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ABSTRACT
Genome-wide association studies have been used extensively to study hundreds

of phenotypes and have determined thousands of associated SNPs whose
underlying biology and causation is as yet largely unknown. Many previous
studies attempted to clarify the causal biology by investigating overlaps of trait-
associated variants with functional annotations, but lacked statistical rigor and
examined incomplete subsets of available functional annotations. Additionally,
it has been difficult to disentangle the relative contributions of different
annotations that may show strong correlations with one another. In this thesis,
we address these shortcomings and strengthen and extend the obtained results.
Two methods, permutations and logistic regression, are applied in statistically
rigorous analyses of genomic annotations and their observed enrichment or
depletion of trait-associated SNPs. The genomic annotations range from genic
regions and regulatory features to measures of conservation and aspects of
chromatin structure. Logistic regressions in a number of trait-specific subsets
identify genomic annotations influencing SNPs associated with both normal
variation (e.g., eye or hair colour) and diseases, suggesting some generalities in
the biological underpinnings of phenotypes. SNPs associated with phenotypes of
the immune system are investigated and the results highlight the distinct
aetiology for this subset. Despite the heterogeneity of the studied cancers, SNPs
associated to different cancers are particularly enriched for conserved regions,
unlike all other trait-subsets. Nonetheless, chromatin states are, perhaps
surprisingly, among the most influential genomic annotations in all trait-
subsets. Evolutionary conserved regions are rarely within the top genomic
annotations despite their widespread use in prioritisation methods for follow-
up studies. We identify a common set of enriched or depleted genomic
annotations that significantly influence all traits, but also highlight trait-specific
differences. These annotations may be used for the computational prioritisation
of variants implicated in phenotypes of interest. The approaches developed for
this thesis are further applied to studies of a specific human complex trait

(height) and gene expression in atherosclerosis.
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1 INTRODUCTION

A policeman sees a drunken man searching for something under a streetlight and asks what the
drunk has lost. He says he lost his keys and they both look under the streetlight together. Afier a
Jew manutes the policeman asks if he is sure he lost them here, and the drunk replies, no, that he
lost them in the park. The policeman asks why he is searching here, and the drunk replies, "Thus
is where the light 1s." -- David H. Freedman (2010)

1.1Phenotypes and heredity
Every living organism exhibits certain traits or phenotypes, which determine
their ability to survive in any given environment. If the organism is successful in
surviving and producing offspring, then these traits will get passed on to the
next generation. This phenomenon is heredity and Gregor Johann Mendel, a 19t
century Austrian monk, was the first to observe and describe heredity patterns
of seven discreet traits, which existed in one of two forms, in garden pea plants

(Pisum sativum) [1].

One of the traits he investigated was the colour of peas, which could be either
yellow or green. In a crossing of two plants with yellow peas, which emerged
from a cross of a plant with yellow peas and a plant with green peas, he
observed a distinct 3:1 ratio of yellow to green peas. He was able to draw three
conclusions based on the observed patterns. The first of these was that the
determining factors of inheritance were “units”, which had been passed on to
the descendants unchanged if the same trait was observed. The second was that
each individual had two of these units, where one was obtained from each
parent. The third conclusion was that, while the units were passed on, the trait
did not have to be displayed. From these conclusions, two laws of inheritance
were established much later [2], which are now called the Mendelian laws of
inheritance. The Law of Segregation states that a parent only passes on one

allele for any given trait, while the Law of Independent Assortment dictates that
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different pairs of alleles are passed on independently of each other to the

descendants.

Mendel’s work defined many of the terms used today. Mendel described two
versions of the inherited units as alleles. Today, we know that these alleles
describe different versions of genes or mutations. The terms heterozygous and
homozygous define if an individual carries different or the same alleles,
respectively. A recessive trait is only exhibited if the same alleles of a gene are
inherited, while only one allele is necessary for a dominant trait as the state or
version of the other is irrelevant in the development of the trait. Traits that
follow the laws of inheritance are called Mendelian traits and while Mendel’s
conclusions were based on experiments in pea plants, the laws and conclusions
are true for all diploid organisms, i.e, organisms with two copies of genetic

information in their cells.

1.2 Genomics and complex traits
Human DNA consists of ~3 billion nucleotides arranged into 23 chromosome
pairs, which contain genes and regulatory elements controlling their expression.
There are four nucleotides (Arginine, Thymine, Cytosine, and Guanine), which
can be found in DNA, whose order encodes the information that determines the
characteristics of the individual carrying the genes and regulatory elements.
Expressed genes are transcribed into ribonucleic acid, or RNA, which is then
translated into proteins. RNA contains three of the above-mentioned

nucleotides and Uracil, which replaces Thymine.

The first working drafts of the human genome sequence were published in 2001
[3, 4] and announced finished in 2004 [5]. The sequencing was accomplished
through a large international cooperation of many laboratories worldwide [3]
and Celera [4, 6, 7], a privately owned company, and has been refined and
improved several times. It is now in its 19t release [8] and its 37t release for

the Genome Reference Consortium (GRC), with a 38t release planned for the

17



end of summer of 2013 [9]. Each refinement improved the available reference
genome but the working drafts or reference assemblies have never contained
100% of the genomic sequence due to sequencing and alignment problems

particularly in repetitive regions [10].

Despite these problems, researchers were able to identify several types of
variation between the sequences of individuals. These variations were either
single base changes of the sequence, or insertions and deletions (Indels) of one
or multiple bases, which can have effects on phenotypes. The effect can be
caused by either changes within a gene’s product (RNA or protein) or
disruptions to a regulatory element controlling the expression of the gene. The
mutations causing diseases such as Huntington’s or sickle cell anaemia were
identified within the protein coding part of a gene, either truncating or
deforming the resulting protein and thus diminishing its function [11].
Mutations affecting the regulation of genes can also be detrimental and are

therefore correspondingly selected against [12].

Mutations can occur during meiosis, mitosis or through exposure to mutational
triggers such as UV radiation or exposure to certain chemicals. Base
substitutions tend to affect only single base pairs, changing the identity of the
local nucleotide. In rare events, it can affect more than one base pair during
gene conversions. Deletions or insertions of nucleotides can vary in size from
one to several nucleotides as a result of frame shift mutations or transposable
elements. The mutational rate in humans across generations was recently
estimated ~1.20 x 10% per base pair per generation [13-15], which is
considered to be unexpectedly low [15]. Deleterious mutations, which either
affect survival or reproduction of the carrier, are selected against, while those
mutations offering an advantage can become fixed in the population. Selective
pressures are determined by the environment and can be quite different
between different populations. Mutations may therefore exhibit different allele
frequencies in different populations or population groups, as selection

pressures are different between populations depending on their environments.
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This can cause stable genomic differences between groups of individuals within
or across populations at certain points in the DNA called polymorphisms. A
distinct and systematic difference in allele frequencies between populations is
called population stratification. Admixture is the result of such two populations
mixing, which results in new genetic lineages in a population. These are issues,
which need to be taken into account in genetic studies, which are described
later. Single nucleotide polymorphisms (SNPs) are DNA sequence variants
where a single nucleotide has a different identity when compared to either
other members of the same species or the paired chromosome. The different
identities of a SNP are called alleles, where the majority of common SNPs have
two alleles, although tri- or quadri-allelic SNPs can also be found. The minor
allele of a SNP is defined as the allele with a frequency of less than 0.5 (minor
allele frequency (MAF)) in a population or sample. To date (10t July 2013)
53,567,890 SNPs have been identified in the human genome, of which
38,072,522 have been validated according to the National Center for
Biotechnology Information (NCBI) [16]. The genome contains highly specialized
regions, which are associated with regulatory features or can contain a large
number of genes. The distributions of genes, regulatory features and SNPs are
far from homogenous with certain regions in the genome showing a higher SNP
density than others [17, 18], with particular preference for areas outside of
coding regions. An impediment to the reliable use of SNP data, or any DNA
sequence data in further analyses, was the difficulty in genotyping certain areas
of the genome. For instance, areas high in GC content are comparatively difficult
to sequence or genotype accurately [19]. Furthermore, repetitive elements
cause problems in the mapping and alignment of those sequences which

hindered the identification of SNPs in these regions [20].

1.3 Genomic studies
Before nucleic acids were identified as the carriers of heritable traits, and the
molecular structure of nucleic acids was identified [21, 22], researchers were
continually observing phenotypes to further deduce conclusions about the

molecule that determines our characteristics. They measured the frequency of
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alleles of genes by observing the frequency of traits in the population and
calculated the expected and observed frequencies of certain traits to appear.
They discovered a deviance in frequency of two alleles from the expected
frequency as defined by the product of their individual frequencies, and termed
it linkage disequilibrium (LD) [23]. LD is a measure of the genetic linkage
between loci. It was hypothesized that as distance decreased alleles or genes
would segregate together more often than expected by chance, so that a
distance between the two loci could be estimated by calculating the number of
recombinants in each cross. This greatly facilitated the identification of genetic
components, as traits were analysed in relation to each other where the
probability of segregation acted as a proxy for distance. With this knowledge,
the first linkage or genetic maps were created in Drosophila ten years later [24],
which aided discovering genes in that species. However, it was not until 1980
that linkage was used to create the first genetic maps in humans [25]. The
genetic maps of human DNA sequence enabled the first linkage analyses, which
identified disease-associated genomic regions solely through positional cloning
or LD mapping [26]. Linkage analysis studies aim to associate genes to their
locations in the genome and are performed by investigating genetic markers
that are co-inherited with the analysed trait in related individuals. The rough
location of the underlying genetics of the investigated trait is thereby identified

and can be researched further to find the causal gene.

Linkage analyses or LD mapping were successful for Mendelian traits, i.e., traits
caused by single genes, which followed the Mendelian laws of inheritance.
Among the first of the diseases, whose causal genes were successfully mapped
was Huntington’s disease. In 1993 [27] a mutation was identified in a single
gene, hence named Huntingtin. More specifically, this mutation was the
multiplication of a codon, within the coding region of that gene. The resulting
protein functions differently depending on the number of repeats of a codon
(CAG, coding for glutamate) where 36 or more codons result in Huntington'’s
disease [28]. The number of codons within the gene is highly correlated with the

age of onset and severity of the disease, where higher codon numbers cause
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more severe phenotypes. Parents with normal codon numbers can pass on a
defect gene to their children due to a random multiplication event during
meiosis. The clear separation between patient and healthy control and the large
effect caused by the mutation in a single gene enabled the relatively easy

identification of the causal gene.

However, not all genetic causes for traits were as detectable as the Huntingtin
gene, as the majority of traits are not caused by a mutation in a single gene,
which has a large effect on a phenotype. There are hundreds of examples of
traits influencing behaviour or characteristics in humans that are not caused by
a single gene with large effect [29]. Such complex traits can be caused by one or
more genes acting either independently or in interactions with other genes,
and/or the environment [29]. In complex traits, a mutation or genetic variant
underlying certain the phenotype may also have only a very small effect on the
trait making detection difficult. These genetic loci contributing towards complex
traits are called quantitative trait loci (QTLs). The polygenic nature of complex
traits means that they do not follow the Mendelian laws of inheritance, as the
causal genes may not segregate together. This combined with the small effects
of the causal variants means that it can be quite challenging to identify all
genetic factors of complex traits [29-32], especially when limited by low-

resolution methods such as linkage analyses.

The search for trait-associated genetic variants advanced substantially in the
last decade with the implementation of genome-wide association studies
(GWAS). These studies are designed to analyse the entire genome for regions
associated to the trait under investigation [31] using an essentially blind
approach and do not require a previously identified area of interest. GWAS test
alleles of SNPs for associations with diseases or other measurable phenotypes
returning a P-value of association, which reflects the strength of the association.
The first GWAS were performed in 2005 and 2006 and identified SNPs with
significantly different allele frequencies in healthy controls and patients with

age-related macular degeneration [33, 34]. The era of GWAS truly began in 2007
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with the Wellcome Trust Case Control Consortium (WTCCC), which analysed
seven common diseases in 14,000 patients and 3,000 controls [35] and
discovered several significantly associated SNPs. A SNP is said to be significantly
associated with the trait, if its P-value of association was less than the
commonly accepted genome-wide threshold of significance (P < 5 x 10-08),
which is based on testing 1 million SNPs [36]. This P-value takes the number of
performed tests into account to eliminate spurious associations caused by
multiple testing. The success of a study, as measured by the number of
identified significantly trait-associated variants, varied for different traits. This
demonstrated two major difficulties encountered by GWAS performed since
then. First, the cost of obtaining sufficiently large numbers of samples to detect
variants of small effect can be prohibitive [31]. Second, certain traits may also
be poorly defined, which makes the identification of the underlying genetics
difficult. Bipolar affective disorder, for example, can be difficult to diagnose as it
can be mistaken for other psychoses or unipolar depression with re-current
episodes [37]. Other problems of GWAS include the lack of power to identify
associations with rare SNPs and SNPs with small effect sizes. GWAS are also
highly sensitive to admixture and population stratification, which could result in
false positive associations as alleles segregated at different frequencies in
different populations. The heritability estimate of any given trait may also
influence the success of a GWAS, as high heritability estimates indicate a large
genetic component. The assumption is that genome-wide association studies
would be more successful at detecting associated genomic regions for these
highly heritability traits than for traits which have a higher environmental

component.

Despite all these issues, as of 25t June 2013 1,640 GWAS had been published,
reporting a total of 10,876 trait-associated SNPs [38]. SNPs tested for
association to a trait are said to be significantly associated with a trait, if they
are found to co-occur with the trait more often than expected by chance. This is
usually at a significance level of less than 0.05. However, since many hundreds

of thousands of SNPs are analysed in each study, the significance threshold must

22



be corrected for multiple testing to take into account spurious associations. One
method often used to correct for multiple testing is the Bonferroni correction.
An association P-value of P < 0.05/n, where n is the number of tests performed,
i.e, the number of SNPs on a genotyping array, is generally accepted as

significant evidence that the SNP is associated to the disease [39].

According to some, GWAS produced relatively little understanding of the
underlying biology [40, 41], and has even been characterized as a waste of
money by some of the supporters for effectively the same reasons [31].
Regardless of the validity of these criticisms, the fact is that GWAS have greatly
advanced our understanding of the genetics of complex traits [31], increasing
our knowledge by a factor only previously matched by epidemiological studies

[42].

When GWAS were first carried out it was hoped that trait-associated regions
contained functional elements, which could explain some, if not all, of a trait’s
observed heritability [31]. Heritability is a calculated estimate of the genetic
proportion of traits and is the ratio of the variance of a trait across generations
and the total phenotypic variance in a population, which is the interaction
between genetics and environment [43]. The identified variants have explained
little of the estimated total heritability of the analysed traits, a phenomenon
dubbed “missing heritability” [36, 38, 44]. Studies have since suggested that the
heritability is not missing but that researchers either do not know how to look
for it or that it was estimated incorrectly [30, 45, 46]. Several methods have
been published which improve the heritability estimates by employing methods
that analyse more than just the associated variants [30, 36, 46-48]. It is
therefore possible that the “missing heritability” is not missing at all, but that it
is calculated wrongly after the results are obtained. Furthermore, it is possible
that the causal variant is not only not included on the genotyping array used for
the study, but that the represented variants are not in full LD with the causal

variant. Other reasons for the apparently missing heritability could be, as of yet
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unaccounted for, epistatic effects, epigenetic factors or use of models that only

investigate significant SNPs rather than all effect sizes.

The genotypes of the SNPs used for GWAS are obtained using genotyping array
technologies, which allow the simultaneous analysis of a large number of SNPs.
Most GWAS use commercially available and standard genotyping arrays, which
measure between 300,000 and 1.8 million genetic markers at the same time,
although earlier arrays were less dense. The entire genome can be examined
using small numbers of SNPs in comparison to the number present within the
entire genome because of LD. The underlying assumption of GWAS is that the
analysed SNPs are either the causal mutation or in LD with the causal mutation
and can therefore ‘tag’ the causal mutation. Those tag SNPs, which are in LD
with a large number of SNPs and are therefore the most informative SNPs, are
included on the arrays to produce maximum coverage of the genome with a
minimum number of genotyped variants [49]. The different genotype array
producers use different criteria to choose the SNPs that were incorporated into
arrays. For example, the [llumina HumanHap300 array included an intentional
bias towards non-synonymous variants [50], due to their high impact on protein
function. After performing quality control on the genotyped SNPs, badly
genotyped or missing markers are often imputed to boost the numbers of

analysed markers [51].

Imputation is a method, which is used to infer the genotypes of untyped SNPs
based on the identity of genotyped SNPs and a reference population [52]. This
adds statistical power to GWAS by adding more SNPs to the analysis, which can
then be tested for an association with analysed traits in the same way as
genotyped SNPs. Several algorithms, such as IMPUTE2 [53], MACH [54] or
BEAGLE [55] to name but a few, are available for imputations. Meta-analyses
routinely use imputation to combine different studies, which may have used
different genotyping arrays, to infer the genotypes of untyped SNPs in the used
studies. The imputed SNPs can be tested for association in the same way as the

genotyped SNPs are. While imputations greatly boost the number of variants
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available for analysis, they can take a very long time to perform. It is
additionally possible that imputations introduce errors into the analysis if the
wrong reference genome is used. However, if the reference genome is matched
appropriately to the population under investigation, the results can be quite
reliable. As most studies now use imputations to boost the numbers of SNPs
available for analysis [38], any study investigating trait-associated variants will

have to consider SNPs resulting from imputations.

Several study designs are available for GWAS. One common design is the cohort
study, where one group of people is analysed for a common quantitative trait, to
identify a common genetic factor. A study using this design led to the discovery
of the involvement of a urate transporter gene in gout [56]. Another popular
design is the patient (‘case’) and control group study, where SNPs are
investigated for a difference in allele frequencies in the two groups. In these
types of studies, it is important to match the sampled populations properly to
take population stratification and admixture into account. If these are not
considered properly, spurious associations will result from the analysis, which
are only indicative of a recent mixing of the populations than real trait-
associations. The above mentioned WTCCC study in 2007 [35] was a case-
control study which analysed seven different traits. Usually a discrete trait is
analysed (i.e, a trait which simply is present or not, for instance the presence or
lack of the defining symptoms of the disease under investigation), although
continuous traits such as e.g., height can also be examined [57]. The majority of
the trait-associated variants identified so far are common alleles, which have
allele frequencies greater than 0.05, with modest effect sizes on the trait [58].
This directly reflects the biases in the variants that were chosen for the
genotyping arrays towards those with common alleles. These were selected, as
the minor alleles will be present in a larger number of people, increasing the
power to detect a given size of genetic effect for a fixed sample size.
Furthermore, the cost of studies using the number of people needed to analyse
small effects has so far been prohibitively large. However, this will likely change

as the cost to genotype and sequence the genome is ever-decreasing.
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Despite the shortcomings of GWAS, when results are produced it can have
profound impact on our understanding of biology. For instance, when the
underlying biology was verified through follow-up studies, the results were
sometimes surprising. For example, the genes associated with multiple sclerosis
were all found to have an autoimmune role rather than a neurodegenerative
role as previously hypothesized [59]. The new biology introduced by GWAS has
therefore shed light onto the aetiology of the investigated traits. The
identification of new candidate treatment options as a consequence of GWAS,
perhaps in the form of novel drug targets, is the best-case scenario and but so
far has happened only rarely [31]. While we know only 10-20% of genetic
variability contributing to certain diseases, we know 10-20% more of the
underlying genetics than we did five years ago [31]. GWAS have therefore
contributed substantially to our understanding of complex traits and diseases

[31].

GWAS identifies SNPs that are only associated to traits, which does not imply
that the associations really are the mutations causing the trait. A distinction
therefore needs to be made between trait-associated variants and trait causing
variants. A trait-associated variant will highlight areas of interest for follow-up
studies, while causal mutations will clarify the aetiology of traits. The causal
mutations are known for only a fraction of the 10,876 reported trait-
associations. This is at least partly due to the majority of the trait-associated
variants lying outside coding regions [50] and only a small fraction of the trait-
associations are near or within genes [60]. This was surprising when first
discovered and is contributing to the bottleneck in elucidating the molecular
processes and pathways underlying these associations [36, 38, 50, 61] and
hence in gaining new biological knowledge. Experiments identifying the causal
underlying biology for confirmed associations are expensive and time-
consuming. There has therefore been much interest in computational
prioritisation of candidate variants, both to accelerate the search for causal

variants, and to provide insights into the biology underlying disease states [62-

26



65]. Although confirmed trait-associated SNPs will most often not be the causal
variants, the surrounding genomic regions in LD with associated SNPs are
expected to contain causal variants with biological function. This triggers the
question: what do the trait-associations coincide with, if not with coding

regions?

1.4 Function of genome
Back in 1972 it was hypothesized that 6% of the genome was within coding
regions and what remained was defined as “junk DNA” [66], i.e, DNA that had
no function as it was not under selection. Junk DNA has since been a highly
disputed concept. However, the fact remains that a very small proportion of
DNA is coding. The latest estimate of the number of coding genes in the human
genome stood at 20,806 according to ENSEMBL (date of access: 13 May 2013),
which corresponds to about 1.5% of the genome, a quarter of what was
previously hypothesized. In the meantime, it was realized that the remaining
98.5% harbours important functional elements such as non-coding enhancers,
silencers and promoters. Yet, not all the non-coding DNA has function
associated with it. So, the right question is: how much of the genome is

functional?

The recent ENCODE consortium estimated that ~80% of the genome is
‘functional’ in the sense that it possesses some biochemical activity [67],
thereby effectively eliminating the term junk DNA. This percentage was highly
disputed the moment it was announced [68, 69] and continues to be challenged
[70]. Specifically, Graur et al. [71] declared that the ENCODE consortium did not
estimate function correctly, blatantly refused to look at the evidence in front of
them and grabbed a good sounding number out of the hat. The ENCODE authors
themselves gave different functional genomic estimates ranging between 20%-
80%, depending on which author was asked [71]. The death of the term “junk
DNA” was therefore contestable. While the debate on how much of the genome
contains functional elements is not yet resolved, it is indisputable that a wide

range of functional elements has been identified over the years.
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There are many regulatory and functional elements in the genome. Here, we
separate them into three main classes. The first class includes some of the many
identified genic annotations in the genome, such as gained stop codons 5’ and 3’
UTRs and pseudo genes as well as genes but also regulatory regions like eQTLs
[72]. Previous studies had shown that distance to transcriptional start site (TSS)
was very important for predicting eQTLs [72], so in chapter 5 onwards, we also
included this quantitative variable in our logistic regression modelling in this
class. The second class consists of other candidates for functional elements such
as regions, which are highly conserved across multiple species or transcription
factor binding sites [73, 74], enhancers identified through conserved sequences
[75] and insulators. They are suspected to be important during development
and contribute to the accurate function of the cell and have also been used as a

proxy for functional elements [64, 76].

Yet a third class of potential functional elements is derived from a range of
dynamic chromatin features that are associated with biological functions like
promoters, enhancers, silencers or heterochromatin states. The epigenome is
the set of heritable features that can alter gene expression or the cellular
phenotype independently of the DNA sequence itself [77]. Epigenomic features
include DNA methylations, histone modifications and the binding of
transcription factors [77]. DNA methylations most commonly occur on a
cytosine nucleotide when a guanine residue follows it on the same DNA strand.
DNA methylations are necessary for the correct function of a cell, as aberrant
methylation is highly associated with cancer [78, 79]. Certain amino acid
residues within histone proteins, around which DNA molecules are wrapped for
safe storage in the cell, are the targets of a variety of different biochemical
modifications. The identity and location of the modification is strongly
associated with their function. Presence of acetylations, for example, is almost
always associated with transcriptionally active regions in the genome, whereas
absence of these modifications may indicate inactive regions [80]. Methylations

can be associated with repressed or active regions depending on their location
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on the histone protein [80]. Epigenomic mechanisms are not only crucial for cell
differentiation during development but also seem to respond to environmental
stimuli, such as diet [81]. A landmark paper investigated epigenomic
modifications and their distribution across nine cell lines and identified a
reproducible pattern of histone modifications for 15 genomic features [82].
These features ranged from promoters and enhancers to insulators and
repressed regions, and showed varying degrees in strength of function as well
as significant odds ratios for enrichment of specific trait associated variants.

However, they did not investigate all available trait-associated variants.

1.5Future outlook
Trait-associated variants are assumed to highlight the functional variants,
which cause the investigated traits. The number of these associated variants is
set to increase not only through more powerful GWA studies but also through
next generation sequencing. In order to gain any insights into what drives these
associations we will have to investigate where these trait-associated variants lie
and what causes the associations. However, gathering the data is only the first
part and in order to validate the associations, follow-up studies need to be
performed. The cost of these in time and money is restrictive limiting the
number of results that can be analysed. Given that trait-association data is going
to continue to accumulate, ways of prioritizing the associated variants are going
to become ever more important. We have therefore developed the project for

this thesis, the scope of which we outline next.

1.6Scope of this thesis

This thesis deals with the number and nature of the functional elements found
to be overlapping with trait-associated variants, which were the results of GWA
studies investigating a large number of traits. These SNPs may not be the causal
mutations themselves, but it is the assumption that they are nonetheless in
association with the underlying causal mutation, which might not be an

identified SNP [36]. The introduction of this thesis sets out to define the most
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important concepts used in this study. Chapter 2 describes the SNP sets and
genomic feature datasets we use throughout the thesis. In Chapters 3, 4 and 5
we explore three methods for the identification of sets of genomic annotations
that were either significantly enriched or depleted for trait-associated variants
in humans. First we investigate a sampling based method employed by Hindorff
et al. [50] in Chapter 3. We then analyse a permutation-based method and
compare the permutation results to the sampling results in Chapter 4. The
permutations were investigated as an alternative to the sampling method, in the
hope it would allow a more rapid, comprehensive, and statistically rigorous
analysis. Chapter 5 details the third method we applied. This was logistic
regression, a method that allowed estimates of the relative contributions of all
genomic annotations to trait-association status, thereby eliminating redundant
information. Here, we also included an additional annotation, distance to TSS, as
suggested by a reviewer of our paper (following [72]). In Chapter 6 we apply
two methods, permutations and regression, to two differently obtained sets of
SNPs to see if the methods are adaptable. The first of these datasets was the
result of the Stockholm Atherosclerosis Gene Expression (STAGE) study aimed
at identifying eQTLs and contained 26,546 SNPs [83]. The second dataset was
obtained from the Genetic Investigation of Anthropometric Traits (GIANT)
consortium and contained P-values of association for ~2.5 million SNPs

investigated for associations with height [57].
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2 MATERIALS AND METHODS

2.1SNP datasets

2.1.1 Hindorff SNPs
This data consisted of 465 unique trait-associated SNPs, with associations
significant at the Bonferroni corrected genome-wide significance threshold of 5
x 108, The significant SNPs originated from 151 of the 237 published studies
until December 2008 [50]. This dataset of Hindorff SNPs was used only in the
original paper in 2009. We attempted to reconstruct this set of trait-associated
SNPs. All reported studies used at least one of the several commercially
available genotyping arrays by different companies, and most studies ended up
with ~2.5 million imputed SNPs. Imputation of unknown SNPs using a reference
population is a cost and time efficient method for increasing the number of SNPs

available for analyses [84].

2.1.2 Reconstructed Hindorff SNPs
The original GWAS catalogue, detailing all GWAS performed until 31st December
2008, was obtained through personal communication with the authors [50].
This GWAS catalogue reported 1,104 SNPs identified as trait-associated at
various levels of significance in 237 studies for 165 different traits. Of these, 476
SNPs were unique, trait-associated SNPs significant at 5 x 108 for 95 traits
identified in 151 studies. The final analysed dataset included 468 SNPs, as SNPs
from the Y-chromosome or non-assigned chromosomes were removed from the
data. It was impossible to identify the exact set of 465 SNPs used for the analysis
by Hindorff et al, as following their method to identify the significantly trait-
associated SNPs resulted in a number of trait-associated SNPs that was far
lower than they originally reported. It is possible that further steps were either
not published or that their methodology was not clear. However, several
approaches at replicating the data were attempted. The dataset analysed here

was the closest approximation.
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2.1.3 Significant SNPs (2011)
The National Human Genome Research Institute (NHGRI) GWAS catalogue [85]
reports genome-wide association studies if they meet their inclusion criteria.
The first one is that any included study must analyse at least 100,000 SNPs
before the quality control was applied. Secondly, the catalogue only reports
SNPs with P-values of association of < 1.00 x 105 in the total analysed
population, which includes any initial and replication studies. There is no
exclusion criterion based on minimum sample size, but the curators did exclude
any studies that focussed only on SNPs in candidate regions. Trait-associated
SNPs significant at the genome-wide significance threshold (P < 5 x 10-8) were
extracted from the NHGRI GWAS catalogue [85], downloaded on 25 August
2011. The catalogue reported 5,800 associations from 764 studies in total. After
the removal of SNPs on the Y-chromosome or non-assigned chromosomes 1,974
were significantly associated in 576 studies and 1,909 of these significantly
trait-associated SNPs were analysed. The remainder either had rare allele
frequencies in the study populations and were not present in the HapMap CEU
Il reference data, or were lost due to updated rs numbers when the positions

were updated to build 37.

2.1.4 Suggestive SNPs (2011)
Suggestive SNPs (2011) consisted of the suggestively trait-associated SNPs
derived from the NHGRI GWAS catalogue, which was accessed 25 August 2011
[86]. The significantly associated SNPs were also extracted from this set, as
detailed in the paragraph above. The suggestively trait-associated SNP set was
defined as SNPs with association P-values between 5 x 10-8 and 5 x 10->. SNPs
that were located on either the Y-chromosome or unassigned to chromosomes
were removed from all analyses. SNPs in the suggestively associated SNP set
found to be in LD (r?2 > 0.9) with significant SNPs were removed from the
dataset, resulting in 2,410 unique rs numbers from 412 studies present in the
data. The remainder either had rare allele frequencies in the study populations,
and were not present in the HapMap CEU II reference data, or were lost due to

updated rs numbers when the positions were updated to build 37.
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2.1.5 Significant SNPs (2013)
The NHGRI catalogue was accessed again on 18 January 2013 and the most
recent version of the GWAS catalogue was downloaded, which incorporated all
trait-associated SNPs known to that date. This dataset contained 3,421 unique
SNPs that were associated with 492 individual traits identified in 929 studies.
The total number of SNPs present in the background list of SNPs was 3,283
SNPs. As before, the remainder either had rare allele frequencies in the study
populations, or were not present in the HapMap CEU II reference data, or were

lost due to updated rs numbers when the positions were updated to build 37.

2.1.6 Significant SNPs (Difference)
This dataset consisted of the difference of Significant SNPs (2013) and
Significant SNPs (2011). This set was analysed to see the impact of only the new
variants when compared to the older variants. It comprised 1,477 significantly
trait-associated SNPs that were identified in the period between 25 August
2011 and 18 January 2013. Three Japanese studies [87-89] that were part of
Significant SNPs (2011) had been removed from the NHGRI catalogue by the
time Significant SNPs (2013) was downloaded. No official reason has been
found for the removal of the SNPs. However, this increased the total amount of
analysed SNPs by 153 in the Significant SNPs (Difference). This set was analysed
as the SNPs were expected to have a slightly different distribution to all SNPs
from 2013, as the 2011 SNPs contributed to the overall set. The difference of the
sets was expected to have a slightly different distribution due to the design of

the newer GWAS, which tend to analyse comparatively larger populations.

2.1.7 Trait-subsets
The traits (phenotypes) associated with the Significant SNPs (2013) were
divided into four subsets: Cancer traits, immune-related traits, general disease
traits and normal variation traits. This was previously not possible, as the
number of SNPs within the subsets was prohibitive for a reliable result. The
SNPs that overlapped between the disease category and the normal variation

category were classified as disease SNPs. Please refer to Section 9.1 for an
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overall view of all traits in each subset. We downloaded data from the Genetic
Association Database (GaD, [90]) which has a detailed breakdown of traits into
categories. The traits were separated into subsets using the information from
the GaD. For those traits, which were not listed in GaD, we searched across the
publicly available data online to sort them into their respective subsets

according to the results of that investigation.
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2.1.8 STAGE eQTLs
One dataset used for analysis was an eQTL dataset generated by the Stockholm
Atherosclerosis Gene Expression (STAGE) study [83]. This study investigated
gene expression levels in seven tissue types of 147 coronary artery disease
patients eligible for coronary artery bypass grafting and/or carotid
atherectomy. Tissue biopsies were extracted from atherosclerotic arterial wall
(n = 68), internal mammary artery (n = 79), liver (n = 77), whole blood (n = 102)
and subcutaneous (n = 63) and visceral fat (n = 88). The gene expression levels,
as measured by RNA levels in the biopsies, were treated as traits in a correlation
study with the SNP genotypes of the 109 patients, which had sufficient levels of
DNA. Multiple testing was corrected for using false-discovery rate in each
individual tissue. These SNPs were located within 1 Mb of 6,450 genes whose
gene expression was used as the investigated trait. The total number of SNPs,
identified as significantly associated with gene expression levels were referred
to as eSNPs, was 29,530. Collaborators at the Karolinski Institute, Sweden,
performed all the gene expression analyses. Here, we analysed 26,546 SNPs of
29,530 SNPs. The remainder were lost due to updated rs numbers when the
positions were updated to build 37. The data could be separated into different
subsets according to the tissue whose gene expression correlated with the

genotyped SNPs.

2.1.9 GIANT SNPs
The Genetic Investigation of Anthropometric Traits (GIANT) consortium is an
international genome-wide association meta-analysis consortium that focused
on the identification of loci affecting measures for human body size and shape.
This consortium has made datasets available to the public, including the meta-
analyses for three traits: Height, BMI and Waist/Hip ratio adjusted for BMI. The
height dataset was downloaded and analysed to identify genomic signature
patterns of associated SNPs, and consisted of 2,469,635 SNPs with a range of

association P-values [57].

35



2.1.10 Defining linkage disequilibrium partners
Linkage disequilibrium (LD) underlies the design and success of GWAS. The
design of GWAS was based on genotyping arrays, which could capture a
substantial proportion of genomic variation [91]. LD between two alleles is
defined as the deviation (denoted D) of the observed frequency of two
combined loci from the expected, where the expected frequency of two loci is
the product of their allele frequencies [43]. While D is easy to calculate, it is
highly dependent on allele frequencies, so usually D’ is calculated which takes
the allele frequencies into account. An alternate measure to D’ is r?, which is
defined as the square of the correlation coefficient between pairs of loci. This
measure also takes allele frequencies into account. It was the optimal choice for
our work, as it is a commonly used measure and Hindorff et al. also used r? in
their analysis [50]. SNPs in LD were referred to as LD partners and were
important for the analysis of the underlying genomic structure of phenotypes.
LD partners were characterized as SNPs from the HapMap CEU II data that were
in LD above the chosen cut-off threshold (r? > 0.9) with a trait-associated or
sampled SNP [92, 93]. Since only a fraction of the known SNPs were included on
genotyping arrays, it was unlikely that causal mutations were genotyped.
However, it is assumed that they were in LD with associated SNPs [50]. The LD
threshold of r?2 > 0.9, a highly stringent threshold [50], was chosen in
compliance with previous literature [50]. This cut-off point was also chosen for
all our analyses, unless otherwise stated. The HapMap CEU II data on LD
(release #24, phase I and II, http://hapmap.ncbi.nlm.nih.gov/downloads/
ld data/2009-02 rel24/) between SNPs was used to define the LD partners of

all analysed SNPs (trait-associated and non-associated). HapMap CEU II data
contained information on LD calculated for pairs of SNPs up to 250 Kb apart
from each other [92]. This resulted in theoretical LD blocks of up to 500 Kb long
for any one SNP. An additional cut-off point of r? > 0.7 was analysed to
investigate reducing the LD threshold, capturing more LD SNP partners and

therefore potentially more causal variants but also noise.
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2.1.11 Scoring LD blocks and definition of odds ratios
The applied scoring system for the calculation of depletion/enrichment odds
ratios was binary. An LD block of trait-associated SNPs and its partners was
defined as overlapping with a particular genomic feature if at least one of the
SNP variants in that block coincided with the genomic feature. Multiple hits
within an LD block were not counted. Sample and permutation SNPs were
treated the same as the trait-associated SNPs to enable a solid comparison

between the expected and the observed data.

Odds ratios were calculated to enable comparisons with previous studies [50],
where an odds ratio was defined as shown below. Here, the observed data are
the number of overlaps of trait-associated SNPs and the expected data are the

mean number overlaps of the background data.

(Overlaps Observed Data) * (Non - Overlaps Expected Data)
(Non - Overlaps Observed Data) * (Overlaps Expected Data)

2.1.12 Two-tailed two-sample t-test
In order to test for a significant difference between two odds-ratios of datasets,
which had no common SNPs, a two-tailed two-sample t-test was applied
assuming unequal variances of the two compared SNP sets. The test used the
natural logarithm of the odds ratios, the natural logarithm of the standard error
of the odds ratio, and the number of SNPs per analysed set to calculate a P-value
for the difference of the odds ratios. The total number of analysed SNPs divided
by two determined the degrees of freedom. The P-value was corrected for
multiple testing using the Bonferroni correction, ie, for the number of
annotations that were analysed. The P-value was significant if it was below the
adjusted threshold of significance. The annotations, for which the difference of

odds ratios was significant, were identified using a red star in all graphs.
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2.2 Genomic annotations

2.2.1 Genome build and sources
Details on the genomic annotations sources are included in the corresponding
paragraphs. All genomic annotations were downloaded in hgl8, where
available. The hg18 build was chosen, as more annotations were available for
that build at the beginning of the project, than either the previous (hg17) or the
later one (hg19). If they were not available in hg18, the UCSC liftOver tool [94]
was used to transfer the annotated regions into hg18. The majority of the
genome annotations were downloaded from the UCSC genome browser and
were publicly available at the time of download. Other sources included the
ENSEMBL webpage, which allowed selective download of a number of
variations with specified biological functions. These were only available for
download in hg19 and were transferred to hg18. The remainder of the sources
were laboratory web pages which had made their data available online. If
necessary, they were converted into the appropriate build to ensure the correct

relative map positions.

2.2.2 Categories of genomic annotations
The final analysed data included 58 genomic features for which the genome was
annotated. These were separated into three major categories to enable
appropriate representation of the different underlying biology. The genomic
annotations chosen for analysis were similar to, if not the same as, the 20
annotations previously published in the analysis we are replicating [50].
However, some of the annotations were no longer publicly available at the time
of download (e.g., the regions under accelerated rates of substitution in the
human genome). For these annotations, we used either approximations of the
annotations, or, based on the significance of the odds ratios calculated by
Hindorff et al, were not included in this analysis. Of the 20 published
annotations, 14 were downloaded and results obtained in theses categories

were compared to the published results.
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Genomic annotations that were added to the genomic annotation set included a
range of conserved regions, areas with signs of purifying selection, and a large
number of distinct and replicable histone modification patterns. The latter
replaced a large number of individual histone modifications that were used as

proxy for the different underlying biological functions.

A detailed description of the 58 genomic annotations and their sources are
outlined below according to the category they belonged into. The three
categories were genic and regulatory features, conserved and regulatory

regions, and chromatin states.

2.2.2.1 Genic and regulatory features
This category contained all genomic annotations that were within genes,
defined by their proximity to genes, or identified through sequence analyses as
a regulatory element of transcription factor binding site. The text reflects the
order of the genomic annotations as they are shown on the corresponding

graphs in each figure.

The region upstream of the transcription start site (TSS) of a gene has strong
literature evidence of containing putative promoters. In order to analyse these
regions and identify long-range vs. short-range regulatory elements, two
distances upstream of the TSS were analysed: 1 Kb and 5 Kb upstream of TSS.
These two genomic annotations were derived from the RefSeq dataset
downloaded from the UCSC table browser (accessed 15t November 2010),
which details the position of the TSS and the strand on which the gene is found
[95].

CpG islands are areas in the genome with a large proportion (larger than
expected by chance) than expected by chance of unmethylated cytosines
followed immediately by a guanine, where only a phosphate group separates
the two. The unmethylated state of a single CpG is rare and will only be present

if there is selective pressure to keep it unmethylated [96]. The methylated
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cytosine tends to turn into thymines due to spontaneous de-amination. The CpG
islands are associated with promoter functions and - in vertebrates - in
particular with housekeeping genes [97]. This annotation set was also

downloaded on 15t November 2010 from the UCSC table browser.

The ORegAnno annotation reports regulatory regions, regulatory
polymorphisms and transcription factor binding sites and was downloaded on
15t November 2010 from the UCSC table browser. It originates from the Open
Regulatory Annotation database, which is an online repository that is publicly

curated containing information validated through experiments [73, 98].

The Vertebrate Genome Annotation (vega) database contains frequently
manually annotated regions with information on protein-coding genomic
regions as well as pseudo genes and immunoglobulin segments. These were
divided into the vegaGenes annotation and the vega PseudoGenes annotation,
which were downloaded from the UCSC table browser on 15t November 2010.

The OMIM genes and OMIM morbid regions are no longer publicly available,
but were available at the time of download. The Online Mendelian Inheritance in
Man is a continuously updated catalogue of human genes and genetic disorders
which incorporates all genes and genomic regions that have been identified
through experiments. The OMIM morbid map shows the cytogenetic locations of

specific diseases identified by previous studies [99].

The Exons annotation was derived from the RefSeq gene annotation [95], at the
same time as the 1 Kb and 5 Kb upstream TSS annotations were created. This
category included all exons possible through different splicing to take all
isoforms into account. A number of SNP annotations, ie, intronic, non-
synonymous, synonymous, intergenic, splice sites and sites in the 3’ and
5'UTRs, were extracted from the dbSNP 129 dataset [16], accessed on 20
January 2011. The non-synonymous and synonymous SNPs were combined to
create the coding SNPs annotation. Non-synonymous SNPs resulting in gained

or lost stop codons were downloaded from the ENSEMBL webpage.
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The locations of RNA genes, which are genes that were expressed but were not
coding for proteins and pseudo genes [100, 101], were downloaded from the
UCSC Table browser on 25 November 2010. The genomic locations which were
known to correspond to totally intronic non-coding RNAs were downloaded
from the RNA database on 15 November 2010 [102]. The regulatory target sites
for conserved mammalian microRNA families in the 3’'UTRs of RefSeq Genes
were predicted by an algorithm called TargetScanS [103-105]. These sites were
downloaded from the UCSC Table Browser on 15 November 2010.

The eQTLs are defined as SNPs that have been associated to variation in gene
expression levels. The SNPs represented in this annotation were downloaded
from the eQTL web browser [106] and originate from a number of different

studies [72, 107-110].

DNase Clusters represent DNase hypersensitive areas assayed in a large
collection of cell types and have been shown to play a major role in human traits
[111]. The dataset was downloaded from the UCSC Table Browser on 15
November 2010 [112].

Insulators in the human genome are necessary boundaries between different
areas of the genome, which are translated or silenced. Genomic locations for
human insulators were downloaded using the ENSEMBL biomart on 15
November 2010.

SNP sites found within mature microRNAs were downloaded using the
ENSEMBL biomart to investigate if trait-associated SNPs can be preferentially

found within microRNAs. The sites were downloaded on 15 November 2010.

Regions with sequences of at least 15 perfect di-nucleotide and tri-nucleotide
repeats are likely to be useful as microsatellite markers and are usually highly
polymorphic between populations [113]. This annotation was downloaded from

the UCSC Table browser on 15 November 2010.
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2.2.2.2 Conserved regions and evolutionary signatures
The conserved and evolutionary signatures category was chosen to represent
genomic locations, which were either conserved between different species, or
have been shown to be under selective pressures. The evofold annotation
corresponded to RNA secondary structure predictions made with the evofold
program. This program compared multiple-sequence alignments to identify
conserved functional RNA structures [114]. This annotation was downloaded on

15 November 2010 from the UCSC Table browser.

The identity and genomic locations of 16,529 high-confidence orthologues
showing tested for positive selection were downloaded from the UCSC Table
browser on 15 November 2010. The high-confidence orthologues were from a
multiple mammal alignment using the genome assemblies of human (hg18),
chimp (panTro2), macaque (rheMac2), mouse (mm8), rat (rn4), and dog
(canFam2). These genes were analysed in different evolutionary lineages to
investigate mammalian positive selection [115]. However, here only the

orthologues were used without restriction to the positive selection score.

A set of enhancers identified through a number of computational and
experimental analyses to identify possible enhancers in human and mice were

downloaded on 15 November 2010 from the VISTA enhancer browser [116].

Exapted repeats are conserved non-exonic sites that have been deposited by
mobile sites (repeats) in a process called exaptation. These repeats are possible
distal enhancers and were downloaded from the UCSC Table browser on 15

November 2010 [117-121].

Predicted cis-acting regulatory modules are presented in the PREMOD genomic
annotations, which were downloaded from the PREMOD database [122, 123].
The location and score of transcription factor binding sites that are
conserved in a human/mouse/rat alignment, based on computational

predictions, were downloaded from the UCSC Table browser on 15 November
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2010. The data were generated using the Transfac Matrix and Factor databases
on Biobase, while Matt Weirauch and Brian Raney at the University of California
at Santa Cruz created the track for the UCSC Table browser. Regions significant
for purifying selection with respect to mutations involving sequence insertions
and deletions have been implicated as possibly identifying long intergenic non-
coding RNAs, which may have an impact on phenotypes [124]. This dataset,
referred to as Indels, was downloaded on 15 November 2010 from the UCSC

Table browser.

Conserved sites, identified using a number of different species alignments, may
have a larger than expected chance of containing trait-associated variants, as
conserved sites are thought to have an important biological function. The
phastCons program was used for the different species alignments [76]. The
species used for the 17 species alignment were human (March 2006
(NCBI36/hg18), hg18), chimp (November 2003, panTrol), macaque (January
2006, rheMac2), mouse (February 2006, mm8), rat (November 2004, rn4),
rabbit (May 2005, oryCunl), dog (May 2005, canFam2), cow (March 2005,
bosTau2), armadillo (May 2005, dasNov1), elephant (May 2005, loxAfr1), tenrec
(July 2005, echTell), opossum (January 2006, monDom4), chicken (February
2004, galGal2), frog (October 2004, xenTro1), zebrafish (May 2005, danRer3),
tetraodon (February 2004, tetNig1) and fugu (August 2002, fr1).

The 28 species alignment includes all species from the 17 species alignment,
six of which use updated sequences, and 11 new species. The updated species
are for the chimp (March 2006, panTro2), cow (August 2006, bosTau3), chicken
(May 2006, galGal3), frog (August 2005, xenTro2), fugu (October 2004, fr2) and
zebrafish (March 2006, danRer4). Five of the new species are high-coverage (5-
8.5X) assemblies of horse (February 2007, equCab1), platypus (March 2007,
ornAnal), lizard (February 2007, anoCarl), stickleback (February 2006,
gasAcul) and medaka (Apr 2006, oryLatl), while the remaining six were low-
coverage assemblies (2X) from bush baby (December 2006, otoGarl), tree
shrew (December 2006, tupBell), guinea pig (October 2005, cavPor2),
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hedgehog (June 2006, eriEurl), common shrew (June 2006, sorAral), and cat
(March 2006, felCat3). These 28 species were aligned and a subgroup of the
species was used to identify elements conserved between placental mammals.
The placental mammals excluded the sequences of the opossum, platypus,
chicken, lizard, and frog as well as the following fish: tetraodon, fugu,

stickleback, medaka and zebrafish [125] from the 28 species set above.

The 44 species alignment is composed of the 28 species listed above and an
additional 16 new ones. Eight of the 28 previous species were updated. The new
assemblies are mouse (July 2007, mm9), cow (October 2007, bosTau4), guinea
pig (February 2008, cavPor3), horse (Sep 2007, equCab2), elephant (July 2008,
loxArr2), zebrafish (July 2007, danRer5), and medaka (October 2005, oryLat2).
The orang-utan (July 2007, ponAbe2) and zebra finch (July 2007, danRer5)
were high-coverage (5-8.5X) assemblies, and gorilla (October 2008, gorGor1),
marmoset (June 2007, calJacl), tarsier (August 2008, tarSyrl), mouse lemur
(June 2003, micMur1), kangaroo rat (July 2008, dipOrd1), squirrel (February
2008, February 2008, speTril), pika (July 2008, ochPri2), mega bat (July 2008,
pteVam1), micro bat (March 2006, myoLucl), dolphin (February 2008,
turTrul), alpaca (July 2008, viPac1), sloth (July 2008, choHof1), rock hyrax (July
2008, proCapl), and lamprey (March 2007, petMarl). The subsets were
obtained from the total alignments of the 44 species from which some species
were selected. The placental mammals included the sloth, armadillo, tenrec,
rock hyrax, elephant, common shrew, hedgehog, mega bat, micro bat, dog, cat,
horse, cow, dolphin, alpaca, pika, rabbit, squirrel, guinea pig, kangaroo rat, rat,
mouse, tree shrew, bush baby, mouse lemur, tarsier, marmoset, rhesus monkey,
orang-utan, gorilla, chimp and human. The primates’ subset included the latter

species from bush baby to human.

Overlaps of any of the above conserved, regulatory or genic sites were removed
from the intergenic SNP set. This created a negative genomic feature, which
was depleted of any regulatory elements, irrespective of chromatin states or

histone modifications.
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2.2.2.3 Chromatin states and histone modifications
Two higher order structures of chromatin were included in the analysis, which
were established in a karyotypically normal lymphoblastoid cell line, GM06990
[126]. These chromatin states were downloaded on 15 November 2010 from
the GO website (accession number: 19815776). The data identified two regions
chromatin regions with different interaction patterns. The chromatin in a more
“open” and more accessible state was associated with active genes and
transcription patterns, while chromatin in a more “closed” conformation was
associated with inactive genes. These were included in the analysis with the
names Open Chromatin and Closed Chromatin, respectively. Additionally to
these higher order structures, the lower order structures were also analysed.
Initially, these consisted of a large number of individual histone modifications in
different cell lines. However, the identification of 15 different replicable histone
modification patterns in nine different cell lines made the set of individual
modifications obsolete. These 15 different patterns were associated with
underlying 15 biological functions in the genome [82]. The authors used nine
different cell lines, out of which we used the GM12878 cell line to ease
comparison with the open and closed chromatin states. The biological
functions associated with the histone modifications were promoter,
enhancer and insulator activities. The former two could be separated into
different subcategories, which for the promoters were active, weak and
inactive/poised. The active, weak and poised promoter labels were highly
interchangeable between different cell lines, so that overall these labels pointed
to regions with transcribed genes. The same can be said for strong and weak
enhancers and transcribed regions. However, the identity of these regions only
changed within their classes, so that it can be said that these regions tend to
preserve their regulatory potential, still retaining their biological functions [82].
The enhancer and repetitive regions showed different positional enrichment
along transcripts, where some elements acted on distal or rather more proximal
genes [82]. These histone modifications were downloaded from the UCSC Table

browser on 09 June 2011 (“wgEncodeBroadHmmGm12878HMM”).
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2.3 Distribution of genomic annotations
Table 2-1 shows the descriptive statistics of the 58 genomic annotations. The
distribution of the genomic annotations was important for the analysis, as a low
number of annotated SNPs caused odds ratios and confidence intervals with
values of infinity. The table includes information on coverage of the annotations
in number of sites in nucleotides (i.e, genome coverage) and SNPs (i.e, SNPs
genotyped or imputed in the GWA studies surveyed), and the mean length of
each annotation in the entire genome. Four (within mature miRNA, splice sites,
lost stops and microsatellites) of the annotations had a very low coverage of the
SNPs and were excluded from all graphs, as the odds ratios were undefined due
to a division by zero. The mean allele frequency of 647,776 SNPs identified in
the Human Genome Diversity Project overlapping with the annotations is also
shown in Table 2-1. The MAFs are very stable across the annotations, so that a

possible selection effect is unlikely to have influenced the results.
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Table 2-1 - Summary statistics of the three classes of genomic annotations

This table shows the number of annotation sites (Sites), their mean length in base pairs (Mean
Length (bp)), the percentage of nucleotides coinciding with them (Nucleotides (%)), the percentage
of SNPs coinciding with them (SNPs (%)) and the mean minor allele frequency of SNPs in the HGDP
overlapping with annotations (Mean MAF.).

Annotations Sites Mean Length (bp) Nucleotides (%) SNPs (%) Mean MAF
TSS 1 Kb upstream 22624 1069.60 0.79 3.40 0.23
TSS 5 Kb upstream 20592 5533.29 3.70 8.83 0.23
CpG Islands 27458 764.28 0.68 1.76 0.23
ORegAnno 17903 627.89 0.37 1.97 0.23
Vega Genes 14651 64881.51 30.90 37.89 0.22
OMIM Genes 12307 64852.28 25.90 32.74 0.22
OMIM Morbid Regions 2532 69311.51 5.70 7.82 0.22
Exons 212325 245.31 1.69 7.14 0.22
Intronic SNPs 5125999 1.76 0.29 43.61 0.22
Non-Syn. SNPs 117692 55.54 0.21 3.73 0.22
Coding SNPs 186247 35.59 0.22 5.74 0.22
Syn. SNPs 72933 1.50 3.54x10° 2.99 0.13
Gained Stops 4186 1.01 1.37x10" 0.05 0.20
3'UTR 131649 1.63 0.01 3.81 0.22
5’UTR 27693 1.41 1.27x10° 0.94 0.27
RNA Genes 6936 132.54 0.03 0.25 0.23
ncRNA 890 15355.22 0.44 0.83 0.22
TS miRNA 40648 7.69 0.01 0.03 0.23
eQTLs 68619 1.00 2.23x10° 4.50 0.25
Vega PseudoGenes 6999 3094.04 0.70 1.78 0.22
Intergenic SNPs 8250331 1.73 0.46 63.71 0.22
DNase Clusters 969313 243.90 7.67 31.25 0.23
Insulators (sequence) 25546 1095.15 0.91 4.29 0.23
Within miRNA 395 1.09 1.39x 10° 0.00 0.23
Splice Sites 1718 4.44 2.48 x 10" 0.04 0.23
Lost Stops 278 1.02 9.19x10° 0.02 0.25
Microsatellites 40186 40.56 0.05 0.08 0.25
Evofold 47244 38.81 0.06 0.21 0.23
Pos. Sel. Genes 16384 39030.69 20.80 28.43 0.22
Enhancers 1295 1526.59 0.06 0.32 0.22
Exapted Repeats 10400 99.50 0.03 0.29 0.22
PREMOD 122979 482.55 1.93 10.39 0.23
tfbsConsSites 2345848 16.45 1.25 8.48 0.23
Indels 2596839 82.23 6.93 32.61 0.23
17 spc. algmt 2201980 66.24 4.74 21.74 0.23
28 spc. algmt, plc.mmis 2028316 54.65 3.60 17.23 0.23
28 spc. algmt 2873612 48.33 4,51 20.30 0.23
44 spc. algmt 4846954 29.02 4.57 20.52 0.23
44 spc. algmt, plc.mmis 3945677 31.31 4.01 18.75 0.23
44 spc. algmt, prim 806524 150.28 3.93 17.85 0.22
Negative (sequence) 5277572 509.71 97.90 54.81 0.22
Open Chromatin 13843 99999.00 44.90 46.77 0.22
Closed Chromatin 13469 99999.00 43.70 52.95 0.22
Active promoter 15279 1440.81 0.72 2.82 0.23
Weak promoter 35076 568.26 0.65 2.99 0.23
Inactive/poised promoter 5265 891.55 0.15 0.35 0.22
Strong enhancer (proximal) 25486 964.20 0.80 3.13 0.23
Strong enhancer (distal) 38612 621.47 0.78 3.47 0.23
Weak/poised enhancer 69144 388.98 0.87 4.37 0.23

(proximal)

Weak/poised enhancer (distal) 109526 555.25 1.97 8.14 0.23
Insulator 33311 468.99 0.51 3.36 0.23
Transcriptional transition 16223 1223.81 0.65 2.51 0.22
Transcriptional elongation 26473 5975.22 5.14 9.13 0.22
Weak transcribed 82235 3671.65 9.80 16.51 0.22
Polycomb repressed 25483 3524.60 2.92 7.29 0.22
Heterochrom; low signal 10530 891.55 0.31 81.79 0.22
Repetitive/CNV (proximal) 8033 627.54 0.16 0.24 0.24
Repetitive/CNV (distal) 6122 452.66 0.09 0.20 0.25




3 GETTING IT RIGHT: REPLICATION OF A PREVIOUS STUDY

3.1 Introduction
As mentioned in the introduction chapter of this thesis, most trait-associated
GWAS hits are found outside of genic and usually coincide with genomic regions
whose functions have not yet been identified. This hinders the identification of
the causal underlying biology for the majority of GWAS hits [36, 127], as a target
for follow-up studies is not immediately obvious. An investigation into the
genomic environment of trait-associated SNPs and their LD partners was
therefore warranted to aid the understanding of trait-associated variants. The
question as to which genomic features underlie trait-associated SNPs more
often (or less often) than expected by chance arises when GWAS hits are
investigated. The answer to that question is important for future research, as it

could be used in prediction mechanisms for trait-associated variants.

In 2009 Hindorff et al. published a study to answer the above question by
investigating genomic regions for enrichment or depletion of trait-associated
SNPs to identify potential aetiological mechanisms [50]. The 20 analysed
genomic regions or features were mainly genic and mutually non-exclusive
annotations, i.e, the annotations were coinciding with each other. The results
showed three annotations with significant odds ratios of enrichment and
depletion of trait-associated variants. Non-synonymous SNPs and regions 1 Kb
upstream of a transcription start site (TSS) were significantly enriched, while
intergenic SNPs were significantly depleted for trait-associated SNPs. These
results were obtained by creating 100 samples of non-associated SNPs, which
closely matched the genotype array composition of the observed data, i.e, the
trait-associated SNPs, as we explain shortly. The majority of genotyping arrays
were designed with a specific purpose in mind. The Illumina HumanHap 300
genotyping array was enriched for non-synonymous SNPs and targeted mainly
common SNPs [50]. This inherent ascertainment bias present within all arrays
could cause problems in the sampling analysis, if GWAS hits were to be

compared with non-associated SNPs. If, for example, one were to choose sample
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SNPs from the Illumina HumanHap 300 array only and the SNPs originated from
a different platform, one would erroneously find relative depletion in the non-
synonymous SNPs in comparison. This bias of the genotyping arrays and any
imputed SNPs in the original trait-associated dataset had to be considered by
any method aimed at obtaining random samples. This sampling with taking
account of the genotyping array composition produced a background, or null-
distribution, of expected data to which the observed data were compared and
odds ratios of enrichment or depletion of the trait-associated SNPs were

calculated.

Hindorff et al. showed that trait-associated SNPs had a distinct distribution in
the investigated genomic regions with significant results in three of 20
annotations. However, since the study’s publication in 2009 many more GWAS
have been performed identifying many new trait-associations. An additional
study into the new associations was therefore warranted. We began with a
replication of the results with the original data, which was needed to compare
the original results with the results from the more recent dataset. We also
included additional genomic annotations to investigate a broader range of
regulatory regions. Epigenetic modifications were also included, as they have
been shown to contribute to stress-related phenotypes such as e.g., cancer or
diabetes [77, 128, 129].

Here, we detail the steps taken to replicate the data, methods, and results of the
Hindorff et al. study. We then performed an investigation with a larger set of
SNPs, which were a more recent version of trait-associated variants from the
NHGRI catalogue of GWAS results [86]. The results of the two SNP sets, the
replicated set and the more recent set with more variants, were compared to
the results obtained by Hindorff et al We additionally expanded the
investigation with more genomic features. Our results show that the sampling
method could be reproduced thereby validating the way we performed the
sampling method. This validation was necessary for an appropriate comparison

of the sampling results with results obtained by a novel method discussed later.
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3.2 Method

3.2.1 Sampling genotyping arrays
The study we aimed to replicate was published in 2009 by Hindorff et al. [50],
who used a sampling method to analyse the distribution of trait-associated
variants in 20 genomic annotations. The method obtained sample sets of SNPs
of equal size to the set of trait-associated SNPs represented on genotyping
platforms. We used weighted groups based on the manufacturer(s) of the SNP
platform(s) and the HapMap CEU II data to draw the samples, rather than on
individual genotyping arrays, as that information was often unavailable. The
numbers of SNPs drawn from each manufacturer group were proportional to
the number of SNPs observed in the real data. Groups were established
representing the union of varied combinations of genotyping arrays and
imputed data. These groups were randomly sampled in the proportions of the
observed data. Multiple entries of individual SNPs were possible and were not
removed. This takes into account the greater chance of a SNP to be identified as

a trait-associated SNP, if it was present on more than one genotyping array.

3.2.2 0Odds ratios
Odds ratios, confidence intervals and P-values of significance for the observed
results were calculated using the oddsratio.wald function from the epitools R
package [130] of the statistical program R version 2.12.1 [131]. This function
calculated the odds ratios by comparing unconditional maximum likelihoods of
the observed value compared with the mean number of expected hits. Odds
ratios of enrichment/depletion were calculated by comparing overlaps between
genomic features and real trait-associated data with overlaps of SNPs
determined by chance alone. The P-values were defined as significant when
below the Bonferroni-corrected significance threshold, which in our case was
calculated for 58 independent variables (P < 8.62 x 10-4). The analysed genomic
annotations were not independent from each other, which means that the

Bonferroni corrected P-value is conservative.
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3.3 Results
3.3.1 Preliminary work

3.3.1.1 Study populations
In order to ascertain the correct population for the establishment of the LD
blocks, an investigation was undertaken into which population was used the
most often in GWAS. Hindorff et al. already showed that populations from
European descent were the most numerous. However, for completeness we also
reinvestigated this. Three populations were analysed: European, Asian, and
African. The European category contained all studies specifying European
populations (e.g., Croatian or Scottish) or those defining their study population
as Caucasian or white. The Asian category consisted of studies with several
populations with Asian background, such as Malaysian, Thai, Chinese or
Japanese. The African category included populations such as Ghanaians or
populations with African ancestry, e.g., African Americans. Since Reconstructed
Hindorff SNPs were obtained from the authors of the original paper, it was
expected that its structure was as published. In the Significant SNPs (2011)
dataset 374 of 576 studies specified their study population in either the title or

the sample descriptions.

Histograms of the risk allele frequencies in the entire dataset (A), the European
(B), Asian (C), and African (D) populations respectively are shown in Figure 3-1.
The histogram of the European population (green) matches that of the risk

allele frequencies of all significant trait-associated SNPs the best.
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Figure 3-1 - Risk allele frequencies in published studies

The risk allele frequencies of all reported trait-associated SNPs are shown in the panel A (pink). Their
distribution closely matches the distribution of the risk allele frequencies of trait-associated SNPs
from GWAS specifying their study population as either European or white (green, B). While the Asian
(turquoise, C) and African (purple, D) populations show similar trends, the numbers of observed
variants are much smaller.

Additionally, the Euler diagram in Figure 3-2 showing the number of studies for
each population and the overlap between all studies indicates that the majority
of studies specified the use of a European study population. The study
population for Significant SNPs (2013) was also the European population, as an
Euler diagram of the studies with specified populations showed the same
proportions as in Significant SNPs (2011). The definitions for the populations
were the same as outlined previously. Significant SNPs (2013) contains many
more studies than Significant SNPs (2011), and they are equally distributed

across all populations.
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Figure 3-2 - Study populations of Significant SNPs (2011) and Significant SNPs (2013)

A) A total of 374 of 576 unique studies in the large dataset, which specified the study population
(202 unspecified). There were four studies, which analysed all three populations but zero studies,
which compared Asian populations with African populations. B) The total number of studies
specifying the study populations was 710. The number of studies using European or African
populations has increased by almost two-fold when compared to the data from 2011. However, the
number of studies using Asian populations has more than tripled. The majority of these studies were
performed in the Chinese population (data not shown). Of the 929 unique studies, 219 did not
specify the study population in either the sample descriptions or the study title.

The results of this investigation led to the use of the HapMap CEPH LD data
(CEU, release #24) in this study to establish LD partners of trait-associated or
sample SNPs, and to make up the groups for the sampling of the genotyping
arrays mixed with imputation results. The CEU data are obtained from Utah
residents with ancestry from Northern and Western Europe [132]. Additionally,
the use of this data is in concordance with published studies. The African
population is known to be genetically the most diverse population with

reportedly the smallest LD blocks [133].
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3.3.1.2 LD partners vs. LD Blocks
There were two ways of creating LD blocks surrounding the analysed SNPs,
which were available for our study. One way was using the Trait-Associated SNP
Partners (TASPs), while the other way was using the Trait-Associated Blocks
(TABs). The thesis was done using TASPs, as this analysis investigated only LD
partners, while TABs analysed all nucleotides enclosed by the furthest LD
partners of a SNP. Both ways had their benefits and drawbacks. The benefits of
the TABs method were that the regions of the genome between two SNPs were
included in the analysis, while the TASPs analysis only investigated those SNPs
for which LD was calculated and the LD passed the cut-off point off. TABs would
be advantageous for the analysis of sparse genomic annotations that did not
often coincide with SNPs and even less often with trait-associated variants. The
use of TASPs missed out those annotations that did not overlap with SNPs and
furthermore did not allow the analysis of regions, which were difficult to
genotype or sequence. However, it did guarantee that all analysed SNPs were in
LD at the required threshold. This was not guaranteed in the TABs analysis, as
LD varies across distances and with allele frequencies. Additionally, the value of
LD was unknown for the regions between two SNPs. Figure 3-3 shows a
cartoon-like representation of the same stretch of DNA for both TABs and
TASPs, highlighting the overlap of a genomic annotation with the TAB method,
but not with the TASP method. It was therefore decided that TASPs should be
used rather than TABs, since the LD threshold was known for all analysed

variants and because the TABs analysis included more noise in the results.



]
—_——

rsi rs2rs3 rs4 rsh

mm Annotation Blocks

|l Trait-associated SNP

| Trait-associated SNP Partner (TASP)
mm Trait-associated Block (TAB)
mmm  Stretch of DNA

Figure 3-3 - Diagram of Trait-associated SNP partners (TASPs) and Trait-associated blocks (TABs)
This diagram highlights the differences between Trait-associated SNP partners (TASPs) and Trait-
associated blocks (TABs) for the genomic region. The block (brown) surrounding the trait-associated
SNP (red) overlaps with both genomic annotation blocks (grey), however, only one block coincides
with TASPs. The smaller annotation block coincides with the genomic region between rs4 and rs5
and is not counted as an overlap in the TASP analysis.

3.3.2 Replicating significant enrichment results
Odds ratios of enrichment/depletion of trait-associated SNPs were calculated
for each genomic annotation. An odds ratio equal to unity indicated that trait-
associated SNPs were as likely to coincide with the analysed genomic feature as
non-associated SNPs. An odds ratio above unity indicated that the genomic
feature was enriched for trait-associated SNPs, while odds ratios below unity
were evidence for depletion. Figure 3-4 compared the published results with
the results obtained for Reconstructed Hindorff SNPs. Our replication of the
sampling method compared well with the published data. The trend of the
enrichments and depletion were almost equivalent with enrichment in all of the
genomic annotations, except for the intergenic SNPs. The odds ratio was not
available for the TS annotation in the Reconstructed Hindorff SNPs, as none of
the analysed SNPs overlapped with it. The observed correlation for the two
datasets, once the not-available annotation was removed from both sets, was
0.84 with a P-value of 6.70 x 10-9, This meant, that where the information was

available, the two sets agreed well with each other.
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Figure 3-4 - Comparison of sampling results with published results

The odds ratios for trait-associated SNPs from Hindorff et al. (n = 465 SNPs; [J) and our analysis
using Reconstructed Hindorff SNPs (n = 468 SNPs; <) in selected genomic annotations are shown
above. All results are displayed in odds ratios along with 95% confidence intervals, where solid
symbols indicate significance at the Bonferroni corrected threshold. Odds ratios below or above one
show depletions or enrichments respectively. Red stars (*) at the bottom of the graph indicate
significant differences between odds ratios. Grey symbols indicate that the odds ratio is undefined.

The differences in significant odds ratios might be explained through author-
specific differences in the genomic annotation datasets, which were discussed in
the Discussion sections of this chapter. Of the three significant results from the
Hindorff et al. study, we have replicated two. These replicated results are for the
non-synonymous SNPs annotation, which was the most significant and most
enriched genomic annotation in the published data, and the 1 Kb upstream of
TSS. The latter identified putative promoter regions, as most promoters were
located upstream and in proximity to a TSS. The depletion observed by Hindorff
et al. in the intergenic SNPs was replicated, although in our analysis, the odds
ratio was no longer significant after correcting for multiple testing. In our
analysis, we saw significant odds ratios of enrichment for seven more
annotations. However, the 95% confidence intervals of the odds ratios of either
study were overlapping with each other, indicating that they were not

significantly different to each other.
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The differences between sets were discussed in further detail in the Discussion
of this chapter. Odds ratios could be interpreted in terms of fold enrichment, as
the measures were almost identical with a significant correlation of 0.96 (Figure
3-5) when calculated for all annotations of Significant SNPs (2011). The P-value

of the observed correlation was significant (8.33 x 10-42).
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Figure 3-5 - Fold enrichment vs. odds ratios

The odds ratios and the fold enrichment calculated for Significant SNPs (2011) are plotted against
each other. The red line indicates the line of best fit for the odds ratios and the fold enrichment.
There is a strong and significant correlation between fold enrichment and odds ratios (r’ = 0.96, P-
value = 8.33 x 10).
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Figure 3-6 - Comparing published results with larger dataset

Enrichment of trait-associated SNPs in selected genomic annotations for Significant SNPs (2011) and
Hindorff et al. (1, respectively). All results are displayed in odds ratios along with 95% confidence
intervals, where solid symbols indicate significance at the Bonferroni corrected threshold. Odds
ratios below or above one show depletions or enrichments, respectively. A red star (k) at the
bottom of the graph indicates significance at the Bonferroni corrected P-value.

Figure 3-6 shows the comparison of the results of the sampling strategy for the
Hindorff results with Significant SNPs (2011) containing more SNPs than shown
in Figure 3-4. This new set with more analysed SNPs is expected to have more
statistical power to detect enrichment or depletion of associated SNPs. The
coefficient of the regression of the odds ratios obtained by Hindorff et al. with
the two analysed SNP sets is very high (Reconstructed Hindorff SNPs: 0.84,
Significant SNPs (2011): 0.83) in the same annotations as above. The correlation
for the odds ratios of the Hindorff set with Significant SNPs (2011) is significant
with a P-value of 8.99 x 10-6. We observed two genomic annotations in which
the odds ratios differ significantly. The difference in the intronic SNPs is again
significantly different, as in the comparison shown previously. However, the
difference in the intergenic SNPs is unexpected. Since the trend of the odds
ratios remained the same, the observed difference in significance of the odds
ratios is most likely due to the decreased width in the confidence interval in the

analysed genomic features.
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3.3.3 Comparison of Reconstructed Hindorff SNPs and Significant SNPs
(2011)

Of the 58 analysed annotations, four were too sparsely distributed in the
genome to obtain any odds ratios. Summary statistics for the analysed
annotations were calculated for all annotations (see Table 2-1). The table
summarised the number of sites, the percentage of nucleotides covered in the
analysed part of the genome, the percentage of SNPs covered in the analysed
part of the genome, and the average length of the annotated sites in base pairs.
Figure 3-7 shows the comparison of Reconstructed Hindorff SNPs with
Significant SNPs (2011) and Table 3-1 and Table 3-2 present the results for the
two sets, respectively. The three subcategories are displayed in three panels:
The genic and regulatory regions are in the top panel, the conserved regions in
the middle panel, and the chromatin states and histone modifications are
included in the bottom panel. There were no significant differences between the
two SNP datasets in any of the genomic annotations. The regression line of the
available odds ratios of the two sets in all categories was 0.61 and significant (P-
value = 5.16 x 10-1?). A number of annotations are significant for Significant
SNPs (2011), which are not significant for Reconstructed Hindorff SNPs. The
most prominent differences are the odds ratios for the synonymous SNPs and
the 5’'UTRs that were significant in our analysis.
SNPs in the HapMap CEU II data and all analysed genotyping arrays were
analysed for an overlap of genomic annotations. There were a number of
annotations, which rarely overlap with SNPs (see Table 2-1). These annotations
overlapped with trait-associated SNPs at an even lower rate, as the trait-
associated SNPs were a subset of the total set of analysed SNPs in the genome.
The Significant SNPs (2011)(n = 1,909 SNPs) resulted in a defined odds ratio for
these genomic annotations (e.g., TS miRNA or evofold), while Reconstructed
Hindorff SNPs (n = 468) did not. The odds ratios for these sparse annotations
were not significant and had large 95% confidence intervals (see Table 3-1 and

Table 3-2).

59



10

]
c
|1_|
=
= SN
a—-
‘l—-
&
¥
=
£ N
TR
.
C
—TE=
’-
= o

0.1
DD P2 O P L L 2NN NPLLL LTI 2 PR
K& °6v$‘° LS +°oa§2 ) "'Q‘b«fo& < Py \\A 0«\, eoea}g &
SO Q-‘Z’Qq"’ox\*qé‘& G OO0 eVO @ e S
oY @ N & T RLLL? S A ¥ & o S
OQ D) O&O{O \{\é %egeé a-,e 00\ < Q%e&z,‘%‘\@eo‘b\
NS N 2> g
Ny oY 3% &0 F°
10 —
5 —
1
R e S
! I ] e
0.1
o3 ) >\ Q) Q O Q) N o & N Q) >\
A @ 36 N ¥ )
<° e & i @0 (40 \o(‘ \§ & \§ \Q(o 6\6\ £§ <~
L O F & F P S 2 v » N
\Z Q ) bQ- 4 & @ & Q & & < N &>
90 & ¢ O S AT CANC A SON P
& & Q & R N & w & e
e 4P & e N o o
&~ < (\6 o.’b o? 2 &
(&'b A\ QQ QQ bp‘ ée
< ® N
10 —

0.1
RN X X X N N N N S N N N > () NN
& o"’° o\.e o\.e ¥ 2 ¥ o \(o'b \.@ \6‘0 &o &\o <¥ 990 \\ . \6‘0 >
FFF S S S S Y @ ¥ & E &
R ‘.Q‘ L& & & ¥ Q}o° QR ‘06“ & Q
. < < )
& o)'z'b & ée’% & FEEE S <& &® c}§ .
R & & & & (& R O
o NP RN & &
o) .éoo ’s{. @0 0\} Q_@Q
& 9 ©
%\‘

Figure 3-7 - Comparing Reconstructed Hindorff SNPs and Significant SNPs (2011)

The results of the sampling method for Reconstructed Hindorff SNPs (C1/M) and Significant SNPs
(2011) (</4#) are shown here. All results are displayed in odds ratios with 95% confidence intervals.
Solid symbols are significant at the Bonferroni corrected significance threshold. Not available odds
ratios (grey) and those with a value above the maximum of the graph are indicated (). Top: Genic
and regulatory features. Middle: Conserved regions and evolutionary regions. Bottom: Chromatin
states and histone modifications.
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Table 3-1 - Sampling results for Reconstructed Hindorff SNPs

This table summarises the number of overlaps in the observed set (Real), the mean of the sample
hits (Sample Mean), the calculated odds ratio and confidence interval (OR [LCI-HCI]) and the
obtained P-value for each of the genomic annotations. Significant P-values in bold.

Annotation Real Sample Mean P-value OR [LCI - HCI]
1 Kb TSS 57 16.81 1.35x 10 3.72 [2.13-6.52]
5 Kb TSS 118 44.55 3.09x10™ 3.20 [2.21-4.65]
CpG Islands 32 8.17 1.33x10" 4.13[1.89-9.01]
ORegAnno 30 9.76 1.78 x 10% 3.22 [1.54-6.70]
vega Genes 260 176.53 7.20x 10 2.06 [1.59-2.68]
OMIM genes 283 154.13 3.17x 10" 3.12 [2.38-4.07]
OMIM morbid regions 165 36.67 2.43x107% 6.41 [4.35-9.43]
Exons 122 35.90 3.38x10™ 4.24[2.85-6.32]
Intronic SNPs 286 206.77 3.09 x 10"’ 1.99 [1.53-2.58]
Non.Syn. SNPs (UCSC) 81 18.81 2.76 x 10™ 5.00 [2.97-8.40]
Coding SNPs (UCSC) 101 29.03 6.43 x 10" 4.16 [2.69-6.43]
Syn. SNPs (UCSC) 38 15.05 1.62 x10% 2.66 [1.44-4.90]
Gained Stops 6 0.16 3.08 x 10 37.97 [0.26-5450.04]
3'UTR 61 19.51 2.13x 10" 3.45 [2.03-5.84]
5’UTR 15 4.33 1.80x 10 3.55[1.21-10.41]
RNA Genes 3 0.98 6.24 x 10 3.07 [0.31-30.18]
ncRNA 10 3.55 1.76 x 10 2.86 [0.85-9.65]
TS miRNA 0 0.13 1.00 0.00 [0.00-NA]
eQTLs 108 27.46 1.92x10™ 4.81[3.10-7.48]
vega PseudoGenes 11 7.84 6.44 x 10" 1.41 [0.56-3.56]
Intergenic SNPs 258 290.56 3.36 x 10 0.75 [0.58-0.97]
DNase Clusters 274 157.75 3.47x10™ 2.78[2.13-3.62]
Insulators (sequence) 44 20.43 2.64 x 10 2.27[1.32-3.91]
Within miRNA 0 0.01 1.00 0.00 [0.00-NA]
Splice Sites 0 0.15 1.00 0.00 [0.00-NA]
Lost Stops 0 0.10 1.00 0.00 [0.00-NA]
Microsatellites 0 0.31 1.00 0.00 [0.00-NA]
EvoFold 0 1.17 1.00 0.00 [0.00-NA]
Pos. Sel. Genes 211 134.83 3.52x 10" 2.03 [1.55-2.66]
Enhancers (sequence) 4 1.60 6.86 x 10" 2.51 [0.40-15.79]
Exapted Repeats 1 1.28 1.00 0.78 [0.06-10.71]
PREMOD 88 50.96 8.88x 10" 1.90 [1.31-2.75]
tfbs Conserved 79 41.03 2.71x10™ 2.11[1.41-3.16]
Indels Pure regions 233 163.02 4.79 x 10 1.85 [1.43-2.41]
17 spc. algmt 171 104.91 2.94x 10 1.99 [1.49-2.66]
28 spc. algmt plc.mmls 143 83.62 8.94 x 10 2.02 [1.49-2.75]
28 spc. algmt 159 97.40 7.17 x 10 1.96 [1.46-2.63]
44 spc. algmt 173 98.15 8.42 x 10 2.21[1.65-2.96]
44 spc. algmt plc.mmls 155 90.29 1.76 x 10 2.07 [1.54-2.80]
44 spc. algmt prim. 145 87.21 1.48 x 10 1.96 [1.45-2.66]
Negative (sequence) 225 253.42 7.74 x 107 0.78 [0.61-1.01]
Open Chromatin 337 224.43 5.72x10™ 2.79 [2.13-3.66]
Closed Chromatin 128 233.04 2.20x 10™ 0.38 [0.29-0.50]
Active Promoter 47 13.44 6.33x 10 3.78 [2.03-7.02]
Weak Promoter 44 14.38 6.05 x 10 3.27 [1.78-6.02]
Poised Promoter 12 1.97 1.23x10% 6.23 [1.37-28.24]
Strong Enhancer (proximal) 55 15.92 1.57 x 10 3.78[2.13-6.71]
Strong Enhancer (distal) 42 17.52 1.92x10% 2.54 [1.43-4.50]
Weak Enhancer (proximal) 57 21.10 2.62x 10" 2.94 [1.75-4.93]
Weak Enhancer (distal) 106 40.79 5.55 x 10 3.07 [2.08-4.52]
Insulator 35 16.38 8.93 x 10 2.23[1.22-4.07]
Txn Transition 35 12.27 8.11x 10 3.00 [1.55-5.83]
Txn Elongation 93 43.29 4.50 x 10 2.43 [1.65-3.58]
Weak Txn 150 81.75 3.41x10" 2.23 [1.64-3.03]
Repressed 71 39.53 2.30x 10 1.94 [1.28-2.93]
Heterochrom/low 331 376.14 8.00 x 10 0.59 [0.44-0.80]
Repetitive/CNV (proximal) 3 1.04 6.24 x 10 2.90 [0.31-27.05]
Repetitive/CNV (distal) 1 1.01 1.00 0.99 [0.06-15.77]
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Table 3-2 - Sampling results for Significant SNPs (2011)

This table summarises the number of overlaps in the observed set (Real), the mean of the sample
hits (Sample Mean), the calculated odds ratio and confidence interval (OR [LCI-HCI]) and the
obtained P-value for each of the genomic annotations. Significant P-values in bold.

Annotation Real Sample Mean P-value OR [LCI - HCI]
1 Kb TSS 191 65.70 3.46 x 10 3.11 [2.33-4.15]
5 Kb TSS 461 176.40 1.07 x 10 3.10 [2.58-3.74]
CpG Islands 112 32.81 1.30x10™ 3.56 [2.40-5.28]
ORegAnno 100 39.78 2.58 x 10"’ 2.59 [1.79-3.77]
vega Genes 1053 733.24 1.59 x 10 1.93 [1.70-2.20]
OMIM genes 1067 644.30 3.60 x 10 2.43 [2.13-2.76]
OMIM morbid regions 514 154.73 2.31x10™ 4.14 [3.41-5.02]
Exons 452 139.10 6.42 x 10 3.92 [3.20-4.79]
Intronic SNPs 1161 857.23 4.31x107 1.86 [1.64-2.11]
Non.Syn. SNPs (UCSC) 266 72.27 1.51x 107 4.10 [3.13-5.36]
Coding SNPs (UCSC) 364 111.50 2.55 x 10 3.78 [3.02-4.72]
Syn. SNPs (UCSC) 166 57.89 6.25x 10™ 3.04 [2.24-4.13]
Gained Stops 9 1.11 2.13x 10 8.14 [1.13-58.53]
3'UTR 212 73.29 5.03 x 10 3.12 [2.37-4.10]
5'UTR 48 16.99 1.34x10" 2.87 [1.64-5.01]
RNA Genes 7 4.17 5.48 x 10" 1.68 [0.50-5.66]
ncRNA 25 16.05 2.09 x 10 1.56 [0.83-2.94]
TS miRNA 4 0.49 1.25x 10" 8.18 [0.42-158.95]
eQTls 378 104.46 2.84 x 10 4.24 [3.38-5.32]
vega PseudoGenes 63 31.99 1.69 x 10% 2.00 [1.30-3.08]
Intergenic SNPs 1114 1208.31 2.64 x 10 0.82 [0.72-0.93]
DNase Clusters 1057 638.14 1.71x10™ 2.41[2.12-2.75]
Insulators (sequence) 163 82.35 1.03x 10"’ 2.07 [1.57-2.72]
Within miRNA 0 0.04 1.00 0.00 [0.00-NA]
Splice Sites 0 0.78 1.00 0.00 [0.00-NA]
Lost Stops 0 0.39 1.00 0.00 [0.00-NA]
Microsatellites 0 1.31 1.00 0.00 [0.00-NA]
EvoFold 8 3.88 3.87x 10™ 2.07 [0.61-6.96]
Pos. Sel. Genes 831 557.46 7.46 x107° 1.85 [1.62-2.11]
Enhancers (sequence) 12 6.19 2.37x 10" 1.94 [0.74-5.14]
Exapted Repeats 9 5.77 6.07 x 10" 1.56 [0.55-4.45]
PREMOD 303 204.68 3.80 x 10 1.57 [1.30-1.89]
tfbs Conserved 258 162.70 1.15x 10 1.67 [1.36-2.06]
Indels Pure regions 905 657.99 1.08 x 10 1.69 [1.49-1.93]
17 spc. algmt 614 420.08 2.54 x 10" 1.67 [1.45-1.93]
28 spc. algmt plc.mmls 545 334.56 1.04x 10" 1.87 [1.60-2.18]
28 spc. algmt 618 391.67 1.83x10™ 1.84 [1.59-2.13]
44 spc. algmt 641 396.60 1.19x10™® 1.91 [1.65-2.21]
44 spc. algmt plc.mmls 578 363.10 1.06 x 10" 1.84 [1.58-2.13]
44 spc. algmt prim. 573 348.80 3.75x 10 1.91 [1.64-2.22]
Negative (sequence) 932 1051.01 1.73x 10" 0.79 [0.69-0.89]
Open Chromatin 1458 927.77 2.26 x 10 3.18 [2.78-3.64]
Closed Chromatin 502 981.98 1.54 x 10°° 0.34 [0.30-0.39]
Active Promoter 155 52.75 2.15x 10" 3.10 [2.26-4.27]
Weak Promoter 164 57.36 7.36 x10™ 3.03 [2.23-4.12]
Poised Promoter 28 6.91 4.81x10™ 4.10 [1.78-9.44]
Strong Enhancer (proximal) 231 62.99 2.27x107% 4.02 [3.02-5.35]
Strong Enhancer (distal) 176 68.18 6.76 x 10 2.74 [2.05-3.65]
Weak Enhancer (proximal) 201 85.04 8.52x10™ 2.52[1.94-3.27]
Weak Enhancer (distal) 367 162.68 9.54 x 102 2.54 [2.09-3.09]
Insulator 108 65.21 1.04 x 10 1.69 [1.24-2.32]
Txn Transition 144 48.84 1.46 x 10 3.10 [2.23-4.32]
Txn Elongation 360 171.23 8.63 x 10™° 2.35 [1.93-2.85]
Weak Txn 631 323.36 1.44x 10 2.40 [2.06-2.79]
Repressed 289 157.59 5.01x10™ 1.98 [1.61-2.43]
Heterochrom/low 1314 1576.96 3.45x 107 0.50 [0.43-0.58]
Repetitive/CNV (proximal) 6 3.36 5.07 x 10 1.79 [0.47-6.81]
Repetitive/CNV (distal) 1 3.26 6.25 x 10" 0.31[0.03-2.88]
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3.4 Discussion

In this chapter, we represent the results of our attempt at replicating the
sampling method published by Hindorff et al. [50] as closely as possible. We
then expanded our analyses to incorporate more genomic annotations and more

trait-associated SNPs.

3.4.1 Comparison of Hindorff results with Reconstructed Hindorff SNPs
The results of the Reconstructed Hindorff SNP set obtained in 14 annotations
common to Hindorff et al. and this analysis were compared to the results from
the original study [50]. In our analysis we obtained nine odds ratios of
enrichment, which were significant at the significance threshold corrected for
14 annotations. The nine annotations with significant odds ratios contain two
annotations, which replicated two of the significant results by Hindorff et al
[50]. These two annotations were the non-synonymous SNPs annotation and
the 1 Kb upstream region of TSS annotation. The intergenic SNPs are depleted
in our analysis, although the P-value was not significant after correcting for

multiple testing.

Hindorff et al. [50] investigated the underlying genomic annotations of 465
significantly trait-associated SNPs and presented the results after taking
account of hitchhiking effects caused by SNPs in LD with possibly deleterious
non-synonymous variants. The non-synonymous variants were the most
enriched signal and the authors tested if the odds ratios in the other genomic
annotations were driven by non-synonymous variants that were in LD with the
trait-associated variants. However, correcting the rest of the results for the top
result, while not correcting the top result with the second highest enrichment
signal is close to biasing the results in favour of the strongest signal and the
difference between the corrected and not-corrected odds ratios are not
significant [50]. The correction furthermore did not change the odds ratios
significantly. For these reasons, we did not correct for hitchhiking effects in our
analyses. Thus, all our results are compared to the non-corrected results by

Hindorff et al. [50]. The differences between the published results and our
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analysis with the Reconstructed Hindorff SNPs could be due to author specific
definitions of the analysed genomic features, where the algorithms and methods
were not exactly matched. For example, different algorithms identify different
targets for the miRNA binding sites and the authors did not specify which
algorithms were chosen. Odds ratios of genomic annotations for which the

definition was clear, such as non-synonymous SNPs, were very comparable.

Recall, the precise reconstruction of the SNP set used by Hindorff et al. was not
entirely possible. Hindorff et al. corrected for the number of trait-associated
SNPs in LD blocks, which is something we did not do. Overrepresentation of
SNPs in LD blocks would occur if more than one SNP in a similar genomic region
were found to be significantly associated to at least one trait. This
overrepresentation of particular genomic regions could highlight important
biological areas. We therefore did not reduce the number of trait-associated
SNPs based on their location, other than removing the SNPs on non-assigned

chromosomes or on the Y-chromosome.

3.4.2 Expansion of analysis to more annotations and trait-associated
variants

Significant SNPs (2011), a dataset containing 1,909 SNPs, was analysed
presenting a more recent set of GWAS hits than the set of SNPs from 2009. The
results of the sampling method for Significant SNPs (2011) agreed with what
may have been expected. The study gained statistical power by investigating
more trait-associated SNPs, as measured by more results that are significant
and a decreased confidence interval width in all genomic annotations, where an
odds ratio was observed in the smaller dataset. Moreover, odds ratios were
obtained in more annotations. For instance, we obtained odds ratios in the TS
miRNA annotation, which did not obtain an odds ratio in the Reconstructed
Hindorff SNPs. However, in this case, the corresponding confidence interval
width was very large with a value of 158.53, as only four of the trait-associated
SNPs overlapped with the annotation (see Table 3-2). On the other hand, all the

significant results obtained in the smaller dataset were also observed in the
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larger set. Significant SNPs (2011) obtained significant enrichment results in 12
of 14 annotations analysed by Hindorff et al. Significant SNPs (2011) were
additionally significantly different to the published results in the intergenic
SNPs.

3.4.3 Reconstructed Hindorff SNPs vs. Significant SNPs (2011)
The odds ratios obtained for Significant SNPs (2011) were compared to the
odds ratios obtained for Reconstructed Hindorff SNPs. Significant SNPs (2011)
contained 1,909 SNPs, which included the 478 SNPs from the Reconstructed
Hindorff SNPs. It was therefore expected that Significant SNPs (2011) obtained
more significant odds ratios, as this dataset had more statistical power as more
SNPs were analysed. This was observed in 10 genomic annotations, where the
odds ratios for Significant SNPs (2011) were significant, but the odds ratios for
the Reconstructed Hindorff SNPs were not. The Bonferroni corrected threshold
changed from 3.57 x 10-3 to 8.62 x 10-> with the inclusion of more genomic
annotations. The odds ratios for seven of these 10 annotations were more
moderate for the larger dataset, but significant due to a decrease of the 95%
confidence interval width. Synonymous SNPs, transcriptional transition, and
strong enhancers (distal) obtained higher odds ratios for Significant SNPs
(2011). It is difficult to distinguish the effects of transcriptional elongation or
synonymous SNPs from effects caused by genic regions of the genome, as one

would define the other.

The sampling strategy has been reproduced to an extent that we are confident
to use the results in comparison with a different method. We therefore
continued our investigation into the genomic features underlying the trait-
associated SNPs with a method developed by us for this purpose: chromosome-

wide circular permutations.
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4 CIRCULAR PERMUTATIONS

4.1 Introduction

The genomic features, such as the mentioned annotations, are not spread
uniformly throughout the chromosomes of the human genome, but rather occur
in clusters. This trend holds for the smallest changes in DNA to large genic
sequences. For instance, entire chromosomes are packaged into different
chromatin territories affecting gene transcription, DNA repair and replication
[134, 135]. The same trend is reflected in the clustering of genes [134],
functional elements [74] and transcription factor binding sites, which cluster
around the transcription start sites (TSS) of genes [136]. The distribution and
number of SNPs also vary between chromosomes and chromatin states. For
example, heterochromatin contains a higher density of SNPs relative to more
open regions [137], while conversely, causal SNPs are expected to appear more
frequently in the latter. The uneven distribution of trait-associated SNPs [18] is
an expected consequence of the non-random distribution of the other functional
elements, and comprises additional information which can be used in further

analyses.

The sampling method, introduced earlier, was designed to take certain types of
known biases into account. The sampled data presented in the previous chapter
were the variants present on genotyping arrays. As discussed in the
introduction of the thesis, the variants included on the genotyping arrays were
chosen according to different criteria. These criteria included the coverage of
the genome through the selection of variants that gave information on many
other SNPs (‘tagging SNPs’) or the overlap of variants with genes, and would
therefore be biased in their representation of chromosomes and genic material.
These biases were considered when the contributions of the different

genotyping arrays were recreated in the drawn samples.
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However, while the sampling method attempts to take the genotyping array bias
into account, it also assumes that the SNPs are uniformly distributed through
the genome. The subsets were chosen regardless of their genomic locations,
which resulted in biased samples with regards to chromosomal representation.
Some samples do not necessarily cover the entire genome, as chromosomes are
over-/under-represented and could in extreme cases be completely missed out.
We developed a method based on permutations that takes this representational
bias and the non-uniform distribution of functional elements overlapping with
SNPs into account. Each chromosome is analysed on its own returning the
number of overlaps of SNPs and annotations for each chromosome, which are
then added to obtain a genome wide result. This method therefore takes the
chromosomal bias into account and preserves the local clustering of the real
data. The chosen number of performed permutations (n = 20,000) allows the
calculation of empirical P-values and confidence intervals. A fuller description of

the method can be found on page 68 of this thesis.
4.2 Materials and method

4.2.1 Data structure
The permutations were restricted to chromosomes, which were analysed
separately. Files representing all autosomes and the X chromosome were
compiled, each listing the available SNPs according to their position on the
chromosome. Each SNP row also contained information on any overlaps of a
genomic annotation with either the SNP or its LD partners (see Chapter section
2.1.10 for definition). The lists contained a total of 3,840,944 variants
incorporating all SNPs represented on 11 genotyping arrays and were HapMap
CEU II SNPs. These lists were analysed individually and the results of the

chromosomes per permutation were summed giving a genome wide result.
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4.2.2 Circular permutation strategy
The structure of the data frames we had established attempted to recreate and
preserve the internal structure of the genome. Our goal in particular was to
maintain the number of SNPs between a SNP pair as a proxy of the non-random
and non-uniform clustered distribution of SNPs in the genome. The permutation
approach was designed to preserve this internal structure of the genome as
each permutation maintained the clustered distribution of SNPs as trait-
association status was shifted or permuted along the chromosome, while
keeping the number of SNPs between trait-associated variants constant. The
information for trait-associated GWAS hits was downloaded from the NHGRI

webpage as previously stated (see Chapter section 2.1.3).

The permutations were performed per chromosome by shifting, or permuting,
the trait-associated status along the chromosome, while the structure according
to the SNPs on the chromosomes remained the same throughout the analyses.
For each permutation a randomly generated number, drawn from a uniform
distribution between one and the number of SNPs per analysed chromosome,
was used to shift the status of trait-association along the chromosome. The shift
was performed circularly, so that any variables exceeding the number of SNPs
on the chromosome were pushed to the beginning of the chromosome. The
trait-association status was therefore re-assigned to different variants, whose
previous trait-association status was no longer relevant. The LD partners were
then re-defined and overlaps of the newly labelled trait-association variants
with annotations were counted as in the original trait-associated variant set.
The permutations therefore sampled the chromosome in a controlled manner
by maintaining the distance of SNPs as measured by number of SNPs, rather
than nucleotides. This created a background distribution of SNPs and their LD
partners that were as biased in the number of SNPs on a given chromosome and
their distribution on that chromosome. Regions that are difficult to genotype
would be less represented in both the real trait-associated variant set and the

background set.
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Figure 4-1 shows a cartoon-like illustration of the circularised chromosome in
four scenarios: The observed data and three sequential permutations. This
produced a population of 20,000 chromosomes, circularly permuted relative to
the original chromosome, containing the same number of trait-associated SNPs
and preserved the degree of genomic clustering observed in the original SNP

datasets. The chromosome results were summed to give a genome-wide result.

Figure 4-1 - Diagram of permutations on virtually circularised chromosome

The permutations were performed on a virtually circularised chromosome (black circle). The start
and end of the chromosome are equivalent and are depicted by the vertical line at the top of the
circle. The coloured symbols (orange cones, light-blue triangles, dark-blue arches and grey
rectangles) represent different genomic features adopting a non-uniform distribution and showing a
distinct clustering of the genomic annotations. The red stars depict the trait-associated SNPs. Non-
associated SNPs are left off the diagram for clarity. The black arrow highlights the same trait-
associated SNP in each chromosome. A) Observed data and starting position. B) First permutation of
trait-associated SNPs by 90° in clockwise direction from the starting position. C) Second permutation
of trait-associated SNPs by 180° in clockwise direction from the starting position. D) Third
permutation of trait-associated SNPs by 270° in clockwise direction from the starting position. In
practise the degree of rotation of SNPs versus annotation is randomly chosen.

4.2.3 0Odds ratios and confidence intervals
The number of overlaps for the real trait-associated SNPs (observed) for each
annotation and the mean number of overlaps of permuted SNPs (expected)

were used to calculate odds ratios of enrichment or depletion (see equation
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below). The permuted overlaps were ranked according to the number of
overlaps creating a discrete uniform distribution used to calculate the 95%
confidence intervals. This ranking of the permutation overlaps allowed the
calculation of the 2.5t and 97.5t percentile values, which were used to define
the 95% confidence intervals of the data were observed. Since a two-sided
hypothesis test was applied, i.e, were there more or fewer trait-associated SNPs
than expected by chance, the 2.5t (500t ranked position) and 97.5t (19,500t
ranked position) percentile values represent the 95% boundaries. The
calculation for the confidence intervals was the same as for the odds ratios (see
paragraph 2.1.11), except that the 500t and 19,500t value replaced the mean
number of overlaps of the expected data. The mean number of non-overlaps
was defined as the difference of the total and the mean number of the overlaps.
This gives a thorough representation of the underlying distribution of the
overlaps between SNPs and genomic features, which can be easily displayed on
the graphs. These empirically derived confidence intervals were not symmetric
relative to the odds ratios on the log scale, in contrast to the confidence
intervals of the sampling method. The latter were calculated as theoretical
values using the standard errors of the odds ratios, which meant that they
would always be symmetric relative to the odds ratios on a log scale.

If the divisor of the odds ratios was zero, the values for the confidence intervals
or the odds ratios are undefined. In our case, this occurred if either the real
number of non-overlaps was zero or the permuted number of overlaps was
zero. As it was more unlikely that a mean of permuted hits was zero, the odds
ratios were defined more often than confidence interval values, which were
based on only one permutation value.

Confidence intervals, which were set to infinity by R, were artificially delimited
to 30, a value beyond the range of the graphs to enable the plotting of these
confidence intervals. The eight annotations, for which this occurred, are
sparsely distributed (see Table 2-1) in the genome and were removed from any
confidence interval width calculations (within miRNA, TS miRNA, evofold, splice

sites, gained stops, lost stops, microsatellites and repetitive/CNV (distal)).
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4.2.4 Calculating P-values
The P-value of the odds ratios for the permutations was the ratio of the number
of permuted datasets that were equal to or more extreme than the observations
in the observed trait-associated SNP set, and the total number of permutations.
The lower bound of this empirically defined P-value was therefore 5 x 10->
when only one in 20,000 permutations was equal to or more extreme than the
number of overlaps in the observed data. If none of the permutations were
equal to or more extreme than the observed data the P-value was <5 x 10->. The
P-values are significant if they passed the Bonferroni corrected significance
threshold corrected for testing 58 genomic annotations (8.60 x 10-4), which is
equivalent to 17 permutations being more extreme or equal to the observed
data. Since the tested annotations were not independent from each other, this

threshold is likely to be very stringent.
4.3 Results

4.3.1 Comparison of permutations and sampling in Significant SNPs
(2011)

Figure 4-2 shows the results obtained by both the permutation and the
sampling method for Significant SNPs (2011) with 1,909 significantly trait-
associated SNPs. The three subcategories of the genomic features are shown in
the three panels of the figure. The genic and regulatory features are presented
in the top panel, the conserved and evolutionary figures are shown in the
middle panel and the histone modifications and chromatin states are shown in
the bottom panel. The majority of the genomic annotations were significantly
enriched for trait-associated SNPs, while two annotations showed significant
depletion (closed chromatin and heterochrom/lo). The large number of
enrichment signals was also observed by the sampling method. Few differences
existed between the results from the permutation and the sampling approaches,
which we comment shortly. The obtained odds ratios correlated strongly with a
correlation of 0.98 and a significant P-value (P = 8.89 x 10-31). The observed

differences between the methods were significant at P-value < 0.05.
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There were three genomic annotations, where the odds ratio obtained by the
permutation method was not significant, but was significant for the sampling
method. The insulators (bottom panel) were significantly enriched for
permutations but not the sampling method. The methods agreed on the
remaining genomic annotations, 10 of which were not significantly enriched for
or depleted of trait-associated SNPs. The two methods had very similar odds
ratio in the OMIM morbid regions. These regions were considered a positive
control, since they were defined as disease-associated regions by a number of
different studies [99]. The annotation serving as a negative control, named
negative (sequence), originated from the intergenic SNPs from which any
overlapping conserved or genic regions were excluded. For this annotation, only
the sampling method showed significant depletion, while the odds ratio of
depletion obtained by the permutation method was not significant.

The lack of significant depletion in the negative annotation could be due to a
number of reasons. One of these reasons was the difference in calculation for
the odds ratios and P-values between the two methods. The odds ratios are
almost identical between the methods (sampling = 0.79 [0.69-0.89];
permutations = 0.81 [0.71-0.94]) resulting from the number of overlaps in the
expected dataset (1051 in sampling vs. 1029 in permutations). When the odds
ratio and confidence intervals and P-value were calculated using the same
formula as used for the sampling method the result was 0.82 [0.72-0.93] with a
P-value of 1.69 x 10-3. This P-value is not significant after accounting for
multiple testing. Since the number of samples drawn and permutations
performed differs substantially it is possible that the permutations capture
more of the real distribution. It is also possible that the negative set was not
defined properly or that an informative and as of yet unidentified annotation
still overlaps with the negative annotation, but that would have impacted both
methods equally.

The largest difference between the two methods is in confidence interval width,
as shown above. The eight genomic annotations excluded from calculations for
the mean odds ratio and confidence interval widths were within miRNA, TS

miRNA, evofold, splice sites, gained stops, lost stops, microsatellites and
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repetitive/CNV (distal). The permutations obtained larger confidence intervals
with an average of 2.06 in those annotations, where both methods obtained a
defined confidence interval i.e,, one that was not set to infinity. The confidence
interval width of the sampling method in the same annotations was 1.63. This
was an indication that the permutation approach was generally more
conservative, as expected, since the permutation approach was designed to take
an appropriate account of non-random distributions of annotations and SNP
locations. The eight genomic annotations, which obtained confidence intervals
with values of infinity (denoted infinity in the tables), were sparsely distributed
throughout the genome. A value of infinity was returned when the dividend of
the odds ratio equation was too large when compared with the divisor (see
paragraph “Scoring LD blocks and definition of odds ratios”). Among these
genomic annotations were the four rare annotations mentioned previously
(microsatellites, within microRNA, splice sites and lost stop codons). The other
four genomic annotations were TS miRNA binding sites, gained stop codons,
evofold, and distal repetitive/CNV elements. The coverage of these eight
genomic features ranged between 0.00-0.21% annotated SNPs. The confidence
intervals were very wide, illustrating the uncertainty of the results, which were
based on a small number of coinciding SNPs. The number of overlaps for the
Significant SNPs (2011) set and its permutations, the resulting odds ratios with

confidence intervals and the P-value of significance are shown in Table 4-1.
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Figure 4-2 - Comparison of sampling vs. permutation results of Significant SNPs (2011)

There are few differences between the results for Significant SNPs (2011) (n = 1,909) with the
permutation method (CJ) when compared with the sampling method (<). All P-values are corrected
for multiple testing for the analysed genomic annotations. Solid symbols indicate significance at the
multiple-testing corrected threshold. Top: Genic and regulatory regions. Middle: Conserved regions
and evolutionary signatures. Bottom: Chromatin states and histone modifications.
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Table 4-1 - Permutation results for Significant SNPs (2011) atrz > 0.9 threshold

This table summarises the results for Significant SNPs (2011) (n = 1,909). The number of overlaps in
the observed set (Real), the mean of the permuted hits (Permutation Mean), the calculated odds
ratio and confidence interval (OR [LCI-HCI]) and the obtained P-value for each of the genomic
annotations are shown below. Significant P-values in bold.

Annotation Real Permutation Mean OR [LCI - HCI] P-value
1 Kb TSS 191 71.53 2.86 [2.10-3.97] <5.00x10"
5Kb TSS 461 182.70 3.01[2.41-3.76) <5.00x 10
CpG Islands 112 38.42 3.03 [2.10-4.70] <5.00x 10
ORegAnno 100 40.01 2.58 [1.86-3.85] <5.00x 10
vega Genes 1053 731.82 1.98 [1.70-2.31] <5.00x 10
OMIM genes 1067 640.94 2.51[2.13-2.97] <5.00x 10
OMIM morbid regions 514 152.78 4.24 [3.20-5.75] <5.00x 10"
Exons 452 148.72 3.67 [2.94-4.62) <5.00 x 10
Intronic SNPs 1161 854.46 1.92 [1.63-2.25] <5.00x 10
Non.Syn. SNPs (UCSC) 266 78.45 3.78 [2.90-5.17] <5.00x 10
Coding SNPs (UCSC) 364 119.72 3.52 [2.78-4.55] <5.00x 10
Syn. SNPs (UCSC) 166 62.54 2.81[2.10-3.94] <5.00x 10
Gained Stops 9 1.11 8.17 [2.26-Infinity] 9.50x 10*
3'UTR 212 78.20 2.92[2.26-3.92] <5.00 x 10"
5'UTR 48 19.92 2.45 [1.56-4.90] 5.00 x 10
RNA Genes 7 4.80 1.46 [0.64-7.02] 2.25x 10"
ncRNA 25 16.81 1.49 [0.80-3.61] 1.08 x 10™
TS miRNA 4 0.56 7.13 [1.33-Infinity] 9.95x 10
eQTLs 378 95.90 4.67 [3.35-6.39] <5.00x 10
vega PseudoGenes 63 36.22 1.76 [1.11-3.07) 1.16 x 10
Intergenic SNPs 1114 1196.85 0.83 [0.71-0.98] 1.11x 10
DNase Clusters 1057 609.66 2.64 [2.36-2.97] <5.00x 10
Insulators (sequence) 163 87.60 1.94 [1.50-2.61] <5.00x 10
Within miRNA 0 0.03 0.00 [0.00-NA] <5.00x 10
Splice Sites 0 0.90 0.00 [0.00-NA] <5.00x 10
Lost Stops 0 0.37 0.00 [0.00-NA] <5.00x 10"
Microsatellites 0 1.51 0.00 [0.00-NA] <5.00x 10
EvoFold 8 4.03 1.99 [0.89-Infinity] 7.47 x10™
Pos. Sel. Genes 831 555.76 1.88 [1.60-2.23] <5.00x 10
Enhancers (sequence) 12 6.10 1.97 [0.92-12.07] 5.17 x 10*
Exapted Repeats 9 5.39 1.67 [0.82-9.04] 1.23x10™
PREMOD 303 197.22 1.64 [1.38-1.97] <5.00x 10
tfbs Conserved 258 161.38 1.69 [1.41-2.05] <5.00x 10
Indels Pure regions 905 624.32 1.85 [1.66-2.08] <5.00x 10
17 spec. algmt 614 413.11 1.72 [1.51-1.97] <5.00x 10
28 spec. algmt plc.mmls 545 328.96 1.92 [1.67-2.22] <5.00x 10"
28 spec. algmt 618 388.80 1.87 [1.65-2.15] <5.00x 10
44 spec. algmt 641 392.17 1.96 [1.72-2.24] <5.00x 10
44 spec. algmt plc.mmls 578 357.09 1.89 [1.65-2.17] <5.00x 10
44 spec. algmt prim. 573 339.39 1.98 [1.73-2.30] <5.00x 10"
Negative (sequence) 932 1029.98 0.81 [0.71-0.94] 1.95x 10
Open Chromatin 1458 915.13 3.51[2.84-4.30] <5.00x 10"
Closed Chromatin 502 1030.96 0.30 [0.25-0.38] <5.00x 10"
Active Promoter 155 59.18 2.76 [1.99-4.03] <5.00x 10"
Weak Promoter 164 61.53 2.82 [2.09-3.98] <5.00x 10
Poised Promoter 28 7.74 3.65 [1.76-14.19] 9.50x 10*
Strong Enhancer (proximal) 231 64.59 3.93 [2.88-5.58] <5.00x 10"
Strong Enhancer (distal) 176 69.03 2.71[2.03-3.78] <5.00x 10
Weak Enhancer (proximal) 201 86.97 2.47 [1.92-3.29] <5.00x 10
Weak Enhancer (distal) 367 161.86 2.57 [2.09-3.20] <5.00x 10"
Insulator 108 65.59 1.69 [1.29-2.32] 1.50 x 10
Txn Transition 144 52.56 2.88 [2.08-4.24] <5.00x 10"
Txn Elongation 360 187.49 2.13[1.71-2.69] <5.00x 10
Weak Txn 631 333.95 2.33 [1.96-2.80] <5.00x 10
Repressed 289 147.11 2.14[1.66-2.78] <5.00x 10
Heterochrom/lo 1314 1533.73 0.54 [0.45-0.64] <5.00x 10"
Repetitive/CNV (proximal) 6 4.73 1.27 [0.54-6.02) 6.65x 10"
Repetitive/CNV (distal) 1 3.96 0.25 [0.11-Infinity] 3.02x 10
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4.3.2 Comparison of different significant thresholds
There has been substantial interest in the nature of GWAS variants which
showed ‘suggestive’ levels of significance (i.e, SNPs with P-values =5 x 10-5 - 5 x
10-8), as they are believed to contain many true positives with modest effect size
[138]. If that were correct, we would expect similarities in the functional
enrichment patterns of these variants and the significantly associated variants.
Our method can be used to test this hypothesis and the analysis of Suggestive
SNPs (2011) was in agreement with this hypothesis. The majority of the
genomic annotations are not significantly enriched or depleted of Suggestive
SNPs (2011), which is unlike the Significant SNPs (2011). Moreover, those
genomic annotations, which were significant for suggestively associated SNPs,
obtained odds ratios that were less extreme than the odds ratios for the

Significant SNPs (2011) in the same annotations.

Figure 4-3 shows the 14 enrichment and depletion results, where the
suggestively associated SNPs obtained a significant odds ratio. The trends were
similar to those observed for genome-wide significant SNPs, but with more
moderate odds ratios. Of these 14 annotations, nine were from the genic
annotation category, and five from the chromatin states. None of the
annotations from the conserved annotation category obtained significant odds

ratios for Suggestive SNPs (2011).

This lack of significant signal can also be observed Figure 4-4, which shows a
comparison of all annotations. This figure shows a comparison of all of the
genomic annotations and suggested that the general trend of all genomic
annotations was similar to those observed for genome-wide significant SNPs.
There were a few annotations, which were exceptions to the trend, where the
suggestive SNPs had more extreme odds ratios. However, in those annotations
the enrichment was not statistically significant for either the significant or the
suggestive SNPs. The number of overlaps for Suggestive SNPs (2011), its
permutation overlaps, the resulting odds ratio with confidence intervals and the

P-value of significance for the odds ratio are shown in Table 4-2. A graph
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showing the correlation of the odds ratios obtained in the Suggestive SNPs
(2011) and Significant SNPs (2011) was published in Kindt et al. [139]. The
square of the correlation coefficient, r?, of the regression line of the odds ratio
obtained for the Suggestive SNPs (2011) onto the odds ratios obtained for the
Significant SNPs (2011) was 0.81 with a P-value of 4.42 x 10-20.
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Figure 4-3 - Comparison of significant and suggestive variants in a subset of genomic annotations
The significantly trait-associated variants (Significant SNPs (2011); n = 1,909; [1) and the variants
with a suggestive P-value of association (5 x 10" > P-value > 5 x 10'8; Suggestive SNPs (2011); n =
2,410); <) in the significant annotations for the Suggestive SNPs (2011) show similar trends.
Suggestive SNPs (2011) show the same trend in enrichment/depletion but with more moderate odds
ratios than Significant SNPs (2011).

The mean of the odds ratios for Significant SNPs (2011) in 50 of the analysed
genomic annotations was 2.33. The mean of the odds ratios of the same genomic
annotations in Suggestive SNPs (2011) was reduced to 1.13. The confidence
intervals were also much narrower for Suggestive SNPs (2011) with a width of
0.56, while the confidence intervals were 2.06 for all 50 genomic annotations in
Significant SNPs (2011), presumably because there it consisted of a larger
number of SNPs. The confidence intervals were calculated without the eight
genomic annotations previously mentioned (microsatellites, within microRNA,

splice sites and lost stop codons, TS miRNA binding sites, gained stop codons,

evofold, and distal repetitive/CNV elements).
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Figure 4-4 - All annotations compared for Significant SNPs (2011) and Suggestive SNPs (2011)

The significantly trait-associated variants (Significant SNPs (2011); n = 1,909; [1) and the variants
with a suggestive P-value of association (5 x 10" > P-value > 5 x 10'8; Suggestive SNPs (2011); n =
2,410; <) in all genomic annotations show similar trends of enrichment and depletion. Solid symbols
indicate significance at the multiple-testing corrected threshold. Top: Genic and regulatory regions.
Middle: Conserved regions and evolutionary signatures. Bottom: Chromatin states and histone
modifications.
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Table 4-2 - Permutation results for Suggestive SNPs (2011)

This table summarises the results for Suggestive SNPs (2011), which contained 2,410 SNPs. the
number of overlaps in the observed set (Real), the mean of the permuted hits (Permutation Mean),
the calculated odds ratio and confidence interval (OR [LCI-HCI]) and the obtained P-value for each of
the genomic annotations are shown below. Significant P-values in bold.

Annotation Real Permutation Mean OR [LCI - HCI]] P-value
1 Kb TSS 104 84.05 1.25[1.01-1.60] 1.94 x 10
5Kb TSS 264 217.43 1.24 [1.08-1.44] 9.00 x 10
CpG Islands 46 44.04 1.05 [0.79-1.49] 4.05x10"
ORegAnno 66 48.40 1.37 [1.05-1.91] 8.40x 107
vega Genes 1017 924.50 1.17 [1.08-1.28] 5.00 x 10°%
OMIM genes 913 796.53 1.24 [1.13-1.35] <5.00x 10
OMIM morbid regions 251 187.65 1.38[1.18-1.62] <5.00x 10"
Exons 239 176.32 1.39 [1.20-1.65] <5.00x 10
Intronic SNPs 1146 1059.80 1.15 [1.06-1.26] 3.00x 10*
Non.Syn. SNPs (UCSC) 125 92.71 1.37 [1.12-1.70] 7.00 x 10
Coding SNPs (UCSC) 190 142.10 1.37 [1.16-1.63] 5.00 x 10
Syn. SNPs (UCSC) 91 74.17 1.24 [1.00-1.59] 3.09x 10%
Gained Stops 6 1.27 4.74 [1.50-Infinity] 2.10x 10
3'UTR 120 93.83 1.29 [1.07-1.61] 4.75x10%
5'UTR 32 23.45 1.37 [0.97-2.30] 5.71x10%
RNA Genes 3 6.00 0.50 [0.27-1.50] 6.21x10%
ncRNA 28 20.28 1.38 [0.93-2.35] 6.73 x10%
TS miRNA 0 0.72 0.00 [0.00-NA] <5.00x 10
eQTLs 210 112.84 1.94 [1.61-2.40] <5.00 x 10
vega PseudoGenes 47 42.87 1.10 [0.82-1.58] 2.85x 10"
Intergenic SNPs 1494 1527.22 0.94 [0.86-1.03] 8.68 x 10%
DNase Clusters 835 758.58 1.15[1.06-1.26] 3.00 x 10
Insulators (sequence) 105 105.58 0.99 [0.83-1.23] 4.61x10"
Within miRNA 0 0.04 0.00 [0.00-NA] <5.00x 10
Splice Sites 3 1.05 2.85 [1.00-Infinity] 9.18 x 10%
Lost Stops 0 0.42 0.00 [0.00-NA] <5.00x 10"
Microsatellites 5 1.85 2.70 [1.00-Infinity] 4.13x10%
EvoFold 4 5.04 0.79 [0.40-4.00] 2.60x 107"
Pos. Sel. Genes 750 691.65 1.12 [1.03-1.23] 6.65x 10%
Enhancers (sequence) 8 7.87 1.02 [0.57-2.67] 4.72x10"
Exapted Repeats 6 6.83 0.88 [0.46-3.00] 3.25x 10"
PREMOD 266 251.41 1.07 [0.94-1.22] 1.78 x 10*
tfbs Conserved 208 204.86 1.02 [0.89-1.18] 423 x10"
Indel Pure regions 845 788.00 1.11 [1.02-1.21] 7.15x10°%
17 spec. algmt 526 523.52 1.01[0.91-1.11] 4.62x10"
28 spec. algmt plc.mmls 426 415.98 1.03 [0.93-1.15] 3.05x 10"
28 spec. algmt 490 489.72 1.00 [0.91-1.11] 4.99 x 10
44 spec. algmt 504 494.81 1.02 [0.93-1.13] 3.33x10"
44 spec. algmt plc.mmls 457 452.02 1.01[0.92-1.13] 4.10x 10"
44 spec. algmt prim. 433 431.29 1.00 [0.91-1.12] 4.69x 10"
Negative (sequence) 1252 1306.89 0.91 [0.84-0.99] 1.53x10%
Open Chromatin 1308 1144.60 1.31[1.19-1.44] <5.00x10”
Closed Chromatin 1128 1286.75 0.77 [0.70-0.84] <5.00x 10"
Active Promoter 80 69.96 1.15 [0.92-1.50] 1.28 x10*
Weak Promoter 89 73.76 1.21[0.98-1.58] 4.64x10%
Poised Promoter 6 8.78 0.68 [0.40-2.00] 1.35x 10"
Strong Enhancer (proximal) 113 77.75 1.48 [1.19-1.89] 1.50 x 10
Strong Enhancer (distal) 109 85.19 1.29 [1.05-1.66] 6.35x 107
Weak Enhancer (proximal) 115 107.07 1.08 [0.89-1.32] 2.32x10"
Weak Enhancer (distal) 239 199.47 1.22 [1.06-1.42] 3.25x10%
Insulator 86 81.21 1.06 [0.86-1.36] 3.05x 10"
Txn Transition 78 62.47 1.26 [1.00-1.65] 3.25x 107
Txn Elongation 255 226.96 1.14 [1.00-1.31] 3.25x 107
Weak Txn 466 405.59 1.18 [1.06-1.33] 8.50 x 10"
Repressed 228 177.83 1.31[1.13-1.54] 1.00 x 10
Heterochrom/lo 1939 1960.31 0.94 [0.85-1.05] 1.39x 10"
Repetitive/CNV (proximal) 2 6.01 0.33[0.18-1.00] 1.86 x 10%
Repetitive/CNV (distal) 3 4.79 0.63 [0.33-3.00] 1.46 x 10*
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4.3.3 Results of Significant SNPs (2011) vs. Significant SNPs (2013)
An increased number of analysed SNPs resulted in an increased number of
significant genomic annotations (see Figure 4-5), with three more significant
annotations in the Significant SNPs (2013). The most notable results are the
significant depletions in the negative set (middle panel) and the significant
enrichment in the poised promoters and gained stop codons (bottom and top
panel). The negative set consisted of only those intergenic SNPs that did not
overlap with any of the analysed genic or conserved regions. These findings
highlighted that results with narrower empirical confidence intervals could be
obtained with a larger dataset. The poised promoters also passed the
significance threshold after correcting for multiple testing. Since the difference
of the odds ratios was not significantly different (see all panels of Figure 4-5 and
bottom panel of Figure 4-6), the change must be due to a decrease of confidence
interval width. The mean for the confidence interval width has decreased to
1.36 in Significant SNPs (2013) from 2.06 in Significant SNPs (2011), while the
odds ratio decreased only marginally from 2.33 to 2.25. This was representative
of the increase in statistical power caused by the larger number of analysed
trait-associated SNPs. A linear model of Significant SNPs (2013) vs. Significant
SNPs (2011) had an r? value of 0.91 and a significant P-value of 2.34 x 10-31. This
implies that the results from the same dataset but different methods (sampling
and permutation) were more similar, than when two overlapping datasets were
analysed with the same method (0.98 vs. 0.91, respectively). Figure 4-6 includes
two graphs, the first of which plots the odds ratios for Significant SNPs (2011)
obtained by sampling against those obtained by the permutations. The second
plot in Figure 4-6 shows the odds ratios for Significant SNPs (2011) and
Significant SNPs (2013) obtained by the permutation methods. The number of
overlaps for Significant SNPs (2013) and the results obtained by the
permutations, the resulting odds ratio with confidence intervals and the P-value
of significance for the odds ratios of each genomic annotation are presented in

Table 4-3.
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Figure 4-5 - Comparison of Significant SNPs (2011) and Significant SNPs (2013) in all annotations
The results of Significant SNPs (2011; n = 1,909; [1/M) and Significant SNPs (2013; n = 3,283; (/)
are very similar. The newer dataset obtains more significant results, probably due to the larger
number of analysed SNPs. All P-values are corrected for multiple testing for the analysed genomic
annotations and solid symbols indicate significance at that level. Top: Genic and regulatory regions.
Middle: Conserved regions and evolutionary signatures. Bottom: Chromatin states and histone
modifications.
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Sampling vs. Permutations — Significant SNPs (2011)
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Figure 4-6 - Correlations between datasets and methods

Top: The correlation of odds ratios obtained by permutations and sampling in Significant SNPs
(2011). A strong and significant correlation is observed between the two methods with a r’ value of
0.98 and a P-value of 1.25 x 10™. Bottom: The correlation between two datasets analysed by
permutations. Significant SNPs (2011) is a subset of Significant SNPs (2013). The correlation between
the two datasets is strong and significant with an r’ of 0.91 and a P-value of 2.17 x 10™". Correlations
were determined by a linear regression of the x-axes values onto the y-axes values.
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Table 4-3 - Permutation results for Significant SNPs (2013).

This table summarises the results for Significant SNPs (2013), which contained 3,283 SNPs. The
number of overlaps in the observed set (Real), the mean of the permuted hits (Permutation Mean),
the calculated odds ratio and confidence interval (OR [LCI-HCI]) and the obtained P-value for each of
the genomic annotations are shown below. Significant P-values in bold.

Annotation Real Permutation Mean OR [LCI - HCI]] P-value
1 Kb TSS 345 128.07 2.89[2.16-3.78] <5.00 x 10
5Kb TSS 841 327.68 3.11[2.50-3.74] <5.00x 10
CpG Islands 196 68.62 2.97 [2.11-4.28] <5.00x 10
ORegAnno 156 72.12 2.22 [1.69-3.04] <5.00 x 10
vega Genes 1874 1340.71 1.93 [1.69-2.21] <5.00x 10
OMIM genes 1873 1157.37 2.44[2.12-2.81] <5.00 x 10"
OMIM morbid regions 837 275.12 3.74[2.96-4.79] <5.00x 10
Exons 793 267.00 3.60 [2.95-4.35] <5.00x 10
Intronic SNPs 2070 1545.21 1.92 [1.68-2.20] <5.00 x 10"
Non.Syn. SNPs (UCSC) 446 140.62 3.51[2.79-4.49] <5.00x 10
Coding SNPs (UCSC) 618 214.50 3.32 [2.71-4.07) <5.00x 10
Syn. SNPs (UCSC) 288 112.37 2.71[2.13-3.53] <5.00x 10
Gained Stops 15 1.93 7.81 [2.51-Infinity] <5.00x 10
3'UTR 369 140.92 2.82[2.26-3.59] <5.00x 10
5'UTR 92 35.79 2.62 [1.76-4.27) <5.00x 10
RNA Genes 8 8.50 0.94 [0.05-2.67] 4.26x 10"
ncRNA 46 30.48 1.52 [0.88-2.90] 6.18 x 10
TS miRNA 4 1.00 4.00 [1.00-Infinity] 3.80x 10
eQTLs 684 170.89 4.79 [3.37-6.23] <5.00x 10
vega PseudoGenes 113 66.48 1.72 [1.09-2.62] 1.38x 10
Intergenic SNPs 2005 2158.69 0.82 [0.71-0.94] 1.95x 10
DNase Clusters 1841 1100.58 2.53[2.31-2.78] <5.00x 10
Insulators (sequence) 290 157.94 1.92 [1.53-2.43] <5.00x 10
Within miRNA 0 0.07 0.00 [0.00-NA] <5.00x 10
Splice Sites 0 1.75 0.00 [0.00-NA] <5.00x 10
Lost Stops 0 0.68 0.00 [0.00-NA] <5.00x 10
Microsatellites 1 2.86 0.35 [0.12-Infinity] 1.05 x 10
EvoFold 16 7.19 2.23[1.14-8.03] 1.43x 107
Pos. Sel. Genes 1450 1005.77 1.79 [1.56-2.06) <5.00x 10
Enhancers (sequence) 21 10.94 1.93[1.05-5.28] 2.40 x 10
Exapted Repeats 14 9.68 1.45 [0.78-4.68] 1.52x 10"
PREMOD 543 356.76 1.63 [1.41-1.89] <5.00x 10
tfbs Conserved 445 291.83 1.61[1.39-1.88] <5.00x 10
Indel Pure regions 1584 1126.87 1.78 [1.63-1.96) <5.00x 10
17 spec. algmt 1075 744.36 1.66 [1.49-1.86] <5.00x 10
28 spec. algmt plc.mmls 963 592.74 1.88[1.68-2.12] <5.00x 10
28 spec. algmt 1078 701.19 1.80 [1.62-2.01] <5.00x 10
44 spec. algmt 1119 706.72 1.89 [1.70-2.11] <5.00x 10
44 spec. algmt plc.mmls 1024 643.72 1.86 [1.66-2.09] <5.00x 10
44 spec. algmt prim. 1000 612.32 1.91 [1.71-2.16] <5.00x 10
Negative (sequence) 1685 1856.23 0.81[0.71-0.92] 4.00 x 10
Open Chromatin 2594 1646.46 3.74 [3.05-4.56] <5.00x10"
Closed Chromatin 931 1861.83 0.30 [0.25-0.37] <5.00x 10
Active Promoter 277 105.89 2.76 [2.02-3.69] <5.00x 10
Weak Promoter 282 110.46 2.70 [2.06-3.54] <5.00x 10
Poised Promoter 59 14.01 4.27 [2.21-9.99] <5.00x 10
Strong Enhancer (proximal) 358 116.78 3.32 [2.56-4.39] <5.00x 10
Strong Enhancer (distal) 300 125.00 2.54 [2.02-3.30] <5.00x 10
Weak Enhancer (proximal) 321 156.95 2.16 [1.75-2.69] <5.00x 10
Weak Enhancer (distal) 619 292.71 2.37 [2.00-2.84] <5.00x 10
Insulator 177 118.69 1.52 [1.22-1.95] 3.00x 10
Txn Transition 239 94.02 2.66 [2.02-3.60] <5.00x 10
Txn Elongation 648 335.99 2.16 [1.81-2.61] <5.00 x 10
Weak Txn 1084 600.92 2.20[1.89-2.56] <5.00x 10
Repressed 532 265.97 2.19 [1.76-2.72] <5.00x 10
Heterochrom/lo 2409 2772.18 0.51 [0.42-0.61] <5.00x 10
Repetitive/CNV (proximal) 11 8.46 1.30 [0.65-3.68] 7.36x 10"
Repetitive/CNV (distal) 4 7.22 0.55 [0.27-2.00] 1.15x 10™
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4.3.4 Results of Significant SNPs (2011) vs. Significant SNPs (Difference)
The regression of the permutation results onto the sampling results using the
Significant SNPs (2011) in both analyses gave an r? value of 0.98. The results of
the permutation method using Significant SNPs (2011) and Significant SNPs
(2013) had a regression r? of 0.91. While both values are very high, an analysis
of the difference between the sets was performed. This analysis focused on the
trait-associated SNPs that appear in Significant SNPs (2013) only, i.e.,, the most
recent trait-associated variants. This set was termed Significant SNPs
(Difference), contained 1,477 SNPs and was analysed the permutation method.
The odds ratios of Significant SNPs (2011) and Significant SNPs (Difference)
(see Figure 4-7) are no longer as similar as in the comparison between
Significant SNPs (2011) and Significant SNPs (2013) (see Figure 4-5). There are
three genomic annotations where the odds ratio is no longer significant for the
recently identified trait-associated variants: open regulatory annotations
(ORegAnno), regions associated with insulator activity and regions annotated as
target sites for microRNAs (TSmiRNA) have an odds ratio of zero (ie,
undefined). The mean of the odds ratios for Significant SNPs (Difference) in the
50 annotations previously outlined is 2.08 and lower than in either Significant
SNPs (2013) (2.25) or Significant SNPs (2011) (2.33). Two additional
annotations (RNA genes and repetitive/CNV (proximal) regions) obtain an
undefined 95% confidence interval of (denoted “Infinity”). When these are
removed, the mean of odds ratios increases to 2.14 and the mean of the
confidence interval width is 1.94. There are two most plausible causes which
could contribute to the drop in the value of the odds ratios: the lower number of
trait-associated variants reduced the amount of signal, or the drop was caused
by a slightly different distribution of the recent GWAS hits, or both. The results
for the permutations of Significant SNPs (Difference) are presented in Table 4-4,
which shows the number of overlaps in the real data and the mean number of
permuted overlaps, the calculated odds ratios and their confidence intervals

and their P-value.
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Figure 4-7 - Comparing Significant SNPs (2011) with Significant SNPs (Difference)

The results of Significant SNPs (2011; n = 1,909) and Significant SNPs (Difference; n = 1,477) ((1,$;
respectively) show a number of differences. Significant SNPs (2013) have insignificant odds ratios in
ORegAnno and Insulators and an unavailable odds ratio for TS miRNA in Significant SNPs
(Difference). All P-values are corrected for multiple testing for the analysed genomic annotations and
solid symbols indicate significance at that level. Top: Genic and regulatory regions. Middle:
Conserved regions and evolutionary signatures. Bottom: Chromatin states and histone modifications.
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The odds ratios of Significant SNPs (Difference) and Significant SNPs (2011)
correlated weakly with each other (Figure 4-8). The r? of the regression of
Significant SNPs (Difference) on Significant SNPs (2011) was 0.54, which was
considerably less than all other comparisons, but still significant with a P-value
of 2.94 x 10-11. However, the information from this correlation was strongly
influenced by the one change due to a genomic annotation, which was not
significant in either dataset (TS miRNA). This annotation obtained an odds ratio
of zero in the Significant SNPs (Difference), but reached a non-significant odds
ratio of 7.13 in the Significant SNPs (2011). This could be due to a sampling bias,
although the sizes of the datasets were fairly comparable (1,909 SNPs vs. 1,477
SNPs).
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Figure 4-8 - Correlation of Significant SNPs (2011) with Significant SNPs (Difference)

The correlation of the odds ratios for Significant SNPs (2011) and Significant SNPs (Difference) is less
significant and almost halved (r2 = 0.54, P-value = 2.94 x 10’11), when compared to the correlation of
Significant SNPs (2011) with Significant SNPs (2013) (r* = 0.91, P-value = 2.17 x 10™'). The most
striking difference is in the TS miRNA annotation, which is zero in Significant SNPs (Difference), but in
Significant SNPs (2011) it is 7.13, albeit not significantly enriched.
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Table 4-4 - Permutation results for Significant SNPs (Difference)

This table summarises the results for Significant SNPs (Difference), which contained 1,477 SNPs. The
number of overlaps in the observed set (Real), the mean of the permuted hits (Permutation Mean),
the calculated odds ratio and confidence interval (OR [LCI-HCI]) and the obtained P-value for each of

Annotation Real Permutation Mean OR [LCI-HCI] P-value
1Kb TSS 139 54.97 2.69 [1.89-3.83] <5.00x10"
5Kb TSS 362 140.52 3.09 [2.39-3.89] <5.00x 10
CpG Islands 81 29.06 2.89 [1.89-4.70] <5.00x 10
ORegAnno 50 30.67 1.65 [1.17-2.55] 1.50 x 10
vega Genes 766 557.94 1.78 [1.55-2.06) <5.00x 10
OMIM genes 784 491.47 2.28 [1.96-2.65] <5.00x 10
OMIM morbid regions 315 116.44 3.17 [2.46-4.18] <5.00x 10
Exons 327 114.17 3.40 [2.66-4.34] <5.00x 10
Intronic SNPs 875 654.15 1.84[1.59-2.13] <5.00x 10
Non.Syn. SNPs (UCSC) 171 60.20 3.08 [2.32-4.27] <5.00x 10
Coding SNPs (UCSC) 244 91.91 2.99 [2.32-3.92] <5.00x 10
Syn. SNPs (UCSC) 119 48.18 2.60 [1.90-3.72] <5.00x 10
Gained Stops 6 0.85 7.12 [2.00-Infinity] 1.10 x 10
3'UTR 159 60.29 2.84[2.14-3.93] <5.00x 10
5'UTR 43 15.30 2.86 [1.74-5.51] <5.00x 10
RNA Genes 1 3.66 0.27 [0.12-Infinity] 2.87x10*
ncRNA 17 13.28 1.28 [0.68-3.43] 2.20x 10
TS miRNA 0 0.45 0.00 [0.00-NA] <5.00x 10
eQTLs 293 73.55 4.73 [3.11-6.53] <5.00x 10
vega PseudoGenes 49 27.86 1.79 [1.02-3.13] 234x 10"
Intergenic SNPs 845 921.66 0.80 [0.69-0.93] 1.40 x 10
DNase Clusters 735 467.92 2.14[1.90-2.43] <5.00x 10
Insulators (sequence) 124 67.81 1.91[1.43-2.62] <5.00 x 10
Within miRNA 0 0.03 0.00 [NA-NA] <5.00x 10
Splice Sites 0 0.69 0.00 [0.00-NA] <5.00x 10
Lost Stops 0 0.29 0.00 [0.00-NA] <5.00x 10
Microsatellites 1 1.17 0.85 [0.25-Infinity] 3.28x10™
EvoFold 7 3.09 2.27 [1.00-Infinity] 4.87x10%
Pos. Sel. Genes 601 426.94 1.69 [1.45-1.99] <5.00x 10
Enhancers (sequence) 8 4.59 1.75 [0.80-8.04] 1.10 x 10
Exapted Repeats 5 4.09 1.22 [0.55-5.01] 3.85x 10"
PREMOD 223 152.14 1.55 [1.30-1.89] <5.00 x 10
tfbs Conserved 179 124.53 1.50 [1.25-1.84] 5.00 x 10"
Indel Pure regions 649 479.55 1.63 [1.45-1.85] <5.00x 10
17 spec. algmt 435 318.28 1.52 [1.33-1.76] <5.00x 10
28 spec. algmt plc.mmls 392 253.14 1.75 [1.51-2.05] <5.00x 10
28 spec. algmt 433 298.87 1.64 [1.43-1.90] <5.00x 10
44 spec. algmt 445 301.62 1.68 [1.47-1.95] <5.00 x 10
44 spec. algmt plc.mmls 415 275.01 1.71 [1.48-2.00] <5.00x 10
44 spec. algmt prim. 400 261.50 1.73 [1.50-2.01] <5.00x 10
Negative (sequence) 707 793.37 0.79 [0.69-0.90] 2.50x 10*
Open Chromatin 1074 702.76 2.98 [2.40-3.69] <5.00x10"
Closed Chromatin 416 785.57 0.34 [0.28-0.43] <5.00x 10
Active Promoter 120 45.45 2.79[1.92-4.13] <5.00x 10
Weak Promoter 112 47.25 2.48 [1.78-3.59] <5.00x 10
Poised Promoter 27 6.09 4.50 [2.10-27.49] 5.00 x 10%
Strong Enhancer (proximal) 116 49.91 2.44 [1.77-3.51] <5.00x 10
Strong Enhancer (distal) 108 53.19 2.11 [1.59-2.99] <5.00x 10
Weak Enhancer (proximal) 115 66.92 1.78 [1.37-2.41] <5.00x 10
Weak Enhancer (distal) 242 124.69 2.13[1.72-2.67] <5.00x 10
Insulator 68 50.61 1.36 [1.02-1.93] 2.03x10%
Txn Transition 104 40.42 2.69 [1.92-4.07) <5.00x 10
Txn Elongation 280 143.44 2.18 [1.78-2.72] <5.00 x 10
Weak Txn 430 256.67 1.96 [1.65-2.35] <5.00x 10
Repressed 227 113.34 2.19[1.68-2.83] <5.00x 10
Heterochrom/lo 1041 1178.48 0.60 [0.50-0.71] <5.00x 10
Repetitive/CNV (proximal) 4 3.57 1.12 [0.50-Infinity] 4.65%x 10"
Repetitive/CNV (distal) 3 2.93 1.02 [0.43-Infinity] 4.48 x 10™

the genomic annotations are shown below. Significant P-values in bold.
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4.3.5 Comparison of different LD thresholds in Significant SNPs (2011)
Recall, we had used r? abiding with standard notation to denote a measure of LD
and the correlation computed by linear threshold models. In this thesis we will
be using both concepts frequently, so to avoid confusion, we will be using r?.p
and r?: to denote the LD threshold and correlation computed using linear
regression models, respectively, in this section only. To continue the studies
presented so far, an investigation into the influence of using different LD
thresholds for the Significant SNPs (2011) was also performed, as an LD cut-off
point of r?i,p > 0.9 is considered rather stringent [50]. An additional LD
threshold of r?i,p > 0.7 was investigated to identify the effect of a lower
threshold resulting in a larger number of LD partners. Since LD decays with
increasing distance, the lower threshold would have a larger mean distance
between trait-associated variants and their LD partners than the more stringent
cut-off. Figure 4-9 shows the resulting odds ratios of permutations using the
two thresholds for Significant SNPs (2011). There were seven genomic
annotations, where the results of the analyses using different LD thresholds
vary in significance, measured by the multiple testing corrected P-value
obtained by the permutations. The lower threshold (r?.p > 0.7) obtained
significance in four of these annotations (gained stop codons, TSmiRNA,
intergenic SNPs, and negative) where the higher threshold (r?wp > 0.9) did not.
The higher threshold was significant in three annotations (5’UTRs, insulators
from the chromatin states, and weak transcription), where the lower was not.
There was a strong and positive correlation (r?. = 0.82) of the odds ratios of the
two LD thresholds with a significant P-value of 5.61 x 10-23 (Figure 4-10). The
number of overlaps for the observed data, the mean number of overlaps for the
permutations, the calculated odds ratios, their confidence intervals and the
observed P-value of the analysis with the less stringent LD cut-of point (r?ip >

0.7) are shown in Table 4-5.
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Figure 4-9 - Comparison of r2>0.9 with r2>0.7 in Significant SNPs (2011)

The results of the two LD thresholds (r2>0.9 (C7) and r’>0.7 (<)) for Significant SNPs (2011) show no
significant differences. All P-values are corrected for multiple testing for the analysed genomic
annotations and solid symbols indicate significance at that level. Top: Genic and regulatory regions.
Middle: Conserved regions and evolutionary signatures. Bottom: Chromatin states and histone
modifications.
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Figure 4-10 - Correlation of the odds ratios in the analyses of the LD partners of r2.p>0.9 and
r2.p>0.7 in Significant SNPs (2011)

A strong positive correlation is observed for the odds ratios of the two different LD thresholds
analysed in Significant SNPs (2011) (’c = 0.82). The P-value of the correlation is highly significant
with a value of 5.61 x 10,
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Table 4-5 - Permutations for Significant SNPs (2011) at r2up> 0.7 LD threshold

This table summarises the results for Significant SNPs (2011) at a lower LD threshold (rZLD >0.7). The
number of overlaps in the observed set (Real), the mean of the permuted hits (Permutation Mean),
the calculated odds ratio and confidence interval (OR [LCI-HCI]) and the obtained P-value for each of

Annotation Real Permutation Mean OR [LCI-HCI] P-value
1 Kb TSS 45 19.80 2.30 [1.46-4.17] 4.50x10™
5Kb TSS 203 77.33 2.82 [2.04-3.94] 5.00 x 10
CpG Islands 31 11.57 2.71[1.64-6.29] 1.00 x 10
ORegAnno 34 13.11 2.62 [1.63-5.75] 5.00 x 10
vega Genes 905 667.80 1.68 [1.41-1.98] <5.00x 10
OMIM genes 903 573.34 2.09 [1.74-2.50] <5.00x10™
OMIM morbid regions 423 130.43 3.88 [2.82-5.50] <5.00x 10
Exons 223 51.81 4.74 [3.42-6.88] <5.00x 10
Intronic SNPs 931 770.03 1.41[1.20-1.65] 1.50x 10"
Non.Syn. SNPs (UCSC) 140 25.92 5.75 [3.90-9.36] <5.00x10™
Coding SNPs (UCSC) 183 40.02 4.95 [3.51-7.39] <5.00x10™
Syn. SNPs (UCSC) 53 15.44 3.50 [2.24-6.79] <5.00x10™
Gained Stops 3 0.34 8.97 [1.50-Infinity] 4.50x 10*
3'UTR 61 24.06 2.59 [1.72-4.47] <5.00x10™
5'UTR 12 4.43 2.72 [1.34-12.07) 1.15x 10
RNA Genes 1 0.87 1.15 [0.33-Infinity] 217 x10™
ncRNA 15 10.40 1.45 [0.65-5.03] 1.44 x 10™
TS miRNA 2 0.15 13.76 [2.00-Infinity] 7.00 x 10
eQTLs 222 42.20 5.82 [3.92-9.17] <5.00x10™
vega PseudoGenes 21 13.69 1.54 [0.87-3.53] 6.20x 10%
Intergenic SNPs 823 1089.91 0.57 [0.49-0.67] 5.00 x 10
DNase Clusters 472 24134 2.27[1.93-2.69] <5.00x 10
Insulators (sequence) 53 24.95 2.16 [1.49-3.61] 1.50x10™*
Within miRNA 0 0.01 0.00 [NA-NA] 8.90x 10*
Splice Sites 0 0.25 0.00 [0.00-NA] 2.20x10™
Lost Stops 0 0.05 0.00 [0.00-NA] 5.22 x 10
Microsatellites 0 0.31 0.00 [0.00-NA] 2.70x 10
EvoFold 2 1.06 1.89 [0.67-Infinity] 9.40x 10™
Pos. Sel. Genes 643 461.62 1.59 [1.34-1.90] <5.00x 10
Enhancers (sequence) 5 1.84 2.73 [1.00-Infinity] 1.64 x 10
Exapted Repeats 1 1.13 0.89 [0.25-Infinity] 3.09 x 10*
PREMOD 100 58.53 1.75 [1.35-2.40] <5.00x10™
tfbs Conserved 74 38.71 1.95 [1.47-2.81] <5.00x 10
Indel Pure regions 407 231.63 1.96 [1.70-2.29] <5.00x 10
17 spec. algmt 237 125.79 2.01 [1.69-2.46] <5.00x10™
28 spec. algmt plc.mmls 223 97.27 2.46 [2.01-3.10] <5.00x 10
28 spec. algmt 246 116.97 2.27 [1.88-2.79] <5.00x10™
44 spec. algmt 257 118.45 2.35[1.95-2.91] <5.00x10™
44 spec. algmt plc.mmls 238 106.74 2.40 [1.98-3.02] <5.00x 10
44 spec. algmt prim. 233 104.25 2.41[1.98-3.02] <5.00x 10
Negative (sequence) 572 850.14 0.53 [0.46-0.63] <5.00x 10
Open Chromatin 1429 894.69 3.38[2.31-4.54] <5.00x10%
Closed Chromatin 477 1010.41 0.30 [0.22-0.43] <5.00x 10
Active Promoter 46 16.13 2.90 [1.79-5.87] <5.00x 10
Weak Promoter 37 15.70 2.38 [1.49-4.70] 1.00 x 10
Poised Promoter 6 2.58 2.33 [1.00-Infinity] 2.26x10®
Strong Enhancer (proximal) 90 23.83 3.91 [2.57-6.70] <5.00x 10
Strong Enhancer (distal) 51 21.75 2.38 [1.56-4.34] 4.00 x 10*
Weak Enhancer (proximal) 57 23.52 2.47 [1.65-4.17] <5.00x 10
Weak Enhancer (distal) 112 55.21 2.09 [1.57-2.99] 5.00 x 10%
Insulator 29 17.16 1.70 [1.12-3.26] 4.95x10%
Txn Transition 44 16.81 2.66 [1.64-5.61] 5.00 x 10%
Txn Elongation 190 112.05 1.77 [1.34-2.40] 7.50 x 10*
Weak Txn 306 200.10 1.63 [1.31-2.04] 1.00 x 10
Repressed 156 81.35 2.00 [1.43-2.79] <5.00x 10
Heterochrom/lo 1067 1423.58 0.43 [0.35-0.54] 2.50x 10*
Repetitive/CNV (proximal) 2 1.82 1.10 [0.33-Infinity] 2.72x 10"
Repetitive/CNV (distal) 1 1.16 0.86 [0.25-Infinity] 3.17x10™

the genomic annotations are shown below. Significant P-values in bold.
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4.4 Discussion

In this chapter, we presented the enrichment and depletion results of different
datasets of trait-associated SNPs in genomic regions annotated for 58 different
functional genomic features using two different methods. Here, we discuss

obtained results.
4.4.1 Permutations vs. sampling

4.4.1.1 Computational requirements
We have developed and used a novel permutation method, which took the
internal genomic structure into account by preserving the distance between
trait-associated SNPs in each permutation. The results obtained by the
permutations were compared to the results obtained by the sampling approach,
which does not depend on the internal structure, discussed in Chapter 3. The
permutation method kept not only the number of SNPs per chromosome but
also the relative distance of these SNPs fixed in every permutation. However,
the process of performing the permutation analyses is quite time-consuming.
The permutations were performed 20,000 times, which took almost three days
to complete for the entire genome. The 20,000 permutations meant that the P-
value of significance was delimited at 5 x 10->. To increase the significance by
one order of magnitude to 5 x 10°¢ would have meant increasing the
permutation number, and therefore the computational time, by an order of
magnitude, which would have been 30 days. In our analyses, this increase in
time was not justifiable for a change in significance of only one order of

magnitude.

The sampling method is comparatively faster than the permutation method. It
was divided into two steps: the preparation of the samples and the analysis
itself. The analysis itself took less than an hour, but the establishing of mutually
exclusive samples and the establishing of their LD partners required a day.
However, it was only 100 samples that were analysed, as the study we
attempted to replicate also used 100 samples [50]. These 100 samples were not

enough to establish defined confidence intervals that were based on the
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distribution of the expected results, as was done for the permutation method.
The empirical confidence intervals of the permutation method gave a more
conservative measure of enrichment or depletion as their average width was
generally wider than the average of the theoretical confidence interval width for

the sampling method.

4.4.1.2 Genomic annotations enriched for trait-associated SNPs
Overall, we observed significant enrichment significant GWAS hits in genic
annotations and several features associated with particular chromatin states
with both methods. The enrichment in genic annotations had been well
documented in previous studies [50, 65], while there had been evidence for
enrichment of trait-associated SNPs in regions with distinct chromatin

structures [82].

There were some differences between the significant odds ratios obtained by
the two methods. Among these was the negative set, which was created as an
approximation to a negative control (Figure 4-2, middle panel). As mentioned
before, the Bonferroni corrected P-value threshold was 8.62 x 10-% The P-values
of the results had to be less than that threshold to be significant. The
permutation method obtained an odds ratio of 0.81 [0.71-0.94] (P-value = 1.95
x 10-3), while the sampling method obtained an odds ratio of 0.79 [0.69-0.89]
with a P-value of 1.73 x 10-%. The difference was marginal, but the P-value for
the permutations was not significant after correcting for multiple testing using
the Bonferroni correction, but the odds ratio obtained by sampling was. The
poised promoters annotations were also not significantly enriched in the
permutation results of Significant SNPs (2011). The chromatin states associated
with insulating activity, however, were significant for the permutations, but not
for the sampling method. Several of the sparsely annotated genomic features
resulted in large confidence intervals on the estimated odds ratio by either

method, confirming the difficulties in obtaining results.
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The observed differences in significance were due to the different methods used
to calculate the P-values and the confidence intervals. The theoretically
determined P-values, which were a widely used asymptotic approximation (see
page 50 of this thesis) used in the sampling method, were compared with those
determined empirically in the circular permutations method (see page 71 of this
thesis). Theoretical values were used for the sampling method since they were
necessarily based on a limited number of random samples, and such limitations
did not apply to the permutation approach. The confidence intervals derived by
permutation were generally more conservative (i.e, larger) than those for the
sampling approach were. This is because the permutation confidence intervals
were based on the empirically derived confidence intervals rather than the
calculated ones. The empirical confidence intervals were chosen to represent
the distribution of the overlaps obtained from the permutations not only in the
tables, but also on the graphs. They clearly show where the 95% of the obtained

permutation overlaps were.

4.4.2 Modest functional enrichment in Suggestive SNPs (2011)
There has been substantial interest in trait-associated variants with modest
associations of P-values, as they are suspected to contain real positive
associations. We therefore analysed SNPs with more moderate P-values that did
not pass the genome-wide significance threshold (5 x 10-> > P-value > 5 x 10-8)
to determine if their distribution was similar to the distribution of significant
GWAS hits. Suggestive SNPs (2011) showed similar results to Significant SNPs
(2011) but with odds ratios that were less extreme than the odds ratios for
Significant SNPs (2011). This result was consistent with the suggestively
associated SNPs being a mixture of false positives (which we would expect to
have no bias towards particular annotations) and true associations, whose
effects were not of sufficient magnitude to show genome-wide significance.
These true positives would be expected to have the same bias towards
particular genomic features as trait-associated SNPs attaining genome-wide

significance [65].
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The observed modest enrichment of functional elements in SNPs with not
significant P-values of association is most likely due to reporting bias of
associated SNPs in the literature. While significantly trait-associated SNPs are
documented consistently, suggestive associations often remained unreported
since they are generally assumed to contribute less to our understanding of the
underlying biology. Additionally, the NHGRI GWAS catalogue only incorporated
result variants with association levels starting at 5 x 10-3, where the more
commonly accepted level for suggestively associated SNPs is 5 x 104 [36, 50].
This meant that the significantly associated SNP set was likely to be a more
comprehensive and complete SNP set of true associations, despite containing a
smaller number of SNPs. The similarity of enrichment trends between
Significant SNPs (2011) and Suggestive SNPs (2011) were encouraging. The
results might be of use in follow-up studies identifying true associations from
suggestively trait-associated variants by focusing the search on areas, which
were enriched for significantly trait-associated SNPs. The prediction of
functional suggestive variants may be improved by possibly investigating only
those SNPs that were overlapping with multiple annotations. However, care
should be taken in choosing the multiple overlapping annotations given that
some annotations are overlapping by definition, e.g., exons and genes. An
analysis to estimate the proportion of true positives in the set of suggestive
variants could be undertaken by investigating which of the suggestive variants
were replicated in the SNP set of 2013. However, this estimate would probably

be biased as, as mentioned above, the suggestive SNPs set is likely incomplete.

4.4.3 Analysis of trait-associated variants identified since 2011
The Significant SNPs (2011) and Significant SNPs (2013) did not show
significant differences in the analyses, despite the more recent set containing
almost twice as many variants. This was likely due to the large overlap between
the two sets. The Significant SNPs (Difference) showed three significant
differences with an apparent shift of trait-associated SNPs from transcriptional

elongation regions to regions 5 Kb upstream of transcription start sites.
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Significant SNPs (2013) resulted in a larger number of genomic features with
significant enrichment for trait-associated variants arising from the larger
number of analysed variants. The most prominent difference between the
datasets was the smaller confidence interval for the newer set. However, this
was also expected, as a larger number of variants would have provided more
statistical power for the analysis, which was reflected in the reduced 95%
confidence interval widths.

We wanted to investigate the new additions to the NHGRI catalogue to compare
them with the set of SNPs from 2011. The analysis showed that the results for
Significant SNPs (2011) influenced the Significant SNPs (2013) results. We
observed three genomic annotations, which changed significance. These were
the ORegAnno annotation, gained stop codons, and the chromatin states
associated with insulators. The odds ratios of predicted binding sites of miRNA
(TS miRNA) and RNA genes dropped to odds ratios indicating depletion,
although these odds ratios did not reach significance. A quick investigation into
the effect sizes in the data showed that Significant SNPs (Difference) contained
11 SNPs with an odds ratio higher than 50, while Significant SNPs (2011) only
had three. These 11 variants were unlikely to significantly change the
distribution of the data, but they indicated that variants with possibly different
mechanisms were identified. The mean risk allele frequencies of the trait-
associated variants in Significant SNPs (2011), Significant SNPs (2013), and
Significant SNPs (Difference) remained constant (0.39-0.40). It can therefore
not be said, that the newer GWAS identified rare variants with large effects or
more eQTLs. As mentioned in the Methods section, odds ratios were undefined
when zero overlaps were observed in the trait-associated SNP sets. This could
have been a sign of severe depletion in those genomic annotations where the
odds ratio was not available. However, it was not possible to accurately gain
insight into this, as the overlap of these genomic annotations with all SNPs was
relatively low (see Table 2-1). The calculations of odds ratios, as done here,
were known to perform poorly when small sample sizes were analysed [140],
so a greater accuracy would only be gained once more information became

available.
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4.4.4 Comparison of different LD thresholds
The LD threshold for SNPs segregating with the associated variant in all
datasets was set to r?,p > 0.9. However, for completeness we analysed an
additional, lower LD threshold for Significant SNPs (2011) to r?cp > 0.7. The
results for the lower LD threshold originated from more variants, as a larger
number of SNPs segregated with the trait-associated variant at the lower
threshold. Additionally, these variants were located at a greater distance away
from the trait-associated variant, as LD decays with distance: LD between two
variants decreases as the distance between them increases [141]. The results
for the threshold of 0.7 were compared with the threshold of 0.9. The increased
number of LD partners did result in more odds ratios with significant P-values
in the genic regions. However, there were less odds ratios reaching significance
in the chromatin states associated with different regulatory states. The number
of genomic annotations for which the higher confidence interval bound was not
available increased to 13 in the 0.7 set with an additional five annotations (RNA
genes, enhancers (sequence), exapted repeats, poised promoters and
repetitive/CNV (proximal)). The confidence interval widths were calculated for
the remaining 45 genomic annotations. This increase in annotations for which
the higher confidence interval was not available suggested that the higher

number of analysed variants introduced more noise.

We argued that the larger confidence intervals observed in the comparison
between the permutations vs. the sampling method were a more conservative
measure. This is because the confidence intervals are directly related to the
overlaps seen in the permutations rather than a theoretically calculated
interval. Furthermore, they are not defined to be symmetrically distributed
around the odds ratio unlike the theoretical values, so that the underlying
distribution of the permutation overlaps is immediately evident from the result
graphs. In the lower r? 1p threshold analysis more annotations had infinite
confidence interval limits resulting from very large differences between the
overlaps in the permutations and real dataset. This is likely due to the extra

noise added by the additionally analysed variants that were included in the data
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when the lower r2 1p threshold was analysed. The confidence intervals used for
the permutations therefore give a good idea of the underlying distribution of the

expected data.

4.4.5 Conclusion
The majority of the functional annotations showed enrichment for trait-
associated SNPs of all analysed datasets. Some of the genomic annotations were
defined as overlapping with at least one other genomic annotation due to their
location. For example, non-synonymous SNPs are defined as SNPs within coding
regions, which can change the resulting protein sequence. These SNPs will
overlap with regions defined as genes in the gene datasets and possibly with
functional elements associated with different chromatin states. These genomic
annotations are therefore not mutually exclusive, though examining them all
may provide extra information. Such dependencies among annotations make
drawing conclusions from these results difficult. Additional analyses in later
chapters examine solutions to this problem, and investigate the relative effect of

the individual genomic annotation using a stepwise regression approach.
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5 LOGISTIC REGRESSION

5.1Introduction

As we have shown in the previous chapter, the methods discussed so far used to
analyse enrichment or depletion in individual genomic annotations discussed so
far gave encouraging results. However, the analysis of individual genomic
annotations could give rise to false positive enrichment signals when two or
more annotations are overlapping. In this case it is impossible to distinguish,
which of the overlapping genomic annotations are causing the observed signal.
A different method, logistic regression, was therefore applied to identify those
genomic annotations with the most influence on trait association status. Logistic
regression produces results based on an information criterion calculated for
each genomic annotation and determines the impact of single or multiple
independent variables. These variables are presented simultaneously and the
analysis predicts if the variables are associated with one of the two states of the

independent variable (0 or 1) more often than expected by chance [142, 143].

Logistic regression has previously been used to identify effects contributing to
certain traits additionally to the analysed SNPs. Such effects could be gender,
age or diet, which can affect a trait differently [144, 145]. Logistic regression has
also been used to investigate different models which could be more appropriate
to analyse GWAS [146]. All of the mentioned logistic regression analyses were
performed using genotypes of individuals to analyse the effect of SNPs on a trait.
In contrast to more traditional regression analyses investigating the association
of SNP alleles with certain traits, we used the information on whether or not a
SNP overlapped with a particular annotation. The aim of our research was, as in
the sampling and permutation chapter, to identify genomic annotations that
showed any evidence for enrichment or depletion of trait-associated SNPs. A
conceptually similar approach was applied in a study investigating the location
of eQTLs within the genome to see if eQTLs were most likely to coincide with

transcription factor binding sites [147]. We further decided to explore distance
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to TSS in greater detail following [72], so we analysed the number of
nucleotides as a quantitative variable. This means that the distance to TSS was

not binary, but a continuous measure.

This chapter focuses on how the logistic regression method is applied to our
available datasets. In all logistic regression models, we use genomic annotations
as variables in the model, where the total information carried by a genomic
annotation is the number of linkage disequilibrium (LD) blocks it overlaps with.
First, we performed a univariate logistic regression to compare the results with
the permutation results. The univariate approach is comparable to the
permutation and sampling analyses, as only one genomic annotation is analysed
at one time without information on other annotations. The results of the
individual annotation analysis are compared with the results from the

permutation analysis to identify possible biases in either approach.

We used a stepwise approach to identify multivariate logistic regression models
where the smallest set of genomic annotations explains the maximum amount
of information. The variables modelled are the genomic annotations, as in the
univariate model. The identification of a smaller set of the entire set of analysed
annotations was achieved by a stepwise approach explained later in the method
section, which calculated the amount of information carried by a set of genomic
annotations at each step. A decision was made to either include or remove a
genomic annotation based on the amount of information each annotation
carried. The information criterion used for this analysis was the Akaike’s
Information Criterion (AIC) [148], which calculates the information carried by a
multiple variable model. All genomic annotations, which coincided with each
other and therefore did not provide additional information, were removed from
the model. This method identified the influence of the genomic annotations
relative to and in combination with each other. The results of these analyses
could be used further to calculate a prioritization score for newly discovered
GWAS variants, which could help choose trait-associated SNPs for follow-up

studies.
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The result of the analysis was a defined set of genomic annotations deemed
most important and informative, as judged by the decrease in the AIC value
during the analysis and the P-value of the annotation in the final model. This set
of genomic annotations was influential in explaining trait-association status of a
broad range of phenotypes allowing drawing of general conclusions. However,
this did not allow trait-specific conclusions. We therefore additionally
investigated a number of trait-specific subsets. The traits were divided using
data from the GaD database, into disease traits (e.g., schizophrenia or diabetes)
or normal variation traits (e.g., height or eye colour), and immune traits or
cancer traits. The association of the SNPs to these traits defined the following
subsets: Disease SNPs, Normal Variation SNPs, Immune SNPs and Cancer SNPs,
respectively. The stepwise logistic regression approach was applied to these
datasets, resulting in models containing different genomic annotations with
different effects. The effects were calculated as the weight or estimate of the
annotation in the model and were used to calculate their odds ratios and
confidence intervals. We identified a common set of genomic annotations
influential to both Normal Variation SNPs and Disease SNPs. The Immune SNPs
and Non-immune SNPs showed the most significant differences in the obtained
odds of the same genomic annotations, while the Cancer SNPs had the least
number of influential annotations. We discuss these findings in the discussion

section of this chapter.

5.2 Method

Logistic regression was applied to model genomic annotations as variables that
influenced the trait-association status of SNPs, where the models could include
either a single variable or multiple variables. The single variable or univariate
analysis only included the individual genomic annotation under investigation,
onto which trait-association status was regressed. All regression analyses were
performed using the function glm available in R with the option
family=binomial(“logit”). The stepwise analysis determining the most influential
genomic annotations was performed using the stepAIC function available in the

R package ‘MASS’ [149].
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The trait-association status, or dependent variable, was binary (one and zero,
where trait-association was coded as one). The genomic annotations were used
as independent explanatory variables onto which the trait-association status
was regressed. The independent variables contained information on the
presence or absence of the annotated feature at a given location (coded as one
and zero, respectively), taking into account the analysed SNPs and their LD
partners. All analyses used the SNPs and genomic annotations described in the
permutation chapter (Chapter 4) combined into one list of 3,840,944 SNPs. The
summary of each final model included the estimated coefficients, their standard
errors, the fB-coefficients and the P-values of each variable (genotyping array -
see section 5.2 - or genomic annotation) in the model. The S-coefficient is
defined as the ratio of the estimate and its standard error and is used to
calculate the significance as a P-value. The P-values in the multivariate models
were not corrected for multiple testing. The values for the intercepts are only
shown in the tables to show the complete model. The calculations for the odds
ratio and confidence intervals for the genomic annotations were the standard
calculations: the exponent of the estimate for the odds ratio and the exponents

of (Estimates * 1.96* Standard Error of Estimate) for the confidence intervals.

5.2.1 Stepwise multivariate logistic regression
All genotyping arrays were included as explanatory variables in the ‘Base
model’, because genotyping arrays influence trait-association status, as
discussed later. A Base model was needed as a starting point for the stepwise
logistic regression and is shown below. This model was fixed and the variables
included in this model were not subject to the ex- or inclusion of the step-wise

approach.

Base Model: Trait-association Status ~ Affymetrix_250k_Nsp +
Affymetrix_250k_Sty + Affymetrix_5.0 + Affymetrix 6.0 + Affymetrix_10k +
Affymetrix_50k.1 + Affymetrix_50k.2 + lllumina_300 + lllumina_550 + lllumina_650 +

Perlegen
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If a stepwise regression analysis only focused on the inclusion of informative
variables, the direction specification would be “forward”. The “backward”
direction focuses only on the exclusion of non-informative variables, or
annotations. However, both of these directions have their drawbacks and
benefits and so the “both” direction was used, which analysed the possible
exclusion and inclusion of annotations at every step and combines the benefits
of the other two directions without including their drawbacks. This ex- or
inclusion of annotations in the model was based on a reduction of the Akaike’s
Information Criterion (AIC), which we will define shortly. The additional
annotations that were considered for the ex- or inclusion were specified in the
experimental model shown below. The genotyping arrays were not considered
for the process, as they were included in the Base model. The results were
robust to the annotation order that were presented in the experimental model,
as the “both” direction started with the Base model and only added the

informative annotations.

Experimental model: Trait-association Status ~ Affymetrix_250k_Nsp +
Affymetrix_250k_Sty + Affymetrix_5.0 + Affymetrix 6.0 + Affymetrix_10k +
Affymetrix_50k.1 + Affymetrix_50k.2 + lllumina_300 + lllumina_550 + lllumina_650 +
Perlegen + 1 Kb TSS + 5 Kb TSS + CpG Islands + ORegAnno + vega Genes +
Exons + Intronic SNPs + Non.Syn. SNPs (UCSC) + Coding SNPs (UCSC) + Syn.
SNPs UCSC) + Gained Stops + 3'UTR + 5'UTR + RNA Genes + ncRNA + TS
miRNA + eQTLs + vega PseudoGenes + Intergenic SNPs + DNase Clusters +
Insulators (sequence) + EvoFold + Pos. Sel. Genes + Enhancers (sequence) +
Exapted Repeats + PREMOD + tfbs Conserved + Indel Pure regions + 17 spec.
algmt + 28 spec. algmt plc.mmlis + 28 spec. algmt + 44 spec. algmt + 44 spec. algmt
plc.mmlis + 44 spec. algmt prim. + Negative (sequence) + Open Chromatin + Closed
Chromatin + Active Promoter + Weak Promoter + Poised Promoter + Strong
Enhancer (proximal) + Strong Enhancer (distal) + Weak Enhancer (proximal) +
Weak Enhancer (distal) + Insulator + Txn Transition + Txn Elongation + Weak Txn +

Repressed + Heterochrom/lo + Repetitive/CNV (proximal) + Repetitive/CNV (distal)
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All analyses were performed in R with the available R package MASS [149].
The full code for the stepAIC function is stepAlC( direction="both", scope = list (
upper = taspsfull, lower = empty), empty), where “taspsfull” is the Experimental
model containing all genomic annotations and “empty” is the Base model
containing only the genotyping arrays. The AIC was calculated to maximise the
amount of variance explained by a model with the minimal number of genomic
annotations by penalising any increase in the number of included variables. The
AIC is defined as AIC = 2k —2In(L), where k is the number of parameters in the
model and L is the maximised value of the likelihood function for the estimated
model, if a parameter were to be included. The stepwise logistic regression
method is an iterative process. This meant that after each in- or exclusion of a
genomic annotation, the AIC was recalculated for each of the genomic
annotations to evaluate the next step. This could be the inclusion of an
additional annotation, or the exclusion of an annotation already in the model.
The stepwise logistic regression process halted, when the AIC increased rather
than decreased with additional variables. The final model of the logistic
regression was the one with the smallest AIC value, resulting in a model
balancing the maximum amount of information explained by the minimum

number of variables.

As mentioned in the previous chapters, we had included the annotation of the
OMIM morbid regions, which are defined as trait-associated regions of the
genome as a positive control for GWAS hits. We did not include them in the
logistic regression analysis, as they would skew the final model. This would
occur because of the penalizing of any additional variables that might add extra
information. Another annotation excluded from the analysis was the OMIM
genes, as we had two annotations defining genes and kept only one dataset to

avoid knowingly using redundant information in the logistic regression analysis.

5.2.2 Pseudo-r’values
In order to evaluate a regression model, a ‘goodness-of-fit' parameter is

assessed. In linear regression, this parameter is the r? value, which is defined as
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the model and y is its dependent variable, y is the mean of all the values in the

. In this equation, N is the number of observations within

dependent variable and y is the value predicted by the model [150, 151]. The r2
value of linear regression can be interpreted in three different ways: First, it can
be seen as the amount of variation the model explains [150, 151]. Second, it can
be seen as an improvement of the full model over the null model. The third
interpretation gives this value its name, as it is the square of the correlation
between the model’s predicted values and the actual analysed values [150, 151].
Logistic regression models do not have an r? value as such, and there is no
generally agreed upon analogous value [152]. However, a value, which can have
a similar interpretation to the r? value of linear regression, can be estimated in a
variety of ways and is called a pseudo-r? value. Here, we chose the McKelvey and
Zavoina’s pseudo-r?. The McKelvey and Zavoina’s pseudo-r? was defined as the
ratio of the variance of a predicted continuous latent variable, which is
underlying the binary dependent variable (here: trait-association status), and
the sum of that variance and an estimated error. This error variance is assumed
to be n?/3 in logistic models [150, 151, 153]. The McKelvey and Zavoina’s
pseudo-r? is to be interpreted as the amount of variation explained in a model.
The R package descr (function LogRegR2) [154] was used to calculate the
pseudo-r? values. The code for this function can be found in the Appendix (see

page 222).
5.3 Results
5.3.1 Significant SNPs (2011)

5.3.1.1 Univariate regression vs. permutations
The Significant SNPs (2011) dataset was described previously (see page 32 for
further information). Figure 5-1 compares the results obtained by the
univariate logistic regression and the permutations for Significant SNPs (2011).

Overall, the two methods obtained very similar odds ratios. A standard paired t-

105



test showed that the odds ratios were not significantly different between the
methods (P-value = 0.31, mean of the differences = 0.12, 95% confidence
intervals = -0.12 - 0.36). When testing the standard errors of the odds ratios,
the t-test was also not significant (P-value = 0.08, mean of the differences = -
5.25, 95% confidence intervals = -11.22 - 0.72). The t-test was used on the
results from 54 of 58 annotations, as the standard errors for four annotations
(within miRNA, splice sites, lost stops, and microsatellites) were undefined. As
mentioned before, undefined confidence intervals arose when the value at the
500t rank of the permutation overlaps was zero. The correlation coefficient of
the odds ratios obtained by both methods was very high at 0.93. The r? of the
linear regression of the odds ratios from the logistic regression onto the odds
ratios from the permutations was 0.87 and a significant P-value of 1.03 x 10-26,
The odds ratios are shown in Figure 5-1, where the highest, albeit not
significant, odds ratios in both analyses were obtained for TS miRNA and gained
stop codons. The permutations obtained significant odds ratios twice, when the
univariate logistic regression did not (5'UTRs (top panel in Figure 5-2) and
insulators (bottom panel in Figure 5-2)). The logistic regression had three
significant odds ratios, where the permutations did not reach significance
(gained stops, intergenic SNPs (top panel) and negative (middle panel)). The
results of the univariate logistic regression are shown in Table 5-1 listing the
estimate, its standard error, the pS-coefficient (defined as the ratio of the
estimate and its standard error), the calculated odds ratio and its confidence

interval and the P-value of each analysed annotation.

106



10

Permutations
6

| | | | | |
0 2 4 6 8 10 12

Univariate regression

Figure 5-1 - Odds ratios of univariate logistic regression vs. permutations

The odds ratios obtained for the Significant SNPs (2011) by a univariate regression model and the
odds ratios of the permutations are plotted in this figure. The odds ratios obtained by these two
methods correlated well (correlation = 0.93). The adjusted r’ of the regression shown in this figure is
0.87 with a significant P-value of 1.03 x 10™°.
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Figure 5-2 - Permutations vs. univariate logistic regression

A comparison of the results obtained by permutations ((J) and univariate logistic regression (<) in
Significant SNPs (2011). All P-values were corrected for multiple testing for the analysed genomic
annotations and solid symbols indicated significance at that level. Top: Genic and regulatory regions.
Middle: Conserved regions and evolutionary signatures. Bottom: Chromatin states and histone
modifications.
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Table 5-1 - Univariate logistic regression for Significant SNPs (2011)

The results for the univariate logistic regression for the Significant SNPs (2011) are shown below. The
table presents the estimate of the effect, its standard error, the S-coefficient, the calculated odds
ratio with its confidence interval, and the P-value of the estimate for each of the individual genomic
annotations. Significant P-values in bold.

Annotation Estimate Std. Error B OR [LCI-HCI] P-value
1 Kb TSS 0.99 0.17 5.88 2.69 [1.93-3.74] 4.13x10"
5Kb TSS 1.11 0.08 13.71 3.04 [2.59-3.56) 8.91x 10"
CpG Islands 1.13 0.21 5.36 3.08 [2.04-4.65) 8.26 x 10
ORegAnno 1.08 0.19 5.59 2.96 [2.02-4.32) 2.32x10%
vega Genes 0.49 0.05 10.70 1.63 [1.49-1.79) 1.06 x 10°
OMIM genes 0.71 0.05 15.33 2.02 [1.85-2.22] 5.19x 10
OMIM morbid regions 1.34 0.06 23.79 3.81[3.41-4.25] 3.92x 10"
Exons 1.68 0.08 21.77 5.38 [4.62-6.26) 427 x10™
Intronic SNPs 0.29 0.05 6.37 1.34[1.22-1.47) 1.87x10™
Non.Syn. SNPs (UCSC) 1.90 0.09 20.13 6.69 [5.56-8.06] 3.83x 10
Coding SNPs (UCSC) 1.74 0.08 20.72 5.72 [4.85-6.74) 2.49x 10
Syn. SNPs (UCSC) 1.24 0.17 7.26 3.45 [2.47-4.83) 3.94x10™"
Gained Stops 2.45 0.58 4.22 11.57 [3.72-36.01] 2.39x 10"
3'UTR 1.02 0.15 6.97 2.77 [2.08-3.69] 3.18x10™
5'UTR 1.00 0.35 2.83 2.73 [1.36-5.46) 4.69 %10
RNA Genes 0.48 1.00 0.48 1.62 [0.23-11.51] 6.30 x 10™
ncRNA 0.37 0.28 1.31 1.44 [0.84-2.49] 1.89 x 10
TS miRNA 2.12 1.00 2.12 8.34 [1.17-59.50] 3.43x 10
eQTLs 1.93 0.08 25.62 6.89 [5.94-7.99] 9.26 x 10™*°
vega PseudoGenes 0.34 0.25 1.34 1.40 [0.86-2.29] 1.81x 10"
Intergenic SNPs -0.67 0.05 -14.40 0.51[0.47-0.56] 5.05x 10’
DNase Clusters 0.76 0.06 13.07 2.15[1.91-2.41) 4.87x10™
Insulators (sequence) 0.74 0.17 4.43 2.09 [1.51-2.89] 9.54 x 10
Within miRNA -4.96 83.85 -0.06 0.01 [0.00-1.66 x 10%] 9.53x 10
Splice Sites -7.96 74.86 -0.11 0.00 [0.00-1.83 x 10%] 9.15x 10
Lost Stops -6.96 101.93 -0.07 0.00 [0.00-5.52 x 10%] 9.46 x 10
Microsatellites -7.96 68.01 -0.12 0.00 [0.00-2.70 x 10*] 9.07 x 10*
EvoFold -9.96 98.69 -0.10 0.00 [0.00-4.78 x 10”°] 9.20x 10"
Pos. Sel. Genes 0.44 0.05 8.84 1.55 [1.40-1.70) 9.27x10™"
Enhancers (sequence) 1.04 0.50 2.08 2.84 [1.06-7.57) 3.73x10%
Exapted Repeats -9.96 97.16 -0.10 0.00 [0.00-2.39 x 107®] 9.18 x 10*
PREMOD 0.48 0.12 3.98 1.61[1.27-2.04) 6.94 x 10
tfbs Conserved 0.70 0.13 5.22 2.02 [1.55-2.63] 1.78 x 10"
Indels Pure regions 0.65 0.06 10.60 1.91 [1.70-2.15] 2.83x107°
17 specs. algmt. 0.62 0.08 7.85 1.86 [1.59-2.17] 4.01x10"
28 specs. algmt. plac. mmls 0.85 0.08 10.47 2.34[1.99-2.74] 1.16 x 10
28 specs. algmt. 0.80 0.08 10.45 2.22[1.91-2.58] 1.45 x 107
44 specs. algmt. 0.81 0.08 10.63 2.24 [1.93-2.60] 2.17x102°
44 specs. algmt. plac. mmls 0.83 0.08 10.59 2.29 [1.97-2.67] 3.39x107°
44 specs. algmt. primates 0.80 0.08 10.04 2.23[1.91-2.61] 9.81x 10
Negative (sequence) -0.78 0.05 -14.96 0.46 [0.41-0.51] 1.36 x 10™°
Open Chromatin 1.26 0.05 23.95 3.53[3.18-3.91] 1.01x 107
Closed Chromatin -1.18 0.05 -22.20 0.31[0.28-0.34] 3.62x 10"
Active Promoter 1.21 0.17 7.28 3.35 [2.42-4.64] 3.42x10"
Weak Promoter 0.88 0.20 4.43 2.40 [1.63-3.53] 9.45 x 10*
Poised Promoter 1.02 0.45 2.28 2.77 [1.15-6.67] 2.28x 10
Strong Enhancer (proximal) 1.49 0.12 12.75 4.46 [3.54-5.61] 2.97x 10
Strong Enhancer (distal) 0.85 0.16 5.19 2.34[1.70-3.23] 2.08x10”
Weak Enhancer (proximal) 0.71 0.17 4.09 2.03 [1.44-2.85] 439 x 10"
Weak Enhancer (distal) 0.73 0.11 6.53 2.07 [1.67-2.58] 6.41x10™"
Insulator 0.55 0.22 2.49 1.73 [1.12-2.66) 1.26 x 10
Txn Transition 1.05 0.17 6.18 2.87 [2.05-4.01] 6.48 x 10"
Txn Elongation 0.61 0.08 7.54 1.84 [1.57-2.16) 4.70x 10
Weak Txn 0.47 0.07 7.08 1.61[1.41-1.83) 1.45 x 10™
Repressed 0.76 0.09 8.56 2.14[1.80-2.54] 1.10x 10"
Heterochrom/low -1.04 0.05 -22.60 0.36 [0.32-0.39] 4,75 x 10
Repetitive/CNV (proximal) -0.48 1.00 -0.48 0.62 [0.09-4.40] 6.32x 10"
Repetitive/CNV (distal) -9.96 90.03 -0.11 0.00 [0.00-2.04 x 107’ 9.12x10™
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5.3.1.2 Multiple variables model
We hypothesized that the prior probability of a SNP found to be trait-associated
would change, if it were included on one or more genotyping arrays. A
multivariate model showed that genotyping arrays explained a non-negligible
amount of information (pseudo-r? = 0.14), which supported our hypothesis. The
genotyping arrays were therefore included in every following analysis. The
model including all genotyping arrays was used as a baseline (“Base model”) in
all analyses. Any additional genomic annotations were added to this model, if
they reduced the AIC (see page 102). The genotyping arrays were not removed

from the model, as they were part of the Base model and therefore fixed.

As mentioned in the Methods section of this chapter, the stepwise analysis
finished when no further variable could be added that explained extra
information without incurring a penalty effect for the additional variable (see
page 102). The variables analysed here, were the different genomic annotations.
The final model contained all genotyping arrays, as outlined above, and all
genomic annotations that added non-redundant information in explaining trait-
associated variants, as defined by the stepwise procedure based on the change
in AIC. The model that was returned at the end of the analysis was called the
Final Model, and included the genotyping arrays and the subset of the
annotations returned by the stepwise procedure. Figure 5-3 showed the
significant genomic annotations of the Final Model for the Significant SNPs
(2011). The odds ratio of a genomic annotation was calculated as the exponent
of the estimate of the genomic annotation in the model. Its 95% confidence
intervals were calculated as the exponents of the sum/difference of the estimate
and the product of its standard error and 1.96, which is the approximate value
of the 97.5 percentile point of the normal distribution (exp (Estimate +

1.96*Standard Error)).
The genomic annotations shown in all figures in this chapter were ranked

according to decreasing significance in the model, with the most significant

annotations on the left. Four of the five significantly depleted genomic
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annotations were previously significantly enriched in all analyses investigating
genomic annotations individually. These annotations were transcriptional
elongation, synonymous SNPs, active promoters and 5’UTRs. In a model, which
includes several annotations, the estimates are the effects of those annotations
accounting for the fact that other annotations are already included in the model.
These four annotations were therefore relatively depleted of trait-associated
SNPs when compared to the other genomic annotations and once they were

included in the model.

The most significant genomic annotations found to influence trait-association
status in the dataset of Significant SNPs (2011) were open chromatin, eQTLs,
and DNase clusters. These findings will to some extent be discussed at the end
of this chapter, but to a greater detail in the Discussion chapter (Chapter 7). The
results are also shown in Table 5-2. The McKelvey and Zavoina’s pseudo-r?
value of the Base model for the Significant SNPs (2011) was 0.14 and 0.23 for
the final model. The genotyping arrays were not included in the figure below,

but were a part of the final model.
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Figure 5-3 - Odds ratios of the final multivariate model for Significant SNPs (2011)

Odds ratios of the significant genomic annotations for the final multivariate model for Significant
SNPs (2011), sorted in decreasing significance in the model. The above figure demonstrated that
high odds ratio values did not imply a higher significance in the model.
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Table 5-2 - Stepwise logistic regression results for Significant SNPs (2011) without Distance to TSS

The results for the multivariate model using Significant SNPs (2011) without distance to TSS included
in the model are shown below. The table presents the estimate of the effect, its standard error, the
[-coefficient, the calculated odds ratio with its confidence interval, and the P-value of the estimate
in the final model for each of the included genomic annotations in the final model. Significant P-

values in bold.

Annotation Estimate Std. Error B OR [LCI-HCI] P-value
Intercept -9.26 0.08 -116.06  0.00 [0.00-0.00] 0.00 x 10
Affymetrix_250k_Nsp 0.33 0.16 2.10 1.40 [1.02-1.91] 3.59 x 10"
Affymetrix_250k_Sty 0.49 0.15 3.25 1.64[1.22-2.21] 1.16 x 10
Affymetrix_5.0 0.12 0.15 0.79 1.12 [0.84-1.51] 431x10™
Affymetrix_6.0 0.25 0.07 3.55 1.29 [1.12-1.49] 3.80x 10"
Affymetrix_10k 0.50 0.30 1.67 1.66 [0.92-2.99] 9.44x 10
Affymetrix_50k.1 -0.06 0.14 -0.43 0.94[0.71-1.25] 6.64 x 10"
Affymetrix_50k.2 -0.04 0.14 -0.30 0.96 [0.72-1.27] 7.63x 10"
llumina_300 0.85 0.07 11.44 2.34[2.02-2.70] 2.68x10°°
llumina_550 1.44 0.20 7.29 4.22 [2.87-6.22] 3.09x 10
lllumina_650 -0.10 0.19 -0.54  0.90[0.62-1.31] 5.91x 10"
Perlegen 0.21 0.06 3.72 1.23 [1.10-1.38] 1.99 x 10
Open Chromatin 0.79 0.06 13.31 2.21[1.97-2.49] 2.00 x 10°%°
Exons 0.58 0.09 6.52 1.79 [1.50-2.14] 6.94x10™
DNase Clusters 0.46 0.05 8.52 1.58 [1.42-1.75] 1.58x 107
eQTLs 0.72 0.07 10.70 2.05 [1.79-2.33] 1.01x 10
Strong Enhancer (proximal) 0.47 0.08 5.98 1.60 [1.37-1.87] 2.29x 10
vega Genes 0.27 0.05 5.51 1.31[1.19-1.44] 3.59x 10
Repressed 0.24 0.07 3.60 1.28 [1.12-1.46] 3.19x10*
Heterochrom/low -0.37 0.05 -6.69 0.69 [0.62-0.77] 2.26x 10"
Txn Elongation -0.43 0.07 -5.87 0.65 [0.56-0.75] 4.26 x10”
5Kb TSS 0.36 0.07 5.53 1.44 [1.26-1.64] 3.26x 10
Non.Syn. SNPs (UCSC) 0.23 0.09 2.56 1.26 [1.05-1.50] 1.06 x 10
44 specs. algmt. primates 0.17 0.07 2.33 1.18 [1.03-1.36] 2.00 x 102
Active Promoter -0.25 0.10 -2.47 0.78 [0.64-0.95] 1.37x 10
Gained Stops 1.15 0.35 3.32 3.16 [1.60-6.25] 8.95 x 10
Syn. SNPs (UCSC) -0.32 0.10 3.12 0.73 [0.60-0.89] 1.83x 10"
Indels Pure regions 0.11 0.06 1.76 1.11 [0.99-1.25] 7.79 x 10
5’UTR -0.31 0.16 -2.01 0.73 [0.54-0.99] 4.50 x 10"
Repetitive/CNV (distal) -1.41 1.00 -1.41 0.24[0.03-1.73] 1.58 x 10™
Poised Promoter 0.37 0.20 1.87 1.44[0.98-2.12] 6.14 x 10
Insulator -0.18 0.10 -1.80 0.83 [0.68-1.02] 7.24x 10
Enhancers (sequence) 0.53 0.29 1.80 1.69 [0.95-3.00] 7.22x10%
Weak Enhancer (distal) 0.10 0.06 1.52 1.10 [0.97-1.25] 1.28 x 10™
44 specs. algmt. 0.24 0.11 2.31 1.28 [1.04-1.57] 2.07 x 10
44 specs. algmt. plac. mmls -0.20 0.11 -1.80 0.82 [0.66-1.02] 7.14 x 107
TS miRNA 0.83 0.51 1.61 2.29 [0.83-6.28] 1.08 x 10™

As mentioned in the Introduction, we decided to explore distance from the trait-

associated variant to the nearest transcription start site (TSS) to a greater

detail, so we added a quantitative variable to the analyses: “Distance to TSS”.

Previous analyses had suggested that the majority of eQTLs were within a 20 Kb
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window from the nearest TSS [72] and that the majority of trait-associated
variants were eQTLs [110]. An additional analysis was performed using
Significant SNPs (2011) to determine if the variable explained a significant
amount of variation in trait-association status. Figure 5-4 shows the odds ratios
obtained in the model for Significant SNPs (2011), which included the distance
to TSS annotation. The five annotations, which were depleted for Significant
SNPs (2011) in the model without distance to TSS, still have odds ratios of
depletion. The odds ratios did not change significantly between the models with
a correlation coefficient of 0.99 between the odds ratios of the common
annotations of the two models. The model with the distance to TSS further
included an additional five annotations (negative (sequence), splice sites,
PREMOD, microsatellites, and lost stop codons), which were now adding extra
information to the model. The annotation, which was not included in the model
with distance to TSS but was included in the model without distance to TSS was
the TS miRNA annotation. The biggest difference between the models was the
change in the pseudo-r? value of the Final Model, which increased from 0.23 for
the model without distance to TSS to 0.42 for the model including distance. The
pseudo-r? therefore almost doubled with inclusion of the distance to TSS. The
distance to TSS annotation obtained a very small estimate in the model,
indicating that as the distance between a TSS and a SNP increases, the odds that
this SNP is a trait-associated SNP decreases. However, the distance is measured
in single bases rather than kilo bases, so the effect of increasing the distance
would be very small. Distance to TSS was, however, very significant, which
means that while the effect is small, it is very important in explaining trait-
association status. Since the inclusion of the distance to TSS had such a large
impact on the pseudo-r? value of the Significant SNPs (2011) model, the rest of
the regression models were all performed with the inclusion of this annotation

and only those models will be discussed in the remainder of the thesis.
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Figure 5-4 - Odds ratios of the final multivariate model for Significant SNPs (2011) including
Distance to TSS

Odds ratios of the significant genomic annotations for the final multivariate model for Significant
SNPs (2011), sorted in decreasing significance in the model including distance to TSS. Only the
significant results are shown in this graph.
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Table 5-3 - Stepwise logistic regression results for Significant SNPs (2011) with Distance to TSS

The results for the multivariate model using Significant SNPs (SNPs) with distance to TSS are shown
below. The table presents the estimate of the effect, its standard error, the S-coefficient, the
calculated odds ratio with its confidence interval, and the P-value of the estimate in the final model
for each of the included genomic annotations in the final model. Significant P-values in bold.

Annotation Estimate ;ti'r B OR [LCI-HCI] P-value
Intercept -8.79 0.09 -100.04 0.00 [0.00-0.00] 0.00 x 10"
Affymetrix_250k_Nsp 0.35 0.16 2.17 1.41 [1.03-1.93] 2.96 x 10
Affymetrix_250k_Sty 0.48 0.15 3.17 1.62 [1.20-2.18] 1.53x 10
Affymetrix_5.0 0.12 0.15 0.82 1.13[0.84-1.51] 411x10™
Affymetrix_6.0 0.25 0.07 3.48 1.28 [1.11-1.48] 5.10x 10"
Affymetrix_10k 0.50 0.30 1.66 1.65[0.91-2.98] 9.67 x 10
Affymetrix_50k.1 -0.04 0.14 -0.25 0.96 [0.73-1.28] 8.02x 10
Affymetrix_50k.2 -0.01 0.14 -0.08 0.99 [0.74-1.31] 9.37x10™
lllumina_300 0.84 0.07 11.30 2.31[2.00-2.67] 1.33x 107
lllumina_550 1.43 0.20 7.25 4.18 [2.84-6.16] 4.11x10"
lllumina_650 -0.10 0.19 -0.52 0.91[0.63-1.31] 6.00 x 10
Perlegen 0.20 0.06 3.57 1.22[1.09-1.37] 3.63x10™
Distance to TSS 0.00 0.00 -12.18 1.00 [1.00-1.00] 4.15x10™*
DNase Clusters 0.43 0.05 8.14 1.54 [1.39-1.71] 4.04x10™°
eQTLs 0.68 0.07 10.28 1.97 [1.73-2.24] 9.05x 10
Open Chromatin 0.53 0.06 8.72 1.69 [1.50-1.91] 2.68 x 10
Exons 0.48 0.09 5.44 1.62 [1.36-1.93] 5.41x10%
Strong Enhancer 0.47 0.08 5.97 1.60 [1.37-1.87] 2.44x 10
(proximal)
Txn Elongation -0.43 0.07 -5.99 0.65 [0.56-0.75] 2.06 x 10
44 specs. algmt. primates 0.19 0.07 2.57 1.20 [1.05-1.39] 1.02 x 10
Heterochrom/lo -0.30 0.06 -5.27 0.74 [0.66-0.83] 1.34x 10"
vega Genes 0.25 0.05 455 1.28 [1.15-1.42] 5.25x10%
Indels Pure regions 0.14 0.06 2.38 1.16 [1.03-1.30] 1.74x 10
Syn. SNPs (UCSC) -0.30 0.10 -2.95 0.74 [0.61-0.90] 3.19x 10
Repressed 0.16 0.07 2.41 1.18 [1.03-1.35] 1.60 x 10
Gained Stops 1.19 0.34 3.48 3.29 [1.68-6.43] 4.93x 10"
Negative (sequence) 0.12 0.06 2.17 1.13 [1.01-1.26] 3.03x 10
Non.Syn. SNPs (UCSC) 0.21 0.09 2.40 1.24 [1.04-1.48] 1.63x 10
Active Promoter -0.25 0.10 -2.47 0.78 [0.64-0.95] 1.35x 10
5Kb TSS 0.14 0.07 2.04 1.15 [1.01-1.31] 412 x 10"
Splice Sites -11.80 151.99 -0.08  0.00[0.00-1.78 x 10" 9.38x 10"
PREMOD 0.14 0.07 1.89 1.15[0.99-1.32] 5.92x 10
5’'UTR -0.31 0.16 -2.01 0.73 [0.54-0.99] 4.42 x 10
Microsatellites -10.99 109.51 -0.10  0.00[0.00-2.79 x 10" 9.20x 10
Insulator -0.20 0.10 -1.92 0.82 [0.67-1.00] 5.52x10%
Repetitive/CNV (distal) -1.38 1.00 -1.37 0.25 [0.04-1.80] 1.69 x 10%
Enhancers (sequence) 0.55 0.29 1.86 1.73[0.97-3.07] 6.31x 10
44 specs. algmt. 0.25 0.11 2.35 1.28 [1.04-1.57] 1.86 x 10
44 specs. algmt. plac. 0.19 0.11 -1.70 0.83 [0.67-1.03] 8.91x 10
mmls
Poised Promoter 0.31 0.20 1.57 1.36 [0.93-2.00] 1.16 x 10™
Weak Enhancer (distal) 0.10 0.06 1.48 1.10 [0.97-1.25] 1.38 x 10™
Lost Stops -11.95 235.66 -0.05  0.00[0.00-2.56 x 10"%°] 9.60 x 10
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5.3.2 Suggestive SNPs (2011)
Additionally to significantly associated SNPs we investigated SNPs with P-values
of association that did not pass the genome-wide significance threshold. This
dataset presumably contains a mixture of spurious associations and true
signals, which did not pass the threshold due to insufficient sample size in their
GWA study. The stepwise logistic regression analysis resulted in not only fewer
genomic annotations included in the model for Suggestive SNPs (2011), but the
included genomic annotations also obtained odds ratios with less extreme
values when compared to the results obtained for Significant SNPs (2011). The
results for the Suggestive SNPs (2011) are included in Table 5-4. Figure 5-5
shows the eight genomic annotations, which were significant in the Suggestive
SNPs (2011) analysis. Four of these annotations obtained significantly different
odds ratios. These four were eQTLs, exons, open chromatin, and distance to TSS.
The McKelvey and Zavoina’s pseudo-r? value of the Base model for the
Suggestive SNPs (2011) was 0.16, and 0.18 for the final model. For suggestive
SNPs the amount of variance explained by the genomic annotations was

therefore very little in comparison with that added by the genotyping arrays.
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Figure 5-5 - Genomic annotations for Significant SNPs vs. Suggestive SNPs (2011)

Odds ratios for all significant genomic annotations in the Suggestive SNPs (2011) model present in
the Significant SNPs (2011) sorted after significance for the suggestive SNPs. Suggestive SNPs (2011)
are shown as [ and Significant SNPs (2011) are shown as <. Solid symbols indicate significance at P-
value < 0.05. Red stars (><) indicate significant differences between the two datasets.
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Two histograms of the frequency of the Significant SNPs (2011) and Suggestive
SNPs (2011) are shown in Figure 5-6 and Figure 5-7, where the former shows
the region up to 20 Kb and the latter shows the frequencies of the variants
further away. Both of these figures were adapted from a supplementary figure
from Kindt et al. published in 2013 [139]. These figures show the distribution of
trait-associated variants and highlight what the Distance to TSS odds ratio
already indicated. The majority of the significantly trait-associated variants was
close to a transcription start site and outnumber the suggestively trait-
associated variants up until a distance of < 11 Kb. The suggestively associated

variants were most often located further away, as seen in Figure 5-7.
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Figure 5-6 - Histogram of distance to TSS of significant and suggestive variants (< 20 Kb)

Significant SNPs (2011) are more frequent in the areas closer to the TSS. This trend is most obvious in
the first 10 windows, but is prevalent throughout. Significant SNPs (2011) shown in filled bars,
Suggestive SNPs (2011) shown in open bars.
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Figure 5-7 - Histogram of distance to TSS of significant and suggestive variants (< 420 Kb)
Significant SNPs (2011) are much more frequent regions up to 20 Kb away from the TSS. However,
the Suggestive SNPs (2011) are more frequent in all other frequencies. Significant SNPs (2011) shown
in filled bars, Suggestive SNPs (2011) shown in open bars.
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Table 5-4 - Stepwise logistic regression results for Suggestive SNPs (2011) with Distance to TSS
This table lists the results for Suggestive SNPs (2011) for the multivariate model including the
distance to TSS. The estimate of the effect, its standard error, the S-coefficient, the calculated odds
ratio with its confidence interval, and the P-value of the estimate in the final model for each of the
included genomic annotations in the final model are shown below. Significant P-values in bold.

Annotation Estimate Std. Error B OR [LCI-HCI] P-value
Intercept -8.58 0.10 -85.31 0.00 [0.00-0.00] 0.00 x 10"
Affymetrix_250k_Nsp 0.74 0.12 5.98 2.09 [1.64-2.66] 2.21x 10"
Affymetrix_250k_Sty 0.92 0.12 7.80 2.50 [1.99-3.15] 6.12x10™
Affymetrix_5.0 -0.11 0.11 -0.99 0.89 [0.71-1.12] 3.21x10™
Affymetrix_6.0 0.15 0.06 2.43 1.16 [1.03-1.32] 1.51x 10
Affymetrix_10k 0.25 0.22 1.14 1.28[0.84-1.95] 2.53x 10"
Affymetrix_50k.1 0.96 0.08 11.99 2.62[2.24-3.06] 3.82x10
Affymetrix_50k.2 0.71 0.09 7.70 2.02 [1.69-2.42] 1.35x10™
llumina_300 0.75 0.06 11.96 2.12 [1.87-2.39] 6.02x 10
lllumina_550 1.43 0.17 8.43 4.19 [3.00-5.85] 3.56x 107"
lllumina_650 -0.03 0.16 -0.17 0.97 [0.71-1.34] 8.65x 10"
Perlegen 0.48 0.05 10.65 1.62 [1.49-1.78] 1.83x107°
eQTLs 0.45 0.07 5.96 1.56 [1.35-1.81] 2.50 x 10
Open Chromatin 0.26 0.09 2.75 1.29 [1.08-1.56] 5.91x 10"
Exons 0.23 0.07 3.11 1.25 [1.09-1.45] 1.88x 10
Gained Stops 1.55 0.39 4.04 4.73 [2.23-10.07] 5.40 x 10
Strong Enhancer 0.31 009 323 136 [1.13-1.64] 1.24x10%

(proximal)

Distance to TSS 0.00 0.00 -2.45 1.00 [1.00-1.00] 1.42x 10
vega Genes 0.12 0.05 2.63 1.13 [1.03-1.23] 8.64x10%
Repressed 0.15 0.07 2.20 1.16 [1.02-1.33] 2.75 x 102
Microsatellites 1.05 0.45 2.33 2.86[1.18-6.89] 1.96 x 10
Poised Promoter -0.67 0.41 -1.63 0.51[0.23-1.14] 1.02 x 10
Closed Chromatin 0.16 0.09 1.68 1.17 [0.97-1.40] 9.21x10%
Pos. Sel. Genes -0.08 0.05 -1.53 0.93 [0.84-1.02] 1.25x 10"
TS miRNA -9.52 66.24 -0.14  0.00[0.00-1.77 x 10"?] 8.86x 10"
Insulators (sequence) -0.15 0.10 -1.47 0.86 [0.71-1.05] 1.43 x 10"
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5.3.3 Significant SNPs (2013)
The more recent catalogue of trait-associated SNPs, Significant SNPs (2013),
was analysed as five different sets. First, it was analysed as a complete set of
trait-associated SNPs incorporating associations across a broad range of
phenotypes. The total set was then separated into subsets depending on
different trait-categories to allow trait-specific results and conclusions. The
traits in the subsets are listed in the Appendix (page 203). The results for the
final model for Significant SNPs (2013) including Distance to TSS are shown in
Table 5-5. There were no significant differences between the odds ratios of the
Significant SNPs (2011) and Significant SNPs (2013). The odds ratios of the
annotations, which were present in both models, are shown in Figure 5-6. While
there were no differences in the odds ratios in the common annotations, the two
models varied in some of the included annotations. Therefore for Significant
SNPs (2011) further contained microsatellites, repetitive/CNV (distal), and 44
species alignment with placental mammals, which were not significant in the
model. The Significant SNPs (2013) model also contained RNA genes, positively
selected genes, and conserved sites from the 17 species alignment, all of which
were significant. The weak enhancer (proximal) and the weak transcription
regions were not significant in the model. Those annotations, which were not
significant in the model, were included as they explained additional variation,

albeit not significantly when compared to all other annotations.

For Significant SNPs (2013) there were 32 included annotations in the Final
Model, of which 24 had a standard error of less than two and were significant at
20.05 (Figure 5-9). Distance to TSS has an odds ratio of one with a P-value of
9.01 x 10-52, but is in fact depleted with an odds ratio of 0.999. This annotation
is a quantitative annotation, as the distance to TSS was included as a linear
variable. As discussed above, a change in the distance to TSS by one unit would
be the change in one nucleotide, so would have a very small effect. The effect
returned by the model is negative for distance to TSS, so with increasing

distance the likelihood that a SNP is trait-associated decreases. The most
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significant annotations in the model are eQTLs, distance to TSS, open chromatin,
DNase clusters and exons. The rest of the annotations have P-values that are an

order of magnitude larger than these four very significant annotations.
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Figure 5-8 - Correlation of odds ratios for Significant SNPs (2011) and Significant SNPs (2013)

The odds ratios of the common genomic annotations for Significant SNPs (2011) and Significant SNPs
(2013) agreed very well with each other. The r* of the regression line of the results for Significant
SNPs (2011) onto Significant SNPs (2013) was 0.97 with a P-value of 3.37 x 1072

Additionally to the annotation of “Distance to TSS” there were eight more
annotations showing depletion of significantly trait-associated SNPs. The
genomic annotations depleted in the dataset of Significant SNPs (2013) are
regions with chromatin states associated with heterochromatin/low
transcription, transcriptional elongation, insulators, and active promoters and
genic regions annotated as synonymous SNPs, RNA genes, 5’UTRs, and regions
conserved in a 17 species alignment. The McKelvey and Zavoina’s pseudo-r?
values were 0.12 for the genotyping arrays only, and 0.36 for the model

including the Distance to TSS.
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Figure 5-9 - Significant genomic annotations for Significant SNPs (2013)
Odds ratios for all significant genomic annotations in the Significant SNPs (2013) model sorted after
significance. A total of 24 genomic annotations were significant and had a standard error of less than

two.
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Table 5-5 - Stepwise logistic regression results for Significant SNPs (2013)
The results for the multivariate model using Significant SNPs (2013) are shown below. The table
presents the estimate of the effect, its standard error, the S-coefficient, the calculated odds ratio
with its confidence interval, and the P-value of the estimate in the final model for each of the
included genomic annotations in the final model. Significant P-valus in bold.

Annotation Estimate  Std. Error B OR [LCI-HCI] P-value
Intercept -8.08 0.07 -121.06 0.00 [0.00-0.00] 0.00 x 10"
Affymetrix_250k_Nsp 0.36 0.12 3.00 1.43 [1.13-1.81] 2.73x10%
Affymetrix_250k_Sty 0.38 0.12 3.25 1.46 [1.16-1.82] 1.14x10%
Affymetrix_5.0 0.04 0.11 0.34 1.04 [0.83-1.30] 7.31x 10"
Affymetrix_6.0 0.37 0.05 6.95 1.45[1.30-1.61] 3.71x10™
Affymetrix_10k 0.54 0.25 2.18 1.72 [1.06-2.81] 2.90 x 10
Affymetrix_50k.1 -0.08 0.12 -0.67 0.92 [0.74-1.16] 5.00 x 10
Affymetrix_50k.2 -0.17 0.12 -1.37 0.84 [0.66-1.08] 1.71x 10
lNlumina_300 0.66 0.06 11.47 1.94[1.73-2.17] 1.94 x 10°°
lllumina_550 0.97 0.13 7.33 2.65 [2.04-3.44] 2.23x10™
lNlumina_650 0.21 0.13 1.67 1.23[0.96-1.58] 9.48 x 10
Perlegen 0.26 0.04 6.11 1.30 [1.20-1.42] 1.03x 10
Distance to TSS 0.00 0.00 -15.14 1.00 [1.00-1.00] 9.01x 10
eQTLs 0.79 0.05 15.48 2.19 [1.99-2.42] 4.81x 10>
DNase Clusters 0.39 0.04 9.62 1.48 [1.37-1.61] 6.70 x 1072
Open Chromatin 0.53 0.05 11.62 1.70 [1.56-1.86] 3.17 x 10
Exons 0.55 0.07 8.10 1.74[1.52-1.98] 5.71x 10™°
Repressed 0.18 0.05 3.54 1.20 [1.09-1.33] 3.98x 10
Indels Pure regions 0.15 0.05 3.19 1.16 [1.06-1.27] 1.45x 10
Strong Enhancer (proximal) 0.30 0.06 4.71 1.35[1.19-1.54] 2.44x 10
Txn Elongation -0.31 0.06 -5.34 0.74 [0.66-0.82] 9.52x 10"
Heterochrom/lo -0.27 0.05 -5.92 0.76 [0.70-0.83] 3.28x 10
5Kb TSS 0.24 0.05 4.73 1.27 [1.15-1.41] 2.26 x 10
Syn. SNPs (UCSC) -0.32 0.08 -4.06 0.73 [0.62-0.85] 5.00 x 10
44 specs. algmt. primates 0.15 0.06 2.68 1.16 [1.04-1.29] 7.38x 10
Gained Stops 1.19 0.27 4.47 3.28 [1.95-5.52] 7.74 x 10
vega Genes 0.20 0.04 4.67 1.22 [1.12-1.33] 2.96 x 10
Insulator -0.26 0.08 -3.16 0.77 [0.66-0.91] 1.59 x 10
Poised Promoter 0.46 0.14 3.22 1.58 [1.20-2.08] 1.26 x 10
Active Promoter -0.20 0.08 -2.57 0.82 [0.71-0.95] 1.01x 10
Splice Sites -11.35 93.25 -0.12 0.00 [0.00-2.82 x10"]  9.03x 10
PREMOD 0.14 0.06 2.57 1.15[1.03-1.29] 1.01x 10
5’UTR -0.25 0.12 -2.15 0.78 [0.62-0.98] 3.17x 10
RNA Genes -0.82 0.38 217 0.44[0.21-0.92] 3.03x 10
Enhancers (sequence) 0.55 0.23 2.43 1.74 [1.11-2.72] 1.52x 10
Pos. Sel. Genes -0.08 0.04 -1.78 0.93 [0.85-1.01] 7.50 x 10
44 specs. algmt. 0.17 0.06 2.66 1.18 [1.04-1.33] 7.88 x 10
17 specs. algmt. -0.12 0.06 -2.03 0.88 [0.78-1.00] 4.27 x 10"
Non.Syn. SNPs (UCSC) 0.13 0.07 1.91 1.14[1.00-1.31] 5.64x 10
Lost Stops -11.51 143.43 -0.08  0.00[0.00-1.23x10™"]  9.36x 10"
Weak Enhancer (proximal) -0.12 0.07 -1.83 0.89 [0.78-1.01] 6.76 x 10
Negative (sequence) 0.07 0.04 1.71 1.08 [0.99-1.17] 8.75x 10
Weak Enhancer (distal) 0.09 0.05 1.71 1.09 [0.99-1.21] 8.70 x 10
Weak Txn -0.08 0.05 -1.63 0.93 [0.84-1.02] 1.03 x 10
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5.3.4 Subsets of Significant SNPs (2013)
The dataset of Significant SNPs (2013) consisted of 3,283 SNPs, which is a
sufficient number of SNPs that allowed splitting the set into several subsets
divided on the basis of phenotype groupings. This splitting of the dataset
allowed exploring if different phenotype classes were affected preferentially by
different annotations. The Significant SNPs (Difference) were analysed as well
as four SNP sets associated to four specific trait categories (disease traits,
normal variation traits, immunity traits, and cancer traits). The trait-association
of the SNPs to four trait-categories defined the SNP subsets and were analysed
to compare different trait classes. In particular, the comparison of Normal
Variation and Disease SNPs, which were two mutually exclusive datasets. The
Immune SNPs and the Cancer SNPs were compared to Non-immune and Non-

cancer SNPs. The traits in the subsets are listed in the Appendix (page 203).

5.3.4.1 Significant SNPs (Difference)
In order to analyse only the newest SNPs, we investigated the Significant SNPs
(Difference) set, which contained only those SNPs that were present in
Significant SNPs (2013) but not in Significant SNPs (2011). These SNPs were
analysed in a multiple logistic regression model and the results were compared
with the results for the Significant SNPs (2011). The 17 annotations common to
both regression models showed only three significant differences. The
transcriptional elongation regions were less depleted of Significant SNPs
(Difference) than for Significant SNPs (2011) while the 5 Kb regions upstream
of transcription start sites were more enriched for the Significant SNPs
(Difference). The distance to TSS was also significantly different, as judged by
their P-values obtained from a t-test. Figure 5-8 shows the genomic annotations
common to both final models and presents the numerical results of the
Significant SNPs (Difference). Table 5-6 lists the estimates, standard errors, -
coefficients (ratio of estimate over standard errors), odds ratios and confidence
intervals and the P-values of all the genomic annotations, genotyping arrays and
intercept of the final model for Significant SNPs (Difference). Table 5-3 contains

the results for the Significant SNPs (2011).
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Figure 5-10 - Common genomic annotations for Significant SNPs (2011) and Significant SNPs
(Difference)
Odds ratios for all common genomic annotations in the Significant SNPs (2011) and Significant SNPs

(Difference) model sorted after significance. Significant SNPs (2011) are shown as [ and Significant
SNPs (Difference) are shown as <. Solid symbols indicate significance at P-value < 0.05. Red stars
(*k) indicate significant differences between the two datasets.
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Table 5-6 - Stepwise logistic regression results for Significant SNPs (Difference)
The results for the multivariate model using Significant SNPs (Difference) are shown below. The table
presents the estimate of the effect, its standard error, the S-coefficient, the calculated odds ratio
with its confidence interval, and the P-value of the estimate in the final model for each of the
included genomic annotations in the final model. Significant P-values in bold.

Annotation Estimate  Std. Error B OR [LCI-HCI] P-value
Intercept -8.69 0.09 -92.44 0.00 [0.00-0.00] 0.00 x 10"
Affymetrix_250k_Nsp 0.35 0.18 1.94 1.41 [1.00-2.01] 5.23x10%
Affymetrix_250k_Sty 0.22 0.17 1.25 1.24[0.88-1.75] 2.12x10™
Affymetrix_5.0 -0.06 0.17 -0.34 0.94 [0.68-1.32] 7.35x 10"
Affymetrix_6.0 0.48 0.08 6.19 1.61[1.39-1.87] 6.01x 10™°
Affymetrix_10k 0.44 0.44 1.00 1.55 [0.66-3.65] 3.19x 10
Affymetrix_50k.1 -0.12 0.19 -0.64 0.89 [0.61-1.28] 5.24x 10
Affymetrix_50k.2 -0.34 0.21 -1.61 0.71[0.47-1.08] 1.08 x 10
lllumina_300 0.35 0.09 3.96 1.41 [1.19-1.68] 7.60 x 10
lllumina_550 0.63 0.17 3.64 1.88 [1.34-2.64] 2.73x10™
lllumina_650 0.47 0.16 2.90 1.60[1.16-2.19] 3.72x 10"
Perlegen 0.33 0.07 5.10 1.39 [1.23-1.58] 3.37x107”
Distance to TSS 0.00 0.00 -9.39 1.00 [1.00-1.00] 6.13x 10
eQTLs 0.87 0.08 11.43 2.38 [2.05-2.76] 2.94x 10°°
Exons 0.60 0.09 6.81 1.83[1.54-2.17] 9.47 x 102
Open Chromatin 0.50 0.07 7.42 1.64 [1.44-1.87] 1.14x 10"
DNase Clusters 0.33 0.06 5.48 1.39 [1.24-1.56] 437x10%
Repressed 0.23 0.08 3.00 1.26 [1.08-1.47] 2.68x 10"
5Kb TSS 0.42 0.08 5.13 1.52 [1.30-1.78] 2.84x 10"
Insulator -0.28 0.13 -2.14 0.75 [0.58-0.98] 3.22x10®
Poised Promoter 0.63 0.20 3.13 1.88 [1.26-2.79] 1.77x 10
RNA Genes -1.88 1.00 -1.88 0.15 [0.02-1.08] 6.00 x 10
Weak Enhancer (proximal) -0.23 0.10 -2.23 0.79 [0.65-0.97] 2.58 x 10
Heterochrom/lo -0.23 0.07 -3.60 0.79 [0.70-0.90] 3.19x10™
Indels Pure regions 0.12 0.07 1.80 1.13 [0.99-1.29] 7.25x 10
Syn. SNPs (UCSC) -0.30 0.12 -2.52 0.74 [0.59-0.94] 1.17x10®
Txn Elongation -0.17 0.08 -2.05 0.84 [0.71-0.99] 4.08 x 10%
Gained Stops 1.19 0.41 2.88 3.29 [1.46-7.42] 4.02x10%
28 specs. algmt. plac. mmls 0.14 0.08 1.81 1.15 [0.99-1.34] 7.10 x 10
vega Genes 0.15 0.06 2.64 1.17 [1.04-1.31] 8.26x10%
1Kb TSS -0.21 0.11 -1.86 0.81[0.66-1.01] 6.27 x 10
Weak Txn -0.11 0.07 -1.58 0.90 [0.78-1.03] 1.15x 10"
PREMOD 0.15 0.08 1.82 1.16 [0.99-1.37] 6.86 x 10
Splice Sites -11.51 155.31 -0.07  0.00[0.00-1.59 x 10™]  9.41x 10"
TS miRNA -11.85 181.48 -0.07  0.00[0.00-2.14x10™°]  9.48x 10"
Pos. Sel. Genes -0.09 0.06 -1.48 0.91 [0.80-1.03] 1.40 x 10
ORegAnno -0.22 0.15 -1.42 0.81[0.60-1.09] 1.55 x 10"
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5.3.4.2Immune SNPs
The final model for the Immune SNPs contained 39 genomic annotations, of
which 20 were significant at P < 0.05 (see Figure 5-8). The final model obtained
in the Immune SNPs was run on the complementary set of Non-immune SNPs to
enable comparisons between the two sets. Table 5-7 and Table 5-8 list the
results of the final models for the Immune SNPs and the Non-immune SNPs,
respectively, showing the estimates, standard errors, $-coefficients, odds ratios
and confidence intervals and the P-values of all the genomic annotations,
genotyping arrays and intercept. The nine genomic annotations that are
significantly depleted of immune-associated SNPs are mainly chromatin states
or conserved regions with the exception of 5’UTRs. The annotations are ranked
in order of decreasing significance distance to TSS, positively selected genes,
regions associated with chromatin states indicative of heterochromatin/low
transcription, transcriptional elongation, conserved transcription factor binding
sites, open regulatory annotations, closed chromatin, 5’UTRs, and sites found to

be conserved in a 28 species alignment.

The 11 annotations that are enriched for immune-associated SNPs are in order
of decreasing significance eQTLs, open chromatin, strong enhancer (proximal),
exons, vega genes, DNase clusters, 5 Kb TSS, repressed chromatin states, weak
enhancers (distal), TS miRNA binding sites, and vega pseudo genes. The strong
enhancer (proximal), eQTLs, DNase clusters, and open chromatin regions were
the annotations that were enriched for trait-associated SNPs in the majority of
the analyses. The strong enhancer (proximal) annotation was the most enriched

annotation in the analysis for Significant SNPs (2011).

There are 13 genomic annotations, which have statistically significantly
different odds ratios for Inmune and Non-immune SNPs. The conserved regions
(positively selected genes, conserved transcription factor binding sites, and
conserved sites from a 28 species alignment) are significantly depleted of

Immune SNPs, while Non-immune SNPs are either enriched in these regions or
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do not show significant enrichment/depletion. The ORegAnno annotation
contains, amongst other regulatory annotations, transcription factor binding
sites, so the Immune SNPs are consistently depleted in these sites. The other
significant differences are in eQTLs, strong enhancer (proximal) regions, vega
genes, distance to TSS, Heterochromatin/low transcription regions, 5 Kb
regions upstream the TSS, closed chromatin, open regulatory annotations, vega
pseudo genes, and strong enhancer (distal) regions.

The McKelvey and Zavoina’s pseudo-r? value of the final model including the
distance to TSS was 0.45 for the Immune SNPs, and for the Base model was 0.18.
The pseudo-r? values for the empty Non-immune SNP model was 0.11, and for

the final model 0.35.
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Figure 5-11 - Effect of genomic annotations in Immune vs. Non-immune SNPs

Odds ratios for all genomic annotations in the Immune SNPs model sorted after significance.
Immune SNPs are shown as [J and Non-immune SNPs are shown as <. Solid symbols indicate
significance at P-value < 0.05. Red stars () indicate significant differences between the two
datasets.
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Table 5-7 - Stepwise logistic regression results for Inmune SNPs

The results for the multivariate model using the Immune SNPs are shown below. The table presents
the estimate of the effect, its standard error, the f-coefficient, the calculated odds ratio with its
confidence interval, and the P-value of the estimate in the final model for each of the included
genomic annotations in the final model. Significant P-values in bold.

Annotation Estimate  Std. Error B OR [LCI-HCI] P-value
Intercept -9.82 0.24 -41.21 0.00 [0.00-0.00] 0.00 x 10"
Affymetrix_250k_Nsp 0.59 0.26 2.31 1.81[1.09-3.00] 2.08 x 10
Affymetrix_250k_Sty 0.58 0.24 2.36 1.78 [1.10-2.87] 1.83x 10
Affymetrix_5.0 -0.17 0.24 -0.70 0.84 [0.53-1.35] 4.81x10"
Affymetrix_6.0 0.23 0.12 1.91 1.26 [0.99-1.59] 5.58 x 10
Affymetrix_10k -0.93 1.02 -0.91 0.39 [0.05-2.91] 3.61x10™
Affymetrix_50k.1 -0.12 0.26 -0.44 0.89 [0.53-1.49] 6.61x 10™
Affymetrix_50k.2 -0.03 0.26 -0.11 0.97 [0.58-1.62] 9.16 x 10
lllumina_300 0.54 0.11 4.84 1.72 [1.38-2.14] 1.30x 10
Illumina_550 0.99 0.26 3.79 2.69 [1.61-4.48] 1.50 x 10
lllumina_650 0.95 0.25 3.77 2.58 [1.57-4.22] 1.66 x 10
Perlegen 0.09 0.10 0.97 1.10 [0.91-1.33] 3.31x 107"
eQTLs 1.14 0.10 11.05 3.13 [2.55-3.83] 2.29x 102
Open Chromatin 0.46 0.22 2.13 1.58 [1.04-2.41] 3.29 x 10
Strong Enhancer (proximal) 0.75 0.12 6.04 2.11 [1.66-2.69] 1.51x 10
Distance to TSS 0.00 0.00 -4.32 1.00 [1.00-1.00] 1.56 x 10
Exons 0.75 0.14 5.25 2.11[1.60-2.79] 1.54 x 10"
Pos. Sel. Genes -0.44 0.11 -4.11 0.64 [0.52-0.79] 4.02x10%
vega Genes 0.49 0.10 5.12 1.63 [1.35-1.96] 3.09 x 10”7
DNase Clusters 0.39 0.09 4.27 1.48 [1.24-1.77) 1.95x 10
Heterochrom/lo -0.38 0.09 -4.24 0.68 [0.57-0.82] 2.22x10%
Txn Elongation -0.39 0.12 -3.16 0.68 [0.53-0.86] 1.56 x 10
5Kb TSS 0.43 0.10 4.07 1.53 [1.25-1.88] 4.72x10%
tfbs Conserved -0.40 0.16 -2.55 0.67 [0.49-0.91] 1.09 x 10
ORegAnno -0.52 0.24 -2.15 0.59 [0.37-0.96] 3.19x 10
Repressed 0.37 0.11 3.34 1.45 [1.16-1.80] 8.41x10™
Closed Chromatin -0.49 0.21 -2.32 0.62 [0.41-0.93] 2.03 x 10
Weak Enhancer (distal) 0.22 0.11 2.07 1.25 [1.01-1.54] 3.89x 10
5’UTR -0.53 0.26 -2.00 0.59 [0.35-0.99] 4.51x 10"
Syn. SNPs (UCSC) -0.29 0.18 -1.61 0.75 [0.53-1.07] 1.08 x 10
Strong Enhancer (distal) 0.26 0.14 1.92 1.30 [0.99-1.69] 5.52 x 10
TS miRNA 1.55 0.72 2.16 4.71[1.15-19.29] 3.10x 10
Insulator -0.35 0.20 -1.69 0.71[0.47-1.06] 9.02 x 10™
Repetitive/CNV (distal) -11.63 173.69 -0.07  0.00[0.00-6.30x 10"  9.47x10"
Enhancers (sequence) -11.19 141.87 -0.08 0.00 [0.00-7.94 x 10""] 9.37x 10"
Intronic SNPs -0.18 0.11 -1.62 0.84 [0.68-1.04] 1.05x 10
vega PseudoGenes 0.40 0.20 2.01 1.49 [1.01-2.18] 4.43x10"
28 specs. algmt. -0.28 0.12 242 0.76 [0.60-0.95] 1.55 x 10
Non.Syn. SNPs (UCSC) 0.24 0.15 1.57 1.27[0.94-1.70] 1.16 x 10"
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Table 5-8 - Stepwise logistic regression results for Non-immune SNPs

The results for the multivariate model using the Non-immune SNPs are shown below. The table
presents the estimate of the effect, its standard error, the S-coefficient, the calculated odds ratio
with its confidence interval, and the P-value of the estimate in the final model for each of the
included genomic annotations in the final model.

Annotation Estimate Std. Error B OR [LCI-HCI] P-value
Intercept -8.20 0.10 -81.54 0.0 [0.00-0.00] 0.00 x 10"
Affymetrix_250k_Nsp 0.30 0.14 2.24 1.36 [1.04-1.77] 2.49 x 102
Affymetrix_250k_Sty 0.33 0.13 2.50 1.39 [1.07-1.79] 1.25x 10
Affymetrix_5.0 0.09 0.13 0.74 1.10 [0.86-1.41] 459 %10
Affymetrix_6.0 0.40 0.06 6.79 1.50 [1.33-1.68] 1.12x10™
Affymetrix_10k 0.75 0.26 2.87 2.11[1.27-3.51] 4.12x10%
Affymetrix_50k.1 -0.05 0.13 -0.37 0.95 [0.74-1.23] 7.11x10™
Affymetrix_50k.2 -0.19 0.14 -1.38 0.82 [0.63-1.08] 1.68 x 10"
lNlumina_300 0.70 0.07 10.36 2.00 [1.76-2.29] 3.77x 107
lNlumina_550 0.97 0.15 6.26 2.63 [1.94-3.56] 3.97x10™
lNlumina_650 0.03 0.15 0.20 1.03 [0.77-1.37] 8.41x 10
Perlegen 0.30 0.05 6.20 1.35 [1.23-1.48] 5.75x10™°
eQTLs 0.63 0.06 10.96 1.89[1.68-2.11] 5.76 x 1022
Open Chromatin 0.46 0.09 5.28 1.59 [1.34-1.89] 1.27 x 10"
Strong Enhancer (proximal) 0.11 0.08 1.44 1.12 [0.96-1.31] 1.49 x 10
Distance to TSS 0.00 0.00 -14.21 1.00 [1.00-1.00] 7.64 x 107
Exons 0.53 0.08 6.99 1.71[1.47-1.98] 2.69 x 102
Pos. Sel. Genes 0.00 0.05 -0.06 1.00 [0.90-1.11] 9.52x 10"
vega Genes 0.09 0.05 2.04 1.10 [1.00-1.20] 4.18x 10
DNase Clusters 0.42 0.04 9.30 1.52 [1.39-1.66] 1.46 x 10°°
Heterochrom/lo -0.16 0.05 -3.39 0.85 [0.77-0.93] 6.94x 10
Txn Elongation -0.29 0.06 -4.62 0.75 [0.66-0.85] 3.93x 10
5Kb TSS 0.18 0.06 3.23 1.20 [1.07-1.33] 1.24x 10
tfbs Conserved 0.10 0.06 1.52 1.10 [0.97-1.24] 1.30x 10"
ORegAnno 0.12 0.10 1.24 1.13 [0.93-1.37] 2.14x 10™
Repressed 0.23 0.06 4.06 1.26 [1.13-1.41] 4.80x 10
Closed Chromatin 0.03 0.08 0.32 1.03 [0.87-1.21] 7.48 x 10"
Weak Enhancer (distal) 0.05 0.06 0.87 1.05 [0.94-1.18] 3.86x 10"
5’'UTR -0.23 0.13 -1.85 0.79 [0.62-1.01] 6.47 x 10™
Syn. SNPs (UCSC) -0.29 0.09 -3.31 0.75 [0.63-0.89] 9.35x10™
Strong Enhancer (distal) -0.09 0.08 -1.05 0.92 [0.78-1.08] 2.92x 10"
TS miRNA -0.06 0.71 -0.08 0.94[0.23-3.79] 9.33x10™
Insulator -0.23 0.09 -2.45 0.80 [0.66-0.96] 1.41 x 10
Repetitive/CNV (distal) -0.33 0.50 -0.66 0.72[0.27-1.92] 5.12 x 10™
Enhancers (sequence) 0.77 0.23 3.37 2.16 [1.38-3.37] 7.41x 10
Intronic SNPs 0.04 0.06 0.76 1.04 [0.94-1.16] 4.45 x 10
vega PseudoGenes -0.16 0.12 -1.32 0.86 [0.68-1.08] 1.88 x 10"
28 specs. algmt. 0.30 0.05 5.81 1.35[1.22-1.50] 6.35 x 10
Non.Syn. SNPs (UCSC) 0.16 0.08 2.03 1.17 [1.01-1.36] 4.23x10%
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5.3.4.3 Cancer SNPs
The results for the stepwise logistic regression of Cancer SNPs are shown in
Figure 5-9 and are also presented in Table 5-9. The Final Model in the Cancer
SNPs was used to analyse the Non-cancer SNPs (see Table 5-10). A
heterogeneous disease would be unlikely to have similar pathways to a
phenotype. Since cancer is a very heterogeneous disease classification and the
Cancer SNP set contained a small number of associated SNPs (268 SNPs), any
result would have been encouraging. Despite these problems, we have obtained
15 annotations influencing cancer association, five of which were significantly
different between Cancer and Non-cancer SNPs: Exons, conserved regions in
primates in a 44 species alignment, coding SNPs, weak enhancers (proximal)
regions, and intronic SNPs. The Cancer SNPs had a higher odds ratio in the
conserved regions and weak enhancers than the Non-cancer SNPs suggesting a
more important role of conserved regions in cancer aetiology. While the exons
are significantly more enriched for Cancer SNPs than Non-cancer SNPs, the
coding SNPs and the introns are significantly depleted for Cancer SNPs. This
seems contradictory, but it is not since the annotations were analysed relative
to each other. The McKelvey and Zavoina’s pseudo-r? value for the Final Model
of the Cancer SNPs was 0.41, which meant that the included genomic
annotations improved the Base model (base model: 0.20). The McKelvey and
Zavoina’s pseudo-r? value for the Base model of the Non-cancer SNPs was 0.11

and for the full model was 0.37.
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Figure 5-12 - Cancer SNPs vs. Non-cancer SNPs
Odds ratios for all genomic annotations in the Cancer SNPs model sorted after significance. Cancer

SNPs are shown as [1 and Non-cancer SNPs are shown as <. Solid symbols indicate significance at P-
value < 0.05. Red stars (><) indicate significant differences between the two datasets.
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Table 5-9 - Stepwise logistic regression results for Cancer SNPs

The results for the multivariate model using the Cancer SNPs are shown below. The table presents
the estimate of the effect, its standard error, the f-coefficient, the calculated odds ratio with its
confidence interval, and the P-value of the estimate in the final model for each of the included

genomic annotations in the final model. Significant P-values in bold.

Annotation Estimate  Std. Error B OR [LCI-HCI] P-value
Intercept -10.44 0.19 -55.11 0.00 [0.00-0.00] 0.00 x 10"
Affymetrix_250k_Nsp 0.24 0.41 0.58 1.27[0.57-2.82] 5.60 x 10"
Affymetrix_250k_Sty 0.57 0.38 1.51 1.77 [0.84-3.74] 1.32x 10"
Affymetrix_5.0 -0.07 0.37 -0.19 0.93 [0.45-1.94] 8.52x 10
Affymetrix_6.0 0.50 0.18 2.85 1.65[1.17-2.32] 4.41x10%
Affymetrix_10k 1.45 0.79 1.83 4.25[0.90-20.03] 6.72x 10
Affymetrix_50k.1 0.04 0.33 0.11 1.04 [0.55-1.96] 9.13x 10"
Affymetrix_50k.2 -1.52 0.65 -2.35 0.22 [0.06-0.78] 1.86 x 10
lllumina_300 1.38 0.20 6.76 3.99 [2.67-5.96] 1.35x10™
lllumina_550 1.55 0.57 2.73 4.69 [1.55-14.24] 6.35x 10
lllumina_650 -0.08 0.54 -0.15 0.92 [0.32-2.65] 8.78 x 10"
Perlegen 0.26 0.14 1.78 1.29 [0.98-1.71] 7.43x10%
Distance to TSS 0.00 0.00 -4.29 1.00 [1.00-1.00] 1.75x 10
44 specs. algmt. primates 0.60 0.16 3.78 1.82 [1.33-2.48] 1.57 x 10"
DNase Clusters 0.48 0.14 3.54 1.62 [1.24-2.11] 3.97x10™
Closed Chromatin -0.41 0.15 -2.76 0.66 [0.49-0.89] 5.74x 10
Poised Promoter 1.13 0.39 2.88 3.08 [1.43-6.62] 3.94x 10"
Weak Enhancer (proximal) 0.54 0.20 2.77 1.72 [1.17-2.53] 5.54x 10
eQTLs 0.49 0.19 2.66 1.64 [1.14-2.35] 7.74 x 10
Intronic SNPs -0.31 0.13 -2.34 0.73 [0.56-0.95] 1.92x 10
Gained Stops 2.06 0.73 2.83 7.82 [1.88-32.47] 4.63x10%
PREMOD 0.39 0.17 2.24 1.48 [1.05-2.08] 2.50 x 10
Heterochrom/lo -0.30 0.14 -2.09 0.74 [0.56-0.98] 3.67x 10
Exons 1.08 0.26 4.20 2.95 [1.78-4.89] 2.64x10%
Coding SNPs (UCSC) -0.89 0.28 -3.16 0.41[0.24-0.71] 1.58 x 10
Weak Promoter -0.55 0.29 -1.87 0.58 [0.32-1.03] 6.17 x 10
3'UTR -0.43 0.26 -1.62 0.65 [0.39-1.09] 1.04 x 10
Exapted Repeats -12.08 245.23 -0.05  0.00[0.00-3.13x10"”%]  9.61x 10"
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Table 5-10 - Stepwise logistic regression results for Non-cancer SNPs
The results for the multivariate model using the Non-cancer SNPs are shown below. The table
presents the estimate of the effect, its standard error, the S-coefficient, the calculated odds ratio
with its confidence interval, and the P-value of the estimate in the final model for each of the
included genomic annotations in the final model. Significant P-values in bold.

Annotation Estimate Std. Error B OR [LCI-HCI] P-value
Intercept -7.54 0.05 -141.53  0.00 [0.00-0.00] 0.00 x 10"
Affymetrix_250k_Nsp 0.38 0.13 3.06 1.47 [1.15-1.88] 2.21x10%
Affymetrix_250k_Sty 0.38 0.12 3.11 1.46 [1.15-1.85] 1.88 x 10
Affymetrix_5.0 0.05 0.12 0.43 1.05 [0.83-1.33] 6.67 x 10
Affymetrix_6.0 0.35 0.06 6.22 1.41[1.27-1.58] 4.87 x10™°
Affymetrix_10k 0.48 0.26 1.81 1.61[0.96-2.69] 7.06 x 10
Affymetrix_50k.1 -0.08 0.12 -0.68 0.92 [0.72-1.17] 4.98x 10"
Affymetrix_50k.2 -0.06 0.13 -0.51 0.94 [0.73-1.20] 6.08 x 10
lNlumina_300 0.59 0.06 9.83 1.81[1.61-2.03] 8.01x107
lNlumina_550 0.93 0.14 6.82 2.54 [1.94-3.31] 9.34x10™"
lNlumina_650 0.23 0.13 1.81 1.26 [0.98-1.63] 6.97 x 10
Perlegen 0.27 0.05 5.89 1.31[1.20-1.43] 3.75x 10
Distance to TSS 0.00 0.00 -15.98 1.00 [1.00-1.00] 1.69 x 10”7
44 specs. algmt. primates 0.14 0.05 2.84 1.15 [1.05-1.27] 4.47 x10%
DNase Clusters 0.46 0.04 11.20 1.58 [1.46-1.71] 3.88x 10
Closed Chromatin -0.45 0.05 -9.98 0.64 [0.58-0.70] 1.79x 102
Poised Promoter 0.59 0.15 3.96 1.80 [1.34-2.40] 7.57x10%
Weak Enhancer (proximal) -0.14 0.07 -2.09 0.87 [0.76-0.99] 3.62x10%
eQTLs 0.79 0.05 15.45 2.21[2.00-2.45] 8.12x10™
Intronic SNPs 0.03 0.04 0.77 1.03 [0.95-1.12] 4.43x10™
Gained Stops 1.14 0.28 4.02 3.12 [1.79-5.43] 5.92x 10
PREMOD 0.17 0.06 2.98 1.18 [1.06-1.32] 2.89x 10
Heterochrom/lo -0.18 0.04 -4.17 0.84 [0.77-0.91] 3.03x10%
Exons 0.48 0.08 5.88 1.62 [1.38-1.91] 4.16 x10%
Coding SNPs (UCSC) 0.07 0.08 0.89 1.08 [0.92-1.26] 3.73x 10"
Weak Promoter -0.02 0.07 -0.24 0.98 [0.85-1.13] 8.10x 10
3'UTR -0.03 0.07 -0.43 0.97 [0.84-1.11] 6.70 x 10
Exapted Repeats 0.48 0.28 1.70 1.61[0.93-2.79] 8.98 x 10

5.3.4.4 Normal Variation SNPs vs. Disease SNPs

Another partitioning of the Significant SNPs (2013) was undertaken to divide

the total number of significantly trait-associated SNPs into SNPs associated with

Normal Variation traits (see page 211) and Disease traits (see page 218). The

comparison between SNPs associated with Normal Variation traits, such as

height, eye or hair colour, and SNPs associated with Diseases showed that there

was a common set of genomic annotations that influenced trait-association

status. The results of the Final Model for the Normal Variation SNPs are shown

in Table 5-11 and the results for the Disease SNPs are listed in Table 5-12.
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Odds Ratios - Log Scale

Figure 5-13 shows these common genomic annotations. The Disease SNPs were

significantly different to the Normal Variation SNPs in exons and 3'UTRs.
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Figure 5-13 - Normal Variation SNPs vs. Disease SNPs

Odds ratios for all common genomic annotations in the Disease SNPs and Normal Variation SNPs
models sorted after significance in the Disease model. Disease SNPs are shown as [1 and Normal
Variation SNPs are shown as <. Solid symbols indicate significance at P-value < 0.05. The red stars
(*) indicate significant differences between the two datasets.

The McKelvey and Zavoina’s pseudo-r? value for the final model determined for
the Normal Variation SNPs was 0.38, while for the Base model it was 0.08. The
Base model for the Disease SNPs had a McKelvey and Zavoina’s pseudo-r? value

of 0.14 and for the final model it was 0.39.
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Table 5-11 - Stepwise logistic regression results for Normal Variation SNPs
The results for the multivariate model using the Normal Variation SNPs are shown below. The table
presents the estimate of the effect, its standard error, the S-coefficient, the calculated odds ratio
with its confidence interval, and the P-value of the estimate in the final model for each of the
included genomic annotations in the final model. Significant P-values in bold.

Annotation Estimate  Std. Error B OR [LCI-HCI] P-value
Intercept -8.67 0.10 -88.45 0.00 [0.00-0.00] 0.00 x 10"
Affymetrix_250k_Nsp 0.34 0.19 1.78 1.40 [0.97-2.03] 7.52x 10
Affymetrix_250k_Sty 0.18 0.19 0.97 1.20[0.83-1.72] 3.33x10"
Affymetrix_5.0 0.06 0.18 0.33 1.06 [0.75-1.51] 7.41x 10
Affymetrix_6.0 0.34 0.08 4.16 1.40 [1.20-1.65] 3.14x10%
Affymetrix_10k 0.92 0.34 2.71 2.50 [1.29-4.85] 6.63x10%
Affymetrix_50k.1 0.09 0.18 0.50 1.09 [0.77-1.54] 6.19 x 10
Affymetrix_50k.2 -0.13 0.20 -0.65 0.88 [0.60-1.29] 5.16 x 10
lNlumina_300 0.45 0.09 4.83 1.56 [1.30-1.88] 1.34x 10
lNlumina_550 0.68 0.19 3.60 1.98 [1.36-2.87] 3.21x10%
lllumina_650 0.26 0.18 1.46 1.29 [0.92-1.83] 1.45 x 10
Perlegen 0.39 0.07 5.91 1.48 [1.30-1.68] 3.44x10%
Distance to TSS 0.00 0.00 -10.19 1.00 [1.00-1.00] 2.09 x 10
Exons 0.70 0.10 7.28 2.02 [1.67-2.44] 3.27x10"
eQTLs 0.69 0.08 8.57 1.99 [1.70-2.33] 1.02x10™
Open Chromatin 0.49 0.07 7.32 1.63 [1.43-1.86] 2.44x 10"
DNase Clusters 0.36 0.06 5.85 1.43 [1.27-1.61] 4.79x 10
44 specs. algmt. 0.47 0.13 3.68 1.59 [1.24-2.04] 2.35x10*
RNA Genes -12.19 104.08 -0.12  0.00[0.00-2.00x10™]  9.07x 10"
Syn. SNPs (UCSC) -0.45 0.12 -3.72 0.64 [0.50-0.81] 1.99 x 10
Intergenic SNPs -0.16 0.06 -2.59 0.85 [0.75-0.96] 9.74x 10
Txn Elongation -0.26 0.09 -2.99 0.77 [0.65-0.91] 2.76 x 10
5Kb TSS 0.40 0.08 4.77 1.50 [1.27-1.76] 1.82x10°
1Kb TSS -0.32 0.12 -2.59 0.73[0.57-0.93] 9.72x 10
Indels Pure regions 0.16 0.07 2.26 1.18 [1.02-1.35] 2.37x10%
Weak Enhancer (proximal) -0.24 0.11 -2.27 0.79 [0.64-0.97] 2.34x10%
Repressed 0.16 0.08 1.98 1.17 [1.00-1.37] 4.77 x 10
3'UTR -0.26 0.11 -2.40 0.77 [0.62-0.95] 1.65x 10
Insulator -0.30 0.13 -2.27 0.74 [0.57-0.96] 2.31x10%
ORegAnno 0.25 0.13 1.90 1.29 [0.99-1.68] 5.69 x 10
44 specs. algmt. primates 0.19 0.09 2.24 1.21[1.02-1.44 2.54 x 10
44 specs. algmt. plac. mmls -0.22 0.13 -1.70 0.81 [0.63-1.03] 8.91 x 10
5’UTR -0.34 0.19 -1.80 0.71 [0.49-1.03] 7.19 x 10
CpG Islands 0.34 0.14 2.47 1.40 [1.07-1.83] 1.37 x 10
Active Promoter -0.27 0.13 -2.03 0.76 [0.59-0.99 4.27 x 10
Enhancers (sequence) 0.57 0.34 1.67 1.76 [0.91-3.42] 9.47 x 10
Splice Sites -12.41 258.30 -0.05  0.00[0.00-3.02x10"*"]  9.62x10"
Heterochrom/lo -0.11 0.07 -1.65 0.89 [0.78-1.02] 9.98 x 10
17 specs. algmt. -0.15 0.09 -1.65 0.86 [0.71-1.03] 9.87 x 10
PREMOD 0.14 0.09 1.64 1.15[0.97-1.36] 1.01x 10*
vega Genes 0.09 0.06 1.44 1.09 [0.97-1.23] 1.50 x 10
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Table 5-12 - Stepwise logistic regression results for Disease SNPs

The results for the multivariate model using the Disease SNPs are shown below. The table presents
the estimate of the effect, its standard error, the f-coefficient, the calculated odds ratio with its
confidence interval, and the P-value of the estimate in the final model for each of the included

genomic annotations in the final model. Significant P-values in bold.

Annotation Estimate  Std. Error B OR [LCI-HCI] P-value
Intercept -9.03 0.10 -89.78 0.00 [0.00-0.00] 0.00 x 10"
Affymetrix_250k_Nsp 0.36 0.18 2.01 1.44 [1.01-2.05] 4.49 x 10"
Affymetrix_250k_Sty 0.55 0.17 3.22 1.74 [1.24-2.43] 1.27 x 10
Affymetrix_5.0 0.02 0.17 0.15 1.03 [0.74-1.42] 8.82x 10
Affymetrix_6.0 0.43 0.08 5.18 1.53 [1.30-1.80] 2.24x 10"
Affymetrix_10k 0.44 0.41 1.09 1.56 [0.70-3.46] 2.75x 10"
Affymetrix_50k.1 -0.36 0.20 -1.81 0.70 [0.47-1.03] 7.06 x 10
Affymetrix_50k.2 -0.25 0.19 -1.31 0.78 [0.53-1.13] 1.90 x 10
lllumina_300 0.77 0.09 8.69 2.15 [1.81-2.55] 3.59x10™
lllumina_550 1.18 0.22 5.38 3.26 [2.12-5.01] 7.52x 10
lllumina_650 0.12 0.21 0.59 1.13 [0.75-1.71] 5.53x 10"
Perlegen 0.20 0.07 3.05 1.23 [1.08-1.40] 2.33x10%
Distance to TSS 0.00 0.00 -9.51 1.00 [1.00-1.00] 1.88 x 107
eQTLs 0.84 0.08 10.99 2.33[2.00-2.71] 4.50 x 10
DNase Clusters 0.41 0.06 6.40 1.50 [1.33-1.70] 1.55x 10™°
Open Chromatin 0.48 0.07 6.72 1.62 [1.41-1.87] 1.84x 10™
Exons 0.37 0.12 3.06 1.44 [1.14-1.82] 2.22x 10"
Strong Enhancer (proximal) 0.48 0.09 5.12 1.61[1.34-1.94] 3.00 x 10”7
44 specs. algmt. primates 0.29 0.09 3.31 1.33[1.12-1.58] 9.30x 10
Syn. SNPs (UCSC) -0.61 0.13 -4.71 0.54 [0.42-0.70] 2.48 x 10
Gained Stops 1.65 0.33 4.96 5.23 [2.72-10.05] 6.93x 10"
Repressed 0.27 0.08 3.43 1.31[1.12-1.53] 6.11x 10
Heterochrom/lo -0.29 0.07 -4.39 0.75 [0.66-0.85] 1.15x 10
Txn Elongation -0.29 0.09 -3.28 0.75 [0.63-0.89] 1.05x 10
5Kb TSS 0.28 0.08 3.55 1.32[1.13-1.53] 3.85x10™
Insulator -0.40 0.13 -2.99 0.67 [0.52-0.87] 2.76 x 10
vega Genes 0.21 0.06 3.42 1.23 [1.09-1.39] 6.33x10"
Pos. Sel. Genes -0.22 0.07 3.24 0.80 [0.70-0.92] 1.18x 10
Coding SNPs (UCSC) 0.37 0.13 2.92 1.45 [1.13-1.86] 3.51x10%
Weak Enhancer (distal) 0.20 0.08 2.55 1.22 [1.05-1.41] 1.09 x 10
Insulators (sequence) -0.22 0.11 -2.04 0.80 [0.64-0.99] 4.10x 10"
3'UTR 0.21 0.10 2.01 1.23[1.01-1.50] 4.42 x 10
28 specs. algmt. plac. mmls 0.31 0.13 2.42 1.36 [1.06-1.74] 1.56 x 10
28 specs. algmt. -0.23 0.12 -1.97 0.79 [0.63-1.00] 4.91x 10"
Active Promoter -0.22 0.11 -1.97 0.80 [0.64-1.00] 4.89 x 10"
PREMOD 0.15 0.09 1.79 1.17 [0.99-1.38] 7.28x 10
Splice Sites -11.53 149.85 -0.08  0.00[0.00-3.55x10™*]  9.39x 10"
Exapted Repeats 0.67 0.36 1.87 1.95 [0.97-3.94] 6.18 x 10
Enhancers (sequence) 0.61 0.34 1.81 1.85[0.95-3.59] 7.01x10%
Weak Enhancer (proximal) -0.17 0.10 -1.67 0.85 [0.69-1.03] 9.55x 10
Microsatellites -10.65 109.66 -0.10 0.00[0.00-5.27 x 10"%¥]  9.23x 10"
TS miRNA 0.90 0.52 1.72 2.47 [0.88-6.90] 8.52x 10
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5.3.5 Pseudo-r’ values
As mentioned in the methods section of this chapter, we used the McKelvey and
Zavoina’s pseudo-r? value. The McKelvey and Zavoina’s pseudo-r? value has two
interpretations: the first and third approach of the linear regression r? outlined
in the methods section of this chapter [150, 151, 153]. First, it can be
understood as the proportion of variance explained by a model. It can also be
seen as a square of the correlation between the model’s predicted values for the
dependent variable and its actual values. The dataset with the highest pseudo-r?
value was the Immune SNPs with a value of 0.45. The base models containing
only the genotyping arrays ranged between 0.08 and 0.20 depending on the

dataset under investigation.

Table 5-13 - McKelvey and Zavoina’s pseudo-r2 values for different SNP sets

This table presents the McKelvey and Zavoina’s pseudo-r” values calculated for the different logistic
regression models calculated for the Base model containing only the genotyping arrays (Genotyping
arrays only) and the Final Model, which was returned as the final model (Final model).

Dataset Genotyping arrays only Final model
Significant SNPs (2011) 0.14 0.42
Suggestive SNPs (2011) 0.16 0.18

Significant SNPs (Difference) 0.12 0.31
Significant SNPs (2013) 0.12 0.36
Immune SNPs 0.18 0.45
Non-immune SNPs 0.11 0.35
Cancer SNPs 0.20 0.41
Non-cancer SNPs 0.11 0.37
Normal Variation SNPs 0.08 0.38
Disease SNPs 0.14 0.39
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5.4 Discussion
In this chapter we analysed univariate and multivariate logistic regression
models to analyse the distribution of trait-associated variants. We analysed
eight different datasets, which consisted of two thresholds of significance, a
more recent set of trait-associated variants and the analysis of trait-specific
subsets. The multivariate analysis obtained different models for the trait-

subsets, which allowed the trait-specific conclusions.

The univariate regression was performed to allow comparisons between the
sampling and permutation methods, which could be called univariate analyses
as they were analysing individual annotations. The analysis of the univariate
regression returned odds ratios and standard errors, which were not
significantly different to the results returned by the permutations. This
suggested that univariate logistic regression might be a useful method of
analysing individual annotations, as they were performed significantly faster
(one day for 100 samples vs. three days for 20,000 permutations vs. two hours

for the univariate regression).

The iterative stepwise logistic regression approach in- or excluded genomic
annotations according to the information they added to the model. This was
calculated as the Akaike’s Information Criterion (AIC), which was defined in the
Methods (see page 102). Once a genomic annotation was included, it could have
a positive or negative influence on trait-association status, which was indicative
of enrichment for or depletion of trait-associated variants, respectively.
Genomic annotations with 100% overlap or non-overlap with trait-associated
SNPs were deemed more influential or informative than those annotations that

occurred with trait-associated variants only 50% of the time.
The stepwise logistic regression of the multivariate model was performed in

order to remove the redundant information and balanced the information

carried by each genomic annotation against the included number of genomic
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annotations. The model showed the relative influence of the annotations to each
other, once all other genomic annotations and genotyping arrays were taken
into account. This can clearly be seen in Figure 5-3 and Table 5-2, where five
genomic annotations were significantly depleted, which were enriched in the
individual annotation analyses. Four of these (transcriptional elongation,
synonymous SNPs, active promoters, and 5’UTRs) were enriched in all of the
methods analysing the genomic annotations individually. These four
annotations, which were depleted in the multivariate model, are all coinciding
with or are close to coding regions of the genome and could be overlapping with
the distance to TSS annotation. The coding regions are possibly
overrepresented in the analysis as the majority of the genomic annotations are
annotating genes or genic regions, while only 1.5% of the genome is thought to
be coding. However, since there is a bias in the ascertainment of the genomic
annotation there is, as previously discussed, also a bias in the inclusion of the
SNPs on the genotyping arrays with clear preferences towards the coding
regions of the genome. It is also possible that the univariate methods overstated
the importance of the analysed genomic annotation, as the influences of the
other genomic annotations were not taken into account in the analysis. The
latter is a more plausible explanation since the majority of the genomic
annotations are not mutually exclusive and therefore share some of the
information. These results were therefore not contradictory to previous
findings but did highlight the necessity of analysing the genomic annotations
together to add extra information into the model. A possible improvement to
this model could be to analyse each individual annotation after the genotyping
arrays were included in the model as a single variate combining the information
carried by all genotyping arrays. Alternatively, an analysis of the genomic
annotations without the distance to TSS could be performed to investigate its
effect on these annotations. This was not done, as we wanted to compare the
univariate analyses to each other and neither the permutation nor the sampling
method allowed that particular step. However, it would add an additional step
into the comparison process of univariate and multiple variate analyses and

could be performed in future studies.
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The results for the trait-associated SNPs with P-values that did not pass the
genome-wide significance threshold (Suggestive SNPs (2011)) were very
comparable to the results for the significantly trait-associated SNPs. The results
were therefore consistent with the hypothesis that the dataset of suggestively
trait-associated SNPs was a mixture of false positives and real trait-associated
SNPs. The real trait-associations were, however, not of sufficient magnitude to
reach significance at the genome-wide level. These real trait-associated variants
would be expected to have the same bias towards particular genomic features
as the significantly trait-associated variants [65]. False positives, however,
would be expected to have a similar genomic annotation profile as non-

associated variants.

GWAS identify many trait-associated variants with different P-values of trait-
association, many of which do not pass the genome-wide significance threshold.
It is therefore expected, that for every reported suggestive SNP there were
many more that were not reported, since the general assumption is that
suggestive associations provided less information on the trait. Additionally, the
NHGRI catalogue reported genome-wide studies associations with association
P-values starting from 5 x 10-5 while the more commonly accepted P-value for
suggestively associated SNPs started at 5 x 104 [36, 85]. The Significant SNPs
(2011) were therefore a more comprehensive dataset, despite it being smaller,
and the conclusions drawn from its results were thus expected to be more
informative. However, the similarity of enrichment and depletion trends
between Significant SNPs (2011) and Suggestive SNPs (2011) were encouraging
and may aid further research aimed at identifying true positives. The genomic
annotations, which were shown to be important for significant associations
could be used to calculate a prior probability of trait-association. Operatively,
this in turn could be used to adjust the P-value of suggestive SNPs, which could

lead to more SNPs that pass the chosen significance threshold.
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The newly included annotation of distance to TSS was quantitative, rather than
binary and including the annotation explained an additional 20%, as judged by
the McKelvey and Zavoina’s pseudo-r?, of the observed variation in Significant
SNPs (2011). While the new final model, obtained after including distance to
TSS, did include four additional annotations only one of them was significant
and they did not contribute greatly to the pseudo-r? value. It is likely, that the
model included more annotations, as the distance to TSS annotation added
noise, as well as signal. This meant that including the additional genomic

annotations further aided in explaining the observed variation.

5.4.1 Immune SNPs vs. Non-immune SNPs
The aim of the comparison of Immune vs. Non-Immune SNPs was to identify a
set of genomic annotations that were significantly different between the two
datasets, thereby allowing the drawing of immune specific conclusions. We
compared the Final Model obtained for the Immune SNPs with the estimates
obtained for the Non-immune SNPs using the same genomic annotations. The
odds ratios obtained for the two datasets differed in many genomic annotations,
but the most striking was for the positively selected genes. These genic regions
were high-confidence orthologues in a multi-species alignment [115], which
were then tested for positive selection [115]. However, as mentioned in the
Methods section, these regions were not restricted according to their positive
selection score, so that the regions analysed here highlight highly conserved
regions. They were larger than the other conserved elements included in the
analyses and also included pseudo genes and were significantly depleted for
Immune SNPs. Depletion in conserved sites was shown by the significant odds
ratios observed in the conserved regions identified in a 28 species alignment.
The conserved transcription factor binding sites were significantly depleted for
Immune SNPs and significantly different from the Non-immune SNPs. The
depletion in these conserved sites corroborated the observed significant
depletion in the positively selected genes. It is assumed that they have an
important function in the cell so they were conserved over time [64], so that

their disruption would likely be deleterious. The eQTLs were significantly more
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enriched for Immune SNPs than Non-immune SNPs, which could highlight
potential involvement of eQTLs in the immune response. A recent study
discovered that both cis- and trans-eQTLs were involved in newly identified cell-
type specific networks in the pathogenesis of autoimmune diseases [155].
However, it has generally been accepted that all trait-associated SNPs were
more likely to be eQTLs, and the enrichment in the Non-immune SNPs was
therefore not surprising [110]. The significant difference in depletion in the
closed chromatin annotations was also reasonable, if not expected, as the
annotation was obtained from a lymphoblastoid cell line [126]. It was therefore
encouraging to see that Immune SNPs were depleted in chromatin states
associated with closed and not transcribed genes in a cell line co-ordinating
immune response. The same reasoning is true for the Heterochromatin/low
transcription regions, which were obtained from a lymphoblastoid cell after a

comparison of nine different cell lines.

5.4.2 Cancer SNPs vs. Non-cancer SNPs
Since only 268 SNPs were associated to cancers, a very heterogeneous disease
classification in itself, the identification of any genomic annotations that
significantly influence association status would be surprising and encouraging.
When the results of the regression model for the Cancer associated SNPs were
compared to the results for the Non-cancer SNPs, five genomic annotations
were significantly different between the two sets. Exons, conserved sites in
primates, weak enhancers (proximal) were significantly more enriched in
Cancer SNPs than Non-cancer SNPs while coding SNPs and intronic SNPs had
lower odds ratios for Cancer SNPs. As mentioned before, a disruption in

conserved sites is likely to be deleterious.

The results for the Cancer SNPs showed significant enrichment in the exons, but
significant depletion in the coding and intronic SNPs. As mentioned before, the
stepwise logistic regression approach analysed the genomic annotations in
relation with each other, which explains results, which may seem contradictory

at first glance. While exons are enriched in comparison with the other genomic
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annotations, coding SNPs were significantly depleted in comparison when all
other genomic annotations were taken into account. The weak enhancer
annotation was significantly enriched for Cancer SNPs and significantly
depleted for Non-cancer SNPs. This genomic annotation was identified as
regions with a distinct combination of histone modifications that were
repeatedly associated with enhancer regions across nine different human cell
lines [82]. The method identified four different states of enhancers that were
divided according to the strength of their gene regulation and the observed
distance between enhancers and the expressed genes. While the distance
between the enhancers and the genes did not change between cell lines, the
strength of the regulations did [82]. The enhancers analysed here were weak
enhancers in the GM12878 lymphoblastoid cell line, but could be strong
enhancers in a different cell line. The analysis therefore indicates that Cancer

SNPs could lie within strong enhancers.

5.4.3 Normal Variation SNPs vs. Disease SNPs
We identified the genomic annotations influential on the association status of
SNPs associated with normal variation traits and compared them with the
genomic annotations that were identified as important for disease-associated
SNPs. The comparison highlighted that there were 19 genomic annotations that
were influential for both datasets, but two had significantly different impact on
trait-association status. The exons had a significantly higher impact on the SNPs
associated with normal variation than with diseases. The 3'UTRs were
significantly depleted for the Normal Variation SNPs, while they were
significantly enriched for the Disease SNPs. The other 17 annotations had odds
ratios that were very similar between the two SNP categories. The common
annotations significant for both categories showed that there are some common
underlying biological mechanisms for the disease- and the normal variation-

associated SNPs.

5.4.4 Pseudo-r’ values
The McKelvey and Zavoina’s pseudo-r? value was designed to be analogous of

two interpretations of the traditional r? value obtained by linear regression. The
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full models varied between 18-42% of explained variability, while the base
models containing only the genotyping arrays varied between 11-20%. These
values may have been higher if validated trait-causing mutations were analysed.
Although the false positive rate has decreased since multiple stage testing
approaches have been implemented [156] and meta-analyses are continuously
being performed to analyse trait-association across different arrays and studies
[57, 63, 144, 157, 158], false positives may still exist in the trait-associated SNP
datasets. Additionally, false negatives will undoubtedly be included in the
background data. False negatives occur when a study does not have the
required sample size to detect variants with modest effects that did not reach
the genome-wide significance threshold [32, 58]. As in any analysis, this lack of
information about true associations will have impacted the results, although
there is no way of knowing how much and how the results would have differed
if there was a clear separation between true and false positives. There is
additionally an imbalance of non-associated SNPs vs. trait-associated SNPs
(~3.5 million vs. a few hundreds or thousands). This disproportionate amount
of non-associated variants will have skewed the results of logistic regression to

be better at explaining non-associated than associated data.

5.4.5 Method discussion and future work
The logistic regression method is highly affected by co-linearity of the
independent variables, as it is assumed that the included variables are
independent from each other. If complete co-linearity of variables/annotations
occurred in the analyses, an error was printed and the analysis stopped. While
co-linearity could have occurred at certain instances, only some of the genomic
annotations would be perfectly correlated with each other. An example of
almost perfect co-linearity would be the position of genes downloaded from
more than one database. While the databases would have some differences, the
majority of the covered bases by the annotated genes would overlap with each
other. It was therefore prudent to remove one set of genes from the multivariate
analyses, which we did by excluding all genes from the OMIM database. For

future studies it could be worthwhile to assess the partial co-linearity of the
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annotations by possibly by looking at a similarity matrix between annotations
or analysing the correlation between annotations using a Spearman’s rho
correlation. The gained values could be used as a threshold for the inclusion of
genomic annotations in the experimental model, ie., into the analysis itself.
Alternatively, the stability of the final multivariate models could be assessed by
cross-validation. With respect to univariate models it must be remembered that
the variance explained in univariate analyses will not be additive in multivariate
analyses.

The genotyping arrays were included as independent factors rather than one
single co-variate. If there has been an annotation bias in the selection of variants
on an array i.e. non-synonymous SNPs, this could have given certain genotyping
arrays an erroneously inflated weight thereby decreasing the effect of any
included genomic annotation. A genotyping array that could have potentially
have been affected by this is the [lumina 300 array given the biased selection of
variants. Fitting the number of genotyping arrays containing a particular SNP,
rather than each array individually, may allow for the correction for multiple
testing without biasing the annotation. This is also a possible step that could be
taken in future analyses.

The results from the trait-subset analyses could possibly be used to guide study
designs on a trait class basis, where the results of GWAS analysing certain trait-
categories would be analysed differently or the SNPs selection biased towards
those annotations types of annotation enrich in immune versus non-immune
traits for example. The follow up of GWAS results could be guided according to
the importance of the genomic annotations from the different subsets, as it was
shown that Immune-associated SNPs have a completely different genomic
signature than, e.g., Cancer SNPs. While these analyses are great for the analysis
of future GWAS, it is unclear if they could guide next generation sequencing
studies. It is potentially possible to guide whole genome sequencing studies, but
it is less likely that this could guide exome studies. The results presented in this
thesis do include genomic areas outside of coding regions, so for the results to
be valid in exome sequencing studies it would be recommended to perform

additional logistic regression analyses with only coding areas.
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6 APPLICATION OF METHODS TO OTHER DATA

6.1Introduction

As the permutation and stepwise regression methods have produced promising
results, which confirmed previous study results and were intuitive with
enrichment and depletion in expected genomic regions, we investigated the
applicability of our methods to two different datasets. The dataset used for the
permutation analysis was a set of SNPs associated to gene expression levels in
the Stockholm atherosclerosis gene expression study (STAGE) [83], which
investigated gene expression levels in seven tissues of a cohort of
cardiovascular disease patients. RNA was extracted from tissue biopsies of
skeletal muscle, atherosclerotic arterial wall, internal mammary artery, liver,
subcutaneous and visceral fat, and whole blood in 147 patients. The result of the
study was the identification of several thousand SNPs associated with changing
levels of gene expression in the different tissues. We analysed significant
associations, ie, SNPs with a P-value that were below the genome-wide
significance threshold. Experiments validating the effect on gene expression
were not performed, so they are only suspected to be eQTLs and were therefore
termed eSNPs. The investigation of the distribution of these eSNPs was an
opportunity to use different datasets for the permutation analysis, as well as
providing a thorough examination of the genomic distribution of potential
eQTLs. The analysis of a SNP set originating from a single study meant that the
background distribution was not as heterogeneous and taking account of
different genotyping platforms was no longer needed. In previous permutation
analyses (see Chapter 4) we strived to analyse the entire background of SNPs,
which were analysed for trait-association. Using just one study allowed the
creation of a background consisting of all SNPs tested for association to gene
expression levels. The background distribution for the eSNPs was therefore
changed accordingly for the analysis. The aim of the investigation was to
identify differences between the distributions of GWAS hits and eSNPs.

Furthermore, differences between tissue-specific eSNPs and eSNPs shared
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across different tissues were also investigated. If the results show significant
differences in enrichment/depletion patterns between GWAS hits and eSNPs, it
could imply that GWAS hits and eSNPs affect different pathways leading to
phenotypes.

We additionally wanted to apply a regression model to test the effect of using a
continuous distribution of P-values rather than an artificially created binary
variable for trait-association status. The use of a continuous distribution
allowed the analysis of all association P-values. This included more information
than the analysis of a binary variable, as all SNPs had a value associated with it,
informing on more SNPs. For this analysis we used the P-values obtained by a
meta-analysis investigating the genetic components of height published by the
Genetic Investigation of Anthropometric Traits (GIANT) consortium [57]. The P-
values were used rather than the effect sizes, which might have been more
informative, as these were not available at the time when the GIANT data was
downloaded. This meta-analysis combined a total of 61 studies investigating
height in different populations providing an in-depth analysis of the underlying
genetic factors of height. Since a continuous variable was used, we applied

linear rather than logistic regression.
6.2 Methods

6.2.1 STAGE eSNPs
A total of 109 patients rather than 147 patients had sufficient DNA, so the final
set of analysed individuals was 109. For the analyses of the eSNPs data the
background distribution was the intersection of the SNPs present in the dataset
used for the permutations and logistic regression in the previous chapters, and
the SNPs genotyped with the GenomeWideSNP_6 Affymetrix array used in the
STAGE study that passed quality control. The intersection of these two datasets
was used to ensure that an appropriate background distribution was used,
against which the observed data was compared. The background distribution
had to consider all the SNPs, which were tested for an association to changing

gene expression levels. This meant that only the SNPs that passed quality
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control represented the background distribution. This set of background SNPs
was termed eSNP background and was used for all analyses and comparisons

that were performed for this dataset.

In all analyses outlined below, the eSNPs with P-values of association below the
genome-wide significance threshold (P-value < 5 x 10-8) were coded as one, and
the non-significant SNPs were coded as zero. All eSNPs were analysed with their
LD partners, i.e, SNPs that were in linkage disequilibrium (LD; r? > 0.9) with the
significantly associated eSNP. This was similar to the analysis of trait-associated
SNPs in the previous chapters. The permutations, which were run to analyse the
distribution of eSNPs in 58 genomic annotations, were also performed 20,000
times, like in the previous permutation analyses. The eSNPs were only analysed
on the autosomes, therefore disregarding the sex chromosomes. Table 6-1
shows a summary of the total number of analysed SNPs and the number of
significant eSNPs per chromosome. A two-sample two-sided t-test (see page 37
of this thesis), assuming unequal variances, was employed to test for significant
differences between the obtained odds ratios in the enrichment/depletion
permutation analysis. The P-value was only judged as significant if it passed the
Bonferroni corrected significance threshold, which took the 58 analysed

annotations into account.

Two comparisons of different SNP sets were carried out for the eSNPs dataset.
The first comparison analysed differences between the distributions in the
genome of significant eSNPs and GWAS hits. The GWAS hits used in this analysis
were downloaded from the NHGRI GWAS catalogue on 4th October 2012. The
data contained 969 GWAS hits which were analysed like the trait-associated
GWAS hits in Chapter 4 with the exception of a different background
distribution. The number of significant eSNPs was 29,530, but 26,546 eSNPs
were available in the previously compiled background of SNPs, due to changes
in rs numbers. The 26,546 eSNPs were compared to 969 GWAS hits. GWAS hits
and eSNPs were analysed with LD partners (r? > 0.9).
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Table 6-1 - Distribution of SNPs and eSNPs across chromosomes
The number of SNPs and different eSNP datasets were summarised across chromosomes. The sex
chromosomes were not analysed in this study.

Chromosome Total Number of Number of eSNPs Number of Shared Number of Tissue-
SNPs SNPs Specific SNPs
Chrl 36875 2553 588 1965
Chr2 29481 2234 478 1756
Chr3 33959 1471 379 1092
Chra 28865 1275 210 1065
Chr5 31715 1586 384 1202
Chré 31819 2377 820 1557
Chr7 26617 1153 217 936
Chr8 27845 1138 232 906
Chr9 22608 1038 238 800
Chr10 26671 1392 426 966
Chri1l 24446 1663 498 1165
Chr12 23956 1456 367 1089
Chr13 18000 652 156 496
Chr14 15402 851 147 704
Chr15 14780 884 230 654
Chrl6 15008 855 213 642
Chr17 11064 999 303 696
Chr18 14504 450 88 362
Chr19 6349 944 296 648
Chr20 12902 576 143 433
Chr21 6575 470 124 346
Chr22 6135 529 163 366

The second set of comparisons was performed to investigate differences
between shared and tissue-specific eSNPs, in terms of distribution across
annotations. The tissue-specific eSNPs were significantly associated with gene
expression in only one tissue, while the shared eSNPs were significantly
affecting gene expression in at least two tissues. Of the total of 26,546 eSNPs,
6,700 were identified as shared eSNPs and 19,846 were tissue-specific eSNPs.
All analyses were performed, as mentioned above, with 20,000 permutations

and the eSNP background.

6.2.2 GIANT SNPs
The Genetic Investigation of Anthropometric Traits (GIANT) consortium
performed a meta-analysis on three different human traits (height, body mass
index, and body mass index adjusted for hip to waist ratio. Here, we have only
investigated the data analysed for association to height. The height meta-
analysis applied two stages of testing and an additional family-based analysis

investigating SNPs for an association with height. The first stage combined 46
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studies, which in total consisted of 133,653 individuals of recent European
ancestry. The meta-analysis was performed by imputing 2,834,208 SNPs using
the HapMap CEU II reference population. The second stage analysed an
additional 50,074 individuals from 15 further studies, which allowed the
replication of 180 of 207 previously significantly associated genetic loci [57].
The association data are publicly available and contained information on the
SNP name, the alleles of the SNP, and the frequency of the trait-increasing allele
in the HapMap CEU II population (Link at which the data is available:
http://www.broadinstitute.org/collaboration/giant/index.php/GIANT consorti
um data files). Additionally, it listed the P-value of association obtained after
the performed meta-analysis and after the results were corrected for an
inflation of test statistics using genomic control. It also listed the number of
times a SNP was observed within the population sample.

The previously established dataset used in the permutations and the logistic
regression analyses contained 2,469,014 SNPs of the total number of SNPs
tested for height-association (2,834,208 SNPs). A stepwise regression model
was employed to establish the most influential genomic annotations for height,
as measured by a reduction in the AIC value (see Methods chapter of this thesis
and Chapter 5). However, the difference to the logistic regression employed in
Chapter 5, is that here a linear regression was used, since the dependent
variable was the negative logarithm of the association P-value instead of a
binary trait-association status (trait-associated or not). The analysed variable
was therefore continuous rather than binary, which meant that linear
regression rather than logistic regression was the appropriate method for the
analysis. As the dependent variable was continuous, the returned estimate of
any analysed annotation in the model is to be interpreted as explaining unit
changes in the negative logarithm of the P-value, rather than determining trait-
association status. Since linear regression was employed, pseudo-r? values were
not calculated, but an r? value was extracted from the summary of the analyses.
The total number of analysed SNPs was 2,469,014, as SNPs that were not in our

background data were excluded from the analyses. This ensured the selection of
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the appropriate background distribution, and that a SNP was compared with

only those SNPs that were tested for height-association.
6.3 Results

6.3.1 STAGE eSNPs
The STAGE eSNPs were analysed in two different comparisons. The dataset was
analysed as a total set (All eSNPs) and compared to GWAS hits. The second
analysis was the partition of All eSNPs into two subsets according to the number
of tissues, in which the eSNPs were associated to changes in gene expression

levels; Shared eSNPs and Tissue-specific eSNPs.

6.3.1.1 GWAS hits vs. All eSNPs
The results of the permutation analyses using the STAGE eSNPs were compared
to GWAS hits that were present on the same genotyping array as the SNPs
tested for gene expression. The results are shown in Figure 6-1, where a red star
indicates eight significant differences between GWAS hits and eSNPs. Table 6-2
and Table 6-3 present the numerical results for the GWAS hits and the eSNPs,
respectively. The tables show the number of overlaps for each genomic
annotation with the observed data and the mean number of overlaps obtained
for the permuted data. They also show the calculated odds ratio and its
confidence interval as well as the obtained P-value, which was determined by
the number of permutations that had the same or more extreme number of

overlaps as the observed data.

The most important results of this comparison are the significant differences in
the eQTL annotation and the OMIM morbid regions, as these were the two
positive controls for the different datasets. The results in these annotations,
therefore, added confidence to the remaining results. The GWAS hits (OR = 3.68
[2.71-5.08]) obtained an odds ratio that was twice as high as the odds ratio
obtained by the eSNPs (OR = 1.99 [1.70-2.33]) in the OMIM morbid regions.
While the enrichment pattern was the opposite in the eQTL annotation (OR for

GWAS hits = 3.28 [2.36-4.50]; OR for eSNPs = 8.91 [6.68-10.36]). The overall
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results were that eSNPs showed more extreme and significant odds ratios of
enrichment than the GWAS hits. The only annotation, which had a significant
result for the GWAS hits, but not the eSNPs, was the heterochromatin/low state.
However, there were many examples of annotations, which were significant for
the eSNPs but not the GWAS hits. The mean of the odds ratios of All eSNPs was
2.64, while for GWAS hits it was 2.01. The eight significant differences between
the eSNPs and the GWAS hits are in the 1 Kb and 5 Kb regions upstream of TSS,
the OMIM morbid regions, the intronic SNPs, the eQTL annotation, positively
selected genes, and regions associated with transcriptional elongation and weak
transcription. The three annotations, which had obtained the highest odds
ratios for All eSNPs besides eQTLs, 1 Kb upstream of TSS (OR = 4.28 [3.34-
4.99]), 5 Kb upstream of TSS (OR = 4.22 [3.39-4.75]) and regions associated
with transcriptional elongation (OR = 4.16 [3.46-4.71]). Splice sites and
microsatellites also obtained odds ratios with realistic confidence intervals (OR
for splice sites = 2.94 [1.41-9.01]; OR for microsatellites = 0.94 [0.51-2.22]),
which was the first time for both of the annotations in any of the permutation
analyses. However, neither of the annotations passed the Bonferroni corrected

significance threshold and were not included on the graphs.
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Figure 6-1 - Comparison of odds ratios obtained for GWAS hits and All eSNPs

A comparison of GWAS hits (n = 969, [) and All eSNPs (n = 26,546, <). Solid symbols indicate
significance at multiple-test corrected P-value. Eight annotations are significantly different in their
enrichment patterns. Red stars (k) indicate significant differences. All P-values are corrected for
multiple testing for the analysed genomic annotations. Top: Genic and regulatory regions. Middle:
Conserved regions and evolutionary signatures. Bottom: Chromatin states and histone modifications.
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Table 6-2 - Permutation results for the GWAS hits for the comparison with All STAGE eSNPs

This table summarises results for the GWAS hits showing the number of overlaps in the observed set
(Real), the mean of the permuted hits (Permutation Mean), the calculated odds ratio and confidence
interval (OR [LCI-HCI]) and the P-value for each of the annotations. Significant P-values in bold.

Annotation Real Permutation Mean OR [LCI-HCI] P-value
1 Kb TSS 87 42.55 2.15 [1.49-3.20] 1.00 x 10
5 Kb TSS 223 108.82 2.36 [1.83-3.07] <5.00 x 10
CpG Islands 57 20.17 2.94 [1.89-5.44] 5.00 x 10
ORegAnno 43 26.15 1.67 [1.14-2.77] 5.60 x 10
vega Genes 515 381.57 1.75 [1.49-2.04] <5.00 x 10
OMIM genes 533 335.31 2.31[1.93-2.77] <5.00 x 10
OMIM morbid regions 240 79.56 3.68 [2.71-5.08] <5.00 x 10
Exons 219 85.86 3.00 [2.30-4.00] <5.00 x 10
Intronic SNPs 599 452.83 1.85 [1.56-2.19] 5.00 x 10
Non.Syn. SNPs (UCSC) 121 43.79 3.01 [2.20-4.47] <5.00 x 10
Coding SNPs (UCSC) 164 69.11 2.65[2.01-3.59] <5.00 x 10
Syn. SNPs (UCSC) 73 37.98 2.00 [1.41-3.08] 1.50 x 10
Gained Stops 3 0.59 5.14 [1.00-Infinity] 3.37x 107
3'UTR 123 47.59 2.82[2.06-4.12] <5.00 x 10
5'UTR 24 11.21 2.17 [1.27-4.90] 3.75x10%
RNA Genes 3 2.94 1.02 [0.43-Infinity] 4,53 x 10
ncRNA 15 9.62 1.57 [0.79-5.06] 1.05 x 10
TS miRNA 2 0.29 6.94 [1.00-Infinity] 4.12 x 10
eQTLs 234 85.85 3.28 [2.36-4.50] <5.00 x 10
vega PseudoGenes 30 20.38 1.49 [0.91-2.78] 5.93 x 10
Intergenic SNPs 560 628.32 0.74 [0.63-0.88] 3.00x 10"
DNase Clusters 534 396.42 1.77 [1.53-2.05] <5.00 x 10
Insulators (sequence) 83 55.54 1.54 [1.15-2.18] 2.25x10%
Within miRNA 0 0.01 0.00 [NA-NA] <5.00 x 10
Splice Sites 0 0.56 0.00 [0.00-NA] <5.00 x 10
Lost Stops 0 0.18 0.00 [0.00-NA] <5.00 x 10
Microsatellites 0 0.81 0.00 [0.00-NA] <5.00 x 10
EvoFold 3 2.51 1.20 [0.50-Infinity] 4,51 x10™
Pos. Sel. Genes 424 298.20 1.75 [1.47-2.09] <5.00 x 10
Enhancers (sequence) 8 4.18 1.92 [0.89-8.06] 8.14x 10
Exapted Repeats 4 3.67 1.09 [0.50-Infinity] 4.90 x 10
PREMOD 168 126.65 1.39[1.15-1.73] 5.00 x 10%
tfbs Conserved 148 102.91 1.52 [1.23-1.92] <5.00 x 10
Indel Pure regions 464 401.07 1.30 [1.13-1.49] 1.00 x 10
17 spec. algmt 313 254.92 1.34[1.15-1.57] <5.00 x 10
28 spec. algmt plc.mmls 285 205.07 1.55 [1.32-1.85] <5.00 x 10
28 spec. algmt 310 239.39 1.43 [1.22-1.69] <5.00 x 10
44 spec. algmt 321 242.99 1.48 [1.26-1.76] <5.00 x 10
44 spec. algmt plc.mmls 297 222.86 1.48 [1.26-1.75] <5.00 x 10
44 spec. algmt prim. 308 212.56 1.66 [1.41-1.97] <5.00 x 10
Negative (sequence) 456 554.32 0.66 [0.57-0.78] <5.00 x 10
Open Chromatin 701 483.75 2.62 [2.01-3.31] <5.00x 10
Closed Chromatin 297 514.06 0.39 [0.31-0.51] <5.00 x 10
Active Promoter 84 33.95 2.61 [1.78-4.09] 5.00 x 10
Weak Promoter 92 37.20 2.63 [1.85-3.96] <5.00 x 10
Poised Promoter 11 4.44 2.50[1.10-11.11] 1.79x 10%
Strong Enhancer (proximal) 113 40.84 3.00 [2.11-4.44] 5.00 x 10
Strong Enhancer (distal) 92 44.44 2.18 [1.59-3.17] 3.50x 10"
Weak Enhancer (proximal) 88 56.31 1.62 [1.21-2.26] 1.05 x 10
Weak Enhancer (distal) 174 106.68 1.77 [1.40-2.31] 5.50 x 10"
Insulator 50 42.19 1.20 [0.87-1.76] 1.49x 10
Txn Transition 77 32.82 2.46 [1.69-3.90] <5.00 x 10
Txn Elongation 199 100.98 2.22[1.71-2.91] <5.00 x 10
Weak Txn 302 193.53 1.81 [1.47-2.24] 6.50 x 10
Repressed 148 98.16 1.60 [1.23-2.12] 8.50x 10
Heterochrom/low 667 809.90 0.43 [0.35-0.54] <5.00 x 10
Repetitive/CNV (proximal) 2 2.15 0.93 [0.33-Infinity] 3.87x10™
Repetitive/CNV (distal) 2 1.92 1.04 [0.40-Infinity] 4.45 % 10
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Table 6-3 - Permutation results for All STAGE eSNPs

This table summarises the results for All eSNPs showing the number of overlaps in the observed set
(Real), the mean of the permuted hits (Permutation Mean), the calculated odds ratio and confidence
interval (OR [LCI-HCI]) and the obtained P-value for each annotation. Significant P-values in bold.

Annotation Real Permutation Mean OR [LCI-HCI] P-value

1Kb TSS 4346 1161.25 4.28 [3.34-4.99] <5.00x 10

5 Kb TSS 9273 2996.71 4.22 [3.39-4.75] <5.00 x 10

CpG Islands 2327 554.79 4.50 [3.42-5.46] <5.00 x 10

ORegAnno 1649 723.23 2.36 [1.97-2.74] <5.00 x 10

vega Genes 15164 10300.26 2.10 [1.88-2.29] <5.00 x 10

OMIM genes 14813 9179.15 2.39[2.12-2.62] <5.00 x 10

OMIM morbid regions 3950 2144.92 1.99 [1.70-2.33] <5.00 x 10

Exons 7756 2357.28 4.24 [3.46-4.76] <5.00 x 10

Intronic SNPs 18804 12356.07 2.79 [2.48-3.06] <5.00 x 10

Non.Syn. SNPs (UCSC) 4094 1207.13 3.83 [3.09-4.42] <5.00 x 10

Coding SNPs (UCSC) 6171 1902.31 3.92 [3.21-4.45] <5.00 x 10

Syn. SNPs (UCSC) 3610 1043.26 3.85 [3.15-4.44] <5.00 x 10
Gained Stops 28 15.38 1.82 [0.90-5.60] 5.64 x 10

3'UTR 4854 1307.14 4.32 [3.50-4.94] <5.00 x 10

5'UTR 1387 309.87 4.67 [3.50-5.92] <5.00 x 10

RNA Genes 211 80.10 2.65[1.91-3.93] <5.00 x 10

ncRNA 663 259.54 2.59 [1.90-3.69] <5.00 x 10
TS miRNA 31 8.13 3.82 [1.72-15.52] 1.00 x 10

eQTLs 12324 2352.39 8.91 [6.68-10.36] <5.00 x 10

vega PseudoGenes 1266 528.07 2.47 [1.80-3.09] <5.00 x 10
Intergenic SNPs 16877 17246.25 0.94 [0.86-1.03] 8.88 x 10

DNase Clusters 15833 10809.54 2.15[1.99-2.27] <5.00 x 10

Insulators (sequence) 3218 1517.03 2.28 [1.93-2.58] <5.00x 10
Within miRNA 2 0.24 8.50 [1.00-Infinity] 6.07 x 10
Splice Sites 45 15.31 2.94 [1.41-9.01] 1.45x10%

Lost Stops 46 5.18 8.89 [3.29-Infinity] <5.00 x 10
Microsatellites 20 21.24 0.94 [0.51-2.22] 458 x10"
EvoFold 87 68.86 1.26 [0.90-1.89] 9.64 x 10

Pos. Sel. Genes 14598 8176.41 2.74 [2.44-3.01] <5.00 x 10
Enhancers (sequence) 91 110.84 0.82 [0.60-1.21] 1.53x10%
Exapted Repeats 91 99.72 0.91 [0.69-1.28] 2.81x10™

PREMOD 4173 3470.07 1.24 [1.15-1.34] <5.00 x 10

tfbs Conserved 4295 2807.51 1.63 [1.52-1.75] <5.00 x 10

Indel Pure regions 13566 10939.49 1.49 [1.42-1.57] <5.00 x 10

17 spec. algmt 9874 6943.60 1.67 [1.58-1.78] <5.00 x 10

28 spec. algmt plc.mmls 8235 5585.88 1.69 [1.58-1.81] <5.00 x 10

28 spec. algmt 9492 6526.30 1.71[1.60-1.82] <5.00 x 10

44 spec. algmt 10014 6630.26 1.82 [1.71-1.94] <5.00 x 10

44 spec. algmt plc.mmls 9088 6071.62 1.76 [1.65-1.88] <5.00 x 10

44 spec. algmt prim. 8373 5786.80 1.65 [1.54-1.77] <5.00 x 10
Negative (sequence) 13791 15165.28 0.81 [0.75-0.89] 1.50 x 10

Open Chromatin 20526 13300.19 3.40 [2.54-4.00] <5.00x 10

Closed Chromatin 7202 14028.49 0.33 [0.28-0.44] <5.00 x 10

Active Promoter 4013 931.43 4.90 [3.81-5.76] <5.00 x 10

Weak Promoter 3670 1009.57 4.06 [3.23-4.69] <5.00 x 10
Poised Promoter 286 115.62 2.49 [1.60-3.56) 2.50x 10"

Strong Enhancer (proximal) 2992 1115.53 2.90 [2.32-3.36] <5.00 x 10

Strong Enhancer (distal) 3069 1216.51 2.72 [2.26-3.12] <5.00 x 10

Weak Enhancer (proximal) 3969 1526.03 2.88[2.48-3.21] <5.00 x 10

Weak Enhancer (distal) 6079 2897.83 2.42 [2.11-2.67] <5.00 x 10

Insulator 2390 1146.15 2.19 [1.89-2.46] <5.00 x 10

Txn Transition 3064 892.80 3.75 [2.97-4.43] <5.00 x 10

Txn Elongation 8715 2788.14 4.16 [3.46-4.71] <5.00 x 10

Weak Txn 12020 5301.61 3.32[2.84-3.66] <5.00 x 10
Repressed 3779 2639.21 1.50 [1.27-1.71] 1.30x 10
Heterochrom/low 19686 22180.76 0.56 [0.51-0.65] 2.50x 10
Repetitive/CNV (proximal) 121 59.07 2.05 [1.41-3.28] 1.00 x 10
Repetitive/CNV (distal) 38 51.70 0.73 [0.51-1.19] 8.49 x 10
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6.3.1.2 Shared eSNPs vs. Tissue-specific eSNPs
The odds ratios of the Shared eSNPs and the Tissue-specific eSNPs obtained by
permutations are shown in Table 6-4 and Table 6-5, which list the overlaps for
each annotation, the mean number of overlaps in permutations, the calculated
odds ratios and their confidence intervals and the obtained P-value. The results
for the Shared eSNPs vs. Tissue-specific eSNPs are compared with each other in
Figure 6-2, where a red star indicates significant differences between the two
sets. The majority of the annotations show significantly different odds ratios for
the two datasets. The Shared eSNPs have more extreme odds ratios in all
annotations, where the odds ratios were significant at the Bonferroni corrected
threshold. However, the trend between the two datasets is the same. Only one
genomic annotation, the repetitive/CNV (distal) sites, has an odds ratio of
enrichment for the Tissue-specific eSNPs when it was depleted in the Shared
SNPs. The mean of the odds ratios for the Shared eSNPs is 4.49 and for the
Tissue-specific eSNPs is 2.15. The Shared eSNPs therefore have on average a
much higher odds ratios than the Tissue-specific eSNPs, All eSNPs or GWAS hits.
The highest odds ratio was obtained for the eQTL annotation for the Shared
eSNPs (OR = 27.99 [17.11-37.29]), which suggests that they contain a larger
proportion of ‘true’ eQTLs. The likelihood of detecting tissue specific eQTLs is
much lower than detecting eQTLs that are affecting several tissues (i.e., the
shared eSNPs), as tissue specific studies will have less power. It is therefore
possible that the Shared eSNPs are more represented in the eQTL annotation as
there was more power to detect them, rather than representing a greater
proportion of true eQTLs. This will be discussed further in the Discussion

section of this chapter.
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Figure 6-2 - Shared eSNPs vs. Tissue-specific eSNPs

A comparison of Shared eSNPs (n = 6,700, [) and Tissue-specific eSNPs (n = 19,846, <). Red stars
(*) indicate significant differences between the odds ratios. Solid symbols indicate significance at
multiple corrected P-value. A black star (>) indicates the odds ratio for eQTLs in the Shared eSNPs
(27.99 [17.11-37.29]) data that is greater than the maximum of the graph. Top: Genic and regulatory
regions. Middle: Conserved regions and evolutionary signatures. Bottom: Chromatin states and
histone modifications.
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Table 6-4 - Permutation results for Shared STAGE eSNPs

This table summarises the results for the Shared eSNPs showing the number of overlaps in the
observed set (Real), the mean of the permuted hits (Permutation Mean), the odds ratio and
confidence interval (OR [LCI-HCI]) and the P-value for each annotation. Significant P-values in bold.

Annotation Real Permutation Mean OR [LCI-HCI] P-value

1 Kb TSS 1787 303.63 7.66 [5.03-10.23] <5.00x 10

5 Kb TSS 3372 779.75 7.69 [5.47-9.53] <5.00 x 10

CpG Islands 1021 148.04 7.96 [4.92-11.63] <5.00 x 10

ORegAnno 662 187.60 3.81[2.83-5.18] <5.00 x 10

vega Genes 4324 2605.72 2.86 [2.33-3.41] <5.00 x 10

OMIM genes 4355 2333.71 3.47 [2.81-4.18] <5.00 x 10

OMIM morbid regions 1249 546.68 2.58 [1.90-3.56] <5.00 x 10

Exons 3040 614.27 8.23 [6.01-10.23] <5.00 x 10

Intronic SNPs 5346 3138.10 4.48 [3.65-5.37] <5.00 x 10

Non.Syn. SNPs (UCSC) 1637 314.88 6.56 [4.68-8.67] <5.00 x 10

Coding SNPs (UCSC) 2438 495.91 7.16 [5.19-9.08] <5.00 x 10

Syn. SNPs (UCSC) 1498 272.45 6.79 [4.90-8.99] <5.00 x 10
Gained Stops 13 4.23 3.08 [0.93-Infinity] 3.98 x 10

3'UTR 1964 338.34 7.80 [5.56-10.15] <5.00 x 10

5'UTR 625 81.92 8.31 [5.04-13.68] <5.00 x 10

RNA Genes 103 19.97 5.22 [2.81-14.93] <5.00 x 10

ncRNA 283 67.59 4.33 [2.38-9.81] <5.00 x 10
TS miRNA 10 2.16 4.64 [1.11-Infinity] 1.83x10%

eQTLs 4946 613.22 27.99 [17.11-37.29] <5.00 x 10

vega PseudoGenes 526 141.69 3.94 [2.20-6.19] <5.00 x 10
Intergenic SNPs 4667 4341.70 1.25 [1.04-1.49] 7.95 x 10

DNase Clusters 4614 2739.51 3.20 [2.80-3.55] <5.00 x 10

Insulators (sequence) 1196 390.87 3.51 [2.64-4.48] <5.00x 10

Within miRNA 0 0.07 0.00 [0.00-NA] <5.00 x 10
Splice Sites 28 4.16 6.76 [1.87-Infinity] 1.10x10%

Lost Stops 21 1.39 15.21 [3.01-Infinity] <5.00 x 10
Microsatellites 7 5.63 1.24 [0.41-Infinity] 3.28x 10"
EvoFold 21 17.44 1.20 [0.62-3.51] 2.93x 10"

Pos. Sel. Genes 4465 2076.46 4.45 [3.65-5.34] <5.00 x 10
Enhancers (sequence) 28 27.51 1.02 [0.55-2.55] 4.54 x 10
Exapted Repeats 17 24.75 0.69 [0.39-1.55] 1.53x10%

PREMOD 1341 871.68 1.67 [1.44-1.95] <5.00 x 10

tfbs Conserved 1398 707.01 2.24 [1.94-2.60] <5.00 x 10

Indel Pure regions 3971 2755.27 2.08 [1.89-2.33] <5.00 x 10

17 spec. algmt 3122 1746.02 2.48[2.19-2.83] <5.00 x 10

28 spec. algmt plc.mmls 2648 1405.10 2.46 [2.16-2.83] <5.00 x 10

28 spec. algmt 3091 1646.63 2.63[2.32-2.99] <5.00 x 10

44 spec. algmt 3197 1670.35 2.75 [2.43-3.15] <5.00 x 10

44 spec. algmt plc.mmls 2823 1527.32 2.47 [2.17-2.84] <5.00 x 10

44 spec. algmt prim. 2678 1455.98 2.40 [2.10-2.76] <5.00 x 10
Negative (sequence) 3347 3816.17 0.75 [0.64-0.89] 2.50x 10"

Open Chromatin 5574 3347.33 4.96 [3.28-6.62] <5.00x 10

Closed Chromatin 1421 3544.92 0.24 [0.18-0.37] <5.00 x 10

Active Promoter 1699 242,57 9.04 [5.86-12.52] <5.00 x 10

Weak Promoter 1518 261.29 7.22 [4.90-9.67] <5.00 x 10
Poised Promoter 134 30.91 4.40 [1.96-9.75] 5.00 x 10

Strong Enhancer (proximal) 1077 288.35 4.26 [2.93-5.75] <5.00x 10

Strong Enhancer (distal) 1064 311.40 3.87 [2.84-5.13] <5.00 x 10

Weak Enhancer (proximal) 1450 391.03 4.46 [3.42-5.54] <5.00 x 10

Weak Enhancer (distal) 1954 741.28 3.31[2.65-4.02] <5.00 x 10

Insulator 871 292.02 3.28 [2.56-4.13] <5.00 x 10

Txn Transition 1163 231.98 5.86 [4.05-8.22] <5.00 x 10

Txn Elongation 3180 718.51 7.52 [5.63-9.55] <5.00 x 10

Weak Txn 3984 1364.94 5.73 [4.49-6.93] <5.00 x 10
Repressed 1026 676.50 1.61 [1.23-2.07] 2.50 x 10
Heterochrom/low 4897 5567.66 0.55 [0.45-0.69] 6.50 x 10
Repetitive/CNV (proximal) 43 15.15 2.85[1.39-8.65] 1.15x10%
Repetitive/CNV (distal) 21 13.06 1.61 [0.81-5.26] 1.04 x 10
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Table 6-5 - Permutation results for Tissue-specific STAGE eSNPs

This table summarises the results for the Tissue-specific eSNPs, including the number of overlaps in
the observed set (Real), the mean of the permuted hits (Permutation Mean), the calculated odds
ratio and confidence interval (OR [LCI-HCI]) and the obtained P-value for each of the genomic
annotations. Significant P-values in bold.

Annotation Real Permutation Mean OR [LCI-HCI] P-value
1Kb TSS 2559 857.62 3.28 [2.69-3.80] <5.00x10"
5Kb TSS 5901 2216.96 3.36 [2.81-3.75] <5.00x 10
CpG Islands 1306 406.75 3.37 [2.68-4.05] <5.00x 10
ORegAnno 987 535.62 1.89 [1.59-2.19] <5.00x 10
vega Genes 10840 7694.54 1.90 [1.73-2.05] <5.00x 10
OMIM genes 10458 6845.43 2.12 [1.90-2.30] <5.00x 10
OMIM morbid regions 2701 1598.24 1.80 [1.56-2.09] <5.00x 10"
Exons 4716 1743.01 3.24[2.73-3.61] <5.00 x 10
Intronic SNPs 13458 9217.97 2.43 [2.19-2.64] <5.00 x 10"
Non.Syn. SNPs (UCSC) 2457 892.25 3.00 [2.50-3.44] <5.00x 10
Coding SNPs (UCSC) 3733 1406.40 3.04 [2.57-3.42) <5.00x 10
Syn. SNPs (UCSC) 2112 770.81 2.95 [2.49-3.38] <5.00x 10
Gained Stops 15 11.16 1.34 [0.65-5.00] 227 x10™
3'UTR 2890 968.80 3.32[2.78-3.78] <5.00x 10
5'UTR 762 227.96 3.44 [2.69-4.34] <5.00 x 10
RNA Genes 108 60.13 1.80 [1.29-2.78] 4.00x 10*
ncRNA 380 191.95 2.00 [1.49-2.79] 5.00 x 10*
TS miRNA 21 5.97 3.52 [1.50-21.02] 1.50 x 10
eQTLs 7378 1739.17 6.16 [4.95-7.07) <5.00 x 10"
vega PseudoGenes 740 386.37 1.95 [1.54-2.42] 1.50 x 10
Intergenic SNPs 12210 12904.55 0.86 [0.79-0.93] 8.50x 10
DNase Clusters 11219 8070.03 1.90 [1.78-2.00] <5.00x 10
Insulators (sequence) 2022 1126.16 1.89 [1.64-2.13] <5.00x 10
Within miRNA 2 0.17 11.96 [1.00-Infinity] 3.42 x 10
Splice Sites 17 11.15 1.52 [0.74-5.67) 1.40 x 10
Lost Stops 25 3.80 6.59 [2.50-Infinity] <5.00x 10"
Microsatellites 13 15.62 0.83 [0.45-2.17] 3.21x10™
EvoFold 66 51.42 1.28 [0.90-2.00] 8.69 x 10
Pos. Sel. Genes 10133 6099.94 2.35[2.12-2.56) <5.00x 10
Enhancers (sequence) 63 83.33 0.76 [0.55-1.13] 7.30x10%
Exapted Repeats 74 74.97 0.99 [0.74-1.42) 4.67x10™
PREMOD 2832 2598.39 1.10 [1.03-1.19] 2.55x 10-%
tfbs Conserved 2897 2100.50 1.44 [1.35-1.55] <5.00x 10
Indel Pure regions 9595 8184.22 1.33 [1.27-1.40] <5.00x 10
17 spec. algmt 6752 5197.59 1.45 [1.38-1.54] <5.00x 10
28 spec. algmt plc.mmls 5587 4180.78 1.47 [1.38-1.56) <5.00x 10"
28 spec. algmt 6401 4879.67 1.46 [1.38-1.55] <5.00x 10
44 spec. algmt 6817 4959.90 1.57 [1.48-1.66) <5.00x 10
44 spec. algmt plc.mmls 6265 4544.29 1.55 [1.46-1.65] <5.00x 10
44 spec. algmt prim. 5695 4330.83 1.44 [1.35-1.53] <5.00x 10
Negative (sequence) 10444 11349.11 0.83 [0.77-0.90] 4.00x10*
Open Chromatin 14952 9952.86 3.04 [2.35-3.50] <5.00x 10"
Closed Chromatin 5781 10483.57 0.37 [0.32-0.47] 5.00 x 10*
Active Promoter 2314 688.86 3.67 [3.00-4.29] <5.00x 10"
Weak Promoter 2152 748.29 3.10 [2.57-3.57] <5.00x 10
Poised Promoter 152 84.70 1.80 [1.28-2.59] 2.50x 107
Strong Enhancer (proximal) 1915 827.18 2.46 [2.05-2.83] <5.00x 10"
Strong Enhancer (distal) 2005 905.11 2.35[2.02-2.69] <5.00x 10
Weak Enhancer (proximal) 2519 1135.00 2.40[2.11-2.67] <5.00x 10
Weak Enhancer (distal) 4125 2156.55 2.15[1.91-2.36] <5.00x 10"
Insulator 1519 854.13 1.84 [1.62-2.07] <5.00x 10"
Txn Transition 1901 660.82 3.08 [2.52-3.62] <5.00x 10"
Txn Elongation 5535 2069.63 3.32[2.83-3.74] <5.00x 10
Weak Txn 8036 3936.66 2.75 [2.42-3.02) <5.00x 10
Repressed 2753 1962.71 1.47 [1.26-1.65] 1.30x 10
Heterochrom/low 14789 16613.10 0.57 [0.52-0.64] 2.50 x 10
Repetitive/CNV (proximal) 78 43.92 1.78 [1.20-2.90] 2.35x10°
Repetitive/CNV (distal) 17 38.64 0.44 [0.30-0.74] 1.35x 10
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6.3.2 GIANT consortium data
The results of the linear regression performed using the negative logarithm of
the P-value of association in the meta-analysis investigating height are shown in
Figure 6-3. The final model contained 51 genomic annotations, which explained
some of the variability towards the observed P-values of association for height.
This is a very large number of annotations included in the model. Roughly
speaking, the stepwise regression process eliminates those genomic
annotations, which carry redundant information as explained in more detail
earlier. The analysis for the GIANT dataset removed only three annotations (TS
miRNA, CpG islands and exapted repeats) from the full model that were not
informative, when other annotations were included in the model, while all the
others carried additional information. The r? value of the final model was
extracted from the summary with a value of 0.03 (0.027), meaning that most of
the variation in —log(P-value of association) remained unexplained. The model,
which contained only the genotyping arrays, had an r? value of 0.00 (0.0004). Of
the 51 annotations included in the final model, 49 were significant at P < 0.05.
The majority of these annotations had odds ratios with values indicative of
enrichment, while 13 of the annotations had odds ratios that indicated
depletion of height-associated SNPs. These 13 annotations were distance to TSS,
closed chromatin, RNA genes, gained stops, coding SNPs, 1 Kb upstream of TSS,
splice sites, ncRNA, exons, within miRNA, evofold regions, lost stops, and
insulators. These regions were depleted of height-associated SNPs relative to
the other 36 annotations that were enriched for height-associated SNPs and
when these were included in the model. All the annotations had a very small
effect on the negative logarithm of the P-value of association, as judged by their
odds ratios. The highest odds ratio observed was for eQTLs (ORs = 1.24 [1.23-
1.24]) and the lowest for within miRNA binding sites (ORs = 0.66 [0.54-0.81]).
While the values of the odds ratios may be modest, the P-values of the
annotations in the model are very significant (see Table 6-6). Height-associated
SNPs overlapped preferentially with the region between the 1 Kb and 5 Kb
region upstream of TSS, which could indicate a preference to a specific type of

promoters. This was suggested by a combination of the negative f -coefficients
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(indicating relative depletion) of 1 Kb upstream of the TSS and the positive f -

coefficients (indicating relative enrichment) of the 5 Kb upstream of the TSS.

Additionally, the distance to TSS annotation obtained a very high negative f -

coefficient, which indicated that SNPs closer to the TSS were more likely to be
height-associated. The distance was calculated as the absolute value of the
minimum distance between a SNP and its nearest TSS, which did not
discriminate between SNPs up- or downstream of the nearest TSS. This
separation could have been performed with the inclusion of an additional
annotation and could be performed in future experiments. The genomic
annotation with the highest impact on the P-value of height-associated SNPs

was the eQTL annotation. The f-coefficient for that annotation was 82.58 and

an odds ratio of 1.32 [1.32-1.33], the highest odds ratio in that analysis.
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Figure 6-3 - Odds ratios for GIANT height data
This figure shows the significant odds ratios (P < 0.05) for linear regression in the data for height
from the GIANT consortium ranked after increasing P-value of the annotation in the model.
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Table 6-6 - GIANT height linear regression results
This table presents the results for the height-associated SNPs including the estimate of the effect, its
standard error, the S-coefficient, the calculated odds ratio with its confidence interval, and the P-
value of the estimate in the final model for each of the included genomic annotations in the final
model. Significant P-values in bold.

Annotation Estimate Std. Error B OR [LCI-HCI] P-value
Intercept 0.44 0.00 127.14 1.55 [1.54-1.57] 0.00 x 10"
Affymetrix_250k_Nsp 0.00 0.00 0.43 1.00 [0.99-1.01] 6.71 x 10
Affymetrix_250k_Sty 0.00 0.00 0.46 1.00 [0.99-1.01] 6.45x 10"
Affymetrix_5.0 0.01 0.00 1.60 1.01 [1.00-1.01] 1.09 x 10
Affymetrix_6.0 -0.01 0.00 -6.89 0.99 [0.99-0.99] 5.46x 1077
Affymetrix_10k 0.00 0.01 0.45 1.00 [0.99-1.02] 6.56 x 10"
Affymetrix_50k.1 -0.01 0.00 -1.58 0.99 [0.99-1.00] 1.14 x 10™
Affymetrix_50k.2 0.01 0.00 2.07 1.01 [1.00-1.02] 3.87x 10
lNlumina_300 0.02 0.00 7.05 1.02 [1.01-1.02] 1.82x10™
lllumina_550 0.01 0.00 3.85 1.01 [1.01-1.02] 1.18x10™
lNlumina_650 -0.02 0.00 -4.69 0.98 [0.98-0.99] 2.67x10%
Perlegen 0.01 0.00 4.23 1.01 [1.00-1.01] 2.35x10%
eQTLs 0.21 0.00 95.08 1.24 [1.23-1.24] 0.00 x 10"°
Weak Txn 0.05 0.00 29.24 1.05 [1.05-1.05] 7.47 x 1078
Open Chromatin 0.01 0.00 431 1.01 [1.01-1.02] 1.60 x 10
44 specs. algmt. plac. mmls 0.01 0.00 5.23 1.01 [1.01-1.02] 1.72 x 107
Weak Promoter 0.07 0.00 23.04 1.07 [1.06-1.08] 2.05 x 10
Distance to TSS 0.00 0.00 -33.66 1.00 [1.00-1.00] 2.62x102%®
DNase Clusters 0.02 0.00 21.05 1.03 [1.02-1.03] 2.28x10%
Txn Elongation 0.04 0.00 19.49 1.05 [1.04-1.05] 1.27x103
Strong Enhancer (proximal) 0.06 0.00 19.23 1.06 [1.05-1.06] 2.06 x 10
Insulators (sequence) 0.04 0.00 17.59 1.04 [1.04-1.04] 2.95 x 10
PREMOD 0.02 0.00 13.23 1.02 [1.02-1.03] 5.93x10™
ORegAnno 0.04 0.00 13.28 1.05 [1.04-1.05] 3.22x10™%
44 specs. algmt. primates 0.02 0.00 12.40 1.02 [1.02-1.02] 2.74x 10
Repetitive/CNV (distal) 0.15 0.01 14.86 1.16 [1.14-1.19] 6.32x10™°
Non.Syn. SNPs (UCSC) 0.10 0.01 18.03 1.10[1.09-1.11] 1.20x 1072
Enhancers (sequence) 0.12 0.01 14.83 1.12 [1.11-1.14] 9.44x10™°
Active Promoter 0.04 0.00 12.38 1.04 [1.03-1.05] 3.26 x 10
Closed Chromatin -0.05 0.00 -16.52 0.95 [0.95-0.96] 2.65x 10"
Weak Enhancer (distal) 0.02 0.00 9.85 1.02 [1.01-1.02] 7.04x 102
RNA Genes -0.12 0.01 -13.36 0.89 [0.87-0.91] 9.91x 107
Gained Stops -0.27 0.02 -13.09 0.76 [0.73-0.80] 3.61x 10
Syn. SNPs (UCSC) 0.09 0.01 17.52 1.09 [1.08-1.10] 1.03 x 10%®
Coding SNPs (UCSC) -0.08 0.01 -12.88 0.92 [0.91-0.93] 5.98 x 10
Pos. Sel. Genes 0.01 0.00 8.02 1.01 [1.01-1.02] 1.06 x 10"
Negative (sequence) 0.01 0.00 7.16 1.01 [1.01-1.02] 8.24x 102
Splice Sites -0.21 0.02 -9.38 0.81[0.78-0.85] 6.73x 10"
44 specs. algmt. 0.02 0.00 6.46 1.02 [1.01-1.02] 1.08 x 10™°
Repetitive/CNV (proximal) 0.08 0.01 7.77 1.08 [1.06-1.10] 8.10x 10
Heterochrom/lo 0.01 0.00 6.83 1.01 [1.01-1.02] 8.31x10™2
Repressed 0.01 0.00 6.17 1.01[1.01-1.02] 6.67 x10™"°
Microsatellites 0.11 0.02 7.13 1.12 [1.08-1.15] 1.01 x 10™
Intronic SNPs 0.01 0.00 5.33 1.01 [1.01-1.02] 9.73 x 10
1Kb TSS -0.04 0.00 -11.16 0.96 [0.96-0.97] 6.37x 10
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Annotation Estimate Std. Error B OR [LCI-HCI] P-value
5 Kb TSS 0.02 0.00 7.94 1.02 [1.01-1.02] 2.08 x 10
Weak Enhancer (proximal) 0.01 0.00 5.93 1.01 [1.01-1.02] 2.95x 10"
3'UTR 0.02 0.00 6.99 1.02 [1.01-1.03] 2.75x 102
Poised Promoter 0.04 0.01 5.43 1.04 [1.03-1.06] 5.71x 10
ncRNA -0.03 0.01 -5.54 0.97 [0.96-0.98] 3.09x10%
tfbs Conserved 0.01 0.00 4.86 1.01 [1.01-1.01] 1.17 x 10
Indels Pure regions 0.00 0.00 3.79 1.00 [1.00-1.01] 1.52x10™
Within miRNA -0.41 0.11 -3.87 0.66 [0.54-0.81] 1.08 x 10
EvoFold -0.03 0.01 -3.41 0.97 [0.95-0.99] 6.40x 10
Strong Enhancer (distal) 0.01 0.00 3.15 1.01[1.00-1.01] 1.65x 10
vega PseudoGenes 0.01 0.00 3.34 1.01[1.00-1.02] 8.51x10™
Exons -0.01 0.00 -3.94 0.99 [0.98-0.99] 8.08 x 10
5’UTR 0.02 0.00 3.79 1.02 [1.01-1.03] 1.50 x 10
Lost Stops -0.09 0.03 -2.92 0.91 [0.86-0.97] 3.53x10%
Txn Transition 0.01 0.00 2.69 1.01 [1.00-1.02] 7.18x 10
Insulator -0.01 0.00 -2.58 0.99 [0.99-1.00] 9.90 x 10
Intergenic SNPs 0.00 0.00 1.79 1.00 [1.00-1.01] 7.28 x 10
vega Genes 0.00 0.00 1.79 1.00 [1.00-1.01] 7.29 x 10%

6.4 Discussion

6.4.1 STAGE eSNPs
The results of the four analysed datasets for the STAGE eSNPs differed
substantially from each other. The means of the odds ratios for the different sets
were 2.64 for All eSNPs, 2.01 for GWAS hits, 4.49 for the Shared eSNPs, and 2.15
for Tissue-specific SNPs. The odds ratios for All eSNPs are therefore much closer
to the odds ratios for Tissue-specific eSNPs than Shared eSNPs. This could be
expected, since there are more Tissue-specific eSNPs than Shared eSNPs the
combined set would be more influenced by the larger subset. However, the
results were even less similar to the GWAS hits than to each other. The Shared
eSNPs had a very high mean of odds ratios in comparison with the others, while
the GWAS hits had the lowest mean of odds ratios. The correlations of the odds
ratios for the annotations between the SNP datasets were 0.90 for Shared vs.
Tissue-specific eSNPs, 0.94 for Shared eSNPs vs. All eSNPs, and 0.99 for Tissue-
specific eSNPs vs. All eSNPs. These correlations are very high and stand in quite
a large contrast with the correlations of the odds ratios of the GWAS hits and the
eSNPs sets: The correlation of GWAS vs. All eSNPs was 0.52, GWAS vs. Shared
eSNPs was 0.39, and GWAS vs. Tissue-specific eSNPs was 0.57. This suggests
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that the eSNPs were more similar to each other than to GWAS hits, but GWAS
hits were more like the Tissue-specific eSNPs than either Shared eSNPs or All

eSNPs.

The poor correlations between the GWAS hits and the eSNPs may be due to the
number of analysed SNPs. The total number of GWAS hits was 969, while the
different eSNPs sets were 6,700, 19,846 and 26,546 SNPs. This may not be a fair
comparison due to the large difference in numbers, which may have influenced
the results, especially in the sparser genomic annotations like the splice sites. It
could be speculated that the Shared eSNPs are a set of “truer” eQTLs. There has
been more experimental evidence for them, as Shared eSNPs have been shown
to influence gene expression in at least two different tissues. The association to
gene expression has therefore been replicated in at least one other tissue. The
set of Tissue-specific eSNPs is quite likely to consist of true positives and
spurious associations, similar to the set of trait-associated SNPs with suggestive
levels of trait-association. The trend of enrichments for the Shared eSNPs is
followed by the Tissue-specific eSNPs. The copying of the trend of the odds
ratios for the Tissue-specific eSNPs without reaching the same observed levels
as the odds ratios in the Shared eSNP set, was very comparable to the trend of
the results of the Suggestive SNPs (2011) following the results of the Significant
SNPs (2011). However, here the majority of genomic annotations reached
significance, which is likely due to the number of analysed SNPs, where the
Tissue-specific eSNPs had almost three times more SNPs than the Suggestive

SNPs (2011).

All eSNP datasets had more significantly enriched annotations than the GWAS
hits dataset. The analysed eSNPs are only suspected to be eQTLs influencing
gene expression levels, as no validating experiments were performed. If they
were true eQTLs, they would be enriched in those regions where experimental
evidence already exists for eQTLs, i.e, regions shown to influence levels of gene
expression. The genomic annotations that showed significantly different odds

ratios of enrichment between GWAS and All eSNPs, where eSNPs had a higher
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odds ratio were: 1 Kb and 5 Kb regions upstream of transcription start sites
(TSS), intronic SNPs, previously identified eQTLs, positively selected genes,
transcriptional elongation and weak transcription. The regions upstream of the
transcription start sites (TSS) are regions associated with putative promoters
[50], and there has been a substantial amount of evidence for eQTLs clustering

in those regions [72, 108, 147, 159, 160].

Further literature findings supporting the existence of real eQTLs in the eSNPs
showed that exons were enriched over introns and that the preferred location
of eQTLs was in or near target genes and transcribed regions [72]. We observed
similar odds ratios in exons and exonic SNPs obtaining higher than intronic
SNPs and significant differences in the regions associated with weak
transcription and transcriptional elongation (see Table 6-3). Additionally, it has
previously been observed that non-synonymous SNPs are preferentially not
eQTLs, so the relative depletion in comparison with synonymous SNPs is an
encouraging result [161, 162]. There was a strong and significant correlation in
gene expression levels of positively selected regions in the Yoruba population
and the number of eQTLs coinciding with these regions [163], which could
explain the significant odds ratio of enrichment in the positively selected genes
(All eSNPs OR = 2.74 [2.44-3.01], Shared eSNPs = 4.45 [3.65-5.34], Tissue-
2.35 [2.12-2.56]). Enrichment of eSNPs in these areas is

specific eSNPs
therefore an indication that the eSNPs datasets contain real eQTLs, while the
other enriched regions could have regulatory functions that were previously not

shown.

Most of these regions either coincided with or were regulatory regions; so
higher enrichment signals for eQTLs in comparison with GWAS were highly
encouraging. The only genomic annotation, which had a higher odds ratio of
enrichment for GWAS hits than for eSNPs, was OMIM morbid regions. As
pointed out in previous chapters, these regions were the genomic locations of
the underlying biology for a large variety of traits and were used as a proxy for a

positive control for GWAS hits. The enrichment result of GWAS hits in the OMIM
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morbid regions and high enrichment signal of All eSNPs in the previously
identified eQTL dataset were very intuitive and encouraging. We have therefore
shown that there is not only significant enrichment of eSNPs in areas prone to
harbour eQTLs, but also show that the distribution of the eSNPs is different to
GWAS hits.

The enrichment of eSNPs in a number of genomic annotations previously
associated with eQTLs suggests that the analysed datasets did contain real
eQTLs. The investigation of gene expression levels was performed on a very
small number of patients (n = 109), which could have introduced a large
number of false (positive and negative) signals due to multiple testing and
stochastic associations. The false discovery rate applied to identify the real
associations may not have been stringent enough to distinguish between the
real and false positive signal. However, the analysis of gene expression in
different tissues did lend extra confidence to the accuracy of the results as more
evidence of the association to gene expression levels was found. It may have
benefitted the results and conclusions of the study to restrict the analysis to
only those eSNPs, for which there was evidence of associations to gene
expression in at least two tissues (i.e., Shared eSNPs), as it would have reduced
the number of false positives. Additionally, increasing the number of analysed
patients or the inclusion of a control group of healthy people may also aid the

discovery of real eQTLs.

6.4.2 GIANT height consortium
The SNPs from the GIANT consortium were the first analysed dataset for which
the inclusion of the genotyping arrays did not contribute any additional
information. The model, which contained only the genotyping arrays, had an r?
value of 0.00 (0.0004), so the information added by the genotyping arrays to the
final model was minimal. This was a surprising result, as the meta-analysis
combined the results of 61 individual cohort or case-control studies, which all
used different genotyping arrays [57]. It would have been expected that the
genotyping arrays added more than 0.0004 to the model. However, it is possible

that the effect was reduced to insignificant amounts, as all of the 61 studies
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performed imputations to ease comparison across the different studies. The
results of the meta-analysis were all based on the imputed genotypes of the
SNPs. The r? value of the final model was extracted from the summary with a
value of 0.03 (0.027), meaning that most of the variation remained unexplained.
The modest r? value of the final model suggests that the majority of the height-
associated variation is either still not captured or is explained by a different
genomic annotation not yet analysed. Half of the final genomic annotations with
significant P-values had a negative estimated effect in the model. The dependent
variable was the negative logarithm of the P-value of association to height of
individual SNPs. Annotations with a negative estimate would indicate the
relative negative influence on the logarithm of the P-value, ie, a reduction in
significance. These annotations expectedly included regions associated with
closed or repressed chromatin states, which are associated with little to no

transcriptional activity.

6.4.3 Conclusion
In conclusion, we showed that eSNPs had a genomic signature, which was
indicative for eQTL enrichment and was distinctly different from GWAS hits.
The analysis also showed, that the method and the established dataset was
adaptable to analyse results from different study types. The application of the
linear regression to the SNPs associated to height highlighted another way of
utilizing the built dataset for different studies. While the linear regression did
not result in a large reduction of the analysed genomic annotations, it did
highlight that a number of genomic annotations were influencing height-
association. The result could either be due to the analysis of a continuous
variable or could underline the genetic complexity of height. It needs to be kept
in mind that the change of one unit in the dependent variable is associated with
the change of one unit in the independent variable, which may only be a small
increase in the continuous P-value of height-association, but significantly add

towards explaining the observed variability in the dataset.

168



7 DISCUSSION

We wanted to investigate the distribution of trait associated SNPs in the genome
with respect to a range of genomic annotations, which covered a range of
regulatory features that were identified by experiments or computer
algorithms. We expanded the work performed by a previous study [50], to
address some flaws and investigate more annotations. We have presented a
statistically rigorous analysis of enrichment or depletion of trait associated
variants within 58 genomic annotations aimed at elucidating the question of
what GWAS hits coincide with using novel techniques and data available from

the NHGRI GWAS catalogue (http://www.genome.gov/gwastudies/). The

methods we used for this investigation were sampling, permutations and
regression, which are summarised below. We have further applied the methods
presented to other data, in particular the results of a GWAS analysing gene
expression levels and a meta-analysis investigating height. Here, we discuss

related studies investigating the genomic context of trait-associated variants.

7.1Summary of sampling method

Hindorff et al. performed a similar study [50] where a sampling method was
used to analyse the distribution of the then-known GWAS hits in 20 genomic
annotations. The analysed sampling method set out to create a null distribution
against which the observed data could be compared by randomly drawing many
(in our case 100) sets of SNPs. These sets of SNPs were drawn from genotyping
arrays and imputed data used in the original set of GWA studies, matching the
genotyping array composition of the observed trait-associated SNPs data
(GWAS hits). It therefore compared the observed hit distribution to a
background distribution to assess the significance of the results. This method
had four problems associated with it. The first was that it was computationally
intensive and took one day for the analysis of 100 samples. Second, information
on genotyping platform used were not always available for all the GWA studies
recorded in the NHGRI GWAS catalogue [86] on important details of the GWA

studies curated, such as the genotyping array used in a given study. Third, the
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optimal number of samples needed to appropriately describe the background
(null) distribution of SNPs is unclear and determined by computational
constraints. Fourth, this method ignores the observed clustering of trait-
associated SNPs in the genome, as such SNPs will often co-occur with regulatory
and genic regions [164, 165]. It is therefore unlikely that the null distribution
produced by the samples drawn would reflect this observed clustering, and this
may be a source of artificial enrichments or depletions of trait-associated SNPs
in some of the studied functional annotations. Despite being aware of these
problems, the first analysis performed in this thesis was the replication of the
study of Hindorff et al. [50]. This was done as a benchmark to compare the
methodology we developed and summarise below. We extended the set of
annotations used by Hindorff et al. to include more regulatory annotations, as
well as several measures of conserved elements and regions with different

chromatin states.

7.2Summary of permutation method

In order to preserve the observed clustering of SNPs and functional annotations
in the genome, we developed a method that explicitly preserves that structure
and was based on chromosome-bound circular permutations. The method
produces a null distribution consisting of the 20,000 circularly permuted
genomes, which contained the same number of analysed SNPs per chromosome
and respected the clustering of those SNPs and all functional elements in the
genome. The 20,000 permutations were run in parallel on a locally maintained
256 CPU computer cluster and finished in three days for all chromosomes. In
comparison, the sampling method took about a day for 100 samples. It will
therefore likely take more than three days to analyse 20,000 sets of samples.
Importantly, the permutation method is readily scalable to very large numbers
of trait-associated SNPs and functional annotations. The results of the
permutations were very comparable with the results from the sampling method
with an r? of the regression of their odds ratios of 0.98. The confidence intervals
of the odds ratios derived by permutation are generally slightly more

conservative (Le, larger) than those from the sampling approach. This is
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because the empirically calculated confidence intervals use information on the
underlying distribution of the permuted number of overlaps. We also showed
that SNPs, which had suggestive levels of trait-association, had less extreme
odds ratios of enrichment or depletion than significantly trait-associated SNPs.
This result confirms the hypothesis that the suggestive SNPs consist of true
positive signals, which would have the same distribution as the significantly
associated variants, and false positive signals, which would be expected to lie
outside trait-associated regions. In the analysis above one of the parameters
was the LD threshold, which determines the number of SNPs that are analysed
as LD partners, which we initially set at 0.9. A second LD threshold was
analysed, which showed that including more LD partners did not establish a
clearer picture of enrichment versus depletion of trait-associated variants.
Furthermore, we analysed trait-associated variants from more recent GWAS
and showed that they obtained less extreme odds ratios than the older data; see
Significant SNPs (2011) compared with Significant SNPs (Difference) in Chapter
4. This means that the newer variants have a different distribution than the

older variants.

7.3Summary of regression models
The sampling and permutation methods analysed individual genomic
annotations and are therefore called univariate analyses. We wanted to test all
genomic annotations at the same time and remove all redundant information.
For this we used a multivariate logistic regression model. However, in order to
allow comparisons between the between the permutations and sampling
methods and the multivariate model, we analysed individual genomic
annotations using univariate logistic regression. This allowed comparisons
between different univariate analyses and different regression methods. The
weight of the annotation was an outcome from the analysis and can be
interpreted as the natural logarithm of an odds ratio. The weight was based on
the presence or absence of overlaps with trait-associated variants, but instead
of analysing 100 samples or the results of 20,000 permutations all SNPs present

in the background data were analysed. This method is exceptionally fast,
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finishing in less than two hours when run on the computer cluster mentioned
above (Chapter 5). The null distribution of this method was the number of real
non-associated SNPs, which were compared to the trait-associated SNPs.

While the univariate methods, examining annotations individually, may be very
useful for investigating specific genomic annotations of interest, the overall
conclusions of these analyses may be misleading (see Chapter 5). It is unclear
from such results, which of the overlapping and often-interdependent genomic
annotations are driving any observed enrichment. While it is difficult to identify
the drivers of the enrichment with any of the analysed methods, the
multivariate approach does at least show the effect of the correlations and
highlights the most informative annotations. The multivariate analysis
calculated an information criterion, the Akaike’s Information Criterion (see
Chapter 5), based upon which a decision was taken to include or exclude
genomic annotations from the model. This was a comparatively slow method
even when run on the computer cluster taking up to ten days to complete.
However, the final model was determined by the amount of information each
genomic annotation carried (Chapter 5) and the method had the added
advantage that the effect of the genotyping array used was explicitly included in
the model, unlike other methods. If a SNP was represented on several arrays, it
had a higher chance of being trait-associated due to it being tested more often.
This prior probability was taken into account by including the genotyping
arrays into the model. A possible avenue that could be taken to extend this
method is by including additional variables extra annotations or interactions
between variables. However, this would further increase the running time of the
method. The multivariate models highlighted those genomic annotations with
relative depletion of trait-associated SNPs, which obtained odds ratios of
enrichment in the univariate analyses. The relative depletion results from the
comparison with other genomic annotations, which contain more SNPs than the
depleted ones. This suggests that the univariate models may have
overestimated the importance of the annotations, as other influences
contributing to the observed enrichment were not taken into account, which is

an important finding for future analyses.
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7.4Recommendation of methods
We have analysed three different methods of investigating the overlaps
between trait-associated variants and genomic annotations. The three
considered univariate analyses, which were sampling, permutations, and single
variable logistic regression, produced remarkably similar and highly
comparable results. However, if a recommendation were to be given as to which
univariate method should be used in further analyses, it would be suggested to
use the permutation method. This is due to the number of expected - or
background - overlaps against which the real trait-associated variants were
compared. The permutations generated 20,000 virtual genomes with the same
number of variants analysed per chromosome producing highly robust results.
In comparison, the sampling method relied upon 100 samples and while it
focussed on the distribution of the variants across genotyping arrays, it did not
control the number of analysed variants per chromosome. Furthermore, the
sampling method was the slowest of the methods and took a total of three days
for an analysis. While the logistic regression using single variables was the
fastest of the three methods, it produced possibly inflated odds ratios. The
results were produced by a direct comparison of overlaps and non-overlaps of
the SNP sets and the background. However, the background here was the entire
genome, which consisted of a very large number of non-associated variants (i.e.,
a very large number of zeros). This disproportionate separation of the data
could have inflated the importance of any annotation found to be overlapping

with the variants.

If at all possible, however, it is recommended to use the multivariate analysis to
analyse genomic annotations overlapping with associated variants. This is
because the variants may overlap with more than one annotation at the time,
which overestimates the importance of individual annotations. The multivariate
analysis, however, takes that into account and removes redundant information
resulting in a model containing the minimum number of genomic annotations
explaining the maximum amount of variation. The sampling and permutation

methods were not capable of that, so the logistic regression was used.
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7.5Summary of application to other data
The permutation and multivariate regression methods were respectively
applied to two different datasets, a gene expression study of seven different
tissues in myocardial infarction and a GWAS meta-analysis for height-associated
SNPs, to demonstrate the practical application of the methods described in
previous chapters (Chapter 6). The permutation method discovered that eSNPs,
which were significant GWAS hits in an analysis investigating gene expression
levels, are more enriched in promoter and regulatory regions than other GWAS
hits. This implied that eSNPs may have a different mechanism to influence traits
than GWAS hits, as would have been expected if they are, or contain a high
number of, real eQTLs. It is possible that GWAS hits affect a given trait less
subtly than eQTLs do, given that eQTLs influence traits by affecting gene
expression levels. This effect could be quite small and therefore not immediately
noticeable. GWAS hits, however, could act upon traits by disrupting coding or
binding regions, which could affect phenotypes quite quickly. We also showed
that Shared eSNPs (i.e, eSNPs which were significant in more than two tissues)
have more extreme odds ratios than either of the other analysed eSNPs datasets
- All eSNPs or Tissue-specific eSNPs (see Chapter 6). A linear regression
investigating height-associated SNPs showed that 51 of 54 genomic annotations
jointly influenced the P-value of height-association. While this is a very high
number of annotations, each annotation influenced the height-association only

slightly with odds ratios ranging from 0.66 - 1.24.

7.6 Discussion of genomic annotations
The three categories of genomic annotations had different relative enrichment
of trait-associated variants. The genic category included regions associated with
genes and other regulatory elements, such as eQTLs. The majority of the
annotations included in this category were enriched with trait-associated
variants. The enrichment signal, however, could possibly be caused by the
coinciding annotations. The genic category contained genomic annotations,
which ranged from single nucleotides to full genes thereby introducing some

heterogeneity into the dataset. However, the impact of the genic category is still
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larger than the conserved annotation category. The majority of the genic
annotations were analysed previously by a number of authors in different
studies, where DNase I hypersensitive sites, eQTLs, and distance from the TSS
feature the most often [50, 65, 110, 111, 147, 166]. The genic annotations were
also the ones that were included most frequently in the final model of

multivariate analyses with the exception of the Cancer SNPs set.

The annotations included in the conserved region were slightly more
comparable in the lengths of the annotated genomic blocks, but they were only
modestly enriched in all analyses. The Immune SNPs and Cancer SNPs were the
two SNP sets that were the exception to this, as conserved regions were
significantly and consistently depleted in the Immune SNPs while the Cancer
SNPs showed enrichment for these sites. A different study that also investigated
phastCons sites was the study by Gaffney et al., which also showed only modest
enrichment of SNPs in these sites [147]. Hindorff et al. [50] also investigated
conserved sites, but chose only the conserved sites across 28 species. The low
enrichment in our study could be due to the use of all sites identified by
phastCons rather than restricting the annotation to only those sites with high
LOD scores. This could have reduced the odds ratios of the annotations, as it
could be possible that those sites that are overlapping with non-associated
variants have low scores and would have been removed from the dataset if a
threshold had been applied. However, the obtained modest enrichment found
by Gaffney et al. [147] corroborates our results. This annotation category, like
the chromatin states, contained only data obtained computational analyses, but
had very different enrichment and depletion signals than the chromatin states.
It is therefore not possible to draw a line between the quality of data obtained
by experimental or computational analyses.

The annotations in the third category, the chromatin states, were all identified
by experimental data, which was refined through computational analyses. This
category contained annotations with the largest annotated genomic blocks and
could potentially be more robust to shifts in genomic positions between

genomic reference maps. Furthermore, the enrichment signals obtained in the
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chromatin states category were very encouraging as there has been mounting
evidence [82, 167, 168] that trait-associated variants preferentially lie in
regions that can be identified through histone modifications by either analysing
the histone modifications individually or as a pattern.

As mentioned above, none of the analysed annotations were restricted
according to a threshold. This applied to data obtained from either
computational analyses or results obtained through experimental analyses, like
ChIP-seq. The lack of threshold could have resulted in false positive or false
negative signals, depending on the over- or under-prediction of the annotation
in the observed or expected datasets. For example, a genomic region that was
falsely annotated and overlapped with real trait-associated variants but not
with permuted variants could have obtained a higher odds ratio estimate.
Alternatively, a genomic region that was falsely annotated but overlapped only
with permuted variants could have caused a falsely reduced odds ratio. These
are caveats in this analysis, which would have to be addressed if this study were
to be repeated.

An additional caveat, which could have caused inflated odds ratios, is the
inclusion of non-Caucasian studies into the analysis. While the percentage of
studies in non-Caucasian populations is still quite small, it could have
erroneously inflated the number of overlaps in annotations. This is due to the
shorter LD blocks found in African population when compared to Caucasian
populations. For future studies it would be recommended to remove the non-

Caucasian studies from further analyses.

7.7 Other studies investigating functional annotations
Many recently published studies are focussing on the functional annotations of
underlying trait-associated variants to inform future GWAS and population
sequencing studies [65, 165, 169, 170]. The interest in regions annotated with
functional elements is largely driven by the attempt to identify those genomic
annotations enriched for GWAS hits and to aid the often-laborious search for

causal variants. It is hoped that a separation of spurious associations from true
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associations can be attempted by prioritizing those regions that were
previously associated with trait-associated variants. This could potentially
increase the number of significantly trait-associated variants or highlight
variants with a higher chance of giving a positive result. A study published in
2011 [65] suggested the empirical Bayes Factors for three annotations (cis-
eQTLs, non-synonymous SNPs and promoter SNPs) for prioritisation algorithms
to identify candidates for GWAS follow-up studies to be 4, 3 and 2, respectively.
This implies that eQTLs are most usually enriched for trait-associated SNPs,
which confirms the findings of a study in 2010, which found that trait-
associated variants were most likely to be eQTLs [110]. A study in 2013
analysed a genomic inflation correction by estimating a genomic control from
intergenic SNPs [165] while also identifying strong enrichment in 5’UTRs. Their
observations of strong enrichment in regulatory genic elements agree well with
our results, but they only analysed 10 annotations and did not incorporate
functional regions annotated by chromatin states [165]. The Encyclopedia of
DNA Elements (ENCODE) is a large international consortium, which aims to
categorize DNA elements. The publication of an ENCODE study investigating the
annotations of disease-associated SNPs showed that ENCODE data can be used
for these an notational studies [74]. This finding was supported by the
publication of a database detailing regulatory and rare SNPs [170]. An
investigation also using multivariate logistic regression to identify the
regulatory architecture of eQTLs by investigating transcription factor binding
sites and conserved sites found a distinct enrichment of eQTLs in transcription
factor binding sites, but observed only showed modest enrichment in conserved
sites [147]. In this thesis, the conserved regions also showed modest odds ratios
enrichment in the univariate and the final multivariate models, where included.
This is despite the frequent use of conservation measures in variant
prioritization methods [64], which implicitly suggests that they are important
for trait-associated variants. But here it appears that other annotations are
more influential. It appears that there are many studies investigating how to
mine the existing GWAS data to leverage more information from them to aid in

the dissecting of the genetics contributing to complex traits. While all studies to
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date have analysed different genomic annotations across a large spectrum of
functional elements, a study with as many genomic annotations as analysed in
this thesis had not been attempted. All of these studies suggested it was
worthwhile to undertake a more comprehensive analysis of functional elements

and to examine the distribution of GWAS hits within them.

7.8 Future work and developments and their impacts

There has been a substantial increase in the number of studies reporting on the
annotations of trait-associated variants [167-170] since the original study by
Hindorff et al. in 2009. Furthermore, there have been a large number of online
tools investigating ways of easing the often-laborious process of annotating
trait-associated variants. Among these are HaploReg [171] and RegulomeDB
[170], which aim to aid researchers investigating the underlying genomic
regions of trait-associated variants. This could potentially lead to a faster and
cheaper way to discover the underlying biological causes of trait-associated
variants. The future will likely see more online tools used to annotate variants,
as there is an ever-increasing pressure on the society to not just identify
associated variants. The tools may aid in the discovery of the real causes of the
associations as they highlight which annotations are most often coinciding with

trait-associated variants. The future will tell if this is right.

During the course of the research presented in this thesis, a number of new
annotations were published. The ENCODE data was released over the past few
years, locating a large number of transcription factor binding sites and other
sites of functional annotations [172-174]. Before 2011 we had included a large
number of histone modifications, which were identified in several cell lines.
However, in 2011 a meta-analysis of histone modification patterns in nine cell
lines showed that particular combinations (chromatin states) were associated
with particular classes of functional regions [82]. Most of the final multivariate
regression models contained at least one of these functional classes, where they
were influential in determining trait-association status. One can only expect that

the next few years will see more leaps in the quality and quantity of functional
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data resulting in better models and possible identification of highly explanatory

annotations.

GWAS sample sizes are increasing to allow the identification of variants with
minor allele frequencies (MAFs) of less than 1% [175] to be detected [31] and
common variants with smaller effects. Their design will also have to include a
wider range of different populations to analyse diseases common to specific
populations and not focus on mainly Caucasian populations [176, 177]. Whole
genome sequencing technologies have begun to uncover many novel variations
[58, 178] including SNPs with low allele frequencies and ‘private’ mutations,
seen in only one individual. This new variation will facilitate the discovery of
genetic causes, as a large proportion of highly deleterious SNPs [179] are rare
or private mutations [180]. These private mutations could aid the
understanding of complex traits greatly, because they could have very large
effects. The large effect would be strongly selected against, therefore keeping
their allele frequencies low. The rarity of these mutations may not necessarily
be matched by their abundance in certain pathways, i.e., it could be that a large
number of rare or private mutations disrupt the same pathway giving the same
phenotype. The new information, which will be discovered, might also include
structural variants, such as copy number variants (CNVs), or repetitive regions
that have so far been difficult to assay and analyse. While the sequencing
technologies will get better, the range of available functional genomic data will
also be improved upon. These annotations may include retrotransposons and
more RNA molecules, which are emerging as functional [173, 181, 182]. The
emergence of more SNPs and new annotations will lead to a higher demand for
predictive modelling of variant function, which will also feed back into the
improvement of future models. The research presented in this thesis is highly
adaptable and can be easily applied to data for new disease associated variants
and new functional annotation. We analysed a broader range of functional
annotations simultaneously than other studies to date furthermore investigated
different trait-subsets. These allowed the drawing of more trait-specific

conclusions, which in turn may feed into more specific disease risk predictive

179



models and say something about the architecture of the traits. The genomic
annotations from the multivariate models used here (Chapter 5) could therefore
aid the calculation of the prior probability - or ‘weighing’ - of SNPs to identify

those variants, which were more likely to affect phenotypes.

Better predictive models and the ever-decreasing cost of genotyping may
eventually lead to more precise disease risk predictions for individuals.

Companies such as 23andme (http://www.23andme.com) or deCODEme

(http://www.decodeme.com) are already attempting to predict risk of certain

diseases by investigating the genotypes of a number of SNPs. However, the
results produced by the companies still vary greatly between companies as they
use different predictive algorithms, different SNP sets, and different average
population risks [183]. Truly accurate risk predictions may therefore be out of
reach until we can thoroughly comprehend environmental influences, which
affect genetic predisposition, and include them in our analyses. It might be
possible that these predictions become more accurate, as more information,
such as environmental influences, gets included in the analysis. Such
environmental influences could, for example, be modelled using different
histone modifications known to respond to outside stimuli. However, these are
out of reach at present. In this thesis, we have shown that while different
combinations of genomic annotations influence different trait-subsets, common
regulatory features are present and most often underlie variants associated to a

broad range of traits.
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APPENDIX

9.1Traits divided into four different subsets

9.1.1 Immune traits

Activated partial thromboplastin time

Acute anterior uveitis

Acute chest syndrome asthma

Acute graft-versus-host disease

Acute renal allograft rejection

Acute respiratory distress syndrome IL* production
Addison's disease

Aggressive periodontitis

AIDS

AIDS progression

Airway hyperresponsiveness atopy

Airway hyperresponsiveness, methacholine induced
Allele frequency/ normal

Allergic asthma

Allergic bronchopulmonary aspergillosis abpa
Allergic disease

Allergic disease, ige -mediated

Allergic diseases (bronchial asthma. Atopic dermatitis and/or food-related
anaphylaxis)

Allergic rhinitis

Allergic rhinitis asthma

Allergic rhinitis dermatitis and eczema fatty acid
Allergic rhinitis IgE

Allergies; common cold

Allergy

Allergy asthma

Allergy dermatitis and eczema

Allergy, latex; latex allergy

Allergy, latex; latex allergy; pemphigoid, bullous
Allogenic stem cell transplantation

Allograft dysfunction, renal

Allograft outcome

Allograft rejection, heart

Alopecia areata

Altered CCR5 Expression or coreceptor function
Alveolitis, extrinsic allergic

Alzheimer's disease

ANCA positive patients

Ankylosing spondylitis

Annexin A5 antibodies

Anti-cyclic citrullinated peptide antibodies rheumatoid arthritis
Anti-GADG65 antibody
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Anti-islet autoantibodies diabetes, type 1
Anti-neutrophil cytoplasmic antibodies kidney failure, chronic
wegener's granulomatosis

Anti-ro 52-KD autoantibodies

Anti-ro autoantibodies

Antibody formation crohn's disease ulcerative colitis
Anticardiolipin antibody production lupus erythematosus
Antineutrophil cytoplasmic antibody-associated vasculitis
Antineutrophil cytoplasmic antibody; (ANCA)-associated vasculitis
Antiphospholipid syndrome

Aplastic anemia, acquired

Apolipoprotein levels

Arthritis

Arthritis (juvenile idiopathic)

Arthritis lupus erythematosus

Aseptic abscesses crohn's disease inflammatory bowel disease
Aspirin-induced asthma

Aspirin-intolerant asthma

Asthma

Asthma (childhood onset)

Asthma in combination with a variety of other diseases
Atherosclerosis, coronary

Atopic asthma

Atopic asthma. BHR. Total IgE. SPT

Atopic dermatitis

Atopic eczema

Atopy

Atopy (IgE)

Atopy (total & specific IgE)

Atopy IgE urticaria, aspirin-intolerant

Atopy vaccine response

Atopy-susceptibility

Atopy; dermatitis and eczema

Atopy; IgE levels

Atopy. Airway obstruction. BHR. Asthma

Atopy. Asthma

Atopy. Asthma. Netherton

Atopy. BHR

Atopy. Spige. Total IgE. Asthma. Atopic asthma

Atopy/ asthma

Autoimmunity

Autologous mixed lymphocyte reaction

Bee venom allergy

Behcet's disease

Beta cell autoimmunity

B-cell function; diabetes, type 1

Betacl osteocalcin

BHR

Birth weight bronchopulmonary dysplasia sepsis

Blau syndrome

Bone marrow transplantation

Bronchial asthma

polyangiitis
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Bronchial asthma (childhood & adult)
Bronchial asthma (childhood only)
Bronchial hyperreactivity

Bronchial hyperresponsiveness

Bronchopulmonary dysplasia respiratory distress syndrome, neonatal

Bullous pemphigoid

C-reactive protein

Carotid atherosclerosis in HIV Infection

CD14 expression

CD14 levels

Cedar pollinosis

Celiac disease

Celiac disease diabetes, type 1

Celiac disease gluten intolerance

Celiac disease lupus erythematosus rheumatoid arthritis
Celiac disease; colitis

Cerebral malaria

Childhood asthma

Childhood atopic asthma

Childhood atopic asthma

Childhood B-cell non-hodgkin's lymphoma

Chinese ankylosing spondylitis patients

Cholangitis, sclerosing

Cholangitis, sclerosing crohn's disease inflammatory bowel disease
Cholangitis, sclerosing crohn's disease ulcerative colitis
Cholesterol, LDL; cholesterol, total; C-reactive protein; APOA2; APOB
Chronic bronchitis

Chronic hepatitis C infection

Chronic immune thrombocytopenic purpura.

Chronic nonproductive cough

Chronic obstructive pulmonary disease

Chronic pancreatitis

Chronic periodontitis.

Chronic progressive multiple sclerosis.

Cirrhosis, biliary primary

Cirrhosis, biliary primary hepatitis, autoimmune
Coeliac disease.

Collagen disease juvenile arthritis rheumatoid arthritis still's disease
Common variable immunodeficiency

Congenital thrombotic thrombocytopenic purpura
Contact allergy

Contact hypersensitivity

Contact sensitisation

COPD

Coronary heart disease

Crohn's disease

Cryoglobulinemia

Cutaneous neonatal lupus

Cytokine lung function

Cytokine release

Cytokine release mortality

Cytokine response to measles vaccine
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Cytokine synthesis

Cytokines; tumor markers

Decreased airway responsiveness
Dengue shock syndrome

Dermatitis and eczema

Dermatitis herpetiformis.

Dermatitis, atopic

Dermatomyositis myopathy, idiopathic inflammatory polymyositis
Dermatomyositis polymyositis
Diabetes (gestational)

DRS

Early onset of multiple sclerosis.
Early onset periodontitis

Early onset psoriasis

Early polyarthritis

Early-onset periodontitis

Eczema

Eczema food allergy IgE

Emphysema

Eosinophil counts

Eosinophilia

Eosinophilic esophagitis (pediatric)
Epithelial neutrophil activating peptide
Epstein-barr virus

Erythema nodosum

Familial hemophagocytic lymphohistiocytosis
Familial juvenile onset psoriasis
Familial mediterranean fever

FAS levels

FEV1

Food allergy

Fuchs heterochromic cyclitis
Glomerulonephritis, hepatitis B virus-associated
Graft acceptance, liver

Graft occlusion, atherosclerotic

Graft rejection, liver

Graft versus host disease

Graves' disease

Graves' hyperthyroidism

Graves' ophthalmopathy
H-thyroiditis

Haemophilia with chronic synovitis
Hashimoto's thryoiditis

Hematology indices

Hemophagocytic lymphohistiocytosis
Henoch-schonlein purpura

Hepatitis B

Hepatitis B (viral clearance)
Hepatitis C induced liver fibrosis
Hepatitis type 1, autoimmune (AIH-1)
Hepatitis type 2, autoimmune

HIV
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HIV-1 control

HIV-1 infection
HLA-associated diseases
HPV seropositivity

Human T-cell lymphotropic virus type I associated myelopathy

Hyper-IgE syndrome and severe eczema. Atopy
Hyper-IgM syndrome

Hyper-IgM syndrome can form oligomers and trigger CD40-mediated signals

Hyperresponsiveness

Hypothyroidism

Hypothyroidism, autoimmune
Hypothyroidism, goitrous juvenile autoimmune
Idiopathic chronic pancreatitis
Idiopathic inflammatory myopathies

IgA

IgA deficiency

IgA deficiency and common variable immunodeficiency
IgA nephropathy

IgD

IgE

IgE grass sensitization

IgE levels

IgE response

IGF-I

IGF-1levels; IGFBP-3 levels

IgG

IgM

[L-18 concentration physical functioning
IL-18 lupus erythematosus

IL-1beta

IL-4

IL18 expression level

IL6 transcription

Immune deficiency

Immunoglobulin A deficiency
Immunoglobulin A glomerulonephritis
Immunology study

Immunotherapy response

Improved survival in sepsis

Increased expression of the G gamma and A gamma globin
Increased IgE

Increased interleukin-10 (IL-10) plasma levels
Inflammatory bowel disease
Inflammation

Inflammation oxidative stress
Inflammatory biomarkers

Inflammatory bowel disease
Inflammatory disease

Inflammatory markers

Inflammatory myopathies

Inflammatory response

Inflammatory urogenital disease
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Insulin dependent diabetes
Interferon response
Interleukin-1 beta (IL-1 beta) synthesis capacity
Irritable bowel syndrome
Juvenile ankylosing spondylitis
Juvenile arthritis

Juvenile idiopathic arthritis
Juvenile rheumatoid arthritis
Kawasaki disease

Kidney transplant

Kidney transplant complications
Kidney transplant complications; lipids
Knee osteoarthritis

Latex allergy

Leprosy

Leukemia virus type |

Liver transplantation, immunosuppression after
Lung function

Lupus

Lupus erythematosus

Lupus nephritis

Malaria

Measles vaccine immunity
Microscopic polyangiitis
Microsomal epoxide hydrolase
Mite-sensitive asthma

Monocyte chemoattractant protein-1
Morbidity mortality

Multiple sclerosis

Myasthenia gravis

Myositis

Narcolepsy

Neonatal lupus

Nephropathy, IgA

Neutrophil immunodeficiency syndrome
No exhalation

Nocturnal asthma

Osteoarthritis

Osteomyelitis

Otitis media

Pancreatitis

Peanut allergy

Pemphigus

Pemphigus foliaceus

Pemphigus vulgaris

Penicillins allergy

Periodontal disease
Periodontitis

Physician diagnosed asthma
Pityriasis rosea

Plasma IL6 levels

Plasminogen activator inhibitor type 1 levels (PAI-1)
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Pneumoconiosis

Pollen allergy

Pollen-induced allergic rhinitis
Pollinosis, cedar

Polymylagia rheumatica
Polymyositis and dermatomyositis.
Polyneuropathy vasculitis
Postoperative systemic inflammatory reaction
Postpartum thyroiditis

Primary biliary cirrhosis

Primary sclerosing cholangitis
Primary sjogren's syndrome
Psoriasis

Reactive arthritis

Reiter's syndrome

Renal disease

Renal transplant rejection
Respiratory syncytial virus
Response to endotoxin
Retinopathy, diabetic; nephropathy in other diseases
Rheumatic diseases

Rheumatic fever

Rheumatic heart disease
Rheumatoid arthritis

Rhinitis

Rickets

Rubella vaccine, cytokine response to
Sarcoidosis

Sarcoidosis

Sarcoidosis tuberculosis
Sarcoidosis uveitis

Scleroderma

Scleroderma; jaundice

Sclerosing cholangitis and ulcerative colitis (combined)

Sclerosis, systemic

Semple rabies vaccine-induced autoimmune encephalomyelitis

Sepsis

Sepsis development or mortality
Septic shock

Serum IgE levels

Severe asthma

Severe chronic neutropenia
Severe combined immunodeficiency
Severe ulcerative colitis

Silicosis

Sinusitis

Sjogren's syndrome

SLE

Soluble CD14 plasma levels
Specific IgE
Spondyloarthropathies

SPT

209



Staphylococcal infection
Steroid-dependent asthma
Steroid-requiring asthma in sedentary women
Stevens-Johnson syndrome

Still's disease

Sulfasalazine, adverse effects of

Syncytial virus bronchiolitis

Systemic inflammatory response syndrome
Systemic juvenile idiopathic arthritis
Systemic lupus erythematosus

Systemic scleroderma

Systemic sclerosis

Thimerosal sensitization

Thrombosis, deep vein; Behcet's disease
Thryoiditis, chronic lymphocytic

Thyroid autoimmunity

Thyroiditis, chronic lymphocytic
Thyroiditis, Hashimoto's

Thyrotoxic hypokalemic periodic paralysis
TIgE

TNF-Alpha

Total IgE

Total serum IgE

Tropical calcific pancreatitis

Tuberculosis

Tumor necrosis factor receptor-associated periodic syndrome
Type 1 diabetes

Type 1 diabetes autoantibodies

Type 1 diabetes nephropathy

Type 2 diabetes

Type 2 diabetes and other traits

Ulcerative colitis

Vaspin levels

Vitiligo

Vogt-Koyanagi-Harada's disease

Wheeze

White blood cell types

X-linked lymphoproliferative disease
X-linked severe combined immunodeficiency

9.1.2 Cancer traits
Acute lymphoblastic leukemia (childhood)
Basal cell carcinoma
Basal cell carcinoma (cutaneous)
Bladder cancer
Breast cancer
Breast cancer (male)
Carcinoma
Chronic lymphocytic leukemia
Chronic myeloid leukemia
Colorectal cancer
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Endometrial cancer

Erectile dysfunction and prostate cancer treatment

Esophageal cancer

Esophageal cancer (alcohol interaction)
Esophageal cancer (squamous cell)
Esophageal cancer and gastric cancer

Ewing sarcoma
Follicular lymphoma
Gastric cancer
Glaucoma

Glaucoma (exfoliation)

Glaucoma (primary open-angle)

Glioma

Glioma (high-grade)
Hepatocellular carcinoma
Hodgkin's lymphoma

Lung adenocarcinoma
Lung cancer

Melanoma

Meningioma

Multiple myeloma
Myeloproliferative neoplasms
Nasopharyngeal carcinoma
Neuroblastoma
Neuroblastoma (high-risk)
Non-small cell lung cancer
Ovarian cancer

Pancreatic cancer

Prostate cancer

Renal cell carcinoma
Testicular cancer
Testicular germ cell cancer
Testicular germ cell tumor
Thyroid cancer

Upper aerodigestive tract cancers

Urinary bladder cancer
Wilms tumor
YKL-40 levels

Multiple cancers (lung cancer and gastric cancer and squamous cell carcinoma)

9.1.3 Normal Variation traits

Acenocoumarol maintenance dosage
Activated partial thromboplastin time

Adiponectin levels
Aging
Aging traits

Alcohol and nictotine co-dependence

Alcohol consumption
Amyloid A levels
Androgen levels
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Angiotensin-converting enzyme activity
Ankle-brachial index
Anthropometric traits
Anticoagulant levels
Antipsychotic drug-induced weight gain
Aortic root size

Aortic stiffness

Arterial stiffness

Aspartate aminotransferase
Bilirubin levels

Biochemical measures

Birth weight

Bitter taste response

Black vs. Blond hair color
Black vs. Red hair color
Bleomycin sensitivity

Blond vs. Brown hair color
Blood lipid traits

Blue vs. Brown eyes

Blue vs. Green eyes

Body mass (lean)

Brain structure

Breast size

Burning and freckling
Butyrylcholinesterase levels
C4B binding protein levels
Caffeine consumption

Calcium levels

Cannabis dependence
Capecitabine sensitivity
Cardiac hypertrophy

Cardiac repolarization

Cardiac structure and function
Carotenoid and tocopherol levels
Carotid intima media thickness
CD4:CD8 lymphocyte ratio
Central corneal thickness

Cholelithiasis-related traits in sickle cell anemia

Circulating cell-free DNA
Coagulation factor levels
Coffee consumption
Cognitive decline
Cognitive function
Common traits (other)
Complement C3 and C4 levels
Corneal astigmatism
Corneal curvature
Corneal structure
Cortical structure
Cortical thickness
Creatinine levels
Cutaneous nevi
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Cystatin C

D-dimer levels

Dehydroepiandrosterone sulphate levels
Dental caries

Diastolic blood pressure

Drinking behavior

Drug-induced liver injury

Drug-induced liver injury (amoxicillin-clavulanate)
Drug-induced liver injury (flucloxacillin)
E-selectin levels

Electrocardiographic traits
Electroencephalographic traits in alcoholism
Eosinophil counts

Epirubicin-induced leukopenia
Erythrocyte sedimentation rate

Exercise (leisure time)

Exercise treadmill test traits

Eye color

Eye color traits

F-cell distribution

Facial morphology

Factor VII

Fasting glucose-related traits

Fasting glucose-related traits (interaction with BMI)

Fasting insulin-related traits

Fasting insulin-related traits (interaction with BMI)

Fasting plasma glucose

Fetal hemoglobin levels

Fibrinogen

Folate pathway vitamin levels
Freckles

Freckling

Gamma gluatamyl transferase levels
Gamma glutamyl transpeptidase
Glycated hemoglobin levels

Hair color

Hair morphology

Handedness in dyslexia

Haptoglobin levels

HBAZ2 levels

HDL cholesterol

HDL cholesterol - triglycerides (HDLC-TG)
Head circumference (infant)

Heart failure

Height

Hematocrit

Hematological and biochemical traits
Hematological parameters
Hematology traits

Hemoglobin

Hemostatic factors and hematological phenotypes
Hepatitis B vaccine response
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Hepcidin levels

Hippocampal volume

Homocysteine levels

HPV seropositivity

Hypertension

Hypertension risk in short sleep duration
[FN-related cytopenia

IgE levels

IgG levels

IgM

Immune reponse to smallpox (secreted IFN-alpha)
Immune reponse to smallpox (secreted IL-10)
Immune reponse to smallpox (secreted IL-12p40)
Immune reponse to smallpox (secreted IL-1beta)
Immune reponse to smallpox (secreted IL-2)
Immune reponse to smallpox (secreted TNF-alpha)
Immune response to smallpox vaccine (IL-6)
Immunoglobulin A

Insulin-like growth factors

Insulin-related traits

Interleukin-18 levels

Intracranial volume

Intraocular pressure

Iris characteristics

Iris color

Iron levels

Iron status biomarkers

Keloid

Left ventricular mass

Lentiform nucleus volume

Lipid levels in hepatitis c treatment

Lipid metabolism phenotypes

Lipid traits

Lipoprotein-associated phospholipase A2 activity and mass
Liver enzyme levels

Liver enzyme levels (alanine transaminase)
Liver enzyme levels (alkaline phosphatase)

Liver enzyme levels (gamma-glutamyl transferase)
Longevity

LP (A) levels

Lumiracoxib-related liver injury

Magnesium levels

Major depressive disorder

Male-pattern baldness

Mammographic density

Matrix metalloproteinase levels

Mean corpuscular hemoglobin

Mean corpuscular volume

Mean platelet volume

Menarche

Menarche (age at onset)

Menarche and menopause (age at onset)
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Menopause

Menopause (age at onset)

Metabolic traits

Monocyte chemoattractant protein-1
Morbidity-free survival

MRI atrophy measures

N-glycan levels

Natriuretic peptide levels

Neuranatomic and neurocognitive phenotypes

Neutrophil count
Nevirapine-induced rash
Nicotine dependence
Non-albumin protein levels
Normalized brain volume
Obesity

Obesity and blood pressure
Obesity-related traits

Optic disc parameters

Optic disc parameters

Optic disc size

Optic disc size (disc)

Other erythrocyte phenotypes
Other metabolic traits

Pain

Pericardial fat

Permanent tooth development
Personality dimensions
Phospholipid levels (plasma)
Phosphorus levels
Phytosterol levels

Plasma C4B binding protein levels
Plasma carotenoid and tocopherol levels
Plasma coagulation factors
Plasma E-selectin levels
Plasma eosinophil count
Plasma homocysteine

Plasma level of vitamin B12
Plasma levels of liver enzymes
Plasma levels of protein C
Platelet aggregation

Platelet counts

PR interval

Primary sclerosing cholangitis

Primary tooth development (number of teeth)
Primary tooth development (time to first tooth eruption)

Progranulin levels

Proinsulin levels
Prostate-specific antigen levels
Protein biomarker

Protein quantitative trait loci
Prothrombin time

Pulmonary function
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Pulmonary function decline

Pulmonary function measures, QT interval
Quantitative traits

Reasoning

Recombination rate (females)
Recombination rate (males)

Red blood cell traits

Red vs. Non-red hair color

Refractive error

Renal function and chronic kidney disease
Renal function-related traits (bun)

Renal function-related traits (EGRFCREA)
Renal function-related traits (SCR)

Renal function-related traits (urea)
Resistin levels

Response to antidepressants

Response to antipsychotic therapy (extrapyramidal side effects)

Response to antipsychotic treatment
Response to citalopram treatment
Response to clopidogrel therapy
Response to fenofibrate

Response to gemcitabine in pancreatic cancer
Response to hepatitis C treatment
Response to interferon beta therapy
Response to metformin

Response to statin therapy

Response to statin therapy (LDL-C)
Response to tocilizumab in rheumatoid arthritis
Response to vitamin E supplementation
Resting heart rate

Retinal vascular caliber

Retinol levels

Ribavirin-induced anemia

RR interval (heart rate)

Select biomarker traits

Serum albumin level

Serum bilirubin levels

Serum calcium

Serum creatinine

Serum dehydroepiandrosterone sulphate levels
Serum IgE levels

Serum iron levels

Serum markers of iron status

Serum metabolites

Serum phosphorus levels

Serum phytosterol levels

Serum prostate-specific antigen levels
Serum soluble E-selectin

Serum total protein level

Serum urate

Serum uric acid

Sex hormone-binding globulin levels
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Skin pigmentation

Skin sensitivity to sun

Sleepiness

Smoking behavior

Soluble E-selectin levels

Soluble leptin receptor levels

Soluble levels of adhesion molecules
Speech perception in dyslexia
Sphingolipid levels

Systolic blood pressure

T-tau

Tanning

Telomere length

Testosterone levels

Thyroid function

Thyroid volume

Triglycerides

Triglycerides-blood pressure (TG-BP)
Two-hour glucose challenge

Urate levels

Uric acid levels

Urinary albumin excretion

Urinary metabolites

Vascular endothelial growth factor levels
Vaspin levels

Venous thromboembolism
Ventricular conduction

Vertical cup-disc ratio

Visceral adipose tissue/subcutaneous adipose tissue ratio
Visceral fat

Vitamin B12 levels

Vitamin D insufficiency

Vitamin D levels

Vitamin E levels

Volumetric brain MRI

Waist circumference

Waist circumference - triglycerides (WC-TGS)
Waist circumference and related phenotypes
Waist-hip ratio

Warfarin maintenance dose

Weight

White blood cell count

White blood cell types

White matter hyperintensity burden
Working memory

Wrist bone mass
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9.1.4 Disease traits

AB1-42

Abdominal aortic aneurysm

Acute lymphoblastic leukemia (childhood)
Adiposity

Age-related macular degeneration (wet)
Age-related macular degeneration
Age-related macular degeneration (CNV vs. GA)
Age-related macular degeneration (CNV)
Age-related macular degeneration (GA)
Alcohol dependence

Alopecia areata

Alzheimer's disease

Alzheimer's disease (age of onset)
Alzheimer's disease (late onset)

Alzheimer's disease biomarkers
Amyotrophic lateral sclerosis

Ankylosing spondylitis

Arthritis (juvenile idiopathic)

Asthma

Atrial fibrillation/atrial flutter

Attention deficit hyperactivity disorder
Autism

Barrett's esophagus

Basal cell carcinoma

Beta thalassemia/hemoglobin e disease
Biliary atresia

Biomedical quantitative traits

Bipolar disorder

Bipolar disorder and major depressive disorder (combined)
Bipolar disorder and schizophrenia

Bladder cancer

Blood pressure

Body mass in chronic obstructive pulmonary disease
Body mass index

Bone mineral density

Bone mineral density (hip)

Bone mineral density (spine)

Breast cancer

Breast cancer (male)

C-reactive protein

C-reactive protein and white blood cell count
Cardiovascular disease risk factors

Carotid atherosclerosis in HIV infection
Celiac disease

Celiac disease and rheumatoid arthritis
Cholesterol (total)

Chronic hepatitis C infection

Chronic kidney disease

Chronic kidney disease and serum creatinine levels
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Chronic lymphocytic leukemia
Chronic myeloid leukemia

Chronic obstructive pulmonary disease
Cleft lip

Colorectal cancer

Conduct disorder (symptom count)
Coronary artery calcification
Coronary heart disease
Creutzfeldt-Jakob disease
Creutzfeldt-Jakob disease (variant)
Crohn's disease

Crohn's disease and celiac disease
Crohn's disease and psoriasis

Cystic fibrosis severity

Diabetes (gestational)

Diabetic retinopathy

Diastolic blood pressure

Dilated cardiomyopathy

Disc degeneration (lumbar)

Drinking behavior

Duodenal ulcer

Dupuytren's disease
Electrocardiographic traits
End-stage renal disease (non-diabetic)
Endometrial cancer

Endometriosis

Eosinophilic esophagitis (pediatric)
Epilepsy

Epilepsy (generalized)

Erectile dysfunction

Erectile dysfunction and prostate cancer treatment
Esophageal cancer

Esophageal cancer (alcohol interaction)
Esophageal cancer (squamous cell)
Essential tremor

Ewing sarcoma

Fasting plasmaglucose

Follicular lymphoma

Fuchs's corneal dystrophy
Gallstones

Gamma glutamyltranspeptidase
Gastric cancer

Glaucoma

Glaucoma (primary open-angle)
Glioma

Glioma (high-grade)
Glomerulosclerosis

Glycated hemoglobinlevels

Graves' disease

HDL cholesterol

HDL cholesterol - triglycerides (HDLC-TG)
Hematological and biochemical traits
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Hepatitis B

Hepatocellular carcinoma

Hippocampal atrophy

Hirschsprung's disease

Hodgkin's lymphoma

Hypertension

Hypertriglyceridemia

Hypospadias

Hypothyroidism

Idiopathic pulmonary fibrosis

IgA nephropathy

IgE levels

Infantile hypertrophic pyloric stenosis
Inflammatory bowel disease
Inflammatory bowel disease (early onset)
Intracranial aneurysm

Kawasaki disease

Kidney stones

Knee osteoarthritis

LDL cholesterol

Leprosy

Lipid metabolism phenotypes
Lipoprotein-associated phospholipase A2 activity and mass
Liver enzyme levels (alanine transaminase)
Liver enzyme levels (alkalinephosphatase)
Liver enzyme levels (gamma-glutamyl transferase)
Longevity

Lung adenocarcinoma

Lung cancer

Major depressive disorder

Major mood disorders

Malaria

Melanoma

Menarche (age at onset)

Meningioma

Meningococcal disease

Metabolic syndrome

Metabolic syndrome (bivariate traits)
Metabolic traits

Metabolite levels

Migraine

Moyamoya disease

Multiple cancers (lung cancer and gastric cancer and squamous cell carcinoma)

Multiple myeloma

Multiple sclerosis

Myasthenia gravis
Myeloproliferative neoplasms
Myocardial infarction

Myocardial infarction (early onset)
Myopia (pathological)

Narcolepsy

Nephrolithiasis
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Nephropathy

Nephropathy (idiopathic membranous)
Neuroblastoma

Neuroblastoma (high-risk)

Non-alcoholic fatty liver disease histology (other)
Non-obstructive azoospermia

Non-small cell lung cancer

Nonalcoholic fatty liver disease

Obesity (early onset extreme)

Obesity (extreme)

Orofacial clefts

Osteoarthritis

Osteoporosis

Otosclerosis

Ovarian cancer

Paget's disease

Pancreatic cancer

Panic disorder

Parkinson's disease

Periodontitis

Phospholipid levels (plasma)
Plasminogen activator inhibitor type 1 levels (PAI-1)
Polycystic ovary syndrome

Primary biliary cirrhosis

Primary sclerosing cholangitis
Progressive supranuclear palsy
Proinsulin levels

Prostate cancer

Protein quantitative traitloci

Psoriasis

Psoriatic arthritis

Pulmonary function

Renal cell carcinoma

Renal function and chronic kidney disease
Restless legs syndrome

Rheumatoid arthritis

Sarcoidosis

Schizophrenia

Schizophrenia and bipolar disorder and depression (combined)
Sclerosing cholangitis and ulcerative colitis (combined)
Scoliosis

Soluble E-selectin levels

Soluble levels of adhesion molecules
Stevens-johnson syndrome and toxic epidermal necrolysis (SJS-TEN)
Stroke

Stroke (ischemic)

Sudden cardiac arrest

Suicide attempts in bipolar disorder
Systemic lupus erythematosus

Systemic sclerosis

Systolic blood pressure

Temperament (bipolar disorder)
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* Testicular cancer

* Testicular germ cell cancer

* Testicular germ cell tumor

* Thoracic aortic aneurysms and dissections
* Thyroid cancer

* Thyrotoxic hypokalemic periodic paralysis
* Tourette syndrome

* Triglycerides

* Tuberculosis

* Two-hour glucose challenge

* Type 1 diabetes

* Type 1 diabetes autoantibodies

* Type 1 diabetes nephropathy

* Type 2 diabetes

* Type 2 diabetes and othertraits

* Ulcerative colitis

* Urinary bladder cancer

e Uterine fibroids

* Vitiligo

*  Wilms tumor

*  YKL-40 levels

* Response to antipsychotic therapy (extrapyramidal side effects)

9.2R code for LogReg2 model

This function was taken from the R package descr [154] and has been included

here for reference.

LogRegR2 = function (model) {# version 2.0, 22-Jan-2012, Dirk Enzmann
# Calculates multiple R2 analogs (pseudo R?) of logistic regression:

if ((model$family$family !="binomial") | (model$family$link != "logit"))
{ stop('No logistic regression model, no pseudo R2 computed\n’) }

n =dim(model$model)[1]

Chi2 = model$null - model$dev
Df = model$df.null - model$df.res
p = 1-pchisq(Chi2,Df)

Ip = predict(model)
var_Ip = var(lp)

RL2 = Chi2/model$null # also called McFaddens Rz

Cox = 1-exp(-Chi2/n) # Cox & Snell Index

Nag = Cox/(1-exp(-model$null/n)) # Nagelkerke Index
MZ = var_lIp/(var_Ip + pi*2/3) # McKelvey & Zavoina's R?

list('Chi2'=Chi2,'df'=Df,'p'=p,'RL2'=RL2,'CoxR2'=Cox,'NagelkerkeR2'=Nag,'McKelvey

_ZavoinaR2'=MZ)
}

222



	PhD coversheet April 2012
	Kindt_Thesis

