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Abstract 

Abstract 

Previous work on African acacias has shown that co-flowering species (those 

that flower in the same place at the same time) partition the activity of shared 

pollinators, and so avoid competition for pollination. The main aim of this thesis is to 

assess the evidence for temporal structuring of pollinator activity at a second African 

site, Mpala, in north central Kenya. I address this issue both for a guild of acacia 

species, and go beyond previous work to examine daily temporal patterning at the 

level of flowering communities. This second approach involves the generation of 

pollination webs for different periods of time within a single day, and the use of null 

modelling to compare temporal structure in real and randomised visitation data. I 

replicated this approach over sites and seasons, and generated the first pollination 

webs for any African savannah habitat. 

Analysis of patterns within acacias requires identification of sets that co-

flower, and so could potentially compete for pollination. Analysis of a long term 

dataset (1999-2005) revealed extensive co-flowering across Mpala acacia species, 

but little consistency in co-flowering species across years and sites. Previous work in 

Tanzania found co-flowering acacias to show high synchrony in timing of daily 

pollen release, and significant overdispersion (regularity in spacing) of species pollen 

release peaks through the day. This pattern is as predicted for the partitioning of a 

resource (shared pollinators) along a resource axis (daily time) by competitive 

displacement. Activity of shared pollinators tracked pollen release across the co-

flowering acacias, resulting in partitioning of pollinator activity within the acacia 

assemblage. In contrast, I found Mpala acacias to show relatively low intraspecific 

synchrony in dehiscence. Further, although species' pollen release peaks ranged 

through the day between dawn and dusk, their distribution showed no significant 

signature of competitive displacement. 

Mpala acacias share visitor species, particularly bees and syrphid flies. Visits 

to flower heads tracked the timing of pollen availability, illustrating the potential for 

bottom-up' influences in this system. Thus, whilst coflowering Mpala acacias could 

potentially partition shared pollinators in daily time through divergence in the timing 

of dehiscence, no evidence for such a mechanism was found. Possible reasons for 

absence of such a pattern at Mpala are discussed. 
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I quantified flower-visitor interactions for two replicate flowering 

communities at four seasonal time points in 2004. Flowering plant species, visitor 

species and the interactions between them varied through seasonal time and between 

sites. Mpala acacias shared visitors with many other plant species, illustrating the 

value of adopting a community perspective. A novel null-modelling approach found 

all seasonal datasets to show significant daily temporal structure, resulting from 

concentration of activity by specific groups of flower visitors within a subset of the 

four daily time periods sampled. Consideration of patterns of floral resource 

provision in specific plant taxa (e.g. Malvaceae) showed that at least some of this 

temporal structuring was the result of bottom-up' control. My data were not 

adequately resolved to assess community-wide evidence for partitioning of shared 

pollinators, but the presence of temporal structure means that this remains a 

possibility. Further work is required to assess the potential of 'top-down influences 

(such as bee nesting cycles or visitor thermal physiology) in structuring daily 

temporal patterns. The significance of my results for other types of interaction webs 

is discussed. 
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Chapter 1. General introduction 

The majority of angiosperms rely on animal pollinators to mediate pollen 

transfer from anthers to stigmas to enable successful fertilisation (Buchmann and 

Nabhan 1996, Proctor et al. 1996). Interactions between plant and pollinator species 

are usually beneficial for both parties. Whilst plants receive assistance with 

reproduction, pollinators obtain a reward provided by the plant. In most cases the 

reward is in the form of nectar and/or pollen, which both have a nutritive value for 

the pollinator. Other rewards, such as floral oils or protection from predators, are 

provided by some plants (Faegri and van der Pijl 1979, Proctor et al. 1996). 

Plant species that flower together in space and time or 'co-flower' have the 

potential to interact negatively or positively for pollination. Plants that have a 

negative impact on the pollination of sympatric species are usually competing for 

visits by the same pollinators. Species can also positively affect neighbouring plant 

species' reproductive success and this has been termed 'facilitation' (Rathcke 1983). 

I will discuss these processes in more detail later in this chapter (Sections 1.1-1.3). 

Plant species can minimise negative competitive interactions by partitioning 

pollination between them along a resource axis. Several axes along which this occurs 

have been studied, namely (i) use of different pollinators (e.g. Heinrich 1976, 

Pleasants 1980), (ii) using different body regions of the pollinator (e.g. Dressier 

1968, Yang et al. 2007), (iii) segregation in space (e.g. Armbruster and Herzig 1984), 

(iii) segregation in seasonal time (e.g. Stiles 1977, Aizen and Vazquez 2006), and (v) 

segregation in daily time (e.g. Armbruster and Herzig 1984, Stone et al. 1996, 1998, 

Raine 2001). Axes (ii) through to (v) would only be necessary if plant species shared 

pollinators. Partitioning of pollination along these axes will be discussed in more 

detail in section I.I. 

Of these axes, divergence in daily time has received the least attention. Daily 

pollinator partitioning has been shown for two species of Dalechampia (Armbruster 

and Herzig 1984), and one multi-species plant guild (Stone et al. 1996, 1998). In the 

latter study the timing of pollen release (dehiscence) for six co-flowering acacia 

species in Tanzania was significantly regularly spaced in daily time, and visits by 
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shared pollinators closely tracked patterns of pollen availability in each species. 

Raine (2001) found evidence for a similar process among acacia species in Mexico. 

The extent to which divergence in daily time as a potential mechanism for 

avoiding competition is found among co-flowering species assemblages is unknown. 

Given that it has been demonstrated for one group of acacia species, is the structuring 

of pollinator visits in daily time found for other groups of acacia species? 

Furthermore, should examination for this mechanism be extended beyond groups of 

closely related plant species in a given plant community? In this thesis I examine the 

evidence for daily temporal partitioning within two groups of flowering plant 

species: (i) a multi-species acacia assemblage and (ii) entire flowering plant 

communities. 

I will now discuss a number of issues in more detail that are relevant 

throughout the thesis. 

1.1 Competition for pollination 

(a) Mechanisms of competition for pollination 

Competition for pollination is thought to be an important force structuring 

flowering plant communities (reviewed in Pleasants 1983, Rathcke 1983, Waser 

1983, Feinsinger 1987). Competition between plant species for the same pollinators 

can have a negative impact on the reproductive success of individual species and 

may lead to the divergence in character traits among species that minimises 

competitive overlap. This will be discussed in more detail in section (b). 

Competition for pollination refers to an interaction among sympatric 

flowering plants in which the use of shared pollinators depresses reproduction. Two 

types of reproductive disadvantage can result for plant species sharing pollinators 

(Waser 1978a, b, Rathcke 1983): 

(i) Competition for pollinator visits: One plant species can draw pollinators away 

from another resulting in less pollen transfer between individual plants for the 

second species (e.g. Free 1968, Mosquin 1971, Lack 1976, Bierzychudek 1981, 

Horvitz and Schemske 1988, Rathcke 1988b). This could lead to lower levels of 

pollination which in turn might affect seed set and overall reproductive success. 
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(ii) Competition for pollen quality: Heterospecific pollen transfer can occur when 

pollinators forage on multiple plant species (e.g. Waser 1978a, Campbell and 

Motten 1985, Waser and Fugate 1986, Feinsinger and Tiebout 1991, McLernon 

et al. 1996, Murcia and Feinsinger 1996). This can result in the deposition of 

pollen on a stigma of the wrong species and could affect reproductive success in 

several ways (reviewed in Wilcock and Neiland 2002). Firstly, pollen will be 

lost by the donor species. Secondly, heterospecific pollen can inhibit successful 

fertilisation by conspecific pollen through (a) reducing the space available for 

conspecific pollen, (b) interfering with pollen germination or tube growth or (c) 

causing the loss of receptivity to conspecific pollen (Waser and Fugate 1986, 

Murphy and Aarsen 1995, McLernon et al. 1996). The deposition of 

heterospecific pollen on the stigma of a closely related species could also lead to 

fertilisation resulting in hybrid offspring and a loss in fitness for both species 

(Klips 1999). 

Both of these processes can lead to pollination limitation, resulting in a 

decrease in seed set and reproductive success (see Knight et al. 2005). However, 

plants can potentially achieve adequate or maximum seed set even with loss of 

pollinator visits and deposition of heterospecific pollen (see section 1.2). 

(b) Resource axes along which plant species can diverge to avoid competition for 

pollination 

An expected evolutionary consequence of competition is the divergence of 

species along some resource axis (resource partitioning) to reduce the negative 

interaction between coexisting species (Brown and Wilson 1956, Pianka 1974, 

Schoener 1983). Five resource axes along which plant species partition pollination 

have been investigated: 

Recruitment of different pollinator species 

Utilisation of different body regions of a pollinator for pollen transport 

Segregation in space 

Segregation of flowering in seasonal time 

Segregation of pollinator activity in daily time 
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Axis 1. Sympatric co-flowering plant species can recruit different pollinators 

(e.g. Heinrich 1976, Inouye 1978, Pleasants 1980, 1983, Armbruster and Herzig 

1984, Rathcke 1988a, b, Muchhala 2006). Pleasants (1980) found that different 

groups of plants in meadow communities recruited different bumblebee species as 

pollinators. Often specialised floral morphologies can allow plants to partition 

pollinators. For example, Heinrich (1976) showed that different co-flowering plant 

species were visited by different bumblebee species according to tongue length; long 

tongued bees visited flowers with longer corolla tubes and shorter tongued bees 

visited flowers with shorter corolla tubes. Several species are entirely dependent on a 

'private pollinator' that visits no other plant species. Examples of this include fig 

wasps (see review by Cook and Rasplus 2003) and yucca moths (see review by 

Pellmyr 2003). 

Axis 2. Plant species flowering at the same seasonal time can reduce 

competition for the same pollinator species by placing pollen on discretely different 

parts of a pollinator's body for pollen transport (Dressier 1968, Armbruster et al. 

1994, Yang et al. 2007). This requires co-adaptation between floral morphology and 

that of the pollinator to achieve accurate pollen placement and retrieval (Brown and 

Kodric-Brown 1979). This kind of pollinator partitioning is found in certain orchid 

species that attach discrete packets of pollen (pollinia) to specific locations on their 

pollinators, male euglossine bees (Dressler 1968). Yang et al. (2007) found that two 

species of Pedicularis sharing a bumblebee pollinator, Bombus richardsi, deposited 

pollen on different parts of the bumblebee, the locations of which corresponded to 

those contacted by the stigma of the appropriate species during foraging. 

Axis 3. Plants sharing pollinators could utilise independent populations of the 

same pollinator species through separation in space (Pleasants 1980, Armbruster and 

Herzig 1984, Rathcke 1988b). Flight distances and foraging ranges of pollinators will 

determine the degree of spatial separation necessary to avoid interspecific pollen 

transfer. Armbruster and Herzig (1984) found that although two vine species, 

Dalechainpia dioscoreifolia and D. tilitfolia, shared euglossine bee pollinators, they 

usually occurred in different habitats. Where they occurred sympatricaily, 

interspecific pollen transfer was considerable and seed set was depressed in D. 

discoreifolia. 
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Axis 4. Plants growing in the same location that share pollinators can diverge 

in their seasonal timing of flowering (e.g. Stiles 1977, Waser 1978a, Pleasants 1980, 

Kephart 1983, Ashton et al. 1988, Petanidou and Vokou 1993, Rocha et al. 2005, 

Aizen and Vazquez 2006). In this way, plant species can use the same pollinators at 

different times of year, therefore avoiding competition for pollinator visits and 

decreasing the risk of interspecific pollen transfer. Stiles (1977) demonstrated that 

flowering peaks for ten species of plants pollinated by hermit hummingbirds were 

staggered in seasonal time in a Costa Rican rainforest. Aizen and Vazquez (2006) 

showed that the flowering phenologies of plant species pollinated by the 

hummingbird Sephanoides sephaniodes were significantly regularly spaced in 

seasonal time at three sites in Chile and Argentina. An assumption of past work on 

seasonal partitioning has been that plants flowering at the same seasonal time may 

compete for pollinators. 

Axis 5. Sympatric species that share pollinators and flowering seasons could 

partition pollinator visits in daily time. Divergence among co-flowering species in 

the timing of pollen release (dehiscence) through the day could reduce the potential 

for competition in two ways (Levin and Anderson 1970). Firstly, the structuring of 

pollen availability in daily time could result in the daily partitioning of pollinator 

behaviour, so that co-flowering plants avoid competition for pollinator visits. 

Second, since many pollinators remove pollen from their body at regular intervals 

(Roubik 1989), temporal partitioning of their activity will result in pollinators 

carrying predominantly one type of pollen at any one time, thus reducing 

interspecific pollen transfer. 

Few studies have examined pollinator partitioning on a daily timescale. 

Armbruster and Herzig (1984) first found evidence of daily pollinator partitioning 

between two species of Dalechampia at a site in Panama. Dalechampia 

heteromorpha and D. scandens grew in the same location, flowered together for a 

significant portion of the year, and were visited by the same bee pollinators in the 

genera Hypanthidium and Trigona. Examination of dehiscence time and flower 

visitation patterns in these species revealed that D. heteromorpha dehisced at 7.00 

and was visited by bees in the morning, whereas D. scandens dehisced at 13.30 and 

was visited by the same bee species in the afternoon. 
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Stone et al. (1996, 1998) found evidence of pollinator partitioning in daily 

time for a group of co-flowering acacia species in Tanzania. The timing of 

dehiscence for six acacias was significantly regularly spaced between dawn and 

dusk, and flower visits by shared megachilid bees and calliphorid flies closely 

tracked the pollen availability of each species such that each acacia species received 

pollinator visits in turn throughout the day, with little overlap. Raine (2001) found 

evidence for a similar mechanism among two co-flowering acacia species in Mexico. 

Two co-flowering acacia species dehisced at different times of day, with shared 

pollinators corresponding closely to maximum pollen availability, resulting in little 

overlap in pollinator activity. 

1.2 Tolerance of competition for pollination 

Co-flowering plant species that share pollinators can sometimes show no 

obvious means by which competition is avoided. Even if there are sufficient 

pollinators for all species, there will still be a risk of interspecific pollen transfer. 

Divergence along resource axes to minimise competition may not be possible due to 

climatic constraints (e.g. timing of wet and dry seasons) or limited pollinator 

diversity. Lower reproductive success resulting from competition for pollination 

could be tolerated when the disadvantages of competition are smaller than the 

disadvantages of diverging along a resource axis. For example, a disadvantage of 

divergence in seasonal time could be flowering at a suboptimal time for pollinators. 

It is also possible that the apparently detrimental effects of reduced pollinator visits 

or interspecific pollen transfer might have no effect on the level of seed set by a 

plant. There are several reasons why plants might be able to tolerate competition for 

pollination: 

(i) 	Self-compatible plants can self-pollinate as long as heterospecific pollen does 

not prevent access to the stigma. Such species would have no need to develop 

mechanisms to reduce competition as pollination could be achieved without 

pollinator visits. However, self-pollinated plants could experience decreased 

seed set in comparison to those receiving pollen from another individual (e.g. 

Rathcke 1988b). 
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Species with long lived flowers might be able to tolerate competition for 

pollination as seed set could occur with even small numbers of pollinator visits 

(Primack 1985, Motten 1986, Rathcke 1988a, b, 2003). By producing flowers 

that are open for longer than those of competitors, plant species can increase 

the chance of pollinator visits after competing species cease flowering, or when 

pollinators are scarce (Rathcke 2003). 

Heterospecific pollen deposited on stigmas can interfere with stigma 

receptivity or pollen tube growth; however some plant species have been found 

to be tolerant of heterospecific pollen deposited on stigmas (e.g. Motten 1986). 

1.3 Facilitatory interactions for pollination 

Pollination facilitation occurs when the presence of one species increases 

pollinator visitation to another species, at no cost to either species (Rathcke 1983). 

Facilitation can occur in two ways: 

The combined resources of several plant species can support the survival and 

reproduction of pollinators throughout the season and from year to year 

(Waser and Real 1979, Rathcke 1983). Waser and Real (1979) suggest that 

sequential flowering of the species Dell-Ainium nelsonii and Ipomopsis 

aggregata helps to maintain shared hummingbird pollinators, and that 

facilitation is a consequence of divergence of seasonal flowering times. 

Plant species can act together to attract larger numbers of pollinators. Character 

convergence for pollinator sharing could arise between species if facilitative 

interactions are effective (Rathcke 1983). Brown and Kodric-Brown (1979) 

suggested that a community of hummingbird-pollinated plant species 

producing red tubular flowers had converged in their floral characteristics. 

They argued that the advantages of using similar signals and rewards to share 

the same pollinators outweighed the disadvantages of diverging to reduce 

interspecific competition. Schemske (198 1) suggested a similar process for 

two species of Costus that are identical in flower morphology and patterns of 

nectar secretion and share a euglossine bee pollinator. He suggested that low 

floral densities for both Costus species increased effective flower density and 
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nectar supplies for pollinators and probably increased pollinator visitation 

rates. 

1.4 Considerations of competition and resource partitioning 

1.4.1 Patterns of species dispersion along resource axes 

Divergence among plant species along the resource axes listed in Section 1.1 

can reduce the negative interaction between coexisting species and hence the effects 

of interspecific competition for pollination. This divergence is termed character 

displacement (Brown and Wilson 1956). Character displacement between species 

along a resource axis can result in resource partitioning. The resource being 

partitioned along the resource axes described in Section 1.1 is pollinator visits to 

flowers. 

Species which have diverged in a particular character trait (e.g. timing of 

seasonal flowering) due to interspecific competition are expected to be regularly, 

rather than randomly, spaced along a resource axis (see Fig. 1.1). This regular 

spacing is also known as 'overdispersion'. The process of divergence along a 

resource axis occurs as a result of intraspecific variation in resource usage becoming 

restricted by the negative effects of interspecific competition in the overlapping 

region of the shared resource axis. Resource partitioning through interspecific 

competition requires long-term community stability to allow divergence of resource 

use through consistent directional selection acting on both competing species over an 

evolutionary timescale. 

1.4.2 Detecting resource partitioning due to interspecific competition 

If interspecific competition has caused divergence between species along a 

resource axis, we expect: (i) intraspecific synchrony and (ii) interspecific divergence 

in patterns of resource use along a shared resource axis. Visual inspection of the 

distribution of resource patterns is not sufficient to identify the regular spacing of 

species along resource axes such as seasonal flowering time or daily time of 

dehiscence. Various statistical methods have been developed for detecting character 

displacement of species' traits due to interspecific competition (Poole and Rathcke 

1979, Pleasants 1980, 1994, Williams 1995). 
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Poole and Rathcke (1979) proposed the first suitable statistic for testing 

character displacement. Their statistic, P. was developed in order to test whether the 

midpoints of the flowering seasons of plant species sharing pollinators were regularly 

spaced in seasonal time. Pleasants (1994) considered P the most appropriate statistic 

with which to detect character displacement since it has more statistical rigour than 

alternatives. Williams (1995) developed the V statistic, an improved version of P. 
and also provided a table of critical values that can be used to test both one tailed and 

two tailed hypotheses. 

(a) Species randomly dispersed 

Frequency 

Lower limit 	 Resource axis 	 Upper limit 

(b) Species regularly spaced or overdispersed 

Frequency 

Lower limit 	
Resource axis 	 Upper limit 

(c) Species distributions aggregated 

Frequency 

Lower limit 	
Resource axis 	 Upper limit 

Figure 1.1 Potential distributions of species along a resource axis. Each curve represents 
variation within a single species around a species mean. (a) shows species that are 
randomly dispersed along a resource axis, (b) shows species that are regularly spaced 
along the same axis and (c) shows species that are aggregated. 
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In a two-tailed test, the V statistic compares the observed distribution of 

resource utilisation among species with a null prediction that the patterns of resource 

use by members of a hypothetical assemblage, containing the same number of 

species, are randomly distributed along a given axis. The null hypothesis will be 

rejected if species values are either more regularly spaced or more aggregated than 

expected by chance within a defined range, when V has a significance smaller than 

0.025 or greater than 0.975 according to Williams' (1995) table of critical values. 

Two types of one tailed test can be used to test two different null hypotheses: 

That species values are not regularly spaced along a resource axis, with an 

alternative hypothesis that species values are more regularly spaced than 

expected by chance. The null hypothesis will be rejected for values of V with a 

significance smaller than 0.05. 

That species values are not aggregated within a resource axis, with an alternative 

hypothesis that species values are more aggregated than expected by chance. 

The null hypothesis will be rejected for values of V with a significance greater 

than 0.95. This test could also be used to test whether individuals of the same 

species are more aggregated than expected by chance. 

Therefore the V statistic can be used to test both of the predictions for 

resource partitioning due to character displacement: intraspecific synchrony and 

interspecific divergence. 

For a given set of species means along a resource axis, calculation of V 

requires an estimation of (i) the distances between successive species (or individuals 

when examining intraspecific synchrony within a single species) and (ii) the range 

within which the dispersion of the species should be measured. V is then given by the 

expression: 

V 	
Sum of squares of the distance 

(number of species - 1) x (range)2  

The V statistic can be used to detect character displacement among plant 

species. However, demonstration that the shared resource (i.e. shared pollinator 

visits) also follows the same sequence of species is also necessary to demonstrate 

resource partitioning. 
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1.4.3 Detecting character displacement and resource partitioning in daily time 

Poole and Rathckes' P statistic was originally developed to test the dispersion 

of species' flowering peaks in seasonal time. Stone et al. (1996, 1998) used 

Williams' (1995) V statistic to test for evidence of character displacement among the 

times of daily maximum pollen availability for a group of co-flowering acacia 

species sharing pollinators in Tanzania. If sharing pollinators is costly for co-

flowering acacia species, it is expected that (i) members of the same acacia species 

will overlap as much as possible (intraspecific synchrony) and (ii) members of 

different acacia species will overlap as little as possible (interspecific divergence) in 

both pollen availability and pollinator visits in daily time. Stone et al. (1996, 1998) 

used one tailed tests of the V statistic to examine the evidence for intraspecific 

synchrony and interspecific divergence in the timing of maximum pollen availability. 

In this community the mean values for co-flowering acacia species were significantly 

regularly spaced in daily time and individuals of each species showed high levels of 

synchrony. These results provide evidence of character displacement in the timing of 

dehiscence among co-flowering acacias in this community. Since shared pollinators 

tracked the patterns of pollen availability between species this is compatible with the 

theory of resource partitioning in daily time. 

In this thesis I use the V statistic in the same way to test for evidence of 

character displacement in the daily times of maximum pollen availability among co-

flowering acacia species in a Kenyan savannah community. 

I will now explain some of the issues associated with using the V statistic in 

this context. One of the difficulties in using the V statistic is determining an 

appropriate resource axis range within which to test the dispersion of species means. 

When testing for divergence in seasonal time, previous studies have taken the range 

as the distance between the first and the last species in the sequence (Poole and 

Rathcke 1979, Prescott 2005). This is the only approach where there are no a priori 

limits to the resource axis between which species should be dispersed, i.e. we cannot 

say that species can only flower between specific dates for physiological, 

phylogenetic or other reasons. This approach has also been applied to tests of 

species' pollen availability peaks in daily time (Stone et al. 1998) and is appropriate 

if pollinators could potentially visit flowers at any time of day or night. However, 
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data to date suggest that all significant pollinators visit acacia flower heads during 

the day (between dawn and dusk) in East Africa (Tybirk 1989, 1993, Stone et al. 

1996, 1998, this thesis). In Tanzania the earliest acacia species dehisced at dawn 

(6.00) and the latest at 15.00, therefore Stone et al. (1998) also calculated the V 

statistic between dawn (6.00) and dusk (18.00). In this thesis I similarly examine the 

distribution of pollen availability peaks in daily time between both the first and last 

peaks of pollen availability and between dawn and dusk. 

The incorporation of a specific resource axis range can be important because 

it adds additional values to analyses. Incorporating dawn and dusk as limits in daily 

time increases the number of gaps between 'species' as the limits are included in the 

analyses. Figure 1.2 shows two examples of species distributions in daily time, and 

demonstrates how using different ranges could affect the results of a test using the V 

statistic. In analyses of daily partitioning, the last available species 'slot' for pollen 

release is not at dusk, but a period before dusk that allows visitation by diurnal 

pollinators. In Fig 1.2a the species are regularly spaced between the first and last 

peaks and between dawn and dusk. However, in Fig 1.2b the species are regularly 

spaced between the first and last peaks, but aggregated between dawn and dusk. 

Therefore the range used can have a major impact on results expected using the V 

statistic. In analyses of intraspecific synchrony, the range will need to encompass 

values before the first species and after the last species (Fig. 1.2b) in order to be able 

to detect aggregation within a specified time limit. 
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(a) Species regularly spaced between first and last peaks, and between dawn and dusk 

Fr( 

Lower limit 	 Upper limit Resource axis 

(b) Species regularly spaced between first and last peaks, but aggregated between dawn 
and dusk 

Fr 

Lower limit 	 Upper limit Resource axis 

Figure 1.2 Two different species distributions between dawn and dusk. Each curve 
represents variation within a single species around a species mean. The blue lines show 
the distances between species used to calculate Williams' Vstatistic when the range is 
taken between the first and last peak, and the red lines show additional distances that will 
be included in the calculation of the statistic if the range is between dawn and dusk. 
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1.5 Temporal structure in community-level plant-pollinator interactions 

To date, studies of plant-pollinator interactions in daily time have considered 

only closely related plant species. However, most plant-pollinator interactions will be 

embedded within a highly complex web of interactions involving multiple plant and 

pollinator species. The majority of plant and pollinator species are generalists and 

interact with multiple partners (Waser et al. 1996, Waser and 011erton 2006). 

Therefore, we might expect competition for pollinators to exist among plant species 

at a community level, and that plant species might diverge along one of the resource 

axes listed in Section 1.1 to reduce competition. In addition, plants might interact to 

facilitate each other's reproduction at a community level. 

Acacias are a subset of an entire flowering plant community and thus have 

the potential to interact via pollinators with other flowering plant species. Therefore 

consideration of acacias as a group that interact solely with one another may be an 

oversimplification. Most acacias produce little or no nectar, and bees that forage on 

acacias for pollen must often visit other floral resources to obtain nectar. Inclusion of 

other plants as potential interactors with acacias reflects the growing realisation that 

most communities are best studied as interaction webs. This has long been applied to 

food webs, and in Chapter 6 I describe the development of web-based approaches to 

plant-pollinator interactions. This is the first study to adopt an interaction web-based 

perspective of daily temporal structure. 

Both 'top down' and 'bottom up' factors can influence daily temporal 

structure in plant-pollinator interactions. Firstly, the timing of pollinator visits might 

be restricted by daily nesting cycles (e.g. bees) or because of thermoregulatory 

requirements (Willmer and Stone 2004). Secondly, plants might release pollen and/or 

nectar at particular times of day which will influence the visitation patterns of 

pollinators. 

In this thesis I examine flowering plant communities at different seasonal 

times for temporal structure in plant-visitor interactions over daily timescales. This 

approach requires qualifying visitation by all flower visitors for all flowering plant 

species in a community. I use a newly developed null modelling approach to assess 

evidence for daily temporal structure among plant-visitor interactions. 
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1.6 Thesis outline 

In this thesis I examine a multi-species acacia assemblage and entire 

flowering plant communities in a Kenyan savannah habitat for evidence of structure 

in plant-pollinator interactions over seasonal and daily timescales. 

In Chapter 2, I discuss the study species and describe the study location for 

all work in this thesis. 

In Chapter 3, I ask whether the acacias at the study location regularly co-

flower and which species most often co-flower. 

In Chapter 4, I ask at what time the acacias dehisce during the day, and 

whether species that commonly co-flower show daily structure in pollen release 

compatible with competitive displacement. Specifically I assess the evidence for 

intraspecific synchrony and interspecific dispersion. 

In Chapter 5, I look in detail at the visitor assemblages of the acacias and ask 

(i) whether shared pollinators make significant proportions of visits and (ii) if the 

daily activity sequence of shared pollinators matches the sequence of dehiscence 

across co-flowering species. 

In Chapter 6, I ask whether acacias share visitors with other plant species and 

whether daily temporal structure exists among plant-visitor interactions at a 

community scale. 

In Chapter 7, I summarise the findings of this thesis, discuss the implications 

of this work and describe possible future studies. 
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Chapter 2. Study sites and species 

In this chapter I describe the study location and then discuss the study 

species, including the current taxonomic status of the genus Acacia. Finally I 

describe the sampling sites at which fieldwork was conducted. 

2.1 Study location: Mpala Research Centre 

All fieldwork for this project was conducted in semi-arid savannah habitat at 

Mpala Research Centre (37°52'E, 0017'N), located in Laikipia District, Central 

Kenya (Fig. 2.1). Mpala Research Centre is part of the Mpala Wildlife Conservancy, 

a 20,000 hectare (48,000 acre) property bordered on the east side by the Ewaso 

Ng'iro river, and to the north by the Ewaso Narok river. The Mpala property is 

situated northwest of Mt. Kenya and Nanyuki town, 50km north of the Equator. 

Mpala is managed for cattle production using traditional Maasai herding 

methods (Augustine et al. 2003). Herders construct temporary accommodation, 

enclosed by bomas (fences of cut thorny vegetation) to protect the livestock at night. 

These bomas are relocated periodically depending on food and water availability. No 

local communities are resident on the property. Human habitation is limited to two 

main areas with research buildings and accommodation in the south and a ranch 

house in the east. A dirt road running from north to south is one of the main access 

roads for the region. The boundaries are unfenced, allowing wildlife to move freely 

across the property. 

2.1.1 Climate 

The climate is semi-arid, with warm days and cool nights. Climate varies 

across the property with altitude; the southwest is higher (I 850m a.s.l.), wetter and 

cooler, and the northeast is lower (1550m a.s.l.), drier and hotter (Mpala Wildlife 

Foundation 2006). Humidity is lowest in the dry season (January-March) and in 

September, which is also a relatively dry month (Paton 2004). Mean daily relative 

humidity between 1999 and 2003 was 62.5% (Paton 2004). Rainfall follows a 

weakly trimodal pattern (Fig. 2.2) with long rains in April-May and shorter periods 

of rain in July-August and October-November (Mpala Wildlife Foundation 2006). 
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Monthly rainfall data collected by Mpala Research Centre at the location of the 

research centre buildings between May 1998 and December 2005 are shown in Table 

2.2 and mean monthly totals are shown in Figure 2.2. Mean annual rainfall between 

1999 and 2005 was 617 mm (Table 2.1). Rainfall is unpredictable and can vary 

considerably between years; total annual rainfall between 1999 and 2005 varied 

between 350mm (2000) and 837mm (200 1) (Table 2.1). 
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Figure 2.1 A map of Kenya and neighbouring countries showing the locations of acacia pollination 
studies in East Africa: Mpala the study location for this thesis, Kositei, the location of Vachellia nilotica 
studies conducted by Tybirk (1988, 1989, 1993) and Mkomazi, the study location in Tanzania for 
Stone et al. (1996, 1998, 1999a). (Source: Mountain High Maps. Adapted by G. N. Stone) 
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Table 2.1 Monthly rainfall totals at Mpala Research Centre, May 1998-December 2005. Data 
were collected by Mpala Research Centre. 

1998 1999 2000 2001 2002 2003 2004 2005 Mean 
Jan 8.6 0.8 46.9 8.9 0.0 90.3 17.2 24.7 
Feb 0.0 0.0 0.0 0.0 12.0 19.4 23.8 7.9 
March 73.9 0.0 55.7 43.3 12.2 48.8 18.2 36.0 
April 18.1 4.8 188.0 110.2 245.1 207.9 115.5 127.1 
May 42.3 34.3 31.4 48.8 70.8 82.9 65.7 128.4 63.1 
June 49.1 2.2 22.7 70.8 21.0 36.2 2.4 24.6 28.6 
July 68.3 100.3 61.0 48.3 33.0 38.8 89.4 21.2 57.5 
Aug 106.4 59.5 153.9 54.7 3.7 123.7 80.3 49.5 79.0 
Sep 35.3 17.7 7.5 8.5 9.2 30.0 68.5 102.5 34.9 
Oct 76.1 19.5 20.2 52.9 59.5 13.2 37.2 30.6 38.7 
Nov 107.0 57.0 30.9 231.1 82.5 113.2 118.3 20.8 95.1 
Dec 2.6 19.7 16.6 11.0 91.1 46.0 8.8 0.0 24.5 
Total 487.1 410.8 349.8 816.7 533.2 753.3 837.0 552.3 617.0 
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Figure 2.2 Mean monthly total rainfall at Mpala Research Centre between May 1998 and December 
2005 (± 1 SE). Full data are shown for all years individually in Appendix 3. Data were collected by 
Mpala Research Centre. 
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2.1.2 Geology and soil types 

There are three types of soil on the Mpala property (Fig. 2.3). A higher 

plateau of black cotton soil, a deep clay vertisol with impeded drainage that is 

seasonally inundated is found in the south west of the property. As the plateau 

descends in the south east and north of the property, this gives way to well drained 

thin red sandy barns (latosols) at lower elevations. Intermediate soil is known as 

'transition soil'. Granitic inselbergs, or kopjes, are scattered throughout the terrain. 

N 

Soil type 

H Black Cotton 
Red 
Transition 

0 	2 	4 	6 	8 	10 ikilometres 

Figure 2.3 Distribution of soil types at Mpala. Points marked are sampling sites that will be described 
in more detail in section 2.3.1. This map was drawn using GIS information provided by Mpala 
Research Centre. 
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2.2 Study species 

Chapters 3 to 5 examine the pollination ecology of ten species that until 

recently were part of the genus Acacia Miller (Fabaceae: Mimosoideae). However, 

recent phylogenetic analyses have shown that the genus is polyphyletic (Miller and 

Bayer 2001, 2003, Maslin et al. 2003) and it has subsequently been split into five 

genera. I will start this section with a brief taxonomic history of the genus Acacia, 

before discussing the five genera that now exist and then move on to describing the 

study species at Mpala. 

2.2.1 Taxonomy of the genus Acacia 

The genus Acacia was first described by Philip Miller in 1754 and revised by 

George Bentham in 1842 who restricted the name Acacia to mimosoid plants having 

numerous free stamens (Maslin et al. 2003). Bentham also defined the tribes of the 

subfamily Mimosoideae. The tribe Acacieae incorporated all Acacia species along 

with the genus Faidherbia, whilst taxa with fused stamens were assigned to the tribe 

Ingaeae. In 1972 Jacques Vassal described three subgenera within Acacia, based on 

his own studies of seeds, seedlings and stipules, and palynological studies by Guinet 

(1969): Acacia, Aculeiferum and Heterophyllum (=Phyllodineae). Pedley (1986) was 

the first author to propose the division of Acacia into three separate genera, namely 

Acacia, Senegalia Rafinesque and Racosperma C.Martius., corresponding to 

subgenus Acacia, subgenus Aculeiferum and subgenus Phyllodineae respectively. 

This proposal was not widely adopted, however it was recognised at the time that 

differences did exist within Acacia and that more comprehensive information was 

needed to make informed decisions regarding the status of the genus (Maslin 1988). 

A number of morphological and molecular studies have been undertaken in 

recent years to assess the taxonomic and phylogenetic status of Acacia and tribe 

Acacieae (reviewed in Maslin et al. 2003). These studies suggested that five 

taxonomic groups exist within Acacia and, whilst confirming that subgenus Acacia 

and subgenus Phyllodineae were monophyletic, found that subgenus Aculeiferum 

was formed of three monophyletic assemblages (Maslin et al. 2003). These three 

groups were termed subgenus Aculeiferum sensu stricto, subgenus Aculeiferum 

section Filicinae and the 'Acacia coulteri' group (Maslin et al. 2003). On the basis of 
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these studies it was widely accepted that the generic status of species within the 

genus Acacia needed to be revised and new generic names have been assigned to 

each of the five groups (see Table 2.2). Retypification of the type specimen of 

Acacia from the African species Acacia scorpioides (L.) W. Wight (=A. nilotica) to 

the Australian species A. pennivervis Sieber ex DC, as proposed by Orchard and 

Maslin (2003), was endorsed at the Nomenclature Session of the 17th  International 

Botanical Congress (IBC) in Vienna in July 2005 (Smith et al. 2006). This means 

that all species in the subgenus Phyllodineae, which includes the majority of the 

Australian species, will retain the generic name Acacia, whereas species belonging to 

the subgenus Acacia will be assigned the genus name Vachellia Wight & Arnott, the 

earliest known alternative name. The three monophyletic groups forming the genus 

Aculeiferum have been assigned the names Senegalia Rafinesque (subgenus 

Aculeiferum sens. str.), Acaciella Britton & Rose (subgenus Aculeiferum sect. 

Filicinae) and Mariosousa Seigler and Ebinger (A. coulteri group) (Seigler et al. 

2006b). 

New combinations have been made for some American species of Vachellia 

and Senegalia (Seigler and Ebinger 2005, Seigler et al. 2006a) although as yet the 

new names have not been widely adopted. Since it is likely that new combinations 

will be made for species in the former subgenera Acacia and Aculeiferuin in the near 

future, in this thesis all species are named using the new classification system. I shall 

use the term 'acacia' to encompass all species previously and currently belonging to 

the genus Acacia. 

Table 2.2 Main classifications of Acacia from Vassal (1972) through to the current five 
genera into which Acacia has now been divided. 

Subgenera 
proposed by Adopted Genera proposed Taxonomic groups 

within Acacia New generic 
Vassal (1972) subgenera by Ped ley (1986) 

 (Maslin et al. 2003)  names 

Acacia Acacia Acacia subg. Acacia Vachellia 

Aculeiferum Aculeiferum Senegalia subg. Aculeiferum 
Senegalia sensu stricto 

Aculeiferum Aculeiferum Senegalia subg. Aculeiferum 
Acaciella sect. Filicinae 

AculeiferumAculeiferum Senegalia Acacia coulteri group Mariosousa 
i Heterophyllum Phyllodineae Racosperma subg. Phyllodineae Acacia 
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2.2.2 Genera formerly belonging to Acacia 

Species belonging to the five genera into which the genus Acacia has now 

been subdivided are dominant woody trees and shrubs found throughout the world in 

tropical, subtropical and warm temperate regions. Most species occur in regions 

where the rainfall is markedly seasonal or low (Ross 1981). The distribution of the 

five genera varies worldwide and is described, along with the morphological 

characteristics for each genus, in Maslin et al. (2003). Seigler et al. (2006b) describe 

the morphological characters that distinguish Sene ga/ia from Acaciella and 

Mariosousa. 

Table 2.3. Numbers of accepted, described species of acacias now belonging to the genera 
Vachellia, Senegal/a, Acaciella, Mariosousa and Acacia (following Maslin et al. 2003 and 
adapted from www.worldwidewattle.com) 

Revised 
generic name 

Americas Africa' Asia Australia 
& Pacific 

Total  
species 

Vachellia c. 60 73 362 9 C. 163 
Senegalia 97 69 433 2 203 
Acaciella 15 - - - 15 
Mariosousa 13 - - - 13 
Acacia - 2 10 9826 987 
Total species c. 185 144 89 993 1381 

Madagascar, Reunion and Mauritius; 	2lncluding c. 15 species also found in Africa; 
3lncluding 7 species also found in Africa; 	 4lncluding 1 species also found in Asia; 
2 species in Madagascar, Reunion and Mauritius; 	6975 species in Australia, 7 species in the 

Pacific. 

Vachellia 

Species of Vachellia (previously Acacia subgenus Acacia) are distributed 

throughout Africa (including Madagascar) (73 species), Asia (36 species, including 

c. 15 species that also occur in Africa) and the Americas (c. 60 species) (Table 2.3, 

Fig. 2.4a). A small number of species are found in the northern tropical regions of 

Australia. Vachellia are trees or shrubs with bipinnate leaves, paired stipular spines 

and no prickles (Maslin et al. 2003). 

Senegal/a 

Sene ga/ia species are distributed throughout Africa (69 species), Asia (43 

species, including c. 7 species that also occur in Africa) and the Americas (97 
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species), with two species found in northern Australia (Table 2.3, Fig. 2.4b). 

Sene ga/ia are trees or shrubs with bipinnate leaves that have no stipular spines, but 

usually have two or three straight or recurved prickles near the stipules (Maslin et al. 

2003). 

Mariosousa 

The recently proposed genus Mariosousa consists of 13 species (Seigler et al. 

2006b). The distribution is restricted to tropical and subtropical regions of the 

southwestern United States, Mexico and Central America (Table 2.3, Fig. 2.4c). 

Mariosousa species have bipinnate leaves and are morphologically distinct from 

Senegalia and Acaciella species in that they always lack prickles and are never 

lianas. 

Acaciella 

This proposed genus consists of 15 species and is only found in the Americas 

(Table 2.3, Fig. 2.4d). The distribution of Acaciella extends from the south-central 

United States to Argentina, with the highest concentration of species occurring in 

Mexico (Maslin et al. 2003). Species are trees or shrubs and have bipinnate leaves 

and no prickles or stipular spines. 

Acacia 

The predominantly Australian genus Acacia (previously subgenus 

Phyllodineae) contains 987 described species and is the most diverse acacia genus. 

Most species are found in Australia, although a small number are found in the Pacific 

region east to Hawaii, in Asia north to Taiwan and in Madagascar, Reunion and 

Mauritius (Table 2.3, Fig. 2.4e). Species are trees or shrubs that sometimes have 

stipular spines but never have prickles. Most species have leaves reduced to a 

flattened rachis, known as a phyllode. 



Senegal/a 

Mariosousa 

Acaciella 

Chapter 2. Study sites and species 	 24 

(a) Vachellia 

Figure 2.4 Distributions of the five acacia genera: (a) Vachellia, (b) Senegal/a, (c) Mariosousa, 
(d) Acaciella and (e) Acacia. Distribution maps are freely available from www.worldwidewaftle.com  
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2.2.3 Phylogenetic relationships within the Mimosoideae 

Molecular and morphological studies have also revealed further information 

regarding the relationships between the five acacia genera and other tribes and 

genera in the subfamily Mimosoideae, although some of these studies give 

conflicting results and the exact phylogenetic relationships remain unclear (reviewed 

in Maslin et al. 2003). Figure 2.5 shows a schematic tree based on studies of 

chioroplast DNA sequence data by Miller and Bayer (2000, 2001, 2003) and Luckow 

et al. (2003), which suggests that the taxa in the tribe Acacieae (genera Acacia, 

Vachellia, Sene ga/ia, Mariosousa, Acaciella and Faidherbia) may not be distinct 

from those in the tribes Ingaeae and Mimoseae, with Vachellia more closely related 

to basal mimosoid tribes and the other genera more closely related to the tribe 

Ingaeae. Kergoat et al. (2007) found results consistent with this in the examination 

of the beetle seed predators associated with acacias and related taxa. 

Maslin et al. (2003) advised caution in interpreting the results of the earlier 

studies and recommend that further work should incorporate further data from basal 

taxa in the subfamily, as well as from closely related taxa in the subfamily 

Caesalpinioideae. 

Caesalpinioideae 

Mimoseae (pro parte) 

Mimoseae (pro parte) 

Vachellia 

Sene ga/ia 

Mariosousa 

Acaciella 

Faidherbia 

Ingeae (pro parte) 

Ingeae (pro parte) 

Acacia 

Figure 2.5 A schematic diagram showing the relationships between taxa in the subfamily 
Mimosoideae based on studies of chloroplast DNA sequence data by Miller and Bayer (2000, 
2001, 2003) and Luckow et al. (2003) (adapted from Maslin et al. 2003). 
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2.2.4 Acacia species at Mpala 

African acacias in the genera Vachellia (previously Acacia subgenus Acacia) 

and Senegalia (previously part of Acacia subgenus Aculeiferum) are thorny trees and 

bushes that dominate the woody vegetation in savannah habitats (Coe and Beentje 

1991). Acacias are key species in these habitats, providing food and other resources 

for a large diversity of mammals, birds and invertebrates (e.g. Kruger and McGavin 

1998, Bond and Loffell 2001, Dean et al. 2002). Of the 142 acacia species found in 

mainland Africa (excluding species found solely in Madagascar) 73 belong to the 

genus Vachellia and 69 to the genus Senegalia (www.worldwidewattle.com). The 

East African region contains the highest acacia species diversity on the continent and 

Kenya has the second highest diversity of any country after Tanzania, with 27 and 15 

species in the genera Vachellia and Senegalia respectively (Ross 1981). 

Ten acacia species are found at Mpala: Senegalia brevispica, Senegalia 

mellifera, Vachellia drepanolobium, Vachellia etbaica, Vachellia gerrardii, 

Vachellia hockii, Vachellia nilotica, Vachellia seyal, Vachellia tortilis and Vachellia 

xanthophloea. Vachellia seyal is present in two forms: V. seyal var. seyal and V. 

seyal var.fistula. These are listed along with the old generic and subgeneric names 

and the authorities for these in Table 2.4. Some examples of these species are shown 

in Figures 2.7 and 2.8. 

Table 2.4 Names for the Mpala acacia species under the new classification of acacia genera, 
along with their old species names, subgenera and authorities. 

New name Old name Old subgenus Authority for 
old name 

Senegalia brevispica Acacia brevispica Aculeiferum Harms. 
Senegalia mel/hera Acacia mel/hera Aculeiferum (VahI) Benth. 
Vachellia drepanolobium Acacia drepanolobium Acacia Sjöstedt 
Vachellia etbaica Acacia etbaica Acacia Schweinf. 
Vachellia gerrardii Acacia gerrardii Acacia Benth. 
Vachellia hock/i Acacia hock/i Acacia De Wild. 
Vachellia niotica Acacia n/lot/ca Acacia (L.) Del. 
Vachellia seyal Acacia seyal Acacia Del. 
Vachellia tort//is Acacia tortiis Acacia (Forssk.) Hayne 
Vache/lia xanthophloea Acacia xanthophloea Acacia (S.Moore) Taub. 
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Species composition varies between soil types (Table 2.5). The red soil 

vegetation is mainly composed of Senegalia brevispica and Vachellia etbaica along 

with Senegalia mellifera, Vachellia gerrardii and Vachellia nilotica (Young et al. 

1995). Vachellia drepanolobi urn (whistling thorn acacia) is found in low densities 

on the red soil but is the dominant woody plant species on the black cotton soil, 

accounting for more than 98% of the overstory vegetation (Young etal. 1998). 

Vachellia xanthophloea (yellow fever tree), grows in close proximity to water and is 

found along river banks and near some of the man-made dams on the property. Three 

other species, Vachellia seyal, Vachellia hockii and Vachellia tortilis, are 

comparatively rare and have limited distributions at Mpala. The Mpala habitat is 

shown in Figure 2.10. 

2.2.5 The plant community at Mpala 

The vegetation at Mpala is characteristic of semi-arid African savannahs. 

Grassy woodland predominates and is interspersed with patches of woodland and 

open grassland (Mpala Wildlife Foundation 2006). The woody vegetation is 

dominated by acacias in the genera Senegalia and Vachellia but also includes Croton 

dichogarnus (Euphorbiaceae) as well as shrubs in the genera Grewia (Tiliaceae), 

Rhus (Anacardiaceae), Balanites (Balanitaceae) and Boscia (Capparaceae) (Young et 

al. 1995, Mpala Wildlife Foundation 2006). 

In addition to differing compositions of acacia species, the understory layers 

of the two soil types are also characteristically different. The red soil is dominated 

by perennial grasses including Cynodon dactylon, Digitaria milanjiana, Pennisetum 

mezianurn and P. strarnineurn (Augustine et al. 2003, Augustine 2003) with the herbs 

Plectranthus spp., Portulaca spp., Pollichia campestris and Blepharis spp. (Young et 

al. 1995). The understory of the black cotton soil vegetation is dominated by the 

grasses Theineda triandra, Penniseturn strarnineurn, P. 'nezianum, Lintonia nutans 

and Brachiaria lachnatha and the herbs Aerva lanata, Rhinacanthus ndorensis, 

Dyschoriste radicans, and Corninelina spp. (Young et al. 1997). 

There are 516 recorded plant species at Mpala, with 385 species of 

dicotyledonous plants in 60 families and 113 species of monocotyledons in 17 

families (Young 2000). However this list is not comprehensive and many more plant 
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species could be present. In Chapter 6 of this thesis I consider plant-pollinator 

interactions at the level of entire flowering plant communities at two sites at Mpala. 

Plant species were identified with the aid of Blundell (1992) and keys in 

Agnew and Agnew (1994). Much of the identification to species level was carried 

out by Professor Andrew Schnabel (Indiana University South Bend), a long term 

collaborator with the project. Full details of non-acacia plant species studied are 

provided in Chapter 6 and associated appendices. Some examples of the flowering 

plant species at Mpala are shown in Figures 2.11 and 2.12. 



Table 2.5 Distribution of the acacia species at Mpala, growth form, flower shape and colour, and the presence of floral nectar 

Species Distribution Growth form Flower Flower Floral 
red soil black cotton soil (from Coe and Beentje 1991) shape colour nectar 

Senegalia brevispica widespread rare Small tree or shrub to 7m or 
spherical white trace scandent shrub to 12m 

Shrub or tree 1-7.5m. Either short 
Vachellia drepanolobium widespread dominant and robust, or a slender tree with spherical white not known 

rounded canopy 
Vachellia etbaica widespread rare Tree, from 2-12m spherical white not known 
Vachellia gerrardii widespread not found Flat topped or spindly tree to 1 5m spherical white not known 
Vachellia hockii rare not found Shrub or tree to 6m may reach 9m, 

with flattened crown spherical yellow not known 

Senegal/a mellifera widespread rare Dense obconical or small tree, to 9m elongate white nectar 
Vacheiia nilotica widespread not found Flat or rounded crown, to 12m spherical yellow no nectar 
Vachellia seyal 

rare not found Tree with flattened spreading crown, 
var. seyal to 12m spherical yellow not known 
Vachellia seyal 
var. fistula rare rare spherical yellow not known 

rare in south, 
Vachellia tortilis common in not found Tree to 18m flattened crown 

sometimes restricted to a small shrub spherical white not known 
north 

xanthophloea commVachellia not found Tall tree, up to 25m spherical white not known 
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2.2.6 The floral biology of Vachellia and Senegalia species 

All acacias present their flowers in the form of a compound flower head. The 

morphology of flower heads differs between Vachellia and Senegalia. Vachellia 

species generally have spherical (globose) flower heads whereas Senegalia species 

commonly bear elongate (spicate) flower heads. Not all species conform to this 

pattern. For example, Senegalia brevispica has spherical flower heads. Almost all 

species have flower heads that are white, cream or yellow, with Senegalia flower 

heads either white or cream, and Vachellia flower heads ranging from white through 

to bright yellow (Coe and Beentje 1991, Fig. 2.9). Details of flower head structure 

and colour for the Mpala acacias are given in Table 2.5. 

Acacias produce two types of floral rewards for pollinators; pollen and 

nectar. Pollen is presented on the surface of flower heads in the form of compound 

pollen grains, termed polyads (Kenrick and Knox 1982, 1989, Kenrick 2003). Each 

stamen bears an anther containing eight polyads, with each polyad containing 4, 8, 

16 or 32 pollen grains, depending on the species (Kenrick and Knox 1989, Kenrick 

2003). The number of stamens per flower and the number of flowers per flower head 

vary substantially between species, but also within species (Tybirk 1989, 1993, 

Sedgley et al. 1992, Kenrick 2003, Stone et al. 2003). In some acacia species all 

flowers are hermaphrodite, with a central stigma surrounded by stamens, whilst in 

others a proportion of flower heads on an individual tree are purely male and contain 

only stamens (Tybirk 1989, Sedgeley et al. 1992, Kenrick 2003, Stone et al. 2003). 

As well as contributing to reproduction through male function, these flowers may be 

important in recruiting a limited pool of pollinators through provision of an abundant 

reward. 

Some species of Vachellia and Senegalia also produce floral nectar. Nectar 

secretion is known for some African acacias in each genus (Stone et al. 1998, 

Tandon et al. 2001, Stone et al. 2003). Nectar quality and quantity varies among 

species (Stone et al. 2003). In comparison Australian acacias in the genus Acacia 

produce no nectar, although several species have extra-floral nectaries that attract a 

wider diversity of floral visitors (Bernhardt 1987, Kenrick 2003). 

The flowers of both genera are typically protandrous and last for a single day 

(Tybirk, 1989, 1993, Stone et al. 1996, Willmer and Stone 1997a). Flowers on an 

individual head commonly open synchronously in Vachellia, but can open in groups 
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over 2-3 days in some Senegalia species (Stone et al. 2003). The reproductive 

biology of acacias is reviewed in detail by Kenrick (2003). 

2.3 Sampling sites 

Data collection for this thesis took place at eight sampling sites at Mpala. 

These sites were established in 1998 and 1999 for the collection of long term data on 

the flowering and fruiting patterns of acacia species. Seven of these sites are located 

in the south of the property within 7 km of the main centre buildings (Figs. 2.5, 2.6). 

The eighth site, Mukenya, is located in the north of the property, approximately 15 

km north of the centre buildings (Fig. 2.5). 

Most sites were located on red soil (Table 2.6). Junction and High Dam were 

located on transition soil. Although the diversity of acacia species was similar (Table 

2.6), the vegetation and topology differs between the red soil and transition soil sites. 

The vegetation at transition soil sites was less dense with acacia trees more widely 

dispersed than at red soil sites. The understory shrub layers also contained different 

species (see Appendix 7 for a comparison of flowering plant species recorded on 

both soil types in June and July 2004). There were topological differences between 

the red and transition soil sites; the terrain at Junction and High Dam was rockier and 

the sites were located near the top of an escarpment that rises from the south of the 

property towards a plateau and then descends in the north. 

At each site marked acacia trees were monitored twice a month for flower 

head and fruit abundance. Some of these data are examined in Chapter 3. Patterns of 

pollen availability and visitation to flower heads were examined for acacia trees at 

MRC (Mpala Research Centre buildings), Turkana Boma, Mongoose, High Dam and 

Junction (Chapters 4 and 5). Permanent marked plots were established at Turkana 

Boma and Junction for the collection of community-level flower-visitor interaction 

data (Chapter 6). These sites were chosen to encompass the diversity of soil types 

and vegetation at Mpala. 
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Table 2.6. Sampling sites, height a.s.l., soil type, year established and acacia species 
composition. Species with asterices were not sampled at that site in the phenology study 
(Chapter 3). 

Site name Height m. te 
e abi I d  Soil type Acacia species 

MRC 1716 1998 red S. brevispica 
V. etbaica 
V. niotica 
S. mel/hera 

Turkana Boma 1732 1998 red S. brevispica 
V. drepanolobium 
V. etbaica 
V. gerrardii 
V. niotica 
V. seyalvar. seyal 
S. mellifera 

Mongoose1718 1998 red V. brevispica 
V. drepanolobium 
V. gerrardii 
V. mellifera 

Mukenya 1696 1998 red S. brevispica 
V. etbaica 
S. mellifera 
V. n/lot/ca 

Junction 1801 1998 transition S. brevispica 
V. drepanolobium 
V. etbaica 
V. gerrardii 
V. hockii 
V. niotica 
V. seyalvar. seyal 
S. mel/ifera 

High Dam 1776 1999 transition S. brevispica 
V. gerrardii 
V. hock/i 
V. nilotica 
S. me/lifera 

Boma 1690 1999 red V. tortiis 
V. brevispica * 

V. etbaica * 

S. mellifera * 

V. nh/otica * 

River 1660 1999 red V. xanthophloea * 

S. brevispica * 

V. etbaica * 

V. n/lot/ca * 
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Vegetation type 

, Acacia drep. Bushland 
Arid Zone Acacia Bushland 
Bare Rock 
Dwarf Bush Grassland 
Grassland 
Mpala Scarpline Vegetation • 	R Open Acacia brevispica thicket 
Small Scale Cropland Cropland 
Swamp 
Upland/Rivenne Forest 

N 

At 

a___________________________ 
kilometres 

Figure 2.6 Sampling site locations at Mpala. Each site is marked by a blue dot. This map 
was drawn using GIS information provided by Mpala Research Centre. 



(a) Senegal/a mell/fera 
•••-.l 

(b) Vachellia hock/i 

(c) Vachellia tortilis 
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(e) Vachellia xanthophloea 

(d) Senegal/a brevispica 

Figure 2.7 Acacia species found at Mpala 



Vachellia gerrardii 

Vachellia nilotica 

(c) Vachellia drepanolobium in flower 

Figure 2.8 Acacia species found at Mpala 



(b) Vachellia drepanolobium 
Photo: G. N.Stone 

(a) Senegal/a brevispica 

(c) Rhyncomya ( Calliphoridae) on 
	

(d) Cerambycid beetle on 
Vachellia hockil Photo: G. N. Stone 

	
Vachellia etbaica Photo: G. N.Stone 
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(e) Ceriana caifra (Syrphidae) on Senegal/a me/lifera 
Photo: A. Schnabel 

Figure 2.9 Examples of flower heads of the Mpala acacia species. 
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(b) The Turkana Boma plot used for web sampling 

Figure 2.10 The habitat at Mpala 
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(a) Solanum sp. 1 (Solanaceae) 

' 

(b) Comme/ina reptans (Corn melinaceae) 
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(c) Carissa edulis (Apocynaceae) 
	

(d) Gutenbergia cordifolia (Asteraceae) 

(f) Kalanchoe sp. 2 (Crassulaceae) 

Figure 2.11 Examples of flowering plant species at Mpala 



(a) Just/cia diclipteroides (Acanthaceae) 

(b) Monechma sp. B (Acanthaceae) 

(C) Abut/Ion mauritianum (Malvaceae) (d) Sida ovata (Malvaceae) 

(e) Ipomoea hi/debra nt/i (Convolvulaceae) (f) Hibiscus flavifolius (Malvaceae) 

Figure 2.12 Examples of flowering plant species at Mpala 
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(a) Coryna species (Meloidae) 
on H. flavifolius 

(c) Apis mellifera (Apidae) on C. reptans 

(b) Colletid bee on H. flavifolius 

OP 

(d) Pachnoda elegantissima 
(Scarabaeidae) on V. gerrardii 

(e) Hylaeus species (Colletidae) on 
	

(f) Apis mel/ifera (Apidae) on 
S. brevispica 
	

A. mauritianum 

Figure 2.13 Examples of flower visitors 
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Chapter 3. Flowering phenologies of the 

Mpala acacia species 

Summary 

The flowering phenologies of the ten acacia species at Mpala were examined 

twice per month between June 1999 and December 2005. Flowering was recorded 

using a qualitative four point scale. The majority of species had bimodal flowering 

phenologies, although S. brevispica had a trimodal flowering phenology. 

Co-flowering among large groups of acacia species was rare and occurred mainly 

among groups of between two and four species. Senegalia brevispica, 

V. drepanolobium, V. gerrardii, V. nilotica and V. seyal flowered for long periods 

each year and flowered most often with other acacias, although they co-flowered 

with different species between sites and years. Competition for pollination could 

exist among co-flowering acacias that shared pollinators. 

In contrast to a study of acacias in Tanzania, where co-flowering occurred 

among up to eight acacia species sharing a relatively short flowering season, several 

of the Mpala acacias flowered for extended periods of time and, although 

co-flowering occurred among small groups of species, large groups of acacias did not 

regularly co-flower. It is suggested that the different patterns of flowering at Mpala 

could be due to a trimodal rainfall pattern, which is unusual in most parts of East 

Africa. 
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3.1 Introduction 

Phenology is the study of the periodicity or seasonal timing of recurring 

biological events. In plant species the timing of flowering, fruiting and leafing cycles 

are important to survival and reproductive success. In this chapter I examine the 

flowering phenologies for the ten acacia species at Mpala to determine which acacias 

co-flower, and how frequently this occurs. 

3.1.1 Why does flowering phenology matter with respect to competition 

for pollination? 

Competition for pollination is thought to be an important force structuring 

flowering in plant communities (reviewed by Pleasants 1983, Rathcke 1983, Waser 

1983). Competition can occur among plants through reduced numbers of pollinator 

visits or through heterospecific pollen transfer (Waser 1978a, b, Rathcke 1983). 

Species competing for pollination might diverge along some resource axis in order to 

minimise competition for pollination (see Chapter 1). Sympatric plant species that 

share pollinators could diverge in the seasonal timing of flowering to minimise 

overlap in flowering time, thereby reducing competition for pollination (e.g. Stiles 

1977, Waser 1978a, Pleasants 1980, Ashton et al. 1988, Petanidou and Vokou 1993, 

Aizen and Vazquez 2006). 

In seasonal habitats the availability of resources such as water, light or 

temperature can limit potential flowering seasons and plant species could be 

constrained to flower at similar times (Janzen 1967a, Hocking 1968, Reich and 

Borchert 1984, Johnson 1992). Co-flowering plant species that share pollinators 

could develop alternative strategies to minimise competition for pollination, tolerate 

competition, or facilitate pollination through local pollinator attraction (Schemske 

1981, Thomson 1982). One way in which co-flowering plant species could minimise 

competition for shared pollinators is by segregating pollinator visits in daily time 

(Armbruster and Herzig 1984, Stone et al. 1996, 1998, Raine 2001). Stone et al. 

(1998) demonstrated that six co-flowering acacia species in a seasonal savannah 

habitat in Tanzania partitioned visits by shared pollinators in daily time through the 

divergence of dehiscence and pollen availability in daily time. 



Chapter 3. Flowering phenologies of the Mpala acacia species 	 44 

Therefore the consideration of species' flowering phenologies is important in 

the study of pollination interactions among plant species in order to understand the 

impact of flowering times on plant communities. Examination of flowering 

phenologies enables the identification of (i) species whose flowering seasons do not 

overlap and are thus unlikely to compete for pollinators, but that could facilitate each 

other's pollination by sustaining pollinator populations throughout the season and 

(ii) species that share flowering seasons and pollinators that could experience 

competition or facilitation of pollination through local pollinator attraction. If 

seasonal flowering times of sympatric plant species sharing pollinators are regularly 

spaced this could be evidence of resource partitioning in seasonal time, but further 

investigation would be necessary to determine whether this was due to competition 

for pollination. 

3.1.2 What drives phenological patterns of flowering? 

The flowering phenology of a plant species can be affected by a number of 

factors: 

(a) Environmental factors 

Local climatic factors will influence the seasonal flowering times of plant 

species. In temperate regions flowering seasons can be limited by temperature, with 

the majority of plants flowering during the spring and summer when the climate is 

warmer and pollinator species are more active (Rathcke and Lacey 1985). In tropical 

habitats the availability of light and water can influence flowering times (Opler et al. 

1980, Augspurger 1982, van Schaik et al. 1993, Wright and van Schaik 1994). In 

seasonal tropical habitats rain falls during particular months of the year and 

flowering usually occurs at specific times in the wet/dry seasonal cycle (Frankie et 

al. 1974, Croat 1975, Milton 1987, Bullock and Solis-Magallanes 1990, Lobo et al. 

2003). The ability of the soil to retain moisture during dry seasons can also affect 

water availability and the timing of flowering (Bullock and Solis-Magallanes 1990). 

In contrast, in aseasonal tropical forests, which retain moisture throughout the year 

and have no definite dry season, species tend to have irregular flowering patterns and 

often show less intra-specific synchrony in flowering (Putz 1979, Opler et al. 1980, 

Newstrom et al. 1994). Borchert et al. (2005) suggested that changes in photoperiod 

induce synchronous flowering in rainforests with low climatic seasonality in South 
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America, and in tropical rainforests in aseasonal southeast Asia, seasonal droughts 

have been proposed as triggers of simultaneous mass flowering at irregular intervals 

of two to ten years (Ashton et al. 1988, Appanah 1993, Sakai et al. 2006). 

The timing of flowering could also be linked to the timing of other aspects of 

a plant's reproductive cycle, namely fruit production, seed dispersal and germination 

(Primack 1987). Flowering will precede this sequence and, whilst there can be time 

delays between stages, the optimal timing for subsequent processes may determine 

the timing of flowering. 

(b) Biotic factors 

The availability of suitable pollinators could affect the timing of flowering 

seasons, although it can be argued that pollinators time their activity to coincide with 

the availability of floral resources (Waser and Real 1979, Rathcke and Lacey 1985, 

van Schaik et al. 1993). Flowering could also be timed to ensure that fruiting occurs 

when appropriate seed dispersers are present or to avoid flower or seed predation 

(Rathcke and Lacey 1985, van Schalk et al. 1993, Brody 1997). 

The influence of these biotic factors could lead to the maximisation or 

minimisation of overlap in flowering phenologies between species. Plant species 

sharing pollinators might compete for pollination and could minimise competition by 

reducing the length of time for which their flowering overlaps. A number of studies 

have found that plant species sharing pollinators flower sequentially or at different 

times of year, however only a handful of studies have shown flowering to be 

significantly regularly spaced in seasonal time, which would be consistent with a 

prediction of resource partitioning in seasonal time due to competitive displacement 

(Pleasants 1980, Gleeson 1981, Ashton et al. 1988, Prescott 2005, Aizen and 

Vazquez 2006). 

Competition for pollinators is not the only plausible explanation for the 

occurrence of regularly spaced flowering in seasonal time. Sequential flowering 

among plant species that share pollinators could occur through an ecological sorting 

process that eliminates inferior competitors from communities resulting in the 

coexistence of plant species with minimal overlap (Moeller 2004). Sequential 

flowering could also help to maintain pollinator populations throughout a season and 
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therefore benefit species sharing pollinators that flower at different times (e.g. Waser 

and Real 1979). 

Although an overlap in seasonal flowering time could result in competition 

for pollinators, facilitation could also occur (Thomson 1982, Rathcke 1983). This 

could be particularly important for plant species growing at low densities, as a 

convergence in flowering time could result in increased pollinator attraction (Brown 

and Kodric-Brown 1979, Schemske 1981). 

(c) Phylo genetic conservatism 

Closely related plant species have been found to flower at similar times 

(Kochmer and Handel 1986, Johnson 1992, Wright and Calderon 1995). Plant 

species in the same genus, and to a lesser extent the same family, will inevitably 

share character traits that could restrict their seasonal flowering times. Kochmer and 

Handel (1986) examined the flowering times of the animal pollinated angiosperms in 

Japan and in two states in the United States (North and South Carolina) and found 

that most of the variation in flowering times could be explained by family 

membership. Furthermore, most families showed similar flowering times in the two 

locations. Wright and Calderon (1995) also found that plant species in the same 

genus, and to a lesser extent in the same family, on Barro Colorado Island in Panama 

shared similar flowering times. 

Kochmer and Handel (1986) suggest that seasonal limitations of flowering 

times could be caused by phylogenetic constraints, which may not have changed for 

millions of years. If phylogenetic constraints are stronger than local selective 

pressures, members of the same taxa should have similar phenological patterns 

regardless of geographical location. 

3.1.3 Flowering phenology studies of acacias and related species 

Three studies have investigated the flowering phenologies of multi-species 

African acacia assemblages. In both Tanzania (Stone et al. 1998, Mduma et al. 2007) 

and South Africa (Milton 1987) groups of acacia species flowered simultaneously at 

particular times in the seasonal rainfall cycle. Stone et al. (1998) found that up to 

eight species co-flowered in December and January, after the main annual rains. 

More globally, Raine (2001) found that four acacia species in a seasonally dry forest 
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in Mexico flowered at the end of the dry season and during the rainy season. The 

flowering phenologies of Australian acacias have been examined for arid-zone 

species in central and Western Australia (Davies 1976, Friedel et al. 1994) and 

species in southeastern temperate Australia (Prescott 2005). The findings of these 

studies will be described in more detail in the discussion. 

The flowering phenologies of species in two other genera in the subfamily 

Mimosoideae have also been studied. Koptur (1983) examined the seasonal 

flowering patterns for seven species of Inga in Costa Rica. The genus Inga belongs 

to the tribe Ingaeae, to which recent phylogenetic studies suggest Australian acacias 

might be closely related (reviewed in Maslin et al. 2003, see Section 2.2.3). In 

Mexico, Camargo-Ricalde et al. (2004) investigated the flowering phenologies for a 

group of Mimosa species. The genus Mimosa is in the tribe Mimoseae and 

phylogenetic studies indicate that Vachellia is nested within the Mimoseae (see 

Section 2.2.3). The results of these studies will also be described further in the 

discussion. 

3.1.4 Acacia flowering phenologies at Mpala 

Given that acacia species in seasonal savannah habitats in Tanzania displayed 

high levels of co-flowering in response to rainfall, we might expect species growing 

in multi-acacia assemblages in the same habitat type in Kenya to demonstrate similar 

patterns of flowering. To establish the importance of seasonal flowering structure for 

the acacia community at Mpala I investigated the flowering phenology of each acacia 

species. By comparing these across species I aimed to establish (i) the extent of 

division of flowering over a seasonal timescale and (ii) the extent of co-flowering 

between acacias in this community. I also considered the effect of rainfall as a causal 

factor of acacia flowering patterns at this site. The aim of this study was not to 

quantify the absolute availability of floral resources in the community but simply to 

produce an accurate measure of species' flowering effort throughout the year to 

enable reliable comparisons in flowering times between species. 
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In this chapter I assess the potential for regular co-flowering groups of acacia 

species at Mpala by addressing the following questions: 

1. What are the flowering phenologies of the Mpala acacia species? 

Does each species show a consistent pattern year to year in (i) modality of 

flowering and (ii) intensity of flowering? 

Do acacia species have similar flowering phenologies across study sites? 

2. Do acacia species regularly co-flower at Mpala? Do the same species co-flower 

(a) across sites and (b) between years? 

I also visually compare rainfall patterns throughout the study to the acacia 

flowering phenologies to examine the effect rainfall might have on flowering time. 

3.2 Methods 

3.2.1 Data collection 

Flowering for the Mpala acacias was recorded twice per month from May 

1998 until December 2005 at eight sites (Table 3.1). Data collection was initiated by 

Dr G. N. Stone (University of Edinburgh) and Professor P. G. Wilimer (University of 

St Andrews), and data were collected by R. Eraguy from June 1999 until December 

2005 with assistance from A. T. Watson, J. C. Ruiz Guajardo, P. Lenguya and J. 

Lima. Due to difficulties in data collection, sampling at the Mukenya site ceased in 

August 2003. Prior to June 1999 sampling was intermittent and therefore only data 

collected between June 1999 and December 2005 will be examined here. The total 

number of records available for each site is given in Table 3.1. For all sites except 

Mukenya and High Dam a continuous data set of 156 sampling points over 78 

months was available for analysis. High Dam was not sampled between November 

2004 and March 2005 due to problems with site access, hence the smaller number of 

sampling points for this site. Information regarding bud and pod availability was 

collected simultaneously, although these data will not be examined here. 
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Table 3.1. The numbers of individuals sampled for each acacia species and the number of 
sampling points per site. 1: MRC, 2: Turkana Boma, 3: Mongoose, 4: Mukenya, 5: Junction, 
6: High Dam, 7: River, 8: Boma 

Site 	 1 	2 	3 	4 5 	6 	7 	8 Total 

No. of sampling points 	156 	156 	156 	101 156 	145 	156 	156 
number of 

trees 
S. brevispica 	 10 	10 	10 	10 10 	10 60 
V. drepanolobium 	 10 	10 10 30 
V. etbaica 	 10 	10 	 10 10 40 
V. gerra rd/i 	 10 	10 10 	10 40 
V. hockii 10 	10 20 
S. me//ifera 	 10 	10 	10 	10 10 	10 60 
V. niotica 	 10 	10 	 10 10 	10 50 
V. seyalvar. seya/ 	 10 10 20 
V. tort//is 10 10 
V. xanthoph/oea 10 10 
Total number of trees 	40 	70 	40 	40 80 	50 	10 	10 350 

The acacia species sampled at each of the eight sites are shown in Table 3.1. 

Further information regarding the sites can be found in Chapter 2. All acacia species 

present at each site were sampled, with the exception of Boma and River where only 

V. tortilis and V. xanthophloea were sampled respectively. At each site ten marked 

trees of each study species were sampled at approximately two week intervals at the 

start and in the middle of each calendar month. 

Trees were scored for the presence of flowers on a four-point scale 

throughout the study period. The criteria for the categories on this scale are shown in 

Table 3.2. This method was intended to enable a qualitative comparison of trends in 

phenological patterns between years and sites and of variation in relative intensity of 

flowering. This in turn allowed the identification of which acacia species commonly 

co-flowered. However this method would not allow quantitative analysis of absolute 

variation in floral resource availability or direct comparison of flowering effort 

between species. 

To calibrate flowering scores to absolute values, between November 2003 

and December 2005 the number of flowers present on each tree was counted at the 

same time as the tree was scored on the four-point scale. This was used to assess the 

effectiveness of these categories to determine the consistency of the scale over the 

years in which data were collected. For the majority of species it was possible to 
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count individual flower heads on a tree. However species such as V. etbaica and S. 

mellifera can produce large numbers of flowers at a time on a single tree making a 

total count very difficult. When these species were in full flower an estimation of the 

number of flowers present was calculated by counting an estimated representative 

fraction of the tree and multiplying up as necessary for the full canopy. 

Table 3.2 Categories used to score flowering levels of acacia trees 

Score 	 Interpretation 
0 	 no flowers 
1 	 few flowers 
2 	moderate flowering or approx. half tree in full flower 
3 	 tree in full flower 

3.2.2 Data analysis 

Flowering phenologies of individual acacia species 

Flowering phenologies were examined for each species by comparing the 

data collected using the four-point scale between years. At each sampling point the 

mean flowering score of the ten marked trees was calculated for each species at each 

site. The mean flowering scores of each species were used to compare flowering 

modality (number of flowering peaks per year) and flowering intensity (amount of 

flowering) between years and between sites. 

Identification of co-flowering acacia species 

Co-flowering species were identified for each site by comparing the mean 

flowering score of species at each sampling point. Since flowering intensity varied 

between species there was no minimum threshold flowering level for inclusion as a 

coflowering species; all species that were flowering at each sampling point were 

included. Only one acacia species' flowering phenology was recorded at Boma and 

River sites, therefore these sites were not considered in this analysis (Table 3.1). 

All combinations of co-flowering species that occurred at each site were 

identified. The frequency with which each combination occurred was quantified by 

counting the number of sampling points for which the species co-flowered. This was 

expressed as a percentage of the total number of sampling points for that site (see 
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Table 3.1). Sites were compared to establish whether the same sets of species 

consistently co-flowered in different locations and between years. 

Estimation offloral resources using quantified data 

The quantitative data collected for each category on the four point scale were 

examined for the species within each sampling site and for all sites combined. The 

range of flower numbers incorporated in each category on the scale were compared 

using the non-parametric Mann Whitney test in Minitab 14.0 as some data sets were 

not normally distributed. Since this is a non-parametric test this compared the median 

values of each category. 

Local rainfall data 

Daily rainfall measurements were made by Mpala Research Centre 

throughout the study. These measurements were taken at the centre buildings, near to 

the MRC sampling site. Monthly rainfall totals were calculated and are presented to 

allow visual comparison with the acacia species' flowering phenologies. A formal 

statistical analysis of rainfall correlations with flowering phenologies is beyond the 

scope of this thesis. 

3.3 Results 

3.3.1 Flowering phenologies of the Mpala acacia species 

In this section I describe the flowering phenologies of the Mpala acacia 

species. First I consider the variation across years for the entire dataset in terms of 

flowering modality and flowering intensity. I then consider the variation in flowering 

patterns between sampling sites. 

(a) Variation between years 

The overall flowering phenology for each species was calculated across years 

and sites (Fig. 3.1). Full data for each species over all years of the study are shown in 

Appendix 1. The months during which each acacia species flowered throughout the 

entire study are summarised in Table 3.3. 
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Modality offlowering 

The majority of species had bimodal flowering phenologies (Fig. 3. 1, Table 

3.3). Vachellia drepanolobium, V. etbaica, V. gerrardii, S. mellifera and V. nilotica 

were clearly bimodal with two flowering peaks in most years (Appendix 1). 

Vachellia hockii, V. tortilis and V. xanthophloea had bimodal flowering phenologies, 

although did not flower during every year of the study (Fig. 3. 1, Appendix 1). 

The relative intensity of the two flowering peaks varied between species (Fig. 

3. 1, Appendix I). For V drepanolobium and V nilotica the two flowering peaks 

were equally strong in most years. In V. etbaica the second flowering peak (August-

October) was usually stronger than the first flowering peak (February-March). For V. 

gerrardii the first flowering peak (April-May) was stronger than the second (July-

August) in the majority of years. In S. mellifera there was variation in the relative 

intensity of the two flowering peaks between years. The overall phenology data 

suggest that the second flowering peak for each of V. hockii, V. tortilis and V 

xanthophloea may be stronger than the first peak. 

Sene ga/ia brevispica had a trimodal flowering phenology and flowering 

peaks generally followed periods of high rainfall (Figs. 3.1, 3.2, Table 3.3). It is not 

clear whether V seyal had a bimodal or trimodal flowering pattern as the number of 

flowering peaks varied between years (Appendix 1). 

Intensity of flowering 

Sene ga/ia brevispica, V drepanolobium, V etbaica, V gerrardii, S. mellifera 

and V. nilotica all had relatively high intensities of flowering (Fig. 3.1). The 

flowering intensities of V hockii, V. seyal, V. tortilis and V. xanthophloea were 

relatively low, although V. tortilis occasionally had larger flowering peaks (Fig. 3. 1, 

Appendix 1). 

Flowering intensity varied between years in a number of species 

(Appendix I). Senegalia brevispica flowered at much lower levels in 2000 than in 

any other year. Flowering intensity was also greater between 2001 and 2003 than in 

2004 and 2005 (Appendix 1). Similar patterns of between-year variation were shown 

by Vachellia drepanolobium, V etbaica, V. nilotica and V seyal which flowered less 

intensely in 2004 and 2005 than in the preceding years. 
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Figure 3.1 Mean flowering scores for each acacia species across sites and years (June 1999-
December 2005) (± 1 SE) . 

Key to species: .—.—breispica 	—gerrardli 	—+.—nilotica 	—e--tortilis 
.drepanoIobium —*---hockii .—seyal --xanthophloea 

etbaica 	-..--- mellifera 



180 1 

160 

140 

E 
120 

:1100  

80 

: :: 

20 

0 

Chapter 3. Flowering phenologies of the Mpala acacia species 	 54 

Table 3.3 Typical flowering intensity of acacia species throughout the year. + indicates high 
flowering intensity, * indicates slight scattered flowering, - indicates a very low intensity of 
flowering (e.g. one tree producing a small number of flowers during that month). The 
columns shaded in blue indicate the months that, on average, received the most rainfall (see 
Fig. 3.2 for mean rainfall for each month). 

Acacia species I 	J F MA M J J  ON D No. of 
peaks 

S.brevispica + * * * + + *+ + * + 3 

V. drepanolobium * + + + * * - + + + + 2 

V etbaica + + + * * * 
+ + + + + 2 

V gerrardil * * + + + * + + + * * 2 

V hockii * + * - - * * + + + * 2 

S mellifera * * + + * - + + + + 2 

V.nilotica + + + * * + ++ + + * 2 

V.seyal + + * - - + *1Wc +  + * * 2/3 

V tortilis + + * - + + * - 2 

V xanthophloea  + A,
+  2 

Jan Feb Morch April 	y June July Aug Sep Oct Nov Dec 

Month 

Figure 3.2 Mean monthly total rainfall (± 1 SE) at Mpala Research Centre between May 1998 
and December 2005 (readings taken near to MRC site). The full data for all months are 
shown in Appendix 3.3. 



Chapter 3. Flowering phenologies of the Mpala acacia species 	 55 

(b) Variation between sites 

All species except V. tortilis and V. xanthophloea were sampled at multiple 

sites. The flowering phenologies for the acacia species at each site are shown in 

Figure 3.3. Full data for each species over all years of the study are shown in 

Appendix 2. 

Modality offlowering 

Vachellia drepanolobium, V. gerrardii, S. mellifera and V. nilotica showed 

bimodal flowering phenologies at all sites (Fig. 3.3, Appendix 2), although dates of 

flowering seasons in individual years often varied between sites. Senegalia 

brevispica had a trimodal flowering pattern at all sites in most years. 

Vachellia etbaica had a bimodal flowering phenology at most sites (Fig. 3.3), 

although flowering rarely occurred twice in each year at any site (Appendix 2). The 

V. etbaica trees at Junction flowered extremely rarely during the entire study. 

Vachellia seyal had different flowering patterns at the two sites at which it 

was sampled. The pattern over all years was trimodal at Junction but bimodal at 

Turkana Boma (Fig. 3.3). At both sites the number of flowering peaks varied 

between years. 

The flowering patterns for V. hockii varied between Junction and High Dam, 

although at both sites flowering was approximately bimodal (Fig. 3.3). Vachellia 

hockii did not show consistent flowering patterns between years at either site and 

flowering rarely occurred simultaneously at the two sites (Appendix 2). 

Intensity offlowering 

Flowering intensity for most species varied between sites (Fig. 3.3, Appendix 

2). For example, the S. brevispica trees at MRC often flowered more strongly than 

trees at other sites whereas those at Mongoose usually flowered least strongly (Fig. 

3.3). Vachellia gerrardii flowered with greatest intensity at High Dam and with least 

intensity at Mongoose (Fig. 3.3). Species at one site were not consistently lower than 

all species at another site, although flowering intensity was relatively high for most 

species at Mukenya and relatively low for several species at Mongoose. 
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Figure 3.3 (cont.) Mean flowering scores across years for each acacia species at each site. 

Key to sites: —.—MRC 	—Mukenya 
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Figure 3.3 (cont.) Mean flowering scores across years for each acacia species at each site. 
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3.3.2 Co-flowering acacia species 

Selection can affect how species co-flower in space and time. A feature of the 

Mpala data is that (i) species combinations vary across sites, and (ii) flowering 

phenologies of species to some extent vary across sites and years. The aim of this 

section is not to explain this variation in detail, but to extract general patterns for the 

Mpala system and specifically which combinations of species most often co-flower. 

In this section I first illustrate co-flowering species at each site, using mean 

data across years (Fig. 3.4). Full data for all years at each site are given in Appendix 
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4. I then summarise the extent to which specific sets of acacias co-flowered across 

sites. Full data on the frequency of co-flowering between specific species sets at each 

site are given in Appendix 5. 

Sites with a greater richness of acacia species can obviously support a greater 

number of potential co-flowering acacia sets. Thus more complex potential 

interactions are possible at Turkana Boma and Junction, with seven and eight species 

respectively, than at MRC, Mongoose and Mukenya, which had only four species. A 

further feature of the Mpala data is that (as shown in Section 3.3. 1) some acacias 

flowered more often and for longer than others, and these had the greatest potential 

for co-flowering. For these reasons, the most commonly co-flowering species across 

Mpala as a whole were S. brevispica, V. drepanolobium, V. gerrardii, V. nilotica and 

V seyal. Vachellia etbaica, V. hockii and S. mellifera flowered less frequently and 

therefore the time for which they could potentially co-flower was smaller in 

comparison to the other species. Finally, co-flowering between pairs of species is 

much more common, unsurprisingly, than between larger sets of species. I first 

consider specific co-flowering species pairs, before discussing larger sets of co-

flowering species. 

(a) Pairs of co-flowering species 

Across sites and years the most frequently co-flowering species pairs were 

combinations of S. brevispica, V. drepanolobium, V gerrardii and V. nilotica (Table 

3.4, Appendix 5). The frequency with which the most common species pair co-

flowered at each site ranged from 29% at Mongoose (V. drepanolobium and V. 

gerrardii) to 60% of sampling points at High Dam (V. gerrardii and V. nilotica) 

(Table 3.4). 

The next most frequent co-flowering species was V. seyal which, although 

flowering at low intensity, flowered relatively frequently and hence overlapped with 

other acacias at the two sites where it was present. Vachellia seyal flowered most 

often with V nilotica at both Turkana Boma and Junction (31% and 37% of sampling 

points respectively), but also commonly with S. brevispica, V. drepanolobium and V. 

gerrardii during most years of the study (Table 3.4, Appendix 5). 

Senegalia mellifera co-flowered most often with V. drepanolobium at 

Turkana Boma and Mongoose (18% and 17% of sampling points respectively), V. 
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gerrardii at Junction and High Dam (12% and 23% of sampling points respectively) 

and V. nilotica at Mukenya (26% of sampling points) (Table 3.4). These pairs of 

species co-flowered during most years of the study. At MRC S. mellifera rarely co-

flowered with the other species, flowering with other acacias for less than 5% of 

sampling points (Appendix 5). 

Vachellia etbaica flowered most often with S. brevispica at Mpala (16% of 

sampling points) and with V. nilotica at Turkana Boma and Mukenya (12% and 30% 

of sampling points respectively) (Table 3.4). These species combinations occurred 

during most years of the study. Vachellia etbaica flowered rarely at Junction but co-

flowered most often with V gerrardii and V nilotica (3% of sampling points) in 

2003, 2004 and 2005 (Appendix 5). 

Vachellia hockii flowered less often than most of the other species at Junction 

and High Dam and co-flowered most frequently with V nilotica at both sites in all 

years (15% and 27% of sampling points respectively) (Table 3.4). 

Groups of three co-flowering species 

The most frequently co-flowering sets of three species across sites also 

involved S. brevispica, V. drepanolobium, V. gerrardii and V. nilotica (Table 3.4). 

Co-flowering occurred most frequently between S. brevispica, V. gerrardii and V. 

nilotica at High Dam (34% of sampling points) and V. drepanolobium, V. gerrardii 

and V nilotica at Junction and Turkana Boma (41% and 31% of sampling points 

respectively) (Table 3.4). Three-way co-flowering was less frequent overall at MRC, 

Mongoose and Mukenya where it involved combinations of S. brevispica, V. 

drepanolobium, V. etbaica, V. gerrardii, S. mellifera and V nilotica (Table 3.4). 

Groups offour co-flowering species 

Groups of four co-flowering species were rare at MRC and Mongoose (1-2% 

of sampling points) and occurred only slightly more often at Mukenya (8% of 

sampling points) (Table 3.4). At High Dam S. brevispica, V. gerrardii, S. mellifera 

and V. nilotica co-flowered for 11 % of sampling points and this combination 

occurred in most years (Table 3.4, Appendix 5). Other combinations of four co-

flowering species at this site were rare and did not regularly occur (Table 3.4, 

Appendix 5). Groups of four co-flowering species occurred more frequently at 
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Turkana Boma and Junction with the most common combination at Turkana Boma 

(V drepanolobium, V gerrardii, V nilotica and V seyal) co-flowering for 15% of 

sampling points and in all years of the study (Table 3.4, Appendix 5). At Junction the 

most common combination (S. brevispica, V drepanolobium, V. gerrardii and V 

nilotica) occurred for 25% of sampling points and across all years (Table 3.4, 

Appendix 5). Several other sets of four co-flowering species were found less often at 

both sites (Table 3.4, Appendix 5). 

(d) Groups offive to seven co-flowering species 

At High Dam all five acacia species flowered together for only 2% of 

sampling points (Table 3.4). At both Turkana Boma and Junction the same five 

species (S. brevispica, V. drepanolobium, V gerrardii, V nilotica and V seyal) co-

flowered most frequently (for 8% of sampling points at Turkana Boma and 13% at 

Junction) (Table 3.4). This combination was found in most years of the study at both 

sites (Appendix 5). Several other groups of five species co-flowered at both sites for 

6% of sampling points, but none was found consistently in all years of the study 

(Table 3.4, Appendix 5). 

Larger groups of co-flowering species were extremely rare at both Turkana 

Boma and Junction. At Junction one combination of six species co-flowered in 1999, 

2001 and 2003 for a total of 4% of sampling points, and four six-species 

combinations co-flowered for only 1 % of sampling points (Table 3.4). No 

combinations of seven or eight species co-flowered at this site. At Turkana Boma 

two groups of six co-flowering species occurred for 4% of sampling points (Table 

3.4). Each of these was found during three years of the study (Appendix 5). All seven 

species at Turkana Boma flowered together for 3% of sampling points in 2001 and 

2004 (Table 3.4, Appendix 5). 

Regular co-flowering by multiple acacias was rare at Mpala. The most 

frequent interactions involved small numbers of species (two or three), and although 

a consistent set of species was involved in more interactions (S. brevispica, V 

drepanolobium, V. gerrardii, V. nilotica and V. seyal), the relative abundance of 

specific interactions varied across sites and years. There is no strong evidence for 

highly structured multi-species co-flowering at Mpala. 



(a) Mpala 

1.2 

1.0 

0.8 

0.6 
S 
0 

0.4 

0.2 

0.0 
Jan Feb March April May June July Aug Sep Oct Nov Dec 

Turkana Boma 

1.2 

1.0 

0.8  

1 0.6 
S 
0 

) cc 
0.4- 

0.2 

0.0 
Jan Feb March April May June July Aug Sep Oct Nov Dec 

Chapter 3. Flowering phenologies of the Mpala acacia species 	 62 

Mongoose 

1.2 

1.0 

0.8 

CD 

0.6 

as 
0.4 

0.2 

0.0 
Jan Feb March April May June July Aug Sep Oct Nov Dec 

Figure 3.4 Mean flowering scores across years for all acacia species sampled at each site. 
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(d) Mukenya 
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Figure 3.4 (cont.) Mean flowering scores across years for all acacia species sampled at each site. 
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Table 3.4 The most frequently occurring combinations of co-flowering acacia species at each 
site and the percentage of sampling points for which they occur. For groups of two and three 
co-flowering species, combinations present for 10% or more of sampling points are shown. 
For groups of four to seven species the most frequently observed combinations of co-
flowering species are shown. The species present at each site are shown below the site 
name. b: S. brevispica, d: V. drepanolobium, er V. etbaica, g: V. gerrardii, h: V. hockll, m: S. 
mellifera, n: V. niotica, 5: V. seyal 

MRC % Turkana % Mongoose % Mukenya % Junction % High % 
Boma Dam 

bemn bdegmns bdgm bemn bdeghmns bghmn 

bn 47 dn 54 dg 29 bn 30 gn 55 gn 60 
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3.3.3 Assessment of scoring categories using quantitative data 

For the majority of species, each category in the four-point scale that was 

used to qualitatively assess flowering phenology represented significantly different 

numbers of flowers, although there was variation between species in terms of the 

range of flower numbers to which each category corresponded (Fig. 3.5, Table 3.5). 

For example, for S. mellifera, which can produce vast numbers of flowers at once, 

category 3 incorporated quantitative flower counts ranging from 300 up to an 

estimated 40,000 flowers, whilst for S. brevispica the same category represented 

counts of between 220 and 500 flowers. There was no significant difference between 

categories 2 and 3 in V. drepanolobium (Fig. 3.5), although both the mean and 

median values for category 3 were slightly higher (Table 3.5, Fig. 3.5). Trees of this 

species were scored in category 3 at Turkana Boma and Junction. At both sites the 

quantitative flower counts fell within the range incorporated by category 2. However 

since few trees were scored as category 3 (three at Turkana Boma and two at 

Junction) this discrepancy should not affect interpretation of the data. 

The number of flowering events for V. hockii, V. tortilis and V. xanthophloea 

during the two years over which flowers were quantified was not large enough to 

determine the full range of all three categories for these species. The number of 

flowers produced by V. hockii and V. xanthophloea trees at any sampling point 

during this time did not exceed category 1. Similarly, the number of category 2 and 3 

classifications for V. seyal was not sufficient to effectively compare the three 

categories for this species. 

The variation for each species between sites was small (Table 3.5). Flowering 

levels at some sites were noticeably lower than at other sites and therefore the 

categories represented slightly different species ranges. For example, the mean 

number of flowers per category for three of the four species at Mongoose was 

smaller than those of the same species at other sites. However when the data from all 

sites were combined this did not affect the overall data ranges for each category. 
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Table 3.5 Sample size (N), mean and 95% confidence intervals (Cl) for quantitative count 
data for each site and across all sites corresponding to the categories used to score flower 
presence in the long term phenology dataset. 

(a) S. brevispica 

Category 1 2 3 
N Mean 95% Cl N Mean 95% Cl N Mean 95% Cl 

MRC 147 21 15,26 19 140 94,185 6 381 265,496 
Turkana 90 8 6,10 2 22 0,124 - 
Mongoose 18 3 2,4 1 17 6,9 - 
Junction 123 7 6,9 11 90 25,155 - 
High Dam 88 8 6,9 1 25 - - 
Overall 466 11 10,13 34 110 76, 143 6 381 265,496 

(b) V. drepanolobium 

Category 1 2 3 
N Mean 95% Cl N Mean 95% Cl N Mean 95% Cl 

Turkana 87 18 14,23 19 132 98, 166 3 140 0,303 
Mongoose 99 6 5,8 5 65 0,152 - 
Junction 137 9 7,10 8 76 38,113 2 101 140,342 
Overall 323 18 9,12 32 107 82,132 5 124 59,190 

(c) V. etbaica 

Category 1 2 3 
N Mean 95% Cl N Mean 95% CI N Mean 95% Cl 

MRC 36 68 12,125 6 152 126,179 7 442 214,671 
Turkana 19 11 5, 18 - - 
Junction 3 27 0,128 - - 
Overall 58 48 13,83 6 152 126,179 7 442 214,671 

(d) V. gerrardii 

Category 1 2 3 
N Mean 95% Cl N Mean 95% Cl N Mean 95% Cl 

Turkana 41 14 10,18 1 200 - - 

Mongoose 58 11 8,13 - 2 169 0,1198 
Junction 86 29 18,40 16 176 120,233 12 427 340,514 
High Dam 72 25 13,37 27 190 133,247 9 877 377, 1376 
Overall 257 21 16,27 44 185 146,225 23 580 374,787 

(e) V. hockll 

Category 1 2 3 
N Mean 95% Cl N Mean 95% Cl N Mean 95% Cl 

Turkana 2 4 0,8 - - 

Junction 2 2 0, 17 - - 

Overall 4 3 0,6 - - 
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Table 3.5 (cont.) Sample size (N), mean and 95% confidence intervals (Cl) for quantitative 
count data for each site and across all sites corresponding to the categories used to score 
flower presence in the long term phenology dataset. 

(f) S. mellifera 

Category 1 2 3 
N Mean 95% Cl N Mean 95% Cl N Mean 95% Cl 

Mpala 17 61 0,128 4181 143,219 1 650 - 
Turkana 19 32 8,56 8 104 70,139 2 1173 0,7869 
Mongoose 35 35 20,50 12 116 86,147 - 
Junction 20 19 13,25 4 127 33,222 2 520 0,2045 
High Dam 24 17 10,24 11 355 111,599 13 8595 504, 16,685 
Overall 115 32 21,43 39 189 118,260 18 6432 539, 12,305 

(g) V. nilotica 

Category 1 2 3 
N Mean 95% Cl N Mean 95% Cl N Mean 95% Cl 

Mpala 151 9 7, 10 13 60 33,87 1 270 - 
Turkana 	1 139 10 8,13 10 163 80,247 - 
Junction 135 8 6, 11 17 83 52,114 - 
High Dam 63 13 8,18 11 54 19,89 - 
Overall 488 9 8,11 51 86 64,109 1 270 - 

(h) V. seyal 

Category 1 2 3 
N Mean 95% ClN Mean 95% Cl N Mean 95% Cl 

Turkana 40 9 6,12 3 94 0,279 1 55 - 
Junction 25 4 2,5 1 38 - 1 109 - 
Overall 65 7 5,9 4 80 0,187 2 82 0,425 

(I) V. tortills 

Category 1 2 3 
N Mean 95% Cl N 	Mean 	95% Cl N 	Mean 	95% Cl 

Boma 	13 43 14,72 3 	96 	0,320 1 	246 	- 

U) V. xanthoph/oea 

Category 1 2 3 
N Mean 95% Cl N 	Mean 	95% Cl N 	Mean 	95% Cl 

River 	2 2 0,8 - - 
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Figure 3.5 Median values (circles) and interquartile ranges (blue boxes) for quantitative count data 
across all sites corresponding to the categories used to score flower presence in the long term 
phenology dataset. Asterices indicate the results of Mann Whitney tests used to compare the 
median values of each category. 
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3.4 Discussion 

3.4.1 Flowering phenologies of the Mpala acacias 

The majority of acacia species at Mpala had bimodal flowering phenologies. 

Senegalia brevispica had a trimodal flowering phenology. For most species these 

patterns were repeated across sites and across years. Although flowering peaks 

occurred at specific times for each species, in several species (S. brevispica, V. 

drepanolobium, V. gerrardii and V. nilotica) some flowering occurred during most 

months of the year. 

Although there was some variation between sites and years, the flowering 

phenologies of each species can be characterised as follows: 

Senegalia brevispica had a trimodal flowering pattern at all sites (Fig. 3.3). The 

three peaks of flowering generally corresponded to the three annual rainfall peaks 

(Table 3.3, Fig. 3.4). 

Vachellia drepanolobium flowered during most months of the year but flowering 

was lowest in July and August (Fig. 3. 1). This species had a bimodal flowering 

pattern at all sites. Flowering peaks occurred in approximately April-May and 

October-November and flowering intensity was similar for both peaks. 

Vachellia etbaica had an overall bimodal flowering pattern although flowering did 

not occur twice each year at all sites (Fig. 3. 1, Appendix 2). Trees at MRC and 

Turkana Boma had a stronger flowering peak between late July and late 

September and a smaller peak in February and March (Fig. 3.2). At Mukenya 

trees flowered at approximately the same times but flowering intensity was 

greater and flowering seasons were longer (Fig. 3.2). Vachellia etbaica trees at 

Junction had extremely low levels of flowering (Fig. 3.2). 

Vachellia gerrardii had a bimodal flowering pattern with peaks occurring in 

approximately March-May (incorporating the long rains) and July-November 

(incorporating the July/August rains and short rains) (Figs. 3.1, 3.2). Flowering 

occurred during most months of the year but tended to be lower in December-

January and June-July (Figs. 3.1, 3.2). 

Vachellia hockii flowered at lower intensities than most other species. The overall 

pattern across years suggested a bimodal flowering pattern, although flowering 
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did not occur in sampled trees during every year of the study (Fig. 3. 1, Appendix 

2). 

Senegalia mellifera had a bimodal flowering pattern with flowering occurring in 

approximately March-April and late October-November (Fig. 3. 1). At Mukenya 

and Turkana Boma flowering also occurred in September (Fig. 3.2). 

Vachellia nilotica flowering was bimodal with peaks in February-March and July 

(Fig. 3. 1). Trees of this species flowered during most months of the year although 

flowering was lowest in April-May and December-January. 

Vachellia seyal flowered at lower intensities than many other species (Fig. 3.1). 

The modality of flowering was not clear as the number of peaks varied between 

years at both sites at which this species was present (Appendix 2). 

Vachellia tortilis had an overall bimodal flowering phenology although did not 

flower during all study years (Fig. 3. 1, Appendix I). Flowering peaks occurred in 

approximately February-March and August-October. Flowering intensity was 

lower than in most other species, although larger flowering peaks occasionally 

occurred. 

Vachellia xanthophloea had an overall bimodal flowering phenology although did 

not flower during all study years (Fig. 3. 1, Appendix 1). Flowering occurred in 

February-March and in August-November. Trees of this species flowered at 

relatively low intensities. 

3.4.2 Co-flowering among the Mpala acacias and implications for 

competition for pollination 

There is no strong evidence for highly structured multi-species co-flowering 

among the acacias at Mpala. Regular co-flowering among large groups of acacia 

species was rare and several species were able to flower during most months of the 

year. Co-flowering occurred predominantly between groups of two, three or four 

species although even the species that co-flowered most often with other acacias (S. 

brevispica, V. drepanolobium, V. gerrardii, V. nilotica and V. seyal) co-flowered 

with different species across sites and years. Despite a large number of acacia species 

having bimodal flowering patterns, flowering peaks of different species did not 

necessarily occur together. 
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Although flowering for the majority of species was not highly structured in 

seasonal time, co-flowering between acacia species was common. Senegalia 

brevispica, V. drepanolobium, V. gerrardii, V. nilotica and V. seyal flowered most 

frequently at all sites at which they were present, and all except V. seyal were 

widespread at Mpala. Since these species frequently co-flowered with one another, 

they might employ alternative strategies to minimise competition for pollination if 

key pollinator species are shared. 

Stone et al. (1996, 1998) found that visitor assemblages differed between 

Tanzanian acacia species that offered both pollen and nectar as rewards to flower 

visitors and those that offered only nectar, although all species were visited by 

megachilid bees and calliphorid flies. They also demonstrated that the maximum 

pollen availabilities for a group of co-flowering acacias were significantly regularly 

spaced in daily time, resulting in the partitioning of shared pollinator visits in daily 

time. Consequently, we might expect a similar mechanism to exist among co-

flowering acacias at Mpala that share pollinators. To investigate this possibility, in 

Chapter 4 I examine the daily patterns of pollen availability for co-flowering acacia 

species at Mpala for evidence of divergence in the timing of dehiscence among 

species in daily time, and in Chapter 5 I examine the visitor assemblages and daily 

patterns of flower visitation for co-flowering acacia species for evidence of the 

partitioning of shared visitors in daily time. 

3.4.3 Comparisons with other studies of acacia flowering phenologies 

(a) African and Mexican acacias (genera Vachellia and Senegalia) 

Three previous studies have investigated the flowering phenologies of 

multiple sympatric acacia species in Africa, two in Tanzania (Stone et al. 1998, 

Mduma et al. 2007) and the other in South Africa (Milton 1987). Co-flowering 

regularly occurred among groups of acacia species in all three studies. The flowering 

phenologies of the species in these studies that were also found at Mpala are 

described in Table 3.7. 

In a study of ten acacia species at Mkomazi in northern Tanzania, Stone et al. 

(1998) found that eight species flowered in December and January after the main 
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autumn rains, with the main flowering peak for five species occurring during these 

months (Table 3.6). Several species flowered between May and July after the less 

intense Eastern rains, although only S. brevispica flowered predominantly at that 

time, whilst a minority of species flowered during the dry season (Table 3.6). Species 

at this site flowered at specific times and species' flowering peaks often occurred 

simultaneously. This contrasts with the flowering phenologies of the Mpala acacias, 

many of which flowered for longer periods and whose flowering peaks rarely 

coincided with those of multiple other species. 

Table 3.6 Seasonal flowering patterns of Mkomazi acacia species. An 'rn" indicates mass 
flowering, and an "s' indicated slight, scattered flowering. Reproduced from Stone et al. 
(1998). 

Jan Feb 	Mar Apr 	May 	Jun Jul Aug Sep Oct 	Nov Dec 

Eastern rains 
S. brevispica s m 	m s s 
Summer dry season 
S. bussei s m 	m s 
V. etbaica s m m 
V. reficiens s S m m 	S S 

S. thomasii m m S 5 

Autumn rains 
V. drepanolobium m S s 	s s m 
Vnilotica m s S S m 
S.senegal m s s s s m 
V.torti/is m s s s m 
V. zanzibarica m S S s m 

Mduma et al. (2007) examined flowering phenologies for nine acacia species 

at five sites in the Serengeti, Tanzania. Rainfall at this location is bimodal with long 

rains during March-May and short rains during November-December. Eight species 

had bimodal flowering patterns, and the other had a single annual flowering peak 

(Table 3.7). All species had flowering peaks after the short rains, between January 

and March. Bimodal species had a second flowering peak in approximately July-

September. Data presented were summaries of species across sites therefore it is 

difficult to determine whether species co-flowered, but the similarities in seasonal 

flowering patterns indicate that there was the potential for co-flowering among the 

acacias at this location. 



Table 3.7 Patterns of flowering in Tanzania (Stone et al. 1998, Mduma et al. 2007) and South Africa (Milton 1987) for acacia species found at Mpala 

Stone et al. (1998), Mkomazi, Tanzania Mduma et al. (2007), Serengeti, Tanzania Milton (1987), South Africa 

Flowering pattern Co-flowering species Flowering pattern 
Simultaneously flowering 

species 
Flowering pattern and 
co-flowering species 

S. brevispica Bimodal with a stronger peak in Flowering occurs with other 
May-June (after Eastern rains) acacias but the main flowering 
and a smaller peak in peak does not overlap with that - - - 
December-January (after main of any other species 
rains) 

V. drepariolobium Bimodal with a stronger peak in Main flowering peak coincides Bimodal with a stronger peak in Main flowering peak coincides 
December-February (after main with that of four other acacias January and a smaller peak in with peaks for eight other 
rains) and a smaller peak in and scattered flowering in three September acacias - 
May-July (after Eastern rains) species 

V. etbaica A single peak in the dry season Main flowering peak coincides - - - 
between August and October with that of two other species 

V. gerrardii Bimodal with a stronger peak in Main flowering peak coincides 
- - January and a smaller peak in with peaks for four other acacias - 

August 

S. mellifera Bimodal with a stronger peak in Main flowering peak coincides Flowers once a year with two 
- - January and a smaller peak in with peaks for four other acacias Senegalia species at end of dry 

August season/start of rainy season. 

V. nilotica Bimodal with a stronger peak in Main flowering peak coincides : Flowers once a year with three 

December-February (after main with that of four acacias and - - Vachellia species during the 

rains) and a smaller peak in scattered flowering in three rainy season. 

June-July (after Eastern rains), species 

V. seyal - - Bimodal with peaks in February Flowering peaks correspond - 
and September with peaks for four other acacias 

V. tortilis Bimodal with a stronger peak in Main flowering peak coincides Bimodal with peaks in February Flowers once a year with three 

December-February (after main with that of for four acacias and and August Flowering peaks correspond Vachellia species during the 

rains) and a smaller peak in scattered flowering in three with peaks for four other acacias rainy season. 

July-August (after Eastern rains), species 

V. xanthophloea Bimodal with a peak in August Flowering peaks correspond 
- - and a lower peak in March with peaks for three other - 

acacias 
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Milton (1987) examined the flowering phenologies of seven sympatric acacia 

species in South Africa. All species flowered once a year with species co-flowering 

during two distinct periods. Species in different genera flowered at different times 

with three Senegalia species flowering between August and October and four 

Vachellia species flowering between December and February. Rainfall at the study 

site was unimodal with rains lasting from approximately October until April. 

Raine (2001) examined the flowering phenologies of four acacia species 

(three Vachellia and one Senegalia species) in dry seasonal forest in Mexico. Species 

flowered in synchrony with the onset of predictable rain and species frequently co-

flowered for extended periods, although peaks in flowering effort divided the acacia 

community into two species pairs that peaked either at the end of the dry season (V. 

farnesiana and V. hindsii) or at the start of the wet season (S. angustissima and V. 

macracantha). Vachelliafarnesiana and V. hindsii received visits from different 

potential pollinators, whereas S. angustissima and V macracantha had similar visitor 

assemblages. In locations where these species co-flowered, S. angustissima and V. 

macracantha appeared to partition pollinator visits in daily time through differing 

patterns of pollen availability. 

(b) Australian acacia flowering phenologies (genus Acacia) 

In Australia, acacias are able to flower in all months of the year (Maslin 

2001) but individual species usually flower at a particular seasonal time (Davies 

1976, Prescott 2005). Acacias in and zones often have different flowering patterns to 

those in temperate regions (Friedel et al. 1994). In Western Australia Davies (1976) 

found that arid-zone acacia species flowered throughout the year, although each 

species flowered at a specific time, with different sets of between two and four 

acacia species co-flowering in autumn, winter, early summer and late summer. 

The majority of acacia species in Victoria, in temperate south-eastern 

Australia, flower during the transition from the cool, wet winter into the mild, wet 

spring, although individual species' distributions will determine the extent to which 

co-flowering actually occurs among species (Prescott 2005). Prescott (2005) also 

examined flowering patterns for a community of seven sympatric acacias near 

Melbourne, Victoria, and found that flowering peaks of individual species were 

significantly regularly spaced between July and October (late winter-early spring) 



Chapter 3. Flowering phenologies of the Mpala acacia species 	 75 

although flowering did overlap between species. Average rainfall for the region is 

highest during these months. Since the acacias at this site offered the same rewards 

and shared pollinators, Prescott (2005) suggests that the structuring of flowering in 

seasonal time at this site could be driven by competition for shared pollinators 

resulting in the divergence of flowering between species in seasonal time. 

(c) Flowering phenologies of taxa related to acacias 

Koptur (1983) examined the flowering phenologies for a group of Inga 

species in Costa Rican cloud forest. The genus Inga belongs to the tribe Ingaeae, 

previously a sister tribe to Acacieae, although recent phylogenetic studies (see 

Section 2.2.3) suggest that the Australian acacias are more closely related to species 

in this tribe than to African and neotropical acacias in the genera Vachellia, 

Senegalia, Mariosousa and Acaciella. Like acacias, the Inga species in this study all 

had flowers that were similar in structure and appearance. All species studied 

produced nectar that was accessible to a wide range of visitors, and pollinators were 

shared between species. Despite variation between flowering phenologies, flowering 

seasons overlapped substantially for a number of Inga species with several species 

flowering at the wet/dry season interface. Differences in floral behaviour, in terms of 

flower opening times and patterns of flower opening, helped to some extent to 

partition pollinator visits in daily time among co-flowering species, and may have 

reduced the negative consequences of pollinator sharing. This is the same resource 

axis along which some co-flowering acacia communities might diverge in response 

to competition for pollinators (Stone et al. 1996, 1998, Raine 2001). 

Mimosa species (tribe Mimoseae) have a similar floral structure to acacia 

flower heads, and have been grouped with acacias at various points in their 

taxonomic history. Camargo-Ricalde et al. (2004) examined the flowering 

phenologies for seven endemic Mimosa species in Mexico. All species flowered 

during the rainy season (April-September) and flowering continued into the dry 

season for some species. Since species varied in their geographical locations, co-

flowering among Mimosa species would depend on the distribution of individual 

species. 
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3.4.4 Rainfall as a causal factor of acacia flowering phenologies at 

Mpala 

In seasonal habitats with marked wet and dry seasons, plant reproduction can 

be driven by water availability and species' flowering phenologies are often dictated 

by annual rains (Rathcke and Lacey 1985, van Schaik et al. 1993). In seasonal 

habitats in Tanzania (Stone et al. 1998, Mduma et al. 2007), South Africa (Milton 

1987) and Mexico (Raine 2001) the flowering phenologies of acacias were found to 

be linked to patterns of rainfall. At Mkomazi in Tanzania, the majority of acacia 

species flowered after periods of rain with fewer species flowering during the dry 

season (Stone et al. 1998). In the Serengeti flowering patterns were shown to be 

highly correlated with rainfall (Mduma et al. 2007). In South Africa one group of 

acacias flowered at the start of the annual wet season and another during the rains 

(Milton 1987). In Mexico all acacia species studied flowered during the annual rains 

between June and October (Raine 2001). In contrast, acacia species in Australia are 

able to flower throughout the year (Davies 1976, Prescott 2005) and species 

flowering in temperate regions that are not constrained by seasonal rainfall may have 

diverged in their seasonal flowering peaks to avoid competition for shared pollinators 

(Prescott 2005). 

As at the Tanzanian study sites, the habitat at Mpala is seasonal, with 

pronounced wet and dry seasons. Rainfall occurs in approximately March-April and 

November-December, as it does in most parts of East Africa (see McWilliam and 

Packer 1999). Therefore we might expect acacia flowering phenologies at Mpala to 

be linked to this rainfall pattern. Indeed, many species do show a bimodal flowering 

pattern; however there is no clear association between acacia flowering patterns and 

rainfall, and species' flowering peaks do not coincide after the rains as they do at 

Mkomazi. In addition to the usual two sets of rains, the region in which Mpala is 

located receives an additional period of rain during August resulting in a trimodal 

pattern of rainfall (Fig. 3.2). This results in a wetter climate during what is usually a 

long dry season in many other areas. It is possible that this additional period of rain 

has influenced the flowering phenologies of the acacia species in this region. For 

example, V. drepanolobium and V. nilotica, which flower after the rains at Mkomazi, 

flower for longer periods at Mpala (Tables 3.3, 3.6). Furthermore, S. brevispica 

flowers after both sets of rains and is bimodal at Mkomazi whilst at Mpala its 
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flowering phenology closely tracks the trimodal rainfall, with flowering occurring 

soon after each period of rain (Tables 3.3, 3.6). 

One hypothesis for the trimodality seen in S. brevispica is that this species 

alone has been able to adapt to the trimodal rather than bimodal rainfall pattern 

evident at Mpala. This begs the question of why the other species (if the pattern in S. 

brevispica is adaptive) have failed to do so. Sene ga/ia brevispica is a short-lived 

'weedy' acacia species and its generation time is likely to be substantially shorter 

than for the longer lived woody species (Dharani 2006). This in turn (all other things 

being equal) predicts a greater rate of adaptive change in S. brevispica. Sene ga/ia 

brevispica is phylogenetically distinct both from the Vachellia acacias and from its 

congener, S. mellifera (Joe Miller, Iowa State University, Plant Genomics 

Laboratory, pers. comm.) and it is also possible that lineages other than S. brevispica 

have experienced greater phylogenetic constraint in adaptive response to rainfall 

patterns. This hypothesis, and the underlying assumption that flowering phenology 

shifts are indeed adaptive, could both be tested by examining broader geographic 

variation in the phenology of these different acacia groups. To date, no appropriate 

data for such a comparison exist. 

3.4.5 Critique of methods 

To my knowledge, the results in this chapter represent the longest running 

phenological dataset anywhere in Africa. Furthermore, data were collected on a finer 

timescale than for any known acacia flowering phenology study. The aim of this 

study was to compare the flowering phenologies of the Mpala acacia species to 

enable the identification of regular co-flowering species assemblages. Data collection 

using a qualitative four-point scale was sufficient for this. Qualification of this scale 

using quantitative data revealed that categories on this scale represented significantly 

different numbers of flowers for most acacia species examined. Therefore our 

sampling method was effective for the majority of species at this location. 

To further investigate the relative intensities of co-flowering species, the 

information on the absolute number of flower heads represented by each qualitative 

category gained from the quantitative studies could be incorporated into the 

comparisons of co-flowering species. This would reveal in more detail which species 

are co-flowering more intensely. 
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Determination of the causal mechanisms that drive species' flowering 

phenologies was beyond the scope of this study, although visual comparisons were 

made between flowering phenologies and rainfall patterns. Information on bud and 

fruit production collected at the same time as the flowering data presented in this 

chapter could provide further evidence regarding the structuring of acacia species 

flowering and fruiting times in relation to rainfall. Flowering phenologies could be 

dictated by optimal fruiting times for individual species (Primack 1987). 



Chapter 4. Daily patterns of pollen availability for the Mpala acacia species 	79 

Chapter 4. Daily patterns of pollen availability for the 

Mpala acacia species 

Summary 

Co-flowering plant species that share pollinators could minimise competition 

for pollination by diverging along alternative resource axes. Previous work has 

shown that co-flowering acacia species in Tanzania and Mexico partition visits by 

shared pollinators in daily time through divergence in the timing of dehiscence. 

To assess whether a similar mechanism occurs among the co-flowering 

acacias at Mpala, daily patterns of pollen release were examined for the ten species 

present: S. brevispica, V. drepanolobium, V. etbaica, V gerrardii, V hockii, S. 

mellifera, V. nilotica, V. seyal, V. tortilis and V. xanthophloea. Competitive 

displacement predicts intraspecific synchrony and regular spacing between species. 

The Mpala acacias dehisced during the day, between 9.00 (V. xanthophloea) 

and 15.00 (S. brevispica). Although the acacias form a dehiscence sequence through 

the day, low intraspecific synchrony and high interspecific overlap provide little 

evidence to support the role of competitive displacement in dehiscence times in this 

community. 

It is thus unlikely that pollinator visits are partitioned in daily time through 

bottom-up patterning in floral resources. 

The findings of this study contrast with those of Stone et al. (1996, 1998) 

who found significant regular spacing in the timing of dehiscence among co-

flowering acacia assemblage in Tanzania. Contrasts between these results and those 

of this thesis are discussed. 
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4.1 Introduction 
In Chapter 3, I established which acacia species most often co-flowered at 

Mpala to identify which sets of species might compete for pollination. In this chapter 

I examine the daily patterns of pollen availability for the Mpala acacias and use this 

to determine whether co-flowering acacia species structure pollen availability in 

daily time. If pollen availability peaks for co-flowering species are regularly spaced 

in daily time, and shared pollinators track pollen availability, this could be evidence 

for daily temporal partitioning of pollinators through divergence in the timing of 

dehiscence, due to competition for pollination. 

4.1.1 Resource partitioning as a mechanism for avoiding competition 

for pollination 

Competition for pollinators between sympatric plant species can be reduced 

through the segregation of flowering periods (Levin and Anderson 1970, Mosquin 

1971, Heithaus 1974, Stiles 1977, Waser 1978a, Pleasants 1980, Kephart 1983, 

Rathcke 1983, Aizen and Vazquez 2006). However, in highly seasonal habitats 

plants tend to flower together during certain short periods throughout the year when 

conditions are more favourable for flowering (Janzen 1967b, Johnson 1992), hence 

restricting the potential for competition avoidance through separation in seasonal 

time. Plant species constrained to flower simultaneously could reduce competition 

for shared pollinators by structuring the daily timing of visits to flowers (Levin and 

Anderson 1970, Koptur 1983). This can be achieved through the separation of the 

presentation of floral resources in daily time. As described in Chapter 1, this was first 

detailed in Dalechampia vines (Armbruster and Herzig 1984). 

4.1.2 Evidence for daily temporal resource partitioning in acacias and 

related species 

Stone et al. (1996, 1998) presented evidence for the partitioning of pollinators 

in daily time among six co-flowering acacia species in Tanzania. Peaks of pollen 

availability for the six species were significantly regularly spaced throughout the 

day, a pattern which is compatible with competitive displacement. Patterns of 

visitation by shared pollinators closely tracked pollen availability in each species. 
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This study demonstrated that the partitioning of pollinators in daily time can occur 

among large groups of co-flowering species. 

This mechanism could be particularly important for acacias since their stigma 

structure usually allows only one polyad to occupy the receptive surface (Kenrick 

2003). Hence deposition of polyads from other acacia species could result in stigma 

blockage preventing any future successful pollination. Furthermore, both anthers and 

stigmas are presented on the surface of flower heads and polyads are easily deposited 

on the bodies of foraging visitors. Therefore visitors foraging indiscriminately among 

several acacia species are likely to transfer polyads between species. 

Raine (2001) demonstrated that two co-flowering acacia species in Mexico 

differed in their daily timing of dehiscence, with one species dehiscing in the 

morning and the other in the afternoon. As in the Tanzanian study, shared pollinators 

visited the acacia species with the highest pollen availability, so that species were 

visited at different times. Evidence of pollinator partitioning has also been found for 

species closely related to acacias. Koptur (1983) showed that co-flowering Inga 

species in Costa Rica that shared pollinators differed in the daily timing of flower 

opening and presentation of floral resources. Like acacia flower heads, Inga flowers 

are open in structure and pollen is accessible to a wide variety of visitors. 

4.1.3 The effect of relative humidity on the timing of dehiscence 

The timing of anther dehiscence can be sensitive to a variety of microclimatic 

cues, particularly relative humidity (Buchman 1983, Corbet 1990). The timing of 

dehiscence in Tanzanian and Mexican acacias was found to be linked to relative 

humidity (Stone et al. 1998, Raine 2001) and these studies suggested that particular 

humidity levels acted as a cue for dehiscence in some species. Furthermore different 

species dehisced at different relative humidities. This suggests that even if relative 

humidity and the rate at which it chaged varied between days, the acacias would still 

dehisce in the same order, maintaining the sequence of pollen availability among 

species. The examination of dehiscence times within species should therefore 

incorporate variation in relative humidity in order to establish whether observed 

variation in the timing of dehiscence could be due to microclimatic variation between 

days, or is attributable to a lack of synchrony within a species. 
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4.1.4 Examination of pollen availability patterns in daily time for the 

Mpala acacia species 

Given the evidence for pollinator partitioning in daily time in acacias, it is 

possible that the co-flowering acacia species at Mpala have evolved similar 

structuring to reduce competition for pollination. Character displacement due to 

competition predicts both intraspecific synchrony and interspecific divergence (see 

Chapter 1). To determine whether this is the case at Mpala, we need to demonstrate 

(i) intraspecific synchrony in dehiscence, (ii) divergence in timing of dehiscence 

across species in a pattern predicted for competitive displacement and (iii) tracking 

of pollen release across acacia species by shared pollinators. In this chapter I 

examine the daily patterns of dehiscence and pollen availability for the Mpala 

acacias using methods similar to those used in previous studies (see Section 4.2.2), 

and in Chapter 5, 1 examine the floral visitor assemblages and daily patterns of 

visitation for each acacia species. 

In this chapter I address the following specific questions: 

I. Do the Mpala acacia species show intraspecific synchrony in their daily patterns of 

pollen availability? How do these patterns vary: 

across individuals on a given day, 

for an individual across days, 

amongst species within and between sites? 

Can variation in the timing of dehiscence within species be explained by variation 

in relative humidity? 

Do differences in the daily timing of dehiscence between species provide evidence 

of competitive displacement? 
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4.2 Methods 

4.2.1 Study sites 

Daily patterns of pollen availability were examined between 1998 and 2005 

for acacia trees at the eight sampling sites used for the collection of long term 

flowering phenology data in Chapter 3. Further information regarding the acacia 

species assemblages at these sites can be found in Chapter 2. Data from 1998-2003 

were collected by Dr G. N. Stone, Professor P. G. Willmer, Dr R. Atkinson, S. 

Whiten, Professor A. Schnabel, Dr J. A. Rowe and R. Eraguy. Data from 2003 to 

2005 were collected by myself, Dr G. N. Stone and R. Eraguy. 

Data were collected for a total of 178 tree days across all sites (Table 4. 1), 

more than twice the number in Stone et al.'s (1998) study of Tanzanian acacias (74 

days). The sampling dates and number of trees sampled on each day are shown in 

Table 4.1. Where flowering allowed, I sampled all acacia species at each site. 

4.2.2 Determining patterns of pollen availability through time 

On most days sampling was carried out between 6.00 and 17.00. Dawn 

occurred shortly before 6.00 and dusk at approximately 18.00. No acacia species 

dehisced during the night. On some days data collection started later or finished 

earlier due to weather constraints, difficulties with field access, or the proximity of 

wild animals preventing access to sampling trees. Where possible, on each sampling 

day at each site a minimum of three trees was sampled. The same marked individuals 

were sampled across days and across years wherever possible, in order to examine 

variation within individual trees. 

The timing of dehiscence was estimated for each acacia species by examining 

the relative abundance of pollen available on the surface of flower heads sampled at 

intervals throughout the day using the methods developed by Stone et al. (1998). 

Most trees were sampled once per hour, although some trees in 1998 and 1999 were 

sampled at intervals of between 1.5 and 2 hours. At each sample time four flower 

heads were chosen at random from the tree with respect to aspect and height above 

ground. If too few flower heads were present on a tree for four to be sampled at 

every sample time throughout the day, only two were sampled per hour. Each flower 
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Table 4.1 Sampling effort for pollen availability data collected for each acacia species at 
each study site 

Acacia species 	Site Pollen sampling effort 
Date in tree days 

S. brevispica 	MRC 4 291h Jan 2001 
MRC 4 10th Dec 2003 
MRC 2 28th May 2005 
MRC 2 31st May  2005 
MRC 2 lOth June  2005 

Turkana Boma 2 4th May 1998 
Turkana Boma 2 13th May 2003 
Turkana Boma 5 23rd Sep 2003 
Turkana Boma 2 201h Aug 2004 

Junction 2 5th June 2003 

High Dam 2 9th June 1999 
High Dam 3 17th June 1999 

Boma 5 27" Sep 2003 

Total 37 

V. drepanolobium 	Turkana Boma 3 4th May 1998 
Turkana Boma 1 23 rd Sep 2003 
Turkana Boma 2 7th Nov 2003 
Turkana Boma 2 6th Sep 2004 
Turkana Boma 1 13 th  Sep 2004 

Junction 1 301h July 2004 
Junction 3 10th Sep 2004 
Junction 2 l7th Sep  2004 

Total 15 

V. etbaica 	 MRC 2 7th May 1998 
MRC 5 24th July 2001 
MRC 1 11t Aug  2003 
MRC 2 13th Aug 2003 
MRC 4 2nd Aug 2004 
MRC 4 7th Aug 2004 

Turkana Boma 2 4 th 
 May 1998 

Turkana Boma 2 23rd Sep 2003 
Turkana Boma 1 13th March 2004 
Turkana Boma 4 21st Aug 2004 
Turkana Boma 2 13th Sep 2004 

Mukenya 3 30th Aug 2002 

Total 27 

V. seyal 	 Turkana Boma 3 17th Sep 2001 
Turkana Boma 3 3rd Sep 2002 

Total  6 

V.hockii 	 High Dam 1* 17t June 1999 
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Table 4.1 (cont.) Sampling effort for pollen availability data collected for each acacia species 
at each study site 

Acacia species Site Pollen sampling effort 
Date in tree days 

A. gerrardii Turkana Boma 2 21StJune 1999 

Mongoose 1 6t June 1999 
Mongoose 2 l2thJune 1999 

Junction 2 5th June 2003 
Junction 3 l8th March  2004 
Junction 3 301h July 2004 

High Dam 2 16t June 1999 
High Dam 4 l7thJune 1999 
High Dam 3 28th July 2004 

Total 22 

S. mel/hera MRC 3 27th March 2004 
MRC 3 16 

Ih 
 Feb 2005 

Turkana Boma 1 4th May 1998 
Turkana Boma 2 7th Nov 2003 
Turkana Boma 4 16th March 2005 
Turkana Boma 4 18th March 2005 

Mukenya 3 291h Sep 2002 

Total 20 

V. niotica MRC 1 14t June 2003 
MRC 3 25th June 2004 
MRC 2 2nd July 2004 

Turkana Boma 4 4th May 1998 
Turkana Boma 1 14th June 2003 
Turkana Boma 1 16t June 2003 
Turkana Boma 3 19t June 2003 
Turkana Boma 5 21stJune 2004 
Turkana Boma 5 22nd June 2004 
Turkana Boma 5 29th June 2004 
Turkana Boma 5 6th July 2004 
Turkana Boma 5 l6th July  2004 

Mukenya 3 9th Jan2003 

Junction 1 301h July 2004 
Junction 1 10th Sep 2004 
Junction 1 17th Sep 2004 

Total 46 

V. tortiis Boma 2 25th March 2004 

V. xanthophloea River 2 20th Sep 2003 
Vachellia hock// was sampled across three trees due to low flower density per tree. The 

daily pattern of pollen release was generated for this population by averaging across all 
three individuals per sampling interval. 
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head was removed from the tree and rolled lightly across the adhesive side of a piece 

of clear adhesive tape. The tape was placed on a slide and later examined with a light 

microscope at x40 magnification. To ensure compatibility among samples, a 

consistent rolling pattern is necessary and little pressure must be applied to the 

adhesive tape to avoid squashing undehisced anthers to expose pollen that might be 

included when counted under a microscope. 

Acacia pollen is presented in the form of compound aggregates of pollen 

grains called polyads (Kenrick and Knox 1982). The progress of dehiscence over 

time was recorded by scoring the ratio of anthers to polyads collected on the tape. 

Prior to dehiscence only unopened anthers were collected. Once anthers began to 

dehisce polyads were also collected with numbers increasing as dehiscence took 

place, and decreasing as they were removed by visitors. 

For each flower head the ratio of anthers to polyads was recorded for five 

randomly chosen microscope fields, and the mean calculated. The mean ratio was 

then calculated across the sampled flower heads for each tree at each time interval. 

This is referred to as the 'pollen to anther ratio'. Standardising the range in pollen to 

anther ratios among trees was necessary in order for each tree to contribute equally to 

means calculated across trees, days or sites. Therefore pollen to anther ratios were 

constrained to vary between zero and one for each tree on a particular day by 

dividing them by the maximum value recorded at any time interval for the tree on 

that day. 

4.2.3 An example pattern of daily pollen availability 

An example of a potential daily pollen availability pattern for a tree sampled 

hourly between 6.00 and 18.00 is shown in Figure 4.1. The amount of pollen 

available on the surface of flower heads at each time interval depends on two 

processes: (i) anther dehiscence releasing pollen and (ii) pollen collection and 

removal by floral visitors. Dehiscence begins at approximately 7.00 for this tree. The 

pollen to anther ratio increases sharply between 8.00 and 9.00, with maximum pollen 

availability occurring at 10.00. Removal of pollen by visitors could be occurring 

during this time. After 10.00 the rate of pollen removal by floral visitors exceeds the 

rate of presentation of pollen by dehiscence and the ratio of polyads to anthers 
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decreases. The 'sharpness' of the pollen availability peak will give an indication of 

how rapidly visitors are removing pollen; a sharp narrow peak suggests that visitors 

are removing pollen very soon after it is released, whereas a flatter, broader peak 

suggests that the response of visitors to pollen release is slower and takes place over 

a longer period of time. 

Time of day 

Figure 4.1 An example of a pollen availability curve, with hourly sampling between 
6.00 and 18.00. 

Two characteristics of the pollen availability curve can be used to estimate 

the timing of dehiscence: (i) maximum pollen availability, which is indicated by the 

highest pollen to anther ratio, and (ii) the maximum rate of increase in pollen 

availability, which is indicated by the largest positive slope between two consecutive 

sampling times (see Fig. 4.1). Previous studies of daily pollen availability patterns in 

acacias (Stone et a! 1996, 1998, Raine 2001, Prescott 2005) have used the time at 

which the maximum amount of pollen is available to represent the timing of 

maximum dehiscence. Although the maximum rate of increase in pollen availability 

gives a better indication of the time when most pollen is released from anthers, 

pollinators are more likely to respond to the actual amount of pollen available on 

flower heads to time their visits (Roubik 1978, Buchmann and Cane 1989) which is 

best shown by considering the maximum amount of pollen available. Here I also use 

the time of daily maximum pollen availability to compare the timing of dehiscence 
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between trees. Multi-peaked patterns of pollen availability meant that estimations of 

the maximum rate of increase for some of the trees in this study were problematic 

hence this was a less appropriate method for comparisons. Since it is possible that 

individual trees with maximum pollen availabilities occurring at the same time could 

commence dehiscence at different times, I also consider the general shape of daily 

pollen availability curves in comparisons. 

4.2.4 Variation in pollen availability patterns within species 

Variation across individuals on a given day 

Daily patterns of pollen availability for conspecific trees sampled on the same 

day were compared to examine the variation in dehiscence within a species on a 

single day. Williams' (1995) V statistic was used to test for intraspecific synchrony 

in dehiscence by testing whether individual peaks of pollen availability were 

significantly aggregated between 6.00 (dawn) and 18.00 (dusk) (see Chapter 1, 

Section 1.4 for an explanation of how the V statistic can be used to test for 

aggregation within daily time). The V statistic could only be calculated for days on 

which three or more individuals were sampled. As multiple tests were carried out, the 

Bonferroni correction was applied. Twenty-seven tests were conducted requiring a 

significance level of p=0.00 19 for rejection of the null hypothesis at an equivalent of 

p=0.05 for a single test. 

Variation for an individual across days 

The daily patterns of pollen availability for individual trees sampled on two 

or more days were compared to examine the variation in timing of dehiscence for 

individual trees across days. 

Variation across sampling days within sites 

The mean pollen availability at each time was calculated across all 

conspecific trees sampled on the same day to give an overall pattern of pollen 

availability for the species on that day. Means were constrained to vary between zero 

and one to allow comparisons. The mean patterns of pollen availability were 
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compared between sampling days for each species at each site to examine the 

variation in timing of dehiscence within species populations. Vachellia hockii, V. 

tortilis and V. xanthophloea could not be compared across days since each was 

sampled on only one day. 

(d) Variation between sites 

The mean pollen availability at each time was then calculated across all days 

for each species at each site to give an overall pattern of pollen availability for the 

species at that site. Means were constrained to vary between zero and one to allow 

comparisons. The mean patterns of pollen availability for each species were 

compared between sites to examine the variation in timing of dehiscence across 

Mpala. Vachellia hockii, V. seyal, V. tortilis and V. xanthophloea could not be 

compared across sites since each was sampled at only one site. 

4.2.5 Variation in pollen availability patterns between species 

Williams' (1995) V statistic was used to examine whether the mean peaks of 

pollen availability for frequently co-flowering groups of acacia species were 

significantly regularly spaced in daily time. The species that co-flowered most 

frequently across years and across sites were S. brevispica, V. drepanolobium, V. 

gerrardii, V. nilotica and V. seyal (Chapter 3). The V statistic was calculated for 

combinations of these species for which pollen availability data were available (i) at 

each site, using the mean peaks of pollen availability for each species calculated 

across sampling days, and (ii) for the whole of Mpala, using mean peaks of pollen 

availability for each species calculated across sites. Calculation of the V statistic 

requires a minimum of three species, therefore species could not be compared at 

MRC, Mongoose, Mukenya, High Dam or Boma (Table 4.2). 

The distribution of species' pollen availability peaks was examined within 

two ranges: (i) between dawn and dusk (6.00-18.00), (ii) between the first and last 

peak in the range. Examining the distribution between dawn and dusk is biologically 

justified since none of the Mpala acacias dehisced at night. Furthermore acacia 

species studied in Tanzania (Stone et al. 1996, 1998) dehisced between 6.00 and 

15.00 and were visited by diurnal visitors. However, as the times between which 
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acacias might be able to dehisce at Mpala are unknown, the distribution of species' 

peaks was also examined between the first and last peaks in the range (see Chapter 1, 

section 1.5 for an explanation of how the range used might affect the application of 

the V statistic). As multiple tests were carried out, the Bonferroni correction was 

applied. Seventy tests were conducted which meant that a threshold significance 

level of p=0.0007I was required for rejection of the null hypothesis at an equivalent 

to p=0.05 for a single test. 

Table 4.2 Acacia species present at each site that regularly co-flowered across all sites and 
years. Pollen availability was sampled for only species in bold. 

Site 	 Sampled co-flowering species 
MAC S. brevispica, V. nilotica 
Turkana Boma S. brevispica, V. drepanolobium, V. gerrardii, V. niotica, V. seyal 
Mongoose S. brevispica, V. drepanolobium, V. gerrardii 
Mukenya S. brevispica, V. nilotica 
Junction S. brevispica, V. drepanolobium, V. gerrardii, V. nilotica, V. seyal 
High Dam S. brevispica, V. gerrardii, V. nilotica 
Boma S. brevispica, V. nilotica 
Overall : S. brevispica, V. drepanolobium, V. gerrardii, V. nilotica, V. seval 

4.2.6 The effect of relative humidity on the timing of dehiscence 

Relative humidity was recorded every hour or half hour using a Vaisala 

HMP3 I humidity and temperature probe placed approximately 1 metre above the 

ground in the shade of one of the studied trees. Trees sampled on the same day were 

sited close to one another and data are assumed to be representative for all of the 

trees. 

Data were available for the majority of trees sampled in 1998, 1999 and 

2003-2005. Evidence for relationships between the time of maximum pollen 

availability and relative humidity were assessed using regression analyses conducted 

using Minitab 14.0. Previous studies (Stone et al. 1998, Raine 2001) have used the 

mean relative humidity over the two hours prior to dehiscence in analyses for each 

species. However in this study the timing of dehiscence was extremely variable for 

most species and therefore analyses were conducted using the mean relative humidity 

over several alternative two hour periods throughout the day. As multiple tests were 

carried out, the Bonferroni correction was applied. Thirty-nine tests were conducted 
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which meant that a significance of p=0.001 2 was required for rejection of the null 

hypothesis at an equivalent of p=0.05 for a single test. 

4.3 Results 

4.3.1 Do acacia species show intraspecific synchrony in the daily timing 

of pollen release? 

Most acacia species at Mpala showed considerable variation in pollen 

availability patterns and the timing of dehiscence across individuals, days and sites. 

Table 4.3 shows the variation in the time of onset of dehiscence (the time at which 

the pollen to anther ratio started to increase) and maximum pollen availability across 

all individuals. Mean dehiscence times ranged from 9.00-15.00, and five species 

peaked on average at 10.00 (V. drepanolobium, V. etbaica, V. gerrardii, V. hockii 

and V. seyal). However, most species were extremely variable. 

Table 4.3 Variation among individual sampling trees in the timing of onset of dehiscence and 
maximum pollen availability, and the time of mean maximum pollen availability calculated 
across all sampling days at each site, and then across all sites for each species. 

Onset of 
dehiscence 

Maximum pollen availability 
Range 	 Mean 

S. brevispica 6.00-12.00 8.00-17.00 15.00 
V. drepanolobium 6.00-9.00 9.00-15.00 10.00 
V. etbaica 6.00-11.00 6.00-15.00 10.00 
V. gerra rd/i 7.00-11.00 8.00-15.00 10.00 
V. hockii 8.30 10.00 10.00 
S. mellifera 6.00-12.00 6.00-16.00 14.00 
V. niotica 6.00-12.00 6.00-17.00 12.00 
V. seyal 6.00-8.00 8.00-13.00 10.00 
V. tortiis 7.30 15.00-16.00 13.00 
V. xanthophloea 6.00-8.00 9.00 9.00 
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(a) Do trees sampled on the same day at the same site show synchrony in the timing 

of dehiscence? 

Individual trees sampled on the same day dehisced synchronously in V. seyal, 

V. tortilis, V. xanthophloea, and in V. gerrardii on most sampling days (Figs. 4.5, 

4.8, 4.9). There was considerable variation amongst the V. gerrardii trees sampled on 

301h July 2004 at Junction site (Fig. 4.5i). However, dehiscence may have been 

affected by the weather conditions on this day which were unusually cool with heavy 

rain after 15.00 that prevented further sampling. Vachellia seyal demonstrated 

synchrony in dehiscence on both days this species was sampled; however the 

maximum pollen to anther ratio for one of the trees sampled on 3rd  September 2002 

occurred much later in the day in comparison to the other two trees (Fig. 4.8). 

Senegalia brevispica, V. drepanolobium, V. etbaica, S. mellfera and V. 

nilotica trees showed synchrony in dehiscence on some sampling days but in general 

these species showed more variation between trees (Figs. 4.2, 4.3, 4.4, 4.6, 4.7). The 

time of peak pollen availability was rarely consistent between trees sampled on the 

same day, even among individuals that began to dehisce at similar times (e.g. Figs. 

f, 4.6g). Several trees had multiple pollen availability peaks (e.g. Figs. 4.2d, 

4.7g, k). For some individuals the pollen availability peak occurred at the 

beginning or end of a sampling day, occasionally accompanied by other smaller 

peaks during the day (e.g. Figs. 4.2h, i, 4.4e, h, 4.6e, g, 4.7g, k). 

Calculation of the V statistic on days on which three or more individuals of 

each species were sampled showed that peak pollen availabilities were not 

significantly aggregated in the period between dawn and dusk for any species at any 

site. 
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Figure 4.2 Daily patterns of pollen availability for individual trees of S. brevispica sampled 
on each day (a-m). The maximum absolute pollen to anther ratio for each tree is shown 
above the graph. 
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Figure 4.2 (cont.) Daily patterns of pollen availability for individual trees of S. brevispica sampled 
on each day (a-m). The maximum absolute pollen to anther ratio for each tree is shown above 
the graph. 
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Figure 4.3 Figure 4.1 Daily patterns of pollen availability for individual trees of V. drepanolobium 
sampled on each day (a-h). The maximum absolute pollen to anther ratio for each tree is shown 
above the graph. 
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Figure 4.4 Daily patterns of pollen availability for individual trees of V. etbaica sampled 
on each day (a-I). The maximum absolute pollen to anther ratio for each tree is shown 
above the graph. 
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Figure 4.4 (cont.) Daily patterns of pollen availability for individual trees of V. etbaica sampled 
on each day (a-I). The maximum absolute pollen to anther ratio for each tree is shown above 
the graph. 
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Figure 4.5 Daily patterns of pollen availability for individual trees of V. gerrardii sampled 
on each day (a-i). The maximum absolute pollen to anther ratio for each tree is shown 
above the graph. 
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Figure 4.5 (cont.) Daily patterns of pollen availability for individual trees of V. gerrardli sampled 
on each day (a-i). The maximum absolute pollen to anther ratio for each tree is shown above 
the graph. 
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Figure 4.6 Daily patterns of pollen availability for individual trees of S. me/lifera sampled 
on each day (a-g). The maximum absolute pollen to anther ratio for each tree is shown 
above the graph. 
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Figure 4.7 Daily patterns of pollen availability for individual trees of V. niotica sampled on each 
day (a-o). The maximum absolute pollen to anther ratio for each tree is shown above the graph. 
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Figure 4.7 (cont.) Daily patterns of pollen availability for individual trees of V. nilotica sampled 
on each day (a-o). The maximum absolute pollen to anther ratio for each tree is shown above 
the graph. 
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Figure 4.8 Daily patterns of pollen availability for individual trees of V. seya/ sampled on each 
day (a-b). The maximum absolute pollen to anther ratio for each tree is shown above the 
graph. 
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Figure 4.9 Daily patterns of pollen availability for individual trees of (a) V. hocki (b) V. tortilis 
and (c) V. xanthoph/oea. The maximum absolute pollen to anther ratio for each tree is shown 
above the graph. 
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(b) Do individual trees show synchrony in the timing of dehiscence across days and 

seasons? 

Individual trees of S. brevispica, V. drepanolobium, V. etbaica, V. gerrardii, 

S. mellifera and V. nilotica were sampled on multiple days within a single flowering 

season or in different years (Table 4.4, Fig. 4.10). 

Table 4.4. Dates of sampling for individual trees sampled on more than one day. 

Species Site Number of trees Dates 

S. brevispica Mpala 2 28"  May 2005, 31 s' May 2005 

Turkana Boma 1 13 1h
May 2003, 23d Sep 2003 

High Dam 1 9th June 1999, 16th June 1999 

V. drepanolobium Turkana Boma 1 6th Sep 2004, 13"  Sep 2004 

Junction 1 30th July 2004, 10th Sep 2004 
i7" Sep 2004 

1 10th Sep 2004, 17th Sep 2004 

V. etbaica Mpala 1 Aug 2003, 13' Aug 2003 
2 nd

Aug 2004, 7th Aug 2004 

1 13tF Aug 2003 
2  n 

Aug 2004, 7th 
 Aug 2004 

2 2nd Aug 2004, 7th Aug 2004 

V. gerrardii Mongoose 1 6t June 1999, 12t June 1999 

Junction 1 5th June 2003, 30th  July 2004 

S. mellifera Mpala 3 27th March 2004, 16th Feb 2005 

V. niotica Mpala 1 25th June 2004, 2nd July 2004 

Junction 1 301h July 2004, 10th Sep 2004 
17th Sep 2004 

Turkana Boma 1 16 th 
 June 2003, 1  9th June 2003 

21st June 2004, 22nd June 2004 
29th June 2004, 6th  July 2004 
16 

1h 
 July 2004 

1 19th June 2003, 21st June 2004 
6th July 2004, 16th July 2004 

1 21st June 2004, 22nd June 2004 
29th June 2004, 6th  July 2004 
16th July 2004 

1 22nd June 2004, 29th June 2004 

2 22nd June 2004, 29th June 2004 
July 2004 
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Variation across days within the same flowering season 

Several trees showed remarkable consistency in the timing of dehiscence and 

maximum pollen availability between days in the same flowering season (Fig. 4.1 Oa, 

d, e, g). However, most trees showed different dehiscence patterns on different days. 

Some trees peaked at the same time on different days but differed in their patterns of 

dehiscence. For example, a V. ni/utica tree sampled at Junction in 2004 had its pollen 

availability peak at approximately 14.00 on three days, despite a variable pattern of 

dehiscence on September 17th  (Fig. 4.1Op). 

Perhaps the most complex patterns were produced by a group of V. ni/utica 

trees sampled at Turkana Boma in 2004. The pollen availability patterns were highly 

variable and there was little consistency between trees sampled on individual days 

(Fig. 4.7g-k) or individual trees between days (Fig. 4.1 Or-x). Relatively high pollen 

to anther ratios often occurred early in the morning (6.00-8.00) and at the end of a 

sampling day (17.00). All trees showed a pollen availability peak between 11.00 and 

13.00 on the majority of days on which they were sampled, although for most trees 

this was not the highest peak. Some trees displayed trends across sampling days. 

Pollen availability peaks with similar pollen to anther ratios were observed at 13.00 

for tree N5 on three of the four sampling days and between 9.00 and 10.00 on all four 

days (Fig. 4.1 Ou). Tree N3 had peaks between 11.00 and 12.00 on three sampling 

days in 2004, although the peak on 21 st  June was relatively small in comparison to 

other peaks on that day (Fig. 4.1 Or). 

Variation across days between years 

Vachellia etbaica, V. gerrardii, S. me/lifera and V. ni/utica individuals were 

sampled across years. Although some trees showed similar patterns of pollen 

availability across years, the majority of trees varied in their timing of maximum 

pollen availability (Fig. 4.10 h-j, m-o, r). 
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Figure 4.10 Daily patterns of pollen availability for individual acacia trees sampled on 
multiple days (a-x). The maximum absolute pollen to anther ratio for each tree is shown 
above the graph. 
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Figure 4.10 (cont.) Daily patterns of pollen availability for individual acacia trees sampled on 
multiple days (a-x). The maximum absolute pollen to anther ratio for each tree is shown above 
the graph. 
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Figure 4.10 (cont.) Daily patterns of pollen availability for individual acacia trees sampled on 
multiple days (a-x). The maximum absolute pollen to anther ratio for each tree is shown above 
the graph. 
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(c) Is there synchrony in the timing of dehiscence for each species within and 

between sites? 

Most acacia species showed a large amount of variation in the timing of 

maximum pollen availability among sampling days at each site (Figs. 4.11-4.17). 

Vachellia gerrardii showed the most consistent patterns of pollen availability among 

sampling days at each site and across all sampling sites (Fig 4.15). Excluding the 

trees sampled on 301h  July 2004 at Junction site, the mean pollen availability peak 

across all trees on sampling days at Mongoose, Junction and Turkana Boma sites 

occurred at 10.00 and varied between 11.00 and 12.00 at High Dam (Fig. 4.15, Table 

4.5). Vachellia seyal had similar mean patterns of pollen availability across trees on 

two sampling days at Turkana Boma with a mean pollen availability peak across 

trees at 9.00 on 17th  September 2001 and 10.00 on 3rd  September 2002 (Fig. 4.13). 

S. brevispica, V. drepanolobium, V. etbaica, S. me1lfera and V. nilotica 

showed more variation among days, although for all except V. nilotica, site means 

calculated across all sampling days showed some similarities between sites (Figs. 

4.11, 4.12, 4.14, 4.16). Although S. brevispica varied among days, the mean patterns 

of pollen availability across days at each site peaked between 14.00 and 16.00 at all 

sites (Fig. 4.11, Table 4.5). V. drepanolobium also had similar patterns of dehiscence 

across sites, with the mean pollen availability across all days peaking at 10.00 at both 

Turkana Boma and Junction, although slightly larger peaks occurred at 12.00 and 

14.00 at Junction (Fig. 4.12, Table 4.5). Mean patterns of pollen availability for V. 

etbaica at MRC, Turkana Boma and Mukenya all showed peaks at 10.00, although 

larger peaks occurred later at MRC and Mukenya (Fig. 4.14, Table 4.5). Mean pollen 

availability peaks for S. mellifera occurred between 12.00 and 14.00 across sites 

(Fig. 4.15, Table 4.5). 

Vachellia nilotica was the most variable species across sampling days and 

across sites (Fig. 4.17). At MRC, variation among individual trees on each day 

resulted in pollen availability patterns with three peaks (early morning, middle of the 

day, and late afternoon) for both the mean patterns for each day and for the whole 

site (Fig. 4.17a, e). At Turkana Boma, the pollen availability peak for the overall site 

mean occurred at 11.00 (Fig. 4.17f). However high pollen availabilities for individual 

trees at the start or end of sampling days (see Fig. 4.7) meant that the mean patterns 
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for some sampling days and the overall site mean had smaller peaks at these times 

(Figs. 4.17b, c, f). Vachellia nilotica showed the most consistent pattern of pollen 

availability at Junction, with a single individual tree peaking at 14.00 on all three 

sampling days, however no other trees of this species were sampled at this site (Figs. 

4.17d, h). 

Table 4.5 Time of maximum pollen availability for acacia species at each site. On each 
sampling day the mean pollen availability at each time was calculated across all sampled 
trees and for each site the mean pollen availability was calculated across all sampling days. 
ns indicates that a species was present at that site, but was not sampled. The overall mean 
was calculated across all sampling sites at Mpala. 

MRC Turkana Mongoose Mukenya Junction 
Dam Boma Overall 

S. brevispica 15.00 15.00ns ns 15.00 14.00 16.00 15.00 
V. drepanolobium - 10.00 ns - 12.00 - - 10.00 
V. etbaica 13.00 10.00 - 12.00 ns - ns 10.00 
V. gerrardii - 10.00 10.00 - 10.00 10.45 - 10.00 
V. hockll - - - - ns 10.00 - 10.00 
S. me//ifera 12.00 13.00 ns 14.00 ns ns ns 14.00 
V. nilotica 16.00 11.00 - 10.00 14.00 ns ns 12.00 
V. seyal - 10.00 - - ns - - 10.00 
V. torti/is - - - - - - 13.00 13.00 
V. xanthophloea - - - - - - - 9.00k 

* V. xanthophloea was sampled at River site. 
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Figure 4.11 Mean patterns of pollen availability for S. brevispica calculated across trees on 
each sampling day (a-c) and sampling days (d-h) at each site. At Junction and Boma sites 
S. brevispica was only sampled on one day, therefore only one graph is shown for these 
sites. 
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(a) Turkana Boma, means across trees per day 	(c) Turkana Boma, means across sampling days 
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Figure 4.12 Mean patterns of pollen availability for V. drepanolobium calculated across trees 
on each sampling day (a-b) and sampling days (c-d) at each site. 
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Figure 4.13 Mean patterns of pollen availability for V. seyal calculated across trees on each 
sampling day (a) and sampling days (b) at Turkana Boma. 
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Figure 4.14 Mean patterns of pollen availability for V. etbaica calculated across trees on 
each sampling day (a-d) and sampling days (e-f) at each site. At Mukenya V. etbaica was 
only sampled on one day, therefore only one graph is shown for this site. 
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(a) Mongoose, means across trees per day 	(e) Mongoose, means across sampling days 
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Figure 4.15 Mean patterns of pollen availability for V. gerrardii calculated across trees on 
each sampling day (a-d) and sampling days (e-g) at each site. At Turkana Boma V. gerrardll 
was only sampled on one day, therefore only one graph is shown for this site. 
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(a) MRC, means across trees per day 
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Figure 4.16 Mean patterns of pollen availability for S. mellifera calculated across trees on 
each sampling day (a-c) and sampling days (d-e) at each site. At Mukenya S. mellifera was 
only sampled on one day, therefore only one graph is shown for this site. 
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Figure 4.17 Mean patterns of pollen availability for V. nilotica calculated across trees on 
each sampling day (a-d) and sampling days (e-h) at each site. At Mukeriya V. nilotica was 
only sampled on one day, therefore only one graph is shown for this site. 
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4.3.2 Can variation in the timing of dehiscence within species be 

explained by variation in relative humidity? 

Daily patterns of microclimate variation 

Daily patterns of relative humidity and temperature were consistent between 

days and sites, although there was some variation in the range of values between 

days (Fig. 4.18). Relative humidity was generally lower during the dry season (Jan-

March), although temperature varied less between seasons. 

Does variation in relative humidity explain the variation in timing of dehiscence? 

Variation in the time of maximum pollen availability was not explained by 

variation in relative humidity for most species (Fig. 4.19). In S. brevispica, mean 

relative humidity during two two-hour time periods (11.00- 13.00 and 12.00-14.00) 

had a significant negative effect on the timing of maximum pollen availability (Table 

4.6). This meant that on less humid days, peak pollen availability occurred later in 

the day. This finding is unusual as previous studies have found dehiscence in acacia 

species to be later on more humid days (Stone et al. 1998, Raine 2001). In these 

studies the positive effect could be explained by a threshold relative humidity that 

was necessary before dehiscence could begin, however it was not possible to explain 

the findings for S. brevispica in this study in the same way. Although the 

relationships were not significant, V. drepanolobium, V. etbaica, V gerrardii and S. 

mellifera also had negative regression slopes between relative humidity and the 

timing of maximum pollen availability (Fig. 4.19). Only V. nilotica had a positive 

regression slope. 

Table 4.6 Results of regression analyses between mean relative humidity over various two 
hour periods and the time of maximum pollen availability for S. brevispica. 

degrees of 
freedom 

F significance 
 with p=0.0012 

7.00-9.00 6 4.71 0.082 NS 
8.00-10.00 8 11.23 0.012 NS 
9.00-11.00 10 0.48 0.505 NS 
10.00-12.00 10 14.38 0.004 NS 
11.00-13.00 10 22.51 0.001 * 

12.00-14.00 9 21.96 0.001 * 

13.00-15.00 10 9.88 0.012 NS 
14.00-16.00 10 5.86 0.039 NS 
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Figure 4.18 Relative humidity (%) and temperature (°C) on sampling days. (a) examples of daily 
relative humidity patterns, (b) mean relative humidity across all sampling days (± 1SE), (c) 
examples of daily temperature patterns, (d) mean temperature across all sampling days (± 1 SE). 
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Figure 4.19 Relationship between the time of maximum pollen availability and mean relative 
humidity between 8.00 and 10.00 for S. brevispica, V. drepanolobium, V. etbaica, V. gerrardii, 
S. mel/hera and V. niotica. The results of regression analyses are shown in the top right hand 
corner of each graph. 
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4.3.3 Do differences in the daily timing of pollen release between 

species provide evidence of competitive displacement? 

Regular spacing of pollen availability peaks among species in daily time is 

compatible with character displacement due to competition for pollinators. Williams' 

(1995) V statistic was used to test whether the pollen availability peaks of the most 

frequently co-flowering species (S. brevispica, V. drepanolobium, V. gerrardii, V. 

nilotica and V. seyal) were regularly spaced at individual sites, and for the overall 

data across Mpala, between (i) dawn and dusk (6.00-18.00) and (ii) the first and last 

peaks at each site. 

(a) At individual sites 

Analyses could only be conducted for species at Junction and Turkana Boma 

since too few of these species were present or sampled at the other sites. 

Turkana Boma 

All five species that frequently co-flowered were sampled at Turkana Boma. 

Three species had mean pollen availability peaks at 10.00 (V. drepanolobium, V. 

gerrardii and V. seyal), V. nilotica peaked at 11.00 and S. brevispica peaked at 15.00 

(Table 4.5). Calculation of the V statistic for any combination of three or more of 

these species found that no species combinations were significantly regularly spaced 

between either dawn and dusk or the first and last species' peaks. 

Junction 

All frequently co-flowering species except V. seyal were sampled at Junction. 

Mean pollen availability peaks were at 10.00, 12.00, 14.00 and 15.00 for V. 

gerrardii, V. drepanolobium, V. nilotica and S. brevispica respectively (Table 4.5). 

The peaks of these four species were not significantly regularly spaced between 

either dawn and dusk or the first and last species' peaks. Calculation of the V statistic 

for combinations of three of these species found that only one species combination 

(V gerrardii, V drepanolobium and V. nilotica) was significantly regularly spaced 

between the first and last species' peaks (V=0.00, p<0.00001), but not between dawn 



Chapter 4. Daily patterns of pollen availability for the Mpala acacia species 	120 

and dusk. V was calculated as 0 since calculated mean pollen availability peaks for 

these species were exactly two hours apart. 

(b) Overall at Mpala 

The overall pollen availability patterns for each species were calculated as the 

mean across all sites (Fig. 4.20). The time of the pollen availability peaks across 

Mpala are shown for all species in Table 4.5. Calculation of the V statistic for any 

combination of three to five of the most frequently co-flowering acacia species (S. 

brevispica, V. drepanolobium, V. gerrardii, V. nilotica and V. seyal) found that no 

species combinations were significantly regularly spaced between either dawn and 

dusk or the first and last species' peaks. 
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Figure 4.20 Mean patterns of pollen availability across all sites for all acacia species at 
Mpala. Species are ordered by time of maximum pollen availability, starting with the earliest. 
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Figure 4.20 (cont.) Mean patterns of pollen availability across all sites for all acacia species at 
Mpala. Species are ordered by time of maximum pollen availability, starting with the earliest. 
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44 Discussion 

4.4.1 Do acacia species show intraspecific synchrony in the daily timing 

of dehiscence? 

Most acacia species at Mpala showed little intraspecific synchrony in the 

timing of maximum pollen availability. Vachellia gerrardii showed the most 

consistent patterns within and across sampling days and across sites (Figs. 4.5, 4.15), 

although pollen availability peaks of individual trees sampled on a single day were 

never significantly aggregated between dawn and dusk (Section 4.3.1a). Vachellia 

tortilis and V. xanthophloea each had similar pollen availability patterns between 

trees, and V. seyal had similar pollen availability patterns between trees and sampling 

days; however these species were sampled on only one or two days each at a single 

site (Figs. 4.8, 4.9, 4.12). Senegalia brevispica, V. drepanolobiuin, V. etbaica, S. 

mellifera and V. nilotica all showed considerable variation in pollen availability 

patterns among trees sampled on the same day, among sampling days for individual 

trees and across sampling days at each site (Figs. 4.2-4.4, 4.6-4.7, 4.10-4.12, 4.14, 

4.16-4.17). 

Senegalia brevispica, V. drepanolobium, V. etbaica, S. mellifera and V. 

nilotica trees also displayed unusual patterns of pollen availability (Figs. 4.2, 4.3, 

4.4, 4.6, 4.7). Several trees had multiple pollen availability peaks on a single day. 

Some of these incorporated peaks at the start or end of the day, although occasionally 

several peaks were observed within a sampling day. The expected pattern of pollen 

availability throughout the day is for the pollen to anther ratio to increase as 

dehiscence takes place, and to subsequently decrease as pollen is removed by floral 

visitors (Fig. 4.1). If pollen is released and removed within a short time window we 

expect a single clear peak of pollen availability, as demonstrated by most of the V. 

gerrardii trees sampled; however if dehiscence and pollen removal by visitors take 

place over a longer timescale, or visitation is patchily distributed across flower 

heads, then several peaks might occur. 

Several trees had pollen availability peaks early in the morning (6.00-8.00). 

This could have been because dehiscence occurred earlier than sampling began; 

however in some trees pollen availability subsequently decreased and then increased 
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to another peak later in the day. If fresh looking flower heads that had dehisced on 

the previous day had retained pollen and been sampled early the next morning, this 

could explain high pollen to anther ratios early in the morning followed by later 

dehiscence peaks. In this scenario the flower heads due to open and dehisce on that 

day could remain closed at the start of sampling and only open and dehisce later in 

the day. This theory is supported to some extent by the fact that some trees still had 

relatively high pollen to anther ratios at the end of sampling days, which suggests 

that visitors had not removed all available pollen on flower heads. Further sampling 

is required to reveal whether or not these complex patterns are genuine or the result 

of inadequate sampling. The sampling of more flower heads at each time, and careful 

marking of flower heads on each day, could help to identify which pollen availability 

peaks are due to dehiscence on that day and which are from older flower heads. 

The results of this study contrast with the high intraspecific synchrony shown 

by acacia species in a Tanzanian community in a similar habitat (Stone et al. 1996, 

1998). At this site (Mkomazi) co-flowering species each dehisced during a short 

daily time window. Four of the Tanzanian acacias were present at Mpala (S. 

brevispica, V. drepanolobium, V. nilotica and V. tortilis). Although most of the 

Mpala acacias showed a lot of intraspecific variation in the timing of dehiscence, the 

mean pollen availability peaks calculated across all days were similar among sites in 

some species (Table 4.5). Furthermore some of these corresponded to those for the 

same species at Mkomazi. At Mpala, the overall data indicate that S. brevispica has a 

pollen availability peak at 15.00 (Fig. 4.20), which corresponds to the time of the 

pollen availability peak at Mkomazi (Table 4.7). Similarly the overall pollen 

availability peak for V. drepanolobium occurred at a similar time at both locations 

(Table 4.7). At Mkomazi, pollen availability in V. nilotica peaked between 6.00 and 

7.00 (Table 4.7). Although a peak was observed at the same time for this species at 

Mpala, dehiscence patterns were extremely variable and an additional peak occurred 

at 12.00 (Fig. 4.20). 
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Table 4.7 Times of overall pollen availability peaks for species present at both Mkomazi and 
Mpala. 

Mkomazi Mpala 
S. brevispica 15.00-16.00 15.00 
V.drepanolobium 10.00-12.00 10.00 
V. etbaica not sampled 10.00 
V. niotica 6.00-7.00 12.00* 

V. tortiis 7.50-9.00 13.00 

* There was also a slightly smaller peak at 7.00 

4.4.2 Assessment of data quality 

Sampling in this study was designed to target multiple flower heads for 

multiple acacia species at each sampling point. Sampling effort was limited by 

manpower, and by the number of flower heads available on a tree. The time taken to 

score slides also limited the number of trees that could be sampled; slides for a single 

tree with four flower heads sampled hourly between 6.00 and 17.00 took up to eight 

hours to score. 

By sampling every hour, I hoped to capture most of the daily variation in 

pollen availability. However, if flower heads that released pollen and were harvested 

during a short time window were included in samples, the maximum daily 

dehiscence peak could have been missed, or the strength of the peak could be lower 

relative to consecutive sampling times. Flower head removal for trees with a low 

density of flower heads could also have affected visitation later in the day due to a 

decrease in the amount of floral reward on that tree available to visitors and resulted 

in relatively high pollen to anther ratios later in the day for remaining unvisited 

flower heads. 

The unusual patterns of pollen availability observed for some species (i.e. 

multiple peaks and high ratios at the start and end of sampling days) could have been 

due to sampling error. As described above, sampling of flower heads from the 

previous day could have resulted in higher pollen to anther ratios early in the day. 

More detailed studies over several days might reveal whether the patterns of pollen 

availability observed in this study were real, or due to sampling error. This was 

carried out for multiple V. nilotica trees at Turkana Boma in 2005 (unpublished 
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results). This study found that two cohorts of flower heads with pollen available were 

present on a single tree on a single day. The first cohort dehisced at approximately 

midday on day I and had pollen remaining at the end of the day. Pollen to anther 

ratios for these flower heads remained high at the start of day 2 but decreased rapidly 

throughout the morning, and were much lower by midday (see Fig. 4.21). The new 

flower heads opening on day 2 dehisced at approximately midday and still had 

relatively high pollen to anther ratios at the end of day 2. 

The consequences of combining these two cohorts of flower heads in a single 

sample are that high pollen to anther ratios will be found at the start and end of 

sampling days, accompanied by peaks at approximately midday. This pattern was 

found for many of the trees sampled at both Turkana Boma and MRC. If the different 

cohorts of flower heads could be taken into account when examining the patterns of 

pollen availability for V. nilotica found in this study, we might find that flower heads 

opening on the day the tree was sampled all dehisced synchronously within a 2-3 

hour time window between approximately 11.00 and 14.00. Detailed examination of 

pollen availability in this way could reveal similar patterns for other species with 

complex dehiscence patterns, e.g. S. brevispica and V. etbaica. 

-.*--Mean for day 2 flowers 

-- Mean for day 1 flowers 

Figure 4.21 Mean pollen to anther ratios calculated across six V. niotica trees sampled on 
July 2005. Day 1 flowers are those that opened and dehisced on 30th June 2005 and day 2 
flower heads are those that opened and dehisced on 	July. 
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4.4.3 Can variation in the timing of dehiscence within species be 

explained by variation in relative humidity? 

Studies of different plant taxa have found that dehiscence is linked to relative 

humidity in many species, with dehiscence occurring at lower relative humidities and 

high relative humidities inhibiting dehiscence (Yates and Sparks 1993, Lisci et al. 

1994, Bianchini and Pacini 1996, Gradziel and Weinbaum 1999, Kozlowski and 

Pallardy 2002). Anther opening is considered to be a process involving tissue 

desiccation (reviewed in Garcia et al. 2006) and changes in relative humidity have 

been suggested as a causal mechanism triggering anther dehiscence through 

differential rates of tissue drying within the anther wall (Keijzer 1987, Bonner and 

Dickenson 1989, 1990, Keijzer et al. 1999). 

Previous studies of acacias have shown that the variation in timing of 

dehiscence between days in some African and Mexican species was linked to relative 

humidity (Stone et al. 1998, Raine 2001). In these studies dehiscence occurred when 

decreasing relative humidity reached a minimum threshold level. 

Variation in the timing of dehiscence was not explained by variation in 

relative humidity for most acacia species at Mpala (Fig. 4.18). Only S. brevispica had 

a significant relationship, this being a negative correlation between the timing of 

dehiscence and relative humidity (i.e. lower relative humidity meant pollen 

availability peaks occurred later in the day). However this result conflicts with the 

findings for other acacias (Stone et al. 1998, Raine 2001) and is difficult to explain, 

given what is known about the timing of dehiscence in relation to relative humidity 

for other plant taxa. 

I suggest that this relationship may be coincidental, especially given the lack 

of a relationship between relative humidity and maximum pollen availability for 

other acacias at Mpala. The time of maximum pollen availability varied between 

8.00 and 17.00 in S. brevispica individuals and it is unlikely that this amount of 

variation is due to variation in relative humidity. 
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4.4.4 Do differences in patterns of pollen availability between acacia 

species provide evidence of competitive displacement? 

Assuming that the data collected in this study are correct, there is little 

evidence to suggest the divergence of dehiscence in daily time among the Mpala 

acacia species. Few species demonstrated intraspecific synchrony in the timing of 

dehiscence and the pollen availability peaks for groups of frequently co-flowering 

species were not significantly regularly spaced in daily time for almost all species 

combinations tested at Turkana Boma, Junction or the overall data across Mpala. In 

contrast to expectations of partitioning, pollen availability peaks calculated across all 

data for each species occurred at the same time (10.00) for five species, three of 

which frequently co-flowered with other acacias: V. drepanolobium, V. ethaica, V. 

gerrardii V hockii and V. seyal (Table 4.5). 

At Junction, the peaks for three co-flowering species (V gerrardii, V. 

drepanolobium and V. nilotica) were significantly regularly spaced between the first 

and last species, although not between dawn and dusk. However, the times of the 

peaks differed from those of the same species at other sites, and only one V nilotica 

tree was sampled. Furthermore S. brevispica and V. seyal also frequently co-flowered 

with these species. Whilst the peak pollen availability for S. brevispica occurred at a 

different time (15.00) this time was not incorporated into a significantly regularly 

spaced pattern of species' peaks, and V seyal was not sampled at Junction. 

Considering all of these factors, and that the time of the pollen availability peak for 

V. drepanolobium was highly variable between individuals, I consider the support for 

competitive displacement of dehiscence in daily time at this site to be weak. 

These findings contrast with those of Stone et al. (1996, 1998) who found that 

the pollen availability peaks of six co-flowering acacias in a Tanzanian acacia 

community were significantly regularly spaced in daily time. Senegalia brevispica, S. 

bussei, V nilotica, S. senegal, V. tortilis and V zanzibarica were regularly spaced 

between dawn and dusk, as well as between the first and last species, and visits by 

shared pollinators closely tracked the pollen availability peaks among species. This 

showed evidence of pollinator partitioning in daily time through competitive 

displacement of dehiscence in daily time as a response to competition for shared 

pollinators. In most species dehiscence occurred at a specific relative humidity which 
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suggests that daily cycles of relative humidity could structure interspecific patterns of 

dehiscence. The observed daily structure among species could be generated by 

divergent selection on heritable variation in the relative humidity at which 

dehiscence is triggered. Such heritable variation is well established for other 

humidity-sensitive dehiscence mechanisms in plants, such as pod dehiscence (Grant 

1996, Bailey et al. 1997). 

Although three of these six acacias were present at Mpala (S. brevispica, V. 

nilotica and V. tortilis), no evidence was found to suggest that divergence had 

occurred in the timing of dehiscence among co-flowering acacia species due to 

competitive displacement. In addition, whilst the timing of dehiscence was highly 

synchronous among individuals for both V. nilotica and S. brevispica at the 

Tanzanian site (Mkomazi), the timing of dehiscence was extremely variable for the 

same two species at Mpala (Fig. 4.20). Furthermore, the acacias at Mpala did not 

dehisce at specific relative humidities. In comparison to the Mkomazi acacias, the 

Mpala acacias lacked both structure in the timing of dehiscence amongst co-

flowering species and a link between dehiscence and relative humidity. 

The lack of evidence for competitive displacement in the timing of 

dehiscence among the Mpala acacias could be due to problems with sampling (see 

Section 4.4.2). However, if the data are representative of the patterns at Mpala, this 

could be explained by lower intensities of competition for pollinators due to 

extended flowering seasons (see Chapter 3). Species with short flowering seasons in 

the highly seasonal climate of Mkomazi flowered over longer timespans at Mpala 

(e.g. V. nilotica, V. drepanolobium, S. brevispica). Consequently acacias with 

simultaneous flowering peaks after the main (autumn) rains at Mkomazi competed 

for shared pollinators with several other species in a relatively short seasonal time 

window. In contrast, flowering peaks were not simultaneous among multiple co-

flowering species at Mpala which could result in less intense competition for 

pollinators and mean that species experience fewer negative effects if pollinators are 

shared. In addition, different sets of species co-flowered at different times at Mpala, 

which could mean that no consistent selective pressure exists at this site to drive 

competitive displacement. 
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Results from other studies of acacias indicate that when competition for 

pollinators is less intense, there is less synchrony in the timing of dehiscence among 

conspecific individuals. At Mkomazi, acacias that flowered during the dry season, 

and shared flowering seasons with few other acacias, showed less intraspecific 

synchrony than those co-flowering with multiple acacia species (Stone et al. 1998). 

In Mexico, Raine (2001) observed that when V. macrancantha and S. angustissima 

grew in sympatry, both showed high levels of intraspecific synchrony as well as 

interspecific divergence in the timing of dehiscence. However in locations where V. 

macracantha grew without S. angustissima, trees showed far less synchrony in the 

timing of dehiscence. In a study of temperate Australian acacias, Prescott (2005) 

showed that seven sympatric species all dehisced at similar times of day, with 

dehiscence beginning early in the morning and continuing into the late morning or 

early afternoon. The flowering seasons of acacias in this community were to a large 

extent separated in seasonal time, although flowering overlapped among some 

species, and, whilst species shared pollinators, segregation in seasonal time could 

have reduced intense competition for pollination. 

Given the differences between acacia assemblages studied in two similar 

habitats (Mpala and Mkomazi) it would be interesting to examine the extent to which 

other acacia assemblages in the same region demonstrate daily structure among co-

flowering species. Can the differences between Mpala and Mkomazi be solely 

attributed to extended seasonal flowering phenologies or does daily structure in the 

timing of dehiscence among co-flowering species depend on the species involved? 

Although dehiscence was not regularly spaced in daily time among co-flowering 

acacias at Mpala, there is some evidence to suggest that individual species dehisce at 

particular times. It would be interesting to know if this an artefact of dehiscence 

times for these species in more seasonal habitats, or whether dehiscence at a 

particular time of the day, confers some reproductive advantage for co-flowering 

species. 
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Chapter 5. Daily patterns of visitation to acacia 

flower heads 

Summary 

Floral visitor assemblages and patterns of visitation in daily time were 

examined for seven acacia species at Mpala: S. brevispica, V drepanolobium, V. 

etbaica, V. gerrardii, V hockii, S. mellifera and V. nilotica. The visitor assemblages 

of V. drepanolobium, V etbaica, S. mellitèra and V nilotica were dominated by 

bees, whereas those of S. brevispica, V. gerrardii and V. hockii were a mixture of 

bees and flies. Comparisons of visitor assemblages revealed that S. brevispica and V. 

gerrardii had the most similar visitor assemblages with flies and bees grouped to 

family level. Both species were visited by megachilid bees, calliphorid flies and 

syrphid flies. The visitor assemblage for V. hockii was most similar to those of S. 

brevispica and V. gerrardii. The visitor assemblages for V drepanolobium, V. 

etbaica, S. mellifera and V. nilotica were very similar at a low taxonomic resolution 

but far less similar when flies and bees were considered at family level. This suggests 

that whilst bees dominate visits in these four acacias, the particular bee visitor 

species differ between species. Daily visitation patterns for each species varied 

across days and overlapped in daily time with other acacias. High visitation rates 

corresponded to high levels of pollen availability, with bees tracking pollen more 

often than flies. 

The identification of visitors captured on flower heads over a two year period 

allowed comparisons of visitors at the species level. These data revealed a much 

wider diversity of visitor species for the six acacias examined in this way (S. 

brevispica, V. drepanolobium, V. etbaica, V gerrardii, S. mellifera and V. nilotica). 

Ninety-one visitor species were recorded on multiple acacias. Four bees, Apis 

mellifera, Macro galea candida, Braunsapis ?bouyssoui (all Apidae) and a species of 

Pseudapis (Halictidae) visited flower heads of all six acacias. 

Acacias at Mpala have the potential to compete for pollinators since visitor 

species are shared and visitation patterns overlap in daily time. However the 

importance of these shared visitors as pollinators for each acacia species is unknown. 
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5.1 Introduction 

In Chapter 4, I examined the daily patterns of pollen availability for the 

Mpala acacias. Although there was variation in the timing of pollen release across 

acacia species, I found no evidence for divergence in the daily timing of dehiscence 

among regularly co-flowering species. Pollen availability peaks for S. brevispica, V. 

etbaica, V gerrardii, V. nilotica and V. seyal, the acacia species that most frequently 

co-flowered at Mpala, were not significantly regularly spaced in daily time. 

If accurate, these results suggest that co-flowering acacias either do not 

compete for pollinator visits, or that competition for pollinators has little impact on 

the reproduction of co-flowering species. This in turn could be because there is little 

overlap among the pollinator assemblages of co-flowering acacias at Mpala, or that 

visitation rates by shared pollinators are sufficient for competition to be 

inconsequential. It must be borne in mind however that even if shared pollinators are 

abundant, expected negative effects of interspecific pollen transfer could still drive 

partitioning of shared pollinator visits. 

In this chapter I examine floral visitor assemblages and daily patterns of 

visitation to flower heads for acacia species at Mpala. This allows the identification 

and quantification of activity in shared visitors. Daily patterns of visitation are then 

compared between species to examine whether visits by shared pollinators are 

structured in daily time among acacia species. Finally, I compare daily visitation 

patterns to the patterns of pollen availability shown in Chapter 4. Visitation patterns 

that closely track patterns of pollen availability would be compatible with structuring 

of pollinator activity as a result of pollen release in daily time. In this chapter I first 

summarise the main groups of visitors to acacia flower heads and describe daily 

patterns of visitation found in previous studies. I review the evidence for pollinator 

partitioning in daily time in groups of acacias found to date. I then address the 

following specific questions for the acacias at Mpala: 

1. Do individual acacia species have characteristic floral visitor assemblages? 

2. How variable are the floral visitor assemblages for individual acacia species? 
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Do acacia species share floral visitors and do their visits represent a significant 

proportion of all visits? 

Do daily patterns of visitation vary within and between acacia species? 

Do patterns of visitation track patterns of pollen availability in each acacia 

species? 

5.1.1 Visitors to acacia flower heads 

The open structure of acacia flower heads makes them accessible to a wide 

range of flower visitors. The visitor assemblages associated with different acacia 

species are determined by the local pool of potential visitors and the floral resources 

available. Acacias that offer nectar in addition to pollen are generally visited by more 

diverse insect assemblages than those offering solely pollen (Stone et al. 1998). 

Acacia visitors can generally be divided into three groups: (i) specialist pollen and 

flower feeders (bees, beetles and many of the true flies), (ii) specialist nectar feeders 

(birds, butterflies and bee flies (Bombyliidae)) and (iii) opportunist foragers (some 

fly taxa, ants and wasps). 

Not all visitors to acacia flower heads will be effective pollinators. The 

efficacy of visitor taxa as pollinators of each acacia species will be determined by 

several factors including (i) the frequency with which they visit flower heads, (ii) the 

level of fidelity to flower heads of the same species (known as floral constancy) (iii) 

the amount of pollen carried that is available for transfer to subsequent flower heads 

and (iv) the extent to which they move pollen between flower heads on different 

trees. 

The most frequent visitors to acacias are usually bees, along with syrphid and 

calliphorid flies (Stone et al. 1996, 1998, Raine 2001, Stone et al. 2003). Bees are the 

only visitors to acacia flower heads that actively collect, externally store and 

transport large amounts of pollen. Since bees collect pollen in order to provision their 

larvae they collect far more pollen than they require individually. In contrast, almost 

all other visitors collect pollen whilst engaged in other activities such as nectar 

foraging, feeding on pollen in situ, eating the flowers themselves (flower predation) 
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or searching for prey. Floral constancy refers to the tendency of a pollinator to 

restrict its visits to flowers of a single species (Waser 1986). Evidence for high levels 

of floral constancy in bees has been found for honeybees (Grant 1950), bumblebees 

(Heinrich 1976, Free 1970, Yang et al. 2007) and stingless social bees (see Heard 

1999, White et al. 2001), as well as solitary species (Ne'eman et al. 2006). The 

effectiveness of flies in pollinating acacias depends on their behaviour and patterns 

of movement among trees, which vary between taxa. Hoverflies (Syrphidae) are 

pollen feeders that move rapidly among flower heads and between trees (G. N. 

Stone, unpubl. data) and so are potentially important pollen vectors. Syrphids have 

been shown to demonstrate high levels of floral constancy (Goulson and Wright 

1998). Other fly taxa, such as calliphorid flies, often remain on individual flower 

heads for long periods of time (Stone et al. 2003). Wasps, ants, beetles and butterflies 

all visit acacia flower heads but usually do so less frequently (Stone et al. 1998, 

2003, Raine 2001). 

Floral visitors for acacias in the genera Vachellia and Senegalia have been 

studied in Tanzania (Stone et al. 1996, 1998), Kenya (Tybirk 1988, 1989, 1993), 

Senegal (Tybirk 1993), Mexico (Raine 2001) and India (Tandon et al. 2001). The 

visitors to acacia heads found in these studies are outlined below. Much of the 

following is summarised from Stone et al. (2003). 

(a) Bees (Hymenoptera: Apoidea) 

All acacia species that have been studied are visited by bees. A wide variety 

of bee species have been recorded visiting acacia flower heads including social apid 

bees and solitary bees in the Apidae, Colletidae, Megachilidae and Halictidae (Stone 

et al. 2003). Honeybees (several species in the genus Apis) are important pollinators 

where they are native in Africa and South-east Asia, and in the Americas and 

Australia, where they are introduced (Tandon et al. 2001, Stone et al. 2003). 

Raine (2001) observed a wide diversity of native bee visitors to acacia flower 

heads in Mexico. These included social stingless bees in the genera Scaptotrigona 

(Apidae) and Trigona (Apidae), and solitary bees in the genera Xylocopa (Apidae), 

Hylaeus (Colletidae), Megachile (Megachilidae), Augochioropsis (Halictidae) and 

Lasioglossum (Halictidae). 
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Bees in the genus Megachile are also frequent visitors to acacia flower heads 

in Africa (Tybirk 1989, 1993, Stone et al. 1996, 1998). Stone et al. (2003) suggest 

that Megachile could be specialist pollen collectors of mimosoids with densely 

packed flower heads, such as acacias, because of their behaviour when harvesting 

pollen. These bees somersault around individual flower heads, skimming rapidly 

over exposed anthers and can therefore collect polyads more rapidly than more 

generalist foragers such as honeybees. Other frequently observed bee visitors to 

African acacias were large apid bees in the genera Xylocopa (carpenter bees), 

Anthophora and Amegilla, honeybees (Apis mellifera) and halictid bees in the genera 

Noinia and Lipotriches (Tybirk 1989, 1993, Stone et al. 1998). Only one colletid bee 

species, visiting S. senegal, was recorded during these studies (Tybirk 1993). 

Wasps (Hymenoptera) 

Wasps visit acacia flower heads for nectar or in search of prey (Stone et al. 

2003). Many wasp visitors are predatory (e.g. Eumenidae, Sphecidae, Pompilidae) or 

parasitic (e.g. Chrysididae, Scoliidae, Ichneumonidae) (Tybirk 1993, Raine 2001, 

Tandon et al. 2001). Parasitic and carnivorous wasps usually obtain proteins from 

hosts or prey and are not known to feed on pollen, but some forage for nectar as an 

energy source (Scholtz and Holm 1986). Stone et al. (1996, 1998) found larger 

proportions of wasp visitors on nectar-producing acacias, although species that didn't 

produce nectar were also visited by wasps. 

Ants (Hymenoptera: family Formicidae) 

Raine (200 1 ) recorded ant visitors on flower heads in Mexico, although these 

formed a small proportion of total visits. Ants are thought to be opportunist visitors 

to acacia flower heads, foraging mainly for nectar or prey items (Stone et al. 2003), 

and are considered to be ineffective pollinators since movement between trees is 

likely to be limited. Furthermore ant secretions have been found to reduce pollen 

viability (Beattie et al. 1985, Wagner 2000). 

Ant-plant mutualisms occur in many acacia species in the Americas and 

Africa, including V. drepanolobium at Mpala. Ants reside on trees in modified thorns 

(pseudogalls) and guard the trees against attack by herbivores and encroachment by 

vegetation (e.g. Janzen 1966, 1967a, Hocking 1970, Young et al. 1997). Aggressive 
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ant-guards could potentially deter pollinators, however studies have shown that 

young acacia flower heads produce chemicals that repel ant guards during times at 

which pollinators visit (Willmer and Stone 1997a, Raine et al. 2001). 

Flies (Diptera) 

Acacia flower heads are visited by a wide diversity of true flies, most of 

which are pollen feeders (Gilbert 1981, Tybirk 1993, Stone et al. 1999a, 2003). 

Syrphids feed on pollen and have been observed visiting acacia flower heads in 

Africa (Tybirk 1989, 1993, Stone et al. 1996, 1998) and Mexico (Raine 2001). Other 

flies found on acacias include species in the families Calliphoridae, Muscidae, 

Tachinidae and Sarcophagidae (Tybirk 1993, Stone et al. 1999a). These taxa feed on 

pollen and/or floral exudates on acacia flower heads. The latter food source is 

inferred because flies have been seen to feed before dehiscence on the flower heads 

in questions had occurred (G. N. Stone, pers. comm.). Certainly, these fly taxa are 

known to feed on both floral nectar and pollen in other plant species (Proctor et al. 

1996). Of these, only calliphorid flies have been observed in large numbers on 

acacias, and individuals often remain on individual flower heads for long periods of 

time (Stone et al. 2003). Other fly taxa observed on acacia flower heads include 

nectar-feeding beeflies (Bombyliidae) and predatory flies, such as Asilidae (Tybirk 

1993, Stone et al. 1999a, Raine 2001). Most studies have found flies to be less 

frequent visitors to acacia flower heads than bees, although the Mexican species V. 

farnesiana received more visits from flies than any other visitor group (Raine 2001). 

Butterflies (Lepidoptera) 

Butterflies are obligate nectar feeders and are abundant only on acacias that 

secrete nectar (Stone et al. 2003). In most studies they are responsible for a small 

proportion of visits to acacia flower heads and carry relatively low quantities of 

polyads on their bodies (Tandon et al. 2001, Raine 2001). Species observed on 

acacias in Tanzania, Senegal and India belonged to a variety of families including 

Lycaenidae, Nymphalidae, Papilionidae and Pieridae (Tybirk 1993, Stone et al. 

1999a, Tandon et al. 2001). 
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(f,) Beetles (Coleoptera) 

Beetles have been recorded visiting acacia flower heads in most previous 

studies (Tybirk 1989, 1993, Stone et al. 1996, 1999a, Raine 2001, Tandon et al. 

2001). In Mexico and Senegal, beetle visitors included Chrysomelidae and 

Scarabaeidae which are often flower predators (Jolivet 1995), although can be 

effective pollinators for some plant species (011erton et al. 2003). Other frequent 

beetle visitors such as Cantharidae and Coccinellidae are predators (Chinery 1993) 

that probably visit acacia flower heads in search of prey. 

(g) Vertebrates 

Sunbirds (Nectariniidae) visit nectar producing acacias in both Tanzania and 

Senegal (Tybirk 1993, Stone et al. 1998). Few other vertebrates have been observed 

visiting acacia flower heads. Du Toit (1990) proposed that giraffes (Giraffa 

camelopardalis) might be important pollinators of S. nigrescens in southern Africa, 

since they consume large numbers of flower heads. However, a recent study by 

Fleming et al. (2006) found that giraffes were flower predators, rather than 

pollinators. 

5.1.2 Daily temporal patterns of visitation to acacia flower heads 

Co-flowering plant species that share pollinators could reduce interspecific 

competition by structuring pollinator visits in daily time (see Chapter 1, Section 1.1). 

Evidence for this has been found in groups of co-flowering species in Tanzania 

(Stone et al. 1996, 1998) and Mexico (Raine 2001). Dominant visitors in these 

studies were bees, syrphid and calliphorid flies. 

In these studies daily patterns of visitation for individual acacia species were 

largely determined by pollen availability, with overall patterns of visitation to flower 

heads closely tracking the pollen availability for each species (Stone et al. 1996, 

1998, Raine 2001). Where pollen release was structured in daily time among 

co-flowering acacias, there were sequential peaks of visitation among species. In 

Tanzania, visits by shared megachilid bee species and honeybees (Apis mellifera) 

closely tracked pollen availability among co-flowering acacia species whose pollen 

availability peaks were regularly spaced throughout the day. Visits by calliphorid 

flies also tracked the sequence of dehiscence for these acacias (Stone et al. 1996, 
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1998). In Mexico, evidence for pollinator partitioning in daily time was found for 

two co-flowering species, V. macracantha and S. angustissima (Raine 2001). 

Partitioning appeared to be driven by differences in the timing of pollen availability. 
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5.2 Methods 

5.2.1 Study species and sites 

I made detailed observations of visitors to flower heads of S. brevispica, 

V. drepanolobium, V. etbaica, V. gerrardii, S. mellifera and V. nilotica between 

21t June and 17th  September 2004 and between 20th  May and 14th  July 2005 (Table 

5.1). I was assisted in these observations by Dr G. N. Stone, R. Eraguy and R. Lavin. 

I have analysed these data alongside data collected for S. brevispica, V. gerrardii, V. 

hockii and V. nilotica in June 1999 by Dr G. N. Stone, Professor P. G. Wilimer, 

Professor A. Schnabel and Dr R. Atkinson (Table 5.2) to examine longer term 

variation in visitor assemblages between years. The 2004-2005 data set incorporated 

47 tree observation days, whilst the 1999 data set incorporated 16 tree observation 

days (Tables 5.1, 5.2). Vachellia seyal, V. tortilis and V. xanthophloea were not 

examined for floral visitors as they did not flower during field seasons. 

Data were collected for trees at four of the study sites used for the collection 

of flowering phenology data; Turkana Boma, Mongoose, Junction and High Dam. 

Observations were carried out for marked trees where possible, however when these 

were not in flower observations were conducted on nearby trees. 

5.2.2 Detailed observations of visitor assemblages 

Floral visitors were recorded using a similar method to that used by Stone et 

al. (1996, 1998), Raine (2001) and Prescott (2005). Visitors were recorded for each 

acacia species by watching the same set of flower heads for 30 minutes of every hour 

from before the onset of foraging until after it ceased on a given day. Most sampling 

days started between 6.00 and 8.00 and continued until 17.00. The number of flower 

heads observed varied depending on the density of flower heads and the amount of 

flowering for each tree, and was chosen such that they could be easily observed by 

one person. The number of flower heads observed per tree ranged from nine to 50. 

During each 30 minute observation period, the number of visits made by each visitor 

taxon was recorded. A visit was recorded each time a visitor contacted a flower head. 
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Table 5.1 Number of sampling days for collection of flower head visitation data for each 
acacia species at each site in 2004 and 2005 

Acacia species Site Number of trees Date 

S. brevispica Turkana Boma 1 21st July 2004 
Turkana Boma 1 18th Aug 2004 
Turkana Boma 1 20' Aug 2004 
Turkana Boma 1 6th Sep 2004 
Junction 1 20th May 2005 
Junction 1 24th May 2005 
Junction 2 7th July 2005 
Junction 2 8th July 2005 
High Dam 1 25th May 2005 
High Dam 2 l3th June 2005 
High Dam 1 17th June 2005 
High Dam 2 27th June 2005 

Total 16 

V.drepano/obium Turkana Boma 1 13t Sep  20O4 
Junction 1 10th Sep 2004 
Junction 1 17th Sep 2004 

Total 3 

V. etbaica Turkana Boma 1 21st Aug 2004 
Turkana Boma 1 Aug 2004 
Turkana Boma 1 Sep 2004 

Total 3 

V. gerrardll Turkana Boma 1 18th Aug 2004 
Junction 1 3Oth July  2004 
High Dam 2 28th July 2004 

Total 4 

S. mellifera Turkana Boma 1 6th Sep 2004 

V. nilotica Turkana Boma 1 2lStJune 2004 
Turkana Boma 1 22nd  June 2004 
Turkana Boma 1 16th July 2004 
Turkana Boma 1 2lst June  2005 
Turkana Boma 2 23 June 2005 
Turkana Boma 2 June 2005 
Turkana Boma 2 28th June 2005 
Turkana Boma 2 29th June 2005 
Turkana Boma 2 30th June 2005 
Turkana Boma 1 12th July 2005 
Turkana Boma 1 13th July 2005 
Turkana Boma 1 14th July 2005 
Junction 1 3Oth July  2004 
Junction 1 10th Sep 2004 
Junction 1 17th Sep 2004 

Total 20 

Total tree days 47 
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Table 5.2 Number of sampling days for collection of flower head visitation data for each 
acacia species at each site in 1999 

Acacia species Site Number of trees Date 

S. brevispica High Dam 9h June 1999 

V.gerrardii Mongoose 1 6t  June1999 
Mongoose 2 12t  June1999 
High Dam 2 16t  June1999 
High Dam 1 17th  June 1999 
Turkana Boma 1 2lstJune 1999 

Total 7 

V.hockii High Dam 1 17th  June1999 

V. nh/otica Turkana Boma 3 7h June 1999 
Turkana Boma 2 21stJune 1999 

Total 5 

Total tree days 16 

5.2.3 Visitor identification 

Ideally all visitors would have been identified to species. However this 

requires (i) prior knowledge of the visitor fauna and (ii) the ability to accurately 

identify visitors during observations. Identification of visitors whilst they are 

foraging on flower heads can be difficult, and the collection of visitors for 

identification by expert taxonomists is often the only way to confirm species 

identifications. Since the same set of flower heads was watched throughout a single 

day, the capture of visitors during observations for subsequent identification would 

have meant that those individuals were not available to make subsequent visits. In 

addition, this might have disturbed other visitors currently on flower heads, and 

deterred other insects from visiting. 

To establish a knowledge of the visitor fauna for the acacias at Mpala, insect 

visitors were caught over 525 hours on 49 days between 2003 and 2005 (see Table 

5.3). On these sampling days, visitors to flower heads were caught throughout the 

day for S. brevispica, V. drepanolobium, V. etbaica, V. gerrardii, S. mellifera, V. 

tortilis and V. xanthophloea. The dates and total number of sampling hours for each 

acacia species are shown in Table 5.3. Captured specimens were identified by 

taxonomists, or with the aid of museum specimens. Bees were identified by Connal 
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Eardley and flies were identified by John Deeming (Calliphoridae, Muscidae, 

Sarcophagidae, Tachinidae), David Greathead (Bombyliidae), Jason Londt 

(Asilidae), Adrian Pont (Muscidae), Andrew Whittington (Syrphidae and other fly 

taxa) and Nigel Wyatt (Tachinidae). Collections at the Natural History Museum in 

London and the National Museums of Kenya in Nairobi were used to identify wasps, 

Coleoptera and some Lepidoptera. Butterflies were identified to species using Larsen 

(1991). 

Table 5.3 Dates on which visitors to flower heads of each acacia species were captured and 
the numbers of hours of catching per acacia species 

Acacia species 	Hours catching 	Dates of insect catching 
S. brevispica 156 1  13th May 2003 30th May 2003 

rd 
 May 2003 

23  5th June 2003 
Ih 24 May 2003 7th June 2003 
th  26 	May 2003 1 01June 2003 
th  May 2003 28  24th Sep 2003 

V. drepano/obium 70 6th Sep 2003 Sep 2004 
26th Oct 2003 13th Sep 2004 
30th Oct 2003 7th March 2005 
7th Nov 2003 13th Sep 2005 

V. etbaica 80.5 1 1  t Aug 2003 7th Aug 2004 
13' Aug 2003 5th Jan 2005 

th  March 2004 13  7th Jan 2005 
2d  Aug 2004 13th Jan 2005 

V. gerrardii 28.5 3rd June 2003 18th Mar 2003 
5th June 2003 29th July 2004 

S. mel/hera 79 6th Nov 2003 1 1th  March 2005 
27th March 2003 16th March 2005 
6th April 2004 18th March 2005 
16th Feb 2005 22nd March 2005 
21st Feb 2005  

V. nilotica 111 14th  June2003 2'July2004 
16th June 2003 6th July 2004 
19th June 2003 20th Dec 2004 

th  25 	June 2004 291h Dec 2004 
29t June  2004 21stJuly2005 	- 

Totals 	 525 hours 	 49 days 

The identified specimens allowed comparison of visitor assemblages at the 

species level but did not give accurate information regarding the frequency of visits 

by each species or their patterns of visitation to flower heads. There is an inevitable 
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trade off between the ability to accurately identify species and the quality of 

information about their visitation patterns. 

These specimens were used to identify visitors during the detailed 

observations. Whilst most observed visitors could be accurately identified to family 

level, only a proportion could be identified to genus or species. 

5.2.4 Comparisons of visitor assemblages 

Similarities between visitor assemblages were calculated using proportional 

similarity (PS; Schoener 1970, Kephart 1983, Horvitz and Schemske 1990) to allow 

comparison with results obtained by Stone et al. (1998). PS was used to compare the 

visitor assemblages within and between species. 

PS was calculated as follows: 

the proportions of the total number of flower head visits attributable to each 

visitor taxon were calculated for two visitor assemblages 

the modulus of the difference in proportions was calculated for each visitor taxon 

PS = I - 0.5 (sum of the modulus values over all visitor taxa) 

The value of PS ranges from one (maximum similarity) to zero (no overlap 

between assemblages). PS can only compare two visitor assemblages in a single 

calculation. 

The degree of overlap between visitor assemblages is likely to depend on the 

resolution to which visitor taxa are classified. All PS values were calculated twice 

with visitors classified at different taxonomic levels for each calculation. The first 

calculation was made with bees and flies (the most frequent visitor taxa) resolved to 

family with the remaining visitors grouped as wasps, beetles and Lepidoptera 

(butterflies and moths). The analysis was repeated with all visitors assigned to the 

broader taxonomic groups: bees, wasps, flies, beetles and Lepidoptera. Since ants are 

considered to be incidental visitors and ineffective pollinators for acacias, they were 

excluded in the calculations of PS and from all other comparisons between visitor 

assemblages. 
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(a) Intraspecific variation in floral visitor assemblages 

PS was used to examine variation in visitor assemblages for each species. 

Assemblages were compared: 

for trees sampled on the same day (S. brevispica, V. gerrardii and V. nilotica); 

for trees sampled on different days (S. brevispica, V. drepanolobium, V. etbaica, 

V. gerrardii and V. nilotica); 

between sites (S. brevispica and V. nilotica); 

between years (S. brevispica, V. gerrardii and V. nilotica). 

Visitor assemblages were compared across days within sampling sites for S. 

brevispica, V. etbaica and V. nilotica, but across days at all sites for V. gerrardii and 

V. drepanolobium as fewer trees of these species were sampled at individual sites. 

(b) Interspecific variation in floral visitor assemblages 

Visitor assemblages were compared among species using PS separately for 

each of the 1999 and 2004-5 data sets. The data collected in 2004 and 2005 were 

grouped so that a larger data set could be used for comparisons. This was considered 

to be acceptable since data collection spanned approximately 13 months (21 St  June 

2004-14 Ih  July 2005). The 1999 data were examined separately since they were 

collected five years prior to the remainder of the data. 

52.5 Comparisons of daily patterns of visitation to flower heads 

(a) Overall visitation patterns 

I compared overall patterns of visitation within and between acacia species in 

two ways. I used Kolmogorov-Smirnov two-sample tests to compare the activity 

distributions of all visitor taxa between trees sampled at the same site on the same 

day. This non-parametric test has a null hypothesis of identicality between the two 

distributions. As multiple tests were carried out, the Bonferroni correction was 

applied. Seventeen tests were conducted which meant that the modified significance 

level equivalent to p=O.OS for rejection for the null hypothesis was 0.0029. 

Consideration with a less conservative p value (p=0.05) did not affect the results. I 

did not use this test to compare activity at trees sampled on different days or at 

different sites because variation in climatic conditions between days could have 
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affected visitor behaviour. Instead, activity patterns were compared informally 

among trees. This was done graphically by scaling the visitation pattern for each tree 

from zero to one by dividing the visits for each 30 minute observation period by the 

maximum number of visits for any one observation period for that tree on that day. 

As elsewhere, visits by ants were excluded. 

Senegalia mellifera was excluded from these comparisons since only seven 

visits were recorded on the single day it was sampled. Since large numbers of visitors 

were captured on flower heads of S. mellifera on insect catching days (see Table 5.3) 

this was considered to be unrepresentative for the species. 

(b) Patterns of visitation by bees and flies 

Senegalia brevispica, V. gerrardii and V. hockii were all visited by large 

numbers of bees and flies. The activity patterns of these two groups were compared 

for individual trees using Kolmogorov-Smirnov two-sample tests. Tests were 

conducted for twenty-two trees which meant that the threshold significance level for 

the rejection of the null hypothesis with the Bonferroni correction was 0.0023. 

Consideration with a less conservative p value (p=0.05) did not affect the results. 

5.2.6 Comparisons of daily patterns of visitation and pollen availability 

I compared visitation patterns for bees and flies with pollen availability 

patterns for trees of six acacia species. I only used data for trees for which pollen 

availability and visitation were quantified on the same day. Pollen availability and 

patterns of visitation for bees and flies for a single tree were plotted on the same 

graph with visits or pollen availability scaled between zero and one for S. brevispica, 

V. drepanolobium, V. etbaica, V. gerrardii, V. hockii and V. nilotica. 

5.3 Results 

5.3.1 Do individual acacia species have characteristic floral visitor 

assemblages? 

The floral visitor assemblages of the Mpala acacia species were dominated by 

bees and flies, with fewer visits from wasps, beetles, butterflies and moths (Tables 
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5.4, 5.5). In the detailed observations, bees dominated visits to V. drepanolobium, V. 

etbaica, S. mellifera and V nilotica, whereas S. brevispica, V gerrardii and V. hockii 

were visited by large numbers of bees and flies. Although ants were recorded visiting 

flower heads of all acacia species they are not considered to be effective pollinators 

of acacias and have been excluded from all results. Details of the identified visitor 

species caught on acacia flower heads during capture days are given in Appendix 6. 

Bees 

Bees were the dominant visitors to V. drepanolobium, V. etbaica, S. mellifera 

and V. nilotica, and formed a large proportion of visits to S. brevispica flower heads 

(Tables 5.4, 5.5). Bees formed smaller proportions of visits to V. gerrardii and V. 

hockii (Tables 5.4, 5.5). The range of bee taxa visiting flower heads was extremely 

diverse and included Apidae, Colletidae, Halictidae, Megachilidae and Melittidae. 

Apis mellifera (Apidae) were responsible for the majority of observed bee visits to V 

drepanolobium, but formed a lower proportion of visits to other acacias in the 

detailed observations (Tables 5.4, 5.5). Other visiting Apidae included the solitary 

species Xylocopa somalica, Braunsapis ?bouyssoui, Macro galea candida and 

Ceratina species, and the social species Plebeina hildebranti. Few anthophorid bee 

visitors in the genera Ame gil/a, Anthophora and Tetraloniella were recorded. All 

acacias were visited by species of Megachile. Bees in this genus formed the majority 

of megachilid visits in the detailed observations (Tables 5.4, 5.5). Halictid bees 

included species in the genera Lasioglossum, Patellapis and Halictus (subfamily 

Halictinae), and the genera Pseudapis, Nomia and Lipotriches (subfamily Nomiinae). 

Colletid bee visitors belonged to the genera Colletes and Hylaeus. A single species of 

melittid bee, Melitta katherinae, was found on V. gerrardii flower heads and has 

been described as a new species (Eardley and Kuhlmann 2006). 

Wasps 

Wasps were observed visiting flower heads of all acacias except S. mellifera 

and V. hockii during the detailed observations (Tables 5.4, 5.5), although wasps were 

caught on S. mellifera on capture days (Appendix 6). Senegalia brevispica and V. 

gerrardii received the largest proportions of wasp visits in both of the detailed 
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observation data sets (Tables 5.4, 5.5). Most wasp visitors were Sphecidae or 

Eumenidae, with Chrysididae, Pompilidae, Scoliidae, Tiphiidae and Vespidae 

visiting in smaller numbers. 

Flies 

Flies were the dominant visitors to flower heads of S. brevispica, V. gerrardii 

and V. hockii, and formed relatively small proportions of visits to V. nilotica, V. 

drepanolobium and V. etbaica (between 4.0% and 21.7%; Tables 5.4, 5.5). Senegalia 

mellifera flower heads were not visited by flies in the detailed observations (Table 

5.4). Fly visitors included Bombyliidae, Calliphoridae, Muscidae, Sarcophagidae, 

Syrphidae and Tachinidae. Calliphorids formed the largest proportion of fly visits for 

most acacia species in the detailed observations (Tables 5.4, 5.5). The most 

frequently observed calliphorid genera were Rhyncomya and Isomyia. Syrphids were 

the most frequently observed fly taxa for V. nilotica in the detailed observations, and 

were relatively common visitors to S. brevispica and V. drepanolobium (Table 5.4). 

Common syrphid genera included Eristalinus and Phytomia. One muscid species 

found on five acacia species, Pyre/ha acaciae, has been described as a new species 

(Pont and Baldock in press). 

Beetles 

Beetles were observed on flower heads of S. brevispica, V. gerrardii and V. 

nilotica in the detailed observations, although formed a low proportion of total visits 

in three species (Tables 5.4, 5.5). Beetles were caught on all acacia species during 

capture days. Most of these were small beetles in the family Chrysomelidae which 

often remained on individual flower heads for several hours and seldom moved 

between flower heads or trees. 

Lepidoptera 

Lepidopteran visitors were caught on all acacias, although formed a relatively 

low proportion of visits for most species (Tables 5.4, 5.5). Visitors included 

butterflies in the families Hesperiidae, Lycaenidae, Nymphalidae and Pieridae and 

moths in the family Arctiidae (clearwing moths). 



Table 5.4 Visitation by different insect taxa to flower heads of acacia species between June 2004 and July 2005 during detailed observations for (a) 
main visitor groups and (b) the more common families of bee and fly visitors. Data presented in (a) are the percentage of total visitation by all taxa 
contributed by a particular taxon. Data presented in (b) are the percentage of total visits for either bees or flies contributed by a particular taxon within 
that group. 

Acacia species Bees Wasps Diptera Coleoptera Lepidoptera : Total visits 
S. brevispica 32.2 10.4 47.1 0.7 8.9 1234 
V. drepanolobium 92.5 3.1 4.0 0.0 0.2 548 
V. etbaica 76.6 1.1 21.7 0.0 0.6 175 
V. gerrardll 12.5 12.5 64.1 5.3 4.7 471 
S. mel/hera 71.4 0.0 0.0 0.0 28.6 7 
V. niotica 1  76.5 0.7 17.6 4.8 0.1 1809 

Acaciaspecies Apisme//hera other ApidaeColletidaeHalictidaeMegachilidae Calliphoridae Syrphidae Bombyliidae Other Diptera.  
S. brevispica 13.9 2.8 23.9 9.1 40.3 33.0 20.8 0.0 46.9 
V. drepano/obium 89.7 3.2 0.0 1.4 4.1 63.6 22.7 9.1 4.5 
V. etbaica 9.0 61.2 0.0 1.5 24.6 	: 47.4 0.0 0.0 52.6 
V. gerrardii 0.0 0.0 1.7 21.7 43.3 62.3 4.0 9.3 24.5 
S. me//ifera 20.0 40.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 
V.niotica 0.4 3.0 0.1 2.0 87.9 38.7 51.6 2.5 7.2 



Table 5.5 Visitation by different insect taxa to flower heads of acacia species in June 1999 during detailed observations for (a) main visitor groups and 
(b) the more common families of bee and fly visitors. Data presented in (a) are the percentage of total visitation by all taxa contributed by a particular 
taxon. Data presented in (b) are the percentage of total visits for either bees or flies contributed by a particular taxon within that group. 

 

Acacia species Bees Wasps Diptera Coleoptera Lepidoptera Total visits 
S. brevispica : 	51.1 4.4 51.1 1.4 2.3 1308 
V. gerrardll 24.1 9.9 54.0 1.7 10.3 6269 
V. hockii 17.0 0.0 83.0 0.0 0.0 165 
V. niotica 74.7 0.6 15.5 9.2 0.0 490 

 

Acacia species Apis mellifera other Apidae Colletidae Halictidae Megachilidae Calliphoridae Syrphidae Bombyliidae Other Diptera 
S. brevispica 0.7 0.4 0.0 98.9 0.0 91.2 8.7 0.1 0.0 
V. gerrardii 19.1 0.4 0.0 67.5 9.6 88.0 7.8 0.0 4.1 
V. hockii 0.0 0.0 0.0 96.4 3.6 93.4 6.6 0.0 0.0 
V. niotica 2.2 1.4 0.0 73.8 22.7 100.0 0.0 0.0 0.0 
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5.3.2. How variable are the floral visitor assemblages for individual 

acacia species? 

(a) Comparison of conspecific trees sampled on the same day 

Visitor assemblages for pairs of trees of the same species sampled on the 

same day at the same site were generally similar in each of S. brevispica, V. gerrardii 

and V. nilotica (Table 5.6). Assemblages were less similar between pairs of V. 

nilotica trees on 23k' June 2005 and V. brevispica trees on 27th  June and 7th  July 2005 

(Table 5.6). Comparisons with similar PS values at both taxonomic resolutions 

indicate that the specific fly and bee taxa were similar between pairs of trees sampled 

on the same day. 

Table 5.6 Proportional similarities (PS) of floral visitor assemblages for pairs of S. brevispica, 
V. gerrardii and V. nilotica trees sampled on the same day at the same location. Proportional 
similarities were calculated with visitors grouped at low and high taxonomic resolutions. A 
value of 1 indicates maximum similarity and a value of 0 represents no overlap in visitor 
assemblages. 

Sp ecies PS with higher PS with lower 

an 	date Site taxonomic taxonomic 
resolution resolution 

S. brevispica  

9th June 1999 High Dam 0.77 0.77 
9th June 1999 High Dam 0.58 0.59 
9th June 1999 High Dam 0.78 0.79 
13th June 2005 High Dam 0.67 0.75 
27th June 2005 High Dam 0.48 0.51 
7th July 2005 Junction 0.46 0.56 
8th July 2005 Junction 0.55 0.89 

V. gerrardii  

12th June 1999 Mongoose 0.69 0.71 
June 1999 High Dam 0.74 0.77 
July 2004 High Dam 0.69 0.84 

V. nilotica 

23rd June 2005 Turkana Boma 0.49 0.49 

24th June 2005 Turkana Boma 0.62 0.64 
28th June 2005 Turkana Boma 0.95 0.97 

June 2005 Turkana Boma 0.91 0.93 
0th June 2005 3 Turkana Boma 0.88 0.89 
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(b) Comparison of conspecific visitor assemblages between days 

The extent of overlap in visitor assemblages varied across days for all acacias 

at both taxonomic resolutions. Findings are summarised by species: 

S. brevispica 

The mean PS values across days with taxa classed at the higher taxonomic 

resolution were less than 0.5 for S. brevispica at all sites (Table 5.7). The overlap in 

visitor assemblages at this resolution varied between 0 and 0.76 across all sites, with 

only two comparisons with PS values greater than 0.6 (Table 5.8). Visitor 

assemblages were more similar across days when visitors were grouped at the lower 

taxonomic resolution, with mean PS values between 0.55 and 0.76 at each site (Table 

5.8). The visitor assemblages for trees at Junction were least similar among days at 

the higher resolution (Table 5.8). On most days, visitor taxa were a mixture of bees 

and flies, with bees forming the greatest proportions of visits on some days and flies 

on others (Table 5.18). No fly visitors were observed on 18th  August and 6th 

September 2004 at Turkana Boma and no bee visitors were observed on 24th  May 

2005 at Junction. Fly visitors were a mixture of calliphorids and syrphids, whilst bee 

visitors included Apis mellifera, other apid bees, colletids, halictids and megachilids 

in varying proportions (Table 5.18). Lepidoptera and wasps contributed considerable 

numbers of visits to S. brevispica flower heads on several days (Table 5.18). 

V. drepanolobium 

Visitor assemblages for V. drepanolobium varied least, with high proportions 

of bee visitors on all three sampling days (Tables 5.7, 5.9, 5.19a). On 10th  September 

and 13th  September 2004 Apis mellfera was the dominant visitor. On 17th  September 

2004 approximately half of bee visits were by other apid bees, megachilid and 

halictid bees, resulting in a lower PS value at the higher taxonomic resolution in 

comparisons with the other two days (Tables 5.9, 5.19a). 
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Table 5.7 Mean PS across sampling days (± 1 SE) at each site for S. brevispica, V. etbaica 
and V. niotica. V. drepano/obium and V. gerra rd/i were sampled on few days at each site 
therefore mean PS was calculated across days at all sites for these species. Proportional 
similarities were calculated with visitors grouped at low and high taxonomic resolutions. A 
value of 1 indicates maximum similarity and a value of 0 represents no overlap in visitor 
assemblages. Full tables of the PS values between pairs of days are given in Appendix 5.2. 

Species Sites and year 
Mean PS with 

higher taxonomic 
resolution 

Mean PS with 
lower taxonomic 

resolution 

S. brevispica Turkana Boma 2004 0.28 ± 0.09 0.76 ± 0.04 
High Dam 2005 0.45 ± 0.04 0.67 ± 0.04 
Junction 2005 0.46 ± 0.08 0.55 ± 0.07 

V. drepanolobium Junction and TB 2004 0.62 ± 0.14 0.96 ± 0.01 

V. etbaica Turkana Boma 2004 0.33 ± 0.15 0.62 ± 0.11 

V. gerrardii HD, J and TB 2004 0.61 ± 0.05 0.69 ± 0.05 
MG, HD and TB 0.59 ± 0.04 0.71 ± 0.04 

V. niotica Turkana Boma 2004 0.78 ± 0.07 0.92 ± 0.02 
Junction 2004 0.28 ± 0.23 0.34 ± 0.21 
Turkana Boma 2005 0.57 ± 0.03 0.71 ± 0.04 

Table 5.8 Proportional similarities of floral visitor assemblages for S. brevispica between 
days at (a) Turkana Boma in 2004, (b) High Dam in 2005 and (c) Junction in 2005, with 
visitors grouped at (I) a higher taxonomic resolution and (ii) a lower taxonomic resolution. A 
value of 1 indicates maximum similarity and a value of 0 represents no overlap in visitor 
assemblages. 

(a) Between days at Turkana Boma in 2004 
(i) 	 (ii) 

181h Aug 20th Aug 6th Sep 
2lStJuly 0.00 0.14 0.15 
18th Aug  0.52 0.44 
201h Aug  0.44 

181h Aug 20th Aug 6th Sep 
July 0.76 0.73 0.77 

18th Aug  0.68 0.96 
201h Aug  0.68 

(b) Between days at High Dam in 2005 
(i) 	 (ii) 

13tJune l7th June  27th June 
25" May 0.50 0.43 0.33 
13th June  0.61 0.43 
17 Ih  June  0.39 

June 17th June 27th June 
251h May 0.61 0.64 0.67 
13 th  June  0.87 0.67 
17 th  June  0.57 

(c) Between days at Junction in 2005 
(j) 

24th June 7th July 8th July 
20th May 0.55 0.21 0.43 

24th June  0.37 0.76 
7th July  0.41 

24th June 7th July 8" July 
201h May 0.55 0.56 0.51 
24th June  0.39 0.88 
7th July  0.42 
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Table 5.9 Proportional similarities of floral visitor assemblages for V. drepanolobium between 
days with visitors grouped at (i) a higher taxonomic resolution (ii) a lower taxonomic 
resolution. A value of 1 indicates maximum similarity and a value of 0 represents no overlap 
in visitor assemblages. TB: Turkana Boma, J: Junction 
(i) 	 (ii) 

13"Sep 17th Sep 

TB J 

i0" Sep J 0.91 0.48 

13th Sep TB 0.48 

13th Sep 17th Sep 

TB J 

1Ot1 Sep J 0.96 0.95 

13th Sep TB 0.97 

(iii) V etbaica 

The three V. etbaica trees sampled at Turkana Boma in 2004 had little 

similarity among visitor assemblages in comparisons at the higher taxonomic 

resolution, with the trees sampled on 13th  September and 27th  August having almost 

completely different visitor taxa (Tables 5.10, 5.19b). Similarities were greater at the 

lower taxonomic resolution (Table 5.10). Bees formed the majority of visits on 21st 

and 27th  August whilst on 13th  September similar proportions of bees and flies were 

found (Table 5.19b). The proportions of specific bee and fly taxa varied across days 

(Table 5.19b). Bee visitors were a mixture of Apis mellifera, other apid bees (mostly 

Plebeina hildebranti), halictids and megachilids, and flies were either calliphorids, 

muscids or sarcophagids (Table 5.19b). 

Table 5.10 Proportional similarities of floral visitor assemblages for V. etbaica between days 
at Turkana Boma with visitors grouped at (i) a higher taxonomic resolution and (ii) a lower 
taxonomic resolution. A value of 1 indicates maximum similarity and a value of 0 represents 
no overlap in visitor assemblages. 
(i) 	 (H) 

Aug 13th Sep 

21st Aug 0.42 0.52 
27th Aug 0.04 

27th Aug 13th Sep 

21st Aug 0.82 0.61 
27th Aug 0.43 

(iv) V. gerrardii 

The mean PS values for V. gerrardii were relatively high with visitor 

assemblages grouped at both taxonomic resolutions (Table 5.7). The degree of 

overlap in visitor assemblages between days varied considerably, although all PS 

values calculated at the low taxonomic resolution were greater than 0.55 and all but 
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two were greater than 0.5 at the higher taxonomic resolution (Tables 5.11, 5.12). 

Flies, most of which were calliphorids, formed the largest proportions of visits on all 

days (Table 5.20). Bees visited flower heads on all but two sampling days, with Apis 

mellifera, halictid and megachilid bees the main taxa in varying proportions (Table 

5.20). Large proportions of wasp visitors were recorded on two days (Table 5.20). 

Table 5.11 Proportional similarities of floral visitor assemblages for V. gerrardii (a) between 
days in 2004, (b) between days in 1999 and (c) between years, with visitors grouped at (I) a 
higher taxonomic resolution and (ii) a lower taxonomic resolution. A value of 1 indicates 
maximum similarity and a value of 0 represents no overlap in visitor assemblages. TB: 
Turkana Boma, J: Junction, MG: Mongoose, HD: High Dam 

(a) Between days in 2004 
(I) 	 (ii) 

30th July 18th Aug 

Junction TB 

281h July HD 0.63 0.52 

30th July J 0.68 

301h July 18th Aug 

Junction TB 

281h July HD 0.69 0.61 
3Oth July  J 0.77 

(b) Between days in 1999 
(i) 	 (ii) 

12th i&h 17th 215t 

June June June June 
MG HD HD TB 

6th June MG 0.63 0.45 0.34 0.54 
l2t June  MG  0.68 0.51 0.75 
16t? June  HD  0.58 0.68 

17t June HID  0.74 

1 2t   16 th  17th 21St 

June June June June 
MG HD HD TB 

6th June MG 0.74 0.57 0.55 0.63 

12th June MG  0.84 0.61 0.75 

16t ' June HID 0.74 0.83 
17t June  HD  

(v) V. nilotica 

Mean PS values were high at both taxonomic resolutions for V. nilotica 

sampled at Turkana Boma in 2004 (Table 5.7). Visitors on these days were mainly 

megachilid bees, with smaller proportions of calliphorid flies and halictid bees 

(Table 5.21b). At Junction a single V. nilotica tree was sampled on three days (301h 

July, 101h  September and 17th  September 2004). The visitor assemblages were more 

similar to each other on the days in September than to that on the 30th  July (Table 

5.12b, 5.21c). Whilst bee visitors dominated in September, the visitors were mainly 

flies on 30th  July (Table 5.21c). 

PS values for V. nilotica calculated among eight days at Turkana Boma in 

2005 were extremely variable ranging from 0.17 to 0.98 (high resolution) and 0.36 to 

0.99 (low resolution) (Table 5.12c). Visitor assemblages differed most when 
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compared between the 23' or 24th  June and other sampling days (Table 5.12c). On 

these days flies formed greater proportions of visits than bees (Table 5.21d) whilst on 

all other days bees formed the largest proportion of visits (Table 5.2 Id). Most bee 

visitors were megachilids, with other apid bees visiting on 12th  and 13th  July (Table 

5.21d). 

Table 5.12 Proportional similarities of floral visitor assemblages for V. nilotica between days 
at (a) Turkana Boma in 2004, (b) at Junction in 2004 and (c) at Turkana Boma in 2004, with 
visitors grouped at (i) a higher taxonomic resolution and (ii) a lower taxonomic resolution. A 
value of 1 indicates maximum similarity and a value of 0 represents no overlap in visitor 
assemblages. 

(a) Between days at Turkana Boma in 2004 
(i) 

22' 	June 16th July 

21st June 0.70 0.72 

22 ni, June 0.91 

(b) Between days at Junction in 2004 
(i) 

10th Sep 17th Sep 

30th June 0.06 0.04 
10th Sep 

10.75 

22 nd  June 16"July 

21st June 0.91 0.89 

22 nd June 0.95 

Sep 17th Sep 

June 0.03 0.24 
10th Sep 

0.75 

(c) Between days at Turkana Boma in 2005 
(i) 

23 24th 28th 29th 30th 12th 13th 14th 

June June June June June July July July 
21st June 0.32 0.55 0.68 0.67 0.70 0.76 0.68 0.68 
23' June 0.71 0.17 0.16 0.19 0.36 0.25 0.39 
24th June  0.43 0.41 0.47 0.57 0.49 0.55 
28th June 0.98 0.93 0.54 1 	0.58 0.90 
291h June 0.92 0.54 0.59 0.57 
301h June 0.56 0.57 0.56 
12th July _______ ______ _______ ______ _______ ______ 0.75 0.69 
13th July  0.66 

23rd 24th 28th 29th 30th 12th 13th 14th 

June June June June June July July July 
21st June 0.40 0.56 0.84 0.83 0.86 0.87 0.84 0.76 
23 	June 0.81 0.36 0.35 0.39 0.53 0.37 0.29 
24 th  June 1   0.53 0.53 0.58 0.69 0.54 0.46 

June  0.99 0.93 1 	0.77 0.98 0.93 
291h June 0.93 0.76 0.97 0.93 
30th June  0.80 0.95 0.86 
12 th  July ______ ______ ______ ______ ______ ______ 0.78 0.70 
13th July  0.92 
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(c) Comparison of conspecific visitor assemblages between sites 

(i) S. brevispica 

Flies and bees were the most frequent visitors to flower heads of S. brevispica 

at all sites (Table 5.18). Calliphorid flies were the most common fly taxa at all sites, 

whilst bees were a mixture of apids, colletids, halictids and megachilids in varying 

proportions (Table 5.18). Visitor assemblages were most similar between Junction 

and High Dam in 2005 at both taxonomic resolutions (Table 5.13). The trees at these 

sites were all sampled during June and July 2005. The PS values were much lower in 

comparisons between Turkana Boma in 2004 (July-Sep) and Junction and High Dam 

in 2005, although seasonal variation and variation between years might have 

contributed to differences between sites (Table 5.13). The visitor assemblages at 

High Dam in 1999 were most similar to the 2005 data at both Junction and High 

Dam at the lower taxonomic resolution (Table 5.13). PS values at the higher 

taxonomic resolution were much lower, probably due to the large number of halictid 

bees observed in 1999 (Table 5.18). 

Table 5.13 Proportional similarities of floral visitor assemblages for S. brevispica between 
sites with visitors grouped at (i) a higher taxonomic resolution and (ii) a lower taxonomic 
resolution. A value of 1 indicates maximum similarity and a value of 0 represents no overlap 
in visitor assemblages. TB: Turkana Boma, HD: High Dam and J: Junction 

TB 
2004 

HD 
2005 

J 
2005 

HD 1999 0.25 0.26 0.34 
TB 2004  0.43 0.36 
HD 2005  0.63 

TB 
2004 

HD 
2005 

J 
2005 

HD 1999 0.58 0.83 0.86 
TB 2004  0.43 0.49 
HD 2005  0.86 

(ii) V. nilotica 

Bees were the main visitors to V. nilotica in all years at Turkana Boma. At 

Junction, the proportions of flies and bees were approximately equal (Table 5.14). 

When the visitor assemblages at Junction were compared with those at Turkana 

Boma in all three years, the PS values were relatively high at the lower taxonomic 

resolution (Table 5.21a). The PS values were lower when visitor assemblages were 

compared at the higher taxonomic resolution (Table 5.14). Bee visitors at Turkana 

Boma were mainly megachilids in 2004 and 2005, and halictids in 1999 (Table 
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5.21a). Bee visitors at Junction in 2004 were mainly megachilids with small 

proportions of apid bees (Table 5.21 a). 

Table 5.14 Proportional similarities of floral visitor assemblages for V. nilotica between sites 
with visitors grouped at (i) a higher taxonomic resolution and (ii) a lower taxonomic 
resolution. A value of 1 indicates maximum similarity and a value of 0 represents no overlap 
in visitor assemblages. TB: Turkana Boma, J: Junction 

Junction 
2004 

TB 
2005 

TB 
1999 

TB 2004 0.45 0.85 0.32 
J 2004  0.50 0.21 

TB 2005  0.27 

Junction 
2004 

TB 
2005 

TB 
1999 

TB 2004 0.60 0.93 0.91 
J 2004  0.66 0.65 

TB 2005  0.96 

(d) Comparison of conspecific visitor assemblages between years 

Similarities in visitor assemblages for S. brevispica were greatest between 

2004 and 2005 at the high taxonomic resolution, although assemblages were most 

similar between 1999 and 2005 at the lower taxonomic resolution (Table 5.15, 

5.18a). Visitor assemblages were similar across years for V gerrardii, with relatively 

high PS values at both taxonomic resolutions (Tables 5.16, 5.20a). 

Whilst the specific bee taxa visiting V. nilotica, mostly megachilid bees, were 

similar between years in 2004 and 2005, resulting in high PS values (Tables 5.17, 

21 a), there was greater variation between 1999 and 2004-2005 in terms of specific 

bee taxa (Tables 5.17, 5.21a). Whereas megachilid bees dominated bee visits in 2004 

and 2005, the main bee visitors in 1999 were halictids (Table 5.21a). 

Table 5.15 Proportional similarities of floral visitor assemblages for S. brevispica between 
years, with visitors grouped at (i) a higher taxonomic resolution and (ii) a lower taxonomic 
resolution. A value of 1 indicates maximum similarity and a value of 0 represents no overlap 
in visitor assemblages. 

2004 

 

1999 0.25 
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Table 5.16 Proportional similarities of floral visitor assemblages for V. gerrardii between 
years, with visitors grouped at (i) a higher taxonomic resolution and (ii) a lower taxonomic 
resolution. A value of 1 indicates maximum similarity and a value of 0 represents no overlap 
in visitor assemblages. 

1999 

2004 1 0.83 

Table 5.17 Proportional similarities of floral visitor assemblages for V. nilotica between years, 
with visitors grouped at (i) a higher taxonomic resolution and (ii) a lower taxonomic 
resolution. A value of 1 indicates maximum similarity and a value of 0 represents no overlap 
in visitor assemblages. 

2004 2005 

1999 0.29 0.27 

2004 0.80 

2004 2005 

1999 0.92 0.96 
2004 0.93 

5.3.3 Do acacia species share floral visitors and do their visits 

represent a significant proportion of all visits? 

(a) Shared visitor species 

Of the visitor species caught on flower heads, 24 bee, 22 wasp, 26 fly, 12 

beetle, six butterfly and one moth species were found on more than one acacia 

(Appendix 6). Four bee species, Apis me11fera, Braunsapis ?bouyssoui, Macro galea 

candida and Pseudapis (Pseudapis) sp. 1, were caught on all six acacias. Three bees, 

Plebeina hildebranti, Megachile (Chalicodoma) sp. 1, Megachile (Chalicodoma) 

sp. 2, two wasps, Cerceris sp. I and Cerceris sp. 2, four flies, Rhyncomyaforcipata, 

Musca lusoria, Eristalinus taeniops and Phytomia incisa, and one butterfly, Azanus 

jesous, were caught on five acacias (Appendix 6). 

Although visitor species were found on multiple acacias, the capture data 

gives no information regarding the frequency of visits, or the similarity of visitor 

assemblages between species. These have to be compared at lower taxonomic 

resolutions using the detailed observation data. 



Table 5.18 Variation in insect taxa visiting flower heads of S. brevispica. Data are percentage of total visitation by all taxa contributed by a particular taxon. Data presented are 
the variation (a) between sites and years (HD: High Dam, TB: Turkana Boma, J: Junction), (b) between days at Turkana Boma in 2004, (c) between days at High Dam in 2005 
and (d) between days at Junction in 2005. 

Total 
bees 

Apis 
mellifera 

other 
Apidae Colletidae Halictidae Megachilidae Total  

Diptera Calliphoridae Syrphidae Bombyliidae wasp Coleoptera Lepidoptera 
Total 
flower 
visits 

HD 1999 41.7 0.3 0.2 0.0 41.3 0.0 51.1 46.6 4.4 0.1 4.4 0.4 2.3 1308 
TB 2004 78.8 24.8 4.4 12.4 16.8 8.0 10.2 1.5 0.0 0.0 8.8 0.7 1.5 137 
HID 2005 24.9 3.8 0.7 10.0 1.1 6.2 51.9 13.4 9.6 0.0 6.2 0.2 16.5 551 
J2005 27.8 0.0 0.2 4.2 1.3 21.1 51.5 21.2 12.5 0.0 17.8 15.0 3.1 546 

Total 
bees 

Apis 
meilifera 

other 
Apidae Colletidae Halictidae Megachilidae Total 

Diptera Calliphoridae Syrphidae Bombyliidae wasp Coleoptera Lepidoptera 
Total 
flower 
visits 

21stJuly 75.7 0.0 0.0 23.0 31.1 8.1 5.4 1.4 0.0 0.0 16.2 1.4 1.4 74 
18tI Aug 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 
201h Aug 67.7 51.6 0.0 2.6 3.1 16.1 32.3 3.2 4.0 0.0 5.7 0.0 3.5 31 
6th Sep 96.0 44.0 24.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 25 

Total 
bees 

Apis 
mellifera 

other 
Apidae Colletidae Halictidae Megachilidae Total CalliDiptera phoridae Syrphidae Bombyliidae wasp Coleoptera Lepidoptera 

Total 
flower 
visits 

25 May48.6 28.6 0.0 2.9 0.0 17.1 40.0 8.6 11.4 0.0 0.0 2.9 2.9 35 
13 June17.7 0.0 1.4 5.4 2.0 8.8 58.5 11.2 6.8 0.0 6.5 0.0 17.3 294 
17 June21.4 0.0 0.0 19.4 0.0 1.9 68.0 35.9 6.8 0.0 1.0 0.0 9.7 103 
27th June 38.7 9.2 0.0 15.1 0.0 0.0 25.2 0.8 18.5 0.0 11.8 0.0 24.4 119 
(d 

Total 
bees 

Apis 
me/lifera 

other 
Apidae Colletidae Halictidae Megachilidae Total  

Diptera Calliphoridae Syrphidae Bombyliidae wasp Coleoptera Lepidoptera 
Total 
flower 
visits 

20th May 13.2 0.0 0.7 11.2 0.0 1.3 40.1 0.7 9.9 0.0 39.5 2.6 2.6 152 
24th May 0.0 0.0 0.0 0.0 0.0 0.0 85.4 24.4 24.4 0.0 14.6 0.0 0.0 41 
7th July 56.4 0.0 0.0 2.6 3.1 49.3 33.0 26.4 4.0 0.0 5.7 0.0 3.5 227 
8th July 3.2 0.0 0.0 0.0 0.0 0.8 87.3 35.7 27.0 0.0 2.4 2.4 4.0 126 



Table 5.19 Variation in insect taxa visiting flower heads of (a) V. drepanolobium across days at Turkana Boma (TB) and Junction in 2004 and (b) V. etbaica 
across days at Turkana Boma in 2004. Data are percentage of total visitation by all taxa contributed by a particular taxon. 

Total 
bees 

APis 
mellifera 

other 
Apidae Colletidae Halictidae Megachilidae i 	Total 

Diptera Calliphoridae Syrphidae Bombyliidae wasp Coleoptera Lepidoptera 
Total 
flower 
visits loth Sep 

Junction 93.8 0.0 0.0 1.8 0.0 3.6 1.8 1.8 0.0 0.9 0.0 0.0 112 
13th Sep 

TB 91.9 88.1 0.0 0.0 0.0 1.7 4.2 3.3 0.0 0.6 3.9 0.0 0.0 360 
17th Sep 

Junction 90.8 43.4 21.1 0.0 6.6 19.7 3.9 0.0 3.9 0.0 2.6 0.0 1.3 76 

bees
Total Apis 

mra 
other 

e 
Colletidae Halictidae Megachilidae 1 	Total 

Diptera Calliphoridae Syrphidae Bombyliidae wasp Coleoptera Lepidoptera 
Total 
flower 
visits 

21st Aug 80.5 2.4 36.6 0.0 4.9 36.6 19.5 0.0 0.0 0.0 0.0 0.0 0.0 41 th 27 Aug 98.7 12.7 84.8 0.0 0.0 1.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0 79 13th Sep 41.8 1.8 0.0 0.0 0.0 30.9 	- 52.7 32.7 0.0 0.0 3.6 0.0 1.8 55 



Table 5.20 Variation in insect taxa visiting flower heads of V. gerrardii. Data are percentage of total visitation by all taxa contributed by a particular taxon. Data 
presented are the variation (a) between years, (b) between days and sites in 1999 and (c) between days and sites in 2004 (TB: Turkana Boma). 

me'iera bees
visits 

other
0a Colletidae 	Halictidae 	Megachilidae 	Dp

pis 
Calliphortdae 	Syrphidae 	Bombyliidae 

Total 
wasp 	Coleoptera 	Lepidoptera 	flower 

1999 	24.1 4.6 0.1 0.0 	16.3 	2.3 	54.0 	47.5 	4.2 	0.0 9.9 	1.7 	10.3 	6269 
2004 	12.7 0.0 0.0 0.2 	2.8 	5.5 	64.1 	39.9 	2.5 	5.9 12.5 	5.3 	4.7 	471 

Total 
bees 

Apis 
mellifera 

other 
Apidae Colletidae Halictidae Megachilidae Total 

Diptera Calliphoridae Syrphidae Bombyliidae wasp Coleoptera Lepidoptera 
Total 
flower 
visits 

6th June 
Mongoose 13.5 0.0 0.0 0.0 13.5 0.0 42.9 29.6 6.2 0.0 21.3 3.6 18.7 1951 

12th June 
Mongoose 34.0 6.6 0.0 0.0 22.4 5.0 48.9 46.0 2.9 0.0 6.6 1.1 9.4 2697 

16th June 
High Dam 36.2 23.1 0.9 0.0 10.3 1.7 62.9 52.3 9.6 0.0 0.7 0.2 0.0 458 

17 t)  June 
High Dam 10.2 0.5 0.3 0.0 2.1 0.2 87.7 0.0 0.3 0.0 0.9 0.5 0.5 666 

21"  June 
TB 19.2 0.0 0.0 0.0 19.2 0.0 73.9 0.0 4.1 0.0 3.2 0.0 3.7 437 

56, 

Total pis 
me'iera 

other Colletidae Halictidae Megachilidae 
DTpa bees

visits 
Calliphoridae Syrphidae Bombyliidae wasp Coleoptera Lepidoptera 

Total 
flower 

.28th July 

.High Dam 15.1 0.0 0.0 0.3 3.3 6.5 55.6 38.0 3.0 6.5 14.1 3.3 5.5 397 
01h j .3 	uly 

0.0 0.0 0.0 0.0 0.0 0.0 76.9 46.2 0.0 3.1 4.6 18.5 0.0 65 

18"  Aug 
0.0 0.0 0.0 0.0 0.0 0.0 100.0 77.8 0.0 0.0 0.0 0.0 0.0 9 



Table 5.21 Variation in insect taxa visiting flower heads of V. nilotica. Data are percentage of total visitation by all taxa contributed by a particular taxon. Data 
presented are the variation (a) between sites and years (TB: Turkana Boma, J: Junction), (b) between days at Turkana Boma in 2004 and (c) between days at 
Junction in 2004. 

Total 
bees 

Apis 
mellifera 

other 
Apidae 

Colletidae Halictidae Megachilidae Total  
Diptera Calliphoridae Syrphidae Bombyliidae wasp Coleoptera Lepidoptera 

Total 
flower 
visits 

TB 1999 74.7 1.6 1.0 0.0 55.1 16.9 15.5 15.5 0.0 0.0 0.6 9.2 0.0 490 
TB 2004 83.8 1.4 0.0 0.0 8.5 73.2 10.6 8.8 0.0 0.0 0.0 5.6 0.0 284 
TB 2005 77.9 0.1 1.6 0.1 0.2 69.4 16.2 3.4 11.7 0.0 0.9 4.9 0.1 1391 
J 2004 47.0 0.0 14.2 0.0 0.0 32.1 46.3 38.1 0.7 6.0 0.0 2.2 0.0 137 

Total 
bees 

Apis 
mellifera 

other 
Apidae Colletidae Halictidae Megachilidae Total 

Diptera Calliphoridae Syrphidae Bombyliidae wasp Coleoptera Lepidoptera 
Total 
flower 
visits 

21't  June 	79.2 3.2 0.0 0.0 16.8 59.2 9.6 8.8 0.0 0.0 0.0 11.2 0.0 125 
22 d  June 	88.5 0.0 0.0 0.0 1.0 85.6 9.6 6.7 0.0 0.0 0.0 1.9 0.0 104 

Ih 16July 	85.5 0.0 0.0 0.0 3.6 81.8 14.5 12.7 0.0 0.0 0.0 0.0 0.0 57 

Total 
bees 

Apis 
mellifera 

other 
Apidae 

Halictidae TotalColletidae Megachilidae Diptera Calliphoridae Syrphidae Bombyliidae wasp Coleoptera Lepidoptera 
Total 
flower 
visits 

30th July 3.4 0.0 0.0 0.0 0.0 0.0 88.5 88.5 87.9 1.7 0.0 3.4 0.0 58 
loth Sep 92.9 0.0 32.1 0.0 0.0 60.7 0.0 0.0 0.0 0.0 0.00.0 0.0 28 
17th Sep 75.0 0.0 20.8 0.0 0.0 54.2 16.7 0.0 0.0 16.7 0.0 2.1 0.0 48 



Table 5.21 (cont.) Variation in insect taxa visiting flower heads of V nilotica. Data are percentage of total visitation by all taxa contributed by a particular taxon 
Data presented are the variation (a) between sites and years (TB: Turkana Boma, J: Junction), (b) between days at Junction in 2004 and (c) between days at 
Turkana Boma in 2005. 
(d 

Total 
bees 

Apis 
mellifera 

other 
Apidae Colletidae Halictidae Megachilidae Total 

Diptera Calliphoridae Syrphidae Bombyliidae wasp Coleoptera Lepidoptera 
Total 
flower 
visits 

21s June 76.4 3.6 0.0 0.0 0.0 60.0 5.5 0.0 5.5 0.0 0.018.2 0.0 55 
23 June29.0 0.0 0.0 0.0 0.0 8.5 65.9 18.2 46.0 0.0 0.0 5.1 0.0 176 
24th June 45.8 0.0 0.0 0.8 0.0 34.4 47.3 8.4 38.9 0.0 2.3 4.6 0.0 131 
28 June92.6 0.0 0.0 0.0 0.0 91.8 3.0 0.4 2.6 0.0 0.0 4.3 0.0 231 
291h June 93.1 0.0 0.0 0.0 0.0 91.6 2.5 0.0 0.0 0.0 0.5 3.9 0.0 407 
3othJune 86.5 0.0 0.0 0.0 0.0 86.1 6.4 1.2 5.2 0.0 3.2 4.0 0.0 251 
12 h  69.869.8 0.0 9.3 0.0 0.0 46.5 18.60.0 7.0 0.0 0.0 11.6 0.0 43 
131h July 91.9 0.0 24.3 0.0 4.1 52.7 5.4 0.0 1.4 0.0 0.0 2.7 0.0 74 
14th July 95.7 0.0 0.0 0.0 0.0 44.8 0.0 0.0 0.0 0.0 0.0 0.0 3.4 23 
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(b) Similarity of visitor assemblages among acacia species 

Overall, there were greater similarities among species' visitor assemblages in 

the 1999 data set than the 2004-5 data set. This could be due in part to the timescales 

over which data were collected. The 1999 data were collected over a period of three 

weeks whereas the 2004-5 data set comprised trees sampled between June 2004 and 

July 2005. There is therefore a greater likelihood that similar visitor taxa were 

present throughout the 1999 data set, than for the 2004-5 data. 

When bees and flies were classed to family level, S. brevispica and V. 

gerrardii had the most similar visitor assemblages in both data sets (Tables 5.22, 

5.23). These species had similar proportions of visits from calliphorid flies and 

megachilid bees in the 2004-5 data set and similar proportions of visits from halictid 

bees, calliphorid flies and syrphid flies in the 1999 data set (Tables 5.4, 5.5). No 

other pairs of species had visitor assemblages with a PS of greater than 0.5 at the 

higher taxonomic resolution in 2004-5. In the 1999 data set, V. hockii had similar 

visitor assemblages to both S. brevispica and V. gerrardii (Table 5.23). All three 

species had similar proportions of visits from halictid bees, calliphorid flies and 

syrphid flies (Table 5.5). The assemblages of S. brevispica and V nilotica were 

relatively similar in 1999, with a PS of 0.58 (Table 5.23). 

When all visitors were classed at the lower taxonomic resolution there were 

greater similarities among more pairs of species in the 2004-5 data set (Table 5.22). 

Four species had very similar visitor assemblages at this resolution: V etbaica, V. 

drepanolobium, S. mellifera and V. nilotica (Table 5.22). All of these species had 

high proportions of bee visits (Table 5.4). 

For most species pairs in the 1999 data set there was little difference between 

the PS values calculated using the different taxonomic groupings (Table 5.23). 
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Table 5.22 Proportional similarities of floral visitor assemblages between all species sampled 
in 2004 and 2005 with visitors grouped at (i) a higher taxonomic resolution (ii) a lower 
taxonomic resolution. A value of 1 indicates maximum similarity and a value of 0 represents 
no overlap in visitor assemblages. Values greater than 0.5 are in bold. 
(i) 

E 
-Q 

CU  

S. brevispica 0.16 0.30 0.60 0.28 0.36 
V. drepanolobium  0.18 0.14 0.22 0.14 
V. etbaica  0.30 0.40 0.17 
V. gerrardll  0.14 0.28 
S. mellifera  0.22 
V. nilotica  

E 
-Q 
0 

(33 . 
CZ 

CU 
'.... 

- (3) 0) 

S. brevispica 0.40 0.56 0.76 0.41 0.51 
V. drepanolobium  0.82 0.20 0.72 0.82 
V. etbaica  0.36 0.72 0.95 
V. gerrardll  0.17 0.36 
S. mellifera  0.71 
V. niotica  

Table 5.23 Proportional similarities of floral visitor assemblages between all species sampled 
in June 1999 with visitors grouped at (i) a higher taxonomic resolution (ii) a lower taxonomic 
resolution. A value of 1 indicates maximum similarity and a value of 0 represents no overlap 
in visitor assemblages. Values greater than 0.5 are in bold. 
(i) 	 (ii) 

ci) 0 
0) - 

S. brevispica 0.75 0.67 0.58 
V. gerrardll  0.69 0.38 
V. hock/i  0.33 
V. niotica  

13 CU 

(3) 
0) - 

S. brevispica 0.82 0.68 0.58 
V. gerra rd/i  0.71 0.42 
V. hock/i  0.32 
V._niotica  



Chapter 5. Daily patterns of visitation to acacia flower heads 	 166 

5.3.4 Do daily patterns of visitation vary within and between acacia 

species? 

Overall visitation patterns 

All acacia trees had fewer visits at the start and end of the sampling day, and 

a visitation peak between approximately 9.00 and 16.00 (Table 5.24, Figs. 5.1-5.2, 

5.4-5.6, 5.8-5.9). Some trees had a single clear overall visitation peak, whilst others 

had several peaks of visitor activity. Few visits were observed on any species before 

8.00, although one V. nilotica tree sampled at Turkana Boma on 7th  June 1999 had a 

large number of visits in the first observation period, between 6.40 and 7.10 (Fig. 

5.8a). All but one of these 27 visits were from calliphorid flies, and bees did not visit 

until later in the day. 

Visitation patterns varied across trees in all species (Fig. 5.1). Peak visitation 

for V. gerrardii and V. nilotica varied between 10.00 and 15.30-16.00 (Fig. 5. 1, 

Table 5.24). Peak visitation for S. brevispica varied between 12.00 and 16.00 and for 

V. drepanolobium between 9.00 and 12.30. Visitation patterns varied least for V. 

etbaica, with visitation peaks occurring between 11.30 and 14.00 in all trees. 

Daily temporal patterns of visitation to flower heads were not noticeably 

different between species (Figs. 5.2, 5.4-5.6, 5.8-5.9). Visitation peaks for all except 

V. hockii occurred within a similar time window, although there was least overlap 

between S. brevispica and V. drepanolobium (Fig. 5.1). Species with more samples 

had the greatest variation in peak visitation times among trees and the increased 

variation could be because more trees were sampled (Table 5.24). 

Variation in visitation patterns among visitor taxa 

Bees were the main visitors to V. drepanolobium, V. etbaica and V. nilotica 

(Tables 5.4, 5.5). Senegalia brevispica, V. gerrardii and V. hockii all received large 

proportions of visits from flies and bees (Tables 5.4, 5.5). Flies were often active 

before bees and tended to visit flower heads over a longer time period, arriving 

earlier in the morning (Figs. 5.3, 5.5, 5.7), and on some days remaining on flower 

heads after bees had finished visiting (Figs. 5.3e, f, 5.7c, d). In all three species, the 
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maximum visitation rate for flies usually occurred earlier in the day than for bees 

(Figs. 5.3, 5.5, 5.7). 

Bee and fly visitation patterns were not significantly different in individual V. 

hockii or S. brevispica trees. Bee and fly visitation patterns were significantly 

different for one V. gerrardii tree on 17th  June 1999 at High Dam (Kolmogorov-

Smirnov two-sample test: Z=2.000, N=8, p.<0.001), however there were no 

significant differences between fly and bee visitation patterns in other V. gerrardii 

trees. 

Table 5.24 The range of times over which peak visitation occurred for all visitors, bees and 
flies, for all trees of each acacia species. Flies formed fewer than 5% of visits for V. 
drepanolobium. 

Number of 
trees sampled 

Time of peak 
visitation 

Time of peak 
bee visitation 

Time of peak 
fly visitation 

S. brevispica 19 12.00-16.00 10.00-16.30 8.00-16.30 
V. drepanolobium 3 9.00-12.30 9.00-12.30 - 

V. etbaica 3 11.30-14.00 1130-14.00 11.30-14.00 
V. gerrardii 11 10.00-16.00 10.00-15.00 10.00-16.00 
V. hockii 1 8.30-9.00 12-30-13.00 8.30-9.00 
V. niotica 25 (7.00) 10.00-15.30 10.00-15.30 6.40-15.30 

S. brevispica 

V. drepanolobium 

V. etbaica 

V. gerrardii 

V. hockii 

V. niotica 

6 	8 	10 	12 	14 	16 

Time 

Figure 5.1 The range of times over which peak visitation occurred for all visitors (black), bees 
(red) and flies (blue) for all trees of each acacia species. The star indicates that peak 
visitation for a single V. niotica tree occurred at a very different time in comparison to all 
other trees of the same species. 
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(ii) Variation between trees sampled on the same day 

Conspecific trees sampled on the same day generally had similar patterns of 

visitation in S. brevispica, V. gerrardii and V. nilotica (Figs. 5.2, 5.6, 5.8a, 5.9). 

Some trees sampled on the same day had different visitation patterns. For example, 

the peak visitation rates for two S. brevispica trees sampled on 7th  July 2005 occurred 

at approximately 12.00 and 15.30 (Fig. 5.2b) and the peak visitation rates for two 

trees sampled at High Dam on 13th  June 2005 occurred at approximately 12.00 and 

14.00 (Fig. 5.2c). Peak visitation for flies and bees occurred at similar times to the 

overall peak in all four trees therefore differences between trees were not due to 

differing  visitation patterns between the two visitor groups (e.g. 5.3b, e). There were 

no significant differences between the visitation patterns of conspecific trees sampled 

at the same site on the same day for S. brevispica, V. gerrardii or V. nilotica. 

(c) Variation for individual trees between days 

Most trees sampled on multiple days showed similar visitation patterns across 

days, although for some trees peak visitation occurred at slightly different times on 

different days (Table 5.25, Figs. 5.2b, 5.4a, 5.6a, 5.8c, 5.9). 

Table 5.25 Individual trees sampled for visitors on multiple days and the approximate times 
at which peak visitation rates occurred 

Tr Approximate 
Species Site 

n umber u 	e 
Dates sampled time of peak 

visitation 
S. brevispica Junction tree 1 7th and 8th  July 2005 13.00, 15.30 

tree 2 7th and 8th  July 2005 12.00, 13.00 
V. drepanolobium Junction tree 1 10th and 17th  Sep 2004 12.00 for both 

V. gerrardii Mongoose tree 1 6th and 12th  June 1999 10.00, 15.00* 
V. nilotica Junction tree 1 30th July 2004 11 .30, 13.00, 

lath and 17th  Sep 2004 14.00 
Turkana Boma tree 1 th 21st June, 	June & 12.00, 10.00, 

14th July 2005 12.00 
Turkana Boma tree 2 23rd  June, 	June, 10.00, 13.00, 

28 	June, 29th  June & 13.00, 13.00, 
30t June  2005 10.00 

Turkana Boma tree 3 23d June, 24th  June, 13.00, 15.30, 
28th June, 29t1  June, 13.00, 13.00, 
12th July & 13th July 13.30, 11.00 
2005 

* On 6u1  June 1999 sampling did not continue past 14.00, however visitation patterns on both 
days were similar until approximately 13.00 (Fig. 5.8a) 
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(d) Variation between sites and years 

For most species there are not enough samples to meaningfully compare 

visitation patterns between years or sites. Climatic variation will also affect patterns 

of visitation between days and across seasons. The species with the greatest number 

of samples at a single site was V. nilotica at Turkana Boma. There was no evidence 

of significant variation in visitation patterns between trees sampled in 1999, 2004 

and 2005 (Figs. 5.8, 5.9). Visitation patterns for S. brevispica and V. gerrardii were 

not noticeably different across years (Figs. 5.2, 5.6). 
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gth June 1999, tree 5 (69/13) 
9n June 1999, tree 6 (140/6) 
9th June 1999, tree 7 (47/13) 

19, 

P-  20th May 2005 (34/18) 
July 2005, tree 1 (38/20) 

7th July 2005, tree 2 (34/17) 
8 July 2005, tree 1 (36/25) 
8th July 2005, tree 2 (27/26) 

8 	10 	12 	14 	16 	18 

(c) 
	

Time 

i— 	13th June 2005, tree 1 (32/13) 
p-  13th June 2005, tree 2 (46/39) 
p-  17th June 2005 (19/20) 

27th June 2005, tree 3 (26/23) 
27' June 2005, tree 4 (7/7) 

6 	8 	10 	12 	14 	16 	18 
Time 

Fig. 5.2 Patterns of visitation to flower heads of S. brevispica (a) on 9" June 1999 at High Dam, 
(b) in 2005 at Junction and (C) in 2005 at High Dam. Data shown are the proportion of the maximum 
number of visits. The figures in brackets indicate the maximum number of visits per tree followed by 
the number of flowers observed. Trees are numbered to distinguish between multiple trees of the 
same species sampled at the same location, or to indicate trees that have been sampled on multiple 
days. 
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(a) 	 (30) 	(56) 
	 (b) 	 (5) (31) 

Fig. 5.3 Patterns of visitation to flower heads of S. brevispica by flies (blue line) and bees (red line) 
(a) for tree 1 on 91h  June 1999 at High Dam, (b) for tree 2 on 7th  July 2005 (c) for tree 3 on 9th  June in 
2005 at High Dam, (d) on 20th  May 2005 at Junction, (e) for tree 1 on 13th  June 2005 at High Dam 
and (f) on 17th  June 2005 at High Dam. Data shown are the proportion of the maximum number of 
visits for that taxon. The figures above peaks show the maximum number of visits for each taxon. 
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(a) 

 

lOu' Sep 2004, tree 1 (66/50) 
13' Sep 2004, tree 2 (103/60 
17m Sep 2004, tree 1 (76/45) 

Time 

 

(b) 

 

21st Aug 2004 (17/45) 
27th Aug 2004 (46/47) 
13" Sep 2004 (19/31) 

Time 

 

Fig. 5.4 Patterns of visitation to flower heads of (a) V. drepanolobium at Turkana Boma and Junction 
sites and (b) V. etbaica at Turkana Boma in 2004. Data shown are the proportion of the maximum 
number of visits. The figures in brackets indicate the maximum number of visits per tree followed by 
the number of flowers observed. Trees are numbered to distinguish between multiple trees of the 
same species sampled at the same location, or to indicate trees that have been sampled on multiple 
days. 
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(a) 

June 1999 (48/30) 

6 	8 	10 	12 	14 	16 	18 

Time 
(48) 	 (27) 

Time 

Fig. 5.5 (a) Patterns of visitation to flower heads of V. hock//at on 17t  June 1999 at High Dam. Data 
shown are the proportion of the maximum number of visits. The figures in brackets indicate the 
maximum number of visits per tree followed by the number of flowers observed. 
(b) Patterns of visitation to flower heads of V. hockll by flies (blue line) and bees (red line) on 
17th June 1999 at High Dam. Data shown are the proportion of the maximum number of visits for 
that taxon. The figures above peaks show the maximum number of visits for each taxon. 
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(a 

 

6ll June1999, tree 1 (393/24) 
- 12tr June  1999,  tree  1  (230/20) 
.- 

 
12t"June 1999, tree 2 (196/15) 
17th June 1999, tree 3(118/18) 

Time 

 

	

- 	28th July 2004, tree 1 (35/18) 

	

-.--- 	28th July 2004, tree 2 (59/27) 

Time 

Fi. 5.6 Patterns of visitation to flower heads of V. gerrardii (a) in June 1999 at Mongoose (6Th  and 
h June) and High Dam (16th  and 17th  June), and (b) 	28th 12 	July 2004 at Junction. Data shown are 

the proportion of the maximum number of visits. The figures in brackets indicate the maximum 
number of visits per tree followed by the number of flowers observed. Trees are numbered to 
distinguish between multiple trees of the same species sampled at the same location, or to indicate 
trees that have been sampled on multiple days. 
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Fig. 5.7 Patterns of visitation to flower heads of V. gerrardii by flies (black line) and bees (red line) 
(a) for tree 1 on 

12th 
 June 1999 at Mon ,00se, (b) on 

6th 
 June 1999 at Mongoose (c) for tree 2 on 

l2t" June 1999 at Mongoose, (d) on 17June 1999 at Junction, (e) for tree 1 on 28 th 
 July 2004 at 

High Dam and (f) for tree 2 on 28th 
 July 2004 at High Dam. Data shown are the proportion of the 

maximum number of visits for that taxa. The figures above peaks show the maximum number of 
visits for each taxa. 
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(a) 

 

June 1999, tree 4 (29/23) 
,. 

 
7"' hJj 	1999, tree 5(34/11) 

_ 	7th June 1999, tree 6 (27/12) 

Ti me 

191 

 

21St June 2004 (36/10) 
s— 	22 nd  June 2004 (38/15) 
'- 	16t'July 2004 (21/13) 

6 	8 	10 	12 	14 	16 	18 

Time 
(C) 

U) 
U) 
> 
4- 
0 
C 
0 

0 
0 
2 
CL 

Time 

S 	3Oth July  2004  tree  l  (21/21) 
S 

 

10" Sep 2004, tree 1 (13/5) 
'- l7 Sep 2004, tree 1 (19/14) 

Fig. 5.8 Patterns of visitation to flower heads of V. niotica (a) on 7 June 1999 at Turkana Boma, 
(b) in 2004 at Turkana Boma and (b) in 2004 at Junction. Data shown are the proportion of the 
maximum number of visits. The figures in brackets indicate the maximum number of visits per tree 
followed by the number of flowers observed. Trees are numbered to distinguish between multiple 
trees of the same species sampled at the same location, or to indicate trees that have been sampled 
on multiple days. 
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(a) 

6 	8 	10 	12 	14 	16 	18 

Time 

I Iflflfl 

(c) 

I- 	2lst June  2005,  tree  l  (15/12) 
23 June 2005, tree 2 (35/20) 
23rd  June 2005, tree 3 (19/14) 

4h  24t" June 2005, tree 2 (19/15) 
24t"June 2005, tree 3 (31/20) 

-- 28"'June 2005, tree 2 (44/25) ' 28"'June 2005, tree 3 (21/16) 
29th June 2005, tree 2 (104/41 

I 	29 July 2005, tree 3 (54/23) 

0th June 2005, tree 2 (42/31) 
30th June 2005, tree 1 (33/27) 
12th July 2005, tree 3 (23/12) 
13" July 2005, tree 3 (27/16) 

July 2005, tree 1 (9/17) 

IMI 

U) 

Mn  > 
4- 
0 

0 

0 
0 
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Fig. 5.9 Patterns of visitation to flower heads of V. nilotica at Turkana Boma in 2005. Data shown 
are the proportion of the maximum number of visits. The figures in brackets indicate the maximum 
number of visits per tree followed by the number of flowers observed. Trees are numbered to 
distinguish between multiple trees of the same species sampled at the same location, or to indicate 
trees that have been sampled on multiple days. 
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5.3.5 Do patterns of visitation track patterns of pollen availability in 

each acacia species? 

Peak bee visitation occurred at a similar time to or after maximum pollen 

availability in all acacia species except S. brevispica (Figs. 5.10-5.16). Maximum 

pollen availability for the two S. brevispica trees occurred after peak bee visitation, 

however bee visits increased as pollen availability increased and bees could have 

been harvesting pollen as it was released (Fig. 5.10). The bee visitation peak for V. 

drepanolobium corresponded extremely closely with the pollen availability peak for 

the tree sampled on 17th  September 2005 (Fig. 5.11). The pattern of pollen 

availability for the same tree on 10th  September 2004 was more variable, however 

peak bee visitation coincided with relatively high levels of pollen availability (Fig. 

5.11 a). The pollen availability peaks for both V. etbaica trees sampled occurred early 

in the day, and there was a four hour delay before bee visitation peaked on both days 

(Fig. 5.12a, b). 

Peak fly visitation occurred prior to peak pollen availability in S. brevispica, 

V. hockii and two V. gerrardii trees (Figs. 5.10, Fig. 5.12c, 5.13a, b). In V. etbaica, 

V. nilotica and the other four V. gerrardii trees peak fly visitation corresponded more 

closely with peak pollen availability (Figs. 5.12, 5.13c, 5.14, 5.15, 5.16). Patterns of 

fly visitation matched pollen availability more closely than did bees for two V 

gerrardii trees sampled on 28th  July 2004 (Fig. 5.14) and for V. etbaica on 21" 

August (Fig. 5.12a). However, there were only eight fly visits in total for V. etbaica 

on this day. 

The pollen availability patterns for the three V. nilotica trees sampled at 

Turkana Boma in 2004 were erratic, with no single clear peak of pollen availability 

(Fig. 5.15). Visitor patterns were more consistent, with most bee visits occurring 

between 11.00 and 15.00 (Fig. 5.15). On 21st  June and 16th  July bee visits 

corresponded to relatively high levels of pollen availability, however this was not the 

case on 22' June, as pollen availability peaked much later in the day (Fig. 5.15c). 

However, the pollen to anther ratio just before the bee visitation peak on this day was 

almost equivalent to that for peaks on other sampling days (Fig. 5.15). There were 

fewer fly visits for V. nilotica than for other species, but visits occurred at similar 

times to bees (Fig. 5.15). 
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Bee and fly visitation peaks corresponded to pollen availability peaks on all 

three days for the V. nilotica tree at Junction, although the pollen availability pattern 

was erratic on 17th  September 2004 (Fig. 5.16). 

(a) S. brevispica, tree 6, 9 June 1999, High Dam 
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Fig. 5.10 Patterns of pollen availability (blue) and visitation by flies (black) and bees (red) to flower 
heads of S. brevispica (a) tree 6 and (b) tree 5 on 

91h 
 June 1999 at High Dam. Data shown are the 

proportion of the maximum number of visits or amount of pollen available. The figures in brackets 
indicate the maximum number of visits or pollen to anther ratio. 
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(a) V. drepanolobium, tree 1, lO September 2004, 
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(b) V. drepanolobium, tree 1, 17m  September 2004, Junction 
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Fig. 5.11 Patterns of pollen availability (blue) and visitation by bees (red) to flower heads of 
V. drepanolobium (a) on 10th  September 2004 and (b) l7" September 2004 at Junction. Data shown 
are the proportion of the maximum number of visits or amount of pollen available. The figures in 
brackets indicate the maximum number of visits or pollen to anther ratio. 
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(a) V. etbaica, 21st  August 2004, 
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(b) V. etbaica, 13th September 2004, Turkana Boma 
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(c) V. hock/i, 17th  June 1999, High Dam 
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Fig. 5.12 Patterns of pollen availability (blue) and visitation by flies (black) and bees (red) to flower 
heads of (a) V. etbaica on 21st  August 2004, (b) V. etbaica 13th  September 2004 at Turkana Boma 
and (c) V. hock/ion 17th  June 1999 at High Dam. Data shown are the proportion of the maximum 
number of visits or amount of pollen available. The figures in brackets indicate the maximum number 
of visits or pollen to anther ratio. 
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(a) V. gerrardij, tree 1, 6th  June 1999, Mongoose 
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(b) V. gerrardil, tree 1, 12th  June 1999, Mongoose 
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Fig. 5.13 Patterns of pollen availability (blue) and visitation by flies (black) and bees (red) to flower 
heads of V. gerrardii (a) on 6th June 1999, (b) for tree 1 on 12th  June 1999 and (c) for tree 2 on 
12th June 1999 at Mongoose. Data shown are the proportion of the maximum number of visits or 
amount of pollen available. The figures in brackets indicate the maximum number of visits or pollen 
to anther ratio. 
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(a) V. gerrardii, tree 3, 17th June 1999, High Dam 
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(b) V. gerrardil, tree 1, 28 July 2004, High Dam 
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(C) V. gerrardil, tree 2, 28th  July 2004, High Dam 
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Fig. 5.14 Patterns of pollen availability and visitation to flower heads of V. gerrardii(a) on 17th June 1999, 
(b) for tree 1 on 28th  July 2004 and (c) for tree 2 on for tree 2 on 28' July 2004 at High Dam. Data shown are 
the proportion of the maximum number of visits or amount of pollen available. The figures in brackets 
indicate the maximum number of visits or pollen to anther ratio. 
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(a) V. nilotica, 1st  June 2004, Turkana Boma 
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(b) V. nilotica, 22 nd June 2004, Turkana Boma 
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(C) V. nilotica, 16t1  July 2004, Turkana Boma 
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Fig. 5.15 Patterns of pollen availability and visitation to flower heads of V. nilotica (a) on 21" June, 
(b) 22nd  June and (c) 16th July 2004 at Turkana Boma. Data shown are the proportion of the 
maximum number of visits or amount of pollen available. The figures in brackets indicate the 
maximum number of visits or pollen to anther ratio. 
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(a) V. nilotica, tree 1, 30h July 2004, Junction 
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(c) V. nilotica, tree 1, 17 t" September 2004, Junction 
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Fig. 5.16 Patterns of pollen availability and visitation to flower heads of V. nilotica (a) on 30th  July, 
(b) 10th  September and (c) 17th  September 2004 at Junction. Data shown are the proportion of the 
maximum number of visits or amount of pollen available. The figures in brackets indicate the 
maximum number of visits or pollen to anther ratio. 
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5.4 Discussion 

5.4.1 Do individual acacia species have characteristic floral visitor 

assemblages? 

The main visitor groups to acacia flower heads at Mpala were flies and bees. 

The visitor assemblages of V. drepanolobium, V. etbaica, S. mellifera and V. nilotica 

were dominated by bees whilst those of S. brevispica, V. gerrardii and V. hockii 

comprised large proportions of both bees and flies (Tables 5.4, 5.5). Other visitor 

groups formed relatively small proportions of the overall visitor assemblages for 

each species, although wasps were relatively frequent visitors to S. brevispica and V. 

gerrardii and Lepidoptera were relatively frequent visitors to S. brevispica and S. 

mellifera (Tables 5.4, 5.5). 

Most flies were calliphorids or syrphids, although several other fly taxa were 

observed visiting flower heads (Appendix 6). Fly species commonly caught on 

acacia flower heads included the calliphorids Rhyncomyaforcipata and Chrysomya 

chioropyga, the syrphids Phytomia incisa and Eristalinus taeniops and a newly 

described species of muscid fly, Pyre/ha acaciae (Appendix 6). Social bee visitors 

were Apis mellifera and Plebeina hildebranti. A wide diversity of solitary bee 

species visited acacia flower heads. Solitary species captured on flower heads of 

multiple acacias included megachilid bees in the genus Megachile, the apid bees 

Macro galea candida and Braunsapis ?bouyssoui, and a species in the genus 

Pseudapis (Halictidae) (Appendix 6). 

The diversity of visitor taxa observed in this study was similar to that 

recorded by Stone et al. (1996, 1998, 1999a) for an acacia assemblage at Mkomazi in 

Tanzania. The visitor assemblages for three of the Tanzanian acacias, V. 

drepanolobium, V. nilotica and S. senegal, were dominated by bees whilst those of V. 

tortilis and V. zanzibarica were a mixture of calliphorid flies and bees. The main 

visitors to V. drepanolobium and V. nilotica at Mkomazi were megachilid bees in the 

genus Megachile. Tybirk (1989) also recorded Megachile as frequent visitors of V. 

nilotica at another site in Kenya. The visitor assemblages for V. nilotica at Mpala 

were similarly dominated by species of Megachile. However, most visitors to V. 

drepanolobium during detailed observations at Mpala were Apis mellifera, with a 
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much smaller proportion of megachilid bee visits (Table 5.4). The other three acacias 

sampled at Mkomazi were either not found or not sampled at Mpala, although the 

visitor assemblages for V. tortilis and V. zanzibarica at Mkomazi, which were visited 

by almost equal proportions of bees and calliphorid flies, appeared similar to those 

for S. brevispica and V. gerrardii at Mpala. 

5.4.2 How variable are the floral visitor assemblages for individual 

acacia species? 

The proportions of visits contributed by different taxonomic groups varied 

among sampling days, between sites and between years in all acacia species. In 

general, conspecific trees sampled on the same day at the same site had similar 

visitor assemblages. There were also similarities among conspecific trees sampled at 

different sites at the same seasonal time for S. brevispica, V. drepanolobium, V. 

etbaica, V. gerrardii and V. nilotica (Tables 5.8-5.12). In addition, V. nilotica trees 

sampled at the same seasonal time at Turkana Boma in 2004 and 2005 had very 

similar visitor assemblages, with Megachile forming a large proportion of visits for 

most trees in both years. 

The taxonomic resolution at which visitor assemblages were compared 

inevitably affected the measured degree of similarity. Overall, there was less 

variation in visitor assemblages within each acacia species when visitors were 

grouped at higher taxonomic resolution. Decreases in similarity among visitor 

assemblages with bees and flies grouped to family reflected different contributions of 

specific fly and bee taxa to different trees. The abundances of potential visitor taxa 

are likely to vary in seasonal time so we might expect visitor assemblages to vary 

over weeks and months, but less so among days close together. However the results 

from this study indicate that floral visitor assemblages in individual acacia species 

can vary over periods of just a few days. 

5.4.3 Do acacias share floral visitors and do their visits represent a 

significant proportion of all visits? 

Ninety-one visitor species were caught on flower heads of multiple acacia 

species. These included bees, wasps, flies, beetles, butterflies and one species of 
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moth. The potential importance of these shared species as pollinators of each acacia 

species is unknown since no information on the frequency of visits or the visitation 

patterns are available for these species. Instead, the proportions of visits contributed 

by different visitor taxa had to be compared between species at lower taxonomic 

resolutions. 

Senegalia brevispica and V gerrardii had the most similar visitor 

assemblages among all species sampled in each of the 1999 and 2004-5 data sets. 

The visitor assemblage for V. hockii in 1999 was also similar to that of both S. 

brevispica and V. gerrardii, although this species was sampled on only one day. All 

three species had large numbers of visits from flies and bees, and relatively high PS 

values with these taxa grouped to family level suggest that fly and bee visitor species 

could have been similar between species. Visitor species caught at flower heads of S. 

brevispica and V. gerrardii between 2003 and 2005 incorporated a wide diversity of 

insect taxa, with 24 visitor species found on flower heads of both species (Appendix 

6). Shared visitors incorporated seven bees, six wasps, six flies, three beetles two 

butterflies and one moth. Although S. brevispica and V. gerrardii shared specific 

visitor fauna, the importance of these shared visitors as pollinators is not known for 

either species. 

The visitors to flower heads of V. drepanolobium, V. etbaica, V gerrardii and 

S. mellifera all included large proportions of bees, meaning that these species had 

similar visitor assemblages with all visitors grouped at the lower taxonomic level. 

However, similarity was much lower among these species when flies and bees were 

grouped at family level. This suggests that bee visitor species varied among these 

acacias. Vachellia drepanolobium was visited mainly by Apis mellifera, V. nilotica 

was visited mainly by Megachile species and V. etbaica and S. mellifera were visited 

mainly by megachilid and apid bees, including Apis mellifera (Table 5.4). Of the 

identified visitor species caught on acacia flower heads, 41 were caught on more than 

one of these acacias (Appendix 6). This shows that visitor species were shared 

among these four acacias over seasonal time, although the proportions of visits and 

the relative importance of shared taxa are not known. 

Although many insect taxa visited acacia flower heads, not all will be 

effective pollinators. The most effective will be those that frequently visit flower 
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heads of the same acacia species, move between individual trees of the same species 

and carry pollen that is available for transfer between flower heads. Bees and flies 

visited acacias in the largest numbers. Most bees moved rapidly between flower 

heads and trees, although their fidelity to a single acacia species at this location is not 

known. The behaviour of flies on flower heads varied among taxa. Syrphids and 

bombyliids moved rapidly between flower heads and trees. Some calliphorids, 

muscids and sarcophagids moved between trees, although many remained on 

individual flower heads for long periods or moved among flower heads on individual 

trees. Flies ingest pollen that they collect, although it is likely that pollen will be 

deposited on their bodies as they forage on flower heads. 

Most previous studies have considered bees to be more effective pollinators 

of acacias than flies (Tybirk 1989, Stone et al. 1998). All the acacias in this study 

were visited by bees. Although the relative proportions of visits by different bee taxa 

varied among acacia species, the capture data suggest that all were visited by a wide 

range of bee species. Seven bee species were captured on flower heads of at least 

five of the acacias sampled. These included apid, halictid and megachilid bees 

(Appendix 6). However, since the relative proportions of visits to different acacia 

species for each of these bee species is not known, it is difficult to assess their 

potential as pollinators. 

5.4.4 Do daily patterns of visitation vary within and between acacia 

species? 

Daily patterns of visitation to flower heads varied across days for all acacia 

species examined. Peak visitation rates occurred for all species between 8.30 and 

16.00 and varied over a period of between 2.5 and 6 hours in each species (Table 

5.24, Fig 5.1). The range of times over which peak visitation occurred overlapped 

among all species although overlapped least for S. brevispica and V. drepanolobium. 

The peak visitation rate for V. hockii occurred much earlier than for other species, 

although the peak bee visitation rate corresponded more closely to peak visitation in 

other acacias. Flies and bees had different patterns of visitation to flower heads, with 

flies active much earlier in the day than bees. On most trees, visitation rates for flies 

peaked earlier than those for bees. 
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Co-flowering acacia species with peak visitation rates at similar times of day 

might compete for shared pollinators. The most commonly co-flowering group of 

acacias at Mpala was S. brevispica, V. drepanolobium, V. gerrardii, V. nilotica and 

V. seyal. Visitor assemblages and daily patterns of visitation were sampled in this 

study for all except V. seyal. Sene ga/ia brevispica and V. gerrardii were visited 

mainly by flies and bees, whereas V. drepanolobium and V ni/utica were visited 

mainly by bees. Bees are generally considered to be more effective pollinators for 

acacias, although some fly taxa, especially syrphids, are likely to be effective 

pollinators. The times at which peak bee activity was observed across days was 

similar among these four acacias (Table 5.24). However, climatic variation between 

days could affect the timing of bee activity, and peaks for different acacias might 

occur at different times on the same day. There were few days in this study on which 

multiple acacia species were observed for floral visitors. Vache/lia drepanolobium 

and V. ni/utica were both observed on 10th  September and 17th  September 2004 at 

Junction and visitation rates peaked at similar times for both species on each day 

(Figs. 5.4, 5.8). The visitor assemblages were very different on I Oth  September, with 

V. drepanolobium visited mainly by Apis mel/ifera, and V. ni/utica visited mainly by 

Megachile, with additional visits from apid bees (Tables 5.19, 5.21). However, on 
17th September the visitor assemblages for the two species overlapped considerably 

more, with apid bees and Megachile forming a larger proportion of overall visits to 

V. drepanolobium. 

Whilst the bee visitor assemblages for the co-flowering species differed 

between sites, and in daily and seasonal time, the capture data highlight that all 

potentially shared bee and some syrphid fly pollinators. Considering this along with 

the overlapping peak visitation times, it seems that the co-flowering acacias at Mpala 

have the potential to compete for pollinators. 

In the Tanzanian study, megachilid bees dominated flower head visits for two 

of five co-flowering acacia species and formed a smaller proportion of total visits for 

the other three (Stone et al. 1998). At Mpala, Megachile were the dominant bee 

visitors for V. ni/utica trees at Turkana Boma. Megachilids, most of which were 

Megachile, formed approximately 40% of bee visits in S. brevispica and V. gerrardii 

in 2004-5 (Table 5.4) whereas V drepanolobium was visited much less frequently by 
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Megachile. All acacias at Mpala were visited by a wide range of bee taxa and there 

were no species that appeared to dominate flower head visits in multiple acacia 

species. 

In contrast to the acacias at Mkomazi, most of the co-flowering acacias at 

Mpala flowered over long periods of time, and perhaps cannot rely on limited groups 

of pollinators. The generalised visitor assemblages at Mpala suggest that different 

bee species might act as effective pollinators at different seasonal times, although it 

is not clear to what extent these pollinators might be shared among co-flowering 

acacias. 

Senegalia mellifera and V. etbaica co-flowered less often with other acacias. 

These species mass flower at particular seasonal times with many trees producing 

large numbers of flower heads simultaneously. This strategy might enable them to 

outcompete other floral resources during the short periods over which they flower 

and attract sufficient pollinators. Field observations noted that both species attracted 

large numbers of visits from Apis mellifera and Plebeina hildebranti when in mass 

flower, with S. mellifera flower heads also visited in large numbers by Megachile 

species. 

54.5 Do patterns of visitation track patterns of pollen availability in 

each acacia species? 

Visitation patterns for the main visitor groups corresponded to patterns of 

pollen availability in all species. In general, the peak visitation rates for bees 

corresponded more closely to increased levels of pollen availability than that of flies. 

Fly visitation rates peaked prior to maximum pollen availability in several species, 

although were more synchronous with pollen availability peaks for others. 

These results suggest that patterns of visitation to flower heads were 

determined by the availability of pollen, with increased visitation rates at times when 

pollen availability was high. This was particularly so for bees, whose activity at 

flower heads was closely linked to high levels of pollen availability. 

The tracking of pollen availability by visitors to flower heads demonstrates 

that a potential mechanism exists by which shared pollinators could be structured in 

daily time, as for the acacias at Mkomazi. However, the times at which pollen 
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availability peaked in each species were extremely variable and were not regularly 

spaced in daily time (Chapter 4); therefore it is unlikely that pollinators are structured 

in daily time at Mpala in the same way as they were at Mkomazi. At Mpala, 

flowering occurs over longer seasonal time periods than at Mkomazi, and species' 

flowering peaks do not occur simultaneously. Since pollination takes place over a 

longer seasonal time at Mpala, competition for pollination could be less intense 

meaning that no process to drive the divergence of pollen release in daily time exists 

for co-flowering acacias at Mpala. Furthermore, if daily nesting cycles and thermal 

physiology requirements for important bee pollinators dictate the times of day at 

which they can forage, even if competition for pollination does exist, it could be 

more advantageous for acacia species to retain their timing of pollen release at a time 

of day that is optimal for pollinator visits, than to diverge in daily time to reduce the 

potential of heterospecific pollen transfer. 

5.4.6 Further studies 

The findings in this chapter demonstrate that visitor species to flower heads 

are shared among species, and that visitation of shared pollinator groups overlaps in 

daily time among acacias. However, the importance of these shared visitors as 

pollinators for each acacia, and whether visitors are shared on the same day, or even 

at the same time of year, cannot be determined from this study. 

To ascertain whether shared visitor species are important pollinators, 

information regarding (i) the frequency of their visits to flower heads, (ii) their 

patterns of movement among trees of the same species, and (iii) between different 

acacias (i.e. their level of floral constancy) is needed. 

Visitor identification, particularly for rapidly moving species, can be difficult 

when the observer is at a far enough distance away from a tree to minimise the 

disturbance to visitors on flower heads. Therefore quantification of visits to flower 

heads in this study was limited to broader taxonomic groups supplemented with 

additional information gained from catching visitors at other times. Familiarity with 

the visitor species could improve the level of identification achieved in such studies 

and allow the comparisons of assemblages and daily visitation patterns at the level of 

visitor species. 
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Whilst visitor movement between trees can be difficult to track (but see the 

use of fluorescent dye in Raine 2001), some information on a visitor's floral 

constancy and its potential ability to transfer pollen for a particular plant species can 

be obtained from examining pollen loads. For bees, examination of pollen carried in 

the scopae can reveal the plant species on which an individual has been recently 

foraging. For other taxa, pollen carried on the surface of the body can show recent 

foraging histories. 

To be able to draw more accurate conclusions regarding the extent to which 

co-flowering acacias share visitors in daily time at Mpala, all co-flowering species 

should be examined over a relatively short timescale and at the same site. This would 

require a large team of observers familiar with the visitor fauna. 
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Chapter 6. Community-level analyses of 

plant-visitor interactions 

Summary 

Two flowering plant communities at Mpala were sampled for flower visitors 

over four months. Flower-visitor interaction webs were constructed for each month 

at each site. In all webs bees made the most visits and had the highest species and 

interaction diversities. Other flower visitors were wasps, ants, flies, beetles, bugs, 

butterflies and moths. Although individual visitor species were present across 

seasonal webs at a single site, they rarely visited the same plant species at different 

seasonal times. This is compatible with partitioning of pollinators across seasonal 

time, however more detailed studies would be required to determine whether this is 

the case, or if interactions were missed due to the low resolution of sampling for each 

plant species. 

Flower-visitor interactions were compared across four daily time periods: 

6.00-9.00, 9.00-12.00, 12.00-15.00 and 15.00-18.00. All plant species with open 

flowers were observed in each time period. Comparisons with randomised interaction 

webs generated using null models showed that the number of interaction types in 

each time period was significantly lower than expected in all seasonal webs. This 

suggests that interactions were structured in daily time. Evidence for bottom-up 

control of daily temporal structure was shown through the restricted opening times of 

some plant species. 

Plants shared visitor species within and across time periods in all seasonal 

webs and acacias shared visitors with a wide range of plant species in several webs. 

Plants sharing visitors across time periods could be partitioning visitors in daily time, 

however more detailed investigations are required. Further studies to examine 

whether daily temporal structure in these communities is controlled by bottom-up 

effects of the timing of reward presentation or top-down effects of pollinator activity 

are discussed. 
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6.1 Introduction 

So far in this thesis I have looked for evidence of pollinator partitioning in 

daily time within an acacia species assemblage. Although groups of acacia species do 

co-flower at Mpala (Chapter 3), and some floral visitors are shared among species 

(Chapter 5), there is little evidence to suggest that acacia species partition visits in 

daily time. Although there is some variation in the daily timing of pollen release 

(Chapter 4) and visitation (Chapter 5) across acacia species, there is no evidence that 

either are structured among co-flowering species. 

Failure to detect temporal structure could be due to (a) a genuine absence of 

structure or (b) involvement in structuring interactions with plants other than acacias. 

As well as pollinator sharing occurring among closely related groups of species, it is 

entirely plausible that pollinators might be shared among a broader diversity of 

plants. The flowering plant community at Mpala contains a much wider community 

of plant species than the acacias and given that acacia flower heads are accessible to 

a wide range of visitor species, it is likely that these visitor species might utilise 

resources from other plant species in the community. In this chapter I examine two 

flowering plant communities at Mpala for evidence of daily temporal structure 

among plant-visitor interactions. 

6.1.1 Why should studies consider daily temporal variation in plant-

pollinator communities? 

Interactions between plants and pollinators are known to vary on daily 

temporal timescales (e.g. Armbruster and Herzig 1984, Herrera 1990, Stone et al. 

1996, 1998, Raine 2001, Willmer and Stone 2004, Kajobe and Echazarreta 2005). 

Pollinators commonly visit specific plant species within a characteristic time window 

each day, determined by the interaction between pollinator physiology, daily cycles 

of microclimate, and the availability of floral rewards (Herrera 1990, Willmer and 

Stone 2004). Daily activity patterns for bees have been well documented (reviewed 

in Willmer and Stone 2004). Larger bee species generally have greater 

thermoregulatory abilities than smaller bees and can initiate flight activity at lower 

ambient temperatures than smaller bees (reviewed in Willmer and Stone 2004). 

However, smaller bees can commonly maintain greater activity at higher 
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temperatures, since large bees are more likely to overheat. Therefore large bees, such 

as bumblebees (Bombus, Apidae) and large anthophorid species (Apidae, tribe 

Anthophorini) typically show bimodal activity patterns, with peaks early in the 

morning and later in the day when temperatures are cooler (Linsley 1978, Herrera 

1990, Stone 1994, Willmer and Stone 1997b, Stone et al. 1999b). In contrast, smaller 

bee species are often active throughout the day, with a single activity peak (Linsley 

1978, Herrera 1990, Minckley et al. 1994, Willmer and Stone 1997b, Biesmeijer and 

Toth 1998). Nesting cycles will also affect bee foraging patterns (reviewed in 

Willmer and Stone 2004). Solitary female bees can usually construct one new cell 

per day, and divide their time between initiating, provisioning and closing cells, as 

well as collecting nectar for themselves (e.g. Willmer and Stone 1989). Therefore 

foraging activity can be restricted by nest provisioning requirements, and females are 

likely to seek different floral rewards at different times of day. In contrast, in social 

species, activities in the nest can be carried out by different subsets of the worker 

population and the foraging patterns of female worker bees are likely to be less 

restricted (Willmer and Stone 2004). 

Less is known about the daily foraging patterns of other pollinator taxa. The 

foraging activities of many taxa have been linked to climatic variables such as 

temperature (Willmer 1983, Corbet 1990, Herrera 1995a, 1995b) and solar irradiance 

(McCall and Primack 1992, Herrera 1995b). Daily activity has been shown to be 

temperature dependent in the sphecid wasps Philanthus triangulum (Strohm and 

Linsenmair 1998) and Cerceris arenaria (Willmer 1985). Peng et al. (1992) found 

that both temperature and wind speed affected the daily abundance of various 

dipteran taxa. Both solar irradiance and temperature were found to limit the foraging 

activity of Usia aurata (Bombyliidae) on Calendula arvensis inflorescences 

(Asteraceae) (Orueta 2002). Willmer (1982) found that two species of Sarcophaga 

(Sarcophagidae) are able to thermoregulate, which allows them to forage on flowers 

for longer than competitors. Stone et al. (1988) showed that the foraging activities of 

two papilionid butterflies were primarily determined by temperature, but also 

affected by nectar supply. 

While the causes and consequences of daily temporal structure have been 

widely studied in specific pollination mutualisms (e.g. Stone et al. 1998, Herrera 
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1990, Herrera 1995a, 1995b), the potential for such structure in multi-species 

interactions linking whole communities of plants and pollinators remains unstudied. 

The potential significance of daily temporal structure has grown with the realisation 

that co-flowering plant species commonly share pollinators (Waser et al. 1996, 

Bronstein et al. 2006, Thompson 2006, Waser and 011erton 2006). The impact of 

shared pollinators depends on the temporal patterning of their activity. If shared 

pollinators visit co-flowering plants simultaneously, these plants may compete for 

the quantity and/or quality of pollinator visits. In contrast, if shared pollinators visit 

specific plants at specific times of day, then competition for pollination can be 

avoided, and co-flowering plants could potentially facilitate each other's 

reproduction through the maintenance of larger pollinator populations than could be 

sustained by any single plant species. These alternative scenarios have very different 

predictions for the impact of disturbance to the complex webs of interactions that 

link plants and pollinators in natural communities. 

6.1.2 Community level interaction webs 

Relationships within communities of interacting species at different trophic 

levels have traditionally been represented using food webs (Pimm et al. 1991, Polis 

and Winemiller 1996, Pimm 2002). Interaction webs (also referred to as networks) 

can also be used to represent mutualistic relationships within communities, such as 

those between plants and their pollinators or seed dispersers (Jordano 1987, 

Memmott 1999, Thompson 2006). 

Since the construction of the first plant-pollinator web for a British meadow 

community (Memmott 1999), community-level pollination studies have increasingly 

incorporated this approach in the examination of relationships among groups of 

plants and their pollinators (e.g. Dupont et al. 2003, Hegland and Totland 2005, 

Lundgren and Olesen 2005, Basilio et al. 2006, Morales and Aizen 2006, Stang et al. 

2006). 
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Food web (e.g. predator-prey or host-parasitoid) 
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Figure 6.1 Schematic diagrams to show the types of interactions that occur among species in (a) food 
webs and (b) plant-pollinator webs. 

Whilst community pollination studies have been able to build on the 

knowledge obtained during many years of food web study, interactions between 

plants and their pollinators are fundamentally different to those that exist between 

species at different trophic levels in food webs. In food webs, species at higher 

trophic levels have negative direct impacts on those at lower trophic levels (see Fig. 

6.1). For example, predators will negatively affect prey species and parasitoids will 

negatively affect host species. In contrast, in plant-pollinator webs the interaction 

between plant and pollinator species is usually positive for both groups. However, 

direct interactions can be negative if visitors rob rewards and do not pollinate, or if 

they deposit incompatible pollen. In addition, in both types of web, species within 

trophic levels can indirectly affect one another negatively through apparent 
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competition or positively through facilitation. In food webs, an abundant prey species 

can have an indirect negative effect on other prey species by causing an overall 

increase in predators. If these predators then switch to alternative prey species, they 

can mediate apparent competition between alternative prey (Holt and Lawton 1994, 

Abrams et al. 1996, 1998). Alternatively, if a predator preferentially targets a 

competitively superior prey species, this can result in competitive release for a less 

dominant prey species (Abrams and Matsuda 1996, Abrams et al. 1996, 1998). In 

plant-pollinator webs, plants can interact negatively by competing for pollinators or 

interact positively by facilitating pollination for one another. Facilitation here is 

analogous to apparent competition in trophic webs, except that shared pollinators are 

beneficial rather than detrimental. Consideration of the timescale over which species 

interact can influence whether interactions are interpreted as positive or negative for 

interacting species. 

The type of web that can be constructed for groups of plants and pollinators 

depends on the amount of information available regarding the interactions between 

them. Flower-visitor webs are used to represent communities in which only the 

identities of flower visitors have been recorded. These webs have been more 

commonly used as it is relatively easy to collect data on flower visitors (e.g. Dicks et 

al. 2002, Memmott and Waser 2002). However, whilst these webs can demonstrate 

potential pollinator species, they cannot confirm whether flower visitors are effective 

pollinators, since nothing is known about their ability to transfer pollen among 

different plants of the same species. A second type of plant-pollinator web 

incorporates data on the pollen loads carried by flower visitors. Pollen transport webs 

show which flower visitors carry the pollen grains of which plant species (e.g. Forup 

and Memmott 2005, Gibson et al. 2006). These webs give a more accurate indication 

of flower visitors that could be acting as successful pollinators. Both types of webs 

can be qualitative or quantitative. Qualitative webs show the presence of links 

between interacting species whereas quantitative webs incorporate information on 

the relative abundance of plant and visitor species, and the frequency of interactions 

between them. Interaction frequency has been shown to be a useful indicator of the 

relative importance of flower visitors as pollinators for plant species (Vazquez et al. 
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2005a), therefore quantitative webs are a more effective approach for investigating 

the links between plant species and potential pollinators in communities. 

6.1.3 Temporal variation in community-level pollination studies 

The recognition of pollination as a crucial ecosystem service has lead to a 

growing number of pollination studies that examine entire flower-visitor 

communities. Whilst such studies are invaluable for identifying potential links 

among important species in a community, webs summarising interactions observed 

over long time periods risk losing important patterns in the specific timings of 

interactions over both seasonal (Waser et al. 1996, Basilio et al. 2006) and daily 

timescales (Waser et al. 1996). Plant species that appear to be competing for the 

same pollinator species in a summarised interaction web might be visited at different 

daily times, and could in fact facilitate pollination for one another. 

Although several studies have recognised that interaction webs can only be 

representative of a limited time period and that plant-visitor interactions cannot be 

pooled over long periods of time (Dupont et al. 2003, Petanidou and Lamborn 2005, 

Morales and Aizen 2006), very few have incorporated seasonal temporal variation 

(Lundgren and Olesen 2005, Basilio et al. 2006). Despite abundant evidence to show 

that individual pollinators show daily patterns in their activity, no studies to date 

have considered the structure that could exist on a daily temporal timescale within 

plant-pollinator communities. 

6.1.4 Examining the structure of interaction webs 

The analysis of multi-species data collected in a field environment for the 

presence of a specific pattern or structure can be complicated by the fact that the 

composition of the community in the absence of that pattern is usually unknown. 

Null model analyses have been widely used in the field of community ecology to 

attempt to circumvent this problem. Null models are statistical tests widely used in 

ecology and biogeography that deliberately exclude a mechanism of interest, and 

allow for randomisation tests of ecological data (Gotelli and Graves 1996, Gotelli 

2001). A typical null model randomly generates communities expected to occur in 

the absence of a particular mechanism and then an index of community structure for 
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the observed data can be compared to the distribution of the same values from the 

randomly generated communities (Gotelli and Graves 1996). The position of the 

observed index in the tails of this null distribution can be used to assign a probability 

value to the pattern as in a conventional statistical analysis (Gotelli and Graves 

1996). Although null models can reveal unusual patterns in ecological data, they 

cannot identify the mechanism responsible for such patterns (Gotelli and Graves 

1996). 

Null models have been applied to many aspects of food web theory (e.g. 

Kenny and Loehie 1991, Pianka 1994, Melian and Bascompte 2004, Prado and 

Lewinsohn 2004, Bascompte and Melian 2005, Vazquez et al. 2005b). Recently, null 

models have also been used to investigate the structure of plant-animal mutualistic 

webs, in particular patterns of specialisation and the nested structures of interactions 

(Bascompte et al. 2003, Vazquez and Aizen 2003, 2004, 2006, Vazquez 2005, 

Fortuna and Bascompte 2006, Jordano et al. 2006, Lewinsohn et al. 2006), and the 

effect of extinction and stability on these networks (Memmott et al. 2004, Fortuna 

and Bascompte 2006). These studies have found that mutualistic interaction networks 

are usually nested, with asymmetric patterns of specialization, i.e. that highly 

specialised species tend to interact with more generalised species (Bascompte et al. 

2003, Vazquez and Aizen 2004, 2006, Jordano et al. 2006). 

In this chapter I use null model analyses to examine observed patterns of 

interactions among plant and visitor species for daily temporal structure. The 

methods are described in Section 6.2.5. 

6.1.5 Daily temporal structure in savannah plant-visitor communities 

In this chapter I examine flower-visitor interaction webs at Mpala for daily 

temporal structure using multiple data sets collected at several seasonal time periods 

at the same two sites (Turkana Boma and Junction). For each web, the flower-visitor 

interactions in four daily time periods were compared with null model predictions 

(see Section 6.2.5) to assess the evidence for significant daily temporal structure. 

Rower visitors found on multiple plant species were compared across time periods to 

examine the potential for daily temporal partitioning of shared pollinators among 

plant species. I also examine whether acacia species at Mpala share visitors with 
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other plant species in the communities, and whether there is any evidence to suggest 

that acacia visitors are partitioned in daily time among acacias and other plant 

species. 

Specifically, I address the following questions: 

To what extent do visitors, plants and their interactions change across seasonal 

time, and are these patterns consistent across sites? 

Within each seasonal web, to what extent are interactions structured in daily time? 

Do plant species share visitors, and how are interactions of shared visitor species 

patterned through time? 

To what extent do acacias share visitors with other plants and how are interactions 

of shared visitor species with other plants patterned through time? 

How do daily time periods differ climatically and are climatic differences across 

time periods correlated with variation in the visitors active in each time period? 
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6.2 Methods 

6.2.1 Study sites and dates 

Data allowing construction of quantitative flower-visitor interaction webs 

were collected at Turkana Boma between 4th  May and 31st  August 2004, and at 

Junction site between 2nd June and 23rd July 2004 (see Chapter 2 for further details of 

these sites). Sampling for each flower-visitor web was carried out over two weeks. A 

complete data set was collected for each week and these were combined to construct 

a single web. Two weeks represents the minimum time over which sufficient data 

could be collected and I am assuming that this is a short enough timespan to allow 

summation of data without major impacts of changes in climate or species diversity. 

There was at least a two week gap between data collection for consecutive webs. 

Four flower-visitor webs were constructed for the Turkana Boma site, one 

each for data collected in May, June, July and August 2004. The August web was 

constructed from only one set of data due to time limitations in the field. There were 

a large number of species flowering at this site during this month, and it took two 

weeks to conduct the first set of observations for these species. Therefore a second 

set of data could not be collected within the required time limit. Two webs were 

constructed for the Junction site, one each for data collected in June and July 2004. 

In months when both sites were sampled, data were collected simultaneously at each 

site in order to minimise differences that could have arisen from differing climatic 

conditions over seasonal time. 

I was assisted by Dr G. N. Stone and R. Eraguy in data collection for this 

chapter. 

6.2.2 Data collection 

(a) Quantification offloral abundance for each plant species 

A 0.5 ha. (lOOm x 50m) plot was marked at each site. At the start of a 

sampling week all flowering plant species were identified in each plot and the 

number of flowers of each species were quantified. Since floral morphology can 

differ between species, in order to ensure consistency throughout the study a floral 

unit was defined for each plant species. This was defined following Gibson et al. 
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(2006) as an individual flower or collection of flowers that an insect of 

approximately 0.5 cm could walk within or fly between. For most species this 

measure was relatively simple to define and floral units were counted at the level of 

the individual flower. For plant species with composite flower heads, such as those in 

the family Asteraceae or subfamily Mimosoideae (acacias), a flower head or 

inflorescence containing a number of individual flowers or florets was classed as a 

single floral unit. 

Flower opening times varied among plant species and few species were open 

for the entire day. Floral abundance surveys were conducted between 10.00 and 

13.00 as the flowers of most plant species were open during these hours. It was 

sometimes necessary to revisit at an alternative time to obtain an accurate measure of 

floral abundance for species that closed early or opened late in the day (e.g. species 

of Commelina, Sida, Meihania and Ipomoea). 

Most plant species were identified to species level by Professor A. Schnabel 

using keys and descriptions in Blundell (1992) and Agnew and Agnew (1994). It was 

not possible to determine an exact species name for some plants so these were 

recorded as Genus sp. and were numbered if there was more than one unidentified 

species in that genus. There were two species of Commelina (Commelinaceae) with 

blue-lilac petals at Turkana Boma; Commelina erecta and Commelina benghalensis. 

These were not separated during the study and were grouped as 'Commelina spp. 

blue'. Both species flowered at the same seasonal times and had flowers that were 

open at similar times of day. Two similar-looking species in the Asteraceae with 

yellow flowers, Emilia discifolia and Osteospermum vaillanti, were not identified 

during the May web at Turkana Boma and were grouped as 'Asteraceae spp. yellow'. 

Woody shrubs in the genus Grewia (family Tiliaceae) flowered at both sites during 

the study. These were grouped as Grewia spp. as individual species were not 

identified. However, few observations of these plants were made as few flowers 

occurred at any one time. Twelve species (six per site), each of which occurred in 

only one month of the study, could not be identified and are referred to as unknown 

sp. 1, sp. 2, etc. 
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(b) Observations for flower visitors 

In the week following the floral abundance survey I attempted to quantify 

floral visitation to all plant species flowering in each plot. It was not always possible 

to observe all of the species during weeks with a high diversity of flowering plant 

species. In these weeks plant species were selected for observation based on their 

abundance. Species that were not observed were excluded for the following reasons: 

(i) their abundance in the plot was low with fewer than ten floral units, (ii) flowering 

was limited to a single individual with fewer than 40 flowers, (iii) the amount of 

flowering decreased during the week resulting in insufficient flowers for observation. 

On average 73% of the flowering plant species in a plot were observed for each web. 

If a plant species began flowering after the floral abundance survey had been 

conducted, it was observed if there was sufficient time remaining for it to be included 

in sampling. 

Observations were conducted between 6.00 and 18.00 (approximately dawn 

to dusk). Each plant species received four 20 minute observations per week, one in 

each of the following time periods: (i) 6.00-9.00, (ii) 9.00-12.00, (iii) 12.00-15.00 

and (iv) 15.00-18.00. No observation was made if the flowers of a particular plant 

species were closed during an entire three hour time period. If the flowers of a plant 

species were open for a portion of the time period, every effort was made to sample 

the species whilst it was open. Ideally observations would have allowed for night-

visiting species and included the period between 18.00 and 6.00, however this was 

not possible due to time and manpower constraints. In all months except August, data 

from two consecutive weeks were combined at each site for the construction of 

flower-visitor webs. 

The number of floral units observed was not stipulated since floral density 

varied between species and within a species throughout the plots. The flowers 

observed were limited to those in an area of approximately I m3  since this was 

considered the maximum area that could reliably be observed by a single person. 

Within this constraint, observed flowers were chosen at random as far as possible. 

Where possible, different sets of flowers of each species were watched during 

different observations, however for rare species it was often only possible to watch 

the same set of flowers. One visit was recorded every time a visitor made contact 
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with the sexual parts of a floral unit, regardless of the purpose of the visit. If a visitor 

left and then returned to the same flower this was counted as a second visit. 

To enable accurate identification of visitor species, an attempt was made to 

catch all insect visitors using either sweep nets or by transferring them directly to a 

vial. Some easily recognisable species such as honeybees (Apis mellifera) were not 

captured. If the number of floral units being observed was greater than one, observers 

waited before catching an insect to allow it to visit other flowers. When visitors were 

not caught, a description of size and colouration was recorded where possible. All 

flower visitors observed were insects in the orders Hymenoptera (bees, wasps or 

ants), Diptera (flies), Coleoptera (beetles), Lepidoptera (butterflies or moths) and 

Hemiptera (bugs). 

Ideally each observation would have been randomly allocated within a three-

hour time slot. Whilst some attempt to do this was made in that plant species were 

never observed in the same order, complete randomisation of the times at which 

species were observed was not feasible due to time limitations. In some weeks 

sampling times were also limited by weather conditions since observations were not 

conducted during rain, after heavy rain showers or in high winds. There was no 

minimum temperature requirement for observations since temperature varied 

throughout the day. 

Climate readings (relative humidity and temperature) were recorded for each 

flower observation using a Vaisala HMI 31 humidity and temperature probe. This 

was placed in the shade approximately 1 in above the ground in a tree close to the 

observed flowers. 

6.2.3 Insect identification and classification 

Captured insects were transferred to killing vials, pinned, and compared to a 

reference collection of identified insects caught in previous field seasons. All insects 

were subsequently identified to the highest taxonomic level possible by taxonomists 

(bees and flies), or using museum collections (wasps, beetles and bugs) (see Chapter 

5 Section 5.2.3 for further details). Juvenile Hemiptera were grouped since these are 

difficult to identify to species. Butterflies were identified to species using Larsen 

(1991). Ant visitors were not identified beyond family and were grouped as 
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Formicidae spp. for analysis. It was more difficult to identify insects that were not 

caught. The order could be determined for all except one of the uncaptured visitors. 

However, for many taxa it was more difficult to identify beyond this. 

Flower visitors were identified to one of four different levels: species, 

morphospecies, morphogroup or unknown. Species incorporated all visitors that 

could be accurately identified to species level. Morphospecies were defined as a 

group of species in the same genus that looked morphologically similar but could not 

be confirmed as a species. A large proportion of wasp and beetle visitors were 

assigned to morphospecies since taxonomic assistance was not available for the 

identification of these to species level. Morphogroups were defined as a collection of 

species from the same taxonomic family between which it was impossible to identify 

in the field. For example, all unidentified butterflies in the family Lycaenidae were 

grouped as Lycaenidae spp. Large bees in the genera Ame gil/a and Anthophora 

(Apidae, tribe Anthophorini), Tetralonia and Tetraloniella (Apidae, tribe Eucerini) 

are fast flying and can be difficult to catch so were grouped as large Apidae spp. 

Some visitors could not be assigned to morphogroups so these were grouped as 

unknown species within an order. Unidentified bee species were grouped into 

categories based on their size: medium bee spp. (c. 1-2cm) or small bee spp. (smaller 

than 1cm). Where appropriate size information was not available, bees were grouped 

as unknown bee spp. The identification of insects to morphospecies has been used in 

previous food web and plant-pollinator web studies where species level identification 

was not possible (Memmott 1999). 

All species, morphospecies, morphogroups and unknown groups are 

collectively referred to as 'visitor types'. Forty two per cent of flower visitors were 

identified to species, 17% were assigned to a morphospecies, 26% were assigned to a 

morphogroup, and 17% belonged to an unknown category within a particular order. 
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6.2.4 Construction of quantitative flower-visitor interaction webs 

(a) Seasonal interaction webs for each site 

Quantitative flower-visitor interaction webs were constructed for all data 

collected during two weeks of sampling in each month at each site. In each web, the 

visits to each plant species were weighted in proportion to the floral abundance of the 

species in the plot during that sampling week. This was done to account for different 

floral abundances between species, and plant species with larger numbers of flowers 

are explicitly assumed to have received more flower visits during the same 20 minute 

observation period. 

An interaction frequency for each interaction between a visitor type and a 

plant species in each observation period was calculated as follows: 

interaction 
	 number of visits 	total floral units for plant 

number of floral units observed 
	species in that week 

For example, 5 Apis mellifera visits to 10 floral units of a plant species with 

an overall abundance of 100 floral units would be represented by an interaction 

frequency of 50 in the interaction web (calculated as (5/10) xlOO). 

Although weighting the data in this way is not as accurate as more intensive 

sampling of species with greater floral abundances, this gives some idea of the 

probable frequencies of interactions across plant species. 

(b) Webs for daily time periods within each seasonal web 

To examine the daily temporal patterns within each seasonal flower-visitor 

web, four additional interaction webs were constructed from each seasonal web using 

the data from each three-hour time period. Thus at each seasonal time an overall web 

and four webs, one for each time period, were constructed for each site. 

All flower-visitor interaction webs were drawn by Dr Jane Memmott 

(University of Bristol) using software written in Mathematica (Wolfram Research). 
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(c) Descriptive web statistics 

Connectance and the linkage levels of plant and visitors were calculated for 

each seasonal web. Connectance is the fraction of realised links in the web and can 

be used to measure the generalisation level of the web. Connectance (C) is calculated 

as follows: 

V x P 

Where I is the observed number of interaction types, V is the number of 

visitor types and P is the number of plant species. 

Linkage levels denote the mean number of interaction types per plant species 

or visitor type and are a measure of generalisation. Species or visitor types with high 

linkage levels utilise many partners and are therefore more generalised than those 

with lower linkage levels. The linkage levels of plant species (Lp) and visitor types 

(Lv) in each seasonal web were calculated as follows: 

L= 	 L= 
V 	 P 

Measures of connectance and linkage levels should strictly only be calculated 

for webs in which all plants and visitors have been resolved to species. Since not all 

visitors in the seasonal webs could be identified to species, these statistics for these 

webs are potentially inaccurate since each unknown group could represent more than 

one species, or some of the visitors grouped as unknowns could be species already 

identified in the web and so be represented twice. The linkage level for visitors was 

also calculated for only visitors identified to species or morphospecies. Calculating 

connectance and plant linkage levels using only visitor species and morphospecies 

would not be appropriate as some observed visitors to plants would need to be 

ignored. 
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6.2.5 Comparison of flower-visitor interactions over daily time 

For each seasonal web, a null model was used to compare the observed 

number of interaction types present in each time period to the number of interaction 

types per time period in a series of randomly constructed webs. An interaction type is 

defined as a connection between a specific plant species and visitor type; e.g. 

between plant species A and visitor type B. 

(a) Overall data 

For each seasonal web at each site, the calculated interaction frequencies used 

to construct the observed webs were randomised in the following way: 

All observed plant-visitor interaction types were maintained. No new 

combinations were made since there might have been biological reasons why 

particular interaction types could not have occurred. 

Each interaction in the observed web was randomly assigned to one of the four 

time periods. E.g. if the interaction frequency between plant species A and visitor 

type B was 20, this interaction was randomly assigned to one of the four time periods 

20 times so that the randomly generated overall web also had an interaction 

frequency of 20 for this interaction. 

Each time period maintained its total interaction frequency, hence preserving the 

overall daily pattern. 

Using this procedure, 1000 webs were generated using a computer program 

written using C++ by Dr Denis Roze (University of Edinburgh). 

The number of interaction types in each time period in the observed web was 

compared to the distribution of number of interaction types in the equivalent time 

period for the 1000 randomised webs. The interpretation of statistical significance is 

conservative in that I have used a two-tailed approach, i.e. I regard a difference 

between the observed value and the randomly generated values as significant if the 

observed fell in or below the bottom 2.5% or in or above the top 97.5% of the 

randomly generated distribution of values. 
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(b) By visitor group 

The number of interaction types for each time period in the observed webs 

and the randomly assembled webs were also compared for each visitor group. 

Visitors were assigned to the following groups: bees (Hymenoptera), wasps 

(Hymenoptera), ants (Hymenoptera), flies (Diptera), beetles (Coleoptera), bugs 

(Hemiptera), and butterflies and moths (Lepidoptera). Each visitor group 

incorporated visitors from a single insect order, although the Hymenoptera were 

divided into bees, wasps and ants. 

6.2.6 Patterns of shared visitors through daily time 

(a) For all plant species 

If plant species at Mpala partition shared pollinators in daily time, shared 

pollinators should visit different plant species at different times of day. Pollinators 

were not identified in this study therefore this prediction was examined for shared 

flower visitors. Visitor species (including identified species and morphospecies) 

visiting multiple plant species were identified for each seasonal web. The plant 

species visited by these visitor species were compared between time periods to 

identify whether: 

Shared visitor species visited different plant species in different time periods 

Shared visitor species visited multiple plant species in a single time period 

Plant species sharing visitors across time periods could be partitioning the 

visitors in daily time whereas plant species sharing visitors in a single time period 

could be competing for visits. 

(b) For acacia species 

The above information was used to examine whether acacias shared visitors 

with other plant species in the community, and how visits from shared visitor species 

were structured in daily time. Senegalia brevispica was sampled in all seasonal webs 

at both sites, V. gerrardii was sampled in the May web at Turkana Boma, V. nilotica 

was sampled in the June and July webs at Turkana Boma and V. etbaica was sampled 

in the August web at Turkana Boma. 
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6.2.7 Daily climate variation 

Variation in the composition and diversity of visitors and interactions in daily 

time could be due to climatic variation throughout the day. Temperature and relative 

humidity were recorded half-hourly at fixed locations during full day visitation 

sampling of acacia species (Chapter 5). Several of these days coincided with web 

sampling at Turkana Boma in June, July and August 2004. Data collected on 21st 

June, 22w' June, 16th  July, 21" July, 181i  August and 20th  August 2004 were used to 

compare the differences in relative humidity and temperature across the twelve-hour 

web sampling day. These data, rather than those recorded during flower observations 

for webs, were used since they were taken from a fixed point and were recorded at 

regular time intervals throughout entire days. 

6.3 Results 

6.3.1. To what extent do visitors, plants and their interactions change 

across seasonal times, and are these patterns consistent across sites? 

(a) Flowering plants 

During the study I recorded a total of 95 flowering plant species belonging to 

29 families, with 70 species recorded at Turkana Boma and 54 at Junction. Twenty 

nine species flowered at both sites. Some examples of these are shown in Figs. 2.11 

and 2.12. The diversity of flowering plant species varied across months at both sites 

with more species in the May, June and August webs and far fewer species in July 

(Table 6. 1). High diversities followed high levels of rainfall (see Table 2.1); i.e. 

rainfall was high in April, May and July, but lowest in June, which preceded the July 

web. The flowering plant species that were present in each seasonal web at each site 

are listed in Appendix 7, along with the number of floral units recorded in each 

sampling week. 

The composition of the flowering plant species communities also varied 

between months at both sites, although at Turkana Boma eight species flowered in all 

seasonal webs and at Junction 11 species flowered in both webs (Appendix 7). Four 

species flowered in all seasonal webs at both sites: Monechma sp. B (Acanthaceae), 

Ipomoea sinensis (Convolvulaceae), Senegalia brevispica (Fabaceae) and Pavonia 
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gallaensis (Malvaceae). Whilst a large number of species flowered in response to 

rainfall, Barleria spinisepala (Acanthaceae) flowered when it was drier, and formed 

a large proportion of the total floral abundances at both sites in July. 

(b) Insect visitors 

In total, 174 visitor types were recorded (see Appendix 8). Of these, 82 were 

distinct species and 54 were morphospecies (Table 6.2). The remaining visitors were 

grouped within one of 26 morphogroups or 12 unknown categories within an order. I 

observed 140 visitor types at Turkana Boma and 75 at Junction. Almost all flower 

visitors belonged to one of four insect orders: Hymenoptera (bees, wasps and ants), 

Diptera (flies), Coleoptera (beetles) or Lepidoptera (butterflies and moths). I 

recorded only 4 visits by Hemiptera (bugs). Bee, wasp and fly visitors were recorded 

in all seasonal webs. Ant and lepidopteran visitors occurred in five webs, and beetle 

visitors in four webs. Bugs were recorded in three webs. 

The number of bee visitor types (70) was more than twice the number of 

visitor types recorded for any other visitor group. I recorded 27 visitor types for 

wasps, 31 for flies, 28 for beetles and 15 for butterflies and moths. The number of 

species, morphospecies, morphogroups and unknown groups identified for each 

visitor group are shown in Table 6.2. 



Table 6.1 Number of visitor types, flowering plant species, observed flowering plant species (for which visitation was quantified), total floral units, total 
hours of observation, number of interaction types, total flower visits and total interaction frequency for each flower-visitor web. 

Visitor types 
Total 

flowering 
plant species 

Plant species 
observed 

Total floral 
units 

Hours of 
observation 

Number of 
interaction 

 types 

Total flower 
visits 

Total 
interaction  

 frequency 
Turkana Boma 

May 84 54 38 83621 71.33 160 833 61633 
June 66 42 32 9475 65.00 105 395 11797 
July 16 14 10 1814 16.00 22 54 3069 
August 26 48 31 34224 33.67 46 366 2211 
Junction 

June 63 51 35 28082 72.33 99 678 19176 
July 22 14 12 1281 22.33 26 66 309 
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Table 6.2 Total numbers of species, morphospecies, morphogroups and unknown groups for 
each visitor group across all seasonal webs at both sites 

Hvmenotera  

bee wasp ant 
LII1JLaJ a '..UIUpLI Cl LIUL)Ll a I-iel I iiptet CE I U1I 

species 52 0 0 15 5 10 0 82 
morphospecies 6 23 0 4 20 1 0 54 
morphogroup 6 3 1 10 2 4 0 26 
unknown group 6 1 0 2 1 0 2 12 
Total 70 27 1 31 28 15 2 174 

(i) Comparisons between seasonal webs at each site 

The number of visitor types observed varied between months at both sites, 

with higher diversities in months with higher flowering plant species diversities 

(Table 6. 1, Fig. 6.1). Higher diversities were recorded during months in which more 

plant species were observed (Pearson's correlation: r=0.840, p=0.036) and this 

correlation may in part be a sampling artefact of a greater number of observations 

when more plant species are present. Appendix 8 details all visitor types recorded in 

each web and the level to which they could be identified. The identities of flower 

visitors also varied between months at each site. At Turkana Boma, 38 visitor types 

(14 species, 6 morphospecies, 12 morphogroups and 6 unknown groups) were 

recorded in more than one seasonal web. Apis mellifera was observed in all four 

webs. Five species, all bees, were observed in three of the four webs at Turkana 

Boma: Ceratina nyassensis (Apidae), Plebeina hildebranti (Apidae), Lipotriches 

(Lipotriches) sp. 1 (Halictidae), Pseudapis (Pseudapis) sp. 1 (Halictidae) and 

Megachile (Chalicodoma) sp. 2 (Megachilidae). 

At Junction, 10 visitor types (4 species, 1 morphospecies, 1 morphogroup and 

4 unknown groups) were recorded in both webs (Appendix 8). Three bee species and 

one butterfly were recorded in both webs: Amegilla penicula (Apidae), Halictus 

(Seladonia) sp. 1 (Halictidae), Pseudapis (Pseudapis) sp. 1 (Halictidae) and Eurema 

brigitta brigitta (Pieridae). 
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Ln visitor types 
interaction types 

IU 	IZ) 	LU 	L) 	iU 	 'fO 

Number of plant specs observed 

Figure 6.1 The relationship between the number of plant species observed and the 
number of visitor types and interaction types. Each datapoint represents a seasonal 
web. Regression lines are shown for each data set. 

(ii) Comparisons between sites 

The diversity of visitor types was similar at both sites in June and July (Table 

6.1). Overall, 41 visitor types were observed at both Turkana Boma and Junction 

(Appendix 8). These incorporated 17 species, 5 morphospecies, 13 morphogroups 

and 6 unknown categories. In June, five bee species were observed at both sites: 

Amegilla calens (Apidae), Apis mellifera (Apidae), Halictus (Seladonia) sp. 1 

(Halictidae), Lipotriches (Lipotriches) sp. H (Halictidae) and Patellapis sp. A 

(Halictidae). One beetle, Megalognatha meruensis (Chrysomelidae), and one 

butterfly, Freyeria trochylus trochylus (Lycaenidae), were also observed at both sites 

in June. Only one species, the bee Ceratina nyassensis (Apidae) was observed at 

both sites in July. 

(c) Flower-visitor interactions 

Overall, 2392 flower visits were observed at both sites (1648 at Turkana 

Boma and 744 at Junction) and 411 interaction types were recorded (313 at Turkana 

Boma and 122 at Junction). Twenty interaction types were recorded in both sites. 

Details of the interaction types present in each seasonal web are given in Appendix 9. 

The numbers of flower visits and interaction types were greater in months with 

higher flowering plant species diversity (Table 6. 1, Fig. 6.1). There were significant 
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correlations between the number of plant species observed and number of flower 

visits (r=0.925, p=0.008) and number of plant species observed and number of 

interaction types (r=0.850, p=0.032). Again, these correlations may be an artefact of 

sampling effort. 

The flower-visitor interaction webs for each sampling month at each site are 

shown in Figures 6.4-6.6. Bees were dominant visitors in all webs with the greatest 

diversities of visitor types and interaction types (see Appendix 10). Bees accounted 

for 38- 56% of total visitor types, 36-60% of interaction types and 30-65% of total 

visits in each seasonal web. Wasps and flies were also responsible for large numbers 

of visits and interaction types. Wasps formed 7-27% of visitor types, 5-27% of 

interaction types and 3-35% of visits. Flies formed 8-21% of visitor types, 7-18% of 

interaction types and 4-14% of visits. 

The connectance values represent the proportion of realised links in the web 

and give a measure of generalisation for the entire web. Connectance values were 

higher for the seasonal webs with fewer plant species and visitor types (Table 6.3). 

Linkage levels show the mean number of interacting partners for plant species, 

visitor types and visitor species (species and morphospecies) in each seasonal web 

and are a measure of the generalisation levels for each group (Table 6.3). Linkage 

levels were generally lower in the July webs at both sites, which had the lowest 

diversities of plant species and visitor types. However, the linkage level for plant 

species at Turkana Boma in August was even lower than that for the July web, 

despite the visitor linkage levels being equivalent to those in May and June (Table 

6.3). Several plant species in this web received no visits which resulted in the lower 

overall linkage level for plants. 

Plant species received visits from up to 16 visitor types (Fig. 6.2). Senegalia 

brevispica was visited by the most visitor types in three webs (16 in May, 8 in July 

and 5 in August at Turkana Boma, 8 in July at Junction) and by large numbers of 

visitor types in other seasonal webs (Fig. 6.2). Other plant species with high 

diversities of visitor types were Gutenbergia cordifolia (Asteraceae; 11 in May and 

15 in June at Turkana Boma, 9 in June at Junction) and Monechma sp. B 

(Acanthaceae; 6 at Turkana Boma in June and 12 at Junction in June). 

Visitor types were found on up to 11 plants, although visitors identified to 

species or morphospecies were only found on up to 5 plants (Fig. 6.3). Ants (Family 



Chapter 6. Community level analyses of plant-visitor interactions 	218 

Formicidae) visited the most plant species in several webs, however this visitor 

group could include several species and is therefore not comparable to species or 

morphospecies. Visitor species or morphospecies found on a large number of plant 

species included Apis mellifera (4 plant species in May, 3 in June and 5 in August at 

Turkana Boma, 5 in June at Junction), Halictus (Seladonia) sp. C (Halictidae) (4 in 

June at Turkana Boma), Ceratina nyassensis (Apidae) (3 in July at Turkana Boma) 

and Plebeina hildebranti (Apidae) (4 in August at Turkana Boma). The beetle 

Coryna ?apicornis (Meloidae) was found on 4 plant species in the June web at 

Turkana Boma. 

Table 6.3 Connectance and linkage levels of plant species, visitor types and visitor species 
(including morphospecies) for each seasonal web. See methods for calculations. Since 
linkage levels represent the mean number of interaction types for each group the standard 
error is also shown. 

Linkage levels for 

Plant species Visitor types Visitor species Connectance 
Turkana Boma 

May 4.21 ±0.62 1.90 ±0.20 1.57 ±0.11 0.050 

June 3.28±0.60 1.59±0.16 1.35±0.11 0.050 

July 2.20 ±0.74 1.38 ±0.18 1.20 ±0.20 0.138 

August 1.48 ±0.27 1.77 ±0.35 1.56 ±0.28 0.057 

Junction 

June 2.91 ±0.52 1.57 ±0.16 1.36 ±0.12 0.045 

July 2.17±0.69 1.18±0.11 1.08±0.08 0.098 
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(a) Turkana Boma, May 	 (b) Turkana Boma, June 
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Figure 6.2 Distribution of numbers of visitor types per plant species in each seasonal web. Asterices 
indicate the position of S. brevispica in each graph. 
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(a) Turkana Boma, May 	 (b) Turkana Boma, June 
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Figure 6.3 Distribution of numbers of plant species per visitor type (blue) and numbers of plant species 
per visitor species or morphospecies (red) in each seasonal web. Asterices indicate the position of ants 
(family Formicidae) on each graph. 
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In general, plant species present in multiple webs were visited by different 

visitors in different webs. For example, Monechma sp. B (Acanthaceae), which 

flowered in all seasonal webs at both sites, was visited by 9 bee species, 8 at Junction 

and 2 at Turkana Boma. Only Apis mellifera visited flowers of this species in both 

sites. Six of the bee species observed at Junction visited other flowering plant species 

at Turkana Boma, although not Monechma sp. B. Furthermore, although Apis 

mellifera was active in all seasonal webs at Turkana Boma, it only visited Monechma 

sp. B flowers in the June web. 

Only 13 interaction types involving visitor species or morphospecies were 

replicated across seasonal webs or across sites (Table 6.4). These visitors were bees, 

wasps and a chrysomelid beetle. At Turkana Boma, 6 interaction types were repeated 

across seasonal webs, all of which involved bees. At Junction the only interaction 

type found in both webs was between Eumenidae sp. 9 and Monechma sp. B. Three 

interactions were found at both sites in the same seasonal web, whilst 3 were found 

at both sites in different seasonal webs. 

Curiously, although Barleria spinisepala had the greatest floral abundance at 

in the July web at Junction, no visitors were observed (Fig. 6.6). This species was 

visited in the June, July and August webs at Turkana Boma and the June web at 

Junction. 

Table 6.4 Interaction types replicated across seasonal webs. TB: Turkana Boma, J: Junction. 

Family Visitor species Plant species Webs 

bees 

Apidae Apis mellifera Senegalia brevispica May & August, TB 

Apidae Apis mellifera Leucas glabrata June J, August TB 

Apidae Apis mellifera Lippia kituiensis May & June, TB 

Apidae Xylocopa somalica Leucas glabrata June J, August TB 

Halictidae Pseudapis (Pseudapis) sp. 1 Senegalia brevispica May & August, TB, July J 

Megachilidae Megachlle (Chalicodoma) sp. 2 Gutenbergia cordifolia May & June, TB 

Megachilidae Megachile (Chalicodoma) sp. 2 Monechma sp. B June & August, TB 

Megachilidae Osmilni sp. e Gutenbergia cordifolia May TB, June J 

Megachilidae Heriades (Heriades) sp. 1 Ocimum forskolei May & June, TB, June J 

Megachilidae Heriades (Heriades) sp. 1 Plectranthus caninus June TB, June J 

wasps 

Eumenidae Eumenidae sp. 8 Helichrysum glumaceum June TB, June J 

Eumenidae Eumenidae sp. 9 Monechma sp. B June & July, J 

beetles 

Chrysomelidae Megalognatha meruensis Senegalia brevispica June TB, June J 
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Figure 6.4 Flower-visitor interaction webs for Turkana Boma in (a) May and (b) June 2004. Floral unit 
abundance is represented by the width of the bars on the bottom line, with observed species coloured 
black and species that weren't coloured red. The relative frequency of visits by each visitor taxon is 
represented by a coloured bar on the top line; (from left to right) red: bees, medium blue: wasps, light 
blue: flies, green: ants, dark blue: beetles, yellow: butterflies and moths. The widths of the coloured lines 
connecting plants and visitors show the relative interaction frequency between them. Note that acacia 
species are referred to using old taxonomic names in this figure. 
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(a) Turkana Boma, July 
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Figure 6.5 Flower-visitor interaction webs for Turkana Boma in (a) July and (b) August 2004. Floral unit 
abundance is represented by the width of the bars on the bottom line, with observed species coloured 
black and species that weren't coloured red. The relative frequency of visits by each visitor taxon is 
represented by a coloured bar on the top line; (from left to right) red: bees, medium blue: wasps, light 
blue: flies, green: ants, dark blue: beetles, yellow: butterflies and moths. The widths of the coloured lines 
connecting plants and visitors show the relative interaction frequency between them. Note that acacia 
species are referred to using old taxonomic names in this figure. 
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Junction, June 
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Figure 6.6 Flower-visitor interaction webs for Junction in (a) June and (b) July 2004. Floral unit 
abundance is represented by the width of the bars on the bottom line, with observed species coloured 
black and species that weren't coloured red. The relative frequency of visits by each visitor taxon is 
represented by a coloured bar on the top line; (from left to right) red: bees, medium blue: wasps, light 
blue: flies, green: ants, dark blue: beetles, yellow: butterflies and moths. The widths of the coloured lines 
connecting plants and visitors show the relative interaction frequency between them. Note that acacia 
species are referred to using old taxonomic names in this figure. 



Chapter 6. Community level analyses of plant-visitor interactions 	 225 

6.3.2 Within a seasonal web, to what extent are interactions structured 

in daily time? 

(a) Bottom-up influences imposed by times offlower opening 

The flowers of some species were open throughout the sampling day, 

whereas the flowers of other species were open only for a part of each sampled day. 

Figure 6.7 shows the approximate times for which flowers were open for a selection 

of common plant species in the May and June webs at Turkana Boma, and in the 

June web at Junction. Since the availability of floral resources at both sites was 

structured in daily time, we might expect temporal structure to exist among flower-

visitor interactions in these webs. 

Flowers of species in the Malvaceae at Turkana Boma were open at different 

times during the day. For example, Hibiscus flavfo1ius and H. aponeurus were open 

from 8.00 until the end of the sampling day and were therefore open in all time 

periods. Abutilon mauritianum and Pavonia gallaensis opened at a similar time in the 

morning to these species, but their flowers were closed by 15.00 and therefore could 

not be observed in time period 4. Hibiscus vitifolius and Sida ovata were open 

between 11.00 and 15.00 and could only be observed in time periods 2 and 3. 

Species with flower opening restricted mainly to time period 2 at Turkana 

Boma were Ipomoea sinensis (Convolvulaceae) and ?Becium sp. (Lamiaceae). 

Species with flower opening restricted mainly to time period 3 at the same site were 

Meihania ovata (Sterculiaceae), M. velutina (Sterculiaceae) and Ipomoea obscura 

(Convolvulaceae). Evolvulus alsinoides (Convolvulaceae) was open for part of time 

period 2 and part of time period 3. 

Species with flower opening restricted mainly to time period 2 at Junction 

were Ipomoea hildebrantii (Convolvulaceae), I. sinensis (Convolvulaceae) and 

Pavonia gallaensis (Malvaceae). Species with flower opening restricted mainly to 

time period 3 at the same site were Endostemon tereticaulis (Lamiaceae) and 

?Becium sp. (Lamiaceae). As at Turkana Boma, Evolvulus alsinoides 

(Convolvulaceae) flowered during part of time period 2 and time period 3. 



Chapter 6. Community level analyses of plant-visitor interactions 	 226 

Turkana Boma 
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Figure 6.7 Approximate flower opening times for common flowering plant species at (a) Turkana Boma 
in the May and June webs and (b) Junction in the June web. The different coloured lines represent 
different plant families: red: Lamiaceae, blue: Malvaceae, orange: Convolvulaceae, green: 
Commelinaceae, purple: Sterculiaceae, pink: Acanthaceae, brown: Boraginaceae. 
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(b) Insect visitors 

In all seasonal webs the highest diversities of visitor types occurred in time 

periods 2 and 3 (Appendix 10). The lowest diversities of visitor types were recorded 

in time period 1. The only visitors active before 8.00 at Turkana Boma were flies, 

with fly, ant and bee visitors active between 8.00 and 9.00. At Junction no flower 

visits were observed before 8.00. Visitor types observed between 8.00 and 9.00 were 

bees (mostly large apid bees in the genera Ame gil/a, Anthophora, Tetralonia and 

Tetraloniella), flies or ants. The majority of visitors observed in time period 4 were 

observed between 15.00 and 16.00 and none were observed after 16.40. Since bees 

were the most frequent visitor group, these are considered in more detail than other 

visitor groups. 

Bees: Bees were active in all time periods (Appendix 10). Bee diversity and 

numbers of bee visits were greatest during time periods 2 or 3 in all seasonal webs. 

All identified bee species were observed in either time period 2 or 3 in at least one of 

the seasonal webs (Appendix 9). No bees were observed in time period I in three 

webs (June and July at Turkana Boma and July at Junction) and bee species diversity 

in this time period was low; I only recorded the halictid bees Lasioglossum 

(Dialictus) sp. I and Patellapis sp. A, along with Amegilla ca/ens (Apidae) and a 

small number of unidentified species of large apid bee in the genera Ame gil/a, 

Anthophora, Tetralonia or Tetraloniella. A greater number of bee species was 

observed in time period 4. These included three halictid bee species (Lipotriches 

(Lipotriches) sp. 1, Lasioglossum sp. B and Halictus (Se/adonia) sp. C), five 

megachilid species (Megachi/e (Chalicodoma) sp. 2, Megachile (Pseudomegachile) 

sp. 1, Heriades (Heriades) sp. 1, Heriades sp. a and ?Aspidosmia sp.) and three apid 

species (Apis mellifera, Ceratina inoerenhouti and Xylocopa somalica), along with a 

small number of unidentified large apid bees in the genera Ame gil/a, Anthophora, 

Tetralonia or Tetraloniella. 

Other visitors: Wasps were active in time periods 2-4. The highest 

diversities of wasp visitors were observed in time period 3 in all webs. Ants were 

active in all time periods, although not in time period 1 in the June, July and August 

webs at Turkana Boma. Flies were active in all time periods with the highest 

diversities of visitors in either time period 2 or 3 in all webs. Beetles were active in 

all time periods, although only one beetle visitor was observed in time period 1 in the 
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May web at Turkana Boma. The highest diversities of beetle visitors were observed 

in either time period 2 or 3 in all webs. Butterflies and moths were active in time 

periods 2 to 4 although the time period with the highest diversity varied between 

seasonal webs (Appendix 10). 

(c) Flower-visitor interactions 

Flower-visitor interaction webs constructed for the 4 three-hour time periods 

in each seasonal web show the variation in numbers of interaction types, calculated 

interaction frequencies and visitor types active at different daily times (Figs. 6.8-

6.13). The number of plant species observed, visitor types and interaction types for 

each time period in each seasonal web are shown in Tables 6.5 and 6.6. The flower-

visitor interactions observed in each time period in each seasonal web are detailed in 

Appendix 9. 

In all seasonal webs, the greatest numbers of interaction types were observed 

during time periods 2 or 3, with the fewest occurring in time period I (Appendix 10). 

Bees were responsible for the most interaction types in time periods 2 and 3 in all 

webs. Flies were responsible for the most interaction types in time period I in all 

webs except the June web at Junction, in which bees had the most interaction types. 

The visitor group with the most interaction types in time period 4 varied across webs. 

The interactions occurring in each time period were restricted to plant species 

with open flowers. For example, Evolvulus alsinoides (Convolvulaceae) was open in 

time periods 2 and 3 in the May web at Turkana Boma and was visited only in time 

period 2 by flies and bees (Fig. 6.8). Melhania ovata (Sterculiaceae) was only open 

in time period 3 in the same web and was visited by bees. Ipomoea sinensis 

(Convolvulaceae) was open between 8.00 and 13.00 in the June web at Junction, and 

was observed in time periods 1-3 but only visited in time periods 2 and 3 by bees 

(Fig. 6.12). 

The flowers of other plant species were open through the sampling day and 

observed in all time periods. Some plants were visited in all time periods, e.g. S. 

brevispica and Balanites sp. (Balanitaceae), which were both visited by a wide 

diversity of visitors in the May web at Turkana Boma (Fig. 6.8). Leucas glabrata 

(Lamiceae) was visited in all time periods in the June web at Junction and was 

visited by bees, wasps, butterflies and ants (Fig. 6.12). Other plant species were 
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observed in all time periods but were only visited during some of these. For example, 

in the May web at Turkana Boma Leucas glabrata was visited by bees in time 

periods 1 and 2 but not visited in time periods 3 and 4 (Fig. 6.12). 

6.3.3 Null modelling analysis of community-wide daily temporal 

structure 

In all seasonal webs, the number of interaction types observed in each time 

period was significantly lower than those for the randomly assembled webs (Fig. 

6.14). This is what we would expect to see if flower-visitor interactions were 

clustered in specific time periods. The number of bee interaction types observed in 

each time period was significantly lower than those in the randomly assembled webs 

in 22 time periods across six seasonal webs (Figs. 6.15-6.20). This suggests that most 

interactions involving bees were temporally structured. 

Although there were significant differences in the number of interaction types 

between observed and randomised webs for all other visitor groups, there was no 

consistency across seasonal webs in the number of time periods for which significant 

differences were found for each group (Figs. 6.15-6.20). In general, time periods for 

which there were no significant differences involved relatively small numbers of 

interaction types. 

After bees, wasps had the greatest number of time periods with significant 

differences between observed and randomised webs (21 time periods over 6 seasonal 

webs). The lowest level of temporal structure (excluding bugs which had a very low 

sample size) was observed for ants (9 time periods in 5 webs). 



Table 6.5 Number of visitor types, flowering plant species with open flowers, observed flowering plant species, flower visits and interaction types per 
time period for each flower-visitor web at Turkana Boma. Interaction frequencies calculated for each time period are also shown. 

Visitor types Plant species with 
open flowers 

Plant species 
observed Interaction types - Flower visits Interaction 

frequency 
May 

TS 1: 6.00-9.00 10 46 30 12 64 5400 
TS 2: 9.00-12.00 45 54 38 81 291 16959 
TS3:12.00-15.00 45 50 34 66 172 16561 
TS 4: 15.00-18.00 20 39 23 27 306 22713 

84 54 38 160 833 61633 
June 

TS 1: 6.00-9.00 1 33 23 1 1 63 
TS 2: 9.00-12.00 38 41 31 53 133 4406 
TS 3: 12.00-15.00 37 42 32 55 206 4644 
TS 4: 15.00-18.00 17 33 23 18 55 2684 

66 42 32 105 395 11797 
July  

TS 1: 6.00-9.00 1 10 6 1 4 371 
TS 2: 9.00-12.00 4 13 9 4 9 246 
TS 3: 12.00-15.00 13 13 9 16 39 2376 
TS 4:15.00-18.00 2 10 6 2 2 74 

16 14 10 22 54 3069 
August  

TS 1:6.00-9.00 3 41 23 3 8 123 
TS 2: 9.00-12.00 13 47 30 20 112 722 
TS 3: 12.00-15.00 16 44 26 25 213 964 
TS 4:15.00-18.00 4 38 21 10 33 402 

26 48 31 46 366 2211 



Table 6.6 Number of visitor types, flowering plant species with open flowers, observed flowering plant species, flower visits and interaction types per 
time period for each flower-visitor web at Junction. Interaction frequencies calculated for each time period are also shown. 

Visitor types Plant species with Plant species 
Interaction types Flower visits Interaction 

open flowers observed  frequency 
June 

TS 1: 6.00-9.00 5 46 29 5 55 480 
TS 2: 9.00-12.00 27 49 33 32 202 3703 
TS 3: 12.00-15.00 40 51 34 56 297 8986 
TS 4:15.00-18.00 14 42 25 16 124 6007 
Total 63 51 35 99 678 19176 

July 

TS 1: 6.00-9.00 1 10 8 1 2 16 
TS 2: 9.00-12.00 11 14 12 12 32 132 
TS 3:12.00-15.00 13 14 12 14 30 154 
TS 4:15.00-18.00 2 11 9 2 2 7 
Total 22 14 12 26 66 309 
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Figure 6.8 Flower-visitor interaction webs for each three hour time period at Turkana Boma in May. All 
webs are drawn to the same scale. Floral unit abundance is represented by the width of the bars on the 
bottom line, with observed species coloured black, unobserved species coloured red and species whose 
flowers were closed coloured blue. The relative frequency of visits by each visitor taxon is represented 
by a coloured bar on the top line. For further details refer to the legend for Figure 6.4. 
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Figure 6.9 Flower-visitor interaction webs for each three hour time period at Turkana Boma in June. All 
webs are drawn to the same scale. Floral unit abundance is represented by the width of the bars on the 
bottom line, with observed species coloured black, unobserved species coloured red and species whose 
flowers were closed coloured blue. The relative frequency of visits by each visitor taxon is represented 
by a coloured bar on the top line. For further details refer to the legend for Figure 6.4. 
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Figure 6.10 Flower-visitor interaction webs for each three hour time period at Turkana Boma in July. All 
webs are drawn to the same scale. Floral unit abundance is represented by the width of the bars on the 
bottom line, with observed species coloured black, unobserved species coloured red and species whose 
flowers were closed coloured blue. The relative frequency of visits by each visitor taxon is represented 
by a coloured bar on the top line. For further details refer to the legend for Figure 6.4. 
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Figure 6.11 Flower-visitor interaction webs for each three hour time period at Turkana Boma in August. 
All webs are drawn to the same scale. Floral unit abundance is represented by the width of the bars on 
the bottom line, with observed species coloured black, unobserved species coloured red and species 
whose flowers were closed coloured blue. The relative frequency of visits by each visitor taxon is 
represented by a coloured bar on the top line. For further details refer to the legend for Figure 6.4. 
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Junction, June 
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Figure 6.12 Flower-visitor interaction webs for each three hour time period at Junction in June. All webs 
are drawn to the same scale. Floral unit abundance is represented by the width of the bars on the 
bottom line, with observed species coloured black, unobserved species coloured red and species whose 
flowers were closed coloured blue. The relative frequency of visits by each visitor taxon is represented 
by a coloured bar on the top line. For further details refer to the legend for Figure 6.4. 
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Figure 6.13 Flower-visitor interaction webs for each three hour time period at Junction in July. All webs 
are drawn to the same scale. Floral unit abundance is represented by the width of the bars on the 
bottom line, with observed species coloured black, unobserved species coloured red and species whose 
flowers were closed coloured blue. The relative frequency of visits by each visitor taxon is represented 
by a coloured bar on the top line. For further details refer to the legend for Figure 6.4. 
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Figure 6.14 The number of interactions between plant species and visitor types for each time period for 
the observed webs (maroon) and the randomised webs (grey; mean shown) for all seasonal flower-
visitor interaction webs. Asterices indicate whether the difference between the observed number of 
interactions for each time period is significantly different to those for the randomised webs. The total 
number of interaction types for each seasonal web is shown in brackets after each graph title. 



*** 
*** , 70 

CL 
 

>. 60 

2 50 
0 
LZ 40 
a) 

30 
0 

20 

E 10 

I 2 

70 

60 

50

0 

 

4 

30 

20 

10 

0 

3 4 1 	2 	3 	4 

0 
20 

-D 
E 10 

2 50 
0 

40 a) 

cp 70 
a) 
0. 

60 

(e) bugs (1) 

30 

(f) beetles (25) 

70 

60 

50 

40 

30 

20 

10 

0 

Chapter 6. Community level analyses of plant-visitor interactions 	 239 

U) 70 
CD a- >.. 60 

o 50 
0 

40 

30 

20 

E 10 

70 

60 

50 

40 

30 

20 

10 :iJHt 
2 
	

3 
	

4 
	

1 	2 	3 	4 

1 	2 	3 
	

4 
	

1 	2 	3 	4 
(g) butterflies and moths (15) 	 Time period 

70 

CL 
a) 

60 

0 

0 ca 40 
a) 

30 

20 
a) 
.0 E 10 

2 	3 	4 

Time period 

Figure 6.15 The total number of interactions for each visitor group in each time period for the observed 
webs (coloured) and the randomised webs (grey; mean shown) for Turkana Boma in May. Asterices 
indicate whether the difference between the observed number of interactions for each time period is 
significantly different to those for the randomised webs. The number of interaction types for each visitor 
group is shown in brackets after the graph title. 
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Turkana Boma, June 

(a) bees (51) 

cn 
CD 

60 

50 
*** 

t5 40 
10  

30 

0  20 

E 10 

(c) ants (9) 

CL 
60 

50 

t 40 

CD 
30 

20 
a) 

E 10 
*** 

(e) beetles (15) 

g 
CL 

60 

so 

40 

30 - 

20 

10 

z 

3 	4 

(b) wasps (11) 

60 

50 

40 

30 

20 

10 

0 

1 	2 	3 

(d) flies (7) 

60 

50 

40 

30 

20 

10 

0 

1 	2 	3 

(f) butterflies and moths (12) 

60 

50 

40 

30 

20 

10 

0 

4 

4 

1 	2 	3 	4 
	

1 	2 	3 	4 

	

Time period 
	

Time period 

Figure 6.16 The number of interactions for each visitor group in each time period for the observed webs 
(coloured) and the randomised webs (grey; mean shown) for Turkana Boma in June. Asterices indicate 
whether the difference between the observed number of interactions for each time period is significantly 
different to those for the randomised webs. The number of interaction types for each visitor group is 
shown in brackets after the graph title. 
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Figure 6.17 The number of interactions for each visitor group in each time period for the observed webs 
(coloured) and the randomised webs (grey; mean shown) for Turkana Boma in July. Asterices indicate 
whether the difference between the observed number of interactions for each time period is significantly 
different to those for the randomised webs. The number of interaction types for each visitor group is 
shown in brackets after the graph title. 
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Figure 6.18 The number of interactions for each visitor group in each time period for the observed webs 
(coloured) and the randomised webs (grey; mean shown) for Turkana Boma in August. Asterices 
indicate whether the difference between the observed number of interactions for each time period is 
significantly different to those for the randomised webs. The number of interaction types for each visitor 
group is shown in brackets after the graph title. 
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Figure 6.19 The number of interactions for each visitor group in each time period for the observed webs 
(coloured) and the randomised webs (grey; mean shown) for Junction in June. Asterices indicate 
whether the difference between the observed number of interactions for each time period is significantly 
different to those for the randomised webs. The number of interaction types for each visitor group is 
shown in brackets after the graph title. 
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Figure 6.20 The number of interactions for each visitor group in each time period for the observed webs 
(coloured) and the randomised webs (grey; mean shown) for Junction in June. Asterices indicate 
whether the difference between the observed number of interactions for each time period is significantly 
different to those for the randomised webs. The number of interaction types for each visitor group is 
shown in brackets after the graph title. 

6.3.4 Do plant species share visitors, and how are interactions of shared 

visitor species patterned through time? 

Visitor species (including morphospecies) visited multiple plant species in all 

six seasonal webs (Table 6.7, Appendix 11). These consisted of 22 bee species, 6 fly 

species, 6 beetle species, 2 wasp species and 1 species of day flying moth (family 

Arctiidae). Six bee species visited multiple plant species in more than one seasonal 

web: Pseudapis (Pseudapis) sp. I (Halictidae), Patellapis sp. A (Halictidae), Osmiini 

sp. e (Megachilidae), Heriades (Heriades) sp. 1 (Megachilidae), Megachile 

(Chalicodoma) sp. 2 (Megachilidae) and Apis mellifera (Apidae). 
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Individual visitor species visited different plant species in different time 

periods in all webs except the July web at Turkana Boma (Table 6.7). These consisted 

of 17 bee, 4 fly, 6 beetle and 2 wasp species (Appendix 11). Apis mellifera visited 

different plant species across time periods in 4 webs (May, June and August at 

Turkana Boma and June at Junction) and Heriades (Heriades) sp. 1 visited different 

plants across time periods in two webs (June at Turkana Boma and Junction). 

Individual visitor species visited multiple plant species during a single time 

period in all webs in July at Junction (Table 6.7). These consisted of 17 bee, 4 fly, 2 

beetle and I moth species (Appendix 11). Apis me11fera visited multiple plant species 

in a single time period in four seasonal webs (May, June and August at Turkana Boma 

and June at Junction). Heriades (Heriades) sp. 1, Pseudapis (Pseudapis) sp. 1 and 

Osmiini sp. e each visited multiple plant species in a single time period in two seasonal 

webs (Appendix 11). 

Table 6.7 Total identified visitor species (including morphospecies) in each web and the 
number observed visiting multiple plant species. Visitor species were active either in single 
time periods (TP) or multiple time periods. The table shows the number of visitor species that 
visited multiple plant species in a single time period and the number visiting different plant 
species in different times period. Some visitor species are included in both categories. 

Present 	 Visiting 
Total visitor 	Visiting  

Web 	 multiple plant 	 multiple plant 	different species 	 in only 	in multiple species 	
1 TP 	TP 	species in 	species in 

a single TP 	different TP 
Turkana Boma 58 	 20 	 6 	14 	14 	 14 May 

Turkana Boma 48 	 11 	 2 	9 	 8 	 9 June 

Turkana Boma 10  
July 
Turkana Boma 19 	 4 	 0 	4 	 3 	 4 August 
Junction 51 	 11 	 3 	7 	 5 	 7 
June 
Junction 15 	 1 	 0 	1 	 0 	 1 July  
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6.35 To what extent do acacias share visitors with other plants and 

how are interactions of shared visitor species with other plants 

patterned through time? 

Senegalia brevispica, V. etbaica and V. gerrardii all shared visitor species or 

morphospecies with other flowering plant species in individual seasonal webs at 

Turkana Boma (Appendix 11). Although S. brevispica shared visitor types belonging 

to unidentified groups or morphogroups, no identified species or morphospecies were 

shared with other plant species in the same seasonal web at Junction. Vachellia 

nilotica did not share visitor species or morphospecies with other plant species and 

was visited by only two beetle morphospecies and ants. Only two V. nilotica flower 

heads were present on a single tree during any of the seasonal webs, therefore the 

observations during web sampling may not be representative of visits observed when 

flowering is greater. Visitors observed on V. nilotica flower heads during detailed 

observations included several species of Megachile. One of these, Megachile 

(Chalicodoma) sp. 2 visited 3 plant species in the seasonal webs at Turkana Boma. 

(a) S. brevispica 

Senegalia brevispica was visited by a wide diversity of visitor types in all 

seasonal webs (Fig. 6.2). In the May web at Turkana Boma, S. brevispica shared two 

bee, three fly and one moth species with other plant species within single time 

periods, and shared the same two bees, two of the flies and one beetle species with 

other plant species across time periods (Appendix 11). In total, S. brevispica shared 

visitors with seven plant species: V. gerrardii, Meihania ovata (Sterculiaceae), 

Indigofera volkensii (Fabaceae), Ocimum forskolei (Lamiaceae), Croton dichogamus 

(Euphorbiaceae), Lippia kituiensis (Verbenaceae) and Asteraceae spp. yellow. 

In the June web at Turkana Boma, S. brevispica shared one bee species, 

Lipotriches (Lipotriches) sp. I (Halictidae), with Abutilon mauritianum (Malvaceae) 

and Gutenbergia cordifolia (Asteraceae) across time periods, and Gutenbergia 

cordifolia within the same time period (Appendix 11). 

In the August web at Turkana Boma, S. brevispica shared two bee species, 

Apis mellifera and Plebeina hildebranti, with other plant species both within and 

across time periods (Appendix 11). Apis mellifera was shared with V. etbaica, both 
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within and across time periods. In total, V. brevispica shared visitors with seven plant 

species: V. etbaica, Solanum sp. I (Solanaceae), Phyllanthus sepialis 

(Euphorbiaceae), Euphorbia sp. (Euphorbiaceae), Sida schimperiana (Malvaceae), 

Commelina spp. blue (Commelinaceae) and Leucas glabrata (Lamiaceae). 

V. gerrardii 

In the May web at Turkana Boma, V. gerrardii shared one fly and one moth 

species within single time periods with other plant species, and the same fly and a 

beetle species across time periods with S. brevispica (Appendix 11). In total, V. 

gerrardii shared visitors with two plant species: S. brevispica and Lippia kituiensis. 

V. etbaica 

In the August web at Turkana Boma, V. etbaica shared two bee species, Apis 

mellifera and Xylocopa somalica, both within and across time periods (Appendix 

11). In total, V. etbaica shared visitor species with five plant species: S. brevispica, 

Solanurn sp. 1, Leucas glabrata, Sida schimperiana and Commelina spp. blue 

6.3.6 How do daily time periods differ in microclimate and are climatic 

differences across time periods correlated with variation in the visitors 

active in each time period? 

At the beginning of time period 1 (6.00), temperatures were approximately 

10°C and relative humidities between 70 and 80% (Fig. 6.21). During time period 1, 

temperatures increased to approximately 20°C and relative humidities decreased to 

between 40 and 60% by 9.00. During time period 2, temperatures increased to 

between 26 and 32 °C and relative humidities decreased to between 20 and 45% by 

12.00. During time period 3 both temperature and relative humidities remained at 

similar levels. During time period 4 temperatures began to decrease and relative 

humidities began to increase. Temperature and relative humidities were not recorded 

after 17.00. Temperature and relative humidities varied across days and months, 

although followed the same pattern on all days shown in Fig. 6.21. 
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Figure 6.21 Daily patterns of temperature and relative humidity recorded at half-hourly intervals at 
Turkana Boma during the June, July and August web sampling. 
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Greater numbers of visits, and higher visitor diversities were observed during 

time periods 2 and 3. This six hour period incorporated the warmest temperatures 

and low relative humidities. In contrast, time period 1 was the coldest and most 

humid and fewer visitor types were observed. Time period 4 had relatively high 

temperatures, was slightly cooler than time period 3, but similar to time period 2. 

More visitor types were observed in time period 4 than in time period 1, although the 

diversity of visitors was not as high as in time periods 2 or 3. 

6.4 Discussion 

6.4.1 Critique of methods 

(a) Sampling effort 

This study aimed to sample entire flowering plant communities and their 

flower visitors to examine the extent to which interactions between them varied in 

seasonal and daily time. Sampling was designed so that as many plant species as 

possible could be observed in as short a time as possible in order to minimise the 

impact of seasonal variation on data collection for a single web. Each plant species 

was observed for a maximum of 1 hour 40 minutes in each seasonal web. These data 

were not as detailed as the visitation data collected for the acacia species in Chapter 

5, but do allow comparisons of flower-visitor interactions across whole communities. 

In total, seventy-three plant species were sampled for 280 hours. This level of 

sampling compares favourably with those of previous plant-visitor community 

studies (Table 6.8). 

By collecting a relatively small amount of data for each plant species, it is 

inevitable that some interactions will have been missed. Acacias were sampled for 

floral visitors using two methods: (i) full day observations of the same set of flower 

heads (Chapter 5) and (ii) four 20 minute observations spread over a week during the 

community level studies (this chapter). The data collected during full day 

observations of acacias can be used to examine the extent to which data collected for 

the same species using the web methodology captured the overall visitor diversity 

and daily temporal visitation patterns. 
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The visitation data for S. brevispica in the July and August webs at Turkana 

Boma and for V. etbaica in the August web at Turkana Boma are compared to 

detailed observation days for the same species within or close to the web sampling 

times at Turkana Boma in Figs. 6.22-6.24. In general, the web observations 

preserved the daily patterns of visitation, but captured fewer visits and fewer taxa. 

However, the number of visitor taxa was the same in both the August web and on 6th 

September 2004, with a greater number of visits observed during the web sampling 

(Fig. 6.23). Furthermore, some visitors recorded during the web sampling were not 

observed on detailed observation days. 

(b) Null modelling approach 

The null modelling approach used in this study was developed to examine 

whether the number of interaction types per time period differed significantly 

between observed webs and those constructed from randomly assembled data. There 

were two assumptions in the model: (i) that the calculated interaction frequency 

remained the same in each time period and (ii) that the interaction types remained the 

same (i.e. no new links between plant and visitor species were made). The calculated 

interaction frequencies for each web were used to create randomised webs. Plants 

with high floral abundances involved in a large number of interaction types in the 

observed webs are likely to influence the results of the null model comparisons. If 

visitation to such plants is structured in daily time, the observed web is itself likely to 

be structured relative to the randomised webs. Similarly, if visitation to such plants is 

unstructured in daily time, strong temporal structuring in less abundant plants is 

unlikely to generate significant temporal structuring in the whole web. However, 

since plants with higher floral abundances had more floral resources, this might be an 

appropriate representation of daily flower-visitor interactions. 
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(a) Detailed observation data; 21st  July 2004 

30-1 
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Time  

--- Total visits (74) 
-.- bees (56) 
-•-- flies (4) 
-.---- wasps (12) 

beetles (1) 
--- butterflies (1) 

210 minutes of sampling 

15 visitor taxa: 
Pseudapis (Pseudapis) sp. 1 
Hylaeus sp. 
Megachile sp. 
unidentified halictid bee 
unidentified colletid bee 
unidentified bee 
Tachysphex sp. 1 Rhyncomya spp. 
Eurnenidae sp. 	2 unknown flies 
Ammophila sp. 	unidentified beeti 
Oxybelus sp. 	lycaenid butterfly 

(b) Data from July web 2004 
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-•--- bees (7) 
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-•-- butterflies (0) 
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Pseudapis (Pseudapis) sp. 1 
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Eumenidae sp. 4 
Tachysphex sp. 1 
Rhyncomya spp. 
unidentified fly 
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Figure 6.22 Patterns of visitation for S. brevispica (a) on 21st  July 2004 and (b) during the July web at 
Turkana Boma in 2004. In (b) the data are plotted mid-way through each time period. Total visits for 
each visitor group are shown in brackets. Total observation time and number of visitor taxa are given, 
bees are in red, wasps in green and flies in blue. All other taxa are in black. 
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- Total visits (25) 
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5 visitor taxa: 
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(b) Data from August web 2004 
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Figure 6.23 Patterns of visitation for S. brevispica (a) on 6'h  September 2004 and (b) during the August 
web at Turkana Boma in 2004. Total visits for each visitor group are shown in brackets. In (c) the data 
are plotted mid-way through each time period. Total observation time and number of visitor taxa are 
given, bees are in red and flies in blue. All other taxa are in black. 
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Detailed observation data; 21St  August 2004 
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Figure 6.24 Patterns of visitation for V. etbaica (a) on 21st  August 2004, (b) on 27 August 2004 (C) 
during the August web at Turkana Boma in 2004. Total visits for each visitor group are shown in 
brackets. In (c) the data are plotted mid-way through each time period. Total observation time and 
number of visitor taxa are given, bees are in red and flies blue. All other taxa are in black. 
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(c) Taxonomic resolution 

Despite best efforts to catch flower visitors, not all were identified to species. 

A large proportion of visitors were identified to species or morphospecies (59%), 

with the remainder grouped to order (17%) or family level (morphogroups; 26%). 

This is a respectable achievement given that the taxonomy for many insect groups in 

this region is limited. Furthermore, identifications to genus or species often required 

the expertise of specialised taxonomists and even then it was not always possible to 

assign a species name to specimens. These data were sufficient to identify patterns in 

daily time for visitor groups and also allowed the identification of shared visitor 

species and the distribution of their visits to different plant species in daily time. 

Although the results of this study should be interpreted with a degree of 

caution regarding species-level interactions, these data show how flower visits by 

major visitor groups (e.g. bees, wasps, flies) varied across daily and seasonal time in 

two savannah flowering plant communities. This study represents the first 

community-level study of plant-visitor interactions in an African savannah habitat 

and is the first study to incorporate comparisons of interactions on a daily timescale 

for entire plant-visitor communities. 

6.4.2 Variation in plant-visitor interactions across seasonal time and 

across sites 

The diversity of plants and visitors varied across seasonal time at both 

Turkana Boma and Junction, with higher diversities in months that followed rainfall 

(May, June and August) and lower diversities during July, the driest month. The 

diversities of flower-visitor interactions were greater in months with more plant 

species, although this could have been a sampling artefact. The species composition 

of the flowering plant communities also varied across seasonal times at both sites, 

although most plant species were present in more than one web at each site. 

The identities of flowering plant species varied between sites, with 

approximately half of those at Junction also found at Turkana Boma, which was the 

more diverse site. Similarly, approximately half of the visitor types at Junction were 

also found at Turkana Boma, although the similarity might have been higher if all 

visitors could have been identified to species. Although community composition 
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varied between the two sites, plant and visitor diversities were similar at Turkana 

Boma and Junction when both communities were studied simultaneously (Table 6.1). 

The main visitor groups (bees, wasps and flies) and the relative diversity of 

their interaction types were similar across all webs at both sites (Figs. 6.4-6.6). Bees 

were the most diverse visitor group and responsible for the most interaction types in 

all webs. 

Individual plant species present in multiple webs at each site had different 

flower visitors at different seasonal times. This could have been because different 

visitor species were active at different seasonal times or because the level of 

sampling did not pickup the full range of visitors (see section 6.4.1). Identified 

visitor species active across seasonal webs at each site visited different plant species 

in different webs. Such patterns are consistent with the idea of pollinator partitioning 

in seasonal time. However, visitor species active in multiple webs were often 

observed visiting different plant species, despite the presence of plants they had 

visited in other webs. The composition and frequency of visitors to individual plant 

species could depend on the abundance of other flowering plant species at a 

particular seasonal time and location. Visitors might choose to forage on a particular 

species because it offers a better quality of floral reward (Roubik 1989). More 

detailed studies of visitation at different seasonal times could reveal whether the 

visitor composition for individual plant species does change throughout the season, 

or whether the results in this study were due to low sampling effort. 

In each seasonal web, the linkage levels for visitor types were generally lower 

than those for plant species. These findings are consistent with previous studies of 

plant-visitor communities which have typically found that plant species are more 

generalised (i.e. have more links) than visitors (e.g. Dicks et al. 2002, Olesen et al. 

2002, Lundgren and Olesen 2005, Petanidou and Lamborn 2005). However, since a 

proportion of visitors were not identified beyond family or order the actual linkage 

levels for both groups could have been higher. 

A large proportion of plant species and visitor types had only one partner 

species in each seasonal web (Figs. 6.2, 6.3). Whilst it is possible that specialised 

relationships between plants and pollinators existed in the two communities, it is 

more probable that the level of sampling did not reveal further interactions. When 
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interaction types were considered across all seasonal webs, most plant species with a 

single link in an individual web were visited by a wider range of visitors, and an 

increased number of visitor types were found on multiple plant species. Only six 

plant species in this study were visited by a single visitor type: Craterostigma sp. 1 

(Scrophulariaceae), Kalanchoe sp. 1 (Crassulaceae), Meihania velutina 

(Sterculiaceae), Polygala sp. 2 (Polygalaceae), Ruellia sp. (Acanthaceae) and Sida 

schimperiana (Malvaceae). All of these species received a relatively small number of 

observations because either they flowered during few of the seasonal webs or had 

open flowers in only one or two time periods. 

If the results are representative of the two flower-visitor communities studied, 

this suggests that shared visitors might be structured in seasonal time. More detailed 

studies of individual plant species are required to determine whether sampling effort 

in this study was adequate for all species in these communities. 

Only one previous study has considered plant-pollinator communities over an 

extended seasonal timescale. Basilio et al. (2006) examined monthly flower-visitor 

interaction webs over 3 years. Similarly, they found that visitor and interaction 

diversities were higher when more plant species were flowering. Basilio et al. 

concluded that the examinations of flower-visitor interactions over extended seasonal 

time should consider consecutive individual webs rather than cumulative webs 

incorporating all data, in order to understand the role and importance of different 

species in the community. 

6.4.3 Are interactions in seasonal webs structured in daily time? 

In all seasonal webs, flower-visitor interactions varied in daily time and 

different visitors were active at different times during the 12-hour sampling period 

(Figs. 6.8-6.13). The results of the null model analyses show that the number of 

interaction types in each time period was lower than in random communities 

composed from the same plant-visitor interactions in all seasonal webs at both sites 

(Fig. 6.14). This result arises because particular interactions occurred in specific time 

periods, rather than throughout the entirety of the 12-hour sampling period. Bees 

were the only visitor group which consistently followed the same pattern as the 

overall data, and were therefore the most consistently time structured visitors. 
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All visitor groups demonstrated similar patterns of diversity in visitor types 

and interaction types through the four daily time periods; diversities were generally 

higher in time periods 2 (9.00-12.00) and 3 (12.00-15.00), lower in time period 4 

(15.00-18.00) and lowest in time period 1 (6.00-9.00). Wasps, butterflies and moths 

Were not observed visiting flowers in time period 1, whilst beetle visitors were 

seldom observed during this time period. 

At least some of the observed structure is due to bottom-up influences of 

flower opening times. The flowers of several plant species in each seasonal web were 

closed during at least one time period (Figs. 6.7-6.13). Consequently these plant 

species could only be visited in time periods in which their flowers were open. 

Bottom-up structuring will also affect daily patterns of flower visitation through the 

timing of pollen and nectar presentation, which was not examined in this study. This 

was shown clearly for the acacias in Chapter 5, with visitors, especially bees, closely 

tracking pollen availability. Examination of daily resource availability for more plant 

species could provide additional support for the existence of bottom-up structure in 

these communities. Previous studies have shown that the availability of floral 

resources is an important determinant of flower-visitor community structure, 

particularly bees (Potts et al. 2003, 2004), and pollen and nectar availability on a 

daily timescale is likely to be an important factor in the timing of flower visits by 

pollinators. 

Although no previous plant-visitor community studies have considered the 

variation of flower-visitor interactions in daily time, most recent studies have 

sampled for flower visitors over a broad daily time window (Table 6.8). In the 

majority of studies it is unclear whether each plant species was observed throughout 

the specified ranges, and only Stang et al. (2006) specified that observations for all 

species were spread throughout their sampling window. The necessity of considering 

flower-visitor interactions over daily time will depend on the focus of the study. 

However, any studies considering the potential for competitive or facilitative 

interactions among plant species should consider the activity of shared pollinators 

over a daily timescale to avoid misinterpretation. 



Table 6.8 Comparisons of sampling methods and sampling effort in recent web-based flower-visitor community studies 

Study Habitat Location Sampling dates Sampling method Sampling effort Times of sampling Plant Visitor 
species species  

Memmott 1999 meadow UK July 1997 transects not specified not specified 26 79 

Dicks et al. two sites: UK 14 April-16 July transects fortnightly or Three per day 21 61 
2002 hay meadows year unknown weekly 9.00-10.30, 12.30- 29 36 

14.00, 16.00-17.30  

Dupont et al. sub-alpine desert Tenerife, 7 May - 7 June 2001 5-20 min 15 days, 145 hours, 7.00-21.00, although 11 38 
2003 Canary Islands observations, each plant species mainly 10.00-17.00 

repeated at different was observed for 
times of day >1 hr 

Forup and four sites: UK May-July 2000 transects fortnightly per site not specified 42 85 
Memmott 2005 hay meadows  

Lundgren and heath and bare Greenland 1 July-4 August 2002 20 min observations total -4 h per plant 10.00-16.00 17 149 
Olesen 2005 rock species  

Basilio et al. talar forest Argentina August 1998-May 2001 transects monthly morning-dusk 37 101 
2006 560 hours  

Gibson et al. five sites: UK June-September 2002 15 min observations not specified not specified not given not given 
2006 farmland/grassland  June-September 2003  

Hegland and grassland/meadow Norway 28 May- 18 Aug 2003 10 min observations 201 censuses 10.00-16.00 not given not given 
Totland 2006  (33.5 hours)  

Morales and four sites: Chile 2000-2001 15 min observations 1639 censuses 9.00-18.00 28 110 
Aizen 2006 forest habitat  (342.25 hours)  

Stang et al. Mediterranean Spain March-April 2003 15 min observations 4 x 15 min per 10.00-18.00 25 111 
2006 vegetation mosaic plant, spread 

throughout the day  



Chapter 6. Community level analyses of plant-visitor interactions 	259 

6.4.4 Daily temporal patterns of shared visitor species 

If visitation by shared pollinators is structured in daily time in these 

communities, shared visitors will visit different plant species at different times of 

day. Between 10% and 40% of visitor species and morphospecies visited multiple 

plant species in all seasonal webs (Table 6.7). 

Shared visitor species and morphospecies were observed on different plant 

species in different time periods in all seasonal webs apart from July at Turkana 

Boma (Table 6.7). If these visitors are important pollinators for at least one plant 

species visited in each time period, this pattern would be consistent with the idea that 

plants could be partitioning pollinator visits in daily time in these communities. 

Shared visitor species also visited different plants within single time periods 

in all seasonal webs apart from the July web at Junction. Plant species might compete 

for visits from these species if they are important pollinators, although partitioning in 

daily time could be occurring on finer timescales than can be detected in this study, 

or partitioning could be by other means, such as pollen placement on pollinator 

bodies. 

More information is needed regarding which visitors could be important 

pollinators for plant species sharing visitors in this community, to establish whether 

plants might benefit from partitioning visits in daily time to avoid competition for 

pollinators. Data for the relative frequencies of interactions were limited because of 

the large number of plant species sampled in this study. A more accurate estimation 

of the frequency of visits by shared visitors to individual plant species would 

demonstrate whether shared visitors observed in this study could be important 

pollinators, or were simply incidental visitors. Visitors carrying pure pollen loads of 

single plant species are more likely to be effective pollinators for that species. 

Therefore examination of the pollen loads of shared visitors would further 

demonstrate which visitors have the potential to successfully pollinate which plant 

species. 
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6.4.5 To what extent do acacias share visitors with other plants and 

how is shared visitor activity patterned through time? 

Four acacia species, S. brevispica, V. gerrardii, V. etbaica and V. nilotica 

were included in the webs at Turkana Boma, whilst only S. brevispica was sampled 

in the Junction webs. Other acacia species were either not present in the plots, or did 

not flower during web sampling. Senegalia brevispica, V. gerrardii and V. etbaica 

received visits from a wide diversity of visitor types in each seasonal web in which 

they were sampled and all shared visitor species and morphospecies with other plants 

at Turkana Boma (Appendix 11). Sampling was not representative for V. nilotica 

during web sampling as only two flower heads were present at any time. 

Senegalia brevispica, V. gerrardii and V. etbaica all shared visitor species 

and morphospecies with other plants across time periods and within single time 

periods (Appendix II). Senegalia brevispica and V. etbaica, in particular, shared 

visitors with a wide diversity of plant species. All three acacias also shared visitors 

with other acacias in the same seasonal web. 

The detailed studies in Chapter 5 showed that all four acacias sampled in the 

webs shared a wider diversity of flower visitors with other plant species than was 

shown by the webs (Appendix 6). In addition, V. drepanolobium and S. mellifera, 

which were not included in the webs, also shared visitor species with plant species 

sampled in the webs. In total, these studies revealed that acacias shared visitor 

species with an additional 27 plant species in the webs. However, the detailed studies 

were carried out over a two year period and across several sites at Mpala, and further 

examination of particular flower-visitor communities would be required to establish 

the extent to which these visitors are shared in daily time. 

Partitioning on a daily timescale will only occur for visitors that are important 

pollinators for multiple plant species. The importance of each visitor type as 

pollinators for either the acacias or plant species with which they shared visitors is 

not known in this study; sampling time per plant species was limited and no 

information on pollen loads carried by visitors is available. The evidence for daily 

temporal partitioning of acacia visitors among acacias and other flowering plant 

species in this study is limited. Although acacia visitors were shared with other plant 

species in several webs, these visitors were often observed on different plant species 
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in the same time period (Appendix 11). Partitioning could be occurring on a finer 

timescale than can be detected using the time periods in this study, or might involve 

a limited number of visitor taxa that were not adequately sampled. Further studies of 

the visitor assemblages and patterns of visitation for the plants with which acacias 

share visitors are needed to establish whether acacias partition shared pollinators in 

daily time with other plants in theses communities. 

6.4.6 Variation of visitor activity with climatic differences across time 

periods 

Temperature and relative humidity varied'throughout the 12-hour sampling 

day (Fig. 6.21). Time period 3 incorporated the warmest and least humid part of the 

sampling day. Numbers of visits and the diversities of visitor and interaction types 

were highest in time periods 2 or 3. Although temperature and relative humidity were 

similar between time periods 2 and 4, numbers of visits and visitor and interaction 

type diversities were lower in time period 4. Time period 1, the coldest part of the 

sampling day, had fewest visits and the lowest diversity of visitor and interaction 

types. 

We might expect more visitors to be active in the warmer time periods in 

these communities since the activity patterns of many insect taxa are limited by 

temperature (e.g. Gilbert 1985, Willmer 1985, Strohm and Linsenmair 1998, Orueta 

2002, Willmer and Stone 2004). In this study, two visitor groups, wasps and 

lepidopterans (butterflies and moths), were not observed during time period 1. The 

most consistently active group in this time period across seasonal web were flies, 

although many of these were immobile and remained on single flowers. 

Large apid bees, such as those in the genera Amegilla and Anthophora, are 

known to have greater thermoregulatory abilities and can fly in cooler temperatures 

than smaller bees (Linsley 1978, Herrera 1990, Stone 1994, Willmer and Stone 

1997b, Stone et al. 1999b). In these studies, large bees demonstrated bimodal activity 

patterns, with numbers of visits peaking early in the morning and later in the 

afternoon when temperatures were relatively cool. At Mpala, the larger apid bees 

(Amegilla, Anthophora, Tetralonia and Tetraloniella) were observed visiting flowers 

during time periods 1 and 4, when few smaller bees were active. However, larger 
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bees were also often observed during time periods 2 and 3. Most of these visits 

occurred before 11.45 and after 14.15, with only two large bee visitors observed 

between these times. This period was often the hottest part of the day (Fig. 6.21), and 

therefore these bees might have been exhibiting bimodal activity patterns that could 

not be detected due to the relatively broad time periods in this study. 

Smaller bees were not generally active during cooler parts of the day (i.e. 

time periods 1 and 4). All bees were active in time periods 2 and 3, with only three of 

the 44 species of small to medium sized bees observed in time period 1 and eight 

observed in time period 4. This corresponds with predictions regarding their inability 

to fly during cooler temperatures (Herrera 1990, Wilimer and Stone 2004). 

If the activities of visitors are constrained to particular daily times, this would 

imply that flower-visitor interactions are structured by top-down effects. Other 

factors, such as daily nesting cycles, could also restrict foraging activity to particular 

times of day (Willmer and Stone 1989, 2004, Stone et al. 1999b). To examine the 

effect of pollinator behaviour on the daily timing of flower-visitor interactions, more 

detailed activity patterns for important pollinators in these communities are 

necessary. In addition to foraging activity, such studies would also need to examine 

bee nest sites to determine daily nesting cycles, as well as species' thermoregulatory 

abilities. Such comprehensive studies for a single pollinator can be labour-intensive 

(e.g. Stone et al. 1999b) therefore the examination of activity patterns for entire 

pollinator communities would be an extensive task. 

6.4.7 Implications of this study and further work 

The results of this study demonstrate that sampling of flower-visitor 

interactions during a limited daily time window could mean that some interactions 

are missed. Furthermore if interactions are grouped over daily time, then interactions 

among plants that share pollinators could be misinterpreted; plants that appear to be 

competing may not actually receive visits from shared pollinators at the same time of 

day. 

This study also demonstrates that flowering plant communities, visitor 

species and their interactions vary across seasonal time, and supports the conclusion 

of Basilio et al. (2006) that interaction webs should not assimilate interactions over 
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long seasonal periods if they wish to identify competitive or facilitative interactions 

among plant species. 

What this study does not reveal is whether daily temporal patterns in plant-

visitor interactions are due to the 'top-down' effects of visitor species' activity or 

'bottom-up' effects dictated by the timing of pollen and nectar production of plant 

species. Partitioning of shared pollinators is only occurring among plant species if 

the timing of visits is controlled by the plants producing their rewards at a particular 

time in order to reduce competitive interactions. 

To further investigate what might be driving the observed temporal patterns, 

both the bottom-up effects of plant resource provision in daily time and the top-down 

effects imposed by pollinators' daily activity cycles need to be investigated. 

Examination of the daily times of pollen release and nectar production for plant 

species in these communities is currently the subject of an additional study by J. C. 

Ruiz Guajardo (University of Edinburgh), and we hope to establish the role of 

resource provision in determining daily temporal structure in both communities in 

this study. 

Further detailed observations of visitation patterns for key plant species in 

these communities would be useful for several reasons: 

to demonstrate how effective the low resolution sampling used in this study has 

been in demonstrating the full range of visitors and the daily visitation pattern for 

each plant species; 

the identification of frequent visitors that could be effective pollinators for each 

plant species; 

to more accurately investigate patterns of visitation by shared visitors on finer 

daily timescales. 

Ideally such studies would incorporate observations of multiple plant species 

on the same day to minimise the effects of climatic variation between days. However 

the quantity of data that can be collected will inevitably be limited by the number of 

people available to collect it. 
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Chapter 7. Conclusions and future directions 

7.1 Results overview 

At the beginning of this thesis, I set out to investigate (i) whether co-

flowering acacia species at Mpala partitioned pollinator visits in daily time, (ii) 

whether acacias shared visitors with other plant species and (iii) the extent to which 

shared visitors with other flowering plant species were patterned through daily time. 

In Chapter 3, I found that most acacias at Mpala had bimodal flowering 

phenologies with one species, S. brevispica, having a trimodal flowering phenology. 

Up to five acacia species regularly co-flowered. 

In Chapter 4, I found that low intraspecific synchrony and high interspecific 

synchrony in the timing of dehiscence in these acacias precludes evidence for 

competitive displacement. Individual species found at both Mpala and the Mkomazi 

study site in Tanzania commonly show radically different dehiscence behaviour in 

terms of synchrony and structure among co-flowering species. The strong correlation 

between dehiscence time and relative humidity observed at Mkomazi was not 

demonstrated by the acacias at Mpala. 

In Chapter 5, I showed that flower heads were visited mainly by bees and 

flies, with species falling into one of two categories: (i) those visited in similar 

proportions by bees and flies and (ii) those whose visits were dominated by bees. As 

a group, acacias shared many visitor species, in particular Apis mellifera and 

megachilid bees in the genus Megachile. Megachile dominated visits to V. nilotica 

and Apis mellifera dominated visits to V. drepanolobium, however both formed 

smaller proportions of overall visits to other acacias. Bees, and in some species flies, 

closely tracked dehiscence patterns. This suggests a bottom-up influence on plant-

pollinator interactions, however there is little evidence for bottom-up structuring 

among co-flowering species since dehiscence patterns, and therefore visitation 

patterns, overlapped in daily time. 

In Chapter 6, I found that acacias shared visitors with a wide range of plant 

species and are one of the most highly linked plants across seasonal webs. Although 

the composition of flower-visitor webs varied across sites and through seasons, there 

was consistent evidence of daily temporal structure at the web level. 
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Acacias show bottom-up control of visitor behaviour, particularly for bees. 

This means that the partitioning of pollinators would, in principle, be possible if 

pollen release was itself structured. A striking feature of the Mpala acacias is the 

absence of temporal structuring among co-flowering species. This is associated with 

strongly counter-intuitive relationships between relative humidity and dehiscence. So 

why do the acacias at Mpala behave so differently to those at Mkomazi? 

7.2 Why is there no evidence of daily temporal structure among the 

acacias at Mpala? 

The lack of evidence for daily temporal structuring of pollinators among co-

flowering acacias at Mpala could be because: 

The data collected in this study do not reveal the daily temporal structure that 

exists among co-flowering acacias. This could be due to errors in the sampling of 

pollen release patterns, such as insufficient sampling, or the simultaneous sampling 

of different ages of flower heads. Ideally, species demonstrating complex patterns of 

dehiscence would be re-sampled in a more intensive fashion to rule out sampling 

artefacts within the current data. 

The data are real (i.e. species have multiple peaks) but what we see is a result of 

more complicated flowering behaviour in individual trees, i.e. there might be 

different cohorts of flower heads with pollen available at different times of the day in 

species such as S. brevispica and V. nilotica. Some of the complexities in the current 

data could be due to an inability to separate cohorts of flower heads during sampling. 

Flower heads on individual V. nilotica trees at Mpala were sampled over consecutive 

days, although these data have not been presented in full in this thesis. Tracking 

patterns of dehiscence over several days in other species with irregular patterns of 

dehiscence (e.g. S. brevispica) could reveal the existence of more predictable 

patterns in daily time. 

There really is no daily temporal structuring of acacia dehiscence and shared 

pollinators at Mpala. Even with intensive studies and the separation of different 
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cohorts of flower heads, there might still be no regular spacing of dehiscence peaks 

in daily time for co-flowering acacias. This could be for several reasons: 

Hypothesis I. Shared pollinators do not contribute high enough proportions of total 

visits for any kind of heterospecific pollen transfer they mediate to be a problem. 

Hypothesis 2. Heterospecific pollen transfer occurs but does not affect seed set. 

Hypothesis 3. They are tolerant of competition because flowering seasons are longer. 

Hypothesis 4. Sets of co-flowering species are unpredictable between years and 

between sites and therefore selection on the dehiscence time of individual acacias is 

not consistent. No formal analysis of seasonal flowering patterns was carried out in 

this thesis, although it is clear that the flowering phenologies for individual species 

were variable. 

7.3 How could we determine which of these apply at Mpala? 

These hypotheses could be investigated in the following ways: 

Hypothesis 1. Shared pollinators form low proportions of visits. 

Important shared pollinators for each co-flowering acacia species would need 

to be identified. As well as quantifying visitor frequency at the species level, 

evidence for pollinator efficacy could be provided by examining pollen loads. 

Specifically, acacias flowering at the same time in the place that will share a pool of 

potential pollinators should be targeted over a relatively short timescale. 

Hypothesis 2. Heterospecific pollen transfer does not affect seed set. 

Evaluation of this hypothesis would require measurement of the effect of 

heterospecific pollen transfer on the level of seed set for each species. This could be 

achieved by measuring seed set in controlled experiments in which conspecific and 

heterospecific pollen were artificially transferred to flower heads. Examination of 

this in the natural environment would be trickier, although flower heads could be 

examined to see what extent heterospecific pollen is transferred by pollinator visits. 
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This would require an ability to distinguish between pollen from different acacia 

species. 

Hypothesis 3. Competition is tolerated due to long flowering seasons. 

Examination of this hypothesis would require more definite proof that 

competition for pollinators exists among co-flowering acacias. Tolerance of 

competition could be shown by comparing seed set for species flowering in relative 

isolation from other acacias, to conspecific trees that coexist and co-flower with 

many species. At Mpala, this could be done most easily for V. drepanolobium, which 

dominates the woody vegetation on the black cotton soil but grows in sympatry with 

a wider diversity of acacias on the red soil. 

Hypothesis 4. Sets of co-flowering species are unpredictable. 

More detailed analyses of the flowering phenology data set collected at 

Mpala could show the regularity with which particular sets of species co-flower. 

Since collection of these data are ongoing a longer term data set is potentially 

available. In this study I had no minimum threshold flowering level for inclusion of 

species as co-flowering. Comparisons of the relative flowering scores would reveal 

the intensity with which species co-flower, and therefore indicate whether particular 

species in the co-flowering sets identified in this thesis are more likely to exert 

consistent signals on one another. It would also be interesting to know why acacia 

flowering patterns are so variable at Mpala in comparison to those in other locations 

(e.g. Stone et al. 1998, Mduma et al. 2007). More detailed analyses, including 

climatic factors such as rainfall, might reveal why the flowering phenologies of 

species at this site differ to those for the same species in other locations. 

All of these hypotheses assume that competition for pollination will exist 

only among acacias, however the findings in Chapter 6 demonstrate that acacias are 

highly linked to other plant species in the community. Therefore further 

examinations might also include the potential for heterospecific pollen transfer from 

non-acacia species and consideration of their flowering phenologies. 
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7.4 Could other interaction webs be structured in daily time? 

The results in Chapter 6 show that plant-visitor interactions are structured in 

daily time. The consideration of daily temporal variation is important for plant-

pollinator communities since interactions occur over a relatively short timescale and 

the timing of reward presentation and pollinator activity can both be limited in daily 

time. The extent to which daily temporal variation is important for other types of 

interaction webs will depend on the timescale over which interactions occur and 

whether species have daily activity patterns that restrict the times at which they are 

available to interact. 

Many animals have daily activity patterns and are active at particular times 

during a 24 hour period (Daan 1981 cited in Kronfeld-Schor and Dayan 2003). 

Climatic conditions, such as temperature and rainfall, might limit animal activity 

patterns (see section 6.1.1, Kowalczyk et al. 2003, Sanecki et al. 2006). 

Other mutualistic relationships that have been widely studied at the 

community level are those between plants and their animal seed dispersers (e.g. 

Sorensen 1981, Wheelwright et al. 1984). Although the activity of seed dispersers 

might be structured in daily time, the timing of seed removal is unlikely to be 

important for plants. The benefit of this relationship for the plant is the actual process 

of dispersal, which might take place over several hours or days. 

Food web studies encompass a wide diversity of communities and describe 

which species in a community consume which other species. Examples of 

interactions include those between predators and their prey (e.g. Akin and 

Winemiller 2006) and between parasitoids and their hosts (e.g. Lewis et al. 2002). 

Host-parasitoid interactions are unlikely to be structured in daily time, since 

interactions occur over timescales of days or weeks. 

Predator-prey interactions are more likely to be structured in daily time since 

interactions occur over short time periods and both interacting species could have 

specific daily activity patterns. Prey species might limit activity to daily time periods 

with less risk of predation. For example, prey species might be active at night 

because the risk of predation is lower than during the day (e.g. Saiful et al. 2001). 

Predator activity and behaviour will be determined by the activity patterns of prey 

species. For example, if the most desirable prey species are active at night, diurnal 
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predators could either alter their own activity patterns or consume less desirable prey 

species. Predators that share prey species might diverge in daily time to minimise 

competition. For example, it has been proposed that raptors sharing prey species 

reduce competition by differing in their times of daily activity, with owls active at 

night, and other raptors active during the day (reviewed by Jaksic 1982). This 

process is equivalent to pollinator partitioning in daily time among co-flowering 

plant species. 

Given the potential for daily variation in interactions, daily temporal structure 

should perhaps be considered in predator-prey interaction webs. Although previous 

studies have considered variation in seasonal time in such webs (e.g. Schoenly and 

Cohen 1991, Tavares-Cromar and Williams 1996), to my knowledge none have so 

far incorporated variation in daily time. Consideration of webs on a daily timescale 

will be important if the relationships between species at the same trophic level could 

be misinterpreted by assimilating all interactions in one web. 



Appendix 1. Mean flowering scores for acacia species across all sites between June 1999 and December 2005. Rainfall is shown in turquoise. The rainfall scale 
is not shown on these graphs, however a flowering score of 1 is equivalent to 100 mm of rainfall. 
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Appendix 2. Mean flowering scores for each acacia species sampled at Mpala Research Centre between June 1999 and December 2005. 
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Appendix 3. Total monthly rainfall near MRC site between June 1999 and December 2005. 
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Appendix 4. Mean flowering scores for all acacia species at each site between June 1999 and December 2005. 
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Appendix 5. The frequency with which groups of acacia species at each site co-flower. The number 
of sampling points for which species flowered at a particular site is given underneath the species 
name. The number of sampling points and the percentage of total sampling points for which groups 
of species co-flowered are shown. b: S. brevispica, d: V. drepano/obium, e: V. etbaica, 
g: V. gerrardi h: V. hocki m: S. mellifera, n: V. nilotica, 5: V. seyaL 

(a) Mpala 

Total 156 sampling points, S. brevispica: 102, V. etbaica: 29, S. mellifera: 18, V. nilotica: 103 

Species combinations No. sampling points % sampling points 

2 species  

bn 73 47 

be 25 16 

en 23 15 

em 6 4 
bm 4 3 
mn 4 3 
3 species  

ben 21 13 
bem 3 2 
bmn 3 2 
emn 3 2 
4 species 

bemn 	 3 	 2 

(b) Turkana Boma 

Total 156 sampling points, S. brevispica: 60, V. drepanolobium: 102, V. etbaica: 19, 
V. gerrardii: 67, S. mellifera: 29, V. nilotica: 129, V. seyal: 57 

Species combinations No. sampling points j % sampling points 
2 species  

dn 85 54 

dg 58 37 

gn 57 37 

ns 49 31 

bn 46 29 

ds 46 29 

bd 37 24 

bg 29 19 

dm 28 18 

bs 26 17 

gs 26 17 

mn 26 17 

gm 21 13 

en 19 12 

de 16 10 

MS 15 10 

es 13 8 
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Species combinations No. sampling points % sampling points 

be 11 7 

eg 11 7 

bm 8 5 
em 8 5 
3 species  

dgn 49 31 

dns 37 24 

bdg 28 18 
dgm 26 17 

bdn 25 16 
gns 25 16 

dgs 25 16 
dmn 24 15 
bgn 22 14 

bds 19 12 
gmn 18 12 
bns 16 10 
den 16 10 
mns 15 10 

bgs 14 9 
dms 14 9 
des 13 8 
ens 13 8 
ben 11 7 

deg 11 7 
egn 11 7 

egs 10 6 
gms 10 6 
bde 9 6 
bdm 9 6 
bes 9 6 
bgm 9 6 
dem 8 5 
emn 8 5 
egm 7 4 
ems 7 4 

bmn 7 4 

beg 6 4 
4 species  

dgns 24 15 

bdgn 19 12 

dgmn 19 12 

bdns 15 10 

bdgs 14 9 
dmns 14 9 
dens 13 8 
bgns 12 8 
degn 11 7 
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Species combinations No. sampling points % sampling points 

degs 10 6 
dgms 10 6 

gmns 10 6 

bdgm 9 6 
bden 9 6 

bdes 9 6 

bens 9 6 

demn 8 5 
egns 8 5 

degm 7 4 

dems 7 4 

egmn 7 4 

emns 7 4 

bdeg 6 4 

begn 6 4 

begs 6 4 

egms 6 4 

bdmn 3 2 

bgmn 3 2 

5 species  

bdgns 12 8 
dgmns 10 6 
bdens 9 6 

degns 8 5 
degmn 7 5 
demns 7 5 

bdegn 6 4 

bdegs 6 4 

begns 6 4 

degms 6 4 	- 

egmns 6 4 

bdgmn 3 2 

6 species  

bdegns 6 4 

degmns 6 4 
7 species 

bdegmns 4 	 3 
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(C) Mongoose 

Total 156 sampling points, S. brevispica: 36, V. drepanolobium: 87, V. gerrardii: 72, S. mellifera: 33 

Species combinations No. sampling points % sampling points 

2 species  

dg 45 29 

dm 27 17 

gm 22 14 

bd 12 8 
bg 11 7 

bm 2 1 

3 species  

dgm 16 10 

bdg 3 2 

bdm 1 1 
bgm 1 1 
4 species 

bdgm 	 1 	 1 

(d) Mukenya 

Total 101 sampling points, S. brevispica: 41, V. etbaica: 34, S. me/lifera: 36, V. niotica: 87 

Species combinations I No. sampling points 	% sampling points 
2 species  

bn 30 30 
en 30 30 
mn 26 26 
em 21 21 

be 12 12 

bm 10 10 

3 species  

emn 20 20 
ben 14 14 
bmn 10 10 
bern 8 8 
4 species 

bemn 8 8 
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(e) Junction 
Total 156 sampling points, S. brevispica: 99, V. drepanolobium: 107, V. etbaica: 4, 
V. gerrardii: 116, V. hock/i: 25, S. mellifera: 20, V. nilotica: 114, V. seyal: 65 

Species combinations 	No. sampling points % sampling points 
2 species  

gn 86 55 
dg 81 52 
dn 80 51 

bn 71 46 

bd 67 43 

bg 67 43 

ns 58 37 

bs 49 31 

gs 47 30 
ds 43 28 
hn 24 15 
gh 22 14 
dh 20 13 
gm 19 12 
hs 17 11 

dm 16 10 
bh 15 10 
bm 13 8 
mn 13 8 
eg 4 3 
en 4 3 
MS 4 3 

be 3 2 

de 3 2 
em 2 1 
eh 1 1 
hm 1 1 
hm 1 1 

es 0 0 
3 species  

dgn 64 41 
bdn 51 33 
bgn 51 

bdg 49 33 
gns 43 31 
dns 39 28 

dgs 35 25 

bgs 32 22 
bns 31 20 

bds 29 19 
ghn 20 13 
dhn 18 12 
bhn 16 10 
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Species combinations No. sampling points % sampling points 
dgrn 15 10 
dgh 15 10 
hns 15 10 
bdh 14 9 
ghs 14 9 
grnn 13 8 
dhs 13 8 
bgm 12 7 
bhs 12 7 
bgh 11 7 
dmn 11 7 
bdrn 10 6 
bmri 9 6 
egn 4 3 
bde 4 3 
beg 4 3 
ben 4 3 
gms 4 3 
bms 3 2 

deg 3 2 
den 3 2 
dms 3 2 
rnns 3 2 
bern 2 1 
egrn 2 1 
ernn 2 1 
beh 1 1 
bhrn 1 1 
deh 1 1 
dern 1 1 
dhrn 1 1 
egh 1 1 
ehn 1 1 
ghrn 1 1 
hrns 1 1 
4 species  

bdgn 39 25 
dgns 31 20 
bgns 28 18 
bdns 25 16 

bdgs 22 14 
dghn 14 9 
dghs 14 9 
bdhn 13 8 
ghns 13 8 
dhns 12 8 
bghn 11 7 
dgrnn 10 6 
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Species combinations No. sampling points % sampling points 
bghs 10 6 
bdgm 9 6 
bdgh 9 6 
bdhs 9 6 
bhns 9 6 
bgmn 8 5 
bdmn 7 4 
begn 4 3 
gmns 3 2 
bdeg 3 2 
bden 3 2 
bdms 3 2 
bgms 3 2 
degn 3 2 
dgms 3 2 
begm 2 1 
bemn 2 1 
bmns 2 1 
dmns 2 1 
egmn 1 1 
bdeh 1 1 
bdem 1 1 
bdhm 1 1 
begh 1 1 
behn 1 1 
bghm 1 1 
bhms 1 1 
degh 1 1 
degm 1 1 
dehn 1 1 
demn 1 1 
dghm 1 1 
dhms 1 1 
eghn 1 1 
ghms 1 1 
5 species  

bdgns 20 13 
dghns 9 6 
bghns 9 6 
bdgns 8 5 
bdhns 8 5 
bdghn 8 5 
bdghs 7 4 
bdgmn 6 4 
bdgms 3 2 
bdegn 3 2 
begmn 2 1 
bdmns 2 1 
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Species combinations No. sampling points % sampling points 
bdegh 1 1 
bdegm 1 1 
bdehn 1 1 
bdemn 1 1 
bdghm 1 1 
bdhms 1 1 
beghn 1 1 
bghms 1 1 
degmn 1 1 
deghn 1 1 
dghms 1 1 
6 species 

bdghns 6 4 
bdgmns 2 1 
bdghms 1 1 
bdegmn 1 1 
bdeghn 1 1 
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(f) High Dam 

Total 145 sampling points, S. brevispica: 85, V. gerrardii: 93, V. hock/i: 25, S. mellifera: 39, 
V. niotica: 117 

Species combinations J 	No. sampling points % sampling points 
2 species 

gn I88 60 
bn 66 46 
bg 55 38 
gm 33 23 
mn 29 20 
hn 24 17 
bh 20 14 
bm 19 13 
gh 15 10 
hm 4 3 
3 species 

bgn 49 34 
gmn 26 18 
bgm 19 13 
bhn 19 13 
bmn 18 12 
ghn 14 10 
bgh 13 9 
ghm 4 3 
hmn 4 3 
4 species 

bgmn 16 11 
bghn 10 7 
bhmn 4 3 
ghmn 4 3 
bghm 3 2 
5 species 

bghmn 	 3 	 2 
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Appendix 6. Identified visitor species caught on acacia flower heads between 2003 and 2005. 
brev: S. brevispica, drep: V. drepanolobium, etb: V. etbaica, mell: S. mellifera, nib: V. n/lot/ca. 

(a) Bees 

eth gerr meD nUb No. species 
caug ton 

Apidae  

Amegilla rapida (Smith) * 1 
Amegilla pen/cu/a Eardley & Brooks * 1 
Amegilla ca/ens (Lepebetier) * 1 
Anthophora pygmaea Meade-Waldo * 1 
Tetra/onie/la a/boscopacea (Friese) * 1 
Apis mel/ifera L. * * * * * * 6 
Braunsapis?bouyssoui(Vachab) * * * * * * 6 
Ceratina lunata Friese * 1 
Cerat/na moerenhouti (Vachal) * * * * 4 
Macrogalea cand/da (Smith) * * * * * * 6 
Plebe/na h/ldebranti (Friese) * * * * * 5 
Xylocopa somailca Magretti * * 2 
Thyreus calceatus (Vachal) * 1 
Colletidae 
Co//etes sp. 1 * * * 3 
Col/etes sp. 2 * 1 
Co/letes sp. 4 * * 2 
Hylaeus sp. 1 * * 2 
Hylaeus sp. 2 * 1 
Hylaeus sp. 3 * 1 
Hylaeus sp. 4 * * * 3 
Hylaeus sp. 5 * * * 3 
Halictidae 

Hallctus (Seladonia) sp. 1 * * 2 
Halictus (Seladonia) sp. 2 * 1 
Ha/ictus (Seladonia) sp. A * 1 
Ha/ictus (Seladonia) sp. B * 1 
Ha/ictus (Seladonia) sp. C * * * * 3 
Lasioglossum (Dialictus) sp. 2 * * 2 
Las/og/ossumsp. B * 1 
Las/oglossumsp. C * * * 3 
Lipotriches (Lipotriches) sp. 1 * 1 
Lipotriches (Lipotriches) sp. A * 1 
Lipotriches (Lipotriches) sp. J * 1 
Nomia (Nomia) sp. 1 * * 2 
Nomia (Nomia) sp. 2 * 1 
Nomia (Leuconomia) sp. 1 * 1 
Nomia sp. A * 1 
Pate/lapis (Zonalictus) sp. 1 * 1 
Pate/lapis sp. B * 1 
Pseudapis (Pseudapis) sp. 1 * * * * * 	i  * 6 
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brev drep etb gerr mell nilo No. species 
caught on 

Megachilidae 
Coelioxys (Coelioxys) sp. 1 * 1 
Megachile discolor Smith * * * 3 
Megachile (Chalicodoma) sp. 1 * * * * * 5 
Megachile (Chalicodoma) sp. 2 * * * * * 5 
Megachile (Chalicodoma) sp. 3 * * 2 
Megachile (Chalicodoma) sp. 5 * 1 
Megachile (Paracella) sp. 1 * 1 
Megachile (Pseudomgachile) sp. 1 * 1 
Osmiini sp. b * * 2 
Osmiini sp. d * 2 
Osmiini sp. f * 1 
Osmiini sp. j * * 2 
Melittidae 
Melitta katherinae Eardley * 1 

(b) Wasps 

o. species N
caughton 

Agaonidae 
Agaonidae sp. 1 * 1 
Braconidae 
Iphiaulax ?nr. coccineus * 

1 
Chalcidae 
Chalcididae gen. sp. indet. * 1 
Chrysididae  
Chrysididae spp. * * 2 
Eumenidae 
Delta sp. 1 * * 2 
Delta sp.2 * * * 3 
Delta lepeleterli * * 2 
Delta ?hottentottum * * * 3 
Delta emarginatum fenestralis * 1 
Eumenidae sp. 3 * * * 3 
Eumenidae sp. 4 * * * * 4 
Eumenidae sp. 5 * * 2 
Eumenidae sp. 6 * 

1 
Eumenidae sp. 7 * 1 
Eumenidae sp. 9 * * 2 
Eumenidae sp. 11 * 

1 
Eumenidae sp. 14 * * 2 
Eumenidae sp. 15 * * * 3 
Eumenidae spp. unknown * * 

2 
Ichneumonidae 
Ichneumonidae spp. unknown * 

1 
Syzeuctus sp. 1 I 

* 1 
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brev drep etb gerr meD no No. species 
caught on 

Pompilidae  
Pompilidae sp. 1 * 1 
Pompilidae sp. 3 * 1 
Pompilidae sp. 7 * 1 
Pompilidae sp. 8 * 1 
Pompilidae sp. 12 * 1 
Pompilidae sp. 14 * 1 
Scoliidae 
? Cathimeris clotho * 1 
Cathimeris ?socotrana Kirby * 1 
Scolia masiensis Bradley * 1 
Scoliidae sp. 1 * * 2 
Sphecidae  
Ammophila sp. 1 * * * 3 
Bembix ? forcipata * * * * 4 
Bembix sp. 4 * 1 
Cerceris sp. 1 * * * * * 5 
Cerceris sp. 2 * * * * * 5 
Cerceris sp. 3 * 1 
Dasyproctus sp. 1 * 1 
Oxybelusspp. * * * 3 
Philanthus sp. 1 * * * * 4 
Philanthus sp. 3 * 1 
Sceiiphron sp. 1 * 1 
Sphex sp. 1 * * * * 4 
Sphex sp. 2 * * * 3 
Sphex sp. 3 * * * 3 
Tachytes sp. 1 * 1 
Lirissp. 1 * 1 
Larrinae spp. unknown * 1 
Tiphiidae  
Tiphiidae sp. 1 * * 2 
Tiphiidae sp. 2 * 1 
Vespidae  
Belanogaster sp. 1 * * 2 
?Polistesspp. * 1 



Appendix 6 
	

287 

(C) Diptera (flies) 

cauaht on 
Asilidae 
Laxenecera sp. 1 * * 2 
Gonioscelis sp. 1 * 1 
Neolophonotus sp. 1 * 1 
Bombyliidae  
Bombylella delicata (Wiedemann) * * 2 
Bombylella auricoma (Bezzi) * 

1 
Bombylius acrophylax (Greathead) * * 2 
Exhyalanthrax flammiger Walker * * 2 
Exoprosopa n. sp. nr . serva Bezzi * * 2 
Heteralonia katonae (Bezzi) * * 2 
Systoechus cellularis Bowden * 1 
Villa paniscoides Bezzi * 1 
Calliphoridae  
?Stomorhinasp. * 1 
Chrysomyachloropyga(Wiedemann) * * * * 4 
Chrysomya regalis Robineau-Desvoidy * * 2 
Hemipyrellia fernandica (Macquart) * * * 3 
Isomyia tristis (Bigot) * * * 3 
L ucilia cuprina W i ed e m a n n * 1 
Ludiia sericata (Meigen) * 1 
Pararhyncomya cribiformis Becker * * * 3 
Rhinia spp. unknown * * 2 
Rhinia ?apicalis (Wiedemann) * 

1 
Rhyncomya cassotis (Walker) * 1 
Rhyncomya forcipata Villeneuve * * * * * 5 
Rhyncomya soyauxi Karsch * * * 3 
Rhyncomya trispina Villeneuve * 1 
Rhyncomya ?tristisSeguy * 1 
Rhyncomya unknown * * * * 4 
Lonchaeidae 
Lonchaeidae sp. * 1 
Muscidae 
Mitroplatia pyrellioides Curran * 1 
Mitroplatia smaragdina Seguy * 1 
Curranosia spekei Jaennicke * * 2 
He//na con/form/s Stein * 1 
Musca aethiops (Stein) * * 2 
Musca cal/eva L. * 1 
Coenosia simulans Paterson * 1 
Coenosia cuthbertsoni Curran * 1 
Musca conducens Walker * 1 
Musca domestica cal/eva Walker * 1 
Musca domestica curviforceps 
Sacca & Rivosecchi * 1 

Musca lusoria Wiedemann * * * * * 5 
Musca sp. nr . /usor/aWiedemann * 1 
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drep etb gerr mell inflo No. species 
caughton 

Musca munroi Patton * 1 

Musca nevihiKleynhans * 1 

Musca sorbensWiedemann * 1 

Musca alpesa Walker * 1 
Musca biseta Hough * 1 

Musca xanthomelaena Wiedemann * * 2 
Pyre//ia sp. nov. * * * * 4 
Sarcophagidae  
Hi/are//a sp. * * 2 

Hoplacephala inermis Villeneuve * * 2 

Metapodiel/asp. * 1 

Metopia sp. nr. benoiti Zumpt * 1 
Ptere/Iasp. * 1 

Syrphidae  
A/IobachasapphirinaWiedemann * * 2 

AI/ograptanasuta(Macquart) * 1 
Ceriana caifra (Loew) * * * * 4 

Erista/inus barc/ayi (Bezzi) * 1 
Erista/inus mendax (Curran) * 1 

Eristalinus taeniops (Wiedemann) * * * * * 5 
Phytomia incisa (Wiedemann) * * * * * 5 
Phytomia natalensis (Macquart) * 1 

Senaspis haemorrhoa (Gerstaecker) * 1 

Simoides crassipes (Fabricius) * 1 
Tachinidae  
?Calozenihia per/ucidia (Karsch) * 1 

?Pretoriamia sp. 1 * 1 

Pales sp. * 1 

Pe/eteria rustica (Karsch) * 1 

Peleteria sp. unknown * * 2 

Peribaea sp. 1 * 1 

(d) Coleoptera (beetles) 

brev drep etb gerr mell nilo No. species 
caught on  

B ruchidae 
Bruchidae spp. * * * 

Buprestidae  
Buprestidae spp. * * 2  

Cerambycidae 
Cerambycinae sp. 1 * 

Cerambycinae sp. 2 1 * 

Chrysomelidae 
 

Gyriandropthalma sp. * * 

Cryptocephalinae sp. 1 
Cryptocephalinae sp. 2 
Cryptocephalinae sp. 3 * 1 
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brev rep etb gerr mell nilo No. species 
caughton 

Cryptocephalinae sp. 4 * * 2 
Clytrinae sp. 1 * * 2 
Clytrinae sp. 3 * 1 
?Mono/epta ephipiata * * 2 
?Alticinae sp. * 1 
?Mega/ognatha meruensis * 1 
Galerucinae sp. 1 * 1 
Galerucinae sp. 2 * 1 
Galerucinae sp. 4 * 1 
Galerucinae sp. 7 * 1 
Galerucinae sp. 8 * 1 
?Galerucinae sp. * 1 
Chrysomelidae sp. 1 * 1 
Coccinellidae 
Psy/lobora nassata (Erichson) * 1 
Curcul ion idae 
Curculionidae sp. * 1 
Lycidae  
Lycus sp. 1 * * * 3 
Lycus sp. 2 * 1 
Lycus serenus Kin. * * * 3 
Lycidae * 1 
Meloidae 
Coryna ?apicornis Guer. * * 2 
Coryna ?chevrolati Beauc. * 1 
Prionoceridae 
Idgia sp. * 1 
Scarabaeidae 
?Diplognathasp. * 1 
Dichista cincta de Geer * * 2 
Leucocelissp. * * 2 
Mausoleopsis amabiis Gerstaecker * * 2 
Paleopragma ?petersi/ Harold * 1 
Pachnoda elegantissima Csiki * 1 
Rhabdotis sobrina Gory & Percheron * * * 3 
Tenebrionidae 
?Lagriasp. * * 2 

Alloculinae sp. * 1 

Lagriinae sp. 1 
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(e) Lepidoptera (butterflies and moths) 

caught on 
Hesperiidae  

Hesperiidae sp. * 1 
Lycaenidae 
Anthene amarah amarah 
Guerin-Meneville 

* * * * 

AzanusjesousGuerin-Menevjlle * * * * * 5 
Azanus nata/ensis Trimen * 1 
Azanusuba/dusCramer * * * 3 
Leptotes pirithous Linne * 1 
Axiocerses harpax uganda Clench * 1 
Lycaenidaespp. * * * * 4 
Nymphalidae  
Acraea sp. 1 * 1 
Neocoenyra gregoril Butler * 1 
Junonia hierta cebrene Trimen * * 2 
Nymphalidae sp. * 1 

Pieridae 
Be/enois aurota aurota Fabricius * * * 3 
Co/otis aurigineus Butler * * 2 
Pieridae spp. * * 2 
Arctiidae 
Amata nr. chrysozona * * 2 
Sphingidae  

Cephanodes hy/as (L.) * 
1 

unidentified moths * * * 3 



Appendix 7. Floral abundances recorded during surveys in each week of web sampling in 2004 at both sites. 

(a) Turkana Boma 

Family Species 
_______ 	May   June July ______ ___ August 
Week 1 Week 2 Total Week 1 Week 2 Total Week 1 Week 2 Total 

___  

Week 1 
Acanthaceae 
Acanthaceae 

Barleriaspinisepala 
Justicia diclipteroides 45 73 

0 

118 
27 

6 

16 

8 

43 

14 
94 117 211 

 0 
66 
11 

Acanthaceae 
Acanthaceae 
Acanthaceae 
Amaranthaceae 
Apocynaceae 
Asclepiadaceae 
Asteraceae 
Asteraceae 
Asteraceae 
Asteraceae 
Asteraceae 
Asteraceae 

Balanitaceae 
Caryophyllaceae 
Commelinaceae 
Commelinaceae 

Just/cia lorata 
Monechma sp. B 
Rue/hasp. 
Aerva lanata 
Carissa edu/is 
Sarcostemma viminale 

Asteraceae spp. yellow 
Em//la discifolia 
Felicia muricola 
Gutenbergia cordifohia 
He/ichrysum glumaceum 
Osteospermum vail/ant/i 
Balanites sp. 
Silene sp. 
Commelina africana 
Commehina reptans 

161 

7 

15 

76 

19 

142 

175 

260 

0 

26 

131 

146 

67 

12 

 180 

104 

13 

498 

323 

600 

4 

15 

20 

307 
74 
27 

180 

0 
0 

180 
0 

640 

498 
0 

860 
4 

41 
151 

32_______ 

1 	5 

740 

2 

298 

10 

1321 

177 

5 

12 

921 

194 

1 
_______ 

440 

212 

4 

17 

1661 
 2 

492 

 0 
 0 

 0 
11 

0 
1761 

389 

9 
 0 
 0 

 0 
 0_______  

2 

3 

4 

2 

 180 

7 

 0 

4 

 0 

 0 

 0 

180 

 0 
 0 

 0 
 3 

 0 
11 

 0 
 0 

 0 

0 

46 

35 
105 
76 
4 

0 
0 
2 

2 
11 

40 

53 
0 

0 
0 
4 

Commelinaceae 
Convolvulaceae 
Convolvulaceae 
Convolvulaceae 

Commelinaspp. blue 
Evo/vulus alsinoides 
lpomoea ficifolia 
/pomoea obscura 

1893 

170 

9 

1237 

128 

0 

3130 
298 

0 
9 

26 

41 

6 

11 

4 

7 

12 

30 
 41 

13 
23 

6 6 12 

 0 

 0 
 0 

265 
61 

0 
1 

Convolvulaceae 
Convolvulaceae 
Convolvulaceae 

Ipomoea ochracea 
lpomoea sinensis 
Ipomoea sp. 1 

1 

33 

1 

20 

 4 

2 

53 
4 

2 

9 10 

 2 

19 

 0 

1 1 

 0 

2 

 0 

0 

17 

1 
Crassulaceae 
Euphorbiaceae 

Kalanchoe sp. 1 
Croton dichogamous 1538 

 13 

540 	I 

13 

2078 
284 

______ 
479 

 0 

763---  
 ______ 

0 

0 
0 

0 



Family Species 
May   June______  July __ August 

Week 1 Week 2 Total Week 1 Week 2 Total Week 1 Week 2 Total Week 1 
Euphorbiaceae Euphorbia sp.  12 12 140 299 439  0 1619 
Euphorbiaceae Phyl/anthus sepia/is  o _______ _______ 0  0 16540 
Fabaceae Senegaliabrevispica 744 1310 2054 94 241 335 599 740 1339 5374 
Fabaceae Vache/lia etbaica  0  0 _______ 0 5838 
Fabaceae 
Fabaceae 
Fabaceae 

Vachelliagerrardii 

Senegalia mellifera 
Vachellia nilotica 

27 

______ 

19 

______ 

46 

 0 
0  5 

 0 
 0 

5 3 

______  

7 

0 

 0 

10 

11 

0 

0 
Fabaceae 
Fabaceae 

Indigofera volkensii 
Rhyncosia?ferringunea 

959 2145 

 5 

1 	3104 

5 

18 6 24 

 0 
 0 

 0 
50 

0 
Fabaceae Vigna sp. 2 1 3  0  0 0 
Lamiaceae 
Lamiaceae 

?Beciumsp. 

Leucasglabrata 
91 

1128 

65 

293 

156 
1421 

7 

129 79 

 7 

208 
 0 

 0 
25 

704 
Lamiaceae 
Lamiaceae 

Leucas sp. 2 
Ocimum forskolei 3677 3370 

 0 

7047 
43 

571 14 

 43 

585 
 0 

 0 
0 

363 
Lamiaceae 
Lamiaceae 

Ocimum sp. 2 
Plectranthuscaninus 10 48 

 0 

58 276 

 18 

115 

18 

391 
 0 

 0 
0 

0 
Lamiaceae Plectranthus /ongipes 175 120 295  0  0 0 
Liliceae Chlorophytum sp. 0 10 10 1  1  0 0 
Malvaceae 
Malvaceae 

Abutilon mauritianum 
Hibiscus aponeurus 

368 

6 

402 

5 

770 
11 

89 

7 

74 

3 

163 
10 

2 4 6 

 0 

352 
19 

Malvaceae 
Malvaceae 

Hibiscus f/a vifo/ius 
Hibiscus vitifolius 

69 

6 

56 

8 

125 
14 

94 

6 

7 

2 

101 

8 
 0 

 0 
105 

1 
Malvaceae Pavonia ga//aensis 169 310 479 61 11 72 1 5 6 201 
Malvaceae 
Malvaceae 

Sida ovata 
Sidaschimperiana 

13 52 65 

 0 

4 

____ 

4 

______ 
8 

0 
_______ __ 0 

 0 

51 

16 
Polygalaceae Polygala sphenoptera 409 322 731 18 2 20 1 2 3 247 
Portulacaceae 
Portulacaceae 

Portulacaspp. 

Ta/mum portulacifollum 2 

 12 

1 

12 

3 
 0 

 0 
 0 

 0 
2 

0 
Rubiaceae Pentanisia ouranogyne 2575 6035 8610 28  28 8  8 131 
Scrophulariaceae 
Scrophulariaceae 

Craterostigma sp. 1 
Craterostigma sp. 2 

343 5 348 

 0 
 0 

 0 
 0 

 0 

72 

21 



Family Species _______ 	May   June   July __ August 
Week 1 Week 2 Total Week 1 Week 2 Total Week 1 Week 2 Total Week 1 

Solanaceae Solanum sp. 1 43 85 128 22 10 32  0 33 
Sterculiaceae 
Sterculiaceae 

Meihania ovata 
Meihania velutina 

16 148 

 1 

164 

1 
10 

2 
 10 
 2 

 0 
 0 

6 
2 

Tiliaceae 
Verbenaceae 
Verbenaceae 

Grewiaspp. 
Lippia kituiensis 
Priva curtisiae 

9 

2029 

35 

1 

46687 

50 

10 

48716 

85 

13 

1658 1 
 13 

1659 

 0 

 21 21 

 0 
 0 

49 
1484 

0 
Vitaceae 
ZygophyHaceae 

Cyphostemma serpens 
Tribulus terrestris 
unknown sp. 1 
unknown sp. 2 

2 

10 

22 

 41 

0 

0 
4 

41 
2 

10 
26 

9 7 16 
 0 

 0 
 0 

 0 
 0 
 0 

 0 

0 
0 

0 
0 

unknown sp. 3  0  0  0 3 
unknown sp. 4 
unknown sp. 5 

 0 
 0 

 0 
 0 

 0 
 0 

1 
79 

________________ unknown sp. 6  0  0  0 25 
Total floral units  17640 65621 83261 6270 3218 9475 724 1090 1814 34224 



(b) Junction 

Family Species 
June _______ July  _______ 

Week 1 Week 2 Total Week 1 Week 2 Total 

Acanthaceae Barleria spinisepala 36 99 135 711 207 918 
Acanthaceae Hypoestesforskahlii 570 351 921 109 41 150 
Acanthaceae Justicialorata 1123 263 1386  0 
Acanthaceae Monechma sp. B 1096 2964 4060 7 7 14 
Anacardiaceae Rhus natalensis 7  7  0 
Apocynaceae Carissa edu/is  0 23  23 
Asteraceae Compositae sp. 1 3 1 4  0 
Asteraceae Emilia discifolia 1191 665 1856 5 1 6 
Asteraceae Gutenbergia cordifolia 171 165 336  0 
Asteraceae Helichrysum glumaceum 2822 2317 5139  0 
Asteraceae Helichrysum sp. 2  3 3  0 
Asteraceae Osteospermum vai//antii 64 63 127 5 1 6 
Asteraceae Tagetes minuta  36 36  0 
Boraginaceae Echiochion 

lithospermoides 501 433 934 15 16 31 
Boraginaceae Heliotropium steudneri 2725 1126 3851  0 
Boraginaceae Heliotropium strigosum 1785 781 2566 6  6 
Boraginaceae Heliotropium zey/anicum 113 143 256  0 
Caryophyllaceae Sllenesp. 1 8 9  0 
Convolvulaceae Eva! vu/us alsinoides 54 12 66 7  7 
Convolvulaceae Ipomoea hi/debrantii 45 18 63  0 
Convolvulaceae Ipomoea kituiensis 3 24 27  0 
Convolvulaceae Ipomoeaochracea 1 2 3  0 
Convolvulaceae Ipomoea sinensis 86 93 179 10 4 14 
Crassulaceae Kalanchoe sp. 2  0 9 2 11 
Euphorbiaceae Croton dichogamous 18  18  0 
Ebenaceae Euc/ea sp.  483 483  0 
Fabaceae Senega/ia brevispica 34 29 63 57 23 80 
Fabaceae Vachellia drepanolobium 2  2  0 



Family June  
Species   July  

Week 1 Week 2 Total Week 1 Week 2 Total 
Fabaceae Vachellia etbaica  0  0 
Fabaceae Cassia mimosoides 93 69 162  0 
Fabaceae Indigofera vo/kensii 77 36 113  0 
Fabaceae Legume sp. 1 7 13 20  0 
Lamiaceae ?Beciumsp. 13 3 16  0 
Lamiaceae Endostemon tereticaulis 458 63 521  0 
Lamiaceae Leucas glabrata 660 924 1584  0 
Lamiaceae Ocimumforsko/ej 106 5 111  0 
Lamiaceae,  Plectranthus caninus 13 11 24  0 
Malvaceae Pavoniaga//aensis 217 95 312 10 3 13 
Malvaceae Sida ovata 56 14 70  0 
Malvaceae Sida schimperiana 2 2 4  0 
Meliaceae Turraeamombassana 11 5 16  0 
Polygalaceae Polygalasp. 2 132 143 275  0 
Polygalaceae Po/yga/asphenoptera 26 11 37  0 
Rubiaceae Pentanisia ouranogyne 24  24  0 
Solanaceae Solanum sp. 1 13 6 19  0 
Sterculiaceae Me/han/a ovata 65 15 80  0 
Tiliceae Grewia spp. 13 3 16  0 
Verbenaceae 

Verbenaceae 
Lippia kituiensis 

Priva curtis/ae 
unknown sp. 7 

unknown sp. 8 

1462 

4 

2 

1 

587 2049 
 4 
 2 

 1 

 0 
 0 

 0 
 0 

unknown sp. 9 41  41  0 
unknown sp. 10  11 11  0 
unknown sp. 11  40 40  
unknown sp. 12  0 2 

Total floral units  15947 12135 28082 976 305 1281 



Appendix 8 

Appendix 8. Visitor types, level of identification and the flower-visitor interaction webs in 
which each was recorded. 1: May, 2: June. 3: July, 4: August. Identification levels: 5: 
species, m: morphospecies, g: morphogroup, U: unknown group. 

Family Visitor species Turkana Boma Junction 
1 2 3 4 2 3 

Hymenoptera  
bees  

Andrenidae Melitturga minima 5 1 
Apidae Amegilla ca/ens s 2 2 
Apidae Amegilla capensis S 2 
Apidae Amegi/la pen/cu/a S 4 2 3 
Apidae Anthophora pygmaea S 2 
Apidae Apis me/lifera S 1 2 	3 4 2 
Apidae Ceratina m/nuta S 1 
Apidae Ceratina moerenhouti S 1 2 2 
Apidae Ceratina nyassens/s S 2 	3 4 3 
Apidae unknown Ceratina sp. g 1 
Apidae Hypotr/gona ruspolii S 2 
Apidae large Apidae spp. g 1 2 4 2 3 
Apidae Macroga/ea candida S 1 2 
Apidae Plebeina hi/debrantii S 1 2 4 
Apidae Tetralonia boharti S 1 
Apidae Tetra/onia nigropiosa S 2 
Apidae Tetra/on/ella abrochia S 1 
Apidae Thyreuscalceatus S 2 
Apidae Xylocopa somalica S 4 2 
Colletidae Colletes sp. 2 5 2 
Colletidae Hy/aeus sp. b 5 2 
Colletidae ?Hy/aeus sp. g 2 	3 
Halictidae Ha/ictus (Seladonia) sp. 1 5 1 2 2 3 
Halictidae HaI/ctus (Seladonia) sp. 2 5 2 
Halictidae Ha/ictus (Seladonia) sp. C S 2 
Halictidae Lasioglossum (Dialictus) sp. 1 S 1 3 
Halictidae Las/og/ossum (Dia/ictus) sp. 2 S 2 
Halictidae Lasioglossum sp. B 5 2 
Halictidae Lipotriches (Lipotriches) sp. 1 S 1 2 4 
Halictidae ?Lipotriches sp. 1 fli 2 
Halictidae Lipotriches (Lipotriches) sp. A S 2 
Halictidae Lipotr/ches (Lipotriches) sp. B 5 1 
Halictidae Lipotriches (Lipotriches) sp. C 5 2 
Halictidae Lipotriches (Lipotriches) sp. D S 1 
Halictidae Lipotriches (Lipotriches) Sp. G S 2 
Halictidae Lipotriches (Lipotriches) sp. H S 2 2 
Halictidae Lipotriches (Lipotriches) sp. L S 1 
Halictidae L/potr/ches (Lipotriches) sp. M 5 2 
Halictidae Lipotriches sp. A S 2 
Halictidae Pate/lapis (Zonalictus) sp. 1 S 1 4 
Halictidae Pate/lapis sp. A s 2 2 
Halictidae Pate//apis sp. C S 2 4 
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Family Visitor species Turkana Boma Junction 

Halictidae Pseudapis (Pseudapis) sp. 1 S 1 3 4 2 3 
Halictidae Pseudapis (Pseudapis) sp. 2 S 1 
Halictidae Systropha sp. 1 S 2 
Halictidae Halictidae sp. 1 m 1 
Halictidae Halictidae sp. 2 m 1 
Halictidae Halictidae sp. 3 m 2 
Halictidae Halictidae sp. 4 m 2 
Halictidae unknown Halictidae spp. g 2 4 3 
Megachilidae ?Aspidosmiasp. 1 S 2 
Megachilidae ?Ichteranthidiumsp. 1 S 1 2 
Megachilidae Anthidiini sp. 1 5 2 
Megachilidae Heriades (Heriades) sp. 1 S 1 2 2 - 
Megachilidae Heriades sp. a 5 2 2 
Megachilidae Megachildae sp. large m 1 
Megachilidae Megachile (?Pseudomegachlle) sp. 1 S 2 
Megachilidae Megachile (Chalicodoma) sp. 2 5 1 2 4 
Megachilidae Megachile (Chalicodoma) spp. small g 1 2 2 
Megachilidae Osmiini sp. a 5 2 
Megachilidae Osmiini sp. d S 3 
Megachilidae Osmiini sp. e S 1 2 
Megachilidae Osmiini sp. g 5 1 
Megachilidae Osmiini sp. j S 3 
Megachilidae unknown Osmiini spp. g 1 2 

med bee spp. u 1 2 2 3 
small bee spp. U 1 2 2 3 
small green bee spp. u 3 
unknown bee spp. U 1 2 2 3 
unknown bee sp. 1 u 1 
unknown small black bee U 3 

wasps  
Chrysididae Chrysididae spp. g 2 4 2 
Eumenidae Eumenidae sp. 3 m 2 
Eumenidae Eumenidae sp. 4 m 3 
Eumenidae Eumenidae sp. 8 m 2 2 
Eumenidae Eumenidae sp. 9 m 1 2 3 
Eumenidae Eumenidae sp. 13 m 1 2 
Eumenidae Eumenidae sp. 14 m 2 
Eumenidae Eumenidae sp. 15 m 2 
Eumenidae Eumenidae sp. 16 m 2 
Vespidae Polistes sp. 
Vespidae ?Polistessp. m 2 
lchneumonidae lchneumonidae sp. m 4 
Pompilidae Pompilidae sp. 2 rn 2 
Scoliidae Cathimeris sp. m 3 
Sphecidae Ammophila sp. 1 rn 2 
Sphecidae Cerceris sp. 2 m 2 4 3 
Sphecidae Cerceris sp. 4 rn 1 
Sphecidae Liris sp. 1 m 4 
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Family Visitor species Turkana Boma Aunction 

Sphecidae Philanthus sp. 3 rn 2 
Sphecidae Sphex spp. g 1 
Sphecidae Tachysphex sp. 1 rn 2 3 
Sphecidae ? Tachysphex sp. 1 rn 3 
Sphecidae Tachytes sp. 1 rn 2 
Sphecidae unknown Sphecidae sp. g 1 3 

unknown wasp spp. U 1 2 4 2 3 
wasp sp. 1 m 4 
wasp sp. 2 rn 2 

ants  
Form icidae Form icidae spp. g 1 2 3 4 2 

Diptera  
Bombyliidae Bombomyia discoidea S 4 
Bombyliidae Bombyliidae spp. g 1 4 2 

-- 

Bombyliidae Bombyliidae sp. 1 m 1 
Bombyliidae Bombyliidae sp. 2 m 1 
Bombyliidae Bombylisoma nucale S 1 
Bombyliidae Gonarthrus sp. 1 S 2 
Bombyliidae Villa paniscoides S 

Calliphoridae Hemipyrellia fernandica s 
Calliphoridae lsomyia tristis S 1 
Calliphoridae Rhyncomya spp. g 3 4 3 
Calliphoridae unknown Calliphoridae spp. g 1 
Chloropidae Chloropidae sp. 1 s 2 
Culicidae Culicidae spp. g 2 
Muscidae Coenosia cuthbertsoni S 2 
Muscidae Coenosia exigua S 2 
Muscidae Limnophora guaterna 5 2 
Muscidae Musca domestica curviforceps S 1 
Mysotophilidae Mysotophilidae sp. rn 1 
Sarcophagidae Hoplacephala inermis S 3 
Sarcophagidae Miltogramminae spp. g 4 
Sarcophagidae Sarcophagidae sp. g 1 
Syrphidae Eristalinus mendax 5 1 
Syrphidae Eristalinus taeniops 5 1 
Syrphidae Eumerus nr. armipes S 

Syrphidae Eumerus obliguus S 2 
Syrphidae Phytomiaincisa s 1 
Syrphidae unknown Eristalinus sp. g 1 
Syrphidae unknown Syrphidae spp. g 1 2 
Tachinidae ?Compsilura concinnata S 

Tachinidae ?Exorista sp. S 1 
Tachinidae Pretoriamyia sp. 1 m 1 
Tachinidae unknown Tachinidae spp. g 1 
Tephritidae Tephritidae spp. g 3 2 

tiny Diptera spp. U 2 
unknown Diptera spp. U 1 3 4 2 
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Family —7 Visitor species 
TurkanaBoma Junction 

11 
Coleoptera  

Bruchidae Bruchidae spp. g 2 
Buprestidae Buprestidae sp. 1 m 3 
Cerambycidae Cerambycidae sp. 1 m 1 2 
Cerambycidae Cerambycidae sp. 2 m 1 
Cerambycidae Lamiinae sp.1 m 2 
Chrysomelidae ?Alticinae sp. 1 m 1 
Chrysomelidae Alticinae sp. 1 m 1 2 2 
Chrysomelidae Alticinae sp. 2 m 2 
Chrysomelidae Chrysomelidae sp. 1 m 1 
Chrysomelidae Clytrinae sp. 1 m 1 
Chrysomelidae Clytrinae sp. 3 m 2 
Chrysomelidae Clytrinae sp. 4 m 2 
Chrysomelidae Clytrinae sp. 5 m 2 
Chrysomelidae Galerucinae sp. 11 m 1 
Chrysomelidae Galerucinae sp. 5 m 2 
Chrysomelidae Galerucinae sp. 6 m 1 
Chrysomelidae Megalognatha meruensis S 1 2 2 
Curculionidae Curculionidae sp. S 1 
Lycidae Lycusserenus S 1 2 
Lycidae Lycus sp. 1 S 1 
Meloidae Coryna ?ambigua m 1 3 
Meloidae Coryna ?apicornis m 2 
Meloidae Coryna ?chevrolati m 1 2 
Meloidae unknown Coryna spp. g 1 2 
Phalacridae Phalacridae sp. m 2 
Prionoceridae Idgia sp. m 1 2 
Scarabaeidae Rhabdotis sobrina S 1 

unknown Coleoptera sp. U 2 
Lepidoptera  

Arctiidae Arctiidae sp. m 1 
Hesperiidae Saragnesa phidyle S 1 2 
Hesperiidae Spialia mata higginsi S 3 
Hesperiidae Spiral/a sp. S 1 
Lycaenidae Anthene amarah amarah 5 2 
Lycaenidae Azanusjesous S 2 
Lycaenidae Eicochrysopsmasai 5 2 
Lycaenidae Freyeria trochylus trochylus S 2 2 
Lycaenidae Lycaenidae spp. g 1 2 2 

Pieridae Belenois aurota aurota S 3 
Pieridae Eurema brigitta brigitta 5 2 3 
Pieridae Pieridae spp. 9 1 2 4 2 

Sphingidae Cephanodeshylas S 1 
unknown butterfly spp. 9 1 2 
unknown moth sp. 9 1 

Hemiptera 
Hemiptera spp. juvenile U 3 
unknown Hem iptera spp. U 1 1 	4 
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Appendix 9. Flower-visitor interactions in each seasonal web and the time periods in which 
they occurred. 

(a) Turkana Boma, May 

Plants ecies  Visitor species Ti TP2 TP3 TP4 
Senegalia brevispica bee Apis me//ifera 

Croton dichogamous bee Apis me/lifera 
Lippia kituiensis bee Apis me//ifera x 
Ocimum forsko/ei bee Apis me//ifera x x 
Justicia dic/ipteroides bee Plebeina hildebranti x 
Abut//on mauritianum bee Tetra/onia boharti x 
Hibiscus flavifolius bee Tetra/onia boharti x 
Plectranthus longipes bee Tetra/onie/la abrochia x 
Abutilon mauritianum bee large Apidae spp. 

Commelina spp. blue bee large Apidae spp. 
Indigo fera vo/kensii bee large Apidae spp. 
Leucas glabrata bee large Apidae spp. 
Plectranthus /ongipes bee large Apidae spp. 

Rhyncosia ?ferrunginea bee large Apidae spp. 
Justicia diclipteroides bee Ceratina minuta x 
Sida ovata bee Ceratina moerenhouti x 
Ocimum forsko/ei bee unknown Ceratina sp. x 
Gutenbergia cordifolia bee Macroga/ea candida x 
Plectranthus /ongipes bee Lipotriches (Lipotriches) sp. 1 - 
Indigo fera vo/kensi/ bee Lipotriches (Lipotriches) sp. B x x 
Indigo [era vo/kensii bee Lipotriches (Lipotriches) sp. B 
Gutenbergia cordifolia bee Lipotriches (Lipotriches) sp. D 
Indigo [era vo/kensii bee Lipotriches (Lipotriches) sp. L x 
Senega/ia brevispica bee Pseudapis (Pseudapis) sp. 1 
Indigo [era vo/kensii bee Pseudapis (Pseudapis) sp. 1 
Me/hania ovata bee Pseudapis (Pseudapis) sp. 1 x 
Croton dichogamous bee Pseudapis (Pseudapis) sp. 2 x 
Hibiscus vitifolius bee Lasioglossum (Dia/ictus) sp. 1 x 
Ipomoea sinensis bee Lasiog/ossum (Dia/ictus) sp. 1 x x 
?Becium sp. bee Halictus Se/adonia) sp. 1 x 
Evo/vulus a/s/no/des bee Ha/ictus (Se/adonia) sp. 1 
Justicia lorata bee Ha/ictus (Se/adonia) sp. 1 
Felicia muricola bee 	I  Pate/lapis (Zona/ictus) sp. 1 
Dc/mum forskolei bee Pate/lapis (Zonalictus) sp. 1 
Ocimum forsko/ei bee 	I Halictidae sp. 1 

Leucas g/abrata bee Halictidae sp. 2 x 
Rhyncosia ?ferrunginea bee Megachildae sp. large 
Gutenbergia cordifolia bee Megachi/e (Chalicodoma) sp. 2 

x 

- 
Dc/mum forsko/ei bee Megachile (Cha/icodoma) sp. 2  
Rhyncosia ?ferrunginea bee Megachi/idae (Cha/icodoma) sp. small - x 
Dc/mum forsko/ei bee Heriades (Heriades) sp. 1 - 

- 
x 

- 

Asteraceae spp. yellow bee Osmiini sp. e - 
- - 

Gutenbergia cordifolia bee Osmiini sp. e x x 
Gutenbergia cordifolia bee Osmiini sp. g 

- - 

Gutenbergia cordifolia bee 	I unknown Osmiini sp. 
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Plant species Visitor species TP1 TP21 TP3 TP4 
Indigo fera vo/kensii bee ?Ichteranthidium sp. 1 
Justicia lorata bee Melitturga minima 
Just/cia lorata bee medbeespp. x x 
Solanum sp. 1 bee med bee spp. 
Abut/Ion maur/tianum bee small bee spp. 
Croton dichogamous bee small bee spp. 
Just/cia diclipteroides bee small bee spp. 
Melhania ye/ut/na bee small bee spp. x 
Monechma sp. B bee small bee spp. x 
Craterostigma sp. 1 bee unknown bee sp. 1 x 
Just/cia lorata bee I unknown bee sp. 1 x 
Abut/Ion maurit/anum bee I unknown bee spp. x 
Senegal/a brevispica bee unknown bee spp. 
Asteraceae spp. yellow bee unknown bee spp. x 
Gutenberg/a cordifolia bee unknown bee spp. x x 
Helichrysum glumaceum bee unknown bee spp. 
Ipomoea sinensis bee unknown bee spp. x 
Just/cia lorata bee I unknown bee spp. x 
Ocimum forskolei bee I unknown bee spp. x x 
Plectranthus longipes bee unknown bee spp. x 
Po/ygalasphenoptera bee unknown bee spp. x 
Pr/va curtisiae bee unknown bee spp. x 

- 

Asteraceae spp. yellow wasp Eumenidae sp. 13 x 
Felicia mur/cola wasp Cerceris sp. 4 

Senegal/a brevispica wasp Sphex spp. x x 
Lippia kituiensis wasp Sphex spp. 

Senegal/a brevispica wasp unknown Sphecidae sp. 
Lippia kituiensis wasp Polistes sp. 

Abut/Ion mauritianum wasp unknown wasp sp. 
Gutenberg/a cord/fol/a wasp unknown wasp sp. 
Evolvulus a/s/no/des fly Bombyliidae sp. 1 
Hel/chrysum glumaceum fly Bombyliidae sp. 1 x - 
Me/han/a ovata fly Bombyliidae sp. 2 x - 
Pentan/s/a ouranogyne fly Bombyliidae sp. 2 X-  - 
Felicia muricola fly Bombyliidae spp. x 
Hel/chrysum glumaceum fly Bombyliidae spp. 

- 
x 

- 

Pentanisia ouranogyne fly Bombyliidae spp. - 
- 

x 

- 

Pentan/s/a ouranogyne fly Bombylisoma nuca/e - 
- 

x 

- 

Commelina spp. blue fly /somy/a tristis - 
- 

x 

- 

Ba/anites sp. fly unknown Calliphoridae sp. X - 
Vachel/ia gerrardi/ fly Erista/inus mendax - 
Senegal/a brevispica fly Er/stal/nus taeniops - 
Asteraceae spp. yellow fly Eristalinus taen/ops 

Senegal/a brevispica fly unknown Erista/inus sp. 

Senegal/a brevispica fly Phytomia incisa x x x 
Croton dichogamous fly Phytomia incisa 

Lipp/a kituiensis fly Phytomia incisa 

L/ppia kituiensis fly unknown Syrphidae sp. 

Vachel/ia gerrardii fly 	I  Musca domest/ca curviforceps 

Asteraceae spp. ye//ow  fly 	I Mysotophilidae sp. 
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Plant species 	Visitor species TP1 TP2 TP3 TP4 
Balanites sp. 	 fly Mysotophilidae sp. x x x x 
Felicia muricola 	 fly Mysotophilidae sp. 
Lippia kituiensis 	 fly Mysotophilidae sp. x x 
Solanum sp. 1 	 fly Mysotophilidae sp. x 
Senegal/a brevispica 	fly Pretoriamyia sp. 1 x x 
Vachellia gerrardii 	 fly Pretoriamyia sp. 1 x x x 
Balanites sp. 	 fly ?Exorista sp. 
Balanites sp. 	 fly unknown Tachinidae sp. 
Balanites sp. 	 fly Sarcophagidae sp. 
Senegal/a brevispica 	fly unknown Diptera spp. x x 
Vache/lia gerrardii 	 fly unknown Diptera spp. 
Asteraceae spp. yellow 	fly unknown Diptera spp. 
Ocimum forskolei 	 fly unknown Diptera spp. 
Abution mauritianum 	ant Formicidae spp. x 
Senegal/a brevispica 	ant Formicidae spp. x x 
Vachellia gerrardii 	ant Formicidae spp. x 
Balanites sp. 	 ant Formicidae spp. x x 
Gutenbergia cordifolia 	ant Formicidae spp. x 
Hibiscus vitifolius 	 ant Formicidae spp. x x 
Indigo fera volkensii 	ant I Formicidae spp. x x 
Lippia kituiensis 	 ant I Formicidae spp. 
Me/han/a ovata 	 ant Formicidae spp. 
Ocimum forskolei 	 ant Formicidae spp. x x 
Pentanisia ouranogyne 	ant Formicidae spp. x 
Abut/Ion mauritianum 	bug unknown Hemiptera sp. x 
Hibiscus f/avifo/ius 	beetle ?Alticinae sp. 1 
Ipomoea sinensis 	beetle ?Alticinae sp. 1 
Lippia kituiensis 	 beetle I ?Alticinae sp. 1 x x 
Croton dichogamous 	beetle Alticinae sp. 1 x 
Hel/chrysum glumaceum 	beetle Alticinae sp. 1 1 x 
Lippia kituiensis 	 beetle Alticinae sp. 1 x 
Senegal/a brevispica 	beetle ?Mega/ognatha meruensis x 
Vachellia gerrardii 	beetle ?Mega/ognatha meruensis x 
Vachellia gerrardii 	beetle I Galerucinae sp. 11 x 
Croton dichogamous 	beetle I Galerucinae sp. 6 
Croton dichogamous 	beetle Clytrinae sp. 1 
Hibiscus vitifolius 	 beetle Chrysomelidae sp. 1 
Gutenbergia cordifolia 	beetle Coryna ?amb/gua x 
Me/han/a ovata 	 beetle Coryna ?ambigua 
Hibiscus vitifolius 	 beetle Coryna ?chevro/ati 
He/ichrysum glumaceum 	beetle unknown Coryna spp. 
Ipomoea sinens/s 	beetle unknown Coryna spp. x 
Croton dichogamous 	beetle Cerambycidae sp. 1 x 
Felicia muricola 	 beetle Cerambycidae sp. 2 x 
Hibiscus vitifolius 	 beetle Curculionidae sp. x x 
Senega/ia brevispica 	beetle Idgia sp. 
Felicia muricola 	 beetle Lycus serenus x 
Lippia kituiensis 	 beetle Lycus serenus 
Croton dichogamous 	beetle Lycus sp. 1 x 
Gutenbergia cordifolia 	beetle Rhabdotis sobrina x 
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Plant species  Visitor species TP1 TP2 TP3 TP4 
Senegalia brevispica moth Arctiidae sp. 
Vache/lia gerrardii moth Arctiidae sp. 
Lippia kituiensis moth Arctiidae sp. 
Hibiscus 1/avifolius moth Cephanodes hylas 
Senegalia brevispica b'fly Lycaenidae spp. 
Vachellia gerrardii b'fly Lycaenidae spp. x 
Indigo fera volkensii b'fly Lycaenidae spp. 
Ocimum forskolei b'fly Lycaenidae spp. x 
Priva curtisiae b'fly Lycaenidae spp. x 
Hibiscus ulavifolius b'fly Pieridae spp. x 
Hibiscus aponeurus b'fly Saragnesa phidyle x 
Pentanisia ouranogyne bfly Spiralia sp. 
Senegalia brevispica bfly unknown butterfly spp. 
Meihania ovata b'fly 	I unknown butterfly spp. 
Felicia muricola moth 	I unknown moth sp. 

(b) Turkana Boma, June 

Plant species  Visitor species TP1 TP2 TP3 TP4 
Abution mauritianum bee Apis me//ifera 
Lippia kituiensis bee Apis mellifera 
Monechma sp. B bee Apis me/lifera x x 
Gutenbergia cordifolia bee Plebeina hildebrantii 
Justicia lorata bee Plebeina hi/debrantii 
Ipomoea ficifolia bee Hypotrigona ruspolii 
Justicia diclipteroides bee Amegilla ca/ens x 
Abuti/on mauritianum bee large Apidae spp. x 
Leucas glabrata bee large Apidae spp. x x x 
Monechma sp. B bee large Apidae spp. x x x 
Polyga/a sphenoptera bee large Apidae spp. x x 
Gutenbergia cordifolia bee Ceratina moerenhouti x 
Plectranthus caninus bee Ceratina nyassensis 
Ipomoea sinensis bee Macrogalea candida x x 
Senega/ia brevispica bee Hylaeus sp. b 
Justicia /orata bee ?Hy/aeus sp. x 
Abutilon mauritianum bee Lipotriches (Lipotriches) sp. 1 x 
Senegalia brevispica bee Lipotriches (Lipotriches) sp. 1 
Gutenbergia cordifolia bee Lipotriches (Lipotriches) sp. 1 x x 
Senegalia brevispica bee Lipotriches (Lipotriches) sp. A 
Abution mauritianum bee Lipotriches (Lipotriches) sp. H 
Gutenbergia cordifolia bee Halictus (Seladonia) sp. 1 
?Becium sp. bee Halictus (Seladonia) sp. 2 
Justicia /orata bee Ha/ictus (Seladonia) sp. 2 x x 
Abution mauritianum bee Halictus (Seladonia) sp. C 
Gutenbergia cordifolia bee Halictus (Seladonia) sp. C 
Ipomoea obscura bee Halictus (Seladonia) sp. C 
Sida ovata bee Halictus (Seladonia) sp. C 
Hibiscus flavifolius bee Lasioglossum (Dialictus) sp. 2 
P/ectranthus caninus bee Lasioglossum (Dia/ictus) sp. 2 
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Plant species  Visitor species TP1 TP2 TP3 TP4 
Justicia dic/ipteroides bee Lasiog/ossum sp. B x 
Hibiscus vitifolius bee Pate/lapis sp. A x 
/pomoea ficifolia bee Pate/lapis sp. A x 
Ipomoea obscura bee Pate/lapis sp. C x 
Bar/eria spinisepala bee unknown Halictidae sp. 
Gutenbergia cordifolia bee Megachile (Chalicodoma) sp. 2 
Monechma sp. B bee Megachile (Chalicodoma) sp. 2 
Gutenbergia cordifolia bee Megachile (Chalicodoma) sp. small 
Gutenbergia cordifolia bee Megachile (Pseudomegachile) sp. 1 
Justicia dic/ipteroides bee Megachile (Pseudomegachi/e) sp. 1 
Ocimum forskolei bee Heriades (Heriades) sp. 1 x x 
Plectranthus caninus bee Heriades (Heriades) sp. 1 x 
Gutenbergia cordifolia bee Heriades sp. a x x 
?Beciumsp. bee Osmiini sp. a 
Abutilon mauritianum bee small bee sp. 
Abutilon mauritianum bee med bee spp. x x 
Senegalia brevispica bee med bee spp. 
Evo/vulus a/sinoides bee med bee spp. 
Gutenbergia cordifolia bee med bee spp. x x 
/pomoea ficifo/ia bee med bee spp. x 
Helichrysum glumaceum bee unknown bee spp. 
Helichrysum glumaceum wasp Chrysididae sp. x 
Aerva lanata wasp Chrysididae spp. 
Aerva lanata wasp Chrysididae spp. x x 
Monechma sp. B wasp Eumenidaesp. 13 
Senegalia brevispica wasp Eumenidae sp. 14 x 
Monechma sp. B wasp Eumenidae sp. 3 x 
Helichrysum glumaceum wasp Eumenidae sp. 8 x 
Helichrysum glumaceum wasp Cerceris sp. 2 x 
Justicia /orata wasp I Tachysphex sp. 1 x 
Cyphostemma serpens wasp 	I Tachytes sp. 1 x x 
Aerva lanata wasp wasp sp. 2 
Senegalia brevispica wasp unknown wasp sp. x 
Gutenbergia cordifolia fly Ch/oropidae sp. 1 x 
Justicia dic/ipteroides fly Coenosia exigua 
Senegalia brevispica fly Limnophora guaterna 
Helichrysum glumaceum fly 	I Culicidae spp. 
Cyphostemma serpens fly Eumerus ob/iguus 
Helichrysum glumaceum fly Gonarthrus sp. 1 
Aerva lanata fly tiny Diptera sp. 
?Becium sp. ant Formicidae spp. x 
Abutilon mauritianum ant 	I Formicidae spp. 
Bar/eria spinisepa/a ant Formicidae spp. 
Euphorbia sp. ant Formicidae spp. 
Hibiscus vitifo/ius ant Formicidae spp. x 
Indigo fera vo/kensii ant Formicidae spp. x x 
Ipomoea obscura ant 	I Formicidae spp. 

Justicia dic/iptero ides ant Formicidae spp. x 
Lippia kituiensis ant Formicidae spp. 

Aerva lanata beetle Bruchidae sp. x x x 
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Plant species Visitor species TP1 TP2 TP3 1P4 
lpomoea f/c/b/ia beetle Bruchidae spp. 
Senegal/a brevispica beetle Cerambycidae sp. 1 x 
lpomoea ficifolla beetle Alticinae sp. 1 
Vachel/ia nilotica beetle Alticinae sp. 2 
Vachellia n/lot/ca beetle Clytrinae sp. 3 
Hibiscus vitifolius beetle Clytrinae sp. 5 
Senegal/a brevispica beetle I Galerucinae sp. 5 x 
Senegalia brevispica beetle Megalognatha meruensis 
Hibiscus aponeurus beetle Coryna ?apicornis x x 
Hibiscus flavifolius beetle Coryna ?apicornis 
Hibiscus vitifolius beetle Coryna ?apicornis x 
Ipomoea ficifolia beetle Coryna ?apicornis x 
Hibiscus aponeurus beetle unknown Coryna sp. x 
Senegal/a brevispica beetle Lycusserenus 
He/ichrysum glumaceum b'fly 	I  Anthene amarah amarah 
Gutenbergia cordifolia E/cochrysops masai 
Senegal/a brevispica 

101 

b'flyLycaenidae sp. 
Gutenbergia cordifolia Lycaenidae sp. x x 
Indigofera vo/kens/i Freyeria trochylus trochy/us 
Gutenbergia cordifolia b'fly Pieridae spp. 
Hibiscus flavifol/us b'fly Pieridae spp. x 
Monechma sp. B b'fly Sarangesa phidyle x 
Evolvulus a/s/no/des b'fly unknown butterfly sp. x 
Gutenbergia cordifolia b'fly unknown butterfly spp. 
Hibiscus aponeurus b'fly unknown butterfly spp. 
Kalanchoe sp. 1 b'fly 	I unknown butterfly spp. x t771 

(c) Turkana Boma, July 

Plant species  Visitor species TP1 TP2 TP3 TP4 
Bar/er/a spinisepala bee Apis me//ifera x 
Abution mauritianum bee Ceratina nyassensis x 
Bar/er/a spinisepala bee Ceratina nyassens/s x 
lpomoea sinensis bee Ceratina nyassensis x 
Abution maur/tianum bee Hylaeus sp. 
Senegal/a brevispica bee Pseudapis (Pseudapis) sp. 1 
Senegal/a brev/spica bee Osmilni sp. d 
Comme//na spp. blue  unknown small black bee/fly x 
Senegal/a brevispica wasp Eumen/dae sp. 4 
Senegal/a brevispica wasp Tachysphex sp. 1 
Senegal/a brevispica wasp ?Tachysphex sp. 1 
Senegal/a brevispica fly Rhyncomya spp. 
Comme/ina spp. blue fly Rhyncomya spp. x 
Osteospermum vail/ant/i fly Tephritidae sp. 1 x 
Senegal/a brevispica Diptera sp. x 
Vache/lia niotica Lt Form icidae spp. 
Bar/er/a spinisepala ant Formicidae spp. x x 
Po/yga/asphenoptera ant Formicidaespp. 
Senegal/a brevispica bug 	I  Hem iptera spp. (juvenile) 
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Plant species Visitor species TP1 TP2 TP3 TP4 
Pavonia gal/aensis bug

fBuprestidae 
Hemiptera spp. (juvenile) x 

Abutilon mauritianum beetle  sp. 1 x 
Abutilon maur/tianum beetleCoryna ?amb/gua x 

(d) Turkana Boma, August 

Plant species  Visitor species TP1 TP2 TP3 TP4 
Senegal/a brevispica bee Apis mellifera x x 
Vachellia etbaica bee Apis mell/fera x x x 
Commelina spp. blue bee Apis mellifera 
Leucas glabrata bee Apis mellifera 
S/da schimperiana bee Apis mellifera 
Senegal/a brevispica bee Plebe/na hlldebranti/ x x 
Euphorbia sp. bee Plebeina hlldebrantii 
Phyllanthus sep/al/s bee Plebeina hildebrant/i 
Solanum sp. 1 bee I  Plebe/na hlldebrantll 
Commelina spp. blue bee Amegilla pen/cu/a x 
Leucas glabrata bee large Apidae sp. x 
Gutenberg/a cordifolia bee Cerat/na nyassensis x 
Vachellia etbaica bee Xylocopa somalica 
Leucas glabrata bee Xylocopa somalica x x 
Solanum sp. 1 bee Xylocopa somalica 
Euphorbia sp. bee Pseudapis (Pseudapis) sp. 1 
Solanum sp. 1 bee Lipotriches (Lipotr/ches) sp. 1 
Lippia kitu/ensis bee Pate/lapis f'Zonal/ctus) sp. 1 
Gutenberg/a cordifolia bee Pate/lapis sp. C 

Polygala sphenoptera bee Pate/lapis sp. C x x 
Senegal/a brevispica bee unknown Halictidae sp. x 
Monechma sp. B bee Megach/le (Chalicodoma) sp. 2 x 
Aerva lanata wasp Chrysid/dae sp. x 
Phyl/anthus sepia//s wasp lchneumonidae sp. 
Phy/lanthus sep/al/s wasp Cercer/s sp. 2 - 
/pomoea s/nens/s wasp L/ris sp. 1 
Phy/lanthus sep/al/s wasp wasp sp. 1 
Just/cia /orata wasp unknown wasp sp. 
Lipp/a kitu/ens/s fly Bombomy/a disco/dea 
Just/cia /orata fly Bombyliidae sp. 
Lipp/a k/tuiens/s fly Rhyncomya sp. 

Euphorb/asp. fly Miltogramminae sp. 

Senegal/a brevispica fly unknown Diptera spp. 

Vache/l/a etbaica fly unknown Diptera spp. x - 
Vache///a etbaica ant Formicidae spp. x x 
Aerva /anata ant 	I Formicidae spp. - 

- 
x x 

Bar/er/a sp/n/sepa/a ant Formicidae spp. - 
- 
- x 

Emilia d/scifol/a ant Formicidae spp. - - 
- 

x 
Euphorbia sp. ant Formicidae spp. - 

- 

Hibiscus aponeurus ant Formicidae spp. - 
Monechma sp. B an Formicidae spp. x x 
Oc/mum forsko/e/ ant Formicidae spp. 

- 
x x x 
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Plant species Visitor species TP1 TP2 TP3 TP4 
Rue//ia sp. ant Formicidae spp. x 
Aerva lanata bug Hemiptera sp. 
Senegal/a brevispica b'fly Peridae spp. 
Hibiscus aponeurus b'fly Pieridae spp. _ 

(e) Junction, June 

Plant species  Visitor species TP1 TP2 TP3 TP4 
Emilia discifolia bee Apis mel/hera 
Hypoestes forskahli/ bee Apis me//ifera 
lpomoea k/tu/ens/s bee Apis me//ifera 
Leucas glabrata bee Apis me///fera 
Monechma sp. B bee Apis mel/ifera x x 
Leucas glabrata bee A meg/I/a ca/ens x 
Solanum sp. 1 bee Amegi//a ca/ens 
Po/ygala sp. 2 bee Ameg/l/a capensis x 
Echiochilon 
lithospermo/des bee Amegil/a pen/cu/a x 
Solanum sp. 1 bee Amegilla pen/cu/a x 
Gutenberg/a cord/fo//a bee Anthophora pygmaea 
Senegal/a brev/sp/ca bee large Apidae spp. 
Bar/er/a spinisepala bee large Apidae spp. 
Cassia mimoso/des bee large Apidae spp. x 
Gutenberg/a cord/fo//a bee large Apidae spp. 
Hypoestes forskahl// bee large Apidae spp. x x x 
Leucas glabrata bee large Apidae spp. 
L/pp/a kitu/ensis bee large Apidae spp. 
lpomoea k/tu/ens/s bee Tetra/onia n/grop//osa 
Monechma sp. B bee Thyreus calceatus 
Leucas glabrata bee Xy/ocopa soma/ica 
He/iotropium steudner/ bee Cerat/na moerenhout/ 
Monechma sp. B bee Cerat/na moerenhouti x 
lpomoea h/ldebrant/i bee Col/etes sp. 2 x 
Solanum sp. 1 bee Lipotriches (Lipotriches) sp. C x 
Monechma sp. B bee Lipotriches (Lipotriches) sp. G x 
Monechma sp. B bee Lipotriches (Lipotriches) sp. H x 
Senegal/a brev/spica bee Lipotriches (Lipotriches) sp. M x 
Solanum sp. 1 bee Lipotriches sp. A x 
Solanum sp. 1 bee ?Lipotriches sp. 1 x 
Endostemon tereticaulis bee 	I  Pseudapis (Pseudapis) sp. 1 
He/ichrysum glumaceum bee Pseudapis (Pseudapis) sp. 1 
Solanum sp. 1 bee Pseudapis (Pseudapis) sp. 1 
lpomoea k/tu/ens/s bee Pate/lapis sp. A x 
Monechma sp. B bee Pate/lapis sp. A 
Evolvulus a/s/no/des bee Halictus (Se/adon/a) sp. 1 
lpomoea k/tu/ensis bee Systropha sp. 1 
Hypoestes forskah/// bee Halictidae sp. 3 
Gutenberg/a cord/fol/a bee Halictidae sp. 4 
Gutenberg/a cord/fo//a bee Megachile (Cha//codoma) spp. 
Monechma sp. B bee Heriades (Her/ades) sp. 1 
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Plant species  Visitor species TP1 TP2 TP3 TP4 
Ocimum forskolei bee Heriades (Heriades) sp. 1 x 
Plectranthus caninus bee Heriades (Heriades) sp. 1 x 
Gutenbergia cordifolia bee Heriades sp. a X 

Gutenbergia cordifolia bee Osmiini sp. e 
Justicia lorata bee Osmiini sp. e 
Monechma sp. B bee Osmiini sp. e 
lpomoea hlldebrantii bee unknown Osmiini sp. 
Gutenbergia cordifolia bee ?Aspidosmia sp. 1 x 
Monechma sp. B bee ?lchteranthidium sp. 1 x 
Heliotropium steudneri bee Anthidiini sp. 1 x 
Gutenbergia cordifolia bee med bee spp. x 
lpomoea hlldebrant// bee med bee spp. x 
lpomoea sinensis bee med bee spp. 
Endostemon tereticaulis bee small bee spp. 
Justicia lorata bee small bee spp. 
Gutenbergia cordifolia bee unknown bee spp. 
Gutenbergia cordifolia bee unknown bee spp. 
lpomoea sinensis bee unknown bee spp. 
lpomoea sinensis bee unknown bee spp. x 
Helichrysum glumaceum wasp Chrysididae sp. 
Senegal/a brevispica wasp Eumenidae sp. 15 x 
Monechma sp. B wasp I  Eumenidae sp. 16 
Helichrysum glumaceum wasp Eumenidae sp. 8 x x 
Monechma sp. B wasp Eumenidae sp. 9 
Heliotropium steudneri wasp Ammophila sp. 1 x 
Leucas glabrata wasp Ammophila sp. 1 x 
Helichrysum glumaceum wasp Philanthus sp. 3 x 
Tagetes minuta wasp I Pompilidae sp. 2 X 

Monechma sp. B wasp ?Polistes sp. x 
Senegal/a brevispica wasp unknown wasp spp. x 
Emilia discifolia wasp unknown wasp spp. 
Leucas glabrata wasp unknown wasp spp. x 
Justicia lorata fly Bombyliidae sp. 
Euclea sp. fly Coenosia cuthbertsoni 
Justicia lorata fly Syrphidae sp. x 
Emilia disc/b/ia fly Tephritidae sp. x 
Euclea sp. fly unknown Diptera spp. 
Helichrysum glumaceum fly unknown Diptera spp. 
Solanum sp. 1 fly unknown Diptera spp. 
?Becium sp. ant 	I  Formicidae spp. 
Senegal/a brevispica ant 	I Formicidae spp. 
Bar/er/a spinisepala ant Formicidae spp. 
Cassia mimosoides ant Formicidae spp. 
Euclea sp. ant Formicidae spp. x x x x 
Heliotropium steudneri ant Formicidae spp. 
Leucas glabrata ant Formicidae spp. 
Sida ovata beetle Alticinae sp. 1 x 
Solanum sp. 1 beetle 	I Alticinae sp. 1 
Senegal/a brevispica beetle Megalognatha meruensis 
Cassia mimoso/des beetle 	I Clytrinae sp. 4 
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Plant species  Visitor species TP1 TP2 TP3 TP4 

Ipomoea hildebrantii beetle Coryna ?chevrolati x x 

Tagetes minuta beetle Idgia sp. 

Pavonia gallaensis beetle Lamiinae sp.1 

Emilia discifolia beetle Phalacridae sp. 

Sida ovata beetle unknown Coleoptera sp. 

Senegalia brevispica b'fly Azanus jesous 

Senegalia brevispica b'fly Lycaenidae sp. 

Emilia discifolia b'fly Eurema brigitta brigitta 

Heliotropium steudneri bfly Freyeria trochylus trochylus 

Leucas glabrata b'fly Pieridae sp. 

(f) Junction, July 

Plant species  Visitor species TP1 TP2 TP3 TP4 

Hypoestes forskahlii bee Amegilla penicula 

Hypoestes forskahlii bee large Apidae sp. 

Pavonia gallaensis bee Ceratina nyassensis 

Osteospermum vaillantii bee Halictus (Seladonia) sp. 1 

Pavonia gallaensis bee Lasioglossum (Dialictus) sp. 1 

Senegalia brevispica bee Pseudapis (Pseudapis) sp. 1 

Osteospermum vaillantii bee unknown Halictidae sp. 

Pavonia gallaensis bee Osmiini sp. j 

Emilia discifolia bee small green bee spp. x x 

Osteospermum vaillantii bee med bee sp. 

Evolvulus alsinoides bee small bee spp. 

Pavonia gallaensis bee small bee spp. 

Senegalia brevispica bee small bee spp. 

lpomoea sinensis bee unknown bee sp. 

Hypoestes forskahlii wasp Eumenidae sp. 9 

Monechma sp. B wasp Eumenidae sp. 9 

Senegalia brevispica wasp Cathimeris sp. 

Senegalia brevispica wasp Cerceris sp. 2 x x 

Monechma sp. B wasp Sphecidae sp. x 

Osteospermum vaillantii wasp unknown wasp spp. x 

Senegaliabrevispicawasp unknown wasp spp. x 

Senegalia brevispica fly Rhyncomya sp. x 

Senegalia brevispica b'fly Hoplacephala inermis x I 	x 

Senegalia brevispica b'fly Belenois aurota aurota x 
chiochion 

lithospermoides 
b'fly Eurema brigitta brigitta x 

Hypoestes forskahlii b'fly Spialia mata higginsi x 
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Appendix 10. Summary of the number of visitor types, interaction types and interaction 
frequencies in each seasonal web by time period and visitor group. Total visits, plant species 
observed and plant species visited are also shown for each time period. 

(a) Turkana Boma, May 

TP 1 TP 2 TP 3 TP 4 Overall 
Total visits 64 291 172 306 833 
Plant species observed 30 38 34 23 38 
Plant species visited 8 29 21 11 33 
Visitor types  
bees 3 17 20 4 33 
wasps 0 3 3 3 6 
ants 1 1 1 1 1 
flies 5 14 10 2 18 
bugs 0 0 1 0 1 
beetles 1 10 7 5 17 
butterflies and moths 0 1 3 5 8 
Total 10 45 45 20 84 
Interaction types  
bees 4 36 28 6 67 
wasps 0 3 3 3 8 
ants 1 5 8 2 11 
flies 6 22 13 3 33 
bugs 0 0 1 0 1 
beetles 1 14 7 5 25 
butterflies and moths 0 1 6 8 15 
Total 12 	1 81 66 27 160 
Visits  
bees 479 48 138 107 186 
wasps 19 0 5 3 11 
ants 41 4 21 14 2 
flies 132 11 89 25 7 
bugs 1 0 0 1 0 
beetles 59 1 35 15 8 
butterflies and moths 102 0 3 7 92 
Total 833 64 291 172 306 
Interaction frequency  
bees 4111 5794 12306 13152 35363 
wasps 0 266 230 839 1335 
ants 233 2421 631 372 3657 
flies 998 7172 2342 437 10949 
bugs 0 0 92 0 92 
beetles 58 1301 585 191 2135 
butterflies and moths 0 5 375 7722 8102 
Total 	 1 5400 	1 16959 	1 16561 	1 22713 61633 
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(b) Turkana Boma, June 

TP 1 TP 2 TP 3 TP 4 Overall 
Total visits 	 i 133 206 55 395 
Plant species observed 	 23 31 32 23 32 
Plant species visited 	 1 24 26 8 28 

Visitor types  
bees 	 o 17 19 9 30 
wasps 	 0 5 6 2 10 
ants 	 o 1 1 1 1 
flies 	 i  2 1 7 
beetles 	 0 9 4 1 11 
butterflies and moths 	 0 3 5 3 7 
Total 	 i 38 37 17 66 

Interaction types  
bees 	 o 27 28 10 51 
wasps 	 o 5 7 2 11 
ants 	 o 5 4 1 9 
flies 	 i  2 1 7 
beetles 	 0 10 7 1 15 
butterflies and moths 	 0 3 7 3 12 
Total 	 i  55 18 105 

Visits  
bees 	 181 0 77 78 26 
wasps 	 76 0 12 50 14 
ants 	 23 0 15 7 1 
flies 	 14 1 5 7 1 
beetles 	 55 0 17 32 6 
butterflies and moths 	 46 0 7 32 7 
Total 	 395 1 133 206 55 

Interaction frequency  
bees 	 0 3902 3552 1957 9202 
wasps 	 0 167 382 45 535 
ants 	 o 102 120 3 216 
flies 	 63 35 24 2 124 
beetles 	 0 163 103 10 260 
butterflies and moths 	 1 	0 	1 37 463 876 	1 769 
Total 	 1 	63 	1 4406 4644 2684 	1 11797 
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(c) Turkana Boma, July 

TP 1 TP 2 TP 3 TP 4 Overall 
Total visits 4 9 39 2 54 
Plant species observed 6 9 9 6 10 
Plant species visited 1 3 7 2 9 

Visitor types  
bees 0 2 4 0 6 
wasps 0 0 3 0 3 
ants 0 1 1 1 1 
flies 1 0 3 0 3 
beetles 0 0 2 0 2 
bugs 0 1 0 1 1 
Total 1 4 13 2 16 

Interaction types  
bees 0 2 6 0 8 
wasps 0 0 3 0 3 
ants 0 1 2 1 3 
flies 1 0 3 0 4 
beetles 0 0 2 0 2 
bugs 0 1 0 1 2 
Total 1 4 16 2 22 

Visits  
bees 16 0 3 13 0 
wasps 16 0 0 16 0 
ants 10 0 5 4 1 
flies 8 4 0 4 0 
beetles 2 0 0 2 0 
bugs 2 0 1 0 1 
Total 54 4 9 39 2 

Interaction frequency  
bees 0 49 466 0 515 
wasps 0 0 1644 0 1644 
ants 0 195 50 2 247 
flies 371 0 208 0 579 
beetles 0 0 8 0 8 
bugs 0 2 	1 0 74 76 
Total 371 246 	1 2376 76 3069 
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(d) Turkana Boma, August 

TP 1 TP 2 TP 3 TP 4 Overall 
Total visits 8 112 213 33 366 
Plant species observed 23 30 26 21 31 
Plant species visited 3 12 12 8 20 

Visitor types  
bees 1 9 6 2 12 
wasps 0 1 	1 4 1 4 
ants 0 1 1 1 1 
flies 2 1 3 0 5 
bugs 0 0 1 0 1 
butterflies and moths 0 1 1 0 1 
Total 3 13 16 4 26 

Interaction types  
bees 1 14 10 3 22 
wasps 0 1 4 1 6 
ants 0 3 5 6 9 
flies 2 1 4 0 6 
bugs 0 0 1 0 1 
butterflies and moths 0 1 1 0 2 
Total 3 20 25 10 46 

Visits  
bees 194 2 75 107 10 
wasps 47 0 13 28 	1 6 
ants 91 0 4 70 17 
flies 27 6 16 5 0 
bugs 2 0 0 2 0 
butterflies and moths 5 0 4 1 0 
Total 366 8 112 213 33 
Interaction frequency  
bees 100 590 377 79 1146 
wasps 0 28 395 7 430 
ants 0 40 169 316 525 
flies 23 7 16 0 46 
bugs 0 0 5 0 5 
butterflies and moths 0 57 2 0 59 
Total 123 722 964 402 2211 
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(e) Junction, June 

TP 1 TP 2 TP 3 TP 4 Overall 
Total visits 55 202 297 124 678 
Plant species observed 29 33 34 25 35 
Plant species visited 4 18 22 11 27 

Visitor types  
bees 3 14 22 8 35 
wasps 0 4 8 2 10 
ants 1 1 1 1 1 
flies 1 3 2 1 5 
beetles 0 4 6 0 8 
butterflies and moths 0 1 2 2 5 
Total 5 27 40 14 63 

Interaction types  
bees 3 18 34 9 59 
wasps 0 4 8 2 13 
ants 1 2 5 2 7 
flies 1 3 2 1 7 
beetles 0 4 6 0 9 
butterflies and moths 0 1 2 2 5 
Total 5 32 56 16 99 

Visits  
bees 408 9 100 205 94 
wasps 56 0 12 23 21 
ants 173 44 73 50 6 
flies 16 2 10 3 1 
beetles 14 0 6 8 0 
butterflies and moths 11 0 1 8 2 

Total 678 55 202 297 124 

Interaction frequency  
bees 128 2063 6869 4592 13652 
wasps 0 506 819 672 1997 
ants 337 810 577 70 1794 

flies 15 260 426 3 704 
beetles 0 1 	51 222 1 	0 1 	273 

butterflies and moths 0 13 73 670 756 

Total 480 3703 8986 6007 1 	19176 
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(f) Junction July 

TP 1 TP 2 TP 3 TP 4 Overall 
Total visits 2 32 30 2 66 
Plant species observed 8 12 12 9 12 
Plant species visited 1 5 7 2 9 

Visitor types  
bees 0 4 9 1 12 
wasps 0 3 3 1 6 
flies 1 2 0 0 2 
butterflies and moths 0 2 1 0 3 
Total 1 11 13 2 22 

Interaction types  
bees 0 5 9 1 14 
wasps 0 3 4 1 7 
flies 1 2 0 0 2 
butterflies and moths 0 2 1 0 3 
Total 1 12 14 2 26 

Visits  
bees 29 0 11 17 1 
wasps 23 0 10 12 1 
flies 7 2 5 0 0 
butterflies and moths 7 0 6 1 0 
Total 66 2 32 30 2 

Interaction frequency  
bees 0 39 83 5 127 
wasps 0 42 66 2 110 
flies 16 23 0 0 39 
butterflies and moths 0 28 5 0 33 
Total 16 132 154 7 309 



Appendix 11. Visitor species and morphospecies to multiple plant species and the time period in which they visit. The family for each visitor is given 
below the species name. Each acacia species is highlighted in a different colour. 

TP 1 (6.00-9.00) TP 2 (9.00-12.00) 1 	TP 3 (1 2.00-15.00) TP 4 (15.00-18.00) 
Turkana Boma, May  
Tetralonia boharti Hibiscus flavifolius 
bee; Apidae  Abution mauritianum 
Apis mellifera Ocimum forskolei Ocimum forskolei 
bee; Apidae Senegalla brevispica Croton dichogamus 

Lippia kituiensis 
Halictus (Seladonia) sp. 1 ?Becium sp. Justicia lorata 
bee; Halictidae Evolvulus alsinoides 
Lasiog/ossum (Dialictus) sp. 1 Ipomoea sinensis Ipomoea sinensis 
bee; Halictidae Hibiscus flavifolius 
Patellapis (Zonalictus) sp. 1 Felicia muricola 
bee; Halictidae Ocimum forskolei 
Pseudapis (Pseudapis) sp. 1 Indigofera volkensii Melhania ovata 
bee; Halictidae  Senegalla brevispica  
Lipotriches (Lipotriches) sp. B Just/cia lorata Indigofera volkensii 
bee; Halictidae  Indigofera volkensii 
Megachile (Chalicodoma) sp. 2 Gutenbergia cordifolia 
bee; Megachilidae  Ocimum forskolei 
Osmiini sp. e Asteraceae spp. yellow Gutenbergia cordifolia 
bee; Megachilidae  Gutenbergia cordifolia 
Bombyliidae sp. 1 Helichrysum glumaceum 
fly; Bombyliidae  Evolvulus alsinoides 
Bombyliidae sp. 2 Pentanisia ouranogyne Meihania ovata 
fly; Bombyliidae  

Phytomia incisa Lippia kituiensis Senegalla brevispica Senegalia brevispica Senegalla brevispica 
fly; Syrphidae  Croton dichogamus Lippia kituiensis 



Turkana Boma, May (cont.) TP 1 (6.00-9.00) TP 2 (9.00-12.00) TP 3(12.00-15.00) TP 4 (15.00-18.00) 

Eristalinus taeniops Asteraceae spp. yellow 
fly; Syrphidae  Senegalia brevispica  

Pretoriamyia sp. 1 Senegalia brevispica Senegalia brevispica Vache/lia gerrardii 
fly; Tachinidae Vachellia gerrardii Vache/lia gerrardii  

Mysotophilidae sp. Balanites sp. Balanites sp. Balanites sp. Balanites sp. 
fly; Sarcophagidae Lippia kituiensis Lippia kituiensis Felicia muricola 

Asteraceae spp. yellow  

Mega/ognatha meruensis Vachellia gerrardii 
beetle; Chrysomelidae  

Alticinae sp. 1 Lippia kituiensis Croton dichogamus 
beetle; Chrysomefldae  He/ichrysum glumaceum  

Lycus serenus Lippia kituiensis Felicia muricola 
beetle; Lycidae  

Coryna ?ambigua Gutenbergia cordifolia Me/hania ovata 
beetle; Meloidae  

Arctiidae sp. Lippia kituiensis 
moth; Arctiidae Senegalia brevispica 

Vachellia gerrardii 
Turkana Boma, June 

Apis me/lifera Monechma sp. B Monechma sp. B Lippia kituiensis 
b; Apidae  Abuti/on mauritianum 

Lasioglossum (Dialictus) sp. 2 Plectranthus caninus Hibiscus f/avifolius 
b; Halictidae  

Pate/lapis sp. A Ipomoea ficifo/ia 
b; Halictidae  Hibiscus vitifolius  

Lipotriches (Lipotriches) sp. 1 Gutenbergia cordifolia Gutenbergia cordifolia 
b; Halictidae  Abuti/on mauritianum Senegalla brevispica  

Ha/ictus (Se/adonia) sp. C Gutenbergia cordifolia Ipomoea obscura 
bee; Halictidae Sida ovata 

Abution mauritianum 



Turkana Boma, June (cont.) TP 1(6.00-9.00) TP 2 (9.00-12.00) TP 3 (12.00-15.00) TP 4 (15.00-18.00) 
Heriades (Heriades) sp. 1 Plectranthus caninus Ocimum forskolei 
bee; Megachilidae  Ocimum forskolei  

Megachile (Chalicodoma) sp. 2 Monechma sp. B Gutenbergia cordifolia 
bee; Megachilidae  

Megachile (Pseudomegachi/e) sp. 1 Justicia diclipteroides Gutenberg/a cordifolia 
bee; Megachilidae  

Coryna ?apicornis Hibiscus aponeurus Hibiscus aponeurus 
beetle; Meloidae Hibiscus flavifolius Hibiscus vitifolius 

Ipomoea ficifolia 
Turkana Boma July  

Ceratina uiyassensis Bar/eria spinisepala 
bee; Halictidae Comme/ina spp. blue 

Ipomoea sinensis 
Turkana Boma August  

Xylocopa somalica Solanum sp. 1 Vachellia etbaica 
bee; Apidae  Leucas glabrata Leucas glabrata  
Apis mel/ifera Sida schimperiana 
bee; Apidae Commelina spp. blue Vachellia etbaica Vachellia etbaica 

Leucas glabrata Senegalla brevispica Senegalia brevispica 
Vachellia etbaica  

Plebeina hildebranti Phyllanthus sepia/is Euphorbia sp. 
bee; Apidae Senegalla brevispica Senegalla brevispica 

So/anumsp. 1 
Pate/lapis sp. C Polygala sphenoptera Po/ygala sphenoptera Gutenberg/a cordifolia 
bee; Halictidae 



Junction June TP 1 (6.00-9.00) TP 2 (9.00-12.00) TP 3 (12.00-15.00) TP 4 (15.00-18.00) 
Amegilla ca/ens 
bee; Apidae Leucas glabrata Solanum sp. 1 

Amegi/la penicula Echiochion 
bee; Apidae  Solanum sp. 1  /ithospermoides 

Apis me/lifera lpomoea kituiensis Hypoestes forskahlll Leucas glabrata 
bee; Apidae  Monechma sp. B Emilia discifolia Monechma sp. B 
Ceratina moerenhouti Monechma sp. B 
bee; Apidae  Heliotropium steudneri 

Pseudapis (Pseudapis) sp. 1 Helichrysum g/umaceum 
bee; Halictidae Endostemon tereticaulis 

Solanum sp. 1 

Pate/lapis sp. A Ipomoea kituiensis Monechma sp. B 
bee; Halictidae 

Heriades (Heriades) sp. 1 Plectranthus caninus Ocimum forskolei 
bee; Megachifldae  Monechma sp. B 

Osmilni sp. e Monechma sp. B 
bee; Megachilidae Gutenbergia cordifolia 

Justicia lorata 

Ammophila sp. 1 Leucas glabrata 
wasp; Sphecidae  He/iotropium steudneri 

Alticinae sp. 1 Sida ovata Solanum sp. 1 
beetle; Chrysomelidae  

Junction July 

Eumenidae sp. 9 Hypoestes forskah/ii Monechma sp. B 
wasp; Eumenidae 



References 	 320 

References 

Abrams, P. A., and H. Matsuda. 1996. Positive indirect effects between prey species that 
share predators. Ecology 77:610-616. 

Abrams, P. A., B. A. Menge, G. G. Mittelbach, D. A. Spiller and P. Yodzis. 1996. The role 
of indirect effects in food webs. Pages 371-395 in G. A. Polis and K. 0. Winemiller, 
eds. Food Webs: Integration of Patterns and Dynamics. Chapman and Hall, New 
York. 

Abrams, P. A., R. D. Holt and J. D. Roth. 1998. Apparent competition or apparent 
mutualism? Shared predation when populations cycle. Ecology 79:201-212. 

Agnew, A. D. Q. and S. Agnew. 1994. Upland Kenya Wild Flowers. East Africa Natural 
History Society, Nairobi. 

Aizen, M. A. and D. P. Vazquez. 2006. Flowering phenologies of hummingbird plants from 
the temperate forest of southern South America: is there evidence of competitive 
displacement? Ecography 29:357-366. 

Akin, S. and K. 0. Winemiller. 2006. Seasonal variation in food web composition and 
structure in a temperate tidal estuary. Estuaries and Coasts 29:552-567. 

Appanah, S. 1993. Mass flowering of dipterocarp forests in the aseasonal tropics. Journal of 
Biosciences 18:457-474. 

Armbruster, W. S. and A. L. Herzig. 1984. Partitioning and sharing of pollinators by four 
sympatric species of Dalechampia (Euphorbiaceae) in Panama. Annals of the 
Missouri Botanical Garden 71:1-16. 

Armbruster, W. S., M. E. Edwards and E. M. Debevec. 1994. Floral character displacement 
generates assemblage structure of Western-Australian triggerplants (Stylidium). 
Ecology 75:315-329. 

Ashton, P. S., T. J. Givnish and S. Appanah. 1988. Staggered flowering in the 
Dipterocarpaceae - new insights into floral induction and the evolution of mast 
fruiting in the aseasonal tropics. American Naturalist 132:44-66. 

Augspurger, C. K. 1982. A cue for synchronous flowering, in E. G. Leigh, A. S. Rand, and 
D. M. Windsor, eds. The Ecology of a Tropical Forest - Seasonal Rhythms and Long 
Term Changes. Smithsonian Institution Press, Washington D. C. 

Augustine, D. J. 2003. Spatial heterogeneity in the herbaceous layer of a semi-arid savanna 
ecosystem. Plant Ecology 167:319-332. 

Augustine, D. J., S. J. McNaughton and D. A. Frank. 2003. Feedbacks between soil nutrients 
and large herbivores in a managed savanna ecosystem. Ecological Applications 
13:1325-1337. 

Bailey, M. A., M. A. R. Mian, T. E. Carter, D. A. Ashley and H. R. Boerma. 1997. Pod 
dehiscence of soybean: Identification of quantitative trait loci. Journal of Heredity 
88:152-154. 

Bascompte, J. and C. J. Melian. 2005. Simple trophic modules for complex food webs. 
Ecology 86:2868-2873. 

Bascompte, J., P. Jordano, C. J. Melian and J. M. Olesen. 2003. The nested assembly of 
plant-animal mutualistic networks. Proceedings of the National Academy of Sciences 
of the United States of America 100:9383-9387. 

Basilio, A. M., D. Medan, J. P. Toretta and N. J. Bartoloni. 2006. A year-long plant- 
pollinator network. Austral Ecology 31:975-983. 

Beattie, A. J., C. Turnbull, T. Hough, S. Jobson and R. B. Knox. 1985. The vulnerability of 
pollen and fungal spores to ant secretions: Evidence and some evolutionary 
implications. American Journal of Botany 71:346-356. 

Bernhardt, P. 1987. A comparison of the diversity, density, and foraging behavior of bees, 
and wasps on Australian Acacia. Annals of the Missouri Botanical Garden 74:42-50. 



References 	 321 

Bianchini, M. and E. Pacini. 1996. Explosive anther dehiscence in Ricinus communis L 
involves cell wall modifications and relative humidity. International Journal of 
Plant Sciences 157:739-745. 

Bierzychudek, P. 1981. Pollinator limitation of plant reproductive effort. American 
Naturalist 117:838-840. 

Biesmeijer, J. C. and E. Toth. 1998. Individual foraging, activity level and longevity in the 
stingless bee Melipona beecheii in Costa Rica (Hymenoptera, Apidae, Meliponinae). 
Insectes Sociaux 45:427-443. 

Blundell, M. 1992. Wild Flowers of East Africa. HarperCollins, London. 
Bond, W. J. and D. Loffell. 2001. Introduction of giraffe changes Acacia distribution in a 

South African savanna. African Journal of Ecology 39:286-294. 
Bonner, L. J. and H. G. Dickinson. 1989. Anther dehiscence in Lycopersicon esculentum 

Mill. New Phytologist 113:97-115. 
Bonner, L. J. and H. G. Dickinson. 1990. Anther dehiscence in Lycopersicon esculentum 2. 

Water Relations. New Phytologist 115:367-375. 
Borchert, R., S. S. Renner, Z. Calle, D. Navarrete, A. Tye, L. Gautier, R. Spichiger and P. 

von Hildebrand. 2005. Photoperiodic induction of synchronous flowering near the 
Equator. Nature 433:627-629. 

Brody, A. K. 1997. Effects of pollinators, herbivores, and seed predators on flowering 
phenology. Ecology 78:1624-1631. 

Bronstein, J. L., R. Alarcon and M. Geber. 2006. The evolution of plant-insect mutualisms. 
New Phytologist 172:412-428. 

Brown, J. H. and A. Kodric-Brown. 1979. Convergence, competition, and mimicry in a 
temperate community of hummingbird-pollinated flowers. Ecology 60:1022-1035. 

Brown, W. L. and E. 0. Wilson. 1956. Character Displacement. Systematic Zoology 5:49-64. 
Buchmann, S. L. and G. P. Nabhan. 1997. The Forgotten Pollinators. Island Press, 

Washington D. C. 
Buchmann, S. L. and J. H. Cane. 1989. Bees assess pollen returns while sonicating Solanum 

flowers. Oecologia 81:289-294. 
Buchmann, S. L., editor. 1983. Buzz pollination in angiosperms. Pages 73-113 in C. E. Jones 

and R. J. Little, eds.Handbook of Experimental Pollination Biology. Van Nostrand 
Reinhold, New York. 

Bullock, S. H. and J. A. Solismagallanes. 1990. Phenology of canopy trees of a tropical 
deciduous forest In Mexico. Biotropica 22:22-35. 

Camargo-Ricalde, S. L., S. S. Dhillion and V. Garcia-Garcia. 2004. Phenology, and seed 
production and germination of seven endemic Mimosa species (Fabaceae: 
Mimosoideae) of the Tehuacan-Cuicatlan Valley, Mexico. Journal of Arid 
Environments 58:423-437. 

Campbell, D. R. and A. F. Motten. 1985. The mechanism of competition for pollination 
between two forest herbs. Ecology 66:554-563. 

Chinery, M. 1993. Insects of Britain and Northern Europe. HarperCollins, London. 
Coe, M. and H. Beentje. 1991. A Field Guide to the Acacias of Kenya. Oxford University 

Press, Oxford. 
Cook, J. M. and J. Y. Rasplus. 2003. Mutualists with attitude: coevolving fig wasps and figs. 

Trends in Ecology and Evolution 18:241-248. 
Corbet, S. A. 1990. Pollination and the weather. Israel Journal of Botany 39:13-30. 
Croat, T. B. 1975. Phenological behaviour of habit and habitat classes on Barro Colorado 

Island (Panama Canal Zone). Biotropica 7:270-277. 
Davies, S. J. J. F. 1976. Studies of flowering season and fruit production of some arid zone 

shrubs and trees in Western Australia. Journal of Ecology 64:665-687. 
Dean, W. R. J., M. D. Anderson, S. J. Milton and T. A. Anderson. 2002. Avian assemblages 

in native Acacia and alien Prosopis drainage line woodland in the Kalahari, South 
Africa. Journal ofArid Environments 51:1-19. 



References 
	

322 

Dharani, N. 2006. Field Guide to Acacias of East Africa. C. Struik Publishers, Capetown. 
Dicks, L. V., S. A. Corbet and R. F. Pywell. 2002. Compartmentalization in plant-insect 

flower visitor webs. Journal of Animal Ecology 71:32-43. 
Dressier, R. L. 1968. Pollination by euglossine bees. Evolution 22:202-&. 
Dupont, Y. L., D. M. Hansen and J. M. Olesen. 2003. Structure of a plant-flower-visitor 

network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. 
Ecography 26:301-310. 

Du Toit, J. T. 1990. Giraffe feeding on Acacia flowers - predation or pollination. African 
Journal of Ecology 28:63-68. 

Eardley, C. and M. Kuhlmann. 2006. Southern and East African Melitta Kirby (Apoidea: 
Melittidae). African Entomology 14:293-305. 

Faegri, K. and L. van der Pijl. 1979. The Principles of Pollination Ecology, Third Revised 
Edition. Pergamon Press, New York. 

Feinsinger, P. 1987. Effects of plant species on each others pollination - is community 
structure influenced. Trends in Ecology and Evolution 2:123-126. 

Feinsinger, P. and H. M. Tiebout. 1991. Competition among plants sharing hummingbird 
pollinators - laboratory experiments on a mechanism. Ecology 72:1946-1952. 

Fleming, P. A., S. D. Hofmeyr, S. W. Nicolson and J. T. du Toit. 2006. Are giraffes 
pollinators or flower predators of Acacia nigrescens in Kruger National Park, South 
Africa? Journal of Tropical Ecology 22:247-253. 

Fortuna, M. A. and J. Bascompte. 2006. Habitat loss and the structure of plant-animal 
mutualistic networks. Ecology Letters 9:278-283. 

Forup, M. L. and J. Memmott. 2005. The restoration of plant-pollinator interactions in hay 
meadows. Restoration Ecology 13:265-274. 

Frankie, G. W., H. G. Baker and P. A. Opler. 1974. Comparative phenological studies of 
trees in tropical wet and dry forests in lowlands of Costa Rica. Journal of Ecology 
62:881-919. 

Free, J. B. 1968. Dandelion as a competitor to fruit trees for bee visits. Journal of Applied 
Ecology 5:169-&. 

Free, J. B. 1970. The flower constancy of bumblebees. Journal of Animal Ecology 39:395-
402. 

Friedel, M. H., D. J. Nelson, A. D. Sparrow, J. E. Kinloch and J. R. Maconochie. 1994. 
Flowering and fruiting of and zone species of Acacia in Central Australia. Journal 
of Arid Environments 27:221-239. 

Garcia, C. C., M. Nepi and E. Pacini. 2006. Structural aspects and ecophysiology of anther 
opening in Allium triquet rum. Annals of Botany 97:521-527. 

Gibson, R. H., I. L. Nelson, G. W. Hopkins, B. J. Hamlett and J. Memmott. 2006. Pollinator 
webs, plant communities and the conservation of rare plants: arable weeds as a case 
study. Journal of Applied Ecology 43:246-257. 

Gilbert, F. S. 1981. Foraging ecology of hoverfies - morphology of the mouthparts in 
relation to feeding on nectar and pollen in some common urban species. Ecological 
Entomology 6:245-262. 

Gilbert, F. S. 1985. Diurnal activity patterns in hoverflies (Diptera, Syrphidae). Ecological 
Entomology 10:385-392. 

Gleeson, S. K. 1981. Character displacement in flowering phenologies. Oecologia 51:294-
295. 

Gotelli, N. J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81:2606-
2621. 

Gotelli, N. J. 2001. Research frontiers in null model analysis. Global Ecology and 
Biogeography 10:337-343. 

Gotelli, N. J. and G. R. Graves. 1996. Null Models in Ecology. Smithsonian Institution Press, 
Washington. 



References 	 323 

Goulson, D. and N. P. Wright. 1998. Flower constancy in the hoverflies Episyrphus 
balteatus (Degeer) and Syrphus ribesii (L.) (Syrphidae). Behavioral Ecology 9:213-
219. 

Gradziel, T. M. and S. A. Weinbaum. 1999. High relative humidity reduces anther 
dehiscence in apricot, peach, and almond. Hortscience 34:322-325. 

Grant, V. 1950. The flower constancy of bees. Botanical Review 16:379-398. 
Grant, W. F. 1996. Seed pod shattering in the genus Lotus (Fabaceae): a synthesis of diverse 

evidence. Canadian Journal of Plant Science 76:447-456. 
Guinet, P. 1969. Les Mimosacees, etude de palynologie fondamentale, correlations, 

evolution. Travaux de la Section Scientifique et Technique, Institut Francais de 
Pondichery 9:1-293. 

Heard, T. A. 1999. The role of stingless bees in crop pollination. Annual Review of 
Entomology 44:183-206. 

Hegland, S. J. and 0. Totland. 2005. Relationships between species' floral traits and 
pollinator visitation in a temperate grassland. Oecologia 145:586-594. 

Heinrich, B. 1976. Resource partitioning among some eusocial insects: bumblebees. Ecology 
57:874-889. 

Heinrich, B. 1976. The foraging specialisations of individual bumblebees. Ecological 
Monographs 46:105-128. 

Heithaus, E. R. 1974. Role of plant-pollinator interactions in determining community 
structure. Annals of the Missouri Botanical Garden 61:675-69 1. 

Herrera, C. M. 1990. Daily patterns of pollinator activity, differential pollinating 
effectiveness, and floral resource availability, in a Summer-flowering Mediterranean 
shrub. Oikos 58:277-288. 

Herrera, C. M. 1995a. Floral biology, microclimate, and pollination by ectothermic bees in 
an early-blooming herb. Ecology 76:218-228. 

Hen-era, C. M. 1995b. Microclimate and individual variation in pollinators - flowering plants 
are more than their flowers. Ecology 76:1516-1524. 

Hocking, B. 1968. Insect-flower associations in High Arctic with special reference to nectar. 
Oikos 19:359-&. 

Hocking, B. 1970. Insect associations with swollen thorn acacias. Transactions of the Royal 
Entomological Society of London 122:211-255. 

Holt, R. D. and J. H. Lawton. 1994. The ecological consequences of shared natural enemies. 
Annual Review of Ecology And Systematics 25:495-520. 

Horvitz, C. C. and D. W. Schemske. 1988. A test of the Pollinator Limitation Hypothesis for 
a neotropical herb. Ecology 69:200-206. 

Horvitz, C. C. and D. W. Schemske. 1990. Spatiotemporal variation in insect mutualists of a 
neotropical herb. Ecology 71:1085-1097. 

Inouye, D. W. 1978. Resource partitioning in bumblebees: experimental studies of foraging 
behaviour. Ecology 59:672-678. 

Jaksic, F. M. 1982. Inadequacy of activity time as a niche difference - the case of diurnal and 
nocturnal raptors. Oecologia 52:171-175. 

Janzen, D. H. 1966. Coevolution of mutualism between ants and acacias. Evolution 20:249-
275. 

Janzen, D. H. 1967a. Interaction of the bull's horn acacia (Acacia cornigera L.) with an ant 
inhabitant (Pseudomyrmexferruginea F. Smith) in eastern Mexico. University of 
Kansas Science Bulletin 47:315-558. 

Janzen, D. H. 1967b. Synchronization of sexual reproduction of trees within the dry season 
in Central America. Evolution 21:620-&. 

Johnson, S. D. 1992. Climatic and phylogenetic determinants of flowering seasonality in the 
Cape Flora. Journal of Ecology 81:567-572. 

Jolivet, P. 1995. Observations on the host plants of Chrysomelidae (Coleoptera). 
Entomologiste 51:77-93. 



References 	 324 

Jordano, P. 1987. Patterns of mutualistic interactions in pollination and seed dispersal - 
connectance, dependence asymmetries, and coevolution. American Naturalist. 
129:657-677. 

Jordano, P., J. Bascompte and J. M. Olesen. 2006. The ecological consequences of complex 
topology and nested structure in pollination webs. Pages 173-199 in N. M. Waser 
and J. 011erton, eds. Plant-pollinator Interactions: from Specialization to 
Generalization. University of Chicago Press, Chicago. 

Kajobe, R. and C. M. Echazarreta. 2005. Temporal resource partitioning and climatological 
influences on colony flight and foraging of stingless bees (Apidae : Meliponini) in 
Ugandan tropical forests. African Journal of Ecology 43:267-275. 

Keijzer, C. J. 1987. The processes of anther dehiscence and pollen dispersal .1. the opening 
mechanism of longitudinally dehiscing anthers. New Phytologist 105:487-498. 

Keijzer, C. J., H. B. Leferink-Ten Klooster and M. C. Reinders. 1996. The mechanics of the 
grass flower: Anther dehiscence and pollen shedding in maize. Annals of Botany 
78:15-21. 

Kenny, D. and C. Loehle. 1991. Are food webs randomly connected. Ecology 72:1794-1799. 
Kenrick, J. 2003. Review of pollen-pistil interactions and their relevance to the reproductive 

biology of Acacia. Australian Systematic Botany 16: 119-130. 
Kenrick, J. and R. B. Knox. 1982. Function of the polyad in reproduction of Acacia. Annals 

of Botany 50:721-727. 
Kenrick, J. and R. B. Knox. 1989. Pollen-pistil interactions in Leguminosae (Mimosoideae). 

Pages 127-156 in C. H. Stirton and J. L. Zarucchi, eds. Advances in legume biology. 
Monographs of systematic botany of the Missouri Botanical Garden 29. Missouri 
Botanical Garden, St. Louis. 

Kephart, S. R. 1983. The partitioning of pollinators among three species of Asciepias. 
Ecology 64:120-133. 

Kergoat, G. J., J. F. Silvain, S. Buranapanichpan and M. Tuda. 2007. When insects help to 
resolve plant phylogeny: evidence for a paraphyletic genus Acacia from the 
systematics and host-plant range of their seed predators. Zoologica Scripta 36:143-
152. 

Klips, R. A. 1999. Pollen competition as a reproductive isolating mechanism between two 
sympatric Hibiscus species (Malvaceae). American Journal of Botany 86:269-272. 

Knight, T. M., J. A. Steets, J. C. Vamosi, S. J. Mazer, M. Burd, D. R. Campbell, M. R. 
Dudash, M. 0. Johnston, R. J. Mitchell and T. L. Ashman. 2005. Pollen limitation of 
plant reproduction: Pattern and process. Annual Review of Ecology Evolution and 
Systematics 36:467-497. 

Kochmer, J. P. and S. N. Handel. 1986. Constraints and competition in the evolution of 
flowering phenology. Ecological Monographs 56:303-325. 

Koptur, S. 1983. Flowering phenology and floral biology of Inga (Fabaceae, Mimosoideae). 
Systematic Botany 8:354-368. 

Kowalczyk, R., B. Jedrzejewska and A. Zalewski. 2003. Annual and circadian activity 
patterns of badgers (Meles me/es) in Bialowieza Primeval Forest (eastern Poland) 
compared with other Palaearctic populations. Journal of Biogeography 30:463-472. 

Kozlowski, T. T. and S. G. Pallardy. 2002. Acclimation and adaptive responses of woody 
plants to environmental stresses. Botanical Review 68:270-334. 

Kronfeld-Schor, N. and T. Dayan. 2003. Partitioning of time as an ecological resource. 
Annual Review of Ecology Evolution and Systematics 34:153-181. 

Kruger, 0. and G. C. McGavin. 1998. The insect fauna of Acacia species in Mkomazi Game 
Reserve, Tanzania. Ecological Entomology 22:440-444. 

Lack, A. 1976. Competition for pollinators and evolution in Centaurea. New Phytologist 
77:787-792. 

Larsen, T. B. 1991. The Butterflies of Kenya and their Natural History. Oxford University 
Press, Oxford. 



References 	 325 

Levin, D. A. and W. W. Anderson. 1970. Competition for pollinators between 
simultaneously flowering plant species. American Naturalist 104:455-467. 

Lewinsohn, T. M., P. I. Prado, P. Jordano, J. Bascompte and J. M. Olesen. 2006. Structure in 
plant-animal interaction assemblages. Oikos 113:174-184. 

Lewis, 0. T., J. Memmott, J. Lasalle, C. H. C. Lyal, C. Whitefoord and H. C. J. Godfray. 
2002. Structure of a diverse tropical forest insect-parasitoid community. Journal of 
Animal Ecology 71:855-873. 

Linsley, E. G. 1978. Temporal patterns of flower visitation by solitary bees, with particular 
reference to the southwestern United States. Journal of The Kansas Entomological 
Society 51:531-546. 

Lisci, M., C. Tanda and E. Pacini. 1994. Pollination ecophysiology of Mercurialis annua L 
(Euphorbiaceae), an anemophilous species flowering all year-round. Annals of 
Botany 74:125-135. 

Lobo, J. A., M. Quesada, K. E. Stoner, E. J. Fuchs, Y. Herrerias-Diego, J. Rojas and U. 
Saborio. 2003. Factors affecting phenological patterns of bombacaceous trees in 
seasonal forests in Costa Rica and Mexico. American Journal of Botany 90:1054-
1063. 

Luckow, L., J. T. Miller, D. J. Murphy and D. P. Little. 2003. A molecular analysis of the 
Mimosoideae. in Advances in legume systematics, 10. Royal Botanic Gardens, Kew, 
London. 

Lundgren, R. and J. M. Olesen. 2005. The dense and highly connected world of Greenland's 
plants and their pollinators. Arctic Antarctic and Alpine Research 37:514-520. 

Maslin, B. R. 1988. Should Acacia be divided? Bulletin of the International Group for the 
Study of Mimosoideae 16:54-76. 

Maslin, B. R. 2001.Acacia. Pages 41 in A. E. Orchard and A. J. G. Wilson, editors. Flora of 
Australia, vol. 1 IA, Mimosaceae, Acacia, part I. ABRS/CSIRO Publishing, 
Melbourne. 

Maslin, B. R., J. T. Miler and D. S. Seigler. 2003. Overview of the generic status of Acacia 
(Leguminosae : Mimosoideae). Australian Systematic Botany 16:1-18. 

McCall, C. and R. B. Primack. 1992. Influence of flower characteristics, weather, time of 
day, and season on insect visitation rates in three plant communities. American 
Journal of Botany 79:434-442. 

McLernon, S. M., S. D. Murphy and L. W. Aarssen. 1996. Heterospecific pollen transfer 
between sympatric species in a midsuccessional old-field community. American 
Journal of Botany 83:1168-1174. 

McWilliam, N. C. and M. J. Packer. 1999. Climate of Mkomazi: variability and importance. 
Pages 15-24 in M. J. Coe, N. C. McWilliam, G. N. Stone, and M. J. Packer, eds. 
Mkomazi: the Ecology, Biodiversity and Conservation of a Tanzanian savanna. 
Royal Geographical Society (with the Institute of British Geographers), London. 

Mduma, S. A. R., A. R. E. Sinclair and R. Turkington. 2007. The role of rainfall and 
predators in determinging synchrony in reproduction of savanna trees in Serengeti 
National Park, Tanzania. Journal of Ecology 95:184-196. 

Melian, C. J. and J. Bascompte. 2002. Complex networks: two ways to be robust? Ecology 
Letters 5:705-708. 

Memmott, J. 1999. The structure of a plant-pollinator food web. Ecology Letters 2:276-280. 
Memmott, J. and N. M. Waser. 2002. Integration of alien plants into a native flower- 

pollinator visitation web. Proceedings of the Royal Society of London Series B 
269:2395-2399. 

Memmott, J., N. M. Waser and M. V. Price. 2004. Tolerance of pollination networks to 
species extinctions. Proceedings of the Royal Society of London Series B 271:2605-
2611. 



References 	 326 

Miller, J. T. and R. J. Bayer. 2000. Molecular phylogenetics of Acacia (Fabaceae: 
Mimosdoideae) based on chloroplast trnKlmatK and nuclear histone H3-D 
sequences. Pages pp. 180-200 in P. S. Herendeen and A. Bruneau, eds. Advances in 
legume systematics 9. Royal Botanic Gardens, Kew, London. 

Miller, J. T. and R. J. Bayer. 2001. Molecular phylogenetics of Acacia (Fabaceae: 
Mimosoideae) based on the chloroplast matK coding sequence and flanking trnK 
intron spacer regions. American Journal of Botany 88:697-705. 

Miller, J. T. and R. J. Bayer. 2003. Molecular phylogenetics of Acacia subgenera Acacia and 
Aculeiferum (Fabaceae : Mimosoideae), based on the chloroplast matK coding 
sequence and flanking trnK intron spacer regions. Australian Systematic Botany 
16:27-33. 

Milton, S. J. 1987. Phenology of seven Acacia species in South Africa. South African 
Journal of Wildlife Research 17:1-6. 

Minckley, R. L., W. T. Wcislo and D. Yanega. 1994. Behavior and phenology of a specialist 
bee (Dieunomia) and sunflower (Helianthus) pollen availability. Ecology 75:1406-
1419. 

Moeller, D. A. 2004. Facilitative interactions among plants via shared pollinators. Ecology 
85:3289-3301. 

Morales, C. L. and M. A. Aizen. 2006. Invasive mutualisms and the structure of plant-
pollinator interactions in the temperate forests of north-west Patagonia, Argentina. 
Journal Of Ecology 94:171-180. 

Mosquin, T. 1971. Competition for pollinators as a stimulus for the evolution of flowering 
time. Oikos 22:398-402. 

Motten, A. F. 1986. Pollination ecology of the Spring wildflower community of a temperate 
deciduous forest. Ecological Monographs 56:21-42. 

Mpala Wildlife Foundation. 2006. Environment and geography. Available from: 
[Accessed 6th December 

20061 
Muchhala, N. 2006. The pollination biology of Burmeistera (Campanulaceae): specialization 

and syndromes. American Journal of Botany 93:1081-1089. 
Murcia, C. and P. Feinsinger. 1996. Interspecific pollen loss by hummingbirds visiting 

flower mixtures: Effects of floral architecture. Ecology 77:550-560. 
Murphy, S. D. and L. W. Aarssen. 1995. In vitro allelopathic effects of pollen frm three 

Hieracium species (Asteraceae) and pollen transfer to sympatric Fabaceae. American 
Journal of Botany 82:37-45. 

Neeman, G., 0. Shavit, L. Shaltiel and A. Shmida. 2006. Foraging by male and female 
solitary bees with implications for pollination. Journal of Insect Behavior 19:383-
401. 

Newstrom, L. E., G. W. Frankie, H. G. Baker and R. K. Colwell. 1994. Diversity of long-
term flowering patterns. Pages 142-160 in L. McDade et. al., eds. La Selva. 
University of Chicago Press, Chicago and London. 

Olesen, J. M., L. I. Eskildsen and S. Venkatasamy. 2002. Invasion of pollination networks on 
oceanic islands: importance of invader complexes and endemic super generalists. 
Diversity and Distribution 8:181-192. 

011erton, J., S. D. Johnson, L. Cranmer, and S. Kellie. 2003. The pollination ecology of an 
assemblage of grassland asclepiads in South Africa. Annals of Botany 92:807-834. 

Opler, P. A., G. W. Frankie and H. G. Baker. 1980. Comparative phenological studies of 
treelet and shrub species in tropical wet and dry forests in the lowlands of Costa 
Rica. Journal of Ecology 68:167-188. 

Orchard, A. E. and B. R. Maslin. 2003. Proposal to conserve the name Acacia 
(Leguminosae: Mimosoideae) with a conserved type. Taxon 52:362-363. 

Orueta, D. 2002. Thermal relationships between Calendula arvensis inflorescences and Usia 
aurata bombyliid flies. Ecology 83:3073-3085. 



References 	 327 

Paton, S. 2004. Mpala Research Station, Meteorological Report 1998-2004. Unpublished 
report. 

Pedley, L. 1986. Derivation and dispersal of Acacia (Leguminosae), with particular reference 
to Australia, and the recognition of Senegalia and Racosperma. Botanical Journal of 
the Linnean Society 92:219-254. 

Pellmyr, 0. 2003. Yuccas, yucca moths and coevolution: a review. Annals of the Missouri 
Botanical Garden 90:35-55. 

Peng, R. K., C. R. Fletcher and S. L. Sutton. 1992. The effect of microclimate on flying 
dipterans. International Journal of Biometeorology 36:69-76. 

Petanidou, T. and D. Vokou. 1993. Pollination Ecology of Labiatae in a Phryganic (East 
Mediterranean) Ecosystem. American Journal of Botany 80:892-899. 

Petanidou, T. and E. Lamborn. 2005. A land for flowers and bees: studying pollination 
ecology in Mediterranean communities. Plant Biosystems 139:279-294. 

Pianka, E. R. 1974. Niche overlap and diffuse competition. Proceedings of the National 
Academy of Sciences 71:2141-2145. 

Pianka, E. R. 1994. Comparative ecology of Varanus in the Great Victoria Desert. Australian 
Journal of Ecology 19:395-408. 

Pimm, S. L. 2002. Food Webs. University of Chicago Press, Chicago. 
Pimm, S. L., J. H. Lawton and J. E. Cohen. 1991. Food web patterns and their consequences. 

Nature 350:669-674. 
Pleasants, J. M. 1980. Competition for bumblebee pollinators in Rocky Mountain plant 

communities. Ecology 61:1446-1459, 
Pleasants, J. M. 1983. Structure of plant and pollinator communities, in C. E. Jones and R. J. 

Little, eds. Handbook of Experimental Biology. Van Nostrand Reinhold, New York. 
Pleasants, J. M. 1994. A comparison of test statistics used to detect competitive displacement 

in body size. Ecology 75:847-850. 
Polis, G. A. and K. 0. Winemiller, eds. 1996. Food Webs: Integration of Patterns and 

Dynamics. Chapman and Hall, New York. 
Pont, A. C. and K. C. R. Baldock. 2007. Two new species of Muscidae (Diptera) from 

Kenya, associated with flowers of Acacia species (Mimosaceae). Journal of East 
Africa Natural History. 96(1): 83-93. 

Poole, R. W. and B. J. Rathcke. 1979. Regularity, randomness, and aggregation in flowering 
phenologies. Science 203:470-471. 

Potts, S. G., B. Vulliamy, A. Dafni, G. Ne'eman and P. Willmer. 2003. Linking bees and 
flowers: How do floral communities structure pollinator communities? Ecology 
84:2628-2642. 

Potts, S. G., B. Vulliamy, S. Roberts, C. O'Toole, A. Dafni, G. Neeman and P. G. Willmer. 
2004. Nectar resource diversity organises flower-visitor community structure. 
Entomologia Experimentalis EtApplicata 113:103-107. 

Prado, P. I. and T. M. Lewinsohn. 2004. Compartments in insect-plant associations and their 
consequences for community structure. Journal of Animal Ecology 73:1168-1178. 

Prescott, M. N. 2005. The Pollination Ecology of a South-eastern Australia Acacia 
Community. DPhil Thesis. Trinity College, University of Oxford. 

Primack, R. B. 1985. Longevity of individual flowers. Annual Review of Ecology and 
Systematics 16:15-37. 

Primack, R. B. 1987. Relationships among flowers, fruits, and seeds. Annual Review of 
Ecology and Systematics 18:409-430. 

Proctor, M., P. Yeo and A. J. Lack. 1996. The Natural History of Pollination. 
HarperCollinsPublishers, London. 

Putz, F. E. 1979. Aseasonality in Malaysian tree phenology. The Malaysian Forester 42:1-
24. 

Raine, N. E. 2001. The Pollination Ecology of a Mexican Acacia Community. DPhil Thesis. 
Magdalen College, University of Oxford. 



References 	 328 

Rathcke, B. 1983. Competition and facilitation among plants for pollination. Pages 305-329 
in L. Real, editor. Pollination Biology. Academic Press, Inc. 

Rathcke, B. 1988a. Flowering phenologies in a shrub community - competition and 
constraints. Journal of Ecology 76:975-994. 

Rathcke, B. 1988b. Interactions for pollination among coflowering shrubs. Ecology 69:446-
457. 

Rathcke, B. J. 2003. Floral longevity and reproductive assurance: seasonal patterns and an 
experimental test with Kalmia latifolia (Ericaceae). American Journal of Botany 
90:1328-1332. 

Rathcke, B. and E. P. Lacey. 1985. Phenological patterns of terrestrial plants. Annual Review 
of Ecology and Systematics 16:179-214. 

Reich, P. B. and R. Borchert. 1984. Water-stress and tree phenology in a tropical dry forest 
in the lowlands of Costa Rica. Journal of Ecology 72:61-74. 

Rocha, M., A. Valera and L. E. Eguiarte. 2005. Reproductive ecology of five sympatric 
Agave littaea (Agavaceae) species in Central Mexico. American Journal of Botany 
92:1330-1341. 

Ross, J. H. 1981. An analysis of the African Acacia species: their distribution, possible 
origins and relationships. Bothalia 13:389-413. 

Roubik, D. W. 1978. Competitive Interactions between neotropical pollinators and 
Africanized honey bees. Science 201:1030-1032. 

Roubik, D. W. 1989. Ecology and Natural History of Tropical Bees. Cambridge University 
Press, Cambridge. 

Saiful, A. A., Y. N. Rashid and A. H. Idris. 2001. Niche segregation among three sympatric 
species of squirrels inhabiting a lowland dipterocarp forest, Peninsular Malaysia. 
Mammal Study 26:133-144. 

Sakai, S., R. D. Harrison, K. Momose, K. Kuraji, H. Nagamasu, T. Yasunari, L. Chong and 
T. Nakashizuka. 2006. Irregular droughts trigger mass flowering in aseasonal 
tropical forests in Asia. American Journal of Botany 93:1134-1139. 

Sanecki, G. M., K. Green, H. Wood, D. Lindenmayer and K. L. Sanecki. 2006. The 
influence of snow cover on home range and activity of the bush-rat (Rattusfuscipes) 
and the dusky antechinus (Antechinus swainsonii). Wildlife Research 33:489-496. 

Schemske, D. W. 1981. Floral convergence and pollinator sharing in two bee-pollinated 
tropical herbs. Ecology 62:946-954. 

Schoener, T. W. 1970. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 
51:408-418. 

Schoener, T. W. 1983. Field experiments on interspecific competition. American Naturalist 
122:240-285. 

Schoenly, K. and J. E. Cohen. 1991. Temporal variation in food web structure - 16 empirical 
cases. Ecological Monographs 61:267-298. 

Scholtz, C. S. and E. Holm, eds. 1986. The Insects of Southern Africa. Butterworths, Durban. 
Sedgley, M., J. Harbard, R.-M. M. Smith, R. Wickneswari and A. R. Griffin. 1992. 

Reproductive biology and interspecific hybridisation of Acacia magium and Acacia 
ayriculiformis A. Cunn. ex Benth. (Leguminosae: Mimosoideae). Australian Journal 
of Botany 40:39-48. 

Seigler, D. S. and J. E. Ebinger. 2005. New combinations in the genus Vachellia (Fabaceae: 
Mimosoideae) from the New World. Phytologia 87:139-178. 

Seigler, D. S., J. E. Ebinger and J. T. Miler. 2006a. The genus Senegalia (Fabaceae: 
Mimosoideae) from the New World. Phytologia 88:38-93. 

Seigler, D. S., J. E. Ebinger and J. T. Miller. 2006b. Mariosousa, a new segregate genus 
from Acacia s.l. (Fabaceae, Mimosoideae) from central and North America. Novon 
16:413-420. 

Smith, G. F., A. E. van Wyk, M. Luckow and B. Schrire. 2006. Conserving Acacia Mill. 
with a conserved type. What happened in Vienna? Taxon 55:223-225. 



References 	 329 

Sorensen, A. E. 1981. Interactions between birds and fruit in a temperate woodland. 
Oecologia 50:242-249. 

Stang, M., P. G. L. Klinkhamer and E. van der Meijden. 2006. Size constraints and flower 
abundance determine the number of interactions in a plant-flower visitor web. Oikos 
112:111-121. 

Stiles, F. G. 1977. Coadapted competitors - flowering seasons of hummingbird-pollinated 
plants in a tropical forest. Science 198:1177-1178. 

Stone, G. N. 1994. Activity patterns of females of the solitary be Anthophora plumipes in 
relation to temperature, nectar supplies and body size. Ecological Entomology 
19:177-189. 

Stone, G. N., J. N. Amos, T. F. Stone, R. L. Knight, H. Gay and F. Parrott. 1988. Thermal 
effects on activity patterns and behavioral switching in a concourse of foragers on 
Stachytarpheta mutabilis (Verbenaceae) in Papua New Guinea. Oecologia 77:56-63. 

Stone, G. N., N. E. Raine, M. Prescott and P. G. Willmer. 2003. Pollination ecology of 
acacias (Fabaceae, Mimosoideae). Australian Systematic Botany 16:103-118. 

Stone, G. N., P. Willmer and J. A. Rowe. 1998. Partitioning of pollinators during flowering 
in an African Acacia community. Ecology 79:2808-2827. 

Stone, G. N., P. Willmer, J. A. Rowe, B. Nyuno and R. Abdallah. 1999a. The pollination 
ecology of Mkomazi Acacia species. Pages 367-360 in M. J. Coe, N. C. McWilliam, 
G. N. Stone and M. J. Packer, eds. Mkomazi: the Ecology, Biodiversity and 
Conservation of a Tanzanian savanna. Royal Geographical Society (with the 
Institute of British Geographers), London. 

Stone, G. N., F. Gilbert, P. Willmer, S. G. Potts, F. Semida and S. Zalat. 1999b. Windows of 
opportunity and the temporal structuring of foraging activity in a desert solitary bee. 
Ecological Entomology 24:208-221. 

Stone, G., P. Willmer and S. Nee. 1996. Daily partitioning of pollinators in an African 
Acacia community. Proceedings of The Royal Society Of London Series B-
Biological Sciences 263:1389-1393. 

Strohm, E. and K. E. Linsenmair. 1998. Temperature dependence of provisioning behaviour 
and investment in the European beewolf Philanthus triangulum F. Ecological 
Entomology 23:330-339. 

Tandon, R., K. R. Shivanna and H. Y. M. Ram. 2001. Pollination biology and breeding 
system of Acacia senegal. Botanical Journal of the Linnean Society 135:251-262. 

Tavares-Cromar, A. F. and D. D. Williams. 1996. The importance of temporal resolution in 
food web analysis: Evidence from a detritus-based stream. Ecological Monographs 
66:91-113. 

Thompson, J. N. 2006. Mutualistic webs of species. Science 312:372-373. 
Thomson, J. D. 1982. Patterns of visitation by animal pollinators. Oikos 39:241-250. 
Tybirk, K. 1988. Acacia nilotica in Kenya: aspects of flowering, pollination, seed production 

and regeneration. Report. Botanisk Institut. 
Tybirk, K. 1989. Flowering, pollination and seed production of Acacia nilotica. Nordic 

Journal of Botany 9:375-381. 
Tybirk, K. 1993. Pollination, breeding system and seed abortion in some African acacias. 

Botanical Journal of the Linnean Society 112:107-137. 
van Schaik, C. P., J. W. Terborgh and S. J. Wright. 1993. The phenology of tropical forests - 

adaptive significance and consequences for primary consumers. Annual Review of 
Ecology and Systematics 24:353-377. 

Vassal, J. 1972. Apport des recherches ontogéniques et seminologiques a l'étude 
morphologique, taxonomique et phylogénique du genre Acacia. Bulletin de la 
Société d'Histoire Naturelle de Toulouse 108:105-247. 

Vazquez, D. P. 2005. Degree distribution in plant-animal mutualistic networks: forbidden 
links or random interactions? Oikos 108:421-426. 



References 	 330 

Vazquez, D. P. and M. A. Aizen. 2003. Null model analyses of specialization in plant-
pollinator interactions. Ecology 84:2493-2501. 

Vazquez, D. P. and M. A. Aizen. 2004. Asymmetric specialization: A pervasive feature of 
plant-pollinator interactions. Ecology 85:1251-1257. 

Vazquez, D. P. and M. A. Aizen. 2006. Community-wide patterns of specialization in plant-
pollinator interactions revealed by null models. Pages 200-219 in N. M. Waser and J. 
011erton, eds. Plant-pollinator interactions: from Specialization to Generalization. 
University of Chicago Press, Chicago. 

Vazquez, D. P., R. Poulin, B. R. Krasnov and G. I. Shenbrot. 2005. Species abundance and 
the distribution of specialization in host-parasite interaction networks. Journal of 
Animal Ecology 74:946-955. 

Vazquez, D. P., W. F. Morris and P. Jordano. 2005. Interaction frequency as a surrogate for 
the total effect of animal mutualists on plants. Ecology Letters 8:1088-1094. 

Wagner, D. 2000. Pollen viability reduction as a potential cost of ant association for Acacia 
constricta (Fabaceae). American Journal of Botany 87:365-370. 

Waser, N. M. 1978a. Competition for hummingbird pollination and sequential flowering in 
two Colorado wildflowers. Ecology 59:934-944. 

Waser, N. M. 1978b. Interspecific pollen transfer and competition between co-occurring 
plant species. Oecologia 36:223-236. 

Waser, N. M. 1983. Competition for pollination and floral character differences among 
sympatric plant species: a review of evidence. Pages 277-293 in C. E. Jones and R. 
J. Little, eds. Handbook of Experimental Pollination Biology. Van Nostrand 
Reinhold, New York. 

Waser, N. M. 1986. Flower constancy: definition, cause, and measurement. American 
Naturalist 127:593-603. 

Waser, N. M. and J. 011erton. 2006. Plant-pollinator Interactions. from Specialization to 
Generalization. University of Chicago Press, Chicago. 

Waser, N. M. and L. A. Real. 1979. Effective mutualism between sequentially flowering 
plant species. Nature 281:670-672. 

Waser, N. M. and M. L. Fugate. 1986. Pollen precedence and stigma closure - a mechanism 
of competition for pollination between Delphinium nelsonii and Ipomopsis 
aggregata. Oecologia 70:573-577. 

Waser, N. M., L. Chittka, M. V. Price, N. M. Williams and J. 011erton. 1996. Generalization 
in pollination systems, and why it matters. Ecology 77:1043-1060. 

Wheelwright, N. T., W. A. Haber, K. G. Murray and C. Guindon. 1984. Tropical fruit-eating 
birds and their food plants - a survey of a Costa Rican lower montane forest. 
Biotropica 16:173-192. 

White, D., B. W. Cribb and T. A. Heard. 2001. Flower constancy of the stingless bee 
Trigona carbonaria Smith. Australian Journal of Entomology 40:61-64. 

Wilcock, C. and R. Neiland. 2002. Pollination failure in plants: why it happens and when it 
matters. Trends in Plant Science 7:270-277. 

Williams, M. R. 1995. Critical values of a statistic to detect competitive displacement. 
Ecology 76:646-647. 

Willmer, P. and G. N. Stone. 1997b. Temperature and water relations in desert bees. Journal 
of Thermal Biology 22:453-465. 

Willmer, P. G. 1982. Thermoregulatory mechanisms in Sarcophaga. Oecologia 53:382-385. 
Willmer, P. G. 1983. Thermal constraints on activity patterns in nectar-feeding insects. 

Ecological Entomology 8:455-469. 
Willmer, P. G. 1985. Thermal ecology, size effects, and the origins of communal behavior in 

Cerceris wasps. Behavioral Ecology and Sociobiology 17:151-160. 
Willmer, P. G. and G. N. Stone. 2004. Behavioral, ecological, and physiological 

determinants of the activity patterns of bees. Pages 347-466 in Advances in the 
Study of Behavior, Vol 34. Elsevier Academic Press Inc. San Diego. 



References 	 331 

Wilimer, P. G. and G. N. Stone. 1989. Incidence of entomophilous pollination of lowland 
coffee (Coffea canephora) - the role of leaf cutter bees in Papua New Guinea. 
Entomologia Experimentalis Et Applicata 50:113-124. 

Wilimer, P. G. and G. N. Stone. 1997a. How aggressive ant-guards assist seed-set in Acacia 
flowers. Nature 388:165-167. 

Wright, S. J. and C. P. van Schaik. 1994. Light and the phenology of tropical trees. American 
Naturalist 143:192-199. 

Wright, S. J. and 0. Calderon. 1995. Phylogenetic patterns among tropical flowering 
phenologies. Journal of Ecology 83:937-948. 

Yang, C., R. W. Gituru and Y. Guo. 2007. Reproductive isolation of two sympatric 
louseworts, Pedicularis rhinanthoides and Pedicularis longiflora (Orobanchaceae): 
how does the same pollinator type avoid interspecific pollen transfer? Biological 
Journal of the Linnean Society 90:37-48. 

Yates, I. E. and D. Sparks. 1993. Environmental regulation of anther dehiscence and pollen 
germination in Pecan. Journal of the American Society for Horticultural Science 
118:699-706. 

Young, T. P. 2000. Vegetation List of Mpala Research Centre and Conservancy. Available 
from: 
http://www.mpala.org/researchctr/environment/pdf/mrc—vegetation t young pdf 

Young, T. P., B. D. Okello, D. Kinyua and T. Palmer. 1998. KLEE: a long term multi-
species herbivore exclusion experiment in Laikipia, Kenya. African Journal of 
Range and Forage Science 14:92-104. 

Young, T. P., C. H. Stubblefield and L. A. Isbell. 1997. Ants on swollen thorn acacias: 
Species coexistence in a simple system. Oecologia 109:98-107. 

Young, T. P., N. Patridge and A. Macrae. 1995. Long-term glades in Acacia bushland and 
their edge effects in Laikipia, Kenya. Ecological Applications 5:97-108. 




