate of the order of 10 mmd-1 (Simmons,

1982).

5.3.1 Linear Solution

The perturbation stream fields at the 700 mb and 200 mb
levels are shown in Figs. 5.26 and 5.27 respectively; At low
1e§els'there is a cyclonic circulation in the heating region
with a iarger_ longitudinal extent to the east and
anticyclonic circulation to the west of the heating region.
At upper level the cyclonic circulation is located to the
west of the heating centre and an anticyclonic circulation
to .the‘ east of the heating centre. The mid-latitude
response is in general consister}t. with the calculation by
Simmons (1-982), but the high latitude response 1is much
weaker due to the way in which momentum and thermal
dissipation' are treated.‘ A lor'lgitudinal cross-section of
perturbation geopoteﬁtial height through the heating centre
(Fig. 5.28) shows the vertical structure of the wave
pattern more clearly, where the Westward tilt of phase
with height is more evident compared with the orographic
forcing case. This suggests that the stationary waves
induced by'. the thermal forcing have a stronger baroclinic
nature than those induced by the orographic forcing.

The wave activity propégates eastward ‘in the zonal
direction (see, e.g., Fig. 5.29), Ibut in the meridibnal
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direction it is dominated by a poleward propagation in the
lower troposphere and an equatorward propagation at upper
levels (see, e.g. Fig. 5.30 for a meridional cross-section of
wave activity flux passed through the héating centre). In
acidition, the verticél variation of the vertical component
of the activity flux appears somewhat different to the
orographic forcing case. In the experiment described in
section 5.1 the largest vertical flux is concentrated in the
lower troposphere and has a much larger magnitude than
that in this experiment, but their magnitudes become
comparable in the upper troposphere and stratosphere. This
may be due to the vertical distribution of heating rate. If
the thermal forcing mainly originates from +the cumulus
convection, the vertical distribution of heating rate
adopted in this model Should be reasonable to a certain
extent. This experiment suggests that thé thermal forcing
in the troposphere may make a considerable contribution to
the maintenance of the vertically propagating stationary
planetary waves in the stratosphere. This is also reflected
in the associated EP cross-section (Fig. 5.31), which differs
from Fig. 5.8 on the vertical distribution of vectors as well
as on the pattern of contours representi-ng the convergence

of EP flux.

107



Fig. 5.26

3.00e ¢

700 mb perturbation stream €field for the linear
response .to an idealized thermal forcing in

mid-latitudes. Contour represent the

percurbation streamfunction/(105 mzs'1) with an

interval of 5 units.
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Contours are at

but for 200 mb.

Fig. 5.27 As Fig. 5.26,

intervals of 20 units.
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Fig. 5.29 500 mb wave activity flux for the linear
response to an idealized thermal forc_ing in

mid-latitudes. Contours represent +the vertical

2 2

component Fz/(10'3m s “) with an interval of 5

units.
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5.3.2 Nonlinear Solution

Compared with the linear solution there is no great
difference found for ithe wave patterns at the 700 mb and
200 mb levels (they are hence not displayed here), but the
wave activity flux differs_ from its linear counterpart. The
vertical flux in the lower and middle troposphere for the
nonlinear solution is _much stronger than that for the
linear solution. Also, the low level poleward propagation of
wave activity is no longer s.ov clear as in the linear case.
In Fig. 5.32 we find a substantial equatorward propagation
of wave activity at 500 mb, but a similar feature can be
found only above 500 mb for the linear solution. This can
also be seen in the Z?.lzatiitudinal section of wave activity
flux (Fig.. 5.33) and the EP cross-section (Fig. 5.34).
Corresponding to stronger vertical flux of wave activity at
low levels, the convergence of EP flux at middle levels for
the nonlinear solution 1s substantially intensified. This
experiment suggests that the wave activity £flux is more
sensitive to nonlinearity in some circ.umsf_ances than the

wave patterns at the selected vertical levels.

5.4 Response to Tropical Heating

There is v_~‘i:n;c.;:easrn,9-ly evidence that longitudinal variations
in tropical diabatic heating can play an important role in
the stationary wave structure in middle and high latitudes,
as well as in the tiopics (see, e.g., Simmons, 1982; Hendon
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Fig. 5.32 500 mb wave activity flux as in Fig. 5.29, but for

the nonlinear res ponse.



100 _ R
150..; .......+++++++++4.
s SRR
y = R I
gsoo_' R P T T IR
0-400._." .+++ ++I
S00 e e e e e e s ++ 4 & -
700 _| ++ IO
80 S I ST S + .
1000 _|
90 80 40 2% 0

LATITUDE g
' :200

Fig. 5.33 Meridional cross-section of wave activity flux at

135°E as in Fig. 5.30, but for the nonlinear
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et al, 1982; Grose et al, 1984). Therefore in this
expe;:iment we move the thermal forcing specified in the
preﬁious section to the tropical region by resetting ®, =0°
and Lp2=3O° in eq. (5.2)Vi_n order to study the model

atmosphere’s behaviour further.
5.4.1 Linear Solution

Figs.5.35 ‘_and' 5.36‘ show the perturbation stream field at
the 700 mb and 200 mb levels for the linear solution. The
extratropical response +to an isolated tropical heating
appears as a wavetrain propagating poleward as well as
_longitudinally. That the extratropical wave pattern _is
fairly independent of height reflects the barbtropic nature
of the extratropical response. These results are in general
consistent with those pfovided by previous authors as just
referenced. In contrast to the 'extratropical response, the
tropical response itself has a Dbaroclinic nature. ‘The
divergent (irrotational) component of horizontal. velocity in
the tropical region is evident, with a low level inflow to
the cyclone centred +to the northewst of the heating
maximum and an upper-level outflow from the anticyclone.
The low level cyclonic circulation spreads over the heating
region, with a larger longitudinal extension to the east.
The tropical response is in good gqualitative agreement with
the calculations ‘by Gill (1980) and Simmons (1982). The
wave activity flux differs from that for mid-latitudes
thermal forcing. At low level it propagates upward and
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eastward from"the northern side of the heating region, in
the meridional direction.the flux is split into two branches
propagating equatorward and poleward respectively. At
upper level the wave activity flux propagates upward in
the heating region and turns poleward and downward at
mid-latitudes. This can be seer; clearly in the EP

cross-section (Fig. 5.37).
5.4.2 Nonlinear Solution

The perturbation stream fields at the 700 mb and 200 mb
levels for the nonlinear solution are shown in Figs. 5.38 and
5.39 respectively. The wave pattern is in general
consistent with the linear solutidn, but the amplitude is
considerably intensified, éspecially for the extratropical
response. Therefore the wavetrain propagating into middle
and high latitudes from the tropical heating region can be
seen more clearly. Similar features for the wave activity
flux and the EP flux (Fig. 5.40) to the linear solution are
also found, but with evident larger magnitude. In
particular the poleward propagation of wave activity Iis
stronger than in the linear solution. Just as with the high
latitude topographic forcing, this experiment provides
another example to suggest that the nonlinearity appears
more . significant when a forcing region is located
somewhere with a weak basic flow than a strong basic

flow.
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Fig.5.36 As Fig. 5.35, but for 200 mb. Contours are at

intervals of 5 units.
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Fig. 5.37 EP cross-section for the linear response to

. e

an
idealized tropical forcing. The graphic convention
is the same as in Fig. 5.8, but the contour

interval is 1 unit.
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Fig.5.38 700 mb perturbation stream field as in Fig. 5.35,
bu‘;: for the nonlinear response. " Contours are at

intervals of 5 units.

!
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Fig. 5.39 200 mb perturbation stream field as in Fig. 5.36,

but for the nonlinear response. Contours are at

intervals of 10 units.
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CHAPTER 6
LINEAR RESPONSE TO LARGE SCALE

TOPOGRAPHY AND DIABATIC. HEATING

The simple experiments for idealized orographic and
thermal forcing described in ﬁhe previous chapter give us a
basis for understanding the steady response to the more
complicated actual topography and diabatic heating. Now
we go a step further to in\;estigate the résponse to the
actual topography in ‘the Northern Hemisphere and the
actual diabatic heating for January 1979 by using the linear
model described in detaii in chapter 3. This is c.iiscussed
first for the two different categories of forcing separately
(sections 6.1 and 6.2), and then for their combination

(section 6.3).

6.1 Linear Response to Northern Hemispheric Topography

In the first place, we consider the pure orographic
forcing where the Northern Hemisphere smoothed topography
on .the ECMWF FGGE grid is used to obtain a spectral
representatio.n of the actual topography (for a discussion of
the influence of zonal resolution on the representation of
the Northern Hemispheric topography, refer to Section 6.3.3).
It is well known that the predominant large scale
mountains in the Northern Hemisphere aren the Tibetan
Plateau, Rocky Mountains and the Greenland Platea-u. In
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Figs. 6.1 and 6.2 are shown the perturbation stream fields
at the 700 mb and 200 mb levels for the lineaJ; response to
. actual Northern Hemispheric topography. The middle and
high latitude response is dominated by zonal wavenumber
two and has an evident barotropic component (the phase is
almost independent of height), but +the low latitude
response at the upper level is much stronger than that at
the lower level. From Fig. 6.2 we can see four major
circulation systems at the 200 mb level in middle and low
iatit-;udes: two anticyclonic regions are located in the
Atlantic, the northern and western Pacific, and two cyclonic
areas in Eurasia, the eastern Pacific and North America.
Fig. 6.3 is a longitudinal cross-section of perturbation
geopotential height at 45°N which shows two major troughs
at about 120°E and 90°W and two .major ridges at about
150°w and 20°W. fhe troughs and ridges incline gently to
the west with increasing of height. The upstream ridge
and downstream trough of the Tibetan Piateau appear
clearly at the lower levels. The vertical velocity at this
section isl displayed in Fig. 6.4, showing the two main
centres of rising air over the Pacific and the eastern coast
of North America, and two centres of sinking air over the
Europe and the eastern Asia. The upslope and downslope
current is also clear over the Tibetan Plateau.

From wave activity mapsA it is possible to distinguish
three wavetrains propagating mainly eastward, equatorward
and upward (see, e.qg., Fig. 6.5). They may be related to the
three large scale mountains in the Ndrthern Hemisphere, and
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the wa.ve train originated to the north ’and east of the
Tibetan Plateau is both more intense and more extensive
than the others. The associated EP flux pattern (Fig. 6.6)
is similar to that in Fig. 5.8 for an idealized mid-latitude
topographic forcing. These diagnostics suggest that the
major orographic forcing of the stationary planetary waves‘
results from the Tibetan Plateau, while the Rocky mountains
aﬁd Greenland Plateau seem to be of secondary importance.
In Qrder to study further the relative importance of
these "'t.hree large scale vmountains to the orographically
forced stationary waves two experiments have been made:
One removes the topography in North America, i.e.,, before
transforming the surface geopotential height from,‘ grid
point value to a spectral expressio\n, we reset the values
at those points which are located in North America equal
to zero; Another removes the topography in Greenland in
the same way. When the North American topography is
removed, the major circulation systems influenced are the
eastern Pacific cycl_one and the Atlantic anticyclone. For
example, at 200 mb level (Fig. 6.7) - the former displaces
westward with a centre at 150°W and the latter displaces
eastward with a centre at O0°E, the intensity of both
systems 1is weakened by about one third. The other
systems are almost unchanged. When Greenland’s topography
is removed, both the anticyclonic circulation over Greenland
and the cyclonic circulation to the west at 200 mb level
(Fig. 6.8) are weakened by a half. and the anticyclonic
circulation over the Atlantic .LS also weakened by one Athird.
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Fig. 6.2 As Fig. 6.1, but for 200 mb. Contours are at

intervals of 20 units.
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Fig. 6.5
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Wave activity flux F at 850 mb for the linear

response to the Northern Hemispheric topography.

The graphic convention is the same as in Fig. 5.6,

but the contour interval is 40 units.
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Fig. 6.8 200 mb perturbation stream field as in Fig. 6.2,

but the topography of Greenland is removed.
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Other systems are little affected. These experiments
confirm:~ that the Rockies and..the Greenland Plateau are of
secondary importance on the maintenance of orographically
forced stationary waves in the Northern Hemisphere

compared with the Tibetan Plateau.

6.2 Linear Response to Diabatic Heating in January 1979

The ' problem of thermal forcing is complicated by the
depéndence of the response on the vertical and horizontal
structure of the diabatic heating field. In order to
calculate the response of a model atmosphere to actual
diabatic heating‘ in winter, we need a three-dimensional
distribution of heating rates. The vertically integrated
heating rates for January 1979 prepared from NMC FGGE
Level Illa operational data set and also ECMWF FGGE Level
[IIb analysis by Johnson et al (1985) are used as the
horizontal distribution of diabatic heating and its vertical
variation is given by the analytical expression (4 .13). The
use of two data sets is in consideration of the fact that
the actual diabatic heéting distribution in the troposphere
is difficult to calculate accurately. Therefore we will
’discuss the respective results using the heating fields
derived from different data sources. Their similarity may

contribute to a better confidence in the results.
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6.2.1 Heating Field Derived from FGGE Illa Data

The horizontal variation of the mean diabatic heating
rate 1in January 1979 derived @ from FGGE Illa data is
illustrated in Fig. 6.9. The major heat sources are found in
the following areas: a) Aleng the ITCZ ovef the Paéif‘ic, b)
the North Pacific and «c¢) the eastern coasts of North
América and the North Atlantic. The diabatic‘ cooling covers
larger areas than the heat sources. As we might expect,
the longitudinal variation of heat sources and sinks
reflects mainly the spatial distribution of precipitation and
surface heat fluxes.

The perturbation stream fields at the 700 mb and 200 mb
levels for the linear response to this diabatic heating are
shown in Figs. 6.10 and 6.11 respectively. At low-—leve.ls
there are two cyclonic and two anticyclonic circulation
§ystems mainly over the oceans and the continents in
correspondence. witﬁ the horizontal distribution of heat
sources and sinks. At upper level these systems are
rev;ersed. The amplitude of this thermal_ly forced wave is
comparable to that forced by the Northern Hemisphere
topography. A longitudinal cross—secfion of perturbation
geopotential height at 45°N ‘is presented 1in Fig. 6.12,
showing two ridges around 130°W and O°E and two troughs
around 135°E and 60°W. The trough ovef eastern Asia is
much more intense than that over the eastern coast of
North America. Another noteworthy feature in Fig. 6.12 is
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the obvious westward tilt of phase with height. Compared
with topographic forcing, we find that the response to the
thermal forcing has a stronger baroclinic hature.

The wave activity flux (see, e.g. , Fig. 6.13) shows two.
distinct wavetrains over the North Pacific and the North
Atlantic. Both are spreading eastward and upward, but
their meridional propagation is in opposite directions. This
can be understood from the horizontal distribution of
diabatic heating (Fig. 6.9). There is a duite strong heat
source over the tropical Ifacific, while a quite extensive
heat sink 1is found over the tropical Atlantic. Therefore
the Pacific wavetrain propagates poleward and the Atlantic
wavetrain equatorward. This wave activi.ty flux pattern
suggests that the longitudinal variation of diabatic heating
in the tropical region has significant influence on the
stationary pwlanetary wave in middle and high latituées. In
addition there is a downward flux in northern Asia at 850
mb, but all vertical flux turns upward at 700 mb and above
(not shown here).

The associated EP flux (Fig. 6.14) is also gquite differelnt
to that for actual topographic forcing (Fig. 6.6). The
former has a strongerAvertical flux at upper levels than
the latter, and evident convergent regions of EP flux are
found in the middie and upper troposphere as well as in
the lower stratésphere in Fig. 6.14. This supports the
suggestion in section 5.3.1, that is, the thermal forcing in
the troposphere makes a considerable contribution to the
maintenance of the vértically propagating stationary
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Fig.6.9

The horizontal distribution of vertically

integrated diabatic heating in January 197§
derived from FGGE Illa data by Johnson. The
original data is on 2.5°x2.5° grid points, which
have been transformed into a spectral expression
with truncation indices M=3 and J=11. Contour

interval is 0.5 Kd™ -
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Fig. 6.10 700 mb perturbation stream field for the linear
response to the actual diabatic heating field

derived from FGGE Illa data. Contours represent

the perturbation streamfunction/(105 m?s™') with

an interval of 10 units .
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Fig. 6.11 As Fig. 6.10, but for 200 mb. Contours are at

intervals of 20 units.
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Fig. 6.12 Longitudinal cross-section of perturbation

geopotential height at 45°N for the linear
response to the diabatic heating field derived

from FGGE IIla data. Contour interval is 2 dam.
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Fig. 6.13 850 mb wave activity flux as in Fig. 6.5, but for
the linear response to the diabatic heating field
derived ‘fronl FGGE I[Ila data. Contours are at

intervals of 20 units.
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planetary waves in the stratosphere. In the meridional
direction the EP flux splits into two branches: the
southern one points towards the équator and the northern

one towards the pole.

6.2.2 Heating Field Derived from FGGE IIIb Data

An alternétive representation for the vertically
integrated mean diabatic heating in Janua‘ry 1979 was
derived from ECMWF's Level IIIb analysis and illustrated in
Fig. 6.15. The predominant features in Fig. 6.15 are in
general consistent with those in Fig. 6.9, but with a more
extensive tropical heat source (positive deviation from the
zo_nal mean 15 still concentrated in the tropical Pacific) and
a more intense heat source iﬁ the North Pacific.

The perturbation stream fields at the 700 mb and 200 mb
levels for the linear response to this alternative heating
field are shown in Figs. 6.16 and 6.17 respectively. The
wave patterns shown in these figures are similar to those
in Figs. 6.10 and 6.11, but the amplitude of different
circulation systems is either intensified or weakened
depending dn theixr geographical location. The most
significant difference is found in the Pacific, both low-level
cyclonic and upper-level 'anticyclonic circulations are
greatly intensified. In Figs. 6.18 and 6.19 are shown the
wave activity fluxes at the 850 mb and 200 mb levels
respectively. -The main difference for the Wave propagation
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is also found over the Pacific. As previously mentioned the
linear response to the FGGE Illa heating field . displays a
poleward meridional propagation of wave activity over the
Pacific at the 850 mb, 700 mb and 500 mb levels, only a
weak ec;uatorward propagation found at the 200 mb level
(not shown here). But for the FGGE I1Ib heating field there
is an evident equatorward propagation of wave activity
over the Pacific at the 500 mb level and above. This may
result from the more intense heat source over the .nOrthern
Pacific and the relatively v‘veaker heat source (refer to the
deviation from the 2zonal mean) over the +tropical Pacific.
The associated EP cross-section is shown in Fig. 6.20, which
is also similar to Fig. 6.14 except with weaker convergence

at middle and upper levels.

- 6.3 Linear Response to Topography and Diabatic Heating

We consider furthér the linear response to ccmbiried.
orographic and thermal forcing, i.e.,, both the Northern
Hemisphere +topography and mean diabatic heating rate in
January 1979 are included in the mod;el. This solution is
simpiy a linear superposition of the linear solutions for the
pure orographic and the pure thermal forcing. As in the
p;evicus section, we will discuss the li.near response to the
Northern Hemispheric tbpography combined with FGGE I[lla and

FGGE IIlb heating fields separately.
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f-‘ig. 6.15 The horizontal distribution of diabatic heating as
in Fig. 6.9, but derived from FGGE IIlb analysis.
The original data is on 1.875°x1.875° grid points
and transformed into a spectral expression with
the same resolution as in Fig. 6.9. Contour

interval is 0.5 Rd™'.
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Fig. 6.16 700 mb perturbation stream field as in Fig. 6.10,
but for the diabatic heating derived from FGGE

IIIb data.
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Fig. 6.17 200 mb perturbation stream field as in Fig. 6.11,
but for the diabatic heating derived from FGGE

[IIb data.
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Fig. 6.18 850 mb wave activity flux as in Fig. 6.13, but for

the diabatic heating derived from FGGE IIlb data.
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6.3.1 Topography and FGGE Illa Heating Field

In' Figs. 6.21 and 6.22 are shown the corresponding
perturbation stream fields at the 700 mb and 200 mb levels
respectively. The circulations in high latitudes at the 700
mb level are mainly contributed from the orographic forcing
except for the cyclonic circulation between 150°W and
90°W, where the stationary wave exerted by topograph‘y
has a weaker intensity than that by thermal forcing. Both
the orbgraphic.and ‘the. thermal forcings ﬁade a.comparable
contribution to the stationary waves in middle latitudes at
the 700 mb level. At upper levels the relative importance
of these two categories of forcing depends upon the
geographical position of the circulation sfystem. In general,
we may .consider them to be of equal importance. This can
be seen from a comparison between Figs. 6.2, 6.11 and 6.22,
or from the longitudinal cross-sections at a barticular
latitude. The longitudinal :cross-section. of perturbation
geopotential height at 45°N is shown in Fig. 6.23, in which‘ '
the trough in eastern Asia and the ridge in the eastern
Pacific result from both the orographic and thermal forcing
(compare with Figs. 6.3 and 6.12). The thermal forcing made
a substantial‘ contribution to ﬁhe ridge near the west
coast of Europe, while the ridge 'located to the west of
the Tibet;.an‘Plateau at the low levels is clearly induced by
the topography.

It is not the intention of this study to simulate the
observed wintertime stationary waves accurately. However,
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it is of interest to compare these results with the
observations. Two maps for the 'statistics of observed
stationary waves in winter are presented here. One 1is the
Norfhern Hemisphere. climatological mean January
distribution of stationary wave geopotential height at the
200mb level (Fig. 6.24), wl'\lich is photocopied from the paper
of Wallace (1983) and originally based on the Atlas of
Crutcher and Merserve (1970), digitized, spatially and
'temporally smoothed and archived on magnetic tape in the
NCAR data library. Another is the Northern Hemisphere
6-year climatolog'ical . wintertime (December-February)
distribution of stationary wave streamfunction at the 250
mb level (Fig. 6.25), which is prOvidéd by B. J. Hoskins
(personal communication, 1986) and 1is based on ECMWF
analyses. Al} the major features displayed in these twao
figures are in good’ agreement. They appear in individual
winters with only relatively minor year to year variations
in structure (Wallace, 1983). )

Comparing Fig. 6.22 with Figs. 6.24 and 6.25, we find that
the pattern of stationary waves at the 200 mb level
simulated by this linear model is fé.irly consistent with the
observation, but the following deficiencies are evident in
the model results:

a) The anticyclonic circulation over the western
Pacific is relatively too weak compared with the
middle lé.titude circulation systems.

b) The cyclonic circulation centred at 60°E, 35°N is
relatively too strong.
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c) The cyclonic circulation over the eastern tropical
Atlantic and North Africa is severely weakened.‘

d) In 'high latitudes both the cyclonic circulation
between 175°W and 90°W, and the anticyclonic
circulation between 105°E and 175°W are displaced
westward,, and the latter has too 1arge an
extreme value of perturbation streamfunction.

‘The inaccurate representation of the actual wintertime
diabatic heating and the Northern Hemispheric topography
due to the low resolution used in the model as well as the
lack of transient effects included explicitly ‘in the model
may be partly responsible for these deficiencies. Certainly,
we should not forget the possibility that there might have
been evident differences in the forcing condition between a
particular month and a long period on which the
climatological statistics are based. However, in the next
chapter we will show that the nonlinearity is an important
factor in simulating these circulation systems in low and
high latitudes.

A longitudinal cross-section of . perturbation vertical
velocity at 45°N (Fig. 6.26) shows. that the sinking air is
mainly concentrated over the Eurasian Continent af this
latitude circle, and rising air océurs elsewhere.

The wave activity flux-es at the 850 mb and 500 mb
levels are shown in Figs. 6.27 and 6.28 respectively. There
are two major wavetrains propagating upward, eastward
and mainly equatorward from eastern Asia across the North
Pacific and from eastern North America across the North
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Fig. 6.21
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700 mb perturbation stream 'field for the linear
response to the Northern Hemisphericv topography
and the diabatic heating field derived from FGGE
IIla data. Contours represent the perturbation
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streamfunction/UOsm 5'1) with an interval of 20

units.

155



Contours are at

but for 200 mb.

Fig. 6.22 As Fig. 6.21,

intervals of 30 units.
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Fig. 6.23 Longitudinal cross-section of perturbation

geopotential height at 45°N for the linear
response to the Northern Hemispheric topography
and the diabatic heating field derived from FGGE

Illa data. Contour interval is 4 dam.
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Fig. 6.24 Northern Hemisphere climatological mean January

| distribution of stationafy wave geopotential
height at the 200 mb level. Photocopied from
the paper of Wallace (1983). Cohtour interval is
6 dam. The zero contour is thickened; positive‘
contours are solid and negative ones are dashed.
Lines of latitude and longitude are drawn every
20° and 60°, respectively.
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Fig. 6.25 Northern Hemisphere 6-year c}imatological

December-February distribution of stationary
wave streamfunction at the 250 mb level.
Provided by B8. J. ﬁoskins. Lines of latitude
and longitude are drawn every 10° aﬁd 20°,

respectively.
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Fig. 6.27

linear

the

850 mb wave activity flux for
response to the Northern Hemispheric topography
and the diabatic heating field _derived from FGGE
Illa data. The graphic convention is the same as

in Fig. 5.6, but contour interval is 100 units.
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" Atlantic. The North Pacific wavetrain is both more intense
and more extensive than that in the North Atlantic. From
the calculations for the pure orographic forcing and the
pure thermal forcing, it is found that at low levels the
North Pacific wavetrain 1is predominantly originated by
orographic forcing, in particular, the Tibetan Plateau plé.ys
the most important role, w}iile the thermal forcing makes
relatively —more contribution to the North Atlantic
wavetrain than to the North Pacific wavetrain. Above 500
mb (e. g., at‘ 200 mb level, not shown here), the individual
contributions to the wave activity flux from both the
orographic and the thermal forcing are comparable. Fig.
6.29 is the corresponding EP cross-section. The EP flux in
the lower troposphere is predominantlf determined by
orographic forcing, while the EP flux in th‘e middie and
upper troposphere depends on both the orographic and the

thermal forcing.

6.3.2 Topography and FGGE IIllb Heating Field

As discussed 1in section 6.2.2, when the FGGE . IIlb
vertically integrated heating field is used as an alternative
representation of +the actual diabatic heatkiri'g the linear
response to the combined orographic and thermal forcing
gives a similar wave pattern, but some significant
differences are found in the Pacific Ocean. For example, at
the 700 mb level (Fig._ 6.30) there 1is an anticyclonic
circulation between 20°N ‘and 40°N over the western Pacific
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‘associated with a cyclonic circulation to the west. These
systems dc; not appear in Fig. 6.21, where the FGGE IIia
heating field is.used. The 200 mb pérturbation stream field
(Fig. 6.31) is also similar to its counterpart for the FGGE
IIla heating field, only the amplitude of some wave patterns
is changed. Comparing these results with observations (Fig.
6.25) shows that +this linear solution still has the
deficiencies mentioned in the previous section, particularly
failing to simulate the cyclonic circulation over the eastern
" tropical Atlantic and North Africla.'

The influence on the wave activity flux 1is not
significant and not shown here. The corresponding EFP
cross-section 1is displayed in Fig. 6;32, showing é weaker
convergence of EP flux in the middle and upper levels

between 40°N and 60°N and a stronger source of EP flux in

the middle troposphere centred around 37°N.

6.3.3 A Zonal Resolution Test

As previously mentioned, in this study we only calculate
the response to ultra-long waves, 1l.e., only zonal wave
numbers 1, 2 and 3 are considered, partly because they are
most important for stationary planetary waves, partly
because the computational resource available is limited for
the nonlinear model, which has a high requirement of
computer storage and CPU time. However, in contrast to
the nonlinear model, the linear model has the advantage of
much lower requirements in computational aspects.
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6.21,

6.30 700 mb perturbation stream field as in Fig.

Fig.

.is derived from

but the diabatic heating field

FGGE IIIb data.
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Fig. 6.31 200 mb perturbation stream field as in Fig. 6.22,

but the diabatic heating field is derived from

FGGE IIIb data.
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Fig. 6.32 EP cross-section as in Figq. 6.29, but the diabatic

heating field is derived from FGGE IIIb data.
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Therefore a zonal resolution test was carried out to see if
significant differences might result from the inclusion of
higher wavenumbers. In this experiment both the meridional
and vertical resolutions remain unchanged, but the zonal
resolution comprises wavenumbers up to nine. The forcing
functions correspond to those used in section 6.3.1, that is,
both Northern Hemispheric topography and diabatic heating
derived from ;E‘GGE Illa data are included in the linear model.

Th»e perturbation stream fields at the 200 mb level
superposed for wavenumbers up to six and nine are shown
in Figs. 6.33 and. 6.34 respectively. The perturbation wave
patterns displayed in these two figures are very similar to
those in Fig. 6.22, where only wavenumbers up to three are
superposed. Comparing these results with the observations
(see, Fig. 6.25), there are some improvements achieved.
Firstly,‘ the anticyclonic circulation ovef the western
Pacific is enhanced after inclusion of higher wavenumbers,
which is more realistic; next, the cyclonic circulation over
the eastern tropical Atlantic and Nog:th Africa 1is evidently
enhanced, which .is also closer to the observed wintertime
climatological stationary wave pattern. The cyclonic
circulation centred previously ajc 60°E, 35°N 1is displaced
slightly eastward and has a stronger intensity, this
deviates from observed stationary waves even further.
There is no improvement found for the simulation in high
latitudes. In addition, the cyclonic circulation over eastern
North America is represented better by inclusion of higher
zonal wavenumbers.
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The improved wave simulations described above are
connected with a more realistic .repre-sentation of the
Northexrn Hemispheric topography and diabatic heating by
inclusion of higher =zonal wavenumbers in the model. In
order to see the influence of zonal resolution on the
representation of the Northern Hemispheric topography in
terms of +truncated series of spherical harmonics, the
horizontal distribution of surface geopotential height. for
zonal wavenumbers up to three and nine are shown in Fig.
6.35 and Fig.. 6.36 respectively. 1t 1is obvious that the
inclusion of higher wavenumbers produces more fealistic
£opography, especially for mountains with a smaller
horizontal scale, such as the North African mountains’, the
Greenland Plateau and the Rocky mountains. Fig. 6.37 shows
the horizontal distribution of vertically integrated diabatic
heating in January 1979, as 1in Fig. 6.9, but here zonal
wavenumbers up to nine are included. We can identify
smaller scale structures in Fig. 6.37, which are not visible

in Fig. 6.9.
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Fig. 6.33 200 mb perturbation stream field as in Fig. 6.22,

but for wavenumbers up to six.
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6.34 200 mb perturbation stream field as in Fig.

Fig

but for wavenumbers up to nine.
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Fig. 6.35 The horizontal distribution of surface

geopotential height for ther Northern Hemispheric
topography. The original data is on 1.875°x1.875°
grid points, which have been transformed into a
truncated series of spherical harmonics with
truncation indices M=3 and J=11. Contours

‘represent topography height/(300m).
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CHAPTER 7

NONLINEAR RESPONSE TO LARGE SCALE

TOPOGRAPHY AND DIABATIC HEATING

The linear calculations of the response to large scale
Northern Hemispheric topography and the actual wintértime'
- diabatic heating, as described in the previous chapter, are
interesting because of their suggestive similarity with the
observed climatological stationary wave patterns despite
some evident deficiencies in both amplitude and geographic
position of the simulated waves. However, the equations
governing the linear model are clearly a great
simplification of the reél atmospheric behaviour. The
velocity components of finite amplitude disturbances in the
real atmosphere are often of comparable magni‘tude to the
mean zonal flow. In 1;_his case one of the basic assumptions
for the perturbation method br‘eaks down, namely, the
terms in the governing equations which involve products of
perturbation variables become significant. This is
particularly evident in some areas such as the polar and
trdpical regions where the zonally averaged basic flow is
weak while the stationary waves induced by local and
remote forcing are relatively strong. It should be noted
that the strong nonlinearity in a limited region influences
other parts of the global circulation by means of various
interaction processes in the atmosphere. As a step closer
to réality, in this chapter we look for the response to the
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actual topography and diabatic heating again by using the
nonlinear primitive equation model described in chapter 2.
In a similai' way to the previous chapter, we will first
consider the two different catego-ries of 'forc':ing separately
(sectioné 7.1 and 7.2), and then for their combination
(section 7.3). Our attention 1is mainly directed to the

differences between the nonlinear and linear response.

7.1 Nonlinear Response to Northern Hemispheric Topography

In Figs. 7.1 and 7.2 are shown the perturbation stream
fields at the 700 mb and 200 mb levels for the nonlinear
response to the Northern Hemispheric topography. At 700
mb the nonlinear response has a - similar wave pattern to
the linear one, but with an enhanced amplitude in general.
At 200 mb the difference between the linear and nonlinear
response is more complicated. In the polar region the
nonlinear response is weakened excepf the anticyclonic
circulation over Greenland, which is considerably intensified.
The most significant changes take place in an extensive
regionb from the eastern Atlantic to the east coast of ASié.
Over the Atlantic there 1is an extensive anticyclonic
circulation in the linear response (see Fig. 6.2), the eastern
‘hal-f of  which is now replaced by a weak inverse
circulation. Farther east the ‘previous strong cyclonic
circulation over the Middle East and India is greatly
weakened and displaced south-eastward, whereas a quite
intense and extensive anticyclonic circulation appears to
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the northwest. The downstream cyclonic circulation is also
enhanced. In chapter 5 we made a similar comparison
between the linear and nonlinear response for the idealized
orographic forcing, but the changes described here are more
dramatic than before. >T.his suggests that the nonlinearity
of the response to the actual Northern Hemispheric
topography is very significant. |

The longitudinal cross-sections of perturbation
geopotential height and vertical velocity are shown in Figs.
7.3 and 7.4 respectively. Fig. 7.3 svhows ’two troughs and
two ;idges similar té Fig. 6.3 for the linear response, but
the vertical structure of the disturbances in Asia and the
West Pacific is obviously chénged. In the linear case the
upstream ridge and the downstream trough of the Tibetan
Plateau at 4.5°N are mainly concentrated below the 500 mb
level and the disturbance in the upper troposphere is
relatively weak (see Fig. 6.3, also Fig. 6.1 and 6.2), but in
the nonlinear case they pervade the whole troposphere
with the maximum deviation value of geopoteﬁtial height at
about 250 mb. In the region- further.upstream, the trough
at North America is 'avlso considerably intensified. Fig. 1.4
shows two main centres of rising air over the eastern
Pacific and the Atlantic, .and two centres of sinking air
over North America and eastern Asia. This differs from the
linear counterpart evidently (see Fig. 6.4).

The wave activity flux at 850 mb (Fig. 7.5) ;hows two
main wavetrains, one is over eastern Asia and the Pacific,
another over North America and the North Atiantic. The
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former is much stronger and related to the Tibetan Plateauy,
the latter with the Rocky mountains. The North American
wavetrain shows more evidence of splitting with one branch
propagating north-eastward and the other south-eastward.
These two wavetrains have their linear counterparts (see
Fig. 6.5 ), but with a stronger meridional component in the
nénlinear case. In addition, a maximum of the vertical flux
can be found to the west of Greenland. It may not be
»related ‘only to the Greenland 'Pléteau, the nonlinevar
interaction- is more  important as discussed later.
Comparison with Fig. 6.5 suggests that the wave activity
flux in high latitudes for +the nonlinear case differs
dramatically from that for the linear case. This is also
seen from the EP cross-section (Fig. 7.6), where the vertical
flux at the low level in high latitudes 1is considerably
weakened.

The two experiments which were performed in section 6.1
for the purpose of studying the relative importance of the
three large scale mountains of the Northe;n Hemisphere to
the orographically forced stationary waves .wexe repeated
using the nonlinear model. In' the 1iﬁear case, the major
circulation systems influenced by removing the North
American topography are confined to middle latitudes. but
in the nonlinear case 1its influence involves a more
extensive area. For example, at the 200 mb level (Fig. 7.7),
the previous anticyclonic circulation over the +tropical
Atlantic (see Fig. 7.2) has almost disappeared and the
cyclonic circulation over the eastern tropical Pacific is also
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weakened. A more interesting thing occurs 1in higr}
latitudes, that is, the previous gquite strong anticyclonic
circulation over Greenland is greatly weakened (the
maximum in the perturbation streamfunction has decreased
by about a half). A longitudinal . cross-section of
perturbation geopotential height at 45°N is svhown in Fig.
7.8. Comparison. of Fig. 7.3 and Fig. 7.8 shows that the
topography of North America, among whiéh the predominant
mountains are the Rockies, makes a substantial contribution
to the maintenance of the trough in North America as well .
as the associated ridge upstream at this latitude circle.
When the topography of Greenland is .removed, both the
anticyclonic circulation over Greenland and the inverse
circulation to the west at the 200 mb level (Fig. 7.9) are
weakened. It is nott_eyvorthy that the maximum in‘ the
perturbation streamfunction over Greenland is decreased
only by about one third, which is less than the decrease
caused by removing the North American topography. On the
850 mb wave aétivity flux map (not shown here), when the
North Amefican topography is removed the previogsly
mentioned maximum vertical flgx to the west of Grgenland
disappears, while it 1is only greatly weakened when the
Greenland Plateau is removed. This suggests that the wave
activity flux from mid-latitudes and its nonlinear
interaction with the waves induced locally are important in
de_termining the wave activity flux pattern in high
latitudes, thus affecting the stationary waves there. As
to the maintenance of orographically forced stationary
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in  Fig.6.1,

700 mb perturbation stream field as

Fig. 7.1

but for the nonlinear response.
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Fig. 7.2 200 mb perturbation stream field as in Fig.6.2,

but for the nonlinear response.
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Fig. 7.5

Wave activity flux F at 850 mb as in Fig. 6.5,

but for the nonlinear response.
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Fig. 7.6 EP cross-section as in Fig. 6.6, but for the

nonlinear response.
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Fig. 7.7 As Fig. 7.2, but the topography of North America

is removed.
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Fig. 7.9 As Fig. 7.2, but the topography of Greenland is

removed.
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waves in the whole Northern Hemisphere, these nonlinear
calculations show that the Rockies and the Greenland
Plateau are still of secondary importahce compared with

the Tibetan Plateau.

7.2 Nonlinear Response to Diabatic Heating in January 1979

For the 1idealized thermal forcvingv in middle latitudes
where the 2zonal mean basic flow is relatively strong, we
found that +the influence of nonlinearity on the wave
patterns at the 850 mb and 200 mb levels is not evident
(section 5.3). But the geographic distribution of diabatic
heating in the real atmosphere is much more complicated
than that idealized case, hence it 1is expected that the
nonlinear interaction may be more significant for the more
realistic thermal forcing. In this section we discuss the
nonlinear response to the mean diébatic heating in Jariuary
1979. Similar to the previous chapter, the heating fields
derived from different data sources will be considered

A

separately.

7.2.1 Heating Field Derived from FGGE Illa Data

The 700 mb perturbation stream field for the nonlinear
response to the FGGE Illa heating field (Fig. 7.10) has a
similar wave pattern in middle latitudes to that for linear
response, but with a much larger amplitude. The nonlinear
response in high and low latitudes produce some wave
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patterns which cannot be seen clearly in the linear case.
At the 200 mb level the nonlinear response (Fig. 7.11) in
both high and low latitudes is also stronger than the
linear one, while in middle latitudes the main difference is
found in the eastern Pacific and North America. Fig. 7.12 is-
a longitudinal créss—section of perturbation geopotential
height, which shows similar structure to the linear solution
(Fig. 6.12) except between 180°E  and 60° W. These
comparisons suggests that the nonlinearity for the response
to the actual diabatic heating in the wintertime is also
‘significant, particularly in high and low latitudes.

It is interesting to compare the nonlinear response to
the wintertime actual thermal forcing with that to the
Northern Hemispheric orographic forcing. We find that both
responses have comparable amplitude, this implies they . are
equally important for the maintenance of the stationary
planetary waves in wintertime. The difference in vertical
structure of' the induced wave patterns for these tWo
cateqgories of forcing is evident. For example, comparison
between the longitudinal cross—secti.ons (Fig. 7.3 and 7.12)
sho‘ws that the response to the actual thermal forcing has
more baroclinic nature than that to the actual orographic
' forcing. ) .

The wave activity flux for actual thermal forcihg "(FCGE
IIla) at the 850 mb level is shown in(Fig. 7.13. Thev major
features of the wave activity propagation displayed in this
fi‘gure are, in general, consistent w.ith those in Fig. 6.13,
but the former has much larger magnitude than the latter.
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As an extreme -example, the maximum vertical flux for the
Pacific wavetrain increases by a factor of five over its
linear counterpart. The Wave activity flux at the 200 mb
level (not shown here) has also a similar pattern to the
linear one but with a smaller magnitude, the maximum
vertical flux decreases by about 50%. In addition, the
downward flux at 850 mb for the linear response has
completely disappeared in the nonlinear case, where all
vertical fluxes are upward. As discussed in section 6.2.1, in
the nonlinear case the North Pacific wavetrain is still .
propagating poleward in the me?:idional direction and the
North Atlantic wavetrain equatorwaxrd, showing the
important effect of the longitudinal variation of diabatic
heating in the tropical region. |

Compéred with the linear response, the vertical
component of wave activity flux for the nonlinear response
increases in the lower levels and decreases in the upper
levels. This must be reflected in the corresponding EP
cross-section. Fig. 7.14 reveals a much more intense and
extensive vertical EP flux at the lower levels and a
slightly weakened vertical EP flux at high levels than in
Fig. 6.14 for the linear case, thus there is a much stronger
'éonvergence of EP flux in +the middle troposphere at
mid-latitudes in Fig. 7.14 than in Fig. 6.14. This means that
the interaction between the mean flow and the stationary
waves simulated by the nonlinear model is more significant
than by the linear model. On the other hand, compared
with the orographically forced waves (refer to Fig. 7.5), the

191



Fig. 7.10 700 mb perturbation stream field as in Fig.6.10,

but for the nonlinear response.
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Fig. 7.11

200 mb perturbation stream field as in Fig. 6.11,

but for the nonlinear response.
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Fig. 7.12 Longitudinal cross-section - of perturbation

geopotential height at 45°N as in Fig. 6.12, but

for the nonlinear response.
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Fig. 7.13 Wave activity flux F at 850 mb as in Fig. 6.13,

but for the nonlinear response.
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major convergent region of EP flux for the response to tﬁe
thermal forcing 1is located at +the higher levels. Their
contributions to  the maiﬁtenance of the vertically
propagating staﬁionery planetary waves in the stratosphere
are comparable, as discussed on the previous chapter for

the linear case.

7.2.2 Heating Field Derived from FGGE IIIb Data

In Figs. 7.15 and 7.16 are shown the perturbation stream
fields for the nonlinear response to the diabatic heating,
which is derived from FGGE IIIb data, at the 700 mb and 200
mb levels. Firstly, we compare these figures with Figs.
7.10 and 7.11 where the FGGE Illa heating field is used. The
700 mb response in Fig. 7.15 differs that 1in Fig. 7.10
evidently. The predominant systems in Fig. 7.15 are the

cyclonic circulation over the Pacific and the anticyclonic

they are more extensive than their ccm:fer/»arf.s
circulation over Eurasia, bﬁ-é—+n—?ng——4—+e—t-he—fmﬁe-r—rs—mueh

in F;J, 2.0, .
weaker—and—the—latter—does—naot—exist. The circulation

systems in the other areas displayed in Fig. 7.10 are either
weakened or have disappeared in Fig. 7.15. Thérefore it
looks as if the low level wave patterns produced by
‘different data set are quitev different. However, at the
200 mb level their difference is less evident. In ordgr .to
see the vertical structure of the wave pattern in middle
latitudes, a longitudinal cross-section of perturbaﬂon
geopotential height at ‘45°N is displayed- in Fig. 7.17.
Comparing Fig. 7.17 with Fig. 7.12 shows the troughs and

197



ridges produced by the two data se_ts are in general
agreeme.nt. Secondly, we compare Fig. 7.15 and 7.16 with
their linear counterparts (i.e.,, Fig. 6.16 and 6.17). At the
lower level the response in. the Pacific andv Eurasia is
considerably more intense in the nonlinear case than in the
linear case. The extreme values of perturbation
streamfunction in this region are now approximately double
what they were in the linear case. In addition, the polar
region response is also much stronger. At the upper level
a quite strong anticyclonic circulation has developed with a
centre at 65°N, 165°W in the nonlinear case, showing a
much stronger wave propagation poleward in the meridional
direction than in the linear case.

The corresponding wave activity fluxes at the 850 mb
and 200 mb levels are shown in Fig..7.18 and 7.19. Similar
to the previous section for the FGGE Illa heating field, the
lower level flux is much larger than in the linear case in
both horizontal and vertical directions. A dquite strong
convergence of EP flux is .also found in the middle levels at
mid-latitudes (Fig. 6.20). The extreme value of the
convergence of EP flux in the nonlinear case is tripled

compared with the linear case.

7.3 Nonlinear Response to Topography and Diabatic Heating

Unlike the linear case, the nonlinear 'solution for the
combined orographic and thermal forcing is not a simple
linear superposition of the separate nonlinear solutions for

198



.
. N ~ - § -~ - .
S E ; -
o 3 ; .
< . :
T S U T 1.000
~i PP - [T
1y e, .
0 5

700 mb perturbation stream field as in Fig. 6.16,

but for the nonlinear response.

199



'. > R
.. ’;9'* (r Ay
‘.\’ P H

-~ O e
-

i

Fig. 7.16¢ 200 mb perturbation stream field as in Fig. 6.17,

but for the nonlinear response.

200



PRESSURE (sb)

8

g

700

Fig. 7.17

-1 -120 -6b ) & ) 19
LONGI TUDE
Longitudinal cross-section of perturbation

geopotential height at 45°N as in Fig. 7.12, but

for the FGGE IIlb heating field.

201




;
;
i
i
29,
i
-.‘ Y >
¢ PR o |
e ; 3 !
5 R RN !
L A% H
. !
kY s
. v
v !
’n.‘ ‘-.
f
) a
H ’;
. H
: -
N H 4
. [y . e . . K
s, & kY R
g \ 3
<, . W
., - o 8.008 0

Fig. 7.18 Wave activity flux F at 850 mb as in Fig. 6.18,
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Fig. 7.19 Wave activity flux F at 200 mb as in Fig. 6.19,

but for the nonlinear respbnse.
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the pure orographic and the pure thermal forcings. These
forcing functions must be inserted into the nonlinear model
Asimultaneously. The results for the Northern Hemispheric
tovpography in combination with the FGGE Illa or the FGGE

I1IIb heating field are described separately.

7.3.1_Topography and FGGE Illa Heating Field

In Figs. 7.21 and 7.22 are shown the perturbation stream
fields at the 700 mb and 200 mb levels for the nonlinear
response to the Northern Hemispheric topography in
combination with the FGGE Illa heating field. As we may
expect from the previous experiments, at the lower level
the nonlinear response is greatly enhanced compared with
the linear one, especially in high and low latitudes. Even
in middle latitudes the extreme value of the perturbation
streamfunction for most circulation systems increases mére
than 100%. At the upper level the difference between
nonlinear and linear responses is also evident. In order to
show what improvements have been achieved by inclusion of
the nonlinear interaction, we may review the deficiencies
of the linear response, which were discussed in section
6.3.1, as follows.

a) The anticyclonic circulatioh over the weétern
Pécific, which appears too weak in the linear
response, is considerably intensified in the nonlinear
case and looks more realistic compared with the
observed 6-year climatological stationary waves (Fig.
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b)

c)

d)

6.25).

The cyclonic circulation located in the Middle East
and to the North of India, which is too strong and
appears unrealistic 1n the linear response, is greatly
weakened 1in the nqnlinear case and, in 'general,
consistent with the observation.

The cyclonic circulation over the. eastern tropical
Atlantic and North Africa, which appears very weak
in the linear response (the extreme value of
perturbation streamfunction is slightiy more than
10% of the observed value), is evidently enhanced in

the nonlinear case. The extreme value of

perturbation streamfunction for this circulation

2 1

reaches up to 1.5x103 m's (the observed value for
the 250 mb pattern is about 2.Ox103mzs'1). This

may be considered as a substantial improvement for

the model simulation.

Finally, this nonlinear solution still cannot
reélistically simulate the observed climatological
stationary waves in high latitudes. The reasons for
this deficiency have not been investigated fully.
From the numerical experiments Which have been
done, it is believed ﬁhat -the inaccurate
representa{tion of the actual wintertime diabatic
heating is partly responsible. For example, the
anticyclonic circulation located poleward of 60°N and
between 120°E and 150°W is too strong and clearly
displaced eastward. This mainly results from the
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thermal forcing (see Fig. .7.11). If the alternative
heating field derived from FGGE IIlb data is employed
a better result may be obtained (see Fig. 7.16). In
the next section it is shown that the nonlinear
response to the Noi:thern Hemispheric topography in
combination with the FGGE IIIb heating field does
give- a better representation for the high latitude
wave pattern.
Tﬁe first three nonlinear effects discussed above are
significant improvements in the response characteristics of
the model. Therefore it is apparent that the nonlinearities
are of primary importance in the response of the model
atmosphere to the actual topography in combination with
the actual diabatic heating.

In middle latitudes at the 200 mb level the'difference.
between the nonlinear and linear response is less evident.
In Fig. 7.23 1is shown .a longitudinal ' cross-section of
perturbation geopotential height at 45°N. For convenience
of comparison, another corresponding longitudinal
cross-section based on observations in the winter season is
shown in Fig. 7.24, which is adapted from Lau (1979b) and
derived from 11 years of NMC operational .analyses.
Comparison between Figs. 7.23 and 7.24 shows that the
major troughs and ridges at this latitude circle predicted
by this nonlinear model are in their cc;rrect locations. The
vertical phase structure of the geopotential height
perturbations displayed in Fig. 7.23 is characterized by a
distinct westward tilt with height, which is also
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reasonable. The amplitude of the perturbations in these
two figures is not coincident. ‘fhere is nothing surp_rising
about it becausé the steady-state solution, with no effect
of transient waves explicitly included, differs from the
time mean of a time varying solution. It is certainly
possible that some other reasons exist which may affect
the amplitude. For example, the dissipation parameters are
important for the simulated wave amplitude as shown in
the sensitivity exper.iments of sectién 5.1.3. Compar_ing Fig.
7.23 and 7.24 with Fig. 6.23 suggests that the nonlinear
response is closer to observations than the linear response
even in middle latitudes.

In comparing Fig. 7.22 with Fig. 7.2 (for the pure
orographic forcing) and Fig. 7.11 (for the pure thermal
forcing), we also note that the mid-latitude +topography,
especially the Tibetan Plateau (compare further with Figs.
7.7 and 7.9), makes a substantial lcontribution to the
maintenance of the cyclonic circulation over the eastern
tr.:opical ahd sub-tropical Pacific as well as the inverse
circulation over the western Pacific at the 200 mb level.
These upper level systems are usually considered to be
associated with the large scale longitudinal circulation over
the tropical Pacific, which is often referred to as the
‘Walker Circulation’. It is here suggested that the
orographic forcing in mid-latitudes plays an important role
on the planetary scale motions in the tropics.

A longitudinal cross-section of perturbation vertical
velocity at 45°N is shown in Fig. 7.25, which is
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characterized by rising motion over the oceans and sinking
motions over the continents. The vertical motion over
eastern Asia and the Pacific is evidently stronger than over
the other regions at this latitude circle. Compared with
the linear case (Fig. 6.26), the rising (sinking) over the
Pacific (Europe) is considerably enhanced (weakened), and the
vertical motion over North America 1is reversed. ’I:his
éxample shows that the vertical vglocity, which is
associated with the irrotational (divergept) component of
the horizontal flow, is very sensitive to the nonlinearity.
In Figs. 7.26 and 7.27 are shown the wave activity fluxes
at 850 mb and 500 mb respectively. The wave propagation
characteristics shown 1in these figures are, in general,
consistent with those in the linear «case, but with
evidently larger magniltude. For exar‘nple, the maximum of
the vertical flux at the 850 mb level for both the Pacific
and tl'ie. Atlantic wavetrain are doubled compared with .the'
linear case. The meridional propagation of wave activity is
also more evident. From the view of computation, the
change in wave activity flux F resuits from the variation
of -the spatial structure of the forced stationary waves,
especially the' horizontal and vertical gradient of
perturbation streamfunction are important factors in
determining +the F. As mentioned in section 4.1.1, the
conservation relation for F (Plumb, 1985) is derived from
the linearized geostrophic equations. In the nonlinear case
we may render it valid by incorporating the nonlinear
effects into the source term. Therefore the évident
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700 mb perturbation stream field as in Fig. 6.21,

but for the nonlinear response.
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Fig. 7.22 200 mb perturbation stream field as in Fig. 6.22,

but for the nonlinear response.
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‘difference of F between the nonlinear and linear response
implies that the nonlinearity is significant.

The corresponding EP cross-section is shown in Fig. 7.28.
The pattern of EP flux i'n middle latitudes is, in general,
consistent with that for the linear case (Fig. 6.29), but the
vertical flux 1is greatly enhanced at the low levels and
associated with a much larger convergence of EP flux in
the lower and middle troposphere. A s.ource of EP flux
appears in the upper troposphere between 40°N. and 50°N '
which results obviously fi‘om the inélusion of nonlinear
effect in the model because no evidence is found in the
linear éase for this upper troposphere source. The pattern
of EP flux.andv the associated divergence in high latitudes
for the nonlinear case differs from the linear case
evidently. These diagnostic analyses suggest again that the
nonlinearity is significant for the response to the Northern

and diabatic heatin
Hemispheric topography:‘, and. also that the interaction
between mean flows and the stationary waves simulated by

the nonlinear model is much stronger than by the linear

model.

7.3.2 Topography and FGGE IlIb Heating Field

In Figs. 7.29 and 7.30 are shown the perturbation stream
fields at the 700 mb and 200 mb levels for the nonlinear
response to the Northern Hemispheric topography in
combination with the mean diabatic heating in January
1979, which is derived from FGGE Illb data. Compared with
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the linear counterparts (Fig. 6.30), the lowexr level response
is obviously enhanced. Compared with the observed
climatological stationary waves (Fig. 6.25), substantial
improvements are also achieved for the 2100 mb perturbation
stream field not only in low and middle latitudes as
described in the previous section, but also in high latitudes
wﬁere Fig. 7.30 gives better results than Figs. -6.22, 6.31 as
well as 7.22.

The corresponding EP cross~sec£ion, (Fig. 7.31) is similar
to Fig. 7.28 where the diabatic heating field is derived
from FGGE Illa data. 'Coinparis_on_ for the EP cross-section
between the linear (Fig.' 6.32) and nonlinear (Fig. 7.31) case

support the suggestions discussed in the previous section.
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Fig. 7.30 200 mb perturbation stream field as in Fig. 6.31,

but for the nonlinear response.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

In this study, the response of a model atmosphere to
large scale topography and stationary diabatic heating has
been investigated using linear and nonlinear steady-state,
baroclinic_:' vprimitive equation models, in ~.which Rayleigh
friction, the effect of Newtonian qooling and biharmonic
horizontal diffusion are included, and the vertical as well as
the horizontal.structure is described by truncated series of
analytic orthogonal. functions. The transform method Iis
used to evaluate the nonlinear terms in the governing
equations. The steady-state, convergent, nonlinear solution
is obtained by using Newton-Raphson iteration.

Observations of the atmosphere and the modelling results
from ,previous authors have shown that the  vertical
propagation of wave activity 1is important for stationéfy
planetary waves with small zonal wavénumber. In order to
investigate the vertical as well as the horizontal
propagation, a three-dimensional wave activity flux, which
was derived by Plumb (1985) for lineavr, quasi-geostrophic
stationary waves  on a zonal flow, is used as a diaénostic
for both the linear and nonlinear solutions. In addition,
the EP cross-section has also been used as a diagnostic not
only for the vertical and meridional propagation of the
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wave activity, but also for the interaction between waves
and .mean flow.

The main conclusions from the numerical experiments
which have been done in this study may be summarized as
follows.

(1) The linear theory of stationary waves is based ‘on
two basic assumptions, i.e.,, the basic state variables must
themselves satisfy the governing equations when the
perturbations are set to zero, and the perturbation fields
~must be small enough so that all terfns in the governing
equations which involve products of the perturbation
variables can be neglected (‘see, e.g., Holton, 1979). The
linear solutions calculated in this study show that this
simple technique is ideally suitea for qualitative analysis
of the characteristics of the stationary waves induced by
large scale topography and diabatic ﬁeating. However, th‘e
linear theory 1is a great simplification of +the real
atmospheric» behaviour. The horizontal® velocity " of the
stationar‘y waves in the real atmosphere 1is often of
comparable magnitude to the mean zonal flow and thus the
basic assumptions of the perturbation theory break ‘down,
i.e.,, the interaction between waves and mean flow become
important and the nonlinear terms in the governing
equations cannot be neglected. " This is particularly true in
some areas, such as the polar and tropical regions, or the
lower troposphere in mid-latitudes, where +the <zonally
averaged basic flow _is relatively weak. On the other hand,
the significant nonlinearity in a limited region may have a
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further influence on the remote response in terms of
various complicated interaction processes in the atmosphere.
The great difference revealed in the comparisons between
the linear and nonlinear response either to the oiographic
forcing or to the thermal forcing shows that the
nonlinearities are significant provided the forcing has a
comparable intensity to that in the real atmosphere. The
experiments for the . idealized forcing suggest 'that the
nonlinear effect is more evident when the forcing region is
siﬁuated in high or low latitudes.

(2) The wave pattern produced by the linear response to
the Northern Hemispheric topography and diabatic heating,
which 1is derived for January 1979 either from +the NMC
FGGE Illa operational data or from the ECMWF FGGE IIIb
analysis, is consistent with the ‘observed cliﬁlatological
stationary wé.ves on the whole, but also with some evident
deficiencies as described in section 6.3. In contrast, the
corresponding nonlinear response makes a significant
improvement over these deficiencies. .The nonlinear model
does produce more realistic stationary waves in the winter
season than the linear model with the same -reéolution.
This fact suggests, from anothe-r point of view, that the
nonlinearities are of primary importance in simulation of
the statioﬁary waves in the real atmosphere.

(3) The diagnostic analyses in this study show that the
wave activity flux | is a useful diagnostic of the
three-dimensional propagation of the stationary wave
activity, and also a useful diagnostic of the nonlinearities.
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The wave activity 1is a quantity based on lineariéed
quasi-geostrophic equations. When we use it as a
diagnostic for the nonlinear model experiment, or for the
observational data, we must bear in mind the effect of
nonlineérity. Some sources or sinks of wave acti\(ity flux
may. result from, or partly from, the nonlinear effect.
Since the evaluation of the wave activity -flux involves the
three-dimensional structure of +the perturbation stream
field, i.e., the vertical as well as the horizontal gradient
of the perturbation streamfunction, _ in .certain
circumstances it is more sensitive to. the nonlinear effects
than the streamfunction itself.

(4) When zonal averages are taken, the wave activity
flux reduces to the EP flux, which is also useful because it
is a measure of net wave propagation in both vertical and
meridional directions and its divergence is a direct measure
of the total forcing of the 2zonal mean state by the
stationary waves. Compared With the linear case, the
vertical component of EP flux for the nonlinear response to
the Northern Hemispheric topography and the actual diabatic
heating in the winter season is considerably enhanced at
low levels and associated'with a. much larger, convergence
of EP flux in the lower and middle +troposphere. This
implies the interaction between the mean flow and the
stationary waves simulated by the nonlinear model is much
stronger than by the linear- model. Therefore the
nonlinearity is also important for investigating wave
propagation and the interaction between the zonal mean
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flow and the stationary waves.

in addition, the evident difference of wave activity
fluxes (or EP fluxes) between the linear and nonlinear
responses vsuggests also that the nonlinear effects play an
important role in determining the three-dimensional
structure of stationary waves.

.(5) The numerical experiments for the response to some
idealized topography, where the +topography of ©North
America or Greenland is removed from the whole Northe_rn
Hemispheric topography, show that the Tibetan 'Plateau
plays‘ the most important role in the maintenance of
orographicélly forced stationary waves 1in the winter
.season, while the forcing by the orographic effect of the
Rocky mountains or the Greenland Plateau seems to be of
secondary importance.

(6) The middle latitude orographic forcing, especially that
by the Tibetan Plateau, makes a substantial contribution to
the maintenance of the cyclonic circulation over the
eastern tropical and sub-tropical Pacific as well as the
inverse circulation over the western Pacific in the upper
troposphere. These upper level systems are usually
associated‘with the Walker circulation. It is therefore
suggested that the orographic foréing in mid-latitudes
plays an important role on +the maintenance of the
planetary scale motions in the sub-tropics and tropics (but
not in the equatoric—il region for this hemisphere model).

(7) The stationary waves induced by the actual thermal
forcing have a comparable amplitude with those by the
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Northern Hemispheric orographic forcing. We may hence
consider these two categories of forcing are equally
important for the maintenance of the wintertime stationary
waves in the Northern Hemisphere:

(8) The response to the actual thermal forcing has a
more baroclinic nature than that to the actual orographic
forcing.

(9) The vertical structufe of EP flux for. the pure
thermal forcing differs from that for the pure orographic
forcing. Although the former usually has a smaller vertical
component at the lower troposphere than the latter, they
become comparable in the middle and upper troposphere.
Both the thermal and orographic fofcings make a
substantial contribution to the maiﬁtenance of the
verticaﬂy propagating stationary planetary waves in the
stratosphere.

(10) The experiment for the response to an idealized
diabatic heating in the tropical region shows +that an
isolated tropical heating produces not only a strong
response in the tropicall region itself, but also a quite
strong extratropical response, which appears as a
wavetrain propagating poleward as well as longitudinally,
and suggests that the tropics may have a significant
influence on the wintertime stationary waves in middle and
high latitudes. This is also supported by  the comparison
between the responses which use the diabatic heating
derived from the NMC FGGE 1Illa operational data or,
alternatively from the ECMWF FGGE IIlb analysis.  The
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longitudinal variation of diabatic heating in the tropical
region has different characteristics in these two heating
fields, and the corresponding wave patterns in high
latitudes simulated by the nonlinear model are quite
different. The directions of meridional pro.pagation of th'e
wave activity for the Pacific wavetrain and the Atlantic
wavetrain at the low levels in the pure thermal forcing
case (as discussed in section 6.2.1) are reversed, this
provides édditional evidence to sﬁpport the above

suggestion.
8.2 Possible Extensions

A number of extensions to this study aie possible. The
contribution from the tropical diabatic heating to the
maintenance of the stationary waves in middle and high
latitudes could be further inveétigated by using a
separating | technique, which has been employed to
investigate the relative importance of the three large
scale mountains of the Northern Hemisphere - to the
orographically forced stationary waves.

Since the pioneering work of Charney and Eliassen (1949),
the sﬁationary response’ to forcing in the Northern winter
have been investigated by mény authors although there are
still some uncertainties which require further study.
However, there are relatively few studies on the response
to the forcing in summer. The zonally averaged basic flow
in summer is much weaker than in winter. It is therefore
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expected that the nonlinear effect may be more evident in
the summer simulation than in this study. The nonlinear
model developed here should be suitable for investigating
the stationary waves in the summer season.

In the linear model a predefined zonal mean basic state
is used and precludes the inter_aétion between mean flow
and the waves. This constraint is relaxed in the nonlinear
model, but the zonally averaged components of the nonlinear
solution are still damped toward their_ initial state, i.e,
the preécribed' basic state for the linear model.. It is
possible to relax this constraint further in the nonlinear
model and a flow varying in the 2zonal direction could be

used as the basic state. ‘This would allow waves

. propagating deeply into some tropical regions of weak

westerlies. The 1inclusion of a zonally .non-uniform basic
flow is ©particularly interesting for investigating the

tropical-extratropical interactions.
The nonlinear model, which was used +to study the
hemispherical structure and therefore prohibited the

cross-equator propagation of stationary waves, has clear

. potential for further study by extension to global domain.

For a global model, the asymmetric components about the
equator must be included in the spherical harmonics
expansions’ and some additional +truncation relations are

required as discussed by Eliasen et al. (1970).

B Ar.lﬁ 1mportantdef1c1ency o.g thismstﬁ_dy- 1s tha;;: _t;lrére 1s 7.1:170
effect of transient wavesi il:xcluded in the model. The
observed climatological stationary. waves are a
time-averaged picture. By neglecting the forcing due to

the mean convergence of heat and momentum transports by
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the smaller scale transient waves, it is impossible for us

to simulate accurately the observed climatological

stationary waves. It should be possible to obtain a more
realistic result if the transient effects are properly
introduced into the model.

Another deficiency is that the nonlinear model developed
in this study is not economic, the high requirement for
computational ‘resources has imposed restrictions on ' the

model resolution. Further study would also be worthwhile

exploring a more reasonable specification of the dissipation

parameters. A three-dimensional diabatic heating field
derived from observational data is preferable to- the

idealized vertical profile used in the study.
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APPENDIX A
LIST OF SYMBOLS

Only the principal symbols are listed. Symbols formed by
adding primes, superscripted or subscripted indices are not
listed separately. Boldface type indicates vector
quantities. Where symbols have more than one meaning, the
section where the second meaning is first used is indicated
in the list. the matrix symbols also use boldface types in

the text and are not listed here.

a Radius of the earth
e Base of the natural logarithm
£ (1) =29Qsingy, Coriolis parameter;

(2) A function_ (section 2.5.4)
g Gravitational acceleration
i (1) An integer;

(2) Square root of minus one (section 2.3.1)

'j‘ Total wave number

k, 1 Vertical w-ave number

m Zonal wave number

n Total wave number, n-lm| 1i1s the number of

zeros of Pm n(u) between the'poles

q ElnPs, 1ogarithm of surface pressure

t ‘Time

u Zonal component of velocity (eastward)
v Meridional component of velocity
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(9]

Sample points for Gauss-Legendre quadrature
Weighting coefficients for Gauss-Legendre
quadrature ,
E—HhKP/Ps), vertical coordinate in log-pressure
system

An arbitrary variable

Zonal mean of A

Deviation from the zdnél mean [A]

=9A/du, zonal derivative of A

=(u2-1)8A/8u, meridional = derivative of A,
multiplied by (u2—1)

=(02-—1)8A/80, vertical derivative of A, multiplied
by (02—1)A _

Specific heat of dry air at constant pressure
Eliassen~Palm (EP) wave flux ‘
Meridional component of EP ’flux

Vertical component of EP flux

Three-dimensional wave activity flux

(1) 2Zonal component of friction force per unit
mass; (2) Zonal component of wave activity flux
(section 4.1.1)

(1) Meridional component of friction force per
unit mass; (2) Meridional component of wave
activity flux (section 4.L15

Vertical component of wave activity flux
Vertical derivative of Kk, defined by eq. (2.54)

Scale height
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M_eridional derivative of normalized Legendre
polynomial

Meridional derivative of normalized associated
Legendre. polynomial

Integration of weighted Legendre polynomial,
defined by eq. (2.57)

Truncafion index for total wave number
Integr'atio'n of normalized Legendre polynomial,
defined by edq. (2.52)

Decay rate of Newtonian cooling

Truncation index for vertical wave number
Truncation index for zonal wave number

(1) Number of grid points;

(2) Buoyancy frequency (sectioh 4.1.1)

Piessure

A standard constant pressure

Normalized Legendre polynomial

Normalized associatgd Legendre polynomial
Diabatic heating per unit mass per unit time
Gas constant for dry air

Decay rate of Rayleigh friction

Transfbrmed veftical component of velocity,
defined by eq. (2.11)

Temperature

7zonal component of velocity multiplied .by the
cosine of latitude

Meridional component of velocity multiplied by
the cosine. of latitude
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" Coefficient of biharmonic horizontal diffusion in
the momentum equation

adf/dt, variation of the Coriolis parameter with
latitude

'-_=R/Cp, ratio of gas constant to specific heat at
constant pressure

Longitude

=sing, sine c;f latitude

Coefficient of biharmonic horizontal diffusion in
the thermodynamic eqﬁation

A standard density

529/98-1, vertical coordinate in o system

=da/dt, vertical component of velc:;city in o
system |

e-folding diffusive time

Latitude

Velocity potential

Streamfunction

=dP/dt, vertical component of velocity in
pressure system

Divergence of EP flux for contouring. in the EP
cross-section

Geopotential

Surface geopotential

Angular speed of rotation of the earth

Hamiltonian operator
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APPENDIX B

- INDEX OF FIGURES

" The following abbreviations are used in this index:

(L) Linear response
(NL) Nonlinear response
M Truncation index for zonal wavenumber

Horizontal Distribution of Forcing Function
Diabatic heating (FGGE IIla), M=3, Fig. 6.9
Diabatic heating (FGGE Illa), M=9, Fig. 6.37
Diabatic heating (FGGE IIIb), M=3, Fig. 6.15
lIdealized topography in mid-latitudes, Fig. 5.1
" Northern Hemispheric topography, M=3, Fig. 6.35
Northern Hemispheric topography, M=9, Tig. 6.36

Normalized associated legendre polynomial, Fig. 2.1

Observed climatological stationary waves
*
Longitudinal section at 45°N for ¢ , Fig. 7.24
Perturbation geopotential height, 200mb, Fig. 6.24

Perturbation streamfunction at 250 mb, Fig. 6.25

Response to

Actual thermal forcing in Jan. 1979 (FGGE Illa)
EP cross-section, Figs. 6.14(L), 7.14(NL)
Longitudinal section at 45°N for ¢ , Figs. 6.12(L), 7.12(NL)
Perturbation stream field, 700mb, Figs. 6.10(L), 7.10(NL)
Perturbation stream field, 200mb, Figs. 6.11(L), 7.11(NL)
Wave activity flux, 850mb, Figs. 6.13(L), 7.13(NL)
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Actual thermal forcing in Jan. 1979 (FGGE IIIb)
EP cross-section, Figs. 6.20(L), 7.20(NL)
Longitudinal section at 45°N for ¢,*, Fig. 7.17(N£.)
Perturbation stream field, 700mb, Figs. 6.16(L), 7.15(NL)
Perturbation stream field, 200mb, Figs. 6.17(L), 7.16(NL)
Wave activity flux, 850mb, Figs. 6.18(L), 7.18(NL)

Idealized orographic forcing in high latitudes
EP cross-section, Figs. 5.24(L), 5.25(NL)
Perturbation stream field, 200mb, Figs. ?.ZO(L), 5.22(NL)
Wave activity flux, 500mb, Figs. 5.21(L), 5.23(NL)

ldealized orographic forcing in mid-latitudes
EP cross-section, Figs. 5.8(L), 5.15(NL)
Ldngitudi‘nal section at 35°N for ¢*,- Figs. 5.4(L), 5.11(NL)
Longitudinal section at 35°N for w, Figs. 5.5(L), 5.12(NL)
Perturbation stream field, 700mb, Figs. 5.2(L), 5.9(NL)
perturbation stream field, 200mb, Figs. 5.3(L), 5.10(NL)
Wave activity flux, 850mb, Figs. 5.6(L), 5.13(NL)
Wave activity flux, 500mb, Figs. 5.7(L), 5.14(NL)

Sensitivity experiments, Figs. 5.16-5.19(L)

Idealized thermal forcing in low latitudes
EP cross-section, Figs. 5.37(L), 5.40(NL)
Perturbation streamfunction, 700mb, Fi.gs.5.35(L), 5.38(NL)
Perturbation streamfunction, 200mb, Figs.5.36(L), 5.39(NL)

Idealized thermal forcing in mid-latitudes
EP cross-section, Figs. 5.31(L), 5.24(NL) _
Meridional section at 135°E for F, Figs. 5.30(L), 5.33(NL)
Perturbation stream field, 700mb, Fig. 5.26(L)
Perturbation stream »field, 200mb, Fig. 5.27(L)
Wave activity flux, 500mb, Figs. 5.29(L), 5.32(NL)
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Northern Hemispheric topography
EP cross-section, Figs. 6.6(L), 7.6(NL).
Longitudinal section at 45°N for ¢*, Figs. 6.3(L), 7.3(NL)
Longitudinal section at 45°N for m*,' Figs 6.4(L), 7.4(NL)
Perturbation stream field, 700mb, Figs. 6.1(L),' 7.1(NL)
Perturbation stream field, ZOOmb, Figs. 6.2(L), 7.2(NL)
Wave activity flux, 850mb, Figs. 6.5(L), 7.5(NL)

N. H. topography, but removing topography of North America
. :
Longitudinal section at 45°N for ¢ , Fig. 7.8(NL)
Perturbation stream field, 200mb, Figs. 6.7(L), 7.7(NL)

N. H. topography, but removing the Greenland Plateau
Perturbation stream field, 200mb, Figs. 6.8(L), 7.9(NL)

N. H. topography and actual diabatic heating (FGGE I11a)
EP cross-section, Figs. 6.29(L), 7.28(NL)
Longitudinal section at 45°N for ¢*, Figs. 6.23(L), 7.23(NL)
‘Longitudinal section at 45°N 'for m*, Figs. 6.26(L), 7.25(NL)
Perturbation stream field, 700mb, Figs. 6.21(L), 7.12(NL)
Pefturbation stream field, 200mb, Figs. 6.22(L), 7.22(NL)
Wave activity flux, 850mb, Figs. 6.27(L), 7.26(NL)
Wave activity flux, 500mb, Figs. 6.28(L), 7.27(NL)
Zonal resolution test, Figs. 6.33-6.34(L)

N. H. topography and actual diabatic heating (EGGE IIIb)
EP cross-section, Figs. 6.32(L), 7.31(NL)
Perturbation stream field, 700mb, Figs. 6.30(L), 7.29(NL)
Perturbation stream field, 200mb, Figs. 6.31(L), 7.30(NL)

Zonal mean flow in January 1979, Fig. 3.1

Zonal mean temperature in January 1979, Fig. 3.2
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