

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

i

Dynamic Reconfiguration Frameworks for

High-Performance Reliable Real-Time

Reconfigurable Computing

Adewale Adetomi

A thesis submitted in partial fulfilment of the requirements for

the degree of

DOCTOR OF PHILOSOPHY

The University of Edinburgh

October 2018

 ii

“Many shall run to and fro,

and knowledge shall be
increased”

Daniel 12:4

This thesis …

… a notch in the circle of knowledge

 iii

Declaration of Originality

I hereby declare that this thesis was composed and originated entirely by myself, that

the work contained herein is my own except where explicitly stated otherwise in the

text, and that this work has not been submitted for any other degree or professional

qualifications.

Adewale Adetomi

June 2019

Edinburgh, UK

 iv

Acknowledgements

First and foremost, all glory, honour, and adoration to God, my heavenly Father, my

Saviour, Jesus Christ, and my Helper, the Holy Spirit, who is the embodiment of all

knowledge. May His name be forever praised for the inspirations for this work, for

courage when there seemed to be no hope, for strength when the journey was tough,

and for the grace to finish well.

Loving appreciation goes to my sweetheart and friend, Titilayo Adetomi, for her

unperturbed support and understanding. May the Lord give you a swell reward both

here on earth and in eternity. Of course, much love to my pleasant kids, Daniel and

Peniel Adetomi. May God keep you and may His Spirit rest upon you.

I would also like to thank my supervisor, Prof. Tughrul Arslan, for his immense

guidance and visionary backing. Your astute leadership and man management skills are

inestimable. Thanks a million for the mentoring and opportunities. Appreciation to my

friend, Godwin Enemali for his constant support. Indeed, you are a friend like a brother.

A million thanks to all the members of the EWireless Research Group at the University

of Edinburgh for creating a friendly research environment.

I will not forget to mention my family back home in Nigeria. Thank you Daddy

and Mummy Adetomi. I remember your sacrifices in bringing me and my siblings up.

God is aware of this and He will surely reward you. Please, keep well and stay blessed.

My gratitude also goes to my in-laws. Thank you for your prayers and support.

To my church members at the RCCG King of Glory Edinburgh, thank you for the

fellowship. To my friends, Gbenga Adekunle and other, thank you for being there. I

am indebted to the National Universities Commission, Nigeria and the Petroleum

Development Trust Fund, Nigeria for funding this work under the Presidential

Scholarship Scheme for Innovation and Development. To all others not mentioned but

who have in one way or the other contributed to the successful completion of this piece

of work, accept my sincere gratitude.

 v

Lay Summary

Advancement in technology over the years has led to improvement in the performance

of modern reconfigurable computing devices, making them more attractive in high-end

application domains like aerospace, defence, military, and nuclear power stations;

thanks to technology giants like Microsoft, Amazon, and Baidu, which are now

embracing these devices to meet their critical computing needs. Because of the critical

nature of these application domains, these devices and the computations on them are

required to be highly reliable. As such, algorithms and frameworks developed for

application on these devices must be implemented with sufficient considerations for

reliability.

Meanwhile, the capabilities of these modern reconfigurable devices as computing

platforms can be better exploited by providing supporting frameworks to manage the

on-chip resources. Existing approaches in this regard have provided key headways but

they are limited in reliability, security, and efficiency, especially regarding the flexible

use of the on-chip resources for computation.

This work proposes the enabling frameworks for more reliable, secure, and

efficient computing on modern reconfigurable devices. For evaluation, a case study that

uses a NASA Jet Propulsion Laboratory’s spectrometer data processing application is

employed to demonstrate the improved reliability possible. It is observed that up to 74%

time saving can be achieved for reliability by error mitigation when compared to state-

of-the-art vendor implementations. Moreover, an improvement in overall system

reliability is observed when the proposed frameworks are deployed in the data

processing application. In addition, for the secure configuration of a device, a time

saving of up to 32% or 83% is achieved, depending on the device family; and on-chip

resource usage savings in excess of 90% compared to state-of-the-art.

 vi

Abstract

The sheer hardware-based computational performance and programming flexibility

offered by reconfigurable hardware like Field-Programmable Gate Arrays (FPGAs)

make them attractive for computing in applications that require high performance,

availability, reliability, real-time processing, and high efficiency. Fueled by fabrication

process scaling, modern reconfigurable devices come with ever greater quantities of

on-chip resources, allowing a more complex variety of applications to be developed.

Thus, the trend is that technology giants like Microsoft, Amazon, and Baidu now

embrace reconfigurable computing devices likes FPGAs to meet their critical

computing needs. In addition, the capability to autonomously reprogramme these

devices in the field is being exploited for reliability in application domains like

aerospace, defence, military, and nuclear power stations. In such applications, real-time

computing is important and is often a necessity for reliability. As such, applications and

algorithms resident on these devices must be implemented with sufficient

considerations for real-time processing and reliability.

Often, to manage a reconfigurable hardware device as a computing platform for a

multiplicity of homogenous and heterogeneous tasks, reconfigurable operating systems

(ROSes) have been proposed to give a software look to hardware-based computation.

The key requirements of a ROS include partitioning, task scheduling and allocation,

task configuration or loading, and inter-task communication and synchronization.

Existing ROSes have met these requirements to varied extents. However, they are

limited in reliability, especially regarding the flexibility of placing the hardware circuits

of tasks on device’s chip area, the problem arising more from the partitioning

approaches used. Indeed, this problem is deeply rooted in the static nature of the on-

chip inter-communication among tasks, hampering the flexibility of runtime task

relocation for reliability.

This thesis proposes the enabling frameworks for reliable, available, real-time,

efficient, secure, and high-performance reconfigurable computing by providing

techniques and mechanisms for reliable runtime reconfiguration, and dynamic inter-

 vii

circuit communication and synchronization for circuits on reconfigurable hardware.

This work provides task configuration infrastructures for reliable reconfigurable

computing. Key features, especially reliability-enabling functionalities, which have

been given little or no attention in state-of-the-art are implemented. These features

include internal register read and write for device diagnosis; configuration operation

abort mechanism, and tightly integrated selective-area scanning, which aims to

optimize access to the device’s reconfiguration port for both task loading and error

mitigation.

In addition, this thesis proposes a novel reliability-aware inter-task communication

framework that exploits the availability of dedicated clocking infrastructures in a

typical FPGA to provide inter-task communication and synchronization. The clock

buffers and networks of an FPGA use dedicated routing resources, which are distinct

from the general routing resources. As such, deploying these dedicated resources for

communication sidesteps the restriction of static routes and allows a better relocation

of circuits for reliability purposes.

For evaluation, a case study that uses a NASA/JPL spectrometer data processing

application is employed to demonstrate the improved reliability brought about by the

implemented configuration controller and the reliability-aware dynamic

communication infrastructure. It is observed that up to 74% time saving can be achieved

for selective-area error mitigation when compared to state-of-the-art vendor

implementations. Moreover, an improvement in overall system reliability is observed

when the proposed dynamic communication scheme is deployed in the data processing

application.

Finally, one area of reconfigurable computing that has received insufficient

attention is security. Meanwhile, considering the nature of applications which now turn

to reconfigurable computing for accelerating compute-intensive processes, a high

premium is now placed on security, not only of the device but also of the applications,

from loading to runtime execution. To address security concerns, a novel secure and

efficient task configuration technique for task relocation is also investigated, providing

configuration time savings of up to 32% or 83%, depending on the device; and resource

usage savings in excess of 90% compared to state-of-the-art.

 viii

Contents

Declaration of Originality ... iii

Acknowledgements ... iv

Lay Summary ... v

Abstract ... vi

Contents .. viii

List of Figures ... xiii

List of Tables... xvi

Abbreviations and Acronyms .. xviii

Chapter 1 ... 1

1.1 Motivation and Justification ... 2

1.1.1 Reliability is Important .. 5

1.1.2 Availability in High-End Applications .. 7

1.1.3 The Need for Real-Time Computing ... 8

1.1.4 The Importance of Security ... 8

1.2 Thesis Scope and Objectives .. 9

1.3 Contribution to Knowledge .. 10

1.4 Target Device and Development Environment .. 11

1.5 Thesis Outline ... 11

1.6 Relevant Publications ... 13

Chapter 2 ... 16

2.1 FPGA Configuration Details .. 17

2.1.1 Layers of an FPGA .. 17

2.1.2 Bitstream Structure .. 25

2.1.3 Configuration Interfaces and Modes ... 28

2.2 Reconfiguration Strategies in FPGAs .. 29

2.2.1 Full Reconfiguration .. 30

2.2.2 Partial Reconfiguration .. 31

2.3 Security and Integrity in FPGAs .. 34

2.3.1 Bitstream Security ... 35

 ix

2.3.2 Bitstream Integrity ... 36

2.3.3 Secure Bitstream Format ... 38

2.3.4 Key Management ... 40

2.4 Chapter Summary ... 40

Chapter 3 ... 42

3.1 An Overview of Reconfigurable Operating Systems 44

3.2 Reliability Concerns in Reconfigurable Computing .. 48

3.2.1 Soft and Hard Errors .. 49

3.2.2 Soft Error Mitigation (SEM) in FPGAs .. 51

3.2.3 Hard Error Mitigation (HEM) ... 57

3.2.4 Partial Bitstream Relocation .. 60

3.2.5 Requirements for Partial Bitstream Relocation 62

3.3 Task Configuration in Reconfigurable Computing .. 67

3.4 Communication in Reconfigurable Computing ... 70

3.4.1 Network-on-Chip for Communication .. 71

3.4.2 Shortcomings of NoCs ... 73

3.4.3 Bit-Parallel and Bit-Serial NoCs ... 74

3.4.4 The Need for Dynamic Communication.. 75

3.5 Real-Time Systems and Requirements ... 78

3.5.1 Real-Time Concerns in Configuration Memory Access 79

3.5.2 Real-Time Concerns in On-Chip Communication 80

3.6 Towards Secure and Dynamic Reconfiguration in RC 81

3.7 Chapter Summary ... 82

Chapter 4 ... 84

4.1 Configuration Memory Interfacing .. 85

4.1.1 ICAP Controller ... 86

4.1.2 Bitstream Buffering ... 90

4.1.3 ICAP Access Command Templates .. 92

4.1.4 Execution and User Interface Flows .. 92

4.2 Configuration Memory Access Operations .. 95

4.2.1 No Operation (NOP) – Opcode 0 .. 96

4.2.2 Readback (RBK) Operation – Opcode 1 ... 96

4.2.3 Configuration (CFG) Operation – Opcode 2 ... 97

4.2.4 Read Modify Write (RMW) Operation – Opcode 3 99

 x

4.2.5 Blanking (BLK) Operation – Opcode 4 .. 100

4.2.6 Register Read (RGR) Operation – Opcode 5 .. 100

4.2.7 Custom Write (CWR) Operation – Opcode 6.. 101

4.2.8 Abort (ABT) Operation – Opcode 7 .. 102

4.3 Support for Error Mitigation .. 102

4.3.1 Readback Scrubbing Support – SEM Operation (Opcode 8) 103

4.3.2 Selective-Area Scanning for Soft Error Mitigation 104

4.3.3 Fault Injection Support .. 106

4.4 Configuration Error Monitoring and Recovery .. 107

4.5 Resource Utilization and Performance Evaluation .. 108

4.5.1 Resource Utilization Evaluation .. 109

4.5.2 Throughput Evaluation .. 110

4.5.3 A Case-Study Application ... 115

4.6 Chapter Summary ... 117

Chapter 5 ... 118

5.1 The Challenges with Encrypted PBR ... 119

5.2 Relocation-Aware Secure Bitstream Format .. 120

5.2.1 Global Preamble .. 122

5.2.2 Local Preamble .. 122

5.2.3 Local Body... 123

5.2.4 Local Postamble... 124

5.3 Software Interface for Bitstream Reformatting .. 125

5.3.1 Splixbit File Input .. 126

5.3.2 CRC Recalculation .. 127

5.3.3 HMAC-SHA Authentication and AES-CBC Encryption 128

5.3.4 Splixbit Graphical User Interface Description 128

5.4 Hardware Support for Encrypted PBR ... 129

5.4.1 Configuration Controller ... 129

5.4.2 Configuration Flow .. 131

5.4.3 Loading Termination ... 133

5.4.4 Resource Utilization and Latency of the Splixbit Hardware 134

5.5 Evaluation of ATAL’s Bitstream Size Overhead ... 134

5.5.1 Uncompressed Bitstreams ... 135

5.5.2 Compressed Bitstreams ... 136

 xi

5.6 Configuration Strategies for Secure Task Relocation 137

5.6.1 Intermediate Dedicated On-Chip Decryption (IDOD) 137

5.6.2 Initial Configuration and Intermediate Readback (ICIR) 138

5.6.3 Advance Task Address Loading (ATAL).. 139

5.7 Evaluation of the Configuration Strategies .. 139

5.7.1 Evaluation of IDOD ... 140

5.7.2 Evaluation of ICIR ... 140

5.7.3 Evaluation of ATAL .. 141

5.8 The Security Implications of ATAL .. 141

5.9 Chapter Summary ... 142

Chapter 6 ... 144

6.1 Clocking Resources in the Xilinx 7 Series FPGA .. 146

6.1.1 Clock Buffers and Network Distribution ... 146

6.1.2 Clock Buffers and the Features Exploited by CELOC 148

6.2 Adaptation of Clock Buffers for Communication .. 150

6.2.1 Data Transfer Mechanism.. 151

6.2.2 Communication Clock and Task Clock Generation 152

6.2.3 Clock Domain Crossing ... 153

6.2.4 Data Recovery Mechanism .. 154

6.3 Packet Synchronization and Encoding ... 155

6.4 Network Adapter for Communication Access ... 159

6.4.1 Task Interfacing ... 160

6.4.2 CONS Encoding .. 160

6.4.3 CONS Decoding .. 161

6.4.4 Address-Inclusive Encoding and Decoding... 163

6.4.5 Task Interface Logic .. 163

6.4.6 Resource Utilization and Performance Evaluation 164

6.5 Clock Buffer Configurations for Network Access ... 166

6.5.1 Clock Buffer Configurations for Global Communication 168

6.5.2 Clock Buffer Configurations for Horizontal Communication 169

6.5.3 Clock Buffer Configurations for Vertical Communication 170

6.5.4 Maximum Speeds of the Clock Buffers and Nets 171

6.5.5 Bandwidth Characterization .. 171

6.6 Dynamic Communication via Clock Nets .. 174

 xii

6.6.1 Packet Format and Addressing Scheme .. 177

6.6.2 Network Routing ... 178

6.6.3 Prototype Network Demonstration .. 178

6.7 Fault-Tolerant Data Transfer .. 184

6.7.1 Network Adapter ... 185

6.7.2 Communication Packet Format ... 186

6.7.3 Packet Error Control Implementation .. 186

6.7.4 Pipeline Mechanism for Packet Transfer ... 187

6.7.5 Evaluation of the Fault-Tolerant Network Adapter 188

6.8 Chapter Summary ... 189

Chapter 7 ... 190

7.1 An Overview of the CIRIS Spectrometer ... 190

7.2 CIRIS Data Processing ... 192

7.3 CIRIS Data Processing Tasks for Evaluation ... 193

7.4 CIRIS Avionics Models for Evaluation ... 195

7.4.1 Static CIRIS Avionics Model .. 196

7.4.2 ICAP-Based CIRIS Avionics Model ... 197

7.4.3 CELOC CIRIS Avionics Model .. 197

7.5 Inter-Task Communication Evaluation .. 199

7.6 Reliability Study ... 201

7.6.1 Soft Error Mitigation Evaluation ... 201

7.6.2 Hard Error Mitigation Evaluation .. 203

7.7 Chapter Summary ... 206

Chapter 8 ... 207

8.1 Summary, Limitations, and Concluding Remarks ... 207

8.2 Recommendations for Future Work ... 210

8.2.1 Traditional Slotted Reconfigurable Systems ... 212

8.2.2 Towards Slotless Reconfigurable Systems .. 212

8.2.3 Partition Architecture for Reliable Computing 213

References .. 215

Appendices ... 231

 xiii

List of Figures

1.1: Diagrammatic representation of the scope of this thesis....................................... 9

2.1: Three layers of an FPGA .. 18

2.2: Model of a typical FPGA .. 19

2.3: Clock buffer distribution in a 7 series FPGA .. 21

2.4: Internal composition of a frame and its mapping to resources 22

2.5: Xilinx bitstream format ... 27

2.6: 7 series FPGA’s ICAP interface ports .. 29

2.7: Typical FPGA design flow, from synthesis to bitstream generation 30

2.8: Diagrammatic representation of partial reconfiguration 32

2.9: Permissible boundaries for a reconfiguration frame ... 33

2.10: AES encryption in cypher block chaining mode .. 35

2.11: FRAME_ECC primitive’s ports ... 38

2.12: FPGA’s secure bitstream format ... 39

3.1: Alternate routing as a wear-levelling strategy .. 58

3.2: Representation of the considerations for circuit relocation 64

3.3: Architecture of a typical ICAP controller ... 68

3.4: Architecture of a generic NoC .. 72

3.5: Task interfacing for transferring data using the configuration layer 77

4.1: Top-level view of the configuration memory access controller 85

4.2: Key interfaces and ports of the ICAP finite state machine 87

4.3: State diagram of the IFSM .. 89

4.4: IFSM’s interface to the ICAP ... 90

4.5: ICAP Buffer’s memory address space allocation ... 93

4.6: ICAP Controller’s execution flow .. 94

4.7: ICAP Controller’s user interface flow .. 95

4.8: FPGA row and column addressing for task locations ... 99

4.9: CWR frequent commands for fault injection .. 107

5.1: Secure bitstream formats from Xilinx and for ATAL 121

5.2: Composition of the local preamble of an ATAL-formatted bitstream.............. 123

5.3: Splixbit’s algorithm’s flow for advance task address loading 125

5.4: Screenshot of the Splixbit software interface ... 129

5.5: Configuration controller for loading Splixbit-formatted bitstreams 130

5.6: Key ports of the Splixbit hardware’s finite state machine 131

 xiv

5.7: Splixbit configuration flow for encrypted bitstreams 132

5.8: Model for relocating encrypted partial bitstreams by using a dedicated

decryption circuit for intermediate decryption.. 138

5.9: Model for relocating encrypted partial bitstreams by initial configuration

followed by intermediate readback and final reconfiguration 138

6.1: Clock network distribution in the clock region of an FPGA 147

6.2: Xilinx FPGA’s global clock buffers/multiplexer .. 148

6.3: Transmitting serialized data with a clock buffer ... 151

6.4: Transmission of an 8-bit binary data 10011010.. 152

6.5: Schematic of the PLL-based clock generator for CELOC 153

6.6: Setup of the FDPE (or LDPE latch) register to interface with com_clock and

data_clock for serial data recovery ... 154

6.7: Waveform showing the signal transitions at the output of an FDPE register with

com_clock as the clock input and data_clock as the PRE input 155

6.8: Network adapter for packet-synchronized communication access in CELOC . 160

6.9: Flowchart describing the CONS encoder's implementation 161

6.10: Flowchart describing the CONS decoder's implementation 162

6.11: Representation of the 7 series FPGA chip, showing the locations of clock

buffers, circuit regions (CR1 to CR8) for placing circuits within clock regions,

and sample vertical and horizontal interconnections between the CRs 167

6.12: Clock buffer configurations for global communication 169

6.13: Clock buffer configurations for horizontal inter-region communication 170

6.14: Clock buffer configurations for vertical inter-region communication 171

6.15: Experimental setup for characterizing the clock buffer configurations 172

6.16: Diagram demonstrating how static routes hinder relocation. Task 2 cannot be

moved to LOC 3 without preserving the existing interconnections 175

6.17: By removing the inter-circuit interfaces and replacing them with clock buffers,

it is possible to achieve dynamic communication ... 176

6.18: 4-node CERANoC mesh network showing inter-clock region connections

achieved with clock buffers .. 177

6.19: 4-node CERANoC star network using clock buffers as network links........... 179

6.20: PLL-based task and communication clock generation and distribution 179

6.21: Data clock renewal as it traverses the centre of a star-shaped CERANoC 180

6.22: Switch architecture for a 4-node CERANoC star network 181

6.23: Setup for demonstrating CERANoC ... 181

6.24: Floorplan of the implemented 4-node network ... 183

6.25: Fault-tolerant network adapter for CERANoC ... 185

7.1: CIRIS interferometer... 191

7.2: R3TOS-based CIRIS avionics system .. 195

 xv

7.3: Static CIRIS avionics model ... 197

7.4: ICAP-based CIRIS avionics model .. 198

7.5: CELOC-based CIRIS avionics model .. 199

7.6: Simplified data flow of the CIRIS avionics .. 200

8.1: System architecture for reliable reconfigurable computing 211

8.2: Partition architecture showing slots interconnected by clock buffers 214

 xvi

List of Tables

2.1: Number of configuration frames for 7 series FPGA resources 22

2.2: Frame address fields and corresponding description .. 23

2.3: Selected configuration registers of the 7 series FPGA 24

2.4: Selected CMD register commands and codes ... 24

2.5: Packet format for configuration command and data ... 25

2.6: Type 1 packet header format for configuration commands 26

2.7: Type 2 packet header format for configuration commands 26

2.8: Opcode format for configuration commands .. 26

2.9: Forming the packet header to write the CMD register.. 26

2.10: Configuration interfaces and modes in the Xilinx 7 series FPGA 28

2.11: Number of configuration frames for different 7 series FPGA resource pairs ... 34

3.1: Architecture of existing reconfigurable operating systems 47

4.1: Description of the IFSM’s control interface ports .. 88

4.2: ICAP Controller’s operations and opcodes ... 96

4.3: RBK operation parameters .. 97

4.4: CFG operation parameters .. 98

4.5: BLK operation parameters .. 100

4.6: CWR operation parameters ... 101

4.7: ICAP configuration interface status bits ... 108

4.8: Description of the 7 series FPGA’s status register ... 108

4.9: Resource utilization of the CAM in the 7 series FPGA 109

4.10: Resource overhead comparison of ICAP controllers 110

4.11: Time overheads for the operations of the ICAP controller at 100 MHz 111

4.12: Comparison of the basic operation timing behaviours.................................... 113

4.13: Configuration throughput evaluation .. 113

4.14: Partial bitstream size evaluation template for the Basic CFG operation 114

4.15: Latency templates for selected operations of the ICAP controller 115

4.16: Resource utilization of the CIRIS data processing circuit 116

4.17: Configuration and scan times for the CIRIS task ... 116

5.1: Bitstream header information (bitstream generated in Vivado 2015.2) 127

5.2: Resource usage of the data mover and the ICAP controller 134

5.3: Bitstream size overhead of ATAL for an uncompressed encrypted bitstream . 135

5.4: Bitstream size overhead of ATAL for a compressed encrypted bitstream 136

 xvii

5.5: Comparison of the three methods for resource usage and relocation latency ... 141

6.1: Truth table for clock-enabled data transmission ... 152

6.2: Truth table of the FDPE register ... 154

6.3: Examples showing the CONS encoding process .. 157

6.4: Packet format for CONS-encoded data bits .. 159

6.5: Resource utilization of CELOC’s network adapter .. 165

6.6: CELOC CODEC’s communication latencies for different word sizes 166

6.7: Maximum operating frequencies of the clock buffers in the 7 series FPGAs .. 172

6.8: Bandwidth of the clock buffer configurations .. 173

6.9: Packet format for 4-bit-data-word CERANoC ... 178

6.10: Packet format for CRC-based error control .. 186

6.11: Packet format for SEC-DED-based error control ... 186

6.12: Logic resource overhead of the fault-tolerant network adapter 189

7.1: Specification of the CIRIS tasks ... 193

7.2: Resources required by the CIRIS tasks ... 194

7.3: Inter-task latencies for the different communication mechanisms 201

7.4: Area overhead of the CIRIS tasks ... 202

7.5: ICAP bandwidth utilization of the CIRIS tasks .. 203

7.6: Reliability performance of the avionics models ... 204

 xviii

Abbreviations and Acronyms

AES Advanced Encryption Standard

ASIC Application-Specific Integrated Circuit

ATAL Advance Task Address loading

BBRAM Battery-Backed Random Access Memory

BPI Byte Peripheral Interface

BRAM Block Random Access Memories

CAM Configuration Memory (CMEM) Access Manager

CB Connection Box

CBC Cypher Block Chaining

CDC Clock Domain Crossing

CE Clock Enable

CELOC Clock-Enabled Low-Overhead Communication

CERANoC Clock-Enabled Relocation-Aware Network on Chip

CFG Configuration

CFRT Configuration Frame Readback Template

CFWT Configuration Frame Write Template

CIRIS Compositional InfraRed Imaging Spectrometer

CLB Configurable Logic Block

CMA Cumulative Moving Average

CMC Configuration Monitoring Circuit

CMEM Configuration Memory

CMOS Complementary Metal-Oxide-Semiconductor

COBS Consistent-Overhead Byte Stuffing

CONS Consistent-Overhead Nibble Stuffing

COTS Commercial off The Shelf

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CR Circuit Region

 xix

CRC Cyclic Redundancy Check

DMA Direct Memory Access

DPR Dynamic Partial Reconfiguration

DRP Dynamic Reconfiguration Port

DSP Digital Signal Processor

DWC Decrypt Word Count

ECC Error Correction Code

EDF Earliest Deadline First

FAR Frame Address Register

FDC FAR Detection Circuit

FDRI Frame Data Register Input

FF Flip-Flop

FMC FAR Modification Circuit

FPGA Field-Programmable Gate Array

FSM Finite State Machine

FSS Frame Synchronization Sequence

FTS Fourier Transform Spectrometer

GPU Graphic Processing Unit

HCE Hot-Carrier Effect

HMAC Hash Message Authentication Code

HWµK Hardware Microkernel

IBUF ICAP Buffer

IC Integrated Circuit

ICAP Internal Configuration Access Port

IDE Integrated Development Environment

IFSM ICAP Finite State Machine

IOB Input/Output Block

IP Intellectual Property

IV Initial Vector

JTAG Joint-Test Action Group

LUT Look-Up Table

MAC Message Authentication Code

 xx

MFW Multiple Frame Write

NBTI Negative Bias Thermal Instability

NoC Network on Chip

OES Operation Ending Sequence

OS Operating System

OSS Operation Starting Sequence

P2P Point-to-Point

PAL Programmable Array Logic

PB Partial Bitstream

PBR Partial Bitstream Relocation

PIP Programmable Interconnect Point

PISO Parallel-In Serial-Out

PL Programmable Logic

PLL Phase-Locked Loop

PR Partial Reconfiguration

PS Processing System

PUF Physically Unclonable Function

RAM Random Access Memory

RC Reconfigurable Computing

RHBD Radiation Hardening By Design

RHBP Radiation Hardening By Process

RM Reconfigurable Module

ROS Reconfigurable Operating System

RP Reconfigurable Partition

RSA Rivest-Shamir-Adleman

SART Selective Alternate Routing Technique

SB Switch Box

SEB Single Event Burnout

SEC-DED Single-Error Correction, Double-Error Detection

SEE Single-Event Effect

SEFI Single-Event Functional Interrupt

SEGR Single Event Gate Rupture

 xxi

SEL Single Event Latch-up

SEM Soft Error Mitigation

SERDES Serializer-Deserializer

SET Single-Event Transient

SEU Single-Event Upset

SHA Secure Hash Algorithm

SIPO Serial-In Parallel-Out

SNR Signal-to-Noise Ratio

SoC System on Chip

SoC System-on-Chip

SPA Simple Power Analysis

SPI Serial Peripheral Interface

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

SRL Shift Register LUT

SWµK Software Microkernel

TDDB Time-Dependent Dielectric Breakdown

TID Total Ionization Dose

TIL Task Interface Logic

TMR Triple Modular Redundancy

UART Universal Asynchronous Receiver-Transmitter

WCET Worst-Case Execution Time

WL Wear Levelling

XADC Xilinx Analogue-to-Digital Converter

1

Chapter 1

Introduction

There is a surge in the uptake of reconfigurable hardware like Field-Programmable

Gate Arrays (FPGAs) as computing devices, with this idea being referred to as

Reconfigurable Computing (RC). Application domains ranging from datacentres [1] to

aerospace now turn to RC to meet their high-performance computing needs. The

increase in the density and on-chip resources [2] of modern FPGAs has made them even

a more capable platform for computation. FPGAs are now deployed to execute

important tasks in space applications (for example, satellites), aircraft, and datacentres

[3][4]. Considering the high-end nature of these applications, there is a need for

reliability, security, and ultimately, abstraction tools to ease the development of FPGA-

based applications. In fact, the most important limiting factors in the adoption of

FPGAs as computing platforms are the difficulty in designing applications offline, and

managing their execution in run time. The design of applications requires expert

knowledge in Hardware Description Languages (HDLs). Moreover, HDL code

development, testing, and debugging on available synthesis and simulation tools are far

from being trivial.

Over the past few decades, computing has been heavily software-based, with high-

level software routines written in C and other languages executing on traditional

processors. However, the sequential fetch-decode-execute nature of the von Neumann

architecture, coupled with memory access bottleneck, limits the performance of

processors [5]. Fuelled by transistor scaling (Moore’s Law) [6][7], over the years,

processor speed has increased significantly, but memory chips have not been able to

keep up, with processors forced to spend most of their time idling on wait cycles for

memory access. Several techniques like caching, branch prediction, and pipelining [8]

have been advanced to alleviate this bottleneck. Even with multiple processor cores

fabricated on a single chip to parallelize computation and thus improve throughput, the

inherent sequential nature of CPUs means that only a limited increase in throughput

can be obtained.

1

___ Chapter 1 - Introduction

 2

Despite the obvious limitations of processors and the advantages of hardware, a

wholesale change in computing paradigm from software-based to hardware-based

seems far-fetched, considering that mainstream computing facilities currently depend

heavily on conventional processors. Moreover, processors excel in certain classes of

application that hardware computation struggles with, for example, control algorithms;

and are superior at context switching, able to switch program execution in a matter of

a few clock cycles [9]. On the other hand, what is observed is that the use of

reconfigurable hardware to accelerate compute-intensive and mission-critical tasks is

gaining traction. This presents a unique opportunity to explore the immense capability

offered by reconfigurable hardware, especially from the point of view of high-level

application development.

Over the years, specialized hardware like Application-Specific Integrated Circuits

(ASICs) have been used to speed up computation, with the Graphic Processing Unit

(GPU) being a good example. While ASICs offer advantages such as very low power

consumption and cost effectiveness when mass produced, the lack of flexibility means

they have limited application. On the other hand, though FPGAs are more suitable for

low to medium scale production, the provision of programmability means they can be

adapted for use in a wide range of applications. Moreover, modern FPGAs have

rivalled ASICs in terms of power consumption [10].

1.1 Motivation and Justification

The closest programming languages to the bare-metal processor are machine codes and

assembly language but programming a processor in any of these is tedious, time-

consuming, and error-prone [11]. This has compelled the development of high-level

languages, which require compilers to convert the high-level code to machine-readable

instructions for execution on the processor. As a result, the description of the hardware

underlying CPUs has not been of a great concern to software developers.

Moreover, since the 1950s when the first compilers appeared [12][13], they have

evolved into efficient code converters, bridging the gap between high-level application

development and the low-level intricacies of machine instructions. In fact, current

___ Chapter 1 - Introduction

 3

compilers are able to produce compact and speed-efficient codes that rival assembly

and machine codes, further widening the gap between high-level application

development and low-level hardware intricacies, and making it easier to develop

software applications. As such, the number of software developers and software

applications has increased drastically over the years.

However, while the FPGA presents an opportunity for higher performance

compared to CPUs, these software developers are denied access to this immense

capability; therefore, slowing down the adoption of FPGAs as general or accelerated

computing platforms. If FPGAs are to become serious contenders as computing

platforms, a similar mechanism to compilers, with supporting architectural frameworks

must be provided for high-level hardware application development.

Meanwhile, the idea that software developers should adopt HDLs and code directly

for hardware is a good proposition. However, this is not a simple solution. Though, in

general, HDLs are used to describe the high-level behaviour of circuits at different

levels of abstraction – gate-level, register-transfer level (RTL), structural, and

behavioural, the coding concepts are quite different from software coding. HDLs have

statements and constructs that are similar to those in high-level languages for software

development, yet they are used to describe intrinsically concurrent behaviours of

hardware circuits. This is often a source of confusion to software developers embracing

hardware code development. The tendency to think sequentially when dealing with

concurrent logic is a major pitfall. Moreover, there are often standard or recommended

ways of describing most circuits, and if not followed, this could result in slow, bloated,

and power-hungry designs, defeating the purpose of using HDLs in the first place. This

means an understanding of the low-level hardware is still required, especially for

efficient coding.

Therefore, the ability to develop an application in a high-level language like C and

have it automatically compiled to behavioural, structural, or RTL-level HDL codes is

an attractive proposition. This is called High-Level Synthesis (HLS). In fact, several

commercial products [14] in this regard have already been developed with the Xilinx’s

Vivado HLS [15] being a typical example. This is in the foreground of a substantial

___ Chapter 1 - Introduction

 4

body of academic research [16][17] advancing the underlying techniques and

algorithms.

Despite their promise, HLS compilers have limitations [18] as it is in general

challenging to produce resource-efficient and power-efficient codes that could rival

what an HDL designer would write. However, considering the precedential success of

software compilers, given time, HLS compilers will catch up.

Meanwhile, whereas the development of HLS compilers is a welcome

advancement, there is still the need for an intermediate architectural model and

hardware abstraction layer for computing on the FPGA. Modern FPGAs have immense

capabilities that can be better exploited by an intermediate-level abstraction between

the output of an HLS engine or a directly coded design and the low-level resources of

the FPGA.

While the HLS is a move to address the difficulties of FPGA-based application

development, the management of the deployment and runtime execution of applications

is still largely unresolved. For instance, Vivado HLS enforces a standard interface for

the generated RTL design. However, if the design is meant to be part of a hierarchical

design, a separate structural-level HDL coding would still be required to integrate the

generated code into an overall design before deployment on an FPGA. Accomplishing

this would still present a fairly complicated task to the uninitiated in the art of HDL,

further highlighting the need for a task management framework that could

automatically abstract task interfacing and inter-task communication, among others.

The reconfigurable hardware fabric is usually under the management of a host CPU

for accelerating software processes. With the increased density of modern FPGAs,

many more tasks are required to be running simultaneously and often requiring chip

area allocation, circuit loading, and so on. In order to free up the host CPU and its

resident software operating system from managing these hardware-level functionalities,

the Reconfigurable Operating System (ROS) has been proposed with early examples

including [19] and [20]. The “reconfigurable” terminology derives from the fact that

the function of the ROS is to manage the intricacies arising from the reconfigurability

of the underlying hardware fabric. Runtime task management needs to be addresses as

in fact, a major barrier to the adoption of partial runtime reconfiguration in industrial

___ Chapter 1 - Introduction

 5

applications seems to be the lack of tools and methodologies for runtime task

management [21].

The key requirements or services needed in RC have been categorized as task

loading, partitioning or floor planning, memory management, scheduling, placement,

security, I/O, on-chip communication, and synchronization [22]–[24]. The provision of

these services has been generally investigated, both within the context of a ROS and as

standalone research efforts. However, without a holistic approach to ROS design that

considers multiple but individual design objectives such as reliability, availability, real-

time processing, efficiency, high performance, and security in the provision of the RC

services, the FPGA could fail to realize its potential as a veritable computing device

even while these requirements. It is clear that the afore-mentioned RC services need to

meet high standards, the importance of which cannot be overemphasized. It would be

interesting therefore, to consider why the need to meet high levels of RC requirements

is paramount in current high-end applications.

1.1.1 Reliability is Important

Electronic devices deployed for operation in critical application domains like space,

aviation, military, nuclear decommissioning, and nuclear waste management are

exposed to extremes of environmental conditions like radiations, temperatures,

electromagnetic interferences, and electric fields. These extreme conditions can trigger

system-crippling temporary errors and permanent damages in on-board electronics.

Reliability is all the more important when human lives are involved, as the failure of

electronic devices can result in catastrophic system failures which could lead to

disasters with great losses in human lives or economy. Scenarios in the past showed

that space missions could go catastrophically disastrous due to the failure of electronic

systems [25]. As such, a high premium is placed on device reliability in critical

application domains like space and FPGAs targeted at such applications should be able

to meet expected levels of reliability. As a further example, radiation-induced errors are

taken seriously in space missions as was seen in the Europa Orbiter mission that was

replaced with the Europa Clipper Mission for concerns of radiation [26]. With the

___ Chapter 1 - Introduction

 6

increasing use of FPGAs in space applications as evidenced in [27], the tolerance of

FPGAs and the designs on them to radiations is important.

Ageing-related errors are also a source of concern especially in space missions,

which can last for very long times as seen in the Voyager I and Voyager II space probes

which, launched in 1977, have been travelling in space for over 40 years [28]. In

contrast, electronics’ lifetime has been reduced due to the use of state-of-the-art

technologies that push manufacturing processes to the limits. Voyager is a good

example of what was possible to achieve using the old and more robust technology,

which is extremely constrained in terms of computation power. To achieve something

similar using state-of-the-art high-performance COTS technologies, new techniques are

needed.

While wireless communication anywhere within the vicinity of earth has appeared

almost instantaneous, exploration of deep space has highlighted the limited speed of

our wireless communication technology and for now, it does not appear that much can

be done in the way of changing that, except if a means of communication other than

electromagnetic waves is discovered. Due to the astronomically high distances between

cosmic bodies, communication signals take considerable amounts of time to traverse

the large expanse of space. As a result, an electronic device deployed in a system ready

to explore deep space, for instance, should ideally be able make its own decisions as

errors emerge. This calls for a high degree of autonomy and adaptation in such devices.

Meanwhile, because of their inherent high performance capability, FPGAs now

find use in critical applications. As a result, reliability techniques that will ensure the

autonomous and continuous operation of FPGA-based computing platforms in the face

of emergent errors are highly sought after. There are at least two existing solutions to

the reliability problem – the use of redundancy at the device level [29], and the use of

specialized radiation-hardened (rad-hard) devices [30]. The disadvantage of the former

is that it increases cost and weight, whereas the rad-hard devices are generally very

expensive [31], often many orders of magnitude more expensive than their COTS

equivalents are. Moreover, redundancy at the hardware level can be limited in

improving reliability [32] and also have counterproductive effects by adding

___ Chapter 1 - Introduction

 7

complexity and potential failure modes to the system, increasing design opacity,

encouraging risk, and discouraging further optimization of individual devices [33].

As such, it is important to consider reliability at the system component level. This

work will not only present infrastructures and frameworks for achieving a better overall

system reliability, it will also underscore a fault-tolerant implementation of these

infrastructures, where applicable.

1.1.2 Availability in High-End Applications

Another factor closely related to reliability is availability. The availability of a system

is defined in terms of its ability to perform the intended function when required; that is,

the amount of time it is in a functional state. On the other hand, reliability measures

how well the system has kept to producing the expected output within a given time

period. While higher reliability leads to higher availability, the converse is not true. As

such, the availability of an FPGA-based system has to be considered as a separate

entity, with proper design considerations put in place.

With the proliferation of cloud computing in recent years, it was only a matter of

time before FPGAs would be available for computation in the cloud. One hallmark of

datacentre and cloud computing is availability [34][35], with other requirements like

reliability, and security [36]. For an FPGA in the cloud, these requirements must be

met. Downtimes have to be kept to a minimum to maintain a high quality of service

since one of the major concerns of organizations with cloud services is assurance of

availability or lack of it [34].

Dynamic or runtime programmability will be required to keep an FPGA-based

system online while making changes. Incidentally, modern FPGAs come equipped with

reconfiguration capabilities that allow a part of the device to be reconfigured while the

other parts remain active [37]. These capabilities can be exploited to ensure that FPGAs

operating in the cloud and other computing environments provide the expected high

levels of availability. This necessitates that proper attention is paid to module-level

events that could hamper system-wide availability. This is part of the focus of this work

as will be exemplified by the monitoring of errors during task reconfiguration (see

Section 4.4).

___ Chapter 1 - Introduction

 8

1.1.3 The Need for Real-Time Computing

Real-time and reliable computing often go hand-in-hand. Because of the stringent

requirements of reliable systems, they are often required to be predictable and to meet

specified timing requirements since delayed execution of critical tasks can be

catastrophic [38]. To ensure these requirements are met, FPGA computing models have

to be such that task execution deadlines are met. If access to shared resources is not

well managed, this could result in missed execution deadlines, a situation that is

particularly undesirable in real-time systems. In particular, the internal configuration

interface of current FPGAs is singular and is required for multiple system-level

functionalities like hardware task configuration and error mitigation. In order to ensure

execution deadlines are met, every system function including their overheads must have

predictable behaviour and bounded timing.

In this research, real-time factors are put into consideration where necessary and

applicable. For instance, the on-chip communication scheme proposed is implemented

to ensure guaranteed latencies. In addition, a mechanism is provided for a more efficient

management of the internal configuration interface for multiple complimenting system

functions.

1.1.4 The Importance of Security

The adoption and support of FPGAs by technology giants like Microsoft, Amazon, and

Baidu represents a step change in the prospect of deploying FPGAs as computing

devices. Recently, Microsoft started using FPGAs in their Bing search engine servers

with almost two-fold improvement in search ranking throughput at only 10% increase

in power consumption [3][39]. In addition, Amazon has introduced cloud-based pay-

per-use FPGA instances and an IP market place, providing ready access to a platform

for accelerated cloud computing [4]. Baidu, on the other hand, uses FPGAs to accelerate

large-scale deep neural networks and online services at low power cost [40][41]. These

developments have served to increase interests in FPGAs and the value of IP cores that

run on them. IP core vendors pay heavily in monetary terms and development time to

design these IP cores. As a result, the protection of this investment is of paramount

importance. However, malicious attacks have aimed to exploit the security

___ Chapter 1 - Introduction

 9

vulnerabilities of FPGAs to steal these IPs or cause undesirable effects. Meanwhile, as

reported in [24], the issue of security has been given very little attention in

reconfigurable computing. As such, another subject in this work is the investigation of

efficient techniques for secure task reconfiguration.

1.2 Thesis Scope and Objectives

The scope of this thesis is represented diagrammatically in Figure 1.1. The broad

objective is to deliver the enabling frameworks for reliable, available, real-time,

efficient, secure, and high-performance reconfigurable computing by providing

techniques, methods, and mechanisms for runtime reconfiguration, and dynamic inter-

circuit communication and synchronization for circuits on reconfigurable hardware.

Reconfigurable

Computing

Available Secure

Reconfiguration Communication

Efficient
High-

Performance
Real-Time

Reliable

Figure 1.1: Diagrammatic representation of the scope of this thesis

The aim is for the concepts advanced in this work to serve as the bedrock for a

computing paradigm where a COTS reconfigurable hardware like an FPGA is used as

a standalone or co-processing heterogeneous computing platform for reliable dynamic

task management, as opposed to using very expensive rad-hard devices. As Figure 1.1

shows, reliability is a feature theme and all the other features are implemented in the

light of this. In particular, the specific aims of this research include:

___ Chapter 1 - Introduction

 10

 The development of a high-performance and efficient configuration engine

for reliability and high availability in reconfigurable systems,

 The investigation of reconfiguration mechanisms for secure bitstreams, and

 The development of a dynamic network-on-chip infrastructure for intrinsic

reliability-aware inter-task communication and synchronization.

While the specific applications of the novel methods described in this thesis have

been implemented and prototyped on FPGAs, the ideas and concepts are generic

enough for application in other reconfigurable hardware and even in custom computing

devices.

1.3 Contribution to Knowledge

The contributions of this research stem from the innovative approaches applied in the

realization of the specific aims of this work. While the deliverables of this work are

targeted at reconfigurable computing, applications in closely related fields would be

anticipated. The major contributions of this work are:

 A novel configuration mechanism for efficient runtime task loading,

configuration memory readback, circuit and data relocation, and

configuration error monitoring

 An efficient method for soft error mitigation that explores a criticality-aware

selective-area scanning of the chip for soft error detection and correction

 A new and unique on-chip inter-circuit communication and synchronization

technique with intrinsic support for circuit relocation, which promises to be

an enabler for an improved system-level reliability in COTS reconfigurable

hardware devices

 A highly efficient mechanism for relocating circuits with encrypted

configuration bitstreams without the need for on-chip decryption of the

bitstream, ensuring that the security of IPs is not compromised nor maintained

at a high cost of on-chip resources and system time

 A unique relocation-aware configuration bitstream format for resource- and

time-efficient secure circuit relocation

___ Chapter 1 - Introduction

 11

 A unique software interface for relocation-aware configuration bitstream

formatting and encryption key reassignment

1.4 Target Device and Development Environment

The target FPGA family in this research is the Xilinx 7 series and all the HDL code

implementations are evaluated on a 7 series device, unless stated otherwise. Moreover,

when necessary, the Zynq-7000 FPGA, which contains an Arm® Cortex™-A9

processor tightly connected with a 7 series FPGA is used for implementations.

Nevertheless, the techniques developed in this work can be easily extended to other

FPGA families, including the ones from other vendors. The Vivado Design Suite is

used for all synthesis and implementation.

1.5 Thesis Outline

Chapter 2 reviews the techniques for the reconfiguration of hardware devices with

particular attention to dynamic reconfiguration, which is the enabler for fine- and

coarse-grained access to on-chip resources in runtime. Moreover, since FPGAs are

becoming increasingly used as computing platforms, the security implications of this

are great. Chapter 2 provides an insight into the provision made by vendors to ensure

the security and integrity of reconfigurable devices and the applications that run on

them.

In Chapter 3, the concept of reconfigurable computing is introduced. Attention is

drawn to the reliability concerns in reconfigurable hardware and existing mitigation

approaches discussed. A key concept to look out for is partial bitstream relocation,

which is important for reliability. A discussion of its requirements is presented as well

as the existing body of work which has provided techniques for meeting these

requirements. A foray is taken into the issues of configuration and communication in

RC systems and existing approaches are examined. As real-time processing is closely

related to reliability, real-time system requirements are studied and the implications of

these on configuration and communication are brought to light.

___ Chapter 1 - Introduction

 12

A configuration controller with a unique set of reliability-enabling features is

crucial for RC. In Chapter 4, the design and implementation of a high-performance

configuration memory access controller are presented. Key RC-supporting

functionalities for enabling a reliable ROS are advanced. These include task

configuration and relocation to circumvent permanent damages, configuration memory

readback, internal register readback for device diagnosis, and configuration monitoring

and abort mechanisms for device availability improvement. Partial bitstream relocation

capability is implemented intrinsically by treating every configuration operation as a

relocation request In addition, an error mitigation functionality that allows selective-

chip-area scanning and thus saves on time, is put forward.

To the best of the author’s knowledge, the concept of relocating encrypted partial

bitstreams has not been met with a unifying approach. Methods already exist that can

be used but this can at best be seen as an amalgamation of several distinct methods,

resulting in bloated time and resource utilization. Chapter 5 proposes a novel method

for achieving this with virtually no time and resource overhead when compared to

existing methods. In order to achieve this, a new and unique bitstream format is

proposed for encrypted partial bitstreams and a corresponding configuration controller

implemented to load a bitstream so formatted. The algorithm is further implemented in

a Windows-Form-based application to provide an easy-to-use graphical user interface.

A key requirement for partial bitstream relocation is the provision of dynamic

communication framework as circuits are relocated in runtime. An on-chip

communication mechanism with intrinsic relocation support will therefore provide a

step change in the reliability of reconfigurable systems. A move is taken in this direction

in Chapter 6 by proposing a communication framework that is amenable to circuit

relocation. The clock buffers and nets of the FPGA are adapted for communication.

Being a new concept that has never before been investigated (as far as the author is

aware), salient technical considerations and characterizations are presented. The

chapter starts with an introduction to clocking resources in a typical FPGA and

highlights the features exploited for communication. Different configurations of clock

buffers to enable a variety of network topologies are also investigated. A demonstration

of bitstream relocation that derives communication support from clock buffers is as

___ Chapter 1 - Introduction

 13

well presented. The chapter concludes with the implementations for a fault-tolerant data

transfer via the clock buffers.

In Chapter 7, the frameworks proposed in this work are evaluated with a practical

application. A case study is drawn from the NASA/JPL spectrometer application. The

data processing circuits of this spectrometer are used as hardware tasks and the

performance of the methods in this work are compared with those of existing

approaches.

This thesis concludes with a retrospective look at the aims and objectives of this

work. In particular, it discusses how these have been met in the light of the methods

and techniques advanced in this work. Limitations and the possible route to addressing

them are also furnished, especially in relation to the limitations of the target device and

improvements offered by the latest devices from vendors. In addition, future directions

for the work are presented. Specifically, this mostly involves how all the contributions

in Chapter 4 through Chapter 6 tie together and enables a complete high-performance

and reliable RC system.

1.6 Relevant Publications

Journals

 A. Adetomi, G. Enemali, and T. Arslan, ‘Enabling Dynamic Communication for

Runtime Circuit Relocation’, IEEE Transactions on Very Large Scale Integration

Systems. [Submitted].

 A. Adetomi and T. Arslan, ‘A High-Throughput and Efficient Configuration

Controller for Reliability in Dynamically Reconfigurable Systems’, IEEE

Transactions on Computers. [Submitted].

 A. Adetomi and T. Arslan, ‘A Security-Aware Relocation Mechanism for Reliable

Reconfigurable Computing’, IEEE Transactions on Parallel and Distributed

Systems. [Submitted].

 G. Enemali, A. Adetomi, G. Seetharaman, and T. Arslan, ‘A Functionality-Based

Runtime Relocation System for Circuits on Heterogeneous FPGAs’, IEEE

Transactions on Circuits and Systems II: Express Briefs, 2018, vol. 65, no. 5, pp.

612–616.

___ Chapter 1 - Introduction

 14

Conferences

 A. Adetomi, G. Enemali, Xabier Iturbe, Didier Keymeulen, and T. Arslan,

‘R3TOS-Based Integrated Modular Space Avionics for On-Board Real-Time Data

Processing’, in 2018 NASA/ESA Conference on Adaptive Hardware and Systems

(AHS), 2018, pp. 1–8.

 A. Adetomi, G. Enemali, G. Seetharaman, and T. Arslan, ‘Fault-Tolerant

Mechanisms for Relocation-Aware Dynamic On-Chip Communication on

FPGAs’, in 2018 NASA/ESA Conference on Adaptive Hardware and Systems

(AHS), 2018, pp. 214–217.

 A. Adetomi, G. Enemali, and T. Arslan, ‘Towards a Secure Partial

Reconfiguration of Xilinx FPGAs’, in 2018 NASA/ESA Conference on Adaptive

Hardware and Systems (AHS), 2018, pp. 174–178.

 A. Adetomi, G. Enemali, and T. Arslan, ‘Characterization of Clock Buffers for

On-Chip Inter-Circuit Communication in Xilinx FPGAs’, in 2018 IEEE

International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

 A. Adetomi, G. Enemali, and T. Arslan, ‘Towards an Efficient Intellectual

Property Protection in Dynamically Reconfigurable FPGAs’, in 2017 Seventh

International Conference on Emerging Security Technologies (EST), 2017, pp.

150–156.

 A. Adetomi, G. Enemali, and T. Arslan, ‘Relocation-Aware Communication

Network for Circuits on Xilinx FPGAs’, in 2017 27th International Conference on

Field Programmable Logic and Applications (FPL), 2017, pp. 1–7.

 A. Adetomi, G. Enemali, and T. Arslan, ‘A Fault-Tolerant ICAP Controller with

a Selective-Area Soft Error Mitigation Engine’, in 2017 NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), 2017, pp. 192–199.

 A. Adetomi, G. Enemali, and T. Arslan, ‘Relocating Encrypted Partial Bitstreams

by Advance Task Address Loading’, in 25th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM 2017), 2017, pp. 188–191.

 A. Adetomi, G. Enemali, and T. Arslan, ‘Clock Buffers, Nets, and Trees for On-

Chip Communication: A Novel Network Access Technique in FPGAs’, in 2017

IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), 2017, pp. 219–222.

 G. Enemali, A. Adetomi, and T. Arslan, ‘Efficient Runtime Frame ECC

Recomputation for Reliable Task Execution on Xilinx FPGAs’, in 2018 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2018, pp. 59–65.

 Aliyu Dala, A. Adetomi, G. Enemali, and T. Arslan, ‘RR4DSN: Reconfigurable

Receiver for Deepwater Sensor Nodes’, in 2018 NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), 2018, pp. 280–284.

 G. Enemali, A. Adetomi, and T. Arslan, ‘A Placement Management Circuit for

Efficient Realtime Hardware Reuse on FPGAs Targeting Reliable Autonomous

___ Chapter 1 - Introduction

 15

Systems’, in 2017 IEEE International Symposium on Circuits and Systems

(ISCAS), 2017, pp. 1–4.

 G. Enemali, A. Adetomi, and T. Arslan, ‘Expanding the Un-usable Area Strategy

for Improved Utilization of Reconfigurable FPGAs’, in 2017 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2017, pp. 139–144.

 W. Guohua, L. Dongming, W. Fengzhou, A. Adetomi, and T. Arslan, ‘A Tiny and

Multifunctional ICAP Controller for Dynamic Partial Reconfiguration System’, in

2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2017, pp.

71–76.

 G. Enemali, A. Adetomi, and T. Arslan, ‘FAReP: Fragmentation-Aware

Replacement Policy for Task Reuse on Reconfigurable FPGAs’, in 2017 IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), 2017, pp. 202–206.

 J. Khalifat, A. Ebrahim, A. Adetomi, and T. Arslan, ‘A Dynamic Partial

Reconfiguration Design for Camera Systems’, in 2015 NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), 2015, pp. 1–7.

16

Chapter 2

Reconfiguration,

Security, and Integrity in

FPGAs

The design on an FPGA is mapped by a Configuration Memory (CMEM), which holds

information about the functional state of all the resources on the chip, including

routings. Depending on the type of memory technology used for the CMEM, an FPGA

can be categorized as SRAM (Static Random Access Memory), flash, or antifuse; with

the majority of FPGAs in the market being SRAM-based, including the ones from

Xilinx, which is considered as the inventor of the FPGA [10] and holds the largest

market share [42].

Since the SRAM memory is volatile, SRAM FPGAs need to be reprogrammed

each time the device is power-cycled and an external non-volatile memory is used for

the application program’s storage. Any digital design implemented on an FPGA uses

the reconfigurable logic and memory resources provided by the FPGA, interconnected

together by means of routing resources. When synthesizing the digital design, a

bitstream is generated that contains the configuration information. In order to

physically realize the digital design on the FPGA this bitstream or bit file is written to

the CMEM. Ranging from serial to parallel, and external self-reconfiguration to internal

partial reconfiguration, there are several means of loading or reconfiguring an FPGA.

The configuration details, interfaces, modes, reconfiguration strategies of FPGA will

be explored in Sections 2.1 and 2.2.

The obvious disadvantage of SRAM FPGAs is the perceived greater vulnerability

to attacks. Since the configuration bitstream is kept outside the device, the process of

transferring it to the FPGA is exposed to the prying eyes of attackers. As a result,

SRAM FPGAs are generally considered to be less secure when compared to flash and

antifuse FPGAs, which are based on non-volatile memories. However, both flash and

antifuse FPGAs have their security challenges as well. The in-system programming

2

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 17

commonly employed in flash FPGAs exposes the FPGA to the same security

vulnerabilities as SRAM FPGAs and system-level security concerns may have to be

addressed in antifuse FPGAs since they are one-time programmable and the configured

digital design cannot be erased [43].

In general, from the security standpoint, all the types of FPGAs have their strengths

and weaknesses. However, SRAM FPGAs are ubiquitous because they are often a few

process nodes ahead of other technologies [10], with associated benefits of higher

performance, enhanced power efficiency, and greater logic density; including being

easy to manufacture, test, and update in the field [43].

In all, there are varieties of potential attacks on FPGAs and some countermeasures

have been provided by FPGA manufacturers to protect the FPGA and maintain the

integrity of the on-board digital circuits. Some of these will be brought to light in

Section 2.3.

2.1 FPGA Configuration Details

FPGAs are generally composed of columns and rows of Configurable Logic Blocks

(CLBs), Block Random Access Memories (BRAMs), Digital Signal Processors (DSPs),

and interconnect resources (wires, connection boxes, and switch boxes). There are also

clocking infrastructures, and a host of other primitives for functionalities like internal

configuration and analogue-to-digital conversion. Inside a CLB are Flip-Flops (FFs),

and Look-Up Tables (LUTs) for implementing various digital circuits. All these

resources can be controlled by accessing an on-chip configuration memory from

outside or inside the FPGA.

2.1.1 Layers of an FPGA

For the purpose of clarity, different layers will be identified on the FPGA. Since the

CMEM holds information about the functional state of all the resources on the chip,

including routings and clock networks, that means an FPGA can be pictured as having

a configuration layer which determines the behaviour of the functional or application

layer, where the circuit designs reside. The functional layer comprises the user

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 18

resources – logic and memory blocks. In addition, the FPGA has a dedicated clock

network for clocking synchronous circuits and as such, a third layer, which can be

considered as a subset of the functional layer can be identified as the clock layer (or

clock routing layer).

Figure 2.1 shows a pictorial relationship among all the layers – the functional layer

for mapping designs on the FPGA’s fabric, with a sub-functional-layer for clocking,

and the configuration layer for loading the designs into a configuration memory. The

clock layer contains dedicated networks for routing clock signals to relevant resources

and a number of clock conditioners and buffers for steering signals to these networks

[44]. Programmable Interconnect Points (PIPs) are provided for both logic and clock

routing. The logic routing PIPs are in the Connection Boxes (CBs) and Switch Boxes

(SBs). The PIPs are largely CMOS pass transistors that are also mapped in the CMEM.

Figure 2.1: Three layers of an FPGA

CB

CB

CB

CB

SB

CB

CB

CB

CB

SB

SBCB CB

Clock

Clock net in the

clock layer

Clock buffer in the

clock layer

Memory in the

configuration layer

Circuit in the

functional layer

Mapping of circuits by the

configuration layer

.

.

.

PIP

Bits for

mapping

routings

Bits for

mapping

circuits

Bits for

other

mappings

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 19

A. Functional Layer

The FPGA is made up of a reconfigurable hardware fabric with multiplicity of

logic elements. Figure 2.2 is the traditional model of an FPGA, showing inactivated

routing resources that can be programmed to interconnect configurable logic resources

and Input/Output Blocks (IOBs). The CBs are used to connect directly between the

input and outputs of programmable resource blocks (CLBs, BRAMs, and DSPs) while

the SBs are used to switch between vertical and horizontal connections, allowing a wide

range of routing options [45]. In the diagram LMD represents logic, memory, or DSP

resources. In the 7 series, each CLB comprises of 2 slices and in each slice there are

eight flip-flops, four 6-input LUTs, one arithmetic and carry chain, with each LUT

configurable as a 64-bit distributed RAM or 32-bit shift register logic [46].

Figure 2.2: Model of a typical FPGA showing the interconnection among on-chip resources

and input/output (IO) blocks. LMD represents logic, memory, or DSP resources.

LMD

CB

LMD

CB

CB CB

CB

CB

SB

CB

CB

CB

CB

CB

CB LMD LMD

SB

SBSB

SB SB SB

SB

SB

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

IO

IO

IO

IO

IO

IO

IO

IO

CB CB

CB

CB

CB

CB

SB SB

SB

SB

SB SB

SB

SB

CB CBSB

SB

SBSB

SB SB

SBSB

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 20

Circuit designs for the FPGA are crafted using the resource blocks and configured

on the FPGA by writing a bitstream to the CMEM of the FPGA. Since the 7 series

FPGAs (as with the other families) are SRAM-based and as such the CMEM is volatile,

the bitstream is always required to be loaded each time the device is power-cycled. In

certain instances, FPGAs also come equipped with processing elements or cores like

CPUs and GPUs. These are referred to as hard cores since they are permanent structures

on the chip and are distinct from the reconfigurable fabric. However, sometimes

processing elements not provided in fixed silicon by the FPGA can be obtained by using

the existing CLBs, BRAMs, and DSPs to implement needed functionalities, as is the

case with Xilinx MicroBlaze soft processor. Such cores are referred to as soft cores and

offer more flexibility compared to their hard counterparts, though generally at a reduced

performance.

B. Clock Routing Layer

To drive the clock and reset inputs of synchronous circuits on the FPGA, clocking

infrastructures are provided. In the latest FPGAs like the 7 series, the CLBs, BRAMs,

and DSPs are arranged in a grid of columns and rows, with contiguous number of same-

height columns grouped into clock regions. While the size and number of clock regions

varies among device families, each clock region is fed by a number of local clock

buffers and nets. To cater for the diverse clocking need of the user design, there are also

multi-region and global device-wide clock networks spanning different groupings of

clock regions. A clock region marks the granularity of the clock network of the FPGA.

It is important to note that these clock networks use dedicated physical interconnect

resources that are independent of the local and general routing resources. As such, an

FPGA can be considered as having a clock routing layer, which is in addition to the

functional and configuration layers. Nonetheless, the clock networks and their

associated infrastructures have bits in the CMEM for controlling them.

In the 7 series, a clock region spans 50 vertical CLBs, 10 36-kb BRAMs, 20 18-kb

BRAMs, or 20 DSPs and depending the device size, there can be up to 24 clock regions

[44]. Figure 2.3 gives a representation of a typical 7 series FPGA with respect to the

location of the clock buffers.

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 21

Clock

region

Clock

region

Clock

region

Clock

region

Top

half

Bottom

half

Multi-

region

buffers

Regional

buffers

Global

buffers

Horizontal

buffers

Figure 2.3: Clock buffer distribution in a 7 series FPGA

C. Configuration Layer

The configuration layer includes the CMEM, the configuration access ports and

the internal control logic for loading circuits’ configuration data into the CMEM. The

CMEM holds the functionality (including routing) of circuits mapped into the FPGA.

Physically, the CMEM is tiled about the device in configuration frames that run from

the top to the bottom of a clock region. In the 7 series FPGA, these frames contain 3,232

bits (101 32-bit words) each [47], with each bit stored in an SRAM cell. The

configuration frame is the smallest unit of configuration and all CMEM read or write

operations are therefore required to access whole configuration frames. It is the smallest

addressable segment of the FPGA’s CMEM space and depending on the amount and

type of resources to be configured, a number of frames have to be written to the FPGA.

The internal structure of the configuration frames resembles the physical

arrangement of the FPGA resources in the clock region column (see Figure 2.4). The

most significant bits in the frame are associated with the upper resources in the clock

region, whereas the least significant frame bits configure resources in the bottom part

of the clock region. Likewise, the configuration related to the dedicated regional clock

wires that cross through the central part of clock regions are mapped to the middle 51st

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 22

word in the frame. The configuration information for a given FPGA resource spans

along several consecutive frames, always occupying the same relative position within

them. For instance, the configuration information for one single CLB is spread along

36 frames. Similarly, 128 frames are required to configure a BRAM, and 28 frames for

a DSP slice (see Table 2.1). The third row in Table 2.1 gives the number of words in

each frame that configures a single resource block. These numbers can be obtained by

studying the bitstreams generated for circuits with different combinations of resource

blocks.

Each configuration frame is protected with 13 Error Correction Code (ECC) bits

that are also embedded in the 51st word. These ECC bits allow for detecting and

correcting single bit errors and detecting but not correcting double bit errors (see

Section 2.3.2).

Figure 2.4: Internal composition of a frame and its mapping to resources

Table 2.1: Number of configuration frames for 7 series FPGA resources

Resource Block CLB DSP BRAM18 BRAM36

Number of Frames/Column 36 28 128 128

Number of Words/Block 2 5 5 10

CLB-01 B18-01 B36-01 DSP-01

CLB-25 B18-10 B36-05 DSP-10

CLB-26 B18-11 B36-06 DSP-11

CLB-50 B18-20 B36-10 DSP-20

Horizontal Clock Row (HROW)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1st word

50th word

51st word

52nd word

101st word

.

.

.

.

.

.

Configurat ion

frame

Clock region with

resource blocks

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 23

The configuration frame data in the CMEM are addressed by a 32-bit address

space. For accessing frame data, a frame address has to be written into the Frame

Address Register (FAR). Since there are many frames to be configured for the resource

blocks, the FAR register is usually loaded with the starting frame address. The internal

configuration logic automatically increments the frame address as new frames are

loaded. Table 2.2 (adapted from [47]) shows the fields of a frame address. Unique codes

are used to identify different resource blocks.

Table 2.2: Frame address fields and corresponding description

Field Bit Index Description

Block Type [25:23]
Valid block types are CLB, I/O, CLK (000), block

RAM content (001), and CFG_CLB (010)

Top/Bottom Bit [22]
Select between top-half rows (0) and bottom-half

rows (1)

Row Address [21:17]

Selects the current row. The row addresses increment

from centre to top and then reset and increment from

centre to bottom

Column Address [16:7]

Selects a major column, such as a column of CLBs.

Column addresses start at 0 on the left and increase

to the right

Minor Address [6:0] Selects a frame within a major column

Table 2.3 shows selected registers of the 7 series FPGA. Some of these registers

have read/write capabilities while others have only read or write access. Each register

write takes two words – one for the command and the other for the register value, except

for the FDRI register which receives a multiple of 101 words as frame data. From the

standpoint of CMEM access, the most important are the FAR, CMD, FDRI, and FDRO

registers. The CMD register is used to specify what type of operation the FPGA should

perform. Table 2.4 presents the CMD register commands and codes.

For every write to the FDRI register, the identity of the device must be specified

by writing to the IDCODE register, and a pre-computed CRC checksum can be written

to the CRC register at the end of data loading to verify the integrity of the bitstream

loaded. To reset CRC check prior to the loading of data, the RCRC command is used.

The FPGA also exposes registers for device setup, status, and other device-level

functionalities, e.g., CTL0, STAT and COR0 registers.

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 24

Table 2.3: Selected configuration registers of the 7 series FPGA

Name R/W
Address

(Binary)
Description

CRC R/W 00000 CRC Register

FAR R/W 00001 Frame Address Register

FDRI W 00010
Frame Data Register Input (for writing configuration

data)

FDRO R 00011
Frame Data Register Output (for reading configuration

data)

CMD R/W 00100 Command Register

CTL0 R/W 00101 Control Register 0

MASK R/W 00110 Masking Register for CTL0 and CTL1

STAT R 00111 Status Register

COR0 R/W 01001 Configuration Option Register 0

MFWR W 01010 Multiple Frame Write Register

CBC W 01011 Initial CBC Value Register

IDCODE R/W 01100 Device ID Register

R = Read, W = Write

Table 2.4: Selected CMD register commands and codes

Command Code Description

NULL 00000 Null command, does nothing

WCFG 00001
Writes Configuration Data: used prior to writing

configuration data to the FDRI

MFW 00010
Multiple Frame Write: used to perform a write of a single

frame data to multiple frame addresses

RCFG 00100
Reads Configuration Data: used prior to reading

configuration data from the FDRO

START 00101

Begins the Startup Sequence: The startup sequence begins

after a successful CRC check and a DESYNC command are

performed.

RCRC 00111 Resets CRC: Resets the CRC register

DESYNC 01101

Resets the DALIGN signal: Used at the end of configuration

to desynchronize the device. After desynchronization, all

values on the configuration data pins are ignored

Two main operations can be performed on the CMEM – configuration (writing),

and readback (reading). By writing to the CMD and FAR registers, and reading from

the FDRI register, which holds the frame data read back from the CMEM, a readback

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 25

operation can be performed. Similarly, for a configuration operation, the CMD, FAR,

and FDRO registers must be accessed. More details on the configuration details can be

found in [47].

2.1.2 Bitstream Structure

In order to configure the on-chip resources and control device-related options, the

configuration registers of the FPGA are accessed using variable length command

packets (see Table 2.5). The minimum size of a packet is 64 bits and the FPGA is

equipped with an internal 64-bit packet buffer. From this point forward unless otherwise

stated, a word is to be taken as 32-bit long. The first 32 bits of the packet are a Type 1

header, which defines the type of register operation, the register address and the word

count (number of words to read or write). If the word count is less than 2048, there is a

second 32-bit header which redefines the register operation and specifies the word

count. If a Type 2 header has to be used a Type 1 header must be specified first although

with the Type 1 header word count set to zero. When writing a register, the packet

includes a variable-length register data word, the length depending on the register being

written. For instance, when writing the FDRI register, a multiple of 101 words must be

provided.

Table 2.5: Packet format for configuration command and data

Field Header Body

Content
Type 1

header
Type 2 header Register data words

Length 32 bits 32 bits Variable

Description

This header

is always

used

Optional:

Used only if

the word

count is >

2047

This field is needed only when writing a

register. When writing the FDRI register,

a multiple of 101 words must be loaded

The Type 1 packets can read or write up to 2047 words while the Type 2 packets

can access larger blocks of up to (227 – 1) words [47]. Table 2.6 and Table 2.7 show the

composition of the Type 1 and 2 packets respectively, with read and write operation

codes indicated in Table 2.8.

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 26

Table 2.6: Type 1 packet header format for configuration commands

Header Type Opcode Register Address Reserved Word Count

[31:29] [28:27] [26:13] [12:11] [10:0]

001 xx RRRRRRRRRxxxxx RR xxxxxxxxxxx

Table 2.7: Type 2 packet header format for configuration commands

Header Type Opcode Word Count

[31:29] [28:27] [26:0]

010 xx xxxxxxxxxxxxxxxxxxxxxxxxxx

Table 2.8: Opcode format for configuration commands

Function NOP Read Write Reserved

Opcode 00 01 10 11

By using the register addresses in Table 2.3 with the Types 1 and 2 packet headers,

the configuration commands can be formed. Table 2.9 gives an example of the

formation of the command packet to write the CMD register. This packet is followed

immediately by a command code. For example, to write configuration data, one would

write 0x30008001 followed by 0x00000001, which is the WCFG code (see Table 2.4)

before loading the data.

Table 2.9: Forming the packet header to write the CMD register

Packet Field Write CMD Description

Header Type [31:29] 0b001 Header type 1

Opcode [28:27] 0b10 Write

Register Address [26:13] 0b00000000000100 Register address “00100”

Reserved [12:11] 0b00 Reserved bits, set to 0s

Word Count [10:0] 0b00000000001 Write one word

Packet [31:0] 0x30008001 Full packet in hexadecimal

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 27

A bitstream eventually, is composed of many packets concatenated into a single

bit file and used to program the FPGA. In general, a bitstream can be divided into

multiple sections of configuration commands and frame data. The configuration

commands are the packets that set device options and control the configuration logic of

the FPGA, including writing the FAR register. The frame data are the register data

words written to the FDRI register in order to set the functional state of the resources

on the FPGA including controlling general interconnect resources and clock networks.

The frame data is what gets written to the CMEM.

Figure 2.5 shows the general format of the Xilinx bitstream. The bitstream includes

a preamble, a body, and a postamble. The preamble includes special words for

synchronizing the configuration logic and header command words for setting up the

FPGA. The body is the bulk of the bitstream as it contains FAR loading commands,

FAR values (starting frame addresses for the different resource blocks used by the

design), and frame data. The postamble contains commands for starting up the FPGA

after frame data loading. It also contains the CRC checksum and the DESYNC

command packet (0x300080010000000D) for desynchronizing the configuration

interface. The bitstream concludes with a couple of no-operation words (0x20000000)

for flushing the internal packet buffer.

Preamble
(Sync, Header)

Padding with 20000000

Body
(Frame Address and

Frame Data)

Postamble

(Footer, Desync)

Figure 2.5: Xilinx bitstream format

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 28

Xilinx provides Vivado Integrated Development Environment (IDE) [48] for

simulating, debugging, synthesizing, and implementing designs for their FPGAs with

various design flows, including the generation of bitstreams. The Hardware Manager,

a feature in Vivado can be used be for externally programming FPGAs.

2.1.3 Configuration Interfaces and Modes

The Xilinx 7 series FPGA offers different means of (re)configuring the chip (see Table

2.10, adapted from [47]), with varying configuration port interface modes, widths and

bandwidths. It should be noted however, that only one of these interfaces can access

the internal configuration logic at a time, with the Joint-Test Action Group (JTAG)

interface having the highest priority. Some of the configuration interfaces are serial,

some are parallel, while others offer a combination of both serial and parallel. The

interfaces in master mode can drive the clock of the configuration logic from an

internally-generated clock at a maximum frequency of 100 MHz [49], though the

Vivado IDE allows a designer to specify only a maximum of 66 MHz when using the

internal oscillator option (master interface) for configuration clock generation [50].

However, for higher speeds, the slave modes can be used with a configuration clock

sourced externally.

Table 2.10: Configuration interfaces and modes in the Xilinx 7 series FPGA

Interface Mode Bus Width Clock Source

Serial
Master Serial x1 Internal

Slave Serial x1 External

SPI Master SPI x1, x2, x4 Internal

BPI Master BPI x8, x16 Internal

SelectMAP
Master SelectMAP x8, x16 Internal

Slave SelectMAP x8, x16, x32 External

JTAG - x1 Not Applicable

From the consideration of reconfigurable computing, it is necessary to have an

internal configuration interface or mode that allows an FPGA-based system to be self-

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 29

contained, without requiring an external processor when necessary. While the Serial

Peripheral Interface (SPI) and Byte Peripheral Interface (BPI) allow the FPGA to

reconfigure itself by reading the bitstream out of an SPI or BPI flash memory, this is

only applicable to full configuration. Only the JTAG, Serial, and SelectMAP interfaces

support partial reconfiguration, with the SelectMAP in addition providing an Internal

Configuration Access Port (ICAP) that a user design can use to access the configuration

memory from inside the FPGA; providing self-reconfiguration capability without the

need of external pins.

The ICAP (named ICAPE2 in the 7 series FPGA) primitive is in essence, an

internal version of the SelectMAP interface and it grants the user design access to the

configuration memory of the FPGA. The diagram in Figure 2.6 shows the ICAP

interface in the 7 series FPGA. CSI_B is the active-low ICAP enable port while

RDWR_B is the read/write select line. The main difference between the ICAP in the 7

series and the earlier FPGA family (Virtex-6) is that for readback, there is no longer a

BUSY port to monitor in order to know when readback data on the output port is valid.

In the 7 series, readback validity is deterministic, with data valid 3 clock cycles after

CSI_B is asserted. The maximum bandwidth of the ICAP is 400 MB/s at the

recommended maximum operating frequency of 100 MHz.

Figure 2.6: 7 series FPGA’s ICAP interface ports

2.2 Reconfiguration Strategies in FPGAs

In terms of the granularity of reconfiguration, FPGAs started out as monolithic

reconfigurable devices where the entire device had to be taken offline to reprogramme

it, significantly adding to downtime. Since then, FPGAs have come a long way as per

their capability to be reconfigured. The following subsections provide an overview of

I[31:0]

RDWR_B

CSI_B

O[31:0]

CLK

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 30

the available means of (re)programming FPGAs, setting a context for the need for

dynamic task reconfiguration in a ROS.

2.2.1 Full Reconfiguration

With a full reconfiguration, the entire FPGA is held in reset while the full bitstream is

loaded into the device. This is the classic method of programming FPGAs, and one

which is limiting in applications that require a high uptime, as it turns out that even for

a small change to the design on the FPGA, the entire device has to be taken offline for

full reconfiguration. To generate a bitstream for full reconfiguration, the steps in Figure

2.7 are generally followed.

RTL Level

[HDLs, e.g., VHDL, Verilog]

Logic Level

[Netlist, e.g., EDIF]

Device Level

[Bitfile]

Synthesis

Implementation

Figure 2.7: Typical FPGA design flow, from synthesis to bitstream generation

According to Figure 2.7, the design is coded up in an HDL language like VHDL

or Verilog. This is at the RTL level, with behavioural or gate-level hardware

descriptions. The synthesis process converts RTL codes into a netlist descriptions,

which can be implemented into bit files (bitstreams) for loading onto an FPGA. The

process of implementation includes the placement of logic blocks, memory elements,

and other design elements in specific sites on the chip as defined by the netlist. It

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 31

concludes with the establishment of routes to interconnect these elements, also as

defined by the netlist. The last stage is the generation of bitstream. A more

comprehensive FPGA design flow would include simulation and design verification to

ensure the correctness of the design both logically and functionally [51].

2.2.2 Partial Reconfiguration

Partial reconfiguration (PR) is a technology that allows a part of an FPGA to be

reconfigured while the other parts retain their configured state [37]. The region that is

not marked out for PR remains static while other regions can be partially reconfigured.

Unlike a full reconfiguration, the entire device is not reconfigured, and as such, PR has

advantages such as reduced device size, lower device count, and reduced cost arising

from the fact that many circuits can be time-multiplexed to share a single region on the

FPGA. Other benefits include in-field local or remote hardware servicing and updating,

shorter reconfiguration times, and increased system performance (lower downtime)

[52].

There are two types of PR: static partial reconfiguration, and Dynamic Partial

Reconfiguration (DPR). In the former, the remaining part of the FPGA is brought into

a shutdown state – the circuits in the region not being reconfigured stop operating but

the corresponding CMEM content is not reset. This is also referred to as shutdown

partial reconfiguration.

On the other hand, DPR allows the parts of the FPGA not being reconfigured to

continue operating [37]. Also known as, active partial reconfiguration, DPR takes

further what partial reconfiguration offers. While the time it takes to configure a part of

the FPGA is very small, with frequent shutdown partial reconfigurations, there would

be many pockets of small configuration times. For applications that require a high

availability, for instance, datacentres, these pockets of configuration times could add

up to constitute a significant downtime. DPR prevents such a scenario.

It is safe to state that DPR is the key enabling technology for a ROS as it forms the

basis for runtime task management. The actual dynamic loading of tasks itself depends

on DPR, and without runtime reconfiguration of the FPGA, it would be impossible for

a ROS to offer a service like runtime error mitigation, which involves actively checking

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 32

the CMEM of the FPGA for bit flips and correcting any correctable bit flips all while

tasks are actively executing on the FPGA.

A. The Process of DPR in Xilinx FPGAs

Figure 2.8 shows a diagrammatic representation of the Xilinx’s PR scheme. The

PR flow of Xilinx [37] involves the partitioning of the FPGA chip area into two main

regions – the static region, containing resources not meant for PR; and the dynamic

partially reconfigurable region. The reconfigurable region is then floor-planned into a

number of Reconfigurable Partitions (RPs) to be shared by multiple Reconfigurable

Modules (RMs). It should be noted that only RMs assigned to a particular RP can be

configured in that RP. That is, intrinsically, there is no intrinsic support for relocating

an RM from one RP to another. As will be seen in Section 3.2.4, this is an important

requirement for reliability in terms of permanent on-chip resource damage

circumvention.

Reconfigurable

Parti tion (RP)

2

Reconfig urable

Parti tio n (RP)

1
Static Region

Reconfigurable

Modules

for RP2

Reconfig urable

Mo dules

for RP1

FPGA Chip

Area

Partial ly reco nfigurable mo dules for

recon figurab le part itions on the FPGA

Parti tion

Pin

Figure 2.8: Diagrammatic representation of partial reconfiguration

For inter-communication between the circuits in the static region and the RMs in

the RPs, and among the RMs (not recommended by Xilinx), during the PR flow, the

build tool inserts LUT-based Partition Pins (PartPins) at every connection point

between the static region and the RMs. The PartPins are LUT-based proxy logic that

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 33

serve as anchors in the RPs to provide a consistent interface between the static logic

and the RMs. This interfacing approach is used by the vendor tool and it costs 1 LUT

per signal connection in the early Vivado versions. This resource can be saved by using

the PR link approach of [53], where blocker macros are used to force the tool to use a

specific routing path for all static part and RM configurations, with the added advantage

on improving relocatability of RMs. However, in the latest versions of Vivado PartPins

incur no physical resources like LUTs but use the interconnect tile directly [37].

For each RM, a full bitstream and a partial bitstream (PB) are generated. The full

bitstream is used for the first device-wide configuration of the FPGA mostly at power

up, while the PB is used for (re)configuring the RM. More information on the PR flow

of Xilinx can be found in [37].

It should be noted that the reconfiguration frame, which is the smallest selectable

FPGA area for PR is two columns (CLB-CLB, CLB-DSP, or CLB-BRAM). This is

because every two successive CLB columns (left CLB and right CLB pair) for instance,

share an interconnect (INT) column, and partitions are not allowed to pass in-between

them. Thus, the smallest selectable CLB area for an RP is two CLBs (right CLB and

left CLB) as shown in Figure 2.9 [37]. The same applies to the boundaries between

CLBs and BRAMs and between CLBs and DSPs.

Figure 2.9: Permissible boundaries for a reconfiguration frame

The reconfiguration frame is important as it determines the granularity of the

physical area selection for partially-reconfigured circuits. In contrast, the configuration

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 34

frame simply determines the granularity of configuration memory read and write. Table

2.11 presents the number of configuration frames required to (re)configure different

reconfiguration frames on the 7 series FPGA. These numbers were obtained by

studying the bitstreams generated for designs with different combinations of CLBs,

DSPs, and BRAMs.

Table 2.11: Number of configuration frames for different 7 series FPGA resource pairs

Reconfiguration Frame CLB-CLB CLB-DSP CLB-BRAM

Number of Configuration Frames 72 64 192

B. Module-Based Versus Difference-Based Partial Reconfiguration

Besides the partial reconfiguration flow that involves a whole RM being

reconfigured in an RP, which can also be referred to as a module-based partial

reconfiguration, Xilinx offers a form of partial reconfiguration which is difference-

based [54]. The difference-based option is used for making small design changes to an

RM. It is recommended for things like changing the equation of an LUT or modifying

the memory content of a BRAM. If only a small change to an RM is required, instead

of making a new RM that contains the change, and generating a new partial bitstream

for the module, the small difference between the existing RM and the supposed new

one is converted into a bitstream for reconfiguring only a small portion of the RM. The

key advantage here is that the resulting difference-based partial bitstream can be much

smaller than the RM’s original partial bitstream. While the Xilinx BitGen toll can be

used to generate difference-based partial bitstreams, with an understanding of the

bitstream structure from reverse engineering analyses, it is possible to build such

bitstreams using a custom tool.

2.3 Security and Integrity in FPGAs

Security in FPGAs has attracted a greater attention in recent years. This can be

attributed to the more prominent deployment of FPGAs as computing platforms.

FPGAs are susceptible to reverse engineering, cloning, and physical attacks among

others [55]. While the methods and aims of attacks on FPGAs may vary, the result is

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 35

often malicious and as such, not desirable. As a result, the unifying theme in FPGA

security is that of protecting the design and the device itself. As part of achieving this,

FPGA vendors have relied on the complexity of bitstream formats as a deterrent to

reverse engineering by attackers. The transformation of an FPGA-based design into a

bitstream is a closely-guarded process, with no known successful reverse engineering

attack. However, this is deemed as insufficient security for bitstreams.

2.3.1 Bitstream Security

Despite the fact that bitstream generation is a closely-guarded process, relying on the

complexity of bitstreams as a deterrent to attackers is not considered prudent [43], and

because there are other strains of attack like cloning, overbuilding, tempering, and

spoofing, the best way of hiding design information is to use encrypted bitstreams.

FPGA manufacturers have thus been driven to introduce encryption and decryption

mechanisms into the FPGA configuration process [56].

Encryption is used to transform the readable plaintext bitstream into non-readable

cyphertext bitstream. The encrypted bitstream is decrypted on-chip before delivering

the data to the configuration memory. The encryption in the 7 series FPGAs is based

on the 256-bit Advanced Encryption Standard (AES-256) implemented in the Cypher

Block Chaining (CBC) mode, where a 256-bit key is used to encrypt and decrypt data

blocks of 128 bits in size, with a CBC Initial Vector (IV) that is also 128 bits long.

Figure 2.10 shows the AES encryption in the CBC mode.

Figure 2.10: AES encryption in cypher block chaining mode

Block

Cipher

XOR

Cipher
text 1

Plain
text 1

IV

Key Block

Cipher

XOR

Cipher
text 2

Plain
text 2

Key Block

Cipher

XOR

Cipher
text n

Plain
text n

Key

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 36

The CBC is a mode of block cypher encryption that hides recognizable patterns in

the cyphertext by chaining the encryption of a plaintext block of data to the cyphertext

of the previous block [57] (see Figure 2.10). It ensures that two identical plaintexts do

not have similar cyphertexts. Since the encryption of each block requires the cyphertext

of the previous block, a 128-bit IV is usually provided for the encryption and decryption

of the first block. The process is reversed during the on-chip decryption, in which every

decrypted block is XORed with the previous cyphertext block to obtain the plaintext

block.

2.3.2 Bitstream Integrity

Despite the use of encryption, an attacker, even without a sufficient knowledge of the

bitstream format can still manipulate portions of the encrypted bitstream with the aim

of causing the FPGA to malfunction. This can happen if the validity of the bitstream is

not ensured before configuration. It is obvious that encryption alone is insufficient.

Therefore, to authenticate bitstreams and ensure the correct and intended operation of

the device, hash algorithms have been applied in addition to encryption to ward off

targeted malicious tampering [58].

A. Bitstream Authentication

Authentication ensures that the bitstream has not been deliberately or inadvertently

modified before delivering it to the FPGA. For authentication in Xilinx FPGAs, the

Hash Message Authentication Code (HMAC) is used. The Vivado applies a 256-bit

HMAC key and the Secure Hash Algorithm (SHA) on the entire bitstream command

and data to generate a 256-bit message digest or Message Authentication Code (MAC).

The HMAC key and the MAC are both included as part of the unencrypted bitstream

before encryption is applied. In the FPGA, as the bitstream is sent to the configuration

logic after decryption, an on-chip HMAC-SHA-256 circuit uses the HMAC key to

calculate the MAC on the configuration command and data and compares it with the

MAC embedded in the bitstream. Any discrepancy results in the disabling of the

configuration interface if the fallback option is not enabled [47]. As a result, the MAC

helps determine the data integrity and authenticity of the bitstream. The HMAC-SHA-

256 authentication is always enabled along with the AES-CBC-256 encryption. That

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 37

is, both encryption and authentication are applied together when the encryption option

is selected. It is impossible to use encryption without authentication and vice versa.

B. Cyclic Redundancy Check (CRC)

For SRAM-based FPGAs, the configuration bitstreams are usually stored in an

external non-volatile memory and transferred to the FPGA at power-up. The process

of transferring the bitstream from this external storage can sometimes corrupt the

bitstream. While the probability of this is low, the possibilities of bit flips occurring in

the bitstream are particularly higher when bitstreams are delivered through error-prone

mechanisms like radio transmission.

To ensure the correctness of the data, a 32-bit Cyclic Redundancy Check (CRC) is

performed on the entire bitstream command and data during the bitstream generation.

For the 7 series FPGA, the CRC-32 is calculated based on the CRC32C (Castagnoli)

polynomial: x32 + x28 + x27 + x26 + x25 + x23 + x22 + x20 + x19 + x18 + x14 + x13 + x11 +

x10 + x9 + x8 + x6 + 1 [59] and is stored in the postamble of the bitstream. Xilinx uses

this polynomial because it is more reliable at error detection than the default CRC-32-

IEEE, evidenced by the fact that at a Hamming Distance of 4, it is able to cover a

payload of 2147483615 bits. A CRC with a Hamming Distance of D allows all multi-

bit errors below D – 1 bits to be detected [60].

While it may be similar to authentication, the CRC is not secure enough from the

perspective of cryptography and is thus used primarily for error detection and control

rather than data integrity confirmation [61]. When a bitstream is being uploaded to the

configuration memory of the FPGA, an internal CRC-32 circuit calculates the CRC of

the commands and data from the last CRC reset event. The calculated value is

compared with the precomputed value stored in the bitstream. Any dissimilarity results

in the configuration interface throwing a CRC error, which can be detected by

monitoring the configuration interface's output, and reset by writing to the Reset CRC

(RCRC) register.

C. Frame Error Correction Code (ECC)

In the 7 series FPGA, each CMEM frame is protected by a 13-bit Error Correction

Code (ECC) stored in the 51st word of the frame while the entire CMEM is protected

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 38

by CRC. In reality, it is uncommon for an error to escape being detected by ECC and

be found only by CRC [62]. This implies that in certain applications, the

implementation of error mitigation could rely only on the frame ECC. The ECC bits

are computed according to [63].

The FPGA comes with a FRAME_ECC primitive (depicted in Figure 2.11). If

instantiated by the user in the design, this primitive enables the monitoring of the built-

in ECC circuitry of the CMEM. Each time a readback is performed, the FRAME_ECC

checks for errors by calculating a syndrome value from all the bits of the frame

including the ECC bits in the 51st word. There is an error if SYNDROME[12:0] is non-

zero. A single-bit error is indicated on the ECCERRORSINGLE port of the

FRAME_ECC as a ‘1’. The index of the 32-bit frame word that contains the flipped bit

is reported by SYNWORD[6:0] while SYNBIT[4:0] points to the bit position in the

word. The CRCERROR port is used to signal a CRC error and is useful when the

Readback CRC (see Section 2.3.2) is used.

The Frame ECC logic uses a Single-Error Correction, Double-Error Detection

(SEC-DED) Hamming code, meaning that both singe-bit and multi-bit errors are

detected but only single-bit errors can be corrected. The FRAME_ECC circuitry itself

does not correct errors but indicates the location of a single flipped bit.

Figure 2.11: FRAME_ECC primitive’s ports

2.3.3 Secure Bitstream Format

When encryption is used, the Xilinx Vivado tool generates the bitstream in a secure

format (see Figure 2.12), different from the unencrypted version. The preamble is not

SYNWORD[6:0]

CRCERROR

ECCERROR

ECCERRORSINGLE

SYNDROMEVALID

FAR[25:0]

SYNBIT[4:0]

SYNDROME[12:0]

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 39

encrypted as it is used to set up the FPGA and the internal decryption circuit but the

HMAC authentication key (HKEY) and the configuration data (which includes the

configuration commands and frame data) are encrypted. There are eleven 32-bit Use-

Encryption words in the preamble which consist of the commands to enable the AES

decryptor; load the AES IV, and the Decrypt Word Count (DWC). The body section

contains encrypted header commands, the frame address command and value, and the

frame data. The encrypted body is appended with the HKEY. In the postamble, the

footer commands and the HKEY, followed by the message digest (MAC) of the

authentication process, are all encrypted.

The secure bitstream contains no DESYNC command packet (0x3000 8001 0000

000D) [47] as the DWC indicates when configuration should stop. The DWC is written

with a command that has a register address of "11010" [47]. A more in-depth

description of the secure bitstream format has been covered in [43]. This format can be

confirmed by decrypting a Vivado-generated encrypted bitstream and studying its

content.

Preamble
(Sync, Setup, Use-

Encryption)

Padding with 20000000

Body
(HKEY, Header, Frame

Address and Frame Data)

Postamble
(Footer, HKEY, MAC)

HKEY – HMAC Key

MAC – Message Authentication Code

Encrypted and Authenticated

Unencrypted and Unauthenticated

Figure 2.12: FPGA’s secure bitstream format

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 40

2.3.4 Key Management

A key file (NKY file) is generated by Vivado when encryption is used. This file

contains hexadecimal strings for the AES key, the IV, and the HMAC key. The system

designer has the choice of supplying the keys and the IV or allowing them to be

generated by implementation tool. To load the key file into the FPGA, the Vivado

Hardware Manager can be used.

The AES key can be stored in the Battery-Backed RAM (BBRAM) or in the

eFUSE. While the eFUSE requires no external battery, it is not as secure as the

BBRAM. Once the key is programmed into the eFUSE, it cannot be cleared if there is

an attack [64]. The IV is not stored on the chip but is used by the internal configuration

circuit for the AES-CBC-based decryption of the bitstream being loaded. The IV is

transparent to users and attackers since it is stored and transmitted unencrypted. The

implication of this is that an attacker can modify the IV to cause malicious effects.

However, because of the way the CBC scheme works, only the first block (128 bits) of

the decrypted bitstream will be corrupted from being decrypted using an incorrect IV.

Every subsequent cyphertext block uses is decrypted by chaining to the previous

cyphertext (not plaintext) block, and as such will always be correctly recovered given

that the AES key is correct.

2.4 Chapter Summary

Since their introduction by Xilinx in 1985, FPGAs have come a long way as computing

devices. Starting out as a prototyping platform, they are now becoming a serious

contender for mainstream computing. An FPGA can be considered as having three

layers – configuration, functional, and clock routing layers. Using the Xilinx 7 series

device as an example, this chapter has reviewed the different means of reconfiguring

an FPGA. The key take away is that dynamic partial reconfiguration, which allows the

FPGA to stay online and retain its operational state while a certain part of it is being

reprogrammed, is an important technology that enables reconfigurable hardware to be

deployed in ever-increasing number of applications.

_______________________ Chapter 2 – Reconfiguration, Security, and Integrity in FPGAs

 41

The popularity of FPGAs means that the values of the IP cores that run on them

has increased significantly. This has warranted the introduction of security measures

including authentication and encryption to protect devices and the IP cores running on

them. This however, has an impact on system design, with designers having to consider

the storage of encryption keys. Moreover, the use of a special secure bitstream format

will pose a challenge to design techniques that require the bitstream to be in plain

formats. This is the motivation for the work in Chapter 5, where a unique secure

bitstream and supporting configuration controller and formatting software are

advanced.

42

Chapter 3

Reconfigurable Computing

In the 1940s, the need for flexibility in computation led to the introduction of the

computer processor or CPU [65][66] for stored-programme as against fixed-

programme computing. However, no sooner had the processor been introduced, than it

was realized that it was limited in performance. Early CPUs ran at relatively slow

frequencies with very limited performance compared to what is obtainable today.

However, as the demand for computing increased, it was imperative to increase the

speed of processors. By 1971, the first commercial microprocessor, the Intel 4004,

which integrated a CPU comprising of 2300 transistors into a single chip, had appeared

[67]. The advent of microprocessors drastically improved speed and performance. For

years, the integrating density, which fuelled an increase in the performance of

microprocessors, kept increasing, doubling every two years, as predicted by Moore’s

law, but a limit in practicable processor speed was soon reached, as the enormous heat

generated by microprocessors could not be extracted fast enough; a phenomenon

known as the Power Wall. Keeping the voltage down is a way of reducing power

dissipation but this is limited by the unavoidable transistor leakages and process

variations in the fabrication techniques [8]. This has prompted the move from

uniprocessors to multi-core processors and multiprocessors. While this masks the

original problem of the processor’s software-based computation which arises from the

sequential execution of processes and the von Neumann bottleneck [5], this is also

destined to ultimately slam into the Power Wall.

In contrast, a hardware-based computation has the capacity to execute multiple

tasks in parallel and thus, provide a high computational performance at low power. For

instance, in comparison to processors, FPGAs have been shown to be up to 540 times

faster [68] and up to 70% more power efficient [69] for certain applications. The trend

is thus, towards the use of specialized hardware to execute compute-intensive and time-

critical tasks while the host processor focusses on software tasks. This can be seen in

the latest Xilinx and Altera heterogeneous System-on-Chip (SoC) devices, combining

3

__ Chapter 3 – Reconfigurable Computing

 43

a high-performance ARM processor and an FPGA fabric into a single chip [70][71].

While specialized hardware based on Application-Specific Integrated Circuits (ASICs)

offers the advantage of speed, it lacks the flexibility of software. Reconfigurable

hardware like the FPGA, on the other hand, offers programmability to logic circuits,

combining the flexibility of software with the sheer high performance of ASIC-like

hardware. The subject of reconfigurable computing is that of exploiting this powerful

combination to meet high computing demands, reduce cost, and achieve lower power

consumption.

 Years before FPGAs were conceived, the earliest reconfigurable computing

architecture was proposed by Gerald Estrin in 1960. In his work on the fixed-plus-

variable structure computer [72][73], he proposed a reconfigurable computer

architecture that would “permit computations which are beyond the capabilities of [the

then] present systems by providing an inventory of high speed substructures and rules

for interconnecting them such that the entire system may be temporarily distorted into

a problem oriented special purpose computer” [72]. However, it was not until 1984 that

the first real reconfigurable computing hardware fabric appeared when Xilinx

introduced the first FPGA and since then FPGAs have progressed through various

stages of development [10]. From that humble beginning of the XC2064 FPGA which

contained about 64 logic-only cells (less than 1000 gates), current FPGAs now boast of

millions of gates making up heterogeneous resources that include not only logic cells

but also memory elements, processing elements, and other functional blocks.

There are other reconfigurable hardware like Programmable Array Logics (PALs)

and Complex Programmable Logic Devices (CPLDs) but FPGAs are the most widely

used because of their higher densities, allowing for highly complex designs. In 2017,

the global FPGA market accounted for $63.05 billion and is forecasted to reach up to

$117.97 billion by 2026 growing at a compound annual growth rate of 7.2% [74]. The

driving force of this market is the adoption of FPGAs for various applications ranging

from hand-held devices to datacentres and aerospace.

Several concepts and methods have been advanced in a bid to exploit the

potentials of reconfigurable hardware, especially FPGAs. The research efforts

expended have led to a number of promising architectural solutions in the form of

__ Chapter 3 – Reconfigurable Computing

 44

ROSes that aim to present the FPGA fabric as an extension of conventional processors.

However, in the various architectures, there is a uniformity of purpose, which is the

abstraction of the intricacies of the reconfigurable hardware fabric by providing

essential RC services. In the following sections, the existing RC architecture and

service implementations will be brought to light and considered in the light of the

objectives of this research. Furthermore, several works have implemented key RC

services without focussing on full ROS implementations. These will also be reviewed.

3.1 An Overview of Reconfigurable Operating Systems

The introduction of DPR in FPGAs allows parts of a device to be reprogrammed while

other parts are operating (see Section 2.2.2). Using this capability, hardware circuits

can time-share resources and be swapped in and out of the FPGA as and at when

required in runtime; and following the software nomenclature, these circuits can be

named as “hardware tasks”. A strong requirement for the categorization of a hardware

circuit as hardware task is the sharing of resources and intercommunication with other

circuits. Where this is not the case, a hardware circuit in a reconfigurable system would

be best described as a hardware accelerator [19]. New terminologies like morphware

and configware have also been coined to describe a reconfigurable hardware device and

the application mapped onto it [75].

A Reconfigurable Operating System (ROS) attempts to give to hardware a software

look by abstracting the low-level intricacies of hardware from application developers,

and thereby easing the development of applications for execution on FPGAs.

Traditional operating systems for processors manage every aspect of the operations of

processors, from process execution to memory management, and I/O access. In a

similar vein, a ROS aims to manage the on-chip resources in an FPGA, but mostly on

behalf of software processes running in a host CPU for an improved system-wide

performance. In general, a ROS is an extension of a conventional software operating

system.

Typically, a ROS is expected to provide services ranging from task scheduling,

task placement, task configuration, inter-task communication, partitioning, memory

__ Chapter 3 – Reconfigurable Computing

 45

management, IO, and security [22]–[24]. Arguably, the most essential of these are task

placement, task configuration and inter-task communication. Depending on the chip

area partitioning approach used by a ROS, three reconfigurable area styles are possible

in ROSes [24]. In the island style, a number of RPs can be marked out on the chip for

hosting one task each without the possibility of overlapping; that is, an RM or task

cannot use multiple partitions. Most existing ROSes use island-style partitions. On the

other hand, in the slot style of reconfigurable area, the chip is divided into contiguous

areas that allow one-dimensional placement of tasks. In a closely related style, the grid

allows a two-dimensional placement. In both the slot and the grid styles, an RM can

occupy multiple RPs.

The main concerns in this thesis relate to task configuration and communication.

As such, how these and closely-related features are implemented in the sate-of-the-art

ROSes will now be reviewed. OS4RS [76] is an operating system primarily for

software-to-hardware context switching and vice-versa. Each task is designed to have

software and hardware versions with the same functionality. The reconfigurable fabric

is divided into fixed islands called tiles, which are of the same shape and size. The tiles

are interconnected by a network-on-chip (NoC), with each tile designed to run a single

task at any given time. For task loading, partial reconfiguration is carried out through

the ICAP.

In [77] and [78], the authors present HybridThreads (HThreads), which is a real-

time OS kernel that allows hardware and software multithreading. Inter-task

communication is provided over a system bus using a memory-mapped register

interface. It is difficult to classify HThreads as a complete ROS since it does not

support DPR and as a result, there is no resource sharing among the threads (tasks)

[79]. The hardware tasks are never reconfigured. Instead, they are static tasks that

reside in static slots attached to the system bus.

BORPH [80], developed at the University of California at Berkley, is another

Linux extension. In BORPH, a whole FPGA is used as the reconfigurable island, with

four FPGAs interconnected to serve as user FPGAs while one FPGA serves as the

control FPGA. However, using a whole FPGA as a reconfigurable slot can easily lead

to inefficient resource utilization and high reconfiguration time overheads, especially

__ Chapter 3 – Reconfigurable Computing

 46

since the FPGAs are not partially reconfigured. For communication, BORPH uses a

SelectMap bus connection between the central control FPGA and the four user FPGAs

while inter-FPGA communication is Point-to-Point (P2P) via a ring network.

ReconOS [81] [82], CAP-OS [83], FUSE [84], SPREAD [85], and RTSM [86]

are further ROSes that all generically use island-style partitions and provide

communication by means of P2P connections, buses, or NoCs. However, in [87], a

grid partitioning is provided targeting the ReconOS. In addition, all these ROSes

support DPR. However, while FUSE claims support for DPR, in the proof of concept

implementation, the hardware tasks are fixed and not dynamically reconfigured.

Rainbow [88] is an extension of a real-time OS kernel for hardware multitasking.

While the real-time OS provides software multitasking functionality, the Rainbow

extension adds a hardware multitasking capability. Fixed slots in grid style are

provided for placing hardware tasks and communication is provided by a P2P scheme.

It provides an ICAP-based configuration controller for hardware task allocation and

pre-emption.

All of the afore-mentioned ROSes are in line with FPGA vendor design tools,

which force the use of fixed islands and slotted partitions to preserve the routes between

the static and reconfigurable regions (see Section 2.2.2). However, fixed partitions lead

to inefficient use of FPGA resources (e.g., small circuits must be mapped to enlarged

reconfigurable slots) and limits the chances of finding a damage-free alternate location

for hardware tasks (e.g., a single damaged resource makes an entire slot unusable). In

addition, as seen in the afore-mentioned ROSes, reconfigurable slots are typically

interconnected by means of a static communication infrastructure (e.g., bus or NoC),

which does not only consume a significant amount of FPGA resources [89], but also

fills the chip with lots of static routes that limit the allocatability of hardware tasks.

As opposed to these approaches, R3TOS [79], advanced to be a reliable ROS, uses

a slotless reconfiguration mode in which hardware tasks can be arbitrarily placed on the

FPGA. R3TOS does not rely on any fixed communication infrastructure like P2P,

buses, or NoC. Instead, it provides inter-task communications and synchronization

through the configuration layer by using the ICAP to copy data between buffer

__ Chapter 3 – Reconfigurable Computing

 47

memories attached to the inputs and outputs of tasks [90]. While R3TOS can be

classified as grid-based in terms of reconfigurable area style, it is in fact different by

definition as it does not actually mark out slots on the chip area. R3TOS keeps the

FPGA reconfigurable area empty, that is, free of any partition boundaries (i.e., PartPins)

and static routes. However, R3TOS relies heavily on DPR for task loading,

deallocation, and inter-task communication & synchronization.

Table 3.1 summarizes the relevant features of all the ROSes just discussed. The

common feature in all of these ROSes, except Rainbow and R3TOS, is the use of

islands for task placement. This is a consequence of the nature of the infrastructure

used for inter-task communication. Except R3TOS, the other ROSes provide P2P, bus,

or NoC-based communication, which uses the resources in the functional layer for

implementing communication. The choices of partitioning and communication are

influenced by the limitations imposed by the FPGA design tool flows and the

increasing heterogeneity of modern FPGAs [88]. To address this, R3TOS deploys the

configuration layer for communication by using the ICAP to relocate data between

tasks. Hence, it is able to advance a slotless architecture that favours relocatability.

Table 3.1: Architecture of existing reconfigurable operating systems

ROS Reconfiguration Style

Architecture

Reconfigurable Area Style
Inter-Task

Communication

OS4RS DPR Islands NoC

HThreads None Static islands Bus

BORPH Full Reconfiguration FPGA-based islands P2P

ReconOS DPR Islands/grid Bus

CAP-OS DPR Islands NoC

FUSE DPR Islands Bus

SPREAD DPR Islands Bus and P2P

RTSM DPR Islands Bus

Rainbow DPR Grid P2P

R3TOS DPR Grid ICAP-Based

__ Chapter 3 – Reconfigurable Computing

 48

While the provision of the key RC services has been generally provided by the

afore-mentioned ROSes, implementing these services in a ROS expected to be reliable

brings a whole new set of technical challenges. For instance, apart from R3TOS, there

is no other ROS that has laid claim to being reliable in the context of runtime error

mitigation, especially for permanent damage circumvention. By far, R3TOS can be

considered as the only ROS that has put a strong focus on reliability. Mostly, the

inability to advance a ROS with high reliability can be attributed to the limitations

imposed by the communication mechanisms employed by these ROSes. They are all

based on statically determined inter-task communication infrastructures that are not

amenable to runtime task relocation for permanent damage circumvention.

While R3TOS attempted to solve the communication bottleneck by using the

configuration infrastructure of the FPGA for inter-task data transfer [90], other critical

services relying on configuration are impaired, as the configuration interface is a single

resource that needs to be shared by these critical system services [83]. As a result, one

of the major issues addressed in this work is that of inter-task communication for

reliable reconfigurable computing (see Chapter 6).

3.2 Reliability Concerns in Reconfigurable Computing

Since FPGAs now find use in high-value applications, the requirement for reliability is

all the more important. Radiations are able to cause errors like temporary upsets or

permanent latch-ups in the underlying physical structures (e.g., CMOS transistors) of

the FPGA, propagating faults to the CLBs, BRAMs, and DSPs that make up the digital

designs resident on the FPGA, and potentially leading to system failures. These errors

can as well appear in the CMEM cells and other device-functionality primitives.

Resilience to these errors is an integral factor in the design of reliable reconfigurable

hardware systems. The following sections will provide further insights into the nature

and causes of these errors and the techniques deployed by system designers to combat

the menace.

__ Chapter 3 – Reconfigurable Computing

 49

3.2.1 Soft and Hard Errors

The underlying fabric of SRAM FPGAs is fabricated using the CMOS technology.

Most ICs today, including reconfigurable devices use the CMOS technology because

of its high density, high speed, and low power consumption [91][92]. The CMEM in

SRAM-based FPGAs are composed of CMOS SRAM cells, with a typical cell made

up of six transistors. The interconnect switches, CLBs, BRAMs, DSPs, and other

primitives, including control registers on the FPGA are made from CMOS transistors.

The correct functionality of the device and the digital design built from these resources

depends on the ON or OFF logic states of these transistors. As such, an unintended bit

flip, which turns an ON transistor OFF or vice-versa is able to cripple the functionality

of a digital design mapped on the FPGA. Such a bit flip can be temporary (soft) and

would disappear when the device is power-cycled, or permanent (hard), in which case

there is a permanent damage to the transistor and any digital design built on it would

be permanently affected.

Compared to hard errors, which render affected FPGA resources permanently

unusable, soft errors can generally be corrected without taking the device offline. It is

important to correct soft errors as soon as they appear because if left to accumulate,

they may become uncorrectable, and a full device configuration might be unavoidable,

increasing the downtime of a device or system. The main cause of errors is radiation in

space and nuclear environments. The description of the underlying physical processes

and interactions that trigger errors have been covered in [93].

A. Soft Errors

A soft error occurs in an FPGA when one or more bits of the chip’s transistors flip

due mainly to charge disturbance from ionizing radiations [94], especially for devices

deployed in space and nuclear applications. A single ionizing energetic particle can

transfer an electrical charge to a device to cause a Single-Event Effect (SEE), which can

be soft or hard. On the other hand Total Ionizing Dose (TID) effects are a result of

accumulated ionizing energy deposited by photons or particles getting trapped in the

insulating materials of transistors [95], and inducing a degradation of the device with

time.

__ Chapter 3 – Reconfigurable Computing

 50

There are different types of SEEs, depending on the kind of effect created. When

a soft error causes a single bit flip in a storage element like memory cell, latch, or flip-

flop, it can be referred to as a Single-Event Upset (SEU) [96] and is the most common

of all SEEs. This is in contrast to the less likely Multiple-Bit Upset (MBU) where more

than one bits are affected by a high-energy radiation.

A Single-Event Functional Interrupt (SEFI) is a result of an SEE that affects a

critical system control register or an internal circuit needed to operate a device and in

the process causes the entire device to malfunction [97]. Six types of SEFIs have been

identified for the Virtex-4 FPGA, but are as well applicable to other FPGA families.

These are: Power-On-Reset (POR) SEFI, SelectMAP (SMAP) SEFI, Frame Address

Register (FAR) SEFI, Global Signal SEFI, Readback SEFI, and Scrub SEFI. The detail

descriptions of these SEFIs can be found in [98]. SEFIs are critical since a user design

cannot correct them by scrubbing in most cases. However, they rarely occur, with

approximately one SEFI occurring in 65 years for galactic cosmic rays in deep space

[99].

When a logic gate is hit by an SEE, the corresponding event is referred to as a

Single-Event Transient (SET) as this leads to an error only when an erroneous bit state

propagates through one or more combinatorial path and eventually gets registered in a

memory element [96]. All the afore-mentioned soft error modes are non-destructive as

they do not potentially lead to permanent damages. A Single-Event Latch-up (SEL) is

a potentially destructive SEE “where a low-resistance path develops between power

supply and ground but remains after the triggering event is removed” creating high-

current conditions that can potentially destroy a device [100].

In the functional layer of an FPGA, BRAMs are more highly prone to radiation

effects while flip-flops are less susceptible because they constitute the smallest portion

of the internal state of the FPGA. On the other hand, in the configuration layer, because

of the sheer number of bits the CMEM contains, it is comparatively more affected by

radiation effects, with bits mapping logic resources less vulnerable compared to those

of the routing resources [101][102].

__ Chapter 3 – Reconfigurable Computing

 51

B. Hard Errors

Hard errors are permanent damages or defects that appear in the underlying silicon

fabric of devices. These errors are permanent and cannot be remedied by any method

used for mitigating soft errors. Since these errors cannot be corrected, if they happen to

fall within the region occupied by an active task, they would most likely lead to

computational errors or eventual system failures depending on the essentiality of the

bits affected.

The continuous process scaling leading to the miniaturization of transistors has

given rise to FPGAs with ever higher densities than before. The repercussion however,

is that the on-chip resources and interconnects have become more prone to degradation

and ageing-related permanent damages or hard errors. For instance, [103] reports that

resources on Xilinx 65-nm-node FPGAs can experience first-time failures within three

to five years of the device going into operation. While hard errors can be caused by

manufacturing defects, the most important from the user’s perspective are those caused

by ageing-related factors, including: Time-Dependent Dielectric Breakdown (TDDB),

Electromigration, Negative Bias Thermal Instability (NBTI), Hot-Carrier Effects

(HCEs), and Stress Migration. The description of the physical processes powering these

mechanisms have been covered in [103]. Another factor that can influence ageing and

eventually cause damages is thermal cycling (extreme variation of temperatures) in the

chip substrate [104].

Ageing-related errors can occur due to the natural unavoidable wear and tear or

degradation of the silicon as time passes. However, radiations can cause SELs, which

can trigger unintentional excessive currents and eventually leading to permanent

damages [100][105]. Furthermore, radiation can cause permanent errors in the form of

Single Event Gate Rupture (SEGR), or Single Event Burnout (SEB) [106]. In addition,

permanent failure modes earlier discussed can be exacerbated by extremes of

temperatures [107].

3.2.2 Soft Error Mitigation (SEM) in FPGAs

SEM includes both the detection and correction of soft errors. The early detection of

errors is important in reliable systems, allowing for mitigation techniques to be applied.

__ Chapter 3 – Reconfigurable Computing

 52

If errors are allowed to accumulate, the system might eventually need to be power-

cycled to clear the errors, contributing to system downtime. Error detection techniques

that permit a runtime diagnosis and correction are thus highly favoured in reliable

dynamically-reconfigurable computing devices. There are several methods for

mitigating errors, which include radiation hardening and redundancy. An in-depth

survey of mitigations techniques can be found in [108].

A. Radiation Hardening

Radiation hardening is any process or technique applied to make a device resistant

to ionizing radiation effects. There are two general categories – Radiation Hardening

by Process (RHBP) and Radiation Hardening by Design (RHBD) [109]. RHBP

involves making changes at the fabrication level in silicon. It involves modifying

fabrication processes. This is done in order to make ICs withstand radiation doses in

the order of 100 krad to more than 1 Mrad for space-grade use [31], with the majority

of space applications requiring a tolerance of 300 krad (Si) for TIDs and 37 MeV-

cm2/mg for SEUs [110]. However, the high cost of these ICs and the long lead times

are a disadvantage [111]. Moreover, the fabrication process deployed for RHBP is a

number of years (two generations or more) behind state-of-the-art [112], with the

implication that RHBP devices have inferior density and performance.

An alternative to RHBP is RHBD, which is the use of design techniques based on

standard CMOS technologies to harden ICs without making fabrication process

changes. RHBD approaches range from gate-level, techniques like selectively

hardening the critical gates (those affecting a circuit’s functionality) of a circuit [113]

and circuit-level [114], to system-level methods [115]. Since gate-level mitigations are

applied during fabrication, they are not applicable to COTS devices which are already

in the market. As such, error mitigation approaches for COTS FPGAs are often at the

circuit (e.g., flip-flops and LUTs), module, and system levels.

On the other hand, as most COTS devices can tolerate radiation doses in the range

of 5 krad to 20 krad or more, it is possible to use them in radiation environments when

properly characterized with “Careful COTS” design steps [31]. This radiation tolerance,

which is observed in parts not manufactured with space radiation in mind can be raised

by deploying system-level reliability approaches similar to the ones used in RHBD. In

__ Chapter 3 – Reconfigurable Computing

 53

particular, the flexibility of reconfigurable hardware can be exploited to raise the

tolerance levels of COTS FPGAs in a bid to make them usable as space-grade devices

within a characterized radiation dose and SEE tolerance range.

B. Triple-Modular Redundancy

A classical method of mitigating errors is Triple-Modular Redundancy (TMR) with

majority voting [116][117], where three instances of a circuit are configured. A voting

mechanism is then used to compare the outputs of the three circuits. The correct output

is the same as that of at least two of the three instances. The likelihood of having two

instances being struck by error in the same manner and thus, producing the same

erroneous outputs, is highly unlikely. However, where system reliability requirements

are higher, a designer would do well to revert to another error detection mechanism as

backup. To avoid a single point of failure, where the majority voter itself fails, the voter

can be triplicated [118].

TMR can best be described as an error detection and masking technique, its main

advantage being that it ensures a continuous correct functionality in the presence of

errors. Essentially, it masks the underlying error and prevents it from propagating faults

into the rest of the system. However, if the errors are not cleared (corrected) as soon as

possible, the TMR scheme could eventually be defeated as errors accumulate. Two

modules could become faulty at a time, and all the three modules could produce three

different outputs, defeating the voting mechanism.

TMR is applicable to both soft and hard error detection. However, as good as TMR

is, it has its failings. The apparent downside of a traditional TMR implementation is

that it incurs a large overhead, at least 200% more resource and area utilization arising

from the two redundant modules. To mitigate this, several variants of TMR have been

implemented to cut down on the resource overhead. For instance, in [119], a selective

TMR (STMR) mechanism is introduced, where SEU-sensitive sub-circuits of a main

design are identified and triplicated. The STMR technique achieved an area overhead

of 60-70% of that of the traditional TMR approach for the example circuits used.

For radiation hardening, TMR can be applied at the gate, circuit, module, device,

or system level [118][120]. However, as TMR does not correct bit flips and errors

__ Chapter 3 – Reconfigurable Computing

 54

should not be allowed to accumulate, other mechanisms must be deployed for the

correction of errors as they emerge. A popular method for soft error correction is

scrubbing, which involves overwriting the CMEM through PR to correct bit flips [121].

Scrubbing is useful for mitigating errors in the CMEM and can be external if the

scrubber is outside the FPGA and internal, if otherwise. In terms of the approach to

updating the CMEM, two scrubbing methods have been identified – blind scrubbing

and readback scrubbing. In fact, TMR can be combined with scrubbing to obtain a

substantially reduced failure rate [122].

C. Blind Scrubbing

To prevent error accumulation, a technique called scrubbing is often used.

Scrubbing involves a continuous update of the CMEM as often as possible with a

golden bitstream stored in a rad-hard memory outside the FPGA. It is recommended to

be carried out at least ten times faster than the worst-case SEU rate of the target FPGA

[99]. Since the CMEM is refreshed often, any soft error in the CMEM is eventually

corrected. However, care must be taken not to overwrite user data in the flip-flops,

LUT-RAMs, Shift Register LUTs (SRLs), and BRAMs as the contents of these could

have changed since configuration. This method of scrubbing has been referred to as

Blind Scrubbing since the CMEM is updated without first reading the CMEM to check

whether or not there has been an upset.

Though fast and simple, blind scrubbing can cause a Scrub SEFI and risk damage

to the device as observed in [123], where an SEU in the FAR register or a SET on the

clock line feeding the configuration data caused frame data to be written to a wrong

location and triggered contention which led to high currents on the core supply. Since

a SEFI cannot be scrubbed, a solution to Scrub SEFI is to perform the scrubbing frame-

by-frame rather than full-device, with the implication that when an upset is detected,

only a single frame would be written. This is instead of allowing the FAR to auto-

increase from an initial starting value, which is the usual practice with blind scrubbing.

This solution is proposed in [123] and evaluated in [124].

Another shortcoming of blind scrubbing is that if the internal scrubbing approach

is used and the ICAP is relied upon for writing the golden bitstream, as is often the case,

__ Chapter 3 – Reconfigurable Computing

 55

this reduces the availability of the ICAP for reconfiguration. Moreover, the need for a

rad-hard external memory to keep the golden bitstream creates an added cost.

D. Readback Scrubbing

With the advent of DPR in FPGAs, an alternative approach to blind scrubbing has

emerged – Readback Scrubbing. In readback scrubbing, the CMEM frames are first

read back and compared with a golden bitstream to check for errors. If there is an error,

the golden frame data is written to the CMEM to correct the error. While this method

still requires an external memory, the advantage is that there is no need for continuous

writing. However, the ICAP is still continuously occupied for readback operations.

Along the lines of readback scrubbing, the Xilinx FPGAs, starting from the Virtex-

4, have shipped with a FRAME_ECC primitive that when activated, computes a

syndrome value to determine errors in frames during readback. This can be used to

eliminate the need for an external storage, although only single errors can be corrected.

The Xilinx SEM IP [62] and the work in [125] circumvent this single-error correction

limitation by allowing frame data to be loaded from an external memory to correct

multi-bit errors especially since these can constitute a significant portion of errors

detected, as observed in [126]. Further details on the FRAME_ECC primitive have been

presented in Section 2.3.1.

In the 7 series FPGA, there is an internal Readback CRC circuitry that can

automatically perform readback in the background of user design to detect and correct

SEUs in the CMEM [47]. It is based on a CRC check of the CMEM. The Xilinx SEM

IP [62] and the work in [125] both rely on this internal circuitry. While Readback CRC

eliminates the need for a custom readback circuitry, it, however, cannot be controlled

to scan only a specific number of frames in the CMEM. As at the time of writing, Xilinx

documentations have not proven this to be otherwise. This means the entire chip has to

be scanned in each SEM pass. Earlier, we noted that less than 1% of the ICAP’s

bandwidth should be used for configuration if SEM coverage of the entire chip is

desired. To put this in perspective, we note that the smallest task on the FPGA will

occupy a CLB-DSP pair and this requires a total of 64 frames for configuration (see

Table 2.11 in Section 2.2.2). These frames can be written in 66.24 µs (computed from

Table 4.15 of Section 4.5). Taking the XC7Z100 chip as an example, the maximum

__ Chapter 3 – Reconfigurable Computing

 56

full device scan time of the chip is 34.3 ms [62]. If the 66.24 µs is taken as 1% then

SEM will take 6.56 ms. To ensure an effective SEM coverage, 6.56 ms has to be the

minimum duration between successive task reconfigurations. However, practical hard

real-time systems can have time bounds on the order of several microseconds to a few

milliseconds [127], implying that at > 99% ICAP occupation for SEM, the system will

be operating outside the bounds of hard real-time processing.

E. Diagnosis of User Memories

After the initial configuration of a circuit, the user data in the flip-flops and BRAMs

can change as the circuit operates. These changes are not updated in the corresponding

bits in the CMEM. As such, if a flip-flop or BRAM bit is hit by a SEU, it is impossible

to detect the flipped bit by checking the CMEM. For mitigating errors in the BRAM,

the BRAM in the 7 series FPGA comes with a built-in ECC that supports SEC-DED,

similar to the FRAME_ECC for CMEM. As ECC logic does not actually correct the

error but only presents a correct memory output, a form of memory scrubbing is also

recommended for ECC-protected BRAMs [102].

LUTs and other logic-related resources are susceptible to SETs. Since they have

no memory, the transient event does not constitute an error until registered in a memory

element like flip-flop or latch. As such, it is difficult to distinguish between a bit flip

that is a direct result of an SEU or one that is indirectly triggered by a SET. To prevent

transient events from inducing SEUs, SET filters can be used [128]. For flip-flop error

mitigation while TMR can be used to mask error, the isolation of the erroneous bit often

requires a self-checking mechanism like Built-In Self-Test (BIST) circuitry.

While TMR can be used to mask an SEU in a flip-flop and feedback from the voter

used to correct it [108], this is applicable when TMR is applied to individual flip-flop.

When an entire module is triplicated, it becomes more challenging to fix the error. The

entire module can be reconfigured but instead, a BIST circuit can be configured in the

region under test to identify the offending flip-flop and reconfigure only the associated

configuration frame. The use of BISTs prevents the need for an external diagnosis

service. BIST circuits have been proposed for diagnosing LUTs, flip-flops, and BRAMs

[129], with some concerned more with reducing the storage requirement and

__ Chapter 3 – Reconfigurable Computing

 57

configuration overhead for BIST circuit bitstreams by using a BIST-cloning technique

[130] while others consider the reduction in test time in addition [131].

3.2.3 Hard Error Mitigation (HEM)

The mitigation of hard errors or more appropriately, permanent damages, that appear

on the FPGA chip area ranges from delaying the occurrence of the errors, to

circumventing them when they eventually surface. Mitigation techniques include:

radiation hardening (e.g., using TMR for error masking) and BIST for error isolation.

These have already been discussed in Section 3.2.2. However, in addition to diagnosing

flip-flops, BIST can also be used to detect permanently damaged logic elements (e.g.,

LUTs) [130] and routing resources [132]. In addition, when a BIST detects a hard error,

the error cannot be corrected by reconfiguring the affected frame. Instead, the affected

resource is completely avoided. Other mitigation approaches, relevant especially to

HEM, include Wear Levelling (WL); online rerouting; and precompiled circuits for

alternate positions.

A. Wear Levelling (WL)

To mitigate ageing-related hard errors, wear-levelling (uniform-ageing) strategies

can be applied. WL is any strategy deployed to pre-empt hard errors before they happen.

Eventually, every silicon chip will wear out; however, prolonging the lifespan of the

chip is crucial and this is the aim of WL. In [103], the authors proposed different WL

methods to achieve uniform ageing of FPGA chips with respect to different causative

factors. Load balancing was used to tackle the impact of HCEs by periodically changing

the physical location of circuits to even out the usage of resources over time. Selective

Alternate Routing Technique (SART) was proposed for increasing the time to failure

due to electromigration in interconnects through dynamically switching between an

ageing route and an alternate unused route between logic resources (see Figure 3.1,

where an alternate route is used for connecting between the two logic blocks). Using

the SART technique, a percentage increase in chip age of up to 40% was observed in

an example benchmark. Another solution was configuration bit flipping for alleviating

the impact of NBTI. All these mitigation techniques were simulated and reported to

__ Chapter 3 – Reconfigurable Computing

 58

extend the operating lifetime of an FPGA chip, even up to a 100% in one of the

benchmark designs.

Figure 3.1: Alternate routing as a wear-levelling strategy

The authors in [133] argued that the findings of [103] were based on simulations

and were therefore difficult to verify. They went ahead to propose three WL strategies,

namely: alternative logic mapping, spare resources, and alternative placement to

mitigate the effects of NBTI. Since static logic levels are the root cause of NBTI, these

methods respectively involve disrupting constant logic levels by inverting the sense of

inputs and outputs in the design to alter the stress pattern, relocating active circuits to

unused resources, and exchanging the positions of circuits to ensure that logic resources

are stressed under multiple similar conditions. Hardware evaluations of these three WL

strategies using accelerated-life tests demonstrated that at least a 20% reduction in

degradation can be obtained.

A solution to thermal cycling is proposed in [104] which involves cyclically

relocating circuits with high power dissipation to regions where tasks with low power

emissions are allocated and vice-versa. As the temperature of a region on the chip

directly obtains from the power consumption of the circuit occupying that region, this

means unoccupied and less-used regions will have lower temperatures. To even out the

temperature of the chip and prevent hot spots or a steep temperature gradient, circuits

are moved about the device intermittently at a cycle period determined by the switching

frequencies and the area occupation of the circuits.

CB

CB

CB CB

CB

CB

SB

CB

CB

CB

CB

SB

SB SB

SB

SB

CB

CB

CB

CB

CB

CB CB

CB

CB

SB

CB

CB

CB

CB

SB

SB SB

SB

SB

CB

CB

CB

Alternate routeOriginal route

__ Chapter 3 – Reconfigurable Computing

 59

Though the prime advantage of WL for FPGAs is that there is no need to actively

check the chip for errors and address them in run-time, WL cannot be solely relied upon

since the eventual occurrence of age-related hard errors is inevitable and unpredictable.

As such, WL should be deployed as a passive mitigation technique while active

strategies should be used for periodic hard error detection and mitigation.

B. Precompiled Circuits

Precompiled circuit configurations can be used to target alternate locations in the

event of damages. This involves anticipating that damages will occur and mapping

circuits to multiple pre-determined regions. In a basic form of this, a battery of

bitstreams corresponding to different regions for each circuit are generated. This idea

is used in [134], where multiple test bitstreams are used to avoid defects in a

programmable device. The obvious downside to this is the increased bitstream storage

requirement.

To reduce bitstream storage size, in the column-based precompiled configuration

technique of [135], alternative RMs that avoid specific areas of the original RM are

created by shifting the original RM one column at a time to create similarities among

generated bitstreams. Differential coding and data compression are then used to reduce

the ensuing bitstream size. The implementation however, does not cater for the possible

resource heterogeneity of FPGAs as only CLBs are considered.

C. Online Rerouting

Online rerouting is another method used for circumventing permanent damages. In

[136], the authors propose an incremental routing strategy for ripping up and rerouting

interconnections between logic blocks. This can be used to provide communication

support for circuits targeting alternate locations. The major downside of online

rerouting is the prohibitively high time it incurs. Even with the efficient incremental

rerouting implementation of [137], with reconfiguration time per fault as high as 73

seconds.

Because of the high computational cost needed, routing algorithms are often run

offline. As such, in the rerouting strategy of [137], an external software is used to

determine the new route before the actual on-chip rerouting. On the other hand, self-

__ Chapter 3 – Reconfigurable Computing

 60

routing approaches have been proposed. These do not require auxiliary external

software as demonstrated in [138] where faulty cells are automatically replaced with

spare ones and rerouted. However, self-routing can be at the expense of increased

resource usage due to the self-routing core and some approximations or compromises

might have to be made as exemplified by [139].

3.2.4 Partial Bitstream Relocation

Most of the proposed solutions to HEM require first, the ability to reconfigure the

FPGA dynamically, in which DPR comes to the rescue; and second, the ability to move

a configured circuit from one place to the other on the chip in runtime [140], often

referred to as Partial Bitstream Relocation (PBR). In the context of RC, PBR can also

be referred to task relocation. However, since task relocation can also refer to the

migration of a software task to hardware and vice-versa, a concept termed

heterogeneous task relocation [141], we make a distinction here by explicitly referring

to the migration of a hardware circuit from one region on the chip to another as PBR or

homogeneous hardware task relocation, as different from heterogeneous task

relocation.

PBR is a technique of removing a configured circuit from its original location and

reconfiguring it in another location on the FPGA and it can be performed offline or in

runtime. Runtime PBR is enabled by DPR, allowing runtime access to the configuration

memory of the FPGA without power cycling the device, and permitting circuits in

damaged chip regions to be configured in another region while the rest of the FPGA

remains operational. PBR involves adapting an RM for placement in more than one RP.

Realizing bitstream relocation involves the manipulation of the frame addresses in

the task’s bitstream before (offline) or during (online) configuration. When done

offline, methods used include manipulating the frame address in the bitstream file as

seen in PARBIT [142] to generating and storing multiple copies of the partial bitstream

for the different target locations. PARBIT is an offline C-based command-line tool for

reformatting the original bitstreams generated by Xilinx tools into partial bitstreams

targeted for placement in their original locations or different locations. Unlike PARBIT,

__ Chapter 3 – Reconfigurable Computing

 61

in other offline relocation techniques, the same design is added as an RM in multiple

RPs so that the design can be configured in more than one RP at runtime.

With respect to reliability, the obvious limitation with the offline relocation

methods is that it is impossible to anticipate all the possible locations where permanent

damages could occur. In addition, generating and storing bitstreams for multiple target

locations increases the external storage size and cost. On the other hand, runtime PBR,

which involves the modification of the location address of the task online ensures that

only one copy of the bitstream is kept. Furthermore, emergent faults can be easily

circumvented given that the requirements for PBR are met. While adapting a tool like

PARBIT to run online on a processor in the FPGA is a possibility; however, this would

incur a large reconfiguration overhead due to the time taken to run the routine.

For runtime PBR, several methods have been proposed and implemented. In [143],

the authors present REPLICA, a hardware bitstream filter for runtime relocation.

REPLICA implements a subset of the PARBIT functionality but unlike PARBIT, it

manipulates the location address online while the bitstream is being downloaded, thus

avoiding extra reconfiguration overhead and increased external storage. REPLICA is

targeted at Virtex/-E architectures and can only relocate designs that use only CLBs. In

the second version called REPLICA2Pro [144], which is similar to REPLICA, the

Virtex-II/Pro architecture is supported and the relocation of BRAM and multiplier

blocks is possible. However, both REPLICA and REPLICA2Pro are limited to column-

wise 1D relocation.

The BiRF [145] is another hardware bitstream filter and it has a general structure

which is similar to REPLICA, but unlike REPLICA it is targeted at both Virtex/-E and

Virtex-II/Pro architectures, with an improvement in speed of more than 50%. The

authors in [145] also introduced BAnMaT Light, which is a completely software-based

relocation solution implemented in C.

Several other runtime relocation techniques have appeared in the literature.

However, the common theme is the provision of a FAR manipulating functionality, a

configuration engine, and a means of recalculating CRC. The recalculation of the CRC

checksum is important because the deliberate modification of the FAR value will void

the checksum pre-computed by the design tools. In order to maintain bitstream

__ Chapter 3 – Reconfigurable Computing

 62

integrity, a CRC recalculation functionality is needed. It is however, possible to relocate

a partial bitstream without regard to CRC recalculation. One can simply issue a CRC

reset command (0x30008001 followed by 0x00000007) at the point in the bitstream

when a CRC checksum would normally be specified to the configuration logic. As a

result, it is possible to have circuit relocation implementations that do not include a

CRC recalculation feature although CRC is recommended to be used if the FPGA is in

an environment where the bitstream transmission is not prone to error [146].

None of the existing relocation techniques seems suitable for encrypted PBs. As a

matter of fact, as far as the authors know, there is not a single work (not even a tool

flow) that has considered the relocation of encrypted PBs, especially from the

perspective of runtime PBR. With an encrypted PB, existing relocation

implementations like those just reviewed would require a runtime decryption of the

bitstream before feeding it to the ICAP, incurring a resource overhead for implementing

the decryption circuit. A technique where an already configured task is read back and

relocated on-chip [147][148] looks attractive for relocating encrypted PBs but there is

an initial configuration time which increases the system’s overhead. In Chapter 5, this

thesis will propose a mechanism that offers a solution with considerably less resource

and time overheads.

It is worth noting that apart from WL strategies, which require PBR for achieving

uniform ageing; and permanent damage circumvention, which requires PBR for

moving a task to a damage-free region, there are other justifications for PBR. One is

the reduction of external bitstream storage arising from the fact that multiple RMs can

share the same RP and hence, only one bitstream has to be kept.

3.2.5 Requirements for Partial Bitstream Relocation

For a circuit to be relocatable from one location to another on the FPGA, a set of

stringent requirements must be met, namely: the matching of the source and destination

regions in terms of resource type and relative positions, including the routing structure;

the provision of dynamic communication between the relocated circuit and the other

circuits on the FPGA; the preservation (or rather, avoidance of) of any static routes

crisscrossing the target region; and the provision of clocking.

__ Chapter 3 – Reconfigurable Computing

 63

These requirements apply to both offline and runtime PBR, though mostly to

runtime PBR. However, it is relatively easy to meet them offline since the designer is

in control of the synthesis. Meeting the requirement of a matching location is eased

since the synthesis tool can use the place and route to address a situation in which the

target location does not have the resources in the required order. Moreover, all the other

requirements are related to general interconnect and clock routings and these are well

suited for offline handling and align well with the established PR flow constraints of

establishing routes offline. Hence, the following considerations are mostly relevant to

runtime PBR.

A. Finding a Matching Target Location

The first requirement to be met for PBR is to find a matching target location. The

location to be relocated to must have similar resources (by type, number, and relative

positions) as the circuit’s original location (see Figure 3.2). The PBs must respect the

existing irregularities in the FPGA fabric [149]. These can be inherent to the chip

structure, such as clock region boundaries or heterogeneous BRAM and DSP columns,

but can also be created by the designer when using PartPins.

This requirement is the easiest to meet as FPGA resources are generally tiled in

regular repeating patterns. In Figure 3.2, RM2 can be relocated to the indicated matched

location because the resources in the target location are of the same type and

arrangement as those in RP1. It is salient to state that with newer FPGAs like the 7

series and the UltraScale, the architecture of the chip area is more heterogeneous and

irregular. This means it is more difficult to find matching locations on the horizontal

plane. Vertical matching locations are easier to come by because there is homogeneity

at the column level of all known Xilinx FPGAs.

In general there is almost always a matching location for any circuit on the FPGA,

not considering other circuits that may be on the FPGA. However, in reality, other

circuits could have taken up potential matching locations, in which case other

techniques of relocation like the memoization-based method in [150] can be used,

though with a limitation in the data width support, but nonetheless, a promising solution

to an impossible situation.

__ Chapter 3 – Reconfigurable Computing

 64

Figure 3.2: Representation of the considerations for circuit relocation

B. Provision of Dynamic Communication

The second requirement that must be met for PBR is the provision of

communication at the desired location both for preserving existing interconnections and

making new ones. This requirement is generally more difficult to fulfil for runtime

relocation because of the need to establish routes in runtime, and is often the question

raised against PBR. PBR involves moving a circuit from its original location where it

has established communication routes with other circuits on the FPGA. Re-establishing

these communication routes after relocation is not natively supported by the existing

design tools, as the PR flow demands that all communication routes are statically

determined at design time by inserting Partition Pins between the static design and the

RMs.

With respect to Figure 3.2, the easiest way to provide dynamic communication is

to ensure that routes from RP1 and RP3 to the matched location for RM2 are established

at design time. This way, during runtime, RM2 can be relocated while maintaining its

communication link with RM1. This can be accomplished by using the PR flow of the

vendor which was introduced in Section 2.2.2. The key challenge is that the vendor tool

Logic

CB

Logic

CB

CB CB

CB

CB

SB

CB

CB

CB

CBLogic Logic

SB

SB

SB

SB

Mem

CB

CB

CB

CB

SB

SB

Logic

Logic

CB CB

CB CB

SB SB

Mem

CB

CB

CB

CB

SB

Logic

CB

CB

SB

Logic

CB

Logic

CB

CB

CB

SB CB

CB

CB

SB

SB

SB

Mem

CB

Mem

CB

CB

SB

Mem

CB

CB

CB

SB

SB

SB

Logic

CB

Logic

CB

CB

CB

SB

Logic

CB

CB

CB

SB

SB

SB

DSP

CB

DSP

CB

CB

CB

SB

DSP

CB

CBLogic

CB

Logic

CB

Logic

SB

Mem

SB CB SB

Logic

CB CB

CB CB

SB SB

Mem

CB

CB

SB CB

Logic CB

SB CB SB

Mem

CB

CB

SB

Logic

CB

CB

SB

DSP

CB

CBLogicLogic

SB

Logic

CB

CB

CB

SB

CB

CBLogic

SB

Logic

CB

CB

SB

SB

Logic

CB

CB

SB

Matched location

for RM2

Static routings

crossing into RP1

RM1 in RP1 RM2 in RP2

Existing static routings in

matched location
RM3 in RP3

__ Chapter 3 – Reconfigurable Computing

 65

forces all RMs meant for a particular RP to share the same fixed interface with the static

part. The downside of this is that in runtime, an RM can only be placed in or relocated

to an RP to which it belongs. Since the decision of which RP an RM belongs is made

at design time, this limits the number of locations circuits can be relocated to in case of

emergent permanent faults. This deteriorates the reliability figures of the device.

To overcome the limitations imposed by the PR flow, online routing, a technique

that involves recomputing the routes through connection and switch boxes by

programming the relevant PIPs during runtime can be used, but this is computationally

expensive, often requiring several thousands of clock cycles per net [151]. Moreover,

determining the location of bits controlling the switch matrices and PIPs in the bitstream

is non-trivial and there is no constancy in the bitstream format from one FPGA family

to another. With the increasing size of newer FPGA chips, bitstream formats and

interconnects have become more complex, and runtime routing inevitably more costly

and complicated. Several other approaches have been proposed for dynamic

communication to support PBR. These are presented in Section 3.4.4 in the context of

on-chip dynamic communication infrastructures in FPGAs.

C. Preservation of Existing Static Routes in Reconfigurable Partitions

One other challenge with relocation is that of existing static routes in the target

region which belong to circuits outside that region, and as such must be manually

preserved [90]. The target location for a relocated circuit is not guaranteed of being free

from interconnect routings that belong to a neighbouring circuit most especially,

circuits in the static region. If the relocated circuit is reconfigured in the location

without regard to these pre-existing routings, it could override the routings and break

the functionalities of the nearby circuits.

For instance, in Figure 3.2, there is an existing static route passing through the

matched location for RM2. To avoid conflict, this static route has to be manually

preserved when placing RM2. This problem exists because FPGA implementation tools

like Vivado allow circuits to use routing resources external to their confined regions

even if they have no logic resources there. While the Vivado constraints

EXCLUDE_PLACEMENT and CONTAIN_ROUTING can be used to ensure that an

__ Chapter 3 – Reconfigurable Computing

 66

RP does not use logic and routing resources outside its bound, they however, do not

prevent routings from the static region from crossing the RPs [37].

A method of preserving pre-existing routings would be to read back the

configuration frames corresponding to the routings in the target region and XOR this

with those of the relocated circuit before configuration, but care has to be taken to

ensure that these pre-existing routings are avoided if their path would conflict with the

routing in the relocated circuit. A good allocation algorithmic search should put this

into consideration in finding a suitable place for relocation in the first place. One

shortcoming of this is the time it takes to perform the readback before configuration

and more time could be incurred if this has to be done recursively to find an appropriate

location.

FPGA design tools generally allow circuits in the static region to use routing

resources in the RPs mostly because of the need to resolve routing congestion. While it

is entirely possible to prevent design tools from doing this by using blockers that leave

the place and route tool with only one option regarding routing a demonstrated in the

OpenPR [152] and ReCoBus-Builder (now GOAHEAD) [153] PR tool flows; however,

this can exacerbate congestions and increase path latencies [154]. While it is possible

to use blockers, implementing this is not a trivial exercise and tool support is not yet

mature.

D. Timing Constraints Must be Met

One issue that is often overlooked in PBR is timing. When an RM is relocated from

its original location, it is possible that it fails to meet timing requirements in the new

location. To ease timing closure, it is recommended that inputs in the RM and static

logic are registered [37].

Once an RM meets timing within its bounded partition at design time, for the

purpose of relocation, the RM can be expected to maintain its timing closure within its

own physical bound regardless of wherever it is relocated on-chip in runtime if a strictly

matching target location is used. Timing issues are related more to the interface between

the static logic and the RM. As the RM circuit is moved about, its physical distance

__ Chapter 3 – Reconfigurable Computing

 67

from the static interface changes and thus its interface timing changes. This timing

change must be taken into consideration in a practical PBR implementation.

Timing is addressed in the GOAHEAD PR flow tool by considering the latency on

interface signals when generating relocatable bitstreams [154]. Another tool which

considers timing issues is AutoReloc [155], which is an automated design flow for

generating relocatable bitstreams. To meet timing requirement for PBR, AutoReloc

determines the delays between each pin on the RM and the static part for all the RPs to

which the RM can be relocated. The maximum of these delays is used to constrain

timing for the RM.

E. A Clock Network Must be Provided at the Target Location

The design tools do not route clock signals to regions of the FPGA that are not

used by user designs. As such, if a circuit is relocated in runtime, a suitable clock

network must be provided at the target location. The clock networks of the FPGA are

routed through switch matrices of PIPs. These routing resources can be controlled by

activating specific bits in the CMEM. This approach is exploited in [156] to provide

online clock routing for relocated circuits. For instance, the authors manipulate regional

clock buffers in runtime to provide different clock frequencies to tasks and to also

switch away from failed clock networks.

To simplify the process of clock routing, the clock tree routing information that

pertains to each RP can be extracted from the static design and added to the RM at

design time as done in [152]. Alternatively, dummy primitives like flip-flops or

BRAMs can be placed into the floorplan and connected to global clock lines at compile

time, forcing the place and route tool to route the required clock network to

predetermined regions that will be used for relocation [154].

3.3 Task Configuration in Reconfigurable Computing

The most important service provided by a ROS for RC is hardware task configuration.

The capability to dynamically reconfigure an FPGA, brought about by DPR is exploited

in RC for swapping tasks in and out of the FPGA in runtime. A review of the existing

ROSes in Section 3.1 reveals that DPR is often used. The most popular means of

__ Chapter 3 – Reconfigurable Computing

 68

supporting DPR is through the ICAP. Access to the CMEM can also be achieved

through the Processor Configuration Access Port (PCAP) [70] in Xilinx Zynq FPGAs

as demonstrated in [157]. However, the PCAP can only be controlled from the

processor in Zynq FPGAs. As such, though it incurs no hardware resource overhead as

per a controller, it is limited to a configuration throughput of 128 MB/s and blocks the

processor during reconfiguration, preventing it from running other tasks [158].

Therefore, the better choice is the ICAP when high performance is required.

As shown in Figure 3.3, in a typical ICAP controller, a finite state machine or

processor is used to control the ICAP for a variety of read and write operations ranging

from task configuration and readback, context switching, PBR, task replication for

TMR implementation, and scrubbing for SEM, among others. There is usually a buffer

memory composed out of BRAMs and used for buffering or streaming the bitstream.

A data mover initiates bitstream transfer from an external storage memory. In order to

meet the diverse needs of different RC architectures and ROS implementations, several

configuration or ICAP controllers have been developed. These controllers can be

broadly classified into two: those targeted at improving configuration throughput and

those targeted at reliability.

Figure 3.3: Architecture of a typical ICAP controller

Data

Mover

FSM or

Processor

External

Bitstream

Storage

Bitstream

Buffer or

FIFO

Configuration

Memory

ICAP

Interface

__ Chapter 3 – Reconfigurable Computing

 69

One issue with RC in terms of performance is that of reconfiguration throughput

especially as multiple system functions compete for access to the same internal

configuration interface. A lot of the services provided by a ROS depends on DPR via

the ICAP for self-reconfiguration. The maximum bandwidth of the ICAP is 3.2 Gbps

at the recommended maximum operating frequency of 100 MHz. There are several

attempts at increasing configuration throughput by overclocking the ICAP as seen in

[159], [160], [161], and [162], even up to 550 MHz in [163], but this is substantially

over the recommended maximum for which the chip has been characterized and

guaranteed to perform reliably by Xilinx. Moreover, the maximum overclocked

frequency is expected to be device-dependent and even vary among devices with the

same speed grade [164] and could lead to erratic behaviours that could be hard to

diagnose. As such, overclocking the ICAP would not be a safe option. Even when a

feedback approach is used to ensure a continuous correct operation of the ICAP and the

device [161][164], it is challenging to guarantee that there is no upset in expected

functionality. In fact, the authors of [164] acknowledge the need for a thorough

checking to ensure that the functionality of the configured module is correct.

A different way of increasing configuration throughput is the use of bitstream

compression enabled by the Multiple Frame Write (MFW) feature of the Xilinx FPGA.

The MFW command (see Table 2.3 and Table 2.4 in Section 2.1.1) can be used to

perform a write of a single frame data to multiple frame addresses. This compression

exploits the fact that a bitstream usually contains many configuration frames that are

the same. This is especially true for BRAM contents initialized to zeros. This feature is

exploited in [165], where the authors notice speedups of up to 4.6x and 2.7x for test

relocatable PWM and K-means circuits respectively.

Apart from increasing configuration throughput, ICAP controllers have also been

implemented to provide features useful for adaptation. From the viewpoint of a basic

task loading requirement in RC, the only feature required in an ICAP controller is task

configuration. However, the need for reliability has driven feature expansion in ICAP

controllers. Most controllers implement basic features like task configuration and

CMEM readback. However, some have added fault-tolerant capabilities like scrubbing

and PBR with the purpose of supporting reliability in RC.

__ Chapter 3 – Reconfigurable Computing

 70

For instance, in [164], the ICAP controller features a Statistics Block with two

hardware counters for system monitoring. The counters keep track of reconfiguration

clock cycles and the performance of the controller itself. The values kept by these

counters are meant for system-level adaptation management. As a further example, a

functionality for modifying LUTs online without the use of precompiled bitstreams is

introduced in [166], allowing a time-efficient dynamic modification of logic functions

through runtime-generated partial bitstreams for LUTs. This can be a useful feature for

error mitigation in LUTs.

The reliability of an ICAP controller itself is important when it is designed for

reliable CMEM access. In [167], selective TMR is used, in which a selected component

of the controller is hardened by TMR. With this implementation, the controller as a

smaller area footprint of 49% of a full TMR implementation. The features of this fault-

tolerant controller include hardware task downloading, hardware task blanking, and

internal scrubbing in conjunction with the FRAME_ECC primitive. TMR is applied to

a special self-recovery module that is aimed at recovering the controller in case of an

error by fetching a golden bitstream from external memory. Since TMR is not applied

to the controller itself, error detection is done by monitoring the BUSY signal of the

ICAP.

A comparison between different fault-tolerant implementations of an ICAP

controller is presented in [168]. The authors investigate the reliability and area

overheads of using TMR, Dual-Modular Redundancy (DMR), and CRC to protect the

controller. In the DMR version of the controller, a small TMR-based recovery

controller (much like in [167]) is used to recover when the DMR indicates an error. A

multiplexer arbitrates access to the ICAP between the main controller and the recovery

module.

3.4 Communication in Reconfigurable Computing

On-chip communication architectures can be grouped into three main categories,

namely P2P, Bus, and NoC, based on the structure of the physical interconnect, the

protocol of data transfer, and the interface design [169]. The main characteristic of P2P

__ Chapter 3 – Reconfigurable Computing

 71

interconnect is the simple and direct interconnection between two communicating

circuits, but it is quite inefficient in terms of scalability as the number of cores increases.

The shortcomings of P2P architecture scales up in shared buses.

While a shared-bus system allows multiple cores to communicate by granting them

access to a central global bus; however, because of the diverse nature and sheer number

of these cores, buses become longer, introducing longer communication latencies, and

consuming more power [170]. Bus arbitration also becomes more complicated. Buses

are not flexible and scalable enough as an addition of a new module requires that the

entire system be redesigned. As a result, NoCs have been proposed as the future of on-

chip communication.

3.4.1 Network-on-Chip for Communication

The NoC was borne out of the need to improve scalability, modularity, and performance

among other factors, in on-chip communication [171]. This need arose because of the

increase in the number and type of modules or processing elements running and

communicating on a device. CPUs, graphic processors, DSPs, memory elements, and

other modules with different functionalities became common-place on a single chip,

effectively giving rise to the idea of System-on-Chip (SoC).

The deficiencies of dedicated P2P and bus architectures are rooted in the reliance

on the routing of wires between communicating circuits. With the increase in

networking requirement as more cores are added, wires become long and connections

more complicated, leading to increased power consumption. In fact, with the increasing

logic resource density of modern FPGAs, on-chip interconnects have become more

complex and take a considerable share of a device’s power consumption. For instance,

in an on-chip interconnect power measurement carried out in [172] on a real hardware,

the authors reveal that up to 14% of the total dynamic power can be consumed by the

interconnect. It is clear that modern on-chip communication cannot rely on connection-

based interconnections.

All these deficiencies have given rise to the notion of routing packets, and not

wires [173], which is the main idea behind the NoC. Instead of establishing P2P

__ Chapter 3 – Reconfigurable Computing

 72

connections, whether based on direct dedicated interconnections or shared buses, the

NoC abstracts the Data Link Layer (data transfer on wired links) from the

Application/presentation Layer (the on-chip cores). That is, it decouples computation

from communication with the potential to bring about unprecedented levels of

scalability and performance. The general structure of a NoC is shown in Figure 3.4,

with 3-by-3 nodes as an example. NoCs come in various forms targeted at addressing

different performance metrics, but in general, they are made up of routers, adapters, and

links that connect all the cores (processing elements or hardware tasks) on a chip. Each

core is interfaced to the network via a network adapter that implements a network

interface on the network side and a core interface at the core side.

Figure 3.4: Architecture of a generic NoC

In terms of network topology, which is the arrangement and connectivity of the

routers, the NoC shown in Figure 3.4 is a typical mesh architecture, which is the most

popular due to its support for easy physical design and scalability, but its performance

degrades with increasing network size, as it takes more hops for packets to reach their

destinations. There are other topologies like Ring, Star, Butterfly Fat-Tree, Polygon,

and Torus. There is no one-size-fits-all topology, and in fact, this is the same for the

other NoC design parameters in general, as they are selected based on compromises

that deliver the targeted network performance, especially for throughput and latency

metrics [174].

Core RouterLink

__ Chapter 3 – Reconfigurable Computing

 73

One important NoC architectural parameter is routing, which determines how

communication packets are routed from source to destination nodes. In a deterministic

routing, packets are always transferred along the same fixed route unlike in adaptive

routing where packets can take alternate routes to the destination depending on the

network load which is dynamically evaluated [175]. An example of a deterministic

algorithm is the XY routing, which moves packets in the horizontal direction first as far

and close as possible to the destination node (to a node that has the same X coordinate

as the destination node), and then goes in the vertical direction until it arrives at its

destination. However, several other routing algorithms have been proposed. A good

review of these algorithms has been presented in [176].

There are several other architectural features of NoCs. However, as the concept of

NoCs is an already comprehensively covered subject, more extensive details on its

basics can be found in [171], [175], and [177]. Nevertheless, it is pertinent to identify

the performance parameters of NoCs, which are bandwidth, throughput, and latency

[175]. Measured in bits per second (bps), the bandwidth of a NoC is the maximum rate

of data transfer and it usually considers the entire packet. Throughput makes allowance

for the fact that a packet usually contains non-message-related header and tail

information. As such, it measures the rate of transfer of the message payload in

messages per second or messages per clock cycle, or normalized to bits per node per

clock cycle. Both bandwidth and throughput scale with the number of channels.

Latency is the time elapsed from the instance a packet departs a source node to the

moment it is completely received at the destination.

3.4.2 Shortcomings of NoCs

As promising as NoCs are, they have their downsides. Though they offer a good

communication solution when compared to dedicated P2P and bus communications,

there is an attendant resource overhead, which can be significant in smaller devices.

That is, NoCs lead to an increase in the footprint of the overall design, and this is due

mainly to the additional resources used for the routers to grant network access to the

tasks. Depending on the size of the network, an overhead of up to 34.8% (3227 slices)

for a 2-by-2 network is not impossible [178]. To reduce an NoC’s area utilization, a bit-

__ Chapter 3 – Reconfigurable Computing

 74

serial network access can be used as proven in [179], where in a comparative analysis

of serial and parallel interconnects, the authors note significant improvements of up to

5.5× and 17× power consumption and area utilization respectively of serial links over

parallel links. Similarly, in [180], the author observe that bit-parallel routers are 8× (for

LUTs) and 23× (for FFs) larger than bit-serial routers. In addition, bit-serial designs are

noted to have route congestion factors of only 1-2% compared to 10-20% for their bit-

parallel counterparts.

Moreover, while compared to shared buses, NoCs lend themselves more readily to

runtime circuit placement because of their support for easy modularity and scalability;

however, the static routes of the network links still constitute a bottleneck to circuit

relocation. In particular, the traditional NoC links pose the challenge of static routes as

these links are constructed from the chip’s general routing resources and are free to

cross RPs in partially reconfigurable system architecture. In a bit-parallel NoC, the

network adapter at each node creates static routes that cross into other nodes. A bit-

serial NoC that uses general interconnects as links would have lesser static routes, but

it would still require online redetermination of route in order to support dynamic

communication.

Meanwhile, it is possible to completely do away with routers and still have

comparable or better network performance as demonstrated in [181], where a routerless

NoC implementation shows a 7.7× reduction in power, a 3.3× reduction in area, a 1.3×

reduction in zero-load packet latency, and a 1.6× increase in throughput when

compared to a router-based NoC.

3.4.3 Bit-Parallel and Bit-Serial NoCs

The interconnections that carry packets from router to router can be made up of several

single wires to form a parallel link that is able to switch a multi-bit data at a time. This

is the typical case with NoCs and such NoCs can be referred to as bit-parallel NoCs.

On the other hand, the link can also be composed of a single wire which is able to

transmit a bit of data at a time, and as such, the resulting NoC can be termed bit-serial.

Although bit-parallel NoCs generally offer higher throughputs, however, it has

been shown that a serial implementation has the potential to reduce the area overhead

__ Chapter 3 – Reconfigurable Computing

 75

and power utilization of NoCs [179] while at the same time improving noise and signal

interference, offering simpler network layout, and enhancing timing verification. It

turns out that because of the efficiency it brings, high-speed serial communication is

the current trend in digital design, e.g., PCI Express. As a result of the serial single-wire

implementation, the usual performance-limiting skew on parallel links is localized to a

single link and as such a much higher frequency is possible with a serial link.

A bit-parallel link can provide a higher throughput than a bit-serial one when

clocked at the same frequency. However, in the long run a bit-serial link can achieve a

higher throughput if it can be clocked at a fast enough rate, at which point a bit-parallel

link fails because of skew. For instance, in [180], the authors demonstrate bit-serial

NoC routers that were 2-3x faster than their equivalent bit-parallel routers even with

some level of pipeline optimization in the parallel implementation.

3.4.4 The Need for Dynamic Communication

One of the key requirements for dynamic task loading and PBR is the provision of

dynamic communication for relocatable circuits. As such, the need for dynamic

communication infrastructures is a salient one. In [148], the approach to dynamic

communication involves the use of LUTs. LUT-based communication interfaces are

attached to the lower right corner of RMs with vertical reconfigurable slots marked

out on the chip. These slots have right-aligned vertical routing channels with LUT-

based communication primitives. This arrangement allows an RM to be dynamically

connected to existing RMs on the slot or other slots via a hard-wired macro that runs

through the bottom of all the slots. This macro also makes connection to the static

region.

A different approach to dynamic communication is taken in DyNoC, a dynamic

network-on-chip architecture [182]. While several research works have been carried

out on dynamic or reconfigurable NoCs, most do not actually consider the placement

of a new task. Rather, they are mostly concerned with the runtime restructuring of the

network topology or packet routing to meet changing communication needs as seen in

ReNoC [183] and Hoplite [184] respectively. On the other hand, DyNoC’s approach to

dynamic communication involves placing a new circuit over existing deactivated

__ Chapter 3 – Reconfigurable Computing

 76

network routers while leaving surrounding routers free for communication. With this

arrangement, a new circuit can be placed anywhere on the mesh network with continued

access to the network. However, we deem this approach to still have the challenges of

static routes as the authors do not seem to have provided details on how these are

managed and their implementation diagram [182] shows routings crisscrossing the

entire floorplan. Indeed, it is unlikely that the authors intend DyNoC to be a

communication network for relocatable circuits, as this is not a claim in the work.

An ideal situation for dynamic communication is to have no static interconnects to

deal with nor have the need to create routes on the fly. A step in that direction is taken

in [90], where the authors present a communication mechanism that involves using the

ICAP to transfer data between arbitrarily-placed hardware tasks, in the context of

achieving the relocatability of tasks. This is done by connecting memory elements

(distributed RAMs or BRAMs) to the inputs and outputs of circuits to serve as data

memories and using the ICAP as a side channel to copy data from output memories to

input memories thereby avoiding static interconnects. The data contents of a memory

element can be accessed online from the CMEM (configuration layer). As such, reading

back the correct portion of the CMEM in runtime would give access to the data written

by a task into an output memory in the functional layer. The readback data can then be

written to the input memory of another task via the configuration layer. Figure 3.5

shows how a task would be interfaced with input and output data memories.

Indeed, the idea of transporting data using the configuration layer of an FPGA dates

back to 1998 when Brebner et al. in [185] proposed a virtual communication channel

that involves reading from and writing to registers within source and destination virtual

tasks defined as swappable logic units. In addition, the work in [160] demonstrates the

use of the ICAP for moving data between circuits, but this is not used as a means of

providing dynamic communication support with respect to relocation.

This idea of moving data from one task to another without using physical wires can

be seen as a form of relocation and it has limitations and consequences as highlighted

in [186]. There is no way to know when a task has finished computation apart from

polling the task. With multiple tasks possibly simultaneously active, this is even more

demanding. There are three operations needed to be performed for each data relocation

__ Chapter 3 – Reconfigurable Computing

 77

– polling, readback, and writing. All these operations have to be serialized since the

ICAP is a single resource. That is, ICAP-based data relocation does not support

concurrent communication and this is the main bottleneck of transporting data in the

configuration layer.

Figure 3.5: Task interfacing for transferring data using the configuration layer

Furthermore, the single nature of the ICAP has an implication on reliability. The

ICAP has a maximum theoretical bandwidth of 400 MB/s [37] and Xilinx recommends

that more than 99% of this bandwidth should be dedicated to SEM [187] for the entire

device. SEM is indispensable for reliable RC. Using at least 99% for SEM means that

only a meagre 4 MB/s of the ICAP’s bandwidth is available for other functions. With

communication drawn in, there are two system functions competing for the remaining

4 MB/s. In other words, time spent on communication is time not available for SEM

and configuration.

Native Task

Memory Interface

Logic (MIL)

O
u

tp
u

t
D

at
a

M
em

o
ry

(O
D

M
)

In
p

u
t

D
at

a
M

em
o

ry

(I
D

M
)

task

data_in

task

data_outc
o

n
tr

o
l

Configuration

Layer

Functional Layer

clock

__ Chapter 3 – Reconfigurable Computing

 78

3.5 Real-Time Systems and Requirements

The concept of real-time computing is often confused as to mean executing tasks

instantly. The main objective, on the hand, is to execute tasks before specified

deadlines. It is not a matter of how soon or fast, but of when. Even if it takes a hundred

years, so far it is completed before its deadline, an execution can be considered real-

time. Therefore, in general, “real-time systems are those in which the correctness of the

system depends not only on the logical results of computations, but also on the time at

which the results are produced” [38].

Despite the fact that the emphasis is on meeting deadlines, there are real-time

systems in which missed deadlines do not lead to catastrophic system failures. Such

systems are referred to either as firm real-time or soft real-time systems; firm when the

delayed results are useless, and soft when the results can still be used. For example,

dropping one or two frames in a video processing system due to missed timing would

only affect the quality of the video stream, causing some performance degradation and

placing this in the firm category. The same cannot be said of the flight control system

of an aircraft or an anti-missile system where a missed deadline can have a fatal

implication. Systems with such a stringent timing requirement are categorized as hard

real-time. The categorization of real-time systems into hard, firm, and soft also translate

directly into deadline ranges. While hard real-time systems can have time bounds in the

order of several microseconds to a few milliseconds, firm real-time systems typically

have time bounds in the range of a few milliseconds to several hundreds of

milliseconds, and soft real-time systems can cope with time bounds in the range of a

fraction of a second to a few seconds [127].

In terms of expected basic requirements, real-time systems are expected to be

timely – producing correct results both in terms of value and timing; predictable,

guaranteeing all timing requirements; efficient; robust – able to retain anticipated

functionality even in overload scenarios; fault-tolerant; and modular – allowing easy

modification of system features and functionalities [188].

To account for the mixed-criticality of tasks in a real-time system, where tasks have

varying levels of criticality and as such, different strictness of timing requirements, with

__ Chapter 3 – Reconfigurable Computing

 79

some even completely non-critical, priorities can be assigned to these tasks. While

missed deadlines in safety-critical real-time task execution can have catastrophic

effects; in a bid to keep to deadlines, it is imperative to ensure that other less critical

lower-priority tasks in the system are not starved of resources. At the same time,

priority inversion, a situation where a low-priority task blocks a high-priority task for

an unbounded period of time [189], must be avoided.

It would be beneficial to highlight the importance of the awareness of real-time

constraints in the key services of reconfigurable computing. This will highlight the

factors that have to be considered in the design and implementation of these services,

3.5.1 Real-Time Concerns in Configuration Memory Access

The main real-time concern with CMEM access is with the ICAP and this stems from

the fact that the ICAP is a single resource and multiple system functions in a ROS

compete for its use. Two key functions that require the ICAP’s bandwidth for CMEM’s

access are task configuration and error mitigation. There might even be multiple task

configuration requests simultaneous or in close time proximity requiring access to the

ICAP.

The theoretical maximum bandwidth of the ICAP is 3.2 Gb/s at 100 MHz [37] and

out of this, at least 99% is recommended to be put towards SEM [187] for effective

device-wide coverage. This will affect the responsiveness of the ICAP to

reconfiguration requests as much more time is spent on SEM, though scanning the

entire device for errors all the time is questionable in the first place and this is the subject

of this thesis in Section 4.3.2. Nevertheless, it is evident that there is a need to properly

arbitrate the CMEM access in a reconfigurable computing system to ensure that real-

time constraints are respected.

From the point of view of command and frame data loading, a task configuration

operation through the ICAP is deterministic, especially since there are no external

dependencies that might introduce unbounded timing. However, the possibility of

configuration errors should be considered as they could necessitate an increase in the

overall configuration time due to error diagnosis and bitstream reloading.

__ Chapter 3 – Reconfigurable Computing

 80

In reality, the management of the ICAP as a single shared resource is a real-time

scheduling problem and it has to be treated as such. This has been the subject in several

research works like [190], where the problems of priority inversion high-priority

reconfiguration requests, and that of starvation of low-priority requests are addressed

by introducing reconfiguration pre-emption, in which a reconfiguration process can be

interrupted and completed at a later time without restarting the data loading from

scratch. In another research [191], a reconfiguration controller with a command-based

reconfiguration queue (CoRQ) was implemented to provide guaranteed reconfiguration

latencies and support for the timing analysis of Worst-Case Execution Time (WCET)

guarantees in the system. WCET is the upper bound execution time of a task and is used

for validating real-time systems [192]..

Another factor to consider, which relates to CMEM access is that partial

reconfiguration can have an unpredicted impact on resource sharing. For instance, if a

block of memory included inside an RM is shared by multiple tasks, the memory will

not be available during the reconfiguration operation. It is also possible for the memory

to be completely unavailable after reconfiguration if the RM has been inadvertently

replaced with one that does not include the shared memory. These are possibilities that

are worth considering for real-time PR.

From the viewpoint of secure task (re)configuration using encrypted bitstreams,

the restrictions in the port width (only the x8 port is allowed) of the SelectMAP and by

extension, the ICAP interface (see Section 2.3.1), means that the configuration time is

at least be quadrupled. This increase in configuration latency has to be considered when

determining the WCET for a reconfigurable computing system that uses encryption.

3.5.2 Real-Time Concerns in On-Chip Communication

From real-time standpoint, the most important communication metric is predictable and

guaranteed bandwidth and data transfer latency [193]. As communication traffic flows

in the network from one node to another, there must be a guarantee on the maximum

time it would take a packet to reach its destination.

The risk of unbounded latencies is particularly exacerbated in a NoC, where

routing algorithms can allow a packet to circulate in the network indefinitely in a bit to

__ Chapter 3 – Reconfigurable Computing

 81

find a non-congested path to the destination, a condition known as Livelock. In terms

of a packet never reaching its destination, this is similar to Deadlock, in which two or

more packets block one another indefinitely because needed network resources (e.g.,

buffers and channels) are fully occupied by other packets. Deadlock is as well

detrimental to real-time processing since it is unbounded. Deadlock can be prevented

by a careful routing algorithm implementation [170]. The XY routing never experiences

either deadlock or livelock because it deterministically routes packets [176]. As such,

it ensures predictable latency and is suited to real-time networking. An extensive survey

of real-time NoCs can be found in [194].

A challenge with real-time on-chip communication, which arises from DPR, is that

there is no way to predict the behaviour of an RM that is undergoing reconfiguration

[37]. As a result, if the interfaces between RMs and the static region are not properly

decoupled, there could be inter-task communication deadlocks where a task waits for a

long time expecting data packets to arrive from another task which has been removed

from the hardware fabric. This could lead to unpredictable and unbounded

communication latencies. Proper handshaking techniques to release RMs safely for

reconfiguration would help resolve this potential bottleneck.

3.6 Towards Secure and Dynamic Reconfiguration in RC

Indeed, a lot of research effort has been expended on the development of ICAP

controllers as the survey in [195] and [196] show. However, there are important features

that have not been given adequate attention in the existing configuration controllers.

Since one of the aims of this thesis is to provide configuration infrastructure for reliable

RC, ICAP controller features that will support key reliability-enabling functionalities

must be implemented. These features include internal register read and write for device

diagnosis; CMEM access abort mechanism, and SEM functionalities. These features

and more are the subject of the methodologies in Chapter 4.

Moreover, there is a key limitation with PBR with respect to a secure bitstream

format. PBR requires the runtime manipulation of the bitstream’s frame addresses

before it is delivered to the configuration interface. As such, access to the readable

__ Chapter 3 – Reconfigurable Computing

 82

plaintext decrypted bitstream is needed. However, the frame addresses are specified in

the encrypted portion of the secure bitstream and are as such, in cyphertext format.

Meanwhile, to prevent a breach of security during reconfiguration, the on-chip

decryptor in the FPGA feeds the plain decrypted data directly to the configuration

interface; and as such, access to the decrypted data is denied. Therefore, there is a

motivation to develop a secure bitstream format that is amenable to relocation. This, as

well as supporting configuration controller and software for parsing vendor bitstreams

are proposed in Chapter 5.

In addition, it is evident that dynamic communication is important for reliability in

RC systems and that the static nature of the interconnect wires employed in state-of-

the-art inter-task solutions is a big bottleneck, creating relocation-hampering rigidity in

the hardware fabric. A motivation, therefore, exists to search for alternate

communication solutions that would be amenable to circuit relocation. Chapter 6

presents our approach to dynamic communication, which involves adapting the on-chip

clocking resources for inter-communication among relocatable circuits. Since the clock

resources use interconnect wires that are independent of the general logic interconnect

wires, they do not constitute static routes. In other words, since the clocking resources

are in a separate layer (refer to clock layer in Section 2.1.1), communication signals can

be safely routed through them, freeing up the circuits to move freely in the functional

layer.

3.7 Chapter Summary

This chapter has presented an overview of reconfigurable operating system with

particular attention drawn to the various approaches to chip partitioning,

reconfiguration style, reconfigurable area style, and inter-task communication. A

conclusion that can be drawn is that there is a good body of existing work. Yet, there is

a limited reliability or a complete lack of it and this can be attributed to the nature of

the inter-circuit communication frameworks used. Even when a whole new approach is

taken (e.g., configuration-layer-based data transfer), this falls short in other reliability

scenarios. The general reliability concerns in RC were then discussed and it stood out

__ Chapter 3 – Reconfigurable Computing

 83

that partial bitstream relocation is a key technique for enabling reliability, most

especially for permanent chip damage mitigation and circumvention.

Furthermore, task configuration and inter-communication methods have been

reviewed. Existing configuration controllers were deemed to already be concerned with

high configuration throughput and reliability. However, there is still room for

improvement, especially regarding reliability-enabling configuration functionalities for

COTS reconfigurable devices. Moreover, some implementations went as far as

overclocking the configuration interface in a bid to achieve higher performance.

However, this approach is counter-reliable as the devices have not been characterized

for speeds higher than those reported in the documentation and as such, such solutions

cannot be relied upon.

In addition, with real-time processing a consideration in this work, the real-time

concerns in configuration memory access and on-chip communication were x-rayed.

Predictability, timeliness, efficiency, robustness, and fault tolerance are some of the

requirements that have to be met in real-time systems and attention is paid to these in

the next chapters where the main contributions of this are presented, especially with the

bid to enable high performance, efficiency, and reliability in COTS reconfigurable

devices.

84

Chapter 4

Configuration Memory Access

Framework for Reliable

Reconfigurable Computing

As noted in Section 3.3, a lot of research effort has been expended on the development

of ICAP controllers. However, there are important features that have not been given

adequate attention in the existing controllers. For instance, if the system controller in a

ROS issues a task configuration command and before the bitstream has been fully

loaded, the controller deems it fit that the configuration is no longer needed, it should

be possible to stop the operation and reset the ICAP without causing any lockups.

Indeed, the ICAP has an abort feature that can be used to implement such a

functionality. Moreover, as task configuration and SEM both require the ICAP’s

limited bandwidth for their operations, it is important to ensure that an optimal

operation strategy is used to ensure a fair sharing of the ICAP between these two critical

system functions without starving any of them. Furthermore, access to device registers

for device-level information and control would be handy, especially for system

diagnosis and SEFI mitigation. As such, this thesis proposes an ICAP controller with

these functionalities. To manage the various low-level operations of this controller is

abstracted by a CMEM Access Manager (CAM) that incorporates Direct Memory

Access (DMA) access, operation parameter setting, and operation control.

The techniques and implementations reported in this chapter are covered in the

author’s publication in [197]:

 A. Adetomi, G. Enemali, and T. Arslan, ‘A Fault-Tolerant ICAP Controller

with a Selective-Area Soft Error Mitigation Engine’, in 2017 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2017, pp. 192–199.

4

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 85

4.1 Configuration Memory Interfacing

Figure 4.1 is a diagrammatic representation of the proposed CAM. The core of the

manager is a Finite State Machine (FSM) that interfaces to the ICAP. The ICAP FSM

(IFSM) controls the loading of bitstream command packets to the ICAP. A BRAM-

based buffer is used to temporarily store the bitstream inside the chip before it is sent

to the ICAP. There are also functional blocks for configuration monitoring, FAR

command packet detection and frame address modification for PBR.

Figure 4.1: Top-level view of the configuration memory access controller

To control all these functions, a controller or processor external to the IFSM is

required. In this prototype, the processor used is the ARM Cortex-A9 for the Zynq

FPGA and MicroBlaze processor for the 7 series FPGA. The processor is not part of

the configuration controller; it is a user-level component. On receiving a DMA transfer

request (through an interrupt pulse generated by the IFSM) the processor initiates the

Configuration

Memory

Ext

Mem

FAR

Modification

Circuit

Configuration

Monitoring Circuit

en
a
b

leerror

enable

Data

Mover

Operation

Controller

ICAP

Interface

FAR Detection

Circuit

ICAP FSM
ICAP

Controller

Parameter

Setter

Processor

ICAP

Buffer

Buffer

Arbiter

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 86

transfer by writing to the control registers of the Data Mover. The following subsections

throw more light on the implementation details of the controller’s components.

4.1.1 ICAP Controller

The ICAP controller encompasses an FSM which directly interfaces to the ICAP and

performs low-level read and access operations. Configuration error monitoring is

provided by a dedicated Configuration Monitoring Circuit (CMC) while the incoming

bitstream is monitored to detect and modify FAR values for PBR operations.

The ICAP Finite State Machine (IFSM) is the core of the ICAP controller and it

exposes a number of interface ports to the user or a host processor for controlling the

FSM. There are other ports that connect to the ICAP primitive and the ICAP Buffer.

The IFSM is based on a one-hot FSM encoding, which is better at error detection than

binary encoding [198]. Standard FSM coding techniques are followed in the

implementation of the IFSM. For instance, an enumerated type containing all possible

state values is used to declare the state register. Since an SEU in a flip-flop can throw

an FSM into a non-existent deadlock state [102], the IFSM includes a default state that

catches all invalid state transitions and passes control to an ERROR_PERSIST state,

which asserts the icntrlr_err signal. In addition, the Vivado safe_implementation and

safe_recovery_state attributes are used to implement an FSM that is as reliable as

possible.

For state control, state and state_after internal signals are used to simplify the

control of an otherwise complex but efficient state machine. To prevent code bloat and

unnecessary hardware resource usage as multiple FSM states send commands and data

to the ICAP at different points, every write to the ICAP is handled in a

WRITE_TO_ICAP state. A correct return of control to the proper state is then achieved

by setting next_state to the content of the state_after register, which is always set

before control is passed to the WRITE_TO_ICAP state. This coding style is justified

by the fact that the eventual resource utilization is much lower than state-of-the-art

considering a similar feature set or even more (see Section 4.5.1).

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 87

Figure 4.2 shows the key interfaces and ports of the IFSM. Note that internal inter-

connection ports like the ones controlling the CMC are not shown. Brief descriptions

of the control interface ports are given in Table 4.1.

Figure 4.2: Key interfaces and ports of the ICAP finite state machine

In terms of control flow (see Figure 4.3), the IFSM remains in the RESET state

waiting for the opcode to change, at which point it deasserts the icntrlr_rdy signal and

move on to the CHOOSE_OP state. For most of the operations, command sequences

and templates are kept in the IBUF and used as the basis for the operations (see Section

4.1.3). Thus, the first step in performing an operation is to point the IBUF address

pointer to the appropriate address in the memory. In the CHOOSE_OP state, the FSM

first synchronizes the ICAP by writing the operation starting command sequence (see

Appendix A.1) and then proceeds to perform the operation chosen by the user. It should

be noted that in the implementation, there are multiple distinct states used to perform

each operation. For instance, to perform a relocation, the target location address has to

be first retrieved from the ICAP Buffer in a different state prior to writing the frame

data.

After the operation has been performed, the END_OP state is used to send

desynchronization commands to the ICAP while a subsequent COMPLETE_OP state

asserts the icntrlr_rdy signal and waits for the user’s acknowledgement (setting opcode

ICAP FSM

cfg_count

icap_output icap_en

icap_rw_en

icap_input

ICAP

Interface

icntrlr_en

clk

opcode

icntrlr_rdy

ibuf_en

ibuf_rw_en

ibuf_addr

ibuf_data_in

ibuf_data_out
Buffer

Interface

icntrlr_err

dma_irq

ibuf_space_pntr

rgr_addr

wait_for_ibuf

Control

Interface

ecc_error_far

ecc_mbu_error

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 88

to NOP) before returning control to the CHOOSE_OP state. Every operation is ended

with a DESYNC command to ensure that each operation starts from a known state.

The IFSM’s interface to the ICAP is presented in Figure 4.4. Every data word

presented to the ICAP’s input and read from its output is bitswapped at the byte level.

That is, every byte is swapped such that the MSB becomes the LSB. Reading the ICAP

requires deasserting CSI_B (= ‘1’) first, and then setting RDWR_B to ‘1’. Asserting

CSI_B (= ‘0’’) after this makes readback data available three clock cycles later. Writing

the ICAP is similar except that RDWR_B is set to ‘0’ and the data written one word per

clock cycle after asserting CSI_B.

Table 4.1: Description of the IFSM’s control interface ports

Port Description

clk Clock input to the IFSM. The maximum allowed frequency is 100 MHz

icntrlr_en
1-bit active LOW enable for the ICAP controller. The opcode port

should be set prior to asserting this.

opcode
4-bit operation selection port. This should be set before asserting

icntrlr_en

wait_for_ibuf
1-bit signal instructing the IFSM to stall because there is no new data to

load from the IBUF

cfg_count
2-bit configuration count port, used to specify how many frame locations

should be written for MFW

rgr_addr
5-bit register address port. This address can be for any of the device

configuration registers in Table 2.3

icntrlr_rdy
1-bit output port that indicates the completion of an operation and the

readiness to start a new one

dma_irq
1-bit DMA interrupt signal to the user for requesting frame data transfer

from the external memory into the IBUF

icntrlr_err
1-bit output port to indicate internal FSM error. This is asserted in the

ERROR_PERSIST state

ecc_mbu_error
1-bit output indicating that a multi-bit ECC error has been detected in

the frame pointed to by the ecc_error_far port

ecc_erorr_far
26-bit output indicating the frame address where an ECC error has been

detected

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 89

Figure 4.3: State diagram of the IFSM

RESET

WRITE TO

ICAP

CHOOSE_OP

END_OP

COMPLETE

OP

READ

FROM

ICAP

Opcode = BLK

POINT TO

READ

TEMPLATE

POINT TO

CFG/RPL

TEMPLATE

POINT TO

BLK

TEMPLATE

PERFORM

ABORT

POINT TO

CUSTOM

WRITE

ADDR

Opcode = NOP

icntrlr_rdy = ‘1’

Read completed

Opcode != NOP

Opcode =

RBK|RGR
Opcode =

CFG|RPL

icntrlr_en = ‘YES’

Opcode =

CWR

Opcode =

ABT

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 90

Figure 4.4: IFSM’s interface to the ICAP

For PBR operations, the FAR Detection Circuit (FDC) and FAR Modification

Circuit (FMC) work together to detect and modify frame FAR addresses on their way

to the FPGA’s CMEM. Once a FAR command packet header (0x30002001) is detected

by the FDC, the FMC is activated to compute a new FAR value based on user

specification. The user is able to control the generation of new FAR values by writing

parameters into appropriate IBUF locations (see Section 4.2). Up to three new frame

addresses can be modified, and this for TMR implementation purpose. The frame

address modification involves changing column, row, and top_bottom values when

necessary.

4.1.2 Bitstream Buffering

The partial bitstreams of hardware tasks are stored in an external DDR memory and

transferred to an on-chip BRAM-based ICAP Buffer (IBUF) by a Data Mover. All these

components in addition to the multiplexer at the input of the IBUF are grouped as the

Buffer Arbiter (see Figure 4.1). In addition to the task bitstreams coming from the

external DDR into it, the IBUF is also used to store configuration command templates

and sequences, which are merged with configuration data prior to being written to the

FPGA’s CMEM. The templates require a user to specify certain parameters needed for

some operations and sequence are often used commands kept inside the IBUF (e.g., the

commands for synchronizing and desynchronizing the ICAP).

ICAP FSM

icap_output

icap_en

icap_rw_en
ICAP

Interface

ICAP

I[31:0]

RDWR_B

CSI_B

Bit

Swapper

100-MHz clock

O[31:0]

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 91

The 7 series FPGA’s BRAM is dual-ported, with two possible RAM modes [199].

When configured in the true dual-port mode, it provides two independent read/write

ports to the user. That is, both ports can access any memory location at any time. On

the contrary, in the simple dual-port RAM mode, one port is dedicated to writing and

the other to reading. For access conflict avoidance, certain restrictions are

recommended, depending on whether the dual-port access is synchronous or

asynchronous. This mostly involves using the READ_FIRST, WRITE_FIRST, and

NO_CHANGE modes to control which operation (read or write) has priority for each

of the ports. This work uses the WRITE_FIRST mode with a true dual-port RAM

selection.

As conflicting simultaneous access to the BRAM can cause data uncertainty, the

IFSM never accesses the IBUF unless an operation is going on and the user processor

should also not set parameters while the IFSM is active. The expected order of

controlling of operation is to set parameters in the IBUF first, then start an operation. It

is however, necessary to access the IBUF during an active frame data loading, for

transferring bitstream data from the external memory but care is taken to avoid access

collision by monitoring the ibuf_addr_pntr. A dma_irq interrupt signal is routed out to

the configuration controller’s interface for this. The IFSM tracks the location of the

ibuf_addr_pntr at a frame (404 bytes) granularity level. Once at least a frame space is

available, the dma_irq is pulsed for one clock cycle. The user can monitor an

ibuf_space_pntr port for an indication of the position of the ibuf_addr_pntr. The frame

data buffer space can accommodate 9 frames. Therefore, ibuf_space_pntr is a 4-bit

signal. The DMA interrupt is fired each time ibuf_space_pntr.

The combination of an interrupt request with coarse frame-level information about

the space available in the IBUF allows flexibility in data transfer and ensures that the

minimum possible delays are incurred, if any. It should be noted that the ICAP clocking

is done at the recommended 100-MHz speed. This leaves room for clocking the Buffer

Arbiter at a higher rate. If for any reason, frame data is not loaded as at when signaled

by the dma_irq, the user can assert a wait_for_ibuf signal to instruct the IFSM to stall

while new frame data is being loaded.

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 92

There are three components of the configuration controller that require access to

the IBUF, namely, the IFSM, the Processor (to set operation parameters in the IBUF),

and the Data Mover. The IFSM is given a dedicated port on the IBUF while the

Processor and the Data Mover both have a multiplexed access to the other port.

While the BRAM can practically be of any size depending on how much buffering

is desired, a single BRAM36k is used in the demonstration. This provides a total of

1024 32-bit memory locations. An address map of the composition of the IBUF is

shown in Figure 4.5. The frame data buffer space is the section used for bitstream

buffering and it is initialized to all zeroes. It can buffer up to 9 frames. The following

subsections provide details on the contents of the sequences and templates kept in the

IBUF.

4.1.3 ICAP Access Command Templates

For the various operations of the ICAP controller, configuration command packets are

kept inside the IBUF as templates and are written to the ICAP along with the

configuration frame data. The commands are based on the registers in Table 2.3. Details

on how to compose read and write commands packets have been presented in Section

2.1.2 and be further explored in [47]. The benefit of using templates is that the

commands are generic and thus reusable, minimizing external storage requirement as

incoming bitstreams do not have to include the commands already in these templates.

The details of the composition of these templates can be found in Appendix A.

4.1.4 Execution and User Interface Flows

The execution and user interface flows of the ICAP controller are shown in Figure 4.6

and Figure 4.7 respectively. At the completion of an operation, which is signalled by

the assertion of the icntrlr_rdy signal, the Processor or a user-determined driver must

change the opcode to NOP in order to revert to the RESET state for a new operation (if

any) to start. The RESET state resets the internal registers and it is important for this

state to be used intermediate of operations. For instance the icntrlr_rdy signal has to be

de-asserted in readiness for synchronizing a new operation.

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 93

Note that an exception to the user interface flow is the abort operation which can

be specified at any time during an active operation. A special circuit in the same process

as the IFSM is used to continuously check if the opcode becomes ABT at any point

during an active operation.

Figure 4.5: ICAP Buffer’s memory address space allocation

77

69

68

28

Configuration Frame Blanking

Template (CFBT)

Multiple Frame Write

Template (MFWT)

.

.

.

.

.

.

115

Frame Data Buffer Space

[9 frames]

CWR’s Frequent Command

Memory Space

90

1023

114

Operation Ending

Sequence (OES)

Blanking Word89

79

88

Custom Write (CWR) Parameter78

.

.

.

.

.

.

.

.

.

Configuration Frame Write

Template (CFWT)

17

7

6

0

Configuration Frame Readback

Template (CFRT)

Operation Starting

Sequence (OSS)

ibuf_addr_pntr

.

.

.

.

.

.

27

18

.

.

.

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 94

Figure 4.6: ICAP Controller’s execution flow

Reset

Internal

Signals

Power-On

No

Is

Opcode

NOP?

Set ICAP FSM

State to RESET

Is

Opcode

NOP?

Deassert

READY

Assert

READY

Perform

Operation

No

Yes

No

Yes

ICAP

Controller

Enabled?

Yes

Is

Operation

Finished?

Yes

No

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 95

Figure 4.7: ICAP Controller’s user interface flow

4.2 Configuration Memory Access Operations

There are eight operations in all. These operations are described in the subsections that

follow. A unique operation code (opcode) is assigned to each operation as shown in

Table 4.2. This allows a user to specify the operation to the IFSM by writing a 4-bit

Controller

Ready?

Start

Reset

Operation

Selection

Yes

Enable IACP

Controller

Set Opcode

Value

Stop

No

Set

Parameters

and Data

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 96

code to the opcode port of the ICAP controller. The three most basic templates are the

CFRT, CFWT, and MFWT templates and these are used in various forms by the

operations. These templates give primitive access to reading and writing the CMEM.

In addition, Appendix B contains relevant waveforms for the different operations.

These waveforms were captured during real tests of the operations.

Table 4.2: ICAP Controller’s operations and opcodes

Operation Abbreviation Opcode Templates

No Operation NOP 0x0 None

Readback RBK 0x1 CFRT

Configuration CFG 0x2 CFWT, MFWT

Read Modify Write RMW 0x3 CFRT, CFWT

Blanking BLK 0x4 CFBT, MFWT

Register Read RGR 0x5 None

Custom Write CWR 0x6 None

Abort ABT 0x7 None

Soft Error Mitigation SEM 0x8 CFRT, MFWT

4.2.1 No Operation (NOP) – Opcode 0

This is the idle or default state of the ICAP Controller. In this state, no operation is

carried out. The implementation of the controller is such that every operation must

begin and end with the NOP as shown in Figure 4.6. This ensures that every operation

starts from a known state by triggering a reset of the internal signals.

4.2.2 Readback (RBK) Operation – Opcode 1

This operation is used to read back configuration data from the CMEM. CMEM

readback is an important functionality used for SEM, especially readback scrubbing

(see Section 3.2.2). Each RBK operation retrieves a frame of pad data (zeroes) before

the actual configuration frame data, incurring an overhead of 101 clock cycles. At the

recommended ICAP clock frequency (fICAP_MAX) of 100 MHz [49], this is 1.01 µs for

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 97

each readback. This overhead is unavoidable but can be amortized over many

contiguous frames if many frames are read in a single operation. The most important

function of readback is to read the CMEM content for soft error check. The RBK

operation requires the user to set the FAR address for readback and the number of words

to read, pad frame inclusive (see Table 4.3).

Table 4.3: RBK operation parameters

Operation Parameters IBUF Address Comments

RBK
RBK_FAR 14 (0x00E) The number of words

excludes the pad frame NUM_OF_WORDS 16 (0x010)

The RBK operation uses the OSS sequence, followed by the CFRT template, and

concluded with the OES sequence. Before the OES is loaded, the ICAP is switched to

the read mode and readback data is available deterministically three clock cycles after

asserting icap_en. The read-back data is stored in the IBUF from address 0x073. Since

the frame data buffer space is only 9 frames, it means only 9 frames can be read in a

single operation. The pad frame is discarded and never stored in the IBUF. It is certainly

possible to read more than 9 frames in a single operation if the IBUF is implemented to

use more BRAMs. The read-back data can, as well, be transferred from the IBUF to an

external memory (if necessary) to free up the IBUF.

4.2.3 Configuration (CFG) Operation – Opcode 2

The CFG operation is for loading tasks’ bitstreams to the CMEM. This operation

intrinsically makes provision for circuit relocation; that is, every configuration request

is treated as a relocation request. There are two modes for the CFG operation – Basic

CFG and MFW-based CFG. The Basic CFG uses the sequence and template

combination of [OSS + CFWT + Uploaded Data (multiple frames) + OES] while the

MFW-based CFG uses the combination of [OSS + CFWT + Uploaded Data (single

frame) + MFWT + OES].

Up to three target frame addresses (see Table 4.4) can be supplied when using the

MFW-based CFG for configuration, in which case the configuration data has to be

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 98

loaded frame-by-frame. Because it uses the CFWT, the Basic CFG incurs a pad frame

(see Appendix A.3). This is not the case for MFW-based CFG and as such, it is more

suitable for TMR and proves to be more efficient for small-sized tasks. The TMR

configuration of a task can be more efficient when the MFW-based CFG is used, in

which case the task can be duplicated or triplicated in a single configuration operation.

Otherwise, the Basic CFG mode is used to configure the same task in multiple CFG

operations.

Table 4.4: CFG operation parameters

Operation Parameters IBUF Address Comments

CFG

DEVICE_IDCODE 25 (0x019) If MFW-based TMR is not

needed, the number of

FARs (indicated on the

cfg_count port) can be

ignored

CONFIG_FAR_1 29 (0x01D)

CONFIG_FAR_2 54 (0x036)

CONFIG_FAR_3 68 (0x044)

If there is no intention to use the MFW feature, only the CONFIG_FAR_1 address

has to be supplied and cfg_count should be disregarded. This is because, the IFSM

automatically detects the number of frames to write as the bitstream is being uploaded

to the ICAP and automatically determines whether to use the Basic CFG or MFW-

based CFG. When the number of words is more than a single frame (101 words), then

it knows the MFW cannot be used and it ignores CONFIG_FAR_2, CONFIG_FAR_3,

and the value on the cfg_count port.

The CONFIG_FAR addresses in Table 4.4 are actually offset addresses. For

configuration or relocation to work successfully, the task is expected to be initially

floor-planned during the design phase, at the top-leftmost corner of the bottom half of

the FPGA (see Figure 4.8). Column and row offsets from this location are then stated

in their respective fields in the CONFIG_FAR addresses. In Figure 4.8, N is chosen as

-1 so that the first row has Y=0.

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 99

Figure 4.8: FPGA row and column addressing for task locations

4.2.4 Read Modify Write (RMW) Operation – Opcode 3

The RMW operation combines the RBK and CFG operations for a highly-abstracted

readback and configuration in a single operation. This is a useful feature for task and

data relocation. For instance, a method of PBR is to read back an already configured

task and configure it somewhere else on the chip in runtime as demonstrated in [147]

and [148]. Once a task is relocated (by any means), it might be necessary to save the

context of the task and restore it by copying changeable user memory data in FFs, LUT-

RAMs, SRLs, and BRAMs from the original location to the new location. To ensure

that relocated task contexts are not lost, the circuit in the original location should not be

blanked until the data has been relocated as well. The RMW operation uses the template

combination of [OSS + CFRT + Optional Save_Data Bit Toggling + MFWT + OES].

As such, source and destination frame addresses are set in the respective templates.

A special step is taken when a BRAM content frame is being RMWed; there are

save_data bits in the frame and these have to be toggled to enable the BRAM contents

corresponding to that frame to be updated. There is a save_data bit is at bit position 17

of the 5th word in every successive 10 words in every BRAM frame. When the frame

is read back, the bits show up as OFF (‘1’). The IFSM turns them ON (‘0’) while writing

the frame read-back frame data to the target frame address. This is done without stalling

the ICAP.

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 100

4.2.5 Blanking (BLK) Operation – Opcode 4

The BLK operation is useful for removing an already configured circuit. A circuit can

be removed to reduce power consumption if it is no longer needed. To blank a circuit

region, a normal black box bitstream generated by Vivado can be used, but for each

circuit configured on the FPGA, a blanking bitstream like this would have to be kept in

memory, thereby increasing the size requirement of the external memory. On the other

hand, the BLK operation simply requires the starting frame address and the number of

frames to blank.

Since a blanking bitstream is composed basically of zeros, an iterative writing

procedure is used by the ICAP FSM. Once the user specifies the START_FAR value

and the NUM_OF_FRAMES at the addresses indicated in Table 4.5, the IFSM

automatically generates the other FAR values. In addition, the BLK circuit utilizes the

MFW feature to reduce configuration time. Basically, we write multiple addresses with

a single frame of zeros, thereby saving a huge time. In order to reduce logic resources

used, the BLK uses the CFG operation’s circuit for the MFW part. That is, the BLK

operation shares IFSM states with the CFG operation. A BLK operation uses the

sequence and template combination of [OSS + CFBT + 101 Blank Words + MFWT +

OES].

Table 4.5: BLK operation parameters

Operation Parameters IBUF Address Comments

BLK

DEVICE_IDCODE 70 (0x046)

The number of frames

includes the starting frame
START_FAR 74 (0x04A)

NUM_OF_FRAMES 77 (0x04D)

4.2.6 Register Read (RGR) Operation – Opcode 5

The RGR operation provides an easy access to the FPGA’s internal registers. It uses

the sequence and command combination of [OSS + RGR command + Readback Event

+ OES]. A user can set the 5-bit address (see Table 2.3) of the register to read on the

rgr_addr input port of the CFG Controller and set the Opcode to 4. The ICAP FSM

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 101

reads the register and returns the value to the IBUF_DATA_ADDR address. The RGR

capability can be utilized to diagnose the FPGA in runtime. For instance, if a

configuration error occurs, the STAT register can be queried to know the source of

error. For writing a register, the CWR operation can be used.

4.2.7 Custom Write (CWR) Operation – Opcode 6

The CWR operation allows the user to write runtime-generated data into the

configuration memory. Since the CFG operation works with the configuration data

stored in an external memory and moved into the IBUF, it does not directly support

writing data generated at runtime. The CWR is the solution to this. Data buffered on

the IBUF from address 0x05A (see Table 4.6) can be written to the configuration

memory. The number of words for the CWR is set on IBUF address 0x04E.

Table 4.6: CWR operation parameters

Operation Parameters IBUF Address Comments

CWR
NUM_OF_WORDS 78 (0x04E) Allows the loading of

dynamically-generated data CONFIG_DATA 90 (0x05A)

The CWR operation can be used for device diagnosis by allowing the user to load

dynamic data and indeed, this can be more efficient than loading data from an external

memory, especially for small chunks of command packets. From address 0x05A, 25

memory locations are reserved for the user to keep frequently-used command words

(see Figure 4.5). The memory locations are just before the IBUF_DATA_ADDR

(0x073) and are never overwritten by the IFSM. The CWR can also be used in

conjunction with the RBK operation for fault injection. A frame can be read back and

stored in the IBUF. A bit of interest can then be flipped and the frame written to the

CMEM using the CWR operation.

The number of words being written in a CWR operation could also be monitored

for confirmation of alignment to a frame of configuration words. However, this is not

necessary as any incomplete loading would trigger a configuration error which would

be picked up by the CMC. Nevertheless, the user needs to ensure the correct loading of

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 102

commands and that frame data words are properly aligned to 101 words. For the CWR

operation, the template usage is as follows: [OSS + User-Generated Commands & Data

+ OES].

4.2.8 Abort (ABT) Operation – Opcode 7

Though the ICAP interface has the capability to abort an ongoing operation, to the best

of our knowledge, this has not yet been fully explored and reported in the literature.

This capability ensures that if an ongoing operation is deemed to be no longer required

due to a change in the dynamics of the system, the system does not waste precious ICAP

bandwidth completing the operation. The operation can be immediately stopped and a

new one started. The readback abort capability is used in the SEM operation (see

Section 4.3.2) to stop readback when a soft error is detected. An abort is triggered by

changing the icap_rw_en signal while the icap_en signal is asserted (= ‘0’). For

readback, abort ends when the icap_en is deasserted, while for configuration, it ends

after four clock cycles. Note that the ABT operation does not follow the execution and

user flows of Figure 4.6 and Figure 4.7. The ABT can be specified on the opcode port

at any time during an active operation. It can as well be triggered internally by the

IFSM.

4.3 Support for Error Mitigation

The diagnosis and correction of errors is an important feature that should be supported

by an ICAP controller. Depending on the nature of error mitigation sought, the

implemented operations can be used for both SEM and HEM. The CFG operation can

be used for blind scrubbing while the combination of the RBK and CFG operations can

be used for readback scrubbing of the CMEM. For HEM the PBR functionality offered

by the CFG operation can be used to relocate a task to a damage-free region in case of

hard errors affecting its original partition. The 7 series FPGA also has an internal

Readback CRC circuitry that simplifies readback scrubbing (see Section 3.2.2). The

Readback CRC requires access to the ICAP but only when the user design has

relinquished control by issuing the DESYNC command. However, the user has no

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 103

control on the selection of frames or chip area for scanning. The following subsections

present the SEM features implemented by the configuration controller.

4.3.1 Readback Scrubbing Support – SEM Operation (Opcode 8)

The CFG operation can be used by a user-determined scrubber to perform blind

scrubbing. However, for readback scrubbing, a distinct operation (SEM operation) is

implemented to simplify the process. For the SEM operation, the configuration

controller uses the FRAME_ECC primitive in conjunction with the RBK and CFG

operations. According to [62], it is uncommon for an error to escape being detected by

ECC and be found only by CRC. As such, the configuration controller relies solely on

the frame ECC for error detection. The Readback CRC is not used for the reasons that

will be presented in Section 4.3.2.

For the SEM operation, the user needs to specify the RBK_FAR and

NUM_OF_WORDS at IBUF addresses 0x00E and 0x010 respectively (see Table 4.3).

During readback, a copy of the current frame being read is kept in the IBUF. At the end

of each fame readback, the FRAME_ECC drives its ECCERROR signal High if an

error is found. For a single-bit error, the flipped bit is corrected by the IFSM using the

information provided by the FRAME_ECC, and written back to the CMEM.

To avoid the accumulation of the inherent overhead of 1.01 µs per each readback

for contiguous frame readback, the readback command can be issued for a chip area of

interest and the FRAME_ECC continuously monitored for an indication of error.

Immediately an error is indicated, the ongoing readback is aborted in 5 clock cycles,

which is only 5% of the 101 that would be incurred if readback was frame by frame. A

single-bit error is indicated on the ECCERRORSINGLE port of the FRAME_ECC as

a ‘1’. The index of the 32-bit frame word that contains the flipped bit is reported by

SYNWORD[6:0] while SYNBIT[4:0] points to the bit position in the word. To save

time, rather than flip the erroneous bit inside the IBUF, and as such incur BRAM read

and write cycles, the affected bit is flipped when the frame is being written back to the

CMEM. In the terminology of the Xilinx’s SEM IP [62], the SEM operation has support

for both Repair and Replace correction methods. The Repair method can correct single-

bit errors while the Replace method can correct multi-bit errors but requires access to a

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 104

golden bitstream stored externally. Multi-bit errors are detected by checking that

ECCERROR is a ‘1’ when ECCERRORSINGLE is a ‘0’ and alerted to the user on the

ecc_mbu_error port of the IFSM, with the erroneous FAR presented on the

ecc_error_far port (see Figure 4.2 and Table 4.1). When a single or double-bit error is

found the FRAME_ECC asserts the ECCERROR signal. The CRCERROR is used to

signal a CRC error and is useful when the Readback CRC is used.

It is important to note that the FRAME_ECC detects errors by checking if the frame

being read has changed from the original configured value, its error detection does not

cover changeable memory cells like FFs, LUT-RAMs, SRLs, and BRAMs. As such,

LUT-based memories are masked using the GLUTMASK_B bit during readback (see

the CFRT template in Appendix A.2). BRAM contents are bypassed by the ECC circuit

during readback.

4.3.2 Selective-Area Scanning for Soft Error Mitigation

In reliability-centric systems, the ICAP has to be shared between two important system

functions, namely, task configuration and SEM. These two functions are indispensable

in reliable systems and the problem of multiplexing access to the ICAP between them

is thus an important one.

It is obvious that since the ICAP is a single resource, a bottleneck or contention

might arise if the sharing of this resource is not well coordinated, especially when real-

time requirements are considered. For instance, if the ICAP is occupied by more

configuration processes, then reliability can be affected, as the rate at which the chip is

scanned reduces. At the same time, too much dedication of the ICAP resource to error

mitigation can delay tasks from being configured. In severe cases, this can result in

missed task execution deadlines, a situation that is particularly intolerable in real-time

systems (e.g., planetary rovers).

The maximum theoretical throughput of the ICAP is 400 MB/s. Based on the

recommendation by Xilinx, more than 99% of this bandwidth should be dedicated to

SEM [187] for a full device coverage. Since reconfiguration time is limited (< 1% of

400 MB/s) this might necessitate a bigger FPGA than would normally be required if

tasks could be swapped in and out more often. This could increase device cost. The

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 105

Xilinx SEM IP cannot be pre-empted. However, it is impractical to have a 100%

occupation of the FPGA, that is, there are always chip areas unused at any given time.

Also, in mixed-criticality systems, the tasks have varying degrees of reliability

constraints [127][200]. As such, selecting only the occupied areas for scanning, rather

than the entire chip, reduces SEM mitigation time, thereby releasing more time for

reconfiguration. Further restrictions can also be applied, where more frequent scanning

occurs for those areas on the chip occupied by critical tasks; with relatively non-critical

tasks scanned less frequently since the failure of a non-critical task is deemed not

detrimental to the system. Any soft errors in areas not currently occupied are repaired

when those areas are configured with new tasks.

It should be noted that the recommendation in [187] that SEM coverage time

should be > 99% is based on a continuous scanning of the entire chip area. However,

instead of scanning the entire FPGA in each SEM cycle, we propose that only the areas

where tasks are configured be scanned to reduce the time spent on SEM. This requires

tasks to be floor-planned to occupy only as much area as required. Since the internal

Readback CRC engine of the FPGA cannot be directed to scan a specific area, a custom

SEM controller that is able to do so is required. However, the developed configuration

controller already has a readback scrubbing functionality. As such, by performing

readback scrubbing using a selective-area scanning, it is possible to reduce the amount

of time dedicated to device-wide SEM and make more time available for

reconfiguration.

The idea is to use the SEM operation to readback-scrub only the regions occupied

by tasks by specifying a contiguous number of frames. For multiple contiguous frame

readback, the IFSM aborts readback once an error is flagged by the FRAME_ECC.

Furthermore, it should be noted that the FRAME_ECC primitive asserts its

SYNDROME_VALID signal for one clock cycle at the end of each frame of readback.

To ensure a correct abort of readback, the IFSM checks SYNDROME_VALID in

conjunction with the ECCERRORSINGLE signal to ensure that a complete frame has

been read back before triggering an abort and carrying out further operations. In

addition, to simplify the tracking of the location in the IBUF of the erroneous read-back

frame, the same frame location in the IBUF (from address 0x073 to address 0x0D7) is

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 106

used all the time for buffering no matter how many frames are being checked in a single

selective-area SEM operation.

Moreover, the FRAME_ECC can be configured to store on its FAR output, the

frame address (stored in a special register called Error Frame Address Register

(EFAR)) where an error is last found or the frame address that is read last. The former

is especially useful when a contiguous number of frames is read back in a single

operation, in which case it becomes ambiguous to rely only on the error signals on the

FRAME_ECC ports. However, the combination of SYNDROME_VALID and

ECCERRORSINGLE are relied on in this work, in which case, it is inconsequential

whether the FAR or the EFAR is reported on the FAR output as both are the same when

the readback is aborted at the end of the frame in which an error is detected.

4.3.3 Fault Injection Support

To perform a fault injection analysis using the CAM, the RBK and CWR operations

are called upon. A target frame is read back and a bit is flipped by accessing the IBUF

through the Operation Controller interface. CMEM write (WCFG) commands (see

Figure 4.9) are loaded into the last 9 locations of the CWR’s frequent command

memory space in the IBUF. In conjunction with the already read-back frame stored at

IBUF_DATA_ADDR and zeroes in the remaining IBUF locations, this forms a

complete frame write operation bitstream consisting of commands, a frame of data, and

a pad frame, with the OES sequence loaded by the IFSM to complete the operation.

A subsequent RBK operation is then used to confirm that the bit has been flipped

in the CMEM. This check can as well be done by performing an SEM operation, which

reads back the target frame and corrects the single-bit error caused by the flipped bit.

However, since this is all transparent to the user, the original flipped position can still

be checked in the IBUF after the SEM operation completes. A final RBK can be

performed to confirm that the bit flip has been corrected.

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 107

Figure 4.9: CWR frequent commands for fault injection

4.4 Configuration Error Monitoring and Recovery

To improve the availability of the ICAP controller and the host device when deployed

in a high-end application, it is important to be able to detect errors during configuration

operations. To do this, a diagnosis of the configuration status can be done by monitoring

the un-swapped least significant byte D[7:0] of the ICAP’s output port. According to

[37], the least significant nibble D[3:0] of this byte is supposed to be fixed to “1111”.

However, this is found to be otherwise; the bits are actually fixed to “1011” for an

unknown reason. Apart from this, the other status bits are as expected (see Table 4.7).

Bits 7 and 6 are used to monitor configuration error and the status of the ICAP

synchronization respectively. While there are other status bits only these two are

required to detect configuration errors.

The CFG Controller continuously monitors the configuration error status bit and

once an error is detected, the operation is halted; the STAT (status) register of the FPGA

is immediately read and presented on the IBUF for the user’s attention. Table 4.8 shows

the STAT register bits of interest. If the cause of the error is determined to be the CRC,

in which case an incorrect pre-computed CRC checksum has been loaded, the user can

reset the configuration interface by issuing the RCRC command (0x30008001 followed

30018001

xxxxxxxx

30008001

00000001

30002001

xxxxxxxx

20000000

30004000

400000CA

Write 1 word to the IDCODE register

IDCODE value = xxxxxxxx

Write 1 word to the CMD register

WCFG command

Write 1 word to the FAR register

FAR value = xxxxxxxx

No operation word

Type 1 write to the FDRI (no word)

Type 2 write 202 words to the FDRI

.

.

.

0x06A

IBUF_DATA_ADDR 0x073

.

.

.

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 108

by 0x00000007). This can be done with the RGR operation without taking the device

offline. However, if there is an IDCODE error the entire device has to be reconfigured

or a fallback reconfiguration used [47]. An IDCODE error occurs if there is an attempt

to write the FDRI register without a successful device ID check.

Table 4.7: ICAP configuration interface status bits

D[0:7]

(Unswapped)

D[7:0]

(Swapped)

Configuration Error

Status
ICAP Sync Status

0x9B 0xD9 No error Not synched

0xDB 0xDB No error Synched

0x5B 0xDA Error Synched

0x1B 0xD8 Error Not synched

Table 4.8: Description of the 7 series FPGA’s status register

Name Bit Index Description

ID_ERROR 15

Attempt to write to FDRI register without successful

DEVICE_ID check.

0: No ID_ERROR, 1: ID_ERROR

CRC_ERROR 0 0: No CRC error, 1: CRC error

It might be worth noting that configuration error detection in the ICAP of the

UltraScale architecture is more straightforward. A dedicated Active-High PRERROR

port on the ICAP can be monitored to check if there has been an error during partial

reconfiguration [201]. Nevertheless, the STAT register still has to be read in order to

know the source of error.

4.5 Resource Utilization and Performance Evaluation

The resource utilization of the proposed ICAP controller and by extension, the CAM,

is greatly influenced by the coding style used where configuration sequences,

templates, and circuitries (in the form of states of the IFSM) are reused as much as

possible. This has given rise to a relatively small resource footprint considering the

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 109

rich feature set. This has not been at the expense of throughput with the various CMEM

read and write operations incurring time overheads within and lower than the range of

state-of-the-art controllers.

4.5.1 Resource Utilization Evaluation

Table 4.9 shows the resource utilization of the CAM. The ICAP controller consumes

only 234 slices and 1 BRAM36 for all the implemented features and operations. This

represents a very small resource footprint even for the smallest of devices, thanks to

the efficient coding style employed. For instance, this utilization is only 24.95% on

the smallest 7 series device (Spartan-7, XC7S6) and a minute 0.17% on the biggest 7

series FPGA (Virtex-7, XC7VH870T). With this footprint, a TMR implementation to

harden the controller against errors would triplicate the utilization to 702 slices, which

is still small enough to be accommodated in the smallest of 7 series devices, with

enough FPGA real estate available for user designs.

For bitstream data transfer from an external memory to the IBUF, this work has

proposed the use of a DMA-capable Data Mover to ensure that the host processing

system is not bogged down with data transfers. The free space in the IBUF can also be

monitored as the IFSM loads frame data from the IBUF to the CMEM. The Data Mover

can thus, transfer bitstreams into the IBUF in close step with the IFSM. The Data Mover

is implemented with an AXI Central DMA [202] and the entire Buffer Arbiter

consumes a total of 377 slices with 1 BRAM36 used as the IBUF. As such, the entire

CAM consumes a total of 611 slices.

Table 4.9: Resource utilization of the CAM in the 7 series FPGA

Resource ICAP Controller Buffer Arbiter CAM

Flip-Flops 330 1,145 1,475

LUTs 654 974 1,628

BRAM36s 0 1 2

Slices 234 377 611

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 110

The resource overhead can be further reduced in a ROS in which some of the

implemented operations are not required. Nevertheless, the controller is small enough

to be used as is without trimming the functions in RTL. In terms of comparison with

existing ICAP controllers, it is not a straightforward affair as varied differences between

the features used and the devices targeted. Nevertheless, a closely-related work, but one

implemented for the Virtex-4 FPGA, is the controller in the Internal Configuration

Manger (ICM) developed in [203], where a total of 803 slices are used. A lighter version

of this controller is presented in [167], with an utilization of 609 slices. The AC_ICAP

[166], which is based on the 7 series family has a fewer set of features, yet consumes

690 slices even with the features trimmed. Table 4.10 shows the comparison of the

ICAP controller in CAM to these related controllers and others. An improvement in

resource utilization which ranges from about 20% to 71% is observed, noting that most

of the compared controllers provide only a subset of the functionalities that CAM’s

ICAP controller provides.

Table 4.10: Resource overhead comparison of ICAP controllers

Controller Device
Resource

Slices FFs LUTs BRAMs

ICM [203] Virtex-4 803 - - 1

AC_ICAP [166] 7 series 690 1161 1667 7

Xilinx PRC [204] 7 series - 1203 1170 0

AXI_HWICAP [205] 7 series 291 688 538 0

CAM (This Work) 7 series 234 330 654 1

4.5.2 Throughput Evaluation

For throughput evaluation, the correct functionalities of the operations of the controller

are confirmed by using configuration frame data prefetched into the IBUF. This also

allows for the characterization of the raw speed performance of the controller. For the

various operations of the ICAP controller, Table 4.11 shows the times measured for an

operation on a single frame (404 bytes). The ICAP is clocked at its recommended

maximum frequency (fICAP_MAX) of 100 MHz. Measurements are taken by adding a

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 111

clock cycle counter to the controller and using the Xilinx Integrated Logic Analyzer

(ILA) [206] to observe the counter’s value.

Table 4.11: Time overheads for the operations of the ICAP controller at 100 MHz

Operation on 1 Frame
Latency (µs)

Original Rolling Optimized

Readback 2.49 2.38 2.30

Configuration (Basic-CFG) 2.61 2.54 -

Configuration (MFW-based, non-BRAM) 1.71 1.64 -

Configuration (MFW-Based, BRAM) 1.79 1.72 -

Read Modify Write (non-BRAM) 3.83 3.72 3.64

Read Modify Write (BRAM) 3.91 3.80 3.72

Blanking (non-BRAM) 1.56 1.45 1.41

Blanking (BRAM) 1.64 1.53 1.49

Register Read 0.37 0.26 0.22

Custom Write (WCFG+1 frame + 1 pad) 2.55 2.44 2.40

Operation Abort 0.05 0.05 0.05

SEM Scan (no error detected) 2.49 2.38 2.30

SEU Detection and Correction 3.79 3.68 3.56

MBU Detection 2.49 2.38 2.30

MBU-Triggered Frame Replacement 1.71 1.64 -

The “Original” latencies Table 4.11 refer to the exact overhead measured with the

ICAP controller used as is. However, because it is possible to leave the ICAP

synchronized and allow one operation to “roll” to the other one without ICAP

desynchronization, the SYNC words in the OSS sequence and the DESYNC words in

the OSS can be trimmed. The overheads in this case are shown in the “Rolling” column

in Table 4.11. In addition, the GLUTMASK_B command packets can be bypassed or

set to a default value in the full bitstream if the setting will not change in runtime.

Therefore, the “Optimized” column refers to the operations carried out with the

GLUTMASK command packets trimmed in addition to “Rolling”.

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 112

When a BRAM frame is loaded using the MFW template, eight NOOP words are

written after the MFW command (see Figure A.6 in Appendix A). This accounts for the

different timing behaviours reported for BRAM frames for any operation that uses the

MFW feature. Considering the basic read and write operations, Basic CFG

understandably has the greatest latency of 2.61 µs for a single frame because of the pad

frame. Likewise, the RBK operation clocks in at 2.49 µs. A non-BRAM frame writing

incurs the lowest configuration time of 1.71µs when the MFW-based CFG is used.

For the BLK operation, a single frame can be blanked in 1.56 µs for a non-BRAM

frame and 1.64 µs for a BRAM frame. Compared to using a normal blanking bitstream,

the BLK operation saves at least 40% configuration time for a single frame. This figure

would increase as the number of frames blanked in a single operation increases.

SEM scan (for both an SEU and an MBU) clocks in at 2.49 µs for a single frame

and 1.01 µs for each additional frame in a selective-area operation on a contiguous

number of frames. A single-bit upset can be detected and corrected in only 3.79 µs

while a frame that has suffered an MBU can be replaced in 1.71 µs per erroneous frame

(with the golden frame already fetched into the IBUF). The time for an MBU

correction by replacement is heavily influenced by the time needed to access the

external memory and transfer data. The time shown here does not consider the frame

data movement overhead. Nevertheless, once the golden frame is moved into the

IBUF, the time to write it is constant at 1.71 µs.

The latency in bitstream transfer from an external memory to the IBUF depends

on the specific data transfer method used. Bitstream transfer takes a latency of 3.993

ms to transfer bitstream data from an external SD card in an example CDMA transfer

of 2 kB.

Table 4.12 shows the comparison of the latencies of the basic read and write

operations on a single frame. The ICAP controller in this work proves to be

comparatively better, providing an improvement of about 30% in configuration latency

and about 4% for readback. It is worthy of note that the ICM is targeted at Virtex-4,

which has only 41 32-bit words in a frame. As such, the times reported here show that

CAM is far more time-efficient considering that a frame in the 7 series is 101 32-bit

words.

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 113

Table 4.12: Comparison of the basic operation timing behaviours

Controller Device
Operation Latency (µs)

Read Frame Write Frame

This Work 7 series 2.30 1.64

AC_ICAP [166] 7 series 2.39 2.33

ICM [203] Virtex-4 2.28 1.95

The configuration throughput of the proposed controller is measured by using tasks

with various area utilizations and the calculated throughputs averaged out to get a more

representative value (see Table 4.13). From this, the average throughput of the proposed

ICAP controller is evaluated as 379.70 MB/s, which just short of the theoretical

maximum bandwidth (400 MB/s) of the ICAP at 100 MHz. This throughput is only

achievable when the IFSM is not stalled at any time waiting for bitstream transfers from

the external memory. The buffer free space monitoring proposed is a mechanism that

can be exploited to ensure that frame data is made available as soon as possible to avoid

stalling the IFSM.

Table 4.13: Configuration throughput evaluation

Task
RM Size PB Size

(kB)

Configuration

Time (µs)

Throughput

(MB/s) CLB BRAM DSP

Task 1 2 0 0 29 74.32 379.67

Task 2 3 1 0 105 270.36 379.52

Task 3 4 1 1 131 335.00 379.90

Average Throughput 379.70

In order to provide a quick means of evaluating the expected configuration time of

a task that is to be configured using the proposed CAM raw throughput, bitstreams are

generated for the smallest RMs and FPGA resource block types and these are used to

construct templates (equations) for determining partial bitstream size (see Table 4.14).

The purpose of this is to support external memory storage budgeting and pre-

implementation evaluation of a task’s configuration throughput.

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 114

Table 4.14: Partial bitstream size evaluation template for the Basic CFG operation

Partition Partial Bitstream Size (Bytes)

Single

Block Type N = Num. of Frames N = Block Columns

CLB

500 + 404 * N

500 + 404 * 36 * N

DSP 500 + 404 * 28 * N

BRAM 500 + 404 * 128 * N

Multiple

Block Pair Type N = Num. of Frames N = Block Pairs

CLB-CLB
500 + 404 * N

500 + 404 * 72 * N

CLB-DSP 500 + 404 * 64 * N

CLB-BRAM 936 + 404 * (NCLB + NBRAM) 936 + 404 * 192 * N

Slice
Slice-Based Partition, N = Number of Block Pairs

936 + 404 * (72 * NCLB-CLB_PAIRS + 64 * NCLB-DSP_PAIRS + 192 * NCLB-BRAM_PAIRS)

These equations can be used to evaluate any task whose area occupation is known

without actually generating bitstreams or using the controller. This would prove

invaluable for a rapid system design and offline evaluation. Given resource utilization

breakdown of a task in terms of CLBs, BRAMs, and DSPs, it becomes quite

straightforward to estimate the bitstream size overhead and configuration timing

behaviour of the controller for the task. However, a true reflection of the bitstream size

would be that calculated from the utilized slice reported by Vivado as there is usually

no 100% utilization of the CLBs in an RP. Thus, Table 4.14 also provides an equation

for a slice-based partitioning.

The task bitstreams used for constructing the equations follow the format presented

in Figure A.5 of Appendix A. This format does not include setup commands like

GLUTMASK_B setting. If a task in question has to use certain setup commands the

number of words (converted to bytes) before the occurrence of 0x30002001 can be

added to the bitstream size. Note that the SYNC words and the WCFG command

packets should not be included.

In addition, it is possible to construct equations for the latencies of relevant

operations of the controller as shown in Table 4.15. Therefore, given the resource block

type and the number of frames (N), the latencies for a given task can be easily computed

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 115

and in conjunction with Table 4.14, the operation throughputs can be also be

determined. For the Basic CFG operations in Table 4.15, the pad frame is not counted

as part of the number of frames and note that the RMW can only relocate one frame at

a time to multiple frame address locations (L). N is the number of frames to access in a

single operation.

Table 4.15: Latency templates for selected operations of the ICAP controller

Operation
Time for 1

Frame (µs)

Latency for N Frames & L

locations (µs)

Readback 2.49 1.48 + 1.01N

Configuration (Basic-CFG, 1 block type) 2.61 1.60 + 1.01N

Configuration (Basic CFG, 2 block types) 4.73 3.72 + 1.01N

Read Modify Write (non-BRAM) 3.83 (3.72 + 0.11L)*N

Read Modify Write (BRAM) 3.91 (3.72 + 0.19L)*N

Blanking (non-BRAM) 1.56 1.47 + 0.09N

Blanking (BRAM) 1.64 1.47 + 0.17N

SEM Scan 2.49 1.48 + 1.01N

4.5.3 A Case-Study Application

To evaluate the ICAP controller with a practical application and illustrate the advantage

of the proposed selective-area scanning, we draw a case study from the NASA JPL’s

Compositional InfraRed Imaging Spectrometer (CIRIS) [207] implemented on a Zynq-

7000 (XC7Z100) FPGA. The CIRIS is one of the new-generation NASA instruments

proposed to search for life indicators in Jupiter’s moon, Europa [208]. The total

resource usage of the CIRIS data processing task is 7,781 slices, 164 DSP48s, and 176.5

BRAM36s [209] (see Table 4.16). A floorplan on the XC7Z100 chip that would

accommodate all the resources (especially the BRAM36s) requires a selection of a

larger region than required by the slices and DSP48s alone. This translates to area

occupations of 20.19% for slices, 23.76% for DSP48s, and 26.49% for BRAM36s. This

is equivalent to 48 CLB-CLB pairs, 24 CLB-DSP pairs, and 20 CLB-BRAM pairs.

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 116

Table 4.16: Resource utilization of the CIRIS data processing circuit

Component Slices DSP48s BRAM36s

CIRIS Data Processing Circuit [209] 7,781 164 176.5

Selectable Resources 14,000 480 200

Available in the XC7Z100 chip 69,350 2,020 755

Percentage Resource Used 11.22% 8.12% 23.38%

Percentage Area Occupied 20.19% 23.76% 26.49%

Configuration Frames 5,040 672 2,560

Total Configuration Frames (from Block Pairs) 8,832 frames

Partial Bitstream Size 3,485.41 kB

By using Table 2.11 we estimate that a total of 8,832 frames are needed for

configuring or reading back the task. This gives a PB size of 3.4 MB and a Basic-CFG

configuration time of 8.9240 ms, with a throughput of 381.42 MB/s. A selective-area

SEM operation would scan these frames in 8.9218 ms while the Xilinx SEM IP [62]

would still incur the full device scan time of 34.3 ms. This is a saving of 25.38 ms

(74%) of ICAP access time and this can be allocated to reconfiguration (see Table 4.17).

Table 4.17: Configuration and scan times for the CIRIS task

Operation Operation Latency (ms)

Configuration 8.92404

Readback 8.92180

Blanking 0.95222

Scan Time (the SEM operation in this work) 8.92

SEM Scan (Xilinx SEM IP) [62] 34.30

Time Saved for Reconfiguration 25.38

Percentage Time Saved 74%

It should be noted that the more occupied the FPGA is, the lower would be the time

saved, and indeed, there are other circuits that may be critical in the spectrometer

example used [210]. However, if the FPGA is fully occupied, which is an unlikely

situation, advantage can be taken of the different criticalities of the tasks to scan the

______________ Chapter 4 – Configuration Memory Access Framework for Reliable RC

 117

more critical ones more often and the less-critical ones less. This is possible because

our ICAP Controller’s SEM engine allows selective-area scanning. The time saved can

be put towards task reconfiguration. Since there is more time for reconfiguration, more

tasks can share the FPGA in time and space, and the size requirement for the chip would

be lower leading to cost savings while not compromising reliability.

4.6 Chapter Summary

A high-performance and reliable configuration controller is an indispensable

component of reconfigurable systems, especially those that are based on FPGAs. This

chapter has presented a configuration controller that implements functionalities that are

crucial for task loading and deloading, and several reliability-enhancing functionalities

(e.g., SEU and MBU mitigation and internal register reading for device diagnosis) for

reconfigurable computing. Without loss of generality, the Xilinx 7 series FPGA family

has been used as a target for the proposed controller. Resource utilization and

throughput evaluations have revealed that this controller outperforms similar state-of-

the-art controllers saving up to 71% area overhead and having 30% less configuration

latency for a single frame, with an average throughput of 379.70 MB/s for contiguous

number of frames. Benchmarking templates are also provided, targeting an easy

evaluation of hardware tasks' bitstream size and configuration overhead with the aim

of easing system design when the proposed configuration controller is to be deployed.

While reliability and availability have been some of the key focus, the proposed

controller is generic enough to find application in a wide variety of scenarios. The

reliability of the controller itself can be easily improved by adopting a TMR

implementation. This does not have a serious impact on resource footprint because the

controller already has a very small footprint considering the implemented feature set

and the state-of-the-art.

118

Chapter 5

Secure and Efficient Hardware

Task Relocation Framework for

Reconfigurable Computing

One key RC service, which has not been given prime attention is security [24] even

though research works already appeared almost two decades ago highlighting the need

for circuit protection [20]. Meanwhile, the fact that FPGAs are now being used in high-

end applications has served to increase interests in FPGAs and the value of IP cores

that run on them, thanks to the adoption of FPGAs by tech giants like Microsoft [39]

and Baidu [40]. IP core vendors pay heavily in monetary terms and development time

to design these IP cores. As a result, the protection of this investment is of paramount

importance. However, malicious attacks on FPGAs have aimed to exploit the security

shortcomings of FPGAs to allow attackers to steal these IPs or cause undesirable

effects.

As a deterrent to these attacks, major FPGA manufacturers (like Xilinx) have

introduced secure bitstreams, which are bitstreams protected with both authentication

and encryption (see Section 2.3). However, as FPGA programming technology and

techniques evolve, renewed thoughts have to be given to the impact of encryption on

the format of bitstreams and how this affects emerging hardware task management

techniques. This is the case with PBR, which is often deployed for permanent damage

mitigation. As existing PBR methods are not amenable to encrypted PBR (see Section

3.2.4), excessive resource and time overheads can result in a bid to ensure the

continuous protection of IP cores in the face of PBR. This chapter delves further into

these issues and presents a novel resource- and time-efficient PBR mechanism to

address the situation.

The techniques and mechanisms reported in this chapter have been included as part

of the author’s publications [211] and [212]:

5

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 119

 A. Adetomi, G. Enemali, and T. Arslan, ‘Relocating Encrypted Partial

Bitstreams by Advance Task Address Loading’, in 25th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM

2017), 2017, pp. 188–191.

 A. Adetomi, G. Enemali, and T. Arslan, ‘Towards an Efficient Intellectual

Property Protection in Dynamically Reconfigurable FPGAs’, in 2017 Seventh

International Conference on Emerging Security Technologies (EST), 2017,

pp. 150–156.

5.1 The Challenges with Encrypted PBR

With respect to partial bitstream relocation, there are a few challenges with the Xilinx’s

secure bitstream format. One limitation with the use of encrypted partial bitstreams in

the 7 series FPGAs lies in the restriction on the configuration interfaces. The readback

of the configuration memory through the JTAG and SelectMAP interfaces is not

possible when an encrypted bitstream is loaded into the device. While this restriction

does not apply to the ICAP interface; nevertheless, the configuration bandwidth is

reduced by a factor of four to a theoretical value of 100 MB/s as the ICAP interface

only accepts encrypted bitstreams through its 8-bit input bus [47]. This increases the

configuration overhead during relocation and is a price that must be paid to ensure

bitstream security in the 7 series. Indeed, Xilinx has addressed this in the UltraScale

architecture, which ships with an ICAP that only supports a 32-bit port width for both

unencrypted and encrypted bitstreams [201].

Moreover, the state-of-the-art vendor secure bitstream format introduces a

bottleneck for PBR. PBR requires the runtime manipulation of the bitstream’s frame

addresses before it is delivered to the configuration interface. As such, access to the

readable plaintext decrypted bitstream is needed. However, the frame addresses are

specified in the encrypted portion of the secure bitstream and are as such, in cyphertext

format. Meanwhile, to prevent a breach of security during reconfiguration, the on-chip

decryptor in the FPGA feeds the plain decrypted data directly to the configuration

interface; and as such, access to the decrypted data is denied. To overcome this, a

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 120

custom dedicated AES decryptor circuit can be used. However, this circuit usually takes

a considerable amount of FPGA resources [213] [214] and time (see Sections 5.6 and

5.7).

To address this issue in a resource-efficient and time-saving manner, a secure

bitstream format that is friendly to relocation is required. Moreover, there is usually

more than one instance of frame address loading. This means a user cannot simply state

a FAR address before loading the encrypted frame data, we have to split the bitstream

into a number of parts corresponding to the number of frame addresses in the bitstream.

For each section, the FAR is loaded unencrypted before the encrypted configuration

data. This calls for a unique software that can accept an unencrypted bitstream, remove

the FAR loading commands, split the bitstream, and perform other necessary bitstream

manipulations; and a unique configuration controller that can generate the FAR address

in runtime and load the bitstream parts after loading the corresponding generated FAR

addresses.

5.2 Relocation-Aware Secure Bitstream Format

An experimental study of the reconfiguration of Xilinx FPGAs reveals that the frame

address which points to the location to be configured in the FPGA can be written to the

FAR in a separate command sequence in advance of the frame data loading itself.

Having observed that the FPGA remembers the content written to the FAR, the

proposed solution to expensive encrypted PBR involves using a software algorithm to

remove the FAR loading command and the FAR address itself from the bitstream

before it is encrypted and issuing this unencrypted command inside the FPGA in

runtime through the ICAP configuration port.

To understand why this is possible, it is fitting to note that the FPGA would

normally wipe off the configuration memory when an unencrypted data loading is

initiated subsequent to the loading of an encrypted bitstream. However, because the

ICAP is a trusted interface, it is allowed to read back data and also write unencrypted

data even when encryption is used. Meanwhile, in order not to compromise security,

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 121

the ICAP signals are not routed out of the FPGA [47] and the user is prevented from

issuing readback commands when encryption is used.

Since the proposed approach to encrypted PBR involves loading the task’s plain

unencrypted frame address in advance of the encrypted frame data, this scheme can be

appropriately named Advance Task Address loading (ATAL). The unique secure

bitstream format used proposed for ATAL is depicted in Figure 5.1. In contrast with

the Xilinx secure bitstream format, which has the frame address inside the encrypted

body, the ATAL format does not contain any frame address information. The frame

address is generated on-chip when needed. The bitstream is reformatted into a global

preamble and a number of body parts depending on the number of frame addresses in

the original bitstream. Each body part contains a local preamble, a local body, and local

postamble. Like in the Xilinx secure format, only the body and the postamble are

authenticated and encrypted. The following subsections provide more details about the

different sections of an ATAL-formatted bitstream. Note that while an encrypted

bitstream is loaded through the ICAP one byte per clock cycle, references to a “word”

of data in the bitstream still retain the original meaning of 32 bits.

Figure 5.1: Secure bitstream formats from Xilinx and for ATAL

Global Preamble
(Length of Preamble, No

of Body Parts, Sync,

Setup)

Local Body
(HKEY, Header, Frame

Data)

Local Preamble
(Use-Encryption)

Local Postamble
(Footer, HKEY, MAC)

Padding with 20000000

Repeating

Body

Part

Xilinx Bitstream Format ATAL Bitstream Format

Preamble
(Sync, Setup, Use-

Encryption)

Padding with 20000000

Body
(HKEY, Header, Frame

Address and Frame Data)

Postamble
(Footer, HKEY, MAC)

HKEY – HMAC Key

MAC – Message Authentication Code

Encrypted and Authenticated

Unencrypted and Unauthenticated

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 122

5.2.1 Global Preamble

The global preamble is similar to the preamble in the Xilinx bitstream format as it is

composed of bus width auto detection words (0x000000BB followed by 0x11220044)

and the synchronization word (0xAA995566). For the 8-bit interface enforced by the

use of encryption, the internal configuration bus width auto detection logic would

properly align by finding 0xBB followed by 0x11 on bits [7:0] of the ICAP’s output.

Apart from the above, the ATAL’s global preamble also has prepended, the number

of bytes in the global preamble (N_BYTS_GPMBL) and the number of body parts

(N_BDY_PRTS) in the entire bitstream, both concatenated in the same 32-bit word.

Bits [31:24] are used to keep N_BYTS_GPMBL, allowing for up to 256 bytes (64

words) in the preamble, while bits [23:0] are used to store N_BDY_PRTS, allowing for

up to 16,777,216 body parts. As many as 24 bits are reserved for N_BDY_PRTS to

cater for the many body parts expected when a compressed bitstream is parsed by

ATAL. For instance, the largest documented 7 series FPGA (7VH870T) (at the time of

writing) has a configuration bitstream length of 294,006,336 bits [47]. This is

approximately 90,968 frames assuming the entire content of the bitstream is frame data.

The worst-case compression scenario would produce a compressed bitstream with

90,968 frame addresses and thus, body parts. This is well below the maximum

N_BDY_PRTS in ATAL.

5.2.2 Local Preamble

Since in the un-split Xilinx-formatted encrypted partial bitstream (Figure 5.1), the entire

body of commands and data share the same preamble, which includes some FPGA

setup commands, the instruction to enable the AES decryptor and load the encryption

key from the eFUSE or the BBRAM, the AES IV loading, and the DWC loading, each

of the body parts must also have a similar local preamble for proper synchronization

with the decryption circuit in the internal configuration logic of the FPGA. Four words

are used for the use-encryption command, five words for loading the IV, and two words

for the DWC packet. These additional words are added to the beginning of each body

part as a part of a local unencrypted preamble.

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 123

Figure 5.2 shows the composition of the local preamble. Bit 6 of the CTL0 register

has to be set to ‘1’ to instruct the FPGA that the internal AES decryptor engine should

be enabled. Also, a selection of the key storage option (EFUSE_KEY = ‘0’ for BBRAM

or ‘1’ for eFUSE) at bit position 31 of CTL0 has to be made. All the variable fields are

automatically filled in by ATAL’s software algorithm (see Section 5.3)

Figure 5.2: Composition of the local preamble of an ATAL-formatted bitstream

5.2.3 Local Body

The local body contains the encrypted configuration commands and frame data. When

compared with the Xilinx secure bitstream format, the key difference is that there are

no frame addresses in the local body of ATAL-formatted bitstream. The frame address

loading commands and the respective FAR values are removed before authentication

and encryption and auto-generated on demand in runtime.

Moreover, a careful examination of the unencrypted and encrypted bitstreams

generated with Vivado reveals that the FPGA setup commands like resetting the CRC

and loading the device IDCODE in the preamble of the unencrypted version are no

longer included in the unencrypted preamble of the encrypted bitstream. Since these

commands are still required, they must be included before encryption. In ATAL, each

3000C001

80000040

3000A001

x00000y0

20000000

20000000

30016004

xxxxxxxx

xxxxxxxx

xxxxxxxx

xxxxxxxx

30034001

vvvvvvvv

Write 1 word to the MASK register

Permit writing to the EFUSE_KEY and DEC bits

Write 1 word to the CTL0 register

EFUSE_KEY = x, DEC = y

No operation command

No operation command

Write 4 words to the CBC register for AES IV

AES initial vector – bits [127:0]

AES initial vector – bits [95:0]

AES initial vector – bits [63:0]

AES initial vector – bits [31:0]

DWC command

DWC value

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 124

bitstream body part essentially becomes a standalone encrypted PB without device sync

and setup commands. As such, ATAL’s CRC coverage is at the body part level. The

RCRC command is added to the header of each local body before encryption. In

addition, since every write to the FDRI requires a successful device ID check, the

IDCODE command is included in the header of each local body of every body part.

Other user-determined FPGA setup commands retrieved from the original bitstream are

added to the header as well.

Noting that one of the aims of encryption is to hide the content of the bitstream

from the prying eyes of attackers, it would be good to reveal only the information

necessary to inform the configuration interface that encryption is being used. This is

what Xilinx has done in their secure bitstream format and the same tradition is kept to

in this work. As a result, all the commands in the preamble retrieved from the

unencrypted bitstreams are also encrypted along with the first body part. This leaves

the local headers and the new preamble added for instructing the FPGA to use

decryption as the only unencrypted parts of the processed bitstream.

5.2.4 Local Postamble

The local postamble is composed of footer commands, with the HKEY and MAC

appended. The footer holds the command to load the CRC register with the recalculated

CRC value. There is one special FAR loading in the postamble of both plain and

encrypted Xilinx-formatted bitstreams. The value of the frame address loaded is

0x03BE0000. This represents a column address of 0, top-half row address of 31, and a

block type of ‘111’, which does not correspond to any known or documented resource

type in the FPGA. The choice of extreme values for the FAR fields suggest that

0x03BE0000 is meant for some form of internal synchronization. It would not be

surprising to have no Xilinx FPGA with up to 32 rows in the top half of the device.

Keeping in line with this, the ATAL-formatted encrypted bitstream includes in the local

postamble of the last body part the packet 0x3000200103BE0000 just before the RCRC

command.

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 125

5.3 Software Interface for Bitstream Reformatting

The FPGA vendor’s bitstream generation tool would not accept an existing bitstream

as an input to the synthesis and implementation flow and even if it did, one would not

be able to direct it to reformat the bitstream into the unique relocation-friendly ATAL

format being proposed. Therefore, a special offline-executed algorithm is needed to

perform the operation of reformatting the bitstream. We have named this algorithm

Splixbit as an abbreviation of “splitting a bitstream” into parts.

Figure 5.3 summarizes the execution flow of the Splixbit software in converting a

partial bitstream to an ATAL-formatted one. After loading the bitstream, the tool first

processes the header to confirm that the file loaded is a partial bitstream; an error is

thrown if that is not the case. After the header is extracted, the bitstream is split into a

preamble (sync and setup commands), a number of body parts depending on the number

of frame addresses, and a postamble (DESYNC and CRC check commands). The

formatting of the bitstream parts includes removing the FAR command and frame

address, removing the DESYNC command packet, recalculating the CRC value. Other

necessary steps like the addition of IDCODE command are carried out. Next, the

HMAC-SHA-256 hashing and AES-CBC-256 encryption are applied to the separate

parts, after which the encrypted bitstreams are combined into a single bitstream.

Figure 5.3: Splixbit’s algorithm’s flow for advance task address loading

Format Bitstream Parts

Start

Stop

Load Partial Bitstream

Split Bitstream

Combine Bitstream Parts

Process Bitstream Header

Hash Bitstream Parts

Encrypt Bitstream Parts

Check to confirm that the

bitstream specified is partial

and unencrypted

Split the bitstream into parts

according ot the ATAL’s

format

Remove the FAR

commands, recalculate the

CRC values, and prepend

and append the HKEY to

each body part

Combine the parts into one

bitstream file. Parts are

identified in runtime by a

number of words inserted

before each part

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 126

The following subsections provide more details and related technical

considerations for the algorithm’s software interface:

5.3.1 Splixbit File Input

For data input to the Splixbit software, the user can supply both encrypted and

unencrypted partial bitstreams. In the case of encrypted bitstreams, the software tool

first decrypts the bitstream before performing the necessary splitting, encryption and

formatting. Being able to supply encrypted bitstream to the software may be useful in

situations where there is no access to the original design in order to generate the

unencrypted bitstream. In this case however, the user has to present the tool with the

original encryption key file generated by the implementation tool. It is expected that

the user should have this since it is needed to load the AES key into the FPGA.

There are different bitstream file format options available in the Vivado. These

options, accessible via Bitstream Settings in Vivado, can be used to direct the tool to

generate some other useful files apart from the BIT file, which is the default binary

bitstream file used for configuration through the Hardware Manager of Vivado. Some

of these files are the raw bit (RBT) file, which contains the same information as the BIT

file but in ASCII format, the mask (MSK or MSD) file, useful for verifying readback

data, the readback (RBB or RBD) file, useful for bitstream verification; and the binary

(BIN) file, which is similar to the bit file but without the header information. Since the

header information is not actually uploaded to the FPGA but is used by other Xilinx

tools, ATAL could do with the BIN file.

However, the Splixbit algorithm requires the knowledge of the device type in order

to prepare the encryption key file (NKY file) correctly. The device type is contained in

the header; as such, it is more convenient to retrieve it if the user supplies a BIT file. In

order to understand the information in the header and retrieve the device type, we have

examined the contents of both unencrypted and encrypted, full and partial bitstreams of

7 series FPGAs. Our findings are presented in Table 5.1. When the bitstreams are

viewed using a HEX to ASCII editor, distinct sections, mostly delimited by semicolons

and alphabets from ‘a’ to ‘e’, are noticed in the header before the configuration interface

synchronization words.

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 127

To retrieve the target device type, a regular expression (regex) is used to search the

ASCII-representation of the BIT file. The regex used depends on the type of file

whether encrypted or unencrypted. The usage of regex in this work is pretty standard

and based on the Regex class in the .NET Framework. It should be noted that full

bitstreams are not manipulated by the software tool, they are included in Table 5.1 only

for comparison and general understanding.

Table 5.1: Bitstream header information (bitstream generated in Vivado 2015.2)

Field

Bytes

Bitstream Type & Text Fields

Full &

Unencrypted

Full &

Encrypted

Partial &

Unencrypted

Partial &

Encrypted

16 File Declaration and Header

Variable Design Top Module Name

1 Delimiter

11 aNA
ENCRYPT

=YES
aNA

ENCRYPT

=YES

1 aNA Delimiter aNA Delimiter

13 aNA aNA BLANKING=TRUE aNA

1 aNA aNA Delimiter aNA

17 User ID

1 Delimiter

12 aNA aNA PARTIAL= TRUE
PARTIAL=

TRUE

1 aNA aNA Delimiter Delimiter

61 Tool Version, Target Device, Date, and Time

a
NA – Not Applicable

5.3.2 CRC Recalculation

If the user enables CRC check, the Vivado calculates the CRC value of the entire

bitstream command and data and appends it to the bitstream (in the postamble of an

unencrypted bitstream). Any modification to the bitstream while it is in transit to the

configuration interface leads to a CRC error. Because ATAL involves a deliberate

modification of the bitstream, the precomputed CRC is effectively rendered void. A

simple solution would be to disable the CRC functionality in Vivado. However, this

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 128

would be counterintuitive to bitstream integrity. Therefore, to preserve this

functionality, the CRC is calculated on each of the body parts using the software and

the RCRC and load CRC (0x30000001 followed by the 32-bit CRC checksum)

commands are inserted at the beginning and end respectively of each of the body parts.

The CRC is recalculated using the CRC-32 polynomial: x32 + x28 + x27 + x26 + x25

+ x23 + x22 + x20 + x19 + x18 + x14 + x13 + x11 + x10 + x9 + x8 + x6 + 1 [59], which is the

CRC-32C (Castagnoli) polynomial 0x1EDC6F41 (normal) or 0x82F63B78 (reversed).

The .NET Framework does not come with a built-in CRC checksum calculation library.

As such, a custom code implementation is used.

5.3.3 HMAC-SHA Authentication and AES-CBC Encryption

The HMAC-SHA-256 hashing and AES-CBC-256 encryption are applied to the

separate body parts, after which the encrypted bitstreams are combined into a single

bitstream file. For the HMAC authentication and AES encryption the HMACSHA256

and RijndaelManaged classes of the .NET Framework are used. Padding words are used

to ensure that data lengths are a multiple of 128 bits for encryption and 512 bits for

authentication, as required for simplifying the MAC computation [43].

5.3.4 Splixbit Graphical User Interface Description

Figure 5.4 shows a screenshot of the Splixbit software interface. The entire software

was written in C# as a Windows Form Application. There is a main textbox for

displaying the unencrypted bitstream loaded into memory. Three text input boxes are

provided for the AES key, AES IV, and the HMAC key. In addition, there is an Options

box; the user can choose to allow the software to generate the keys and IV, supply them

as inputs through the text boxes, or specify a key file (NKY file). Clicking the Load Bit

File button opens a file dialog window for the user to specify the bitstream file. After

this, the Execute button can be pressed to process the bitstream. A few error control

dialogs have also been coded in to aid usage. All the operations carried out are captured

in the log output at the bottom of the interface.

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 129

Figure 5.4: Screenshot of the Splixbit software interface

5.4 Hardware Support for Encrypted PBR

In order to deliver the Splixbit-formatted bitstream to the internal configuration

interface of the FPGA in run time, a unique configuration flow is required. Existing

ICAP controllers cannot be used to directly load an ATAL-formatted bitstream because

of the special requirement of specifying plain frame addresses at different points in the

bitstream loading. It is pertinent however, to mention that an existing controller that is

able to load a Xilinx-formatted encrypted PB would require only a few modifications

to get it up and running as far as ATAL is concerned.

5.4.1 Configuration Controller

To control the bitstream loading, a unique ICAP controller (Splixbit hardware) is

required. The Splixbit hardware is a minimalistic version of the ICAP controller in

Chapter 4, implemented to demonstrate the feasibility of ATAL. There are inevitable

similarities between the two. For instance, bitswapping is still required at the input and

output of the ICAP. However, a main difference is that the ICAP input for a secure

bitstream is restricted to an 8-bit width. This necessitates that the initial 32-bit word that

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 130

could be loaded in one clock cycle is now loaded in 4 clock cycles, with the most

significant byte loaded first. The effect is the quadrupling of reconfiguration time. The

scaled-down version of the ICAP controller is shown in Figure 5.5.

Figure 5.5: Configuration controller for loading Splixbit-formatted bitstreams

The BRAM-based IBUF is implemented as a two-port memory with one port

connected to the Data Mover and configured to have a 32-bit data width. This allows

the bitstream to be transferred at a much faster rate than the IFSM loads it. The other

port of the IBUF is configured for 8-bit data access and connected to the IFSM. This

arrangement forces byte loading to take an order where the four bytes in each word are

read from the high byte address to the low byte address and the ibuf_addr_pntr

advanced by 7 to fetch the next word.

For PBR, the FAR command detection and FAR modification circuits are not

included. Since the FAR command is no longer in the bitstream, the user is expected to

provide frame addresses for the bitstream body parts at appropriate points in the

operation. Moreover, the IBUF is simply used for bitstream buffering as no operation

sequences and templates are stored in it. The only sequence needed is the first three

words (0xFFFFFFFFAA99556620000000) of the OSS and this is simply added (as a

Configuration

Memory

Ext

Mem

Configuration

Monitoring

Circuit

Data

Mover

Processor

ICAP

Interface

ICAP FSM (IFSM)

ICAP

Buffer

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 131

VHDL constants) in RTL. The OSS is needed to resynchronize the configuration

interface after a configuration error detection.

Moreover, from the standpoint of configuration error monitoring, in addition to

CRC and IDCODE errors, a further factor can be a source of error. The internal

configuration logic throws a DEC_ERROR if there is an attempt to write to the FDRI

register before or after a decrypt operation. A ‘1’ at bit position 16 of the STAT register

indicates a DEC_ERROR while a ‘0’ indicates otherwise.

In terms of the operations of the IFSM, the only operations retained in the Splixbit

hardware are configuration for PBR support and the ABT operation for aborting

configuration. However, the opcodes are no longer used for selecting operations; the

default operation when the icntrlr_en is asserted is the CFG operation and an abort can

be triggered by setting the abort port to ‘1’. Figure 5.6 shows the control interface of

the Splixbit hardware’s IFSM and highlights the ports not found on the previous IFSM

of Figure 4.2. The icntrlr_err_src is a 3-bit port used to alert the user to the three sources

of a configuration error. CRC error, IDCODE error and DEC error are reported

respectively on bits 0, 1, and 2.

Figure 5.6: Key ports of the Splixbit hardware’s finite state machine

5.4.2 Configuration Flow

It is necessary to organize the ATAL-formatted bitstream loading in the order of global

preamble, FAR addresses, and body parts as described by the flowchart. As such, the

operation of the Splixbit hardware’s IFSM follows the flowchart of Figure 5.7. Once

enabled, the IFSM first retrieves N_BYTS_GPMBL and N_BDY_PRTS from the first

word in the global preamble (addresses 0 to 3), and then loads the global preamble

ICAP FSM

icntrlr_en

clk

abort

icntrlr_rdy

icntrlr_err

dma_irq

ibuf_space_pntr

wait_for_ibuf

Control

Interface

icntrlr_err_srcnew_far_avlbl

new_far_addr

set_new_far

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 132

(Sync and Setup) commands to the ICAP. Appendix C presents example waveforms of

the Splixbit hardware’s IFSM parsing the global preamble of an ATAL-formatted

bitstream.

Figure 5.7: Splixbit configuration flow for encrypted bitstreams

The IFSM then loads a new unencrypted frame address supplied through the

processor before loading its corresponding local preamble and encrypted frame data.

To ensure that configuration does not stall on waiting for an address, the first frame

address is supplied before configuration starts, and subsequent frame addresses

immediately after a previous one is loaded. Proper handshaking between the processor

and the IFSM ensures this. The ports set_new_far, new_far_addr and new_far_avlbl

are used for this handshaking. The IFSM asserts set_new_far when a new FAR loading

is anticipated, the user should provide the new frame address on the input port

new_far_addr and assert new_far_avlbl. The IFSM then picks the new frame address,

Write Plain

FAR Value

Write Cipher

Body Part

All Parts

Loaded?

Start

Yes

No

Retrieve Global

Preamble’s

Length

Write Local

Preamble

Write NOOP

Commands

Write Global

Preamble

Stop

Retrieve

DWC

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 133

deasserts set_new_far. The user should deassert new_far_avlbl as soon as set_new_far

goes low.

Between the frame address and the encrypted frame data loading, the local

preamble is processed to retrieve (from the DWC) the length of the encrypted data to

load, and to write the Use-Encryption commands. Both the local body and the local

postamble are all part of the same encrypted block of data and are loaded in a single

operation. The cycle of address loading, local preamble processing, and local body and

postamble loading continues until all the body parts have been loaded.

5.4.3 Loading Termination

The fact that we are dealing with encrypted bitstreams calls for certain considerations.

Since a state machine (IFSM) controls the sending of data to the ICAP, it is important

for it to know when to stop loading data. The End of Startup (EOS), an Active-High

signal on the STARTUP primitive of the FPGA would have been the perfect signal to

monitor. This signal goes high at the end of start-up after configuration, indicating that

the FPGA is ready for operation [47]. However, our experiments with this primitive

revealed that the EOS signal remains asserted after the configuration of the full

bitstream and does not toggle during dynamic partial reconfiguration. In [37], Xilinx

recommends monitoring the configuration bitstream for the DESYNC word

(0x0000000D) that signals to the configuration interface that data has been completely

delivered. In our case, this word is already encrypted; as a result, we monitor the number

of words configured to know when configuration has finished.

It would be a lot convenient to have a signal like the EOS on the ICAP primitive

of the 7 series FPGAs. It is worthy of note however, that Xilinx has introduced this

mechanism in the UltraScale architecture – there is on the ICAP interface, a PRDONE

signal that goes High on PR completion [37]. Unlike in an unencrypted bitstream, the

FAR command header 0x30002001 issued to load the frame address is not visible to

the IFSM. As a result, the IFSM is in the dark as to when to insert a new frame address

for PBR. The IFSM needs to know when the preamble has been loaded so as to load

the FAR before loading each of the body parts. Moreover, the IFSM needs to know

when the last body part has been loaded in order to stop the insertion of frame addresses.

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 134

By looking for the loading of the DWC command header (0x30034001), the IFSM

retrieves the number of words to configure for the body part instance and uses the

number of body parts retrieved from the global preamble to know when to terminate

bitstream loading.

5.4.4 Resource Utilization and Latency of the Splixbit Hardware

Table 5.2 presents the resource utilization of the Splixbit ICAP controller and the Data

Mover. Only 121 slices and 1 BRAM are used. The controller is adapted for the three

proposed solutions. For a test bitstream of a CLB-BRAM RM (64 frames + 128 frames

+ 2 pad frames = 194 frames), a configuration (relocation) latency of 806 µs is obtained.

For the same RM with an unencrypted bitstream, the relocation latency would be

197.64 µs (calculated using 194 frames in Table 4.15). As earlier noted (see Section

5.4.1), the ICAP’s interface of the 7 series FPGA only accepts encrypted bitstreams at

8 bits per clock cycle as against 32 bits in the unencrypted bitstream. Therefore, the

configuration latency has quadrupled compared to that of the CAM’s ICAP controller

(see Table 4.11).

Table 5.2: Resource usage of the data mover and the ICAP controller

Resource Type
Component

ICAP Controller Data Mover Total

LUTs 482 974 1.456

Flip-Flops 215 1,145 1,326

BRAM36s 1 0 1

Slices 121 377 498

5.5 Evaluation of ATAL’s Bitstream Size Overhead

The size of an ATAL-formatted encrypted bitstream increases slightly when compared

to the original format from Xilinx. This is because of the additional Use-Encryption

words but this increase in bitstream size is negligible when the average size of a PB is

considered. Indeed, not more than 108 bytes are incurred for any design bitstream

considering that only a maximum of two body parts are expected. Referring to Table

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 135

2.11, the minimum reconfiguration frame is 64 for a CLB-DSP pair (plus one pad frame

when the MFW is not used) and this is equivalent to 26,260 bytes, not considering user-

determined setup commands, which are common to both Xilinx- and ATAL-formatted

PBs. The overhead for this CLB-DSP pair is 20 bytes and is only 0.08%. As the design

size grows, this overhead is expected to go much lower.

5.5.1 Uncompressed Bitstreams

Table 5.3 shows the maximum ATAL overhead for the various reconfiguration frames

of the 7 series FPGA for uncompressed bitstreams. The reconfiguration frame is the

minimum selectable resources for PR (see Section 2.2.2). The bitstream sizes (frame

data sizes) for the resource block pairs are estimated from the number of configuration

frames only without considering the usual preambles, postambles, and the FAR and

WCFG command packets, which are always in the bitstream whether or not ATAL is

being used for formatting.

Table 5.3: Bitstream size overhead of ATAL for an uncompressed encrypted bitstream

Evaluation Parameters
Reconfiguration Frames

CLB-CLB CLB-DSP CLB-BRAM

Number of Configuration Frames 72 + 1 pad 64 + 1 pad 192 + 1 pad

Number of ATAL Body Parts 1 1 2

Frame Data Size (Bytes) 29,492 26,260 77,972

𝐴𝑇𝐴𝐿𝑜𝑣ℎ (Bytes) 20 20 88

Max Percentage 𝐴𝑇𝐴𝐿𝑜𝑣ℎ (%) 0.07 0.08 0.11

The bitstream size overhead of ATAL is determined as the bytes loaded for the

Use-Encryption commands (see the local preamble of Section 5.2.2) plus the one length

word in the global preamble (see Section 5.2.1) and two words each for the IDCODE

and RCRC packets (see Section 5.2.3). This implies a total of 18 words (72 bytes) for

the first frame and 17 words (68 bytes) for the subsequent frames since the global

preamble is included once. However, in the Xilinx-formatted encrypted PB, the Use-

Encryption words are also used. That means in an ATAL-formatted bitstream the first

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 136

frame actually incurs 5 words (20 bytes). The overhead in bytes, of ATAL (𝐴𝑇𝐴𝐿𝑜𝑣ℎ)

can thus be described by Equation (5.1):

 𝐴𝑇𝐴𝐿𝑜𝑣ℎ = 20 + 68 × (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑜𝑑𝑦 𝑃𝑎𝑟𝑡𝑠 − 1) (5.1)

5.5.2 Compressed Bitstreams

Table 5.4 shows the ATAL overhead for the various reconfiguration frames of the 7

series FPGA for compressed encrypted bitstreams. When ATAL is used to format a

compressed bitstream, the bitstream size overhead is quite different from that of the

uncompressed bitstream. Many body parts (at least the number of frame addresses in

the bitstream) are expected. At the same time, the local preambles in these body parts

are sure to increase the size of the bitstream slightly. This increase is estimated at 68

bytes per frame, which is the same as the overhead incurred per body part, implying a

16.83% increase in bitstream size per frame.

Table 5.4: Bitstream size overhead of ATAL for a compressed encrypted bitstream

Evaluation Parameters
Reconfiguration Frames

CLB-CLB CLB-DSP CLB-BRAM

Number of Configuration Frames 72 64 192

Best-Case Evaluation

Number of ATAL Body Parts 1 1 2

Frame Data Size (Bytes) 404 404 808

𝐴𝑇𝐴𝐿𝑜𝑣ℎ (Bytes) 20 20 88

Percentage 𝐴𝑇𝐴𝐿𝑜𝑣ℎ (%) 4.95 4.95 10.89

Average Percentage 𝐴𝑇𝐴𝐿𝑜𝑣ℎ (%) 7.92

Worst-Case Evaluation

Number of ATAL Body Parts 72 64 192

Frame Data Size (Bytes) 29,088 25,856 77,568

𝐴𝑇𝐴𝐿𝑜𝑣ℎ (Bytes) 4,848 4,304 13,008

Percentage 𝐴𝑇𝐴𝐿𝑜𝑣ℎ (%) 16.67 16.65 16.77

Average Percentage 𝐴𝑇𝐴𝐿𝑜𝑣ℎ (%) 16.72

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 137

Regardless of the combination of resource blocks, the maximum 𝐴𝑇𝐴𝐿𝑜𝑣ℎ cannot

practically exceed 16.77%, which is the overhead for the largest reconfiguration frame.

However, in theory, it cannot exceed the per-frame overhead of 16.83%.

5.6 Configuration Strategies for Secure Task Relocation

Having identified earlier, the conflict between keeping bitstreams in cypher format and

PBR requiring plain bitstreams, in the following subsections, three techniques that can

be used to relocate encrypted PBs are investigated and evaluated. The first involves

using a dedicated on-chip custom-built decryptor engine, the second approach involves

an initial configuration followed by intermediate readback before relocation, while the

third is based on the ATAL approach.

5.6.1 Intermediate Dedicated On-Chip Decryption (IDOD)

In this method, a dedicated on-chip AES decryption circuit is used to first decrypt the

bitstream, then PBR is carried out by modifying the plain address in the decrypted

bitstream. Bitstream security is not compromised since the decryption is done inside

the FPGA. However, a security attack like side-channel analysis [215] can potentially

be used to extract the AES key and eventually steal the IP. This is not peculiar to user-

implemented decryption circuits, even the Xilinx’s internal decryptor is susceptible to

this attack as successful attacks on it have shown [216]. Several implementations of

AES decryptor have been reported in the literatures. One fitting for this use-case should

ideally be resistant to side-channel attack.

The main disadvantage of the method presented here is that the decryptor consumes

additional FPGA resources apart from the relocation engine itself. Figure 5.8 shows the

configuration and timing model for this method. Apart from the time durations for

moving data from the external storage (𝑡𝑚𝑜𝑣) and for unencrypted configuration

(𝑡𝑢_𝑐𝑓𝑔), time is also incurred for the decryption (𝑡𝑑𝑒𝑐). The value of 𝑡𝑑𝑒𝑐 can be reduced

at the expense of increased area by pipelining the decryption. The total time required

for relocating a PB (𝑡𝑝𝑏𝑟) with this method can be described by Equation (5.2).

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 138

Figure 5.8: Model for relocating encrypted partial bitstreams by using a dedicated decryption

circuit for intermediate decryption

 𝑡𝑝𝑏𝑟 = 𝑡𝑚𝑜𝑣 + 𝑡𝑑𝑒𝑐 + 𝑡𝑢_𝑐𝑓𝑔 (5.2)

5.6.2 Initial Configuration and Intermediate Readback (ICIR)

This involves the initial configuration of an encrypted PB followed by readback and

then reconfiguration. Though an encrypted bitstream is used for the initial

configuration, the FPGA allows the ICAP to read back unencrypted data. The

configuration data can then be written to a different frame address generated in runtime.

To ensure that bitstream security is intact, the ICAP signals should never be routed out

of the FPGA. In this method, additional time overheads are incurred for the initial

configuration and the intermediate readback. Figure 5.9 shows the model for this

method while its latency equation can be seen in Equation (5.3). The main contributors

to PBR latency here are the times used for the initial encrypted configuration (𝑡𝑒_𝑐𝑓𝑔)

and intermediate readback (𝑡𝑟𝑏𝑘).

Figure 5.9: Model for relocating encrypted partial bitstreams by initial configuration

followed by intermediate readback and final reconfiguration

 𝑡𝑝𝑏𝑟 = 𝑡𝑚𝑜𝑣 + 𝑡𝑒_𝑐𝑓𝑔 + 𝑡𝑟𝑏𝑘 + 𝑡𝑢_𝑐𝑓𝑔 (5.3)

Encrypted

Partial

Bitstream

Data

Mover

External Storage

Memory

AES

Decryption

Circuit

ICAP

Controller

 tmov tdec tu_cfg

Encrypted

Partial

Bitstream

Data

Mover

External Storage

Memory

ICAP

Controller

 tmov te_cfg + trbk + tu_cfg

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 139

It should be noted that the idea of relocating an already configured bitstream has

already been reported in [147]. However, it was not applied as a means of relocating

encrypted partial bitstreams.

5.6.3 Advance Task Address Loading (ATAL)

The configuration model for ATAL is the same as that in Figure 5.9 but for the timing,

there are no initial encrypted configuration and intermediate readback times as shown

in Equation (5.4). There is only an encrypted configuration after the data movement.

One limitation with ATAL has to do with the fact that the ICAP in the 7 series FPGAs

only accepts encrypted data on bits 7 to 0 of its 32-bit input port [47], making 𝑡𝑒_𝑐𝑓𝑔

more than 𝑡𝑢_𝑐𝑓𝑔. However, this also affects method 2 since the initial configuration is

that of an encrypted bitstream.

 𝑡𝑝𝑏𝑟 = 𝑡𝑚𝑜𝑣 + 𝑡𝑒_𝑐𝑓𝑔 (5.4)

5.7 Evaluation of the Configuration Strategies

In order to quantitatively compare the three methods for relocating encrypted PBs,

uncompressed and compressed bitstreams are generated for a 2.4-GHz wireless

communication application and used as the basis for determining the relocation

latencies. Both plain and encrypted PBs are generated using Vivado. The application’s

RM/RP amounts to a CLB-BRAM pair which is equivalent to 194 configuration frames

(64 CLB/INT frames, 128 BRAM frames, and 2 pad frames). With 101 32-bit words in

each frame of the 7 series FPGA, the unencrypted configuration data for the application

is a total of 19,594 32-bit words, not considering the configuration commands.

In the analyses that follow, it should be noted that the data movement time (𝑡𝑚𝑜𝑣)

has not been considered since it is the same (3.993 ms, measured using the Zynq

processor’s internal timer) for all the three methods. There are slight differences in the

lengths of the final bitstreams. However, with respect to the transfer time by the Data

Mover, all the bitstreams can be moved into the FPGA in the same amount of time.

This is because of the contiguous nature of the data movement.

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 140

5.7.1 Evaluation of IDOD

In terms of area utilization, it is certain that this method uses the most resource because

of the need for a decryption circuit. The other two methods simply require the Data

Mover and the ICAP Controller. From the work in [217], we estimate a resource usage

of 5081 slices for an AES-256 decryptor targeted at the 7 series FPGA. When this usage

is combined with the usage for the Data Mover and the ICAP Controller, the total usage

comes up to 5579 slices.

In order to estimate the decryption time, 𝑡𝑑𝑒𝑐, the decryption latency of 41 clock

cycles (197.5 ns) per block reported in [217] is used. The encrypted portion of the

encrypted bitstream of the test application amounts to 19,784 32-bit words, which is

equivalent to 4,946 AES blocks (with a block being 128 bits). This is different from the

unencrypted word count because padding words are used before authentication and

encryption to ensure that data lengths are a multiple of 128 bits for encryption and 512

bits for authentication, required for simplifying the MAC computation [43]. Assuming

no pipelining is used, we estimate a total decryption latency of 4,946 multiplied by

197.5 ns, that is, 976.84 µs. This would reduce with pipelining, but the reduction would

depend on the pipeline depth.

For an unencrypted frame data, the configuration time of the Splixbit ICAP

controller is the same as that of the one in Chapter 4. Therefore, from Table 4.15, the

configuration time is computed as 197.64 µs and from Equation (5.1), 𝑡𝑝𝑏𝑟 can be

estimated as 1,174.48 µs. The comparison of this with those of the other methods is

presented in Table 5.5.

5.7.2 Evaluation of ICIR

The resource overhead incurred with this method is that of the Data Mover and the

ICAP Controller, which is a total of 498 slices, and is much lower compared with that

for IDOD (see Table 5.5). For the 194 frames required for the application, from Table

4.15 and real-life measurement, the estimates for 𝑡𝑟𝑏𝑘, 𝑡𝑢_𝑐𝑓𝑔, and 𝑡𝑒_𝑐𝑓𝑔 are 195.4 µs,

197.64 µs, and 806 µs (measured) respectively. This totals 1,199.04 µs for 𝑡𝑝𝑏𝑟

according to Equation (5.3). This is the worst relocation latency of the three methods.

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 141

5.7.3 Evaluation of ATAL

Like ICIR, the resource usage here is only 498 slices, which represents a resource

saving of more than 90% compared to IDOD. It should be noted, however, that the

ICAP controller includes a readback functionality which is not needed in ATAL.

Removing this functionality would reduce the usage by a few slices. For the relocation

latency estimation, a value of 806 µs for the application’s RM was measured. This value

is the lowest of all the three methods, offering an average time saving of 32% over the

IDOD and ICIR methods. This is because only a single configuration is done, with no

intermediate decryption or configuration and readback, making ATAL the most

resource and time-efficient of all the three.

The 𝑡𝑒_𝑐𝑓𝑔 for ICIR and ATAL are as high as they are because encrypted bitstreams

can only be configured 8 bits per clock cycle. This is a limitation in the 7 series FPGA

and has been addressed in the UltraScale, where the entire 32-bit interface can be used

[218]. Applied to the UltraScale then, all the other values in Table 5.5 would be the

same apart from 𝑡𝑝𝑏𝑟 for ICIR and ATAL methods, which would reduce to estimated

values of 594.54 µs and 201.5 µs respectively, but resulting in time savings for ATAL

of 83% and 66% over the IDOD and ICIR methods respectively.

Table 5.5: Comparison of the three methods for resource usage and relocation latency

Parameter IDOD ICIR ATAL

Utilization 5579 slices 498 slices 498 slices

Relocation Latency, 𝑡𝑝𝑏𝑟 1,174.48 µs 1,199.04 µs 806 µs

5.8 The Security Implications of ATAL

It is important to consider the security implication of using ATAL secure PB format. It

used to be that only the FDRI data of the bitstream was encrypted in the Virtex-5 secure

bitstream format [43]. On the contrary, in the 7 series FPGA, only the Use-Encryption

commands are in plain format. In the ATAL format, the only plaintext content that

reveals design-related information is the number of body parts, which reveals the

number of resource types used and nothing more. That is all that the attacker can glean

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 142

about the design and the author reckons that until proven otherwise, not so much can

be done with this information in terms of stealing the design or attacking the device.

To understand what the attacker would know from the number of body parts, refer

to Table 2.2, and note that the CLB, I/O blocks and clock routing resources share the

same block type of ‘000’, while BRAM content uses the block type of ‘001’. The Xilinx

documentation does not indicate the block type for DSPs, but an inspection of

bitstreams generated in Vivado reveals that the DSP shares the same block as CLBs.

When the bitstream compression feature is not used, the only frame addresses in the

bitstream are those for the combination of resource blocks used by the design. In such

bitstreams, a maximum of two frame addresses (for BRAM blocks and

CLB/DSP/IO/CLK blocks) and thus, a maximum of two body parts, can be expected.

Moreover, while packing the bitstream parts into a single bitstream file, plain FAR

command and frame addresses can be included right in the local preambles to simplify

the design of the Splixbit hardware and bitstream loading. However, this would give

far too much information away about the design. Once a specific FAR value is known,

an attacker with a fair understanding of the FPGA architecture would know exactly

what resource is used and where it is on the chip. The device is then more prone to

sophisticated attacks like probing the chip with a scanning electron microscope [43].

As such, it is far more secure to specify the FAR value in runtime.

5.9 Chapter Summary

PBR is a technique that can be used in FPGAs to reduce external bitstream storage

requirement and facilitate adaptability. However, because of the recent increase in the

uptake of FPGAs, bitstream authentication and encryption have been introduced to

secure FPGA-based IPs. PBR meanwhile, can only be carried out on plain bitstreams.

While method fragments already exist that can be used to effect encrypted partial

bitstream relocation, these are far less time- and resource-efficient. On the one hand, an

on-chip decryption engine can be used to decrypt the bitstream before passing it on to

the configuration interface, in which case, the difference in resource utilization brought

about by ATAL is the same as the utilization of the decryption engine which can almost

_______ Chapter 5 – Secure and Efficient Hardware Task Relocation Infrastructures for RC

 143

occupy an entire chip (for smaller devices). On the other end of the spectrum, an initial

configuration followed by an intermediate readback and final configuration can be

used, with the consequence that a very large system time overhead can be incurred in a

bid to save resources. ATAL provides an efficient solution and it is not a middle-ground

approach that incurs moderate resource and time overheads; it offers the best of both

spectra, incurring a very negligible time and resource overhead. ATAL has been

compared with these other methods and it happened to provide resource and time

savings in the order of 90% and 80% respectively for the test case.

144

Chapter 6

FPGA Clock Infrastructures for

Dynamic On-Chip Inter-Task

Communication

The importance of on-chip communication in today’s System-on-Chip (SoC) platforms

cannot be overemphasized. With the continued increase in the density of chips, the

number of circuits that can coexist on a single chip has increased by astronomical

proportions, sometimes numbering in the thousands [219]. Some of the processing

elements or circuits that can coexist on a chip include CPUs, GPUs, DSPs, memory

elements, and other IP modules. Establishing inter-circuit data transfer among these

circuits in a scalable and resource-efficient manner is essential. In an FPGA, the area

utilization of a circuit is influenced by the routability of the resources in the area

occupied by the circuit [220]. Underutilization can occur if the resources in a region of

the FPGA cannot be used by a circuit because there are no interconnect resources or

possible routes to connect them, leading to an enlargement of the area occupied by the

circuit in order to encompass more routing resources. The result is that the circuit

occupies a larger area than necessary, with several unused, or rather, unusable

resources.

The NoC has come to be regarded as the future of on-chip communication, owing

to advantages such as modularity and concurrency [173] (refer to Section 3.4). When

implemented on an FPGA, in order to provide access to the communication network,

the NoC typically uses the general routing resources as network links, thus increasing

the demand on the already strained routing resources in the area occupied by the circuit.

To alleviate this problem, a network link that does not use the general interconnect

resources should be used where possible. Incidentally, it turns out that most FPGA-

based designs do not use the on-chip global and horizontal clock buffers [44] and

invariably, a large part of the clock network. Repurposing these buffers and networks

for use as network links would lessen the demand on general routing resources for inter-

6

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 145

circuit communication. Moreover, these otherwise redundant resources, which are not

used for their intended clocking-related purposes have already been paid for in silicon.

As such, using them for communication-related purposes represents an added value.

Another advantage of using clock buffers and nets for communication is that they

facilitate runtime PBR. One important challenge with PBR, which has limited its

applicability, is the provision of dynamic communication for relocatable circuits in

runtime as previously discussed in Section 3.2.5. This is because inter-circuit links are

statically determined at compile time. Runtime routing is a possible solution to dynamic

communication but it is both complicated and computationally expensive, often

requiring several thousands of clock cycles [151]. In traditional NoCs, the general

routing resources are used as network links and thus, constitute static routes and hamper

circuit relocation. The use of clock buffers as network links avoids the restriction of

static routes and allows the arbitrary relocation of circuits. Since the clock buffers, trees,

and nets do not use the general logic routing resources [44] but have their dedicated

routing in the clock layer as explained in Section 2.1.1, the path from a transmitting

circuit to a receiving circuit is free of general routings.

In addition, routing congestions are often the reason that static routes cross into

RPs and requiring that these routes be preserved in all RMs using the RP, which is a

further requirement of PBR (see Section 3.2.5). A way of reducing routing congestion,

especially at the interface of circuits, and thus, reducing the number of static routes

crossing RPs is to use bit-serial interconnections between circuits, as this has been

shown to have reduced footprint and congestion factors [180]. Incidentally, our use of

clock buffers for communication calls for the adoption of bit-serial connection at the

clock buffer level. However, multiple bit-serial connections can be used depending on

the availability of clock buffers in the target FPGA. In addition, a bit-serial

communication implementation nevertheless is beneficial because it helps in easily

meeting the requirement for the preservation of existing static routes, while at the same

time garnering the other benefits of bit-serial over bit-parallel interconnects, which

include high speed and power savings as demonstrated in [179] and [180].

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 146

Because this technique incurs a low overhead of resources and involves the unique

use of clock buffers for serial network interconnection, we have termed it Clock-

Enabled Low-Overhead Communication (CELOC).

The techniques and implementations reported in this chapter are covered in

publications [221], [222], [223], and [224]:

 A. Adetomi, G. Enemali, and T. Arslan, ‘Clock Buffers, Nets, and Trees for

On-Chip Communication: A Novel Network Access Technique in FPGAs’, in

2017 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), 2017, pp. 219–222.

 A. Adetomi, G. Enemali, and T. Arslan, ‘Relocation-Aware Communication

Network for Circuits on Xilinx FPGAs’, in 2017 International Conference on

Field Programmable Logic and Applications (FPL), 2017, pp. 1–7.

 A. Adetomi, G. Enemali, and T. Arslan, ‘Characterization of Clock Buffers

for On-Chip Inter-Circuit Communication in Xilinx FPGAs’, in 2018 IEEE

International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

 A. Adetomi, G. Enemali, G. Seetharaman, and T. Arslan, ‘Fault-Tolerant

Mechanisms for Relocation-Aware Dynamic On-Chip Communication on

FPGAs’, in 2018 NASA/ESA Conference on Adaptive Hardware and Systems

(AHS), 2018, pp. 214–217.

6.1 Clocking Resources in the Xilinx 7 Series FPGA

There are several clock buffers in the Xilinx FPGAs for driving clock networks that

span diverse clusters of regions. There are also Phase-Locked Loop (PLL) frequency

synthesizers for on-chip jitter-free clock generation from an external clock source.

6.1.1 Clock Buffers and Network Distribution

The clock network of all modern FPGAs is based on the Spine-and-Ribs topology [225],

where vertical spines drive clock signals into horizontal ribs. Eventually, local ribs in

the clock regions directly clock logic resources. This provides support for multiple local

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 147

and global clock domains. Figure 6.1 shows the clock network distribution and

interaction in a single clock region of the 7 series FPGA. There is a horizontal clock

row (HROW) that spans the entire length of the clock region. It is in the middle of each

region. Clock signals switch vertically upward and downward from the HROW to reach

logic resources.

A regional network serves synchronous resources contained in a single clock

region and is driven by regional buffers (BUFRs) while a multi-region network

distributes clock signals to multiple clock regions, vertically through multi-region

buffers (BUFMRs), or horizontally through horizontal clock buffers (BUFHs). A global

clock network spans the entire device and can drive multi-region and regional networks.

This network is driven from the centre of the device by 32 BUFGs, with 16 in each

top/bottom half. The most important thing to note, and that which is being exploited in

our adaptation of clock buffers and networks for inter-task communication is that the

clock networks use independent physical wires different from the general logic routing.

Inside a clock region, switch matrices route clock signals to the logic resources with

appropriate PIPs activated as required.

Figure 6.1: Clock network distribution in the clock region of an FPGA

Switch

Matrix

Switch

Matrix

S
w

it
ch

 B
o
x

clock

S
w

it
ch

 B
o
x

To BUFR in top

adjacent clock region

To BUFR in bottom

adjacent clock region

To

adjacent

clock

region

S
w

it
ch

 B
o
x

12 BUFHs

2

BUFMRs

4 BUFRs

S
w

it
ch

 B
o
x

16 BUFGs

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 148

6.1.2 Clock Buffers and the Features Exploited by CELOC

In order to realize CELOC, two factors are important for a clock buffer and its

associated net – the span or reach of the net, and the availability of a Clock Enable (CE)

pin on the buffer for logic functions. The reach or range of a buffer’s net determines

how far on the chip the clock-layer-based communication signal can travel, and the

number of buffers with switchable CEs affects the number of transmitting nodes a

CELOC-based network can support. In addition, the clock buffer must be user-

accessible in the design tool, that is, it must be possible to instantiate and place it in

order to control connections to and from it. We now consider the case take a look at

these features in the clock buffers of the 7 series FPGAs [44]:

A. Global Clock Buffers/Multiplexers - BUFGCTRL

The global clock buffers drive the global vertical clocking backbone in the 7 series

device and there are 32 of them per device, with 16 in each of the top and bottom halves.

Their reach spans the entire FPGA and as such, they can feed any clocking point in the

device. As such, they can be used for device-wide communication. These buffers do

not reside in clock regions but up to 12 unique lines out of the 32 global clock lines can

be driven into a clock region to feed clocking points inside the region. There are six

possible configurations of the global buffer when placed in a site on the chip. However,

the two of interest are BUFG and BUFGCE (see Figure 6.2)

The global clock nets have the capacity to drive not only the clock inputs of logic

resources, but also the Set/Reset (SR) and CE inputs of registers. This feature is

particularly important in achieving CELOC-based dynamic communication, as it

allows a communication clock signal to be received via the SR input of a register, and

ensuring that no local (static) routing crosses the task boundary.

Figure 6.2: Xilinx FPGA’s global clock buffers/multiplexer

Clock Enable

(CE)BUFG

Input Output

BUFGCE

Input Output

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 149

B. Horizontal Clock Buffers – BUFH and BUFHCE

They are very similar to the global buffers as they drive the horizontal global clock

tree spines. However, they span only two horizontally adjacent clock regions. Unlike

global clock buffers that do not reside in clock regions, there are 12 BUFH(CE)s

contained in the HROW at the edge of each clock region. However, both share the same

12 routing tracks in the HROW. The horizontal buffers can be used as BUFHs, with

simple input and output, or as BUFHCEs, with a CE pin (like the BUFG(CE)s of Figure

6.2). Unlike the BUFGCTRL, the CE of the BUFHCE can be used to gate power

consumption and as well achieve a true CE logic function on a clock cycle-to-cycle

basis, allowing both synchronous and asynchronous transfer of the clock input to the

output of the buffer. Like the global clocks, the BUFH(CE)s can drive the enable and

reset inputs of logic resources.

C. Multi-Region Clocks – BUFMR and BUFMRCE

The multi-region clock buffers are used to enable multi-regional clocking by

directly driving regional clock buffers (BUFRs) in the same clock region and the ones

above and below it. Like the BUFHCE, the CE in the BUFMRCE can be synchronous

or asynchronous to the input/output transfer. The BUFMRCE can be used to achieve a

CELOC-based network that is local to three vertical clock regions. There are two

BUFMR(CE)s in each clock region.

D. Regional Clock Buffers - BUFR

The regional clock buffers can drive any clocking point drivable by a global clock

in a single clock region. In each region there are four dedicated clock nets driven by

four BURs. These nets are independent of each other and the global nets in the clock

region. Since each of these regional clock nets is distinct, this allows multiple unique

clocks to feed a single design or provide communication. The regional clock buffers

can be used in both BUFR and BUFRCE configuration. They have two control lines,

the CE and the clear (CLR). These are associated with the frequency division mode of

the buffer and can only be used in that mode. That is, the CE can only be toggled if the

BUFR_DIVIDE option is set to any number other than “BYPASS” when the buffer is

instantiated in RTL. With respect to CELOC, the BUFRs can be used for intra-region

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 150

communication and are also essential for transferring data out of a clock region for

global inter-task communication as they are able to connect directly to BUFGs.

6.2 Adaptation of Clock Buffers for Communication

The availability of a diverse range of clock buffers with global and local spans in the

Xilinx FPGAs offers a unique possibility that can be utilized to achieve on-chip

communication functionality. Our communication solution involves a special

adaptation of these clock buffers to serve as binary (‘0’ or ‘1’) signal transmitters and

receivers on the FPGA.

Would repurposing clock buffers for communication not be detrimental to their

intended functionality? It is true that the clock buffers and nets are precious and are

available in the chip predominantly for clocking-related functionalities. For instance,

according to the 7 series FPGA clocking resources user guide [44], the functions of the

buffers include glitchless multiplexing between clock sources, clock gating to reduce

dynamic power consumption, elimination of clock distribution delays, clocking support

for circuits spanning multiple clock regions on the FPGA, and clock frequency division.

However, the same user guide reports that most FPGA designs contain several unused

global and horizontal clock buffers. These buffers are essential to the working of

CELOC. One of the aims of this research is to repurpose these redundant resources for

dynamic on-chip communication support and thus save on valuable FPGA resources

that would otherwise have been used for on-chip networking, while at the same time

providing a static-route free inter-communication for relocatable circuits.

Figure 6.3 presents the CELOC concept in a diagrammatic form. By gating a free-

running communication clock using a clock buffer, it is possible to send data from a

transmitting (TX) task to a receiving (RX) task from any location on the device to

another reachable by the buffer. At the TX end, a Serializer works in a Parallel-In

Serial-Out (PISO) version to send data while a Deserializer at the RX reverses the

operation in a Serial-In Parallel-Out (SIPO) version. The CELOC technique requires

an RX task to be fed with three clocks: task_clock, com_clock, and data_clock. The

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 151

task_clock signal is used to clock the tasks while com_clock is used to generate

data_clock, which carries a serialized data from the source to the destination.

TX Task RX Task

CE

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Data Latch Controller

Data Serializer

Data Deserializer

Counter

Serial to Parallel Converter

Clock

Buffer

Block
ce_cntrl

d
a
ta

_
c
lo

c
k

task_clock task_clock

com_clock

Figure 6.3: Transmitting serialized data with a clock buffer

6.2.1 Data Transfer Mechanism

To transfer data, the parallel data from a TX task is serialized and shifted out bit-by-bit

to an RX task through the clock buffers. A register is used to latch the parallel data for

onward shifting to the clock enable (CE) of the buffer on the ce_cntrl signal line. This

latching is done by the Data Latch Controller. Since the same register block is used for

shifting out the serial bits, multiplexers are used to select between updating the registers

with new data and shifting already latched data.

The ce_cntrl signal, which carries the serial data to be transmitted controls the

output of the buffer by toggling its CE. A ‘1’ allows the input of the buffer to pass

through to the output, while a ‘0’ ties the output to zero. Since the communication clock

(which can be the same as the task clock) and the task clock are synchronous, a ‘1’ on

ce_cntrl essentially allows a full clock cycle to pass through while a ‘0’ blocks it. As

an example, Figure 6.4 shows the theoretical expected signal transitions for transmitting

10011010 (binary) (see Table 6.1 for the corresponding truth table). The RX task’s

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 152

SIPO circuit can detect a falling edge on com_clock as a ‘1’. With respect to the

distance between the TX and RX tasks, the clock buffers in the Xilinx FPGAs are

designed for short propagation delays and very low skew [44]. This helps prevent the

kind of long propagation delays associated with shared-bus interconnects. As a result,

the two clock signals (com_clock and data_clock) can travel far with minimal loss of

phase alignment, and thus ensure timing closure.

com_clock

ce_cntrl

data_clock 1 0 0 1 1 0 1 0

Figure 6.4: Transmission of an 8-bit binary data 10011010

Table 6.1: Truth table for clock-enabled data transmission

Inputs Outputs

tx_serial_data (CE) com_clock data_clock

1 X com_clock

0 X 0

6.2.2 Communication Clock and Task Clock Generation

In order to achieve the maximum possible throughput for data transfer, it is important

to drive com_clock as high as possible. An advantage of using a separate clock as the

communication clock is that we are not limited to the frequency of the task clock; the

communication engine can run at a much higher frequency. The FPGA provides a hard

PLL clock generator, which can be used to generate a clock signal at a frequency much

higher than that of the clock fed into the FPGA.

In the demonstration of CELOC in this work, the PLLE2_BASE primitive in the 7

series FPGA is used to generate the two clocks (com_clock and task_clock). Two

global clock buffers are then used to distribute them throughout the chip when

necessary. Figure 6.20 shows the schematic of the PLL-based clock generation and

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 153

distribution for CELOC. The core of the clock generator is the PLLE2_BASE primitive,

which can be used as a frequency synthesizer, jitter filter, or to deskew clocks. As a

clock generator, the PLL requires an internal feedback as shown in Figure 6.20.

Figure 6.5: Schematic of the PLL-based clock generator for CELOC

6.2.3 Clock Domain Crossing

Because com_clock and task_clock are functionally in different clock domains – one

used to clock the registers that push out the serial bits, and the other to retrieve the

serialized data through another set of registers, it is important to investigate the impact

of Clock Domain Crossing (CDC).

To avoid complications from CDC, the two clocks are sourced from a single PLL

clock generator with the communication clock made as high as possible. Using this

structure helps to prevent setup and hold timing violations by keeping both the

transmission and the reception synchronous and in the same clock domain – no

asynchronous clocks and no variable phase alignment. Therefore, no clock domain

crossing issues are expected since the same clock (com_clock) is used to transmit and

receive data [226]. Nevertheless, every implementation of CELOC is checked for CDC

violations using the Vivado timing report.

PLL

Primitive

BUFGCLKOUT0CLKIN1

Clock

BUFGCLKOUT1

task_clock

CLKFBOUT

CLKFBIN

com_clock

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 154

6.2.4 Data Recovery Mechanism

Since we are interested in avoiding the general routing resources, it is important that

the recovery of the serial bits in the RX circuit should employ a mechanism that is

independent of general interconnects. Hence, an ideal interface to data_clock should be

a clocking point in a logic element. Two candidates for this are registers and latches

with non-clocking inputs that can be fed by clock signals. The FDPE register and the

LDPE latch [227] in the 7 series FPGA fall into this category and can thus be connected

as shown in Figure 6.6 to receive data_clock into an RX circuit without using the

general interconnect. This is because their Set/Reset (SR) and Preset inputs can be

driven by global and horizontal clock buffers. Their Q outputs produce the same

waveform as the original ce_cntrl signal used to toggle the clock buffers in Figure 6.3.

The choice of either the FDPE or the LDPE influences the maximum bandwidth of

communication as will be seen in Section 6.5.

Figure 6.6: Setup of the FDPE (or LDPE latch) register to interface with com_clock and

data_clock for serial data recovery

Table 6.2: Truth table of the FDPE register

Inputs Outputs

PRE CE D C Q

1 X X X 1

0 0 X X No Change

0 1 D 1 D

The FDPE is a D flip-flop with clock enable (CE) and asynchronous preset [227].

By connecting CE to a ‘1’ and D to a ‘0’, with the clock input fed by the same clock

CE

PRE

QD0

1

com_clock

data_clock

serial_data

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 155

(com_clock) used to create the data clock at the transmitter, data_clock connected to

the PRE input produces on Q, signal level transitions corresponding to the rising edges

of data_clock as shown in Figure 6.7 for the same 8-bit data 10011010 (binary)

transmitted in Figure 6.3. To understand how this works, we consider the truth table of

the FPDE (see Table 6.2). We observe that by setting CE to ‘1’ and D to ‘0’, Q follows

PRE (data_clock) instead of D at every rising edge of C. The LDPE data latch with

asynchronous preset and gate enable [227]. A similar explanation applies to the LDPE

with regards to the signal transmissions that allow the recovery of the transmitted data,

except that for the LDPE, the gate (connected to data_clock) input’s signal transitions

are reversed.

com_clock

data_clock

FDPE_Q

 1 0 0 1 1 0 1 0

Figure 6.7: Waveform showing the signal transitions at the output of an FDPE register with

com_clock as the clock input and data_clock as the PRE input

6.3 Packet Synchronization and Encoding

Since CELOC in general, serializes the data being sent before transmission, an idle line

will be either a ‘1’ or a ‘0’. It then becomes important for the transceiver task to

determine when to start or stop reception? It is also possible for a task node to join a

CELOC-based network in the middle of an ongoing transmission. The new node has to

correctly latch on to the beginning and end of packets. In general, a CELOC-based data

transfer between any two circuits does not require any special handshaking or encoding

technique, as a data bit that leaves the source circuit would arrive at the destination

circuit without any ambiguity if the two circuits are directly interconnected. However,

in CELOC-based NoCs, the source and destination nodes may not be directly physically

connected and communication packets may be routed through intermediate nodes until

they reach their destinations.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 156

As such, data packet synchronization may be required to coordinate data transfer.

It may be worth nothing however, that packet synchronization is not always required in

bit-serial networks [180]. Depending on the adopted topology, a NoC design might be

able to do away with packet synchronization and as such save on encoding resources

and latency. This approach is favoured when applicable. However, in other

applications, encoding is necessary if ambiguity in data transfer is to be avoided

To uniquely mark off the boundaries of transmission packets in serial networks,

frame synchronization mechanisms are used. One such mechanism is byte stuffing,

where a special code byte is used to delimit packet boundaries. In order to prevent

incorrect synchronization, as the code byte may be present in the data packet, special

‘escape’ codes are often used [228], but the length of the packet ends up being

inconsistent [229]. This is not desirable in real-time applications, where timeliness and

predictability are important. To achieve consistency in packet size, we propose an

adapted form of the Consistent Overhead Byte Stuffing (COBS) [229].

The COBS maps numbers in the range [0, 255] to numbers in the range [1, 255],

thereby reserving one number which can be used as the frame synchronizer (delimiter).

The details on how this is achieved can be found in [229]. Adopting a similar technique

to map the hex number set [0, F] to [1, F], we reserve the number zero to be used as the

delimiter. We call this Consistent Overhead Nibble Stuffing (CONS). Starting at the

zeroth (most-significant) nibble (4 bits of 0’s and 1’s), the occurrence of a zero is

replaced by the number of nibbles examined (including the zero) followed by the non-

zero nibbles before the zero. For example, an arbitrary 32-bit packet of hex numbers

(400AD013) passed through the CONS encoder would produce 2413AD313 (hex) as

shown in Table 6.3.

A simple way to carry out the encoding is to logically pad the packet with zero

nibbles at the beginning and end as shown in the second row of Table 6.3, with the first

serving as a placeholder for the overhead and the other as a phantom helper to complete

the encoding process. This phantom does not actually count as part of the data. Each

nibble of the padded packet is then given an index starting at 0 from the most significant

nibble (0 to 9 in this example). The encoded nibble of a zero nibble at index izn is

obtained by subtracting izn from iznext, where iznext is the index of the next zero nibble.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 157

There cannot be another nibble after the appended zero nibble. Therefore, the encoded

packet is terminated on the penultimate index (index 8 in this example). Further

illustrations in Table 6.3 show that an all-zero packet would be encoded as 111111111

(hex) and a packet without a zero nibble as 9XXXXXXXX (hex), where X is a non-

zero nibble.

The advantage of this form of encoding is that every packet is guaranteed to have

a fixed overhead of one nibble. On the other hand, the disadvantage, as the examples

show is that even when there is no zero nibble in the data, the overhead is still incurred.

However, this is the price that is paid for the benefit of determinism in communication

latency as far as the data packet is concerned.

Table 6.3: Examples showing the CONS encoding process

Index (in) 0 1 2 3 4 5 6 7 8 9

Nibbles (Di) 0 4 0 0 A D 0 1 3 0

CONS Code (iznext – izn) 2 1 3 3

Encoded Data 2 4 1 3 A D 3 1 3

Nibbles (Di) 0 0 0 0 0 0 0 0 0 0

CONS Code (iznext – izn) 1 1 1 1 1 1 1 1 1

Encoded Data 1 1 1 1 1 1 1 1 1

Nibbles (Di) 0 5 1 D F 2 C 3 7 0

CONS Code (iznext – izn) 9

Encoded Data 9 5 1 D F 2 C 3 7

In order for a new node to synchronize to the communication network, a bit-level

framing delimiter is required. Since there is no zero nibble in the CONS encoding, there

cannot be more than three consecutive 0’s except if a zero delimiter is used. To avoid

ambiguity, a sequence of 1 and seven 0’s (10000000) will be used as the delimiter

taking a cue from [229]. This delimiter or Frame Synchronization Sequence (FSS) is

added at the beginning of each transmission packet.

The FSS, the CONS overhead, and the data bits can all be concatenated into a

single packet as shown in Table 6.4. The data bits can be no more than 7 bytes long for

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 158

a fixed-width data packet as this is the maximum number of bytes between any two

successive zeros that can be encoded by the CONS scheme. This is because the 16

nibbles in the set [0, F] are mapped to 15 nibbles in the set [1, F] for the purpose of

encoding zero nibbles. In other words, only 15 consecutive zero nibbles (60 bits) can

be encoded (including the phantom zero appended logically to carry out the encoding).

Removing the 4 bits of this phantom zero leaves 56 bits (7 bytes) for the actual data to

be transferred.

Another way of looking at this is to note from Table 6.3 that a code nibble is derived

from the subtractive operation between the indexes of two nearest zeros, with the code

stored in the position of the first (placeholder) zero nibble. Since a nibble can only hold

a maximum count of 15 (F in hexadecimal), and the phantom zero appended to the data

is part of the count, the actual data (payload), which is the allowed maximum value of

the distance between any two zero nibbles, is thus 14 nibbles (index 15+in minus index

in minus one phantom overhead nibble). This 14-nibble maximum data bits is only true

for packets with infrequent zeros; if zeros are guaranteed to show up at no more than

14 nibbles apart, then a single packet can have data bits in excess of 56 bits. However,

where such guarantees are not deterministic or where bounded transmission latencies

are desired as is the case of real-time on-chip networking, a fixed data bit of not more

than 56 bits has to be enforced.

Nibbles have been used instead of bytes as a compromise between the percentage

overhead and the maximum data bits. With a byte word length as in the original COBS,

we would incur 8 bits of overhead per packet, though the maximum data bits would

then be 254 bytes. A quick comparison shows that the COBS has a lower percentage

overhead of 0.39% per 254 bytes compared to 7.14% per 14 bytes in CONS. However,

at lower data sizes, COBS incurs more than CONS. For instance, for a data size of 6

bytes, COBS would incur 20% overhead compared to 8.33% in CONS. Moreover, the

size of the delimiter also increases with the word size, always two times the word size,

and thus influencing the total overhead and latency of packet transactions. Ultimately,

the choice of word size will be a compromise between the percentage overhead and

the maximum data bits required per packet.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 159

Table 6.4: Packet format for CONS-encoded data bits

Fields FSS CONS Overhead Max. Data

Number of Bits 8 bits 4 bits 56 bits

Comment Value: 80 hex CONS-encoded

6.4 Network Adapter for Communication Access

To exploit the clock network for communication, each of the intercommunicating tasks

in an RC system employing CELOC must be wrapped with a Network Adapter to

arbitrate access to the CE of a clock buffer, When no packet synchronization is used,

the CONS encoder and decoder are not needed and adapting to a network simply

requires the Serializer/Deserializer (SERDES) of Figure 6.3 introduced in Section 6.2.

The popular serial communication interfaces like the Serial Peripheral Interface

(SPI) and I2C are avoided because they require more than one signal. A potential

interface protocol for CELOC could be a 1-wire protocol like the one introduced in

[230] or the Universal Asynchronous Receiver-Transmitter (UART). Essentially, since

only the CE pin in a clock buffer is being driven by an RX task in CELOC, a single-

wire protocol would be more appropriate to prevent the usage of static routing resources

as much as possible. The proposed SERDES provides a raw interface to the clock

buffers and a higher-level bit framer can always be used to adapt to different serial

protocols. As it is, the SERDES is a serial streaming interface that would bit-stream a

packet of data presented at its data input and also recover a parallel data that is serially

shifted in.

On the other hand, when packet synchronization is needed, the CONS encoder and

decoder are used and the task is wrapped as shown in Figure 6.8. This builds upon the

proposed SERDES by implementing five major blocks: a CONS Decoder, a Task

Interface Logic (TIL), and the CONS Encoder. The next subsections provide more

details on these blocks and other components of the network adapter.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 160

Figure 6.8: Network adapter for packet-synchronized communication access in CELOC

6.4.1 Task Interfacing

This work proposes a task interface model that is based on the Xilinx HLS Block-Level

interface protocol [15] for any task that has to communicate using CELOC’s packet-

synchronized wrapper. This model requires that a minimum of five ports: ap_idle,

ap_start, ap_rst, ap_ready, ap_done, and ap_return (indicated by the arrow that feeds

the Mux in Figure 6.8) are defined for a task. This ensures uniformity of interfacing

between different tasks and the CONS codec (decoder-encoder) and provides a

standardized task interface. In addition, this is also in line with the current trend in using

HLS-generated HDL modules for rapid system development.

6.4.2 CONS Encoding

In the encoder, which also serves the function of data serializer, the CONS encoding

algorithm is implemented with a finite state machine. The flowchart in Figure 6.9 is a

representation of the encoding process. The thick junctions depict the concurrency of

the implementation. The theoretical encoding process presented in Section 6.3 is

modified for hardware implementation. The encoder starts its operation when a START

signal is asserted. First, it saves the data to encode in a shift register and then starts the

encoding process. The process involves detecting zero nibbles and replacing them with

CONS codes. Once the entire packet is encoded, the bits are shifted out serially for

routing to the CE of a clock buffer. The encoder asserts a READY signal when all the

bits have been shifted out, signalling that it is ready for another encoding operation.

Task
CONS

Encoder

CONS

Decoder

data_out

Synch
error

ready

com_clock

ap_ready
Task

Cntrlr

se
ri

a
l_

d
at

a_
o

u
t

d
at

a_
in

ap_start

Mutex

ap_idle

ap_done

ap_rstdata_rcvd

CE of

BUFFER

task_clock

start

TIL

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 161

Figure 6.9: Flowchart describing the CONS encoder's implementation

6.4.3 CONS Decoding

The CONS decoder receives, decodes, and de-serializes a CONS-encoded packet. The

decoding process can be roughly represented by the flowchart in Figure 6.10, where the

thick junctions depict the concurrency of the implementation. In the decoder, the code

nibbles in the received packet are replaced with zeros. The decoding is simplified by a

careful implementation of the decoding algorithm. A close look at the encoded data in

Start

Shift One

Nibble for

Encoding

Is End of

Packet?

No

Is Nibble

a Zero?

Nibble =

Encoder

Counter

Next Nibble

+= Encoder

Counter

Reset

Encoder

Counter

YesShift Out the

Delimiter

Shift Out Data

Serially

Assert

READY

Yes

Stop

Increment

Encoder

Counter

Latch

Parallel Data

Bits

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 162

Table 6.3 in reveals that every code nibble points to the relative location of the next

code nibble. This is as expected since the CONS codes are formed by counting the

number of non-zero nibbles preceding a zero nibble as explained in Section 6.3. Also,

the first nibble received is always a code nibble. These observations are crucial as they

simplify the logic of the decoder, and hence reduce the FPGA resources used. By

subtracting 1 from the value of a code we obtain the number of data nibbles preceding

the next code. Using a state machine, we loop through all the codes and extract the

associated data. Once all the nibbles have been processed the data_rcvd port (see Figure

6.8) of the decoder is asserted and the state machine resets in anticipation of a new

packet.

Figure 6.10: Flowchart describing the CONS decoder's implementation

Is Delimiter

Received?

Start

Decoding

No

Increment

Bit

Counter

Bit

Counter

= 3?

Is First

Nibble? Increment

Nibble

Counter

Is Ncounter =

Next Cindex?

Nibble = 0

Yes
Shift in

Serial Bits

Next Cindex +=

Present Nibble

YesYes

No

Reset Bit

Counter

No

Is End of

Packet?
Yes

Yes

No

Stop

Start

No

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 163

6.4.4 Address-Inclusive Encoding and Decoding

A generic approach is taken in the implementation of the encoder so that it is usable for

varying numbers of data width. In the vanilla implementation, where there is no

addressing or any special bits inserted in the packet, the codec is intended for P2P

communication without provision for addressing. However, the applications that

require CELOC for use in a NoC would benefit from an addressable codec that has the

addressing functionality embedded in it.

More often than not, the packet in Table 6.4 will need addressing if CELOC is used

to implement an on-chip network. In appending the address bits to the packet, a plain

un-encoded non-zero addressing is recommend, where a zero address is not used and

the address bits therefore do not need to be encoded. This ensures the address bits do

not eat into the maximum number of bits available for data. More important though, is

the fact that in a CELOC-based NoC, the packet can therefore be routed through the

network with much less latency since the intermediate nodes do not necessarily have to

receive the entire packet as the address to deflect a packet to is visible in the packet.

There is a use_addr port, with a corresponding address ports on the interface of the

encoder and the decoder. This is used to enable the address-inclusive mode and is

controlled by the TIL. Example waveforms showing the non-addressable and address-

inclusive modes of the CONS encoding and decoding can be found in Appendix D.

6.4.5 Task Interface Logic

The Task Interface Logic (TIL) interfaces the task to the CONS Encoder and Decoder.

It glues together a Task Controller (TC), Mutex, multiplexer (Mux), and Synchronizer

(Synch). The Mutex is a means of sending status information out of the task and

wrapper, especially for the purpose of error detection. For instance, the decoder could

fail due to an error in its internal state machine’s state transition. The Mux is used to

choose between the output of the task and that of the Mutex.

The function of the TC is to start the task if it is idle and data has been received

by the decoder. It also deserializes the received packet, recovers the data and presents

it to the task. In addition, it handles addressing when the address-inclusive CONS is

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 164

used. These are the functions of the TC in this prototypic implementation. However,

in an RC system that deploys CELOC, the TC would receive command packets from

a system-level Task Communication Manager (TCM) to start or stop its associated

task. It would also receive the destination address and the system time instance the

processed data should be sent. This time however, cannot be earlier than the time

instance the task finishes execution. If the packet is a command packet, the TC would

check whether to start the task or reset it based on the command and would do

accordingly. Otherwise, the received packet would be handled as a data packet. If the

task is already started, the TC would route the new data to the task. The situation

should not arise where a task is not ready for a new data, thus avoiding the need for

buffering and saving on memory resources. This is because the TCM would dictate

the time to send data based on when a destination task can accept it. It would therefore

be counterintuitive to provide a buffering capability. However, a buffer can easily be

inserted if necessary but the TCM’s algorithm and the task computation model would

have to be modified to account for this. In general, data should not be processed by the

task at a rate faster than it can be routed through the CONS Encoder/Decoder (Codec)

and the serial communication network except if buffering is used.

Similarly, in data delivery to the CONS Encoder is not buffered. The TIL ensures

that the encoder is ready for a new input before applying the task’s output data. The

Synchronizer does this by checking that both ap_ready and CONS Encoder’s ready

are driven HIGH before asserting the CONS Encoder’s start. It is guaranteed that once

ap_ready goes HIGH, the data from the task is available as input to the CONS encoder.

This is because the Output Data Mutex and Multiplexer are purely combinatorial and

as such incur no clock delays. To ensure a non-buffered data at the input of the encoder,

the encoding time should be accounted for in the timing model a system deploying

CELOC.

6.4.6 Resource Utilization and Performance Evaluation

Table 6.5 shows the resource overhead of the network adapter for the bare SERDES

and the packet-synchronized version. Tiny finite state machines are implemented for

the PISO and SIPO blocks of the SERDES. These incur a total of 13 slices while the

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 165

CONS-based adapter’s utilization amounts to only 32 slices. As the reconfiguration

frame, which defines the minimum selectable area for partitioning the FPGA area, is

always two columns (200 slices for CLBs). This implies that the adapter will fit right

in, even with the smallest of tasks, by occupying only between 6.5% and 16% area of

the reconfiguration frame.

While the use of the clock buffers for communication incurs a resource overhead

of 32 slices owing to the encoding and decoding of serial data as expected in a serial

transmission [229], this still offers a good area to performance ratio. Moreover, the big

advantage of the buffers is that they avoid static interconnections between circuits. This

facilitates a dynamic placement of circuits as will be shown in Section 6.6, and is fit for

inter-task communication in reliability-aware applications as will be demonstrated in

Chapter 7.

Table 6.5: Resource utilization of CELOC’s network adapter

Resource

Network Adapter Modules

SERDES Packet-Synchronized

PISO SIPO CONS ENC CONS DEC CONS TIL

FFs 30 72 65 100 84

LUTs 14 10 35 28 24

DSPs 0 0 0 0 0

BRAMs 0 0 0 0 0

Slice 13 32

In terms of data transfer latency, the SERDES PISO block latches the parallel data

in one clock cycle and streams it for the number of clock cycles equivalent to the

number of bits in the parallel data. The SIPO recovers the data in the same period but

uses one additional clock cycle for internal state transitions. As a result, the SERDES

latency for a 32-bit data is 34 clock cycles.

For the evaluation of communication latency of the packet-synchronized adapter,

the CONS encoder is directly interfaced to the CONS decoder and the number of cycles

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 166

measured individually for the encoder and decoder; and also for the entire codec. Table

6.6 presents the measured clock cycles. From the moment the encoder’s start signal is

asserted to the end of encoding and serial data shifting out (ready signal asserted), 56

clock cycles are incurred for the non-addressable codec and 60 for the address-inclusive

version. Similarly, for the decoder, from the moment the FSS is received to the end of

decoding, these numbers are 48 and 52 respectively. An entire 32-bit packet is sent and

received in 60 and 64 clock cycles respectively.

For the different word sizes, the test packet is made a multiple of 32 bits for ease

of comparison and the generation of the latency equations. That is, for the word lengths

of 4, 8, 16, and 32, data widths of 32, 64, 128, and 256 bits are used. The equations are

therefore, applicable only when the packet size is 8𝑁𝑊, where 𝑁𝑊 is the word length in

bits.

Table 6.6: CELOC CODEC’s communication latencies for different word sizes

Word Size

(𝑁𝑊)

in Bits

Maximum

Data Size

Per Packet

Clock Cycle Latency for 8𝑁𝑊 Data Bits

 Non-Addressable 4-bit Addressable

ENC DEC CODEC ENC DEC CODEC

4 56 bits 56 48 60 60 52 64

8 254 bytes 100 88 108 104 92 112

16 128 kB 188 168 204 192 172 208

32 16,384 MB 364 328 396 368 332 400

Latency Equation 60 + 12(𝑁𝑊 − 4) 64 + 12(𝑁𝑊 − 4)

6.5 Clock Buffer Configurations for Network Access

The diagram in Figure 6.11 is a representation of a section of the Xilinx 7 series FPGA.

The left and right clock regions are symmetrical with respect to the placement of clock

buffers. Also indicated, are Circuit Regions (CRs) that are potential areas within the

clock regions for task placement targeting the exploitation of clock buffers for

communication. Note that not all possible CRs and communication routes are shown.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 167

The notion here is that inter-circuit communication should only be through the clock

buffers for the purpose of avoiding the static routes completely in order to aid the

flexible relocation of circuits. Figure 6.11 also shows the locations of the clock buffers

on the FPGA. In general, a 7 series FPGA (apart from the smaller Artix-7 chips) has 4

BUFRs, 2 BUFMRs, and 12 BUFHs in each clock region. In addition, there are 32

BUFGs at the centre of the chip, common to all the regions.

The clock buffers have different spans determining where communicating circuits

can be placed. As stated in Section 6.1.2, BUFRs can drive clocking points in a single

clock region, and thus can be used for intra-region communication. On the other hand,

BUFMRs can drive resources in three vertical adjacent regions, providing a

communication access that is 3-clock-region-wide. BUFHs are located in-between

horizontal adjacent clock regions and thus can serve as communication links between

them. Able to reach every clocking point, BUFGs are located at the centre of the FPGA

and can be used for device-wide communication.

CR6CR5 CR8CR7

CR2CR1 CR4CR3

Top

Half

Bottom

Half

2 Multi-

Region

Buffers

(BUFMRs)

4

Regional

Buffers

(BUFRs)

32 Global

Buffers

(BUFGs)

Horizontal Buffers (BUFHs)Clock Region Clock Management Tile (CMT) Column

Figure 6.11: Representation of the 7 series FPGA chip, showing the locations of clock

buffers, circuit regions (CR1 to CR8) for placing circuits within clock regions, and sample

vertical and horizontal interconnections between the CRs

While the buffers can be used to communicate in different directions, certain

configurations or combinations have to be used in order to provide communication.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 168

This brings the question of data transfer speed since by connecting one buffer to

another, a delay is introduced into the communication path. In the next subsections, we

present some possible configurations of the clock buffers and their use cases. What

informs these configurations are the reach of the buffers and the availability on them of

clock enable (CE) pins that can be actively toggled. Furthermore, there is a restriction

on buffer-to-buffer interconnections. For instance, it is only a BUFR that can feed a

BUFG directly. As a result, if an intra-clock-region network has to access other clock

regions not within its neighbourhood (immediate vertical and horizontal regions), a

BUFR has to be used to drive a BUFG in order to feed such regions with data_clock.

The following further points should be noted in the light of using different

interconnections of the clock buffers for communication: All the buffers have physical

CE pins; however, BUFMRs can only drive BUFRs, and both BUFHs and BUFGs can

drive both BUFMRs and BUFRs.

Since only the BUFGs and BUFHs can drive the SR/PRE and CE inputs of

registers, and it is essential for data_clock to be interfaced with a receiving circuit

through an input that can be driven by a clock buffer, not all of the possible buffer

combinations can be used if relocation support is sought. Only the ones that have

data_clock coming out of a BUFG or BUFH can be used.

In the subsections that follow, it should be noted that arrows represent the direction

of data transfer. For instance, with respect to Figure 6.11, CR1→CR8 means CR1 is

transmitting to CR8 while CR2↔CR3 implies a bidirectional data transfer between

CR2 and CR3. Moreover, since the clock regions have some symmetry, a

communication like CR1↔CR3 is treated the same as CR2↔CR4; and CR1→CR6 as

CR5→CR2. Also, except where indicated in the figures, all the connected clock buffers

are in the same clock region, save for the BUFGs, which do not belong to any clock

region.

6.5.1 Clock Buffer Configurations for Global Communication

Since the BUFGs have a device-wide reach, they can be used to transmit data to

anywhere on the chip. This prevents any circuit region from being excommunicated

from other regions. For instance, to communicate directly with CR-8 from CR-1 in

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 169

Figure 6.11, a BUFG has to be used (see Figure 6.12(a)). However, since the BUFGs

are at the centre of the chip, an intermediate buffer has to be used to get access to them.

There are four options – BUFR, BUFMR→ BUFR (used in Figure 6.12(a)), BUFH→

BUFR, or BUFH→ BUFMR→BUFR, depending on the available buffers and the

relative location of the task. Depending on the specific application, either can be used.

In contrast, for a global communication like CR2↔CR7, there is a direct access to

BUFGs. Therefore, the BUFG-only configuration shown in Figure 6.12(b) can be used.

Note that any communication that does not reside within the same clock region, or that

reaches only to an immediate vertical or horizontal region is classified as global.

com_clock

TX

Circuit

CE

BUFMR BUFR

data_clock to

anywhere on the chip

BUFG

com_clock

TX

Circuit

data_clock

to anywhere

on the chip

BUFG

CE

 (a) (b)

Figure 6.12: Clock buffer configurations for global communication showing (a)

[BUFMR→BUFR→BUFG→], and (b) [BUFG→]

6.5.2 Clock Buffer Configurations for Horizontal Communication

By placing circuits at the inner edges of two horizontal adjacent clock regions,

advantage can be taken of the BUFHs for horizontal communication. However, circuits

at the outer edges require other configurations. With respect to Figure 6.11, and picking

the top clock regions for illustration, the communications that fall into the category of

horizontal inter-clock region include CR1→CR2, CR1→CR3, CR1→CR4,

CR2→CR3, and CR2→CR4. Communications like CR2↔CR3 and CR2→CR1 can

be achieved by using the configuration in Figure 6.13(a). However, since there is no

clock-buffer-based physical link between CR1 and CR2 in the middle of the clock

region, while CR2→CR1 can use [BUFH→], CR1→CR2 can use

[BUFMR→BUFR→] (see Figure 6.13(b)). All the other communications have to use

the configuration [BUFMR→ BUFR→BUFG→] presented in Figure 6.12(a). It should

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 170

be noted that CR2→CR1 can also use the configurations in Figure 6.13(c) and Figure

6.13(d).

com_clock

TX

Circuit

data_clock to a

horizontal adjacent

clock region

CE

BUFH

com_clock

TX

Circuit

CE

BUFMR BUFR

data_clock to

horizontal circuits

in the same region

(a) (b)

com_clock

TX

Circuit

data_clock to

horizontal circuits

in the same region

BUFRBUFH

CE

com_clock

TX

Circuit

data_clock

to horizontal

circuits in

the same

region

B
U

F
R

BUFMRBUFH

CE

(c) (d)

Figure 6.13: Clock buffer configurations for horizontal inter-region communication showing

(a) [BUFH→], (b) [BUFMR→BUFR→], (c) [BUFH→ BUFR→], and (d)

[BUFH→BUFMR→BUFR→]

6.5.3 Clock Buffer Configurations for Vertical Communication

From Figure 6.11, and picking the left clock regions for illustration, the

communications that fall into the category of vertical inter-clock region include

CR1↔CR5, CR1→CR6, CR2→CR5, and CR2↔CR6. Note that symmetry can be

used to pick other ones. CR2→CR5, CR6→CR1 and CR2↔CR6 communications can

be through the configuration in Figure 6.14(a) and [BUFG→] presented in Figure

6.12(b). All others can use the one in Figure 6.14(b). Note that the BUFRs in Figure

6.14 are not in the same clock region as the other buffers. As a result, they are indicated

as BUFR(adj) in the figure caption.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 171

com_clock

TX

Circuit

CE

BUFMR BUFR

data_clock to

vertical adjacent

clock regions

BUFR in the

adjacent region

com_clock

TX

Circuit

data_clock

to vertical

adjacent

clock

regions

B
U

F
R

BUFMRBUFH

CE

BUFR

in the

adjacent

region

(a) (b)

Figure 6.14: Clock buffer configurations for vertical inter-region communication showing (a)

[BUFH→BUFMR→BUFR(adj)→], and (b) [BUFMR→ BUFR(adj)→]

6.5.4 Maximum Speeds of the Clock Buffers and Nets

The understanding of the maximum frequency of operation of the clock buffers is

crucial in the attempt to adapt them for on-chip communication. This will help evaluate

the limiting factor in the achievable communication speed of CELOC for different

devices. Table 6.7 shows the maximum frequencies to which the clock buffers, nets,

and trees can be driven. These numbers can be found in the respective datasheets for

the Spartan-7 [231], Artix-7 [232], Kintex-7 [49], and Virtex-7 [233] FPGAs. At the

time of writing, a Spartan-7 with speed grade -3 does not exist.

6.5.5 Bandwidth Characterization

To determine the maximum speed that each clock buffer configuration can achieve, the

experimental setup in Figure 6.15 is used. The device used for the experiment is the

Artix-7 (xc7a35tcpg236-1) FPGA with speed grade -1. The TX circuit is used to

generate predetermined data packets to be received by the RX circuit. To confirm the

correctness of data transfer, the validation of the received data is done by using an ILA

to observe the signal transitions. A PLL clock generator is used to sweep the

communication clock’s frequency to the maximum value that still meets timing and

does not corrupt the communication.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 172

Table 6.7: Maximum operating frequencies of the clock buffers in the 7 series FPGAs

Device
Speed

Grade

BUFG

[Tree]

(MHz)

BUFH

[Buffer]

(MHz)

BUFMR

[Buffer]

(MHz)

BUFR

[Tree]

(MHz)

Artix-7

-3

628 628 680 420

Kintex-7 741 741 800 600

Virtex-7 741 741 800 600

Spartan-7

-2

628 628 - 375

Artix-7 628 (394a) 628 (394a) 680 (600a) 375 (315a)

Kintex-7 710 (560a) 710 (560a) 800 (667a) 540 (450a)

Virtex-7 710 710 800 540

Spartan-7

-1

464 464 - 315

Artix-7 464 464 600 315

Kintex-7 625 625 710 450

Virtex-7 625 625 710 450

a At speed grade -2LE, 0.9 V

Figure 6.15: Experimental setup for characterizing the clock buffer configurations

The test communication packet is a 44-bit packet comprising of 32-bit data, a frame

synchronization sequence of 8 bits and a serial encoder overhead of 4 bits. Table 6.8

shows the maximum bandwidths (data transfer rates) at which the buffer configurations

work without a corrupted data transfer. The corresponding data recovery register or

latch is also indicated. Moreover, based on the number of clock buffers in the FPGA,

the number of instances of each configuration (not considering buffers used by other

PLL

Clock

Generator

TX

Circuit

RX

Circuit
Buffers

CE

ILA

Debugger

Circuitcom_clock

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 173

configurations and those used for other purposes) that can coexist on a single chip is

also indicated in Table 6.8.

Table 6.8: Bandwidth of the clock buffer configurations

Clock Buffer Configuration
FDPE

/LDPE

Bandwidth

(Mbps)

Instances Per

Clock Region

BUFG→ FDPE 266.67 32 per chip

BUFR→BUFG→ LDPE 171.43 4

BUFMR→BUFR→BUFG→ LDPE 171.43 2

BUFH→BUFR→BUFG→ LDCE 187.50 4

BUFH→BUFMR→BUFR→BUFG→ LDCE 171.43 2

BUFH→BUFMR→BUFR(adj)→BUFG→ LDCE 171.43 2

BUFH→ FDPE 266.67 12

BUFMR→BUFR→ LDPE 240.00 2

BUFH→BUFR→ LDPE 275.00 4

BUFH→BUFMR→BUFR→ LDPE 240.00 2

BUFH→BUFMR→BUFR(adj)→ LDPE 240.00 2

BUFMR→BUFR(adj)→ LDPE 240.00 2

BUFR→ LDPE 233.33 4

Average - 221.15 -

The highest speed of 275 Mbps is observed with the [BUFH→BUFR→]

configuration and the lowest (171.43 Mbps) with the [BUFR → BUFG →] and

[BUFMR → BUFR → BUFG→] configurations. Indeed, BUFR appears to be the

limiting buffer. This is because it is the buffer with the slowest speed. In fact, for the

Artix-7 board used for the experimentation, the speed grade is -1 and the BUFR’s

maximum frequency is graded at 315 MHz, which is the minimum for any of the buffers

in the chip (see Table 6.7). Therefore, the average speed of 221.15 Mbps is relatively

high considering that it is only 29.79% short of the BUFR’s maximum. By extension

to other speed grades, the average CELOC speed can be expected to scale as 70.21%

of fBUFR_MAX, where fBUFR_MAX is the maximum frequency of the BUFR net in the target

device.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 174

In addition, the use of the clock buffers does not impact negatively on the number

of circuits that can be on the FPGA simultaneously. The CRs can accommodate more

than one circuit. Therefore, from the number of instances in Table 6.8, it is estimated

that up to 16 circuits with communication access can be in a single clock region at the

same time assuming they can be partitioned such that the CE access does not constitute

a static route problem. This number is arrived at by excluding configuration instances

that use similar buffers. In addition, there are 32 global configuration instances that can

be shared by all the clock regions.

6.6 Dynamic Communication via Clock Nets

Partial Bitstream Relocation (PBR) is a key mechanism for enabling fault tolerance to

permanent chip damages by relocating affected circuits to damage-free areas in

runtime. In addition, PBR is fundamental to the management of tear and wear to delay

the eventual occurrence of chip damages due to ageing (see Section 3.2.3). Meanwhile,

PBR is not supported by vendor tools and PR flow, thereby necessitating that all routes

between inter-communicating circuits are statically determined at compile time. For

full relocatability, a dynamic communication infrastructure is needed.

This section advances a dynamic communication access mechanism that is termed

Clock-Enabled Relocation-Aware Network-on-Chip (CERANoC). This builds on

CELOC with the main advantage for CERANoC being that the clock buffers and nets

use dedicated routing wires that are independent of the general logic interconnect. This

removes the restriction of the static interconnect links and enhances the online

relocation of circuits. This mechanism relies on the replacement of the interconnect

links in NoCs with clock buffers. Since the clock buffers do not use the general logic

routing resources, the path from a transmitting circuit to a receiving circuit is free of

general logic interconnections.

As discussed in 3.2.5, for circuit relocation to be feasible, communication must be

provided for the circuit being moved at the resource-matching destination. With regards

to Figure 6.16, the easiest way to provide this communication is to ensure that a route

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 175

from Task 1 to LOC 2 is established at design time. This way, during runtime, Task 2

can be moved to LOC 2 while maintaining its communication link with Task 1.

The solution to dynamic communication in CERANoC eliminates the static inter-

circuit communication routes all together. Using Figure 6.16 as an example, this is

achieved by removing the static inter-task connections and replacing them with clock

buffers as shown in Figure 6.17. The hypothetical layout of tasks here is the same as

that in Figure 6.16, except that the interfaces between Tasks 1 & 2, and between Tasks

1 & 3 have been removed. To provide communication, a clock buffer is used to transmit

serial bits from Tasks 1 to 2 and 3. This signal also feeds LOC 2, so that if Task 2 is

relocated to LOC 2, the communication between it and Task 1 remains intact. At the

same time, LOC 1 is now free of a crossing routing. Basically, the surface of the chip

is generally freed of inter-circuit routings.

In the implementation of CERANoC in this work, the clock regions of the FPGA

are used as NoC nodes. The clock buffers are pre-routed between clock regions at

design time so that during runtime, regardless of the clock region a task is placed, it is

able to communicate with any task in any other clock region. The main concept behind

the technique is to allow serial data to ride on a clock signal from a source node to a

destination node.

Figure 6.16: Diagram demonstrating how static routes hinder relocation. Task 2 cannot be

moved to LOC 3 without preserving the existing interconnections

Task 1

LOC 3

Task 2

Task 3

LOC 2

LOC

1

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 176

Figure 6.17: By removing the inter-circuit interfaces and replacing them with clock buffers,

it is possible to achieve dynamic communication

Shown in Figure 6.18 is the classic mesh topology for CERANoC. With respect

to the clock buffer configurations, vertical node-to-node interconnections are achieved

with [BUFMR→ BUFR(adj)→] and horizontal communication with [BUFH→].

Node-to-node bandwidth in this topology would be expected to be an average of 237

Mbps.

Other topologies can be formed easily by using a relevant combination of the

clock buffer configurations presented in Section 6.5. The diagram only shows four

nodes, but this can be easily extended as the dotted lines depict. Clock buffers are

connected in-between nodes as shown in Figure 6.18 and Figure 6.19. The clock buffer

connections are based on the relevant configurations in Section 6.5. In the following

subsections, the special considerations for the implementation of CERANoC are

presented in relation to the design parameters of a traditional NoC. It should be noted

that the aim is to implement a full-fledge NoC as that is beyond the scope of this work;

rather, the intention is to demonstrate how the use of clock buffers for inter-circuit

communication enhances the relocatability of hardware tasks.

Task 1

LOC 3

Task 2

Task 3

LOC 2

LOC

1

CE

clock

Clock Buffer

Clock

Buffer

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 177

Figure 6.18: 4-node CERANoC mesh network showing inter-clock region connections

achieved with clock buffers

6.6.1 Packet Format and Addressing Scheme

The FSS, the destination address, the CONS overhead, and a data of 56 bits maximum

are all concatenated into a single packet as shown in Table 6.9. A unique Node ID is

given to each node on the network. This ID also serves as the address of the node and

is added to the communication packet as the destination address. With N nodes, the

address range is from 1 to N, with zero deliberately avoided because the address field

in the packet is un-encoded as noted for the address-inclusive packet encoding and

decoding in Section 6.4.4.

As such, one reason for transmitting the address in plain format is that the routers

need to know the destination address before routing the packet. Encoding and decoding

the address would incur further clock cycles at the encoder and the decoder. In addition,

this would require more logic resources for the decoding and re-encoding functions in

the router. Furthermore, an encoded address would eat into the number of bits available

for the actual data, eventually preventing data transfer as N increases and becomes 56.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 178

Therefore, with this careful choice of an address range, CERANoC saves on time and

resources, and ensures a maximum data transfer throughput.

Table 6.9: Packet format for 4-bit-data-word CERANoC

Fields FSS
Destination

Address
CONS Overhead Data

Number of Bits 8 bits N bitsa 4 bits 56 bits max

Description Value: 80 hex Unencoded CONS-encoded

a N = number of nodes

6.6.2 Network Routing

A routing algorithm determines the routing of data from the source to the destination in

a network. The problem of designing routing algorithms that meet different

performance and architectural requirements has been extensively studied. Some of

these requirements are low latency, low power consumption, scalability, and

programmability [176]. CERANoC supports any existing routing algorithm so far the

clock buffers can be arranged to serve as links in the topology chosen. There is no other

special consideration for routing in CERANoC. For instance, a Torus CERANoC can

use BUFGs to connect the topmost clock regions to the tail regions and the leftmost

regions to the rightmost regions.

6.6.3 Prototype Network Demonstration

To demonstrate the feasibility of CERANoC, a 4-node prototype star network with a

Central Router is implemented on the Artix-7 (XC7A35TCPG236) FPGA chip (see

Figure 6.19). Figure 6.20 shows the global clock generation and distribution

architecture. A special switch_clock is needed by the Central Router. This is from the

same output that feeds the BUFG which distributes com_clock. The clock buffer

configuration used by the nodes is [BUFMR→BUFR→BUFG→] but could have also

been [BUFR→BUFG→]. Note how the BUFGs are located logically inside the Central

Router. Because switch_clock feeds these BUFGs, passing it through another BUFG

would adversely affect network bandwidth. Moreover, by directly feeding the BUFGs,

switch_clock ensures that on the part of a receiving node, a received packet arrives

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 179

directly from another node with the data clock having been refreshed. This is because

as the data_clock from the BUFR, having gone through a BUFG, enters the Switch

Arbiter, it is received by an LDPE latch and passed through a crossbar logic before

being fed to the CE of a BUFG, essentially starting a new transmission (see Figure

6.21).

Figure 6.19: 4-node CERANoC star network using clock buffers as network links

Figure 6.20: PLL-based global task and communication clock generation and distribution

BUFG

BUFG

BUFG

Task

Task Wrapper

Clock Buffer Block

 SERDES TX RX

. . .

Switch Buffer Block

Node

(N0)

Switch

Arbiter

CE

CE

CE
Reconfigurable

Region

switch_clockcom_clock

BUFR

CE

BUFMR

Central
Router

PLL

Primitive

BUFGCLKOUT0CLKIN1

Clock

BUFGCLKOUT1

task_clock

CLKFBOUT

CLKFBIN

com_clock

switch_clock

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 180

Figure 6.21: Data clock renewal as it traverses the centre of a star-shaped CERANoC

Since the objective of this prototype demonstration is to show that using the clock

buffers in the manner stipulated by CELOC/CERANoC facilitates dynamic

communication and circuit relocation by circumventing the general interconnect, most

of the intricacies of NoC designs are avoided as these are already extensively studied.

A point-to-point routing is used for the star-network (see Figure 6.22), and a 32-bit

payload data is used, giving a 48-bit packet. 48-bit buffer memories (48 x 1-bit LUT-

RAMs) are provided inside the Central Router in order to temporarily store packets that

cannot be immediately routed. In order to control access to multiple nodes attempting

to transfer packets simultaneously to the same receiving node and thus keep in line with

real-time requirements, priorities are assigned to the nodes based on the node address.

A node with a lower address has a higher priority.

Figure 6.22 shows the switch architecture implemented for the 4-node star

network. Ni implies node i while Sjk denotes a switch position from node j to node k.

The indicated positions of the switches are for the following routing: N0 → N3, N1 →

N0, and N3 → N1. There is one Node Router (NR) for each input to the Switch Arbiter.

In each NR there are three (N – 1) independent switch endpoints (Sjk) which determine

the routing of the incoming packet to the other three nodes. In the Switch Arbiter, there

is a 4-bit occupied_switches register that shows the state of the nodes with respect to

data reception. A node that is presently receiving a packet has its corresponding bit

turned on. The Switch Arbiter checks the destination address of the packet against the

Clock Buffer Block

serial_data

com_clock

BUFR

CE

BUFMR

switch_clock

Switch Buffer

Block

Refreshed

data_clock
BUFG

CE

data_clock Switch

Logic

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 181

state of the occupied switches. If the destination node is not already occupied by an

ongoing transmission, the packet is routed through and the occupied_switches state is

updated.

Figure 6.22: Switch architecture for a 4-node CERANoC star network

To test dynamic communication and relocation at the fundamental level, four tasks

(θ0 to θ3) are set up, with one task in each of the nodes. It is very important in this

demonstration to have a visual indication that new tasks are able to establish

communication and that existing tasks still execute correctly when new tasks are placed

in runtime. As a result, a VGA application is used with the setup shown in Figure 6.23.

Display

Controller

CELOC Wrapper

Pattern

Generator

CELOC Wrapper

data_clock
clock

CE

Figure 6.23: Setup for demonstrating CERANoC

S01

S03

S02

Logic ‘1’

S10

S30

S20

Logic ‘1’

N0 N0

Logic ‘1’

S13

S12

S10

Logic ‘1’

S31

S21

S01

BUFGN1 N1

S21

S23

Logic ‘1’

S20

S12

S32

Logic ‘1’

S02

N2 N2

S31

Logic ‘1’

S32

S30

S13

Logic ‘1’

S23

S03

N3 N3

Switch Arbiter
clock

BUFG

BUFG

BUFG

NR

NR

NR

NR

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 182

Tasks θ0 to θ2 are pattern generators, each generating three different patterns (P) of

four vertical stripes of colours white (W), red (R), green (G), or blue (B). Each of these

coloured stripes is represented by 8 bits (3 bits for R, 3 bits for G, and 2 bits for B).

Every 32 bits of data sent by a pattern generator, therefore, determines four stripes of

8-bit colour. θ0 to θ2 generate P0 to P2 respectively, with P0 = [W, R, G, B], P1 = [G, B,

W, R], and P2 = [B, W, R, G]. θ3 is a fixed VGA controller that interfaces to a VGA

monitor in order to display the patterns generated by θ0 to θ2. At design time θ0 to θ3

are floor-planned in nodes N0 to N3 respectively and partial bitstreams are generated for

only θ0 to θ2. Task θ3 has to be static because it needs access to the VGA’s interface

pins which are in fixed locations on the FPGA. Tasks θ0 to θ2 are set to transmit to θ3

at the same time. Because of the router priority, this means P0 is continuously displayed.

By blanking N0 and N1 successively using blanking bitstreams, we are able to see P1

and P2; reconfiguring N1 then N0 also results in patterns P1 then P0, demonstrating that

communication in the network is unimpaired when tasks are swapped in and out in

runtime.

The demonstration of relocation involves configuring θ0 in N1 while blanking N0

and θ1 in N0 while blanking N1, though, after necessary bitstream manipulations to

change the target frame address. In the former case, we are able to see pattern P0 even

though it is configured in N1, and vice-versa for the latter case. The Vivado Hardware

Manager is used to configure the partial bitstreams. Figure 6.24 shows the floorplan of

the FPGA after implementation. It can be seen that the chip areas belonging to nodes 0

to 2 are free of general routing. This is as expected. The Network Interface does not

contribute to static routing as it is made part of the reconfigurable task itself. Only the

clock lines can be seen routed in the HROW from a global network feeding the clock

regions (refer to Figure 6.1 in Section 6.1.1). These routings are dedicated clock nets

and do not interfere with relocation. This means the clock regions remain free of general

routing even though they are interconnected. The connections to CEs are at the edges

of the clock regions, leaving the majority of the region free of general routing.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 183

Figure 6.24: Floorplan of the implemented 4-node network

A. Resource Utilization

The only component peculiar to CERANoC is the network adapter and it uses only

32 slices (see Section 6.4.6). The entire 4-node network itself (without the tasks) takes

144 slices. Clock buffer utilization stands at 4 BUFMRs, 4 BUFRs, and 6 BUFGs, with

per clock region utilization of 50%, 25%, and 3.125% respectively.

B. Network Latency

Since the central router simply routes the packet from the source to the destination

nodes, essentially effecting the connection between [BUFMR→ BUFR→] and

[BUFG→] in a [BUFMR→BUFR→BUFG→] clock buffer configuration, the packet

transfer latency remains 64 clock cycles as presented in Table 6.6 in Section 6.4.6 for

packet-synchronized address-inclusive encoding.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 184

C. Network Throughput

The CONS encoder and decoder do not share circuitry. Therefore, nothing stops

concurrent data transfers like these four simultaneous data transfers: N0 → N1, N1 →

N2, N2 → N3, and N3 → N0. That is, for the 4-node star CERANoC, the throughput of

the individual link can be multiplied by 4 to obtain the network throughput. As such,

for an N-node star CERANoC in full-duplex mode, the throughput (in Mbps) can be

defined by Equation (6.1) in terms of the payload size (in bits), the number of nodes

(N), the frequency of operation (f in MHz), and the latency cycles as follows:

 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑖𝑛 𝑀𝑏𝑝𝑠) =
𝑃𝑎𝑦𝑙𝑜𝑎𝑑 (𝑖𝑛 𝑏𝑖𝑡𝑠)×𝑁×𝑓(𝑖𝑛 𝑀𝐻𝑧)

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝐶𝑦𝑐𝑙𝑒𝑠
 (6.1)

At 100 MHz this gives a throughput (data rate) of 200 Mbps for the network

demonstrated. The CELOC links used has a maximum speed of 171.43 Mbps (same as

171.43 MHz since one bit is transmitted in one clock cycle). The maximum throughput

for the Artix-7 device used is therefore, 428.58 Mbps for a 32-bit payload and N = 5

(assuming the Central Router’s RP is also used to host a node). It should be noted that

the latencies for payloads other than 32 bits can easily be determined from Table 6.6.

Compared with methods that involve runtime routing, CERANoC does not incur

any clock cycle overhead in order to place a new circuit or relocate one in runtime.

Moreover, compared with the method in [90], the ICAP is not required for

communication purposes, thus allowing SEM to have as much ICAP time as possible.

The use of the ICAP for communication could be counterintuitive where reliability is

important. Moreover, while DyNoC [182] also achieves dynamic communication for

newly placed tasks, it is not certain that it is able to support relocation since the problem

of general routing seemed not to have been addressed. CERANoC on the other hand

leaves the chip area clear of general routing.

6.7 Fault-Tolerant Data Transfer

The occurrence of soft errors in a communication network could manifest itself in the

form of erroneous data transfers. For CERANoC, bit flips can occur in the flip-flops of

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 185

the network adapter leading to erroneous encoding or decoding of the received data. It

is also possible for permanent damages to occur, for instance due to chip ageing or

electro-migration, and in this case, the HEM methods discussed in Section 3.2.3 can be

applied. For instance, the core and its associated network adapter can be relocated to a

damage-free region by using a fault-tolerant configuration engine like the one in

Chapter 4. In the following subsections, the modifications that have to be made to

CERANoC in order to make it resilient to errors are highlighted.

6.7.1 Network Adapter

The diagram in Figure 6.25 shows a TMR design of the network adapter. Only the key

blocks and signals are shown. The adapter in Figure 6.8 has been modified by inserting

an error control (EC) decoder and an EC encoder in the path of the CONS decoder and

encoder respectively. The resulting circuit is triplicated and a voting circuit used to

monitor and compare the outputs of the TMR modules. If at least two of the outputs are

the same, communication can continue and the offending adapter can be reconfigured.

The EC block can be for CRC or SEC-DED, depending on the requirement of the

application. CRC is only able to detect errors but not correct them. On the other hand,

as a forward error correction mechanism, SEC-DED is able to detect and correct single-

bit errors but only detect double-bit errors.

Figure 6.25: Fault-tolerant network adapter for CERANoC

Task
CONS

Encoder

CONS

Decoder
se

ri
a
l_

d
at

a_
o
u
t

CE of

Buffer

Task Interface

Logic
EC

Decoder

EC

Encoder

Voter

data_clock

TMR Module 1

TMR Module 2

TMR Module 3

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 186

6.7.2 Communication Packet Format

The structure of the packet for both the CRC and the SEC-DED error control

implementations are shown in Table 6.10 and Table 6.11 respectively. For the CRC

implementation, the FSS, the destination address, the CONS overhead, a data of 32-bit,

and a 4-bit CRC Frame Check Sequence (FCS) are all concatenated into a single packet

as shown in Table 6.10. A similar thing is done for the SEC-DED implementation

except for the fact that the SEC-DED Error Control Code (ECC) bits are interleaved

with the 32-bit data.

Table 6.10: Packet format for CRC-based error control

Fields FSS
Destination

Address

CONS

Overhead
Data

CRC

FCS

Num. of Bits 8 bits N bits a 4 bits 32 bits 4 bits

Description 80 hex Un-encoded Encoded

a N = number of nodes

Table 6.11: Packet format for SEC-DED-based error control

Fields FSS
Destination

Address

CONS

Overhead

32-Bit Data Interleaved

with 7-Bit ECC

Num. of Bits 8 bits N bits a 4 bits 39 bits

Description 80 hex Un-encoded Encoded

a N = number of nodes

6.7.3 Packet Error Control Implementation

For the CRC detection of erroneous transfer of data, a 4-bit checksum FCS with a

Hamming Distance of 2 and a reverse-of-reciprocal polynomial 0x9 [60] is used. This

means all 1-bit and some 2-bit errors can be detected. To minimize the impact on data

transfer latency, a parallel CRC implementation is used. The 4-bit FCS is calculated on

the data to be sent and appended to it. At the receiver, CRC is again calculated on the

data and the result checked against the FCS contained in the received packet to verify

the correctness of the received data. When a CRC error is detected, the packet is

dropped and a resend request is sent to the source node. Additional data bit fields in the

packet are used for this.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 187

For the forward error correction scheme based on SEC-DED, the SEC-DED

Hamming code (39, 32) is used. This code uses 7 parity bits for correcting single-bit

errors, and detecting double errors in 32 data bits. Although, Figure 6.25 shows the EC

Decoder and Encoder as being distinct blocks in the network adapter, in the actual

implementation, they are absorbed into the CONS decoder and encoder respectively.

6.7.4 Pipeline Mechanism for Packet Transfer

The CRC-4 module adds only a 4 clock-cycle latency to the serial stream and does not

impact the CONS encoding process. It is not impossible for a CRC calculation to give

an FCS of zero. Since a zero cannot be part of the packet, to avoid ambiguity, the FCS

itself has to be encoded by the CONS encoder. In addition, the CONS encoding uses a

look-ahead algorithm, where a nibble early-on in the packet cannot be encoded until a

zero nibble is found later on in the packet. If the CRC encoding were to be applied to

the CONS-encoded nibbles, a latency of as much as the number of nibbles in the packet

could be incurred. As a result, the CRC has to be applied to the data before CONS

encoding is done. However, this does not delay the CONS encoding. Since the CRC is

a non-intrusive error detection mechanism, that is, it does not modify the data, the

CONS encoder can be pipelined to start at the same time as the CRC encoder. By the

time the CONS encoder is on the last nibble, the FCS is ready. At the receiver, the CRC

can only be applied after at least the first nibble in the packet is decoded. The 4 bits of

a nibble are shifted in and decoded in 4 clock cycles. This means an unavoidable

minimum of 4 clock cycle wait for the CRC decoder.

For the SEC-DED implementation, it is impossible to avoid waiting for the entire

packet to be CONS-encoded before applying the SEC-DED algorithm. The SEC-DED

is intrusive since the parity bits are interleaved with the data. Therefore, the pipelining

of the CONS encoding and the SEC-DED encoding is not possible. However, to limit

impact on latency, a completely combinatorial implementation is used for the SEC-

DED algorithm, with no input registering or internal pipelining. Moreover, the

implementation is such that the SEC-DED decoder corrects a single-bit error

automatically and flags double-bit errors.

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 188

6.7.5 Evaluation of the Fault-Tolerant Network Adapter

Table 6.12 shows the resource and time overheads of introducing the CRC and SEC-

DED error control into the CONS encoder and decoder. The data presented here is for

a single instance of the TMR modules and is based on the implementation on an

xc7a35tcpg236 FPGA chip. Only the relevant blocks (CONS encoder and decoder) are

presented in the table. Without any error control mechanism applied, the CONS encoder

and decoder require totals of 147 flip-flops and 88 LUTs, with the latency from the

point of CONS encoding to the point of complete data reception being 60 clock cycles.

For the CRC-based error control, the utilization goes up to 157 (6.80% increase)

for flip-flops and 109 (23.86% increase) for LUTs, with the total latency 68 clock cycles

for an address-inclusive CONS codec. Compared to when no error control is applied,

only 4 clock cycles have been added, arising from the transmission and the reception

of the 4-bit FCS. Note that the latency measurements were made using a continuous

data transfer and reception. This is implies that though, 8 clock cycles are expected for

the transmission and reception of the FCS, only 4 are observed because of the overlap

between transmission and reception.

On the other hand, the SEC-DED implementation uses the same number of flip-

flops for the CONS encoder and decoder. This is because of the LUT-only

implementation used. However, LUT utilization has surged to 199 (126.14% increase).

The latency also increase by 9 clock cycles accounting for the time taken to transmit

the added 7 bits and one clock cycle transitioning period each for the encoded and

decoding of data respectively.

The implication of this result is that depending on the nature of the environment

into which the network is deployed, either the CRC or the SEC-DED-based error

control mechanism can find application. For instance, if the network is anticipated to

experience several bit flips, then a forward error control mechanism would be better.

Though the SEC-DED is more expensive in terms of hardware resources and latency,

the cost of retransmissions that would be incurred in a CRC-based error control could

easily offset this overhead in latency costs. On the other hand, if the system would be

operating under a mild error-prone environment, then a CRC-based error control

____________ Chapter 6 – Clocking Infrastructures for Dynamic Inter-Task Communication

 189

implementation would suffice, as there would only be intermittent requests for

retransmissions, which at the system level would be negligible.

Table 6.12: Logic resource overhead of the fault-tolerant network adapter

Error Control Module
Resource Utilization Latency

(cycles) Flip-Flops LUTs

None

CONS Encoder 59 52

64 CONS Decoder 88 36

Total 147 88

CRC

CONS Encoder 64 71

68 CONS Decoder 93 38

Total 157 109

SEC-DED

CONS Encoder 59 80

73 CONS Decoder 88 119

Total 147 199

6.8 Chapter Summary

This chapter has presented a unique and novel adaptation of clock buffers as serial

network links for on-chip inter-circuit communication. This has proven to not only

reduce the utilization of general routing resources as network links, it has also been

demonstrated to help avoid the traditional static routes that are bottlenecks to runtime

partial bitstream relocation. To access a clock buffer for communication, a special

adapter is wrapped around a task. This adapter utilizes only 32 slices and different

configurations of clock buffers have shown an average bandwidth of 221.15 Mbps for

an Artix-7 speed grade -1 device. A unique clock-buffer-based network access

mechanism was also advanced and shown to facilitate dynamic on-chip communication

for the purpose of circuit relocation. Finally, this chapter presented a fault-tolerant

implementation of the network adapter to ensure error-free data packet transmissions.

190

Chapter 7

A Case Study of the

NASA/JPL Compositional

Infrared Imaging

Spectrometer

In order to demonstrate the practicality of the proposed frameworks, a case study

application is drawn from the NASA/JPL Compositional InfraRed Imaging

Spectrometer (CIRIS). This spectrometer has data processing stages that can be used as

hardware tasks. A system setup that involves the use of the configuration memory

access manager (CAM) proposed in Chapter 4 and the inter-task communication

framework advanced in Chapter 6 are used for evaluations. The latency and the extent

of relocation supported are evaluated for three approaches to on-chip communication,

with the target device chosen as the Zynq-7000 (xc7z100ffg900-2), which contains a

Kintex-7 programmable fabric and a dual-core Arm processor. The CIRIS data

processing RTL codes used for evaluation were provided by one of the investigators

who designed an SoC-based controller for the CIRIS instrument [210].

Part of the investigations reported in this chapter has been covered in the author’s

publication in [234]:

 A. Adetomi, G. Enemali, Xabier Iturbe, Didier Keymeulen, and T. Arslan,

‘R3TOS-Based Integrated Modular Space Avionics for On-Board Real-Time

Data Processing’, in 2018 NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), 2018, pp. 1–8.

7.1 An Overview of the CIRIS Spectrometer

The CIRIS is one of the new-generation NASA instruments proposed to search for life

indicators in Jupiter’s moon, Europa [208]. This moon orbits inside Jupiter’s high-

7

__ Chapter 7 – Applications and Case Studies

 191

radiation belts, and hence any mission sent there must withstand extremely harsh

radiation. Therefore, the CIRIS avionics must be designed to have a high system-level

reliability with emphasis on tolerance to high radiation doses.

CIRIS is a small, rugged and lightweight Fourier Transform Spectrometer (FTS)

with a high Signal-to-Noise Ratio (SNR) in the near-IR to thermal-IR region (2-12 µm),

where the strongest and most diagnostic vibrational bands of the compounds of interest

in Europa are found (e.g., ‘CHNOPS’ functional groups). The major structural novelty

introduced by CIRIS is its constant speed rotating refractor to vary the optical path

difference of the two rays in which incoming light is divided at the entrance of the

instrument using a beam splitter (red and green rays in Figure 7.1). The reflected rays

in the rotating refractor recombine after travelling through the instrument, resulting in

a fringe interference light pattern (interferogram) that is measured with a photo-detector

(purple ray in Figure 7.1). Based on Snell's law, the light rays travel the same distance

through CIRIS optics when they are incident on the rotating refractor at 45º. The Zero

Path Difference (ZPD) positions occur when the refractor is parallel or perpendicular

to the beam splitter, that is, four times over the course of a revolution. The regions

where the optical interference between the input light rays can be measured are located

at approximately 16º arcs around each of the four ZPD positions. As the CIRIS refractor

performs 6.5 revolutions per second, the interferograms span over a period of 13.6 ms

every 24.8 ms.

Figure 7.1: CIRIS interferometer [207]

 Light Input Mirrors

Rotating Refractor

Beamsplitter

__ Chapter 7 – Applications and Case Studies

 192

7.2 CIRIS Data Processing

The CIRIS interferogram signal is conditioned, filtered and amplified to ±5V range

prior to being digitized at 1 MSPS using an 18-bit resolution ADC. The interferogram

samples are then processed to produce a spectrum that illustrates the intensity of the

wavelengths present in the light beam. This in turn permits to find out the chemical

composition of the sample under study by looking at the absorption lines in the

spectrum. However, spectral leakage (i.e., “picket-fence” effect) and noise are also

present in the spectrum due to the limited discretization of the interferograms through

time limited digital sampling, and need to be properly processed by the instrument

avionics to produce meaningful results [235]. The CIRIS data processing is

accomplished in four stages.

The first stage prepares the interferogram for subsequent processing by selecting

8,192 samples centred on the ZPD position. This is done to deal with any temporal shift

that might have occurred while sampling the interferogram. This stage also removes

the DC offset in the ZPD-aligned interferogram by subtracting its average value, which

is computed using a Cumulative Moving Average (CMA).

The second stage (STAT Inter.) computes the variance and performs a CMA on

successive interferograms detected around the same ZPD positions with the objective

of estimating and increasing the SNR by removing the effect of high frequency and

random noise. The mean and variance results for every interferogram position after

each algorithm iteration are stored in dedicated DDR memory segments.

The third stage apodizes the averaged interferograms at the edges of the sampled

regions to minimize the effects of spectral leakage and computes the FFT on the

interferogram. In the light of increasing spectral resolution, this stage adds 4,096 zeros

to each of the tails of the interferogram to obtain 8,192 additional interpolated spectrum

points in-between the original nonzero-filled spectrum data, that is, 16,384 total

spectrum points. In order to obtain the best performance, the FFT stage pipelines several

Radix-2 butterfly processing engines, where each engine has its own memory banks to

store input and intermediate data. This pipelined implementation allows computing one

spectrum data per clock cycle, with a latency of 33,013 clock cycles. A CORDIC logic

__ Chapter 7 – Applications and Case Studies

 193

is then used to translate the real and imaginary representation of the spectrum data used

in the internal butterfly processing engines into polar representation, which is more

suitable for scientific analysis. This translation is completed within 36 clock cycles.

The fourth and last stage computes the variance and CMA on the spectrums

resulting from the successive interferograms detected around the same ZPD positions.

Both amplitude and phase data are processed in parallel using dedicated logic: STAT

Amp. and STAT Phase. As for the second stage, the statistics are independently

computed for each spectrum position and temporarily stored in dedicated DDR memory

segments between algorithm iterations.

The work in [210] describes an implementation of the CIRIS data processing stages

on a Xilinx Zynq SoC. This SoC relies on using a DDR memory to exchange data

between the different data processing stages. Namely, each processing stage is assigned

a dedicated memory segment in the DDR and a data flow controller in the SoC

coordinates all data transfers. However, this SoC does not use DPR, and hence cannot

cope with any potential permanent damage provoked by cumulative radiation.

7.3 CIRIS Data Processing Tasks for Evaluation

The CIRIS data processing stages described in Section 7.2 are assigned to three

different hardware tasks: ZPD, STAT and FFT. STAT is used three times, to process

interferogram (STAT-I), amplitude (STAT-A), and phase data (STAT-P), respectively.

The main functioning parameters for these hardware tasks are detailed in Table 7.1.

Table 7.1: Specification of the CIRIS tasks

Task Execution time Input Data Output Data

STAT 100 µs 8,192 of 32bits (for 3 ports) 8,192 of 32bits (for 3 ports)

FFT 200 µs 8,192 of 18bits 8,192 of 32bits (for 2 ports)

ZPD 750 µs 13,000 of 18bits 8,192 of 18bits

The CELOC-based model requires each task to be interfaced with the network

adapter of Figure 6.8 in Section 6.4, slightly increasing the resource utilization of each

__ Chapter 7 – Applications and Case Studies

 194

task by 32 slices. Similarly, for the ICAP-based strategy, the task wrapper of Figure 3.5

presented in Section 3.4.4 is attached to each task to enable the tasks to use the

configuration layer for data exchange as demonstrated in [79]. The increase in resource

utilization here is only 21 slices and at least 2 BRAMs for the I/O data buffer. The

static-communication implementation requires no wrapping and a bus-based network

or a NoC is assumed. Though there is no wrapping, the network itself would consume

a significant amount of resources with figures reaching 1669 FFs and 2035 LUTs for

the switch block (with a 32-bit payload and 16-bit address) [184]. Table 7.2 shows the

FPGA resource requirement of the hardware tasks, excluding the wrappers.

Table 7.2: Resources required by the CIRIS tasks

Task Flip-flops LUTs BRAM36s DSP48s

STAT 551 833 1 15

FFT 20,496 18,290 64 132

ZPD 1,055 9,694 12 32

Total 22,102 28,817 77 179

Figure 7.2 shows the CIRIS tasks implemented on the FPGA fabric. The biggest

box in the bottom-left part of the FPGA is FFT and the smallest one in the bottom-right

part is STAT. Note that for both CELOC and ICAP-based schemes tasks are self-

contained within their boundaries, that is, they are free of external interconnections.

The CAM occupies two different regions on the FPGA. The configuration manager and

AXI peripherals are located next to the Arm cores in the top-left quadrant, and the DDR

memory controller is located on the top-right part, close to the FPGA pin blocks to

access the DDR memory chip. The top-right part also includes some static logic to

interface with the CIRIS spectrometer and receive the interferogram samples, which

are stored in the DDR memory.

The partitioning of the static logic in two locations is done very carefully to

minimize the number of static routes. However, a significant number of routes is still

needed to connect both static components in the two sides of the FPGA, as shown in

Figure 7.2. As a result, the top 6 clock regions cannot be used to configure tasks. This

__ Chapter 7 – Applications and Case Studies

 195

issue could be solved in a custom-made board by connecting the DDR memory chip to

FPGA pins that are close to the Arm cores, in the top-left quadrant of the chip. This

would free the entire right part for placing the CIRIS tasks.

Figure 7.2: R3TOS-based CIRIS avionics system

7.4 CIRIS Avionics Models for Evaluation

In this study, the data flow controller in the SoC implementation described in [210] is

assumed to be replaced by a ROS which manages task loading (provided by CAM) and

inter-task communication. In order to demonstrate the capabilities of the contributions

of this work, the configuration controller is used to configure the CIRIS tasks while

inter-task communication is provided by a star-shaped CERANoC network. Reliability

study is carried out to demonstrate that CELOC provides a better overall system

reliability when compared to existing inter-task communication methods. Most of the

existing RC systems use the static routing resources of FPGAs to implement P2P, bus,

__ Chapter 7 – Applications and Case Studies

 196

and NoC structures (see Section 3.4), thereby hampering task relocation. On the other

hand, the use of the configuration layer for communication highly favours relocation

but at the expense of task configuration and SEM (see Section 3.4.4). It would be

interesting to see how CELOC fairs with respect to these two approaches. Therefore,

CELOC will be compared with a traditional fixed communication approach and an

ICAP-based communication scheme using three CIRIS avionics models. A few

simplifying, but nonetheless, practical and carefully-considered assumptions will be

made along the line.

For all the models, the assumption is that none can keep multiple PBs of the same

task. Moreover, a precise representation of the FPGA fabric is ensured by marking off

regions occupied by static logic as well as hardware primitives such as the ICAP. All

irregularities in the chip are also considered, including clock region boundaries and

heterogeneous resource columns. The techniques described in [236][237] are used to

choose the most optimal synthesis location for the tasks to improve their relocatability.

That is, the synthesis positions for the tasks are selected not only to maximize the

number of allowed relocation positions at runtime, but also to minimize overlapping

among them, as described in [237].

7.4.1 Static CIRIS Avionics Model

In the static CIRIS avionics model, the available area in the chip is distributed into 16

different slots as shown in Figure 7.3. Tasks are mapped to slots in one-to-one fashion.

The smallest A-type slots can host only STAT tasks, medium size B-type slots can

allocate both STAT and ZPD tasks, and the largest C type slots can allocate any of the

tasks. The most optimistic case in which no static routes go beyond the static region is

considered. It should be noted that this is not the case in most slotted systems that use

static communication infrastructures. Besides, the CIRIS controller in [210] does not

use slots at all.

__ Chapter 7 – Applications and Case Studies

 197

Figure 7.3: Static CIRIS avionics model

7.4.2 ICAP-Based CIRIS Avionics Model

Figure 7.4 shows the initial task allocation in the ICAP-based CIRIS avionics model.

This is also the synthesis location for the tasks. Note that this initial task allocation is

exactly the same as in the static model to allow a fair comparison between them. At

runtime, tasks can be relocated to any position on the FPGA where the arrangement of

the resources matches that in the original synthesis location.

7.4.3 CELOC CIRIS Avionics Model

For CELOC, the reconfigurable region is partitioned into circuit regions (CRs) and used

as nodes. Unlike in the 4-node star network of Section 6.6 that uses a whole clock region

as node, the CERANoC network here hosts two nodes in a single clock region resulting

in 15 nodes and one Central Router as shown in Figure 7.5. The versatility of CELOC

brought about by the variety of clock buffer combinations can be exploited in this

model. CRs to the outer edges of the device use the buffer configuration [BUFR→

C-1

C-2

C-3

A-1 A-2 A-3 A-4 A-8 A-9

A-7

A-6

A-5

B-4

B-3

B-2

B-1

Arm

Cores

Configuration

Manager

and

AXI Peripherals
DDR Controller

and

CIRIS Interface Logic

__ Chapter 7 – Applications and Case Studies

 198

BUFG→] for accessing the CERANoC network while those to the inner edges use

[BUFG→]. It should be noted that the meeting point between the two CRs in a clock

region is not a fixed one. The tasks are flushed to left and right to access the buffers. As

such, it is possible for both A- and B-type location pairs to coexist in the clock regions

on the right of the chip.

Figure 7.4: ICAP-based CIRIS avionics model (initial configuration)

Meanwhile, it should be noted that the entire right side of the reconfigurable region

in the target board has no BUFRs and BUFMRs. To allow for a fair comparison, the

buffers are assumed to be present as they would be in other chips and meanwhile any

application deploying CELOC would specifically choose a chip that has all or most of

its clock buffers in place. Nevertheless, if this particular chip were to be used in reality,

the left and right nodes in the right clock regions can use a horizontal partition rather

than a vertical one, with each directly accessing a BUFG. However, tasks occupying

those nodes would have to take flat rectangular shapes and care must be taken to

properly preserve the other node when one node is been reconfigured. It should recalled

that configuration frames are aligned vertically to clock region heights. While this task

C-1 B-1

Arm

Cores

Configuration

Manager

and

AXI Peripherals
DDR Controller

and

CIRIS Interface Logic

A-1 A-2 A-3

__ Chapter 7 – Applications and Case Studies

 199

partition could have been used in Figure 7.5 that has not been done because the tasks

are laid out to ensure the lowest fragmentation (the presence of unused resources)

possible and an optimum relocatability for each task. Note the same starting positions

are used for the tasks as with the Static and ICAP-based avionics.

Figure 7.5: CELOC-based CIRIS avionics model

7.5 Inter-Task Communication Evaluation

Figure 7.6 depicts the data flow between the tasks, which execute concurrently in

pipeline on the FPGA. Table 7.3 shows the data communication latencies for the three

avionics models. For the static communication, the latencies are estimated from the

AXI bus-based latencies in [210]. The results are indicated in the “Static Links” column

in Table 7.3.

In the ICAP avionics model, a single BRAM36 is used for each of the IDM and

ODM (see Figure 3.5 in Section 3.4.4). As a result, the ICAP-based data transfer

throughput is 7.805 MB/s based on the use of the RMW operation (see Section 4.2.4)

for data relocation. This latency can be improved to as high as 78.05 MB/s for 10

CR13

CR9 CR10

CR14 CR15 CR16

CR12

CR8

CR4

CR11

CR7

CR3

CR6

CR2

CR5

CR1

Arm

Cores

Configuration

Manager

and

AXI Peripherals
DDR Controller

and

CIRIS Interface Logic

Top

Half

Bottom

Half

__ Chapter 7 – Applications and Case Studies

 200

BRAM36s but this would have a serious impact on the area utilization. In fact, each

CIRIS task would need an additional 18 BRAM36s, 9 on the input and 9 on the output.

This translates to 2 additional BRAM columns for each of the tasks. These columns

cannot be absorbed into the current RP area coverages. In addition, more non-BRAM

resources would be wasted as it is in general, impossible to select BRAM-only columns

and certainly, there are no BRAM-BRAM column pairs.

Figure 7.6: Simplified data flow of the CIRIS avionics

From Section 6.5.5, the average network speed of CERANoC for the CELOC-

based model is 379.134 MHz, calculated from 70.21% of fBUFR_MAX, where fBUFR_MAX is

540 MHz for the Kintex-7 at speed grade -2 (see Table 6.7).. Therefore, for the 15-node

CERANoC clocked at 379.134 MHz, the total network throughput is determined from

Equation (6.1) as 2,843.505 Mbps (355.44 MB/s) for a 32-bit payload per packet. Each

node contributes an average of 23.70 MB/s (24,264.58 kB/s) to this total. Note that the

address field in the packet is still 4 bits. A 4-bit field can address 16 nodes. Since a zero

address is avoided (refer to Section 6.6.1) and a node in the 16 circuit regions is used

as the Central Router, the remaining 15 nodes can be addressed from 0x1 to 0xF.

STAT-A

STAT-P

STAT-I

FFT

ZPD

In

Out

In C

Out A

In
 A

In
 B

O
u

t
C

O
u

t
B

In

Out A Out B

D
D

R
 M

e
m

o
ry

In C

Out A

In
 A

In
 B

O
u

t
C

O
u

t
B

In C

Out A

In
 A

In
 B

O
u

t
C

O
u

t
B

__ Chapter 7 – Applications and Case Studies

 201

Table 7.3: Inter-task latencies for the different communication mechanisms

Communication Flow
Data Size

(Bytes)

Latency (ms)

CELOC ICAP-Based Static Links

DDR Memory → ZPD 29,250 1.180 3.574 0.100

ZPD → STAT-I 18,432 0.744 2.252 0.041

DDR Memory ↔ STAT-I 65,536 2.644 8.008 0.188

STAT-I → FFT 18,432 0.744 2.252 0.100

FFT → STAT-A 32,768 1.322 4.004 0.041

FFT → STAT-P 32,768 1.322 4.004 0.041

DDR Memory ↔ STAT-A 65,536 2.644 8.008 0.188

DDR Memory ↔ STAT-P 65,536 2.644 8.008 0.188

Total 328,258 13.244 40.11 0.887

Since this is a data processing application where a new interferogram is received

every 24.8 ms, it is extremely important to meet real-time performance. Note that

CERANoC requires 13.244 ms to move data for a complete processing of an

interferogram. This is 3.03x better than an ICAP-based inter-task communication which

takes up to 40.11 ms, which is already higher than the interval of interferogram arrival.

Because of the bit-parallel nature of data transfer in the static approach, it requires only

0.887 ms for communication.

7.6 Reliability Study

This study will evaluate the implication of the different communication approaches on

the reliability of the CIRIS avionics system. Two studies will be carried out, one for

soft error mitigation evaluation and the other for permanent damage (hard error)

mitigation evaluation. The performance of each avionics model will be evaluated.

7.6.1 Soft Error Mitigation Evaluation

First, the SEM scanning time for each of the task has to be determined using Table 4.15

from Section 4.5.2. The entire area occupied by each task has to be scanned in each

SEM cycle. However, since it is impossible to partition the CIRIS tasks to occupy areas

__ Chapter 7 – Applications and Case Studies

 202

spanning only the resources in Table 7.2, it becomes necessary to align the RPs to

reconfiguration frames spanning columns of CLB-CLB, CLB-BRAM, and CLB-DSP

pairs (see Section 2.2.2). The resulting area occupation in terms of columns of CLBs,

BRAMs, and DSPs is presented in Table 7.4 along with the number of frames needed

for SEM. Note that the BRAMs are not scanned; therefore, the number of SEM frames

is less than the number of frames occupied by the task. The configuration (CFG) and

SEM scan times are also included, with a complete SEM scan cycle for all the tasks

requiring a little over 4 ms.

Table 7.4: Area overhead of the CIRIS tasks

Task
Number of Columns #Occupied

Frames

#SEM

Frames

CFG Time

(µs)

SEM Scan

Time (µs) CLB BRAM DSP

STAT-I 4 1 1 300 172 306.72 175.2

STAT-A 4 1 1 300 172 306.72 175.2

STAT-P 4 1 1 300 172 306.72 175.2

FFT 62 7 9 3,380 2,484 3,417.52 2,510.32

ZPD 25 2 3 1,240 984 1,256.12 995.32

Total 99 12 15 5,520 3,984 5,593.8 4,031.24

Table 7.5 summarizes the total required configuration memory access times for all

the strategies. The configuration times and SEM scan times are the same for all the

three strategies. The CELOC and ICAP-based strategies incur resource overheads for

their network adapters. However, these are easily absorbed into the slice usage of the

tasks themselves and as such, do not increase configuration and SEM overhead. If the

ICAP’s available time is normalized to the total time (26.81 ms) required by the CIRIS

application, then it implies that the CELOC-based avionics model has an occupation of

the ICAP at 64.12% (2.79x) less for the CIRIS application when compared to the ICAP-

based model.

The simplifying assumption is made that there is frequent need for reconfiguring

(relocating) the tasks to improve reliability by wear levelling (see Section 3.2.3 for a

discussion on wear levelling). For the ICAP-based model, all the operations can only

__ Chapter 7 – Applications and Case Studies

 203

be done in sequence using the single available ICAP. Therefore, if we assume that the

system operations always follow the cycle of task (re)configuration, SEM, and inter-

task communication, then it becomes clear that one of these critical functions would

suffer. The full SEM cycle scan (based on the selective-area scanning introduced in

Section 4.3.2) is 4.03 ms. If this is taken as 99% as recommended by Xilinx to ensure

reliability [187], then only 40.71 µs is available for the other functions, that is,

configuration in the case of CELOC and Static Bus/NoC CIRIS avionics; and both

configuration and communication for the ICAP-based model. Communication alone in

the ICAP-based CIRIS avionics requires 40.11 ms, which is 985x of 40.71 µs.

Assuming inter-task communication cannot be delayed for the reason of another

reliability-related factor, that is, real-time deadlines, then either SEM or reconfiguration

would suffer.

Table 7.5: ICAP bandwidth utilization of the CIRIS tasks

System Model
ICAP Time Required (ms)

Total % of Total
CFG SEM Comm.

CELOC

5.59 4.03

0 9.62 19.33%

ICAP-Based 40.11 49.78 (x5.17) 80.65%

Static Bus/NoC 0 9.62 19.33%

Total 49.78 ms

7.6.2 Hard Error Mitigation Evaluation

For the purpose of comparison, the resilience to permanent damages of the three

avionics models can be evaluated by estimating how many such damages each model

can tolerate before failing. A good estimate can be obtained for each avionics model by

counting how many locations each of the CIRIS tasks can be relocated to while

maintaining full communication access as permanent damages emerge. For a fair

comparison, it is assumed that none of the avionics models can keep multiple PBs of

the same task. If a region occupied by a task fails, online relocation is used to configure

it somewhere else. Table 7.6 indicates the performance metrics of the avionics models.

__ Chapter 7 – Applications and Case Studies

 204

The number of overlapping locations (#LOC) for each task is reported. The bigger a

task is, the more prone it is to being hit by an error requiring it to be relocated. This is

because the task occupies a larger area. This is taken into account by normalizing the

largest task’s size to 1, and obtaining size factors that are multiplied with #LOC to get

a fairer result for the relocation (RELOC) quality which reflects the reliability of the

model.

Referring to the Static avionics model in Figure 7.3, the provision for relocation

involves activating another instance of a failed task only in the location determined at

compile time. There is no possibility for space-multiplexing the tasks to share chip area.

Therefore, once a task fails, another instance can be used in its place until all the

instances for any one task has failed, at which point the system fails. The FFT only has

3 locations to use while the ZPD has 4. All the a-type slots are shared 3 each by the

STAT tasks.

On the other hand, both the CELOC and ICAP-based avionics model can withstand

more damages since tasks can be relocated to any position on the FPGA where there is

a matching arrangement of the resources. The sheer size of the FFT task means that it

can only use one extra location in addition to the initial 3. It can use the location

occupied by A-1 to A-8, whereas the ZPD can use its own 4 locations and an additional

8 from the left clock regions in the reconfigurable region.

Table 7.6: Reliability performance of the avionics models

Task
Size

Factor

Static Avionics ICAP Avionics CELOC Avionics

#LOCs RELOC #LOCs RELOC #LOCs RELOC

STAT-I 0.089 3 0.267 30 2.67 30 2.67

STAT-A 0.089 3 0.267 30 2.67 30 2.67

STAT-P 0.089 3 0.267 30 2.67 30 2.67

FFT 1.000 3 3.000 4 4.00 4 4.00

ZPD 0.367 4 1.468 12 4.40 12 4.40

Total 16 5.269 106 16.41 106 16.41

Comparison x1 x1 x6.63 x3.11 x6.63 x3.11

__ Chapter 7 – Applications and Case Studies

 205

For the CELOC and the ICAP-based CIRIS avionics, the ZPD task can use up to

12 locations. However, this number could have been 8 for CELOC considering that by

being closer to the left inner edge of the clock regions, the ZPD tasks would have been

routed to access BUFGs for communication. However, note that the CELOC network

adapter can be used such that the CE connection to the clock buffers is effected in

runtime by simply activating the required PIPs. This does not require an expensive

online clock routing as the buffer configuration needed for each CR can be laid offline

by using dummy loads (see Section 3.2.5) [154].

Although there is an unavoidable mutually-exclusive relationship between the A-,

B-, and C-type slots in every row for CELOC. For instance, if the C-2 slot is occupied

by the FFT task, then an A-type slot would have to be sacrificed in order to access

BUFMRs and BUFRs on the right of the clock region. That is, all the three cannot be

placed in a single row at the same time. Such a scenario does not occur with the ICAP-

based avionics. However, this is negligible compared to the immense overall system

reliability enabled by CELOC, especially in terms of soft error mitigation, which is the

prevalent failure mode in reconfigurable hardware systems.

Overall, for the CIRIS data processing, CELOC proves to be better for a holistic

approach to reliability. Indeed, in space-grade systems like the CIRIS, system reliability

is crucial. While process-based radiation hardening can be used to improve reliability

in a static CIRIS avionics implementation, and a configuration-layer-based

communication used to enable a 3.11x tolerance to permanent damages, CELOC is a

cheaper and a more reliable option as it enables tolerance to both soft and hard errors

in COTS reconfigurable device. In fact, compared to the non-slotted static

implementation of the CIRIS controller in [210], CELOC offers a reliability

improvement of 16.41x. While a much rigorous testing like fault injection analysis

would give a clearer picture, CELOC can still be expected to outperform both static and

ICAP-based communication schemes in terms of reliability.

__ Chapter 7 – Applications and Case Studies

 206

7.7 Chapter Summary

In this chapter a case study application has been presented to demonstrate the

advantage of adapting clock buffers and nets for on-chip communication. The

evaluation drew a case study from a NASA/JPL spectrometer data processing

controller. The stages of this data processing controller were used as tasks and

configuration, communication, and soft error mitigation times were determined. The

application highlighted that CELOC is 3.03x faster when compared to a configuration–

layer-based communication. However, as expected, it is slower when compared to a

static implementation. What sets CELOC apart from the static communication

architecture is that it supports relocation inherently. While the ICAP-based model is

able to relocate the tasks more freely compared to CELOC, from a holistic system

perspective, CELOC provides an improved overall system reliability.

207

Chapter 8

Conclusions and Future Work

The core of this thesis proposed and implemented novel methods and strategies that

could serve as the frameworks for reliable, high-performance, available, efficient, and

secure real-time reconfigurable computing. The observed trend in computing is the

change in paradigm from processor-only computation to hardware-assisted accelerated

computing, where software processes running on a CPU are accelerated by offloading

compute-intensive and time-critical tasks to hardware. The prominent deployed

hardware solution is the FPGA, where hardware tasks (circuits) are dynamically

managed by a Reconfigurable Operating System (ROS) on behalf of a host software

operating system. The key system services or frameworks in a ROS are task

configuration and inter-task communication. However, in order to ensure system

reliability, especially for the high-end applications like aerospace, military, defence,

and nuclear that now use the FPGA, these services are required to be real-time, efficient,

and secure. These two key services have been the subject of this thesis and the core

contributions of this work have been presented in Chapters 4 through 6 while Chapter

7 evaluated the proposed frameworks with a single application by drawing a case study

from the NASA/JPL’s CIRIS instrument.

8.1 Summary, Limitations, and Concluding Remarks

Chapter 4 presented a high-performance and reliability-centric configuration memory

access controller with key features for task management in reconfigurable systems. In

the light of the aims and objectives specified in Section 1.2, the proposed configuration

controller has proven to be both resource- and time-efficient. It saves up to 71% area

and has 30% less configuration latency in comparison to state-of-the-art

implementations. In addition, with an average raw throughput of 380 MB/s, which is

very close to the theoretical maximum of 400 MB/s, the controller has demonstrated a

very high performance. Moreover, the fact that configuration errors are monitored and

8

__ Chapter 8 – Conclusions and Future Work

 208

provisions made for runtime correction, where possible, implies that the controller is

able to improve the availability of the device for high-end applications like datacentres

and aerospace. Related to this, the provision of soft error detection and correction

functionalities will be invaluable in devices that operate in the harsh environment of

space and nuclear decommissioning. Indeed, based on the observation with the

NASA/JPL CIRIS data processing case study, the controller can mitigate errors at up

to 74% less time compared to the state-of-the-art vendor SEM IP.

The runtime relocation of circuits is a key mechanism for improving the reliability

of reconfigurable devices. However, the vendor bitstream format for encrypted

bitstreams hampers the relocation of circuits by including the frame address as

cyphertext in the bitstream. The frame address specifies the location where a circuit

should be configured and for relocation, this needs to be manipulated in plain format.

In Chapter 5, a completely new format for encrypted bitstreams was proposed. This

relied on the fact that a plain frame address can be loaded on-chip in advance of the

frame data that defines the functionality of the circuit being configured. The concept

was thus termed Advance Task Address Loading (ATAL). An algorithm was developed

(with a Windows-based GUI designed) for parsing a partial bitstream generated by

Vivado and formatting it to remove the frame addresses and splitting the bitstream into

multiple parts which can be loaded separately after the on-chip loading of runtime-

generated plain frames addresses. ATAL has shown promising results by

outperforming other strategies for encrypted partial bitstream relocation, providing a

far more time-efficient relocation with very small area overhead. In fact, the only area

overhead was that of the configuration controller, which was needed whether or not

ATAL was used. As such, ATAL can be considered to have no resource overhead. In

order to load the specially-formatted ATAL bitstream, a unique configuration controller

was developed.

The most important limitation of the controllers developed in Chapter 4 and

Chapter 5 is the configuration speed, which is due to the limited speed of the

configuration interface of the device used in the prototype. While the logic resources

and the FPGA in general can operate at clock frequencies that are a few hundreds of

MHz, the configuration interface is limited to 100 MHz. Similarly, the ICAP also posed

__ Chapter 8 – Conclusions and Future Work

 209

a limitation in the ATAL configuration controller. Apart from the limited speed of 100

MHz, the ICAP only supports bitstream loading though its 8-bit bus when encryption

is used. This means that the configuration latency for encrypted bitstreams is in general,

quadrupled. Moreover, when an encrypted bitstream is being loaded it is not

straightforward to know when configuration has been concluded, making the design of

the controller more complicated by having to keep track of how many words has been

loaded.

Certainly, the configuration interface in FPGAs and the provision of security

should not undermine the high performance that has come to be expected of hardware.

As a result, some of these issues have been addressed to some extent in the latest device

families. The ICAP in the UltraScale architecture can be clocked at up to 200 MHz and

in fact, it only supports the 32-bit interface, even with encryption used, and has extra

signal ports for configuration monitoring. It would be interesting therefore, to port these

controllers to the new architecture for an improvement on an already impressive

performance.

While the controllers have been targeted at the Xilinx 7 series architecture, only

minor modifications are needed in order to adapt them for use in the UltraScale

architecture. For devices from Altera and other FPGA manufacturers, the same

methodologies can be followed – build a custom control structure around the

configuration interface to deliver reliability-enabling functionalities. For ATAL’s

configuration controller, an insight would have to be gained into the encryption and

authentication scheme adopted by the manufacturer. However, the most important

aspect is to be able to leave the frame address out of the encrypted portion of the

configuration bitstream.

In Chapter 6, a new mechanism for on-chip communication was advanced.

Motivated by the need to provide a dynamic communication support for relocatable

circuits, the concept involved the adaptation of clock buffers and nets in a typical FPGA

for linking nodes in a NoC. This approach to communication was characterized and

used to demonstrate relocation. However, because of the serial nature of the data

transmission, the overall throughput of a network so formed is limited by the maximum

usable operating frequency that does not violate setup and hold times. In addition, the

__ Chapter 8 – Conclusions and Future Work

 210

fact that a transmitter needs access to the CE pin has restricted relocation of tasks to

clock-region-sized partitions in the prototype implementation. If a task is not big

enough, there could be many unused resources in the region. One way to resolve this is

to use a multiplexing approach to the connection to the CE pins of the buffers in order

to allow multiple tasks to share the same CE. This will ensure that a small task placed

in a clock region does not prevent other tasks from using the same region. This would

reduce the link bandwidth available to each task. On the other hand, a better approach

would be to have multiple horizontal tasks in the same region accessing BUFHs to form

a mesh network.

Moreover, one limitation in the present implementation of CELOC/CERANoC

arises from the limited number of clock buffers, limiting the network throughput. This

could possibly be alleviated in newer chips like the UltraScale, which have more clock

buffers. This is worth investigating in the future.

8.2 Recommendations for Future Work

Having designed and implemented the supporting infrastructures for reliable real-time

reconfigurable computing, the next stage, which could serve as future work would be

the development of a truly reliable RC system. This would aim at bringing all the

mechanisms advanced in this thesis together into a complete system architecture for

RC, with a more holistic approach given to reliability, real-time processing, high

performance, availability, efficiency, and security. Shown in Figure 8.1 are key system

components that will be needed for effecting the suggested system for future work.

The system is proposed to be made up of two major sub-systems: a Software

Microkernel (SWµK) and a Hardware Microkernel (HWµK). The SWµK would

contain the Main CPU for executing software tasks and a Scheduler and an Allocator,

which can also be implemented in hardware. The HWµK would use the reconfigurable

fabric to implement system managers and provide a chip area for placing hardware

tasks.

__ Chapter 8 – Conclusions and Future Work

 211

Figure 8.1: System architecture for reliable reconfigurable computing

The key components of the recommended system and other relevant features are

discussed below:

 The core of this system would be a Configuration Manager based on the

controller described and implemented in Chapter 4, providing salient system

functionalities that include task loading, task deallocation, task replication for

TMR implementation, device error diagnosis, and SEM.

 Inter-task communication and synchronization would be provided in the

clock routing layer through the instrumentality of the clock buffers and nets

in an FPGA. The methods advanced in Chapter 6 would be highly relevant

for this, especially for providing dynamic communication support for PBR.

 A Communication Manager would provide communication support at the

system level, bridging synchronizations between the hardware tasks and

parent software processes executing on a Main CPU.

 A Scheduler, which determines the order of task execution would also be

needed. Depending on the targeted application, the scheduling may be based

on Earliest Deadline First (EDF) [188], which is a popular scheduling

approach for real-time computing.

S
o

ft
w

ar
e-

H
ar

d
w

ar
e

In
te

rf
ac

e

Communication

Manager

Security

Manager

Allocator

Main

CPU

Hardware Microkernel: Contains

the key features of the system

Reconfigurable Task

Region for arbitrarily-

placed tasks

Software

Microkerne l

Configuration

Manager
Scheduler

__ Chapter 8 – Conclusions and Future Work

 212

 To find a suitable region for a hardware task on the chip, an Allocator would

be necessary. With considerations given to the reduction of chip area

fragmentation, methods like those proposed in [237], [238] and [239] can be

used. A Security Manager would cater for both task- and system-level

security using the approaches developed in Chapter 5.

8.2.1 Traditional Slotted Reconfigurable Systems

In a traditional partially reconfigurable system, each reconfigurable circuit is

synthesized using resources exclusively contained within a predefined rectangular

region in the FPGA. That FPGA region is named as “reconfigurable slot”. Several

reconfigurable circuits can be mapped to the same slot at design time. At runtime, it is

possible to switch between the different partial bitstreams associated to the

reconfigurable circuits to change the functionality implemented in the FPGA slots [37].

Therefore, slotted reconfigurable systems exhibit coarse granularity defined by the slots

in which the FPGA is divided.

Two aspects need to be considered here. First, in addition to the configuration

information for the FPGA resources contained in the slots, partial bitstreams also

include configuration information associated with static routes that cross the slots

connecting resources located in non-reconfigurable FPGA regions. FPGA vendor tools

ensure that these static routes are always preserved in all generated partial bitstreams.

Second, Partition Pins (PartPins) are used to preserve the interfaces of the slots in all

possible configurations [37]. PartPins are LUTs inserted by the build tool to connect

resources located in both reconfigurable and static FPGA regions. Therefore, PartPins

shape the physical boundaries of slots, which are decided at design time and remain

fixed at runtime.

8.2.2 Towards Slotless Reconfigurable Systems

Partial bitstreams can be relocated to different FPGA regions where resources are

arranged in the same exact way as in the reconfigurable slots for which the partial

bitstreams were originally generated (refer to Section 3.2.4). Note that this can be done

__ Chapter 8 – Conclusions and Future Work

 213

by changing the configuration frame FAR addresses in the partial bitstreams to refer to

the target relocation regions.

However, this process is not currently supported by any FPGA vendor tool and

therefore, there are some limitations as pointed out in Section 3.2.4. The root problem

of this is the use of static routing resources for inter-task communication (see Section

3.1). While a recent ROS, in the name of R3TOS manages to avoid the use of static

interconnections, by using the configuration infrastructure of the FPGA for inter-task

data transfer, it risks upsetting the same reliability for which it is developed. Other

critical services (e.g., SEM and task loading) relying on configuration are impaired, as

the configuration interface is a single resource that needs to be shared by these critical

system services.

8.2.3 Partition Architecture for Reliable Computing

To avoid static routes, a partition architecture shown in Figure 8.2 can be used for

placing tasks in the proposed system. In this architecture, intra-clock region

communication is enabled by BUFHs while inter-clock region communication is

achieved through a combination of BUFMRs and BUFRs. For generalization, it should

be noted that the indicated clock buffers can be easily replaced with equivalent

primitives in other FPGAs and PLDs, whether from Xilinx or from other manufacturers.

To avoid static routes, RePARC does not rely on the general routing for inter-

communication and synchronization, save for a single wire used for accessing the CE

of a clock buffer. Hence, it keeps the FPGA’s reconfigurable area generally empty, that

is, free of any partition boundaries (i.e., PartPins) and static routes. Inter-task

communication and synchronization are carried out through the FPGA's clock routing

layer, as described in Chapter 6. In this context, task allocation and deallocation are

considerably accelerated, as there is no need to preserve any static routes in the target

and source positions when relocation is being performed. In fact, task deallocation

simply consists in blanking the whole content of the corresponding frames, which can

be done very quickly using bitstream compression DPR commands.

__ Chapter 8 – Conclusions and Future Work

 214

Figure 8.2: Partition architecture showing slots interconnected by clock buffers (represented

by the arrows)

VRN0

VRN1

VRN11

VRN0

VRN1

VRN11

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

VRN0

VRN1

VRN11

VRN0

VRN1

VRN11

.

.

.

.

.

.

Top

Half

Bottom

Half

Clock Region

BUFMR

BUFR

BUFH

BUFG

215

References

[1] C. Kachris and D. Soudris, ‘A survey on reconfigurable accelerators for cloud

computing’, in 2016 26th International Conference on Field Programmable

Logic and Applications (FPL), 2016, pp. 1–10.

[2] P. Alfke, I. Bolsens, B. Carter, M. Santarini, and S. Trimberger, ‘It’s an

FPGA!’, IEEE Solid-State Circuits Mag., vol. 3, no. 4, pp. 15–20, 2011.

[3] A. Putnam et al., ‘A reconfigurable fabric for accelerating large-scale

datacenter services’, in 2014 ACM/IEEE 41st International Symposium on

Computer Architecture (ISCA), 2014, pp. 13–24.

[4] Amazon Inc., ‘Amazon EC2 F1 Instances’, Amazon Web Services, Inc.

[Online]. Available: //aws.amazon.com/ec2/instance-types/f1/. [Accessed: 01-

Aug-2017].

[5] J. Backus, ‘Can Programming Be Liberated from the Von Neumann Style?: A

Functional Style and Its Algebra of Programs’, Commun ACM, vol. 21, no. 8,

pp. 613–641, Aug. 1978.

[6] G. E. Moore, ‘Cramming More Components Onto Integrated Circuits’, Proc.

IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998.

[7] G. E. Moore, ‘Cramming more components onto integrated circuits, Reprinted

from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.’, IEEE

Solid-State Circuits Soc. Newsl., vol. 11, no. 3, pp. 33–35, Sep. 2006.

[8] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The

Hardware/Software Interface. Morgan Kaufmann, 2008.

[9] D. Koch, D. Ziener, and F. Hannig, ‘FPGA Versus Software Programming:

Why, When, and How?’, in FPGAs for Software Programmers, D. Koch, F.

Hannig, and D. Ziener, Eds. Cham: Springer International Publishing, 2016,

pp. 1–21.

[10] S. M. Trimberger, ‘Three Ages of FPGAs: A Retrospective on the First Thirty

Years of FPGA Technology’, Proc. IEEE, vol. 103, no. 3, pp. 318–331, Mar.

2015.

[11] S. Welsh and P. Knaggs, ‘ARM Assembly Language Programming’. 2003.

[12] G. M. Hopper and R. R. Corp, ‘The Education of a Computer’, in

Proceedings of the 1952 ACM National Meeting, Pittsburgh, Pennsylvania,

1952, pp. 243–249.

[13] R. K. Ridgway, ‘Compiling Routines’, in Proceedings of the 1952 ACM

National Meeting, Toronto, Ontario, Canada, 1952, pp. 1–5.

[14] G. Martin and G. Smith, ‘High-Level Synthesis: Past, Present, and Future’,

IEEE Des. Test Comput., vol. 26, no. 4, pp. 18–25, Jul. 2009.

[15] Xilinx Inc., ‘Vivado Design Suite User Guide, High-Level Synthesis - UG902

(v2017.4)’. Xilinx Inc., 2018.

[16] R. Nane et al., ‘A Survey and Evaluation of FPGA High-Level Synthesis

Tools’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 35, no.

10, pp. 1591–1604, Oct. 2016.

[17] R. Gupta and F. Brewer, ‘High-Level Synthesis: A Retrospective’, in High-

Level Synthesis, Springer, Dordrecht, 2008, pp. 13–28.

___ References

 216

[18] D. G. Bailey, ‘The advantages and limitations of high level synthesis for

FPGA based image processing’, in Proceedings of the 9th International

Conference on Distributed Smart Camera - ICDSC ’15, Seville, Spain, 2015,

pp. 134–139.

[19] G. Brebner, ‘A virtual hardware operating system for the Xilinx XC6200’, in

Field-Programmable Logic Smart Applications, New Paradigms and

Compilers, vol. 1142, R. W. Hartenstein and M. Glesner, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1996, pp. 327–336.

[20] G. Wigley and D. Kearney, ‘The first real operating system for reconfigurable

computers’, in Proceedings of the 6th Australasian Computer Systems

Architecture Conference. ACSAC 2001, Gold Coast, Qld., Australia, 2001, pp.

130–137.

[21] J. Tørresen and D. Koch, ‘Can Run-time Reconfigurable Hardware be more

Accessible?’, in International Conference on Engineering of Reconfigurable

Systems and Algorithms, 2011.

[22] G. Wigley and D. Kearney, ‘The Development of an Operating System for

Reconfigurable Computing’, in The 9th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM’01), 2001, pp. 249–

250.

[23] G. Wigley and D. Kearney, ‘Research issues in operating systems for

reconfigurable computing’, in proceedings of the International Conference on

Engineering of Reconfigurable System and Algorithms (ERSA), 2002, pp. 10–

16.

[24] M. Eckert, D. Meyer, J. Haase, and B. Klauer, ‘Operating System Concepts

for Reconfigurable Computing: Review and Survey’, Int. J. Reconfigurable

Comput., pp. 1–11, 2016.

[25] R. Katz, ‘The failure of a small satellite and the loss of a space science

mission’, in Proceedings 2002 NASA/DoD Conference on Evolvable

Hardware, 2002, p. 4.

[26] T. Bayer, B. Cooke, I. Gontijo, and K. Kirby, ‘Europa Clipper mission: the

habitability of an icy moon’, in 2015 IEEE Aerospace Conference, 2015, pp.

1–12.

[27] R. B. Gardenyes, ‘Trends and patterns in ASIC and FPGA use in space

missions and impact in technology roadmaps of the European Space Agency’,

Delft University of Technology, Delft, The Netherlands, 2012.

[28] J. H. Yuen, Ed., Deep Space Communications. New Jersey: John Wiley &

Sons, Inc., 2016.

[29] FAA, ‘Established Practices for Human Space Flight Occupant Safety’. 2014.

[30] S. B. Johnson, ‘Reliable avionics design for deep space’, in 9th

IEEE/AIAA/NASA Conference on Digital Avionics Systems, 1990, pp. 35–40.

[31] D. Sinclair and J. Dyer, ‘Radiation effects and COTS parts in SmallSats’, in

Proceedings of the 27th Annual AIAA/USU Conference on Small Sattellites,

2013.

[32] M. E. Pate-Cornell, R. L. Dillon, and S. D. Guikema, ‘On the Limitations of

Redundancies in the Improvement of System Reliability’, Risk Anal., vol. 24,

no. 6, pp. 1423–1436, Dec. 2004.

[33] R. P. Ocampo, ‘Limitations of spacecraft redundancy: A case study analysis’,

2014.

___ References

 217

[34] M. Armbrust et al., ‘A View of Cloud Computing’, Commun ACM, vol. 53,

no. 4, pp. 50–58, Apr. 2010.

[35] Z. Chaczko, V. Mahadevan, S. Aslanzadeh, and C. Mcdermid, ‘Availability

and load balancing in cloud computing’, in International Conference on

Computer and Software Modeling, Singapore, 2011, vol. 14.

[36] B. Hayes, ‘Cloud computing’, Commun. ACM, vol. 51, no. 7, pp. 9–11, 2008.

[37] Xilinx Inc., ‘Vivado Design Suite User Guide, Partial Reconfiguration -

UG909 (v2018.1)’. Xilinx Inc., 2018.

[38] J. A. Stankovic and K. Ramamritham, ‘What is predictability for real-time

systems?’, Real-Time Syst., vol. 2, no. 4, pp. 247–254, Nov. 1990.

[39] A. Putnam et al., ‘A Reconfigurable Fabric for Accelerating Large-Scale

Datacenter Services’, IEEE Micro, vol. 35, no. 3, pp. 10–22, May 2015.

[40] J. Ouyang, ‘SDA: Software-defined accelerator for large-scale deep learning

system’, in 2016 International Symposium on VLSI Design, Automation and

Test (VLSI-DAT), 2016, pp. 1–1.

[41] J. Ouyang, S. Lin, W. Qi, Y. Wang, B. Yu, and S. Jiang, ‘SDA: Software-

defined accelerator for large-scale DNN systems’, in 2014 IEEE Hot Chips 26

Symposium (HCS), 2014, pp. 1–23.

[42] H. Chauhan, ‘Can Intel Dominate This Market by Overcoming This Smaller

Rival? -- The Motley Fool’, Nov-2017. [Online]. Available:

https://www.fool.com/investing/2017/11/24/can-intel-dominate-this-market-

by-overcoming-this.aspx. [Accessed: 16-Aug-2018].

[43] S. M. Trimberger and J. J. Moore, ‘FPGA Security: Motivations, Features,

and Applications’, Proc. IEEE, vol. 102, no. 8, pp. 1248–1265, Aug. 2014.

[44] Xilinx Inc., ‘7 Series FPGAs Clocking Resources - User Guide UG472

(v1.11.2)’. Xilinx Inc., 2015.

[45] J. Rose and S. Brown, ‘Flexibility of interconnection structures for field-

programmable gate arrays’, IEEE J. Solid-State Circuits, vol. 26, no. 3, pp.

277–282, Mar. 1991.

[46] N. Mehta, ‘Xilinx 7 Series FPGAs: The Logical Advantage’. 2012.

[47] Xilinx Inc., ‘7 Series FPGAs Configuration, User Guide - UG470 (v1.13.1)’.

Xilinx Inc., 2018.

[48] Xilinx Inc., ‘Vivado Design Suite User Guide, Programming and Debugging -

UG908 (v2014.1)’. Xilinx Inc., 2014.

[49] Xilinx Inc., ‘Kintex-7 FPGAs Data Sheet: DC and AC Switching

Characteristics, Product Specification - DS182 (v2.16.1)’. Xilinx Inc., 2018.

[50] Xilinx Inc., ‘Command Line Tools User Guide - UG628 (v 14.5)’. Xilinx Inc.,

2013.

[51] R. Jayaraman, ‘Physical Design for FPGAs’, in Proceedings of the 2001

International Symposium on Physical Design, New York, NY, USA, 2001,

pp. 214–221.

[52] C. Kao, ‘Benefits of Partial Reconfiguration Benefits of Partial

Reconfiguration’, Xcell Journal, vol. Fourth Quarter, no. 55, pp. 65–67, 2005.

[53] D. Koch et al., ‘Partial reconfiguration on FPGAs in practice — Tools and

applications’, in ARCS 2012, 2012, pp. 1–12.

[54] E. Eto, ‘Difference-Based Partial Reconfiguration - XAPP290 (v2.0)’. 2007.

___ References

 218

[55] T. Wollinger, J. Guajardo, and C. Paar, ‘Security on FPGAs: State-of-the-art

Implementations and Attacks’, ACM Trans. Embed. Comput. Syst., vol. 3, no.

3, pp. 534–574, Aug. 2004.

[56] A. Telikepalli, ‘Is Your FPGA Design Secure?’, Xcell Journal, vol. Fall 2003,

no. 47, pp. 32–35, 2003.

[57] W. F. Ehrsam, C. H. W. Meyer, J. L. Smith, and W. L. Tuchman, ‘Message

verification and transmission error detection by block chaining’,

US4074066A, 14-Feb-1978.

[58] S. Drimer, ‘Authentication of FPGA Bitstreams: Why and How’, in

Reconfigurable Computing: Architectures, Tools and Applications, P. C.

Diniz, E. Marques, K. Bertels, M. M. Fernandes, and J. M. P. Cardoso, Eds.

Springer Berlin Heidelberg, 2007, pp. 73–84.

[59] Xilinx Inc., ‘Virtex-4 FPGA Configuration User Guide - UG071 (v1.12)’. 02-

Jun-2017.

[60] P. Koopman and T. Chakravarty, ‘Cyclic Redundancy Code (CRC)

Polynomial Selection for Embedded Networks’, in Proceedings of the 2004

International Conference on Dependable Systems and Networks, Washington,

DC, USA, 2004, pp. 145–154.

[61] B. Badrignans, F. Devic, L. Torres, G. Sassatelli, and P. Benoit, ‘Embedded

Systems Security for FPGA’, in Security Trends for FPGAS, B. Badrignans, J.

L. Danger, V. Fischer, G. Gogniat, and L. Torres, Eds. Springer Netherlands,

2011, pp. 137–187.

[62] Xilinx Inc., ‘Soft Error Mitigation Controller v4.1 - LogiCORE IP Product

Guide’. Xilinx Inc., 2015.

[63] W. E. Cory, D. P. Schultz, and S. P. Young, ‘Error checking parity and

syndrome of a block of data with relocated parity bits’, US7426678 B1, 16-

Sep-2008.

[64] E. Peterson, ‘Developing Tamper Resistant Designs with Xilinx Virtex-6 and

7 Series FPGAs, Application Note - XAPP1084 (v1.3)’. 2013.

[65] M. Hally, Electronic Brains: Stories from the Dawn of the Computer Age.

National Academies Press, 2005.

[66] E. W. Pugh, Building IBM: Shaping an Industry and Its Technology. MIT

Press, 1995.

[67] F. Faggin, ‘The Birth of the Microprocessor’, BYTE, vol. 17, no. 3, pp. 145–

150, Mar. 1992.

[68] N. Telle, W. Luk, and R. C. C. Cheung, ‘Customising Hardware Designs for

Elliptic Curve Cryptography’, in Computer Systems: Architectures, Modeling,

and Simulation, 2004, pp. 274–283.

[69] G. Stitt, F. Vahid, and S. Nematbakhsh, ‘Energy Savings and Speedups from

Partitioning Critical Software Loops to Hardware in Embedded Systems’,

ACM Trans Embed Comput Syst, vol. 3, no. 1, pp. 218–232, Feb. 2004.

[70] Xilinx Inc., ‘Zynq-7000 All Programmable SoC Overview - Product

Specification - DS190 (v1.8)’. Xilinx Inc., 2015.

[71] Altera Corp., ‘Altera’s User-Customizable ARM-Based SoC’. 2015.

[72] G. Estrin, ‘Organization of Computer Systems: The Fixed Plus Variable

Structure Computer’, in Papers Presented at the May 3-5, 1960, Western

Joint IRE-AIEE-ACM Computer Conference, New York, NY, USA, 1960, pp.

33–40.

___ References

 219

[73] G. Estrin, ‘Reconfigurable computer origins: the UCLA fixed-plus-variable

(F+V) structure computer’, IEEE Ann. Hist. Comput., vol. 24, no. 4, pp. 3–9,

Oct. 2002.

[74] ‘Field Programmable Gate Array (FPGA) Market 2018 Global Analysis,

Opportunities and Forecast To 2023’, MarketWatch, 14-Jun-2018. [Online].

Available: https://www.marketwatch.com/press-release/field-programmable-

gate-array-fpga-market-2018-global-analysis-opportunities-and-forecast-to-

2023-2018-06-14. [Accessed: 14-Sep-2018].

[75] R. Hartenstein, ‘Are we really ready for the breakthrough? [morphware]’, in

Proceedings International Parallel and Distributed Processing Symposium,

2003, pp. 7 pp.-.

[76] J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R.

Lauwereins, ‘Infrastructure for design and management of relocatable tasks in

a heterogeneous reconfigurable system-on-chip’, in Design, Automation and

Test in Europe Conference and Exhibition, 2003, 2003, pp. 986–991.

[77] D. Andrews et al., ‘HThreads: a hardware/software co-designed multithreaded

RTOS kernel’, in 10th IEEE Conference on Emerging Technologies and

Factory Automation, 2005. ETFA 2005, 2005, vol. 2, pp. 331–338.

[78] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. Andrews,

‘Hthreads: A Computational Model for Reconfigurable Devices’, in 2006

International Conference on Field Programmable Logic and Applications,

2006, pp. 1–4.

[79] X. Iturbe et al., ‘R3TOS: A novel reliable reconfigurable real-time operating

system for highly adaptive, efficient, and dependable computing on FPGAs’,

IEEE Trans. Comput., vol. 62, no. 8, pp. 1542–1556, Aug. 2013.

[80] H. Kwok-Hay So, ‘BORPH: An Operating System for FPGA-Based

Reconfigurable Computers’, University of California, Berkeley, 2007.

[81] E. Lubbers and M. Platzner, ‘ReconOS: An RTOS Supporting Hard-and

Software Threads’, in 2007 International Conference on Field Programmable

Logic and Applications, 2007, pp. 441–446.

[82] A. Agne et al., ‘ReconOS: An Operating System Approach for

Reconfigurable Computing’, IEEE Micro, vol. 34, no. 1, pp. 60–71, Jan.

2014.

[83] D. Gohringer, M. Hubner, E. N. Zeutebouo, and J. Becker, ‘CAP-OS:

Operating system for runtime scheduling, task mapping and resource

management on reconfigurable multiprocessor architectures’, in 2010 IEEE

International Symposium on Parallel Distributed Processing, Workshops and

PhD Forum (IPDPSW), 2010, pp. 1–8.

[84] A. Ismail and L. Shannon, ‘FUSE: Front-End User Framework for O/S

Abstraction of Hardware Accelerators’, in 2011 IEEE 19th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2011, pp. 170–177.

[85] Y. Wang et al., ‘SPREAD: A Streaming-Based Partially Reconfigurable

Architecture and Programming Model’, IEEE Trans. Very Large Scale Integr.

VLSI Syst., vol. 21, no. 12, pp. 2179–2192, Dec. 2013.

[86] G. Charitopoulos, I. Koidis, K. Papadimitriou, and D. Pnevmatikatos,

‘Hardware Task Scheduling for Partially Reconfigurable FPGAs’, in Applied

Reconfigurable Computing, 2015, pp. 487–498.

___ References

 220

[87] A. Wold, A. Agne, and J. Torresen, ‘Relocatable Hardware Threads in Run-

Time Reconfigurable Systems’, in Reconfigurable Computing: Architectures,

Tools, and Applications, 2014, pp. 61–72.

[88] K. Jozwik, S. Honda, M. Edahiro, H. Tomiyama, and H. Takada, ‘Rainbow:

An Operating System for Software-Hardware Multitasking on Dynamically

Partially Reconfigurable FPGAs’, International Journal of Reconfigurable

Computing, 2013. [Online]. Available:

https://www.hindawi.com/journals/ijrc/2013/789134/abs/. [Accessed: 17-Sep-

2018].

[89] C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Teich, ‘The

Erlangen Slot Machine: a highly flexible FPGA-based reconfigurable

platform’, in 13th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, 2005. FCCM 2005, 2005, pp. 319–320.

[90] X. Iturbe, K. Benkrid, T. Arslan, R. Torrego, and I. Martinez, ‘Methods and

Mechanisms for Hardware Multitasking: Executing and Synchronizing Fully

Relocatable Hardware Tasks in Xilinx FPGAs’, in 2011 International

Conference on Field Programmable Logic and Applications (FPL), 2011, pp.

295–300.

[91] A. W. Wieder and F. Neppl, ‘CMOS technology trends and economics’, IEEE

Micro, vol. 12, no. 4, pp. 10–19, Aug. 1992.

[92] S. Ferrera and N. P. Carter, ‘Reconfigurable Circuits Using Hybrid Hall

Effect Devices’, in Field Programmable Logic and Application, 2003, pp. 1–

10.

[93] T. S. Nidhin, A. Bhattacharyya, R. P. Behera, T. Jayanthi, and K. Velusamy,

‘Understanding radiation effects in SRAM-based field programmable gate

arrays for implementing instrumentation and control systems of nuclear power

plants’, Nucl. Eng. Technol., vol. 49, no. 8, pp. 1589–1599, Dec. 2017.

[94] J. Hussein and G. Swift, ‘Mitigating Single-Event Upsets (White Paper -

WP395)’. Xilinx Inc., 2015.

[95] T. Buerkle et al., ‘Ionizing Radiation Detector for Environmental Awareness

in FPGA-Based Flight Computers’, IEEE Sens. J., vol. 12, no. 6, pp. 2229–

2236, Jun. 2012.

[96] M. Nicolaidis, ‘Design for soft error mitigation’, IEEE Trans. Device Mater.

Reliab., vol. 5, no. 3, pp. 405–418, Sep. 2005.

[97] R. C. Baumann, ‘Radiation-induced soft errors in advanced semiconductor

technologies’, IEEE Trans. Device Mater. Reliab., vol. 5, no. 3, pp. 305–316,

Sep. 2005.

[98] G. Allen, G. Swift, and C. Carmichael, ‘Virtex-4QV Static SEU

Characterization Summary’. JPL Publication 08-16 4/08. NASA Jet

Propulsion Laboratory, Pasadena, CA, 2008.

[99] P. Adell, G. Allen, G. Swift, and S. McClure, ‘Assessing and mitigating

radiation effects in Xilinx SRAM FPGAs’, in 2008 European Conference on

Radiation and Its Effects on Components and Systems, 2008, pp. 418–424.

[100] F. W. Sexton, ‘Destructive single-event effects in semiconductor devices and

ICs’, IEEE Trans. Nucl. Sci., vol. 50, no. 3, pp. 603–621, Jun. 2003.

[101] P. Graham, M. Caffrey, J. Zimmerman, P. Sundararajan, E. Johnson, and C.

Patterson, ‘Consequences and categories of SRAM FPGA configuration

___ References

 221

SEUs’, in In Proceedings of the International Conference on Military and

Aerospace Programmable Logic Devices, 2003, pp. 1–9.

[102] M. Wirthlin, ‘High-Reliability FPGA-Based Systems: Space, High-Energy

Physics, and Beyond’, Proc. IEEE, vol. 103, no. 3, pp. 379–389, Mar. 2015.

[103] S. Srinivasan et al., ‘Toward Increasing FPGA Lifetime’, IEEE Trans.

Dependable Secure Comput., vol. 5, no. 2, pp. 115–127, Apr. 2008.

[104] L. Kirischian, V. Kirischian, and D. Sharma, ‘Mitigation of Thermo-cycling

effects in Flip-chip FPGA-based Space-borne Systems by Cyclic On-chip

Task Relocation’, in 2018 NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), 2018, pp. 17–24.

[105] R. Katz et al., ‘Radiation effects on current field programmable technologies’,

IEEE Trans. Nucl. Sci., vol. 44, no. 6, pp. 1945–1956, Dec. 1997.

[106] F. Kastensmidt and P. Rech, ‘Radiation Effects and Fault Tolerance

Techniques for FPGAs and GPUs’, in FPGAs and Parallel Architectures for

Aerospace Applications: Soft Errors and Fault-Tolerant Design, F.

Kastensmidt and P. Rech, Eds. Cham: Springer International Publishing,

2016, pp. 3–17.

[107] P. Mangalagiri, S. Bae, R. Krishnan, Y. Xie, and V. Narayanan, ‘Thermal-

aware reliability analysis for platform FPGAs’, in Int’l Conf. Computer Aided

Design, 2008, pp. 722–727.

[108] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, ‘Mitigation of Radiation

Effects in SRAM-Based FPGAs for Space Applications’, ACM Comput Surv,

vol. 47, no. 2, pp. 37:1–37:34, Jan. 2015.

[109] A. Camplani, S. Shojaii, H. Shrimali, A. Stabile, and V. Liberali, ‘CMOS IC

radiation hardening by design’, Facta Univ. - Ser. Electron. Energ., vol. 27,

no. 2, pp. 251–258, 2014.

[110] R. Roosta, ‘A Comparison of Radiation-Hard and Radiation-Tolerant FPGAs

for Space Applications’. JPL D-31228. NASA Electronic Parts and Packaging

Program, 30-Dec-2004.

[111] D. G. Mavis and D. R. Alexander, ‘Employing radiation hardness by design

techniques with commercial integrated circuit processes’, in 16th DASC.

AIAA/IEEE Digital Avionics Systems Conference. Reflections to the Future.

Proceedings, 1997, vol. 1, pp. 2.1-15-2.1-22.

[112] F. Faccio, ‘Radiation Effects and Hardening by Design in CMOS

Technologies’, in Analog Circuit Design: Robust Design, Sigma Delta

Converters, RFID, H. Casier, M. Steyaert, and A. H. M. van Roermund, Eds.

Dordrecht: Springer Netherlands, 2011, pp. 69–87.

[113] J. P. Hayes, I. Polian, and B. Becker, ‘An Analysis Framework for Transient-

Error Tolerance’, in 25th IEEE VLSI Test Symposium (VTS’07), 2007, pp.

249–255.

[114] R. Garg, N. Jayakumar, S. P. Khatri, and G. S. Choi, ‘Circuit-Level Design

Approaches for Radiation-Hard Digital Electronics’, IEEE Trans. Very Large

Scale Integr. VLSI Syst., vol. 17, no. 6, pp. 781–792, Jun. 2009.

[115] R. Ladbury and R. Ladbury, ‘Radiation Hardening at the System Level’. IEEE

NSREC Short Course, 2007.

[116] J. Von Neumann, ‘Probabilistic logics and the synthesis of reliable organisms

from unreliable components’, in Automata Studies, vol. 34, C. E. Shannon and

J. McCarthy, Eds. NJ, Princeton: Princeton Univ. Press, 1956, pp. 43–98.

___ References

 222

[117] R. E. Lyons and W. Vanderkulk, ‘The Use of Triple-Modular Redundancy to

Improve Computer Reliability’, IBM J. Res. Dev., vol. 6, no. 2, pp. 200–209,

Apr. 1962.

[118] S. Habinc, ‘Functional Triple Modular Redundancy (FTMR)’, Gaisler

Research, Dec. 2002.

[119] P. K. Samudrala, J. Ramos, and S. Katkoori, ‘Selective Triple Modular

Redundancy (STMR) Based Single-Event Upset (SEU) Tolerant Synthesis for

FPGAs’, IEEE Trans. Nucl. Sci., vol. 51, no. 5, pp. 2957–2969, Oct. 2004.

[120] P. E. Dodd, M. R. Shaneyfelt, J. R. Schwank, and J. A. Felix, ‘Current and

Future Challenges in Radiation Effects on CMOS Electronics’, IEEE Trans.

Nucl. Sci., vol. 57, no. 4, pp. 1747–1763, Aug. 2010.

[121] B. Bridgford, C. Carmichael, and C. W. Tseng, ‘Single Event Upset

Mitigation Selection Guide’. 2008.

[122] A. Lesea and P. Alfke, ‘Xilinx FPGAs Overcome the Side Effects of Sub-40

nm Technology’. Xilinx Inc., 2011.

[123] D. S. Lee, G. Swift, and M. Wirthlin, ‘An Analysis of High-Current Events

Observed on Xilinx 7-Series and Ultrascale Field-Programmable Gate

Arrays’, in 2016 IEEE Radiation Effects Data Workshop (REDW), 2016, pp.

1–5.

[124] T. Bates and C. P. Bridges, ‘Single event mitigation for Xilinx 7-series

FPGAs’, in 2018 IEEE Aerospace Conference, Big Sky, MT, 2018, pp. 1–12.

[125] A. Stoddard, A. Gruwell, P. Zabriskie, and M. J. Wirthlin, ‘A Hybrid

Approach to FPGA Configuration Scrubbing’, IEEE Trans. Nucl. Sci., vol.

64, no. 1, pp. 497–503, Jan. 2017.

[126] M. Wirthlin, D. Lee, G. Swift, and H. Quinn, ‘A Method and Case Study on

Identifying Physically Adjacent Multiple-Cell Upsets Using 28-nm,

Interleaved and SECDED-Protected Arrays’, IEEE Trans. Nucl. Sci., vol. 61,

no. 6, pp. 3080–3087, Dec. 2014.

[127] R. Mall, Real-Time Systems: Theory and Practice. Pearson Education India,

2009.

[128] G. Swift and G. Allen, ‘Virtex-5QV Static SEU Characterization Summary’.

Technical Report. NASA Jet Propulsion Laboratory, Pasadena, CA., 2012.

[129] S. Dhingra, D. Milton, and C. E. Stroud, ‘BIST for Logic and Memory

Resources in Virtex-4 FPGAs’, in Proceedings of the IEEE North Atlantic

Test Workshop, 2006, pp. 19–27.

[130] A. Ebrahim, T. Arslan, and X. Iturbe, ‘A fast and scalable FPGA damage

diagnostic service for R3TOS using BIST cloning technique’, in 2014 24th

International Conference on Field Programmable Logic and Applications

(FPL), 2014, pp. 1–4.

[131] H. Modi and P. Athanas, ‘In-system testing of Xilinx 7-Series FPGAs: Part 1-

logic’, in MILCOM 2015 - 2015 IEEE Military Communications Conference,

2015, pp. 477–482.

[132] J. Liu and S. Simmons, ‘BIST-diagnosis of interconnect fault locations in

FPGA’s’, in CCECE 2003 - Canadian Conference on Electrical and

Computer Engineering. Toward a Caring and Humane Technology (Cat.

No.03CH37436), 2003, vol. 1, pp. 207–210 vol.1.

___ References

 223

[133] E. Stott and P. Y. K. Cheung, ‘Improving FPGA Reliability with Wear-

Levelling’, in 2011 21st International Conference on Field Programmable

Logic and Applications, 2011, pp. 323–328.

[134] S. M. Trimberger, ‘Utilizing multiple test bitstreams to avoid localized defects

in partially defective programmable integrated circuits’, US7424655B1, 09-

Sep-2008.

[135] W.-J. Huang and E. J. McCluskey, ‘Column-Based Precompiled

Configuration Techniques for FPGA’, in The 9th Annual IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM’01), 2001, pp.

137–146.

[136] J. M. Emmert and D. Bhatia, ‘Incremental Routing in FPGAs’, in

Proceedings Eleventh Annual IEEE International ASIC Conference (Cat.

No.98TH8372), 1998, pp. 217–221.

[137] S. Dutt, V. Shanmugavel, and S. Trimberger, ‘Efficient incremental rerouting

for fault reconfiguration in field programmable gate arrays’, in 1999

IEEE/ACM International Conference on Computer-Aided Design. Digest of

Technical Papers (Cat. No.99CH37051), 1999, pp. 173–176.

[138] X. She and M. Zwolinski, ‘A novel self-routing reconfigurable fault-tolerant

cell array’, in Second NASA/ESA Conference on Adaptive Hardware and

Systems (AHS 2007), 2007, pp. 725–731.

[139] L. Bozzoli and L. Sterpone, ‘Self rerouting of dynamically reconfigurable

SRAM-based FPGAs’, in 2017 NASA/ESA Conference on Adaptive Hardware

and Systems (AHS), 2017, pp. 77–84.

[140] P. Sedcole, B. Blodget, J. Anderson, P. Lysaghi, and T. Becker, ‘Modular

partial reconfigurable in Virtex FPGAs’, in International Conference on Field

Programmable Logic and Applications, 2005., 2005, pp. 211–216.

[141] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins, ‘Designing

an operating system for a heterogeneous reconfigurable SoC’, in Proceedings

International Parallel and Distributed Processing Symposium, 2003, pp. 7

pp.-.

[142] E. L. Horta and J. W. Lockwood, ‘PARBIT: A Tool to Transform Bitfiles to

Implement Partial Reconfiguration of Field Programmable Gate Arrays

(FPGAs)’, Washington University, Saint Louis, 2001.

[143] H. Kalte, G. Lee, M. Porrmann, and U. Ruckert, ‘REPLICA: A Bitstream

Manipulation Filter for Module Relocation in Partial Reconfigurable

Systems’, in Parallel and Distributed Processing Symposium, 2005.

Proceedings. 19th IEEE International, 2005, pp. 151b–151b.

[144] H. Kalte and M. Porrmann, ‘REPLICA2Pro: task relocation by bitstream

manipulation in virtex-II/Pro FPGAs’, in Proceedings of the 3rd conference

on Computing frontiers - CF ’06, Ischia, Italy, 2006, p. 403.

[145] S. Ferrandi. Corbetta, M. Morandi, M. Novati, M. D. Santambrogio, and D.

Sciuto, ‘Two Novel Approaches to Online Partial Bitstream Relocation in a

Dynamically Reconfigurable System’, in IEEE Computer Society Annual

Symposium on VLSI, 2007. ISVLSI ’07, 2007, pp. 457–458.

[146] S. Corbetta, M. Morandi, M. Novati, M. D. Santambrogio, D. Sciuto, and P.

Spoletini, ‘Internal and External Bitstream Relocation for Partial Dynamic

Reconfiguration’, IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 17,

no. 11, pp. 1650–1654, Nov. 2009.

___ References

 224

[147] A. Sudarsanam, R. Kallam, and A. Dasu, ‘PRR-PRR Dynamic Relocation’,

Comput. Archit. Lett., vol. 8, no. 2, pp. 44–47, Feb. 2009.

[148] M. Hübner, C. Schuck, M. Kiihnle, and J. Becker, ‘New 2-dimensional partial

dynamic reconfiguration techniques for real-time adaptive microelectronic

circuits’, in IEEE Computer Society Annual Symposium on Emerging VLSI

Technologies and Architectures (ISVLSI’06), 2006, pp. 6 pp.-.

[149] T. Becker, W. Luk, and P. Y. K. Cheung, ‘Enhancing Relocatability of Partial

Bitstreams for Run-Time Reconfiguration’, in 15th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines (FCCM 2007), 2007,

pp. 35–44.

[150] G. Enemali, A. Adetomi, G. Seetharaman, and T. Arslan, ‘A Functionality-

Based Runtime Relocation System for Circuits on Heterogeneous FPGAs’,

IEEE Trans. Circuits Syst. II Express Briefs, vol. 65, no. 5, pp. 612–616, May

2018.

[151] A. DeHon, R. Huang, and J. Wawrzynek, ‘Hardware-assisted fast routing’, in

Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, 2002, pp. 205–215.

[152] A. A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood, ‘OpenPR: An

Open-Source Partial-Reconfiguration Toolkit for Xilinx FPGAs’, in 2011

IEEE International Symposium on Parallel and Distributed Processing

Workshops and Phd Forum, 2011, pp. 228–235.

[153] D. Koch, C. Beckhoff, and J. Teich, ‘ReCoBus-Builder — A novel tool and

technique to build statically and dynamically reconfigurable systems for

FPGAS’, in 2008 International Conference on Field Programmable Logic

and Applications, 2008, pp. 119–124.

[154] C. Beckhoff, D. Koch, and J. Torresen, ‘Go Ahead: A Partial Reconfiguration

Framework’, in 2012 IEEE 20th International Symposium on Field-

Programmable Custom Computing Machines, 2012, pp. 37–44.

[155] A. Lalevée, P. H. Horrein, M. Arzel, M. Hübner, and S. Vaton, ‘AutoReloc:

Automated Design Flow for Bitstream Relocation on Xilinx FPGAs’, in 2016

Euromicro Conference on Digital System Design (DSD), 2016, pp. 14–21.

[156] X. Iturbe, K. Benkrid, R. Torrego, A. Ebrahim, and T. Arslan, ‘Online clock

routing in Xilinx FPGAs for high-performance and reliability’, in 2012

NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2012, pp.

85–91.

[157] M. A. Kadi, P. Rudolph, D. Gohringer, and M. Hubner, ‘Dynamic and partial

reconfiguration of Zynq 7000 under Linux’, in 2013 International Conference

on Reconfigurable Computing and FPGAs (ReConFig), 2013, pp. 1–5.

[158] K. Vipin and S. A. Fahmy, ‘ZyCAP: Efficient Partial Reconfiguration

Management on the Xilinx Zynq’, IEEE Embed. Syst. Lett., vol. 6, no. 3, pp.

41–44, Sep. 2014.

[159] F. Duhem, F. Muller, and P. Lorenzini, ‘FaRM: Fast Reconfiguration

Manager for Reducing Reconfiguration Time Overhead on FPGA’, in

Reconfigurable Computing: Architectures, Tools and Applications, vol. 6578,

A. Koch, R. Krishnamurthy, J. McAllister, R. Woods, and T. El-Ghazawi,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 253–260.

___ References

 225

[160] M. Shelburne, C. Patterson, P. Athanas, M. Jones, B. Martin, and R. Fong,

‘MetaWire: Using FPGA configuration circuitry to emulate a network-on-

chip’, IET Comput. Digit. Tech., vol. 4, no. 3, pp. 159–169, May 2010.

[161] J. C. Hoffman and M. S. Pattichis, ‘A High-Speed Dynamic Partial

Reconfiguration Controller Using Direct Memory Access Through a

Multiport Memory Controller and Overclocking with Active Feedback’, Int.

J. Reconfigurable Comput., pp. 1–10, 2011.

[162] S. Bhandari et al., ‘High Speed Dynamic Partial Reconfiguration for Real

Time Multimedia Signal Processing’, in 2012 15th Euromicro Conference on

Digital System Design, 2012, pp. 319–326.

[163] S. G. Hansen, D. Koch, and J. Torresen, ‘High Speed Partial Run-Time

Reconfiguration Using Enhanced ICAP Hard Macro’, in 2013 IEEE

International Symposium on Parallel & Distributed Processing, Workshops

and Phd Forum, Los Alamitos, CA, USA, 2011, vol. 0, pp. 174–180.

[164] K. Vipin and S. A. Fahmy, ‘A high speed open source controller for FPGA

Partial Reconfiguration’, in 2012 International Conference on Field-

Programmable Technology (FPT), 2012, pp. 61–66.

[165] A. Ebrahim, K. Benkrid, X. Iturbe, and C. Hong, ‘Multiple-clone

configuration of relocatable partial bitstreams in Xilinx Virtex FPGAs’, in

2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS),

2013, pp. 178–183.

[166] L. A. Cardona and C. Ferrer, ‘AC_ICAP: A Flexible High Speed ICAP

Controller’, Int. J. Reconfigurable Comput., vol. 2015, pp. 1–15, 2015.

[167] A. Ebrahim, K. Benkrid, X. Iturbe, and C. Hong, ‘A novel high-performance

fault-tolerant ICAP controller’, in 2012 NASA/ESA Conference on Adaptive

Hardware and Systems (AHS), 2012, pp. 259–263.

[168] A. Ebrahim, T. Arslan, and X. Iturbe, ‘On enhancing the reliability of internal

configuration controllers in FPGAs’, in 2014 NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), 2014, pp. 83–88.

[169] T. S. T. Mak, P. Sedcole, P. Y. K. Cheung, and W. Luk, ‘On-FPGA

Communication Architectures and Design Factors’, in 2006 International

Conference on Field Programmable Logic and Applications, 2006, pp. 1–8.

[170] B. Fu and P. Ampadu, ‘Networks-on-Chip (NoC)’, in Error Control for

Network-on-Chip Links, Springer New York, 2012, pp. 33–47.

[171] T. Bjerregaard and S. Mahadevan, ‘A Survey of Research and Practices of

Network-on-chip’, ACM Comput Surv, vol. 38, no. 1, Jun. 2006.

[172] V. Adhinarayanan, I. Paul, J. L. Greathouse, W. Huang, A. Pattnaik, and W. c

Feng, ‘Measuring and modeling on-chip interconnect power on real

hardware’, in 2016 IEEE International Symposium on Workload

Characterization (IISWC), 2016, pp. 1–11.

[173] W. J. Dally and B. Towles, ‘Route packets, not wires: on-chip interconnection

networks’, in Design Automation Conference, 2001. Proceedings, 2001, pp.

684–689.

[174] M. Danashtalab and M. Palesi, ‘Basic Concepts on On-Chip Networks’, in

Routing Algorithms in Networks-on-Chip, M. Palesi and M. Daneshtalab, Eds.

New York, NY: Springer New York, 2014, pp. 1–18.

___ References

 226

[175] É. Cota, A. de M. Amory, and M. S. Lubaszewski, ‘NoC Basics’, in

Reliability, Availability and Serviceability of Networks-on-Chip, Springer US,

2012, pp. 11–24.

[176] V. Rantala, T. Lehtonen, and J. Plosila, ‘Network on chip routing algorithms’,

Turku Centre for Computer Science, 2006.

[177] W. Dally and B. Towles, Principles and Practices of Interconnection

Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[178] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins,

‘Interconnection Networks Enable Fine-Grain Dynamic Multi-tasking on

FPGAs’, in Field-Programmable Logic and Applications: Reconfigurable

Computing Is Going Mainstream, M. Glesner, P. Zipf, and M. Renovell, Eds.

Springer Berlin Heidelberg, 2002, pp. 795–805.

[179] A. Morgenshtein, I. Cidon, A. Kolodny, and R. Ginosar, ‘Comparative

analysis of serial vs parallel links in NoC’, in 2004 International Symposium

on System-on-Chip, 2004, pp. 185–188.

[180] N. Kapre, ‘On Bit-Serial NoCs for FPGAs’, in 2017 IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2017, pp. 32–39.

[181] F. Alazemi, A. AziziMazreah, B. Bose, and L. Chen, ‘Routerless Network-on-

Chip’, in 2018 IEEE International Symposium on High Performance

Computer Architecture (HPCA), 2018, pp. 492–503.

[182] C. Bobda, M. Majer, D. Koch, A. Ahmadinia, and J. Teich, ‘A Dynamic NoC

Approach for Communication in Reconfigurable Devices’, in Field

Programmable Logic and Application, J. Becker, M. Platzner, and S.

Vernalde, Eds. Springer Berlin Heidelberg, 2004, pp. 1032–1036.

[183] M. B. Stensgaard and J. Sparsø, ‘ReNoC: A Network-on-Chip Architecture

with Reconfigurable Topology’, in Second ACM/IEEE International

Symposium on Networks-on-Chip (nocs 2008), 2008, pp. 55–64.

[184] N. Kapre and J. Gray, ‘Hoplite: Building austere overlay NoCs for FPGAs’,

in 2015 25th International Conference on Field Programmable Logic and

Applications (FPL), 2015, pp. 1–8.

[185] G. Brebner and A. Donlin, ‘Runtime reconfigurable routing’, in Parallel and

Distributed Processing, vol. 1388, J. Rolim, Ed. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1998, pp. 25–30.

[186] O. Sander, L. Braun, M. Hübner, and J. Becker, ‘Data Reallocation by

Exploiting FPGA Configuration Mechanisms’, in Reconfigurable Computing:

Architectures, Tools and Applications, 2008, pp. 312–317.

[187] M. Welter, ‘Demonstration of Soft Error Mitigation IP and Partial

Reconfiguration Capability on Monolithic Devices - XAPP1261 (v1.0)’.

Xilinx Inc., 2015.

[188] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling

algorithms and applications, 3rd ed. New York: Springer, 2011.

[189] L. Sha, R. Rajkumar, and J. P. Lehoczky, ‘Priority inheritance protocols: an

approach to real-time synchronization’, IEEE Trans. Comput., vol. 39, no. 9,

pp. 1175–1185, Sep. 1990.

[190] E. Rossi, M. Damschen, L. Bauer, G. Buttazzo, and J. Henkel, ‘Preemption of

the Partial Reconfiguration Process to Enable Real-Time Computing With

___ References

 227

FPGAs’, ACM Trans. Reconfigurable Technol. Syst., vol. 11, no. 2, pp. 1–24,

Jul. 2018.

[191] M. Damschen, L. Bauer, and J. Henkel, ‘CoRQ: Enabling Runtime

Reconfiguration Under WCET Guarantees for Real-Time Systems’, IEEE

Embed. Syst. Lett., vol. 9, no. 3, pp. 77–80, Sep. 2017.

[192] R. Wilhelm et al., ‘The worst-case execution-time problem—overview of

methods and survey of tools’, ACM Trans. Embed. Comput. Syst., vol. 7, no.

3, pp. 1–53, Apr. 2008.

[193] J. Sparsø, ‘Design of Networks-on-Chip for Real-Time Multi-processor

Systems-on-Chip’, in 2012 12th International Conference on Application of

Concurrency to System Design, 2012, pp. 1–5.

[194] S. Hesham, J. Rettkowski, D. Goehringer, and M. A. A. E. Ghany, ‘Survey on

Real-Time Networks-on-Chip’, IEEE Trans. Parallel Distrib. Syst., vol. 28,

no. 5, pp. 1500–1517, May 2017.

[195] K. Papadimitriou, A. Dollas, and S. Hauck, ‘Performance of Partial

Reconfiguration in FPGA Systems: A Survey and a Cost Model’, ACM Trans

Reconfigurable Technol Syst, vol. 4, no. 4, pp. 36:1–36:24, Dec. 2011.

[196] K. Vipin and S. A. Fahmy, ‘FPGA Dynamic and Partial Reconfiguration: A

Survey of Architectures, Methods, and Applications’, ACM Comput Surv, vol.

51, no. 4, pp. 72:1–72:39, Jul. 2018.

[197] A. Adetomi, G. Enemali, and T. Arslan, ‘A fault-tolerant ICAP controller

with a selective-area soft error mitigation engine’, in 2017 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2017, pp. 192–199.

[198] M. Cassel and F. Lima, ‘Evaluating one-hot encoding finite state machines for

SEU reliability in SRAM-based FPGAs’, in 12th IEEE International On-Line

Testing Symposium (IOLTS’06), 2006, pp. 6 pp.-.

[199] Xilinx Inc., ‘7 Series FPGAs Memory Resources - User Guide UG473

(v1.12)’. Xilinx Inc., 27-Sep-2016.

[200] M. Hikmet, M. M. Kuo, P. S. Roop, and P. Ranjitkar, ‘Mixed-Criticality

Systems as a Service for Non-critical Tasks’, in 2016 IEEE 19th International

Symposium on Real-Time Distributed Computing (ISORC), 2016, pp. 221–

228.

[201] Xilinx Inc., ‘UltraScale Architecture Configuration, User Guide - UG570

(v1.9.1)’. Xilinx Inc., 16-Aug-2018.

[202] Xilinx Inc., ‘AXI Central Direct Memory Access v4.1 - LogiCORE IP

Product Guide (PG034)’. Xilinx Inc., 04-Apr-2018.

[203] A. Ebrahim, ‘Dynamic Partial Reconfiguration Management for High

Performance and Reliability in FPGAs’, University of Edinburgh, Edinburgh,

UK.

[204] Xilinx Inc., ‘Partial Reconfiguration Controller v1.0 - LogiCORE IP Product

Guide (PG193)’. Xilinx Inc., 06-Apr-2016.

[205] Xilinx Inc., ‘AXI HWICAP v3.0 - LogiCORE IP Product Guide (PG134)’.

05-Oct-2016.

[206] Xilinx Inc., ‘Integrated Logic Analyzer v6.1, LogiCORE IP Product Guide’.

Xilinx Inc., 2016.

[207] D. Tamas-Selicean et al., ‘Fourier transform spectrometer controller for

partitioned architectures’, in 2013 IEEE Aerospace Conference, 2013, pp. 1–

11.

___ References

 228

[208] R. W. Carlson, K. P. Hand, D. F. Berisford, and D. Keymeulen, ‘The

Compositional InfraRed Interferometric Spectrometer (CIRIS) for Assessing

the Habitability of Europa’, AGU Fall Meet. Abstr., vol. 43, p. 2008, Dec.

2013.

[209] X. Iturbe et al., ‘Towards a generic and adaptive System-on-Chip controller

for space exploration instrumentation’, in 2015 NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), 2015, pp. 1–8.

[210] X. Iturbe et al., ‘Designing a SoC to control the next-generation space

exploration flight science instruments’, in 2015 28th IEEE International

System-on-Chip Conference (SOCC), 2015, pp. 13–18.

[211] A. Adetomi, G. Enemali, and T. Arslan, ‘Relocating Encrypted Partial

Bitstreams by Advance Task Address Loading’, in 25th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM

2017), 2017, pp. 188–191.

[212] A. Adetomi, G. Enemali, and T. Arslan, ‘Towards an efficient intellectual

property protection in dynamically reconfigurable FPGAs’, in 2017 Seventh

International Conference on Emerging Security Technologies (EST), 2017,

pp. 150–156.

[213] S.-S. Wang and W.-S. Ni, ‘An efficient FPGA implementation of advanced

encryption standard algorithm’, in Proceedings of the 2004 International

Symposium on Circuits and Systems, 2004. ISCAS ’04, 2004, vol. 2, pp. II-

597-600 Vol.2.

[214] M. R. M. Rizk and M. Morsy, ‘Optimized area and optimized speed hardware

implementations of AES on FPGA’, in Design and Test Workshop, 2007. IDT

2007. 2nd International, 2007, pp. 207–217.

[215] V. Lomné, A. Dehaboui, P. Maurine, L. Torres, and M. Robert, ‘Side Channel

Attacks’, in Security Trends for FPGAS, B. Badrignans, J. L. Danger, V.

Fischer, G. Gogniat, and L. Torres, Eds. Springer Netherlands, 2011, pp. 47–

72.

[216] A. Moradi, M. Kasper, and C. Paar, ‘On the Portability of Side-Channel

Attacks – An Analysis of the Xilinx Virtex 4, Virtex 5, and Spartan 6

Bitstream Encryption Mechanism’, Cryptology ePrint Archive, 391, 2011.

[217] N. S. S. Srinivas and M. Akramuddin, ‘FPGA based hardware implementation

of AES Rijndael algorithm for Encryption and Decryption’, in 2016

International Conference on Electrical, Electronics, and Optimization

Techniques (ICEEOT), 2016, pp. 1769–1776.

[218] K. Wilkinson, ‘Using Encryption and Authentication to Secure an

UltraScale/UltraScale+ FPGA Bitstream’. Xilinx Inc., 2017.

[219] W. Vanderbauwhede, S. R. Chalamalasetti, S. Purohit, and M. Margala, ‘A

few lines of code, thousands of cores: High-level FPGA programming using

vector processor networks’, in 2011 International Conference on High

Performance Computing Simulation, 2011, pp. 461–467.

[220] T. Isshiki and W. W. Dai, ‘High-Level Bit-Serial Datapath Synthesis for

Multi-FPGA Systems’, in Third International ACM Symposium on Field-

Programmable Gate Arrays, 1995, pp. 167–173.

[221] A. Adetomi, G. Enemali, and T. Arslan, ‘Clock Buffers, Nets, and Trees for

On-Chip Communication: A Novel Network Access Technique in FPGAs’, in

___ References

 229

2017 IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), 2017, pp. 219–222.

[222] A. Adetomi, G. Enemali, and T. Arslan, ‘Relocation-Aware Communication

Network for Circuits on Xilinx FPGAs’, in 2017 27th International

Conference on Field Programmable Logic and Applications (FPL), 2017, pp.

1–7.

[223] A. Adetomi, G. Enemali, and T. Arslan, ‘Characterization of Clock Buffers

for On-Chip Inter-Circuit Communication in Xilinx FPGAs’, in 2018 IEEE

International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5.

[224] A. Adetomi, G. Enemali, G. Seetharaman, and T. Arslan, ‘Fault-Tolerant

Mechanisms for Relocation-Aware Dynamic On-Chip Communication on

FPGAs’, in 2018 NASA/ESA Conference on Adaptive Hardware and Systems

(AHS), Edinburgh, UK, 2018, p. In Press.

[225] J. Lamoureux and S. J. E. Wilton, ‘FPGA Clock Network Architecture:

Flexibility vs. Area and Power’, in Proceedings of the 2006 ACM/SIGDA 14th

International Symposium on Field Programmable Gate Arrays, New York,

NY, USA, 2006, pp. 101–108.

[226] S. Verma and A. S. Dabare, ‘Understanding clock domain crossing issues’,

EE Times, 2007.

[227] Xilinx Inc., ‘Vivado Design Suite 7 Series FPGA and Zynq-7000 All

Programmable SoC Libraries Guide - User Guide UG953 (v2016.2)’. Xilinx

Inc., 2016.

[228] W. Simpson, ‘PPP in HDLC-like Framing’. [Online]. Available:

https://tools.ietf.org/html/rfc1662. [Accessed: 21-Jul-2016].

[229] S. Cheshire and M. Baker, ‘Consistent overhead byte stuffing’, IEEEACM

Trans. Netw., vol. 7, no. 2, pp. 159–172, Apr. 1999.

[230] P. Lin, ‘One wire serial communication protocol method and circuit’,

US7111097B2, 19-Sep-2006.

[231] Xilinx Inc., ‘Spartan-7 FPGAs Data Sheet: DC and AC Switching

Characteristics, Product Specification - DS189 (v1.7)’. Xilinx Inc., 2018.

[232] Xilinx Inc., ‘Artix-7 FPGAs Data Sheet: DC and AC Switching

Characteristics, Product Specification - DS181 (v1.25)’. Xilinx Inc., 2018.

[233] Xilinx Inc., ‘Virtex-7 T and XT FPGAs Data Sheet: DC and AC Switching

Characteristics, Product Specification - DS183 (v1.27)’. Xilinx Inc., 2017.

[234] A. Adetomi, G. Enemali, X. Iturbe, D. Keymeulen, and T. Arslan, ‘R3TOS-

Based Integrated Modular Space Avionics for On-Board Real-Time Data

Processing’, in 2018 NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), Edinburgh, UK, 2018, pp. 1–8.

[235] V. Saptari, Fourier Transform Spectroscopy Instrumentation Engineering.

SPIE Press, 2004.

[236] M. Koester, W. Luk, J. Hagemeyer, and M. Porrmann, ‘Design optimizations

to improve placeability of partial reconfiguration modules’, in Design,

Automation Test in Europe Conference Exhibition, 2009. DATE ’09., 2009,

pp. 976–981.

[237] G. Enemali, A. Adetomi, and T. Arslan, ‘Expanding the un-usable area

strategy for improved utilization of reconfigurable FPGAs’, in 2017

NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2017, pp.

139–144.

___ References

 230

[238] G. Enemali, A. Adetomi, and T. Arslan, ‘FAReP: Fragmentation-Aware

Replacement Policy for Task Reuse on Reconfigurable FPGAs’, in 2017

IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), 2017, pp. 202–206.

[239] G. Enemali, A. Adetomi, and T. Arslan, ‘A placement management circuit for

efficient realtime hardware reuse on FPGAs targeting reliable autonomous

systems’, in 2017 IEEE International Symposium on Circuits and Systems

(ISCAS), 2017, pp. 1–4.

231

Appendices

Appendix A ICAP Access Command Templates

For the various operations of the ICAP controller, configuration command packets are

kept inside the IBUF as templates and are written to the ICAP along with the

configuration frame data. The commands are based on the registers in Table 2.3. Details

on how to compose read and write commands packets have been presented in Section

2.1.2. The benefit of using templates is that the commands are generic and thus

reusable, minimizing external storage requirement as incoming bitstreams do not have

to include the commands already in these templates.

A.1 Operation Starting Sequence (OSS)

Configuration commands and data are sent to the internal configuration logic only after

it has been synchronized by sending a special Synchronization Word (0xAA995566)

through the ICAP interface. The purpose of this is to enable the alignment of the

configuration data with the internal configuration logic. The OSS sequence of Figure

A.1 is used to achieve this. After the synchronization, the CRC register is reset by

writing 0x00000007 to the CMD register 0x30008001 to restart CRC check coverage.

Figure A.2 is a waveform showing the OSS in action. The waveform shows the

transition of the ICAP’s output from 0xFFFFFFD9 to 0xFFFFFFDB indicating that the

configuration interface has been synchronized.

Figure A.1: Operation starting sequence commands

FFFFFFFF

AA995566

20000000

30008001

00000007

20000000

20000000

Dummy pad word

Synchronization word

No operation command

Write 1 word to the CMD register

RCRC command (reset the CRC check)

No operation command

No operation command

OP_START_SEQ_ADDR 0x000

0x006

.

.

.

___ Appendix A

 232

Figure A.2: Waveform showing the synchronization of the configuration interface

A.2 Configuration Frame Readback Template (CFRT)

To perform a readback operation, the IFSM fetches and uses the CFRT template (see

Figure A.3) at the address RBK_TEMPLT_ADDR (0x007). In order to read from the

CMEM, the RCFG command must be used and a frame address specified. The user is

expected to set the FAR value at template address 0x00E. The user content in the LUT-

based RAMs could have changed. If a readback operation is performed without

masking LUTs, the read back frame data would reflect the user content rather than the

original CMEM values. If this is not a desired behavior, the LUTs can be masked by

using the GLUTMASK_B bit in the CTL0 register. In fact, this is the default setting.

However, the user can control the masking by writing to the template address 0x00A.

Figure A.3: Configuration frame readback template

3000C001

00000100

3000A001

00000x00

30008001

00000004

30002001

xxxxxxxx

28006000

4xxxxxxx

Write 1 word to the MASK register

Permit writing to the GLUTMASK_B bit

Write 1 word to the CTL0 register

GLUTMASK_B = x

Write 1 word to the CMD register

RCFG command

Write 1 word to the FAR register

FAR value = xxxxxxxx

Type 1 read frame data from FDRO (no word)

Type 2 read xxxxxxx words from the FDRO

.

.

.

0x010

RBK_TEMPLT_ADDR 0x007

0x00A

.

.

.

0x00E

0x00F

___ Appendix A

 233

A.3 Configuration Frame Write Template (CFWT)

CMEM writing is done by writing a number of contiguous frames to the FDRI register

preceded by issuing the WCFG command (0x30008001 followed by 0x00000001).

Every write to the CMEM requires a valid device ID, which must be loaded into the

IDCODE register. This ID is inserted in the bitstream generated by the design tool. The

user should specify this ID at address 0x019 in the IBUF (see the CFWT template in

Figure A.4). The user can also set the GLUTMASK_B bit at address 0x015. In the basic

form of configuration, every FDRI register loading must be finished with the loading

of a pad frame (101 dummy words) to flush the internal pipeline of the configuration

logic.

Figure A.4: Configuration frame write template

The CFWT template does not include commands for loading the FAR and FDRI

registers because these commands are expected to be included in the bitstream that is

being configured, especially since the user may be interested in performing PBR, in

which case the original frame address is not of great significance. As such, the task

bitstream supplied for (re)configuration has to be in the format presented in Figure A.5

and buffered in the IBUF starting at address 0x073. The preamble and postamble of the

bitstream are generally catered for by the OSS and the OES respectively. Nevertheless,

additional setup commands not included in the OSS can be added before the

0x30002001command in Figure A.5. Likewise, additional commands can be loaded

3000C001

00000100

3000A001

00000x00

20000000

20000000

30018001

xxxxxxxx

30008001

00000001

Write 1 word to the MASK register

Permit writing to the GLUTMASK_B bit

Write 1 word to the CTL0 register

GLUTMASK_B = x

No operation word

No operation word

Write 1 word to the IDCODE register

IDCODE value = xxxxxxxx

Write 1 word to the CMD register

WCFG command

.

.

.

0x01B

CFG_TEMPLT_ADDR 0x012

0x019

0x015

.

.

.

0x01A

___ Appendix A

 234

after uploading the frame data. It should be noted that a typical bitstream has a

multiplicity of frame addresses and the IFSM has been implemented to handle this.

Figure A.5: Configuration command and frame data format for task bitstreams

A.4 Multiple Frame Write Template (MFWT)

The MFWT template provides the commands and parameter placeholders for using the

multiple frame write feature of the FPGA. In the basic form of configuration based on

the CFWT template, a pad frame is incurred for every write to the CMEM. However,

with the MFW functionality, the pad frame is not needed, though the configuration

commands and steps are more involving. However, there is an overall benefit of lower

configuration time overhead. Meanwhile, the MFW is expected to be done frame-by-

frame. This means that for a large bitstream, the traditional configuration method would

be better. It should also be noted that though the MFW is intended for writing the same

frame data to multiple frame locations especially for bitstream compression, it as well

allows a single frame location to be written. Figure A.6 shows the MFW template. The

first part of it is the CFWT presented in Figure A.4.

30002001

xxxxxxxx

20000000

30004000

4xxxxxxx

Write 1 word to the FAR register

FAR value = xxxxxxxx

No operation word

Type 1 write to the FDRI (no word)

Type 2 write xxxxxxx words to the FDRI

IBUF_DATA_ADDR 0x073

Upload xxxxxxx frame data words to the FDRI

___ Appendix A

 235

Figure A.6: Multiple frame write template

CFG_TEMPLT_ADDR 0x012

Upload 101 frame data words to the FDRI

If writing a non-BRAM frame, skip the next 8 words

30008001

00000002

20000000

30014008

00000000

...

00000000

Write 1 word to the CMD register

MFW command

No operation word

Write 8 words to the MFW register

Dummy word 0

Dummy words 1 to 6

Dummy word 7

Loop on the next 7 words for (NUM_OF_FRAMES - 1) times

If writing a non-BRAM frame, skip the next 8 words

20000000

...

20000000

xxxxxxxx

No operation word 0

No operation words 1 to 6

No operation word 7

FAR value = xxxxxxxx (CONFIG_FAR_3)

20000000

...

20000000

No operation word 0

No operation words 1 to 6

No operation word 7

30002001

xxxxxxxx

30014004

00000000

...

00000000

Write 1 word to the FAR register

FAR value = xxxxxxxx (CONFIG_FAR_2)

Write 4 words to the MFW register

Dummy word 0

Dummy words 1 to 2

Dummy word 3

CFWT

30002001

xxxxxxxx

20000000

30004000

40000065

Write 1 word to the FAR register

FAR value = xxxxxxxx (CONFIG_FAR_1)

No operation word

Type 1 write to the FDRI (no word)

Type 2 write 101 words to the FDRI

0x01D

0x036

0x044

___ Appendix A

 236

A.5 Configuration Frame Blanking Template (CFBT)

The frame blanking uses the MFW feature. As such, it relies heavily on the MFW

template as shown in Figure A.7.In the use of the CFBT, 101 blank words are not stored

in the IBUF. Only a single blank word (0x00000000) is kept at address

BLK_DATA_ADDR address of 0x059 and written 101 times when needed. The

template requires two parameters, the starting frame address (START_FAR) and the

number of frames to write at addresses 0x04A and 0x04D. In addition, since the CFBT

is basically a frame write template, the correct IDCODE value should be specified at

address 0x046.

Figure A.7: Configuration frame blanking template

A.6 Operation Ending Sequence (OES)

In this sequence (see Figure A.8), the GLUTMASK_B bit is restored to the default

value, which allows the masking of changeable memory cell readback values. This is

done regardless of GLUTMASK_B’s user setting in the OSS sequence. The next

command issued is for resetting the CRC register. At this point in the bitstream loading,

the configuration logic expects a precomputed CRC value that it can compare with the

one calculated while loading the bitstream data. However, because some of the

operations involve a deliberate modification of the bitstream (e.g., PBR), essentially

.

.

.

0x04C

BLK_TEMPLT_ADDR 0x045

0x04A

0x046

0x04B

Upload 101 frame data words to the FDRI

30018001

xxxxxxxx

30008001

00000001

30002001

xxxxxxxx

20000000

30004065

Write 1 word to the IDCODE register

IDCODE value = xxxxxxxx

Write 1 word to the CMD register

WCFG command

Write 1 word to the FAR register

FAR value = xxxxxxxx (START_FAR)

No operation word

Write 101 words to the FDRI

MFWT

xxxxxxxx

Use the multiple frame write template

xxxxxxxx = number of frames to blank0x04D

___ Appendix A

 237

rendering the precomputed CRC void, resetting the CRC register is necessary.

Meanwhile, to restore the bitstream CRC protection, a CRC-32 circuit can easily be

used to recompute the CRC on-chip but this has not been implemented in this work.

The last command in the OES sequence is the desynchronization of the

configuration interface by writing 0x0000000D to the CMD register. Each time the

configuration interface is desynchronized two NOOP words must be written to flush

the internal packet buffer.

Figure A.8: Operation ending sequence

3000C001

00000100

3000A001

00000000

30008001

00000007

30008001

0000000D

20000000

20000000

Write 1 word to the MASK register

Permit writing to the GLUTMASK_B bit

Write 1 word to the CTL0 register

GLUTMASK_B = 0

Write 1 word to the CMD register

RCRC command (Reset the CRC register)

Write 1 word to the CMD register

DESYNC command

No operation word

No operation word

.

.

.

0x058

OP_END_SEQ_ADDR 0x04F

238

Appendix B ICAP Access Operation Waveforms

B.1 Readback (RBK) Operation

Figure B.1 is a waveform showing a successful readback operation. The first two

icap_en pulses indicate temporary disabling of data loading while the IFSM determines

the sequences and templates to load, the first pulse being for OSS and the second for

CFRT. The last two pulses are for switching the ICAP from write to read and then from

read to write, the last writing being for the loading the OES. Note should also be taken

of how the pad frame (101 instances of 0x00000000) is discarded by fixing

ibuf_addr_pntr at 0x073 for 101 clock cycles. In addition, it should be noticed that the

configuration interface is successfully desynchronized (icap_output becomes

0xFFFFFFD9) after the operation.

Figure B.1: Waveform showing a readback operation

B.2 Configuration (CFG) Operation

Figure B.2 shows the handover from the CFWT to the user-specified uploaded data

during a CFG operation. It should be noted that the ICAP is disabled to carry out this

process. Figure B.3 shows the detection of a FAR loading command (0x30002001) and

the subsequent modification of the frame address during CFG operation. It should be

noted that the loading is paused by only two clock cycles during which a new FAR

value is computed. An internal signal (en_data_ifsm_to_icap) is used to force the

writing of the newly calculated FAR value.

___ Appendix B

 239

Figure B.2: Waveform showing the handover from the CFWT template to the user data

Figure B.3: Waveform showing frame address detection and modification

B.3 Read-Modify-Write (RMW) Operation

Figure B.4 is a waveform showing the read-modify-write of a BRAM content frame.

Notice the automatic switching from reading to writing (icap_rw_en goes from 1 to 0).

B.4 Blanking (BLK) Operation

Figure B.5 gives an example of the BLK operation on 3 contiguous frames with frame

addresses 0x00800101 to 0x00800103. Note the two pulses on the

en_data_ifsm_to_icap internal signal, which are used to write internally-generated FAR

values to the ICAP. Note that the incremented FAR values are determined ahead of

when they are needed. As a result, data loading does not stall waiting for the FAR

calculation. Note also that the ibuf_addr_pntr does not change during the writing of the

blank word (0x00000000). This is because the blank word is kept in the IBUF at address

0x059 and written iteratively for 101 times, thereby saving 100 memory spaces in the

IBUF.

___ Appendix B

 240

Figure B.4: Waveform showing the RMW operation. Notice the switch from readback to

writing at the cursor

Figure B.5: Waveform showing a blanking operation

B.5 Register Read (RGR) Operation

An example of the RGR operation being used to read the device IDCODE is shown in

Figure B.6. In this example, the register address is 0b01100 (see Table 2.3) and the

RGR command is therefore 0x28018001. The IDCODE of the used device is correctly

read back as 0x0362D093.

Figure B.6: RGR operation being used to read the device IDCODE

___ Appendix B

 241

B.6 Abort (ABT) Operation

Figure B.7 is a captured waveform that shows the successful abort of a readback

operation and the return of the FSM and the ICAP interface to a stable state, ready for

another operation. A corresponding CFG configuration abort is shown in Figure B.8.

When an abort is in progress, the bit 4 of the unswapped ICAP’s output should read ‘0’

[47]. After icap_rw_en is toggled (changed to 0 during a readback operation) in Figure

B.7, icap_output[7:0] becomes 0xD1. If this is swapped, it gives 0x8B. The 4th bit in

0x8B is a ‘0’, confirming the ABT operation is correctly performed. Notice that the

device is eventually desynchronized by the abort process. To resume configuration or

readback after an ABT operation, the configuration interface is resynchronized by a

new operation which loads the OSS sequence.

Figure B.7: Waveform showing the successful abort of an RBK operation

Figure B.8: Waveform showing the successful abort of a CFG operation

B.7 SEM Operation Validation

To validate the SEM operation, a frame (at address 0x00000400) is read back and the

10th bit of the 35th word is flipped and the frame written back by using the CWR (See

___ Appendix B

 242

Section 4.3.3 where a system-level approach to fault injection analysis is presented).

Access to the IBUF to perform this is gained via a VIO connected to the IFSM’s control

interface and this is the same for all the waveform snapshots in this work. Figure B.9

presents a waveform of the SEM operation in action. A single-bit error is correctly

detected at the 10th bit of word 35 as indicated by the internal signals syn_bit_addr and

syn_word. The ecc_error_far port also correctly points to the offending FAR address.

Figure B.9: Waveform showing the detection of a single-bit error by the SEM operation

Figure B.10 shows the correction of the flipped bit while the frame is being written

back to the CMEM. As shown, the data from the IBUF (data_ibuf_to_ifsm) is

0x00000400 (35th word with a flipped bit in the 10th position). The icap_input,

however, has been corrected to 0x00000000. Notice the en_sem_flip_bit internal signal

pulse that controls the flipping combinatorially without stalling the frame data loading.

A reissue of the SEM operation does not detect any error.

The same process carried out for the single-bit error is done for a double-bit error.

In this case, the error cannot be corrected and is simply reported on the ecc_mbu_error

port as shown in Figure B.11.

___ Appendix B

 243

Figure B.10: Waveform showing the correction of an SEU by the SEM operation

Figure B.11: Waveform showing a multi-bit error detection by the SEM operation

B.8 Configuration Error Monitoring and Recovery

Figure B.12 shows the detection of a configuration error triggered by deliberately

loading the CRC register with an incorrect precomputed value using the CWR

___ Appendix B

 244

operation. Notice the transition of the ICAP output’s least significant byte from 0xDB

to 0xDA, and finally to 0xD8, signifying that the configuration interface has been

desynchronized after an error detection (see Table 4.7). An internal error_detected

signal is used to trigger the IFSM into action. In Figure B.13, the configuration

interface is resynchronized by the IFSM (0xD8 changes to 0xDA) but the error still

persists. To prevent the resync process from clearing a CRC error, the RCRC command

in the OSS (see Figure A.1 in Appendix A) is avoided by using only the first three

words of the OSS. Notice also that the STAT register read command (0x2800E001) to

determine the source of error.

Figure B.12: Waveform showing configuration error detection

Figure B.13: Waveform showing the resynchronization of the configuration interface after

configuration error detection

In Figure B.14, the STAT register value is read back and the icntrlr_err signal is

asserted to alert the user. Notice that the ibuf_addr_pntr reflects the fact that the value

___ Appendix B

 245

read has been written to the IBUF_DATA_ADDR at 0x073. The user can read this

location to determine the source of error and act accordingly. The readback STAT

register value of 0x46107DFD has bit 0 as a ‘1’ correctly indicating that a CRC error

has occurred.

Figure B.14: Waveform showing the STAT register value and the eventual assertion of the

icntrlr_err signal after a configuration error detection

246

Appendix C Splixbit ICAP Controller Waveforms

Figure C.1 shows that Splixbit hardware’s IFSM parsing the global preamble of an

ATAL-formatted bitstream. Once the number of body parts has been decoded as 2, the

IFSM requires the setting of the first FAR value by asserting the set_new_far port. Once

the new FAR value is available (new_far_avlbl pulsed), the frame address

(0x00420000) is registered and written in plain format ahead of the encrypted frame

data (see Figure C.2). The number of encrypted bytes to load after the plain FAR writing

is retrieved from the DWC as 26,976 (see Figure C.3).

Figure C.1: Waveform showing how the Splixbit’s IFSM parses the global preamble and

retrieves the plain frame address

Figure C.2: Waveform showing the online loading of a plain frame address in advance of

encrypted frame data

___ Appendix C

 247

Figure C.3: Waveform showing the decoding of the DWC by the Splixbit’s IFSM

248

Appendix D CONS Waveforms

Figure D.1 and Figure D.2 are respective waveforms showing the non-addressable and

address-inclusive modes of the CONS encoding and decoding. Because the use_addr

signal is driven low in Figure D.1, the addr_rcvd port on the decoder remains zero all

through the decoding as against in Figure D.2, where it changes to reflect the received

plain unencoded address before the decoding begins. The 4-bit address 0b1010

accompanies the packet 0x10900016 and is received before the serial encoded packet

is received.

Figure D.1: Waveform showing the non-addressable encoding and decoding of packets

Figure D.2: Waveform showing the addressable encoding and decoding of packets

	cover sheet
	Dynamic_Reconfiguration_Frameworks_for_High_Performance_Reliable_Real_Time_Reconfigurable_Computing

