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Abstract

The earthworm has long been of interest to biologists, most notably Charles Darwin, who

was the first to reveal their true role as eco-engineers of the soil. However, to fully under-

stand an animal one needs to combine observational data with the fundamental building

blocks of life, DNA. For many years, sequencing a genome was an incredibly costly and

time-consuming process. Recent advances in sequencing technology have led to high

quality, high throughput data being available at low cost. Although this provides large

amounts of sequence data, the bioinformatics knowledge required to assemble and anno-

tate these new data are still in their infancy. This bottleneck is slowly opening up, and with

it come the first glimpses into the new and exciting biology of many new species.

This thesis provides the first high quality draft genome assembly and annotation of an

earthworm, Lumbricus rubellus. The assembly process and resulting data highlight the

complexity of assembling a eukaryotic genome using short read data. To improve assem-

bly, a novel approach was created utilising transcripts to scaffold the genome

(https://github.com/elswob/SCUBAT). The annotation of the assembly pro-

vides the draft of the complete proteome, which is also supported by the first RNA-Seq

generated transcriptome. These annotations have enabled detailed analysis of the protein

coding genes including comparative analysis with two other annelids (a leech and a poly-

chaete worm) and a symbiont (Verminephrobacter). This analysis identified four key areas

which appear to be either highly enhanced or unique to L. rubellus. Three of these may be

related to the unique environment from which the sequenced worms originated and add to

the mounting evidence for the use of earthworms as bioindicators of soil quality.

xii
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All data is stored in relational databases and available to search and browse via a web-

site at www.earthworms.org. It is hoped that this genome will provide a springboard

for many future investigations into the earthworm and continue research into this wonder-

ful animal.
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Chapter 1

Introduction

1.1 The project

Earthworms have long held a special place in the history of biology, from their first detailed

studies during Darwin’s life-long fascination [33] [35] to the present day where they are

of interest more than ever (Figure 1.1). Prior to Darwin they were seen as a soil pest,

until he revealed them to be the eco-engineers of the soil. It would seem fitting with

the recent 200th anniversary of Darwin’s birth and 150th anniversary of his most famous

book [34] in 2009 that his favourite creature were to become a genetic model organism for

environmental soil science. By constructing the first draft of an earthworm genome, it is

hoped that research continues to flourish on this remarkable animal and many more of its

wonderful secrets are revealed. Here I present the stages of assembling and annotating a

genome: from the de novo assembly of a 420 Mb genome from over 400 million reads and

20 billion bases to the identification of the features within and the first glimpses of some

exciting new biology.

1



Figure 1.1: Number of earthworm publications in PubMed

2



1.2 Annelids

The Annelids (ringed worms) are a bilateral invertebrate phylum which, based on recent

molecular phylogenetic analyses [153], form a monophyletic clade with respect to the

sipunculans within the Lophotrochozoa (Figure 1.2). They are characterised by a cylin-

drical segmented body and a true coelom (fluid filled cavity), with most having a pair of

coelomic cavities in each segment.

The phylum contains over 15,000 described species; representatives of which have

recently been used to investigate annelid evolution through a detailed multi-gene phy-

logenetic analysis [160]. Traditionally, the annelids were split into two distinct groups,

Clitellata (earthworms and leeches) and polychaetes (bristle worms). However, this latest

study posits a three clade system (Figure 1.3). The majority of species studied fall into

two clades based on lifestyle, the Sedentaria (sedentary) and Errantia (more mobile and

active), with a third clade which includes phyla previously excluded from the annelids

such as Chaetopteridae, Myzostomida and Sipuncula.

1.3 Earthworms

All known species of earthworm fall into a monophyletic clade in the class Clitellata

known as the Oligochaeta with terrestrial species forming the order Opisthophora. The

regional distribution of the 10 recognised major families from this order can be seen in

Table 1.1. Recently there has been much interest in cryptic speciation within what were

thought to be single species, including within the lumbricids [85][122][6][78][66], so the

phylogenetic relationships and numbers of species are expected to change in the near fu-

ture.

Perhaps the estimated 3,000 described species [148] and high level of divergence are a

reflection of earthworms’ amazing abilities to adapt and thrive in almost any environment.

Combined with a world-wide distribution it hardly seems surprising that earthworms were

recently voted the most successful species of all time [99].
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Figure 1.2: Phylogenetic tree of metazoan taxa (taken from [57])

Sequences of the 18S rRNA gene from 1,269 species were used to represent 36 phyla.
Numbers in brackets represent the number of species in a subtree. The Annelida are
located within an unresolved section of the Lophotrochozoa.
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Figure 1.3: The phylogeny of the Annelida (taken from [160])

Majority rule consensus trees of the Bayesian inference analysis using the site-
heterogeneous CAT model of the data set with 39 taxa and 47,953 amino acid positions.
Only posterior probability (top of branch or alone) and bootstrap (bottom) values ≥0.70
or 70, respectively, are shown. The uppermost clade is a monophyletic group traditionally
named the Clitellata which contains the earthworms, leeches and tubificids.
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Table 1.1: The regional distributions of the 10 recognised major families of terres-
trial earthworms

Family Geographical region of origin

Ailoscolecidae Europe
Eudrilidae Africa
Glossoscolecidae Central America, South America
Hormogastridae Mediterranean
Komarekionidae North America
Kynotidae Madagascar
Lumbricidae Europe, North America
Megascolecidae Africa, Central America, North America, South America,

Asia, Madagascar, Oceania
Microchaetidae Africa
Ocnerodrilidae Africa, Central America, South America, Asia, Madagascar

Taken from [161] .

6



1.3.1 Structure, ecology and physiology

Earthworms have a closed vascular system with dorsal and ventral trunks and a ventral

nerve cord. The nerve cord has an anterior enlargement (brain) which controls the muscles

and connects to various sense organs. They are externally segmented (with corresponding

internal segments) and have a digestive tract that consists of an anterior-posterior tube with

excretion occurring through the anus or nephridia [47].

Despite being ubiquitous, they share key physiological traits. Respiration is mainly

cuticular and they can survive in water if the level of dissolved oxygen is sufficiently high.

Their body temperature is dependent on the external environment which therefore creates a

positive correlation between respiration rate and temperature. They feed on organic matter

such as plants, microfauna, bacteria, decaying animal matter and fungi [47]. Earthworms

have been shown to be sensitive to light but rely more on vibration and touch. They are

also responsive to acidity and humidity.

All earthworms are hermaphroditic and may reproduce biparentally or uniparentally

depending on the species. After fertilisation cocoons are produced, each containing one

or two worms. Young emerge as small but fully formed earthworms except for a lack of

sexual structures.

Species generally range in size from a few millimetres to 2 metres, from 10 mg to

almost 1 kg and can be up to 40 mm in diameter [46]. One of the largest is the giant

Gippsland earthworm Megascolides australis with an average size of 750 x 20 mm and

weight up to 381 g. Populations range from only a few individuals per square metre to

more than 1000 [47], depending on multiple factors including soil type, pH, rainfall and

temperature. The largest populations are often lumbricids as they appear to be best at

surviving adverse soil and litter conditions. Estimates of the amount of soil moved and

digested by earthworms vary widely from 2 to 250 tons per hectare per annum. However,

no doubt can be cast on the importance earthworms have on the health of the soil in terms

of nutrient cycling, drainage, aeration and many other factors.
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1.3.2 Symbionts

The only well documented symbiont of earthworms are bacteria of the genus Verminephrobac-

ter. They are found in the nephridia: long coiled tube-like organs which are found in pairs

in each segment and which exit the body wall via an exterior pore. The nephridia play

an important role in the excretion of metabolic waste similar in function to mammalian

kidneys (Figure 1.4). The Verminephrobacter are confined to the second loop (ampulla)

where they form dense populations lining the lumen wall [100]. They are most closely

related to the betaproteobacterial genus Acidovorax [141] and form a monophyletic clade

within the genus.

Lund et al [100] detected evidence of the genus in 19 out of 23 investigated earthworm

species from the Lumbricidae. It is proposed that the Vermineprobacter and earthworms

have co-diversified based on the vertical transmission of the symbiont and their species

specificity. Although prevalent within earthworms, the only proposed function of the Ver-

minephrobacter is to enhance nitrogen retention [101], a function linked to their location

within the earthworm.
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1.3.3 Research areas

A search for ’earthworm’ in PubMed retrieves 3781 separate texts (June 2012). These

cover wide ranging areas of science, such as:

Vermicomposting

Vermicomposting is an area of earthworm biology that is growing in popularity not only

for garden compost but also for recycling of a range of waste substances throughout the

world from industries such as textile [56], olive oil [110], pineapple [104] and sugar [139].

Understanding the key proteins involved in this process may help to continue research in

this excellent field.

Organic farming

Comparisons of farming techniques identified a higher biomass and abundance of earth-

worms in organic farming plots compared to conventional farming [102][69][77]. The

increase in number is likely the result of an increase in the use of farmyard manure in

organic farming, and may reflect an enhanced soil fertility and higher biodiversity. Sus-

tainable and environmentally friendly food production is a hugely important issue, and

undoubtedly the role earthworms play in this will be crucial.

Origin of nervous system centralisation in the bilateria

Although dorsal in chordates and ventral in other bilateria, a central nervous system ap-

pears to be ancestral to all bilaterian animals [108][7]. Evidence from developmental stud-

ies and patterning genes have identified similar expression patterns of homeobox genes in

the CNS of annelids and chordate species [39]. Our understanding of these and other sim-

ilar evolutionary events can only be improved by sequencing more representatives from

the animal kingdom. Therefore, earthworm genome will be a major addition to this inves-

tigation.
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Soil pollutants

Much work has focused on soil pollutants; the ways in which earthworms have evolved to

adapt to toxic components of soils, and the direct and indirect positive effects they exert on

soil quality and fertility especially in areas of industrial or mining disturbance. Examples

include the detoxification of heavy metals such as cadmium [162][154][123] and the re-

sponse to other xenobiotics [126][20][149]. The complete genome will be used to finalise

many of these investigations which until now have been relying on partial transcript data.

Regeneration

The ability to regenerate lost body parts varies dramatically across the animal kingdom

but is thought to be ancestral to the annelids [14] with posterior and anterior regeneration

seemingly widespread and well studied [47] [26]. Recent work has increased interest in

this area as a new protein associated with CNS repair was identified in the leech Hirudo

medicinalis [166]. Perhaps the new wave of genomic data from HTS will help unravel the

true ancestry of this fascinating biological feature.

Medicine

Traditional Asian medicine is a growing industry that has long used earthworms to treat

various ailments. The validity of the treatments are perhaps a little exaggerated. Earth-

worms express proteins with commercial promise, such as antibacterials [173] and distinct

protease and fibrinolytic activities for modulation of blood clotting [169] [164]. Perhaps

to add validity to the medicinal claims there is a large amount of interest in the molecular

biology of earthworms and it is anticipated that the genome will be of great interest to

these groups.

It is hoped that the completion and release of the earthworm genome will produce

an increase in research in these and many other new areas, similar to the way genome

sequence has underpinned research on other model organisms.
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1.4 Lumbricus rubellus

L. rubellus, commonly named the red worm due to its colouring, is used as a model species

by researchers investigating many aspects of biology, especially the effects of pollutants

and toxins on soil. It is a common earthworm found in many temperate ecosystems,

and ranges in length from 50-150 millimetres. This earthworm was selected for genome

sequencing based on previous studies in which the Blaxter lab had collaborated. The

EcoWorm consortium (http://xyala.cap.ed.ac.uk/Lumbribase/ecoworm/

index.shtml) was established in 2002 with the aim of using L. rubellus alongside the

model nematode Caenorhabditis elegans in a wide ranging program of investigations into

the responses of ’soil organisms’ to heavy metal and organic pollutants. The underpinning

data for this project were expressed sequence tags (ESTs), short single read sequences

obtained from cDNA that provide cost effective information on mRNA expression. Over

the course of 6 years, over 20,000 ESTs were generated from nine different libraries and

submitted to GenBank [15], culminating in the publication of a partial transcriptome in

2008 [126]. The raw sequences were processed and analysed using PartiGene [128] cre-

ating 8,129 EST clusters (UniGenes) each of which represents a putative gene. Therefore,

approximately 40% of the estimated total gene set of 20,000 genes was identified. These

data are stored in a web accessible database called Lumbribase [126].

This set of EST clusters was used to create a custom cDNA microarray which in turn

was used to generate a set of dose-response transcript profiles for three xenobiotics: cad-

mium (an inorganic metal and recognised carcinogen), fluoranthene (an organic hydrocar-

bon that represents a class of persistent unnatural pollutants) and atrazine (a widely used

herbicide associated with numerous health issues) [126]. Although the majority of clus-

ters with statistically significant relationships between xenobiotic exposure and transcript

levels were not informatively annotated, many were.

The most significant expression response to cadmium exposure was over expression

of transcripts encoding the small metal-binding protein metallothionein, as well as a re-

duction in expression of cytochrome c oxidase and NADH-ubiquinone oxidoreductase II.
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These were expected from previous work. However, novel insights into regulation of the

process of DNA repair by cadmium were proposed as genes linked to double stranded

DNA breaks and excision repair were found to be down-regulated. Fluoranthene expo-

sure produced responses previously observed in mammals. However, the responses of

cyctochrome P450 enzymes suggested a new mechanism for biotransformation of organic

xenobiotics may be at work in L. rubellus. Finally, the most significant response to atrazine

was from a group of genes associated with protein synthesis and catabolism suggesting a

degradation and re-synthesis of proteins.

With the advent of high-throughput sequencing (HTS), the Ecoworm consortium de-

cided to move to whole genome sequencing, something previously only available for ma-

jor research programmes with significant funding and resources. Therefore, in 2008 it

was decided that an attempt at the first earthworm genome should be made. With this

new resource, it was hoped that key genes and pathways identified in the EST analysis as

responsive to a range of toxicants, especially those with no annotation, could be mapped

to the genome and regions upstream could be examined for conserved binding sites for

known regulators. Detailed work on the pathways involved in these systems could also be

investigated if all genes were available.

1.5 The genome

A genome is the complete set of genetic material contained within a set of haploid chro-

mosomes. The genome of L. rubellus is estimated to be 420 megabases (Mb) and dis-

tributed over 18 chromosome pairs [168]. Table 1.2 puts the L. rubellus genome into

context by comparing it to model organisms, as well as the two other annelid genomes

which have been sequenced and assembled by the DOE Joint Genome Institute (http:

//www.jgi.doe.gov): the polychaete worm Capitella telata (http://genome.

jgi-psf.org/Capca1/Capca1.home.html) and the leech Helobella robusta (http:

//genome.jgi-psf.org/Helro1/Helro1.home.html). Figure 1.3 shows the
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relationships between the three annelids, with H. robusta more closely related to L. rubel-

lus than C. telata, but all three within the Sedentaria clade. Both of the JGI annelids were

sequenced using traditional Sanger sequencing over many years at great cost and are as yet

unpublished but freely available. Section 1.6 discusses the costs associated with genome

sequencing projects and Table 1.3 highlights the huge reduction in both price and time per

base, while Figure 1.5 shows the cost per base over the last decade. The dramatic drop in

2008 coincides with HTS and the start of this project.
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Table 1.2: Genome size comparisons

Species Common Name Genome size (Mb) No. chromosomes

Escherichia coli [175] E. coli 4.6 1
Caenorhabditis elegans [1] Nematode worm 100 6
Drosophila melanogaster [3] Fruit fly 180 4
Capitella telata [145] Polychaete worm 324 10
Helobdella robusta [145] Leech 228 18
Lumbricus rubellus [168] Red earthworm 420 18
Homo sapiens [171] Human 3,200 23
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Figure 1.5: Cost per megabase of DNA Sequence (taken from http://www.genome.
gov/sequencingcosts)
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The alternative to sequencing the genome of L. rubellus was to focus on the coding

regions and sequence the transcriptome. However, to maximise the chances of sequencing

all genes, numerous individuals at various life stages and under varying conditions would

need to be sequenced and then assembled; a labour intensive and complex process. In

addition the cost and time associated with this approach were predicted to be compara-

ble to genomic sequencing costs at the time, and with the understanding that sequencing

would get better and cheaper it was decided to sequence the entire genome. The hoped-for

benefits of this were many:

1. All genes would be sequenced, including all alternate transcripts. Additionally, a

genomic gene prediction provides extra evidence as to a gene’s validity, in terms

of presence of introns, UTRs, coverage, GC and so on. A transcript provides no

proof of origin, as contamination in the sequenced data could produce misleading

transcripts.

2. Non-coding regions would be identified, e.g. ncRNAs, transposons, promoter re-

gions.

3. This would be the first oligochaete genome and a huge addition to the genomic

world.

4. Proof of principle that a small lab can sequence and assemble a large genome de

novo.

From the outset, the sequencing data available and estimates of repeat content meant

the project was never going to produce a fully scaffolded genome (see Section 2.2). How-

ever, it was assumed that even a fragmented assembly would still contain all the objects

of interest, albeit with some fragmentation. The aim therefore was to produce a ’high

quality draft’ genome, as defined by Chain et al [24], i.e. with 90% of the genome rep-

resented with efforts having been made to remove contaminating sequences, thus making

the genome appropriate for general assessment of gene content.
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Towards the end of this project, Illumina RNA-Seq transcriptome data became avail-

able as part of a separate project and this was used to help both assemble and annotate the

genome.

1.6 Genome sequencing

Traditionally, sequencing technology has been based on three stages: initial DNA frag-

mentation, fragment amplification, and then sequencing of the amplified fragments. With a

few exceptions (3rd generation sequencing technologies), this process remains unchanged,

as to sequence a genome the extracted DNA needs to be fragmented (as whole chromo-

some sequencing is not yet available) and these fragments need to be amplified to produce

enough DNA for the sequencing reactions. The recent developments associated with HTS

have changed the second and third stages, making them much cheaper and quicker, and

ultimately increasing the throughput of data.

Sanger sequencing

Sanger sequencing has been the major sequencing technology since the late 1970’s, and

was used exclusively for the most famous of sequencing projects, the human genome

[171]. However it was, and still is, limited by time and cost. For example, the human

genome project used over 27 million Sanger reads totalling almost 15 Gb, costing around

$3 billion and taking 13 years to complete [171]. More recently, the Schistosoma japonica

genome [187] which is around 400 Mb was assembled from over 3.74 million Sanger

reads, and with an average cost of $1 a read.

One of the defining and rate limiting steps during Sanger sequencing is in vivo cloning

and amplification of DNA. This step is performed in vitro in the HTS technologies.
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Roche 454 pyrosequencing (www.454.com)

This technology uses emulsion PCR whereby droplets act as individual amplification re-

actors, each producing around one thousand clonal copies per isolated bead. Hundreds of

thousands of unique amplified fragments can be analysed in parallel. Each bead is loaded

into an individual well on a picotiter plate. Sequence determination occurs by pyrose-

quencing reactions, (where nucleotide addition is detected by measuring the release of

inorganic pyrophospate) through a coupled chemiluminescent reaction. The intensity of

the light emitted reflects the number of bases added. This can lead to errors in base calling

in regions of homopolymeric sequence [114].

Illumina Solexa sequencing (www.illumina.com)

Here, single-stranded DNA fragments are attached to a solid surface and amplification

occurs via solid-phase bridge amplification. This creates local clusters each containing

approximately 1000 clonal copies of a unique sequence. Again a sequencing-by-synthesis

approach is used where chain-terminating nucleotides with cleavable fluorescent tags are

used to add each base sequentially. Each cycle of addition is scanned using a laser, and the

incorporated base determined based on the colour detected. Illumina sequencing has no

particular issues with homopolymeric regions, but it is limited to producing shorter reads.

The current price (Dec 2011) for Illumina data is 7 pence per Mb compared to almost

30 times that amount 2 years earlier. This means that at these prices, the same level of

sequencing required for this project would cost just £3000. This doubling of Moore’s law

is expected to continue as is the increase in read quality and length. Table 1.3 gives a brief

comparison of these three technologies.
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Table 1.3: Comparison of sequencing technologies available in the GenePool (http://genepool.
bio.ed.ac.uk/) in mid 2009.

Sequencing Max read Read data Time per Cost per Mb Error rate
technology length (bases) per run (Mb) run (hours) raw data (£) per base (%)*

ABI3730 (Sanger) Up to 900 0.5 4 5,000 0.1-1
Roche Titanium (454) Up to 500 400 12 20 1
Illumina GAII (Solexa) Up to 150 5000 72-144 2 ∼0.1

* error rates taken from [59]
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1.6.1 History of genome assembly

The very first genome of a DNA-based organism to be sequenced was the bacteriophage

phi X174. This was achieved by a team led by the founder of Sanger sequencing, Fred

Sanger, in 1977 [138]. Although this genome was just 5,386 base pairs (bp), this was a

major achievement at the time and it was another 18 years before the first bacterial genome,

that of Haemophilus influenza, was completed [53]. The first eukaryotic genome, the yeast

Saccharomyces cerevisiae, was completed in 1996 [61] and just two years later the first

animal genome was sequenced, that of the nematode Caenorhabditis elegans at 100 Mb.

Three years later the first human genome was published [171]. Since then numerous

genomes have been completed and released, with ever more in the pipeline (see Table

3.1).

The very first genome assemblies used relatively low numbers of long reads enabling

a greedy all-against-all overlap-layout-consensus approach whereby those sequences that

were most similar were joined together under the assumption that shared sequence im-

plied a shared origin. This approach fails when applied to complex genomes that are large

and contain repetitive sequence data longer than the individual reads. Whole Genome As-

sembly (WGA) begins with an all-against-all read comparison in the overlap step (1.5 x

1015 for the 27 million reads in the human genome project), but then reads are arranged

according to their pattern of overlap in the layout phase. Multiple alignments are then pro-

duced from the overlapping regions and a consensus sequence is derived. Paired read data

and other methods such as end sequences from bacterial artificial chromosomes (BACs)

can then be used to scaffold and finish a genome. This remained the method de rigueur

for many years as use of assemblers such as Phrap (www.phrap.org), CAP3 [72],

ARACHNE [12], Celera [119] and Phusion [117] became widespread. HTS assembly

methods still follow the same shotgun sequencing approach. However, the huge increase

in data has required new assembly algorithms which are discussed in Section 3.1.1.
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1.6.2 Coverage

The ultimate aim of de novo genome sequencing is to generate a representation of each

base for a set of haploid chromosomes. Theoretically this could be achieved by produc-

ing sequence data that covers each base once, but this would require a single sequencing

run producing genome or chromosome-length stretches of data with zero error. Current

sequencing technologies have the following attributes:

Short read lengths

Table 1.3 lists the features of the sequencing technologies available as of September

2009. 454 and Illumina reads are much shorter than Sanger reads.

Non-uniform read distribution

Each sequencing platform has its own unique pattern of biased sequence coverage

[68]. However, as the technologies progress these issues are being addressed. Addi-

tionally there are other factors that continue to affect the distribution of sequencing

data. One issue is PCR bias during the amplification stage of library preparation [4].

Another, the stochastic distribution of the sequenced reads, causes peaks and troughs

of coverage. Finally there are DNA sequence attributes which can cause a loss of

data, for example, hairpin regions which snap-back and restrict the sequencing of

these sections.

Sequencing errors

Table 1.3 lists the error rates for the sequencing technologies available as of Septem-

ber 2009. Although the error rates are all low and can be corrected by high coverage,

they will produce many incorrect bases in the raw data.

To compensate for these issues multiple sequencing coverage is required, often de-

noted as X. This is the average number of reads representing each nucleotide in the as-

sembled sequence and can be calculated using the number of reads N, the average read

length L and the genome size G (1.1).
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X = N × L

G
(1.1)

Equation (1.1) can be used to calculate the number of reads required to produce a

desired coverage, for example, achieving a coverage of 10X using 50 base reads for the

L.rubellus genome would require 80 million reads (1.2).

10 = N × 50

420000000
N =

420000000× 10

50
N = 80000000 (1.2)

As sequencing costs continue to decrease the optimum sequencing depth is still being

assessed. High coverage can complicate an assembly with too much information inducing

unnecessary errors (this can be avoided with a strict filtering step). Low coverage may

produce areas with very little or no coverage and a failure to assemble at those regions.

Figure 1.6 is a screenshot of a display generated by Tablet [111] showing an example of

read coverage and error rates from a typical short read assembly from 2009. The upper

window displays a view across the entire contig whilst the main window focuses on a 150

bp region and highlights the read errors which are identified as white bases within reads.

The figure highlights the variation in read coverage across the contig. The figure also

demonstrates how frequent base discrepancies/errors require a high coverage to produce

a reliable consensus assembly. These factors were taken into account by the consortium

when deciding on a sequence coverage strategy for the L. rubellus project.
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Sanger based genome projects use relatively long reads (800-1000 bp) but at high

expense (Table 1.3). For these reasons, sequencing coverage for these genome projects

is often 5-10X, a compromise between cost and read length. Conversely, HTS reads are

relatively short (up to 400 bp, more often much less) and have a much lower cost per base.

Therefore, coverage for HTS projects is much higher. This can have an added benefit as

a higher coverage value provides more scope for using this attribute during the assembly

(see Chapter 3).

1.6.3 Repeat regions

Even with sufficient data, the main problem facing any genomic sequence assembly project,

especially one using short read data from a complex eukaryotic genome, is that of repeat

regions. In the absence of repeats, even a short read would have a unique place within a

genome, making the assembly process simple. Repeats fall into two broad categories:

1. Simple.

Forming the majority of the repetitive elements of many organisms, these repeats

are often short simple sequences referred to as micro- and minisatellites. In addi-

tion, larger local sequence inversions and duplications can be frequent. These cause

major problems as their size is often longer than the mean read length generated

from HTS.

2. Complex.

These are often derived from transposable elements (TEs) and form two major cat-

egories, retrotransposons (class I) and DNA transposons (class II). The former are

the more prolific as they are able to “copy and paste” themselves within a genome,

whereas the latter act via a “cut and paste” mechanism.

The proportion of each genome that is formed from repetitive elements varies dramat-

ically. For example, the TE content of D. melanogaster is estimated at 20%, H. sapiens

45% and bread wheat 80% [54]. The genome of the blood fluke Schistosoma mansoni,
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which is of a similar size to L. rubellus, has an estimated repeat content of 40% [17] and

therefore a similar level might be expected in the earthworm.

During the assembly process, each time a repeat region occurs the assembly algorithm

attempts to resolve it. If this is not possible the assembly will be broken at that point and

another separate section of contiguous data (contig) is formed. Highly repetitive genomes

will therefore be highly fragmented unless special measures are used to tackle this class

of problems (see Figure 2.1). There are two options available:

i) Read length

The longer the reads, the more likely they will be able to bridge the length of a repeat.

Sanger read lengths are significantly longer than those of HTS, and therefore this is

much more of a problem now for HTS projects.

ii) Distance information between reads.

Most sequencing platforms offer some kind of paired end read data, i.e. generation of

a pair of reads from either end of a single piece of DNA with an estimate of the dis-

tance between them. Currently these exist in two formats - standard short insert-size

paired-end read (e.g. Illumina paired reads - see Figure 1.7) which are usually under

1000 bases, and the increasingly common long insert-size or mate pair libraries which

are usually kilobases long. These large insert libraries work on the same principle, but

the insert size between the reads can be significantly larger. Mate pair library prepa-

ration is more complicated but the power to scaffold contigs and overcome repeats

is much greater. For example, in sequencing and assembling the panda genome, five

different insert size libraries were used, 150 bp, 500 bp, 2 Kb, 5 Kb and 10 Kb [95].

Initial assemblies were performed using the two smallest insert size libraries and then

scaffolded using the three larger libraries.

Identifying repeat regions is also important for the downstream annotation process

as both a way to decrease the search space and minimise the chances of false positive

annotations caused by transposable elements. Section 4.1.1 discusses this further.
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Figure 1.7: Generating Illumina paired-end data (taken from http://www.
illumina.com/technology/paired_end_sequencing_assay.ilmn).
Adapters containing attachment sequences (A1 and A2) and sequencing primer sites (SP1
and SP2) are ligated onto DNA fragments. The resulting library of single molecules is
attached to a flow cell. Each end of every template is read sequentially.
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1.7 Project aims

The aims of the project were threefold.

1. Assemble a high quality draft genome for L. rubellus.

2. Annotate the assembled genome identifying as many coding and noncoding objects

of interest as possible.

3. Use the assembly and annotations to investigate the biology of L. rubellus.
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Chapter 2

Data generation and QC

The selection of worm, preparation for sequencing, and sequencing itself were all per-

formed by others. The names of these people are cited in the relevant sections. I received

both the genomic and transcriptomic data in native raw format and therefore my work

began at the data filtering stage described from Section 2.4.

2.1 The chosen worm

L. rubellus in the UK fall into two groups, based on mitochondrial sequence data, called A

and B. The B clade is less genetically diverse (less than 2% divergence between haplotypes

at cytochrome oxidase 2) than the A clade (up to 8% divergence) [85].

The three individual worms chosen for sequencing were from an abandoned lead mine

at Cwmystwyth and selected for sequencing based on background information collated by

the Kille and Morgan groups at the University of Cardiff (http://biosi.subsite.

cf.ac.uk/biosi/kille-morgan/). For over three decades this location has been

the site of much research into earthworm adaptation due to its unique environment and

high concentration of heavy metals [116][112][113][106]. A series of individual L. rubel-

lus were isolated from a specific location with a high nickel soil contamination, and these

were genotyped for both cytochrome oxidase 2 and a series of random amplified fragment

length polymorphisms (AFLPs) [6]. A and B group individuals were present at the site,
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and there was evidence from discriminant analyses of the presence of hybrid individuals.

Using discriminant analyses, 30 B mitochondrial haplotype individuals were compared,

and an individual (S17) was identified that had minimal evidence in the AFLP data for

shared alleles with A haplotype specimens, and thus most likely to be pure B. S17 (and

two other genetically very similar individuals) were shipped to Edinburgh on dry ice. To

ensure minimal levels of heterozygosity, only S17 was used for the genomic sequenc-

ing, the other two being kept for future sequencing requirements. High molecular weight

DNA was prepared from S17 using a ’standard’ Maniatis proteinase K/phenol-chloroform

extraction by Mark Blaxter. This DNA was then quality tested and passed on to the se-

quencing team at the GenePool.

2.2 Aim - Data production

Sequencing technology in 2008 / 2009 lent itself to a strategy of generating bulk coverage

using the shorter Illumina reads in both single and paired-end format and using a lower

coverage of the longer Roche data to help contiguate the data. Therefore, for this project

the aim was to produce 50X and 5X for each of the sequencing types respectively. Read

lengths were around 50 bp and 200 bp for the Illumina and Roche reads respectively with

an insert size of around 180 bp for the paired-end Illumina data. Using this combination

of read types it was hoped that the issue of repeats would be reduced (Figure 2.1).

To assist with annotation, the transcriptome of L. rubellus was also desired. The ex-

isting EST data provided partial coverage. Fortunately, in 2011 Illumina RNAseq data

were generated by Pete Kille and colleagues at the University of Cardiff, sequenced at the

GenePool and made available for this project.
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2.3 Raw data generation

2.3.1 Extraction of the DNA and RNA

Genome data

Extraction of genomic DNA from the earthworms was performed by Mark Blaxter, who

supplied the following description:

The earthworm specimens were maintained on damp filter paper overnight to

allow them to void their gut contents, and surface cleaned, to reduce the potential

contamination from commensal or colonising microorganisms. They were then in-

dividually snap frozen in liquid nitrogen, and stored at -80oC until extraction. DNA

was extracted from the chosen L. rubellus specimen S17 by grinding the whole

animal in a mortar and pestle under liquid nitrogen. The powdered specimen

was then digested with proteinase K in 5 ml SDS buffer (TE [10 mM Tris-HCl, 1

mM EDTA] pH 8.0, with 150 mM NaCl and 1% SDS) at 65oC for 8 hrs, and then

placed at room temperature. The digest was extracted with TE-buffered phenol

(at pH 8.0) twice, by slow inversion, with the phenol phase being removed from

below the aqueous phase after centrifugation at 3000 rpm in a Sorvall bench-

top centrifuge. The aqueous phase was then extracted twice by slow inversion

with phenol-chloroform-isoamyl alcohol (20:20:1), and then twice with chloroform-

isoamyl alcohol (20:1) as before. The final aqueous supernatant (4 ml) was care-

fully pipetted from the final chloroform extraction using a wide bore pipette, avoid-

ing any of the tight protein phase at the aqueous-organic interface. The DNA was

precipitated from this supernatant by underlaying the aqueous phase with 3 ml

100% ethanol (kept at -20oC), and spooling out the high-molecular weight DNA

from the ethanol-water interface using a sterilised glass loop. The spooled DNA

was air dried briefly, and resuspended in 500 µl TE pH 8.0, supplemented with

1 µg/ml DNase-free RNase, at 4oC overnight. The remainder of the nucleic acid
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in the final supernatant was precipitated by slowly mixing the ethanol and water

phases, and storing the mixture at -20oC overnight. The precipitate was split be-

tween eight 1.5 ml tubes and pelleted by centrifugation in a microcentrifuge at top

speed (13000 rpm), washed with 70% ethanol (1 ml per tube). After air drying,

the nucleic acids were resuspended in a total of 400 µl (50 µl/tube), pooled and

digested overnight with 1 µg/ml DNase-free RNase.

RNase treated DNA was precipitated from both high molecular weight and

low molecular weight samples with ethanol, and after brief drying, both were re-

suspended overnight in TE. DNA was quantitated using a Nanodrop spectropho-

tometer, and integrity assessed by gel electrophoresis in 0.6% agarose gels. The

high molecular weight sample was free of obvious protein or RNA contamination,

largely comprised material too large to enter the 0.6% gel, and totalled 27 µg of

DNA. This material was used for subsequent library production.

Transcriptome data

RNA was prepared by colleagues in Cardiff University, Pete Kille and Craig Anderson.

Craig Anderson provided the following:

Adult Arsenic Exposure

An adult L. rubellus exposure was conducted in accordance to that described by

Spurgeon et al [155]. Field-collected Lumbricus rubellus were purchased from

Lasebo (Nijkerkerveen, Holland) and maintained in an uncontaminated culture

of artificial soil consisting of a 1:1:1 mix of loam soil: peat: composted bark for

two months. The test medium consisted of 1559 g dry, sieved (2 mm) ketter-

ing with 3% composted bark. Distilled water or a solution of sodium arsenate

(Na2HAsO4-7H2O) (Sigma Aldrich, Dorset, UK) was added to provide a moisture

content of 60% (dry weight equivalent) and soil concentrations of 0, 3, 12, 36,
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and 125 mg As kg-1 (deemed adequate within the literature [52][181][109][89]).

Soils were left for 10 days to reach an initial speciation equilibrium. 48 hours prior

to exposure, worms were collected from culture and kept under test conditions.

Each concentration consisted of 5 replicates, each containing five adult worms

that were collectively weighed before being added to the soil. Containers were

covered to limit water loss and kept at in constant light for 28 days. Initially, 8 g

(dry weight) of dried horse manure was contaminated with corresponding chem-

ical concentrations and rewetted to 80% moisture content before addition across

the soil surface in each container. When worms were assessed after 14 days,

the remaining manure was removed and replaced by 8 g of fresh food. Following

exposure, worms were retrieved from the soil, weighed, and visually inspected for

phenotypic characteristics. All individuals were frozen and homogenised in liquid

nitrogen using a steel mortar and pestle and stored at -80 oC. Cocoon production

rates (cocoons per worm per day) were determined by sieving the soil at the end

of the exposure, and comparing the number of cocoons collected with survival

data to calculate cocoon production rates.

Total RNA Purification

Total RNA was purified from each replicate individually according to the Qiagen

RNeasy kit protocol for purification of total RNA from animal tissue. 10 mg of

tissue was homogenised using a needle and syringe. An on column DNA di-

gest (using the Qiagen RNase-free DNase set) according to the instructions in

appendix D, to ensure that there was no DNA contamination. RNA was eluted

in 60 µl RNase free water. The samples were then analysed using an Agilent

Bioanalyser and were frozen and kept at -20 oC. Replicates from each exposure

concentration were pooled equally and sent to the GenePool for sequencing.

It is important to note that as the L. rubellus individuals used for RNA preparation and
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transcriptome sequencing were not from the Cwmystwyth mine it was possible that they

were a mix of A and B lineages. In addition, the worms did not have their gut faunas

removed prior to library generation.

2.3.2 Sequence data

Illumina

Illumina data were generated between 2008 and 2011 using three versions of the first

generation of Illumina instrument, the GA, GAII and GAIIx. Libraries were prepared

according to manufacturers protocols. Data processing was performed using the Illumina

pipeline designed for each machine respectively and the image processing software IPAR

versions 1.3 and 1.8 (Tables 2.1, 2.2 and 2.4). Paired-end data were generated from a

library with an estimated insert size of 180 bp. In 2011 two transcriptome data sets were

produced consisting of 80 M and 130 M paired-end Illumina reads with a mean insert size

of 130bp. For this project only the first data set was used due to time constraints (Table

2.4).

Roche

Two sets of Roche data were generated, the first in 2009 using the standard Flx machine,

the second in 2010 using the Flx-Titanium upgrade. Both libraries were prepared as per the

Roche 454 library preparation protocols for each machine respectively. Sequencing was

then performed followed by signal-processing and base-calling using the Roche Shotgun

signal-processing software, gsRunProcessor versions 2.0.00.20 and 2.3 (Tables 2.3 and

2.4).
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2.3.3 Output format

Illumina

The Illumina instruments pass the raw data to the Illumina Genome Analyser Pipeline.

Here the raw data is converted into FASTQ files. These consist of four lines per read, line

1 is the header, line 2 is the base calls, line 3 is a second header and line 4 is an ASCII

character string representing the quality call for each base, e.g.

@090126:4:1:1134:851/2

ATCGGTCTGTAGTTGTCCTGAATGGATGACAGTAGACTGTTTGAATATTT

+090126:4:1:1134:851/2

hhhhhhhhhhhhhhhhhhhhhhhhhhhhEhVh?hh[hhhhhFhQQhhhhB

The first header in line 1 contains information on the origin of the read, each separated

by a colon:

090126 = the unique instrument name

4 = flowcell lane

1 = the number within the flowcell lane

1134 = the x coordinate of the cluster within the tile

851 = the y coordinate of the cluster within the tile

/1 or /2 = the member of a pair
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Up until version 1.3 of the Illumina Genome Analyzer Pipeline the FASTQ quality

scores were calculated in the following way [28] where Pe is the estimated probability of

a base calling error calculated by the pipeline:

QIllumina = −10× log10

(
Pe

1− Pe

)
(2.1)

This is a variation of the method used to calculate PHRED scores (the quality metric

for Sanger sequencing) and the two are easily interchanged. After version 1.3 Illumina

PHRED scores were reported with an ASCII offset of 64, thus creating a second variant

of the original FASTQ format. The quality scores represent the confidence in the base

assignment at each position. For example, a base with an ASCII character that maps to a

score of 13 equates to a p value of 0.05. As a rule of thumb a quality score of 30 indicates a

1 in 1000 probability of error. A quality score cut-off of 20 is often used which represents

an error rate of 0.01 or 1 in 100.

Roche

The Roche machines produce binary Standard Flowgram Format (SFF) files which also

contain quality scores. These can either be used directly by some software or quite easily

converted to FASTQ or FASTA.
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Table 2.1: Illumina genomic single-end sequencing data

Date Mean length Number Combined Size Coverage
(bp) (Millions) (Gb)

01/12/08 51 7.3 0.4 0.9
08/12/08 41 7.3 0.3 0.7
11/12/08 41 7.2 0.3 0.7
15/12/08 41 7.7 0.3 0.8
18/12/08 51 6.2 0.3 0.8
19/01/09 51 6.7 0.3 0.8
09/02/09 37 7.5 0.3 0.7
12/02/09 37 4.4 0.2 0.4
27/02/09 41 7.3 0.3 0.7
03/04/09 51 8.5 0.4 1.0
16/04/09 51 4.8 0.2 0.6
22/04/09 37 0.6 0.0 0.1
04/05/09 61 8.4 0.5 1.2
18/05/09 31 9.8 0.3 0.7
01/06/09 51 6.4 0.3 0.8
05/06/09 51 10.2 0.5 1.2
08/06/09 27 3.4 0.1 0.2
12/06/09 37 7.8 0.3 0.7
17/06/09 27 5.2 0.1 0.3
30/06/09 51 2.4 0.1 0.3
10/07/09 35 5.5 0.2 0.5
04/08/09 27 15.2 0.4 1.0
12/08/09 51 12.3 0.6 1.5
20/08/09 37 15.3 0.6 1.3
28/10/09 37 6.0 0.2 0.5
30/10/09 37 7.4 0.3 0.7
06/11/09 52 3.5 0.2 0.4
19/11/09 52 8.1 0.4 1.0
24/11/09 51 11.3 0.6 1.4
19/12/09 51 7.7 0.4 0.9

Total 43.7 238 10.4 24.8
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Table 2.2: Illumina genomic paired-end sequencing data

Date Mean length Number Combined Size Coverage
(bp) (Millions) (Gb)

26/01/09 51 6.6 0.4 0.8
16/02/09 51 3.0 0.2 0.4
16/02/09 51 3.2 0.2 0.4
16/02/09 51 3.0 0.2 0.4
06/03/09 52 15.0 0.8 1.8
06/03/09 52 15.8 0.8 2.0
12/03/09 52 16.4 0.8 2.0
19/04/09 52 18.8 1.0 2.4
28/04/09 52 10.0 0.6 1.2
08/05/09 52 15.4 0.8 2.0
08/05/09 51 15.4 0.8 1.8
22/06/09 52 22.4 1.2 2.8
01/07/09 49 14.0 0.6 1.6
27/08/09 52 8.0 0.4 1.0
17/09/09 52 8.0 0.4 1.0
26/10/09 38 8.6 0.4 0.8
04/11/09 52 8.4 0.4 1.0
12/11/09 52 7.0 0.4 0.8
02/12/09 52 4.6 0.2 0.6
16/12/09 52 5.8 0.2 0.8

Total 51.1 213.5 10.9 26.0
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Table 2.3: Roche genomic sequencing data

Type Mean length Number Combined Size Coverage
(bp) (Millions) (Gb)

FLX 220 1.8 0.4 0.9
Titanium 341 2.2 0.7 1.8

Total 286 3.9 1.1 2.7
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2.4 Filtering

Errors in sequencing data cause problems during assembly (see Section 3.1.1). Therefore,

producing high quality data is essential, and where possible producing large amounts of

data to allow quality filtering is desirable. It has already been shown in table 1.3 that HTS

can produce enough data but it was important to determine the read quality? Early quality

checks identified significant error rates associated with both data types.

2.4.1 Quality

The Illumina data showed a significant decline in quality towards the end of the reads.

Figures 2.2 and 2.3 display the mean quality score at each base position calculated using

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

for the entire set of pre- and post-filtered Illumina reads. Filtering here used a custom perl

script which used the quality score of each base given in the FASTQ file and a sliding

window filter whereby a length of sequence at least 30 bp long with quality greater than

20 allowing up to 1 low quality base. The minimum length of retained sequences was

chosen following preliminary assembly tests suggesting an optimum k-mer of 27 (Section

3.1.1). Figures 2.4 and 2.5 show the length distributions of the reads that were retained, an

artefact of the rapid advances of read length and throughput from the Illumina machines

in the early stages of use.

As the transcriptomic data was received in 2011 the data was significantly better, both

in terms of length and quality, and by that time new tools were available for filtering. The

data used consisted of 80 million 101bp reads, the quality of which can be seen in the

FastQC plot Figure 2.6. A filtered data set was produced using tools from the FASTX

toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html). Af-

ter preliminary analysis the quality filter script was used with q 10 and p 90, increasing

the overall quality (Figure 2.7) but reducing the data to 48 M reads (Table 2.4).

Roche 454 data has known issues with homopolymer runs (adjacent identical bases).

Due to the method of identifying base incorporation, distinguishing between multiple
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bases of the same type is problematic and often incorrect [76]. Identifying and fixing

these regions however was not possible, but very short or reads of extreme base compo-

sition could still be identified. Therefore, very short reads (less than 100 bases) and very

long reads (greater than 600 bases) were removed. In addition reads containing very low

base heterogeneity were removed using a custom perl script. These included single base

type reads and low complexity repeats. Due to the lower number of Roche reads, filtering

was less stringent and resulted in a drop from 3.9 to 3.6 million reads (Figures 2.8 and

2.9).

2.4.2 Additional screening

Initial assemblies produced a complete 15,658 bp mitochondria contig. All reads were

mapped to this using Bowtie [90] version 0.11.3 with default settings and all positive map-

pings were removed from subsequent assemblies resulting in the removal of over 500,000

reads and significant improvements in assemblies.
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Chapter 3

Assembly

3.1 De novo assembly using high-throughput sequencing

3.1.1 Genome

NCBI genome statistics as of December 2011 stated that there were currently only 36 com-

plete Eukaryotic genomes in GenBank with many more as drafts or in progress (Table 3.1).

Although this data is missing some key complete genomes, the large number of genomes

still in draft form indicates the massive amount of time and money that are required to

finish a genome, and those in progress are likely to be new HTS projects. These num-

bers suggest a huge increase in genome projects, due predominantly to the development

of HTS removing the bottleneck of sequencing time and cost.
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Table 3.1: Genome sequencing project statistics

Organism Complete Draft assembly In Progress Total

Prokaryotes 1117 966 595 2678
Archaea 100 5 48 153
Bacteria 1017 961 547 2525

Eukaryotes 36 319 294 649
Animals 6 137 106 249

Mammals 3 41 25 69
Birds - 3 13 16
Fishes - 16 16 32
Insects 2 38 17 57
Flatworms - 3 3 6
Roundworms 1 16 11 28
Amphibians - 1 - 1
Reptiles - 2 - 2
Other animals - 20 24 44

Plants 5 33 80 118
Land plants 3 29 73 105
Green Algae 2 4 6 12

Fungi 17 107 59 183
Ascomycetes 13 83 38 134
Basidiomycetes 2 16 11 29
Other fungi 2 8 10 20

Protists 8 39 46 93
Apicomplexans 3 11 16 30
Kinetoplasts 4 3 2 9
Other protists 1 24 28 53

Total 1153 1285 889 3327

Data obtained from http://www.ncbi.nlm.nih.gov/genomes/
static/gpstat.html (December 2011).
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Small labs now have the opportunity to obtain, or even produce for themselves, the

volumes of data necessary to sequence entire genomes, a luxury once restricted to only

the biggest and wealthiest of institutes. However, the previous methods of assembly and

the computer power associated with them can not be scaled to fit this new HTS data, and

therefore a new approach to analysing the data is necessary.

This magnitude change in read number brought on by HTS has for the moment ended

the reign of the overlap-consensus-layout method. The number of possibilities in an over-

lap graph with shorter read lengths and high coverage is huge. For example, a million

short reads will require a trillion pairwise alignments, and modern machines are produc-

ing billions of reads per run.

For the majority of cases, this computational problem is solved with a de Bruijn graph

[38], a directed graph structure capable of representing an assembly and crucially capa-

ble of scaling up to large assemblies. The first application of this approach to genome

assembly was in the EULER assembler in 2001 [130] and has more recently and suc-

cessfully been applied to short read data in many others such as Velvet [184], ABySS

[147], SOAPdenovo [96], ALLPATHS-LG [60] and the commercial CLCBio (http:

//www.clcbio.com).

The basic process of de Bruijn assembly based on the Velvet version is summarised

in Figure 3.1. Here the de Bruijn graph was altered from its original use in 2001 to map

k-mers onto nodes instead of arcs and also includes the reverse complementary sequences

creating a bi-directed graph. Identical k-mers collapse into the same nodes representing

the level of coverage. Many of the assemblers use this level of coverage to guide the

assembly process. Nodes with coverage well below that expected can be ignored, and

very high coverage nodes which may represent repeats can be approached in a different

manner.
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Figure 3.1: Application of a de Bruijn graph in the Velvet assembler (taken from [184])

Each rectangle represents a series of overlapping k-mers (in this case, k=5) with the re-
verse complement above or below. Each k-mer is represented by its final character. Arcs,
indicating presence of linked k-mers in reads, are represented as arrows between the nodes
and the last k-mer of an arc’s origin overlaps with the first of its destination.
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The de Bruijn graph introduces us to the idea of applying k-mers rather than reads

to genome assembly. A k-mer in this sense is a string of DNA with length k, which

is less than the length of the read. At first it seems counterintuitive to break what is

already a very small fragment of the genome into an even smaller piece. However, this

approach collapses data into non-redundant units, thus optimising memory requirements

and reducing the impact of read errors. Compeau et al [29] cover the application of de

Bruijn graphs to genome assembly in detail.

Even though a k-mer is relatively short it still contains a high level of uniqueness.

Given that there are four possibilities at each base, then 4 to the power of the k-mer length

quickly becomes a very big number as k increases. Figure 3.2 shows that even at relatively

short k-mer length the percentage of unique k-mers is high, and inversely proportional to

the complexity of the genome. Early HTS assembling projects confirmed this, as assem-

bling low complexity genomes, i.e. bacteria, with short read data occurred with much

greater success than larger more complex genomes.
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Figure 3.2: Percentage of unique k-mers within a genome

Calculated using Jellyfish [105], using data from http://genome.
jgi-psf.org/Capca1/Capca1.home.html (C. telata), http://
genome.jgi-psf.org/Helro1/Helro1.home.html (H. robusta),
http://www.fruitfly.org/sequence/release5genomic.shtml (D.
melanogaster) and http://www.ncbi.nlm.nih.gov.ezproxy.webfeat.
lib.ed.ac.uk/nuccore/FN554766 (E. coli).
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Initially many de Bruijn tools were limited to a k-mer of 31 due to memory limitations

on the graph structure. Even though this relatively short k-mer has a high uniqueness, as

HTS read lengths and throughput increased so did the usable k-mer length and software

was adapted to use this. However at the time of this project the average read length was

around 50 bases and optimum k-mer less than 31.

3.1.2 Transcriptome

A transcriptome is the complete set of transcripts that lead to the production of an or-

ganism’s proteome via translation. Prior to the possibilities of genome sequencing, the

preferred method for generating transcription data was to sequence sections of messenger

RNA (mRNA) and produce ESTs, a relatively quick and cheap method for identifying

coding regions. As of October 1st 2011 there were 70,937,429 ESTs in GenBank from

2,313 species. This massive data set has been generated over the last 25 years and has

proved invaluable in the progression of molecular biology, especially when annotating

new transcripts, both for training ab initio gene finders and annotating by homology the

peptide sequences produced by the gene predictions themselves.

HTS brought with it the ability to sequence very large volumes of mRNA simultane-

ously and at high quality to produce RNA-Seq data. However, unlike ESTs which use

Sanger sequencing, the reads generated are relatively short and need sophisticated assem-

bly methods. Initially the methods used to assemble RNA-Seq data were based on the

first HTS genome assemblers [115] but it quickly became apparent that new approaches

were needed. This was primarily because of the huge variation in coverage per locus that

transcriptomic data produces, as genes are transcribed at very different levels. This meant

that using an expected coverage to guide the assembly was not going to work.

If a genome is already available then it can be used to guide transcriptome assembly.

However, as the expectation for the L. rubellus genome was a heavily fragmented assembly

and one of the plans for the transcriptome was to help address this, it was decided to

assemble the transcriptome de novo.
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3.2 Review of assemblers

3.2.1 Genome

Between 2005 and 2010 there were 24 de novo genome assemblers either written from

scratch or modified from old assembly algorithms, and more have been released since

[146]. This number reflects both the various types of data that have emerged over the last

few years, each with their own error profile and read type, and the pressing need to develop

a versatile, reliable and functional assembly tool. A practical comparison of many of them

was recently performed by Zhang et al [186] and the recent assemblathon [42] compared

many of them in a rigorous set of trials, and represents the state of the art in assembly at

the present time. There has also been investigation into development of new metrics for

comparing the final assemblies as well as comparing new HTS to the older Sanger based

assemblies [120].

For this study I will discuss only those methods that were designed for, or were theoret-

ically capable of assembling, large eukaryotic genomes using HTS data and were consid-

ered best practice at the time. Table 3.2 lists the genome assemblers that were investigated

during this project. The following gives a brief description of each and the outcome of

attempted assemblies.

ABySS (Assembly By Short Sequences) [147]

In 2009, ABySS, the first short sequence assembler with built in parallel support, was

released making this the only non-commercial assembler at the time capable of large

genome de novo assembly (without investment in large memory machines). Parallelisation

is achieved using a novel distributed de Bruijn graph which spreads the graph over many

computer nodes whilst retaining a single structure utilising the message passage interface

(MPI). The assembly proceeds in two phases. The initial phase of assembly constructs the

distributed graph from overlapping k-mer information. Errors in the graph are removed

and then unambiguous nodes are connected. The second phase uses the paired read in-
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formation to scaffold the contigs. The first phase is best run on a cluster or in a grid, but

as the second phase is fundamentally serial it can be run locally on a desktop machine.

This method proved successful due to the distributed graph spreading the huge memory

requirements of the de Bruijn graph over many machines.

ALLPATHS

Released in a theoretical form in 2008 [23] and then in a functional form as ALLPATHS-

LG in 2010 [60], this is a de Bruijn based assembler which requires multiple insert size

mate pair libraries. It was among the best assemblers at the recent assemblathon [42].

However, due to its mate-pair requirement it was not possible to use ALLPATHS-LG for

this project.

CLCBio (www.clc.com)

This is the only commercial software capable of assembling large genomes using short

reads using ‘reasonable’ amounts of compute power. The actual methodology remains

unknown, although it is de Bruijn based and uses amazingly low amounts of memory and

time.

IMAGE (Iterative Mapping and Assembly for Gap Elimination) [170]

Although not an assembler in its own right, this method attempts to close the gaps in a

draft assembly by aligning reads to the ends of contigs and running local assemblies of the

mapped reads and their pairs. Iterations of the process can then be run to try and improve

the number of gaps closed. For this project the use of IMAGE was problematic due to the

fragmented nature of the genome and relatively low number of paired reads causing both

time and data alignment issues. There is an unreleased parallel version that may solve

these issues, but until either this is released or the contiguity of the assembly improves,

application of this tool is not possible.
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Newbler (www.roche.com)

Roche’s commercial Genome Sequencer (GS) De Novo Assembler, also known as New-

bler, is a custom built assembler designed to be used with Roche 454 data. It uses the SFF

files directly in an overlap-layout-consensus method to create pairwise alignments, resolve

branching structures between contigs and then create a consensus sequence for each contig

taking into account the quality information. Paired end data can be subsequently used to

scaffold the contigs. Like CLCBio this is closed-source software so little is known about

its inner workings but as it is designed by Roche for Roche data it was considered the best

option available.

Ray [19]

Ray is another assembler that can be run in parallel on a grid and therefore spread memory

load. It is designed to be a true hybrid assembler using both the Illumina and Roche

type data, and therefore would seem the perfect choice for this project. However, after

numerous trials no successful assemblies were generated. No published genomes have

been assembled with this software.

SOAPdenovo (Short Oligonucleotide Analysis Package) [96]

Another top scorer in the assemblathon [42], SOAPdenovo has been widely used and

proved successful in many genome projects, especially those projects associated with the

Beijing Genomics Institute (BGI) such as the panda genome [95]. Again, it is structured

around a de Bruijn graph but also incorporates error correction of reads and requires mul-

tiple insert size mate-pair data. For this latter reason this assembler could not be used for

this project.

Velvet [184]

Velvet is a widely used and excellent assembler, and was the first to really utilise the de

Bruijn graph for HTS and produce high quality assemblies. With the ability to include
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longer reads as part of the Rock Band [185] scaffolding phase of assembly Velvet would

have been an assembler of choice. However, Velvet requires the whole de Bruijn graph to

be in memory accessible to a single core and thus, this software would only be appropriate

for large genomes if a high RAM machine (greater than 1 TB) was available.
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Table 3.2: de novo genome assemblers

Assembler Data Pairs Mate-pairs Structure Memory

ABySS Short Yes Yes de Bruijn Distributed
ALLPATHS-LG Short Yes Yes* de Bruijn Single
CLCBio Short Yes Yes de Bruijn Single
Image Short Yes* No Local assembly Single
Newbler Long Yes No Overlap-layout-consensus Single
Ray Mixed Yes No de Bruijn Distributed
SOAPdenovo Mixed Yes Yes de Bruijn Single
Velvet Mixed Yes Yes de Bruijn Single

* data type is essential
Where memory is listed as ‘Single’ it implies that the algorithm can only use the memory from one
machine, whereas ‘Distributed means that memory can be spread across multiple machines, e.g.
using a compute cluster.
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3.2.2 Transcriptome

Trans-ABySS [136]

Based on ABySS, this software pipeline merges ABySS assemblies performed across a

range of k-mer values in an attempt to correctly identify transcripts of variable expression.

Oases [143]

Oases is based on procedures similar to Trans-ABySS but using Velvet assemblies. Oases

aims to cluster contigs into transcripts and works very quickly with low memory require-

ments.

Trinity [62]

The only custom built de novo transcriptome assembler assessed here, Trinity is a novel

method designed for reconstructing a transcriptome from RNA-Seq data. It combines

three independent pieces of software. First, Inchworm assembles the RNA-Seq data into

unique sequences of transcripts. Second, Chrysalis clusters the Inchworm contigs into

clusters using a de Bruijn graph structure for each cluster. Lastly, Butterfly processes

each of the individual clusters in parallel and attempts to identify both full-length tran-

scripts and their alternatively spliced isoforms. Even when alterations are made to im-

prove parallelisation of this method, its run time is proportional to the volume of data and

can take many days to complete.

3.3 Chosen assembly methods

3.3.1 Genome

After assessing each of the assembly tools in 3.2.1, the only assemblers suitable for assem-

bly of L. rubellus with the data and compute power available were CLCBio, ABySS and

Newbler. Detailed investigations and trial assemblies led to the final parameter selections
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(Table 3.3) for the complete assembly strategy (Figure 3.5). The decision to use multiple

assemblers rather than just one was taken with the aim of maximising assembly space

whilst using multiple information sources to confirm the reliability of a contig [188]. The

final assembly strategy runs in the following way:

Initial assemblies

The filtered set of Roche reads was assembled with Newbler (version 2.3) on a single

desktop machine using default parameters. The same data were also combined with the Il-

lumina data and assembled with CLCBio (version 3.1.1), again with default parameters on

a single desktop machine. The filtered Illumina data was also assembled independently us-

ing ABySS (version 1.2.0) in two stages. The first stage, which forms the de Bruijn graph,

was run in parallel on the University of Edinburgh grid (Edinburgh Compute and Data Fa-

cility [ECDF] https://www.wiki.ed.ac.uk/display/ecdfwiki/Home) us-

ing 300 cores, each with at least 2 GB RAM. The second, which uses the pairing infor-

mation, was run locally and required less than 10 GB RAM. The parameters used for

ABySS were defaults except for a k-mer of 27 and the minimum number of pairs required

to consider joining two contigs (n) set at 3.

Merge

The assembled data from ABySS and Newbler were merged using version 2.0.8 of min-

imus2 (part of the AMOS package http://sourceforge.net/apps/mediawiki/

amos/index.php?title=AMOS) using the following parameters OVERLAP=30, CON-

SERR=0.1, MINID=95 and MAXTRIM=20, where OVERLAP is the minimum required

overlap length, CONSERR the maximum consensus error, MINID the minimum overlap

percent identity and MAXTRIM the maximum sequence trimming length. This assembly

was then merged with the CLCBio contigs, again using minimus2 and the same parame-

ters. This time, however, the singletons identified by minimus2 were discarded under the

premise that any ‘real’ data would have been found by both assembly methods.
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Redundancy removal

The set of contigs was then collapsed using version 4.0 of CD-HIT [97] set at 99% identity

to try and remove any duplicate contigs caused by allelic variation within the worms. After

this stage there were still pairs of contigs that shared significant similarity and preliminary

annotation identified many instances of identical annotations on these contigs. Therefore

an additional reciprocal BLAT [83] analysis was run on all contigs, and those that matched

over 90% of their lengths with 90% of their identity were also removed. An unfortunate

side effect of this process is the possible removal of distinct sequences that are sufficiently

similar to be deemed allelic. In particular, this could result in the removal of ‘real’ TEs

which may only differ by a base or two but are actually the result of a recent transposition

event. This loss is not ideal but the removal of allelic content was deemed more important

than retaining all copies of TEs.

Filtering

As stated in Section 1.5, the generation of a high quality draft genome requires that efforts

have been made to remove contaminating sequences. This was achieved with a custom

filtering pipeline. All contigs were searched using BLAST with a bacterial subset of the nt

database (http://www.ncbi.nlm.nih.gov/nuccore) with a cut off E-value of

1e-5. Positive hits were then BLAST searched with a metazoan subset of the nt database

with the same cutoff. The two BLAST results were compared and any contig with a next

best hit to a metazoan sequence was retained. The remaining sequences were removed

from the assembly.

3.3.2 Transcriptome

Due to time constraints, preliminary studies, correspondence from other lab members and

the knowledge that only one of the three softwares above was created specifically for

RNA-Seq assembly, the method selected for transcriptome assembly was Trinity. There-

fore, using the 48 million FASTX filtered RNA-seq reads the assembly was completed on
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a large memory multi-core machine with parameters edge-thr and minimum contig length

set at 0.16 and 200 respectively where edge-thr is the Butterfly threshold (controls the

complexity of the graphs) and minimum contig length is the minimum length of the final

contigs. The assembly produced a very large number of transcripts, probably due to the

default settings being very sensitive to read variation, therefore an additional clustering

step was performed using UCLUST [44] set at 97% identity (Table 3.3).

67



Table 3.3: Details of the chosen assembly tools

Stage Tool Version Parameters

Genome
Initial assemblies Newbler 2.3 Default
Initial assemblies CLCBio 3.1.1 k-mer of 25
Initial assemblies ABySS 1.2.0 k-mer of 27, number of pairs (n) = 3
Merge assemblies minimus2 2.0.8 OVERLAP=30, CONSERR=0.1,

MINID=95 and MAXTRIM=20
Redundancy removal CD-HIT 4.0 sequence identity threshold (c) = 0.99
Redundancy removal BLAT 34 Default

Transcriptome
Assembly Trinity 2011-08-20 edge-thr = 0.16, minimum length = 200
Redundancy removal UCLUST 3.0.617 identity (id) = 0.97
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3.3.3 Scaffolding the genome

The next logical step in genome assembly is to scaffold the contigs, especially when a

genome is in many separate pieces. For HTS the most common solution is the use of

mate-pair data but at the time of sequencing this was not an option and hence efforts were

made to use the transcriptome. Using a transcriptome to scaffold a genome assembly is

not a new idea. Montazavi et al [115] used RNA-seq data to scaffold a draft genome

of Caenorhabditis angraria to great effect, and more recently Riba-Grogunz et al [134]

published a method for visualising a genome assembly by using the transcriptome to sug-

gest an orientation of the genomic pieces and then viewing this with a Cytoscape [27]

plugin. Unfortunately, neither of the these methods were applicable to the L. rubellus

assemblies probably due to the high fragmentation of the genome (causing issues when

mapping either the raw reads in case of Mortazavi method or to assembled transcripts in

the Riba-Grogunz method). For these reasons a novel method was created which can be

used simply and generally to scaffold an assembly using transcripts.

A custom perl script, SCUBAT.pl (https://github.com/elswob/SCUBAT,

was written and Figure 3.3 shows an overview of the main stages in scaffolding with

SCUBAT. Although this method is prone to creating scaffolds with reduced intron span, it

is very useful for extending gene models by joining together gene-linked contigs.
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Figure 3.3: Scaffolding contigs using BLAT and transcripts (SCUBAT)

Transcripts are mapped to an assembly using BLAT and fragments joined based on shared
hits (exons). Scaffolds are grouped based on shared fragment IDs and assembled using
CAP3. Assemblies are assessed for success and a final set of contigs/scaffolds is gener-
ated.
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Step1: Map the transcripts to the genome assembly

BLAT was used to map Trinity-assembled transcripts and the Lumbribase UniGenes to

the genome assembly. This identified consecutive transcript sections (exons) mapping to

multiple contigs/scaffolds (Figure 3.4). The mappings are permitted to overlap by a few

bases (Table 3.4). In addition, to increase the accuracy of the transcripts used to scaffold, a

minimum value for the combined mapping length of the transcript was also incorporated.
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Figure 3.4: Example of transcript BLAST against primary genome assembly

The uppermost red bar is a 31 kilobase transcript, and underneath are the BLAST matches
to the exons of that transcript on genomic contigs. This highlights how a single transcript
can be used to link multiple contigs.
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Table 3.4: BLAT mapping of a 3,393 bp transcript (comp11309 c0 seq1) to the primary
assembly.

Contig ID Length Orientation Transcript Transcript Overlap
(bp) start base end base (bp)

contig 103439 5955 - 19 2110 0
contig 404861 787 - 2106 2325 4
contig 74885 1944 - 2321 2719 4
contig 113361 1402 - 2842 2952 0
contig 97759 1056 - 2950 3188 2
contig 104537 1942 + 3184 3393 4
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Step 2: Identify informative split transcripts

All transcripts that mapped to more than one contig were flagged. Each mapping was

then analysed to identify those that mapped consecutive non-overlapping sections of the

transcript on separate contigs allowing for an overlap buffer zone of 10 bp.

Step 3: Create scaffolds

Each transcript-contig complex was assembled by orientating the contigs based on the

BLAT information and adding 10 N’s in between the contigs. For example, the contigs in

Table 3.3 were scaffolded to form a single contig of over 13,136 bp with all contigs except

contig 104537 being reverse complemented.

Step 4: Cluster scaffolds into groups and assemble

The contigs used in each transcript-contig complex were then cross-referenced and any

complexes sharing a contig were grouped. Groups were then assembled using CAP3 [72]

and default parameters.

Step 5: Filter the assemblies

The assemblies were parsed to identify successful assembly events. Failed assemblies

were identified, and the largest complex kept, while the remainder were removed.

Step 6: Create new contig set

A new contig set was generated using the successful CAP3 assemblies, the remaining

complexes and any contig not involved.
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Figure 3.5: Workflow diagram for the assembly and annotation of the L. rubellus genome
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3.4 Results

3.4.1 Genome

The assembly of the L. rubellus B genome was performed following the strategy in Figure

3.5. Combining assemblies increased contig sizes, reduced the overall span and increased

the N50 of the assembly (Table 3.5). There was a dramatic reduction in genome size over

the three stages, especially when removing putative allelic contigs. This highlights the dif-

ficulty of genome assembly even with individuals selected for low heterozygosity. Figure

3.6 presents the three stages of the L. rubellus assembly along with the other two annelid

genomes in a cumulative assembly graph. This shows that the genome assembly is in

many smaller pieces than that of the two JGI genomes as the curves are much more grad-

ual in their inclines, although it is worth noting that the L. rubellus genome is substantially

larger.

The filtering step identified 68 contigs that were suspected to be bacterial in origin.

These had a mean length of 1002 bp and totalled 68 Kb in combined size. This small

number suggests that either there was very little bacteria within the sequence data, the

merge step removed it, or that the assemblers were very successful in using the low cov-

erage levels of the bacterial data to assemble only L. rubellus DNA.

Figure 3.7 shows two dimensional plots comparing GC, coverage and length for the

final assembly. The coverage versus length plot reveals a set of scaffolds spreading up the

Y axis that are relatively short but have high coverage. These are likely to include repeat

regions and transposable elements. The coverage versus GC plot shows most scaffolds

centred around 40 % GC as expected, but does reveal a slight grouping at a standard

coverage but higher GC content. These could derive from artefacts of short fragments or

could be bacterial DNA still present after filtering.

After filtering, the combined read data (Illumina and Roche) equated to an estimated

coverage depth of around 38X (Table 2.4). Figure 3.8 shows that the distribution is skewed

heavily due to large numbers of high coverage contigs/scaffolds most likely due to repeat
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regions within the genome. The median value was closer to 20.

The resulting assembly was a mixture of contigs and scaffolds. The latter were formed

during both the initial assembly stages by ABySS and CLCBio and during the transcrip-

tome based scaffolding stage (Table 3.6).
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Table 3.5: Genome assembly metrics

Assembly Stage Number of contigs Span (Mb) N50 (bp)* GC (%)

Individual assemblies
Newbler 191,000 78 511 40.80
ABySS 868,000 440 572 41.04
CLCBio 1,070,000 590 652 40.36

Initial
Merged with minimus2 424,000 526 1425 40.45

Intermediate
Collapsed haploid contigs and filtered 352,000 430 1390 40.51

Final
Scaffolded with transcripts 315,000 429 1589 40.46

* N50 is a weighted median statistic such that 50% of the assembly is composed of contigs and
scaffolds larger than or equal to that value.
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Table 3.6: Scaffolds vs Contigs

Type Number Span (Mb) N50 (bases) GC (%)

Contigs 289,789 334.6 1284 40.75
Scaffolds* 25,343 94.9 6248 39.46

* Any sequence with ≥ 10 consecutive N bases
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3.4.2 Transcriptome

Table 3.7 lists the metrics from the transcriptome assemblies. It shows that clustering

of the transcripts by UCLUST at 97% removed very little data whilst reducing the num-

ber of transcriptome fragments (transfrags) by half. The Lumbribase UniGene coverage

of around 80% is expected as the EST data that created them was taken from numerous

sources and possibly even numerous species of earthworm due to suspected misidentifica-

tion, therefore one would not expect them all to be present.

Although designed for assessing the completeness of a genome assembly, the Core Eu-

karyotic Genes Mapping Approach (CEGMA) [129] can also be used to assess the com-

pleteness of a transcriptome as essentially it searches nucleotide sequences for matches

to a set of core eukaryotic genes. CEGMA builds a highly reliable set of gene annota-

tions in the absence of experimental data which can be used to both train gene finders

and assess the completeness of a genome or transcriptome. This is achieved by search-

ing for the presence of 458 core proteins, in particular a subset of 248 highly conserved

core eukaryotic genes (CEGs), in a nucleotide FASTA file, e.g. a genome or transcrip-

tome assembly. In addition to gene models and coding sequence files, a summary output

file is given for both complete (70 % of the protein length) and partial (a pre-computed

minimum for each gene) models across four protein groups ranging from least conserved

(Group 1) to most conserved (Group 4). Metrics include #Prots (the number of CEGs

identified), %Completeness (the percent of CEGs identified), #Total (the actual number of

CEGs identified), Average (average number of orthologs per CEG, e.g. #Total / #Prots)

and %Ortho (percentage of detected CEGs that have more than 1 ortholog).

The high CEGMA values for both complete and partial values vary little across the

two transcript sets adding further weight to the quality of the transcriptome. The large

number of transcripts is partly due to Trinity creating separate transcript contigs at very

low base frequency differences in an aim to capture all low coverage transcripts. Many of

the similar alternative transcripts collapsed in the clustering step, but there are still many

with over 3% difference. Later mapping steps identify many of these as short contigs
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which don’t map to the genome and are likely to be incorrect assemblies.

Lastly, there is also the origin of the RNA to consider. The earthworms used originated

from Holland and are likely to be a different strain or even species. Even a different strain

of L. rubellus will show significant variation in the coding regions as demonstrated in the

initial AFLP analysis during the selection of the worms (Section 2.1). A best case scenario

would place the Dutch worms in clade B, but there could still be up to 2% divergence. A

BLASTN of a lumbrokinase gene predicted from the genome (k 17598) against the tran-

scriptome produced a top hit with 94% identity. This would suggest that the worms used

for the transcriptome were significantly different to the worm used for genomic sequenc-

ing, perhaps accounting for some of the unmapped transcripts. This genetic difference,

however, does not reduce the value gained from having the transcriptome for training the

gene finders and scaffolding the genome.
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Table 3.7: Transcriptome assembly metrics

Method Number of Span N50 CEGMA CEGMA UniGene
transcripts (Mb) (bases) complete (%) partial (%) coverage (%) *

Trinity 319241 569 3519 97.98 99.19 80.4
Trinity 97† 163282 120 1257 97.98 98.79 80.0

† Trinity after UCLUST at 97%
* at least 70 % of UniGene present from a BLASTN [5] search
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3.4.3 Assembly validation

A measure of the success of an assembly can be obtained from the ‘completeness’ of its

representation of protein coding regions. A measure of completeness can be achieved in

two ways:

Transcript-based validation

The Lumbribase UniGenes [126] and the Trinity assembled transcriptome were mapped

to the genome using the gapped aligner BLAT [83]. Table 3.8 lists the alignment metrics

for the three stages of genome assembly. For both UniGenes and transcriptome there is

only a marginal drop in completeness suggesting that the two stages removed very little

non-redundant data from the assembly. However, over 10% of the UniGenes and almost

20% of the transcripts were apparently missing from the genome. Perhaps the missing

UniGenes are poor quality, comprised of low numbers of ESTs?

Calculations showed the average number of ESTs mapped to the missing UniGenes

to be 6.4 compared to an average of 4.0. This number contradicted the hypothesis, but

closer inspection revealed many of these to be mitochondrial with many EST members.

Mitochondrial DNA is also more divergent than nuclear, therefore, the number of success-

ful mappings would be further confounded by higher sequence divergence across similar

strains. Removing sequences with a positive BLAST hit to the mitochondrion removed

171 sequences but decreased the number of ESTs per missing UniGene to 1.5. This low

number would suggest that the remaining missing UniGenes are indeed due to poor qual-

ity ESTs or other contaminating sequences. It is also worth noting that only 80% of the

UniGenes mapped to the transcriptome (3.7) adding further weight to their lack of value.

The missing 20% of the RNA-Seq transcriptome needs explanation. Firstly, these data

derived from a different strain of L. rubellus (as previously discussed) that may include

divergent individuals. Some of the missing 20% could derive from rapidly evolving genes

in these very different genomes. The missing 20% were also shorter than the mean length

of the whole RNA-Seq transcriptome (344 bp compared to 736 bp) suggesting that many
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might in fact be short incorrect sequences generated by Trinity or contaminant DNA frag-

ments.
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Table 3.8: Genome completeness metrics

Assembly Stage CEGMA CEGMA CEGs UniGenes Transcriptome
Complete (%) Partial (%) (%)* (%)** (%)***

Initial 16 29 96.1 89.5 80.8

Intermediate (after 16 29 95.6 88.7 80.0
collapsing haploid contigs)

Final (scaffolded 55 67 95.6 88.7 79.8
with transcripts)

* calculated based on positive TBLASTN hits to the 458 CEGs used in CEGMA
** calculated based on positive BLAT hits to the 8178 lumbribase EST clusters
*** calculated based on positive BLAT hits to the transcriptome
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Single copy core conserved gene-based validation

The CEGMA results (Table 3.8) suggested that the genome from the first two assembly

stages was too fragmented. After scaffolding, however, the number of both complete and

partial matches to CEGMA proteins rose significantly, confirming that these genes were

in fact present but likely fragmented on separate contigs/scaffolds. The proportion of the

CEG sequences mapped confirmed this further as the number remained constant. The

complete CEGMA report for the scaffolded contigs suggested that the data still contains

some redundancy in the form of diploid contigs, as the average number per group was

slightly greater than one in all groups (Table 3.9). This is also the case for the two JGI

annelid genomes, highlighting the difficulty in producing a genome that represents a hap-

loid set of chromosomes. The CEGMA result for L. rubellus was poor as both the other

annelids have near complete results for both partial and complete matches (Figure 3.9).

There is, however, a dip in Group 2 for the two JGI annelids, which is unusual as the

groups of core genes should become more readily observed from left to right.
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Table 3.9: CEGMA completeness reports for L. rubellus and the two other annelid
genomes

Species Group #Prots %Completeness #Total Average %Ortho

L. rubellus Complete 137 55.24 149 1.09 8.76

Group 1 29 43.94 30 1.03 3.45
Group 2 32 57.14 35 1.09 9.38
Group 3 37 60.66 41 1.11 10.81
Group 4 39 60.00 43 1.10 10.26

Partial 167 67.34 189 1.13 10.78

Group 1 37 56.06 38 1.03 2.70
Group 2 38 67.86 42 1.11 10.53
Group 3 46 75.41 59 1.28 19.57
Group 4 46 70.77 50 1.09 8.70

C. telata Complete 234 94.35 263 1.12 10.68

Group 1 62 93.94 72 1.16 14.52
Group 2 51 91.07 58 1.14 11.76
Group 3 59 96.72 63 1.07 5.08
Group 4 62 95.38 70 1.13 11.29

Partial 239 96.37 286 1.20 17.15

Group 1 64 96.97 78 1.22 17.19
Group 2 52 92.86 61 1.17 15.38
Group 3 60 98.36 70 1.17 15.00
Group 4 63 96.92 77 1.22 20.63

H. robusta Complete 229 92.34 256 1.12 9.61

Group 1 60 90.91 64 1.07 6.67
Group 2 48 85.71 52 1.08 6.25
Group 3 59 96.72 65 1.10 10.17
Group 4 62 95.38 75 1.21 14.52

Partial 231 93.15 259 1.12 9.52

Group 1 61 92.42 65 1.07 6.56
Group 2 48 85.71 52 1.08 6.25
Group 3 59 96.72 65 1.10 10.17
Group 4 63 96.92 77 1.22 14.29
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Figure 3.9: CEGMA summary results for L. rubellus and the two other annelid genomes

P and C represent the partial and complete results. Group is a CEGMA quantifier whereby
the core genes are placed in groups which become more conserved as the group number
increases.
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3.5 Conclusions and discussion

The conclusion of these assembly, quality control and validation checks was that the

genome is indeed a high quality draft [24]. The span of contigs and scaffolds was roughly

correct (estimated 420 Mb actual 429 Mb), given that repeat regions may have collapsed

and some amount of allelic variation may still exist. The protein-coding sequence com-

pleteness was good but not outstanding. The statistics are comparable to that of the panda

genome [95] before it was scaffolded with mate-pairs. The initial panda assembly was

generated using short read data with an average read length of 52 bases at 39X coverage

and formed contigs with an N50 length of 1.5 kb, compared to this project (47 bases, 55X

and 1.59 Kb respectively). Post scaffolding, the N50 of the panda genome rose to 1.3 Mb,

a huge improvement and a positive example of how an assembly can be improved with

additional data.

3.5.1 Assembly improvements

Aside from the improvements in read length and quality that have continued since the

original sequencing data was generated in 2008, there are other measures that could be

taken to improve the assembly.

Pre-assembly screening

Although all mitochondrial reads were removed from the assembly, this approach can be

taken a step further by using GC content and coverage in general. Preliminary assemblies

can be assessed to highlight contigs that are not from the organism of interest based on

GC content and expected coverage. These contigs can then be used to screen the sequence

data prior to in-depth assemblies, ensuring that the assembly proceeds with a cleaner set

of reads. Although very little bacterial data was detected in the filtering step it would still

help to remove this data in the preliminary assemblies.
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Read correction

Some assemblers such as SOAPdenovo [96] already implement a read correction phase,

prior to assembly, whereby all reads are subjected to some form of error correction.

Other software exists for performing this step prior to assembly [81][180][142] and report

marked improvements in assembly after this step [179]. This would reduce the variability

in the data which may reduce memory requirements sufficiently to make more assembly

tools available.

Additional read distance information

Possibly the most important of the improvements would be the addition of information that

links reads across large distances such as large insert mate-pairs which would improve an

assembly by bridging the gaps in an assembly caused by repeat regions. Recently the Pa-

cific Biosciences single molecule sequencing technology (www.pacificbiosciences.

com) has developed a ‘strobing’ method, in which the sequencing reaction is turned on

and off at known intervals over a large length of DNA producing many linked reads. This

approach would provide invaluable information for assembly yet it remains to be seen if

it proves to be successful as the error rate is currently very high at around 15%. Alterna-

tively, another next generation sequencing technology, Oxford Nanopore, promises much

longer reads (http://www.nanoporetech.com/). If this happens and read sizes

increase sufficiently, then the older overlap-layout-consensus assembly approach may re-

turn and utilise new assemblers such as the String Graph Assembler from Simpson and

Durbin [146].
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Chapter 4

Annotation

4.1 Introduction

Genome annotation is the process of identifying regions of interest and attempting to as-

sign them a name or function. Regions of interest include protein-coding genes, RNA

genes and repetitive elements. Subsequent to the definition of protein-coding genes, these

can be additionally annotated with functional information such as domain content, similar-

ity to other proteins, enzyme classification, etc. There are two computational approaches

which are not mutually exclusive: (a) identify from scratch (ab initio) and (b) evidence-

based. The former uses complex algorithms often incorporating external information via

the training of search algorithms, while the latter relies on evidence from both previous

annotations and biological information such as mRNA. As more genomes are sequenced

and more annotations become available this evidence based approach becomes more pow-

erful as the chances of significant homology increases. Ideally all annotations would be

verified manually. However, this is impossible for all but the smallest of genomes due to

human resource limitations.
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4.1.1 Repetitive Elements

Identifying the repetitive sequence content of a genome is often the first step in annotation.

Once identified, these regions can be masked, preventing subsequent annotation searches

from analysing these areas. A repetitive element (RE) is by definition any element that

is present more than once (see Section 1.6.3). Again, finding them can be achieved with

or without evidence. Without evidence involves identifying REs within the genome by

reciprocal sequence analysis. However, this can lead to the identification of false positives,

e.g. common genes/domains. Evidence based methods use databases of known REs,

which derive predominantly from model organisms. Perhaps because of the ambiguity of

identifying REs there is a plethora of software for the task [91] and each genome project

appears to use a slightly different combination of methods.

Almost all methods use data from the main database for REs, RepBase Update [79].

This is also used by the most popular repeat finding software, RepeatMasker [152]. How-

ever, unless working on an organism which already has a well documented set of REs,

then the best approach may be to combine both ab initio and evidence based methods.

Currently, there are two approaches to this.

Creating a custom library for RepeatMasker

RepeatMasker uses a modified version of the RepBase Update library. The standard format

is a modified FASTA format including a unique name for the sequence followed by a

standardised ID, with the sequence on a new line, for example:

>unique_name #LINE/RTE-BovB

ACGTACGTACGTACGTACGTACGT

A custom database in this format can be generated and appended to the RepBase Up-

date library. Novel REs can be identified in many ways, for example using RECON [11],

RepeatScout [132], Censor [80] and PILER [45]. Annotating these to a specific TE group

can be done manually using BLAST or with specific software such as TEclass [2]. To
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avoid over annotating sequence as being repetitive, and thus masked, a check of the cus-

tom library against a protein database or gene set is advisable.

All in one Pipelines

Software tools have been written that automate the process of generating a new repeat

library and then using this to annotate the repetitive content of a genome. The most pop-

ular of these is RepeatModeler [151] which first runs RECON, RepeatScout and Tandem

Repeats Finder [16], filters and classifies the results, then runs RepeatMasker.

REPET [54] is another complete package which aims to identify and classify repeats

within a genome. The first stage (TEdenovo) runs a reciprocal genome comparison us-

ing BLASTER, it then clusters common elements using RECON, GROUPER and PILER

building a multiple alignment for each element. A consensus sequence is then derived

from each cluster, which is then classified according to known RE features. Finally re-

dundancy within the repeat set is removed. The second stage (TEannot) uses this repeat

library or any other to mine the genome for all copies of the elements.

4.1.2 Non-coding RNA

A non-coding RNA (ncRNA) is a functional RNA molecule that is not translated into a

protein. Examples include transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear

ribonucleic acid (snRNA) and microRNA (miRNA).

4.1.3 Protein-coding gene prediction

Often the major interest in a genome is the encoded proteome. Yet, despite many years

of research, revealing this is still a major task, and probably the next bottleneck once the

current issues surrounding genome assembly have been resolved. For this reason, there is

an abundance of gene finding algorithms, 18 of which are discussed in detail by Picardi

et al [131]. Many of these were investigated, but only those methods that were used in

this project are discussed here. These were chosen based on their previous application and
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functionality. As with finding repeats, there are two standard techniques, with and without

direct evidence.

ab initio gene finders

Ab initio gene finders provide a quick and often accurate set of gene predictions. The

standard format of a gene is shown in Figure 4.1. Conserved features form the basis for

ab initio gene finding: a signal to start, splice sites to signal exon/intron boundaries and a

signal to stop. UTRs are much harder to predict as they show high variation in both length

and sequence content, but can be inferred from training.

However, these markers alone are insufficient to identify genes efficiently or accu-

rately, as codon bias and splice signals vary widely across the animal kingdom. In addi-

tion to donor 5’ and acceptor 3’ splice sites, introns also contain a branch site toward the

3’ end. However, these three signals have evolved dramatically [144] and do not always

conform to the GT-branch-AG rule [21]. To combat this, extra evidence is needed, often

obtained by training gene finders with genes or transcripts, ideally from the same species.

The data used for training can be obtained from the output of a naive application of a gene

predictor or from a secondary gene prediction method such as CEGMA, which creates a

set of gene predictions based on core eukaryotic genes.
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Figure 4.1: Standard gene format

UTR is untranslated region, stop is any of the three stop codons, TAG, TAA or TGA and
GT and AG are the standard splice sites which occur at the start and end of introns, the
number of which varies widely from species to species and gene to gene. The dots in the
blue boxes represent exon sequence.
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SNAP (Semi-HMM-based Nucleic Acid Parser) [87]

SNAP has been successfully used on many genomes [93][41][22][127]. Essentially

it is a hidden Markov Model (HMM) based predictor which benefits from exten-

sive and flexible training, making it excellent at finding genes in novel genomes.

Training occurs via a simple set of steps which use a starting set of gene predictions

(available from CEGMA analysis) to generate a HMM. A HMM in this sense is a

model which attempts to identify patterns of bases which match a predefined set of

states. SNAP can be trained in a boot-strapping fashion by running once, training

itself on the output, running again and so on.

AUGUSTUS [157]

AUGUSTUS, like SNAP, uses HMMs and is designed to identify protein-coding

genes in eukaryotes, but unlike SNAP it can also predict 5’UTR and 3’UTR regions.

It too has been used in many large genome projects [135] [58] [121] and benefits

from extensive training to generate either a hints file or a species specific HMM.

Evidence based gene finders

The most widely implemented evidence based finder of protein-coding regions is BLAST

[5]. Although not designed as a gene finder, it is the first step in many evidence based

gene annotation pipelines, using one of the many protein databases such as the curated

databases at UniProt [9]. These same databases can be used in a slightly more involved

way to try and identify complete gene structures in new genomes. Exonerate [150] uses

an exhaustive search method to align sequences as opposed to the quicker heuristic alter-

native used by BLAST. This makes it slower but more accurate at identifying a complete

alignment. Part of the exonerate package is protein2genome, which, as the name suggests,

can be used to align protein sequences to genomic data whilst abiding by the general rules

of gene structure, i,e, start, stop and splice sites. If, however, the genome to be annotated

is large, and the protein to be aligned is also large, the computational requirements of

Exonerate/protein2genome are immense. To minimise this, regions of interest can be pre-

99



defined by preforming a BLASTX search of the genome using the protein set, identifying

the regions that generate an alignment and then using those regions (with some extensions

either side of the BLAST results) for the protein2genome alignment.

This method of creating gene predictions, based solely on protein similarity, is not

without its risks and had been deprecated as an option from the annotation pipeline MAKER2

[70] when annotating eukaryotes until very recently (version 2.22). However, in the

case of L. rubellus, perhaps due to the fragmented genome causing issues with the tra-

ditional methods, preliminary annotations identified numerous occasions whereby ’real’

genes were being identified by protein2genome and missed by MAKER2 (Section 4.2.3).

Combined pipelines for gene finding

Large scale, integrated annotation pipelines for eukaryote genomes have been devised [32]

and often research groups create their own based on in-house best practice and algorithm-

s/models designed for the species they work on. The GMOD (Generic Model Organism

Database) project (http://gmod.org) aims to produce a suite of tools to enable the

generation of a database and genome browser for any organism. Part of this suite is the

MAKER2 package [70], a genome annotation pipeline that is highly customisable and

easy to configure. It works by combining ab initio methods with evidence from other

sources such as ESTs, transcripts and protein alignments. Figure 4.2 shows an overview

of the pipeline. The first stage is the annotation and masking of repeats. The second

stage gathers the first round of information from ab initio algorithms such as SNAP [87].

Alignments are then generated against three databases: transcripts from the same or a

very closely related species (using BLASTN), alternative transcripts form more distantly

related species (using TBLASTX) and a set of proteins (using BLASTX). This alignment

information is then refined using exonerate est2genome and protein2genome, and then all

alignment information is fed back to the ab initio predictors as new parameter estimations.

This set of gene predictions along with all the other information is then used to produce a

final set of gene predictions, in both GFF3 format and nucleotide and peptide sequences.
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Final gene predictionsFinal gene predictions

Figure 4.2: MAKER2 pipeline

A FASTA file is masked for repeats using RepeatMasker. Ab initio predictors are trained
with the alignment information of up to three sources: transcripts from the same or a
very closely related species (using BLASTN), alternative transcripts form more distantly
related species (using TBLASTX) and a set of proteins (using BLASTX). Exonerate pol-
ishes the predictions and a final set of gene predictions is produced.
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A GFF3 (General Feature Format v3) file is a standard text file with nine tab delimited

columns (Table 4.1) and was developed as part of the “Sequence Ontology Project (SO)

[48], replacing the GFF2 file format developed at the Sanger institute (www.sanger.

ac.uk). An example of a L. rubellus GFF3 file can be seen in Figure 4.3. GFF3 is

a standard format and widely used across the genomic communities (although confusing

variations exist, e.g. SNAP and EVidenceModeler [67] have their own variants). The main

advantage of GFF3 over its predecessors is the mechanism for representing hierarchical

information groups. Most commonly, this is applied to a gene object, with a three tier

system. The gene attribute is the parent to mRNA which is then parent to exon and CDS.
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Table 4.1: GFF3 format

Column Name Description

1 seqid The ID of the sequence object, in this case the contig or scaffold ID
2 source A free text qualifier used to distinguish the source of the feature. Figure

4.3 shows how this is used to identify the different gene predictors (AU-
GUSTUS, MAKER, protein2genome), and the separate stages of MAKER2
(BLASTN, TBLASTX, BLASTX, est2genome, protein2genome, Repeat-
Masker and SNAP)

3 type This is a fixed named that must adhere to a term from the Sequence Ontol-
ogy database [48], e.g. gene, mRNA, exon, CDS, match, match part

4 start The start base of the feature
5 end The end base of the feature
6 score A floating point number for the score of the feature
7 strand The strand of the feature relative to the sequence object, ’+’ for positive and

’-’ for minus strand
8 phase Only for CDS features, the phase indicates where the feature begins with

reference to the reading frame, “0”, “1” or “2” bases
9 attributes Accepts multiple tag=value pairs separate by semicolons used to provide

information for the feature, e.g. ID, Name, Parent, Target
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4.2 Chosen annotation methods

4.2.1 Repeat finding method adopted

After trying many of the different software available REPET was chosen for two reasons.

Firstly, of the two pipeline options this was the most successful in running, and secondly,

it is also developed to run on Sun Grid Engine (SGE: http://www.oracle.com/

us/sun/index.htm), meaning it could be parallelised and run on the ECDF grid.

This latter point is always an advantage when working on large data as large amounts

of RAM (over 32 GB) and large numbers of processors on a single desktop machine are

still expensive. Unfortunately, the REPET pipeline failed during the TEannot stage, due

to the huge numbers of tasks that were required causing memory issues on the ECDF

grid. However, the library that was created was transformed into a RepeatMasker library

as above. Many of the sequences within the REPET library were unclassified, so were

compared to RepBase Update version 20110419, and significant hits were used to assign

sequences in the library to RepBase RE classes. Redundancies between this set and the

RepBase Update library were removed and the two were combined and run against the L.

rubellus genome with RepeatMasker.

4.2.2 ncRNA finding method adopted

RNA families were identified by comparison to version 10.1 of the RFam database [64][65][55][36]

using the script rfam scan.pl (ftp://ftp.sanger.ac.uk/pub/databases/Rfam/

tools/rfam_scan.pl).

4.2.3 Gene finding method adopted

For each CEG identified in a genome, CEGMA produces a gene model and GFF file. This

GFF file can be used as the training set and can be converted into the two files required

for the snap parameter estimation steps using cegma2zff (part of the MAKER2 package)

to produce a snap specific ZFF file. Following a simple five step procedure, the ZFF files
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are used to create the HMM.

Initial predictions using MAKER2 gave reasonable numbers of genes. However, over-

lap with exonerate and AUGUSTUS predictions was not encouraging (see Section 4.2.4)

suggesting either that AUGUSTUS and/or exonerate predictions were incorrect, or were

correct and should be included in the gene set. Until version 2.22 released in January 2012,

MAKER2 had excluded using the protein2genome output directly for gene prediction in

eukaryotes. The fact that this has been included in the latest version adds weight to its in-

clusion in this project. For this reason, the three methods were run independently and the

output from AUGUSTUS and protein2genome were parsed and added to the MAKER2

produced GFF3 files to generate one GFF3 for each contig/scaffold, e.g. figure 4.3.

4.2.4 Functional annotation method adopted

The peptide sequences produced from each of the three gene prediction sets were anno-

tated with functional information. Annot8r [140], BLAST2GO [31][30], InterProScan

[133] and DETECT [75] were used to assign Gene Ontology (GO), Kyoto Encyclopaedia

of Genes and Genomes object identifiers (KEGG object IDs), Enzyme Commission IDs

(EC) and domain annotations. Alignment to Lumbribase UniGenes, Annelid ESTs, H.

robusta proteins, C. telata proteins and the SwissProt and NCBI nr protein databases were

also performed using BLAST. As many of the predictions were short, all gene predictions

with a coding sequence less than 50 amino acids were removed.

4.2.5 Manual annotation

Despite major improvements in genome annotation, the best method is still to annotate

manually. Computational methods are excellent and constantly improving but nothing

beats an expert in a particular field manually editing a set of genes. With this in mind,

an annotation workshop was held in July 2009 where the project collaborators came to-

gether to discuss best practices and begin to manually annotate their gene families/areas

of interest. GBrowse2 is excellent for visualising a genome, but has no option to edit
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the annotations on a particular scaffold. The two genome editing softwares considered

suitable for this task were Artemis [137] and Apollo [92], both of which have been used

by many genome projects and can work directly on GFF3 files. As Apollo is part of the

GMOD project, the continuity between the GFF3 file and the software meant that it was

more logical to work with Apollo (Figure 4.4).
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4.2.6 Databases, wiki and website

The GMOD project provides a second database schema called Chado, [118] an extensive

set of tables containing ontology information that is designed to be interoperable with

Chado-compliant databases. This schema can also hold data from GFF3 files and can be

linked to a GBrowse2 system, albeit with much slower response times in web browsing.

To avoid this issue, a Chado database can be converted to a GBrowse2-friendly SeqFeature

database via regular data dumps. Chado is thus used as a master database and SeqFeature

as a slave. The other attraction of this schema is its ability to link directly to Apollo on

a remote database, Annotation can theoretically be performed anywhere and fed directly

back to the database. The problem with this method is the lack of versioning, as any

changes made are permanent, although a solution appears to be in development (http://

gmod.org/wiki/WebApollo). There is also a steep learning curve in understanding

the complex interactions within the Chado database.

A solution to this problem was developed in the lead up to the annotation workshop.

The GFF3 file for each contig/scaffold was made available for download on the con-

tig details.php page for that particular contig. This could then be uploaded into a local

instance of Apollo and edited. The annotation information was then added in the ’Anno-

tation info editor’ using the following agreed formats (Table 4.2).
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Table 4.2: Apollo manual annotation notes

Apollo annotation Contents
info editor field
ID value/DB Name Use orthologues from C. elegans Wormbase (www.wormbase.org),

D. melanogaster FlyBase (www.flybase.org) or M. musculus MGI
(www.informatics.jax.org/).

Comments and Properties #NAME your name
#BLAST blast similarity info underpinning identification: blast
database, top hit ID, evalue and score
#GO GO terms if relevant and additional
#EC EC terms if relevant and additional
#KEGG KEGG terms if relevant and additional
#DOMAIN Pfam or other domain presence (give domain ID from In-
terPro, and coordinates of domain match
#FILE the name of a file of data relevant to this annotation (e.g. an
alignment file, or a tree file, or an informative BLAST report)
#TEXT other comments that do not fit in to the above
#PUB PMID:number

The custom information format added to each manual annotation within the Apollo annotation info editor. Notes
are appended to the ’attributes’ field of the GFF3 file.
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Each new model created a new feature in the GFF3 file with a source attribute of ’.’

and the information added in the ’Annotation info editor’ was added to the final ’attributes’

column as text. This new GFF3 file was then uploaded to the database using an upload sec-

tion, which used code within the PHP page gff uploader.php to first remove the previous

data from the SeqFeature database before adding the new GFF file. This was necessary as

the SeqFeature database has no primary key for contig/scaffold ID therefore duplicate data

can exist. The gff uploader.php script also launches an rdiff-backup command (http:

//www.nongnu.org/rdiff-backup/index.html) which created a versioned

backup of the old data whilst adding the new annotations. This process allowed instanta-

neous updates of the SeqFeature database, such that any changes were immediately visible

in GBrowse2 rather than having to wait for the next data dump. This was a useful feature

which reduces the chances of two people simultaneously editing the same gene. It also al-

lowed older versions to be accessed by the administrator in case of an incorrect annotation

being added to the database.

Two structured query language (SQL) databases were built to hold the annotation data:

a custom built PostgreSQL (Figure 4.5) and a MySQL SeqFeature database (part of the

BioPerl package [156]. The PostgreSQL database contained data describing the assembly

fragments, the annotations and information from external databases for InterProScan, En-

zyme Commission and KEGG pathway information. A brief description of each table is

given in Appendix A.
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contig
contig_id: char var(20)
length: integer
number_reads: doub prec
coverage: doub prec
seq: txt
gc: doub prec 

gene_anno
id: char var(20)
anno_db: char var(20)
anno_id: char var(20)
anno_start: integer
anno_stop: integer
score: doub prec
descr: text

gene_info
id: char var(20)
source: char var(20)
contig: char var(20)
start: integer
stop: integer
nuc: doub prec
pept: text
intron: integer
coverage: doub prec
rep: integer

interpro_key
dom_id: char var(20)
description: text
database:text
ipr_id: char var(12)
short_descr: text

ncrna
contig: char var(20)
id: char var(20)
number: integer
start: integer
stop: integer
descr: text
score: doub prec

pathway_id2name
id: char var(10)
name: character(100)

pathway_map
id: char var(15)
ec: char var(15)

ec: char var(20)
description: char_var(100)

ec2description

Figure 4.5: PostgreSQL genome database
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The PostgreSQL database was linked to a custom built PHP:Hypertext Preprocessor

(PHP) and Common Gateway Interference (CGI) front-end (Figure 4.11) through which

collaborators and interested parties could browse the genome and its annotations as they

were developed. A community portal for the L. rubellus genome project was constructed

(see www.earthworms.org; Figure 4.12). The site is controlled with a username/-

password login (which will be removed after publication) and a priority system whereby

only certain aspects of the site are open to collaborators.

The genome sequence and annotations were exposed for browsing using the MySQL

database and GBrowse2 [159]. This database stored the data from the GFF3 files in ten

tables that link to the genome browser. GBrowse2 is highly customisable with a large

community of users and active development.

4.3 Results

The selected annotation process and how it fits in to the overall assembly/annotation

pipeline is shown in Figure 3.5. Due to the fragmented nature of the genome, even af-

ter scaffolding with the transcriptome, it was assumed that some genes would be split over

multiple fragments making the process of gene finding more complex.

4.3.1 Repeat finding

Figure 4.6 shows the summary output from RepeatMasker. Even though the percentage of

bases masked (26.43) was a reasonable value, the majority of the repeats were unclassified.

This suggests that either the repeats are real and novel to L. rubellus or that they are false

positives. The latter is plausible due to the nature of the genome assembly method. The de

Bruijn graph structure used in the assembly may have generated nodes for REs that without

significant variation will have collapsed similar regions in to the same node. This effect

was anticipated from the beginning of the project and, as such, it was always assumed that

the final set of REs would be underrepresented.
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Preliminary investigations with MAKER2 were attempted using the custom repeat

libraries. However, these produced more fragmented gene models than using the default

‘Annelida’ subset of the RepBase Update library.
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Figure 4.6: RepeatMasker output
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4.3.2 ncRNA finding

Noncoding RNAs identified in L. rubellus are shown in Tables 4.3 and 4.4. Of immediate

interest were the 51 matches to the Clostridiales-1 family, an RNA structure of unknown

function normally present in bacteria from the order Clostridiales, species of which have

been documented in the guts of animals. This suggests either that there was still a large

amount of bacterial sequence in the dataset, or, in fact, that the earthworm has acquired

this RNA sequence. One of the highest scoring occurrences of this RNA was on scaf-

fold m520, which has RNA-seq transcripts spanning its entire length and is predicted to

encode L. rubellus Antimicrobial peptide lumbricin-1 (O96447) [25]. This suggested that

the scaffold was indeed from L. rubellus but also contained an RNA structure more com-

monly associated with bacteria, or was a false positive identification. Only 6 of the 51

structures were on a contig/scaffold that contained a gene prediction making it hard to be

certain as to their origin. For this reason, to fully investigate the presence of this ncRNA

within the L. rubellus genome will require experimental analysis or a more contiguous

assembly as only then can the origin of a fragment be certain.
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Table 4.3: RFam search results part 1

ID Family Description Number

RF00001 5S rRNA 5S ribosomal RNA 9
RF00002 5 8S rRNA 5.8S ribosomal RNA 5
RF00003 U1 U1 spliceosomal RNA 8
RF00004 U2 U2 spliceosomal RNA 11
RF00005 tRNA tRNA 388
RF00007 U12 U12 minor spliceosomal RNA 1
RF00009 RNaseP nuc Nuclear RNase P 1
RF00012 U3 Small nucleolar RNA U3 2
RF00015 U4 U4 spliceosomal RNA 1
RF00017 SRP euk arch Eukaryotic type signal recognition particle RNA 5
RF00020 U5 U5 spliceosomal RNA 3
RF00026 U6 U6 spliceosomal RNA 3
RF00027 let-7 let-7 microRNA precursor 8
RF00029 Intron gpII Group II catalytic intron 4
RF00032 Histone3 Histone 3’ UTR stem-loop 9
RF00045 SNORA73 Small nucleolar RNA SNORA73 family 3
RF00053 mir-7 mir-7 microRNA precursor 3
RF00069 SNORD24 Small nucleolar RNA SNORD24 1
RF00074 mir-29 mir-29 microRNA precursor 2
RF00087 SNORD26 Small nucleolar RNA SNORD26 1
RF00089 SNORD31 Small nucleolar RNA SNORD31 3
RF00091 SNORA62 Small nucleolar RNA SNORA62/SNORA6 family 1
RF00103 mir-1 mir-1 microRNA precursor family 2
RF00188 SNORD103 Small nucleolar RNA SNORD103/SNORD85 1
RF00237 mir-9 mir-9/mir-79 microRNA precursor family 4
RF00239 mir-124 mir-124 microRNA precursor family 5
RF00241 mir-8 mir-8/mir-141/mir-200 microRNA precursor family 4
RF00251 mir-219 mir-219 microRNA precursor family 2
RF00261 IRES L-myc L-myc internal ribosome entry site (IRES) 2
RF00270 SNORD61 Small nucleolar RNA SNORD61 1
RF00306 snoZ178 Small nucleolar RNA Z178 12
RF00321 snoZ247 Small nucleolar RNA Z247 1
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Table 4.4: RFam search results part 2

ID Family Description Number

RF00323 snoR79 Small nucleolar RNA R79 1
RF00440 SNORD37 Small nucleolar RNA SNORD37 1
RF00446 mir-133 mir-133 microRNA precursor family 5
RF00485 K chan RES Potassium channel RNA editing signal 38
RF00548 U11 U11 spliceosomal RNA 1
RF00563 SNORA53 Small nucleolar RNA SNORA53 1
RF00619 U6atac U6atac minor spliceosomal RNA 1
RF00657 mir-184 microRNA mir-184 4
RF00667 mir-33 microRNA mir-33 1
RF00672 mir-190 microRNA mir-190 1
RF00694 mir-137 microRNA mir-137 12
RF00696 mir-203 microRNA mir-203 3
RF00700 mir-375 microRNA mir-375 1
RF00708 mir-450 microRNA mir-450 4
RF00832 mir-71 microRNA mir-71 5
RF00834 mir-268 microRNA mir-268 2
RF00885 MIR821 microRNA MIR821 2
RF00907 mir-941 microRNA mir-941 1
RF00920 MIR444 microRNA MIR444 41
RF00929 mir-574 microRNA mir-574 3
RF01005 MIR530 microRNA MIR530 2
RF01056 Mg sensor Magnesium Sensor 1
RF01059 mir-598 microRNA mir-598 446
RF01063 mir-324 microRNA mir-324 2
RF01170 snoU61 Small nucleolar RNA U61 3
RF01226 snoZ5 Small nucleolar RNA Z5 2
RF01289 snoR17 Small nucleolar RNA snoR17 1
RF01699 Clostridiales-1 Clostridiales-1 RNA 51
RF01848 ACEA U3 ACEA small nucleolar RNA U3 2
RF01852 tRNA-Sec Selenocysteine transfer RNA 1
RF01853 mtDNA ssA Mitochondrial DNA control region secondary struc-

ture A
1

RF01960 SSU rRNA eukarya Eukaryotic small subunit ribosomal RNA 2
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4.3.3 Gene finding

MAKER

For ab initio gene predictors only SNAP was used as it proved impossible to include the

RNA-seq hints file generated for AUGUSTUS. Instead of a boot-strapping approach, the

output of CEGMA was used as the training data for SNAP.

To reduce the computational load at the alignment stage, where possible the databases

were customised to only include the relevant sequences. For example, of the 132,559

annelid transcripts (NCBI annelid ESTs and H. robusta and C. telata transcripts), only

19,052 mapped to the genome (identified by BLAST) therefore only these were provided.

For the SwissProt [10] data (September 2011) used for the protein alignments, the data set

was reduced from 531,473 to 16,910 sequences, and for the closely related transcript data

103,911 of the 163,282 L. rubellus Trinity transcripts that mapped to the genome were

provided.

Additional gene finding

For AUGUSTUS both a hints file and custom model were generated, the former using

PASA (Program for Automated Sequential Assignment) [178], ESTs and the augtrain.pl

pipeline, the latter using the RNA-seq reads mapped to the genome using BLAT. AU-

GUSTUS was then run independently on an unmasked version of the genome on a single

desktop machine.

Exonerate was run using the same reduced SwissProt database as above. After BLAST

alignment to the genome these sequences mapped to 44,678 contigs. Protein2genome was

run using these two subsets of data with the required length of protein mapping set at 50%.

4.3.4 Functional annotation

While MAKER2 has a sophisticated and thorough approach to gene finding, comparing

its output to that of AUGUSTUS and protein2genome revealed many missing, credible
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gene models (Table 4.5). The difference in annotation frequencies across the three predic-

tion methods was explored further (Figure 4.7). There was a significant amount of non-

overlapping annotation between the different gene finders gene sets. The GO, EC, KEGG

and InterProScan annotations all shared a similar distribution, but the transcript mapping

is significantly different showing a marked bias towards the MAKER2 predictions. This

probably reflects the emphasis MAKER2 placed on the transcript evidence compared to

the other methods. For these reasons a method to combine the separate gene predictions

was required which removed the redundancy between the separate prediction techniques.

Softwares designed for this purpose were investigated, notably Evidence Modeler [67]

and Glean [49]. Evidence Modeler uses a strange GFF alignment file style and a cryptic

weights file for prioritising evidence, and even with much parameter tweaking gave disap-

pointing results splitting believable gene models. Glean uses GFF2 files, and required far

too much work to downgrade the GFF3 files from the three gene prediction methods, and

so was not assessed.
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Table 4.5: Gene annotation metrics

Source of gene model
AUGUSTUS protein2genome MAKER2 Manual Total Filtered

# of models 17158 16295 17965 47 51465 44648
GO 37.01 87.13 61.80 63.83 61.56 58.87
annotation [2450] [5692] [4423] [50] [6286] [6022]
KEGG 11.09 35.52 25.47 27.66 23.86 22.87
annotation [727] [1421] [1565] [9] [1931] [1909]
EC 16.42 42.01 37.96 27.66 32.05 36.95
annotation [695] [999] [1138] [13] [1286] [1286]
IPR 39.43 81.81 72.00 70.21 64.25 61.97
annotation [2010] [3473] [3969] [42] [4647] [4596]
ESTs 24.19 28.28 34.40 21.28 29.04 27.97
mapped [2240] [1733] [2871] [29] [3569] [3538]
Transcripts 91.74 99.30 99.10 91.49 96.70 96.32
mapped [40930] [25290] [49562] [717] [61205] [60989]
Any annotation 96.3 99.9 99.4 93.6 98.5 98.3

Numbers in bold are the percentage of models with that annotation type. Numbers in square brackets are
the number of unique annotations for the prediction group.
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Figure 4.7: Gene annotation comparisons

Figures show area-proportional annotation associations for 6 annotation methods across
the three gene prediction methods. Figures created using BioVenn [74].
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Therefore, a novel approach to combine the separate gene predictions was created

using a custom perl script (Appendix B). Each gene prediction was sorted by assembly

fragment ID and then by start base, creating groups of distinct, overlapping gene predic-

tions. If the group only contained one prediction, it was added to the final set. If a group

contained multiple predictions, then a hierarchical selection procedure was implemented.

All MAKER2 genes were selected (as this was the most ’trusted’ method). If a prediction

started before and overlapped with the MAKER2 prediction it was selected also, and if

there were only protein2genome and/or AUGUSTUS predictions then AUGUSTUS was

selected. This resulted in a filtered set of 44,648 gene models. The drop in gene numbers

between the total and filtered gene sets (Table 4.5) reflected the hierarchical structure of

the annotations.

The final number of genes is significantly higher than other similar genomes. This

elevated number was expected due to the fragmented genome, resulting in genes split

over contigs (Figure 4.9). There were many more short genes predicted for L. rubellus

compared to the other two annelids. Protein2genome was the major source of short gene

models (Figure 4.8) which is to be expected as it simply uses peptide alignment to identify

potential exons.
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Figure 4.8: L. rubellus gene prediction lengths (≥ 50 aa) compared between gene finding
programmes

Figure 4.9: Annelid gene length comparisons (≥ 50 aa)
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Figure 4.10: Comparison of cumulative assembly length and fraction of annotations

Contigs are ranked by size from largest to smallest. The cumulative contig length is cal-
culated at each contig point which in turn is used to calculate the fraction of annotations.
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The final assembly and annotations are summarised in Figure 4.10. A similar pattern

was found for both the assembly and annotation data; the majority of the data was in the

first longest 50% of contigs. At this point 75% (332 Mb) of the genome was present

with the majority of the annotations (86% genes, 64% ncRNAs, 83% GO, 87% EC, 85%

KEGG and 90% InterProScan domains). The major trend demonstrated by the annotation

lines was to be above the contig line, meaning annotations are more likely to be found in

longer contigs. In fact, the 100,000 shortest contigs contain around 12% of the sequence

data and only 2-6% of the protein coding annotations. The only annotation line under the

contigs was the ncRNAs which was almost linear. This suggests that these are sparser and

as likely to be found in short as in long contigs, perhaps due to their size and repetitive

nature.

4.3.5 Database, website and wiki

A community web portal for the L. rubellus genome project was constructed (www.

earthworms.org). There are currently over 60 registered members, many of whom

actively use the site to research a wide range of biological topics. The site has a sim-

ple construction (Figure 4.11) but provides intuitive and detailed search facilities (Figure

4.12), and includes a GBrowse2 genome browser (Figure 4.13). This resource was in-

valuable during the project as visualising the data as it emerged enabled key decisions to

be made, such as identifying overlap issues between the three gene predictors, tweaking

parameters in each of the gene predictors, and guiding manual annotations.

The two databases and associated front ends provide a combined setup which allows a

complex set of search queries using the PostgreSQL DB and an in depth browsing facility

using the SeqFeature MySQL DB which is not designed for any more than basic text

searching. Designing a new database for the genome data was therefore beneficial as it

allowed expansion of searching methods and data customisation.

An additional component of the project’s web presence is a community Wiki, hosted

at the University of Edinburgh (https://www.wiki.ed.ac.uk/display/LR/
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The+Lumbricus+rubellus+genome+Wiki). This contains additional, private data

for collaborators and served as a hub for reporting the progress of the genome project.
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4.4 Discussion

4.4.1 Genome annotation, assessment and validation

Section 3.4.1 discussed the completeness of a genome. This idea can be extended to the

gene set and can also be used to compare the two, as one would hope the annotated genes

contain the same protein-coding evidence as was found in the genome itself. Table 4.6

lists the completeness metrics for the scaffolded genome and the filtered and non-filtered

gene sets.

There was a very noticeable drop in the number of mapped EST-derived transcripts

between the genome and the predicted gene model sequences. The issue of mitochondrial

reads was discussed in section 3.4.1. Examination of the number of ESTs per UniGene for

the “missing” EST UniGenes (after removal of mitochondrial UniGenes) showed they had

low coverage (1.8 ESTs per UniGene compared to an average of 4). There is also the like-

lihood that many of the UniGenes may derive from UTRs, and as these were missing from

many of the gene predictions, they will not be mapped. Only 576 of the 4560 ‘missing’

EST UniGenes had a positive match to either UniProt or other annelids ESTs suggesting

that many of the missing UniGenes were error prone, contaminants, or highly diverged.

Of the 102,077 RNA-seq derived transcripts that did not map to the predicted genes,

96,089 (92%) had no BLAST matches to NCBI nr protein database (E-value cutoff 1e-5).

Again, the transcripts that did not map to the final gene set were shorter than the average

for the whole transcriptome (484 bp compared to 736 bp). The non-mapping transcripts

may be UTR fragments, contaminants, or noncoding RNA transcripts missed in the gene

predictions.

Improvement of the genome annotation could be achieved in many ways. First, a

more accurate repeat library would help minimise false positive annotations. Second,

better evidence would improve the training of gene finders and checking completeness,

e.g. a more refined and complete transcript set. Third, a more contiguous genome would

vastly improve the quality of the gene predictions as identifying genes would be less error
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prone if they were complete and on single scaffolds. Lastly, a more advanced method to

merge gene predictions would help produce a high quality set of predictions as combining

predictions from multiple sources can be a powerful way of identifying the ’true’ set of

annotations.

132



Table 4.6: Genome vs gene completeness

Data set CEGs (%)* ESTs (%)** Transcripts (%)**

Scaffolded genome 95.6 88.7 79.8
All gene models 93.4 43.9 37.5
Filtered gene models 92.4 43.5 37.4

* calculated based on positive BLAST hits to the 458 CEGs used in CEGMA,
BLASTX for the genome and BLASTP for the peptide sequences of the gene
models.
** calculated based on positive BLAT hits for the genome and BLASTX for the
peptide sequences of the gene models.
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4.4.2 Comparing annotations

The multiple annotation methods were combined to create one set of annotations for both

the Gene Ontology (GO) terms and Enzyme Commission (EC) numbers. It was informa-

tive to compare the sources of these annotations.

Gene Ontology annotation comparisons

Three separate GO term predictors were used: annot8r, BLAST2GO and InterProScan

(the latter also being used within BLAST2GO). Annot8r uses a subset of UniProt which

has been annotated with GO terms. Positive BLAST matches to these that exceed a chosen

E-value suggest that the query sequence can be annotated with the GO term. BLAST2GO

works in a similar way in that an initial BLAST is performed and the results are used to

map GO terms based on a look-up table matching UniProt to GO terms. It is slightly more

involved as it includes a step that adds weight to the more ’reliable’ annotations based on

their origin, e.g. lower weight is given to electronic annotation. BLAST2GO also has the

additional benefit of being able to incorporate InterProScan data, and adds this information

during the GO annotation step. To compare the three, an area-proportional Venn diagram

for the three separate sources of data was created (Figure 4.14). The overlap between the

three methods was less than optimal as one predictor (BLAST2GO) contained more than

half of the predictions. The variation is likely to be due primarily to the search space

used by the three methods and the look-up tables they use to annotate positive mappings.

The two GO terms uniquely identified by InterProScan and annot8r were based on quite

short gene predictions of 75 and 111 amino acids, compared to a mean of 206 amino acids

for the complete set of predictions. This may explain their absence from BLAST2GO

predictions. To ensure comparable and largely complete metrics, all analyses in Chapter 5

used only BLAST2GO GO annotations.
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Figure 4.14: Comparison of GO annotations

Area proportional Venn diagram showing the numbers of unique GO terms predicted by
BLAST2GO, InterProScan and annot8r and how the predictions overlap between the three
methods.
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Enzyme annotation comparisons

DETECT (Density Estimation Tool for Enzyme ClassificaTion) is a method for enzyme

prediction that accounts for sequence diversity across enzyme families. Again, its method

of assigning predictions to genes is similar to, but a little more in-depth, than annot8r. In

DETECT, a subset of SwissProt proteins is generated based on those with known EC an-

notations, the proteins are then globally aligned to generate sequence profiles for each EC

number, and for those alignments with 30 members or more a probability profile is gener-

ated. Profiles were available for 585 EC categories. Sequences of interest are then com-

pared to the SwissProt subset and EC annotations are assigned whilst taking into account

the probability profile. Figure 4.15 displays the overlap between DETECT EC terms,

annot8r EC terms and BLAST2GO predictions mapped to EC terms using a GO to EC

conversion from the Gene Ontology Consortium [8]. As expected DETECT predicted far

fewer EC annotations (as only 585 categories were included) and the vast majority were

predicted from annot8r as this programme has no such restriction. Both DETECT and

BLAST2GO did however predict EC annotations not found by annot8r, but these had an

average E-value of 0.045 (compared to a mean E-value for annot8r of 1.9e-7) implying

they were weak predictions. For subsequent analysis annot8r EC predictions were used.
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Figure 4.15: Comparison of EC annotations

Area proportional Venn diagram showing the numbers of unique EC terms predicted by
DETECT, annot8r and InterProScan and how the predictions overlap between the three
methods.
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4.5 Annotation summary

The genome of L. rubellus has been used to generate the first set of repetitive elements,

ncRNAs and protein-coding gene predictions. Although some of the protein-coding gene

predictions are likely to be split over multiple contigs, it is believed that the vast majority

of coding regions have been identified. This has been confirmed by the completeness

metrics, as although CEGMA scores were low, over 90% of CEGs were identified in the

gene models. Improvements to the predictions would be achieved by greater contiguity in

the genome and a more refined set of transcripts.
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Chapter 5

Investigations

The fourth data freeze of both the L. rubellus genome and its annotation was made on the

29th September 2011. This release will also be the basis of the main L. rubellus genome

paper in preparation.

A project of this scale offers a wealth of opportunities for investigation of new and

exciting biology, ranging from transposon evolution, gene loss and gain, ncRNA families,

novel domains, and so on. However, only a small subset of these aspects could be inves-

tigated. In addition, as part of the genome paper, my collaborators are looking at several

aspects including the immune response, Hox genes, metal transporters and drug response

(as part of an overall aim to discuss the toxicological aspects of the earthworm). This

final chapter covers my explorations into the biology of L. rubellus made possible by the

genome and its annotation.

Although the set of filtered gene models has been proven to contain a comparable level

of data (Table 4.6), for the following investigations all the gene models were used except

in the comparative genomics section (Section 5.1).

These investigations used the postgreSQL and SeqFeature databases as well as directed

BLAST searches, alignment, mapping to biochemical pathways and phylogenetic analyses

as appropriate.
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5.1 Comparative genomics

Comparing one genome to others can help illuminate interesting biology. If the species

being compared are closely related, then a more intricate examination of their similarities

and differences can be performed, highlighting more of the subtle nuances within. The

aim of this investigation is to identify which elements define a species, in this case, what

makes L. rubellus, or earthworms in general, unique? As mentioned previously in Chapter

1 there are two other unpublished annelid genomes, a leech, H. robusta, and a polychaete,

C. telata. While these other annelids may not be close relatives to the earthworm, they are

still useful and informative comparators.

This investigation utilised two methods for comparing the predicted gene sets from the

three annelid genomes. Firstly, the proteins from the three species were clustered into pu-

tative gene families and the families of interest were annotated where possible. Secondly,

differences in annotation were derived based purely on the individual annotations for the

peptide sequences. The combination of these two methods ensured that the chances of a

false positive annotation was minimised in the first method, and the effects of erroneous

sequence predictions were minimised in the second.

5.1.1 Sequence comparisons

To perform comparative analyses, the predicted genes from L. rubellus were clustered

into putative gene families based on sequence similarity along with the gene sets from H.

robusta and C. telata. This approach reduced the effect of fragmented contigs and genes,

as gene fragments should have clustered along with the more complete genes of the other

species.

There are a number of tools designed for clustering, including TribeMCL [51], Or-

thoMCL [94], InParanoid [125]) and OrthoInspector [98]. OrthoMCL was used as it was

well represented in the recent literature [158][163], and had the native ability to com-

pare more than two protein sets (unlike InParanoid). OrthoMCL clustering proceeds in

five phases. First, the protein sets are filtered. Here the default parameters of minimum
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length 10 and maximum percent stop codons of 20% were used. Second, an all against

all BLAST comparison of the protein sequences with a default E-value cutoff of 1e-5 is

performed. Third, the BLAST results are parsed and a percent match length for each pair-

wise hit is computed. Fourth, all potential pairwise alignments are identified as inparalogs,

orthologues or co-orthologues. Inparalogs are pairs of proteins from one species that have

mutual hits better or equal to all hits to other species, while orthologues are pairs of pro-

teins across two species that have hits as good or better than between proteins from the

same species and co-orthologues are pairs of proteins across two species that are connected

through orthology and inparalogy. The weights of the alignments are normalised based on

the number of inparalogue pairs in each data set. The final phase is an implementation of

the MCL clustering algorithm [51] filtered on the BLAST match matrix. The only addi-

tional parameter given to the MCL algorithm is the inflation value, which is suggested to

be set at 1.5 as this “appears to balance sensitivity and selectivity: exhibiting consistency

close to the maximum observed value, while excluding a minimum number of sequences”

[94]. The inflation value affects the tightness of the clustering, and decreasing the value

decreases the tightness of the clustering and leads to more clusters than at higher values.

TribeMCL was applied to the output of OrthoMCL using gene sets from L. rubellus, H.

robusta and C. telata (Figure 5.1). A majority of clusters contained representatives from

all 3 species at all inflation values. The L. rubellus-only clusters were more numerous than

those containing only H. robusta or C. telata.

Figure 5.1 illustrates the effect the inflation value had on clustering. An interesting

observation was the relative stability of the L. rubellus clustering compared to the other

two annelids, which showed an increase in single species cluster abundance as the inflation

value was increased. This suggests that, as the tightness of the clustering decreases, it

was the other annelid sequences which were leaving the three annelid clusters, especially

sequences from C. telata.
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Figure 5.1: Plot of inflation value and percent of clusters per species group

L = L. rubellus, C = C. telata and H = H. robusta. Where an ’&’ is present, this represents
a cluster with sequences from multiple species.
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Figure 5.2: Area proportional venn diagram of OrthoMCL clusters

Counts and percentages (in brackets) of species composition for the 16,002 OrthoMCL
clusters at inflation value 1.5. For example, 5,127 (32.04%) of clusters contained proteins
originating from all three species and 4,430 (27.68%) of clusters contained proteins only
from L. rubellus.
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Table 5.1: Proportion of genes per OrthoMCL cluster at inflation value
1.5

# genes singletons single double triple

L. rubellus 44648 48.3 [1] 25.6 [2.6] 8.6 [1.7] 17.5 [1.5]
H. robusta 23432 40.1 [1] 14.2 [5.5] 15.4 [1.6] 30.3 [1.4]
C. telata 32415 27.2 [1] 31.7 [5.0] 17.9 [1.9] 23.2 [1.5]

Singletons refers to genes not placed in any cluster, single is a single species
cluster, double is a cluster containing genes from two species, and triple is a
cluster containing genes from all three species. Numbers in bold are the percent-
age of genes within that group type, numbers in square brackets are the mean
number of genes per cluster.
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Figure 5.2 shows the frequency statistics for the 16,002 clusters from the orthoMCL

output at an inflation value of 1.5. This analysis suggests a closer relationship between L.

rubellus and C. telata as genes from these two species were present together in a higher

percentage of clusters than either was with H. robusta, contrary to the expected phylo-

genetic relationships (as discussed in section 1.2). The large proportion of L. rubellus

specific gene families may have arisen through redundancy that produced false positive

paralogues, and is discussed below.

L. rubellus orthoMCL clusters

Figure 5.2 shows that a large number of the clusters are L. rubellus specific. However,

Table 5.1 shows that within this set of clusters there are actually a lower percentage of

sequences than in the C. telata only clusters. This is due to the lower number of sequences

per cluster at 2.6 and 5 respectively. This implies that many of these are indeed not paral-

ogous clusters but redundant, overlapping gene predictions caused by the merging of the

three gene prediction methods. Indeed of the 4,430 L. rubellus specific clusters 3,491 have

just two members and a further 511 have 3. Many of these are also from the same genome

fragment: of those with two members 1695 (48.5%), for three members 15 (3%) and one 4

member cluster, suggesting there are indeed redundant gene predictions especially within

the 2 member clusters. Removing these would reduce the L. rubellus specific clusters from

4,430 to 2,719, a number more in keeping with that of C. telata (Figure 5.2). The ten most

populous L. rubellus-only clusters are shown in Table 5.2.
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Table 5.2: Top 10 L. rubellus specific OrthoMCL clusters

Abundance # genes Mean Annotations Descriptions
rank length

1 101 178 n/a n/a

2 59 234 EC:1.14.14.1 [57] unspecific monooxygenase
GO:0004497 [35] monooxygenase activity
IPR001128 [34] Cytochrome P450
Q4V8D1 [21] Cytochrome P450 2U1

3 40 102 n/a n/a

4 37 112 n/a n/a

5 34 97 n/a n/a

6 30 126 IPR002350 [25] Proteinase inhibitor I1, Kazal

7 29 103 EC:1.1.1.1 [28] alcohol dehydrogenase
GO:0005488 [27] binding
IPR016040 [25] NAD(P)-binding domain

8 28 266 n/a n/a

9 26 76 n/a n/a

10 25 290 GO:0055114 [10] oxidation-reduction process
IPR003819 [9] Taurine catabolism dioxygenase

TauD/TfdA
Q9LIG0 [25] Clavaminate synthase-like protein

Numbers in square brackets are the number of elements with that annotation.
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The cluster with the most members had relatively little annotation. Its members have

have no BLAST hits to SwissProt or nr, and infrequent domain annotations. Ten con-

stituent genes were annotated with a a Cadherin domain (IPR002126) and 4 with an In-

nexin domain (IPR000990). Three genes were annotated with GO:0007156, homophilic

cell adhesion. These annotations suggest that this gene family is associated with cell-cell

interactions, adhesions and the formation of ion channels. There were many matches to

the Lumbribase UniGenes suggesting that this is indeed a common gene family within L.

rubellus but its true role remains uncertain.

The second most populous cluster encodes a family of L. rubellus-specific cytochrome

p450 (CYP) enzymes. CYP enzymes catalyse the oxidation of organic substances such as

lipids and xenobiotic toxic chemicals such as drugs. These genes are of particular interest

given the use of L. rubellus in ecotoxicological screening and research.

Many of the peptide sequences for each species did not cluster and remain as single-

tons (Table 5.1). These are either erroneous gene predictions, novel genes for that species

or contaminants that have escaped the screening process. The mean length of L. rubellus

singletons was 162 amino acids compared to non-singletons at 255 amino acids, suggest-

ing that many were the result of incomplete or incorrect gene predictions. Different gene

prediction tools yielded different proportions of singletons (Table 5.3). The majority of

the AUGUSTUS and protein2genome sequence predictions were not clustered with any

other sequences. Either these tools were more adept at finding novel gene objects, or

they have created fragments of genes (exons) that are too short to cluster. Indeed, most

of these predictions had supporting evidence from the transcriptome (Table 4.5) suggest-

ing they are real genes, just too small to be clustered. The MAKER2 predictions showed

a lower proportion of predictions failing to cluster, adding further weight to its credibil-

ity as a gene prediction method. This increased quality of prediction is the result of the

MAKER2 pipeline, which masks repeats, combines both ab initio and alignment evidence

and screens gene models, which neither exonerate protein2genome or AUGUSTUS do.
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Table 5.3: Number of L. rubellus genes derived from each prediction method classified as
orthoMCL singletons at inflation value 1.5

Cluster type MAKER2 Manual Exonerate Augustus
protein2genome

Singleton 7147 18 6521 7908
Non-singleton 10818 29 4385 7822

% singleton 40 38 60 50
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Assuming that the shortest singletons were the least reliable, analysing the gene set

in descending order of length may help maximise the likelihood of observing ’real’ L.

rubellus unique genes. The longest singleton was the gene object k 10917, a 2,909 amino

acid protein predicted by MAKER2, which spanned the first 20 kb of a 50 kb scaffold and

contained 24 introns. It had ab initio evidence from SNAP, transcript alignment evidence

with high RNA-seq peak data and many SwissProt alignments. The main annotations for

the gene object suggested it was a collagen-like protein, however the top BLAST matches

from both SwissProt and nr predictions were both bacterial, albeit with low scores. Three

of the next four longest singleton predictions were un-annotated while one was annotated

as containing a C2H2-type zinc finger domain.

While singleton sequences are by definition dissimilar, the common annotations across

the entire set were summarised to explore the main types of proteins represented (Table

5.4). It was striking that there was little evidence from the SwissProt and nr databases.

Zinc finger-related annotations were common across the L. rubellus singletons, perhaps

indicating that some may derive from retrotransposons.

There were many seven transmembrane-spanning segment annotations in the single-

tons. 7TM/GPCR proteins are commonly involved in chemosensation and olfaction, and

are frequently observed to have undergone taxon specific amplifications in sequenced

genomes. For example, in C. elegans there are over 1,200 7TM/GPCR-type genes, 6%

of the total gene count. The abundance of 7TM/GPCR genes thus hints at the richness of

the sensory capacity of L. rubellus.

L. rubellus also appeared to have a complex and unique kinome, as there were several

hundred kinase-like proteins and nearly two hundred phoshpotases in the singleton set.
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Table 5.4: Top annotations across several modalities for the the 21,594 L. rubellus single-
tons not clustered by OrthoMCL

Annotation Rank ID Number Description

InterProScan 1 IPR007087 830 Zinc finger, C2H2
2 IPR000276 495 GPCR, rhodopsin-like, 7TM
3 IPR011009 489 Protein kinase-like domain

Enzyme 1 2.7.11.1 604 non-specific serine/threonine protein kinase
2 2.1.1.43 420 Histone-lysine N-methyltransferase
3 3.1.3.48 171 Protein-tyrosine-phosphatase

KEGG 1 K10408 143 dynein heavy chain, axonemal
2 K01769 61 guanylate cyclase
3 K01539 44 sodium/potassium-transporting ATPase sub-

unit alpha

SwissProt 1 Q9VZW5 33 FMRFamide receptor [D. melanogaster]
2 P35500 31 Sodium channel protein para [D.

melanogaster]
3 Q6ZMW2 25 Zinc finger protein 782 [H. sapiens]

nr 1 328705603 21 zinc finger protein 62 homolog [A. pisum]
2 256087133 17 transient receptor potential channel [S. man-

soni]
3 325296793 15 hyperpolarizaion-activated cyclic nucleotide-

gated cation channel [A. californica]

GO 1 GO:0005515 1405 protein binding
2 GO:0005524 1100 ATP binding
3 GO:0008270 896 zinc ion binding
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5.1.2 Annotation comparisons

The proteomes of the three annelids were compared through the spectrum of functional

annotations. All three proteomes were annotated using the same tools, annot8r for EC,

BLAST2GO for GO terms and InterProScan for domain identification. The use of three

different methods for assigning function to the annotation reduced the risk of systematic

bias.

While many softwares exist for identifying enriched terms within a gene annotation

set, e.g. BiNGO [103], GOrilla [43] and GoMiner [183], these tend to be based on the

use of model organisms with well defined gene lists and annotations. For non-model

organisms the annotations may exist but standardised tables linking them to official gene

names do not. Therefore, for this project, a novel method was developed that can use any

set of annotations for three data sets to produce easily interpretable enrichment plots.

One frequently used comparative genomic approach is to order a set of annotations by

frequency and then compare these frequencies across species (Figure 5.3). This method is

useful for the identification of significant differences in highly ranked annotations.
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The limitation of such an approach lies in the restriction to a top ranking set of an-

notations. Therefore, it was decided to analyse all the annotations simultaneously using

ternary plots. To generate the plots, for any annotation, a list of IDs was generated that

included the numbers of genes with each annotation, e.g. a redundant list of GO terms,

EC numbers, InterProScan domains, etc. The three lists were compared and for each ID

the number present per list was counted and then normalised by dividing it by the total

number of IDs for that list and multiplying by 100 to generate a percentage. This resulted

in a four column data set (Table 5.5). The data file was loaded into R and plotted using the

’ternaryplot’ function (part of the VCD package http://cran.r-project.org/

web/packages/vcd/index.html). Each ternary plot was configured with the set-

ting ’prop size=TRUE’ which plotted each point at a size proportional to the combined

sum of all three entries.
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Table 5.5: Ternary plot data format example

Data ID C. telata H. robusta L. rubellus

1.1.1.1 3.53 1.08 2.72
1.1.1.10 5.16 1.69 1.05
1.1.1.100 7.29 2.63 3.63
1.1.1.101 3.03 0.94 0.91
1.1.1.102 4.65 1.42 1.189

Numbers represent the percentage of annotations
from each of the annelid data sets for each data ID.
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The resulting ternary plot has two useful features. The size of the points represents the

relative abundance of each annotation term. The position in the plot indicates the relative

contributions from the three species. For example, a large point near the L. rubellus vertex

indicates an annotation that is abundant with a majority contribution from L. rubellus,

suggesting a gene expansion in L. rubellus compared to the others.

The top ten predictions based on proportion in L. rubellus are labelled on the plots and

also presented in more detail in tables. The top sets were selected by ranking predictions

by cumulative prediction percentage across all three species, and selecting those that were

present in at least one other species and had at least 50% of the combined contribution

originating from L. rubellus .

Enzymes (EC annotations)

The annot8r enzyme predictions (EC) for the three species showed that the vast majority

of enzymes had roughly equal representation across the three annelids (Figure 5.4). Some

EC classifications were however, overrepresented in L. rubellus (Table 5.6). Many of the

enzymes in the L. rubellus top ten were involved in ion transport, particularly of met-

als. There was further evidence for the expansion of the cytochrome P450 enzymes (e.g.

unspecific monooxygenase) as also identified in L. rubellus unique clusters. This expan-

sion may reflect the earthworm’s lifestyle, in particular the various types of xenobiotics it

comes into contact with compared to the other two annelids, especially when originating

from such a unique habitat as an abandoned lead mine. L. rubellus had a relative overabun-

dance of proteins annotated as Xenobiotic-transporting ATPase, also suggesting a greater

focus on dealing with environmental toxins in the earthworm. The abundance of polypep-

tide N- acetylgalactosaminyltransferase in L. rubellus may relate to mucus production in

this species.
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Figure 5.4: Ternary plot for enzyme prediction

The top ten predictions based on proportion in L. rubellus are labelled.
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Gene ontology annotations

Analyses of the BLAST2GO gene ontology predictions (Figure 5.5 and Table 5.7) again

revealed a general similarity between the species. However, there were outliers overrepre-

sented in L. rubellus annotations. These were mainly focused around ATPase activity, ion

transport and microtubule based function, with the largest relative expansion being dynein

complex (GO:0030286) with 204 annotations compared to 7 and 6 for C. telata and H.

robusta respectively, which is again associated with microtubule motor activity.
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Figure 5.5: Ternary plot for gene ontology predictions

The top ten predictions based on proportion in L. rubellus are labelled.
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InterProScan Domains

Perhaps the most telling of the proteome comparisons can be performed with domain

annotations. Analyses of the InterProScan domain annotations across the three annelid

species (Figure 5.6 and Table 5.8) highlighted the ATPase, P-type, K/Mg/Cd/Cu/Zn/Na/Ca/Na/H-

transporter domain (IPR001757). This domain had a very high L. rubellus proportion at

78.31% and a large number of predictions (310 compared to 20 and 42 for C. telata and

H. robusta respectively). This domain is representative of P-type ATPases, two of which

were identified in the earlier enzyme analysis, Ca2+-transporting ATPase (EC:3.6.3.8) and

Na+ /K+-exchanging ATPase (EC:3.6.3.9).

Other annotation highlights include large numbers of Zinc finger annotations (IPR013087,

IPR015880 and IPR007087) two potassium channel related domains (IPR003091 and

IPR003131) and another domain associated with microtubule motor activity (IPR001752).
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Figure 5.6: Ternary plot for InterProScan domains

The top ten predictions based on proportion in L. rubellus are labelled.
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Annotation comparisons summary

The ternary plot analyses identified many functional areas of the proteome that were sig-

nificantly expanded in L. rubellus compared to the other two annelids. The most common

annotations highlighted in all three analyses were metal ion ATPase related domains and

their enzymatic functions, key components of metal homeostasis. For both the enzyme and

domain data the most significant was Calcium ATPase, but this term was the 11th most sig-

nificant for the GO data. There were 195 gene objects in the L. rubellus gene prediction set

with Ca2+-transporting ATPase (EC:3.6.3.8) annotations, 266 with calcium ion transport

(GO:0006816) annotations, and 310 with ATPase, P-type, K/Mg/Cd/Cu/Zn/Na/Ca/Na/H-

transporter (IPR001757) annotations. However, a search for the ATPase, P-type, calcium-

transporting domain (IPR005782) only returned two gene objects.

Morgan and Morgan investigated the interactions between calcium and lead metabolism

in L. rubellus [112][113] and recent work by Andre et al [6] identified multiple variants of

the sarcoplasmic/endoplasmic retriculum calcium ATPase (SERCA) in L. rubellus. They

propose that “Pb-adaptation traits may be inextricably linked to regulators of Ca physiol-

ogy” [6]. Of the two classes of variants detected by Andre et al, 15 genes corresponding to

variant 1 (GI:260181324) and 20 genes corresponding to variant 2 (GI:260181326) were

identified in the gene predictions. Considering that the worms sequenced to generate this

genome originated from the same lead mine as those studied by Morgan and Morgan and

Andre et al, this result was somewhat expected. However, L. rubellus had many more

variants of this ATPase than the two other annelids. This feature could be common to

all L. rubellus, or could be an adaptive response to lead unique to the earthworms at this

heavily contaminated site.

The analysis of the InterPro domains identified an expansions of Zinc finger domains in

L. rubellus. Lineage specific expansion of C2H2-like Zinc finger domains is well known,

for example in plants [50] and mammals [165], and a proposed function for the non-

conserved unique domains is transcriptional regulation. Expansion of Zinc finger genes

has even been linked to speciation “via modulation of expression of genes influencing re-
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productive fitness or behavior” [88]. It is hypothesised that even single amino acid change

within seemingly repetitive Zinc finger regions can lead to differential regulation of genes

involved in reproduction. This expansion of domains may therefore be linked to the pro-

posed cryptic species complex from the site in Wales from which the worm originated [6].

These speciation events are common in taxa found to be thriving in specialised environ-

ments, therefore if the next earthworm to be sequenced is from a less extreme landscape

a detailed analysis of the causes underlying speciation can be performed and any links to

Zinc finger domains can be identified.

In addition to the proposed Calcium ATPase function, the high levels of potassium

related transport proteins across all three ternary plots may be related to earthworm mus-

cle fibres as suggested by Volkov et al [172] where Na+-K+-ATPase is identified as an

important electrogenic factor in earthworm longitudinal muscle fibres.

Annotations unique to L. rubellus

Annotations that were only present in L. rubellus compared to the other two annelids sug-

gest an evolutionary gain for the earthworm or a complete loss for the other two species.

To avoid false positive annotations, analysis was focused on those L. rubellus specific

annotations with the highest frequency (Table 5.9).

L. rubellus appeared to have 94 ’Antifreeze protein, type I’ domains (IPR000104),

while H. robusta and C. telata had none. However, all of the gene objects with this domain

annotation were predicted using the AUGUSTUS gene predictor, and IPR000104 is a very

short low-complexity domain. It is thus likely that this set of genes was the result of over

prediction by AUGUSTUS, the probability of which is increased by a complete lack of

RNA-Seq evidence on any of the gene predictions.

In the EC annotations, L. rubellus had two unique glycoside hydrolase enzymes. The

first, mannan endo-1,4-β-mannosidase (EC:3.2.1.78), also known as Endo-β-1,4-mannanase,

is a polysaccharide-degrading enzyme associated with the degradation of plant cell walls.

The enzyme was predicted by both annot8r and DETECT. Thorough inspection revealed

no homolog in the other two annelids, suggesting that this annotation was indeed unique
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to L. rubellus. A study of cellulolyitc systems in animals [174] identified only three oc-

currences of endo-β-1,4-mannanase, all in molluscs (the blue mussel Mytilus edulis, sea

snail Haliotis discus and freshwater snail Biomphalaria glabrata). The enzyme is also

present in the gastropod Haliotis discus hannai [124] and the sea hare Aplysia kurodai

[182]. However, like all cellulases, it is still much more commonly associated with bacte-

ria. The L. rubellus gene prediction (k 10972) was apparently missing the first exon. This

exon had been predicted by SNAP but not used by MAKER2 and it was therefore added

manually using Apollo to create a full length sequence.

The second glycoside hydrolase enzyme unique to L. rubellus was Glucan endo-1,6-beta-

glucosidase. Closer inspection of the contig containing this domain (contig 162141) re-

veals a short contig (1.4 Kb) a high GC content (56.35%) and a very close similarity to

bacteria. Therefore, it can be assumed that this is a bacterial sequence that has slipped

through the filtering process.

A conserved cellulolytic glycosyl hydrolase was previously identified in the Lumbrib-

ase UniGenes [37] but this gene is split over a number of contigs and is therefore not rep-

resented in the predicted genes set. Since then a protein sequence for the earthworm Eise-

nia andrei was submitted to GenBank in 2007 for the homolog of Endo-β-1,4-glucanase

(http://www.ncbi.nlm.nih.gov/protein/ACE75511.1). Therefore it is in-

deed possible that the mannanase enzyme is present and unique to L. rubellus with respect

to the other annelids.

Studies into the microbiome of the earthworm [13] have identified many varied gly-

cosyl hydrolases. Therefore, to assess the likely origin of the L. rubellus homolog sim-

ilar protein sequences were downloaded from GenBank, aligned using CLUSTAL [167]

(see Appendix C), and the alignment subjected to phylogenetic analysis in MrBayes [73]

using the following parameter set: include 110-705; lset nst=6 rates=invgamma; mcmc

ngen=1000000 samplefreq=1000; sump burnin=250; sumt burnin=250; (Figure 5.7).
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Table 5.9: Most common unique L. rubellus annotations

Class Annotation ID Name Number

InterPro IPR000104 Antifreeze protein, type I 94
domain IPR020703 Tyrosine-protein kinase, non-receptor Src64B 7

IPR009311 Interferon-induced 6-16 7
IPR004342 EXS, C-terminal 7
IPR015577 Interferon-induced Mx protein 5
IPR001004 Adrenergic receptor, alpha 1C subtype 5

EC 1.7.1.6 Azobenzene reductase 1
number 3.1.3.27 Phosphatidylglycerophosphatase 1

3.2.1.75 Glucan endo-1,6-beta-glucosidase 1
3.2.1.78 Mannan endo-1,4-β-mannosidase 1

KEGG K05680 ATP-binding cassette, subfamily G (WHITE), member 4 12
pathway K04138 adrenergic receptor alpha-2A 12

K04422 mitogen-activated protein kinase kinase kinase 13
[EC:2.7.11.25]

9

K04635 Guanine nucleotide binding protein (G protein), alpha 11 7
K02522 inositol 1,4,5-triphosphate receptor, invertebrate 7

GO GO:0010045 Response to nickel cation 9
annotation GO:0008061 Chitin binding 9

GO:0004691 cAMP-dependent protein kinase activity 9
GO:0046958 nonassociative learning 8
GO:0042800 histone methyltransferase activity (H3-K4 specific) 8
GO:0016742 hydroxymethyl-, formyl- and related transferase activity 8
GO:0016309 1-phosphatidylinositol-5-phosphate 4-kinase activity 8
GO:0015279 store-operated calcium channel activity 8
GO:0009744 response to sucrose stimulus 8
GO:0008095 inositol 1,4,5-trisphosphate-sensitive calcium-release chan-

nel activity
8

GO:0006556 S-adenosylmethionine biosynthetic process 8
GO:0005833 hemoglobin complex 8
GO:0004832 valine-tRNA ligase activity 8
GO:0001518 voltage-gated sodium channel complex 8
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The tree clearly divided the bacterial sequences from the animal-derived ones, albeit

with low posterior probabilities. The L. rubellus gene is within the eukaryotic clade,

but not grouped with the other Lophotrochozoan (mollusc) sequences as would be ex-

pected. Instead it is grouped (with 0.83 posterior probability) with two sequences from

the deuterostome lancelet (Branchiostoma floridae). Inspection of the lancelet sequences

suggests these may be poor predictions, and thus that this unexpected association may

be a case of long branch attraction. The absence of the mannanase in the other annelid

genomes implies that the gene has been lost in H. robusta and C. telata, but retained in L.

rubellus.
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5.2 Bacterial DNA in the L. rubellus genome assembly

Sequencing of the earthworm genome provides an opportunity to further investigate the

biological interactions of the earthworm and its closest neighbours. Although measures

were taken to minimise the amount of non-earthworm DNA that was sequenced (Section

2.3.1), it was inevitable that some would be present. Prior to filtering there was a signif-

icant number of genome fragments in the assembly of suspected bacterial origin. These

were identified by searching for fragments annotated as exclusively matching bacterial

genes and with low sequence coverage (less than 5x). Many gene objects were identified

in the pre-filtered assemblies (Table 5.10). These could have derived from several sources:

1. Symbiotic bacteria - bacteria that exist permanently within the earthworm, e.g. Ver-

minephrobacter.

2. Passive bacteria - bacteria present within or on the earthworm at the time of DNA

extraction that are not symbionts but could still represent a biological interaction

(for example gut commensal).

3. Sequencing contamination - bacterial DNA accidentally sequenced because of lab-

oratory contamination.

The first two of these would be biologically interesting, but unfortunately the last two

provide false positives that cannot be filtered out without thorough examination. Knapp

et al [86] list bacterial taxa similar to those in Table 5.10 as diet-related gut microbiota

of L. rubellus which suggests that the majority of bacterial data present were indeed from

commensals.
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Table 5.10: Low coverage contigs annotated as being of likely bacteria origin

Taxon of best BLAST match Number of contigs

Gammaproteobacteria 1664
Alphaproteobacteria 368
Betaproteobacteria 101
Bacteroidetes 50
Bacilli 50
Actinobacteria (class) 24
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5.2.1 Verminephrobacter

The genus Verminephrobacter (Phylum: Proteobacteria, Class: Betaproteobacteria, Or-

der: Burkholderiales, Family: Comamonadaceae, see section 1.3.2) is an example of a

known earthworm symbiont which may be ubiquitous across the earthworms, and is an

active area of earthworm research. Before filtering, 37 gene objects were annotated as

matching to 32 separate genes of Verminephrobacter eiseniae (Table 5.11). This rep-

resents the largest set of L. rubellus Verminephrobacter sequences documented to date.

The L. rubellus genomic sequence data were mapped to the V. eiseniae genome to iden-

tify additional reads for assembly of the L. rubellus Verminephrobacter, but the num-

ber of reads mapped was very low. In addition, of the 37 contigs containing genes

annotated as matching Verminephrobacter 32 have an estimated read coverage ≤7 sug-

gesting that contigs from the Verminephrobacter genome are absent from the assembly

due to coverage cutoff issues. The completed V. eiseniae genome, available at http:

//genome.jgi-psf.org/verei/verei.home.html, was analysed for clues as

to the interaction between the symbionts and their hosts.
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If the relationship between earthworms and Verminephrobacter is truly symbiotic, one

may expect to find some evidence of this within the putative functions assigned to gene

products, most notably enzyme predictions, such as cases where the enzymes produced by

both species combine to complete an otherwise incomplete pathway. Such instances may

represent new pathways forming, or the loss of function from species A due to the provi-

sion by species B. To assess this hypothesis, enzymatic content of the V. eiseniae gene set

was annotated using annot8r. Pathways with unique V. eiseniae contributions are in Tables

5.12 and 5.13. Figures 5.8 to 5.12 show predicted enzymes from both L. rubellus and V.

eiseniae mapped onto the complete KEGG metabolic map. Regions which show pathway

connections going directly from L. rubellus components to V. eiseniae components or vice

versa suggest a possible area of symbiosis.

One case of this was identified in the Metabolism of Cofactors and Vitamins section

(top right of Figure 5.10), notably the Vitamin B6 metabolism pathway. The well studied

medicinal leech Hirudo medicinalis is known to have a vitamin deficiency which is over-

come by provision by endosymbiotic bacteria, possibly Aeromonas veronii [63]. Figure

5.13 shows detail of this pathway and indicates that both species contribute to its comple-

tion. Of the two central enzymes, pyridoxal phosphatase (EC:3.1.3.74) is found only in L.

rubellus while pyridoxamine 5’-phosphate oxidase (EC: 1.4.3.5) is only found in the sym-

biont. Both are required for the pathway to be functional. A very poorly-scoring match

to EC:1.4.3.5 was identified in L. rubellus and the enzyme is present in C. telata and H.

robusta, suggesting that the enzyme may have been lost in the earthworm.
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Pathways were identified where both L. rubellus and V. eiseniae contributed mutually

exclusive enzymes. Sixty-nine pathways were found to match this criteria (Tables 5.12 to

5.14). As previously discussed, the current proposed function of the Verminephrobacter

is to enhance nitrogen retention [101]. The Nitrogen metabolism pathway (ko00910) had

mutually exclusive contributions from both species (Figure 5.14). The dissimilatory reduc-

tion of nitrate to nitrite and ammonia on the left hand side of the figure is usually the work

of bacteria. L. rubellus-only predictions for two nitrate reductase enzymes, EC:1.7.1.1

and EC:1.7.1.2 were likely false positives due to the similarity to cytochrome B5. Two V.

eiseniae-only enzymes, nitrate reductase (EC:1.7.99.4) and nitrite reductase (EC:1.7.1.4),

provide a vital step in the reduction of nitrogen to ammonia but the there was no evidence

for the more useful denitrification pathway (the reduction of nitrate to nitrogenous gas

and nitrogen). Many studies have identified denitrifying bacteria in the gut of earthworms

[40][82][71][107][177] as well as high levels of nitrogenous gas, and the abundance of

denitrifying bacteria can be up to three times higher in the guts of earthworms than in the

surrounding preingested soil.

A link between Verminephrobacter and nitrogen reduction is supported by their loca-

tion in the nephridia, used for the excretion of nitrogenous waste. It is hypothesised that

the reduction of the nephridia in the marine oligochaete Olavius algarvensis has led to a

symbiotic relationship replacing the entire function of the nephridia [176]. However, from

the evidence here, it would appear that products of denitrification are likely to be provided

by other bacteria and not Verminephrobacter.
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There was a substantial contribution to Xenobiotics Biodegradation and Metabolism

(Figure 5.11) from the bacteria. The Verminephrobacter may help with the degradation of

soil toxins including organic herbicides such as atrazine. This process has previously been

suggested to be facilitated by bacteria [84] [18].

Tables 5.12 to 5.14 also list the numbers of enzymes for C. telata and H. robusta.

Interestingly, L. rubellus has more enzymes predicted than either of the other annelids in

43 of the 69 pathways. This may suggest that L. rubellus is more metabolically active than

the other annelids with respect to these pathways which is interesting as these pathways

have been selected on the basis of a shared contribution with V. eiseniae. Conversely,

pathways such as ec00362 (Benzoate degradation via hydroxylation) which have far fewer

enzymes predicted by L. rubellus compared to the other annelids may highlight instances

of ’true’ symbiosis.

5.3 Conclusions and prospects

In this thesis I have presented assembly, annotation and preliminary analyses of the genome

of L. rubellus, a temperate earthworm. This work represents the first high quality draft [24]

of an earthworm genome. In addition, the first draft of the complete proteome has been

produced as both a transcriptome and a set of gene predictions. The transcriptome has

also been used to further scaffold the genome as part of a novel approach producing sig-

nificant improvements in the assembly (https://github.com/elswob/SCUBAT).

The genome assembly would benefit from additional data in the form of multiple large in-

sert mate-pair libraries or an equivalent (3rd generation sequencing technology) to further

scaffold the assembly.

The MAKER2 pipeline has performed well and produced many reliable gene predic-

tions. However, extra gene predictors were also incorporated to improve the gene set. This

too would benefit from a more contiguous assembly as the accuracy and quality of anno-

tation is greatly enhanced by genomic contiguity. I have created a new community anno-

tation mechanism which allows consortium members to upload their manual annotations.

186

https://github.com/elswob/SCUBAT


This data is currently available to the earthworm community via www.earthworms.

org and is being accessed daily.

These annotations have enabled detailed analysis of the proteome including compar-

ative analysis with two other annelids and a symbiont. The two methods of comparative

genomics identified key areas which appear to be either highly enhanced or unique to L.

rubellus, some of which may be related to the origin of the sequenced worm and add

to the mounting evidence for using earthworms as bioindicators of soil. Present in sig-

nificantly higher number compared to the other two annelids were the cytochrome P450

enzyme unspecific monooxygenase (EC:1.14.14.1) which is often linked to the catalysis of

xenobiotics, drugs and toxic chemicals, and ATPase transport proteins, in particular Ca2+

which have possible links to lead adaptation and metal homeostasis. The enzyme Man-

nan endo-1,4-β-mannosidase (EC:3.2.1.78) has been retained by L. rubellus for lifestyle

reasons and it remains to be seen how many other earthworms have continued using this

enzyme.

This work will hopefully act as a stepping stone from which many areas of earthworm

and annelid biology will develop. It is, however, only a first draft, and will need further

work in both assembly and annotation to fully release its potential.
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Appendix A

PostGreSQL Database Tables

Table A.1: contig

Field Name Contents
contig id The contig/scaffold ID
length Length of the contig sequence
number reads Count of the reads mapped back to the contigs/scaffolds using bowtie version 0.12.5

[90]
coverage Calculated using equation (1.2) replacing genome length with contig length
seq The nucleotide contig/scaffold sequence
gc The GC content of the contig/scaffold
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Table A.2: gene info

Field Name Contents
id The unique ID for the gene object (a = AUGUSTUS, k = MAKER2, p = pro-

tein2genome, m = manual)
source The source of the gene object as above
contig The contig/scaffold ID
start The base on the contig/scaffold the gene starts
stop The base on the contig/scaffold the gene stops
nuc The nucleotide sequence of the coding region
pept The peptide sequence of the coding region
intron The number of introns in the gene object
coverage The coverage of the coding region calculated from subsets of bowtie mapping data
rep 0 or 1 to signify absence/presence in the filtered gene set

Table A.3: gene anno

Field Name Contents
id The unique ID for the gene object (a = AUGUSTUS, k = MAKER2, p = pro-

tein2genome, m = manual)
anno db The source of the annotation, e.g. ProfileScan
anno id The ID for the annotation, e.g. IPR003961
anno start The start base of the annotation on the gene object
anno stop The end base of the annotation on the gene object
score The score for the annotation
descr A description of the annotation

Table A.4: ncrna

Field Name Contents
contig The contig/scaffold ID
id The unique ID for the ncRNA
number If more than one per contig/scaffold then a number is assigned
start The base on the contig/scaffold the ncRNA starts
stop The base on the contig/scaffold the ncRNA stops
descr A description of the ncRNA
score A score for that ncRNA predictions
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Table A.5: pathway map

Field Name Contents
id The KEGG pathway ID, e.g. ec00010
ec Enzyme commission ID, .e.g. 1.1.1.1

Table A.6: pathway id2name

Field Name Contents
id The KEGG pathway ID, e.g. ec00010
name The name of the pathway, e.g. Glycolysis / Gluconeogenesis

Table A.7: ec2description

Field Name Contents
ec The KEGG pathway ID, e.g. ec00010
name The name of the pathway, e.g. Glycolysis / Gluconeogenesis

Table A.8: interpro key

Field Name Contents
dom id The domain ID, e.g. G3DSA:1.10.10.10
description The description of the domain, e.g. Winged helix-turn-helix transcription repressor

DNA-binding
database The database the domain ID is from, e,g. Gene3D
ipr id The InterProScan ID, e.g. IPR011991
short desc A shorter version of description, e.g. WHTH trsnscrt rep DNA-bd
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Appendix B

Combining gene models

1 #!/usr/bin/perl -w

2

3 use Pg;

4 use strict;

5 use warnings;

6 use Data::Dumper;

7

8

9 my ($contig,$seq,$dbname,$dbconn,$sqlcom,$dbres);

10

11 $dbname = "genome_23_05_11";

12 unless ($dbname) {

13 print "which database do you want to use? ";

14 $dbname=<STDIN>;

15 }

16

17

18 $dbconn = Pg::connectdb("dbname=$dbname"); #connect to the database

19

20 #---------------------------------------------------- process contigs with no allelic contigs

---------------------------------------------------------

21

22 print "-------------- getting non allelic contigs ----------------\n";

23 $sqlcom="select * from proteins where length(nuc) > 80 and allele = ’single’ and source != ’e2g’ order by contig;";

24 #print "$sqlcom\n";

25 $dbres = $dbconn->exec($sqlcom);

26 my $row=0;

27 my $rowmax= $dbres->ntuples;

28 print "There are $rowmax results\n";

29 my @old_result=();

30 my %multiple_annotation;

31 my %single_annotation;

32 my %annotation;

33 my $count=1;

34 my $first_man_count=0;

35 while ($row<$rowmax){

36 my @result = $dbres->fetchrow;

37 $annotation{$result[2]}{$count}=[@result];
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38 if ($result[1] eq ’manual’){

39 $first_man_count++;

40 }

41 $count++;

42 $row++;

43 }

44

45 open ANNO_DUMP,">annotation_dump.txt" or die;

46 print ANNO_DUMP Dumper( \%annotation );

47

48

49 my $start="";

50 my $end="";

51 my $old_end="";

52 my $gene_count;

53 my $single_count=0;

54 my $multiple_count=0;

55 my $multiple_gene_count=0;

56 my $total_count=0;

57 my %final_multi_gene;

58 my %final_single_gene;

59 my $early_man_count=0;

60 print "sorting them into gene groups...\n";

61 for my $key1 (sort keys %annotation){

62 #pick out multiple annotations

63 if (keys %{$annotation{$key1}}>1){

64 #print "--- multiple $key1 ---\n";

65 $start="";

66 $end="";

67 $old_end=1000000;

68 $gene_count=1;

69 #key part - sort by start point on contig!

70 for my $key2 (sort {$annotation{$key1}{$a}[3]<=>$annotation{$key1}{$b}[3]} keys %{$annotation{$key1}}){

71 $start = $annotation{$key1}{$key2}[3];

72 $end = $annotation{$key1}{$key2}[4];

73 if ($start > $old_end){

74 if ($annotation{$key1}{$key2}[1] eq ’manual’){

75 $early_man_count++;

76 }

77 $gene_count++;

78 $total_count++;

79 #print "--- gene $gene_count ---\n$annotation{$key1}{$key2}[0]\t$annotation{$key1}{

$key2}[1]\t$annotation{$key1}{$key2}[2]\t$annotation{$key1}{$key2}[3]\

t$annotation{$key1}{$key2}[4]\n";

80 $multiple_gene_count++;

81 #add to final gene set

82 $final_multi_gene{$key1}{$gene_count}{$total_count}=[@{$annotation{$key1}{$key2}}];

83 }else{

84 $total_count++;

85 if ($annotation{$key1}{$key2}[1] eq ’manual’){

86 $early_man_count++;

87 $gene_count++;

88 }

89 #print "--- gene $gene_count ---\n$annotation{$key1}{$key2}[0]\t$annotation{$key1}{

$key2}[1]\t$annotation{$key1}{$key2}[2]\t$annotation{$key1}{$key2}[3]\

t$annotation{$key1}{$key2}[4]\n";

90 $multiple_count++;

91 #add to final gene set

92 $final_multi_gene{$key1}{$gene_count}{$total_count}=[@{$annotation{$key1}{$key2}}];
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93 }

94 #not all stops go up in order, check for this

95 if ($end > $old_end || $old_end == 1000000){

96 $old_end = $end;

97 }

98 }

99 #print "\n";

100 }else{

101 #print "--- single $key1 ---\n";

102 for my $key2 (sort {$a<=>$b} keys %{$annotation{$key1}}){

103 if ($annotation{$key1}{$key2}[1] eq ’manual’){

104 $early_man_count++;

105 }

106 $single_count++;

107 $final_single_gene{$key1}{$total_count}=[@{$annotation{$key1}{$key2}}];

108 $total_count++;

109 #print "$annotation{$key1}{$key2}[0]\t$annotation{$key1}{$key2}[1]\t$annotation{$key1}{$key2

}[2]\t$annotation{$key1}{$key2}[3]\t$annotation{$key1}{$key2}[4]\n";

110 }

111 }

112 }

113 open DUMP_NA,">dump_non_annelic_final_hash.txt";

114 print DUMP_NA Dumper( \%final_multi_gene );

115 print "choosing the best predictions...\n";

116 my %picker;

117 open M,">non_allelic_multi_annotation.fa";

118 open MA,">non_allelic_multi_annotation.aa";

119 open ALLF,">all_genes.fa";

120 open ALLA,">all_genes.aa";

121 open CONT,">non_allelic_contigs.txt";

122 my $all_gene = 1;

123 my $count_man=0;

124 for my $key1 (sort keys %final_multi_gene){

125 #print "$key1 -> ";

126 for my $key2 (sort {$a<=>$b} keys %{$final_multi_gene{$key1}}){

127 labelbreak: while($key2){

128 %picker=();

129 for my $key3 (sort {$a<=>$b} keys %{$final_multi_gene{$key1}{$key2}}){

130 $picker{$key3}=$final_multi_gene{$key1}{$key2}{$key3}[1];

131 }

132 #print the manual ones separately as all of them need to come out regardless (some of them are

nested within one larger prediction and may appear to be one gene)

133 for my $pick_key (keys %picker){

134 if ($picker{$pick_key} eq ’manual’){

135 $count_man++;

136 print "non allelic $count_man manual $final_multi_gene{$key1}{$key2}{$pick_key

}[0]\n";

137 print M ">$all_gene"."_na_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[6]\n";

138 print MA ">$all_gene"."_na_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[7]\n";

139 print ALLF ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[6]\n";

140 print ALLA ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[7]\n";

141 print CONT "$final_multi_gene{$key1}{$key2}{$pick_key}[2]\n";

142 $all_gene++;
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143 last labelbreak;

144 delete($picker{$pick_key});

145 }

146 }for my $pick_key (keys %picker){

147 if ($picker{$pick_key} eq ’maker’){

148 print M ">$all_gene"."_na_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[6]\n";

149 print MA ">$all_gene"."_na_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[7]\n";

150 print ALLF ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[6]\n";

151 print ALLA ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[7]\n";

152 print CONT "$final_multi_gene{$key1}{$key2}{$pick_key}[2]\n";

153 $all_gene++;

154 last labelbreak;

155 }

156 }for my $pick_key (keys %picker){

157 if ($picker{$pick_key} eq ’augustus’){

158 #if ($final_multi_gene{$key1}{$key2}{$pick_key}[2] eq ’contig_9937’){

159 # print "found it -> $key1 - $key2 - $pick_key - $picker{$pick_key} \n";

160 #print M ">$all_gene"."_na_multi_$final_multi_gene{$key1}{$key2}{

$pick_key}[2]_$final_multi_gene{$key1}{$key2}{$pick_key}[8]

_$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene

{$key1}{$key2}{$pick_key}[6]\n";

161

162 #}

163 print M ">$all_gene"."_na_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[6]\n";

164 print MA ">$all_gene"."_na_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[7]\n";

165 print ALLF ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[6]\n";

166 print ALLA ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[7]\n";

167 print CONT "$final_multi_gene{$key1}{$key2}{$pick_key}[2]\n";

168 $all_gene++;

169 last labelbreak;

170 }

171 }for my $pick_key (keys %picker){

172 if ($picker{$pick_key} eq ’p2g’){

173 print M ">$all_gene"."_na_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[6]\n";

174 print MA ">$all_gene"."_na_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[7]\n";

175 print ALLF ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[6]\n";

176 print ALLA ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[7]\n";

177 print CONT "$final_multi_gene{$key1}{$key2}{$pick_key}[2]\n";

178 $all_gene++;

179 last labelbreak;

180 }
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181 }

182 }

183 }

184 }

185 close M;close MA;

186 open S,">non_allelic_single_annotation.fa";

187 open SA,">non_allelic_single_annotation.aa";

188 $count_man=0;

189 for my $key1 (sort keys %final_single_gene){

190 #print $key1."\n";

191 for my $key2 (sort {$a<=>$b} keys %{$final_single_gene{$key1}}){

192 if ($final_single_gene{$key1}{$key2}[1] eq ’manual’){

193 $count_man++;

194 print "single non allelic manual $count_man $final_single_gene{$key1}{$key2}[0]\n";

195 }

196 #print "single - $final_single_gene{$key1}{$key2}[0]\t$final_single_gene{$key1}{$key2}[1]\

t$final_single_gene{$key1}{$key2}[2]\t$final_single_gene{$key1}{$key2}[3]\t$final_single_gene{

$key1}{$key2}[4]\t\n";

197 print S ">$all_gene"."_na_single_$final_single_gene{$key1}{$key2}[2]_$final_single_gene{$key1}{$key2

}[8]_$final_single_gene{$key1}{$key2}[0]\n$final_single_gene{$key1}{$key2}[6]\n";

198 print SA ">$all_gene"."_na_single_$final_single_gene{$key1}{$key2}[2]_$final_single_gene{$key1}{$key2

}[8]_$final_single_gene{$key1}{$key2}[0]\n$final_single_gene{$key1}{$key2}[7]\n";

199 print ALLF ">$final_single_gene{$key1}{$key2}[0]\n$final_single_gene{$key1}{$key2}[6]\n";

200 print ALLA ">$final_single_gene{$key1}{$key2}[0]\n$final_single_gene{$key1}{$key2}[7]\n";

201 print CONT "$final_single_gene{$key1}{$key2}[2]\n";

202 $all_gene++;

203 }

204 }

205 close S; close SA; close CONT;

206

207 print "$single_count single annotation genes\n";

208 print "$multiple_count multiple annotation genes\n";

209 print "$multiple_gene_count multiple gene annotation genes\n";

210 print "total multi genes = ".(keys %final_multi_gene)."\n";

211 print "total single genes = ".(keys %final_single_gene)."\n";

212 print "$first_man_count non - allelic manual genes were read in\n";

213 print "$early_man_count non - allelic manual genes were processed\n";

214 $first_man_count=0; $early_man_count=0;

215

216

217 #=cut

218 #=pod

219

220 #--------------- get allelic contig hits-------------------

221

222

223

224 print "\n-------------- getting the allelic contig data ----------------\n";

225

226 print "getting contig lengths...\n";

227 my %contig_length;

228 my $sql_len="select contig_id,seq from contig;";

229 my $dbres_len = $dbconn->exec($sql_len);

230 my $row_len=0;

231 my $rowmax_len= $dbres_len->ntuples;

232

233 while ($row_len<$rowmax_len){

234 my @result_len = $dbres_len->fetchrow;

235 $contig_length{$result_len[0]}=length($result_len[1]);
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236 $row_len++;

237 }

238

239 my %alleles;

240 my $sqlcom2="select * from proteins where allele ˜ ’contig’ and length(nuc) > 80 and source != ’e2g’ order by contig;";

241 my $dbres2 = $dbconn->exec($sqlcom2);

242 my $row2=0;

243 my $rowmax2= $dbres2->ntuples;

244 $count=1;

245 print "There are $rowmax2 results\n";

246

247 while ($row2<$rowmax2){

248 #create hash of contig id and allelic contigs as string

249 my @result2 = $dbres2->fetchrow;

250 if ($result2[1] eq ’manual’){

251 $first_man_count++;

252 }

253 $alleles{$result2[2]}=$result2[5];

254 $row2++;

255 }

256

257 print "finding allelic representatives...\n";

258 my %allele_rep;

259 my %allele_check;

260 my $count_groups=1;

261 my $count_rep=1;

262 my $select="";

263 for my $key1 (sort keys %alleles){

264 #printf("\r%9d groups processed",$count_groups);

265 $count_groups++;

266 labelbreak2: while($key1){

267

268 my @split = split(/ /,$alleles{$key1});

269 foreach(@split){

270 s/\s+//;

271 if ( exists $allele_check{$_}){

272 #print "already done!\n";

273 last labelbreak2;

274 }

275 }

276 #find the longest one

277 my $length=0;

278 foreach(@split){

279 s/\s+//;

280 if (exists $contig_length{$_}){

281 #print "$_ : length = $contig_length{$_} -";

282 if ($contig_length{$_} > $length){

283 $select = $_;

284 #print "select = $select\n";

285 $allele_check{$_}="";

286 $length = $contig_length{$_};

287 }

288 }

289 }

290 $allele_rep{$select}="";

291 #print "chosen = $select\n";

292 }

293 }

294 print "number of representatives = ".keys(%allele_rep)."\n";
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295 open REP_DUMP, ">allele_rep_dump.txt";

296 print REP_DUMP Dumper(\%allele_rep);

297 $row2=0;

298 my %allele_groups;

299 my $allele_count=0;

300 $dbres2 = $dbconn->exec($sqlcom2);

301 while ($row2<$rowmax2){

302 my @result2 = $dbres2->fetchrow;

303 if (exists $allele_rep{$result2[2]}){

304 $allele_groups{$result2[2]}{$allele_count}=[@result2];

305 }

306 $row2++;

307 $allele_count++;

308 }

309

310 open DUMP_A,">allele_groups_hash.txt";

311 print DUMP_A Dumper( \%allele_groups );

312

313 print "sorting groups into gene groups...\n";

314 $start="";

315 $end="";

316 $old_end="";

317 $gene_count=0;

318 $single_count=0;

319 $multiple_count=0;

320 $multiple_gene_count=0;

321 $total_count=0;

322 %final_multi_gene=();

323 %final_single_gene=();

324 for my $key1 (sort keys %allele_groups){

325 if (keys %{$allele_groups{$key1}}>1){

326 $count_groups++;

327 #pick out multiple annotations

328 #print "--- allele group $key1 ---\n";

329 $start="";

330 $end="";

331 $old_end=1000000;

332 $gene_count=1;

333 #key part - sort by start point on contig!

334 for my $key2 (sort {$allele_groups{$key1}{$a}[3]<=>$allele_groups{$key1}{$b}[3]} keys %{$allele_groups{

$key1}}){

335 $start = $allele_groups{$key1}{$key2}[3];

336 $end = $allele_groups{$key1}{$key2}[4];

337 if ($start > $old_end ){

338 if ($allele_groups{$key1}{$key2}[1] eq ’manual’){

339 $early_man_count++;

340 }

341 $gene_count++;

342 $total_count++;

343 #print "--- gene $gene_count ---\n$allele_groups{$key1}{$key2}[0]\t$allele_groups{$key1

}{$key2}[1]\t$allele_groups{$key1}{$key2}[2]\t$allele_groups{$key1}{$key2}[3]\

t$allele_groups{$key1}{$key2}[4]\n";

344 $multiple_gene_count++;

345 #add to final gene set

346 $final_multi_gene{$key1}{$gene_count}{$total_count}=[@{$allele_groups{$key1}{$key2}}];

347 }else{

348 $total_count++;

349 if ($allele_groups{$key1}{$key2}[1] eq ’manual’){

350 $early_man_count++;
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351 $gene_count++;

352 }

353 #print "--- gene $gene_count ---\n$allele_groups{$key1}{$key2}[0]\t$allele_groups{$key1

}{$key2}[1]\t$allele_groups{$key1}{$key2}[2]\t$allele_groups{$key1}{$key2}[3]\

t$allele_groups{$key1}{$key2}[4]\n";

354 $multiple_count++;

355 #add to final gene set

356 $final_multi_gene{$key1}{$gene_count}{$total_count}=[@{$allele_groups{$key1}{$key2}}];

357 }

358 #not all stops go up in order, check for this

359 if ($end > $old_end || $old_end == 1000000){

360 $old_end = $end;

361 }

362 }

363 #print "\n";

364 }else{

365 #print "--- single $key1 ---\n";

366 for my $key2 (sort {$a<=>$b} keys %{$allele_groups{$key1}}){

367 if ($allele_groups{$key1}{$key2}[1] eq ’manual’){

368 $early_man_count++;

369 }

370 $single_count++;

371 $final_single_gene{$key1}{$total_count}=[@{$allele_groups{$key1}{$key2}}];

372 $total_count++;

373 #print "$allele_groups{$key1}{$key2}[0]\t$allele_groups{$key1}{$key2}[1]\t$allele_groups{$key1

}{$key2}[2]\t$allele_groups{$key1}{$key2}[3]\t$allele_groups{$key1}{$key2}[4]\n";

374 }

375 }

376

377 }

378

379 open DUMP_A,">dump_allelic_final_hash.txt";

380 print DUMP_A Dumper( \%final_multi_gene );

381

382 print "picking the best prediction...\n";

383 open AM,">allelic_multi_annotation.fa";

384 open AMA,">allelic_multi_annotation.aa";

385 $count_man=0;

386 for my $key1 (sort keys %final_multi_gene){

387 #print "$key1 -> ";

388 for my $key2 (sort {$a<=>$b} keys %{$final_multi_gene{$key1}}){

389 labelbreak3: while($key2){

390 %picker=();

391 for my $key3 (sort {$a<=>$b} keys %{$final_multi_gene{$key1}{$key2}}){

392 $picker{$key3}=$final_multi_gene{$key1}{$key2}{$key3}[1];

393 }

394 #print the manual ones separately as all of them need to come out regardless (some of them are

nested within one larger prediction and may appear to be one gene)

395 for my $pick_key (keys %picker){

396 if ($picker{$pick_key} eq ’manual’){

397 #my $pick_size = (keys %picker);

398 #print "picker size1 $key2 = $pick_size\n";

399 $count_man++;

400 print "multi allelic $count_man manual $final_multi_gene{$key1}{$key2}{

$pick_key}[0]\n";

401 print AM ">$all_gene"."_a_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[6]\n";
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402 print AMA ">$all_gene"."_a_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[7]\n";

403 print ALLF ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[6]\n";

404 print ALLA ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[7]\n";

405 $all_gene++;

406 last labelbreak3;

407 delete($picker{$pick_key});

408 }

409 }for my $pick_key (keys %picker){

410 if ($picker{$pick_key} eq ’maker’){

411 print AM ">$all_gene"."_a_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[6]\n";

412 print AMA ">$all_gene"."_a_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[7]\n";

413 print ALLF ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[6]\n";

414 print ALLA ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[7]\n";

415 $all_gene++;

416 last labelbreak3;

417 }

418 }for my $pick_key (keys %picker){

419 if ($picker{$pick_key} eq ’augustus’){

420 print AM ">$all_gene"."_a_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[6]\n";

421 print AMA ">$all_gene"."_a_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[7]\n";

422 print ALLF ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[6]\n";

423 print ALLA ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[7]\n";

424 $all_gene++;

425 last labelbreak3;

426 }

427 }for my $pick_key (keys %picker){

428 if ($picker{$pick_key} eq ’p2g’){

429 print AM ">$all_gene"."_a_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[6]\n";

430 print AMA ">$all_gene"."_a_multi_$final_multi_gene{$key1}{$key2}{$pick_key}[2]

_$final_multi_gene{$key1}{$key2}{$pick_key}[8]_$final_multi_gene{$key1}{

$key2}{$pick_key}[0]\n$final_multi_gene{$key1}{$key2}{$pick_key}[7]\n";

431 print ALLF ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[6]\n";

432 print ALLA ">$final_multi_gene{$key1}{$key2}{$pick_key}[0]\n$final_multi_gene{

$key1}{$key2}{$pick_key}[7]\n";

433 $all_gene++;

434 last labelbreak3;

435 }

436 }

437 }

438 }
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439 }

440 close AM;close AMA;

441 open AS,">allelic_single_annotation.fa";

442 open ASA,">allelic_single_annotation.aa";

443 my $count_allelic_single=0;

444 $count_man=0;

445 for my $key1 (sort keys %final_single_gene){

446 #print $key1."\n";

447 for my $key2 (sort {$a<=>$b} keys %{$final_single_gene{$key1}}){

448 if ($final_single_gene{$key1}{$key2}[1] eq ’manual’){

449 $count_man++;

450 print "single allelic manual $count_man $final_single_gene{$key1}{$key2}[0]\n";

451 }

452 print "single - $final_single_gene{$key1}{$key2}[0]\t$final_single_gene{$key1}{$key2}[1]\

t$final_single_gene{$key1}{$key2}[2]\t$final_single_gene{$key1}{$key2}[3]\t$final_single_gene{

$key1}{$key2}[4]\t\n";

453 print "1=>$all_gene"."2=na_single_$final_single_gene{$key1}{$key2}[2] 3=$final_single_gene{$key1}{$key2

}[8] 4=$final_single_gene{$key1}{$key2}[0] 5=$final_single_gene{$key1}{$key2}[6]\n";

454 print AS ">$all_gene"."_na_single_$final_single_gene{$key1}{$key2}[2]_$final_single_gene{$key1}{$key2

}[8]_$final_single_gene{$key1}{$key2}[0]\n$final_single_gene{$key1}{$key2}[6]\n";

455 print ASA ">$all_gene"."_na_single_$final_single_gene{$key1}{$key2}[2]_$final_single_gene{$key1}{$key2

}[8]_$final_single_gene{$key1}{$key2}[0]\n$final_single_gene{$key1}{$key2}[7]\n";

456 print ALLF ">$final_single_gene{$key1}{$key2}[0]\n$final_single_gene{$key1}{$key2}[6]\n";

457 print ALLA ">$final_single_gene{$key1}{$key2}[0]\n$final_single_gene{$key1}{$key2}[7]\n";

458 $count_allelic_single++;

459 $all_gene++;

460 }

461 }

462 close AS; close ASA; close ALLF; close ALLA;

463 print "$count_groups multiple annotation groups\n";

464 print "$multiple_count multiple annotations across all genes\n";

465 print "$multiple_gene_count multiple gene annotation genes\n";

466 print "$count_allelic_single single annotation genes\n";

467 print "total multi genes = ".(keys %final_multi_gene)."\n";

468 print "total single genes = ".(keys %final_single_gene)."\n";

469

470

471 print "\n------------- COMBINED ---------------\n";

472 print "$first_man_count allelic manual genes were read in\n";

473 print "$early_man_count allelic manual genes were processed\n";

474 print "Total gene objects = $all_gene\n";
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Appendix C

CLUSTAL alignment of mannan

endo-1,4-β-mannosidase

CLUSTAL 2.0.12 multiple sequence alignment

Flammeovirga_yaeyamensis_26186 MKYESKRMSNILKVLTLTLFLYGFNLSLIQAQNTNSEISCSSNDHCPQGY

Branchiostoma_floridae_2608077 --------------------------------------------------

Branchiostoma_floridae_2608148 -------------MSSESGSVNGLLLALAVVAALLSGGEAYGSGAPLSAC

k_10972_ext --------------------------------------------------

Mytilus_edulis_90108933 --------------------------------------------------

Mytilus_edulis_47606432 --------------------------------------------------

Haliotis_discus_211908630 --------------------------------------------------

Biomphalaria_glabrata_56462580 --------------------------------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------
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Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 --------------------------------------------------

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 --------------------------------------------------

Chloroflexus_aggregans_2198492 --------------------------------------------------

Oscillochloris_trichoides_3097 --------------------------------------------------

Clostridium_papyrosolvens_3262 --------------------------------------------------

Clostridium_cellulolyticum_220 --------------------------------------------------

Clostridium_sp_373945115 --------------------------------------------------

Clostridium_josui_270288704 --------------------------------------------------

Clostridium_acetobutylicum_158 --------------------------------------------------

Fibrobacter_succinogenes_26141 --------------------------------------------------

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 VCEGWPTYKCVPDGSGGGENPTPGNPIANAGANQTVIDTDGDGVETITLD

Branchiostoma_floridae_2608077 --------------------------------------------------

Branchiostoma_floridae_2608148 TSQRPGHTGTTAQTSTSPYSLTVSSSEYTPGQTLTVQITGADFQGFLIQA

k_10972_ext --------------------------------------------------

Mytilus_edulis_90108933 --------------------------------------------------

Mytilus_edulis_47606432 --------------------------------------------------

Haliotis_discus_211908630 --------------------------------------------------

Biomphalaria_glabrata_56462580 --------------------------------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------
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Limnoria_quadripunctata_293629 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 --------------------------------------------------

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 ----------------------------------------MARTLH----

Chloroflexus_aggregans_2198492 ----------------------------------------MHPTLR----

Oscillochloris_trichoides_3097 ----------------------MFKYTHYDNPAPTTKELLMYASVRPQSV

Clostridium_papyrosolvens_3262 --------------------------MKKIVTLALTTAMALLAVLPLPAS

Clostridium_cellulolyticum_220 --------------------------MKKIASLVLTTAMVFLAALPLPAS

Clostridium_sp_373945115 --------------------------MKKIVSLTISAAIVFLTALPLPAS

Clostridium_josui_270288704 --------------------------MKKVISLLLTTAMVVLAALPLPVS

Clostridium_acetobutylicum_158 --------------------------MKKLKVISTVVAGVFLS-------

Fibrobacter_succinogenes_26141 --------------------------------------------------

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 GSGSTAEGAIVSFVWSEDGIELGTGETITENFAVGTHSIELTVTDDQGGT

Branchiostoma_floridae_2608077 --------------MPDAGKTAAIVALAQHAVNIKEYADTLVDR------

Branchiostoma_floridae_2608148 RKVGTTTAVGFFTSLPSGTKSNNCDNAVASGDNTATHSSTAAKR------

k_10972_ext --------------------MFRIVVLLLVALGVATGQRFLSVQ------

Mytilus_edulis_90108933 ------------------------------------AAVRLSVS------

Mytilus_edulis_47606432 ----------------------MLLTALAVLFASTGCQARLSVS------

Haliotis_discus_211908630 --------------------MIPCAPVLLLLVLPAVECDRLQIS------

Biomphalaria_glabrata_56462580 -------------------MKTLITGFLVVLCTLKLVCARLAVS------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 -------------------MKIACVFLLVALVP--LAHSRLHIQ------

Haliotis_discus_85658727 --------------------MAVSLLVLLACGIAAVQCDRLSVQ------

Daphnia_pulex_321460555 ------------------MKMFKFVGLLLCFWASLS-AGRLTTS------

Daphnia_pulex_321460556 --------------------MFKFVALLLCCWASLS-AGRLTTS------

Daphnia_pulex_321460557 -------------------MLKLSFVLLLGFWASLS-VGRLTTS------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 ----------------MRLHEFSLIGILFVSALELTRASRLSVS------

Daphnia_pulex_321450057 ----------------MRLHEFSLIGILFVSALELTRASRLSVS------

Daphnia_pulex_321465383 ----------------MRLYEFSLVVIFFVSGLELTRASRLSVS------

Cryptopygus_antarcticus_157703 -----------------MVKLFSFLLLVWVASPAFS-SEFLKAS------

Limnoria_quadripunctata_293629 ------------------MNHHLLEAVFFFGLFTSSFAARLSVS------
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Limnoria_quadripunctata_293629 ------------------MNQMLLQAIFFLGLLSTSFAARLAVS------

Limnoria_quadripunctata_293629 ------------------MNRILVQTVLLLGVLSTSFAARLAVS------

Callosobruchus_maculatus_31557 ----------------MSTIKMKVVLAFLVIFGVHSIDAFLSVR------

Callosobruchus_maculatus_31557 ------------------MIKMKVILAFLVIFGVHSIDAFLTIR------

Callosobruchus_maculatus_31557 ------------------MVKMKAVLAFLVIFGVHSIDAFLSVR------

Callosobruchus_maculatus_31557 -------------------MKIGSAL-LLVVLCLHSIDAFLRVQ------

Gastrophysa_viridula_315570658 ---------------------MKVAVVFVLALGLHSIDAFLKVQ------

uncultured_bacterium_359755046 --------------MKGCRLALFLGLILL--ISLFVVVTDQVEA------

Spirochaeta_thermophila_307717 --------------MRRIYTVLLGALLLAGCVTGSGVPEGGVDP------

Saccharophagus_degradans_90021 -----------MPYFQVPKPSLPLACVLLVMLVSLGACSGAIQSNHGAEA

Chloroflexus_aurantiacus_16384 ---------LALCILLVLITLPHIPTAIAAPANCPVDRSHLIPRFNG---

Chloroflexus_aggregans_2198492 ---------LALIGLLIINSPLLIPTQASTPLSCPVDRSHLIDRLGG---

Oscillochloris_trichoides_3097 LRITTLSSLIFGLILALLPSLTTSPTVVSAAPACPTNQAHLVPFQGG---

Clostridium_papyrosolvens_3262 AEKTYKLGDVDNDTFVSALDLAAVRQHILGLKTLTGEAFKAADVNANGEI

Clostridium_cellulolyticum_220 AATTYKLGDVDNDTLISAIDLAAVQQHILGKKTLTGEAFKAADVNANGEI

Clostridium_sp_373945115 AATTYKLGDVDNDTQISALDLATVKQHLLGIKTLTGDALKAADVNANGEI

Clostridium_josui_270288704 AETTYKLGDVDNDTLVSAVDLAAVQSHILGKKTLTGEAFKAADVNANGEI

Clostridium_acetobutylicum_158 -------------TLVSFSSITKV---------------KAADTTDN---

Fibrobacter_succinogenes_26141 ------------------MNSFKTLIAASLLGTAAFAAPGLKVS------

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 GSATILVIVQ-------------PFNTTQMNRIAVGDQLVFLSGGNLAWY

Branchiostoma_floridae_2608077 -----------------------------QSHQRINAVLPHQCLHKSKWA

Branchiostoma_floridae_2608148 -----------------------------DLTLTWSAPENQAGQGTIEFV

k_10972_ext -----------------------------NGQLTLNGEKVFLSGMNIAWQ

Mytilus_edulis_90108933 -----------------------------GTNLNYNGHHIFLSGANQAWV

Mytilus_edulis_47606432 -----------------------------GTNLNYNGHHIFLSGANQAWV

Haliotis_discus_211908630 -----------------------------GDYFTKDGSRVFLSGVNLAWV

Biomphalaria_glabrata_56462580 -----------------------------GNQFTYNGQRIFLSGGNLPWI

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 -----------------------------NGHFVLNGQRVFLSGGNLPWM

Haliotis_discus_85658727 -----------------------------GNHFVKGGQKVFLSGANLAWV

Daphnia_pulex_321460555 -----------------------------GTNLYYNGQKVFLSGANIAWN

Daphnia_pulex_321460556 -----------------------------GTNFYYNGQKVFLSGVNIAWN

Daphnia_pulex_321460557 -----------------------------GRDFLYNGQRVFLSGANIAWY

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 -----------------------------GNKLMFNGKSVFLSGVNFAWN

Daphnia_pulex_321450057 -----------------------------GNKLMFNGKSVFLSGVNFAWN

Daphnia_pulex_321465383 -----------------------------GNQLMFNGKSVFLSGVNFAWN

Cryptopygus_antarcticus_157703 -----------------------------GSNFYYGGQKVFLSGVNFAWR
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Limnoria_quadripunctata_293629 -----------------------------GGGLSYGGQKAYLNGANIAWN

Limnoria_quadripunctata_293629 -----------------------------GTSLTYGNDQVYLNGVNIAWN

Limnoria_quadripunctata_293629 -----------------------------GMTLTYGGKQVYLNGENIPWN

Callosobruchus_maculatus_31557 -----------------------------NTSFYYGNDKVFLSGANLAWI

Callosobruchus_maculatus_31557 -----------------------------NNSFYYGEDRVFLSGANIAWI

Callosobruchus_maculatus_31557 -----------------------------NTSFYYGKDKVFLSGANIAWF

Callosobruchus_maculatus_31557 -----------------------------DKKLFYNNDQVFLSGANIAWF

Gastrophysa_viridula_315570658 -----------------------------NNALYYNNDKVFLSGANIAWY

uncultured_bacterium_359755046 -----------------------------EGTLKYMNKDFFASGMNLAWL

Spirochaeta_thermophila_307717 -----------------------------DALLPHNGKRVFLNGMNLAWV

Saccharophagus_degradans_90021 ------------------------ALKTPQGHVVIKGKPVYLSGFNVAWF

Chloroflexus_aurantiacus_16384 -----------------------RWFLLGANVPWLNGGYSADFGTVEEWG

Chloroflexus_aggregans_2198492 -----------------------HWFLVGANVPWLNGGYGADFATVEEWN

Oscillochloris_trichoides_3097 -----------------------RWFLSGVNVPWQSGGYGADFGTVEEWG

Clostridium_papyrosolvens_3262 EALDLSELKQFLLGKITKFSGEGQQQPSGVGITWMDGKTLYPVGVNYAWY

Clostridium_cellulolyticum_220 EALDLAELKQFLLGRITKFSGEGQQQPSGVGITWMDGNTLYPVGVNYAWY

Clostridium_sp_373945115 EALDLSEIKQYLLGKITKFSGEGQQQPSGVGITWMDGNTLYPVGVNYAWY

Clostridium_josui_270288704 EALDLAEIKQFILGRIIKFSGEGQQQPPGLGIIWMDGSTIYPVGVNYAWY

Clostridium_acetobutylicum_158 -------------------------KP---GINWMNGSKYFPLGANYAWD

Fibrobacter_succinogenes_26141 -----------------------------GTDLQYNGKKIFFSGTNLAWS

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 NFANDFGEKTTN---LDYFEQAIS--------------------------

Branchiostoma_floridae_2608077 LTLEERVCLQLVGDFRLALYRAQATNGR---------------------K

Branchiostoma_floridae_2608148 ATVAQQKATYWMGITSAQLSEAASGGATGATPTGSSQTVTASILARCWFL

k_10972_ext NYGADFGNGQYSCCTSSALDDYVR--------------------------

Mytilus_edulis_90108933 NYARDFGHNQYS-KGKSTFESTLS--------------------------

Mytilus_edulis_47606432 NYARDFGHNQYS-KGKSTFESTLS--------------------------

Haliotis_discus_211908630 GYATDFGNNQFA-ARKSSYERFFK--------------------------

Biomphalaria_glabrata_56462580 QYAYDFGDHQWD-SRKGTFENQLT--------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 SYAYDFGDGQWQ-RNKNRIEPEFK--------------------------

Haliotis_discus_85658727 QYAYDFGNNHYKGRVQGILEGYIR--------------------------

Daphnia_pulex_321460555 SYGYDFGNGQYAANSKSTLESWLT--------------------------

Daphnia_pulex_321460556 SYGYDFGNGQYAANSKATLESWLT--------------------------

Daphnia_pulex_321460557 SYGYDFGNGVYQSDVKETLETWLT--------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 SYGNDFGNGKYTANSKTTFEQWLA--------------------------

Daphnia_pulex_321450057 SYGNDFGNGKYTANSKTTFEQWLA--------------------------

Daphnia_pulex_321465383 SYGYDFGNGQYTANSKTTFEQWLA--------------------------
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Cryptopygus_antarcticus_157703 SYGSDFGNGQYASNG-PALKDWIN--------------------------

Limnoria_quadripunctata_293629 SYGYDFGNGNY----DGSIESWMS--------------------------

Limnoria_quadripunctata_293629 SYGYDFGNGNY----DGSIENWMS--------------------------

Limnoria_quadripunctata_293629 NYGYDFGNGVY----DNTIEQWMQ--------------------------

Callosobruchus_maculatus_31557 YFGSDFGSGGY-AKVRSAYESAID--------------------------

Callosobruchus_maculatus_31557 NFAEDFGSGGY-AKVRSSYESAID--------------------------

Callosobruchus_maculatus_31557 NFARDFGSGGY-YQVRSRFETAIN--------------------------

Callosobruchus_maculatus_31557 NFARDFGSGAY-DYVKPRFEQAID--------------------------

Gastrophysa_viridula_315570658 NYGWDFGSGAY-SNVKTNYQQALD--------------------------

uncultured_bacterium_359755046 SFAQDLDR-FYEPRFIRALDEVAA--------------------------

Spirochaeta_thermophila_307717 NFANDLTQ-FDEARFTRAVDDVAS--------------------------

Saccharophagus_degradans_90021 DFARDFGKGVDEKALRKALQQVKD--------------------------

Chloroflexus_aurantiacus_16384 QHTYDAN---------ATRTMFRA--------------------------

Chloroflexus_aggregans_2198492 QHTYDPD---------TTRAMFRA--------------------------

Oscillochloris_trichoides_3097 QHTYSTD---------KTRQMFAA--------------------------

Clostridium_papyrosolvens_3262 NWSYEFSDNNWNYNFSRIKSDLDT--------------------------

Clostridium_cellulolyticum_220 NWSYEFSDNNWNSNFTRIKSDLDT--------------------------

Clostridium_sp_373945115 NWSYEFSDNNWTSNFTRIKSDLDT--------------------------

Clostridium_josui_270288704 NWSYEFLDNNWTYNFTRIKSDLDA--------------------------

Clostridium_acetobutylicum_158 EWDNDFNDNGWTTRFAKIKADFDN--------------------------

Fibrobacter_succinogenes_26141 DYNSDVGASPLDENAWRKAVEGTR--------------------------

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 --------------------------------------------------

Branchiostoma_floridae_2608077 ASTAVLIEKLEEKKK-----------------------------------

Branchiostoma_floridae_2608148 SSSCGYLRRLRTETLGTVYLEYDLLFRCTGDIQQGTPTVQAWCRYGSDFG

k_10972_ext -----RIKAEGETHS-----------------------------------

Mytilus_edulis_90108933 --------------------------------------------------

Mytilus_edulis_47606432 --------------------------------------------------

Haliotis_discus_211908630 --------------------------------------------------

Biomphalaria_glabrata_56462580 --------------------------------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------
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Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 --------------------------------------------------

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 --------------------------------------------------

Chloroflexus_aggregans_2198492 --------------------------------------------------

Oscillochloris_trichoides_3097 --------------------------------------------------

Clostridium_papyrosolvens_3262 --------------------------------------------------

Clostridium_cellulolyticum_220 --------------------------------------------------

Clostridium_sp_373945115 --------------------------------------------------

Clostridium_josui_270288704 --------------------------------------------------

Clostridium_acetobutylicum_158 --------------------------------------------------

Fibrobacter_succinogenes_26141 --------------------------------------------------

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 -------------------------DFASRGGNSMRLWVHINGANNPELD

Branchiostoma_floridae_2608077 --------------SRVARFFTAVMALCICG---LLGGKKDVHEEEHEYI

Branchiostoma_floridae_2608148 GGLYYSYKSSSPCPSSKSKYEQAIMDIANNGGNSLRVWLHVEGQETPVFS

k_10972_ext ----------------------------------VRIWLHCDGWYTPSYD

Mytilus_edulis_90108933 -------------------------DMQSHGGNSVRVWLHIEGESTPEFD

Mytilus_edulis_47606432 -------------------------DIQSHGGNSVRVWLHIEGESTPEFD

Haliotis_discus_211908630 -------------------------ELHESGGSSIRIWIHVQGETSPLFD

Biomphalaria_glabrata_56462580 -------------------------QLKNAGGNSIRLWVHIQGESTPAFD

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 -------------------------KLHDAGGNSMRLWIHIQGETTPAFN

Haliotis_discus_85658727 -------------------------DLSKAGGNSMRVWIHMEGANTPEFD

Daphnia_pulex_321460555 -------------------------QIANSGGNSVRIWLHVEGANTPAFD

Daphnia_pulex_321460556 -------------------------RIDANGGNSVRMWVHVDGKNTPAFD

Daphnia_pulex_321460557 -------------------------MIANSGGNSVRQWVHVEGQNTPAYD

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 -------------------------EVATNGGNSVRVWLHVEGDNTPNYD
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Daphnia_pulex_321450057 -------------------------EVATNGGNSVRVWLHVEGDNTPNYD

Daphnia_pulex_321465383 -------------------------EVATNGGNSVRVWLHVEGDNTPNYD

Cryptopygus_antarcticus_157703 -------------------------KVKASGGNTARVWVHVEGQVSPAFD

Limnoria_quadripunctata_293629 -------------------------DIGSAGGNAARQWVHVEGKSTPQYD

Limnoria_quadripunctata_293629 -------------------------DIGSAGGNTVRMWVQVEGESTPSFD

Limnoria_quadripunctata_293629 -------------------------DIGSAGGNSVRMWVHVEGQNTPSFD

Callosobruchus_maculatus_31557 -------------------------DISSHGGNAMRVWLHADGRYSPKWD

Callosobruchus_maculatus_31557 -------------------------DISSHGGNVIRVWLHADGRWSPKWD

Callosobruchus_maculatus_31557 -------------------------EISSNGGNVIRVWVHTDGQWSPKWD

Callosobruchus_maculatus_31557 -------------------------EISNAGGNVIRVWVHIDGQWSPKWD

Gastrophysa_viridula_315570658 -------------------------EISQAGGNSIRVWVHIDGQWSPKFD

uncultured_bacterium_359755046 -----------------------------AGGNTVRWWLHTNCKMSPMFK

Spirochaeta_thermophila_307717 -----------------------------AGGNVLRWWLHVNGSKTPLFD

Saccharophagus_degradans_90021 -----------------------------SGGNSLRWWMHTDGSQTPEWR

Chloroflexus_aurantiacus_16384 --------------------------LRQQGANTVRWWLFADGRGAPEFN

Chloroflexus_aggregans_2198492 --------------------------LRQKGANTVRWWLFADGRGTPEFD

Oscillochloris_trichoides_3097 --------------------------LKANGINTVRWWVFADGRGAPEFA

Clostridium_papyrosolvens_3262 --------------------------MSTKGIHALRWWVFPDLAYGPLWS

Clostridium_cellulolyticum_220 --------------------------MSSKGINSLRWWVFPDLAYGPLWS

Clostridium_sp_373945115 --------------------------MSTKGIHSLRWWVFPDLAYGPLWS

Clostridium_josui_270288704 --------------------------MSTKGIRSLRWWIFPDLAYGPLWS

Clostridium_acetobutylicum_158 --------------------------MSAQGIHTVRWWVFCNMYASPLFS

Fibrobacter_succinogenes_26141 ----------------------------AAGGNAIRWWLFNNMSQSPTID

Chlamydomonas_reinhardtii_1594 ------------------------------------MYLDVIGHHN----

Flammeovirga_yaeyamensis_26186 AN---GYTSGLEPSMIQDLRDVLDIAYDHNVVLNLCLWSFDMLNTRDYPI

Branchiostoma_floridae_2608077 SW-GSVTQTDSTNQLINDLKSLLSYAKARNVLVFLVLWNGAHHHDM----

Branchiostoma_floridae_2608148 YW-GSVTQTDATDELVNELKDLLVFAKRHNVLVFLVLWNGAHHGNH----

k_10972_ext SG-GYVTGTDDQNTMTSELAQFLDVAYDNNLLVFIVLWNGATTPDP----

Mytilus_edulis_90108933 NN-GYVTGIDN--TLISDMRAYLHAAQRHNILIFFTLWNGAVKQST----

Mytilus_edulis_47606432 NN-GYVTGIDN--TLISDMRAYLHAAQRHNILIFFTLWNGAVKQST----

Haliotis_discus_211908630 GN-GYVTGLDSSGTFLSDMNELLGLGQKYNILVFFCLWNGAVKFDK----

Biomphalaria_glabrata_56462580 GN-GYVTAPDHQGTLINDFKDMLDIAQRHNILVFPTLWNAAVDQDN----

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 DQ-GFVTGPDKQGTMLDDMKDLLDTAKKYNILVFPCLWNAAVNQDS----

Haliotis_discus_85658727 SS-GHVIGMDKGGTMLADLKSMLNYAASHNVLIFLCLWNGAVNQGS----

Daphnia_pulex_321460555 GN-GYVTGPDSTGTMISDMRSFLDFAQSKNILVIFVLWNGAYLTV-----

Daphnia_pulex_321460556 GN-GYVTGLDNTGTMISDLKSFLDFAQSKQLLVVLVLWNGAERPT-----

Daphnia_pulex_321460557 SN-GYVTGPDRTGTIIDDMRSFLDFAQSQNILVIFVLWNGAVLEN-----

Daphnia_pulex_321450949 --------------------------------------------------
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Daphnia_pulex_321465382 AN-GYVLGPDKTGTLISDMKSFLDSAKAKNILVIFVLWNGATLRN-----

Daphnia_pulex_321450057 AN-GYVLGPDKTGTLISDMKSFLDSAKAKNILVIFVLWNGATLRN-----

Daphnia_pulex_321465383 AN-GYVLGPDRTGTLIPDMKLFLDSAKAKNILVIFVLWNGATLRN-----

Cryptopygus_antarcticus_157703 SH-GFVTSTDSKKTLINDLSDLLDYANGQNVFLILVLFNGALQNN-----

Limnoria_quadripunctata_293629 GS-GMVTSCDSSGAFLRDVVSFLDSAQQSDVLVIFTIWNGAVMSN-----

Limnoria_quadripunctata_293629 NR-GMVTACDNTGDFLTDVVTFLDAAQESGVLVIFTVWNGAVMSN-----

Limnoria_quadripunctata_293629 GR-GMVTACDNTGDFLNDVVQFLDSAQQSNVLVMFTVWNGAVMEN-----

Callosobruchus_maculatus_31557 QD-GFATG-EDTQSLIEDLGLMLDYAASKNVFIVLTLWT-LEGTP-----

Callosobruchus_maculatus_31557 KD-GFATG-EDTQSLIDDLGLMLDYAASKNVFVFITLWT-LEGTP-----

Callosobruchus_maculatus_31557 QN-GFATG-EDTQSLIQELGLMLDYAASKNVFVILVLWN-LDVTP-----

Callosobruchus_maculatus_31557 AN-GFATG-EDTPSLINELGQLLDHAAQRNVFVIFTLWD-LNVTP-----

Gastrophysa_viridula_315570658 SE-GYATG-SDTDSLISDLGELLDYAEQKNVFVILCLWN-LAVAP-----

uncultured_bacterium_359755046 D----GKVSGLHRSNIPNLVRALDLAEERGIVLLLSLFSFDMLQDQPGVN

Spirochaeta_thermophila_307717 EN---GMVVGMPEEALINLKRALDISFSRGVGLILCLWSFDMLQPQSGVN

Saccharophagus_degradans_90021 TVKGVRLVAGPGGSLIQDLKTALDIAAEYDVYIVPSIWSFDMLKDNDYRK

Chloroflexus_aurantiacus_16384 ASS-GGAVTGFDATFLPSLASAIQIAAEENIYLVFNLWSFDMLFADSTAT

Chloroflexus_aggregans_2198492 ANN-GGAVTGLDTNFLPGLASAIQIAAEEDIYLVFNLWSFDMLMADSTMY

Oscillochloris_trichoides_3097 ATS-GGAVTGLDANTLPSMADAIKLAQEYNIRIVFNLWSFDMLMPDSNGY

Clostridium_papyrosolvens_3262 GPNEGSLCTGLPEKWVDHMKETCDYAYSKGIKIYWTITSFDCARADDAYD

Clostridium_cellulolyticum_220 GPNEGSLCTGLPEKWVDHMKETCDYAYSKGIKIYWTITSFDCARADDSVD

Clostridium_sp_373945115 GANEGSLCTGLPAKWVDHMKETCDYAYSKGIKIYWTITSFDCARADDSVD

Clostridium_josui_270288704 GPNEGSLCTGLPDKWVDHMKETCDYAYSKGIKIYWTITSFDCAREDDSVD

Clostridium_acetobutylicum_158 SQDGKGVCTGLPDKWTDHMKEAADYAYSKNMKIYFTLTSFDVAKTNNSFY

Fibrobacter_succinogenes_26141 ET--THLVTGPKENTIANMKKALDIAEEYGVMVSMCLFSHNLMEPNQWGL

Chlamydomonas_reinhardtii_1594 ----------------SELPYLLPLVTS----------------------

Flammeovirga_yaeyamensis_26186 E---VSQRARKLLEEEENIDAYINNALIPMVN--------GLKDHEALLS

Branchiostoma_floridae_2608077 ----YWKRLQNLIWDDLKLDTYLEHALKPLAG--------ALKNQRALGG

Branchiostoma_floridae_2608148 ----FWK-VRDLVWDDLKLGTYVEQALRPLAL--------GLKDERALGG

k_10972_ext ----QYL---DLIWDESKLQSYIDRALAPMVS--------ALSGKVALGG

Mytilus_edulis_90108933 ----HYR-LNGLMVDTRKLQSYIDHALKPMAN--------ALKNEKALGG

Mytilus_edulis_47606432 ----HYR-LNGLMVDTRKLQSYIDHALKPMAN--------ALKNEKALGG

Haliotis_discus_211908630 ----EYR-MDGLIRDTGKLTSYLQHALIPWVK--------SVKDNPAVGG

Biomphalaria_glabrata_56462580 ----SHR-LDGFIVDWRKLQSYIDKALVPLAS--------AVRGHPALGA

Biomphalaria_glabrata_56462582 --------LDGLIVDERKLQSYIDKVLTPLAT--------AVKGHPALGA

Aplysia_kurodai_317414223 ----HNR-LDGLIKDQHKLQSYIDKALKPIVN--------HVKGHVALGG

Haliotis_discus_85658727 ----HAH-LDGLIRDTNKLQSYINKALIPMVK--------GLAGLPGLGG

Daphnia_pulex_321460555 ------QNTINLFWDDGKLQSYIDNALKPMVS--------ALGDHPALGA

Daphnia_pulex_321460556 ------DNTINLLYDESKLQTYIDNALKPMVD--------ALGNHPALAA

Daphnia_pulex_321460557 ------QNTINLFYDDAKLQSYIDNALKPMVA--------ALGDHPALAA
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Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 ------QNSINLYWDNSKLQTYLDKALTPMVK--------ALAAHPALGA

Daphnia_pulex_321450057 ------QNSINLYWDNSKLQTYLDKALTPMVK--------ALAAHPALGA

Daphnia_pulex_321465383 ------QNSINLYWDNSKLQTYLDKALTPMVK--------ALAAHPALGA

Cryptopygus_antarcticus_157703 ------SNVQNLFWDESKLNSYINNALTPMVN--------ALKSKPSLAA

Limnoria_quadripunctata_293629 ------QQYVDMIMDDNKLQSYLDNCLTDFAR--------AVSGHPALGA

Limnoria_quadripunctata_293629 ------QPYIDMILDDDKLQSYLDNCLTDWAK--------AVADHPALGA

Limnoria_quadripunctata_293629 ------QPYIDMVMDDNKIQSYLDNCLTDWVN--------AVKGHPALGS

Callosobruchus_maculatus_31557 ------KPMMHLYYQEDRLQAYLDRVLKPLVA--------GLKDKKALAA

Callosobruchus_maculatus_31557 ------KPMMHLYYQEDRLQSYLDRVLKPLVV--------ALRDKKALAG

Callosobruchus_maculatus_31557 ------QPMLHLYTEDDKLQAYLDRVLKPLVA--------GLKDKKALAA

Callosobruchus_maculatus_31557 ------RQMLHLYSQPDRLQSYLDKVLKPLVA--------ALKDKPALAA

Gastrophysa_viridula_315570658 ------TKMLPLYTDDAKLQSYLEKVLKPMAA--------GLKDKKALAA

uncultured_bacterium_359755046 -----LVNNKNLLEQIDHTQAYIDNALIPMVQ--------AVKDHPALFA

Spirochaeta_thermophila_307717 -----QARNLRLIEDEEVTRSYIENALVPMVR--------MLKRHPGVIA

Saccharophagus_degradans_90021 P---PTQDNYRLLTEDKVLNSYINNALVPMVQ--------ALNYHPQLAA

Chloroflexus_aurantiacus_16384 ARGDHAGGHRDLIVDSAKRASFINNALLPMLRYPVGNSGYTIGTHPNVLA

Chloroflexus_aggregans_2198492 ERGEHAGGHRDLIVDPVKRASFINNALLPMLRYPVGSSGYTIGTHPHVLA

Oscillochloris_trichoides_3097 TRGEHAGGHTDLITDATKRASFINKALLPMLAYPVPGTSYTIGNHPNVLG

Clostridium_papyrosolvens_3262 --------HDDIIDNSTVLQSFLDNAMKPILQ--------TLGTHPGVLG

Clostridium_cellulolyticum_220 --------HDDIIDNPIVLQSFLDNAMKPILQ--------TLGEHPGVLG

Clostridium_sp_373945115 --------HDDIIDNPTVLQSFLDNAMKPILQ--------TLGTHPGVLG

Clostridium_josui_270288704 --------HDDIIDNPTVLQSFLDNAMKPILQ--------ALGTHPGVLG

Clostridium_acetobutylicum_158 --------HGSIIDDPTIRKSYIDNAVTPVVK--------ALGDNPGVMG

Fibrobacter_succinogenes_26141 YNEKLDITANELLFEDAGTKAFIDNVLIPVVK--------AIGNHKALMT

Chlamydomonas_reinhardtii_1594 ------CRLRTVDVSVQRLQRFVSRLAAAVHA------------------

Flammeovirga_yaeyamensis_26186 WEVFNEPEGMSNEFGWDFT--------------------------DHVPM

Branchiostoma_floridae_2608077 WEIMNEPEGSLKIEHHS-DPCYDTIFLQGTGAGWAHLDTSGLPTWTDVPR

Branchiostoma_floridae_2608148 WEIINEPEGSLRVQHDS-DPCYNTDFLAGSGAGWAGNSDG-----NYLPM

k_10972_ext WEIMNEPEGIVGAGVSDPNPCFDTQVLGGSGAGWAG---------TFIPM

Mytilus_edulis_90108933 WDIMNEPEGEIKPGESSSEPCFDTRHLSGSGAGWAG---------HLYSA

Mytilus_edulis_47606432 WDIMNEPEGEIKPGESSSEPCFDTRHLSGSGAGWAG---------HLYSA

Haliotis_discus_211908630 WDIMNEPEGLINTQRSSNNPCLNATHLIPGGAGWAG---------RLYNY

Biomphalaria_glabrata_56462580 WDIMNEPEGMINTDISNWDRCYDSTALKNSGAGWAG---------KKYSY

Biomphalaria_glabrata_56462582 WDIMNEPEGMINPDIGNSDRCYDATALKNSGAGWAA---------KKYGY

Aplysia_kurodai_317414223 WDLMNEPEGMMIPDKHNAEKCYDTTALKNSGAGWAG---------NKYLY

Haliotis_discus_85658727 WEVINEPEGVLMPDVTNSDPCFDTTHLKNSGAGWAG---------KLYKY

Daphnia_pulex_321460555 WEIMNEPEGSLLNNQADANACFDTTPLKDTGAGWTN---------LYIPM

Daphnia_pulex_321460556 WEIMNEPEGLLQNNVYNGNPCYDTTPLKDTGAGFAF---------TNIPM
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Daphnia_pulex_321460557 WEIMNEPEGAILLNQASDNPCFDTTPLANTDASWTG---------LTIPM

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 WEIVNEPEALVYNNKADANSCFNTVPMANSGAGWTG---------KWIPM

Daphnia_pulex_321450057 WEIVNEPEALVYNNKADANSCFNTVPMANSGAGWTG---------KWIPM

Daphnia_pulex_321465383 WEIVNEPEGLLYNNKPDSNSCFNTVPIANSGAGWTG---------KWIPM

Cryptopygus_antarcticus_157703 WEVLNEPEGTLQPG-SDQNSCYDTSTLAAQGAGWGG---------KKFPM

Limnoria_quadripunctata_293629 WEAINEPEGSVQVS-TAANACYDTTVIGQSGAGWTG---------TNIPM

Limnoria_quadripunctata_293629 WEAMNEPAGSVHVS-SDANHCYDTTNVGKQGGGWSG---------ANIPM

Limnoria_quadripunctata_293629 WEPINEPEGSVQIT-SDSNPCYDTTIIGQSGAGWTG---------ADIPI

Callosobruchus_maculatus_31557 WDLVNEPMGSLSQTHKDPNPCYDTTHLKDTGAGWAN---------ETIEY

Callosobruchus_maculatus_31557 WDLVNEPMGSISQTQVDPNPCYDTTHLKDSGAGWAG---------KTIDF

Callosobruchus_maculatus_31557 WDLVNEPMGSLSQWQQDPNPCYDTTHLKDTGAGWAG---------TTINY

Callosobruchus_maculatus_31557 WEVVNEPLASITETQRDINPCFDTTHLKYSGAGWSG---------AHLLL

Gastrophysa_viridula_315570658 WDIINEPIGSLTQGLTDSNPCYDTNNLINSGADWTN---------VHLKP

uncultured_bacterium_359755046 WEIFNEPEGMARPFG------WTPVKT---------------------EM

Spirochaeta_thermophila_307717 WEVFNEPEGMLPGGG------WTPRRT---------------------EM

Saccharophagus_degradans_90021 WELFNEPENMTESWFPQQQGFYGGKVP---------------------SL

Chloroflexus_aurantiacus_16384 WDIFNEPEFGISEPPHFTPSGEVAQP---------------------VTL

Chloroflexus_aggregans_2198492 WDIFNEPEFGIDEPPHFTPAHNIAQP---------------------VTL

Oscillochloris_trichoides_3097 WDIFNEPEFGVSDLGAVDP--QISAP---------------------VTL

Clostridium_papyrosolvens_3262 WDIINEPEWIIKKEDNGEP-NNKGEI---------------------FPL

Clostridium_cellulolyticum_220 WDIINEPEWIIKKEDNGEP-NNKGEI---------------------FPL

Clostridium_sp_373945115 WDIINEPEWIINKEDNGEP-NNKGES---------------------FPL

Clostridium_josui_270288704 WDIINEPEWIIKKEDNGEP-NNKGEI---------------------FPL

Clostridium_acetobutylicum_158 WDVINEPEWTISSADGGNP-GDSIKG---------------------WSL

Fibrobacter_succinogenes_26141 WEVFNEPEGMTSECSGWTT--------------------------KKMAL

Chlamydomonas_reinhardtii_1594 ----ADPRALVTVGSHSPPYCSDAQWLVG---------------------

Flammeovirga_yaeyamensis_26186 SVIQRFVNRLSGAIHRADPAA----LVTNGSWSFKANSDIFSGVEKNYYS

Branchiostoma_floridae_2608077 HRVLRFINRQAAAIKAKDPNH----LVTVGSWSEHGQ-----G-VRNLYS

Branchiostoma_floridae_2608148 YRMLRFINRQAAALKEADPNH----LVTVGSWSEKGQ-----G-IRNLYT

k_10972_ext ELLQRFINRQSAAIKRADSKA----IVTIGSWSERAQTDAL-G-WRNYYK

Mytilus_edulis_90108933 QEIGRFVNWQAAAIKEVDPGA----MVTVGSWNMKADTDAM-G-FHNLYS

Mytilus_edulis_47606432 QEIGRFVNWQAAAIKEVDPGA----MVTVGSWNMKADTDAM-G-FHNLYS

Haliotis_discus_211908630 EDVQRFINWQVDAIRQTDPGA----LVTLGSWKAQVNTDEY-G-SHNHYS

Biomphalaria_glabrata_56462580 YDTLRFINWQADAIKNVDSGF----LVTVGSWNPKSNTDQF-G-FVDHYS

Biomphalaria_glabrata_56462582 HDIIRFVNWQAAAIKHVDPGF----LVTVGAWNPKSNTDRF-G-FVDHYS

Aplysia_kurodai_317414223 QDILRFLNWQADAIKTTDPGA----LVTMGVWNPKSNTDHF-N-MNNHYS

Haliotis_discus_85658727 DDFLRFINWQAAAIKSADAHT----LVTMGSWNAKSNVNIK-G-YYNHYS

Daphnia_pulex_321460555 QNILKFVNWQADGVKGTNGAA----LVTLGSWSEHAQTDTK-AQSRNYYT

212



Daphnia_pulex_321460556 QNILKFVNWQADAVKQRNSAC----LVTIGSWSEHAQTDTK-AQSRNYYT

Daphnia_pulex_321460557 ENNLKFVNWQTHAIKETNSAS----LVTLGSWSEHAQSDAY-EQSRNYYT

Daphnia_pulex_321450949 --NLKFVNWQTHAIKETNSAS----LVTLGSWSEHAQSDAY-EQSRNYYT

Daphnia_pulex_321465382 KQIQLFINWQAAAIKAADPGA----LVTVGTWSQYSQTDVF-SNTRNYYT

Daphnia_pulex_321450057 KQIQLFINWQAAAIKAADPGA----LVTVGTWSQYSQTDVF-SNTRNYYT

Daphnia_pulex_321465383 KQIQLFINWQAAAIKAADPGA----LVTVGTWSQYSQTDVF-SDTRNYYT

Cryptopygus_antarcticus_157703 KQILKTINWISSAIHNADSKA----LVTVGSWSELTQTDSF-G-YRNHYK

Limnoria_quadripunctata_293629 ERFLNLIGKMNQVIRSNDSGG----LCTLGSWAQFSQTDAF-SNTKNHYT

Limnoria_quadripunctata_293629 ERFLILFGKMNQVIRANDPSG----IVTIGAYSQFSTTDAF-SDTTNHYT

Limnoria_quadripunctata_293629 ERFLILIGKMNQLIRELDPQA----ITTQGSWGQWSETDAF-SDTRNHYT

Callosobruchus_maculatus_31557 EKILKLINWHADAIKSVDPKA----LVTSADNGEFTTTTVC-EKCRDHYT

Callosobruchus_maculatus_31557 RLVLKLINWHADAIKSVVPEA----LLSNAENGELLTTNVC-EKCRDHYT

Callosobruchus_maculatus_31557 QNILKLINWHADAIKSVDPKA----LVTNGESGEFTTTTIC-EKCRDHYS

Callosobruchus_maculatus_31557 KDILRFINWHADAIKFVDPKA----LCTIGGAGEWLTTNVS-PVTRDHYT

Gastrophysa_viridula_315570658 KDVLKFINLHADAIKSADPKA----LVTVGESSELTATTIC-EKCRDMYS

uncultured_bacterium_359755046 KYIQQFVNLVTGAIKREAPHN----LVTNGSWNFRVLT-DV-GGMMNYYR

Spirochaeta_thermophila_307717 QYVQRFINLVAGAIHREDPDA----LVTCGSG-MAYQT-DV-GGMINYYR

Saccharophagus_degradans_90021 KQLQKVQALMTAAIHQAALDINQVALVTTGSKSMGKYNSDI-AGGINLYR

Chloroflexus_aurantiacus_16384 AQMQRFIAEISGAIHRNSNQL-----TTVGSASMKWNSSTALGASGNFWR

Chloroflexus_aggregans_2198492 AQMQQFIAEIAGTIHRNSNQL-----TTVGSASMKWNSTGALGASGNFWN

Oscillochloris_trichoides_3097 VQMQRFIAEISGAIHRNSNQL-----TTVGSAAMRWNSDRSLGATGNVWK

Clostridium_papyrosolvens_3262 SAMRNYIKTTCEFIHQYAKQP-----VSFGSANMKW-----LGAQYDLWD

Clostridium_cellulolyticum_220 AAMRNYIKTTCDFIHQYAKQP-----VSFGSANMKW-----LGAQYDLWD

Clostridium_sp_373945115 SAMRNYIKTTCEFIHQYAKQP-----VSFGSANMKW-----LGAQYDLWD

Clostridium_josui_270288704 SAMRNYIKTTCDFIHQYAKQP-----VSFGSANMKW-----LGAQYDLWD

Clostridium_acetobutylicum_158 STLRSFVKDVVDCIHQYAKQP-----VSVGSASLKW-----LGEQYDFWS

Fibrobacter_succinogenes_26141 AKIQKFTNKVAAAIHTTNPEL----LVSTGSVNIKY---------QKHWN

Chlamydomonas_reinhardtii_1594 -NISEFETRPRNLFSDAELRR--------------------AFVLRNGSL

. .

Flammeovirga_yaeyamensis_26186 DAELIAAG---GDAEGILDYYQVHYYSWAGTTYS-----PFVHPASHWEL

Branchiostoma_floridae_2608077 DSCLQQAG---GLTSGVLDFYQIHTYSHNGNYGS---QAPFVVTDASHYP

Branchiostoma_floridae_2608148 DDCLRKAGD-YSYRTGVLDFYQIHTYSKSGSYGS---QAPFRVIMMIMCA

k_10972_ext DNCLIDAG---GDSLGVIDLQQMHTYSWEGAYTS---SSPLNVHNSAYNL

Mytilus_edulis_90108933 DHCLVKAG---GKQSGTLSFYQVHTYDWQNHFGN---ESPFKHSFSNFRL

Mytilus_edulis_47606432 DHCLVKAG---GKQSGTLSFYQVHTYDWQNHFGN---ESPFKHSFSNFRL

Haliotis_discus_211908630 DHCLTQAG---GKAQGVLQFYTVHSYGKR--FDN---LSPFKHQKSDYKL

Biomphalaria_glabrata_56462580 DNCL-VKL---GKPNGKLDFYQFHTYSYQGNFDN---VSPFKHSAGDYGT

Biomphalaria_glabrata_56462582 DACL-LKG---GKPNGKLDFYQVHSYSYQGNFDN---VSPFKHSAGDFGT

Aplysia_kurodai_317414223 DHCLRLAG---GKQKGVFDFYQFHSYSWQGKWDE---VAPFTHQASDYGL

Haliotis_discus_85658727 DACLIKAG---GKKQGVLDFFQIHSYDWQGKFDE---VSPFTMAASVYHM
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Daphnia_pulex_321460555 DSCLVAAG---GKANGKLDFYQMHTYAFNGQWGP---DAPFKVSSSSYGL

Daphnia_pulex_321460556 DSCLVGAG---GKAAGKLDFYQMHTYDYNGQWNS---DAPFTVSASSYGL

Daphnia_pulex_321460557 DACLLAAG---GRSLGTLDFYQFHTYTYTGQWDP---SEPFKVTATSYKL

Daphnia_pulex_321450949 DACLLAAG---GRSLGTLDFYQFHTYTYTGQWDP---SEPFKVTATSYKL

Daphnia_pulex_321465382 DACLIAAG---GKTLGKLDFYQIHTYTP---FSA---SAPFKVAASAYGL

Daphnia_pulex_321450057 DACLIAAG---GKTLGKLDFYQIHTYTP---FSA---SAPFKV-------

Daphnia_pulex_321465383 DACLVAAG---GKTLGKLDFYQIHTYTP---FSA---SAPLKVAASAYGL

Cryptopygus_antarcticus_157703 DSCLTGAG---GKSNGIINFYQMHTYSHSGKWNQ---NAPFKVNRWAYNV

Limnoria_quadripunctata_293629 NQCLNGAG---G-SGSQLDFYQMHSYDWSGSWSP---NAPFTVQASDYND

Limnoria_quadripunctata_293629 DECLNGAA---G-SGSELDFYQVHTYDWQGSWPP---HGPFTLQASDFEL

Limnoria_quadripunctata_293629 DTCLNGAA---G-SGSQIDFYQMHAYDWNGEWSP---NAPFTVKASDYKV

Callosobruchus_maculatus_31557 DECLIGAG---GRAKGTIDFYALHSYTWEGRYQP---TSPFKHNFDFYNS

Callosobruchus_maculatus_31557 DECLIGAG---GRANGTIDFYAMHSYTWEGRFAP---TSPFLHNFDFYKS

Callosobruchus_maculatus_31557 DECLIGAG---GRAKGTIDFYAMHSYTWEGRYQP---TSPFKHNFDFYKK

Callosobruchus_maculatus_31557 DACLIAAG---GRQLGTLDMVMVHTYTFQGRFVSD--TCPFKKRFLDYHT

Gastrophysa_viridula_315570658 DSCLVGAG---GKALGTIDFYQLHSYTWNGAFST---SSPFKNAAAAFKS

uncultured_bacterium_359755046 DDRLIEAGG---DTLGVLDFYQVHFYP-VHFDES---TSPFHKPASYWEL

Spirochaeta_thermophila_307717 DDRLVAAGG---DPEGTLDFYSVHFYP-QHMDES---VSPFHHPASYWQL

Saccharophagus_degradans_90021 DDRMIAAAGG--NPLATLDFYAPHYYNNESKHGA---WSPFHHHVDYWQV

Chloroflexus_aurantiacus_16384 DAALTAYD-----PQGYLDFYQIHYYGWMNGDEQY--WSYSPLFNDWYEA

Chloroflexus_aggregans_2198492 DTALTAYD-----PQGYLDFYQIHYYGWMNGDETY--WSYSPLFNDWYEG

Oscillochloris_trichoides_3097 DAALTPYD-----AKGYLDFYQIHYYGWMNGDGVY--WSYSPTLIDWATA

Clostridium_papyrosolvens_3262 GLG--------------LDFYDFHWYDWATP---Y--FNPVTTPASSLK-

Clostridium_cellulolyticum_220 GLG--------------LDFYDFHWYDWATP---Y--FNPVTTPASSLK-

Clostridium_sp_373945115 GLG--------------LDFYDFHWYDWATP---Y--FNPVTTPASSLK-

Clostridium_josui_270288704 GLG--------------LDFYDFHWYDWATP---Y--FNPVTTPASSLK-

Clostridium_acetobutylicum_158 GLG--------------LDFYDFHWYDWATP---Y--FNPLKTPVSQLKA

Fibrobacter_succinogenes_26141 DAALIEAG---GEANGTLDFFQTHYYPYWQDNSVS--PFVNTAAQMATKY

Chlamydomonas_reinhardtii_1594 GRGWDAAG------GGTLDFYAPHGYPYWGHDSITRLISPFHVPAQQYQL

. :. * *

Flammeovirga_yaeyamensis_26186 DK---PLMIGEFYVEN-----------QPGSIAKEDLFPILYNNGYAGAW

Branchiostoma_floridae_2608077 ELSGKPIVIGEFSQAR------------GAGMTITEQFSRAYSHGFAGAW

Branchiostoma_floridae_2608148 RLSLYNSMLRLTAP------------------------------------

k_10972_ext NK---PNILGEFSQSG------------GDGRSIQEQFDWAYTQGYCGAW

Mytilus_edulis_90108933 KK---PMVIGEFNQEH------------GAGMSSESMFEWAYTKGYSGAW

Mytilus_edulis_47606432 KK---PMVIGEFNQEH------------GAGMSSESMFEWAYTKGYSGAW

Haliotis_discus_211908630 NK---PLMVGEFASKN------------GGGMAIESMFQYAYGHGYCGAW

Biomphalaria_glabrata_56462580 GK---PIVVGEFWEQD------------GGGMNIDQLFDYVYNHGYAGAW

Biomphalaria_glabrata_56462582 GK---PIVVGEFWEQD------------GGGMNINQLFEYVYNHGYAGAW

Aplysia_kurodai_317414223 HK---PIVVGEFWEQD------------GGGMTITQMFNYVYNHGYAGAW
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Haliotis_discus_85658727 DK---PIVIGEFRESQ------------GAGMTIQEMFNHAYNTGYSGAW

Daphnia_pulex_321460555 N---KPLVIGEFASVC------------AQNEGIQNLFQYGYTNGYQGVW

Daphnia_pulex_321460556 N---KPLVVGEFASVC------------SQNSDIGNMFQYVYDNGYQGAW

Daphnia_pulex_321460557 D---KPLVIGEFATVC------------GGPESSPTLFQYSYDNGYQGVW

Daphnia_pulex_321450949 D---KPLVIGEFATVC------------GGPESSPTLFQYSYDNGYQGVW

Daphnia_pulex_321465382 N---KPVTIGEFSASC------------SGGMTIQQMYNYAYGNGYQAAW

Daphnia_pulex_321450057 ------------------------------GLLIIIVFK-----------

Daphnia_pulex_321465383 N---KPVTIGEFSASC------------SGGMTIQQMYNYAYGNGYQAAW

Cryptopygus_antarcticus_157703 ND--KPLLIGEFASVC------------SQNEGIQNLYKYAYNNGYNGAL

Limnoria_quadripunctata_293629 N---KPILLGEYAGSC------------GAGTALADLHEYAYENGYVGGL

Limnoria_quadripunctata_293629 D---KPFLIGEYSGDC------------GAGNTLSELNTYAYENGYVGGL

Limnoria_quadripunctata_293629 D---KPILLGEYAGVC------------AAGTSLEDLNIYAYENGYVGGF

Callosobruchus_maculatus_31557 K---KPYLMEEFSTTN------------SESHSPSWNYHHIYEGGFGGIL

Callosobruchus_maculatus_31557 K---KPILMQEFSTTI------------TESHNASWNYRHIYEGDYVGIM

Callosobruchus_maculatus_31557 N---KPFVVEEFSTTN------------SESHSPVWNYHHIYEGGFGGIL

Callosobruchus_maculatus_31557 T---KPMVIEEFSTAC------------NECHDAVANYRYLYDSGYSGAL

Gastrophysa_viridula_315570658 D---KPIVVGEFATCC------------SELQDSAKNYQYLYNSGFSGAL

uncultured_bacterium_359755046 DK---PILIGEFPAYGVLAKSGQR-FRPRTELNAEEAWVYALENGYAGAL

Spirochaeta_thermophila_307717 DK---PIVVAEFPAKG-IREIGFG-FRPKTSLTTEEAYLWLIENGYAGAL

Saccharophagus_degradans_90021 TK---PVVIGEFHANETLDVLN-------DPVKAEDLCSRLIDNGYAGGW

Chloroflexus_aurantiacus_16384 G-FDKPVVVGELPANA---------GGT--NRTPAQLLTELHANCYAGAW

Chloroflexus_aggregans_2198492 R-FDKPVVIGEVPANA---------GGT--NRTPTQLIAELHANCYAGVW

Oscillochloris_trichoides_3097 G-FDKPTVIGEFPANA---------GET--GYTPAGLLEKLHSNCYGGAW

Clostridium_papyrosolvens_3262 --LDKPVIIGEMMPDT---------QGSSLKMTHKQVLDAIYKNGYAGYM

Clostridium_cellulolyticum_220 --LDKPVIIGEMMPDT---------QSSSLKMTHKQVLDAIYKNGYAGYM

Clostridium_sp_373945115 --LDKPVIIGEMMPDT---------QGSSLKMTHKQVLDAIYKNGYAGYM

Clostridium_josui_270288704 --LDKPVIIGEMMPDT---------LSSSLKMTHKQVLDAIYKNGYAGYM

Clostridium_acetobutylicum_158 K-FDKPVIIGEMMPDT---------QNSSLKMSHKQVLDGLVNNGYSGYM

Fibrobacter_succinogenes_26141 SYDSKPMIIGEFPASGWAGDTYRSNFAAKTEITTEECYRKAFDGGYAGAL

Chlamydomonas_reinhardtii_1594 D---KPALVGEFWDQVS----------DSESLTAKHWKDLWRKNGYMGEP

Flammeovirga_yaeyamensis_26186 GWQYRTYDDGD--NTDEMHRDDMLDGIKTIDGYPEIAIDPDRNHRPTLIG

Branchiostoma_floridae_2608077 SWHYLADR-AD--DTATDASATQLIGLRELRFKNDQT--RGGCVRINLNG

Branchiostoma_floridae_2608148 --------------------------------------------------

k_10972_ext SWQANAG------GEHADSFATQALGLNHLRGRNDQN--TGGRVDIDLQ-

Mytilus_edulis_90108933 TWSRTD-----------VSWNNQLRGMQHLKSRTDH-----GQVQFGL--

Mytilus_edulis_47606432 TWSRTD-----------VSWNNQLRGIQHLKSRTDH-----GQVQFGL--

Haliotis_discus_211908630 SWSATDN------YE-GDAWETQKRGVASIRNNSDAS--K-GTVHFTL--

Biomphalaria_glabrata_56462580 SWDLMAH------GD------NQRGGISHIKNYNWN-----GQIGINL--

Biomphalaria_glabrata_56462582 SWDLQAH------GA------NQRGGISHIKGLTSN-----GVIPINV--

215



Aplysia_kurodai_317414223 SWHLVQR------GD------NQRKGITNIKDKTSN-----GKIPISL--

Haliotis_discus_85658727 TWAITDD------WTPKDTWAHQQVGITTVANRHDH-----GLVKFTL--

Daphnia_pulex_321460555 SWQYNAG------GECSDTQATQDSGMNQLKGQN----GAGGAVNFPVGF

Daphnia_pulex_321460556 SWHYLEQ------GKCTDSQEAQNIGMTRIKDQT-----ANGAVTFPL--

Daphnia_pulex_321460557 SWSYNGGP-TG--STCCDNQTTQDSGMLQLKGQNN---GIGGAVNFPIVP

Daphnia_pulex_321450949 SWSYNGGP-TG--STCCDNQTTQDSGMLQLKGQN----GAGGAVNFPIVP

Daphnia_pulex_321465382 GWQYAGG-------YCSDSRATFDSGMLQLKGKS----GSGGLVNFPVV-

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 GWQYAGG-------YCSDSRATFDSGMLQLKGKS----GSGGLVNFPVV-

Cryptopygus_antarcticus_157703 TWQFNSG------GDCSDTYSNQMYGMQALKGQNDQSGGKGGMVSVNIN-

Limnoria_quadripunctata_293629 SWHWAAT------GDCSDSRAVQRSALGRLAGRT-----DNGVVDINVG-

Limnoria_quadripunctata_293629 SWHWAAT------GDCSDTRAVQRQALGTLVDRT-----DNGVVDFIVG-

Limnoria_quadripunctata_293629 AWCWLT-------GTCSDSRQEQRQALGALSGRT-----DYGTVDFIVG-

Callosobruchus_maculatus_31557 SWQYNQW------GKWVDSKESMFEGMASIRNLT-----SNGKIDIKL--

Callosobruchus_maculatus_31557 SWQYNQW------GKWVDTKESMFEGMGAIRNLT-----SHGKINIKL--

Callosobruchus_maculatus_31557 SWQYNEE------GKWVDSKQSMFEGMSSIRNLT-----SNGKIDIKL--

Callosobruchus_maculatus_31557 AFQYNGP------GQCVDDHPVMFAGMSAIRNLN-----YNGRIDIRL--

Gastrophysa_viridula_315570658 SWQYNEG------GNCADPKSVIDQGMSAIKDYT-----YNGNVHVTL--

uncultured_bacterium_359755046 GWTWTNHD-GN--GGVKDAEPGMKKVLELAPERVVIDQDVMNESE-----

Spirochaeta_thermophila_307717 SWTWTGHD-GF--GNIYDAAPGISAVAMRYPEYARLNREGLDLSPKVVKP

Saccharophagus_degradans_90021 SWQWNEH----------------VEHLMHCQERAAIR-------------

Chloroflexus_aurantiacus_16384 VWPYFNVNDGT--GQWSDAQAAVRSLSNAVPHEVQILR------------

Chloroflexus_aggregans_2198492 VWPYFNVSDGT--GQWSDAASAVQAIADTVPAEVRLT-------------

Oscillochloris_trichoides_3097 AWSYENV-DGA--GGWNDIAAAYKAFNTTYAREVNITTGGTPNPTATPVV

Clostridium_papyrosolvens_3262 LWSWNDG--AF--DCKPYVGNNFIDFAAEHPDVVK---------------

Clostridium_cellulolyticum_220 LWSWNDG--AF--DCKPYVGNNFIDFAAEHPDVVR---------------

Clostridium_sp_373945115 LWSWNDG--AF--DCKPYVGNNFIDFAVEHPDVVR---------------

Clostridium_josui_270288704 LWSWNDG--AF--DCKPYIENNFIDFAAEHTDVVR---------------

Clostridium_acetobutylicum_158 LWAWTDA--SV--NCVGKTAPDFDEFKTEHPELPIDMP---------TMP

Fibrobacter_succinogenes_26141 AWQYIGDKTEANFGGYSYTIDPALKAMTALAATEEASIKIKDVDISGSTG

Chlamydomonas_reinhardtii_1594 -WAGAHD-------------RPPQRALC----------------------

Flammeovirga_yaeyamensis_26186 EINNFRIDKNSNPLVNYTDLNTVFSDPEGTALQFSVETSPQNVVIPSVNN

Branchiostoma_floridae_2608077 STNYCEKKPPCRQLYQYFYG------------------------------

Branchiostoma_floridae_2608148 --------------------------------------------------

k_10972_ext --------------------------------------------------

Mytilus_edulis_90108933 --------------------------------------------------

Mytilus_edulis_47606432 --------------------------------------------------

Haliotis_discus_211908630 --------------------------------------------------

Biomphalaria_glabrata_56462580 --------------------------------------------------
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Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 ISHLILSVNEVGKAEEIDLREVFEDQEDGDDLSYEVKKVGDPALVEVSLT

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 -------------SPSTLPVRVYIPLTTR---------------------

Chloroflexus_aggregans_2198492 --------------ATILSPRVYIPLALRQQP------------------

Oscillochloris_trichoides_3097 PTATPAPVPPTATPAPVPPTATPVPPTPTPAPATTTQIYTDNLAAGWVNW

Clostridium_papyrosolvens_3262 --------------------------------------------------

Clostridium_cellulolyticum_220 --------------------------------------------------

Clostridium_sp_373945115 --------------------------------------------------

Clostridium_josui_270288704 --------------------------------------------------

Clostridium_acetobutylicum_158 GLKGDVNGDGVINGRDLMVLRQYLAGQSVNINKANTDVNGDGVVNGRDLM

Fibrobacter_succinogenes_26141 GNGMMAVTYGADNGQVEYQNKGGWDLSGATTFTWTAKNNGKTDADIYLIF

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 GFLSLAFAEEATGDVIVSITATDSGTPTTLRSYDFIVSVKEPGTGNLALY

Branchiostoma_floridae_2608077 --------------------------------------------------

Branchiostoma_floridae_2608148 --------------------------------------------------

k_10972_ext --------------------------------------------------

Mytilus_edulis_90108933 --------------------------------------------------

Mytilus_edulis_47606432 --------------------------------------------------

Haliotis_discus_211908630 --------------------------------------------------
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Biomphalaria_glabrata_56462580 --------------------------------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 KDGKALVRLKEARVGSSDVLIAAKDSGMNESGLYFTVHALDPDRGNIALF

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 --------------------------------------------------

Chloroflexus_aggregans_2198492 --------------------------------------------------

Oscillochloris_trichoides_3097 SWDSTVNFGSTAKKKVGTRSIAVTYNRAWAGLYLHTDQALNTQGYTKVRF

Clostridium_papyrosolvens_3262 --------------------------------------------------

Clostridium_cellulolyticum_220 --------------------------------------------------

Clostridium_sp_373945115 --------------------------------------------------

Clostridium_josui_270288704 --------------------------------------------------

Clostridium_acetobutylicum_158 EIVKIVMSK-----------------------------------------

Fibrobacter_succinogenes_26141 KLTDSWTWTETDGSCKVPAGEKVTCSIDISSFADRNKTLSITLANYASGY

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 QSTSASSVEEGPNTAASVNDGDQLTRWSSLYVDPSWIAIAFDQEYSVNEV

Branchiostoma_floridae_2608077 --------------------------------------------------

Branchiostoma_floridae_2608148 --------------------------------------------------

k_10972_ext --------------------------------------------------

Mytilus_edulis_90108933 --------------------------------------------------

Mytilus_edulis_47606432 --------------------------------------------------
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Haliotis_discus_211908630 --------------------------------------------------

Biomphalaria_glabrata_56462580 --------------------------------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 KPVEASSV-EDPNLPEYVNDGTLKTRWSSLYEDDEYIQIDLQGRFRIERI

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 --------------------------------------------------

Chloroflexus_aggregans_2198492 --------------------------------------------------

Oscillochloris_trichoides_3097 WAHGAGGKQKLKLWVRKADGTTSPTVALPTLTSSWMQIEVPLSQLGNPAN

Clostridium_papyrosolvens_3262 --------------------------------------------------

Clostridium_cellulolyticum_220 --------------------------------------------------

Clostridium_sp_373945115 --------------------------------------------------

Clostridium_josui_270288704 --------------------------------------------------

Clostridium_acetobutylicum_158 --------------------------------------------------

Fibrobacter_succinogenes_26141 TGTVIYDDIKAGDLTLFDFNTDKYDAFKRGYENTEEMIPEIKIVFDENYV

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 RLYWEGSYSSQYEIQVSQDGESWNTVYTNNDGRGGEDIITFPAVNAKHIR

Branchiostoma_floridae_2608077 --------------------------------------------------

Branchiostoma_floridae_2608148 --------------------------------------------------

k_10972_ext --------------------------------------------------

Mytilus_edulis_90108933 --------------------------------------------------
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Mytilus_edulis_47606432 --------------------------------------------------

Haliotis_discus_211908630 --------------------------------------------------

Biomphalaria_glabrata_56462580 --------------------------------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 VLHWEVAYGKDYDILGSLDGKAWFPIVQVRGGDGDVDELSFDPVEVSYVR

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 --------------------------------------------------

Chloroflexus_aggregans_2198492 --------------------------------------------------

Oscillochloris_trichoides_3097 LSDLVIQDAAGRAQAVFYIDQIELVP------------------------

Clostridium_papyrosolvens_3262 --------------------------------------------------

Clostridium_cellulolyticum_220 --------------------------------------------------

Clostridium_sp_373945115 --------------------------------------------------

Clostridium_josui_270288704 --------------------------------------------------

Clostridium_acetobutylicum_158 --------------------------------------------------

Fibrobacter_succinogenes_26141 YGKTSISKSKLAATSKFSINGDKITLNTKAKGQVSVDVFGMNG-RIVATL

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 MYGKQRAIEWGHSIYEFEVYGDVPKSISANAGEDQFVSDSDGDGVETITL

Branchiostoma_floridae_2608077 --------------------------------------------------

Branchiostoma_floridae_2608148 --------------------------------------------------

k_10972_ext --------------------------------------------------
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Mytilus_edulis_90108933 --------------------------------------------------

Mytilus_edulis_47606432 --------------------------------------------------

Haliotis_discus_211908630 --------------------------------------------------

Biomphalaria_glabrata_56462580 --------------------------------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 MHGITRGTEWGFSLWEMEVYGERVE-------------------------

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 --------------------------------------------------

Chloroflexus_aggregans_2198492 --------------------------------------------------

Oscillochloris_trichoides_3097 --------------------------------------------------

Clostridium_papyrosolvens_3262 --------------------------------------------------

Clostridium_cellulolyticum_220 --------------------------------------------------

Clostridium_sp_373945115 --------------------------------------------------

Clostridium_josui_270288704 --------------------------------------------------

Clostridium_acetobutylicum_158 --------------------------------------------------

Fibrobacter_succinogenes_26141 FNGMLGAGNYVFSLADMPKGQYIIRMKGAGITTTQPVIVK----------

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 DGTASTDSEQTITSYEWSENGVSLASGATANVPLGVGIHTITLTVTNNLG

Branchiostoma_floridae_2608077 --------------------------------------------------

Branchiostoma_floridae_2608148 --------------------------------------------------
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k_10972_ext --------------------------------------------------

Mytilus_edulis_90108933 --------------------------------------------------

Mytilus_edulis_47606432 --------------------------------------------------

Haliotis_discus_211908630 --------------------------------------------------

Biomphalaria_glabrata_56462580 --------------------------------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 --------------------------------------------------

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 --------------------------------------------------

Chloroflexus_aggregans_2198492 --------------------------------------------------

Oscillochloris_trichoides_3097 --------------------------------------------------

Clostridium_papyrosolvens_3262 --------------------------------------------------

Clostridium_cellulolyticum_220 --------------------------------------------------

Clostridium_sp_373945115 --------------------------------------------------

Clostridium_josui_270288704 --------------------------------------------------

Clostridium_acetobutylicum_158 --------------------------------------------------

Fibrobacter_succinogenes_26141 --------------------------------------------------

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 VSSTDNVRIIVDDGSFGPQIFEAENATLSSVTVASDATASEGAYVNMEGN

Branchiostoma_floridae_2608077 --------------------------------------------------
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Branchiostoma_floridae_2608148 --------------------------------------------------

k_10972_ext --------------------------------------------------

Mytilus_edulis_90108933 --------------------------------------------------

Mytilus_edulis_47606432 --------------------------------------------------

Haliotis_discus_211908630 --------------------------------------------------

Biomphalaria_glabrata_56462580 --------------------------------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 --------------------------------------------------

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 --------------------------------------------------

Chloroflexus_aggregans_2198492 --------------------------------------------------

Oscillochloris_trichoides_3097 --------------------------------------------------

Clostridium_papyrosolvens_3262 --------------------------------------------------

Clostridium_cellulolyticum_220 --------------------------------------------------

Clostridium_sp_373945115 --------------------------------------------------

Clostridium_josui_270288704 --------------------------------------------------

Clostridium_acetobutylicum_158 --------------------------------------------------

Fibrobacter_succinogenes_26141 --------------------------------------------------

Chlamydomonas_reinhardtii_1594 --------------------------------------------------

Flammeovirga_yaeyamensis_26186 GTISWTFNAVSAGTQTIKIGYLLPYGSKDQYVSLNGNSLGSIPFDGPINT
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Branchiostoma_floridae_2608077 --------------------------------------------------

Branchiostoma_floridae_2608148 --------------------------------------------------

k_10972_ext --------------------------------------------------

Mytilus_edulis_90108933 --------------------------------------------------

Mytilus_edulis_47606432 --------------------------------------------------

Haliotis_discus_211908630 --------------------------------------------------

Biomphalaria_glabrata_56462580 --------------------------------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 --------------------------------------------------

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 --------------------------------------------------

Chloroflexus_aggregans_2198492 --------------------------------------------------

Oscillochloris_trichoides_3097 --------------------------------------------------

Clostridium_papyrosolvens_3262 --------------------------------------------------

Clostridium_cellulolyticum_220 --------------------------------------------------

Clostridium_sp_373945115 --------------------------------------------------

Clostridium_josui_270288704 --------------------------------------------------

Clostridium_acetobutylicum_158 --------------------------------------------------

Fibrobacter_succinogenes_26141 --------------------------------------------------

Chlamydomonas_reinhardtii_1594 --------------------------------------------------
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Flammeovirga_yaeyamensis_26186 WLEKSLTVDLVEGNNTLTITKHWGYMYFDYLSTGGVSNTRVVAIEPSETL

Branchiostoma_floridae_2608077 --------------------------------------------------

Branchiostoma_floridae_2608148 --------------------------------------------------

k_10972_ext --------------------------------------------------

Mytilus_edulis_90108933 --------------------------------------------------

Mytilus_edulis_47606432 --------------------------------------------------

Haliotis_discus_211908630 --------------------------------------------------

Biomphalaria_glabrata_56462580 --------------------------------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 --------------------------------------------------

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 --------------------------------------------------

Chloroflexus_aggregans_2198492 --------------------------------------------------

Oscillochloris_trichoides_3097 --------------------------------------------------

Clostridium_papyrosolvens_3262 --------------------------------------------------

Clostridium_cellulolyticum_220 --------------------------------------------------

Clostridium_sp_373945115 --------------------------------------------------

Clostridium_josui_270288704 --------------------------------------------------

Clostridium_acetobutylicum_158 --------------------------------------------------

Fibrobacter_succinogenes_26141 --------------------------------------------------

Chlamydomonas_reinhardtii_1594 --------------------------------------------------
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Flammeovirga_yaeyamensis_26186 AEVVLYPNPATTTFTVKADHFQSLTIYDMKGVALISSNLKNVDISELGSG

Branchiostoma_floridae_2608077 --------------------------------------------------

Branchiostoma_floridae_2608148 --------------------------------------------------

k_10972_ext --------------------------------------------------

Mytilus_edulis_90108933 --------------------------------------------------

Mytilus_edulis_47606432 --------------------------------------------------

Haliotis_discus_211908630 --------------------------------------------------

Biomphalaria_glabrata_56462580 --------------------------------------------------

Biomphalaria_glabrata_56462582 --------------------------------------------------

Aplysia_kurodai_317414223 --------------------------------------------------

Haliotis_discus_85658727 --------------------------------------------------

Daphnia_pulex_321460555 --------------------------------------------------

Daphnia_pulex_321460556 --------------------------------------------------

Daphnia_pulex_321460557 --------------------------------------------------

Daphnia_pulex_321450949 --------------------------------------------------

Daphnia_pulex_321465382 --------------------------------------------------

Daphnia_pulex_321450057 --------------------------------------------------

Daphnia_pulex_321465383 --------------------------------------------------

Cryptopygus_antarcticus_157703 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Limnoria_quadripunctata_293629 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Callosobruchus_maculatus_31557 --------------------------------------------------

Gastrophysa_viridula_315570658 --------------------------------------------------

uncultured_bacterium_359755046 --------------------------------------------------

Spirochaeta_thermophila_307717 --------------------------------------------------

Saccharophagus_degradans_90021 --------------------------------------------------

Chloroflexus_aurantiacus_16384 --------------------------------------------------

Chloroflexus_aggregans_2198492 --------------------------------------------------

Oscillochloris_trichoides_3097 --------------------------------------------------

Clostridium_papyrosolvens_3262 --------------------------------------------------

Clostridium_cellulolyticum_220 --------------------------------------------------

Clostridium_sp_373945115 --------------------------------------------------

Clostridium_josui_270288704 --------------------------------------------------

Clostridium_acetobutylicum_158 --------------------------------------------------

Fibrobacter_succinogenes_26141 --------------------------------------------------

Chlamydomonas_reinhardtii_1594 --------------------------------------------------
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Flammeovirga_yaeyamensis_26186 IYLVKVYTLNGVKNLRLSVR

Branchiostoma_floridae_2608077 --------------------

Branchiostoma_floridae_2608148 --------------------

k_10972_ext --------------------

Mytilus_edulis_90108933 --------------------

Mytilus_edulis_47606432 --------------------

Haliotis_discus_211908630 --------------------

Biomphalaria_glabrata_56462580 --------------------

Biomphalaria_glabrata_56462582 --------------------

Aplysia_kurodai_317414223 --------------------

Haliotis_discus_85658727 --------------------

Daphnia_pulex_321460555 --------------------

Daphnia_pulex_321460556 --------------------

Daphnia_pulex_321460557 --------------------

Daphnia_pulex_321450949 --------------------

Daphnia_pulex_321465382 --------------------

Daphnia_pulex_321450057 --------------------

Daphnia_pulex_321465383 --------------------

Cryptopygus_antarcticus_157703 --------------------

Limnoria_quadripunctata_293629 --------------------

Limnoria_quadripunctata_293629 --------------------

Limnoria_quadripunctata_293629 --------------------

Callosobruchus_maculatus_31557 --------------------

Callosobruchus_maculatus_31557 --------------------

Callosobruchus_maculatus_31557 --------------------

Callosobruchus_maculatus_31557 --------------------

Gastrophysa_viridula_315570658 --------------------

uncultured_bacterium_359755046 --------------------

Spirochaeta_thermophila_307717 --------------------

Saccharophagus_degradans_90021 --------------------

Chloroflexus_aurantiacus_16384 --------------------

Chloroflexus_aggregans_2198492 --------------------

Oscillochloris_trichoides_3097 --------------------

Clostridium_papyrosolvens_3262 --------------------

Clostridium_cellulolyticum_220 --------------------

Clostridium_sp_373945115 --------------------

Clostridium_josui_270288704 --------------------

Clostridium_acetobutylicum_158 --------------------

Fibrobacter_succinogenes_26141 --------------------

227



Chlamydomonas_reinhardtii_1594 --------------------
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S. Griffiths-Jones, and A. Bateman. The RNA WikiProject: community annotation

of RNA families. RNA, 14(12):2462–2464, Dec. 2008. PMID: 18945806 PMCID:

2590952.

[37] A. Davison and M. Blaxter. Ancient origin of glycosyl hydrolase family 9 cellulase

genes. Molecular Biology and Evolution, 22(5):1273 –1284, May 2005.

[38] N. G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v.

Wetenschappen, 49:758–764, 1946.
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sion of dinitrogen by earthworms via denitrifying bacteria in the gut. Applied and

Environmental Microbiology, 72(2):1013–1018, Feb. 2006. PMID: 16461643.

[72] X. Huang and A. Madan. CAP3: a DNA sequence assembly program. Genome

Research, 9(9):868 –877, 1999.

[73] J. P. Huelsenbeck and F. Ronquist. MRBAYES: bayesian inference of phyloge-

netic trees. Bioinformatics (Oxford, England), 17(8):754–755, Aug. 2001. PMID:

11524383.

[74] T. Hulsen, J. de Vlieg, and W. Alkema. BioVenn – a web application for the com-

parison and visualization of biological lists using area-proportional venn diagrams.

BMC Genomics, 9:488, Oct. 2008. PMID: 18925949 PMCID: 2584113.

[75] S. S. Hung, J. Wasmuth, C. Sanford, and J. Parkinson. DETECT–a density estima-

tion tool for enzyme ClassificaTion and its application to plasmodium falciparum.

Bioinformatics, 26(14):1690–1698, July 2010.

[76] S. M. Huse, J. A. Huber, H. G. Morrison, M. L. Sogin, and D. Welch. Accuracy and

quality of massively parallel DNA pyrosequencing. Genome Biology, 8(7):R143,

2007.

[77] U. Irmler. Changes in earthworm populations during conversion from conventional

to organic farming. Agriculture, Ecosystems & Environment, 135(3):194–198, Jan.

2010.
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Gibson, D. Graur, K. J. Grubbs, D. E. Hagen, T. T. Harkins, M. Helmkampf, H. Hu,

B. R. Johnson, J. Kim, S. E. Marsh, J. A. Moeller, M. C. Muñoz-Torres, M. C.
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