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ABSTRACT 

Linear and nonlinear steady-state, baroclinic, primitive 

equation, numerical models of forced stationary waves in 

the atmosphere are developed. Newtonian cooling, Rayleigh 

friction and biharmonic horizontal diffusion are included in 

both models. The vertical as well as horizontal structure 

is described by truncated series' of analytical orthogonal 

functions. The steady-state, convergent, nonlinear solution 

is obtained by using Newton-Raphson iteration, and the 

transform method is used to evaluate the nonlinear terms 

in the governing equations. 

The Eliassen-Palm (EP) cross-section and the 

three-dimensional wave activity flux, which was derived by 

Plumb (1985) for linear, quasi -geostrophic stationary waves 

on a zonal flow, are used as diagnostics for the vertical 

and horizontal propagation of the waves, the interaction 

between the mean flow and the waves, and the significance 

of the nonlinearity. 

Comparison of nonlinear model solutions with 

corresponding linear model solutions, and the diagnostic 

analyses show that the nonlinear effects are significant 

and of primary importance in simulation of the stationary 

waves in the real atmosphere. The model's nonlinear 

response to the Northern Hemispheric topography and the 

actual diabatic heating is, in general, consistent with the 

observed climatological stationary waves in the northern 

Winter and makes a substantial improvement over the 



deficiencies of the linear solution. It is also shown that 

nonlinear effects are important for investigating wave 

propagation and the interaction between the zonal mean 

flow and the stationary waves. 

Results of the numerical experiments suggest that the 

Tibetan Plateau plays the most important role in the 

maintenance of orographically forced stationary waves in 

the northern winter, while the orographic effect of the 

Rocky mountains or the Greenland Plateau seems to be of 

secondary importance. 

The stationary waves induced by the actual thermal 

forcing in winter have a comparable amplitude and more 

baroclinic nature than those produced by the Northern 

Hemispheric orographic forcing. 

The mid-latitude orographic forcing, especially that by 

the Tibetan Plateau, makes a substantial contribution to 

the maintenance of the cyclonic circulation over the 

eastern tropical and sub-tropical Pacific in the upper 

troposphere. On the other hand, the longitudinal variation 

of diabatic heating in the tropics has a significant 

influence on the wintertime stationary waves in middle and 

high latitudes. 

2 



Chapter 3 Linear Primitive Equation Model ..............50 

3.1 Introduction ...............................50 

3.2 Model Equations ............................51 

3.3 Basic State ................................53 

3.4 Method of Solution .........................54 

Chapter 4 Diagnostics and Experimental Design..........62 

4.1 Stationary Wave Activity Flux ..............62 

4.1.1 Basic Definitions ......................62 

4.1.2 Evaluation Procedure ..................65 

4.2 EP Cross-Section ...........................66 

4.3 Experimental Design ........................69 

4.3.1 Forcing Functions .....................69 

4.3.2 Dissipation Parameters ................70 

4.3.3 Graphics ..............................72 

Chapter 5 Preliminary Experiments 

for Both Models ..............................74 

5.1 Response to a Large Scale 

Mountain in Mid-latitudes ..................75 

5.1.1 Linear Solution .......................75 

5.1.2 Nonlinear Solution ....................80 

5.1.3 Sensitivity to the 

Dissipation Parameters ................92 

5.2 Response to a Large Scale 

Mountain in High Latitudes .................94. 

5.2.1 Linear Solution .......................94 

4 



CONTENTS 

Abstract................................................1 

Contents ................................................3 

Chapter 1 Introduction ..................................7 

1.1 Historical Review ...........................9 

1.2 Present Study ..............................14 

Chapter 2 Nonlinear Primitive Equation Model ...........18 

2.1 Introduction ...............................18 

2.2 Model Equations ............................20 

2.3 Spectral Representation of the Dependent 

Variables and Associated Derivatives .......25 

2.3.1 Normalized Orthogonal Functions .......25 

2.3.2 Spectral Representation of the 

Dependent Variables ...................29 

2.3.3 Evaluation of Spatial Partial 

Derivatives ............................34 

2.4 Vertical Integration of Continuity and 

Hydrostatic Equation ........................36 

2.4.1 Evaluation of Vertical Velocity .......36 

2.4.2 Evaluation of Geopotential ............37 

2.5 Method of Solution .........................38 

2.5.1 General Description.. ............... 1.38 

2.5.2 Numerical Integration.... .............. 40 

2.5.3 Computational Grid ....................43 

2.5.4 Newton-Raphson Iteration ..............45 

3 



Chapter 3 Linear Primitive Equation Model ..............50 

3.1 Introduction ...............................50 

3.2 Model Equations ............................51 

3.3 Basic State ................................53 

3.4 Method of Solution .........................54 

Chapter 4 Diagnostics and Experimental Design..........62 

4.1 Stationary Wave Activity Flux ..............62 

4.1.1 Basic Definitions ......................62 

4.1.2 Evaluation Procedure ..................65 

4.2 EP Cross-Section ...........................66 

4.3 Experimental Design ........................69 

4.3.1 Forcing Functions .....................69 

4.3.2 Dissipation Parameters ................70 

4.3.3 Graphics ..............................72 

Chapter 5 Preliminary Experiments 

for Both Models ..............................74 

5.1 Response to a Large Scale 

Mountain in Mid-latitudes ..................75 

5.1.1 Linear Solution .......................75 

5.1.2 Nonlinear Solution.... * ............... 80 

5.1.3 Sensitivity to the 

Dissipation Parameters ................92 

5.2 Response to a Large Scale 

Mountain in High Latitudes .................94 

5.2.1 Linear Solution .......................94 

4 



5.2.2 Nonlinear Solution 	 .99 

5.3 Response to Mid-latitude Heating ..........100 

5.3.1 Linear Solution .......................106 

5.3.2 Nonlinear Solution ...................114 

5.4 Response to Tropical Heating ..............114 

5.4.1 Linear Solution .......................117 

5.4.2 Nonlinear Solution ...................118 

Chapter 6 Linear Response to Large Scale 

Topography and Diabatic Heating .............125 

6.1 Linear Response to Northern 

Hemispheric Topography .....................12.5 

6.2 Linear Response to Diabatic 

Heating in January 1979 ...................135 

6. 2. 1 Heating Field Derived 

from FGGE lila Data ..................136 

6.2.2 Heating Field Derived 

from FGGE Ilib Data ..................144 

6.3 Linear Response to Topography and 

Diabatic Heating ..........................145 

6.3.1 Topography and FGGE lila 

Heating Field ........................152 

6.3.2 Topography and FGGE Ilib 

Heating Field ........................164 

6.3.3 A Zonal Resolution Test ..............165 

Chapter 7 Nonlinear Response to Large Scale 

Topography and Diabatic Heating .............176 

5 



7.1 Nonlinear Response to Northern 

Hemispheric Topography ....................177 

7.2 Nonlinear Response to Diabatic 

Heating in January 1979 ....................189 

7.2.1 Heating Field Derived from 

FGGE lila. Data ........................189 

7.2.2 Heating Field Derived from 

FGGE Ilib Data .......................197 

7.3 Nonlinear Response to Topography 

and Diabatic Heating ......................198 

7.3.1 Topography and FGGE lila 

Heating Field ........................205 

7.3.2 Topography and FGGE Ilib 

Heating Field ........................216 

Chapter 8 Conclusions .................................222 

8.1 Summary ....................................222 

8.2 Possible Extensions .......................228 

Acknowledgements ......................................231 

Appendix A 	List of Symbols ..........................232 

Appendix B 	Index of Figures .........................236 

References ............................................239 

6 



CHAPTER 1 

INTRODUCTION 

From monthly or seasonally averaged weather maps it is 

clear that in addition to the transient eddies in the 

atmosphere, there are planetary scale waves which remain 

stationary with respect to the earth. These stationary 

planetary waves are responsible for the climatic variation 

around a latitude circle. For example, Reiter (1963) 

described a great deal of evidence which shows the 

meridional position of the jet stream is related to the 

stormy cyclogenetic belts near the ground. He has also 

suggested that the quasi-stationary troughs in the lee of 

the two large mountain ranges in the Northern Hemisphere 

(namely Tibetan Plateau and Rocky Mountains) have a very 

obvious effect upon the arrangement of climatic zones. 

Particularly, an anomalous pattern of climate around the 

globe is usually associated with an abnormal variation of 

the stationary waves. Such relationships have been found 

by a number of meteorologists, e.g., Namias (1966) related 

the drought in the northeastern United States during 

1962-65 to the contemporary upper-level wind patterns and 

the implied storm tracks and air masses. Some weather 

forecasters have noticed that the variation of the 

stationary waves could not only be used to explain the 

climatic change over a large region, they have also some 

predictive value in operational long-range weather 

forecasting (see, e.g., Ratcliffe 1968, 1974). 
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The diagnoses of local, time averaged budgets of 

momentum and kinetic energy by Lau (1978, 1979a) showed 

that stationary waves play a dominant role in the balances, 

whereas the effects of the transient eddies were seen to 

be of secondary importance. The study clearly suggested 

that a better understanding of the stationary wave 

structure and its maintenance is of primary concern in our 

effort to provide a comprehensive description of the 

general circulation. 

The existence of stationary disturbances in the general 

circulation has been attributed primarily to two categories 

of forcing: a) the geographical distribution of topographic 

variations of the Earths surface, and b) the differential 

mean diabatic heating at the boundaries and within the 

atmosphere, which mainly results from the contrast 

between the surface thermal properties of the continents 

and oceans. The problem of explaining the atmospheric 

stationary waves is complicated by a number of interaction 

processes, which are little understood so far, such as the 

interactions between various scales of eddies, mid-latitude 

and tropical regions, the surface and the atmosphere and so 

L* "I 

An ability faithfully to reproduce the essential features 

of stationary disturbances in numerical models and to 

interpret the results clearly, in terms of basic dynamical 

principles, would demonstrate the validity of the dynamical 

principles and parameterizations used in numerical weather 

prediction and general circulation models, and help improve 
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these models. Therefore the problem of explaining the 

atmospheric stationary disturbances has been one of the 

most important subjects of general circulation research in 

the period since the pioneering work of Charney and 

Eliassen (1949). 

1.1 Historical Review 

Charney and Eliassen (1949) used a barotropic model on a 

beta-plane, linearized about a uniform westerly zonal wind 

flowing over surface topography and obtained a 500 mb 

stationary geopotential field along 45°N which is quite 

consistent with the wintertime observation. It was shown 

that the large-scale quasi-stationary disturbances of the 

middle-latitude westerlies are produced by the forced 

ascent of the westerly current over the continental land 

masses. Friction was found to have an important modifying 

effect on the motion. 

Bolin (1950) extended the analysis given by Charney and 

Eliassen (1949) by considering the north-south extent of 

the mountain ranges and width of the zonal current. He 

concluded that the only mountains which may be of real 

importance in generating planetary waves in the westerlies 

are the Rocky Mountains and the mountains in the interior 

of Asia. He also found the splitting tendency of the basic 

current caused by a circular mountain. This is consistent 

with the fact revealed in a simultaneous paper by Yeh 

(1950) that the Asian wintertime westerly jet is split into 
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two. branches due to the Tibetan Plateau. 

Soon after, the influence of large-scale asymmetries of 

non-adiabatic heating and cooling on mid-tropospheric flow 

was calculated to be of the same magnitude as the 

influence of broad mountain areas by Smagorinsky (1953). 

In the following years more complicated models were 

used to investigate the separate or, combined effects of 

thermal and orographic forcing. Kasahara (1966) used the 

time-dependent shallow-water equations in a beta-plane 

channel and showed that westerly flows past an obstacle, 

which is placed at the bottom in the middle of the channel, 

produced a train of planetary waves on the lee side. On 

the other hand, easterly flows were little disturbed by the 

obstacle. Derome and Wiin-Nielsen (1971) used a beta-plane 

quasi -geostrophic model to study the effect of the two 

forcings. Their calculation suggested that the stationary 

waves forced by the topography are in about the same 

position as those produced by. the diabatic forcing and that 

the former have somewhat larger amplitudes than the 

latter. Egger (1976a, b) used a beta-plane, two-layer, 

primitive equation model for the same purpose. He found 

that the ridge on the windward side of the Himalayas and 

the strong trough over eastern Asia at 400 mb are 

orographically induced, whereas the heat sources play an 

almost dominant role over North America and determine the 

position of the ridge over the Atlantic. 

The results for barotropic or baroclinic flow in a 

beta-plane channel are substantially modified when 
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spherical geometry and mean flow variation with latitude 

are taken into account. The shallow-water equations on 

the sphere were used to study the steady state, linear 

Rossby wave pattern on mean zonal flow induced by various 

simple mountains by Grose and Hoskins (1979). It was found 

that there was a tendency to a split wavetrain 

downstream of a mountain range. Subsequently, a 

linearized, steady-state, five-layer, baroclinic model was 

used by Hoskins and Karoly (1981) and the results showed 

that in the upper troposphere the thermal and orographic 

sources generate wavetrains which are very similar to 

those given by barotropic models. Huang and Gambo (1981, 

1982) used a quasi -geostrophic, steady state model with a 

high vertical resolution (34 vertical levels) in the 

stratosphere and found that the topography at high 

latitude, such as the Greenland Plateau, plays an important 

role in the stationary waves responding to forcing by 

hemispherical topography. 

Simmons (1982) used a high resolution, steady, linear, 

primitive equation model to examine both the extratropical 

and tropical response to an isolated region of steady 

thermal forcing in the tropics. The results was largely in 

agreement with those obtained from much lower resolution 

models by a number of authors (Egger 1977; Opsteegh and 

Van den dool 1980; Hoskins and Karoly 1981; Webster 1981). 

These results suggested that an isolated tropical region of 

heating may excite a wavetrain with a substantial 

poleward direction of propagation. 

11 



As to the nonlinear response of the model atmosphere to 

topography and heat sources, Ashe (1979) using a steady, 

two layer linear balance equation model, and Frederikson 

and Sawford (1981) using nonlinear and linear spherical 

barotropic models, found that the nonlinear effect is very 

important for the heating solution as well as the 

topography solution. The stationary flow field simulated by 

the nonlinear model is in better agreement with the 

observed field than that of the linear model. It was shown 

by Wu (1984) that there exists a critical mountain height, 

which is only about one kilometre: only if the mountain 

height is less than this critical value, can the deflection 

effect of the mountain be neglected and the response be 

regarded as approximately linear. Therefore most of the 

atmospheric response to large-scale mountains must be 

nonlinear. 

General circulation models have been used to try to 

isolate the role of mountains (Manabe and Terpstra, 1974; 

Kasahara et al., 1973) and anomalous thermal sources 

(Rowntree, 1972; Chervin et al., 1980). By using the 

multi-level general circulation model at GFDL, Manabe and 

Terpstra (1974) found that the stationary waves computed 

in the'mountain' case were closer to those observed than 

the counterpart in the no-mountain case, particularly in 

the upper troposphere. The thermal forcing effect was 

more important in the lower troposphere. Kasahara et al. 

(1973) used the NCAR atmospheric general circulation model 

and found that there was enhanced vertical transport of 
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wave energy, particularly for zonal wavenumber one, in the 

stratosphere when mountains were included. They found 

that the orographical forcing was dominant in determining 

the stratospheric circulation, but the thermal forcing was 

more important in determining the tropospheric circulation. 

It has been pointed out (see, Karoly, 1980; Held, 1983) that 

the difference between the mountain and no-mountain 

circulations cannot be interpreted as simply due to the 

mechanical diversion of flow by the mountains, since the 

insertion of the mountains has some effect on the 

distribution of the diabatic heating as well. In a complex 

general circulation model there are so many feedback 

processes which link together all model variables that it is 

not possible, to isolate the various factors affecting the 

structure of stationary disturbances. 

For the extratropical and tropical response to an 

isolated tropical thermal forcing, a time-dependent, 

nonlinear primitive equation model has been utilized by 

Grose et al. (1984). The response can be characterized by 

two distinct components: a quasi-stationary disturbance 

which extends eastward and poleward away from the source 

region, and a growing baroclinic wave propagating zonally 

at mid-latitudes. 

The structure of the stationary waves has also been 

investigated in many observational studies. The traditional 

way of studying the general circulation was based on zonal 

averages. One excellent example of many such studies is 

the compilation of Oort and Rasmusson (1971) which included 
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extensive statistics of stationary waves. Van Loon et al. 

(1973) described. the structure of the stationary waves in 

terms of the amplitudes and phases of the first three 

zonal harmonic components. During the last decade the 

observational studies have emphasized the longitudinal 

inhomogeneity of the flow (see, for example, Blackmon 1976; 

Blackmon et al. 1977; Lau 1978, 1979b; Lau and Wallace 

1979). 	Some 	essential 	characteristics 	of 	the 

three-dimensional structure of the stationary waves in the 

extra-tropics of both hemispheres during both winter and 

summer seasons has been summarized in a review by Wallace 

(1983). 

1.2 Present Study 

The aim of this study is to develop a . more precise 
\4em;sphe.rcaJ 

steady-state. nonlinear,\model, in which primitive equations 

based on a three-dimensional spectral representation will 

be adopted, to investigate the atmospheric response to 

topographic and thermal forcings. A linearized model is 

also used which corresponds to the nonlinear one in all 

aspects except that the basic equations are linearized by 

the perturbation method. The solutions of the linear model 

can provide a reasonable initial guess for the nonlinear 

model, which is then solved by Newton-Raphson iteration. 

Compared to previous steady-state nonlinear models (e.g., 

Ashe, 1979; Frederikson and Sawford, 1981) the present 
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nonlinear model has the following characteristics: 

The primitive equations with a spherical geometry 

are used as the governing model equations, which 

are more precise for describing the hemispherical 

or global circulation; 

A three-dimensional spectral representation is 

employed and therefore the resolution in all 

three directions can be changed easily by 

altering the associated truncation wavenumbers 

to fit the computer's capacity. Because the 

nonlinear model is quite expensive in computing 

resources, the present study used an expansion 

series truncated at indices 3, 11 and 4 in the 

zonal, meridional and vertical directions 

respectively. Although this is still a low 

resolution, 	- the 	basic 	features 	of 	full 

three-dimensional propagation of wave activity 

should be retained; 

The nonlinear and linear model differ only through 

linearization, a direct comparison for nonlinear 

and linear responses of the model atmosphere is 

therefore possible. 

In Chapters 2 and 3 the nonlinear and linear models are 

described in detail. In both models the governing equations 

are the primitive equations in which Rayleigh friction, the 

effect of Newtonian cooling and scale selective V4  

smoothing are included. The vertical as well as the 

horizontal structure of the dependent variables is described 
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by a truncated series of orthogonal functions, i.e., the 

vertical structure is represented in terms of normalized 
on the 

Legendre polynomials and, the horizontal structure of each 

vertical mode is represented in terms of spherical 

harmonics. 

The wave activity flux constitutes a useful diagnostic of 

the three-dimensional propagation of stationary wave 

activity for both the linear and nonlinear model solutions. 

This 	flux 	appears 	in 	a 	locally, 	applicable 

(non-zonally-averaged) conservation relation which was 

derived by Plumb (1985) for quasi -geostrophic stationary 

waves on a zonal flow, a generaliz.at'ion of the 

Eliassen-Palm relation. In addition, the Eliassen-Palm (EP) 

cross-section is also used in this study to diagnose both 

the propagation of wave activity and the interaction 

between waves and the mean flow. The basic definitions 

and 	calculation 	procedures 	relevant 	to 	the 

three-dimensional wave activity and the EP cross-section 

are outlined, and the experimental design is described in 

Chapter 4. 

In chapter '  5, some preliminary experiments are done to 

examine both the linear and nonlinear response of the 

model atmosphere to forcing by idealized large-scale 

topography or diabatic heating. These experiments may 

provide an elementary understanding of the model 

atmosphere behaviour. Attention is particularly paid to the 

differences between nonlinear and linear responses. The 

sensitivity of the model solution to different dissipation 
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conditions is reported for a case where the only forcing is 

provided by a large scale mountain in mid-latitudes. 

The forcing by the Northern Hemispheric topography and 

the actual diabatic heating in January 1979 is subsequently 

discussed ih Chapter 6 for the linear solution, and in 

Chapter 7 for ,the nonlinear solution. Before the combined 

effect of these two categories of forcing is considered, the 

response to the pure orographic or thermal forcing is 

calculated separately. In order to investigate the relative 

importance of the three large scale mountains of the 

Northern Hemisphere (i.e., the Tibetan Plateau, Rocky 

mountains and the Greenland Plateau) in the maintenance of 

orographically forced stationary waves in the winter 

season, some numerical experiments are performed for the 

idealized cases where the topography either in North 

America or in Greenland is removed. The comparison 

between the linear solution, the nonlinear solution and the 

observed climatological stationary waves shows that the 

nonlinear effect is significant and the nonlinear model gives 

a more realistic result than the linear one. 

Finally, some conclusions and possible extensions to the 

present study are put forward in Chapter 8. 
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CHAPTER 2 

NONLINEAR PRIMITIVE EQUATION MODEL 

2.1 Introduction 

Since the pioneering work of Charney and Eliassen (1949), 

Bolin (1950) and Smagorinsky (1953), there has been a steady 

increase in the sophistication and accuracy of numerical 

models used to investigate the atmospheric response to 

orographic and thermal forcing. This is not only due to the 

progressive reduction of the approximation used in deriving 

the model equations and reinfinement of the model 

resolution, but also due to improvement of the numerical 

techniques used to discretize the continuous equations of 

the models. Until 1972 almost all sophisticated numerical 

models were based on finite-difference techniques, which 

represent the dependent variable fields in space and time 

on a finite difference grid. An alternative method, which 

represents the variable fields, in part, by truncated series 

of analytic spectral functions and is commonly referred to 

as the spectral method, has now been used in many 

operational weather forecasting models and general 

circulation studies. This method offers a number of 

significant advantages in global and hemispheric scale 

simulation and prediction as discussed in detail by Platzman 

(1960), Elsaesser (1966), Orszag (1970, 1974), Bourke et al. 

(1977) and Jarraud and Simmons (1983). 
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An 	important breakthrough 	in 	the 	development 	of 	the 

spectral 	method was 	the adaptation 	of the 	transform 

method in numerical spectral models, which was formulated 

independently 	by Eliasen 	et al. 	(1970) 	and Orszag 	(1970). 

The 	idea 	of 	the transform method 	is 	to transform 	all 

variable fields to an associated grid of points where all 

nonlinear terms can then be computed as in a classical grid 

point model, and then transform back to spectral space. 

This method has considerably reduced the requirements for 

storage and computation compared with the interaction 

coefficient method, and has made it possible to include 

physical processes in a straightforward way. This method 

is used to evaluate the nonlinear terms in the present 

model. 

In this 'chapter a steady-state, primitive equation, 

spectral model is formulated. The model equations are 

specified in the next section. The spectral representation 

of basic variable fields and associated derivatives, and the 

evaluation of vertical velocity and geopotential are 

described in sections 2.3 and 2.4 respectively. Finally, 

section 2.5 gives a description of the method used to 

obtain the steady solution of this nonlinear model. 
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2.2 Model Equations 

The vertical coordinate in this model is defined by 

P 
(2.1) 

P 
S 

where P is pressure at any level, and P is the surface 

- pressure. It may be noted that 

1 a =1 	at PP 
.4! 

I a =-1 	at PO 	 (2.2) 

Following Machenhauer and Daley (1972), the primitive 

equations in this system may be written 

3u 	 1 	8u 	1 au 	
I 
tan i.p 	•ail 

— = -u 	 - — V — — + uv  
at 	a Cos cpaA 	ap 	a 

	

1 	4 	RT 	1 	a Ps 
+fv- 	 -—- _____ 

a cos p  6N 	Ps a cos i.p aX 

(2.3) 

d 	 a v 	1 av 	2 tan tp 	•av 
—= -u 	 --  v — — --u 
	

- 
 

a— 
acos&paA 	a3p 	a 

1 	a 4 	RT 1 aPs 
—fu — - -- — — .— - + F 

aaq 	Psap 

(2.4) 

aT 1 	aT 1 aT 	• I 8T 	R T 

at 	a cos tp aX a oLp . 	a 	Cp 1+0 

RT f 	1 au 1 	av tan tp 
 — 

 ac Q 
— I +— — - v 	+— + — 
Cp l.a 	cos 	p8A aap a ac Cp 

(2.5) 
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1 	iPs 	11 1 1 	1 	au 	1 av 	tan cp 
—+---v 

Ps at 	2 j-i 1 a cos p aX 	a acp 	a 

u 	 a Ps 	v 1 a5 1 
—+-----t do 

Ps a cos p 	Ps a 8q J 

(2.6) 

ía 1 	1 	au 	1 av 	tan p 	u 	1 	3P3 
a - I I 	—+ — — - V 	 +— 	 — 

ii 	a Cos &pa) 	a3tp 	a 	Psa cos pa 

v 1 8P3 	 l-a 3Ps 
+-- 	do + 	 (2.7) 

Pa3p I 	P5 at 

RT 	 (2.8) 
3a 

with the following notations: 

latitude 

longitude 

a 	radius of the earth 

t 	time 

U 	zonal component of velocity 

v 	meridional component of velocity 

• 
a 	=dafdt, individual time derivative of a 

T 	temperature (in K) 

geopotential 

F 	zonal component of friction force per unit 

mass 

F 	meridional component of friction force per 

unit mass 

Q 	diabatic heating per unit mass per unit time 



f 	=2QSintp, the coriolis parameter, Q being 

angular velocity of the earth 

R 	the gas constant for dry air 

C 	specific heat at constant pressure for dry air 

The equations (2.3) and (2.4) are the momentum equations 

and (2.5) is the thermodynamic equation, the equations (2.6) 

and (2.7) are referred to as 'tendency equation" and 

"vertical velocity equation" respectively, which are obtained 

by vertical integration of the continuity equation using the 

boundary condition 

at o=1 and o=-1. 	 (2.9) 

Finally the equation (2.8) is the hydrostatic equation, the 

solution of which should satisfy the boundary condition 

4) 	=4' 
(2.10) 

where 4' is the surface geopotential. 
S 

For later convenience, the following variables are 

introduced: 

U = u cos tp 

V = v cos '.p 

q = in Ps 	 (2.11) 

a 
5= 	0 

2 
1-a 
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The eqs. (2.3)—(2.8) are suitable for prediction but now 

we wish to find a set of equations with which to 

investigate the steady response of atmosphere to large 

scale topography and stationary diabatic heating. We 

assume in this connection that all partial derivatives with 

respect to time in these equations equal zero, and obtain 

the following steady-state primitive equations, which will 

be used as the basic equations of the nonlinear model: 

+ VU) + SU 	+ 2QapV 
2  

- 	- RTq 	- a ( R  + a V') U = 0 

(2.12) 

1 
2 	 +vv) + 	

* p(U2+V2 

-p 	 i-p ) 
_ 	 2 1  

- 2QapU + 	+ RTq 	- a ( R  + 	V = 0 

(2.13) 

1 
2 	UT' + VT 	- KT (U' - V)) + KTS 

i - P 

aQ 
+ S ( T °  + <(1+)fl+ - - a C K + v V') T = 0 

C 	 t 
P 

(2.14) 

11 
I 	( U ' ' - 	+ uqU\) - vq 	) do = 0 
i-i 

(2.15) 
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1 	I i ( 	- 	+ 	- Vq 	) do 
S = - (

1-p2)(1-02) J 

(2.16) 

RT 	 (2.17) 
i3 a 

Here the following notations are used: 

p = Sin &p 

R 

C 
P 

aA 
A 	= - 	 (2.18) 

ax 

= (p
2aA  

1) 
Lp 

= (02 	
3A 

ao 

where A stands for any of the variables. Additionally, we 

include Rayleigh friction and Newtonian cooling with 

spatially-varying decay rates R  and K. Thus in (2.14) 

aQ/C denotes the diabatic heating rate (in K 1) 

excepting Newtonian cooling. Scale-selective smoothing may 

also be included by diffusion terms ciV4  and vV4 . The 

specification of coefficients Rfr  K, a and v is described in 

Section 4.1. For the zonally averaged components, this 

dissipation is applied only to. the deviation from the initial 

state. These zonally averaged components of the initial 
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state are simply those representing the basic state for the 

linear model. 	 .sI4d 1Paile  ;,L paacepe t 

The stationary solution of eqs. (2.12)-(2.17) -ea-n--'provide 

an adequate representation for the atmospheric stationary 

waves. However, it must be noticed that there is a 

difference between the stationary solution and the time 

mean of a time varying solution. For a steady-state model, 

the latter case may be considered in this way: Instead of 

assuming U/t, V/3t, 3T/3t and3q/3t equal zero, we may 

take a time average for a long period (e.g., one month or 

longer) firstly and then let the partial derivatives of the 

time mean variables with respect to time equal zero. In 

such a formulation some forcing terms which indicate the 

effect of mean convergence of heat and momentum 

transport - by transient waves will appear in eqs. 

(2.12)-(2.14). This will not be considered further in this 

study. 

2.3 Spectral Representation of the Dependent 

Variables and Associated Derivatives 

2.3.1 Normalized Orthogonal Functions 

Each of the dependent variable fields in this model is 

represented by a truncated series in terms of orthogonal 

functions. As a basis for the vertical representation, the 

normalized Legendre polynomials with a as argument are 

chosen. These are defined by 
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(2k-i-1) 1/2 d k 	
21)k 

 = 2k k -- (a 
do 

The representation of horizontal structure of each vertical 

mode is based on the surface spherical harmonics 

Y(A,p) =P 	(p) eimx 	 (2.20) 

where the normalized associated Legendre function P 	(.i) m 1 n 

is defined by 

[ 
	
(n- MW j1/2(1_P2)JmJ/2  d n+ im 	

2 P 	(p) = 	(2n+1) 	
n i 	

' 2_ 1) 
mn 	 (n-4-ImI)! 	2 	. 	d1j 

(2.21) 

and illustrated in Fig.2.1 for m=0, 1, 2 and 3. Here Imi is 

the planetary wavenumber and n-Iml is the number of 

zeros between the poles. 

With the definition above, the functions are normalized 

as well as orthogonal, namely 

(a) p1 
	for k1 

o for kl 

1 	f2 1t imx 	imX * 	f i for m=m 

- j 	
e 	(e 	) dx 	1 	for mm 	

(2.22) 

1 t 1 	 1 1 for m=m' and n=n - 	P 	(p) P 	(p) dp = - 
2 	-i mn 	m ,n 	 L U otherwise 

	

im X* 	 im x where (e 	) represents the complex conjugate of e 

In practice, the P (p) can be calculated using the 

following properties: 

P lTn (ii) = 0 	when n<m, 

P 	(i.i) = P m,n 
 (p) 	 (2.23) 

together with the recursion relationships: 
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Fig.2.1 Normalized associated Legendre polynomials Pmn(X) 

for 	(a) m=O, (b) m=1, (C) m=2 and (d) m= 3; 

n=m,m+1 .......,m+6. 	The figures marked near the 

curves indicate the values of n. 
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p 
m 	m+1 (p) = (

2m+3)112  p  p 
rn,m 	

(p) 	 (2.24) 

I 2m+3 	 1/2 
 

p(p) = L2m+2 	 I 	(2.25) 
m+1 ,m+1 

D 	P 	(p) = p p 	(p) - D 	P 	(p) mn+1 	mn+1 	 mn 	 m,n 	m,n-1 

(2.26) 

where 

1/2 
1 2 	21 In -m I 

D 	= 
m,n 	[4fl2 1] 

The 	Legendre polynomials P k  (a) are simply a subset of the 

P 	
k 
(a), therefore similar formulae can be used for their 

m  

calculation. 

Another recurrence formula given by Belousov (1962) has 

the advantage of being mathematically stable when m and n 

increase, and is preferable for high resolution spectral 

models. 

2.3.2 Spectral representation of the dependent variables 

The associated Legendre polynomials have the property 

P 
min  (-p) 	(_1)m 	P 

min  (p) 	 (2.27) 

This property shows that n-rn must be even for a 

hemispherical symmetric field or odd for an antisymmetric 

field. Hence in our hemisphere model, using a rhomboidal 

truncation, the basic dependent variables are represented 

approximately by the following truncated series 
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L 	M 	ImI+J+1 	 - 
tJ,p,o) 	E 	E 	E(2) U 	P 

()1m)p 
k,m,j 	k 	 'n.j kO m=-M. 	Imi 

(2.28) 

L 	M 	jmiJ 

V(),p,a) = 	E 	 E2) 	V 	P (a)e1'nP 	() 

	

kO 	M=-M 	= i'n 1+1 	
k,m, j 	k 	 'n.j 

(2.29) 

M 	Im 1+3-i 
TU,p,a) = 	 E 	E(2) 	T 	• P (a)e''n 'P 	(p) 

	

kO 	•m= - M 	ilmI 	
k,m,j k 

(2.30) 

M 	I' 1+3-i 

= mM i=l-mI 	

e 	 (2.31) 

where J has been chosen to be an odd integer. The "(2)' 

attached to the summation signs indicates that the 

summation should be taken only for each second value of 

the index, that is in (2.28), (2.30) and (2.31) for even values 

of n- lmI, in (2.29) for odd values of n- lmI. 

In view of the orthogonal property of spherical 

harmonics and Legendre polynomials, the expansion 

coefficients on the right hand sides of (2.28)-(2.31) are easy 

to evaluate if the spatial distribution of the relevant 

variables is known. For example, the coefficient Uk,, 	is 

the orthogonal projection of U(,p,o) on the - sub-spectral 

space generated by P k  (a)e''n 'P 	(P). In other words, 
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—i 
U 

1 	

j 

1 J_ 1 	i2 Tr 

8ii 	1 j 	U(X,p,a)Pk(o)e 
m?\ P 	(p) dAdpdo 

(2.32) 

The 	expressions for V k,m,3 ., T k,m,j  and q 	are analogous 

to that for U 

Each of these series may be split up as shown below for 

U, in which the notation for the different expansion 

coefficients will be used in the following text without 

further explanation. 

L 

	

E 	Us.,p) P (a) 

	

k=O 	k 	 k 

	

U (X,i) = t 	U 	(p) eim)% 	 (2.33) 
k 	 m -M 	k,m 

IM 1+3+1 

	

U k,m  (i) = 	t 	k,m,3 	m (2) 	U 	P 	(p) 
,j 

As shown by Eliasen et al. (1970), this representation of 

the velocity field is identical with a velocity field 

represented in terms of streamfunction 'V and velocity 

potential x provided that so called "truncation relations" 

are employed. In order to derive these relations, let us 

consider the velocity field given by the following truncated 

series of 'V and x: 

M 	lmI+3 
E 	E2 	IF 	(a) Y 

	

m -M j 	Im I+i 	m, j 	M.3 

(2.34) 

1 

M 	mI+ 3-1  
t(2) 

	

j 	Im i 	
(a) Y 	(X,ii) 
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Substituting these series into the relations 

1 	1 
U = -Cx 

I 	a 

(2.35) 
1 

	

V = —( 	-X 

we obtain finally 

	

H 	IM 1+3+1 
[ U =E 	E ( 2 ) 	U 	(a) Y 

rn  - H 	j= IM 	m.j 	 fl13 

(2.36) 

	

H 	IM 1+3 

j V = E 	E2 	V 	(a) Y 
rn-H j 	Im 1+1 	m, 3 	m, 3 

where 

1 
U 	.=— a [(j-1) 

	

D 	+imX 	-(j+2)Dm'  

	

)+l 	rn1)+1 

if 
V 	—I (1-j) D 	x 	+ im 	+ (j+2) D 	x 	I m, 	a( 	rn, 	rn 1 j-1 	 rn,j 	 rn 1 j+1 	m 1 j+1 

(2.37) 
and 

1/2 
.2 	2 

D 	= 	2 rnj 	4j -i 

For each zonal wave number m, relations (2.37) forms a 

system of,  (J+2) equations, in which the (J+2) coefficients of 

U and V are determined by (J+i) coefficients of 1Y and X. 

We therefore have a relation between the U and V 

coefficients, which can be obtained by elimination of the M' 

and x coefficients. In the case of m*i, the coefficients 
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Um,m+j+i may be expressed by the other U and V 

	

coefficients, i.e., 	 - 

3 

U 	= E2 (-C 	U 	+ iC 	V 
mm+3+1 	

j=1 	
m.j-1 	m,m+j-1 	m,j 	m,m+j 

(2.38) 
where 

3 

C . =  11 K. 
1 

K 	=-D 
rn,o 	 m,m+1 

m,m+i+1 
K 	=- 	 fori>O 
mi 	

rn-K . (rn+i+1)D 
m,m+i 

1/2 
2 2 

n -m 
D 
m 	4n 

2
-1 

In the special case m=0, relation (2.38) becomes 

1 	 3-1 

U -  	E(2) (2j+1). 1/2 	u 
o,j+1 	(2j+3)H2 	iu 	

o,i 

(2.39) 

Since the spectral coefficient X 	is an integration 

constant, which is usually set to be zero, the number of IF 

and x coefficients which determine the (J+2) coefficients of 

Ti and V are reduced to J. Therefore an additional relation 

may be derived by elimination, that is 

1 	 3-1 

V . 	- 	 E(2) (2j+1) '2  V °' 	(2j+3)H2 

(2.40) 
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The relations (2.38), (2.39) and (2.40) are referred to as 

"truncation relations". 

2.3.3 Evaluation of Spatial Partial Derivatives 

In the spectral model the dependent variables are 

represented by a sum of functions that have a prescribed 

spatial structure. Therefore the spatial partial derivatives 

of the dependent variables can be easily expressed in the 

spectral form, for example, as indicated 'below for U: 

	

L 	H 

	

= E 	E 	t(2) 	im Ukm 	 e 	PM  3 k0 m-M jImI 

(2.41) 

	

L 	H 	ImI+J+ 1  
= 	 E 	E2 	U 	p (a) e 	H 	(p) 

k,m,j 	k 	

im).. 	

m,) 
kQ m=M 

(2.42) 

	

L 	H 	IM 1+3+1 
imA = 	E 	t 	 U 

k m 	k 	 m 
H (a) e 	P 	(p) ,, 	 ,j 

kO m-M )ImI 

(2.43) 
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where 

	

dP 	(ti) 

	

H 	(p) = (p2  1) m,n 
m,rt 	

dp 

= n D 	P 	(p) - (n+1) D 	P 	(p) 

	

m,n+i 	rn,n+1 	 m,n 	rn,n-1 

(2.44) 

dP 

Hk(o) = (
02 1) 

do 

kD 	 P 	(a) - (k+1) D 	P 	(a) 
o,k+1 	ki-1 	 o.k 	k-i 

(2.45) 
r 	 1/2 

2 2 
n -m 

D 	 I 2 	 (2.46) 

	

m,n 	4n -1 

Since spherical harmonics Y 	are eigenfunctions of the 

equation 

	

72 Y + bY = 	0 	 (2.47) 

where V2  is the two-dimensional Laplacian operator on the 

sphere, i.e., 

i 	r 	a 2  
2 	T + _—Lci_P2)_j k 	

(2.48) 
a 	1-p 	 ap 	ap 

and the eigenvalues are given by 

n(n+1) 

	

b = 	2 	 (2.49) 
a: 

the diffusion term in (2.12) can be evaluated by the 

following expression- 

CY L 	M 	ImI+J+i 
ciV4 U= 	 t 	t(2) 	j2 (j+1) 2 U 	P (a)eimP 	() k,m.j k 

kO m -M 	 I 

(2.50) 
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2.4 Vertical Integration of Continuity and Hydrostatic Equation 

2.4.1 Evaluation of Vertical Velocity 

The 	remaining 	quantities 	to 	be calculated in 	terms 	of 

the 	spectral 	coefficients 	of 	U, 	V, T 	and 	q are 	vertical 

velocity 	S and 	geopotential 	40 	as well 	as their 	partial 

derivatives. Evaluation 	of 	S 	and 	• 	involves the 	vertical 

integration of 	the 	continuity 	and hydrostatic 	equations 

respectively. s is determined from eq. 	(2.16). Substituting 

the vertical expansions of U and V in (2.16), integrating the 

finite series term by term and using eq. 	(2.15) we obtain 

1 L 	 (p) 	() 	(p) 
S 	 2 E 	(U 	-V 	+ U q 

k 	k 	k 
-Vq 

k 
)K 	(a) 

k i -p k1 

(2.51) 

where 

1 	•Io 

k 	= 2_i ii 	
do 	 (2.52) 

(3 

Kk(a) are found to be polynomials in a of degree k-i. The 

formula for evaluating S °  may be derived from (2.51) 

directly, that is 

(0) 	1 	L 	( X) 	( p) 	C A 	 ( 	) 

= 	2 	 (U 
i 	 k 	k 

-V 	+U k  q 
	-V k  q 
	) G (a) 

k -p 	k2  

(2.53) 
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where 

dK 
 G(a) = (021) 	k 
k   

do 

2o fo 
=p () - 	I k 	 2i 

is a polynomial in a of degree k 

is 2 because G (o)EO. 

Pk(o) do 
	 (2.54) 

The lower index in (2.53) 

2.4.2 Evaluation of Geopotential 

The geopotential field 4 is determined from the 

temperature field by integrating the hydrostatic equation 

(2.17) with the lower boundary condition (2.10). Thus 

ji 

a T 
R 	do 	 (2.55) 

1+0 

Substituting the vertical expansion of T in (2.55) and 

integrating term by term we have 

where 

L 
$ = 	- R E T I (a) 

kO k k 
(2.56) 

I (a) =  
ji 	

do 
1+a 

(2.57) 

(a) is not a polynomial in a, but may be calculated 
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approximately by numerical integration for each vertical 

level a (ok*O).  The Gauss-Legendre quadrature described in 

section 2.6.3 is used to calculate 1k°k 

A temperature correction procedure suggested by 

Machenhauer and Daley (1972) leads to another scheme of 

evaluating geopotential and insures there are no spurious 

energy sources introduced during time integration. That 

correction procedure is not necessary in the present 

steady-state model where no time integration is. performed. 

2.5 Method of Solution 

2.5.1 General Description 

Since vrtic.l velocity and geopotential fields can be 

diagnosed explicitly from U, V and q fields with use of 

(2.16) and (2.17) as described in section 2.4, we may consider 

that -the equations (2.12), (2.13), (2.14) and (2.15) comprise a 

complete system of four equations and four unknowns, U, V, 

T and q. 

Let the left hand side of (2.12), (2.13), (2.14) and (2.15) be 

f (A,p,o), f 2 	f3  (),p,c,), and f 4 (\,p) respectively. 	These 

functions include a number of nonlinear terms. When each 

field is represented by finite series, a nonlinear term 

involves multiplication of two series, which is very 

time-consuming if it is calculated by the interaction 

coefficient method. The transform method is far superior 

to the interaction coefficient method for handling the 

38 



nonlinear terms if there are very many components in the 

system. With this method, we transform firstly the 

representation of each field from spectral form to a 

certain spatial grid of points, then the two fields are 

multiplied at each point to form a nonlinear term. Finally 

these functions are calculated by adding all individual 

terms together at grid points: Then they must be 

transformed back to spectral space. This is done by making 

an orthogonal projection of f1 , f2 , f3  and f 4  on the sub 

spectral space generated by P (o)e1mAP(p) with respect 
1 	 m ,n 

to various combinations of index value of 1, m and n, 

namely 

(I) 1 	1 	112n - f (X,p,a)P1(c)em F 

	

	 P 	(p)ddpda 1,m n 8 
f 

_iJ_ijo 	I 	 m 

(I = 1,2,3 

(2.58) 

= 
	

f .1  12 	f (,p) em 	P -(p) dA dp 
.n 	4ir-i Jo 	4 	 in 

(2.59) 

The 	projections F 
1in,n 	m n and F 	are functions of unknown 

spectral coefficients U 	, V 	, T 	and q 	. The k,m,j 	k,m,j 	km) 	in,) 

problem raised in this nonlinear model is to seek a set of 

spectral coefficients for U, V, T and q, which satisfies the 

following equations 

( I ) 
F 1,m - ,n = 0 	(1=1,2,3) 

(4) 	
(2.60) 

F. 	=0 
m ,n 

If we choose the projection indices 1, m and n in 
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correspondence 	with the 	variable indices 	k, 	m and 	j, 	a 

complete system may be comprised. 

The 	method for evaluating 	the integrals 	in (2.58) 	and 

(2.59) will be described in the next section. 	The structure 

of khe computational grid will be discussed in section 	2.5.3. 

The 	steady-state solution 	of the 	nonlinear equation 

system (2.60) for a prescribed forcing function (topography, 

diabatic heating or both) is obtained in terms of an 

iteration procedure, which is described in section 2.5.4. The 

January mean statistics calculated from the FGGE Ilib 

(ECMWF) analysis, and the linear model's solution 

corresponding to the same forcing are used as an initial 

guess for the basic state and the disturbance portion 

respectively. 

2.5.2 Numerical Integration 

The triple integral (2.58) may be split up into three 

single integrals, i.e. 

- 	1 	121r 
g (p,o;m ) = - I 

I 	 2irjQ 
f 1  (,p,a) e

- im ).. 
 dA (2.61) 

j 
h 	;m 	 1 (o 1 	,n) = 1 -i g1 p,; (am) m,n'  dp (2.62) 

	

= j 
1 	

h (a;m,n) P (a) do 	 (2.63) 
1,m ,n 	2 j-i 	I 	 I 

The integral (261) can be calculated very efficiently with 

use of the fast Fourier transform (FFT) method, which was 

developed by Cooley and Tukey (19,65). The number of 

¼- 
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operations required for the 	PET 	method 	applied 	over N 

points 	is of order Nlog2 N, while for the direct method, it 

is of order N2. The PET method is much faster than the 

direct method, especially for large values of N. Of course, 

this method can also be used to calculate the summation 

for m in (2.28)-(2.31) in order to transform the spectral 

coefficients into grid point values. 

The Gauss-Legendre formula has been used to calculate 

the integrals in (2.57), (2.58), (2.47) and (2.52). this formula 

may be written 

Ii 	 N 
I 	f(x) dx = E w f(x (2.64) 

where the abscissas x. s are sample points, which are the 

zero points of the Legendre polynomial P W. The weighting 

coefficients w can be found by 

2(1-x)(2W-) 
-. 

1 	(N P 
N-1 

(x ) 

In order to find the sample points x, Newton iteration is 

used to solve the nonlinear equation 

PN(x) = 0 	 (2.66) 

In this iteration procedure, if .  the (k)th estimate of x is 

given by x 	then the •  next estimate x 
(k+1) is obtained 

by 

P 	(x  M< )  
(k+1) 	(k) 	N 	i (2.67) 

N 
(x1 	) 
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where the derivative 
N 

x. ( k ) ) may be calculated by using 

the recurrence formula 

N(P 	(x)-xP (x) 
P .  (x) = 	N-i 	

2 N 
	 (2.68) 

N 	 1-x 

The initial guess x 	has been taken as 

x 	sin 
Iir(i-0.5) ii 

(2.69)  
L 	N - - j 

In real calculation 	only half of the points are required to 

be 	found 	in this 	way due to 	symmetry. If 	the 	sample 

points 	in the meridional direction are 	p (j=1,2,...,N), 	then 

=arcs!n(p ) 	where 	p 's are called Gaussian latitudes. 	In 
3 	 3 

the 	vertical direction the sample points Gk 	are 	called 

Gaussian levels. 

For evaluating the integrals in (2.52) and (2.57) a 

substitution of independent variable can be made in order 

to transform the integral intervals into a standard one. 

For example, (2.52) can be transformed into 

— K (a) = 
	f 

p 	
2 	] dt 
	 (2.70) 

1 	i 	 i 
t 

1 	 2(a+i) -i 	1 
[0+1i 

 + a- 
2 

Applying the Gauss-Legendre quadrature formula (2.64) to 

this integral, for each Gaussian level a we have 

1 	a 
K1 °k = 	 t w P1  (x 

2(ok+1) j=i 

where 

(2.71) 

ak+l 	k1 x 	 + 	t_ 
2 	2 

(2.72) 
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and t. are the zeros of the Legendre polynomial PN(t),  that 

is, 

- 	 P(t.) = 0. 

2.5.3 Computational Grid 

The physical space grid points are the intersections of 

N1  equally spaced meridians where A=X, the N2  Gaussian 

latitude circles where p=p, and the N3  Gaussian levels 

where The total number of grid points is determined 

by the product of N1 , N2  and N3 , each of which should be 

determined so that the Fourier transform and 

Gauss-Legendre quadrature formula become exact for the 

integrals involved in the computation of the nonlinear 

terms in order to avoid aliasing. The following two 

conclusion are useful to determine the minimum values of 

N1 , N2  and N3 : a) The Gauss-Legendre quadrature formula 

(2.64) is exact for all polynomials with degree smaller than 

or equal to 2N-1; and b) The trapezoidal quadrature formula 

1 	f2 -ff 	 1 	N 	f2ir
- 	f(x)dx = - 	E fl— i l 	 (2.73) 
2ir O 	 N i1 N J 

is exact for any function which is a truncated Fourier 

series with minimum wavenumber smaller than or equal to 

N-i. As explained by Eliasen et al. (1970), Machenhauer and 

Rasmussen (1972), and Machenhauer and Dáley (1972), for all 

nonlinear terms, except those which include S and S (0),  the 

grid point numbers N1 , N2  and N3  should satisfy 

43 



N1  ) 3M+1 

3 
N2 	) 	+ M + 1 	 (2.74) 

3 	1 
N. ) 

where M, J and L denote truncation indices as represented 

in (2.28)-(2.31). 

Much larger values of N1  and N2  must be used for those 

terms which include S and S °  since it is seen from (2.51) 

and (2.53) that S and S °  are quadratic in variables which 

vary in the horizontal directions. For these terms N1  and 

N2  should satisfy 

IN1  ) 4M+1 

N2  ) 2(M+J) +- 
2 

(2.75) 

It should be noticed that the terms which require the 

largest values of N1  and N2  determine the minimum values 

which must be used for all the terms. It is, however, 

possible to reduce the minimum values to those given by 

(2.74) if S and 	are truncated before they are used in 

the computation of the nonlinear terms in (2.12)-(2.14). 

Different very low resolutions have been used during 

testing of the model program, finally the truncation indices 

are increased and fixed with M=3, J=11 and L=4 to fit the 

computational 	resource 	available. 	This 	is 	intended to 

represent the 	vertical' and 	horizontal propagation 	of the 

ultralong stationary 	planetary 	waves which 	have been 

generally considered 	to 	be 	forced by 	topography and 

land-sea heating 	contrasts. 	Although it 	is 	still 	a low 
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resolution model, the experimenta.Iresults show that it has 

the ability to simulate the essential features of full 

three-dimensional propagation of the stationary planetary 

wave activity. Corresponding to these truncation indices a 

fixed computational grid of points is used to calculate the 

nonlinear terms, in which there are 10 and 11 points in the 

longitudinal and latitudinal direction respectively on a 

hemisphere, and 7 levels in the vertical direction. The 

vertical levels used in the Gauss-Legendre quadrature 

formula are given in Table 2.1, where P is pressure at k 

level, which is calculated by assuming surface pressure 

equal to 1000 mb and gives a rough idea only. 

Table 2.1: Vertical Levels 

k 	 a P 	(mb) 
k 

1 	-0.9491079 25.45 

2 	-0.7415312 129.23 

3 	-0.4058452 297.08 

4 	0.0000000 500.00 

5 	0.4058452 702.92 

6 	0.7415312 870.77 

7 	0.9491079 974.55 

2.5.4 Newton-Raphson Iteration 

Newton-Raphson iteration, the steepest-descent method 

and a variable metric method for minimization described by 
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Fletcher and Powell (1963) have been coded and used to 

solve the nonlinear equation system (2.60). It was found 

that the Newton-Raphson procedure is the most efficient 

one for this particular problem. The convergence of 

variable metric method is also quite rapid, but it is much 

more complex than the Newton-Raphson iteration. Therefore 
11 

only the Newton-Raphson method is described here. More 

details can be found in standard mathematics texts, see, 

e.g., Gill et al. (1981). 

We consider a system of N equations for N unknowns. 

For the sake of notation, we shall discuss the case N=2, 

which can be easily, extended to arbitrary N. Given the 

nonlinear equations 

(2.76) 

f 2 (x,y) = 0 

and an initial guess x0 , y0  for the solution, at the 

neighbourhood of this initial guess, f 1  and f 2  can then be 

represented approximately by the following linear function 

a  

0 0 	 0 	0 0 ay 1 
(x, Y) 	f 1  (x ,y ) + (x-x )---(x ,y )+(y-y )-1-(x ,y) 

f , (xy') 	f Cx ,y )+ (x-x )(x ,y 	
2 

2 	 2 0 	 0 	
)+(y-y )(x ,y ) 

ax 	 ay 

(2.77) 

In fact these expressions are obtained by truncating the 
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Taylor series expansions. Thus we can obtain a linear 

equation system 

8f 

	

,y ) Ax + 	, y
o 
 ) Ay = -f 	Cx ,y 

ax ° ° 	3y 1 0 0 

(2.78) 

a 	 af. 
,y ) x + --(x ,y ) y = -f (x ,y 

ax ° 	 '3y o o 	 2 a 

where Ax=x-x,, and y=y-•y0 . We assume the determinant of 

the Jacobian matrix 

ax 	ay 

J 	 (2.79) 

ax 	ay 

is not equal to zero at the neighbourhood of the solution. 

If the initial guess is reasonably good, the determinant of 

the coefficient matrix of (2.78) should also be nonzero. Ax 

and Ay can hence be easily found by elimination. From the 

definition of Ax and Ay we may write 

= 	x 0  +x 
1  

(2.80) 

= y+y 

Then we may replace x and y with x1  and y1  and repeat 

the above procedure. The iteration process is terminated 

when 

max ( 6x, ãy ) < 
	

(2.81) 
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where 

Ix 	-x 
k+1 	k 5x = 

+ 1 	'k l 
ôy = 

or 

max ( Ifill if  I ) < ö . 	 (2.82) 

€ and ö are prescribed tolerance errors. Newton-Raphson 

iteration is a second-order process, which converges very 

rapidly if a reasonably good initial guess is given. 1n /?e /Me#77J 

We (uw dO,,Q., J-5-  JeJQJuns are iu c4 repzmd /e1  6=16" 	d d= 'o-• . 
Scaling often has a significant influence on the 

performance of this kind of iteration algorithm. One 

method of scaling is to transform the variables from their 

original representation, which may reflect the physical 

nature of the problem, to variables that have certain 

desirable properties, e.g., the variables are all of similar 

magnitude in the region of interest. In the model program, 

only a linear transformation of variables has been used, 

which is of the form 

X 	= D X 
1  

+V 	 (2.83) 
new 	o 

where X is the solution vector, D is a diagonal matrix and 

V a constant vector. Since the solution of linear model 

produces a 	reasonable initial 	guess for 	the nonlinear 

solution, so the elements of D and V are chosen according 

to 	the linear 	solution. For 	example, if 	the 	variable 	X. 

represent a zonal mean component, it is expected that this 

variable only changes its value 	slightly after the iteration 
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procedure, e.g., only increase or decrease 20% of its initial 

value x 	One possible scaling would be to define a new 

variable X., given by 

- XX t0  
i 0. 2X 

Thus we may choose the associated diagonal element of D 

1. 
d 	= (a) ii 	0.2X 

and the associated element of V as 

V =5 
1. 

For a variable X. which represents wave component, it may 

lie in a larger range than X. and then we choose 

and 

V = 1. 
) 
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CHAPTER 3 

LINEAR PRIMITIVE EQUATION MODEL 

3.1 Introduction 

In chapter two we have discussed the numerical 

techniques for solving the steady-state primitive equations 

governing large-scale atmospheric motions. As previously 

mentioned, the iteration procedure for solving the nonlinear 

equation system requires a reasonably good initial guess. 

An unrealistic initial guess may cause difficulties for the 

iterative algorithm. The solution of a linearized model is 

easily obtained and hence provides a first approximation to 

the solution of the nonlinear problem, which can be used as 

an initial guess of the nonlinear solution. At the same 

time a direct comparison between the linear and nonlinear 

responses to various forcing functions is possible. This 

enables us to gain more physical insight into the 

fundamental nature of atmospheric motions. 

The perturbation method is used to simplify the 

complicated nonlinear system of equations. In this method 

all field variables are divided into two parts, a basic state 

portion which is assumed to be independent of longitude 

(and possibly time also in some problems) and a 

perturbation portion which is the local deviation of the 

field from the basic state. For example, if [u] denotes a 
* 

longitudinally averaged zonal velocity and u is the 

deviation from the average, then the complete zonal 
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velocity field is 
* 

	

u(,p,o) = [u](p,a) + U (l,p,o). 	 (3.1) 

Thus the inertial acceleration term in the momentum 

equation, u(au/acospax), can be written 

u 
au 	

= {[
u]+u*} 3{[u]+u*} 

acosp aX 	 acos&p aX 

au* 	 au* 	 (3.2) 
= [u] 	 + u* 

acosp 8X 	acosq 

According to the assumptions of the perturbation theory, 

the -second term on the right hand side of (3.2) is much 

smaller than the first term and therefore can be neglected. 

By neglecting all terms which are nonlinear in the 

perturbation, the nonlinear governing equations are reduced 

to linear differential equations in the perturbation 

variables. The linear model equations derived in this way 

will be described in the next section. Sections 3.3 and 3.4 

describe the basic state and the method of solution 

respectively. 

3.2 Model Equations 

The linearized primitive equations, corresponding to 

(2.12)-(2.17) in the nonlinear model, may be written 

1 	

t- 
X) *p } + S[U]+2Qap v 

-R[Tq'-a(Rf+1V)U = 0 

(3.3) 
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i 	

{ 1 -p 	
_[U]V 	 - 2Qap U + 2 

+RT[q] 	+RT[q]-a(R f + aV4 ) V = 0 

(3.4) 

1 	1 
2 	

-[U]T X) + V*[T]( 	- K[T]{U 	- v p) 	

} i-p L 

+s*{[To+ K(1+0)[T] } + K[T] S 
(0) 

aQ 	 4 	* 
+ - - a(K + vV ) T 	= 0 

C 
P 

(3.5) 

J 1 

 { U- v*(+[u]q*(_v*[q]( 	} do = 0 (3.6) 

	

1 	t0- - 2 	2i 
 1U*(_ v*(+[u]q*(_v*[q])} do 

(i -p )(i-o 

(3.7) 

* 
* 

RT 
	

(3.8) 

where a pair of square brackets indicates the longitudinal 

average, and a superscript asterisk indicates the local 

deviation from this average. Other notations have the 

same meaning as those in the nonlinear model of Chapter 

two. 

In Chapter two U, V7  T and q fields are represented by 

truncated series of orthogonal functions. The normalized 

Legendre polynomials and the surface spherical harmonics' 

are chosen as the basis functions in the vertical and 
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horizontal directions respectively. In this linear model 

these field variables 'are divided into a basic state portion 

and a perturbation portion, the basic state corresponds to 

those components with zonal wavenumber m0 and the 

perturbation portion corresponds to those components with 
* 

rn*0. For example, zonal velocity U=[U]+U is represented by 

	

L 	J+1 

	

[U] = E 	E(2) U 	P (c.) P 	(p) 	 (3.9) 
k=O 	j 	

k , o , j 	k 

and 

* 	L 	M 	Im1+ 3 # 1  irn\ 
U 	=E 	E 	E(2) 	U 	 e 	P 

k=O m -M 	j= irni 	
k 	,rn, j 	k 	 rn j 

(rn*O) 

(3.10) 

The expressions for V1  T and q are analogous to those for 

U. Since the basic state is prescribed in this model, only 

those spectral coefficients for perturbation are unknowns. 

The truncation relation (2.34) is still employed to make 

the velocity field consistent with that represented by 

truncated series of streamfunction and velocity potential. 

The method for evaluating the geopotential, vertical 
a.s 

velocity and various spatial derivatives is the same 4e. that 

in the nonlinear, model. 

3.3 Basic State 

The zonal mean temperature field (Fig. 3.1) was calculated 

for January 1979 based on the ECMWF FGGE Ilib analysis. 
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The zonal means were taken on pressure surfaces. They 

differ insignificantly from the means taken on sigma 

surfaces if there is no topography assumed. The zonally 

averaged logarithm of surface pressure was approximately 

calculated by 

[h ]. 
[q]lnP - 

H 
(3.. 11) 

where [h] is the zonally averaged topography height, 

P =1000 mb and scale height H=8000 m. Then the zonal 
0 

mean eastward wind component (Fig. 3.2) were determined 

by the following nonlinear equations 

- 	2 	[U]2  - 29ap [U] + [4] 	+ R[T][q]t 	= 0 
i-p 

(3.12) 

(1+0) 	= - R[T] 	 (3.13) 

This system of equations is solved with the aid of the 

transform method and Newton-Raphson iteration, the 

fundamentals of which have been described in Chapter two. 

Therefore the basic state prescribed in this linear model is 

well balanced.  

3.4 Method of Solution 

The following procedures have been taken in order to 

obtain a linear algebraic equation system: 

a) add the diagnostic equations for vertical velocity 
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and geopotential to eqs. (3.3)-(3.6) to yield a 
* * * * 

complete system for unknown variables U , V T , q 
* 	* 

and diagnostic varibles + and S 

insert the spectral expressions of the unknown 

variable fields into those equations; 

make an orthogonal projection on the sub-spectral 

space generated by P I 	 m n 
(a)eLmP 	(.j) with respect to 

various combinations of index values of 1 and n. 

After laborious manipulation, the linear equations for each 

zonal wavenumber m may be written in the form 

lxi X2X3X4 	lu 	IF1 

I y1 y2 y3 Y411V1 	'P2 

I 

I Ti T2T3T4 I IT1 
= I 

Cl C2 C3 C4 .1 L 	1 o 	 (3.14) 

where U is 	the column 	vector with the element U 

(k0,1 .......,L; j=m,m+2 ........ m+J-1.) 	and V, T, Q are similar column 

vectors. 0 is a zero column 	vector. 	The elements of the 

coefficient matrix 	and 	the 	other 	column vectors in 	the 

right side may be expressed as 

1 	1 	1 	im k2(k+1)2 

L1 J_ 	{l2u 	
+ aR f 	+ 

- a3  -} X11 
k, j = - 4 

P 	PP 	Pdjdo 
m, 	k 	m,n 	1 

1 	fif 1 
	l[U](0)P+5 	im - I 	I   K P 	P 

k m, 	m1n 
dpdo 

1 
k10 	4 	jlJ1 

- (3.15) 
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1 
X2 	 = 

1ji 	

J i Eul 1,n;k,j 	 -1 	-1 	
PM , j m,j 

p 
k 
p 
in,n p1 

dpda 

1 

J lJ 1 

	1 	
[u] ° H 	K p 	Pdpdo 

k 2 
-i -1 1—p 	 m,j k m 	i o 

- 

it
~ lt 	2 [u]° 

[q](P) 

i 	

1

4 	1 -1 1— p 

P K  Pdpdo 
mj 1< m 	1 

11 
Qa( p  p dp 

kj 	.j-i 	m,j m,n 	 . 	 (3.16) 

X3 = € 	ö 	imR 
1,n;k.j 	k,1 	j.n 

(3. 17) ' 

1 	 -1 -1 	 - R[T]} 
P 	P 	P dpda X4 

itnJlJl{l 	 -* 

m. mn I 

(3.18) 

Yl 	
t i 

	

2 p[U]P 	P p 	p 	dpda 
li 	

1 

1,n;kj 	2 	-1'J -11-p 	 M§j 	k m,n 1 

-6 Qa[pPm 
P dp 

k,1 	. 	m,n 

(3.19) 

1 

J- 

1 f 1 tim 	 xK2 (K+1) 2 

1,n;kj 	 i i-i M2[U] 
~ aR1 + 	

a3 
Y2 

	

p. 	pp. 	p dp do 
m,j k mn I 

(3.20) 

57 



Y3 	= 6 	R l J_ '   [q] 	 p 	dp 
1,n;k 1 ) 	k 12 	1 	 m,) m,n 

i{
6jn-1 	 j 	+1 	 1 

	

(n-1)RD 	- 6 	(n+2)RD 	
} 

	

rn,n 	.n 	 m 1 n+ 

(3.21) 

RI if 1 
Y41,;j 

 = -- j1J 	
[T]Hm3Pm Pi  dp do 	 (3.22) 

imKJ iJ 1 1 

	

2[T] P 	p 	p dp do 
Ti 1 n;k,) 	 -i 	-1 1-p 	m,j k m,n 1 

im J iJ 

i 1 	
{[T]() + K(1+c)[T] 2 ko4 	-i -i 1-p 

	

P 
m,j  K k m,n P 	P dp do 

- _ imK 

JiJi 

__ 
1 

G p 	p dp do 
k 1 0 ki 4 	1 1 1p 	 k m,n 1 

(3.23) 

1  J it i[T] 
T2 

	

2
pp 	p dp do 

1,n;k1j 4 -1 -il-p 	mj k m,n I 

i< liii 1 
+ - I 	I 	2[T] H 	P p 	p dp do 

	

4 J-iJ-1 1-p 	m 	k m,n 

1 
f-6 	

p2 k  

H 	
j  K k 	1 

P 	P dp do 

	

m, 	m.n  
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_____ 
-6''— 

k,o 4 -1 	1 1-p 
fET1to)+K(l+a)[T] } 

i 	

1  
2  

	

[q] 
	)p j K 

k  P 
	p dp do 

m 1 	mn 

K 

 J 

lJ1 1 
6 	- 	 2 [T]HG  G P 	p dp do 

ko 	k,l 4 -1 -il—p 	m,j k m,n 1 

K 

 J iJ 

1 1 

6  

	

2 	[T][q] 
(p) 

k,o6k11 4 -1 -11—p 

P 	G k 
	1 
P 	P dp do 

m, 	m,n  

(3.24) 

	

1 f 1 li 	T im
}  

vk2  (k+1 )2 

T3 	 = - 

	

- j-j- 	2[U] + ak + 
t 	 3 

a 

p pp Pd 
m,j k m,n 1 

pdo 

(3.25) 

T4 
1 n; 	4 	

[T1 
0) 

+K ( 1+o) [T]- } 
imfiji 1 

-* 
UP j 
	1 
P 	P 	dp do 

m, 	mn  

iMK tiii 1
I 	2[T] U 	P 	P 	P dpdo 

4 	-li-i 1-p 	 m 	m 1 n 

Cl 	= 6 	6 	im 
k,o 	j,n 

(3.26) 

(3.27) 
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1 	Ii 
C2 	= - 	- ( 	[q]' 'J' P 	p 	dp 

n;k,j 	k,o 2 i-i 	 rn.j in,r 

- 56 	(n-i) D 	- 6 	(n+2) D 
j k,o 	j ,n-1 	 m,n 	,n+1 

(3.28) 

C3 	= 0 

im 1 1 
C4 	 U P • P dp 

2 	J-1 	0,0 	In,) 	m,n 

(3.29) 

(3.30) 

Fl 	= 6 	im 4 	 (3.31) 
1,n 	1,0 	s m,n 

F2 	= -5 	1(n-1) D 	4 	 -(n+2) D 	4 
1,n 	1,o 	 m,n s m,n-1 	 m,n+1 S m,n+1 

(3.32) 

aQ 
F3 	= - 	1,In,fl 	 (333) 

1,n 	 C 
p 

where 

L 
U = E 	U 	K (a) 	 (3.34) 

k1 	k,o 	k 

L _* * 
U 	= t 4 	G (a) 	 (3.35) 

k2 	
k,o 	k 

U 	= 	
J- 

[U] do 	 (3.36) 
0,0 

£ 

	

k, 1 =j_ 	'k (o)P1  (a) do 	 (3.37) 
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a 
ri 

1 , k 	
to 

~01 a - 
1,1<  

when 1=k 

otherwise 

when 1=k 

otherwise 

f
m+1 1 m+3...m+J 

n= 
[in,m+2,...,m+J-1 

k = 0,1,2,...,L 

1m+1,m+3, .,m+J 
J= 

Lm,m+2, . . . ,m+J-1  

for(3.19)—(3.22) 
and (3.32) 

for (3.15)—(3.18) (3.23) 
—(3.31) and (3.335 

for(3.16), (3.20), (3.24) 
and (3.28) 

otherwise 

We can see from the above expressions that the 

elements of the coefficient matrix are mainly calculated by 

evaluating the integrals with respect to p and a. If the 

basic state is represented by truncated series,' these 

integrals can be calculated exactly in terms of the 

Gauss-Legendre quadrature formula described in section 

2.5.2. 

The linear equation system (3.14) can be easily solved by 

matrix inversion, e.g., Gauss elimination. The solution for 

several zonal wavenumbers is just a linear superimposition 

of solutions for every individual wavenumber. 
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CHAPTER 4 

DIAGNOSTICS AND EXPERIMENTAL DESIGN 

Since the work of Andrews and McIntyre (1976), the 

Eliassen-Palm (EP) cross-sections have been increasingly 

used as a diagnostic both of the propagation of wave 

activity and of the interaction between waves and mean 

flow (e.g., Edmon et al., 1980; Dunkerton et al., 1981; Palmer, 

1981). Since the EP flux is a zonally-averaged quantity it 

can provide insight only into zonally-averaged latitudinal 

and vertical wave propagation characteristics. Besides the 

EP cross-section, a three dimensional wave activity flux, 

which was derived by Plumb (1985) for linear, 

quasi- geostrophicstationary waves on a zonal flow, is used 

in this study to diagnose the propagation of wave activity 

for both linear and nonlinear model solutions. The basic 

definitions and calculation procedures relevant to the wave 

activity flux and the EP cross-section are outlined in 

Sections 4.1 and 4.2 respectively. Finally the experimental 

design is described in Section 4.3. 

4.1 Stationary Wave Activity Flux 

4.1.1 Basic Definitions 

For plotting convenience we use pressure height z as 

vertical coordinate, which is defined by 
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P 
z=-  Hln — 	 (4.1) 

P 
0 

where H is a constant scale height and set to 8 km, and P 
0 

is a standard constant pressure, taken to be 1000 mb. In 

an isothermal atmosphere, in which the temperature was 

equal to gH/R everywhere, z would be equal to geometric 

height, measured from the level at which P=P. With this 

coordinate, the quasi- geostrophicapproximation to the 

wave activity flux for linear, stationary waves on a zonal 

flow (Plumb, 1985) may be written as 

F= F (p 
F z 

1 	1 
* * 

* 	a29,* 	
1 

12 	2 
j2a cos tpi 

2 

P 
1.'3 * * 

* 
= - C05 (p I 	2 

12a 	cos(p (p 
- 	9' 	

} 
0 I 

I 2Q2  sin 2 
9'* a9'* * 	829'* 

lN2a cosp i;-z 

(4.2) 

where 9' is the streamfunction for nondivergent geostrophic 

flow, an asterisk indicates deviation from the zonal mean, Q 

the angular velocity of the earth and N the buoyancy 

frequency. 

The wave activity flux F exhibits all the advantages of 

the EP flux as an indicator of the propagation of wave 

activity. Plumb (1985) summarized the properties of F as 

the following: 
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F is a conservable measure of the flux of wave 

activity. This means that F is nondivergent for 

steady, conservative linear waves. 

For westerly flows, the convergence of F 

indicates the piling-up of wave activity, while 

divergence of F indicates its export. 

In the limit of almost-plane waves, F is a 

phase-independent quantity which is parallel to 

the group velocity. 

If zonal averages are taken, F reduces to the EP 

flux, except for the addition of a zonal 

component which is of no particular consequence 

for the zonally-averaged case. 

The divergence of F, and therefore the generation 

or dissipation of wave activity, is directly 

related to nonconservative effects or nonhinerity. 

In addition, boundaries may also be sources or 

sinks of the flux. 

It is worth noting that the conservation relation for 

wave activity (Plumb, 1985) was based on a linearized 

equation system for small perturbations to a steady zonal 

flow, but we may formally render it valid 'at finite 

amplitude by incorporating nonlinear effects into the term 

which originally represents sources and sinks of potential 

vorticity due to nonconservative effects. This suggests 

that a comparison of wave activity fluxes evaluated from 

linear solution and from nonlinear solution may contribute 

to diagnoses of nonlinear effects. 
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4.1.2 Evaluation Procedure 

The wave activity flux is evaluated by using the formula 

(4.2) where all derivatives are taken on pressure height 

surface, i.e., isobaric surface. Therefore a computational 

grid on 9 vertical levels with pressure equal to 850, 700, 

500, 400, 300, 250, 200, 150 and 100 mb, is used for 

evaluating the flux. On each level the grid consists of the 

intersections of 32 equally spaced meridians and 36 Gaussian 

latitudes, thus the horizontal derivatives may be evaluated 

by a spectral method similar to that described in Section 

2.3.3. The calculation procedure is outlined as follows: 

Calculate the velocity components U and V at grid 

points by using (2.28) and (2.29) where a is not only a 

function of P but also a function of A and tp. 

Calculate the streamfunction 'P which is represented 

by 

M 	tmI+J 	 imA 11= E .E(2) 'P e P 
m -M 	i Im I+i M" 

	 m, (p) 
	 (4.3) 

where the spectral coefficients 

'P 
alJ1J2Trl 

e 	P 
j(j+1) 4 	1 	 m 

	

- 	
+ v] -imA 	dAdp . 3  

(4.4) 

Since some grid points on the lowest one or two levels may 

be located under the ground if topography is inserted into 

the model, an approximation is made for. simplicity: if the 

value of the integrand at a grid point is unknown, it will 
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be dropped out from the summation of the Fourier 

transformation and then the total number, of grid points 

along that latitude circle, by which the summation is 

divided (see, e.g., (2.73)), is decremented by one 

correspondingly. 

(3) Calculate the wave activity flux by using (4.2). 

4.2 EP Cross-Section 

With the pressure height z as vertical coordinate, the 

quasi- geostrophicapproximation to the Eliassen-Palm (EP) 

wave flux may be defined as 

IE 
E= 	I LE 

z 
	 (4.5) 

where 

* 	* NT 3T 'I 
E = 	exp(- - ) a-1 	

j 	
(4.5a) 

0 	 H 

* 	* 
[ 

E = g 	
H 

exp(- - ) 4Q2 sin2 p N2 aA 
	z 	

( 4.5b) 
 z 	0  

Here square brackets denote zonal mean and 

P 
0 	gH 

(4.6) 

is the standard density. This definition is consistent with 

that of Dunkerton et al. (1981), but slightly different from 

that of Edmon et al. due to the use of z coordinate defined 

by (4.1). 
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As mentioned in the last section, if zonal averages are 

taken, F and F reduce to E and E respectively. 

	

z 	 (p 	 z 

According to the definitions (4.2) and (4.5) we have 

I E 	a 	] 
-I 	(P 	o 	

[F (P 
	 (4.7) 

L E = 	a [F ] 
Z 	0 	 Z 

where brackets denote zonal mean and the factor @ a is 
0 

simply a constant. 

EP flux has the fundamental advantage that its 

divergence 

1 	3 	 3 
7. E = 	—(E cos(p) + - (E ) 	 (4.8) 

a COS(p 	 3z 

is zero under 'nonacceleration conditions (steady, 

conservative waves' on a steady mean flow). Thus an EP 

cross-section, in which E is represented by arrows and 7.E 

by contours, displays information not only about the net 

direction of wave propagation, but also about the locations 

where nonacceleration conditions are violated. 

The graphical conventions follow, in essence, those of 

Edmon et al. (1980), with appropriate modifications for the 

pressure height . coordinate. 	The volume element for 

integrating (4.8) over a zonally symmetric portion of the, 

atmosphere is 

dv = 2ira2  COS(p d(p dz 	 (4.9) 

From (4.8) and (4.9) 

t
V*E dv 

= t 
A d(p dz 	 (4.10) 
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where 

81 	 8 f 
= - •21Ta cos.p E - ~ - -2ira2 cos.p E 	 (4.11) 

3(p 	 (P
I 
	 8z 	 Zj 

is the natural form of the divergence of E for contouring 

in the @p,z) plane and the arrows will be drawn with 

horizontal and vertical components proportional to the 

quantities within the curly brackets in (4.11), that is 

2tra cosq {a1 E, E 
} 

= 2a3 	cos {a- 1 [F], [F 

(4.12) 

In order to calculate the horizontal and vertical arrow 

components as measured on the diagram, [F 
LP 
] and [F] are 

evaluated in m2 32 and then multiplied by d1 a 
1 
cosp and 

d2 cosq respectively, where d1 and d2. are scale factors 

proportional to the distances occupied on the diagram by 1 

radians or 5730 of latitude, and one metre of pressure 

height. Thus the eq. (4.10) implies that the pattern of 

arrows will look nondivergent in the (&p,z) plane if and only 

if V.E is zero. 
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4.3 Experimental Design 

4.3.1 Forcing Functions 

Orographic forcing is included into the model by means of 

the lower boundary condition (2.10). Thermal forcing is 

presented explicitly in the thermodynamic equation. In 

Chapter 5 some idealized cases of forcing function are 

tested for both linear and nonlinear models. The aim of 

these tests is not only to check if the program codes are 
they 

correct, + also provide a preliminary understanding of the 

model atmosphere behaviour. Then the response of the 

model atmosphere to actual topography or/and diabatic 

heating in January is investigated. The Northern 

Hemisphere smoothed topography on the FGGE grid is used 

to obtain a spectral representation of *the actual 

topography. The vertically integrated heating rates for 

January 1979 prepared from NMC FGGE Level lila operational 

data set and also ECMWF FGGE Level Ilib analysis by Johnson 

et al. (1985) are used as the horizontal distribution of 

diabatic heating and its vertical variation is given by 

2 
I Tr (0-0 ) 

) 	'1 	 2 	
(4.13) 

0 	otherwise 

where 	=-0.84 and a2  1. TI Ver&'c41 profile. G/ 	tc 	zJf 

4 	4Jrtda.r b 7% 3e  u/ 6; qi-05e et . (/784) ud Sift mQIls (/752) 

ijtJ 	6tttpa.) 



4.3.2 Dissipation Parameters 

It is necessary to include some appropriate dissipation 

processes in a steady-state model in order to remove the 

sensitivity implied by resonance. This is done in this model 

by means of Newtonian cooling and Rayleigh friction with 

spatially varying decay rates. The vertical distribution of 

Rayleigh friction coefficient, Rf , and Newtonian cooling 

coefficient, K , are similar in nature to those of Simmons 

(1982). R was set to (20 d) 	above a=0.6 but increased 

below this level linearly with pressure to reach a value of 

(2 d) 1  at the surface (a=1). This is expected to represent 

boundary layer drag in the absence of an Ekman layer in 

the model. K was set to (20 d) 
1 below a=-0.6 but 

increased linearly above this level with the logarithm of 

the pressure to reach a value of (5.3 di 
1  at the highest 

model level (c=-0.9491). These dissipations are enhanced in 
the 

the polar region by multiplying A  above coefficients by 

(cosp /cosp)2  when tp is greater than cp, where .p  was set 

to 600.  This is intended to remove the resonance which 

may occur in polar region when some wave activity source 

region is located in high latitude (tests using the nonlinear 

model showed that insufficient dissipation in the polar 

region may lead to failure of the iteration procedure 

convergence). 

Singular-line dissipation is included by increasing the 

above decay rates to {2([u]/cosp)2  di 1 .where [u] is the 

zonal mean flow in ms 
1  whenever they are less than this 

70 



value. 

Both the coefficients of biharmonic horizontal diffusion, 

and v, were set to 1.169X101 
 m4 

s. 
 Linear diffusion of 

the form aV is very simply included in a spectral model 

and has a known scale selectivity. The e-folding diffusive 

time at total wavenumber n (the order of the associated 

	

Legendre function 	P 	(p) in the spectral expansion) is given 

by 

a 4 

	

T(n) = 	n 2  (n+1) 2 	 (4.14) 

where a is the radius of the earth. Table 4.1 shows the 

scale selectivity of the diffusion formulation used in the 

model. 

Table 4.1: e-folding dissipation time 

as a function of total wavenumber 

	

n 	 r (day) 

	

1 	 53778.9 

	

2 	 5975.4 

	

3 	 1493.9 

	

4 	 537.8 

	

5 	 239.0 

	

6 	 121.9 

	

7 	 68.6 

	

8 	 41.5 

	

9 	 26.6 

	

10 	 17.8 

	

11 	 12.3 

	

12 	 8.8 

	

13 	 6.5 

	

14 	 4.9 
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All dissipation parameters described above have been 

used for both linear and nonlinear models in order to make 

their results more comparable. The value of these 

parameters was set firstly according to Simmons (1982) and 

Grose et al. (1984) and tested for actual topography and 

thermal forcing, a small modification, i.e., the enhanced 

dissipation in- the polar region, was then chosen to enable 

the model solution to be a close approximation to the 

observed climatological stationary waves in the winter 

season and meet the requirement of convergence of the 

nonlinear model.. Then these parameters are fixed for all 

other experiments except those for sensitivity tests 

described in Section 5.1.3. 

4.3.3 Graphics 

The following diagrams have been - plotted for each 

experiment but only some of them are shown in this thesis: 

Contour maps for topography height and horizontal 

variation of diabatic heating rate. 

Contour maps for streamfunction, which represents 

the rotational components of stream field, with 

horizontal velocity vectors superimposed at 700, 500, 

200 and 100 mb levels. 

Wave activity flux maps at 850, 700, 500 and 200 

mb, in which arrows represent horizontal component 

and contours vertical component. 

Latitude-height projection of F at selected 
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longitudes, usually through centre of the forcing. 

Longitude-height projection of F at selected 

latitudes, usually through centre of forcing. 

EP cross-section. 

Longitudinal cross-sections for the departure from 

the zonal mean of geopotential height and vertical 

velocity in the pressure system which is calculated 

by 

dP 

dt 

= a cosp I 
a-i-i 	u 

- 2 1 cos&p 31\ 

v13P 	.p 
I - I + a—

aL3pJ 0  

S 

V3P31 	op8 
+-- +- 
ap J 	2 

(4.15) 

or, using the notations introduced in Chapter 2 it 

can be written 

exp(q) f 1-i-0 
w = 	1 2a 	i-p 2 ( Uq 	- V)+ (i_c2)  s } 

(4.16) 
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CHAPTER 5 

PRELIMINARY EXPERIMENTS FOR BOTH MODELS 

Before we discuss the response of a model atmosphere to 

forcing by the actual Northern Hemispheric topography and 

the mean diabatic heating in January 1979, we examine in 

this chapter the response of a model atmosphere to forcing 

by idealized topography or diabatic heating. These 

preliminary experiments for both linear and nonlinear 

models may provide us an elementary understanding of the 

model atmosphere behaviour. 

In section 5.1 we consider the case in which there is no 

stationary heat source included in the model and an 

idealized large scale mountain in middle latitudes is 

assumed. The results of a sensitivity test for different 

values of dissipation parameters are also described. In 

section •5.2 a similar idealized mountain is moved from 

mid-latitudes to high latitudes, this is intended to 

simulate the effects of the Greenland Plateau on the 

hemispheric stationary waves. Finally sections 5.3 and 5.4 

discuss the response to an idealized thermal forcing where 

no topography is inserted into the model and the diabatic 

heating region is located in middle and low latitudes 

respectively. 
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5.1 Response to a Large Scale Mountain in Mid-latitudes 

In this experiment there is no stationary asymmetrical 

heat source included in the model and the stationary waves 

are induced only by an idealized large scale mountain in 

mid-latitudes. The surface geopotential is specified by 

I 	w(p-.p ) 
Ig A si 	1 sin_ j LP 

2, 	

X1 <<2 

= 	

0 	L 	 ' - 1 	 2 	1 
1 
L 0 	otherwise 

(5.1) 

where g 	9.80665 ms -2  is the global average of the 

acceleration due to gravity at mean sea level. Before 

inserting this topography into the model, it is transformed 

into an expansion in truncated series similar as (2.30) with 

truncation indices M=3, J=11 and L=4. This is illustrated in 

Fig. 5.1 for the values A=2500 m, &p1=20° 	2 50 	 30  

and )2150 

5.1 .1 Linear Solution 

The perturbation stream fields at the 700 mb and 200 mb 

levels for ,the linear response to an idealized large scale 

mountain in mid-latitudes (as shown in Fig. 5.1) are 

displayed in Figs.5.2 and 5.3 respectively. At 700 mb there 

is an anticyclonic circulation in the upslope region to the 

northwest of the mountain top and a cyclonic circulation in 

the downslope region to the northeast of the mountain top 

75 



I 

Fig. 5.1 	The 	horizontal 	distribution 	of 	surface 

geopotential height, expressed as truncated 

series of spherical harmonics, for an idealized 

mountain in the mid-latitudes. Contours 

represent the geopotential height/(300m). The 

zero contours have been suppressed for clarity. 
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so 

Fig. 5.2 700 mb perturbation stream field for the linear. 

response to an idealized topography in 

mid-latitudes. 	Contours 	represent 	the 

perturbation streamf unction/ (105 m2 s 1 ) with an 

interval of 10 units. The negative contours are 

dashed. Vectors represent the horizontal 

velocity. An arrow scale for velocity in units of 

ms 1 
is indicated at bottom right, where 

exponents are plotted as a character @ followed 

by an integer (e.g., 1.00@1 	1.00x101 ). 
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90 Va 

too 

Fig. 5.3 As Fig. 5.2, but for 200 mb. Contours are at 

intervals of 20 units. 
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(it is worth noting that the westerly winds poleward of 

300 N, see Fig. 3.2, produce an upsiope region to the west of 

the mountain, whereas the low level easterly winds on the 

equatorward side produce an upsiope region to the east of 

the mountain). Another anticyclonic circulation is located 

farther downstream and extends to high latitudes. At 200 

mb the subtropical response is much stronger than at the 

lower level, an anticyclonic circulation is centred 600  east 

of the mountain top while a cyclonic circulation is centred 

30°  west of the mountain top. The rotational 

(nondivergent) component of velocity field is dominant at 

middle and high latitudes, whereas the divergent 

(irrotational) component mainly concentrates in the tropical 

region. The longitudinal cross-sections of perturbation 

geopotential height and vertical velocity at 350 N are shown 

in Figs. 5.4 and 5.5. In Fig. 5.4 the upstream ridge and the 

downstream trough of the mountain appear clearly at the 

low levels. At the upper levels a major trough is found 

over the mountain associated with a ridge to the east. All 

these systems are inclined slightly to the west with 

increasing height up to the tropopause. In Fig. 5.5 the 

vertical velocity field is dominated by upward motion (w is 

negative) over and to the west of the mountain and a 

downward motion (w is positive) to the east of the 

mountain. This is consistent with the s-plane channel 

barotropic theory (Hoskins and Karoly, 1981), which says for 

long, wavelengths the 0 term in the vorticity equation is 

dominant and there is a cyclone over the mountain ridge. 
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Figs. 5.6 and 5.7 illustrate the wave activity flux F at 

the 850 mb and 500 mb levels. The major feature 

highlighted by these figures is a wavetrain propagating 

upward, eastward and predominantly equatorward from the 

northern slope of the mountain. At low level there is also 

a smaller and less intense wavetrain propagating poleward 

from the northwest and the southeast of the mountain. As 

explained by Plumb (1985) the divergence of F from a 

topographic source does not necessarily coincide with the 

highest topography. The locations of the apparent origins 

of the wavetrain extend to some distance downstream of 

the mountain. this can be seen more, clearly from the 

longitudinal section of F at 450 N (not shown here). The 

latitudinal and vertical components of F reduce to EP flux 

when they are zonally averaged. The corresponding EP 

cross-section is plotted in Fig. 5.8, which shows the 

greatest EP flux is near the lower surface in the middle 

latitudes (40-600 N). The strongest convergence of the EP 

flux is at the same location, whereas a secondary maximum 

convergence is found in the middle troposphere at high 

latitudes (about 750 N). 

5.1.2 Nonlinear Solution 

Comparing the perturbation stream field for the 

nonlinear solution (Figs. 5.9 and 5.10) with the counterpart 

for the linear solution, we find the obvious difference is in 

the sub-tropical region at the lower level and in high 
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surface pressure at 35 O N is superimposed. 
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I; 

700 

0. 

1000. 

LONG ITUOE 

Fig. 5.4 Longitudinal 	cross-section 	of 	perturbation 

geopotential height at 35° N for the linear 

response to an idealized topography in 

mid-latitude. Contour interval is 1 dam. The 

LONGITL( 

Fig. 5.5 As Fig. 5.4 but for perturbation vertical velocity 

W. Contour interval is 3 mb day 
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270 

0 	 I 

Fig. 5.6 Wave activity flux F at 850 nib for the linear 

response to an idealized topography in 

mid-latitudes. Contours denote the vertical 

component F /(10 3 rn2 s 2 ) with an interval of 20 

units (positive upward). Arrows denote the 

horizontal component with a scale plotted at 

bottom right (unit: m 2 s-2). 
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so 

0 

Fig. 5.7 As Fig. 5.6, but for 500 mb. 	Contours are at 

intervals of 10 units. 
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Fig. 5.8 EP cross-section for the linear response to an 

idealized topography in mid-latitudes. An arrow 

scale is plotted at bottom right. The numerical 

values marked on the scales are to be multiplied 

2 	2- 	
tr 

2 	A 	 2-2 	A 

0 
by 21ta g m s 	for E , and 2a 	m s 	for E 

0 	 Z 

respectively. The contours represent the 

quantity A defined by (4.11); the numerical values 

marked on the contours to be multiplied by 

2a3  g xlCi ' ms 2 'n 	
The contour interval is 10 

units. 
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latitudes at the upper level. If we consider the 

assumptions of the perturbation theory (see, e.g., Holton, 

1979) and note that the basic state flow (Fig. 3.2) is weak 

in the polar and tropical regions as well as in the lower 

troposphere at mid-latitudes, we may expect that the 

orographically forced disturbances should be highly nonlinear 

in these regions due to the weak basic flow. At 700 mb 

low latitudes the upsiope anticyclonic circulation and the 

downslope cyclonic circulation are evident for the nonlinear 

solution (Fig. 5.9) but their linear counterparts is not clear. 

On the other hand at 200 mb the high latitude response for 

the nonlinear solution is significantly weakened. The 

longitudinal cross-section of geo potential height at 35Th 

for the nonlinear solution (Fig. 5.11) is similar to that for 

linear solution, but the upper level response is greatly 

weakened and the westward tilt of phase with height 

occurs only below 300 mb level. In addition the nonlinear 

solution has a weaker vertical velocity field in the same 

section (Fig. 5.12). These results suggest that the 

nonlinearity for the response to this idealized large scale 

mountain is significant, especially in high or low latitudes. 

This can be seen also in the wave activity flux maps (Fig. 

5.13-5.14) and EP cross-section (Fig. 5.15). 

The first point to note from Fig. 5.15 is that the 

vertical component of EP flux in high latitudes is 

substantially weakened compared with the linear results, 

especially at low levels. Another interesting feature shown 

by Fig. 5.15 is that there is an apparent source of EP flux 
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Fig. 5.9 	700 mb perturbation stream field as in Fig. 5.2, 

but for the nonlinear response. 
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so 

Fig. 5.10 200 mb perturbation stream field as in Fig. 5.3, 

but for the nonlinear response. 
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Fig. 5.11 Longitudinal 	cross-section 	of 	perturbation 

geopotential height at 350 N as in Fig. 5.4, but 

for the nonlinear response. 
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Fig. 5.12 As Fig. 5.5, but for the nonlinear response. 
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go 

ISO 

Fig. 5.13 850 mb wave activity flux as in Fig. 5.6, but for 

the nonlinear response. 
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so 

IOD 

Fig. 5.14 500 nib wave activity flux as in Fig. 5,7, but for 

the nonlinear response. 
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Fig. 5.15. EP cross-s'ection as in Fig. 5.8, but for the 

nonlinear response. 
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in the upper troposphere in middle latitudes. Since it was 

not predicted by the linear model before and there is no 

diabatic heating process included in the model, this net 

upper tropospheric source of EP flux associated with 

orographically forced stationary waves must arise from the 

nonlinear effect. Associated with this source region more 

wave activity is propagating vertically into the 

stratosphere in the nonlinear solution than that in the 

linear solution. 

5.1.3 Sensitivity to the dissipation parameters 

Some sensitivity studies were performed for different 

specifications of dissipation parameters, they are 

Case A: R  and k 
t 

are increased everywhere by 50% of 

their normal value specified in section 4.3.2. 

Case B: R  and k are decreased everywhere by 50% of 

their normal value. 

Case C: Set the biharmonic horizontal diffusion 

coefficients, ci and -, equal to zero. 

Case D: Remove the enhanced dissipation in the polar 

region, i.e., R  and k are independent of latitude. 

In each case all parameters other than those described 

above are kept unchanged. Cases A, B and C were performed 

for both the linear and nonlinear models, but case D was 

performed for the linear model only. 

From cases A and B, we find that neither increasing nor 

decreasing the value of R  and k by 50% changes obviously 
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the pattern of stationary waves forced by topography, but 

the amplitude of the wave patterns is usually increased 

(decreased) when R  and k are decreased (increased). This 

can be seen, for example, from Figs. 5.16 and 5.17 for the 

linear solution; Similar results were obtained for the 

nonlinear response but are not shown here. The pattern of 

wave activity flux and EP flux is also remarkably 

insensitive in these two cases (not shown here), but their 

amplitudes are evidently affected. 

Again in case C where the biharmonic horizontal diffusion 

is completely removed, the pattern of perturbation stream 

field has not been modified evidently, only small changes in 

the amplitude are produced (not shown here). A possible 

cause for this insensitivity to the diffusion parameters is 

due to the high truncation of this model, while these 

parameters have a much stronger effect on the wave 

components with smaller horizontal scale (see eq.(4.14)). 

Since the linear and nonlinear models developed in this 

study have a low resolution and no transient wave effect 

included explicitly, it is impossible to simulate accurately 

the stationary waves in the real atmosphere. The main 

subject of this study is qualitatively investigating the 

wave patterns excited by topography and thermal forcing, 

we may therefore consider the sensitivity of amplitude of 

the model atmospheric response to dissipation parameters 

as unimportant. In order to compare the response to 

different forcing, all dissipation parameters are fixed after 

this section. 
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If the enhanced dissipation in polar latitudes is removed 

(case D), the response is much stronger, especially in high 

latitudes than before. For example, comparing Fig. 5.18 

with Fig. 5,3 shows that the amplitude of wave pattern in 

high latitudes at 200 mb is increased by a factor of more 

than 3. There is an evident source of 'EP flux in middle and 

upper troposphere between 66° N and 80° N (Fig. 5.19). It is 

difficult to relate this source region of EP flux with the 

orographical forcing in middle latitudes. No convergent 

solution was obtained for the nonlinear model in this case 

by using the iteration procedures mentioned in section 2.5.4, 

but this does not preclude the possibility of its existence. 

5.2 Response to a Large Scale Mountain in High Latitudes 

In this experiment we move the idealized topography to 

high latitudes in order to simulate, to a certain extent, 

the effect of the Greenland Plateau. The surface 

geopotential is still represented in the form of (5.1) and 

reset at p 1 =55° , tp2 =85° , X=-90°  and A2 =0°  (where the 

amplitude A is still equal to 2500 m). 

5.2.1 Linear Solution 

Since in the lower troposphere in polar regions there is 

a weak easterly in the model's basic flow (Fig. 3.2), the 

vertical structure of the perturbation stream field for the 

linear response to an idealized large 	scale mountain in high 
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0 

Fig. 5.16 200 mb perturbation stream field as in Fig. 5.3 

except for case A, where the Rayleigh friction 

and Newtonian cooling coefficients are increased 

by 50%. 
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ISD 

0 

Fig. 5.17 200 mb perturbation stream field as in Fig. 5.3 

except for case B, where the Rayleigh friction 

and Newtonian cooling coefficients are decreased 

by 5O'a. 
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Fig. 5.18 200 mb perturbation stream field as in Fig.5.3 

except for case D, where no enhanced dissipation 

is employed in polar latitudes. 
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Fig. 5.19 EP cross-section as in Fig. 5.8, but for case D. 

Contour interval is 40 units. 
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latitudes is complicated. At 700 mb in polar region there 

is a anticyclonic circulation to the east of the mountain 

top and a cyclonic circulation to the west of the mountain 

(not shown here). At 200 mb (Fig. 5.20) a fairly strong 

anticyclonic circulation is over the mountain and the major 

wavetrain is propagating eastward and upward, while the 

latitudinal propagation is relatively weaker. In middle 

latitudes major cyclonic circulations are found in North 

America and North Africa and anticyclonic circulation in the 

Atlantic. The response in Asia and the Pacific is weak. 

The corresponding wave activity flux appears to originate 

primarily on the western side of the mountain and 

propagate vertically and eastward (see, for example, Fig. 

5.21). 

5.2.2 Nonlinear Solution 

Since the basic flow in high latitudes is much weaker 

compared with that in middle latitudes, the difference 

between linear and nonlinear response to an idealized 

topography located in high latitudes is more evident than 

that in middle latitudes. Comparing Fig. 5.22 with Fig. 5.20, 

we find that the wavetra.in  for the nonlinear solution in 

the polar region is obviously weakened. On the other hand, 

the propagation equatorward of wave activity is relatively 

stronger than the linear solution. This is seen from the 

diagrams of wave activity flux (e.g., Fig. 5.23). The EP 
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-- cross-sections for linear and nonlinear response are also 

considerably different (compare Fig. 5.24 with Fig.5.25). The 

largest EP flux arrows for the nonlinear solution are even 

more concentrated in the southern slope of the mountain, 

propagate vertically and split into two branches. One 

branch is trapped and turns equatorward in the middle 

troposphere, another major branch propagates to higher 

levels and turns poleward. Although the vertical component 

of EP flux for the nonlinear solution is generally smaller 

than that for the linear solution, c -k its horizontal 

component is relatively larger. The results of this 

experiment suggest that the nonlinearity is particularly 

important when a forcing source is located in high 

latitudes than in middle latitudes. 

5.3 Response to Mid-latitude Heating 

In this experiment we consider the case in which the 

only forcing is provided by an isolated region of diabatic 

heating located in middle latitudes and there is no 

topography inserted into the model. The horizontal and 

vertical variation of diabatic heating rate is given by 

I 
sin 

	

-q ) 	1T(A 	) 	ir( -o ) ] 
2 

A I 	 1 sin 	sin 	1 

L 	 "2 

Q 

C 	
- 	 P1  <<2 	

X 1 <<%2 	1 <I02 

0 	 otherwise 
(5.2) 

where p 
1 
 =30", 	260, 	=900, A2  180 1  01  =-0J34 and O2=1 
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Fig. 5.20 200 mb perturbation stream field for the linear 

response to an idealized topography in high 

latitudes. Contours represent the perturbation 

treamfunction/(1Q5 m2 s 1 ) with an interval of iC) 

units. 
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Fig. 5.21 500 mb wave activity flux as in Fig. 5.7 except 

for an idealized topography in high latitudes. 

Contours are at intervals of 4 units. 
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Fig. 5.22 200 mb perturbation stream field as in Fig. 5.20, 

but for the nonlinear solution. 
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Fig. 5.23 500 mb wave activity flux as in Fig. 5.21, but for 

the nonlinear solution. 
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Fig. 5.24 EP cross-section for the linear response to an 

idealized topography in high latitudes. The 

graphic convention is the same as in Fig. 5.8 but 

the contour interval is 1 unit. 
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Fig.5.25 As Fig. 5.24, but for the nonlinear response. 
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The amplitude A is set to 5 Kd 
it  which implies a relatively 

large heating maximum value corresponding to a 

precipitation rate of the order of 10 mmd 
1  (Simmons, 

1982). 

5.11 Linear Solution 

The perturbation stream fields at the 700 mb and 200 mb 

levels are shown in Figs. 5.26 and 5.27 respectively. At low 

levels there is a cyclonic circulation in the he.ting region 

with a larger longitudinal extent to the east and 

anticyclonic circulation to the west of the heating region. 

At upper level the cyclonic circulation is located to the 

west of the heating centre and an anticyclonic circulation 

to the east of the heating centre. The mid-latitude 

response is in general consistent with the calculation by 

Simmons (1982), but the high latitude response is much 

weaker due to the way in which momentum and thermal 

dissipation are treated. A longitudinal cross--section of 

perturbation geopotential height through the heating centre 

(Fig. 5.28) shows the vertical structure of the wave 

pattern more clearly, where the westward tilt of phase 

with height is more evident compared with the orographic 

forcing case. This suggests that the stationary waves 

induced by the thermal forcing have a stronger baroclinic 

nature than those induced by the orographic forcing. 

The wave activity propagates eastward in the zonal 

direction (see, e.g., Fig. 5.29), but in the meridional 
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direction it is dominated by a poleward propagation in the 

lower troposphere and an equatorward propagation at upper 

levels (see, e.g., Fig. 5.30 for a meridional cross-section of 

wave activity flux passed through the heating centre). In 

addition, the vertical variation of the vertical component 

of the activity flux appears somewhat different to the 

orographic forcing case. In the experiment described in 

section 5.1 the largest vertical flux is concentrated in the 

lower troposphere and has a much larger magnitude than 

that in this experiment, but their magnitudes become 

comparable in the upper troposphere and stratosphere. This 

may be due to the vertical distribution of heating rate. If 

the thermal forcing mainly originates from the cumulus 

convection, the vertical distribution of heating rate 

adopted in this model should be reasonable to a certain 

extent. This experiment suggests that the thermal forcing 

in the troposphere may make a considerable contribution to 

the maintenance of the vertically propagating stationary 

planetary waves in the stratosphere. This is also reflected 

in the associated EP cross-section (Fig. 5.31), which differs 

from Fig. 5.8 on the vertical distribution of vectors as well 

as on the pattern of contours representing the convergence 

of EP flux. 
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so 

Fig. 5.26 700 mb perturbation stream field for the linear 

response .to an idealized thermal forcing in 

mid-latitudes. 	Contour 	represent 	the 

percurbation streamf unction/ (105 m2 s') with an 

interval of 5 units. 
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Fig. 5.27 As Fig. 5.26, but for 200 nib. Contours are at 

intervals of 20 units. 
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Fig. 5.28 Longitudinal 	cross-section 	of 	perturbation 

geopotential height at 450 N for the linear 

response to an idealized thermal forcing in 

mid-latitudes. Contours interval is 1 dam. 
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Fig. 5.29 500 mb wave activity flux for the linear 

response to an idealized thermal forcing in 

mid-latitudes. Contours represent the vertical 

component F/(10m2 s 2 ) with an interval of 5 

units. 
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Fig. 5.30 Meridional cross-section of wave activity flux at 

1350 E for the linear response to an idealized 

thermal forcing in middle latitudes. Arrows 

denote the vertical and meridional components of 

P with the scale plotted at bottom right (unit: 

m2 2) 
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Fig. 5.31 EP cross-section for the linear response to an 

idealized thermal forcing in mid-latitude. The 

graphic convention is the same as in Fig. 5.8, but 

the contour interval is 4 units. 
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5.3.2 Nonlinear Solution 

Compared with the linear solution there is no great 

difference found for the wave patterns at the 700 mb and 

200 mb levels (they are hence not displayed here), but the 

wave activity flux differs from its linear counterpart. The 

vertical flux in the lower and middle troposphere for the 

nonlinear solution is much stronger than that for the 

linear solution. Also, the low level poleward propagation of 

wave activity is 	no longer so clear 	as in 	the Linear 	case. 

In Fig. 5.32 we find a substantial equatorward propagation 

of wave activity at 500 mb, but a similar feature can be 

found only above 500 mb for the linear solution. This can 

also be seen in the Lbitudinal section of wave activity 	- 

flux (Fig. 5.33) and the EP cross-section (Fig. 5.34). 

Corresponding to stronger vertical flux of wave activity at 

low levels, the convergence of EP flux at middle levels for 

the nonlinear solution is substantially intensified. This 

experiment suggests that the wave activity flux is more 

sensitive to nonlinearity in some circumstances than the 

wave patterns at the selected vertical levels. 

5.4 Response to Tropical Heating 

There is evidence that longitudinal variations 

in 	tropical diabatic heating 	can play an important role in 

the stationary wave structure in middle and high latitudes, 

as well as in the tropics (see, e.g., Simmons, 1982; Hendon 
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so 

Fig. 5.32 500 mb wave activity flux as in Fig. 5.29, but for 

the nonlinear response. 
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Fig. 5.33 Meridional cross-section of wave activity flux at 

1350 E as in Fig. 5.30, but for the nonlinear 

response. 
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Fig. 5.34 EP cross-section as in Fig. 5.31, but for the 

nonlinear response. 
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et al, 1982; Grose et al, 1984). Therefore in this 

experiment we move the thermal forcing specified in the 

previous section to the tropical region by resetting (p, =O

and 230 in eq. (5.2) in order to study the model 

atmosphere's behaviour further. 

5.4.1 Linear Solution 

Figs.5.35 and 5.36 show the perturbation stream field at 

the 700 mb and 200 mb levels for the linear solution. The 

extratropical response to an isolated tropical heating 

appears as a wavetrain propagating poleward as well as 

longitudinally. That the extratropical wave pattern is 

fairly independent of height reflects the barotropic nature 

of the extratropical response. These results are in general 

consistent with those provided by previous authors as just 

referenced. In contrast to the extratropical response, the 

tropical response itself has a baroclinic nature. The 

divergent (irrotational) component of horizontal, velocity in 

the tropical region is evident, with a low level inflow to 

the cyclone centred to the north;st of the heating 

maximum and an upper-level outflow from the anticyclone. 

The low level cyclonic circulation spreads over the heating 

region, with a larger longitudinal extension to the east. 

The tropical response is in good qualitative agreement with 

the calculations by Gill (1930) and Simmons (1982). The 

wave activity flux differs from that for mid-latitudes 

thermal forcing. At low level it propagates upward and 
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eastward from the northern side of the heating region, in 

the meridional direction the flux is split into two branches 

propagating equatorward and poleward respectively. At 

upper level the wave activity flux propagates upward in 

the heating region and turns poleward and downward at 

mid-latitudes. This can be seen clearly in the EP 

cross-section (Fig. 5.37). 

5.4.2 Nonlinear Solution 

The perturbation stream fields at the 700 mb and 200 nib 

levels for the nonlinear solution are shown in Figs. 5.38 and 

5.39 respectively. The wave pattern is in general 

consistent with the linear solution, but the amplitude is 

considerably intensified, especially for the extratropical 

response. Therefore the wavetrain propagating into middle 

and high latitudes from the tropical heating region can be 

seen more clearly. Similar features for the wave activity 

flux and the EP flux (Fig. 5.40) to the linear solution are 

also found, but with evident larger magnitude. In 

particular the poleward propagation of wave activity is 

stronger than in the linear solution. Just as with the high 

latitude topographic forcing, this experiment provides 

another example to suggest that the nonlinearity appears 

more significant when a forcing region is located 

somewhere with a weak basic flow than a strong basic 

flow. 
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Fig. 5.35 700 mb perturbation stream field for the linear 

response to an idealized tropical forcing. 

Cohtours 	represent 	the 	perturbation 

streamf unction/ (10 5 2 m s-1 ) with an interval of 2 

units. 
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Fig.5.36 As Fig. 5.35, but for 200 mb. Contours are at 

intervals of 5 units. 
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Fig. 5.37 EP cross-section for the linear response to an 

idealized tropical forcing. The graphic convention 

is the same as in Fig. 5.8, but the contour 

interval is 1 unit. 
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Fig.5.38 	700 mb perturbation stream field as in Fig. 5.35, 

but for the nonlinear response. Contours are at 

intervals of 5 units. 
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Fig. 5.39 200 mb perturbation stream field as in Fig. 5.36, 

but for the nonlinear response. Contours are at 

intervals of 10 units. 
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Fig. 5.40 EP cross-section as in fig. 5.37, but for the 

nonlinear response. 
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CHAPTER 6 

LINEAR RESPONSE TO LARGE SCALE 

TOPOGRAPHY AND DIABATIC HEATING 

The simple experiments for idealized orographic and 

thermal forcing described in the previous chapter give us a 

basis for understanding the steady response to the more 

complicated actual topography and diabatic heating. Now 

we go a step further to investigate the response to the 

actual topography in the Northern Hemisphere and the 

actual diabatic heating for January 1979 by using the linear 

model described in detail in chapter 3. This is discussed 

first for the two different categories of forcing separately 

(sections 6.1 and 6.2), and then for their combination 

(section 6.3). 	 - 

6.1 Linear Response to Northern Hemispheric Topography 

In the first place, we consider the pure orographic 

forcing where the Northern Hemisphere smoothed topography 

on the ECMWP PGGE grid is used to obtain a spectral 

representation of the actual topography (for a discussion of 

the influence of zonal resolution on the representation of 

the Northern Hemispheric topography, refer to Section 6.3.3). 

It is well known that the predominant large scale 

mountains in the Northern Hemisphere are the Tibetan 

Plateau, Rocky Mountains and the Greenland Plateau. In 
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Figs. 6.1 and 6.2 are shown the perturbation stream fields 

at the 700 mb and 200 mb levels for the linear response to 

actual Northern Hemispheric topography. The middle and 

high latitude response is dominated by zonal wavenumber 

two and has an evident barotropic component (the phase is 

almost independent of height), but the low latitude 

response at the upper level is much stronger than that at 

the lower level. From Fig. 6.2 we can see four major 

circulation systems at the 200 mb level in middle and low 

latitudes: two anticyclonic regions are located in the 

Atlantic, the northern and western Pacific, and two cyclonic 

areas 	in 	Eurasia, 	the 	eastern. 	Pacific 	and 	North 	America. 

Fig. 	6.3 	is 	a 	longitudinal 	cross-section of 	perturbation 

geopotential height at 450 N which shows two major troughs 

at about 	120° E 	and 90° W and two major 	ridges at about 

150° W and 	200 W. 	The troughs and 	ridges incline 	gently to 

the 	west with 	increasing 	of height. 	The 	upstream 	ridge 

and 	downstream 	trough 	of the 	Tibetan 	Plateau 	appear 

clearly at 	the lower 	levels. The vertical velocity at 	this 

section 	is 	displayed 	in 	Fig. 6.4, 	showing 	the 	two 	main 

centres of rising air over the Pacific and the eastern coast 

of North America, and two centres of sinking air over the 

Europe 	and the 	eastern 	Asia. The 	upsiope 	and 	downslope 

current is also clear over the Tibetan Plateau. 

From wave activity 	maps it 	is 	possible 	to 	distinguish 

three wavetrains propagating mainly eastward, equatorward 

and 	upward (see, 	e.g., 	Fig. 	6.5). They may be related to the 

three large scale mountains in the Northern Hemisphere, and 
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the wave train originated to the north and east of the 

Tibetan Plateau is both more intense and more extensive 

than the others. The associated EP flux pattern (Fig. 6.6) 

is similar to that in Fig. 5.8 for an idealized mid-latitude 

topographic forcing. These diagnostics suggest that the 

major orographic forcing of the stationary planetary waves 

results from the Tibetan Plateau, while the Rocky mountains 

and Greenland Plateau seem to be of secondary importance. 

In order to study further the relative importance of 

these three large scale mountains to the orographically 

forced stationary waves two experiments have been made: 

One removes the topography in North America, i.e., before 

transforming the surface geopotential height from grid 

point value to a spectral expression, we reset the values 

at those points which are located in North America equal 

to zero; Another removes the topography in Greenland in 

the same way. When the North American topography is 

removed, the major circulation systems influenced are the 

eastern Pacific cyclone and the Atlantic anticyclone. For 

example, at 200 mb level (Fig. 6.7) the former displaces 

westward with a centre at 150° W and the latter displaces 

eastward with a centre at 0" E, the intensity of both 

systems is weakened by about one third. The other 

systems are almost unchanged. When Greenland's topography 

is removed, both the anticyclonic circulation over Greenland 

and the cyclonic circulation to the west at 200 mb level 

(Fig. 6.8) are weakened by a half. and the anticyclonic 

circulation over the Atlantic is also weakened by one third. 

127 



Fig. 6.1 700 mb perturbation stream field for the linear 

response to the Northern Hemispheric topography. 

Contours 	represent 	the 	perturbation 

streamf unction/ (105 m2 s 1 ) with an interval of 10 

units. 
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Fig. 6.2 As Fig. 6. 1, but for 200 mb. Contours are at 

intervals of 20 units. 
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Fig. 6.3 Longitudinal 	cross-section 	of 	perturbation 

geopotential height at 45°N for the linear 

response to the Northern Hemispheric topography. 

Contour interval is 2 dam. 
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Fig. 6.4 As Fig. 6.3, but for perturbation vertical velocity. 

Contour interval is 5 mbd 1 
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Fig. 6.5 Wave activity flux F at 850 mb for the linear 

response to the Northern Hemispheric topography. 

The graphic convention is the same as in Fig. 5.6, 

but the contour interval is 40 units. 
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Fig. 6.6 EP cross-section for the linear response to the 

Northern Hemispheric topography. The graphic 

convention is the same as in Fig. 5.8, but the 

contour interval is 20 units. 
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Fig. 6.7 200 mb perturbation stream field as in Fig. 6.2, 

but the topography of North America is removed. 
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Fig. 6.8 200 mb perturbation stream field as in Fig. 6.2, 

but the topography of Greenland is removed. 
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Other systems are little affected. These experiments 

confirm that the Rockies and .the Greenland Plateau are of 

secondary importance on the maintenance of orographically 

forced stationary waves in the Northern Hemisphere 

compared with the Tibetan Plateau. 

6.2 Linear Response to Diabatic Heating in January 1979 

The problem of thermal forcing is complicated by the 

dependence of the response on the vertical and horizontal 

structure of the diabatic heating field. In order to 

calculate the response of a model atmosphere to actual 

diabatic heating in winter, we need a three-dimensional 

distribution of heating rates. The vertically integrated 

heating rates for January 1979 prepared from NMC FGGE 

Level lila operational data set and also ECMWF FGGE Level 

fib analysis by Johnson et al (1985) are used as the 

horizontal distribution of diabatic heating and its vertical 

variation is given by the analytical expression (4 .13). The 

use of two data sets is in consideration of the fact that 

the actual diabatic heating distribution in the troposphere 

is difficult to 'calculate accurately. Therefore we will 

discuss the respective results using the heating fields 

derived from different data sources. Their similarity may 

contribute to a better confidence in the results. 
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6.2.1 Heating Field Derived from FGGE lila Data 

The horizontal variation of the mean diabatic heating 

rate in January 1979 derived from FGGE lila data is 

illustrated in Fig. 6.9. The major heat sources are found in 

the following areas: a) Along the ITCZ over the Pacific, b) 

the North Pacific and c) the eastern coasts of North 

America and the North Atlantic. The diabatic cooling covers 

larger areas than the heat sources. As we might expect, 

the longitudinal variation of heat sources and sinks 

reflects mainly the spatial distribution of precipitation and 

surface heat fluxes. 

The perturbation stream fields at the 700 mb and 200 mb 

levels for the linear response to this diabatic heating are 

shown in Figs. 6.10 and 6.11 respectively. At low-levels 

there are two cyclonic and two anticyclonic circulation 

systems mainly over the oceans and the continents in 

correspondence. with the horizontal distribution of heat 

sources and sinks. At upper level these systems are 

reversed. The amplitude of this thermally forced wave is 

comparable to that forced by the Northern Hemisphere 

topography. A longitudinal cross-section of perturbation 

geopotential height at 450 N is presented in Fig. 6.12, 

showing two ridges around 130° W and 0° E and two troughs 

around 1 350  E and 600  W. The tough over eastern Asia is 

much more intense than that over the eastern coast of 

North America. Another noteworthy feature in Fig. 6.12 is 
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the obvious westward tilt of phase with height. Compared 

with topographic forcing, we find that the response to the 

thermal forcing has a stronger baroclinic nature. 

The wave activity flux (see, e.g. , Fig. 6.13) shows two. 

distinct wavetrains over the North Pacific and the North 

Atlantic. Both are spreading eastward and upward, but 

their meridional propagation is in opposite directions. This 

can be understood from the horizontal distribution of 

diabatic heating (Fig. 6.9). There is a quite strong heat 

source over the tropical Pacific, while a quite extensive 

heat sink is found over the tropical Atlantic. Therefore 

the Pacific wavetrain propagates polèward and the Atlantic 

wavetrain equatorward. This wave activity flux pattern 

suggests that the longitudinal variation of diabatic heating 

in the tropical region has significant influence on the 

stationary planetary Wave in middle and high latitudes. In 

addition there is a downward flux in northern Asia at 850 

mb, but all vertical flux turns upward at 700 mb and above 

(not shown here). 

The associated EP flux (Fig. 6.14) is also quite different 

to that for actual topographic forcing (Fig. 6.6). The 

former has a stronger vertical flux at upper levels than 

the latter, and evident convergent regions of EP flux are 

found in the middle and upper troposphere as well as in 

the lower stratosphere in Fig. 6.14. This supports the 

suggestion in section 5.3.1, that is, the thermal forcing in 

the troposphere makes a considerable contribution to the 

maintenance of the vertically propagating stationary 
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ISO 

Fig.6.9 The horizontal distribution of vertically 

integrated diabatic heating . in January 1979 

derived from FGGE lila data by Johnson. The 

original data is on 2.5° x2.50  grid points, which 

have been transformed into a spectral expression 

with truncation indices M=3 and J=11. Contour 

interval is 0.5 Kd. 
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Fig. 6.10 700 mb perturbation stream field for the linear 

response to the actual diabatic heating field 

derived from FGGE lila data. Contours represent 

the perturbation streamfunction/(105  m2  s 1) with 

an interval of 10 units 
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Fig. 6.11 As Fig. 6.10, but for 200 mb. Contours are at 

intervals of 20 units. 
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Fig. 6.12 Longitudinal 	cross-section 	of 	perturbation 

geopotential height at 45°N for the linear 

response to the diabatic heating field derived 

from FGGE lIla data. Contour interval is 2 dam. 
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Fig. 6.13 850 mb wave activity flux as in Fig. 6.5, but for 

the linear response to the diabatic heating field 

derived from FGGE lila data. Contours are at 

intervals of 20 units. 
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Fig. 6.14 EP cross-section for the linear response to the 

diabatic heating field derived from FGGE lila data. 

Contours are at intervals of 10 units. 
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planetary waves in the stratosphere. In the meridional 

direction the EP flux splits into two branches: the 

southern one points towards the equator and the northern 

one towards the pole. 

6.2.2 Heating Field Derived from FGGE Ilib Data 

An alternative representation for the vertically 

integrated mean diabatic heating in January 1979 was 

derived from ECMWFs Level Ilib analysis and illustrated in 

Fig. 6.15. The predominant features in Fig. 6.15 are in 

general consistent with those in Fig. 6.9, but with a more 

extensive tropical heat source (positive deviation from the 

zonal mean is still concentrated in the tropical Pacific) and 

a more intense heat source in the North Pacific. 

The perturbation stream fields at the 700 mb and 200 nib 

levels for the linear response to this alternative heating 

field are shown in Figs. 6.16 and 6.17 respectively. The 

wave patterns shown in these figures are similar to those 

in Figs: 6.10 and 6.11, but the amplitude of different 

circulation systems is either intensified or weakened 

depending on their geographical location. The most 

significant difference is found in the Pacific, both low-level 

cyclonic and upper-level anticyclonic circulations are 

greatly intensified. In Figs. 6.18 and 6.19 are shown the 

wave activity fluxes at the 850 mb and 200 mb levels 

respectively. The main difference for the wave propagation 
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is also found over the Pacific. As previously mentioned the 

linear response to the FGGE lila heating field displays a 

poleward meridional propagation of wave activity over the 

Pacific at the 850 mb, 700 mb and 500 mb levels, only a 

weak equatorward propagation found at the 200 mb level 

(not shown .here). But for the FGGE Ilib heating field there 

is an evident equatorward propagation of wave activity 

over the Pacific at the 500 mb level and above. This may 

result from the more intense heat source over the northern 

Pacific and the relatively weaker heat source (refer to the 

deviation from the zonal mean) over the tropical Pacific. 

The associated EP cross-section is shown in Fig. 6.20, which 

is also similar to Fig. 6.14 except with weaker convergence 

at middle and upper levels. 

6.3 Linear Response to Topography and Diabatic Heating 

We consider further the linear response to combined 

orographic and thermal forcing, i.e., both the Northern 

Hemisphere topography and mean diabatic heating rate in 

January 1979 are included in the model. This solution is 

simply a linear superposition of the linear solutions for the 

pure orographic and the pure thermal forcing. As in the 

previous section, we will discuss the linear response to the 

Northern Hemispheric topography combined with FGGE lila and 

FGGE Ilib heating fields separately. 
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Fig. 6.15 The horizontal distribution of diabatic heating as 

in Fig. 6.9, but derived from FGGE 11th analysis. 

The original data is on 1.8750 xl.8750  grid points 

and transformed into a spectral expression with 

the same resolution as in Fig. 6.9. Contour 

interval is 0.5 Kd 

1 6 



, : 	• 

• 1 	/ 	g 	q.. . 

9 	, ,.:8- ---: . 

...... 	•.. I 	/•. 
; 

••'•.. 	•i.Ifi .:q .- 
- 

?..... 'f 
> #49J.b,V? 9 ./ 	$ 	$ 

... 	...•...• 

1.000 	1 

Fig. 6.16 700 mb perturbation stream field as in Fig. 6.10, 

but for the diabatic heating derived from FGGE 

Mb data. 
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Fig. 6.17 200 mb perturbation stream field as in Fig. 6.11, 

but for the diabatic heating derived from FGGE 

tub data. 
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Fig. 	6.16 	850 mb wave activity flux as in 	Fig. 	6.13, but for 

the diabatic heating derived from FGGE tub data. 
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Fig. 6.19 As Fig. 6.18, but for 200 mb level. Contours are 

at intervals of 10 units. 
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Fig. 6.20 EP cross-section as in Fig. 6.14, but for the 

diabatic heating derived from FGGE hUb data. 
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6.3.1 Topography and FGGE lila Heating Field 

In Figs. 6.21 and 6.22 are shown the corresponding 

perturbation stream fields at the 700 mb and 200 mb levels 

respectively. The circulations in high latitudes at the 700 

mb level are mainly contributed from the orographic forcing 

except for the cyclonic circulation between 150° W and 

90° W, where the stationary wave exerted by topography 

has a weaker intensity than that by thermal forcing. Both 

the orographic and the thermal fo±cings made a comparable 

contribution to the stationary waves in middle latitudes at 

the 700 mb level. At upper levels the relative importance 

of these two categories of forcing depends upon the 

geographical position of the circulation system. In general, 

we may consider them to be of equal importance. This can 

be seen from a comparison between Figs. 6.2, 6.11 and 6.22, 

or from the longitudinal cross-sections at a particular 

latitude. The longitudinal cross-section of perturbation 

geopotential height at 45° N is shown in Fig. 6.23, in which 

the trough in eastern Asia and the ridge in the eastern 

Pacific result from both the orographic and thermal forcing 

(compare with Figs. 6.3 and 6.12). The thermal forcing made 

a substantial contribution to the ridge near the west 

coast of Europe, while the ridge located to the west of 

the Tibetan Plateau at the low levels is clearly induced by 

the topography. 

It is not the intention of this study to simulate the 

observed wintertime stationary waves accurately. However, 
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it is of interest to compare these results with the 

observations. Two maps for the statistics of observed 

stationary waves in winter are presented here. One is the 

Northern 	Hemisphere 	climatological 	mean 	January 

distribution of stationary wave geopotential height at the 

200mb level (Fig. 6.24), which is photocopied from the paper 

of Wallace (1983) and originally based on the Atlas of 

Crutcher and Merserve (1970), digitized, spatially and 

temporally smoothed and archived on magnetic tape in the 

NCAR data library. Another is the Northern Hemisphere 

6-year climatological wintertime (December-February) 

distribution of stationary wave streamfunction at the 250 

mb level (Fig. 6.25), which is provided by B. J. Hoskins 

(personal communication, 1986) and is based on ECMWF 

analyses. All the major features displayed in these two 

figures are in good agreement. They appear in individual 

winters with only relatively minor year to year variations 

in structure (Wallace, 1983). 

Comparing Fig. 6.22 with Figs. 6.24 and 6.25, we find that 

the pattern of stationary waves at the 200 mb level 

simulated by this linear model is fairly consistent with the 

observation, but the following deficiencies are evident in 

the model results: 

The anticyclonic circulation over the western 

Pacific is relatively too weak compared with the 

middle latitude circulation systems. 

The cyclonic circulation centred at 60° E, 350 N is 

relatively too strong. 
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The cyclonic circulation over the eastern tropical 

Atlantic and North Africa is severely weakened. 

In high latitudes both the cyclonic circulation 

between 1750 W and 90° W, and the anticyclonic 

circulation between 105° E and 175° W are displaced 

westward, and the latter has too large an 

extreme value of perturbation streamfunction. 

The inaccurate representation of the actual wintertime 

diabatic heating and the Northern Hemispheric topography 

due to the low resolution used in the model as well as the 

lack of transient effects included explicitly in the model 

may be partly responsible for these deficiencies. Certainly, 

we should not forget the possibility that there might have 

been evident differences in the forcing condition between a 

particular month and a long period on which the 

climatological statistics are based. However, in the next 

chapter we will show that the nonlinearity is an important 

factor in simulating these circulation systems in low and 

high latitudes. 

A longitudinal cross-section of perturbation vertical 

velocity at 45° N (Fig. 6.26) shows that the sinking air is 

mainly concentrated over the Eurasian Continent at this 

latitude circle, and rising air occurs elsewhere. 

The wave activity fluxes at the 850 mb and 500 mb 

levels are shown in Figs. 6.27 and 6.28 respectively. There 

are two major wavetrains propagating upward, eastward 

and mainly equatorward from eastern Asia across the North 

Pacific and from eastern North America across the North 
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Fig. 6.21 700 mb perturbation stream field for the linear 

response to the Northern Hemispheric topography 

and the diabatic heating field derived from FGGE 

lila data. Contours represent the perturbation 

streamf unction/ (105  m2  s) with an interval of 20 

units. 
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Fig. 6.22 As Fig. 6.21, but for 200 mb. Contours are at 

intervals of 30 units. 
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Fig. 6.23 Longitudinal 	cross-section 	of 	perturbation 

geopotential height at 45°N for the linear 

response to the Northern Hemispheric topography 

and the diabatic heating field derived from FGGE 

lila data. Contour interval is 4 dam. 
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Fig. 6.24 Northern Hemisphere climatological mean January 

distribution of stationary wave geopotential 

height at the 200 mb level. Photocopied from 

the paper of Wallace (1983). Contour interval is 

6 dam. The zero contour is thickened; positive ,  

contours are solid and negative ones are dashed. 

Lines of latitude tnd longitude are drawn every 

200  and 600,  respectively. 
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Fig. 6.25 Northern 	Hemisphere 	6-year 	climatological 

December- February distribution of stationary 

wave streamfunction at the 250 mb level. 

Provided by B. J. Hoskins. Lines of latitude 

and longitude are drawn every 100  and 20° , 

respectively. 
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Fig. 6.26 Longitudinal 	cross-section 	of 	perturbation 

vertical velocity at 453 N for the linear response 

to the Northern Hemispheric topography and the 

diabatic heating derived from FGGE lila data. 
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Fig. 6.27 850 mb wave activity flux for the linear 

response to the Northern Hemispheric topography 

and the diabatic heating field derived from FGGE 

lila data. The graphic convention is the same as 

in Fig. 5.6, but contour interval is 100 units. 

161 



. 	 •? --..._••• - 	. 	V 

- 	. 	• 	•' '.. .4 	.. • 	• 1.............. - 
•s 	4. 	•4.. 	4.. '' 	. 	V 	. ,. 

- 
- 	- - 

-S.  p 	4 • 
¼ 	 •. - I 	•-•2 	\ — 

1 	• - 4 	—4- 	74_ 	
. 	.)ç'.. . V. 

, 
••' 	._4_ 	•0 — 	' ¼ 	1 . 

• VOr ................'4 • 	-4; 	;V.17 
) c* 

— I •• 	' ' 	/.4 / - .y 
.4 	 •v 4) . 

1 
.• 	• 	•e 4 — 	- 4: 

'I 	• 	•..• 	•.s  4 
-..•.. 	,c...,• 	••...• I 

_ 
4 .— 	.t_—• I. 	. 

- S 	— 4o.I:_).c_.#1 
¼ 	¼ 	•..- - 	_I-.p 	I 

-I .. 	_s•... 	.; / 

- • 

(S  - 200.1 
1 —. -. 
0 

Fig. 6.28 As Fig. 6.27, but for the 500 mb. Contours are 

at intervals of 50 units. 
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Fig. 6.29 EP cross-section for the linear response to the 

Northern Hemispheric topography and the diabatic 

heating field derived from FGGE lila data. 

Contour interval is 20 units. 
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Atlantic. The North Pacific wavetrain is both more intense 

and more extensive than that in the North Atlantic. From 

the calculations for the pure orographic forcing and the 

pure thermal forcing, it is found that at low levels the 

North Pacific wavetrain is predominantly originated by 

orographic forcing, in particular, the Tibetan Plateau plays 

the most important role, while the thermal forcing makes 

relatively more contribution to the North Atlantic 

wavetrain than to the North Pacific wavetrain. Above 500 

mb (e: g., at 200 mb level, not shown here), the individual 

contributions to the wave activity flux from both the 

orographic and the thermal forcing are comparable. Fig. 

6.29 is the corresponding EP cross-section. The EP flux in 

the lower troposphere is predominantly determined by 

orographic forcing, while the EP flux in the middle and 

upper troposphere depends on both the orographic and the 

thermal forcing. 

6.3.2 Topography and FGGE 11th Heating Field 

As discussed in section 6.2.2, when the FGGE Ilib 

vertically integrated heating field is used as an alternative 

representation of the actual diabatic heating the linear 

response to the combined orographic and thermal forcing 

gives a similar wave pattern, but some significant 

differences are found in the Pacific Ocean. For example, at. 

the 700 mb level (Fig. 6.30) there is an anticyclonic 

circulation between 20° N and 40° N over the western Pacific 
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associated with a cyclonic circulation to the west. These 

systems do not appear in Fig. 6.21, where the FGGE lila 

heating field is used. The 200 mb perturbation stream field 

(Fig. 6.31) is also similar to its counterpart for the FGGE 

lila heating field, only the amplitude of some wave patterns 

is changed. Comparing these results with observations (Fig. 

6.25) shows that this linear solution still has the 

deficiencies mentioned in the previous section, particularly 

failing to simulate the cyclonic circulation over the eastern 

tropical Atlantic and North Africa. 

The influence on the wave activity flux is not 

significant and not shown here. The corresponding EP 

cross-section is displayed in Fig. 6.32, showing a weaker 

convergence of EP flux in the middle and upper levels 

between 40°  N and 60°  N and a stronger source of EP flux in 

the middle troposphere centred around 37N. 

6.3.3 A Zonal Resolution Test 

As previously mentioned, in this study we only calculate 

the response to ultra-long waves, i.e., only zonal wave 

numbers 1, 2 and 3 are considered, partly because they are 

most important for stationary planetary waves, partly 

because the computational resource available is limited for 

the nonlinear model, which has a high requirement of 

computer storage and CPU time. However, in contrast to 

the nonlinear model, the linear model has the advantage of 

much lower requirements in computational aspects. 
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Fig. 6.30 700 mb perturbation stream field as in Fig. 6.21, 

but the diabatic heating field is derived from 

FGGE Ilib data. 
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Fig. 6.31 200 mb perturbation stream field as in Fig. 6.22, 

but the diabatic heating field is derived from 

FGGE tUb data. 
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Fig. 6.32 EP cross-section as in Fig. 6.29, but the diabatic 

heating field is derived from FGGE tub data. 
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Therefore a zonal resolution test was carried out to see if 

significant difference.s might result from the inclusion of 

higher wavenumbers. In this experiment both the meridional 

and vertical resolutions remain unchanged, but the zonal 

resolution comprises wavenumbers up to nine. The forcing 

functions correspond to those used in section 6.3.1, that is, 

both Northern Hemispheric topography and diabatic heating 

derived from FGGE lila data are included in the linear model. 

The perturbation stream fields at the 200 mb level 

superposed for wavenumbers up to six and nine are shown 

in Figs. 6.33 and. 6.34 respectively. The perturbation wave 

patterns displayed in these two figures are very similar to 

those in Fig. 6.22, where only wavenumbers up to three are 

superposed. Comparing these results with the observations 

(see, Fig. 6.25), there are some improvements achieved. 

Firstly, the anticyclonic circulation over the western 

Pacific is enhanced after inclusion of higher wavenumbers, 

which is more realistic; next, the cyclonic circulation over 

the eastern tropical Atlantic and North Africa is evidently 

enhanced, which is also closer to the observed wintertime 

climatological stationary wave pattern. The cyclonic 

circulation centred previously at 600 E, 350 N is displaced 

slightly eastward and has a stronger intensity, this 

deviates from observed stationary waves even further. 

There is no improvement found for the simulation in high 

latitudes. In addition, the cyclonic circulation over eastern 

North America is represented better by inclusion of higher 

zonal wavenumbers. 
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The improved wave simulations described above are 

connected with a more realistic representation of the 

Northern Hemispheric topography and diabatic heating by 

inclusion of higher zonal wavenumbers in the. model. In 

order to see the influence of zonal resolution on the 

representation of the Northern Hemispheric topography in 

terms of truncated series of spherical harmonics, the 

horizontal distribution of surface geopotential height. for 

zonal wavenumbers up to three and nine are shown in Fig. 

6.35 and Fig. 6.36 respectively. It is obvious that the 

inclusion of higher wavenumbers produces more realistic 

topography, especially for mountains with a smaller 

horizontal scale, such as the North African mountains, the 

Greenland Plateau and the Rocky mountains. Fig. 6.37 shows 

the horizontal distribution of vertically integrated diabatic 

heating in January 1979, as in Fig. 6.9, but here zonal 

wavenumbers up to nine are included. We can identify 

smaller scale structures in Fig. 6.37, which are not visible 

in Fig. 6.9. 

170 



Fig. 6.33 	200 mb perturbation stream field as in Fig. 	6.22, 

but for wavenumbers up to six. 
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Fig. 6.34 200 mb perturbation stream field as in Fig. 6.22, 

but for wavenumbers up to nine. 
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Fig. 6.35 The 	horizontal 	distribution 	of 	surface 

geopotential height for the Northern Hemispheric 

topography. The original data is on 1.875° xl.875°  

grid points, which have been transformed into a 

truncated series of spherical harmonics with 

truncation indices M=3 and J=11. Contours 

represent topography height/(300m). 
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Fig. 6.36 As Fig.6.35, but with M=9. 
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Fig. 6.37 As Fig. 6.9, but with M=9. 
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CHAPTER 7 

NONLINEAR RESPONSE TO LARGE SCALE 

TOPOGRAPHY AND DIABATIC HEATING 

The linear calculations of the response to large scale 

Northern Hemispheric topography and the actual wintertime 

diabatic heating, as described in the previous chapter, are 

interesting because of their suggestive similarity with the 

observed climatological stationary wave patterns despite 

some evident deficiencies in both amplitude and geographic 

position of the simulated waves. However, the equations 

governing the linear model are clearly a great 

simplification of the real atmospheric behaviour. The 

velocity components of finite amplitude disturbances in the 

real atmosphere are often of comparable magnitude to the 

mean zona]. flow. In this case one of the basic assumptions 

for the perturbation method breaks down, namely, the 

terms in the governing equations which involve products of 

perturbation variables become significant. This is 

particularly evident in some areas such as the polar and 

tropical regions where the zonally averaged basic flow is 

weak while the stationary waves induced by local and 

remote forcing are relatively strong. It should be noted 

that the strong nonlinearity in a limited region influences 

other parts of the global circulation by means of various 

interaction processes in the atmosphere. As a step closer 

to reality, in this chapter we look for the response to the 

176 



actual topography and diabatic heating again by using the 

nonlinear primitive equation model described in chapter 2. 

In a similar way to the previous chapter, we will first 

consider the two different categories of forcing separately 

(sections 7.1 and 7.2), and then for their combination 

(section 7.3). Our attention is mainly directed to the 

differences between the nonlinear and linear response. 

7.1 Nonlinear Response to Northern Hemispheric Topography 

In Figs. 7.1 and 7.2 are shown the perturbation stream 

fields at the 700 mb and 200 mb levels for the nonlinear 

response to the Northern Hemispheric topography. At 700 

mb the nonlinear response has a similar wave pattern to 

the linear one, but with an enhanced amplitude in general. 

At 200 mb the difference between the linear and nonlinear 

response is more complicated. In the polar region the 

nonlinear response is weakened except the' anticyclonic 

circulation over Greenland, which is considerably intensified. 

The most significant changes take place in an extensive 

region from the eastern Atlantic to the east coast of Asia. 

Over the Atlantic there is an extensive anticyclonic 

circulation in the linear response (see Fig. 6.2), the eastern 

half of which is now replaced by a weak inverse 

circulation. Farther east the previous strong cyclonic 

circulation over the Middle East and India is greatly 

weakened and displaced south-eastward, whereas a quite 

intense and extensive anticyclonic circulation appears to 
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the northwest. The downstream cyclonic circulation is also 

enhanced. In chapter 5 we made a similar comparison 

between the linear and nonlinear response for the idealized 

orographic forcing, but the changes described here are more 

dramatic than before. This suggests that the nonlinearity 

of the response to the actual Northern Hemispheric 

topography is- very significant. 

The longitudinal cross-sections of perturbation 

geopotential height and vertical velocity are shown in 'Figs.. 

7.3 and 7.4 respectively. Fig. 7.3 shows two troughs and 

two ridges similar to Fig. 6.3 for the linear response, but 

the vertical structure of the disturbances in Asia and the 

West Pacific is obviously changed. In the linear case the 

upstream ridge and the downstream trough of the Tibetan 

Plateau at 450 N are mainly concentrated below the 500 mb 

level and the disturbance in the upper troposphere is 

relatively weak (see Fig. 6.3, also Fig. 6.1 and 6.2), but in 

the nonlinear case they pervade the whole troposphere 

with the maximum deviation value of geopotential height at 

about 250 mb. In the region further upstream, the trough 

at North America is also considerably intensified. Fig. 7.4. 

shows two main centres of rising air over the eastern 

Pacific and the Atlantic, and two centres of sinking air 

over North America and eastern Asia. This differs from the 

linear counterpart evidently (see Fig. 6.4). 

The wave activity flux at 850 mb (Fig. 7.5) shows two 

main wavetrains, one is over eastern Asia and the Pacific, 

another over North America and the North Atlantic. The 
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former is much stronger and related to the Tibetan Plateau, 

the latter with the Rocky mountains. The North American 

wavetrain shows more evidence of splitting with one branch 

propagating north-eastward and the other south-eastward. 

These two wavetrains have their linear counterparts (see 

Fig. 6.5 ), but with a stronger meridional component in the 

nonlinear case. In addition, a maximum of the vertical flux 

can be found to the west of Greenland. It may not be 

related only to the Greenland Plateau, the nonlinear 

interaction is more important as discussed later. 

Comparison with Fig. 6.5 suggests that the wave activity 

flux in high latitudes for the nonlinear case differs 

dramatically from that for the linear case. This is also 

seen from the EP cross-section (Fig. 7.6), where the vertical 

flux at the low level in high latitudes is considerably 

weakened. 

The two experiments which were performed in section 6.1 

for the purpose of studying the relative importance of the 

three large scale mountains of the Northern Hemisphere to 

the orographically forced stationary waves were repeated 

using the nonlinear model. In the linear case, the major 

circulation systems influenced by removing the North 

American topography are confined to middle latitudes. but 

in the nonlinear case its influence involves a more 

extensive area. For example, at the 200 mb level (Fig. 7.7), 

the previous anticyclonic circulation over the tropical 

Atlantic (see Fig. 7.2) has almost disappeared and the 

cyclonic circulation over the eastern tropical Pacific is also 
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weakened. A more interesting thing occurs in high 

latitudes, that is, the previous quite strong anticyclonic 

circulation over Greenland is greatly weakened (the 

maximum in the perturbation streamfunction has decreased 

by about a half). A longitudinal cross-section of 

perturbation geopotential height at 450 N is shown in Fig. 

7.8. Comparison of Fig. 7.3 and Fig. 7.8 shows that the 

topography of North America, among which the predominant 

mountains are the Rockies, makes a substantial contribution 

to the maintenance of the trough in North America as well 

as the associated ridge upstream at this latitude circle. 

When the topography of Greenland is removed, both the 

anticyclonic circulation over Greenland and the inverse 

circulation to the west at the 200 mb level (Fig. 7.9) are 

weakened. it is noteworthy that the maximum in the 

perturbation streamf unction over Greenland is decreased 

only by about one third, which is less than the decrease 

caused by removing the North American topography. On the 

850 mb wave activity flux map (not shown here), when the 

North American topography is removed the previously 

mentioned maximum vertical flux to the west of Greenland 

disappears, while it is only greatly weakened when the 

Greenland Plateau is removed. This suggests that the wave 

activity flux from mid-latitudes and its nonlinear 

interaction with the waves induced locally are important in 

determining the wave activity flux pattern in high 

latitudes, thus affecting the stationary waves there: As 

to the maintenance of orographically forced stationary 
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Fig. 71 	700 mb perturbation stream 	field 	as 	in 	Fig.6.1, 

but for the nonlinear response. 
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Fig. 7.2 200 mb perturbation stream field as in Fig.6.2, 

but for the nonlinear response. 
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Fig. 7.3 Longitudinal 
	

cross-section 	of 
	

perturbation 

geopotential height at 450 N as in Fig. 6.3, but 

for the nonlinear response. 
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Fig. 7.4 Longitudinal 	cross-section 	of 	perturbation 

vertical velocity at 45° N as in Fig. 6.4, but for 

the nonlinear response. 

183 

a 



ieo 

0 •  ••. .,. ..L..• 	I 

VOr 	- 
-.; 

y - 	4 	.. 	 Ix 

4 - 

.- 

. 	.t4_•  '- 
• . 	... 	7 	•'-':i-•. .. 	• • .' . 	.•, .. '... 	•. . 	I 

• 

- 800.0 
I 

Fig. 7.5 Wave activity flux F at 850 mb as in Fig. 6.5, 

but for the nonlinear response. 
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Fig. 7.6 EP cross-section as in Fig. 6.6, but for the 

nonlinear response. 
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Fig. 7.7 As Fig. 7.2, but the topography of North America 

is removed. 
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Fig. 7.8 As Fig. 7.3, but the topography in North America 

is removed. 

187 



Fig. 7.9 As Fig. 7.2, but the topography of Greenland is 

removed. 	 - 
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waves in the whole Northern Hemisphere, these nonlinear 

calculations show that the Rockies and the Greenland 

Plateau are still of secondary importance compared with 

the Tibetan Plateau. 

7.2 Nonlinear Response to Diabatic Heating in January 1979 

For the idealized thermal forcing in middle latitudes 

where the zonal mean basic flow is relatively strong, we 

found that the influence of nonlinearity on the wave 

patterns at the 850 mb and 200 mb levels is not evident 

(section 5.3). But the geographic distribution of diabatic 

heating in the real, atmosphere is much more complicated 

than that idealized case, hence it is expected that the 

nonlinear interaction may be more significant for the more 

realistic thermal forcing. In this section we discuss the 

nonlinear response to the mean diabatic heating in January 

1979. Similar to the previous chapter, the heating fields 

derived from different data sources will be considered 

separately. 

7.2.1 Heating Field Derived from FGGE lila Data 

The 700 mb perturbation stream field for the nonlinear 

response to the FGGE lila heating field (Fig. 7.10) has a 

similar wave pattern in middle latitudes to that for linear 

response, but with a much larger amplitude. The nonlinear 

response in high and low latitudes produce some wave 
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patterns which cannot be seen clearly in the linear case. 

At the 200 mb level the nonlinear response (Fig. 7.11) in 

both •high and low latitudes is also stronger than the 

linear one, while in middle latitudes the main difference is 

found in the eastern Pacific and Ncirth America. Fig. 7.12 is 

a longitudinal cross-section of perturbation geopotential 

height, which shows similar structure to the linear solution 

(Fig. 6.12) except between 1800 E and 60° W. These 

comparisons suggests that the nonlinearity for the response 

to the actual diabatic heating in the wintertime is also 

significant, particularly in high and low latitudes. 

It is interesting to compare the nonlinear response to 

the wintertime actual thermal forcing with that to the 

Northern Hemispheric orographic forcing. We find that both 

responses have comparable amplitude, this implies they are 

equally important for the maintenance of the stationary 

planetary waves in wintertime. The difference in vertical 

structure of the induced wave patterns for these two 

categories of forcing is evident. For example, comparison 

between the longitudinal cross-sections (Fig. 7.3 and 7.12) 

shows that the response to the actual thermal forcing has 

more baroclinic nature than that to the actual orographic 

forcing. 

The wave activity flux for actual thermal forcing (FGGE 

lila) at the 850 mb level is shown in Fig. 7.13. The major 

features of the wave activity propagation displayed in this 

figure are, in general, consistent with those in Fig. 6.13, 

but the former has much larger magnitude than the latter. 
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As an extreme example, the maximum vertical flux for the 

Pacific wavetrain increases by a factor of five over its 

linear counterpart. The wave activity flux at the 200 mb 

level (not shown here) has also a similar pattern to the 

linear one but with a smaller magnitude, the maximum 

vertical flux decreases by about 50%. In addition, the 

downward flux at 850 mb for the linear response has 

completely disappeared in the nonlinear case, where all 

vertical fluxes are upward. As discussed in section 6.2.1, in 

the nonlinear case the North Pacific wavetrain is still 

propagating poleward in the meridional direction and the 

North Atlantic wavetrain equatorward, showing the 

important effect of the longitudinal variation of diabatic 

heating in the tropical region. 

Compared with the linear response, the vertical 

component of wave activity flux for the nonlinear response 

increases in the lower levels and decreases in the upper 

levels. This must be reflected in the corresponding EP 

cross-section. Fig. 7.14 reveals a much more intense and 

extensive vertical EP flux at the lower levels and a 

slightly weakened vertical EP flux at high levels than in 

Fig. 6.14 for the linear case, thus there is a much stronger 

convergence of EP flux in the middle troposphere at 

mid-latitudes in Fig. 7.14 than in Fig. 6.14. This means that 

the interaction between the mean flow and the stationary 

waves simulated by the nonlinear model is more significant 

than by the linear model. On the other hand, compared 

with the orographically forced waves (refer to Fig. 7.6), the 
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Fig. 7.10 700 mb perturbation stream field as in Fig.6.10, 

but for the nonlinear response. 
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Fig. 7.11 200 mb perturbation stream field as in Fig. 6.11, 

but for the nonlinear response. 
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Fig. 7.12 Longitudinal 	cross-section 	of 	perturbation 

geopotential height at 453 N as in Fig. .6.12, but 

for the nonlinear response. 
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Fig. 7.13 Wave activity flux F at 850 mb as in Fig. 6.13, 

but for the nonlinear response. 
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major convergent region of EP flux for the response to the 

thermal forcing is located at the higher levels. Their 

contributions to the maintenance of the vertically 

propagating stationery planetary waves in the stratosphere 

are comparable, as discussed on the previous chapter for 

the linear case. 

7.2.2 Heating Field Derived from FGGE Mb Data 

In Figs. 7.15 and 7.16 are shown the perturbation stream 

fields for the nonlinear response to the diabatic heating, 

which is derived from FGGE Ilib data, at the 700 mb and 200 

mb levels. Firstly, we compare these figures with Figs. 

7.10 and 7.11 where the FGGE lila heating field is used. The 

700 mb response in Fig. 7.15 differs that in Fig. 7.10 

evidently. The predominant systems in Fig. 7.15 are the 

cyclonic circulation over the Pacific and the anticyclonic 
4€ more e*eflSiVe 	*Aaa "th- co,rnier,ath 

circulation over Eurasia, -b-ut in rig. 7.1-0 the former iz much 
;tq. 7.lo. 
weaker and the -latter does not exist. The circulation 

systems in the other areas displayed in Fig. 7.10 are either 

weakened or have disappeared in Fig. 7.15. Therefore it 

looks as if the low level wave patterns produced by 

- different data set are quite different. However, at the 

200 mb level their difference is less evident. In order to 

see the vertical structure of the wave pattern in middle 

latitudes, a longitudinal cross-section of perturbation 

geopotential height at 450 N is displayed- in Fig. 7.17. 

Comparing Fig. 7.17 with Fig. 7.12 shows the troughs and 
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ridges produced by the two data sets are in general 

agreement. Secondly, we compare Fig. 7.15 and 7.16 with 

their linear counterparts (i.e., Fig. 6.16 and 6.17). At the 

lower level the response in the Pacific and Eurasia is 

considerably more intense in the nonlinear case than in the 

linear case. The extreme values of perturbation 

streamfunction in this region are now approximately double 

what they were in the linear case. In addition, the polar 

region response is also much stronger. At the upper level 

a quite strong anticyclonic circulation has developed with a 

centre at 650 N, 165° W in the nonlinear case, showing a 

much stronger wave propagation poleward in the meridional 

direction than in the linear case. 

The corresponding wave activity fluxes at the 850 mb 

and 200 mb levels are shown in Fig. 7.18 and 7.19. Similar 

to the previous section for the FGGE lila heating field, the 

lower level flux is much larger than in the linear case in 

both horizontal and vertical directions. A quite strong 

convergence of EP flux is also found in the middle levels at 

mid-latitudes (Fig. 6.20). The extreme value of the 

convergence of EP flux in the nonlinear case is tripled 

compared with the linear case. 

7.3 Nonlinear Response to Topography and Diabatic Heating 

Unlike the linear case, the nonlinear solution for the 

combined orographic and thermal forcing is not a simple 

linear superposition of the separate nonlinear solutions for 
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Fig. 7.15 700 mb perturbation stream field as in Fig. 6.16, 

- 	but for the nonlinear response. 
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Fig. 7.16 200 mb perturbation stream field as in Pig. 6.17, 

but for the nonlinear response. 
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Fig. 7.17 Longitudinal 	cross-section 	of 	perturbation 

geopotential height at 450 N as in Fig. 7.12, but 

for the FGCE Ilib heating field. 
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Fig. 7.18 Wave activity flux F at 850 mb as in Fig. 6.18, 

but for the nonlinear response. 
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Fig. 7.19 Wave activity flux F at 200 mb as in Fig. 6.19, 

but for the nonlinear response. 
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the pure orographic and the pure thermal forcings. These 

forcing functions must be inserted into the nonlinear model 

simultaneously. The results for the Northern Hemispheric 

topography in combination with the FGGE lila or the FGGE 

Ilib heating field are described separately. 

7.3.1 Topography and FGGE lila Heating Field 

In Figs. 7.21 and 7.22 are shown the perturbation stream 

fields at the 700 mb and 200 mb levels for the nonlinear 

response to the Northern Hemispheric topography in 

combination with the FGGE lila heating field. As we may 

expect from the previous experiments, at the lower level 

the nonlinear response is greatly enhanced compared with 

the linear one, especially in high and low latitudes. Even 

in middle latitudes the extreme value of the perturbation 

streamfunction for most circulation systems increases more 

than 100%. At the upper level the difference between 

nonlinear and linear responses is also evident. In order to 

show what improvements have been achieved by inclusion of 

the nonlinear interaction, we may review the deficiencies 

of the linear response, which were discussed in section 

6.3.1, as follows. 

a) The anticyclonic circulation over the western 

Pacific, which appears too weak in the linear 

response, is considerably intensified in the nonlinear 

case and looks more realistic compared with the 

observed 6-year climatological stationary waves (Fig. 
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6.25). 

b) 	The cyclonic circulation located 	in the Middle East 

and to the North of India, which is too strong and 

appears unrealistic in the linear response, is greatly 

weakened 	in 	the 	nonlinear 	case 	and, in 	general, 

consistent with the observation. 

C) 	The 	cyclonic 	circulation 	over 	the 	eastern 	tropical 

Atlantic and North Africa, which appears very weak 

in 	the 	linear 	response 	(the 	extreme value 	of 

perturbation 	streamfunction 	is 	slightly more 	than 

10% of the observed value), is evidently enhanced in 

the 	nonlinear 	case. 	The 	extreme value 	of 

perturbation 	streamf unction 	for 	this circulation 

reaches up to 1.5x103  m2 s 1  (the observed value for 

the 250 mb pattern is about 2.0x103 m2 s 1 ). This 

may be considered as a substantial improvement for 

the model simulation. 

d) Finally, this nonlinear solution still cannot 

realistically simulate the observed climatological 

stationary waves in high latitudes. The reasons for 

this deficiency have not been investigated fully. 

From the numerical experiments which have been 

done, it is believed that the inaccurate 

representation of the actual wintertime diabatic 

heating is partly responsible. For example, the 

anticyclonic circulation located poleward of 60°  N and 

between 1200 E and 150° W is too strong and clearly 

displaced eastward. This mainly results from the 
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thermal forcing (see Fig. 7.11). If the alternative 

heating field derived from FGGE Ilib data is employed 

a better result may be obtained (see Fig. 7.16). In 

the next section it is shown that the nonlinear 

response to the Northern Hemispheric topography in 

combination with the FGGE tUb heating field does 

give a better representation for the high latitude 

wave pattern. 

The 	first 	three 	nonlinear effects 	discussed 	above 	are 

significant improvements in the response characteristics of 

the model. 	Therefore it is apparent that the nonlinearities 

are 	of 	primary 	importance in the 	response 	of 	the 	model 

atmosphere 	to the 	actual topography 	in combination with 

the actual diabatic heating. 

In middle latitudes at the 200 mb level the difference 

between the nonlinear and linear 	response is 	less 	evident. 

In 	Fig. 	7.23 	is 	shown 	• a longitudinal 	cross-section 	of 

perturbation geopoténtial height at 	450 N. 	For convenience 

of 	comparison, 	another corresponding 	longitudinal 

cross-section based on observations in the winter season is 

shown 	in 	Fig. 	7.24, which 	is adapted from Lau 	(1979b) and 

derived 	from 	11 	years of 	NMC 	operational 	analyses. 

Comparison 	between 	Figs. 7.23 	and 	7.24 	shows 	that 	the 

major 	troughs and 	ridg-es at this latitude circle 	predicted 

by this nonlinear model are in their correct locations. 	The 

vertical 	phase 	structure of 	the 	geopotential 	height 

perturbations 	displayed 	in Fig. 	7.23 	is 	characterized 	by 	a 

distinct 	westward 	tilt with 	height, 	which 	is 	also 
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reasonable. The amplitude of the perturbations in these 

two figures is not coincident. There is nothing surprising 

about it because the steady-state solution, with no effect 

of transient waves explicitly included, differs from the 

time mean of a time varying solution., It is certainly 

possible that some other reasons exist which may affect 

the amplitude. For example, the dissipation parameters are 

important for the simulated wave amplitude as shown in 

the sensitivity experiments of section 5.1.3. Comparing Fig. 

7.23 and 7.24 with Fig. 6.23 suggests that the nonlinear 

response is closer to observations than the linear response 

even in middle latitudes. 

In comparing Fig. 7.22 with Fig. 7.2 (for the pure 

orographic forcing) and Fig. 7.11 (for the pure thermal-

forcing), 

hermal

forcing), we also note that the mid-latitude topography, 

especially the Tibetan Plateau (compare further with Figs. 

7.7 and 7.9), makes a substantial contribution to the 

maintenance of the cyclonic circulation over the eastern 

tropical and sub-tropical Pacific as well as the inverse 

circulation over the western Pacific at the 200 mb level. 

These upper level systems are usually considered to be 

associated with the large scale longitudinal circulation over 

the tropical Pacific, which is often referred to as the 

'Walker Circulation'. It is here suggested that the 

orographic forcing in mid-latitudes plays an important role 

on the planetary scale motions in the tropics,. 

A longitudinal cross-section of perturbation vertical 

velocity at 45° N is shown in Fig. 7.25, which is 
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characterized by rising motion over the oceans and sinking 

motions over the continents. The vertical motion over 

eastern Asia and the Pacific is evidently stronger than over 

the other regions at this latitude circle. Compared with 

the linear case (Fig. 6.26), the rising (sinking) over the 

Pacific (Europe) is considerably enhanced (weakened), and the 

vertical motion over North America is reversed. This 

example shows that the vertical velocity, which is 

associated with the irrotational (divergent) component of 

the horizOntal flow;  is very sensitive to the nonlinearity. 

In Figs. 7.26 and 7.27 are shown the wave activity fluxes 

at 850 mb and 500 mb respectively. The wave propagation 

characteristics shown in these figures are, in general, 

consistent with those in the linear case, but with 

evidently larger magnitude. For example, the maximum of 

the vertical flux at the 850 mb level for both the Pacific 

and the Atlantic wavetrain are doubled compared with the 

linear case. The meridional propagation of wave activity is 

also more evident. From the view of computation, the 

change in wave activity flux F results from the variation 

of the spatial structure of the forced stationary waves, 

especially the horizontal and vertical gradient of 

perturbation streamfunction are important factors in 

determining the F. As mentioned in section 4.1.1, the 

conservation relation for F (Plumb, 1985) is derived from 

the linearized geostrophic equations. In the nonlinear case 

we may render it valid by incorporating the nonlinear 

effects into the source term. Therefore the evident 
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Fig. 7.21 700 mb perturbation stream field as in Fig. 6.21, 

but for the nonlinear response. 
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Fig. 7.22 200 mb perturbation stream field as in Fig. 6.22, 

but for the nonlinear response. 

211 



too 

150 

200 
-Q 

250 

I; 

1-121 

1-81 
-41 

4812 

I61 

700 

850 

1000 

LONGITUDE 

Fig. 7.23 Longitudinal 	cross-section 	of 	perturbation 

geopotential height at 45° N as in Fig. 6.23, but 

for the nonlinear response. 
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Fig. 7.24 Longitudinal 	cross-section 	of 	perturbation 

geopotential height at 45° N for the winter 

season, derived from 11 years of NMC operational 

analyses, adapted originally from Lau (1979b), 

photocopied from Wallace (1983). Contour 

interval is 5 dam; the zero contour is thickened. 

212 



100 

200 

-900 
35 

1015 
10 

20 

LONGITUDE 

Fig.7.25 Longitudinal cross-section of perturbation 

vertical velocity at 450 N as in Fig. 6.26, but for 

the nonlinear response. 
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Fig. 7.26 Wave activity flux F at 850 mb as in Fig. 6.27, 

but for the nonlinear response. Contours are at 

intervals of 200 units. 
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Fig. 7.27 Wave activity flux P at 500 mb as in Fig. 6.28, 

but for the nonlinear response. 
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difference of F between the nonlinear and linear response 

implies that the nonlinearity is significant. 

The corresponding EP cross-section is shown in Fig. 7.28. 

The pattern of EP flux in middle latitudes is, in general, 

consistent with that for the linear case (Fig. 6.29), but the 

vertical flux is greatly enhanced at the low levels and 

associated with a much larger convergence of EP flux in 

the lower and middle troposphere. A source of EP flux 

appears in the upper troposphere between 400  N and 50°  N 

which results obviously from the inclusion of nonlinear 

effect in the model because no evidence is found in the 

linear case for this upper troposphere source. The pattern 

of EP flux and the associated divergence in high latitudes 

for the nonlinear case differs from the linear case 

evidently. These diagnostic analyses suggest again that the 

nonlinearity is significant for the response to the Northern 
cu,J da.6Jjc 

Hemispheric topography, and also that the interaction 

between mean flows and the stationary waves simulated by 

the nonlinear model is much stronger than by the linear 

model. 

7.3.2 Topography and FGGE nIb Heating Field 

In Figs. 7.29 and 7.30 are shown the perturbation stream 

fields at the 700 mb and 200 mb levels for the nonlinear 

response to the Northern Hemispheric topography in 

combination with the mean diabatic heating in January 

1979, which is derived from FGGE Ilib data. Compared with 
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Fig. 7.28 EP cross-section as in Fig. 6.29, but for the 

nonlinear response. Contour interval is 40 units. 
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the linear counterparts (Fig. 6.30), the lower level response 

is obviously enhanced. Compared with the observed 

climatological stationary waves (Fig. 6.25), substantial 

improvements are also achieved for the 200 mb perturbation 

stream field not only in low and middle latitudes as 

described in the previous section, but also in high latitudes 

where Fig. 7.30 gives better results than Figs. .6.22, 6.31 as 

well as 7.22. 

The corresponding EP cross-section 	(Fig. 	7.31) is 	similar 

to 	Fig. 	7.28 	where the diabatic heating 	field is 	derived 

from 	FGGE lila 	data. Comparison for the 	EP cross-section 

between the linear (Fig. 6.32) 	and nonlinear 	(Fig. 7.31) 	case 

support the suggestions discussed in the previous section. 
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Fig. 7.29 700 mb perturbation stream field as in Fig. 6.30, 

but for the nonlinear response. 
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Fig. 7.30 200 mb perturbation stream field as in Fig. 6.3 1, 

but for the nonlinear response. 
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Fig. 7.31 EP cross-section as in Fig. 6.32, but for the 

nonlinear response. Contour interval is 40 units. 
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CHAPTER 8 

CONCLUSIONS 

8.1 Summary 

In this study, the response of a model atmosphere to 

large scale topography and stationary diabatic heating has 

been investigated using linear and nonlinear steady-state, 

baroclinic primitive equation models, in which Rayleigh 

friction, the effect of Newtonian cooling and biharmonic 

horizontal diffusion are includes, and the vertical as well as 

the horizontal structure is described by truncated series of 

analytic orthogonal. functions. The transform method is 

used to evaluate the nonlinear terms in the governing 

equations. The steady-state, convergent, nonlinear solution 

is obtained by using Newton-Raphson iteration. 

Observations of the atmosphere and the modelling results 

from previous authors have shown that the vertical 

propagation of wave activity is important for stationary 

planetary waves with small zonal wavenumber. In order to 

investigate the vertical as well as the horizontal 

propagation, a three-dimensional wave activity flux, which 

was 	derived by Plumb (1985) for linear, quasi- geostrophic 

stationary waves on a zonal flow, is used as a diagnostic 

for both the linear and nonlinear solutions. In addition, 

the EP cross-section has also been used as a diagnostic not 

only for the vertical and meridional propagation of the 
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wave activity, but also for the interaction between waves 

and mean flow. 

The main conclusions from the numerical experiments 

which have been done in this study may be summarized as 

follows. 

(1) The linear theory of stationary waves is based on 

two basic assumptions, i.e., the basic state variables must 

themselves satisfy the governing equations when the 

perturbations are set to zero, and the perturbation fields 

must be small enough so that all terms in the governing 

equations which involve products of the perturbation 

variables can be neglected (see, e.g., Holton, 1979). The 

linear solutions calculated in this study show that this 

simple technique is ideally suited for qualitative analysis 

of the characteristics of the stationary waves induced by 

large scale topography and diabatic heating. However, the 

linear theory is a great simplification of the real 

atmospheric behaviour. The horizontal velocity of the 

stationary waves in the real atmosphere is often of 

comparable magnitude to the mean zonal flow and thus the 

basic assumptions of the perturbation theory break down, 

i.e., the interaction between waves and mean flow become 

important and the nonlinear terms in the governing 

equations cannot be neglected. This is particularly true in 

some areas, such as the polar and tropical regions, or the 

lower troposphere in mid-latitudes, where the zonally 

averaged basic flow is relatively weak. On the other hand, 

the significant nonlinearity in a limited region may have a 
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further influence on the remote response in terms of 

various complicated interaction processes in the atmosphere. 

The great difference revealed in the comparisons between 

the linear and nonlinear response either to the orographic 

forcing or to the thermal forcing shows that the 

nonlinearities are significant provided the forcing has a 

comparable intensity to that in the real atmosphere. The 

experiments for the . idealized forcing suggest that the 

nonlinear effect is more evident when the forcing region is 

situated in high or low latitudes. 

The wave pattern produced by the linear response to 

the Northern Hemispheric topography and diabatic heating, 

which is derived for January 1979 either from the NMC 

FGGE lila operational data or from the ECMWF FGGE Ilib 

analysis, is consistent with the observed climatological 

stationary waves on the whole, but also with some evident 

deficiencies as described in section 6.3. In contrast, the 

corresponding nonlinear response makes a significant 

improvement over these deficiencies. .The nonlinear model 

does produce more realistic stationary waves in the winter 

season than the linear model with the same resolution. 

This fact suggests, from another point of view, that the 

nonlinearities are of primary importance in simulation of 

the stationary waves in the real atmosphere. 

The diagnostic analyses in this study show that the 

wave activity flux is a useful diagnostic of the 

three-dimensional propagation of the stationary wave 

activity, and also a useful diagnostic of the nonlinearities. 
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The wave activity is a quantity based on linearized 

quasi- geostrophicequations. 	When we use it as a 

diagnostic for the nonlinear model experiment, or for the 

observational data, we must bear in mind the effect of 

nonlinearity. Some sources or sinks of wave activity flux 

may result from, or partly from, the nonlinear effect. 

Since the evaluation of the wave activity flux involves the 

three-dimensional structure of the perturbation stream 

field, i.e., the vertical as well as the horizontal gradient 

of 	the 	perturbation 	streamf unction, 	in 	certain 

circumstances it is more sensitive to the nonlinear effects 

than the streamfunction itself. 

(4) When zonal averages are taken, the wave activity 

flux reduces to the EP flux, which is also useful because it 

is a measure of net wave propagation in both vertical and 

meridional directions and its divergence is a direct measure 

of the total forcing of the zonal mean state by the 

stationary waves. Compared with the linear case, the 

vertical component of EP flux for the nonlinear response to 

the Northern Hemispheric topography and the actual diabatic 

heating in the winter 	season is considerably 	enhanced at 

low levels and associated with a. much larger, convergence 

of 	EP 	flux in the 	lower 	and 	middle 	troposphere. This 

implies 	the interaction between the 	mean flow 	and the 

stationary waves simulated by the nonlinear model is much 

stronger 	than by 	the 	linear - model. 	Therefore the 

nonlinearity, is also 	important for 	investigating wave 

propagation and the 	interaction between 	the 	zonal mean 
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flow and the stationary waves. 

In addition, the evident difference of wave activity 

fluxes (or EP fluxes) between the linear and nonlinear 

responses suggests also that the nonlinear effects play an 

important role in determining the three-dimensional 

structure of stationary waves. 

The numerical experiments for the response to some 

idealized topography, where the topography of North 

America or Greenland is removed from the whole Northern 

Hemispheric topography, show that the Tibetan 'Plateau 

plays the most important role in the maintenance of 

orographically forced stationary waves in the winter 

season, while the forcing by the orographic effect of the 

Rocky mountains or the Greenland Plateau seems to be of 

secondary importance. 

The middle latitude orographic forcing, especially that 

by the Tibetan Plateau, makes a substantial contribution to 

the maintenance of the cyclonic circulation over the 

eastern tropical and sub-tropical Pacific as well as the 

inverse circulation over the western Pacific in the upper 

troposphere. These upper level systems are usually 

associated with the Walker circulation. It is therefore 

suggested that the orographic forcing in mid-latitudes 

plays an important role on the maintenance of the 

planetary scale motions in the sub-tropics and tropics (but 

not in the equatorial region for this hemisphere model). 

The stationary waves induced by the actual thermal 

forcing have a comparable amplitude with those by the 
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Northern Hemispheric orographic forcing. We may hence 

consider these two categories of forcing are equally 

important for the maintenance of the wintertime stationary 

waves in the Northern Hemisphere. 

The response to the actual thermal forcing has a 

more baroclinic nature than that to the actual orographic 

forcing. 

The vertical structure of EP flux for the pure 

thermal forcing differs from that for the pure orographic 

forcing. Although the former usually has a smaller vertical 

component at the lower troposphere than the latter, they 

become comparable in the middle and upper troposphere. 

Both the thermal and orographic forcings make a 

substantial contribution to the maintenance of the 

vertically propagating stationary planetary waves in the 

stratosphere. 

The experiment for the response to an idealized 

diabatic heating in the tropical region shows that an 

isolated tropical heating produces not only a strong 

response in the tropical region itself, but also a quite 

strong extratropical response, which appears as a 

wavetrain propagating poleward as well as longitudinally, 

and suggests that the tropics may have a significant 

influence on the wintertime stationary waves in middle and 

high latitudes. This is also supported by the comparison 

between the responses which use the diabatic heating 

derived from the NMC FGGE lila operational data or, 

alternatively from the ECMWF FGGE Ilib analysis. The 
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longitudinal variation of diabatic heating in the tropical 

region has different characteristics in these two heating 

fields, and the corresponding wave patterns in high 

latitudes simulated by the nonlinear model are quite 

different. The directions of meridional propagation of the 

wave activity for the Pacific wavetrain and the Atlantic 

wavetrain at the low levels in the pure thermal forcing 

case (as discussed in section 6.2.1) are reversed, this 

provides additional evidence to support the above 

suggestion. 

8.2 Possible Extensions 

A number of extensions to this study are possible. The 

contribution from the tropical diabatic heating to the 

maintenance of the stationary waves in middle and high 

latitudes could be further investigated by using a 

separating technique, which has been employed to 

investigate the relative importance of the three large 

scale mountains of the Northern Hemisphere to the 

orographically forced stationary waves. 

Since the pioneering work of Charney and Eliassen (1949), 

the stationary response to forcing in the Northern winter 

have been investigated by many authors although there are 

still some uncertainties which require further study. 

However, there are relatively few studies on the response 

to the forcing in summer. The zonally averaged basic flow 

in summer is much weaker than in winter. It is therefore 
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expected that the nonlinear effect may be more evident in 

the summer simulation than in this study. The nonlinear 

model developed here should be suitable for investigating 

the stationary waves in the summer season. 

In the linear model a predefined zonal mean, basic state 

is used and precludes the interaction between mean flow 

and the waves. This constraint is relaxed in the nonlinear 

model, but the zonally averaged components of the nonlinear 

solution are still damped toward their initial state, i.e., 

the precribed basic state for the linear-  model. It is 

possible to relax this constraint further in the nonlinear 

model and a flow varying in the zonal direction could be 

used as the basic state. This would allow waves 

propagating deeply into some tropical regions of weak. 

westerlies. The inclusion of a zonally non-uniform basic 

flow is particularly interesting for investigating the 

tropical -extratropical interactions. 	 - 	- 

The nonlinear model, which was used to study the 

hemispherical structure and therefore prohibited the 

cross-equator propagation of stationary waves, has clear 

potential for further study by extension to global domain. 

For a global model, the asymmetric components about the 

equator must be included in the spherical harmonics 

expansions* and some additional truncation relations are 

required as discussed by Eliasen et al. (1970). 

An important- deficiency of this study is that there is no 

effect of transient waves included in the model. The 

observed climatological stationary, waves are a 

time-averaged picture. By neglecting the forcing due to 

the mean convergence of heat and momentum transports by 
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the smaller scale transient waves, it is impossible for us 

to simulate accurately the observed climatological 

stationary waves. It should be possible to obtain a more 

realistic result if the transient effects are properly 

introduced into the model. 

Another deficiency is that the nonlinear model developed 

in this study is not economic, the high requirement for 

computational' resources has imposed restrictions on the 

model resolution. Further study would also be worthwhile 

exploring a more reasonable specification of the dissipation 

parameters. 	A three -dimensional diabatic heating field 

derived from observational • data is preferable to ,  the 

idealized vertical profile used in the study. 

- 	-- 	 ---• 	
:-.; 	-- 	 --; 	--- 
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APPENDIX A 

LIST OF SYMBOLS 

Only the principal symbols are listed. Symbols formed by 

adding primes, superscripted or subscripted indices are not 

listed separately. Boldface type indicates vector 

quantities. Where symbols have more than one meaning, the 

section where the second meaning is first used is indicated 

in the list. the matrix symbols also use boldface types in 

the text and are not listed here. 

a 	Radius of the earth 

e 	Base of the natural logarithm 

f 	(1) E2Qsin&p, Coriolis parameter; 

(2) A function (section 2.5.4) 

g 	Gravitational acceleration 

i 	(1) An integer; 

(2) Square root of minus one (section 2.3.1) 

j 	Total wave number 

k, 1 	Vertical wave number 

m 	Zonal wave number 

n 	Total wave number, n- mj is the number of 

zeros of P 	(p) between the poles 

q 	lnP, logarithm of surface pressure 

t 	Time 

U 	Zonal component of velocity (eastward) 

v 	Meridional component of velocity 
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x 	Sample points for Gauss-Legendre qua drature 

W. Weighting coefficients for Gauss-Legendre 

quadrature 

z 	!-Hln(P/P), vertical coordinate in log-pressure 

system 

A 	An arbitrary variable 

[A] 	Zonal mean of A 

A 	Deviation from the zonal mean [A] 

(%) A 	A/p, zonal derivative of A 

At =(p2 -1)3A/ap, meridional derivative of A, 

multiplied by (p2  1) 

At 3) 	=(a2 -1)A/3a, vertical derivative of A, multiplied 

* 	by (a 2_ 
 1) 

C 	Specific heat of dry air at constant pressure 

E 	Eliassen-Palm (EP) wave flux 

E 	Meridional component of EP flux 

E 	Vertical component of EP flux 

F 	Three-dimensional wave activity flux 

(1) Zonal component of friction force per unit 

mass; (2) Zonal component of wave activity flux 

(section 4.1.1) 

F 	(1) Meridional component of friction force per 

unit mass; (2) Meridional component of wave 

activity flux (section 4.1.1) 

F 	Vertical component of wave activity flux 

Gk 	Vertical derivative of Kk,  defined by eq. (2.54) 

H 	Scale height 
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Meridional derivative of normalized Legendre 

polynomial 

H 	Meridional derivative of normalized associated 
(n a n 

Legendre polynomial 

Integration of 	weighted 	Legendre 	polynomial, 

defined by eq. 	(2.57) 

J Truncation index for total wave number 

Integration of 	normalized 	Legendre 	polynomial, 

defined by eq. 	(2.52) 

K Decay rate of Newtonian cooling 

L Truncation index for vertical wave number 

M Truncation index for zonal wave number 

N Number of grid points; 

Buoyancy frequency (section 4.1.1) 

P Pressure 

P A standard constant pressure 

Normalized Legendre polynomial 

Normalized associated Legendre polynomial 

Q Diabatic heating per unit mass per unit time 

R Gas constant for dry air 

R  Decay rate of Rayleigh friction 

S Transformed 	vertical 	component 	of 	velocity, 

defined by eq. 	(2.11) 

T 	Temperature 

U 	Zonal component of velocity multiplied by the 

cosine of latitude 

V 	Meridional component of velocity multiplied by 

the cosine of latitude 
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a 	Coefficient of biharmonic horizontal diffusion in 

the momentum equation 

13 	df/dt, variation of the Coriolis parameter with 

latitude 

ER/C, ratio of gas constant to specific heat at 

constant pressure 

A 	Longitude 

P 	sintp, sine of latitude 

V 	 Coefficient of biharmonic horizontal diffusion in 

the thermodynamic equation 

A standard density 

o 	 2P/P a-  1, vertical coordinate in a system 

a 	dafdt, vertical component of velocity in a 

system 

T 	 e-folding diffusive time 

Latitude 

X 	Velocity potential 

to 	Streamf unction 

W 	 dP/dt, vertical component of velocity in 

pressure system 

Divergence of EP flux for contouring in the EP 

cross-section 

Geopotential 

Surface geopotential 
8 

Q 	Angular speed of rotation of the earth 

V 	Hamiltonian operator 
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APPENDIX B 

INDEX OF FIGURES 

The following abbreviations are used in this index: 

(L) 	Linear response 

(NL) 	Nonlinear response 

M 	Truncation index for zonal wavenumber 

Horizontal Distribution of Forcing Function 

Diabatic heating (FG(:E lila), 	M=3, Fig. 	6.9 

Diabatic heating (FGGE lila), 	M=9, Fig. 	6.37 

Diabatic heating (FGGE IlIb), 	M=3, Fig. 	6.15 

Idealized topography in mid-latitudes, Fig. 5.1 

Northern Hemispheric topography, M=3, 	Fig. 	6.35 

Northern Hemispheric topography, M:9, Fig. 6.36 

Normalized associated legendre polynomial, Fig. 2.1 

Observed climatological stationary waves 

Longitudinal section at 450 N for 	, Fig. 7.24 

Perturbation geopotential height, 200mb, Fig. 6.24 

Perturbation streamfunction at 250 mb, Fig. 6.25 

Response to 

Actual thermal forcing in Jan. 1979 (FGGE lila) 

EP cross-section, Figs. 6.14(L), 7.14(NL) 
* 

Longitudinal section at 450 N for 4 , Figs. 6.12(L), 7.12(NL) 

Perturbation stream field, 700mb, Figs. 6.10(L), 7.10(NL) 

Perturbation stream field, 200mb, Figs. 6.11(L), 7.1 1(NL) 

Wave activity flux, 850mb, Figs. 6.13(L), 7.13(NL) 
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Actual thermal forcing in Jan. 1979 (FGGE 11th) 

EP cross-section, Figs. 6.20(t), 7.20(NL) 

Longitudinal section at 450 N for 4) , Fig. 7.17(NL) 

Perturbation stream field, 700mb, Figs. 6.16(L), 7.1,5(NL) 

Perturbation stream field, 200mb, Figs. 6.17(L), 7.16(NL) 

Wave activity flux, 850mb, Figs. 6.18(L), 7.18(NL) 

Idealized orographic forcing in high latitudes 

EP cross-section,' Figs. 5.24(L), 5.25(NL) 

Perturbation stream field, 200mb, Figs. 5.20(L), 5.22(NL) 

Wave activity flux, 500mb, Figs. 5.21(L), 5.23(NL) 

Idealized orographic forcing in mid-latitudes 

EP cross-section, Figs. 5.8(L), 5.15(NL) 

Longitudihal section at 350 N for 4) 	Figs. 5.4(L), 5.11(NL) 

.Longitudinal section at 350 N for w , Figs. 5.5(L), 5.12(NL) 

Perturbation stream field, 700mb, Figs. 5.2(L), 5.9(NL) 

Perturbation stream field, 200mb, Figs. 5.3(L), 5.10(NL) 

Wave activity flux, 850mb, Figs. 5.6(L), 5.13(NL) 

Wave activity flux, 500mb, Figs. 5.7(L), 5.14(NL) 

Sensitivity experiments, Figs. 5.16-5.19(L) 

Idealized thermal forcing in low latitudes 

EP cross-section, Figs. 5.37(L), 5.40(NL) 

Perturbation streamfunction, 700mb, Figs.5.35(L), 5.38(NL) 

Perturbation streamfunction, 200mb, Figs.5.36(L), 5.39(NL) 

Idealized thermal forcing in mid-latitudes 

EP cross-section, Figs. 5.31(L), 5.34(NL) 

Meridional section at 135° E for F, Figs. 5.30(L), 5.33(NL) 

Perturbation stream field, 700mb, Fig. 5.26(L) 

Perturbation stream field, 200mb, Fig. 5.27(L) 

Wave activity flux, 500mb, Figs. 5.29(L), 5.32(NL) 
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Northern Hemispheric topography 

EP cross-section, Figs. 6.6(L), 7.6(NL) 

Longitudinal section at 450 N for 	, Figs. 6.3(L), 7.3(NL) 

Longitudinal section at 45Th for w , Figs 6.4(L), 7.4(NL) 

Perturbation stream field, 700mb, Figs. 6.1(L), 7.1(NL) 

Perturbation stream field, 200mb, Figs. 6.2(L), 7.2(NL) 

Wave activity flux, 850mb, Figs. 6.5(L), 7.5(NL) 

N. H. topography, but removing topography of North America 

Longitudinal section at 450 N for 	, Fig. 7.8(NL) 

Perturbation stream field, 200mb, Figs. 6.7(L), 7.7(NL) 

N. H. topography, but removing the Greenland Plateau 

Perturbation stream field, 200mb, Figs. 6.8(L), 7.9(NL) 

N. H. topography and actual diabatic heating (FGGE lila) 

EP cross-section, Figs. 6.29(L), 7.28(NL) 
* 

Longitudinal section at 450 N for 4 , Figs. 6.23(L), 7.23(NL) 

Longitudinal section at 45° N for w, Figs. 6.26(L), 7.25(NL) 

Perturbation stream field, 700mb, Figs. 6.21(L), 7.12(NL) 

Perturbation stream field, 200mb, Figs. 6.22(L), 7.22(NL) 

Wave activity flux, 850mb, Figs. 6.27(L), 7.26(NL) 

Wave activity flux, 500mb, Figs. 6.28(L), 7.27(NL) 

Zonal resolution test, Figs. 6.33-6.34(L) 

N. H. topography and actual diabatic heating (GGE IlIb) 

EP cross-section, Figs.. 6.32(L), 7.31(NL) 

Perturbation stream field, 700mb, Figs. 6.30(L), 7.29(NL) 

Perturbation stream field, 200mb, Figs. 6.31(L), 7.30(NL) 

Zonal mean flow in January 1979, Fig. 3.1 

Zonal mean temperature in January 1979, Fig. 3.2 
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