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Abstract

This thesis aims to examine the spatial and temporal characteristics of the 14C marine
reservoir effect (MRE) in the North Atlantic over the Holocene. The MRE is a time
dependant offset in 14C age between the atmospheric and ocean carbon reservoirs and
accurate quantification of MRE correction values is crucial for radiocarbon chronologies. In
a specific ocean area the MRE may show a deviation (known as AR) from the average value
for the global average surface oceans given by the marine calibration curve (currently
MARINE04). This occurs as a function of local oceanographic and climatic variables and
current research has identified the potential for both spatial and temporal variations in AR
values. A new and rigorous sample selection protocol was developed for this study to
produce a large number of AR determinations that have a high degree of accuracy and
precision. This involved selection of multiple single entity samples of both marine and
terrestrial material from 30 clearly-defined deposits at 20 archaeological sites in Western
Ireland, the island belts ofNorthern and Western Scotland, the western and northern Scottish
mainland coast and the Faroe Isles. A total of 301 radiocarbon (14C) measurements were
made of sample material and the overall results demonstrate observable spatial and temporal
variability in AR within the study area over the past c.8000 years. These can be related to
climate and oceanographic changes previously identified as potential mechanisms for
producing variation in AR. The interpretations drawn from this study were as follows:

1. At sites selected according to the study protocol a range of marine mollusc species
can be used to accurately determine AR.

2. In the Early Holocene (c.6480-1940 BC) AR values were greater relative to that of
later periods.

3. During the periods c.400 BC - 60 AD and c. 1000-1200 AD, AR values were
reduced relative to those of the present day

4. During the period c.1200-1400 AD, AR values were higher compared to the present.
5. In addition, there is evidence for spatial variation in AR within the study area over

the Holocene. This is illustrated at c. 1000-1200 AD when a large number of
measurements indicate an increase in AR value northwards from the west coast of
Ireland to the Faroe Isles.

The results of this study have important implications for our understanding of the MRE
and the effective application of correction values to marine samples for l4C measurement
within both paleoenvironmental and archaeological research.

l



I declare that all the work within this thesis is original and my own, unless indicated
otherwise, and none of the contents have been presented for examination elsewhere.

ii



Acknowledgements

This research has been supported by many people and organisations, including
Historic Scotland, AOC Scotland Ltd, the Leverhulme Trust, the National Science
Foundation of America Polar Programmes, the Carnegie Trust for the Universities of
Scotland, the Moray Fund, and the University of Edinburgh small projects grants. In
addition, this thesis would not have been possible without the input of a large number
of people, whom I would like to thank. I have been very fortunate in having two
excellent PhD supervisors, Andrew Dugmore and Gordon Cook, to whom I am deeply
indebted for their unfailing support and assistance throughout all stages of the past
four years. The advice and help of Marian Scott with statistical concerns and Paula
Reimer with AR and marine reservoir calculations has been invaluable. Philip
Naysmith, Robert Anderson and Elaine Dunbar at SUERC have taught me a vast
amount regarding the technical and theoretical aspects of the 14C method, their
patience and time is very much appreciated. Patrick Ashmore at Historic Scotland has
played a major role within the project from its initiation and has always been available
to offer both academic and practical support. The archaeological samples from which
over 300 14C measurements were produced were kindly provided by archaeologists
from many institutions and organisations, all of whom devoted time to assisting me in
my quest for samples that met a highly specific set of criteria. Both sample materials
and input regarding archaeological questions were provided by Simun Arge, Beverley
Ballin-Smith, John Barber, James Barrett, Cathy Batt, Julie Bond, Anne Brundle,
Mike Church, Steve Dockrill, Alan Duffy, Simon Gilmour, Richard Gregory, Karen
Hardy, Ailene Maule, Tom McGovern, Emily Murray, Tim Neighbour, Rebecca
Nicholson Rachel Parks, Jennifer Rose, Peter Rowley-Conway, Alison Sheridan,
Alexandra Shepherd, and Caroline Wickham-Jones. The carbonate 5180 work was
made possible by Mary Elliott from the School of GeoSciences, University of
Edinburgh and Terry Donally and Andrew Tait at SUERC. Along with thanking
people for professional support I am very glad to have so many good friends who
have been there for me, listened and made me laugh. Finally I want to thank my
family, without them I would not be who I am. I have been incredibly lucky to have
my sister Stephanie and my Mum and Dad who always make me feel their love and
support, wherever I am. Thank you.

iii



Nomenclature

The following conventions are observed throughout this thesis:

BC/AD: Calendar years. Used to refer to calibrated 14C years.

BP: Uncalibrated 14C years

cal. yr BP: Calibrated I4C years.

yr: year

kyr: 1000 years

Abbreviations used throughout this thesis are outlined below

Subscripts in Equations
"s" is used to indicate a measured sample
"surf' is used to refer to a quantity of the surface ocean carbon reservoir
"atm" is used to refer to a quantity of the atmospheric carbon reservoir
"bio" is used to refer to a quantity of the biospheric carbon reservoir
"VPDB" refers to the Vienna Peedee Belemite standard for 13C analysis
"R" is used to refer to a carbon reservoir other than the atmosphere

14C production and measurement

14C: Radiocarbon

t: Time, with respect to radiocarbon years

AMS: Accelerator mass spectrometry

MRE: Marine radiocarbon reservoir effect

a: Sigma error term

8i3C: Per mille deviation from the VPDB international standard

CRA: Conventional radiocarbon age

l4Ao : The l4A of a sample at t = 0

Q: Rate at which 14C is produced in the atmosphere

pCO2: Partial pressure of C02
GCR: Galactic cosmic ray

SCR: Solar cosmic ray

OXII: The current reference material provided by the National Institute
Standards and Technology for l4C age calculation (SRM-4990C = Oxalic acid II)
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• A14C: Per mille deviation of 14Aatm from the international standard value of 14Ao
• CterT: Carbon contained within the coeval atmosphere and terrestrial biosphere
• R: Reservoir effect. A 14C age offset between carbon in a reservoir and the

coeval atmosphere.
• Cmar: Carbon contained within the marine (ocean) reservoir

Ocean currents:

EGC: East Greenland Current

NADW: North Atlantic deep water

NAC: North Atlantic current

NC: Norwegian current

NCC: Norwegian Coastal current

IC: Irminger current
• WGC: West Greenland Current
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Chapter 1: Introduction

Chapter 1: Introduction

The overall aim of this thesis is to examine spatial and temporal characteristics of the 14C marine
reservoir effect (MRE) in the North Atlantic over the Holocene using paired terrestrial and
marine samples from terrestrial archaeological deposits. To achieve this several specific study

objectives have been identified (Table 1.1).

Specific objective: Achieved by:

To produce relevant AR determinations of a

high degree of precision and accuracy.

The development of a rigorous protocol for
selection of samples for l4C measurement and
measurement ofmultiple individual samples at

each site.

To examine spatial variability in AR The selection of samples for measurement

from a geographic range covering Western
Ireland, Northern and Western Scotland and

the Faroe Isles

To examine temporal variability in AR The measurement of samples from

archaeological deposits covering the past

c.8000 years

To identify potential paleoenvironmental
mechanisms for any observed variability in AR

Relating results to climate and oceanographic

changes in paleoenvironmental records
Table 1.1: Specific study objectives.

Rationalefor this study

Chronological information obtained via 14C measurements has become invaluable in both

paleoclimatic and archaeological research. However, where 14C measurements are made on

sample material that contains marine-derived carbon, the marine reservoir effect (MRE) is a

crucial consideration. The MRE is a 14C offset that exists at any point in time between the

atmosphere and contemporaneous oceans and is the product of atmospheric and oceanic
circulation and exchange mechanisms, for example the rate and nature of atmosphere-ocean gas

exchange and ocean circulation, that are described in detail in Chapter 2. The net effect is that
the specific I4C activity of marine carbon is depleted relative to that of terrestrial carbon;
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therefore, l4C ages of marine carbon-containing samples appear greater than those of terrestrial

samples, even though the two were formed at the same point in time. In order to obtain accurate

14C ages when using samples containing marine carbon, the MRE must consequently be
accounted for.

A MRE correction is available via a separate calibration curve, MARINE04 (Hughen et al.,

2004) for use with 14C measurements on marine samples. The marine calibration curve is

produced by modelling the oceanic response to solar-derived atmospheric 14C variations and

gives a time-series of the atmosphere-ocean l4C offset for the global average surface and deep
oceans. However, in any specific area of the ocean the MRE may deviate from the global

average provided by MARINE04 and this deviation (known as AR), must be quantified by

empirical measurement of local samples (Stuiver and Braziunas, 1993). At present, AR values
are available for the modern (pre-bomb), global surface ocean from a large number of studies.
These have been collated in the on-line Marine Reservoir Correction Database (Stuiver and

Reimer, 1993; Reimer and Reimer, 2001; Reimer and Reimer, 2005) to provide regional
corrections for specific modern ocean areas. As a first assessment, the AR for an area of surface
ocean was assumed to be time-independent (Stuiver and Braziunas, 1993). However, there is a

growing body of evidence that this is not necessarily the case (e. g. Monge Soares, 1993),

particularly in areas of sensitive climatic and oceanographic boundaries. In these areas

significant shifts in the climatic and oceanographic mechanisms that are thought to determine the
size of AR values can occur over relatively short timescales. One such region is the North

Atlantic, which is of key importance to our understanding of present and past climatic systems.

At present the distribution of regional mean AR values in the North Atlantic (see Figure 2.6

Chapter 2) appears to broadly reflect that of known climatic and oceanographic variables, such
as the relative extent of Arctic and Atlantic-derived water masses. However, there is a lack of

comprehensive or standardised studies of spatial variability to address this phenomenon. In

addition, there is a lack of information concerning characteristics of the MRE through time in
this climatically important region. The modem MRE in the North Atlantic is c.400 y,

corresponding to a AR of c. 0 y. However, several studies have identified large variations in

MRE, eg. increases of c. 400 yr at times of large climatic transitions in this region, such as the

Younger Dryas cold interval (Bard et al., 1994; Austin et al., 1995; Haflidason et al., 1995;

2000). Although there is evidence for MRE variability on a range of spatial and temporal scales,

2
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there is an absence of a quantitative relationship between potential forcing mechanisms and the

corresponding size of a MRE offset. One reason for this may be the level of temporal resolution
to which the variables (including the MRE) can be studied. This thesis therefore uses a

standardised methodology to investigate characteristics of the MRE in order to provide data on

spatial and temporal scales that is currently lacking. The North Atlantic is a particularly suitable

region for this type of study as it is a zone where variations in climatic and oceanographic
variables could produce variation in the MRE on a variety of spatial and temporal scales. The
aims of this study are particularly relevant due to the potential impact of MRE corrections upon

correlations and comparisons of paleoclimatic and archaeological records. Here, interpretations
of event chronologies and synchronicity often rest upon l4C measurements that may be made

using marine-derived samples. In addition to the importance of accurate and precise MRE
assessments to construct chronologies, variability in the MRE within an area may integrate with
both paleoclimatic and archaeological research in other ways. The nature of climatic and

oceanographic mechanisms linked to observed MRE variations implies that changes in the MRE

during a particular time period are likely to coincide with environmental changes within the
wider North Atlantic. These paleoclimatic changes would also have impacted upon human
communities and therefore could be reflected within the archaeological record.

Study structure

Past MRE determinations are made using 14C measurements of paired samples of terrestrial and
marine material from archaeological sites in the island belts of Northern and Western Scotland,
the western and northern Scottish mainland coast, Western Ireland and the Faroe Isles. These are

coastal regions exposed to the open currents of the North Atlantic that are sensitive to changes in

patterning and intensity ofNorth Atlantic oceanography. The samples are selected according to a

strict protocol, developed within this study (see Chapters 3 and 4, and also Ascough et al., in

press) that has maximized the available precision and accuracy ofMRE determinations, based on

the paired sample approach.

Samples of carbonized cereal grain, hazelnut shell or terrestrial mammal bone were taken, along
with marine mollusc shells from 30 archaeological deposits at 20 sites. These were prepared for
l4C measurement and the data analysed using the methodology outlined in Chapter 4. The
mollusc shells were predominantly of the species Patella vulgata (common limpet), although
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different species were used in 5 instances. To account for this potential source of variation, a

sub-study was undertaken that examined the potential for species-dependant variations in
mollusc shell l4C content. The results are presented in Chapter 5 and AR determinations made
within this study cover a calibrated interval of c. BC 6500 to c. AD 1400 (c. 7900 y), lying
within the Holocene paleoenvironmental period of the last c.10, 000 y. These data show that it is

possible to identify characteristics of the MRE using this methodology. The observed features of
the data are considered in Chapter 6 and placed within the context ofmulti-proxy oceanographic
and environmental change records. A range of climatic and oceanographic mechanisms is
identified in current paleoenvironmental data that may be responsible for the variations in
surface ocean 14C content observed in this thesis. These include cooler climatic phases, such as

the "8.2 kyr event", when the surface salinity of the North Atlantic appears to have been reduced

by release ofmeltwater from the Laurentide ice-sheet (Alley et al., 1997), and the Little Ice Age,
a period of climatic cooling, identified in a range of global records, and within the North
Atlantic. Warmer phases that may be linked with periods represented by data from this thesis
include a period ofminima in ice-rafted debris (Bond et al., 1997), and faster rate of overflow of

deep water across the Iceland-Scotland ridge (Bianchi and McCave, 1999) at c.2000 BP, and the
"Medieval Warm Period" when there is evidence for increased influx of the North Atlantic

Current to the study area.

Wider study implications

This research is designed to produce data that will allow refinement of the MRE correction

accuracy available for paleoenvironmental and archaeological investigations within the study
area. In addition, it is recognised that it will also result in the production of a suite of l4C
measurements on constrained terrestrial material at a range of important archaeological sites. It
is anticipated that the outcomes of this study will benefit several disciplines including the fields
of l4C, paleoenvironmental and archaeological research, due to the integrated nature of the
results. The anticipated higher resolution MRE data that should be available through this study

ought to lead to a better understanding of the nature and mechanisms of the effect itself, and in

Chapter 7, future research directions on the basis of this study are suggested. The correction
values produced through this work can be used with the available calibration programs, such as

OxCal (Bronk-Ramsey, 1995; 2001) and CALIB (Stuiver and Reimer, 1993) to correct marine

samples from specific time periods within the study area.
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Chapter 2: Scientific context

2.1 14C: production and global distribution

The primary cosmic radiation that enters the Earth's atmosphere consists of charged particles

arriving from outside the solar system (galactic cosmic rays) and a less energetic component

generated by the sun (solar cosmic rays). The particles lose energy in the atmosphere by
ionization and nuclear interactions with gaseous molecules and atomic nuclei to generate a

cascade of secondary particles, including neutrons with an energy range c.10 MeV to

lOOkeV, known as fast neutrons. Fast neutrons lose energy in elastic and inelastic nuclear
collisions, eventually becoming "thermal" neutrons that are in vibrational equilibrium with

atmospheric gases (Gosse and Phillips, 2001). Absorption of thermal neutrons by nuclei

produces atomic isotopes, and when this reaction occurs with nitrogen atoms (14N) in the

upper troposphere/ lower stratosphere the result is radiocarbon (14C), an unstable isotope of
carbon that decays by beta emission with a half-life (ti/2) of 5730 ± 40 years (Godwin, 1962):

14N + n -» 14C + p

(Equation 2.1)

Following production of atmospheric 14C, the isotope is quickly oxidised to 14CO and further
with the hydroxyl radical to 14C02:

14CO + OH —> 14C02 + H

(Equation 2.2)

The global average production rate of 14C is c.6 x 107 atoms cm2 yr"1 (Finkel and Suter,

1993) which with the 14C atomic mean life of 8270 years (t1/2/ln2), means that the ratio of
14C/12C in global carbon reservoirs is c.10"12 (Stuiver and Braziunas, 1993). Of the total

global carbon budget, approximately 1.1% is composed of the 13C stable carbon isotope,
while the vast majority of carbon in current circulation is the stable isotope l2C.

The cosmogenic production rate of 14C is dependant upon altitude as this determines the

density of 14N target nuclei, and upon latitude due to the variable intensity of the Earths

magnetic field. At lower latitudes the magnetic field lines are perpendicular to the velocity of

incoming particles and increase deflection of the low-energy GCR component that is
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responsible for the majority of l4C production (Rose et al., 1956, Muzikar et al, 2003).
Production rates are therefore greatest in the polar regions of the stratosphere, although the

rapidity of atmospheric circulation, and the fact that 14C remains within atmospheric C02 for
several years after production, ensures that relatively homogenous global atmospheric
distribution of newly produced 14C is achieved within a few years (Levin et. al., 1980). The
mean residence time of C02 in the atmospheric reservoir is on the order of 5 yr (Levin and

Hesshaimer, 2000) following which, biological and chemical transport mechanisms of the
short-term carbon cycle (operating on <105 years) rapidly distribute 14C throughout the

atmospheric, terrestrial and oceanic carbon reservoirs.

The present atmospheric C02 inventory is c.750 GtC (1 GtC = 109 metric tons C or 1015 g

C), of which c.20% is annually exchanged with the biosphere, atmosphere, and ocean surface
(Schimel et al., 1995).The uptake of C02 by these reservoirs is determined by exchange rates

and factors of internal mixing, which produce variations in the spatial and temporal
distribution of C within each reservoir. These variations are lowest in the atmosphere, which
is well-mixed with respect to C (and 14C) relative to the biosphere and oceans. The oceanic
reservoir presently exchanges c.90 GtC annually with the atmosphere and contains the

largest amount of C that is in circulation over timescales relevant to the 14C mean life (see

Figure 2.1).

The constant cosmogenic production of 14C in the atmosphere, coupled with a well-defined
radioactive decay rate and rapid, universal global distribution make the isotope highly
suitable for use in a range of scientific applications. The time (t) since a sample ceased to

exchange l4C with the global carbon reservoir can be determined by relating the remaining

(measured) 14C content of a sample to its original level of l4C (i.e. before exchange ceased).

Using the known half-life and radioactive decay equation, the amount by which the sample
l4C content has decreased is translated to a 14C "age". In principle this makes possible the
absolute age measurement of any organic carbonaceous sample material that has been
formed within the past c.50 ky. This time range is dictated by both the 14C half-life and the

sensitivity of measurement equipment to detect the very low levels of l4C remaining in
ancient samples. 14C age measurement is currently used in applications including hydrology,

oceanography, geochemistry and archaeology and has over the past 50 years revolutionized
our understanding of processes and events within these fields.
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Figure 2.1: Estimates of reservoir volumes (in GtC), and fluxes (GtC yr"1) of the global

biogeochemical cycle of carbon. Adapted from Schimel et al., (1995).

2.2 Measuring the 14C content of a sample

Measurement of the amount of l4C in a sample is achieved either indirectly, by counting the

number of (3 emissions per unit time from a known sample weight (radiometric counting

method), or directly by measuring the number of 14C atoms in a sample relative to the

number of 12C or l3C atoms using accelerator mass spectrometry (AMS). The sample 14C
content is commonly reported as an absolute (specific) 14C activity level (14A) in

disintegrations per minute (dpm) per gram of carbon (Mook and Van der Plicht, 1999). The

low 14C/12C ratio of modern carbon (1012) means that a high level of instrument sensitivity is

required in both radiometric and AMS measurement techniques, and that prior to

measurement the carbonaceous material within the sample is converted to a compound with
a high stoichiometric carbon content (e.g. benzene (C6H6) for liquid scintillation counting or

pure carbon (graphite) for AMS).
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2.2.1 Radiometric measurement

Radiometric measurement involves detection of the product of radioactive decay ([3

particles) either through ionisation of a gas to produce an electrical pulse, known as gas

proportional counting (GPC) or through interaction with a liquid scintillator to produce a

light flash in liquid scintillation counting (LSC). In GPC the sample is usually converted to

C02, CH4 or C2H2 which then also constitutes the inert counting gas. In LSC, the sample is
converted to benzene (C6H6), which acts as both the sample and the solvent for the
scintillator (fluor particles), that are stimulated by the transmission of energy from (3-decay
events to emit light, which is converted to an electrical pulse for measurement. In
radiometric and AMS measurement the level of precision (described by the error term a)

associated with a measurement of sample 14C content is related to the number of observed

events (N) over the period of measurement time using Poisson statistics, where CT = Vn
(McNichol et al., 2001). Therefore if N = 100, a = 10 (10% of N), and the value of o is

reduced by increasing the number of observed events. In this way, the length of time

required to achieve a given level of measurement precision for a sample is a function of

sample size and 14C content.

Although lg of modern carbon contains c.6 x 1010 14C atoms, the half life of the isotope
means that the activity (14A) of this sample is on the order of c.15 dpm (Ehmann and Vance,

1991). To achieve 1% precision with a radiometric measurement of 14C activity using c.3g
modern carbon would therefore require c.4 hours to perform the necessary c. 10,000 counts

(Trumbore, 2000). As c.1% of the sample 14C atoms decay over 80 years (Aitken, 1990), the

counting times required for specific precision levels increase with sample age, meaning that
an age limit exists on the measurement of ancient samples with very low 14C activity levels.
When the sample 14C activity is indistinguishable from the detector background it is then no

longer possible to accurately assess sample ages. This places an upper age limit for sample
measurement of c.50 kyr for both radiometric and AMS systems (Muzikar et al., 2003)

although samples up to 70 kyr may be analysed through isotopic enrichment and high

sensitivity measurement (Grootes et al., 1975; Long and Kalin 1992). Another limitation
with very old samples or samples that consist of a very low mass of material is the large

proportional impact upon the measured sample 14C activity of contamination with extraneous

carbon.
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2.2.2 Accelerator Mass Spectrometry (AMS)

Because of the extended counting times and the sufficient (gram) weights of carbon required
to achieve acceptable levels of measurement precision using the radiometric technique, the

range of samples that can be analysed is limited. This prohibits the measurement of samples
which have a low inherent mass, or where the available material for dating is limited, as in
the case of rare or valuable objects. An alternative method of sample measurement is to use

accelerator mass spectrometry (AMS), which detects individual 14C atoms in a sample by
atomic weight (A). Using mainly tandem electrostatic accelerators, AMS systems are able to

measure both low isotopic abundances (c.104 atoms), and ratios of radioactive to stable

isotopes of the order 10 15 (Elmore and Phillips, 1987; Fifield, 1999). The main advantages
of AMS are the reductions in both count times and required sample size relative to

radiometric analysis. Equivalent measurement precision levels of 0.2-0.5% can be achieved

using milligram quantities of carbon compared to grams and count times of the order of
minutes as opposed to days (Tuniz et al., 1998). The lower sample masses required mean

that more rigorous pre-treatment processes, which result in greater loss of sample structure,

are possible and also that samples of inherently low weight material, such as pollen grains or
foraminifera can be measured (Brown et al., 1989). This has had a revolutionary impact in

archaeological and palaeoenvironmental studies, enabling analysis of individual organisms

(e.g. mollusc shells, cereal grains), and of pg quantities of rare artefacts.

AMS differs from standard mass spectrometry (MS) in the energies to which ions are

accelerated. In MS these are on the order of 103 electron volts (KeV), whereas AMS can

achieve energies of 106 electron volts (MeV). The higher energies allow the measurement of

isotopic ratios to a factor of 5 lower than using conventional MS, which is essential to

separate isotopes such as 14N which have a very low mass difference from 14C and would not

be isolated using MS (Tuniz et al., 1998). The use of AMS allows unwanted nuclides to be

rejected without reducing the l4C count rate to unacceptable levels, using multiple mass

selection stages to select particles with unique mass-to-charge and energy-to-charge ratios

(Muzikar et al., 2003). The importance of separating particles with a low mass difference to

14C means that a central feature of AMS is the formation of negative ions by sputtering with
Cs+ ions as the sample is introduced to the system, displacing sample atoms and ions (C ) by
collision (Middleton et al., 1983, Finkel and Suter, 1993). The instability of the main

negative isobaric ions of l4C (including 14N") ensures that high measurement precision can be

achieved in a limited time, and means that the isotope can be measured using relatively low

energies (c.2-3 MV) (Purser et al, 1981; Tuniz et al., 1998).

9



Chapter 2: Scientific context

The negative ion beam is mass analysed before acceleration, discriminating against higher
and lower mass values to select ions of masses 12, 13 and 14 (McNichol et al., 2001). The

beam is then pre-accelerated to focus at the central terminal and stripper canal, before being
accelerated to a positive high voltage terminal where multiple electrons are stripped as the
beam passes through a carbon foil or a gas. Stripping coverts negative atomic ions to positive
ions and the process dissociates molecular ions to positively-charged atoms. During

stripping, ionic molecules with a mass close to that of 14C (e.g. I2CH2~) are dissociated and
the fragments are then removed in later analysis (Muzikar et al., 2003). These particles are

then repelled by the negative terminal to the other end of the accelerator, where scattered

particles, molecular fragments and unwanted charge states are removed with magnetic and
electrostatic analysers (a velocity or wein filter may also be used), the number and

arrangement of which depends upon the individual accelerator (Elmore and Phillips, 1987).
The electrostatic analysers are necessary to remove particles that have a different mass, but
the correct mass-energy product to pass the magnetic analyser. Using the principle that the
rate of energy loss by matter is determined by atomic number (Z), ions are selected by

charge state (q) and energy (E), and subsequently diverted to a detector (14C) or Faraday cups
(12C and 13C). Each of these receives a different C isotope, determined by the differing radii
of curvature in path of travel of 12C, 13C and 14C. The 14C ions are individually counted in
either a solid surface barrier detector or a gas ionization chamber. Because only a fraction of

sample carbon atoms are sputtered to negative ions and ions may be lost in the journey
between the ion source and detector, it is necessary to measure the ratio of unstable to stable

isotopes in the measured sample, and it is the measured ratio which is used to calculate a i4C
age (McNichol et al., 2001; Muzikar et al., 2003). The 12C/13C beam is measured as an

electrical current in the Faraday cups (Fifield, 1999) and the charge is converted to pulses

using Coulombs law and the charge of an electron to calculate the sample 14C/12C or 14C/I 3C
ratio (McNichol et al., 2001).

The efficiency of AMS systems to measure sample l4C content is limited by the ratio of total
14C detected by a measurement to the actual amount of 14C that the sample contains. Several
factors that determine the size of this ratio occur outside the measurement system and
include contamination of the sample during laboratory processing, as 14C02 may be adsorbed
onto any surface, including water, and dissolves readily in basic solutions used in pre-

treatment processes (Tuniz et al., 1998). The lower sample volumes used in AMS analysis
mean that a relatively small amount of contamination is required to produce a significant
shift in measured sample isotopic ratio, therefore the procedures used to limit contamination,
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both in the field and laboratory, must be rigorous. To account for measurement variability
induced by these factors, a "process blank" is often measured at the same time as the sample.
This is a sample of material containing no detectable 14C that has undergone identical
chemical processing techniques as the sample prior to measurement (McNichol et al., 2001).

Factors affecting measurement efficiency that occur within the AMS system include the

efficiency of negative ion production at the sputter source, the yield of selected charge state

and the transmission of ions through the accelerator and analysers (Elmore and Phillips,

1987). In addition, linear and non-linear fractionation may occur within the system during
the stripping process or from the action of stray magnetic fields. The efficiency of sample
measurement at the detector is affected by the detection of events not derived from sample
14C that are indistinguishable from sample 14C content, (the background). These events can

arise from cross contamination of samples, contamination with modern 14C at the ion source,

or from detection of molecular ions, isotopes and isobars that have remained unresolved by
the system. It is possible for ions with different masses, energies or charges than the l4C ion
to reach the detector due to the alteration of their energy/charge ratios by collisions (e.g. with
residual gases) in the system, meaning that a good vacuum within the apparatus is essential
to measurement efficiency. The formation of stable hydride molecules (e.g. I3CH, 12CH2) is a

major source of isotopic background (Tuniz et al., 1998; Fifield, 1999).

Each AMS measurement is produced by alternate or simultaneous measurement of the
detector count (14C) and the electrical current (12C and / or 13C) of the sample and similar
measurements on a standard of known isotopic ratio, which allows normalisation and
correction for internal system fractionation (Elmore, 1982). The background of the system is
measured by analysis of samples that contain no l4C (blanks). These are usually geological-

age carbon, and together with the level of sample contamination and efficiency of ion beam

production, determines the detection limit of AMS, which is currently similar to radiometric

counting.

The error on a reported AMS measurement (lc) is an accumulation of statistical and

systematic errors. The latter determine measurement accuracy and include the degree of

sample contamination, fractionation during processing and variability in measurement

accuracy of standards and unknown samples (Tuniz et al., 1998). Accuracy is improved by

repeated measurement of each sample to determine variations in efficiency factor ratios

(Seguin et al., 1994). The statistical error, together with the degree of measurement

reproducibility, determines the precision achieved. The statistical error is a combination of
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errors on measurement of the sample, standard and blanks, and is derived from random

variation in sample sputtering, transmission and detection of ions (Tuniz et al., 1998).

2.3 Calculation of 14C ages from sample measurements

2.3.1 Correcting for isotopic fractionation

The natural physical and biochemical processes that transfer C between compounds in global
reservoirs often preferentially use one of the C isotopes, resulting in a fractionation effect
that is a function of atomic mass. In plants that use the Calvin-Benson photosynthetic

pathway (C3 plants), photosynthesis favours the uptake of 12C, producing a depletion in l4C
relative to coeval atmospheric isotopic ratios. In contrast, gaseous exchange of CCF at the

atmosphere-surface ocean interface results in an enrichment of 14C within ocean bicarbonate

(Aitken, 1990). Artificial fractionation of a sample is also possible in a laboratory prior to
l4C measurement through incomplete conversion of sample material during a preparation

stage.

The process of isotopic fractionation means that measurements of specific 14C activity (14A)
in a sample require a correction, as two samples formed at the same point in time but which
have been fractionated to different extents will exhibit different values of 14A, and therefore

will have different calculated 14C ages. For this reason, the 14C activity values of all
measured samples are normalised relative to an international standard value of 813C = -25%c,
with respect to VPDB (Vienna Peedee Belamite) (Gonfiantini, 1984; Coplen, 1994). The

sample 13C content with respect to the international standard is generally expressed in parts

per mille (%<?) due to the small quantities involved and is quantified by measuring the sample
13C/12C ratio, a procedure which can be performed during measurement of a sample with
AMS ("online" values) or separately using a standard isotope ratio mass spectrometer

("offline" values). The sample isotopic composition (813CS) is then expressed as the

difference in 13C content between the measured sample and the VPDB standard:
f( 13 i

SliC,=
Rs

V V ' ^ RVPDB j J

xlOOO

(Equation 2.3)

813CS = 8l3C%c of the measured sample

13Rs = 13C/12C ratio of the measured sample

13RVPdb = 13C/12C ratio of the VPDB standard
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The measured sample C activity is then normalised to -25%c by using the value of 5 Cs to

calculate a fractionation factor for the measured sample (FFS):

l + (-25/l03)VFFs=
1 + (<?13Cs/103)

(Equation 2.4)

In the above equation, the factor of 2 is required as according to international convention, the
14C/12C fractionation in the sample is estimated as double that of the I3C/12C fractionation
because of the greater atomic mass of l4C. In AMS analysis, the sample 14C/I3C ratio may be
measured instead of the 14C/12C ratio. When the 14C/'3C ratio is used, the equation above
becomes:

A 1 + (- 25/lQ3)AFFs =
i + (£13cs/io3)

(Equation 2.5)

The range of 513CS values varies widely depending upon the sample material, as shown by
the general values in Table 2.1 below.

Material 813C value (%o)

Wood, peat, C3 plants -25 ± 3

Bone collagen -20 ±2

Freshwater plants -16 ± 2

Arid zone plants -13 ±2

Marine plants -12 ±2

Maize -10 ±2

Atmospheric CCF -9 ±2

Marine carbonates 0 + 3

Table 2.1: Estimated §13C values for a range of typical sample materials (from Aitken,

1990).

13



Chapter 2: Scientific context

2.3.2 Calculating 14C age from measured sample 14A

The l4C age of a sample (t), is based on the measured specific 14C activity of the sample

(14As) and is calculated by:

t =—In
A V '4Asy

(Equation 2.6)

X = the l4C decay constant (derived from the l4C half life (ti/2))

14A0 = the 14C specific activity of the sample at t = 0 (i.e.: the sample l4C activity at point of
death/formation).

14As = the present measured l4C specific activity of the sample

The 14C decay constant X is calculated according to:

tl/2

(Equation 2.7)

In l4C age calculation, the value of 5568 years is used for tm- This value corresponds to an

early assessment for of 5568 ± 30 years calculated by Libby et al. (1949), which was later
corrected to 5730 ± 40 years (Godwin, 1962). Because 14C ages were calculated for a large
number of samples before the correction, the Libby half-life continues to be used in age

calculations to enable comparison and consistency with the large number of early 14C
measurements. The 3 % greater value of 5730 ± 40 years is used for specific circumstances,
such as the calculation of geochemical mass balances (Stuiver and Polach, 1977).

As shown in Equation 2.6, to calculate a 14C age (t), it is necessary to know or estimate a

value for 14A0. This quantity is the initial 14C activity that the sample would have had when it
last exchanged 14C with the atmospheric reservoir (i.e. at the time of death or formation).
Because it is not possible to directly measure the initial 14C activity of a sample, an

international standard value, originally based on the 14C activity of tree rings grown in

equilibrium with atmospheric C02 in 1890 AD is used instead. The year 1890 AD was

chosen as the wood was judged not to be significantly affected by the fossil-fuel emissions
that subsequently altered atmospheric 14C content. The tree ring 14C activity was then age
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corrected to 1950 AD to provide a value for atmospheric 14C activity in 1950 AD. 14C ages

are commonly reported in years "before present" (BP), and the use of this standard value
means that "present" is taken to be 1950 AD (Stuiver and Polach, 1977). Despite the fact that
l4C measurements are now performed after 1950 AD, there is no need to decay correct ages,

provided both the sample and standards are reported relative to 1950 AD. This is because the
14C activity of both the sample and standards have been decaying at the same rate since this
time.

The value of 14A0 is obtained from a modern standard material with a 14C activity that

equates to that of wood samples from 1890 AD, judged to be the last year when
concentrations of atmospheric 14C represented a "natural" level. The current reference
material provided by the National Institute of Standards and Technology for 14C age

calculation is Oxalic acid II (OXII), obtained from a 1977 sugar beet molasses harvest, and
the accepted standard reference activity is 0.7459 times the specific activity of OXII

(14Aoxii)> after normalisation to 5I3C = -25%c (Donahue et al., 1990).

2.3.3 Using radiometric/AMS assessments ofsample fraction modern carbon

The value normally used in age calculation using either radiometric or AMS measurements

is the fraction modern (F) of a sample, where l4C age (t) is:

(Equation 2.8)

The value of F for a sample is the ratio of the measured 14C activities for the sample (14AS)
and the OXII standard (14A0x), where both have been normalised to 813C = -25%o (14Asn and

14A0xn respectively):

(Equation 2.9)
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Where the sample 14C activity has been measured as a ratio (i.e. with AMS), this may be
converted to a sample fraction of modern carbon by comparison with the measured ratio for
the standard, corrected to modern carbon (McNichol et al., 2001).

2.3.4 Conventional14C age (CRA) ofa sample

The 14C age of a sample produced using the above methodology is known as a conventional
radiocarbon age (CRA), meaning that certain criteria are fulfilled, namely:

1. An appropriate standard reference material (currently OXII) has been used during
measurement

2. All measured sample and standard 14C activities (radiometric) or ratios (AMS) have

been normalised to 8BC = -25%c

3. The Libby half life (5568 years) has been used in calculation
4. The age is reported in years before present (BP) where present is 1950 AD

The CRA has an associated error term reported at ± one sigma (a) which is a cumulative
error of internal laboratory errors, systematic offsets and errors on measurement of the
reference standard, background blanks and unknown 14C activities or ratios, and the sample

813C measurement. The error is derived by the square root of the sum of all squared
individual errors. Together, the CRA and error describe a Gaussian curve representing a

distribution that has a specified probability of containing the actual sample age. The CRA of
a sample can be compared with other sample CRA's, but in order to place the sample on a

calendar timescale, the CRA must be calibrated to convert to calendar years.

2.4 Calibrating sample 14C ages: Determining a calendar age range

In using the OXII standard to provide a known value for the 14A0 of all samples an

assumption is made that the 14A0 of all samples was originally equivalent. As the value of

14A0 is taken to represent the global atmospheric reservoir 14C activity (14Aatm), it follows that
this activity is also assumed to have remained constant throughout time. However, it is now

known that over time the specific 14C activity of the atmosphere has varied by significant
amounts in a non-systematic way, meaning that l4C "years" do not correspond to actual
calendar years (Pilcher, 1991). The level of 14Aatm at a point in time is described by the term

16



Chapter 2: Scientific context

A14Catm, which represents the per mille deviation of l4Aatm from the value of 14A0 (i.e. OXII
standard activity corrected for age and fractionation effects) (Stuiver and Polach, 1977). The

past value of A14Catm can be quantified with measurements of samples for which the calendar

age is known, including sequences of tree-rings, where the calendar age of a sample

(established with dendrochronology) can be compared with its 14C age.

If A14Catm had remained at a constant level over time, the 14C activity of a tree-ring sequence

would decrease linearly with increasing calendar age as 14C decay occurred, and a direct
conversion of measured 14C age versus calendar age would be possible. However, the record
Of A14Catm present in tree rings shows that atmospheric levels of 14C activity have fluctuated,
with regular long and short term deviations that have both sporadic and cyclical frequencies

(Neftel et al., 1981). The trend of 14C versus calendar ages is consequently non-linear, and a

single value of 14C activity measured in a sample can correspond to more than one calibrated

(cal) calendar age range. The rate at which A14Catm fluctuations have occurred is not constant,

and where levels have risen or fallen rapidly, two samples actually separated by decades in
calendar years can have 14C ages that differ on a century scale due to their significantly
different values of 14A0. Another feature of the atmospheric calibration curve is the presence

of "plateaus", where a period of steadily rising A14Catm offsets the reduction in the 14C
activity of samples that is due to radioactive decay through time. In this instance a range of

samples formed at different points over a long calendar time period will have had increasing
values of l4A0 through time and their l4C ages are indistinguishable (Figure 2.4).

The changes in A14Catm over time are attributed to both variation in atmospheric 14C
production rates and the global redistribution of l4C throughout various reservoirs, resulting
from natural and anthropogenically-driven processes (McCormac et al., 1998). As the 14C
age of a sample is often interpreted as part of research that compares and correlates processes

within a chronological framework, it is necessary to account for the A14C fluctuations that

produce varying values of 14A0, and any 14C age must be calibrated if its calendar age is to be
known. The following section discusses first the various mechanisms responsible for

changes in A14C%c and then the construction and application of the atmospheric calibration
curves currently used to convert 14C ages to a calendar scale.
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2.4.1 Mechanisms for variation-Natural14Cproduction rate change

The rate at which 14C is produced in the atmosphere depends upon variations in the strength
of the primary cosmic radiation flux (PCR) that reaches the Earth. The PCR is derived from

various sources including those external to the solar system, known as galactic cosmic rays

(GCRs) and from the sun, known as solar cosmic rays (SCRs). SCRs incorporate a high

energy component with a flux of c.3 x 108 protons cm2 sec"1, and a lower energy component
with a flux of c.100 protons cm"2 sec"1, where the lower energy rays comprise an ionized

plasma, known as the solar wind, that displays a high degree of short-term variation in

particle velocity and density (Korff and Mendell, 1980; Tuniz et al., 1998). Variations in the
overall SCR flux are proportional to rates of solar activity, (increasing at solar maximum)
and are positively correlated with sunspot incidence. The SCR flux is responsible for a more

minor component of total annual 14C production than that generated by the action of galactic
cosmic rays (GCRs originating from beyond the solar system (Lai, 1991). Although the

average GCR flux is c.3 protons cm" s"1, the rays have energies far in excess of the SCR flux,

typically up to c.100 GeV (Reedy, 1987).

Because the PCR's consist of charged particles, the rays are deflected from the Earth's

atmosphere by magnetic fields generated by the Sun and from the Earth itself. The degree of
deflection occurs in proportion to the strength of the magnetic fields, so that when field

strength is high the intensity of the PCR flux reaching the Earth is reduced and global

atmospheric 14C production rates fall. As PCRs travel towards the Earth they are first
modulated by the solar magnetic field, which extends at least 1010 km from the sun and is
modulated by variations in solar plasma output that result from solar events such as

geomagnetic storms (Lai and Peters, 1967).

Variations in solar activity rates also alter the SCR flux generated from the sun, which itself
carries a magnetic field and therefore further modulates the GCR flux. This occurs at a

distance of 60-100 astronomical units (AU, where 1 AU = c.1.5 x 108 km) from the Earth as

GCRs enter the heliosphere and undergo electrostatic and electromagnetic interactions with
the solar magnetic field and SCRs. Although the GCR flux has remained constant on average

(to within c.10%) over the past several million years (Vogt et al., 1990), the portion of GCRs

entering the Earths atmosphere is highly modulated by the solar cycle. As it is the lower

energy portion of the GCR spectrum that is most strongly attenuated by solar activity, the
reduction in global atmospheric 14C production rates is greatest at the high latitudes, which
receive the largest proportion of low energy GCR rays. Because these regions are also those
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where the highest global production rates of 14C are located, the overall effect is to enhance

solar modulated changes in Al4C%c (Cerling and Craig, 1994).

Atmospheric 14C production rates therefore vary inversely with solar activity rates which are

historically quantified by observation of the frequency of solar features such as sunspot

number, and beyond this timeframe by records of cosmogenic isotope production
(Pomerantz and Duggel, 1974; Lai, 1988; Masarik and Beer, 1999). Solar activity is strongly
linked to the high frequency wiggles (with amplitudes reaching 2-2.5%c) that occur in the

tree-ring record of A14Catm on the order of calendar decades to centuries (Castagnoli and Lai,
1980, Stuiver and Quay, 1980; Damon and Linick, 1986). Sporadic solar events overlie a

series of cycles in solar activity which have both short (e.g. 11-yr) and long-term (e.g. 200

yr) periodicity (Cerling and Craig, 1994) and appear to have induced regular 14C age

fluctuations over significant timescales. The 200-yr solar cycle is correlated with Al4Catm
variations that produce 14C age changes on the order of c. 100 years over the majority of the
Holocene period (Suess, 1986; Neftel et al, 1981; Damon and Linick, 1986). In contrast, a

maximum variability of c.20 14C yr between single l4C years has been calculated to result
from the 11-yr solar cycle, translating to an overall modulation of c.8 I4C yr around the long-
term average Al4Catm trend (Stuiver et al, 1998a).

Upon reaching the Earth's atmosphere the PCR flux is further modulated by the strength of
the Earth's magnetic field, which shields against the charged particles according to their
individual momentum-to-charge ratio (rigidity) and angle of incidence. For each angle of
travel with respect to the Earth, there is a critical rigidity value below which the particles
cannot penetrate into the atmosphere. Because the Earth's magnetic field strength varies with
latitude the value of this critical rigidity decreases as geomagnetic latitude increases which is

why the present location of highest atmospheric 14C production rates is at the poles (Desilets
and Zreda, 2001). Changes in the magnitude and direction of the geomagnetic field over time

(e.g. Wagner, 1988; Guyodo and Valet, 1999; Frank, 2000) have modulated the PCR flux

entering the Earth's atmosphere, and produced production rate variations that are inversely

proportional to the geomagnetic field strength (Damon et al., 1978, Suess, 1986). Varying

dipole field strength appears to be the dominant cause of a long-term sinusoidal pattern in the

tree-ring record of Al4Catm, (upon which the shorter term solar-induced cycles are

superimposed), which has a period of c.9 14C ka and peak-to-peak magnitude of c.10%

(Castagnoli and Lai, 1980; Stuiver and Quay, 1980). The geomagnetic influence upon

production rates is primarily observed in long term A14Catm change because of the extended
timescale over which variation of geomagnetic dipole moment occurs, coupled with the
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lagged response of the global carbon cycle system to Al4Catm variation. An extended time

period of long-term field strength change (c.1000 years) is therefore required to effect

significant changes in atmospheric A14Catm and the production of a new global equilibrium
state (Aitken, 1990; Tuniz et al., 1998).

2.4.2 Human-induced changes in AI4Catm

Large changes in A14Catm have also been produced as a result of human action that introduces
difficulties in age calculation for samples of recent material. These include alteration of

A14Catm through the input of C02 with a significantly different 14C activity to the coeval

atmosphere, and by alteration of atmospheric 14C production rates through the input of large
amounts of 14C-forming neutrons. The former is the result of industrial and domestic
combustion of fossil fuels that release large amounts of ancient carbon (C02) that contains a

negligible l4C content and has resulted in a dramatic fall in A14Catm over the past c.100
calendar y, known as the "Suess effect" (Suess, 1955). The precise magnitude of the effect is
unknown and therefore difficult to accurately account for in affected samples, as

quantification has been complicated by simultaneous helio and geomagnetic variations

(Stuiver, 1978; McCormac et al., 1998).

An opposite effect to the Suess effect has occurred as a result of the atmospheric detonation
of nuclear weapons in the 1950s and 1960s, prior to the Nuclear Test Ban Treaty in 1962

(Figure 2.2). The detonations produced large numbers of neutrons that subsequently

generated an estimated 630 x 1026 atoms of atmospheric 14C, leading to a sharply elevated

levels of A14Catm (Hesshaimer et al., 1994; Levin and Kromer, 1997; Levin and Hesshaimer,

2000). The large bomb-induced disequilibrium of 14C between atmospheric, oceanic and

biospheric reservoirs has proved very useful as a transient tracer in studies of global carbon
transfer processes.
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Figure 2.2: The bomb peak recorded in time-series atmospheric A14C data. Adapted from
Broecker et al., (1995).

2.4.3 Mechanisms for variation- Climatically-driven redistribution ofglobal14C

It is important to note that it is not only the strength of the processes outlined above that

determine their influence upon Al4Catm, but the length of time over which they operate. To

produce an observable change in Al4Catm, factors such as an individual change in production
rate (Q) must be sustained over a sufficiently long time period (Korff and Mendell, 1980).

This is because changes in 14C production are strongly attenuated in the atmosphere, by

mixing and dilution with the c.100 years of 14C production present in this reservoir. The level

of A14Catm is also determined by constant phase-lagged exchange with the biosphere and

surface ocean, each of which itself contains a specific level of A14C (A14Cbi0 and A14Csurf).
The effect of exchange with these other reservoirs acts to modulate and buffer A14Catm,
meaning that for a solar-induced Q change of c.25%, the estimated result is only a c.0.25%

net variation in A14Catm(Stuiver and Braziunas, 1993).

If the rates at which 14C is partitioned between the global atmosphere, ocean and biosphere

(AOB) carbon reservoirs were constant, then natural fluctuations in A14C in any of the AOB
reservoirs would only result from changes in Q. However, the climatic factors that determine

1965 1975 1985 1995

Calandaryear AD
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AOB transfer rate have not remained constant throughout time, and neither has the cycling of
carbon within each reservoir, also climatically influenced. Because of the effect of exchange
with A14Cbio and A14Csurf upon A14Catm these large-scale and often rapid changes have resulted

in A14Catm variations, both through modulating Q-induced changes, and as a driving

mechanism for change in themselves. Determining the mechanisms responsible for A14Catm
change is therefore complex, as climatic and Q-derived influences on A14Catm therefore do
not necessarily act in an independent way. A fluctuation in solar activity, for example, not

only produces a variation in Q, but also changes in solar irradiance that may impact upon the

global climate, affecting AOB characteristics and ultimately modulating the Q-induced

change in A14Catm. This effect is apparent in the A14Catm tree-ring record, where climatically-

derived changes in ring thickness are correlated with solar cycles of A14Catm (Suess, 1986).
As global climatic changes are driven and influenced by cyclic processes such as variation in
the Earths orbit (Milankovich cycles) and levels of solar irradiance, periodicity is also

produced in climate states, which is particularly apparent in the periods of extreme global
cold (glacial) and warm (interglacial) conditions that extend over millions of years of

geological records. The most recent such large-scale climatic shift occurred between the last

glacial maximum (LGM) at c.18 kyr BP, when large areas of continental landmass were

covered by ice sheets, and the warm conditions of the present Holocene epoch, commencing
c. 10 kyr BP.

The atmospheric C02 content varies in a stepwise fashion, corresponding to glacial-

interglacial transitions, with an atmospheric partial pressure of 180-200 parts per million by
volume (ppmv) at the LGM in comparison with a pre-industrial Holocene value of c.280

ppmv (Neftel et al, 1985; Sigman and Boyle, 2000). These changes are strongly linked to

changes in reservoir parameters, such as the density of terrestrial biomass and sea surface

temperatures (Indermtihle et al., 1999), and further to significant fluctuations in the A14Catm
record of this period.

The controlling influence ofocean-atmosphere exchange upon A14Catm

The greatest exchange of 14C from and to the atmosphere is with the global ocean reservoir,
which also contains the greatest volume of 14C in circulation (Stuiver and Braziunas, 1993).

Variations in the relative transport rates between these reservoirs therefore affect Al4CaUT1. 14C
exchange occurs at the atmosphere-surface ocean interface as gaseous C02 undergoes
dissolution:
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CO2 (g) + H2O (1) <=> H2CO3 (aq)

(Equation 2.10)

Within the surface ocean a variety of oceanic inorganic carbon species are then formed,

collectively known as dissolved inorganic carbon (DIC):

H2CO3 (aq) <=> H + (aq) + HC03 (aq)«2H+ (aq) + C032~ (aq)

(Equation 2.11)

The rate of exchange at the reservoir interface is dominantly controlled by the partial

pressure of CO2 (/->C02), with a net transfer from the reservoir with higher pC02 to that with
lower pC02 (Levin and Hesshaimer, 2000; Sigman and Boyle, 2000). The specific value of

pC02 is the product of several physical and chemical variables which are themselves

climatically determined. The solubility of C02 increases with decreasing temperature

(raising surface ocean pC02) and falls in warmer conditions, making relative rates of oceanic

uptake and release of 14C a temperature dependent process. The physical characteristics of
the ocean surface also influence transfer of C02 as variations in wind speed and the presence

of breaking waves determine the ocean surface resistance to gas exchange (Merlivat and

Memery, 1983). The distribution of C02 within the global surface ocean is therefore
influenced by the prevailing speed and direction of air currents, where at wind speeds above
c. 5m s"1 the rate of C02 transfer from the atmosphere is increased, a characteristic of the

high and mid southern latitudes where high wind speeds induce a large gross atmosphere-
ocean gas exchange rate (Broecker et al., 1985; Liss and Merlivat, 1986; Bard et al., 1994;
Levin and Hesshaimer, 2000). The pC02 of the ocean surface is also chemically determined

by the distribution of inorganic carbon species within total DIC, specifically of aqueous C02.
An increase in total DIC at constant alkalinity also increases the proportion of C02 (aq), and
therefore of ocean pC02. An increase in surface alkalinity on the other hand, results in

decreasing C02 (aq) within the DIC acid-base equilibrium, and falling oceanic pC02 can

increase net gaseous transfer from the atmosphere.
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Increasing ocean surface pC02 Decreasing ocean surface pC02

Increasing water DIC (constant alkalinity) Increasing water alkalinity

Decreasing temperature Increasing temperature

High wind speeds, breaking waves Reduced wind speeds

Table 2.2: A summary of factors that increase versus those that decrease ocean surface pC02

(i.e. determine net uptake or release of ocean C02)

Along with characteristics of exchange rates at the atmosphere-ocean surface, features of
oceanic circulation contribute to fluctuating Al4Catm as the distribution of water masses at the

ocean surface varies. Surface ocean water is continually removed from atmospheric contact

by vertical descent in the ocean water column (downwelling) in high latitude regions to form
water masses circulating in the intermediate and deep waters of the oceans. Once removed
from the atmosphere-ocean interface, the 14C/ 12C ratio of the water declines due to

radioactive decay, and when water is re-circulated to the surface (upwelling), the 14C content

of surface waters is reduced. This is a key mechanism in development of the marine
radiocarbon reservoir effect (MRE). During peak glacial periods, a lower rate of exchange
between surface and deep ocean waters (known as "ventilation") has been linked to

increased atmospheric 14C/12C ratios, for example a 1.5-fold increase in 14C/I2C during the
last glacial (Broecker et al, 1990). Varying rates of lateral and vertical circulation produce

changes in A14Csurf which translate to the 14C activity of C02 that is transferred to the

atmosphere. When an increase in ventilation raises both atmospheric gas absorption and the

deep (14C depleted) water flux to the surface, overall l4Catm falls because of the increase in
ocean to atmosphere transport of carbon with a low l4A. In the LGM to Holocene transition,

climatic changes appear to have influenced the levels of 14Catm recorded in calibration curve

datasets. The climatic warming over this period was not continuous, but was punctuated by a

series of cold phases, the last of these (before the onset of the Holocene) known as the

Younger Dryas (YD). The variation in 14Catm at the YD is larger than that which results

solely from production rate change, and does not correlate with records of cosmogenic
nuclide production in l0Be records (Clark et. al., 2002). During the early YD 14Catm rose

rapidly, and then fell steadily until the end of the period when a rapid reduction in I4Catm is
recorded (Goslar et. al., 1995; Stocker and Wright, 1996). These changes have been
attributed to changes in the production rate of North Atlantic deep water (NADW) at high
northern latitudes. The removal of surface water masses as they are downwelled to form
NADW makes the North Atlantic a "sink" of 14Catm. The lower rate of overturning
circulation at the onset of the YD would have reduced the efficacy of this North Atlantic
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sink. The gradual reduction in l4Catm may then be the result of increasing ocean-atmosphere

C02 gas exchange rates, while a rapid reduction in 14Catm may have been produced from an

increase in NADW production rates (Stocker and Wright, 1996; Broecker et al, 1990,

Hughen et al., 1998b).

The oceanic contribution to varying Al4Catm during the transition period from the LGM to the
Holocene would have incorporated a variety of climatic mechanisms, which could both
reinforce and counteract each other. For example a net release of C02 as sea surface

temperatures (SSTs) rose could be accompanied by a decrease in salinity (e.g. from melting
ice sheets) that would work to raise C02 solubility (Taylor, 1987; Sigman and Boyle, 2000).
This effect could also be further complicated by changes in ocean circulation, such as a

phase of increased ventilation that speeded the return rate of 14C-depleted deep waters to the
surface ocean.

Global spatial variability in A,4Catm

Along with changes in Al4Catm on a temporal scale, there exist a range of spatially-dependant

global variations, the most prominent of which is an offset (with an average of 41 ± 14 14C yr
(McCormac et al., 2002)) between the Northern and Southern hemispheres, which shows

significant time-dependant variations (McCormac et al., 2002; 2004). This is produced as the

greater ocean area (c.40%) in the Southern hemisphere increases exchange between the

atmosphere and 14C-depleted ocean bicarbonate (Aitken, 1990; Geyh and Schleicher, 1990),
and interhemispheric mixing of I4Catm is limited by the opposing directions of the equatorial
trade winds. The hemispheric offset operates in conjunction with more intense seasonal

14Catm variations in the northern hemisphere due to the high density of seasonal forests. Other
local effects have the potential to produce spatial variability in 14Catm including altitude and

variations in land mass area of sample location (the "island effect"; Olsson, 1983). These
factors are generally deemed not to significantly influence 14C measurement as no significant
differences in data have been observed between high precision measurements from a range

of topographic settings in datasets produced in the Belfast and Seattle laboratories (Stuiver et

al., 1998a). Although the influence of volcanic 14C02 on global 14C distribution is negligible,
the 14C content of plants near to active geologic C02 emissions is significantly reduced, an
effect that declines rapidly with distance from the source (Bruns et al., 1980).
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2.4.4 Correction for variation: Calibration: how the atmospheric calibration curve is

constructed

As discussed above, to convert measured 14C ages to calendar years, it is necessary to

quantify the changes in Al4Catm over a calendar timescale. The offset between 14C and

calendar years varies non-systematically through time, and so cannot be mathematically

predicted. To convert 14C ages to calendar years therefore requires direct measurements of a
time-series of samples for which the exact calendar date is known or can be calculated (e.g.

Pearson and Stuiver, 1993; Stuiver and Braziunas, 1993; Stuiver et. al., 1998a, 1998b;

Reimer et al., 2004). These data can then be used to construct a calibration curve of 14C ages

BP versus calendar years either BP or BC/AD. Suitable material for curve construction
includes extended tree-ring series from long-lived species (e.g. bristlecone pines) or

preserved specimens, such as the waterlogged oaks located in Ireland and Germany (Pearson
et al., 1993). A continuous tree-ring sequence spanning several thousand years has been
established by matching overlaps in ring sequences between individual trees of increasing

age. The calibration curve itself incorporates the errors associated with the individual 14C
measurements used in its construction.

Since production of the first calibration curve (Suess, 1979) successive curves have since
been developed, culminating in the INTCAL04 dataset (Reimer et al., 2004). The
INTCAL04 curve is produced using data from l4C measurements of dendrochronologically
dated tree rings between 0-12.4 cal. kyr BP. Between 12.4-26.0 cal. kyr BP the data was

obtained from marine records (measurements of corals and foraminifera) that were converted

to an atmospheric age equivalent using a site specific marine reservoir correction. The
INTCAL04 calibration curve was produced by combining the data using a random walk

model (Buck et al., 2004). The model generates the calibration curve at 5 yr intervals for the

period 0-12.4 cal. kyr BP, at 10 yr intervals for 12.4-15.0 cal. kyr BP and 20 yr intervals for
15.0-26.0 cal. kyr BP. Although calibration beyond 24.0 cal. kyr BP is not recommended

(Reimer et al., 2004), calibration curves are available for extended calendar ranges produced
from a variety of data sources. These include varved sediments (Hajdas et. al., 1993) and
U/Th dated corals (Bard et. al., 1990); however the uncertainties within these calibrations are

increased as there is not complete agreement between the various datasets used (Reimer et

al., 2004).
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2.4.5 Using the calibration curve

The standard curves used in 14C calibration plot 14C years on the vertical axis versus calendar

years BP and BC/AD on the horizontal axes. To calibrate a sample 14C age, the point at
which the measured l4C age intercepts the curve is translated to a corresponding calibrated

age on the x-axis. The upper and lower a limits associated with the 14C age (gs) are also

translated to calibrated ages, after the a error of the curve itself (ac) is accounted for by

combining gc and gs to produce overall upper and lower 14C a values:

o = V (os2 + cc2)
(Equation 2.12)

The conversion of upper and lower g values for a 14C age to calibrated ages gives the upper

and lower bounds of a range of calendar ages on the calibration curve x-axis. All ages that lie
within these limits are considered valid possible calendar ages for the 14C age at la

confidence (i.e. 68% probability). The calibrated (cal.) age of a sample is therefore not a

central point with associated error term, but is an age range that depends upon the a of both
the sample measurement and of the section of curve used for calibration (Stuiver and

Pearson, 1993), and also on the shape of the calibration curve. Because the curve is non¬

linear, once a 14C measurement and its a limits are converted to a calendar age range, the
calendar age distribution produced is no longer Gaussian in form (Taylor, 1987). The shape
of the relevant section of calibration curve determines the width of the possible calibrated

age ranges for a specific I4C measurement and as, as it determines the separation between

upper and lower intercepts with the curve on the calendar axis. If the curve declines steeply,
the gap between upper and lower calendar ages will be reduced, however there are many

sections where calibration curves display a shallow slope and appear relatively flatter, known
as a "plateau" where a wide range of calendar ages are possible for a single 14C age (Figure

2.4). The nature of A14Catm changes through time means that an individual 14C age and

associated a may intercept with the curve at not one, but several points, as an identical level

of A14Catm occurred at several points in time. In this case all calendar ranges corresponding to

the intercepts are considered equally valid (Pearson, 1987).

This method of calibration is known as the "intercept" method, and can be performed using

graphs of calibration curve sections or more commonly with computer programs such as

CALIB (Stuiver and Reimer, 1993; Stuiver et al., 2005) or OXCAL (Bronk Ramsey 1994;

27



Chapter 2: Scientific context

1995; 2005). As the probability of ages within a calendar range may vary, these calibration

programs can also calculate a probability distribution for the age range produced from the

intercept method. This is achieved by calibrating not only the upper and lower a limits of the
14C distribution, but also other points (ages) within the distribution. Each age calibrated
therefore has a Gaussian probability, which is attached to the resulting cal. age, and the

calibrated dates can then be grouped into sections (e.g. every 10 years) and the probabilities
for each group summed to produce a histogram. The most probable age range for the
calibration may then be determined by summing the groups to the required probability level

(Taylor, 1987).
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Figure 2.3: Calibration curve section showing probability distribution of calibrated age

ranges. Here a relatively rapid A14CaUn decrease results in a more constrained calibrated age

range obtained from a particular measured sample age (Calibration performed using Oxcal
v.3.01 (Bronk-Ramsey, 2005) and atmospheric data from Reimer et al., (2004)).
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Figure 2.4: Calibration curve section showing probability distribution of calibrated age

ranges. Here a 14C plateau results in a larger calibrated age range obtained from a particular
measured sample age (Calibration performed using Oxcal v.3.01 (Bronk-Ramsey, 2005) and

atmospheric data from Reimer et al., (2004)).

2.5 Sample effects: Contamination and transformation

As discussed above, a key assumption made by the 14C dating method is that the remaining
measured J4C activity of a sample represents the decayed remains of an initial sample (14A0).
The unit "0" indicates the time (t) at which the sample ceased to exchange carbon (and

therefore 14C) with the environment, when the sample would have displayed a 14C age of 0

years, corresponding to the time of death for organic samples and time of final formation for

inorganic samples.

The 14C method therefore assumes that the remaining sample 14C activity is a function only
of radioactive decay since t = 0, and therefore if the sample 14C content has been modified
between t = 0 and the time of measurement, the final calculated 14C age will not represent the
actual age of the sample. Modification of sample 14C activity in the time between final
formation and measurement results from contamination of the sample with a quantity of 14C
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from an external source which has a different l4C activity to that of the sample. This process

can occur though the physical introduction of material that adheres to the sample structure or

by chemical alteration of the sample structure itself to incorporate external 14C at a point
after t = 0 (diagenesis). The effect of contamination or diagenesis upon measured sample age

(Am) depends upon the amount of contamination (f), the age of the contaminant (Ax) and the
"true" (As) sample age:

Am = f (Ax) + (1 - f) As

(Equation 2.13 [Taylor, 1987])

The extent to which a measured sample 14C activity represents the effects of external 14C
sources is difficult to assess accurately as compounds containing the external 14C may be

indistinguishable from original sample structure. It is possible for the primary carbonates of
mollusc shells (originally deposited by the organism) to undergo dissolution and re-

precipitation after the organisms death. Typically this process occurs though exchange of
shell carbonates with those contained in soils or percolating groundwater (Bezerra et ai,

2000). In this instance there are usually physical indications that diagenesis has occurred that
can be identified through visual inspection. In order to maximize the accuracy of a 14C age

an essential part of sample preparation is the physical and chemical pre-treatment of

samples, aimed at removal of 14C that did not form part of the original sample structure at t =

0, either by physical removal or extraction of a sample component not subject to diagenetic

processes. In addition, care must be taken within the laboratory to minimize further
introduction of any contamination during sample preparation, and to accurately measure the
characteristics of the contamination itself so that it can be accounted for in age measurement

(Mueller and Muzikar, 2002). The specific techniques adopted within this work for sample

pre-treatment and the rationale behind their selection is discussed in detail in Chapter 4 as

part of the discussion of laboratory methodology.

2.6 14C in the marine environment: Effects of the oceanic carbon reservoir

2.6.1 Reservoir effects: Implications for14C age measurement

When the OXII international standard is used to calculate a l4C age, and when the
INTCAL04 atmospheric curve is used to calibrate this age, the implicit assumption is that the

sample l4A0 was equal to that of the coeval atmosphere. This assumption is correct for the
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terrestrial biosphere, once samples are corrected for fractionation, as this reservoir undergoes

rapid cycling and exchange with the atmosphere (Trumbore, 2000). The carbon of the coeval

atmosphere and terrestrial biosphere is therefore assumed to have equal values of 14C activity
and is hereafter referred to as CterT. In other reservoirs however, specific processes mean that
the reservoir 14C activity is different to that of the coeval atmosphere, an effect that is
translated to the I4A0 of sample material formed within the reservoir. This offset between

atmosphere 14C activity (14Aatm) and reservoir l4C activity (14AR) is produced when the

average residence time of a 14C atom within the reservoir is significantly longer than in the

atmosphere. This means that there is a larger degree of radioactive decay during residence of
a 14C atom in the reservoir than in the atmosphere and consequently that 14AR is lowered
relative to l4Aatm. An offset can also be produced where there is a large input to a reservoir of
material that has a different l4C activity to that of the atmosphere.

The average 14C activity of a specific reservoir is a function of the rate of exchange with

atmospheric C02 relative to reservoir size (Geyh and Schleicher, 1990), internal reservoir

processes (e.g. carbon cycling and mixing), and of the quantity and l4C activity of inputs to

the reservoir from other carbon sources. The 14A0 of samples formed within a reservoir
results from these factors, and at any point in time these samples have a 14A0 that is not equal
to the atmosphere, and is different to that of samples formed from CleiT at the same calendar
date. When the l4C age of coeval samples formed in the reservoir and from Cterr are

calculated using the international standard value of 14A0 there is an offset between the two,

even though the samples are of the same "actual" calendar age (Stuiver et. al, 1986). This
offset in l4C ages is known as a "reservoir effect" (R), the size of which is not necessarily
constant either temporally or geographically (Stuiver and Polach, 1977). The largest
reservoir that exhibits an R value is also the largest reservoir to undergo transfer and

exchange on timescales relevant to global 14C circulation, namely the global ocean reservoir.

Atmospheric 14C enters the surface ocean via gaseous exchange of C02, a process that
favours the uptake of the heavier 14C isotope and hence relative enrichment of 14C. This
fractionation effect is however offset by a global ocean reservoir size c.60 times greater than
that of the atmosphere, and an oceanic mean residence time for 14C atoms of c.1000 years

(Mangerud, 1972). The net effect is that the global ocean reservoir 14C activity is lowered
relative to the contemporary atmosphere, producing an offset in atmospheric and marine 14C
ages known as the marine reservoir effect (MRE). The value of the MRE is a function of the
rate at which atmospheric C02 is absorbed by the surface ocean, and of the subsequent

length of time that ocean water masses are separated from the ocean-atmosphere interface
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after downwelling, during which the water 14C content is depleted by radioactive decay. The
value of the MRE in the global surface ocean (0-75 m depth), is less than in the thermocline

(75-1000 m) and deep (1000-3800 m) ocean regions where there is no direct exchange with

atmospheric C02 and the degree of possible equilibrium that can be achieved with coeval

atmospheric l4C activity is reduced (Kovanen and Easterbrook, 2002). Because atmosphere-
ocean gas exchange rates, and characteristics of water masses (i.e. 14C activity and flow

rates) operating in an area of ocean are not constant either geographically or temporally, the
value of the MRE at any specific location is strongly dependant on local factors of climate
and oceanography.

2.6.2 Calibration for the global ocean reservoir: quantifying the MRE

The existence of the MRE means that the 14C age of any sample containing carbon from the
ocean reservoir (Cmar) will be inaccurate as the initial sample value of 14A0 was less than that
of the coeval atmosphere. Because the remaining 14C activity of a sample formed from Cmar
is therefore less than that of a sample formed at the same time from Cterr! samples of marine
material appear older when dated using the 14C technique, and must be corrected for the
MRE. This procedure would be relatively easy if the MRE correction had remained a

constant value throughout time and for all ocean areas. In this case variations in MRE

through time would only be the result of Al4CatITi changes and the ocean 14C activity would

parallel atmospheric 14C activity at all times. Once corrected for a constant MRE value

therefore, the l4C age of a marine sample could be calibrated with the atmospheric curve

(Stuiver et al., 1986).

A constant value of MRE is not applicable however (Stuiver et al., 1986), and the offset has

changed through time because the ocean response to specific fluctuations in A14Catm is non¬

linear. The Al4Catm variations induced by changes in production rate and climate are not

reflected directly in ocean 14A, but are attenuated in the ocean record as a function of oceanic
reservoir parameters, including atmosphere-ocean gas exchange rates and the 14C activity of

water mass input to the surface ocean. In the surface ocean, high frequency Al4Catm signals
are smoothed or absent, while in the deeper ocean layers the atmospheric signal is more

severely modified and only long term trends in Al4Catm remain apparent (Stuiver et al.,

1986). These characteristics mean that the relevant correction value (in 14C years) for a

specific sample depends on the size of the MRE at the time of formation, and in order to

produce useful I4C ages using marine material, it is vital to accurately quantify the time

dependant correction value.
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To establish the offset between 14C ages in the atmosphere and ocean requires known values
of both atmospheric and marine 14C ages at points on a calendar timescale, where the MRE is
the difference between the two for each single calendar age. Values of atmospheric 14C age

versus calendar age are available from the atmospheric calibration curve dataset.

Establishing marine l4C ages for the same calendar scale however is problematic. This is
because there is a lack of suitable material with similar high resolution, continuous annual

deposition characteristic to tree rings for the ocean reservoir. Annually-deposited samples of
'"yiA

coral can be calibrated using U/ Th measurements (e.g. Bard et al., 1993), however the
cumulative effect of measurement errors on both U/Th and 14C ages prevents the level of

required chronological precision. A time series of marine I4C ages as a function of calendar

age has instead been produced using a global box diffusion model (Oeschger et al, 1975) of
oceanic response to AI4Catm change (Stuiver et al., 1986; Stuiver and Braziunas, 1993;
Stuiver et al., 1998b).

The modelled marine 14C ages versus calendar age make it possible to construct a calibration
curve for the conversion of a marine 14C age to a calendar age range. Calibration of marine

samples follows the same technique using the marine curve as for calibration of atmospheric
l4C ages with the atmospheric curve. The marine calibration curve reflects the variable

response of the ocean to A14Catm change, particularly the smoothing of high-frequency

A14Catm fluctuations, which reduces the width of calibrated age ranges and the number of

intercepts for a specific marine sample 14C measurement when calibrated with the marine
curve (Stuiver and Braziunas, 1993). The most recent curve presently available for
calibration of marine samples is MARINE04 (Hughen et al., 2004), which produces a series
of 14C ages versus cal. years for the averaged entire global surface oceans.

Between 0-10.5 cal. kyr BP the MARINE04 data is produced by converting the measured
tree ring 14C ages used in INTCAL04 with the box diffusion model to give 14C ages for the
mixed layer of the oceans. The data are combined using the random walk model that is

employed to derive the INTCAL04 calibration curve in order to estimate the underlying
MARINE04 curve. Between 10.5-26.0 cal. kyr BP a single calibration for the global mixed
ocean layer is produced from 14C measurements of corals and foraminifera, which have been
corrected with a site-specific marine reservoir age. The site-specific correction is calculated
from the weighted mean difference of marine and tree ring 14C ages of overlapping data from
0.5-12.5 cal. kyr BP. Therefore the offset between atmospheric and marine 14C ages (known
as R) from the INTCAL04 and MARINE04 curves varies between 0-10.5 cal. kyr BP. After
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10.5 cal. kyr BP the global value of R is calculated from the box diffusion model simulations
for AD 1350-1850, and is a constant value of 405 ± 22 14C yr (Hughen et al., 2004).

Calibrated age BP

Figure 2.5: INTCAL04 and MARINE04 equivalent calibration curve sections showing
variable R through time

All variation in A14Catm within the model is attributed to geo- and helio-magnetic induced

production rate changes, and the climatically influenced atmosphere-ocean CCE exchange

(F), vertical diffusion within the ocean (K) and atmosphere-terrestrial biosphere carbon flux

(B) are treated as constant parameters through time. This is due to a lack of definite century

scale data concerning fluctuations in these factors, and as a consequence the characteristics
of global ocean circulation used by the model to calculate marine l4C ages exist in a fixed
mode. An important consideration is therefore that the marine 14C ages calculated from
model output are a result of the values chosen for the climatically-influenced parameters, and

that MRE change resulting from variations in these parameters is not accounted for. Changes
in MRE that are observed in empirical data measurements may be absent from the modelled
data if these observed variations are the result of oceanographic change. For example MRE
shifts from c.400 to c.500 14C years between 12 and 10 ka cal BP that are based upon

empirical sample measurements and linked to ocean circulation variations are not simulated

by the model (Stuiver et al., 1998b). It is difficult however to quantitatively examine the
level to which the model accurately represents reality because of the lack of empirical
measurements of MRE through time with which the model output could be compared

(Stuiver et al., 1986).
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The fluctuating MRE values for the modelled period are obtained by comparing the

atmospheric 14C age for each cal. decade with the equivalent modelled marine l4C age. These
values produced by the model for the global ocean vary on average by 200-400 14C years for
the modelled period. Tests of the model sensitivity over the Holocene indicate that general
surface ocean MRE fluctuations are on the order of ±100 14C yr (Bard, 1998), increasing to

up to 200 14C yr as a result of particularly sharp production-rate driven A14Catm changes.

Even with a fixed mode of ocean circulation the 14C age offset between the modelled surface
and deep oceans can vary by up to 200 14C years. This is supported by observational data
from Atlantic deep water corals, where significant century scale variations in MRE between
16000 -12000 cal BP are attributed to changes in the depth and strength of individual

deepwater masses with specific 14C contents, rather than production rate driven A14Catm
changes (Adkins et al, 1998).

Variation in the oceans from the (modelled) global average MRE

The marine 14C ages used to construct the marine calibration curve are average values for the

global ocean reservoir as a whole, and therefore the MRE values obtained from this data

(from the difference at a single cal. point between model marine 14C age and atmospheric 14C
age) are also only valid as a global average value. Because the parameters used in the model

(e.g. C02 exchange and ocean mixing rates) may be different from those that operate in a

specific area of ocean, the 14C age (and therefore MRE) in any geographic area may itself be
offset from the model-calculated value. This geographic variation in marine 14C ages means

that to produce an accurate 14C age and calibrated age range for a marine sample the specific
MRE of the ocean area in which it was formed must be accounted for.

The MRE value that is valid for a specific geographic ocean area is established using

empirical l4C measurements of local samples, for example a comparison of the 14C age of
terrestrial and marine samples known to be of the same calendar age. It is also possible to

calculate the positive or negative deviation (defined by the term AR) of local marine sample

14C ages from the modelled global average values (Stuiver et al., 1986). This is achieved

using 14C age measurements of marine samples for which the equivalent atmospheric 14C age

is known or can be calculated. The measured marine 14C age (P) is equated to a 14C age (Q)
from the modelled curve where both P and Q correspond to the same atmospheric 14C age.

AR is then the difference between measured and model marine l4C ages, i.e.:
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AR = P - Q

Average January sea surface temperatures

Sea ice | | <0-5°C | | 5-15°C □ 15 - 30°C

(Equation 2.14 [Stuiver et al., 1986])

For samples with a known value of AR, a calibrated age range is obtained by subtracting the

relevant value of AR from the sample CRA before calibrating with the marine curve. If no
information is available for the local offset, Stuiver et al. (1986), recommend an assumption
of AR = 0 for calibration of marine samples. Currently, a large number of AR values are

available from studies performed in a range of global locations, and these data demonstrate

the wide variation in surface ocean l4A, with differences in AR on the order of several

hundred 14C years apparent in 19th century samples from contrasting ocean regions (Stuiver
et al., 1998b).

Figure 2.6: Modern global AR values showing major ocean circulation (weighted mean

regional AR values from Reimer and Reimer, 2005)
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2.6.3 Variations in MRE values: the needfor accurate quantification

What determines geographic variations?

The range of geographic variations in surface ocean AR shown in Figure 2.6 reflect

geographic variations in the l4C age of the surface ocean, and therefore in the MRE. The

variety of mechanisms that determine the 14C activity of a specific ocean area can be
assessed by correlation of environmental factors with the size of MRE or AR. The key

mechanisms that underlie geographic variability in MRE are the rate and nature of

atmosphere-ocean gas exchange and ocean circulation. Gas exchange rates influence both

A14Catm and the A14C of the surface ocean (A14CSUrf) by determining the net oceanic uptake or

release of C02, while specific ocean circulation conditions determine the flux of water
masses with varying 14C activity values to a surface ocean area.

Significantly different gas exchange rates exist in different ocean areas as a result of
environmental variables such as temperature. The net effect of latitudinally-dependant global
insolation levels is an overall release of C02 from the ocean surface in equatorial regions and

higher absorption rates of atmospheric C02 at high latitudes where cooling of surface waters

results in under-saturation with respect to the gas (Kratz et al, 1983). The physical effects of

temperature are also important in high latitudes through the distribution and annual duration

period of sea-ice, which raises AR values by inhibiting atmosphere-ocean gas exchange

(Stocker and Wright 1996). Results of modelling suggest that an increase in AR of 150-200
14C yr would result from 7-8 months of annual sea ice cover in a local ocean area (Barber et.
al 1999).

As well as influencing global C02 distribution, the prevailing strength and direction of wind
currents drive motion in the surface oceans through energy transfer. The northern and

Southern hemisphere wind belts drive major ocean currents that are modified by the Coriolis
force to produce clockwise gyres in North Hemisphere ocean basins, and counter clockwise

gyres in the Southern Hemisphere (see Figure 2.6). Wind-driven circulation influences
surface ocean water flow to a depth of c.100 m as energy is transferred vertically by
movement of successive water layers of decreasing velocity and increasing deflection from
the initial wind direction (Ekman transport [Thurman, 1990]).
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Along with lateral movement of water, wind action also influences vertical ocean circulation
as currents direct water into or out of an area. Where the wind driven flow results in net

movement of water away from a point, volume conservation means that replacement water is
drawn upwards from depth (upwelling). Trade winds on either side of the equator are

deflected in opposite directions by the Coriolis force, resulting in the equatorial upwelling
zone. Upwelling also occurs at continental margins where prevailing wind direction results
in movement of water to the open ocean, which is replaced through the upward movement of

deep water with low temperatures and high nutrient content. Where wind driven surface
water masses converge (e.g. at the Antarctic convergence), or are moved towards a coastal

margin, surface water is forced downwards (downwelling).

The pattern of vertical ocean water circulation is central to the range of geographic variations
in MRE, as surface ocean areas where there is increased transfer between surface and deep
water are consequently more depleted in 14C than the global ocean average. The majority of
vertical circulation is not wind-driven, but powered by surface temperature and density

changes in a system known as thermohaline circulation (THC). At high latitudes, lower

temperatures and raised salinity increase the density of surface water masses to a level at
which sinking occurs, producing the major deepwater masses present in the ocean basins

(Boyle and Kegwin, 1987). The main regions of deepwater formation are the Weddle Sea in
the Antarctic, where Antarctic bottom water is formed as rapid winter freezing and brine

rejection increase surface salinity, and in the Norwegian, Greenland and Iceland Seas in the
North Atlantic, where North Atlantic deep water (NADW) is produced. The deep and

intermediate water masses formed by downwelling are circulated throughout global ocean

basins, separated from atmospheric contact by vertical density stratification for varying

lengths of time before eventually being returned to the surface via upwelling. During
circulation at depth, the l4C activity of a downwelled water mass is reduced by radioactive

decay as a function of the time since it was last at the surface. There is a global trend towards

high positive AR values at high latitudes. Specific geographical variations in MRE value are

dependant upon the 14C activity characteristics of upwelled water, which as well as the time

elapsed since downwelling are influenced by factors such as the amount of 14C input from
carbonate dissolution and the oxidation rate of sinking organic material over this period.

The effects of lateral and vertical ocean circulation upon a local MRE value operate in

conjunction with other specific oceanographic, topographic and climatic effects including
sea-ice extent, the release of "fossil" CO2 from iceberg melting (Voelker et al, 2000) and

evaporation versus precipitation rates. The latter can significantly influence surface ocean
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14C content through the introduction in coastal regions of varying quantities of continental
runoff to the surface ocean, further complicating the signal in these locations.

Temporal variations

As a first approximation, the MRE and AR value for a specific ocean area are assumed to

vary through time in direct proportion to the changing model global average MRE, and
therefore to have remained constant (Stuiver and Braziunas, 1993; Stuiver et. al., 1986,

1998b). This assumption implies that changes in local ocean reservoir parameters have not

been sufficient to produce significant variation in water 14C content. It is now apparent

however that such temporal variations may occur that are significant with respect to the

precision of the 14C method (Monges Soares, 1993; Ingram and Southon, 1996). The

geographically-dependent variations in atmosphere-ocean 14C age offset (MRE) discussed
above depend upon localised climate and ocean characteristics. These are not necessarily
constant, and if a climatic or oceanographic shift were of a sufficient magnitude it may
induce a change in the local ocean water 14C activity relative to the global atmosphere. In
this case, the MRE value would not be constant in an ocean area and AR would fluctuate

independently from the pattern of modelled global average values. Palaeoclimatic data from
a range of sources indicate that ocean and climate changes over the past 30 kyr BP include
fluctuations in the distribution of water masses and ocean-atmosphere exchange rates that
have impacted variously in different ocean areas (e.g. Koq et al., 1993). Because of the

complex nature of interaction between ocean and climatic variables, any specific
climate/ocean fluctuation will not necessarily induce a MRE change. For a MRE change to

be observed in the record, fluctuations must be firstly of sufficient magnitude, and secondly
of sufficient duration, to produce a corresponding shift in ocean water 14A.

Throughout the last c.2 million years (the Quaternary), global reorganisation of the Earth's
climate system is characterised by a cycle of fluctuations in the extent of continental ice

sheets. Periods of climatic cooling and major ice expansion (glacial) were followed by ice

retreat, culminating in warmer (interglacial) conditions. These glacial/interglacial changes
were accompanied by large-scale physical and chemical changes in the atmosphere, ocean
and biosphere carbon reservoirs. The most recent of these cycles occurred between the end
of the last northern hemisphere glacial stage (c.13 14C kyr BP) and the onset of the present

(Holocene) interglacial period at c.10 14C kyr BP, and consists of an overall warming trend

upon which climatic fluctuations are superimposed. Marine samples from this period have
been used to demonstrate the potential for large changes in MRE offsets in surface and
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deepwater masses (Austin et al., 1995; Haflidason et al, 2000). Increasing improvement in
the precision of AMS measurements, e.g. errors of c.35 years on samples aged >11 14C kyr

BP, means that with increased counting times, samples from beyond c. 18 14C kyr BP could
be measured with similarly low associated errors (G. Cook pers. com.). This would make it

possible to investigate patterns of MRE variations over a greatly extended time period, for
which there already exists a wide range of palaeoenvironmental data.

2.6.4 Determining MRE/AR: Methodological approaches

As discussed above, a local ocean MRE and AR value is established using 14C measurement

of appropriate marine samples, and three main methodological approaches have been

adopted for this purpose. These are the use of analogue samples, onshore/offshore tephras
and paired samples, all of which are designed to accurately assess the appropriate

atmospheric 14C age that equates on a calendar scale to a measured sample marine age. This
is achieved by measurement of marine samples for which a calendar age range is known and
therefore an equivalent atmospheric 14C age can be established from the atmospheric
calibration dataset, or by comparing measured 14C ages of marine and terrestrial samples

demonstrably of the same calendar age. Where samples are taken for which a record of
calendar age is not extant (e.g. prehistoric material) only an equivalent atmospheric l4C age

will be available for MRE/ AR determination. This has implications when using the

atmospheric 14C age to obtain a calendar age for the sample from the atmospheric curve

dataset. Beyond the end of the tree-ring data at 11,857 cal BP the atmospheric curve l4C ages

are derived from marine corals and varve data that are corrected for an approximated MRE

by 400 14C yr to 10 cal BP and 500 14C years beyond this cal age. This means that the
calculation of AR for samples beyond 8800 cal BP will reveal little information as the

atmospheric dataset used to obtain the AR value has already been corrected by an

approximated MRE value (P. Reimer pers. comm.).

Analogue samples

Analogue samples are marine samples (e.g.: molluscs) collected live before 1950 AD

(ideally pre-1890) from the location for which the MRE or AR is to be determined. The

atmospheric l4C age of the marine sample is obtained using the known calendar age from the

atmospheric calibration curve dataset, which can then be directly compared with the
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measured marine age to provide a MRE value. To obtain AR, the measured sample age is

compared with the model marine age for the known sample cal. age, using the marine

calibration dataset. The 14C age offset between the two then gives the AR for the location

(Stuiver and Braziunas, 1993; Dutta et. al. 2001). Museum archives often prove a useful
source of suitable material for this approach (Mangerud and Gulliksen, 1975), although some

material may have historical significance which precludes its availability for destructive

analysis. Analogue samples are a useful resource, but the spatial and temporal range of any

study that is undertaken is limited to material already collected, and few suitable collections
exist from prior to c.1700 AD, preventing study of temporal variations in AR over extended
time periods. Other limitations associated with analogue materials are the lack of

opportunities for analysis of multiple or repeat samples, and problems surrounding the

accuracy of sample provenance, both with timing and location of sample collection (Yoneda
et al., 2001). Where these factors apply, the accuracy of MRE and AR values calculated on

the basis of such samples is limited.

Onshore/offshore tephras

This method uses the rapid and simultaneous deposition of a single volcanic ash (tephra)

layer in both marine and terrestrial deposits to obtain coeval marine and terrestrial l4C ages.

It is assumed that marine and terrestrial organisms in close association with the same tephra

layer share a calendar date of death, and therefore that the offset in measured 14C ages

between the two sample types can be used to establish the local MRE at the time of tephra

deposition (Haflidason et al., 2000; Bondevik et al., 2001). Although the method is
inherently limited to certain spatial and temporal ranges that are determined by both the
distribution of individual identifiable tephra layers and the frequency of tephra deposition

events, tephra marker horizons are often deposited over a wide geographic area which

potentially allows spatial variations in MRE / AR at a single calendar age to be tracked. In
some areas, the presence of several different tephra horizons at a single location has enabled

temporal changes in regional MRE to be estimated for the North Atlantic Younger Dryas/
Holocene transition, and during the Holocene period (Haflidason et al., 2000; Sikes et al.,

2000).

The central limitation to the tephra isochron approach concerns uncertainty over the

assumption that the measured marine and terrestrial l4C ages measured for a single

deposition event represent a single calendar age. The accuracy of this assumption is
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proportional to the accumulation rates of marine and terrestrial sediments, degree of
sediment mixing after deposition of the sample material and the extent to which an

equivalent point in marine and terrestrial sediments can be identified using a tephra horizon.
Material selected for determination of a marine 14C age is often marine microfauna (e.g.

foraminifera) which necessitates the combination of many individual organisms, thus

yielding a 14C measurement that is an average of the activity of the organisms which may not

all be of the same age. This approach may compromise the accuracy of the "marine" I4C age

obtained, and it is preferable to select dissolution resistant or larger species that are less
mobile following deposition (Austin, 1995).

If sediment accumulation rates in the sample locations vary significantly, or there has been
differential sediment mixing during and after incorporation into terrestrial or marine

deposits, the equivalence of measured marine and terrestrial 14C ages will be compromised.

Post-deposition movement of material may occur through mixing and bioturbation of
sediments, and can affect both the measured sample material and the distribution of tephra
shards. The problems are exacerbated by the variability of localised sedimentation rates and
uncertainties are increased in areas with low sediment accumulation rates, particularly in

conjunction with significant surface sediment mixing zones (Jones et al., 1989; Paull et al,

1991). The processes involved in mixing and bioturbation are difficult to identify and

quantify (Broecker et al., 1991), and are generally indirectly calculated by modelling or

estimation. Rate of incorporation, residence time and degree of mixing in the surface mixed

layer (SML) of a deposit are a function of the sedimentation rate, to which inherent dating
uncertainties increase with inverse proportion.

Tephras may be incorporated into sediments by time-lagged processes rather than direct
fallout from the atmosphere, for example by the incorporation in marine sediments of

particles entrained in glacial ice that have been stored for decades or centuries following

atmospheric deposition. Often, difficulties surround identification of an equivalent point of

tephra deposition in marine and terrestrial sediments, as the shards may be diffused vertically
within the cores by mixing. Although the modal point of highest shard concentration is

usually used, concentration peaks may be poorly defined, or several peaks may exist, and the
mean or median tephra distribution points may fall substantially higher or lower than the
modal concentration in the core. To address these problems, it is recommended that l4C ages

above and below the tephra deposit are compared, and that tephra layers are used where
there are sharp basal contacts and characteristics of atmospheric deposition (Sikes et al.,

2000). In studies of more ancient sediments, larger dating uncertainties associated with the
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methodology may be acceptable. Within later Holocene studies the variety and extent of

mixing effects may lessen the suitability of the tephra isochron approach to a restricted range

of areas and times.

Paired samples

A comparison of equivalent marine and terrestrial 14C ages from a single location is also

possible where marine and terrestrial material of the same calendar age was deposited

simultaneously. This approach has been used in a number of studies with both samples from
natural deposits including isolation basins (e. g. Bondevik et al., 1999), and coastal

archaeological sites (e. g. Reimer et al., 2002), where it is often possible to identify
individual deposits that represent very restricted and rapid deposition events (e.g. on the
order of days or seasons). Using this material, the MRE can be determined from comparison
of marine and terrestrial 14C ages, and AR calculated by using the atmospheric 14C age to

establish the equivalent model marine l4C age for the sample (Stuiver and Braziunas, 1993;
Reimer et. al. 2002).

When MRE / AR values are obtained using a comparison of marine and terrestrial material,
the accuracy of calculated values depends upon the degree to which the 14C ages of the

samples are equivalent. This factor is not directly quantifiable and must be inferred, meaning
that rigorous protocols must be used when selecting material for the paired sample approach
that consider the likelihood of post-depositional bioturbation and other mixing processes.

The degree of sediment disturbance should be quantified for the deposit both in situ, by
factors including the presence of articulated remains, absence of root penetration and where

possible with laboratory analysis including soil micromorphology, mineral magnetism, and
other provenancing techniques. The reliability of MRE / AR determinations using the paired

sample methodology is improved by multiple sampling and sample replication to confirm
that marine and terrestrial materials within a single layer are representative of a short

deposition period. Statistical analyses (e.g. chi squared tests [c.f. Ward and Wilson, 1978]) of
measurement groups can further demonstrate the degree to which samples are

contemporaneous, where an anomalous result in an otherwise coherent set of ages from a

single deposit may represent intrusive or reworked material

Because of these considerations, the nature of sample material selected for this methodology
can also affect measurement accuracy. Samples should ideally represent as short a time
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interval as possible, where materials such as plant caryopses (representing one growth

season), and identifiable twigs or leaves, are preferable to longer-lived tree sections or other
material which may be subject to anthropogenic effects of extended re-use periods prior to

incorporation in the final deposit (Albero et al., 1986; Reimer et al., 2002). There must be a

high likelihood that the samples share an equivalent age of death, and were grown in the
same location. For this reason the use of migratory or commonly transported material should
be avoided.

The limitations of the paired sample methodology outlined above may constrain the number
of suitable sampling sites, and suitable sites may be absent in the region of research interest.

Despite the high density of coastal archaeology on the Atlantic seaboard of Europe,

anthropogenic deposits with appropriate integrity for this methodology are rare beyond
c.6000 BP and investigation of a wider temporal range necessitates the use of naturally

deposited material. The paired sample approach using archaeological material in the North
Atlantic region is presently under-utilised.

2.7 The North Atlantic: Modern environments and MRE values

A crucial aspect of the MRE is the nature of modern spatial variations and the extent to

which these are reflected in changes through time. At present, variations in the MRE exist
over both large spatial scales, (i.e. between ocean basins) and on a smaller, regional level. As
described above, these are the result of present climatic and oceanic regimes, which have not

been constant over time, but have varied on both larger (e.g. glacial to interglacial

transitions) and smaller scales within various spatial zones. The key question is therefore at

what point do these spatial and temporal differences in environmental variables become

significant with respect to the MRE? The nature of the MRE as a 14C age offset means that
the precision to which a value can be determined is limited by inherent errors. These are a

culmination of errors associated with l4C measurements and the method by which the MRE

value is calculated from the measurements. In order for an environmentally-induced
variation in the MRE to be observable, it must therefore be significant with respect to the
error terms associated with the values. The climatic and oceanographic changes that produce
variations in ocean surface I4C activity and drive MRE variation must be on a sufficient scale
to induce observable fluctuations in values. The North Atlantic region is one in which
climatic and oceanographic factors show a high level of variability, over both large and small

spatial and temporal scales. This makes the area highly suitable for investigation of the
nature of MRE values, particularly the nature of spatial and temporal variations. These
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dynamic environmental changes through time have coincided with extensive human
settlement and exploitation of natural resources. Because of the long archaeological record
there exists a range of suitable materials in the region for the paired sample approach to

determining the MRE. Added value for this research comes from the global significance of
environmental changes in the North Atlantic. In addition to providing the scales of change
and type of sample material ideal for this type of study, the data that is produced can feed
into investigations of changes that have very wide significance. For example changes in the

global thermohaline circulation may be driven by variations in the North Atlantic, and
human-environment interactions here have implications of global relevance. This means that
in addition to environmental research, the region also has great importance through the
Holocene for the study of interactions between human communities and the environment.

The following sections place the MRE within a North Atlantic context. Firstly, the present

climate and oceanography of the region is outlined, followed by the current assessments of
MRE values that are influenced by these variables. Secondly the palaeoenvironmental

changes in climate and ocean that are recorded from the end of the last glaciation to the late
Holocene are outlined. These are followed by a summary of the evidence for variations in
the MRE that may have accompanied the temporal environmental changes.

2.7.1 North Atlantic modern climate and oceanography

The North Atlantic is a key region for regulation of the global climate, due to its role within
the global thermohaline circulation system. The surface water mass that flows north to the
North Atlantic is dominated by the northeast drift of the Gulf Stream, which originates from

Equatorial surface currents. At c. 40°N and 45° W the Gulf Stream becomes the North
Atlantic Current (NAC). To the west of Norway and north of Iceland the NAC surface
waters are cooled and the surface salinity (already elevated by evaporation during northward

transport), is increased. These effects mean the density of surface waters is increased, and
surface NAC waters sink to form North Atlantic deep water (NADW), which then flows
southwards at depth. The formation of NADW releases a large amount of latent heat and

plays a major role in regulation of both North Atlantic and global climates (Broecker et al.,
1985; Lehman and Keigwin, 1992).

Modern surface circulation within the North Atlantic is characterised by the distribution of

northward-flowing warm, saline NAC waters, and the southward flow of cold, fresher
Arctic-derived waters. Because the surface waters of the NAC spend an extended period in
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contact with the atmosphere during northward transport in the Gulf Stream, gaseous

exchange with contemporary atmospheric CO2 means that NAC waters have relatively high
14C content (Campin et al., 1999). A branch of the NAC flows north-west to travel in a

clockwise direction around Iceland as the Irminger Current (IC). The remainder of the NAC
continues northward and branches around both the western coast of the British Isles and the

Faroe Isles. These branches subsequently move through the Shetland-Faroe and Iceland-
Faroe channels. NAC water flowing around the British Isles moves in coastal currents into
the North Sea, and the flow through the Iceland-Faroe-Shetland gap moves northwards up

the Norwegian coast as the Norwegian Current (NC). At c.62°N the NC meets the

Norwegian Coastal Current (NCC), a northwards flow of water from the Baltic that is
influenced by terrestrial run-off from Norwegian fjords. At the North Cape of Norway the
NC then branches into the North Cape Current and the Spitsbergen Current.

Southward flowing surface waters in the North Atlantic are dominated by the East Greenland
Current (EGC) flowing down from the Arctic along the east Greenland coast, where it is
confined to the shelf region, subsequently forming the West Greenland Current (WGC) and
thereafter entering the Labrador Sea. Along the east Greenland coast the East Iceland

Current (EIC) is formed from components of EGC and IC water, flowing eastwards along
the north Icelandic coast. Upon leaving the coast the boundary between Atlantic and EIC
water forms the Iceland-Faroe Front as the EIC flows eastward along the Iceland-Faroe

Ridge (Pistek and Johnson 1992) to enter the Norwegian Sea.

The interface between northward-flowing warm and saline Atlantic water currents and

southward-flowing cold, low-salinity Arctic water is known as the Polar Front, presently
located to the North of Iceland. The interaction between these zones means that the North

Atlantic is a climatically sensitive region, and the relative position of the Polar Front over
time is strongly correlated with records of climatic and oceanographic changes (Ruddiman
and Mclntyre, 1981; Dansgaard et al., 1993; Haflidason et al., 1995). Hydrographic changes
in the vicinity of frontal systems in the North Atlantic have been observed on a decadal and
inter-annual scale, for example the "Great Salinity Anomaly" during the 1960s in Icelandic
waters (Dickson et al., 1984). The modern position of the Polar Front however appears to be

relatively well constrained, although as mentioned above, there is a considerable amount of
evidence to demonstrate that the oceanographic regimes in the modern North Atlantic are not

static but respond dynamically to climatic forcing.
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Figure 2.7: Present surface ocean circulation in the North Atlantic showing the zone of
NADW formation, and circulation of warm (red arrows), cold (blue arrows) and coastal

(green arrows) currents. Currents mentioned in the text are marked in boxes, the positions of
the Shetland-Faroe Channel (SFC) and Iceland-Faroe Channel (IFC) are shown (after

Levitus, 1982; OSPAR, 2000).

2.7.2 The MRE and AR in the North Atlantic: current values

The l4C content of the NAC is high relative to that of surface waters in regions of strong

upwelling, (e.g. the Antarctic coast) and equates to apparent ages between c.320-520 14C yr

in modern Atlantic surface water between c.40°N and 40°S, (Broecker and Olsson, 1961).

Present assessments of the MRE and AR values show considerable variation across the North

Atlantic, generally increasing to the north and west and this variation is often associated with

oceanographic variables, such as temperature and salinity, that are reflected in the
distribution of Atlantic and Arctic water masses (e.g. Mangerud, 1972; Mangerud and
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Guliksen, 1975; Eirfksson et al., 2004). In surface ocean areas more strongly influenced by
the NAC, the offset between atmospheric and marine 14C ages is lower, due to the higher 14C
content of surface waters. This contrasts with areas where higher MRE values are associated
with the Arctic-dominated waters, such as the EGC (Hjort et al., 1973). On the east

Greenland coast, modern pre-bomb MRE values include 530 14C yr (Tauber and Funder,

1975) and 515 ±25 l4C yr (Hjort, 1973, Hakansson, 1983), with a modern (pre-bomb)

regional average AR of 128 ± 23 14C yr (Reimer and Reimer, 2005). Around the northern

Canadian coast MRE values of c.540 14C yr increase to c.610 14C yr in the north shore and

estuary of the Gulf of St. Lawrence (Dyke et al., 2003). The largest suggested reservoir
corrections in this region (of c.740 l4C y) are located in the Arctic Ocean (Mangerud and

Gulliksen, 1975; Dyke et al., 2003), where greater stratification of the water column due to

high salinities, is allied with the effect of extensive sea ice cover to prevent CO2 exchange
between the atmosphere and deep ocean. The East Greenland and Arctic values are higher
than those for Iceland, where MRE values include 365 ± 20 14C yr (Hakansson, 1983) and
the regional average AR is 52 ± 19 14C yr (Reimer and Reimer, 2005). This results in a

modern (pre-bomb) apparent age difference of c. 100-150 yr in surface waters across the

Polar Front (Einksson et al., 2004).

To the east, in the path of inflowing NAC water, values ofMRE and AR for the British Isles
are based upon known-age marine shells from the English and Scottish coasts. These provide
a modern regional MRE of 405 l4C yr (Harkness, 1983), and AR of 17 ± 14 I4C yr (Reimer

and Reimer, 2005). MRE and AR values increase northwards along the Norwegian coast

with a regional mean AR of -3 ± 27 l4C yr for South Norway and the North Sea that

increases to AR = 65 ± 35 ,4C yr for northern Norwegian waters (Mangerud and Gulliksen,

1975; Olsson, 1980; Reimer and Reimer, 2005). The value for the south of Norway may be

influenced by the admixture of Baltic Sea water (AR = -107 ± 24 yr (Reimer and Reimer,

2005)) to the North Sea and Southern Norwegian coast water. Further north, the increasing
influence of Arctic water is also apparent in the West Spitsbergen coastal water (a mix of

Arctic and Atlantic water) that displays a MRE of 510 ± 30 l4C yr (Mangerud and Gulliksen,

1975) and AR of 93 ± 23 14C yr (Reimer and Reimer, 2005).

Along with the relative inflow of various surface ocean currents, North Atlantic MRE values

are further modified by geographical constraints such as the relative influence of coastal
features (e. g. fjords, bays and estuaries) on l4C of surface water. Large fjords, located on

many western North Atlantic coasts, may form a spatially-distinct, non-uniform local carbon
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reservoir. In these environments the influence of marine currents upon water 14C is
attenuated by the influx of variable amounts of freshwater, from terrestrial runoff. Where a

large amount of terrestrial water with a significantly different 14C activity to that of marine
water enters a fjord, large variations in MRE values can be produced. The large variation in
MRE values in Scandinavian fjords for example, has been attributed to this factor (Heier-
Neilsen et al., 1995).

The pattern in MRE across the modern North Atlantic indicates that the size of the offset
increases in areas more heavily influenced by Arctic water masses. This is particularly

apparent in a comparison of values from the far eastern zone (e.g. the North Sea and
Southern Norway), and the far western zone (e.g. Labrador and Baffin Bay). However

variability in the available data exists for many areas, including the transitional zones

between Arctic and Atlantic water at the location of modern North Atlantic frontal systems.

This introduces uncertainties when attempting to examine spatial patterns in present MRE
values at higher resolution. The implication of spatial patterns in MRE allied with climatic
and oceanographic variables is that an understanding is also required of how fluctuations in
these variables through time may also be allied with variability in MRE values.

Figure 2.8: Simplified present surface ocean circulation in the North Atlantic showing
modern regional mean AR values (from Reimer and Reimer, 2005)
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2.8 The North Atlantic over the past c.13 kyr BP: evidence for changes in

palaeoenvironments and MRE

2.8.1 Changes in palaeoclimate and environment

The 14C method is used for dating samples from the past c.30 kyr within the North Atlantic.
Over this time, large environmental changes have been identified in a range of proxy data

sources, obtained from both terrestrial and marine sediments, and within cores taken from

the Greenland ice sheet. The ice sheet cores (GRIP and GISP2), provide a proxy record of
climatic changes over >200, 000 yr (Mayewski and White, 2002) that can be correlated with
data obtained from other sources, such as marine sediments. The ratio of 180/150 within the

annual ice layers provides a high-resolution proxy record of temperature fluctuations that
details both the scale and rate of the inferred climatic changes. From this, palaeoclimatic
transitions such as the progression between glacial and interglacial conditions can be
identified on a calendar timescale. The most recent transition from full glacial conditions to

the present warmer climate (the Holocene) occurred c.15,000 years ago (13,000 14C BP) and
does not appear to have occurred as a constant warming. Instead, climatic conditions
fluctuated and included two periods of temporary climatic cooling, known as the Older and

Younger Dryas. The Younger Dryas (YD) appears to have been an abrupt return to glacial-

type conditions between c. 13,000 -11,500 years ago before the final onset of the current

Holocene period. These climatic changes were rapidly propagated throughout the North
Atlantic atmospheric and oceanic systems, with shifts between warm interglacial conditions
and cooling phases on decadal scales (Alley et al„ 1993; Haflidason et al. 1995).
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Figure 2.9: GISP2 bidecadal ice core record showing the fluctuations in 5180%c through
time that are correlated to climatic changes. Lower 8lsO values correspond to colder

conditions, including the Younger Dryas interval and 8.2 kyr event, which are themselves
linked to shifts in the position of the Polar Front (c.f. Figure 2.10). Data from Stuiver et al.,

1997; Stuiver et al., 1995; Meese et al., 1994; Steig et al., 1994.

Key features of these palaeoenvironmental changes include the distribution of Atlantic and

Arctic surface waters (Kog et al., 1993), and therefore the position of the Polar Front

(Ruddiman and Mclntyre, 1981; Dansgaard et al., 1993; Haflidason et al., 1995). Ocean core

evidence (e.g. proxy records based on analysis of foraminifera), provides a record of spatial
variations in environmental conditions at times of climatic change. These resources show
that during colder phases the Polar Front (PF) was shifted south, reflecting a reduction in the

strength of the NAC inflow and increase in the extent of continental ice sheets and sea ice
cover (Ruddiman and Mclntyre, 1981). During periods of climatic warming the PF moved

rapidly northwards, reflecting the rate at which warming occurred. Variation in surface water

characteristics could have affected the rate at which warm NAC waters were drawn

northwards and the rate at which NADW formation occurred at high latitudes. These factors
would have altered the amount of latent heat released in the North Atlantic during NADW
formation and may have been an important causal mechanism for climatic change. As the
Polar Front moved north during early deglacial warming a high influx of warm, saline NAC
water may have enhanced NADW production rates and contributed to the climatic warming
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(Kroon et al, 1997). As warming continued however, the input of meltwater from
continental ice sheets to the surface of the North Atlantic increased, lowering the sea surface

salinity (SSS). This process reached a maximum at c.14 cal. kyr BP (Fairbanks, 1989) and
the decreased density of high latitude surface water may have inhibited the sinking ofNAC
waters. As a result NADW production would have been reduced or even halted, lowering
both the amount of latent heat released by sinking NAC waters, and the rate at which warm

NAC water was drawn northwards (Haflidason et al., 1995).

The YD cold period appears to also be characterised by rapid Polar Front movement and
variation in NADW production rates. This climatic phase is linked to extreme temperature

decrease, glacial re-advances and increased aridity recorded in both sedimentary and ice core

records (Taylor et al., 1997, Bjorck et al., 1996). The onset of the YD is associated with a

sudden southwards PF movement, and very dramatic fall in sea surface temperature (SST)
and salinity on a decadal scale (Lehman and Keigwin, 1992; Karpuz and Jansen, 1992;
Haflidason et al., 1995; Kroon et al., 1997). The changes in SSS and SST appear to have had
the net effect of reducing NADW production, allied to overall reduced northward advection
of the NAC (Bondevik et al, 2001). The salinity variations at the YD are attributed to

meltwater from the Laurentide and Fennoscandian ice sheets (Broecker et al., 1985), and

may have been influenced at the onset of the YD by increased precipitation over the North
Atlantic due to falling insolation rates (Stuiver and Braziunas, 1993).

The transition from the YD to the Early Holocene appears to have occurred very rapidly,
with a 90% complete Polar Front retreat to the far Northwest Atlantic at c.9300 BP

(Ruddiman et al, 1977). SSTs rose sharply, with an increase of c.9°C over 50 years recorded
in the Greenland-Iceland-Norwegian Seas (Kop et al., 1993). Within the early Holocene

period a cooling event, (known as the 8.2 kyr event) occurred between 8400-8000 cal yr BP

(7650-7200 14C yr BP (Barber et al., 1999). This is linked to the final meltwater pulses from
the Laurentide ice sheet (Barber et al., 1999; Alley et al., 1997; Klitgaard-Kristensen et al.,

1998; Birks and Kop, 2002) and is correlated with temperature decreases of 4-8°C in central
Greenland (Alley et al., 1997) and a concurrent fall in SST at marine sites in the north
eastern North Atlantic (Bond et al., 1997).
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Figure 2.10: Movement of the Polar Front within the North Atlantic from the period 13,000
BP to 6000 BP (redrawn from Ruddiman and Mclntyre, 1981). Positions in black mark cold
intervals and positions in grey indicate Polar Front location during warmer intervals. The
area within which sites investigated in this study are located is shaded. A chronological scale
of change is given in 14C yr BP.

SSTs stabilised with the final melting of the Laurentide and Scandinavian ice sheets (Birks
and Koq, 2002) and the subsequent Holocene period appears to have been one of stable
environmental conditions relative to changes during glaciation (Sarnthein et al, 1995).
Holocene proxy records do show however that fluctuations in climatic and oceanographic
conditions have been a feature of the past 10 ky. These include periodic peaks in the
concentration of ice-rafted debris (IRD) located in marine sediment cores. The seven IRD
events appear to have each occurred rapidly over 100-200 yr and to be spaced at intervals of
c.1500 yr periodicity (Bond et al., 1997). Two different oceanic regimes are implied; with
minimum IRD concentrations linked to elevated SST's and an ocean circulation system that
resembles modern conditions. Maxima in IRD concentrations are associated with south

eastward advection of ice-bearing surface waters from the Greenland-Iceland Seas into the
core of the NAC (Bond etal., 1997; Bond etal., 2001, Giraudeau et al. 2000). The long-term
Holocene environmental trend appears to have been an early warm phase that culminated in
a climatic optimum c.5000 14C yr BP. This was followed by an overall cooling trend that

persisted up to the present time (Eiriksson et al, 2000a,b; Marchal et al., 2002; Calvo et al.,
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2002), and occurred along with falling summer insolation levels. Fluctuations throughout
this period include marked cooling events, for example a drop in SSTs at c.3000 cal yr BP

(Eriksson et al, 2000a,b), which coincides with deposition of the Hekla 3 tephra, and
increased terrestrial glacial expansion between 3700-3000 cal yr BP (Stotter et al, 1999).
This event is followed by a peak in IRD concentration in marine cores at 2800 cal yr BP

(Bond et al, 1997). Over the past c.2000 years evidence for pronounced climatic fluctuations

continues, with two periods in particular identified in the North Atlantic region, termed the
Medieval warm period (MWP) and subsequent Little Ice Age (LLA). These terms are a

convenient shorthand for apparent warmer conditions in the north Atlantic region between
900 to 1250 AD (c.1050 - 700 cal. yr BP) (Lamb, 1985; Grove and Switsur, 1994), followed

by pronounced climatic cooling from c. 1300-1400 AD (c.650-550 cal. yr BP) that lasted
c.500 yr (Lamb, 1985). The evidence for these phases is derived from a range of data sources

within which regional environmental changes are correlated with those apparent in the

archaeological record.

North
Atlantic
14C yr BP

Cal yr BP /.one Major features

To c. 13000 25000-15000 Last Glacial Glacial conditions. Ice cover
c. 13000 c. 15000 Eleinrich event 1

(HI)
Massive ice discharge event to surface
ocean

12750-
12350

14600-14300 Boiling Warmer conditions

12350-
12150

14300-14000 Older Dryas Cooling episode.

12150-
11350

14000-13000 Allerod Warmer conditions

11350-
10000

13000-11500 Younger Dryas Short, abrupt and significant climatic
cooling. Ice re-advance in many areas

10000-7650 11500-8200 Boreal Warming temperatures, moister climate
7650-7200 8200-8000 8.2 kyr event Sudden cool and dry phase in many

areas

7500-5000 8200-5700 Atlantic Holocene climatic optimum. Summer
temperature maxima, mild winters,
wetter climate

5000-2500 5700-2600 Sub-boreal Similar to boreal
2500-0 2600-0 Sub-Atlantic Significant summer temperature

decrease, mild winters, precipitation
increase

Table 2.3: Table of the major climatic sub-divisions in the North Atlantic from c.13, 000 14C
yr BP. Based on classic European Holocene-Late glacial sequence (Blytt, 1876; Sernander,

1908).
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2.8.2 Changes in North Atlantic MRE: links to Palaeoclimatic variations

Palaeoclimatic variations over the period from the last glacial to the Holocene are correlated
with changes in the ,4C concentration of both the atmosphere and oceans. Climatic changes
therefore provide a potential forcing mechanism for fluctuations in North Atlantic MRE
values over this time period. As well as being correlated with climatically-driven variability
in A14Catm (see section 2.4.3 above), the timing of changes in the 14C activity of the surface
and deep oceans coincides with palaeoclimatic changes in proxy records. The factors

commonly suggested as forcing mechanisms for observed MRE variations are changes in
ocean circulation and sea ice distribution, due to their impact upon the distribution ofwater
masses with varying 14C contents and rates of exchange with atmospheric C02. Because
these climatic changes are deemed the most probable causal mechanisms to underlie MRE

variation, observed 14C variation in North Atlantic water masses has often been used to infer

evidence that palaeoclimatic changes (such as differences in the ventilation rates of deep

waters) have occurred.

In the North Atlantic, changes in the source and distribution of various water masses since
the last glacial have been identified in proxy palaeoclimatic data. These oceanographic

changes are cited as a probable cause of MRE variation, and a key mechanism appears to

have been variation in NADW production rates. For example, model simulations (Stocker
and Wright., 1996) of successive changes in the ventilation times (i.e. rates of overturning

circulation) suggest that as NADW production slowed, surface MREs would at first be
reduced. This would occur because removal of atmospheric 14C02 to the deep ocean in

sinking surface water masses would be reduced. The water masses would instead spend

longer periods at the surface where their ,4C content would be increased by exchange with

atmospheric C02, at a time when gaseous exchange rates would also be enhanced by rising
levels of 14Catm (Stocker and Wright, 1996). During this time, the 14C activity of deep waters

would be depleted through radioactive decay while exchange with the surface reservoir was
reduced. Increasing sea ice cover leads to a larger increase in 14Catm, and would further
inhibit carbon exchange between the atmosphere and deep ocean, in turn leading to further

depletion of deep water 14A. As NADW production rates rose once more models indicate
that a rapid rise in surface MRE would result as exchange with 14C-depleted deep waters

resumed. These MRE values would subsequently be reduced as increased rates of NADW

production persisted, because of increasing rates ofNAC inflow and lowered sea ice cover in

response to warmer conditions (Bard et al., 1994).
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As discussed above, uncertainties associated with the available data limit the level of

precision and accuracy to which patterns in modern MRE values can be confidently ascribed.
These uncertainties also extend to pre-modern MRE values and are often an inherent product
of the methodological approach used to assess values. Uncertainties may be increased for

pre-Holocene samples, due to the limitations of sample availability and the methods used to

obtain an equivalent terrestrial 14C age for marine measurements. For example, these could
include uncertainties over the exact correlation between palaeotemperature variations in ice-
core records and terrestrial sediments. The net effect is that there is a lack of high-resolution
data for MRE variations from the end of the last glacial to the Holocene.

When examining pre-modern MRE values, the known-age sample methodological approach
cannot generally be applied, and suitable pre-Holocene material for determination of the
MRE is limited to deposits produced by natural processes. This is due to a lack of North
Atlantic coastal archaeological deposits for the pre- and early Holocene because of both the
low density of pre-Holocene human populations and removal of previous material by ice
action. Marine material for pre-Holocene MRE assessments is therefore obtained from either
marine sediment cores or terrestrial deposits containing both marine and terrestrial material.
The latter are generally produced by gradual isolation from a fully marine setting, for

example by progressively falling sea levels (Bondevik et al., 1999). An equivalent terrestrial

age is provided for 14C measurements of marine carbonates from ocean cores by various
means in these studies. The tephra isochron approach (see section 2.6.4 above) is often used,
where terrestrial l4C measurements are made when a tephra can be located in onshore

deposits (e.g. Bard et al., 1994; Haflidason et al., 2000). A terrestrial age for a tephra located
in a marine core may already be available from previous assessments.

Allied with, or instead of the tephra isochron method, an equivalent terrestrial 14C or

calibrated age is also estimated by authors for marine sediments using palaeoclimatic
records. Fluctuations in sea surface temperature (SST) can be reconstructed from marine
core sediments using records of foraminiferal abundance and isotopic values (i.e. 5lsO).
These are then correlated with records of atmospheric conditions in dated terrestrial deposits
and the Greenland ice cores (e. g. Waelbroeck et al., 2001; Bjorck et al., 2003).

It is important to note that AR values are not generally calculated from pre-Holocene marine
l4C values as the atmospheric calibration dataset for this period that would be used in
calculation is itself derived from measurements of marine samples corrected for a site-

specific MRE (see section 2.4.5 above). Instead, assessments focus on deviations of the
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apparent surface age of Atlantic water from present MRE values of c.400 yr at a range of
sites across the North Atlantic.

The impetus behind the majority of studies that seek to quantify MRE values from the last

glacial onwards is the need for a better understanding of the MRE in order to facilitate

palaeoclimatic investigation. There is a desire to correlate between ice-core, marine and
terrestrial records from the period of the last deglaciation so that the timing ofpalaeoclimatic

changes such as temperature variations and the way in which these changes were propagated

through terrestrial and marine systems can be determined. To achieve this aim there is a

requirement for a reliable chronological method that can place the different types of data on

an equivalent timescale. The ice-core chronology is given in calendar years before present,

achieved by layer counting for this period, with associated uncertainties of <550 yr over the

past 15ky (Alley et al., 1993). The terrestrial and marine records generally lack annual

layers, therefore sediments must be dated by other means, and 14C measurements are

generally used. Precise correlations between ice-core, terrestrial and marine records have
often been proposed and used to draw interpretations of palaeoclimatic variation (e. g. Bond
et al., 1993). However, the precise nature of the North Atlantic MRE from the last

deglaciation is at present imperfectly understood. This is due to several factors, including a

limited range of available data that often exhibits relatively large associated uncertainties.

Assessments of the 14C age of both surface and deep North Atlantic water masses during the
last glacial indicate that increased offsets between atmosphere and ocean existed during this
time. Broecker et al. (1990) found the 14C age ofNADW in the tropical Atlantic appears to

be 675 ± 80 yr during the peak glacial, which they compared to an estimated modern value
of c.350 y. Surface MRE assessments in the West Iceland Sea include c.950 yr at c.25,000
cal yr BP, increasing to c.2240 yr at the glacial maximum (c. 18,000 cal yr BP (Voelker et

al., 1998). These were inferred from the difference in planktonic and benthic foraminiferal

ages in a marine core where contrary to expected, the l4C age of the benthic specimens were

considerably younger than the planktonic. This effect was not observed in a core of similar

age taken off the west coast of Norway, and the authors attribute the effect to a phase of

younger deepwaters and older surface waters in the area. The higher surface MRE calculated
from the planktonic specimens was attributed to increased sea ice cover (that inhibited

atmosphere-ocean gas exchange) west of Iceland during this phase. The younger benthic

ages were attributed to the influx of newly-produced glacial deepwater which had formed in
a largely ice-free Norwegian Sea. In contrast, elevated glacial MRE values relative to present

are not observed further south in the Mediterranean Sea, where Siani et al. (2001) record an

57



Chapter 2: Scientific context

MRE of 350 ± 150 y, close to the present value for this area of 390 ± 80 yr (Siani et al.,

2000).

The onset of the deglacial period is marked by proxy records in North Atlantic marine cores

of a massive iceberg discharge, known as Heinrich Event 1 (HI). During this event

Mediterranean MRE values apparently increase to 820 ± 120 yr at c. 17,000 cal. yr BP and
810 ± 130 yr at c. 15,700 cal yr BP (Siani et al., 2001). A concurrent rapid increase in
western North Atlantic intermediate water of c.670 14C yr is recorded at 15,410 cal. yr BP in
corals situated at 40°N (Adkins et al., 1998). This apparent ageing of intermediate waters is

postulated as a mechanism for surface MRE increases south of the Polar Front by Siani et

al.{ 2001), and both authors suggest that a reduction in thermohaline circulation (due to HI)
and increasing input of ,4C-depleted Southern Ocean source waters may be responsible for
the observed MRE increases. North of the Polar Front at c. 15,000 cal. yr BP, surface MRE
values of 1630 ± 600 and 2340 ± 750 yr are derived from marine cores between 37-55° N
(Waelbroeck et al., 2001). Raised MRE values for HI are also recorded by Voelker et al.

(1998) in the West Iceland Sea, who observe MRE values of between c.630 and c.l 160 yr at

14,600-18,100 cal yr BP.

MRE values for the Bolling/Allerod along the west coast ofNorway at 12,300-11,000 14C yr
BP are 380 ± 32 y, almost identical to present values for Southern Norway of 379 ± 20 yr

(Bondevik et al., 1999). These authors hypothesised that it was possible for lower values to

be observed in this area due to the persistence of an ice-free zone along the Norwegian coast

from the deglacial to the Younger Dryas (Sarnthein et al., 1995). Other authors also infer a
MRE similar to present values during the Bolling/Allerod (Waelbroeck et al., 2001), and
values close to modern (with an upper limit of 700 y) are inferred at 13,000 cal. yr BP in
North Atlantic intermediate waters (Adkins et al., 1998). In contrast, Younger Dryas MRE
values appear significantly greater relative to present-day data in several studies. At the
Vedde Ash layer, dated to 10310 ± 50 BP (Birks et al., 1996), corresponding to c.12,000 cal

yr BP (11830-12387 cal yr BP at 2a), elevated MRE values are observed across the North
Atlantic. Here, values at on the West Norwegian coast are 610 ± 55 yr (Bondevik et al.,

2001), and an increase is apparent in determinations made from the coast ofNorway to the

open North Atlantic and Nordic Seas (Bondevik et al., 2001). This effect has been linked to a

change in North Atlantic oceanic circulation rates and distribution of sea ice cover in the

region during the Younger Dryas (Bard et al., 1994).
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MRE values at the Vedde Ash layer are 700-800 yr in four cores across the North Atlantic

(Bard et al., 1994), 700-800 yr on the Hebridean Shelf off the northwest coast of Scotland

(Austin et al., 1995), between 700 and 1100 yr off the Norwegian coast (Bard et al., 1994;
Haflidason et al., 1995) and 750-800 yr on the North Icelandic Shelf (Haflidason et al.,

2000). At the end of the Younger Dryas period, Waelbroeck et al., (2001) observed MRE
values of 1220 ± 430 and 1410 ± 340 y. Raised MRE values relative to present during the

Younger Dryas north of the Polar Front position (see Figure 2.10) contrast with values for
the Mediterranean at 10,450 ± 40 14C yr BP (12,634-12,315 cal yr BP), which at 380 ± 100

yr are similar to present (Siani et al., 2001). This suggests that these differences may reflect a
surface ocean latitudinal 14C gradient across the Polar Front at the Younger Dryas that is
similar to present. In the Norwegian Sea, MRE values appear to be c.1000 14C years between
c. 15,000-11,000 cal. yr BP. Over this time the values fluctuate, reaching maxima at 12,300
and 13,600 cal yr BP and minima at 11,500, 13,000, and 14,500 cal yr BP (Bjorck et al.,

2003). However there does not appear to be any consistent increasing or decreasing trend in
values over c.4000 y, which is inconsistent with the pattern observed by other authors of

decreasing MRE values from HI to the Bolling/Allerod (Bjorck et al., 2003).

Fluctuations in MRE values for the Holocene in the North Atlantic are recorded from sites

over the past 10 14C kyr BP, and have been linked to oscillations in the position of the Polar
Front and periodic eastward incursions of polar waters. During the Early Holocene at c.9000
14C yr BP MRE values larger than present have been observed, e.g. 690 yr off the west coast
of Norway, and 730 years off the North Icelandic coast (Haflidason et al., 2000). Over the

past 4600 cal y, Eiriksson, et al. (2000a) associate lower MRE values (c.400 l4C y) on the
North Icelandic shelf with dominance of the Irminger Current and an increase in MRE to 530
l4C yr with increasing influence of the East Icelandic Current in the area. Overall, AR values
on the North Icelandic shelf obtained using correlation of tephra markers found in marine
cores show values higher by up to 450 y, than those predicted by the marine model curve for
the last 4500 yr (Eiriksson et al., 2004). In this dataset, lower AR values occur around c.4000
cal yr BP, generally increasing to 2650 cal BP, with lower values observed at 3700 cal yr
BP. AR values are also lower at 2000 cal yr BP and 800 cal BP, and also possibly within the
last 150 y.
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must be taken into account, and an assessment of sedimentation rates made. While some

sites display very high sediment accumulation rates, for example c.lcm y"1 for the Younger

Dryas interval on the Hebridean Shelf (Austin et al., 1995), rates at other sites may be lower
than this (eg. c.8-20 cm ky', (Voelker et al., 1998)) and a correction for bioturbation bias

may be required (eg. Bard et al., 1994). The uncertainties associated with pre-Holocene
MRE determinations are often relatively large, and inhibit the production of a precise value.
This not only limits determination of the timing of specific palaeoclimatic events, but also
the study of temporal fluctuations in MRE itself. This is because of the requirement that data
be of a high enough resolution to observe events that may often be rapid. For example,
Stocker and Wright (1998) note that an increase in MRE values during Younger Dryas-type
climatic cooling events in the North Atlantic, and subsequent fall in MREs following
climatic warming occur within a relatively short time interval and 14C dating at resolutions of
<100 14C yr would be required to adequately resolve the signal.

It is also important that caution is exercised when interpreting observed or estimated MRE
variations in terms of palaeoclimatic forcing mechanisms. In the modern oceans there is a

lack of information concerning a quantified relationship between the intensity of climatic
variables and the size of the MRE in a location. This is due to limitations on the level of

resolution to which both the MRE and the potential climatic and oceanographic forcing
mechanisms have been determined. Model simulations of oceanographic change can provide
such quantifiable data (Stocker and Wright, 1996; 1998), however, there is a lack of an
extensive empirical dataset with which model simulations can be compared. This means that

specific links between MRE values and climatic and oceanographic change remain

theoretical, and an identified MRE variation in a dataset is not in itself definitive evidence of

a specific climatic or oceanographic change and vice versa. It is important to avoid

summoning of palaeoclimatic explanations that best fit the observed variations in MRE but
which have no definite demonstrable link to the data as a causal mechanism. In this way

unexpected data can be explained in terms ofpre-existing palaeoclimatic variations. The data
should rather be assessed critically and factors such as the range of inherent uncertainties in
the sample and data itself should be taken into account. Therefore, a more rigorous approach
is required to provide a higher resolution dataset by reducing uncertainties associated with

examining temporal change in the MRE. It is also important to determine the level to which
it is possible to identity variation in the MRE throughout specific periods of palaeoclimatic

change recorded in proxy data such as the ice-cores.
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At present these difficulties remain unresolved. Ambiguity in the available data means the
absence of an agreed consensus value for MRE correction in many areas and many time

periods. Approaches to the problem include working with marine 14C ages in their
uncalibrated form, adoption of the modern c.400 yr North Atlantic MRE value for all time

periods, or use of a correction value that is either selected from an available dataset or

independently determined. The various applications of these approaches could reduce the
level to which various datasets are easily inter-comparable, and would therefore be

detrimental to the aim of resolving ice, terrestrial and marine records of palaeoclimatic data.

2.8.3 The importance ofaccurately defining North Atlantic MRE values

The existence of a relevant MRE correction value is crucial to the production of accurate,
useful 14C ages using marine material, as it is through this quantity that marine ages from a

specific ocean area can be compared with other 14C ages of marine and terrestrial material
within a chronological framework. The applicability of a MRE or AR correction value based

upon empirical measurement is directly proportional to the accuracy and precision of the 14C
measurements, and the degree to which methodological assumptions are correct. The

currently available dataset ofMRE and AR values has been obtained using a wide variety of

methodologies, measurement techniques, and sample materials over more than 30 years.

Previous determinations made using radiometric measurements were limited by
considerations of sample size, which may have led to selection of less than optimum samples
for measurement. Although understanding of the MRE has been improved by increased
numbers of studies in recent years, the present range of data on temporal variations in AR
and MRE is somewhat variable and limited in extent. Such studies have been limited by the

availability of material and have tended to focus upon a small number ofmeasurements from
a single geographic location.

The palaeoenvironmental changes in the North Atlantic from the end of the last glacial

period have great importance for our understanding of global environmental systems. A
common theme raised by studies of MRE variation since the last glacial is the need for a

common temporal framework for terrestrial, ice-core and marine records of

palaeoenvironmental change.

Records of North Atlantic palaeoclimate and palaeoceanography are the subject of intensive

study, and a key aspect of this is the ability to correlate changes between sources of data
such as ice cores and marine sediments. To achieve this there is a requirement to obtain the
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best chronological information possible, to place data on an absolute chronological
timescale. The status of 14C measurements as an invaluable tool in North Atlantic

environmental reconstructions, coupled with the use of marine sediments and marine

organisms for 14C measurements has made the MRE a crucial consideration. As discussed

above, as well as being a climatically important region, the North Atlantic has great

archaeological significance for our understanding of past human cultures. The region is very
rich in the remains of human settlement, which includes an abundance of coastal

archaeological sites, where the inhabitants made extensive use of marine resources. This
means that marine carbon is often present in sample material for l4C measurement, both in
the remains of marine organisms such as fish and shellfish, and in terrestrial organisms,

including humans, that fed upon marine resources. The implication is that accurate

assessments of MRE values are essential in order to produce relevant palaeoenvironmental
and archaeological chronologies within the North Atlantic. This includes an understanding of

spatial and temporal variations in the MRE in the region.
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Chapter 3: Methodology A: Materials, sites and contexts

As discussed in the previous chapter, certain methodological factors can result in uncertainties
associated with MRE assessments that limit the level of accuracy and precision available. The

methodology developed in this study was specifically designed to reduce such uncertainties that

may result in variability in MRE values. To achieve this aim the paired sample approach was

used and 14C measurements were made of terrestrial and marine material from coastal

archaeological deposits. An essential requirement of the approach is that the measured terrestrial
and marine samples that are used to produce a value of MRE and AR were formed at the same

point in time. To meet this requirement a strict protocol was adopted for selection of samples to

measure (see section 3.2 below and Ascough et al„ in press). Another key consideration was to

choose sample material that would maximise the spatial and temporal range of the data. This

chapter describes the rationale behind the type of terrestrial and marine material chosen for

measurement, and the choice of specific sites and specific deposits from which to obtain

samples. The result was the selection of multiple samples of terrestrial cereal grains, hazelnut
shells or mammal bones and marine mollusc shells from 30 sealed archaeological deposits

(known as contexts). These were located at 20 archaeological sites on the west coast of Ireland,
western and northern Scotland and the Faroe Isles, covering the period from the Mesolithic

(c.6000 BC) to the Medieval (c. 1500 AD).

3.1 Sample material chosen for measurement

3.1.1 Selection criteria

Each terrestrial or marine sample chosen for l4C measurement met four criteria:

• A short (<20 yr) time of formation
• Part of a single organism (single entity)
• Likely to have entered the deposit a short (<5 yr) time after death
• A low likelihood of carbon exchange after death
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The importance ofa short (<20yr) formation time

The 14C content of a sample reflects that of the environment in which it grew. If the sample was

formed over a long period its 14C content will be an average of changes in atmospheric or marine
14C over this time. This can affect the level of precision and accuracy to which MRE values can

be calculated. Firstly, it is easier to establish that a terrestrial and a marine sample represent the
same calendar time span when using material with a short formation period. This is because any

difference in the time taken for the samples to form will not be significant with respect to the

precision of the l4C method. If a sample formed over 5 yr is compared with one formed over 100

yr the l4C content of the samples will represent an average of different time periods, even if the

samples share the same calendar age of death. In some samples with a long formation period, a

second problem is that the mass of material associated with different l4C ages varies within a

sample. This may apply to wood or charcoal samples, as the inner, older tree rings comprise less
mass than outer rings. In this case, the overall sample l4C age is biased towards the l4C age of
the sample part that has the greatest mass. When a fragment of wood or charcoal is measured it

may not be possible to determine whether the sample represents an inner or outer portion of the
tree. The measured age of these samples may not be an accurate representation of the l4C age of
terrestrial carbon at the time the tree died.

The importance ofa single entity

The improved accuracy gained by measuring short-lived organisms can be reduced if many
individual organisms are combined for a l4C measurement. This is often necessary with
radiometric analysis due to the small mass of individual short-lived (i.e.<5 yr) species (e.g.
cereal grains) and means that the final measurement is derived from an average of many

potentially different l4C ages. This may not be a problem where enough material is available
from an archaeological context that meets selection requirements (i.e. it is likely all material
within a deposit is of the same calendar age range). However the range of such deposits is small
and therefore a severe limitation is placed upon the number of suitable contexts. It is impossible
to determine how accurately an age produced from measuring many individual organisms

represents the range of l4C ages that are combined. If a number of measured organisms have an

age that is very different to that of others in the sample this will reduce the accuracy of the final
l4C age. If multiple single entities are measured from a context using AMS it is possible to more
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accurately assess the range in I4C age of samples within that context. This improves the
confidence level to which interpretations can be drawn from the measured ages.

The importance ofa short interval (<5 yr) between death and deposition

The likelihood that marine and terrestrial samples represent the same calendar age range is

greatly increased if there was a short (e.g. <5 yr) time between death of the organisms and

deposition of the samples in a context. If the time between death and deposition is extended, it is
more likely that the terrestrial and marine samples were grown at significantly different points in
time with respect to the typical measurement precision (c. ± 35 l4C yr). The various natural and
human processes that determine how, when and where a sample entered an archaeological

deposit and its location when excavated are known collectively as the "taphonomy" of an object

(Evans and O'Connor, 1999). It is important therefore that material used for the paired sample

approach to determine MRE is likely to have experienced a minimum of taphonomic processes.

Certain types of sample are likely to have undergone more taphonomic processes, such as reuse

or transport between sites. These include objects that are of specific cultural significance or can

be recycled for several purposes, such as building timbers. In addition, certain materials are

likely to have survived an extended period in the environment, such as driftwood that has been
burnt as fuel. Samples for the paired sample approach should therefore be material that is often

deposited as the direct result of short-lived (sub-annual) intensive human economic activities
such as cereal processing or dumping of food waste.

The importance that post-death carbon exchange has not occurred

It is possible for certain materials to take part in exchange with environmental carbon after death
or final formation. Sources of carbon exchanged with the sample include groundwater or soil

porewater, and this will change the 14C age of the sample. It is not possible therefore to derive an

accurate MRE value from samples that have undergone carbon exchange after death or

formation. The sample materials used in this study were chosen because they were not likely to

have taken part in such exchange. In addition the possible mechanisms of exchange for the types

of sample material used are well characterised and for each sample type an effective laboratory
method exists to remove this type of contamination.
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3.1.2 The sample materials selected

Terrestrial samples

The majority of terrestrial samples were carbonised cereal grains, and burnt hazelnut shells were

used in two instances. This material is not subject to reuse, represents a seasonal growth period
and once carbonised is relatively inert and is therefore resistant to carbon exchange. For these
reasons the use of carbonised plant remains for MRE determination is advocated by a number of
authors (Facorellis, 1998; Albero et al., 1986; Reimer et al., 2002). At sites where cereals had
not been cultivated or consumed in large quantities terrestrial mammal bones (red deer and

cattle) were used. The time for complete replacement of bone collagen (turnover time) within a

mammal is estimated as 10-30 years (Libby et al., 1964; Stenhouse and Baxter, 1979). It is

possible for terrestrial mammals to incorporate marine carbon into bone collagen if marine
material forms a significant component of the diet (Arneborg et al., 1999). This effect would
reduce the accuracy of MRE values calculated using such samples and the 5I3C of all bone

samples was examined for any evidence of a marine dietary component. Signs that bone material
has undergone exchange with environmental carbon include a lack of structural integrity and low
standard of preservation. This can be identified by examination of the sample to determine
whether the bone has retained its original structure and is not "crumbly" in texture or has been

strongly discoloured (e. g. yellow or brown colouration). Bone that has been used at a site to

produce artefacts such as tools can have survived an extended time between death and deposition
in a context. For this reason the selected bone samples had not been modified by any means

other than butchery.

Marine samples

The marine samples were all marine mollusc shells of species with lifecycles of c. 5-15 y.

Molluscs precipitate their shell carbonate in isotopic equilibrium with the ambient water (Keith
et al., 1964; Grossman and Ku, 1986; Forman and Polyack, 1997) and have limited mobility.
These samples are therefore a good record of surface water l4C at a location, compared to

migratory marine species such as whales, whose 14C content reflects an average of water over a
wide area (Schell et al, 1988). Marine molluscs in archaeological contexts are often the result of
economic practices, including use as fishing bait or collected as food, and experience a short
time period between collection and being discarded (Barber, 2003). It is possible for marine
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mollusc shells to undergo exchange with environmental carbon while within a deposit by

recrystalisation of the shell surface (Bezerra et al., 2000). This contamination can usually be
identified by inspection of the shell to ensure that the surface morphology resembles that of

living specimens, where structures such as ridges and growth lines are preserved across the
entire specimen. Standard pre-treatment processes for marine shell involve removal of surfaces
that can undergo carbon exchange.

Terrestrial Marine

Material /species No. of Material /species No. of

contexts contexts

Barley grain (Hordeum sp.) 24 Limpet (Patella sp.) 25

Oat grain (Arena sp.) 1 Periwinkle (Littorina littorea) 3

Hazelnut shell (Corylus avellana) 2 Cockle (Cerastoderma edule) 3

Cattle bone (Bos sp.) 1 Mussel (Mytilus edulis) 2

Red deer bone(Cervus elaphus) 2 Razor shell (Ensis sp.) 1

Table 3.1: Summary of all selected sample materials and species

3.2 The archaeological sites

Samples of marine and terrestrial material were taken from contexts at 20 archaeological sites in
northern and western Scotland, western Ireland and the Faroe Isles. This covered a total

latitudinal range between 53°- 61° N and a longitudinal range of 10°-1° W. This region has an

abundance of suitable sites from which to obtain material for the paired sample methodology.
This is due to a large amount of extant archaeological remains in coastal settings at which the
inhabitants made extensive use of both terrestrial and marine resources. In addition, samples
from these sites are easily accessible because of a large number of completed and ongoing

archaeological excavations from which detailed records and sample materials are available. It
was possible using the selection protocol described below to obtain samples from sites that
covered a total calendar age range of c.8000 years of human activity.
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3.2.1 Selection criteria

Three main factors were examined to select each site that was included in the study:

• The geographic location and relation to offshore conditions
• The type of prehistoric activity that had taken place
• The programme of archaeological excavation that had been applied.

The importance ofsite location

The influence of local geographic features was avoided by selecting sites from exposed coastal
locations away from estuarine settings that could potentially introduce significant amounts of
terrestrial organic detritus and carboniferous geological material (Spiker, 1980, Reimer et al.,

2002).

Certain geographic features such as sheltered topography (e.g. fjords) and carbonate geology can

modify the l4C content of surface ocean water in a specific location. Because this also alters the
l4C content of marine samples, these geographic features can determine the size of calculated
MRE values. In this case it can be difficult to make meaningful comparisons between MRE
values at sites where the size of the offset between terrestrial and marine l4C ages is the result of
different controlling mechanisms. In areas of enclosed coastal topography the extent ofmixing
with open ocean currents may be limited and there is an intensified contribution of terrestrial
runoff to the surface water (Spiker, 1980; Heier-Neilsen et at., 1995). The 14C content of
terrestrial freshwater contains variable amounts of terrestrial organic material, and of bicarbonate
from dissolution of carboniferous rocks. This means that the l4C activity of freshwater may be

significantly different to that of open ocean surface water (Tanaka et al., 1986; Heier-Nielsen,

1995; Goodfriend and Flessa, 1997).
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The importance of the type ofprehistoric activity

Sample sites were chosen by examination of detailed excavation reports and close consultation
with the excavators of each site. The factors that were considered for each site were:

• The time period during which activity took place
• The duration of activities

• The use of resources

• The presence of deposit types relating to specific cultural and economic practices (e.g.:
stratified middens produced by dumping of economic refuse)

An effort was made to include sites from a wide range of time periods, using the chronological
information (including 14C measurements) available from site excavation records. Other
information obtained from site records concerned the site deposits that had been formed by

prehistoric activity. To achieve precise and accurate MRE values meant that certain types of

deposit that were the result of specific human processes had to be present. Therefore, the

activity at a site had to be of sufficient duration to produce a sequence of individually

identifiable, stratified deposits. In addition, both local marine and terrestrial resources had to be

present in these deposits in significant amounts. Furthermore, it should be likely that the
activities that had produced the deposits occurred over a short time interval, such as dumps of
refuse in a midden resulting from cereal processing and fishing using marine molluscs as bait.

The importance of the programme ofarchaeological excavation

Where an archaeological site was in a suitable geographic location and contained suitable

deposits from which to obtain samples, the final consideration was how the site had been

excavated, specifically:

• The extent of excavated deposits
• The site sampling programme

• The range of investigative techniques applied at the site
• The availability of site records and environmental samples
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In order to obtain useful samples, the excavation programme must have resulted in the

excavation, recording and collection of environmental samples from suitable deposits. The
excavation records had to contain a large amount of contextual information, including data on

the matrix within which samples were located, its position within the soil or sediment profile and
its association with both other environmental remains and human activities.

3.2.2 The selected sites

According to the criteria identified above, 20 archaeological sites were selected. The site
locations are given in Figure 3.1 and the sites are briefly described in Table 3.3. The references
for each site given in Table 3.4 provide full details of the archaeological excavation, including
the extent and nature of excavated deposits, and the interpretations drawn concerning prehistoric

activity at the site.

There are similarities in the location of all selected sites within the study region:

• Located on or next to the coastal zone

• In an area of exposed coastal topography (e.g. non-estuarine)
• In an area of non-calcareous geology
• In an area with a prevalence of archaeological remains and favourable conditions for

preservation

The sites are located in coastal zones of Atlantic islands and the waters offshore lie upon the

continental shelf, which influences circulation patterns and exchange with the North Atlantic
Current. In deeper waters (>150m) beyond the continental shelf break the water is of Atlantic

origin with salinities >35%o. Closer to the coast the continental shelf modifies exchange between
the deep ocean and coastal seas and water masses consist of a mixture of source waters. For

example water on the Scottish western continental shelf has three sources. The main source is
Atlantic water (salinity >35%o), with a portion of northward flowing water from the Irish Sea

(salinity 34.0-34.5%o) and of lower salinity coastal water derived from terrestrial runoff from the
Scottish mainland (OSPAR, 2000; Gillibrand et al., 2003). The area is geologically diverse, with

underlying rock types that range from sedimentary (e.g. Old Red Sandstone) to metamorphic

(e.g. Lewisian gneiss). However, no site is located on or near to calcareous geological sources,
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and these tend not to be a feature of the area within which any site is situated. The climate of all
areas is characteristic of the western coastline of North Atlantic islands, with cool, fresh

summers and mild winters, also high prevailing wind speeds and rainfall that strongly influences

vegetation coverage. Climatic similarities are also visible across the study region in terrestrial

palaeoenvironmental records which share the large-scale features within the North Atlantic from
the last deglaciation that are described in Chapter 2. The changes in topography and vegetation
that were produced by these climatic changes do however show variation between areas, being
influenced and modified by local factors.

There is evidence for a human presence across the region from various initial dates over the

Holocene, and once established, human occupation of the region has produced a wealth of

archaeological remains. These cover a variety of time periods that are commonly subdivided into
units based upon cultural attributes and chronological information (see Table 3.2). In this thesis,
subdivisions used to describe these chronological periods are based upon the general schemes of
several authors (Parker Pearson and Sharpies, 1999; Edwards and Ralston, 1997). These
subdivisions are used to relate sites to one another and later within the interpretation of l4C
measurement results. Stratigraphic preservation of archaeological remains in areas close to the
sites is excellent due to an absence of intensive post-industrial agriculture or large urban areas,

and in several locations to the deposition of dune sands over prehistoric settlements, which
sealed structures and deposits.
Period Approx. calendar age range Approx. 14C age range BP
Mesolithic 8000 BC - 4000 BC 8800 - 5200
Neolithic 4000 BC - 2500 BC 5200 - 4000
Bronze Age 2500 BC - 700 BC 4000 - 2500

Early Iron Age 700 BC-100 BC 2500-2100
Mid Iron Age 200 BC - AD 200 2100- 1800
Late Iron Age AD 200 - AD 900 1800- 1200
Norse AD 900-AD 1100 1200-900
Historic/Medieval AD 1100 - AD 1400 900 - 600

Table 3.2: Archaeological subdivisions of cultural periods apparent within the wider study area.

For convenience, the wider study region is divided into six areas, within each of which several
selected archaeological sites are located. In the following section the sites are placed in context

of their specific geographic area, considering each area in turn. This includes oceanographic
characteristics as well as features of geology and topography. These features should not be
considered in isolation, because it is the interactions between them that have dictated both
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palaeoenvironmental histories and present landscapes. For example, the underlying geologies in
all areas have influenced topographic features by determining patterns of differential erosion by

glacial ice, fluvial and marine action, and these features have in turn influenced human
settlement patterns.

A system of notation has been adopted throughout this thesis by which the various selected sites
and contexts will be referred. This consists of an abbreviation of the site name, followed by the

specific context number that was assigned by the site excavators to the sampled context. The
abbreviations assigned to each site are in bold in Table 3.3, and the context identification codes
are in Table 3.5. When a site is referred to in the text hereafter it is by the site code (e.g. SA),
and when a context is referred to it is by the site code and context code (e.g. SA-13).
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Area Location Site (site code) Time period Site type
1 West Ireland Omey Island

(OI)
Bronze Age -

post-medieval
Settlement and associated

deposits, Christian burial
site

Doonloughan 3
(DL-3)

Norse/Early
Christian

Structure and associated

deposits
Doonloughan 11
(DL-11)

Norse/Early
Christian

Settlement and associated

deposits
2 Mainland

Scotland
Sand

(SA)
Mesolithic Large shell midden

sequence

Carding Mill Bay
(CMB)

Neolithic
Bronze Age

Shell middens and cist
burial

Freswick Links

(FL)
Pictish - Norse Settlement and associated

deposits
Roberts Haven

(RH)
Norse - Medieval Settlement and associated

deposits
3 Outer Hebrides Northton

(NO)
Neolithic
Mediaeval

Small scale structure and
associated midden

Baleshare

(BA)
Bronze Age - late
Iron Age

Settlement and associated

deposits
Hornish Point

(HP)
Iron Age Settlement and associated

deposits
Berie

(BE)
Iron Age - later
Pictish

Settlement and associated

deposits
Bostadh

(BO)
Iron Age - Norse Settlement and associated

deposits
Galson

(GA)
Iron Age - Norse Cist cemetery, settlement

and associated deposits
4 Orkney Islands Skara Brae

(SkB)
Neolithic Settlement and associated

deposits
Lopness
(LO)

Bronze Age Burial cist containing
possible ritual deposits

Birsay Bay
(BB)

Bronze Age Small scale structure and
associated midden

St. Boniface

(StB)
Bronze Age
Norse

Settlement and associated

deposits
Quoygrew
(QG)

Norse - Medieval

occupation
Settlement and associated

deposits
5 Shetland Islands Scatness

(SC)
Bronze Age -

post-medieval
Settlement and associated

deposits
6 Faroe Islands Undir

Junkarinsflotti

(UJ)

Norse -

Medieval
Sequence of midden
deposits

Table 3.3: Selected arc laeological sites showing geographical area within the wider study

region, period of prehistoric occupation and excavated deposits. References for each site are

summarised in Table 3.4.
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Site References

OI O'Keeffe, 1994

DL-3 Murray, 1999
DL-11 Murray, 1999

SA Finlayson et al., 1999; Hardy and Wickham-Jones, 2003; 2004; in press

CMB Connock, 1988; 1990; Connock et al., 1992

FL Morris et al., 1995

RH Barrett, 1992; 1993

NO Gregory et al., in press

BA Barber, 2003

HP Barber, 2003

BE Harding and Gilmour, 2000
BO Neighbour and Burgess, 1996

GA Neighbour and Church, 2001

SkB Clarke, 1976

LO GUARD, 2004

BB Morris, 1979; 1989

StB Lowe, 1998

QG Barrett and Moore, 2001; Barrett and Gerrard, 2002

SC Dockril et al., 1995; 1997; 1998; 1999; 2000; 2001; 2002; 2003; Turner et al,

1996,

UJ Church et al., in press

Table 3.4; References for each selected archaeological site (c.f. Table 3.3).

75



Chapter 3: Methodology A: Materials, sites and contexts

Figure 3.1: Location of sites within overall study area, showing location of areas 1 to 6.
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Figure 3.2: Surface circulation in the overall study area showing Atlantic water (red arrows) and
coastal currents including the Scottish Coastal Current (black arrows) (after OSPAR, 2000).

Bathymetry is given with the 200m and 1000 m contours (from Burrows and Thorpe, 1999).
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Area 1: Western Ireland

Figure 3.3: Site locations within Area 1

The three sites are located on the west coast of Ireland around Mannin Bay, Connemara. DL-3
and DL-11 lie on the mainland coast, while OI is on the north side of Omey Island, a tidal island
<1 km from the mainland coast. DL-3 and DL-11 are the location of small- scale early Christian

activity (Murray, 1999). The earliest human activity at OI took place in the Bronze Age,
followed by early Christian burials and ecclesiastical use and final abandonment c.1840 AD

(O'Keefe, 1994). Winter near shore (<c.50km) salinities off the west coast of Ireland average

>35%c, and summer salinities 35.4-35%c, indicating the water is mainly of Atlantic origin

(OSPAR, 2000). The temperature range of surface waters in the region of the sites averages c.6-
16°C (Donohoe et al., 2000). The coastal water flows in a clockwise direction from the south of

Ireland northwards parallel to the coast. These waters then pass into the Minch (between
mainland Scotland and the Outer Hebrides) and flow up the western coast of Scotland. The local

geology consists of igneous basement rocks, and vegetation cover in the hinterland is dominated

by peat accumulations.

78



Chapter 3: Methodology A: Materials, sites and contexts

Area 2: Mainland Scotland
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Figure 3.4: Site locations within area 2

Occupation deposits at CMB on the west mainland coast date from the Bronze Age, and the site
lies in a region that includes andesitic and basaltic lavas and tuffs, schists, and Old Red
Sandstone rocks (Gillen, 2003). SA is a Mesolithic shell midden further north on the Applecross

peninsula in Wester Ross, an area of Torridonian rocks backed by the Torridonian highlands.
The coastal topography at both sites reflects the fall in relative sea level from the main

postglacial maximum (c.6 kyr BP (Lambeck, 1995)) due to postglacial isostatic uplift in

response to removal of ice loading. This is apparent in a series of raised beaches in Argyll and
Wester Ross with prehistoric sea cliffs now located several metres above the present shoreline
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(Whittow, 1992). CMB and SA are in more moderately exposed coastal zones than other
selected sites, due to the Inner Hebridean islands directly to the west. These constrain the flow of
offshore waters that are part of the Scottish Coastal Current (SCC), originating from Atlantic and
Irish Sea waters (Knight and Howarth, 1999), and reinforced by lower-salinity water from the

major west coast Firths (McKay et al., 1996). RH and FL are located on the north and far north
east mainland coast, respectively, and are a sequence of late Norse and post-medieval middens
and structural remains (RH) and a settlement dating from the Pictish and Norse period (FL). RH
and FL lie in Caithness, an area dominated by rocks of the Old Red Sandstone series, which
form part of the Orcadian basin (Whittow, 1992). The surface waters around RH and FL are also
derived from the SCC as general circulation around Scotland continues in a clockwise direction,
and flows into the North Sea.
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Area 3: Outer Hebrides
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Occupation phases at the six sites range from the Neolithic to the Medieval period, and all are
located on the exposed west coast of the Outer Hebrides. Surface waters in this area consist of
the SCC flowing northwards through the Minch and to the west of the Outer Hebrides and are

not modified by further land masses to the west. The Outer Hebridean geology is dominated by
Lewisian gneiss, apart from some igneous intrusions (Myers, 1971) and limited exposures of
schist on the Isle of Harris (Whittow, 1992), and the landscape is heavily influenced by the

impact of glaciation with many erosive landforms (Whittow, 1992). The Outer Hebrides, like the

Orkney, Shetland and Faroe Islands was at the periphery of major ice influence during the last

glacial, and has been gradually submerged by eustatic sea level rise since this time (Ritchie,
1985). Glacial processes also resulted in extensive deposits of calcareous shell sand or machair
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along the western coasts as post-glacial debris on the continental shelf has been reworked and

deposited by onshore winds and currents (Gillen, 2003). The major machair formation phase
occurred by the 4lh millennium BC (Gilbertson et al., 1996, Ritchie, 1979), and encouraged

prehistoric settlement in coastal areas due to fertile calcareous soils. Machair deposits are

located in the vicinity of all sites within area 3.
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Area 4: Orkney Isles
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Figure 3.6: Site locations within area 4

StB, QG, BB and SkB are all located on west island coasts, while LO is located on the east

coast of Sanday, one of the Northern Isles. LO is a Bronze Age burial cist, while the other sites
are the location of settlements and associated deposits. SkB was an extensive settlement

occupied between the Neolithic and Bronze Age, whereas BB consisted of less extensive
middens and structural remains from the Bronze Age. StB comprises Bronze Age and Iron Age

settlements, and Norse farm midden deposits, while QG was inhabited between the 9th century
AD and the post-medieval period. The area is exposed to the west to the open North Atlantic,

although there is a relatively wider continental shelf area west of Orkney than to the west of the
Hebrides. To the south and north, water is derived from the SCC flowing eastwards into the
North Sea. The Orkney Island geology is dominated by rocks of the Old Red Sandstone series
and with Caithness forms part of the Orcadian basin. Machair deposits are also located on the
western coasts of the Orkney Islands, and shell sand inclusions are found at points within the

stratigraphy at the majority of selected sites.
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Area 5: Shetland Isles
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Figure 3.7: Site locations within area 5

SC is a multi-period settlement site representing a sequence of activities from the Bronze Age to

the post-Medieval. The Shetland Islands are located south of the Shetland-Faroes Channel, part
of the Iceland-Scotland gap which forms the main route for inflow of Atlantic water to the
Nordic Seas and Arctic Ocean. Atlantic waters are transferred onto the continental shelf west of

Shetland (Dooley et al., 1976) and water from the North Atlantic enters the North Sea mainly
from the north and west of Shetland (Rhode, 1998). The Shetland geology is more complex than
that of Orkney or the Outer Hebrides, consisting of Lewisian, Moine and Dalradian metamorphic

rocks, Devonian lavas and Old Red Sandstone with several large granite intrusions (Gillen,

2003). Machair deposits are also a feature of the western island coasts. Shetland comprises a

greater land area than Orkney but has only about a quarter of the arable and grassland coverage

as two thirds of the land is covered by peat bog and moorland (Whittow, 1992).
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Area 6: Faroe Isles
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Figure 3.8: Site locations within area 6

The Faroe Islands are the most northerly study area and UJ is a series of Norse period middens
on the west coast of Sandoy. Permanent human settlements were only established on the islands
from c. AD 500-700 (Johansen, 1985, Hannon and Bradshaw, 2000, Hannon et al„ 2001), and

therefore the archaeological record covers a much shorter time period than in other study areas.

The geology of the Faroe Islands is mainly composed of igneous basement rocks and the action
of glaciation has produced a large series of fjords around the island coastlines. The Islands are

situated on the Faroe Plateau c.300 km north west of Shetland in the path of eastward flowing
North Atlantic Current water which moves through the Shetland-Faroes and Iceland-Faroes
channels. The NAC water forms the Faroes current north of the Islands which flows into the

Norwegian Sea, and also flows eastwards to the south of the islands through the Faroe-Shetland
channel. Overall surface water flow around the Faroe Plateau is cyclonic and strongly influenced

by topography. Surface waters around the islands are dominantly modified North Atlantic water

that is produced by the admixing of lower salinity terrestrial freshwater input (Hansen and
Osterhus, 2000). This water has annual average temperatures of around 8°C and salinities of
around 35.25 and produces a relatively well defined water mass of intermediate salinity that
forms the coastal water around the islands (Hansen, and Osterhus, 2000; OSPAR , 2000).
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3.3 The sampled contexts

30 contexts were chosen from the 20 archaeological sites to take paired terrestrial and marine

samples. At the majority of sites a single context was selected, however, at six sites, more than
one context was selected (BA, SC, QG, RH, StB, and SkB). From each context l4C
measurements were made ofmultiple samples of terrestrial and marine material. At each site the
selection criteria described below were applied, which allowed optimum samples for the paired

sample method to be obtained. The central aim of these criteria was to maximize the likelihood
that samples of marine and terrestrial material represented a comparable calendar age range.

3.3.1 Selection criteria

Contexts from which to take terrestrial and marine material for l4C measurement were chosen on

the basis of several requirements.

• Clear, well defined boundaries
• Spatially confined
• A high content of terrestrial and marine material relative to context size
• The absence of signs that disturbance had occurred after deposition

The importance ofwell defined boundaries and confined spatial extent

There is a greater likelihood that the material within a context is of the same calendar age if the
context is the product of a short, defined process. Such a process that deposited both terrestrial
and marine material is likely to be the result of human actions, eg. the dumping of refuse
material. This type of deposit can be identified by well-defined boundaries and a limited spatial
extent. Context formation processes that can occur over extended time periods include natural
sediment accumulations and cultivation phases, and these often mean that material from a wide

range of sources is incorporated into the context. This material can have a wide range of
calendar (and therefore 14C) ages on the order well over 100 yr, as material such as carbonised
cereal grains can potentially survive repeated cycles of erosion and redeposition at a site, and
this would reduce the accuracy of calculated MRE values. Contexts that had highly diffuse
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boundaries or were likely to have accumulated slowly were therefore avoided in favour of

defined, discreet sedimentary units.

The importance ofa high content of terrestrial and marine sample material

Terrestrial and marine material within a context is also more likely to be of the same calendar

age if it is present in larger amounts, as this increases the chance the samples were deposited as

the result of deliberate human activity. Where such material is present in low volumes there is a

higher possibility that its presence in a context is the result of chance events or natural processes.
These are more likely to incorporate material that has a range of calendar ages into a context,

and contexts that contained larger amounts of both terrestrial and marine samples were

preferentially selected. A central feature of the methodology was to measure multiple terrestrial
and marine samples from each context, with at least four samples of each type of material
measured wherever possible. This allowed uncertainties derived from context formation

processes and depositional histories to be assessed that are not accounted for when single marine
and terrestrial samples are compared.

The importance that signs ofpost-deposition disturbance were absent
<

Once deposition of a context has ended, it is possible for material to be introduced at a later date

by natural or human disturbance. Natural processes include burrowing by animals and root

growth through the sediments, while human processes usually involve exhumation of sediments,
for example during building construction. The material that enters a context in this way can

either date to the time of disturbance, or be of an earlier date than the initial context formation.

In either instance there is a greatly increased chance that any individual terrestrial and marine
material samples from this context will not be of the same calendar age. To increase the

probability that selected samples were of the same age, contexts with obvious signs of
disturbance were avoided. These are often apparent on examination of the sedimentary profile,
such as rabbit burrows, worm casts or cultivation marks. Contexts with good stratigraphic
definition (see above) are also less likely to have suffered disturbance, and contexts that
contained articulated remains such as fish, and/or mammal bones were also used as an indication

that a context had not been significantly disturbed since initial deposition.
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3.3.2 The selected contexts

Table 3.5 shows the 30 contexts that were selected from the sample sites. The majority of
contexts were midden deposits that were associated with a period of prehistoric occupation.
Middens are generally the result of a sequence of material dumps (often domestic refuse) or are
the result of specialised subsistence strategies (e.g. fishing). It may be possible to identify

specific individual formation events within the sequence (Uerpmann, 1990) that occurred over a

short time interval. From several contexts it was possible to take samples from defined
individual dumps of material that represented human activity over a sub-annual scale. The
composition of an individual sequence ofmidden deposits reflects different types and intensities
of activity, and the composition of individual deposits is the result of cultural preferences and
environmental conditions. As can be seen from Table 3.6, the majority of terrestrial samples
obtained from contexts were carbonised barley (Hordeum sp.) grains, and the majority ofmarine
mollusc samples were limpet species (Patella sp.).
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Site Context Description
SA 013 Shell midden deposit
CMB XIII Shell midden deposit
FL JM, sample 76 Midden deposit
RH 3004 Upper midden deposit
RH 3019 Lower midden deposit
BA 39 Midden deposit
BA 146 Midden deposit
BA 139 Midden deposit
HP 201 Midden deposit
NO 5 Occupation surface containing midden material
BO 64 Midden deposit
BE 503 Hearth deposit
GA 165 Midden deposit
SkB 68 Midden deposit
SkB 26 Midden deposit
BB XF Midden deposit
LO 006 Possible ritual deposit
St B 2136 Fill of grain-drying flue or hearth
St B 2044 Primary fill of enclosure ditch containing midden material
St B 1063B Midden deposit
QG A004 Upper midden deposit
QG A023 Lower midden deposit
SC 543 Discreet, thin limpet midden layer within structure
SC 1269 Surface directly overlying stone flagging in a structure

entrance

SC 3083 Shell midden deposit within structure
SC 206 Midden deposit within a test pit (Pit 2 C2)
OI 6 Midden deposit
DL-3 19 Ash layer within a charcoal lined pit
DL-11 2 Enclosure surface containing domestic refuse
UJ 23 Midden deposit
Table 3.5: Contexts chosen according to selection protocol, showing the site at which each
context was located.
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Each context is referred to in the following text by a combination of the site identifier code and
context number.

Context Terrestrial sample material Marine sample material
SA-013 Cervus elaphus bone Patella sp.
CMB-XIII Corylus avellana nutshell Patella sp.
FL-JM76 Hordeum sp. Patella sp.
RH-3004 Hordeum sp. Patella sp.
RH-3019 Hordeum sp. Patella sp.
BA-39 Hordeum sp. Cerastoderma edule
BA-146 Hordeum sp. Cerastoderma edule
BA-139 Hordeum sp. Patella sp.
HP-201 Hordeum sp. Patella sp., Littorina littorea,

Mytilus edulis, Ensis sp,
Cerastoderma edule

NO-5 Corylus avellana nutshell Littorina littorea
BO-64 Hordeum sp. Patella sp.
BE-503 Hordeum sp. Mytilus edulis
GA-165 Hordeum sp. Patella sp.
SkB-68 Hordeum sp. Patella sp.
SkB-26 Bos sp. Patella sp.
BB-XF Cervus elaphus bone Patella sp.
LO-6 Hordeum sp. Patella sp.
StB-2136 Hordeum sp. Patella sp.
StB-2044 Hordeum sp. Patella sp.
StB-1063 Hordeum sp. Patella sp.

QG-A004 Hordeum sp. Patella sp.

QG-A023 Hordeum sp. Patella sp.
SC-543 Hordeum sp. Patella sp.
SC-1269 Hordeum sp. Patella sp.
SC-3083 Hordeum sp. Patella sp.

SC-206 Avena sp. Littorina littorea

OI-6 Hordeum sp. Patella sp.
DL3-19 Hordeum sp. Patella sp.
DL11-2 Hordeum sp. Patella sp.
UJ-23 Hordeum sp. Patella sp.

Table 3.6: Sample material obtained for 14C measurement from selected archaeological contexts.
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Chapter 4: Methodology B: Laboratory techniques and data

analysis

The following chapter first describes the laboratory methodology that was applied to the

samples for isotopic measurements. This includes removal of contaminants (pre-treatment),

physical and chemical preparation of samples for measurement and the specific measurement

technique applied. This is followed by a discussion of the techniques used to analyse the
measurement data.

A total of 275 samples were selected from the 30 archaeological contexts described in the

previous chapter for 14C measurement. In the majority of instances this involved four

samples of terrestrial carbonised plant material or mammal bone, and four samples of marine
mollusc shells. The total number of 14C measurements made was 301 as multiple

measurements were made of certain individual samples, and a 8,3C value was obtained for
each 14C measurement using conventional mass spectrometry. The number of measured

samples and total number ofmeasurements are summarised in Table 4.1.
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Terrestrial samples Marine samples
Context No. No. individual 14C No. No. individual 14C

measured measurements measured measurements

samples samples
SA-013 4 6 4 4

CMB-XIII 4 6 4 4

FL-JM76 6 6 4 9
RH-3004 4 4 4 4

RH-3019 4 4 4 4
BA-39 4 4 4 4
BA-146 4 4 4 4
BA-139 4 4 4 4

HP-201 4 4 20 24
NO-5 3 3 2 2

BO-64 6 6 4 6
BE-503 6 6 4 5

GA-165 4 4 4 8
SkB-68 6 6 4 5
SkB-26 4 4 4 4

BB-XF 4 4 4 4

LO-6 4 4 4 4

StB-2136 4 4 4 4

StB-2044 4 4 4 4

StB-1063 4 4 4 4

QG-A004 6 6 4 4

QG-A023 8 8 4 6

SC-543 6 4 4 10

SC-1269 6 4 4 4

SC-3083 4 2 4 6

SC-206 8 4 4 6

OI-6 4 4 4 4

DL3-19 4 4 4 7
DL11-2 4 4 4 4

UJ-23 4 4 4 4

Total 141 135 134 166
Table 4.1: A summary of the number of individual samples measured and total number of
l4C measurements made from all archaeological contexts.
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4.1 14C Measurement: Pre-treatment, C02 extraction and conversion to graphite

4.1.1 Sample pre-treatment: Removing contaminants

Carbonisedplant material

Carbonised plant material typically has a high carbon content (>50%) and is relatively

chemically inert. Contaminants from environmental sources are carbonates and organic

(humic or fulvic) acids that are derived from inorganic and organic soil components,

respectively. These adhere to the physical structure of the sample rather than combine with
the sample chemically. The standard pre-treatment methods for carbonised grain are the
removal of carbonates by acid hydrolysis with HC1 and of organic acids with alkali solution

(NaOH) in a series of successive washes (acid-alkali-acid or AAA method). This method

provides a rapid and effective, although non-selective removal of contaminants (Santos et

al., 2001).

Samples of plant material were inspected to select intact, clean samples with a good surface
structure and minimal surface damage or adhering soil. Sample weight was recorded and the

sample heated for one hour at 80°C in 50 ml 0.25M HC1 after which the solution was filtered

using a vacuum pump, and neutralised by washing with distilled water. After neutralisation
the sample was heated for one hour at 80°C in 50 ml 0.25% NaOH solution before filtration
and neutralisation, followed by a final acid wash to remove any carbonate contamination

through absorption of atmospheric C02 by the alkaline solution. Following final filtration
and neutralisation the sample was oven dried and the sample weight recorded.

Bone

The two main bone fractions are a protein (collagen), and a phosphate (calcium

hydroxyapatite). The open lattice of the bone phosphate structure can combine chemically
with carbonates precipitated from infiltrating groundwater, and can also incorporate soil
humic acids (Yoneda et al., 2002). Bone collagen is however resistant to post-depositional
carbon exchange and standard bone pre-treatment involves extraction and purification of

collagen. A minimum of c. 5% collagen yield is recommended for reliable dating. (Hedges
and Van Klinken, 1992).
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Bone samples were pre-treated with a modified Longin (1971) method. The sample surface
was cleaned with a Dremmel® drill using a buffing attachment, weighed and roughly
crushed into 1-2 cm pieces. The sample was then immersed in 100ml 1M HC1 overnight

(c.18 hours) to dissolve the phosphate. Completion of this stage was identified when the
bone texture became "spongy" due to loss of the phosphate into solution. No heat was

applied during this phase as this would denature the collagen and result in its dissolution.
The liquid fraction containing the phosphate and organic contaminants was decanted off and
the residue heated gently in 100 ml distilled water. Due to residual acid the heated solution
remained slightly acidic, which denatured and dissolved the collagen through hydrolysis of
the proteinic chains. Once the majority of the bone structure had dissolved, the solution was

filtered and the collagen freeze-dried.

Marine mollusc shell

The majority ofmollusc shell structure consists of CaC03 crystals bonded within an organic
matrix by a protein (conchiolin), that itself comprises <10% of the shell structure (Aitken,

1990). Carbon contaminants affect the shell surfaces as primary shell carbonates are replaced
with secondary carbonates from environmental sources after deposition. Though this
contamination can affect exposed shell surfaces, the inner shell layers are considered to be a

closed system after formation (Chappell and Polach, 1972; Vita-Finzi and Roberts, 1984),
and pre-treatment involves identification of surface exchange and removal of outer shell

layers.

Shells were inspected and only hard, non-porous shells that had a fresh surface and preserved
textures were selected for analysis (Mangerud, 1972, Mook and Waterbolk, 1985). All

physical contaminants that adhered visibly to the shell surface were removed by abrasion and

subsequently by cleaning in deionised water in an ultrasonic bath. The shell was then dried
and weighed before the outer 20% portion by weight was removed by etching in 1 M HC1

(c.f. Heier-Nielsen et al., 1995). The dry pre-treated sample weight was recorded and the
shell crushed to obtain a O.lg homogenised sample of the shell structure for C02 extraction.
Prior to extraction, a further 20% of the sample surface was removed with 1M HC1 to extract

any further surface contamination that had occurred during storage after pre-treatment.
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4.1.2 C02 extraction and conversion to graphite

C02 was obtained from the pre-treated carbonised plant material and bone samples by
combustion in sealed quartz tubes (Vandeputte et al., 1996) that had been pre-cleaned in air
at 850°C for 8 hours. The tubes contained the pre-treated sample with 0.5 g copper oxide

(CuO) and a small piece of silver wire, included to remove halides (mainly chlorine) that

may prevent effective reduction of C02 to C (Buchanan and Corcoran, 1959). The tubes
were numbered and evacuated on a vacuum line before being flame sealed. Sample
combustion was achieved by heating the tubes at 850°C for 8 hours in a muffle furnace, after
which they were cooled slowly and attached to a vacuum line for C02 collection. The sample

gas was released into the line by cracking in a cracking unit (see Figure 4.1).

For marine mollusc shell, the secondary pre-treatment (see above) was performed in a pre-

cleaned Pyrex hydrolysis unit. After completion of the pre-treatment, the unit containing the

sample was attached to a vacuum line and 1M HC1 injected into the unit through a rubber

septum. Sufficient HC1 was added for complete hydrolysis of the shell carbonate and the
evolved sample C02 was then released into the vacuum system.

A B

Fig 4.1: A: Cracking unit used for collection of C02 from samples of carbonised grain and
mammal bone. The unit is attached to the vacuum line (B) and is interchangeable with the

hydrolysis unit (used for shell carbonate samples).

The sample C02 was then cryogenically purified. Water vapour was removed at -78°C in a

spiral trap surrounded by solid C02/ethanol, following which the gaseous sample was passed
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though a spiral trap surrounded by liquid N2 (-196°C). At this stage, non-condensing gaseous

contaminants were removed by pumping the system under vacuum while the sample C02
was frozen with liquid N2. The purified sample C02 yield was measured with a strain gauge

and three sub-samples were taken. One 2 ml sample was converted to graphite by the method
of Slota et al. (1987), for AMS analysis, and the second sub-sample was collected in a clean
sealable glass vial for 813C analysis. Any remaining sample C02 was collected in a glass vial
and sealed for possible future analysis.

The 2 ml of purified sample C02 was converted to filamentous C (graphite) by reduction to

CO using 0.06 g zinc (Zn) as the reaction catalyst at 400°C , followed by reduction to C with
0.003 g iron (Fe) catalyst at 600°C (Vogel et. al., 1987; Lowe and Judd, 1987). The reactions
were preformed on a graphitisation unit under vacuum, which consisted of the 2 ml sample
C02, and two pre-cleaned Pyrex tubes, each containing a catalyst and surrounded by a small
furnace. The pressure within the reaction vessel was continuously monitored by a computer-

controlled pressure transducer. The measured pressure was converted to a digital value, and
this value (input) was displayed on-screen, plotted as a function of time (hours) (see Figure

4.2). As pressure within the reaction vessel fell, the yield of graphite increased. Upon

completion of the reaction the sample graphite was collected and pressed into an aluminium

sample holder to produce a target suitable for AMS analysis.

Figure 4.2: Graph output from computer-controlled graphite production showing progress of
the reaction. The pressure within the reaction vessel (input) is plotted as a function of time.
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4.1.3 Measurement

The prepared graphite targets were inserted into the AMS sample source and measured. A
number of samples were measured at the NSF-University ofArizona AMS facility, while the

majority were measured using the accelerator facilities at the Scottish Universities
Environmental Research Centre (SUERC). The Arizona facility comprised a National
Electrostatics Corporation (NEC) 3 MV terminal voltage instrument and measured carbon in
the 3+ charge state. The SUERC facility is a NEC 5 MV terminal voltage instrument

operated at 4.5 MV, with carbon in the 4+ charge state. At SUERC, a series ofmeasurements
were made upon known age material over a period of several months to provide a minimum
measurement error of c. ± 35 14C yr . Wherever possible during measurement, samples from
a single context were measured on the same sample wheel to reduce variability introduced

by random machine error (RME) and maximize laboratory precision to ±35-50 yr . Sample
measurements that were associated with large measurement standard errors were repeated.

Figure 4.3: Schematic of SUERC AMS facility

The isotopic composition of the C02 was measured on a VG SIRA 10 stable isotope mass

spectrometer using NBS standards 22 (oil) and 19 (marble) to determine the 45/44 and 46/44
atomic mass ratios, from which a sample S13C value could be calculated.
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Known age standards

The majority of samples were measured in batches on the SUERC AMS facility. Each batch
contained a mixture of unknown age samples and known age standards. The known age

standards included modern reference standards (Oxalic acid II) and material that had been
used in the third and fourth international radiocarbon intercomparisons (TIRI and FIRI). The
aim of the intercomparisons was to provide 14C laboratories with an independent and

objective assessment of the quality of their analytical data. Laboratories that took part in the
exercise undertook measurements of several core and optional samples. This resulted in the

production of reference (consensus) values for the measured samples, which could then be
used as known age standards in 14C measurement. The known age standards measured along
with unknown age samples that were included in this study were:

1. Modern reference standard. Oxalic acid II produced by the National Institute of
Standards and Technology for 14C age calculation and obtained from a 1977 sugar

beet molasses harvest.

2. Dendrochronologically-dated Belfast wood. 11.8 kg of dendro-dated wood was

provided for the FERI exercise by the Queen's University of Belfast

Dendrochronology laboratory. The wood was a sample of a Scots pine tree from

Garry Bog, Co. Antrim, Northern Ireland, grid reference C930074, latitude 54° 54'
N, longitude 6° 33' W (Scott, 2003). The wood had been pre-treated by the standard
acid-alkali-acid method and bleached using sodium hypochlorite solution. Sub-

samples of the wood (BC standards) were combusted in sealed quartz tubes and C02
extracted following the procedure outlined above. In addition, a large quantity of the
wood was combusted to produce a bulk bottled gas, from which aliquots were taken
for measurement (BBC standards).

3. Modern Barley mash. This was a core sample in the TIRI exercise and is a by¬

product from malt whisky production, provided by Glengoyne Distillery. The

sample was taken from a single fermentation vat and was well mixed during the
industrial process. The sample was force dried and physically mixed before being
provided as a TIRI sample (Scott, 2003). Standards were produced by combusting a

bulk sample of the barley mash to produce a bulk bottled gas, from which aliquots
were taken for measurement (BBM standards).
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4. Icelandic Doublespar. The sample was a core sample in the TIRI exercise and is a

variety of crystalline calcite, being composed of calcium carbonate and obtained as

pure, large, single crystals between basaltic lava sheets. The sample was obtained
from the spar-mine at Helgustadir, Iceland and provided by the Museum of Natural

History, Iceland. Earlier samples from the spar-mine, after removal of the outer

10%, showed no excess activity to that of freshly cut marble and C02 from natural

gas (Scott, 2003). Standards were produced by completely hydrolysing the

Doublespar to give a bulk bottled gas, from which aliquots were taken for
measurement (DS standards).

5. Interglacial age wood. The sample was obtained from Heidelberg and provided by
Prof. M. Scott. Measurement of samples of the wood showed no excess activity to

that of Icelandic Doublespar. The wood was pre-treated by the standard acid-alkali-
acid method and bleached. Sub-samples of the wood were combusted in sealed

quartz tubes and C02 extracted following the procedure outlined above (BK

standards).

Standard Consensus value Estimated precision (lcr)

Modern reference 134.07 pMC 0.0019

Belfast wood 4503 BP 6

Barley mash 116.35 pMC 0.0084

Icelandic Doublespar 46, 750 BP 208

0.18 pMC 0.006

Table 4.2: Consensus values for measured standards (Gulliksen and Scott, 1994; Boaretto et

al., 2002; Scott, 2003).

4.2 Data analysis

4.2.1 13C

A 5I3C value was produced for each measurement to allow age correction for isotopic
fractionation effects. Where multiple 14C measurements had been made on a single sample
the variation in S13C values associated with the repeated measurements was examined.
Where this was less than the variation between 513C values of other (terrestrial or marine)

samples for that context, the repeated 513C values were averaged. This average was then
taken as the overall 513C for that sample. The standard deviation of 813C values within each
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group of terrestrial or marine samples was used to examine the variability in S13C. This was

to establish the typical range in S13C that could be expected for measurements from a single
context and identify whether measurements from any context showed above-average
variation.

The sample, site and context selection protocol was designed to maximize the likelihood of

obtaining terrestrial and marine material from a context that represented the same calendar
interval. Multiple samples of both types were obtained from each context, to improve the

accuracy of calculated MRE/AR values, and to assess the range in 14C ages of each sample

type within a context. If the 14C ages of a group of samples are consistent then this increases
the likelihood that the material within a context was deposited over a single short time

interval, and that terrestrial and marine material represents the same calendar period.

The consistency of each (terrestrial or marine) group of measured ages from each context

was assessed using the chi-squared (y2) test (c.f. Ward and Wilson, 1978). Because the MRE
means there is an inherent difference between the 14C age of terrestrial and marine material
the two sample types were considered separately. The null hypothesis used in the test was

that the group of measurements were the same at 95% confidence. The y2 test assesses

whether the internal variability of a measurement group is consistent with the errors

associated with the individual measurements. To avoid biasing the test towards samples that
had been measured more than once, multiple measurements of a single sample that were

within 2a error of each other were combined in a weighted mean for that sample. The y2 test
statistic (T) value for 95% confidence ofN 14C age measurements (y2:o.o5 = T) was compared
with the T value calculated for each group of 14C ages to determine whether the variability
within the measurement groups exceeded what could occur by chance. The T statistic for a

group of 14C ages is calculated by:

4.2.2 Assessing the similarity ofmultiple sample measurements: The test

Equation 4.1

Where: t = the weighted mean of the 14C age group

t( = the individual I4C measurement

a = the error on the individual measurement
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Where the /"-statistic was lower than the acceptance value the ages within that group were

considered to be contemporaneous. Where the /"-statistic exceeded the acceptance value the

ages within the group were significantly different, and the measurements were examined to

determine the source of variation. The 14C measurements that most accurately reflected the

age of terrestrial or marine material at the time of context deposition were identified using

repeat measurements and reference to other available chronological data. Variation in 14C
measurements within a sample group could result from measurement variability, or could
reflect real differences in the ages of individual samples. Ages that outlay several similar
measurements from separate samples within a group were repeated. In the case of marine
mollusc shells, repeat measurements of a single shell are possible as sufficient original
material remains after C02 extraction and graphitization. This is due to the relatively large
mass of the pre-treated samples. Overall measurement reproducibility of marine mollusc
shells was assessed using five measurements made using aliquots of a single pre-treated
Patella vulgata shell from GA-165. In the case of carbonised plant material it was usually
not possible to repeat measurements due to a lack of remaining material, and additional
individual samples were measured instead. Repeated measurements of a single sample that
were within error were combined in a weighted mean. The test was then applied to all

samples within the group, including any additional measurements or weighted mean sample

ages. If the 14C ages within the group remained statistically different, the variation is likely to
be due to a real difference in the calendar ages of the material within the sample group. The
most accurate terrestrial or marine 14C ages for the context were selected according to the

degree of coherence with other measurements in the context and with existing archaeological
data from the context. This was obtained where available from excavation records.

4.2.3 Assessing AR using paired samples

The dataset used for AR calculation was derived from a linear interpolation of the Intcal98

atmospheric calibration data and Marine98 modelled marine 14C ages (Stuiver and

Braziunas, 1993; Reimer et al., 2002). To calculate AR, the upper and lower limits of a

terrestrial 14C age (i.e. the age plus and minus la) were converted using the interpolated
dataset to upper and lower la modelled marine 14C age bounds. The upper and lower
modelled marine bounds were the maximum and minimum intercepts of the terrestrial l4C
age bounds with the interpolated data. The average uncertainty in the interpolated calibrated
data was incorporated into the standard deviation of these modelled marine 14C age bounds.
The midpoint of the upper and lower modelled marine age bounds was then compared with a

marine 14C age. The offset of the measured marine 14C age from the midpoint of the
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calculated modelled marine age range was the AR value. The la error for the AR

determination (Gar) was obtained by combining the error on the marine age (aw) and the

error on the modelled marine ages (am):

aAR = V (aw + om)2

Equation 4.2

1850 1900 1950 2000 2050 2100 2150

Atmospheric 14C age BP

Figure 4.4: Schematic diagram of method used to obtain AR values with paired
terrestrial/marine samples. 1: Measured terrestrial age; A: error on measured terrestrial age

(combined with curve error); B: converted upper and lower modelled marine age bounds; 2:

Midpoint of modelled marine age bounds; 3: measured marine age; C: error on measured
marine age; D: different between modelled marine age and measured marine age (i. e. AR).

A group of terrestrial or marine measurements from a single context that gave a T-statistic
lower than the acceptance value were used to assess AR for each context. The measurements

within a group were produced from separate individual samples and therefore have slightly
different "underlying" l4C ages. An empirical assessment was made of the variation in AR
that could be produced over all the terrestrial and marine samples from the context. This was
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achieved by considering all possible estimates of AR for the group of measured samples
from that context by calculating a value of AR for each possible pairing of terrestrial and
marine 14C ages (see Appendix C). The distribution was summarised by the weighted mean

and appropriate standard error for prediction. In this way it is possible to account for any
additional variability due to uncertainty about the precise pairing of terrestrial and marine

samples.

The weighted mean for a group of values is determined by:

Equation 4.3

Where: t = the group weighted mean

tj = the individual value

CT|2 = the error on the individual value

By this method, more weight is placed upon values with a smaller associated a. The standard
error of the weighted mean of a group of values was evaluated based upon the measurement

uncertainties (Equation 4.4). However, sources of variation that may not be captured by the

uncertainty on individual measurements were also assessed (Equation 4.5). The larger of
these two uncertainties was taken as the weighted mean for a group of values.

Equation 4.4

Where:

CT] = the uncertainty associated with the calculated weighted mean based upon the measured
uncertainties associated with individual measurements in the group.

y2 = the error on the individual measurement

£ h / qr

1 =
£ 1 / Gj2
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iff -4)/" -1
i m

Equation 4.5

Where:

ct2 = the uncertainty associated with the calculated weighted mean taking into account the
variation between individual measurements in the group.

xt = the individual measurement
x~= the weighted mean

n = number of samples

S{ = the error on the individual measurement

4.2.4 Placing the AR values on a temporal scale

One factor that was considered when selecting contexts from which to extract samples for
measurement was the likely calendar time period that would be represented. As discussed in

chapter 3, an attempt was made to measure samples over as wide a temporal range as

possible. To assess the calendar age range that was represented by the 30 measured contexts

the terrestrial measurements for each context that were statistically the same on the basis of a

X2 test were combined in a weighted mean. This was then converted to a calibrated range

using the INTCAL04 atmospheric dataset (Reimer et al., 2004) and the OxCal v3.10
calibration program (Bronk Ramsey, 1995; 2001; 2005).

4.2.5 Are AR values calculated using different species comparable?

Within this study, the majority of mollusc samples were ofPatella vulgata, however another
shell species was used from five contexts. For these contexts the number of Patella vulgata

specimens was low relative to that of another shell species, and therefore samples of
Cerastoderma edule shells were used from BA-146 and BA-39, Littorina littorea from NO-

05 and SC-206, and Mytilus edulis shells from BE-503. It has been suggested that

significantly different MREs (and therefore AR values) could be calculated at a site as a

result of species-dependant variations in mollusc shell 14C activity (Forman and Polyak,

1997; Hogg et al., 1998). In contrast, Harkness (1983) found no clear species-dependant
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variations in natural enrichment in an assessment of modern UK coastal MRE. Factors that

have been suggested as responsible for inter-species 14C activity variations are differences in

specific ecological niche, feeding mechanism and food source (e.g. Ingram, 1996). If a

specific feeding mechanism or habitat means that carbon incorporated into shell CaC03 has a

different 14C activity to that of other species this would result in different calculated AR

values using the paired terrestrial/marine sample approach.

Dissolved inorganic carbon (DIC) in the water column is the source of the majority of shell

CaC03, while a variable portion is derived from metabolic sources (Tanaka et al., 1986;
Dettman et al., 1999). The amount of metabolically derived carbon appears to be relatively

higher within the soft tissues of the organism (Uerpmann, 1990, Dyke et al, 1996). At a

specific location the DIC is relatively homogeneous, whereas the source ofmetabolic carbon
varies between species due to differences in habitat and feeding mechanism. Mollusc
habitats include the hard substrate (eg. bedrock outcrops), the sediment surface (epifaunal

position) and below the sediment surface (infaunal position), while feeding mechanisms
include grazing upon micro-algae, detritus and seaweeds, or filter feeding on organic
material suspended in the water column. Epifaunal grazers (e.g. Patella vulgata) consume
material such as the microalgal film coating rock surfaces that consists of organic material,
diatoms and cyanobacteria (Jenkins and Hartnoll, 2001). Active suspension feeders (e.g.

Mytilus edulis), consume suspended organic material in the water column that includes
bacteria, phytoplankton, detritus, and dissolved organic matter (DOM).

In the absence of local terrestrial inputs, the suspended material (plankton, etc) that is
utilised by filter feeders usually has a 14C activity that is close to ocean DIC and may mean

that filter feeders, (eg. mussels and oysters) incorporate proportionally lower amounts of

atmospheric 14C than herbivorous grazing species (eg. limpets and periwinkles). The latter
consume seaweeds that contain carbon derived from the atmosphere when photosynthesis

proceeds while the seaweed is exposed at low tide. It is also possible in areas where there is a

significant source of geological carbon for this to be incorporated into shell structure during

growth, as sedimentary particles are taken up by the mollusc during grazing (Dye, 1994), or
while inhabiting carbonate-rich sediments (Forman and Polyak, 1997). Dyke et al. (2002)

suggest that the elevated 14C age of the deposit-feeding marine mollusc Portlandia arctica is
the result of its infaunal position and feeding mechanism, while Forman and Polyak (1997)
observed that molluscs with sessile habitats and pelagic food sources gave significantly
lower MRE offsets (i.e. a younger 14C age).
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To examine the effect of interspecies differences in shell 14C activity, multiple samples of
shells from five different species were obtained from a single context. This was HP-201
which contained a particularly high concentration of carbonised cereal grains and marine
mollusc shells of several species. Differences between these five mollusc species included
shore position, food source and habitat, as shown in Table 4.3. The measurement of shell

fragments was avoided to exclude the possibility of inadvertently measuring the same shell
twice. For the same reason, only the left-hand shell portions of bivalve species were selected
as sample material. A lower number of individual shells were measured for the species
Cerastoderma edule due to the low density of intact whole shells of this species from the
context. The measurements were made on the same sample wheel to minimize variation

resulting from measurement process. One shell (201-02J) was measured twice in this wheel
to assess any difference in age that resulted from the inner and outer portions of a single
mussel shell.

Species Range Habitat Feeding
mechanism

Food source

Microalgal film
coating rocks

Patella vulgata high shore to
sublittoral fringe

On hard
substrate

epifaunal
grazer

Microalgal film
coating rocks

Littorina
littorea

high shore to
sublittoral fringe

On hard
substrate

epifaunal
grazer

suspended
organic debris

Mytilus edulis high intertidal to
shallow subtidal

Attached to hard
substrate

active

suspension
feeder

Cerastoderma
edule

middle to lower

intertidal, sometimes
subtidally

infaunal position active

suspension
feeder

suspended
organic debris

Ens is ensis extreme low water to

the shallow
sublittoral

infaunal position active

suspension
feeder

suspended
organic debris

Table 4.3: Mollusc species sampled from HP-201 showing specific habitat and feeding
mechanism
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Chapter 5: Results

5.1 14C measurements

Full details of 14C and 13C measurements for all contexts are contained in Tables 5.1-5.6

below. For convenience, the contexts are grouped by the relevant geographical area (i.e.
Areas 1-6) described in Chapter 3. Relative to the majority of contexts, a lower number of

samples were measured from SC-3083 and NO-5, due to the amount of available sample
material. Two Hordeum sp. caryopses were measured from SC-3083, as the pre-treatment

process destroyed a large number of grains from this context. Typically, this occurred during
the alkali or final acid wash and involved break-up and sometimes dissolution of the grain.
Loss of grains during pre-treatment was also a problem for samples from SC-543 and SC-

1269, but it was possible to obtain four terrestrial measurements at these contexts by

combining two grains for a single measurement. The high rate of grain dissolution from
these contexts remains unexplained, but may be the result of specific physical or chemical
features of the soil matrix that affect structural integrity of the grain. Lower sample numbers
were measured from NO-5 because of the limited availability of hazelnut and Littorina
littorea fragments that were from distinguishably different individuals.
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5.1.1Resultsof,4Cmeasurementsforterrestrialandmarinesamplematerialfromallcontexts. Area1:Ireland
Terrestrialsamplematerial

Marinesamplematerial

Context

SampleID

LabCode

AgeBP±Ict
5I3C(%O)

SampleID

LabCode

AgeBP±la
513C(%«)

DL3-19

19-01A

SUERC-1080
1335±35

-23.7

19-02E

SUERC-3188
1605±35

1.1

19-01B

SUERC-1085
1220±35

-22.9

19-02F

SUERC-1089
1555±35

0.8

19-01C

SUERC-1086
1225±35

-24.3

SUERC-3545
1475±35

0.3

19-01D

SUERC-1087
1280±35

-22.2

19-02G

SUERC-1090
1485±125

1.2

SUERC-3189
1535±35

0.7

19-02H

SUERC-1091
1630±45

1.2

SUERC-3190
1555±35

0.7

DL11-2

11-01A

SUERC-1842
1245±50

-24.1

11-02E

SUERC-1850
1590±35

1.2

11-01B

SUERC-1847
1215±35

-23.7

11-02F

SUERC-1852
1595±40

1.5

11-01C

SUERC-1848
1200±35

-22.3

11-02G

SUERC-1853
1545±40

2.0

11-01D

SUERC-1849
1325±35

-22.5

11-02H

SUERC-1854
1535±35

1.4

OI-6

6-01A

SUERC-3226
970±35

-24.3

6-02E

SUERC-1076
1225±35

0.8

6-0IB

SUERC-1073
945±45

-23.6

6-02F

SUERC-1077
1220±40

1.9

6-01C

SUERC-1074
1050±35

-22.5

6-02G

SUERC-1078
1285±35

1.2

6-0ID

SUERC-1075
980±45

-24.6

6-02H

SUERC-1079
1170±50

0.9

Table5.1:ResultsofCandCmeasurementsofsamplesfromcontextswithinArea1.
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Area2:MainlandScotland Terrestrialsamplematerial

Marinesamplematerial

Context

SampleID

LabCode

AgeBP±la
513C(%„)

SampleID

LabCode

AgeBP±la
513C(%„)

SA-013

13-01A

SUERC-3566
7135±35

-21.8

13-02E

SUERC-241
8025±60

1.7

SUERC-12588
7145±40

-21.8

13-02F

SUERC-242
8028±60

1.1

13-01B

SUERC-3567
7400±40

-22.3

13-02G

SUERC-3167
7975±40

0.7

SUERC-12589
7410±40

-22.3

13-02H

SUERC-3168
8045±40

0.9

13-01C

SUERC-3543
7600±40

-21.9

13-01D

SUERC-3544
7600±35

-22.0

CMB-XIII

XIII-01A

SUERC-3587
4775±35

-22.7

XIII-02E

SUERC-4947
5330±35

1.4

XIII-01B

SUERC-3588
4785±45

-25.7

XIII-02F

SUERC-4948
5310±40

1.3

XIII-01C

SUERC-3592
4785±40

-26.6

XIII-02G

SUERC-4949
5325±40

0.6

SUERC-4951
4840±35

-26.6

XIII-02H

SUERC-4950
5335±40

0.7

XIII-01D

SUERC-4952
5070±40

-23.1

SUERC-3593
5035±40

-23.1

Table5.2:ResultsofCandCmeasurementsofsamplesfromcontextswithinArea2(continuedbelow). 109
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Terrestrialsamplematerial

Marinesamplematerial

Context

SampleID

LabCode

AgeBP±ley
513C(%»)

SampleID

LabCode

AgeBP±la
513C(%«)

FL-JM76

JM76-01A

SUERC-1061
950±50

-23.1

JM76-02E•
SUERC-1065
1160±47

1.4

JM76-01B

SUERC-1062
1070±35

-24.5

SUERC-3186
1270±35

1.3

JM76-01C

SUERC-1063
910±35

-28.1

SUERC-4941
1235±40

1.4

JM76-01D

SUERC-1064
940±45

-24.4

JM76-02F

SUERC-1066
1179±45

1.3

JM76-01E

SUERC-3181
870±35

-25.1

SUERC-4942
1170±35

2.1

JM76-01F

SUERC-3182
920±35

-22.6

JM76-02G

SUERC-1067
1112±49

1.6

SUERC-3187
1235±40

1.9

JM7602-H

SUERC-1068
1339±50

1.8

SUERC-4943
1300±35

1.8

RH-3004

3004-01A

SUERC-254

655±50

-23.3

3004-02E

SUERC-258
1105±60

1.3

3004-0IB

SUERC-255

665±50

-23.2

3004-02F

SUERC-259
1125±55

2.3

3004-01C

SUERC-256

650±50

-21.8

3004-02G

SUERC-260
1020±50

1.2

3004-0ID

SUERC-257

610±50

-25.1

3004-02H

SUERC-261
1080±50

1.7

RH-3019

3019-01A

SUERC-243

910±45

-23.6

3019-02E

SUERC-247
1210±45

0.6

3019-01B

SUERC-244

855±45

-24.9

3019-02F

SUERC-248
1175±45

1.6

3019-01C

SUERC-245

855±50

-27.0

3019-02G

SUERC-249
1220±50

1.2

3019-01D

SUERC-246

920±50

-25.0

3019-02H

SUERC-253
1200±50

0.5

Table5.2(continued):ResultsofCandCmeasurementsofsamplesfromcontextswithinArea2.
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Area3:OuterHebrides
Terrestrialsamplematerial

Marinesamplematerial

Context

SampleID

LabCode

AgeBP±la
513C(%«)

SampleID

LabCode

AgeBP±la
513C(%„)

NO-5

5-01A

AA-50332

7525±80

-24.4

5-02E

AA-53250

7860±45

1.5

5-0IB

AA-50333

7395±45

-23.7

5-02F

AA-53251

7880±45

1.1

5-01C

AA-50334

7420±45

-24.1

BA-39

39-01A

AA-52314

2080±45

-21.1

39-02E

AA-52319

2240±45

2.4

39-01B

AA-52315

1975±45

-20.2

39-02F

AA-52320

2255±45

2.2

39-01C

AA-52316

2005±45

-21.2

39-02G

AA-52321

2260±45

2.2

39-01D

AA-52317

1990±45

-23.0

39-02H

AA-52322

2260±45

2.3

BA-146

146-01A

AA-48452

2135±50

-24.5

146-02E

AA-48456

2390±50

2.0

146-10B

AA-48453

2115±50

-24.9

146-02F

AA-48457

2385±50

2.0

146-01C

AA-48454

2165±55

-24.5

146-02G

AA-48458

2345±75

1.8

146-0ID

AA-48455

2030±50

-24.3

146-02H

AA-48459

2355±40

1.8

BA-139

139-01A

AA-51177

2290±40

-22.5

139-02E

AA-51180

2540±35

1.2

139-01B

AA-51178

2220±45

-21.8

139-02F

AA-51181

2540±40

0.9

139-01C

AA-52318

2255±70

-22.0

139-02G

AA-51182

2535±40

1.2

139-01D

AA-51179

2245±40

-22.6

139-02H

AA-51183

2480±40

0.8

Table5.3:Resultsof^CandUCmeasurementsofsamplesfromcontextswithinArea3(continuec13

below).
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Chapter5:Results

Terrestrialsamplematerial

Marinesamplematerial

Context

SampleID

LabCode

AgeBP±la
513C(%„)

SampleID

LabCode

AgeBP±la
513C(%„)

HP-201

201-01A

SUERC-23

2155±40

-24.2

201-02E

SUERC-27

2365±65

0.3

201-01B

SUERC-24

2120±40

-22.6

201-02F

SUERC-28

2375±40

1.6

201-01C

SUERC-25

2135±40

-22.8

201-02G

SUERC-29

2385±40

1.5

201-01D

SUERC-26

2110±80

-24.5

201-02H

SUERC-30

2360±40

1.9

BE-503

503-01A

SUERC-1049
1595±40

-24.2

503-02E

SUERC-1054
1945±35

1.5

503-01B

SUERC-1050
1725±40

-25.3

503-02F

SUERC-1055
1940±35

0.8

503-01C

SUERC-1051
1735±40

-23.4

503-02G

SUERC-3179
1980±35

1.1

503-01D

SUERC-1052
1650±35

-26.0

503-02H

SUERC-1056
2045±40

0.9

503-01E

SUERC-3176
1630±35

-25.1

SUERC-3180
1990±35

0.6

503-0IF

SUERC-3177
1650±35

-24.8

BO-64

64-01A

SUERC-1037
1315±40

-23.3

64-02E

SUERC-1041
1365±40

1.0

64-0IB

SUERC-3169
1095±35

-25.1

64-02F

SUERC-1042
1465±35

1.1

64-01C

SUERC-1038
1150±35

-23.9

SUERC-3171
1475±35

1.1

64-0ID

SUERC-3170
1260±35

-23.7

64-02G

SUERC-1043
1330±40

0.1

64-0IE

SUERC-1039
1120±35

-24.6

SUERC-3172
1435±30

1.3

64-0IF

SUERC-1040
1065±35

-25.0

64-02H

SUERC-4118
1415±35

-0.3

Table5.3:(Continued):ResultsofCandCmeasurementsofsamplesfromcontextswithinArea3(continuedbelow). 112



ChapterJ>:Results

Terrestrialsamplematerial

Marinesamplematerial

Context

SampleID

LabCode

AgeBP±ley
513C(%»)

SampleID

LabCode

AgeBP±la
5,3C(%o)

GA-165

165-01A

AA-48444

1060±50

-25.4

165-02E

AA-53257

1375±35

1.4

165-01B

AA-48445

1110±55

-25.0

SUERC-4051
1370±35

0.8

165-01C

AA-48446

1110±50

-24.0

SUERC-4052
1445±35

0.9

165-01D

AA-48447

1130±50

-25.2

SUERC-4053
1340±35

1.3

SUERC-4054
1395±35

1.0

165-02F

AA-53258

1360±40

1.6

165-02G

AA-53259

1415±35

1.7

165-02H

AA-53260

1545±35

1.4

Table5.3:(Continued):ResultsofCandCmeasurementsofsamplesfromcontextswithinArea3.
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Chapter5;Kesults

Area4:OrkneyIsles
Terrestrialsamplematerial

Marinesamplematerial

Context

SampleID

LabCode

AgeBP±la
513C(%»)

SampleID

LabCode

AgeBP±la
513C(%«)

SkB-68

68-01A

SUERC-3126
4270±40

-24.2

68-02E

SUERC-3130
4975±40

-0.5

68-01B

SUERC-3127
4735±40

-24.2

68-02F

SUERC-3131
4995±40

1.2

68-01C

SUERC-3128
4555±40

-24.5

68-02G

SUERC-3132
4960±45

0.9

68-01D

SUERC-3129
4605±40

-24.2

68-02H

SUERC-4122
4790±40

-0.7

68-01E

SUERC-4119
4525±40

-21.8

SUERC-12591
4745±40

1.0

68-01F

SUERC-4121
4530±35

-21.3

SkB-26

26-01A

SUERC-3576
4140±40

-22.0

26-02E

SUERC-232

4440±50

1.6

26-0IB

SUERC-4958
4015±40

-21.4

26-02F

SUERC-233

4370±45

0.6

26-01C

SUERC-3578
4110±35

-21.6

26-02G

SUERC-234

4445±50

0.9

26-0ID

SUERC-3582
4145±45

-21.3

26-02H

SUERC-235

4405±45

0.9

BB-XF

XF-01A

SUERC-3588
3640±35

-22.0

XF-02E

SUERC-221

3920±50

0.6

XF-01B

SUERC-3572
3645±40

-22.4

XF-02F

SUERC-222

3980±50

1.2

XF-01C

SUERC-3573
3625±40

-22.3

XF-02G

SUERC-223

4000±50

1.5

XF-01D

SUERC-3575
3685±40

-22.1

XF-02H

SUERC-224

3956±55

1.5

Table5.4:ResultsofCandCmeasurementsofsamplesfromcontextswithinArea4(continuedbelow). 114



Chapter7:Results

Terrestrialsamplematerial

Marinesamplematerial

Context

SampleID

LabCode

AgeBP±Ict
813C(%„)

SampleID

LabCode

AgeBP±Ict
513C(%«)

LO-6

LO6-01A

SUERC-1837
3735±40

-23.1

LO6-02E

SUERC-1840
3960±40

1.3

LO6-01B

SUERC-1838
3690±35

-24.0

LO6-02F

SUERC-1841
3915±35

1.2

LO6-01C

SUERC-3228
3690±35

-24.9

LO6-02G

SUERC-3137
3950±35

1.0

LO6-01D

SUERC-1839
3685±40

-24.7

LO6-02H

SUERC-3139
3880±45

1.0

StB-2136

2136-01A

SUERC-107
2050±40

-23.7

2136-02E

SUERC-111

2280±40

1.3

2136-01B

SUERC-108
2035±45

-24.1

2136-02F

SUERC-112

2325±45

1.3

2136-01C

SUERC-109
2120±40

-23.5

2136-02G

SUERC-113

2325±90

1.4

2136-01D

SUERC-110
2035±40

-25.7

2136-02H

SUERC-114

2390±45

1.5

StB-2044

2044-01A

SUERC-115
2085±40

-24.8

2044-02E

SUERC-125

2385±40

0.8

2044-0IB

SUERC-116
2100±40

-24.1

2044-02F

SUERC-126

2360±40

1.1

2044-01C

SUERC-123
2090±40

-24.0

2044-02G

SUERC-127

2365±40

1.9

2044-0ID

SUERC-124
2070±40

-23.8

SUERC-191

2405±35

1.3

2044-02H

SUERC-128

2540±40

0.7

SUERC-4114
2545±35

1.3

StB-1063B

1063-01A

SUERC-129
965±40

-25.0

1063-02E

SUERC-133

1240±40

0.3

1063-01B

SUERC-130
995±40

-23.9

1063-02F

SUERC-134

1270±40

1.2

1063-01C

SUERC-131
935±40

-24.8

1063-02G

SUERC-135

1260±40

0.7

1063-01D

SUERC-132
935±40

-23.5

1063-02H

SUERC-136

1250±40

0.4

Table5.4:(Continued):ResultsofCandCmeasurementsofsamplesfromcontextswithinArea4(continuedbelow). 115
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Terrestrialsamplematerial

Marinesamplematerial

Context

SampleID

LabCode

AgeBP±la
5"C(%„)

SampleID

LabCode

AgeBP±la
813C(%o)

QG-A023

A023-01A

AA-52329

875±45

-24.0

A023-02E

SUERC-3162
1270±35

1.7

A023-01B

AA-52330

835±40

-24.1

SUERC-4109
1245±35

0.0

A023-01C

AA-52331

835±40

-22.0

A023-02F

SUERC-4110
1175±35

1.7

A023-01D

AA-52332

945±55

-22.4

A023-02G

SUERC-3166
1250±30

1.2

A023-01E

SUERC-3160
940±35

-22.7

SUERC-4111
1210±35

1.1

A023-01F

SUERC-3161
940±35

-24.5

A023-02H

SUERC-4112
1210±35

0.2

QG-A004

A004-01A

AA-52325

710±80

-23.1

A004-02E

SUERC-3152
1235±40

1.2

A004-01B

AA-52326

520±40

-24.5

A004-02F

SUERC-3156
1200±35

1.9

A004-01C

AA-52327

585±65

-25.0

A004-02G

SUERC-3157
1195±35

1.8

A004-01D

AA-52328

720±40

-28.4

A004-02H

SUERC-3159
1210±35

1.1

A004-01E

SUERC-3149
980±40

-23.8

A004-01F

SUERC-3542
875±35

-24.7

A004-01G

SUERC-3150
960±40

-24.7

A004-01H

SUERC-3151
925±40

-24.1

Table5.4(Continued):ResultsofCandCmeasurementsofsamplesfromcontextswithinArea4.
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Area5:ShetlandIsles
Terrestrialsamplematerial

Marinesamplematerial

Context

SampleID

LabCode

AgeBP±Ict
513C(%„)

SampleID

LabCode

AgeBP±Ict
S13C(%o)

SC-543

543-01A

AA-51153

1740±35

-23.9

543-02E

SUERC-3140
1825±50

1.2

543-01B

AA-51154

1680±35

-22.1

SUERC-4058
1790±35

0.5

543-01C

AA-51155

1680±50

-22.0

543-02F

AA-51162

1740±45

1.9

543-01D

AA-51156

1710±40

-22.6

SUERC-4059
1755±35

0.7

543-02G

AA-51163

1725±35

1.3

SUERC-4061
1780±35

1.0

543-02H

AA-51164

1760±35

1.8

SUERC-3141
1775±35

1.6

SUERC-4062
1945±40

1.3

SC-3083

3083-03A

AA-52324

1615±40

-21.3

3083-02E

AA-52310

1925±40

2.1

3083-03C

AA-52323

1570±55

-22.9

3083-02F

AA-52311

1975±45

1.8

3083-02G

AA-52312

1955±50

1.4

SUERC-3147
2055±45

1.6

3083-02H

SUERC-3148
2080±50

0.9

SUERC-4960
2005±40

1.2

Table5.5:ResultsofCandCmeasurementsofsamplesfromcontextswithinArea5(continuec
below).
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Terrestrialsamplematerial

Marinesamplematerial

Context

SampleID

LabCode

AgeBP±lex
8,3C(%„)

SampleID

LabCode

AgeBP±lex
513C(%„)

SC-1269

1269-01C

AA-51157

1300±35

-21.7

1269-02E

AA-51165

1580±35

1.7

1269-03A

AA-51158

1375±35

-22.4

1269-02F

AA-51166

1525±40

1.3

1269-03B

AA-51159

1280±35

-23.6

1269-02G

AA-51167

1655±35

2.0

1269-03D

AA-51160

1285±40

-23.3

1269-02H

AA-51168

1580±35

1.7

SC-206

206-01A

AA-51169

815±40

-25.7

206-02E

AA-51173

1180±35

2.3

206-0IB

AA-51170

740±40

-25.9

SUERC-3142
1230±40

2.0

206-03A

AA-51171

730±45

-25.1

206-02F

AA-51174

1135±35

2.2

206-03B

AA-51172

840±45

-25.5

206-02G

AA-51175

1230±35

1.8

206-02H

AA-51176

1325±40

2.4

SUERC-3146
1325±40

2.9

Table5.5:(Continued):Resultsof14Cand13CmeasurementsofsamplesfromcontextswithinArea5.
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cnapterP:Kesuits

Area6:FaroeIsles
Terrestrialsamplematerial

Marinesamplematerial

Context

SampleID

LabCode

AgeBP±la
513C(%O)

SampleID

LabCode

AgeBP±la
513C(%o)

UJ-23

23-01A

SUERC-3400
1000±40

-23.9

23-02E

SUERC-3404
1410±35

1.5

23-0IB

SUERC-3401
980±40

-26.8

23-02F

SUERC-3407
1460±40

1.6

23-01C

SUERC-3402
940±45

-26.3

23-02G

SUERC-3408
1445±35

1.4

23-01D

SUERC-3403
995±35

-24.0

23-02H

SUERC-3409
1440±35

1.3

Table5.6:ResultsofCandCmeasurementsofsamplesfromcontextswithinArea6.
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Chapter 5: Results

5.1.2 Consistency ofuC ages within contexts

Repeat measurements of a single shell from GA-165 were examined using the y2 test to

assess the internal variability of the group, and the ages were found not to be significantly
different (Table 5.7). The empirical standard deviation on the measurement group was 39 I4C
y, which is consistent with the error on the individual measurements of ± 35 14C y. This
indicates that a homogeneous crushed sample is representative of the 14C concentration of
the shell. All repeated measurements on mollusc shell samples were within 2 standard
deviations of each other and multiple measurements from a single sample were combined in
a weighted mean. This allowed a more accurate assessment of the I4C age of the shell where
there had been variation in the original marine measurement group from a context. Where
the variation had been due to measurement variability a more accurate assessment of
individual ages meant that the measurement group including the weighted mean(s) was

coherent on the basis of a second y2 test. Where the variation was due to differences in the
mean ages of the samples, the variation remained evident after additional measurements.

Lab Code ID Age BP
± la

/-statistic for group Weighted
mean age BP
± la

Empirical
standard
deviation

(HC y)
AA-53257 1375 ±35

SUERC-4051 1370± 35
SUERC-4052 1445 ±35

SUERC-4053 1340 ±35
SUERC-4054 1395 ±35

T= 4.94 (x2 0.o5 = 9.49) 1385 ±17 39

Table 5.7: Results of repeat C measurements of a single shell from context GA-165.

The calculated /-statistic for terrestrial and marine sample groups from all contexts are

shown in Table 5.8. All measurements made of terrestrial or marine material from a context

were used to calculate the relevant /-statistics. Where multiple measurements were made of

any individual sample, these were combined in a weighted mean prior to calculation of the
/-statistic for that context. In the majority of instances the /"-statistic is lower than the critical
value for 95% significance, indicating that the 14C ages within these groups are

contemporaneous. This supports the assertion that the sample, site and context protocol
described in Chapter 3 was effective in selecting contexts within which the terrestrial and
marine material was of a comparable calendar age range.
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Chapter 5: Results

Context Terrestrial measurement group T-
statistic

Marine measurement group T-
statistic

RH-3004 0.70; (X2:0.05 = 7.81) 2.28; (X2:0.05 = 7.81)

RH-3019 1.06; (X2:o.O5 = 7.81) 0.52; (X2:0.05 = 7.81)

BA-39 3.22; (X2:0.05 = 7.81) 0.13; (x2:o.o5 = 7.81)

BA-146 3.82; (X2O,05 = 7.81) 0.50; (x2:O,05 = 7.81)

BA-139 1-43; (X2:O.O5 = 7.81) 1-65; (X2:0.05 = 7.81)
HP-201 0.49; (x2o.os = 7.81) 0.21; (x2o.o5 = 7.81)
NO-5 2.02; (X2:0.05 = 5.99) 0.10; (X2O.05 = 3.84)
BE-503 9.69; (X2:O,05 =11.1) 3.84; (X2:0.05 = 7.81)
BB-XF 1.24; (X2O.O5 = 7.81) 1-42; (X2O.O5 = 7.81)

LO-6 1.06; (X2:O.05 = 7.81) 2.31; (X2O.O5 = 7.81)
StB-2136 3.01; (X2O.O5 = 7.81) 3.34; (X2O.05 = 7.81)
StB-1063B 1.55; (X2:O.05 = 7.81) 0.31; (X2O.O5 = 7.81)

QG-A023 8.82; (x2:o.o5=H.l) 3.99; (X2:O,05 = 7.81)

SC-543 1.34; (X2:O.O5 = 7.81) 1.26; (X2:O,05 = 7.81)

SC-1269 4.65; (X2:0.05 = 7.81) 6.25; (X2:0.05 = 7.81)

OI-6 4.30; (x2o.os = 7.81) 3.95; (X2:0.05 = 7.81)

DL3-19 7.14; (X2O.O5 = 7.81) 4.05; (X2:O,05 = 7.81)

DL11-2 5-15; (X20.05 ~ 7.81) 2.06; (X2:0.05 = 7.81)

UJ-23 1.21; (X2:0.05 = 7.81) 0.98; (x2;o.o5 = 7.81)

BO-64 23.62; (X2:0.05 = 7.81) 5.82; (X2:O.05 = 7.81)

SkB-26 6.60; (x2:0.os = 7.81) 1.64; (X2:O.05 = 7.81)

SA-013 156.46; (X2:O.05 = 7.81) 1.64; (X2O.O5 = 7.81)

QG-A004 114.93; (X2:O.O5= 14.1) 0.65; (X2:0.05 = 7.81)

SkB-68 72.28; (x2 o.o5 =11-1) 16.59; (X2O.05 = 7.81)
FL-JM76 18.86; (X2:O.O5=H.1) 12.81; (x2:0.os = 7.81)

CMB-XIII 57.25; (X2:0.05 = 7.81) 0.22; (x2:o,05 = 7.81)
GA-165 1.07; (X2:0.05 = 7.81) 15.69; (X2.O,05 = 7.81)
SC-206 4.78; (X2;O.O5 = 7.81) 20.04; (X2O.05 = 7.81)

SC-3083 0.44; (X2:0.05 = 3.84) 4.30; (X2:O.O5 = 7.81)
StB-2044 0.29; (X2O.05 = 7.81) 25.26; (X2O.O5 = 7.81)

Table 5.8: Calculated ^-statistics for C ages of each group of marine and terrestrial

samples from contexts, showing the relevant critical value for 5% significance (x2:0.0s) f°r the
number of samples (N) within the tested group.
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Chapter 5: Results

The T-statistic shows variation in 14C ages within 11 groups (of terrestrial or marine samples)
from nine contexts. These groups of measurements were examined to determine the likely
cause of variation and the most representative 14C ages from the group. In seven instances,
the variation was due to a single measurement that could not be combined legitimately with
the remainder of the group. When the outlying data point was removed and the test repeated,
the ^-statistic showed the measurements were indistinguishable at 95% confidence. In four

instances, more than one measurement was not consistent with the remaining determinations
from a context. In the case of SkB-68 and BO-64, two measurements were not consistent

with the remainder of the group or with each other. Here, the group of measurements that

comprised the majority of the context was taken as the most accurate representation of the
terrestrial age of the context. In the case of BO-64, 28 previous 14C measurements from the
site range between c.1100-1200 BP (Neighbour, 2001; Church, 2002), and the group of
similar ages at c.l 100 BP are most likely to represent an accurate terrestrial 14C age for BO-
64.

The terrestrial measurement group from SA-013 spans c.500 14C yr where SUERC-3543

(7600 ± 40 BP) and SUERC-3544 (7600 ± 35 BP) are consistent with each other. SUERC-
3567/4957 (7405 ± 28 BP) and SUERC-3566/4953 (7139 ± 26 BP) are not consistent with
these measurements or each other. Only SUERC-3543 and SUERC-3544 are consistent on

the basis of a y2 test with previous measurements of deer bone and charcoal submitted by the
site excavators from contexts that underlay SA-013 (Finlayson et al., 1999; Hardy and

Wickham-Jones, 2003; 2004; in press). These ages were chosen to most accurately represent
the terrestrial age of SA-013.

Four measurements from QG-A004 are consistent with each other, while the remaining four
measurements can be separated into two groups of 14C ages, each internally consistent, but
each different from the other and from the remaining measurements from the context. The

group of four measurements are consistent with 14C ages from three other contexts in the
same midden sequence. These include two contexts (QG-A005 and QG-A023) in the same

sample column as QG-A004, and one from basal deposits (QG-022/E030) in another area
of the same midden. Measurements from QG-A005 and QG-022/E030 were submitted by
the site excavators (Barrett and Gerrard, 2002), while measurements from QG-A023 were

performed as part of this project. QG-A004 was situated in the upper layers of a coastal
midden, where the overlying deposits showed signs ofmixing and bioturbation. It is possible
that these effects have also influenced the contents ofQG-A004.
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Context

Group

1stTvalue

Consistent measurements

AgeBP±
Ict

Inconsistent measurements

AgeBP±
Ict

2ndTvalue

SA-013

Terrestrial

156.46;(X2:O.05=7.81)
SUERC-3543 SUERC-3544

7600±40 7600±35

SUERC-3567/4957 SUERC-3566/4953
7139±26 7405±28

0.00(X2:0.05=3.84)

CMB-XIII
Terrestrial

57.25;(X2:0.05=7.81)
SUERC-3587 SUERC-3588 SUERC-3592/4951
4775±35 4785±45 4816±27

SUERC-3593/4952
5053±28

0.96(x2:0.05=5.99)

SkB-68

Terrestrial

72.28;(X20.05=11.1)
SUERC-3128 SUERC-3129 SUERC-4119 SUERC-4121

4555±40 4605±40 4525±40 4530±35

SUERC-3126 SUERC-3127

4270±40 4735±40

2.61(X2:0.05=7.81)

SkB-68

Marine

16.59;(X2C.05=7.81)
SUERC-3130 SUERC-3131 SUERC-3132

4975±40 4995±40 4960±45

SUERC-4122/4959
4768±28

0.35(X2:0.O5=5.99)

StB-2044

Marine

25.26;(X2:O.O5=7.81)
SUERC-125 SUERC-126 SUERC-127/191
2385±40 2360±40 2388±26

SUERC-128/4114
2543±26

0.36(X2:0.O5=5.99)

QG-A004

Terrestrial

114.93;(x2 o.o5=14.1)
SUERC-3149 SUERC-3542 SUERC-3150 SUERC-3151

980±40 875±35 960±40 925±40

AA-52325 AA-52326 AA-52327 AA-52328

710±80 520±40 585±65 720±40

4.61(X2O.O5=17.81)

Table5.9:(Continuedbeow):Dataforcontextsthatcontainedmeasurementsthatwereinconsistentonthebasisofax2test,showingconsistentand inconsistentmeasurements.ConsistentmeasurementswereusedtocalculatevaluesofARandthe7-statisticsforconsistentmeasurementgroupsare shown.
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Context

Group

1stTvalue

Consistentmeasurements
AgeBP±

la

Inconsistent measurements
AgeBP±

la

2ndTvalue

BO-64

Terrestrial

23-62;(X2:0.05=7.81)
SUERC-3169 SUERC-1038 SUERC-1039 SUERC-1040

1095±35 1150±35 1120±35 1065±35

SUERC-1037 SUERC-3170
1315±40 1260±35

3.2(X2:O.05=17.81)

FL-JM76

Terrestrial

18.86;(X2:O.O5=H.1)
SUERC-1061 SUERC-1063 SUERC-1064 SUERC-3181 SUERC-3182

950±50 910±35 940±45 870±35 920±35

SUERC-1062
1070±35

2.46(X2:0.05=9.49)

FL-JM76

Marine

12.81;(X2:0.05=7.81)
SUERC-1065/3186/4941 SUERC-1066/4942 SUERC-1067/3187

1232±31 1173±28 1186±60

SUERC-1068/ SUERC-3187
1313±29

2-04(X2:0.05=5.99)

GA-165

Marine

15.69;(x2;o.o5=7.81)
AA-53257/SUERC-4051/ 4052/4053/4054 AA-53258 AA-53259

1385±17 1360±40 1415±35

AA-53260

1545±35

1-09(X2O.05=5.99)

SC-206

Marine

20.04;(x2O.05=7.81)
AA-51173/SUERC-3142 AA-51174 AA-51175

1202±26 1135±35 1230±35

AA-51176/ SUERC-3146
1325±28

3-98(X2O.OS=5.99)

Table5.9:(Continued):Dataforcontextsthatcontainedmeasurementsthatwereinconsistentonthebasisofax2test,showingconsistentand inconsistentmeasurements.ConsistentmeasurementswereusedtocalculatevaluesofARandthe^-statisticsforconsistentmeasurementgroupsare shown.

124



Chapter 5: Results

5.1.3 The temporal range ofmeasured contexts

The 2ct calibrated ranges of the contexts are used to assess the temporal coverage of the data.
The calibrated ages of the 31 contexts used in the study cover a time period from c. BC 6500
to c. AD 1400. The calibrated age ranges of the contexts studied do not continuously cover

this interval, which is a result of the lower number of suitable contexts from older sites that

were available. As can be seen from Figure 5.1, in several instances the calibrated age range

of several contexts are similar for a given time period. However at other points there are gaps

in the temporal coverage of the data. The largest of these are gaps in the 2a calibrated age

ranges in the periods 6230-3650 BC (2580 cal. y), 3110-2870 BC (240 cal. y), 2500-2190
BC (310 cal. y), 1940-400 BC (1540 cal. y), 60-250 AD (190 cal. y), 540-650 AD (110 cal.

y), and 810-890 AD (80 cal. y). The largest time periods for which no material was measured
was the earliest, a 2580 cal. yr gap between SA-013/ NO-5 and CMB-XIII. The next largest

gap in the temporal coverage of the material is 1540 cal. yr (1940-400 BC).
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Context Terr,

weighted
mean age
BP ± la

la cal. range Range
(cal. y)

2a cal. range Range
(cal. y)

SA-013 7600 ± 26 6465-6435 BC 30 6480-6420 BC 60

NO-5 7424 ± 30 6360-6240 BC 120 6390-6230 BC 160

CMB-XIII 4798±19 3640-3530 BC 110 3650-3520 BC 130

SkB-68 4552± 19 3370-3130 BC 240 3370-3110 BC 260

SkB-26 4101 ±29 2840-2570 BC 270 2870-2500 BC 370

LO-6 3699± 19 2135-2035 BC 100 2190-2020 BC 170

BB-XF 3648± 19 2120-1960 BC 160 2130-1940 BC 190

BA-139 2254 ± 26 390-230 BC 160 400-200 BC 200

BA-146 2109 ±29 180-60 BC 120 210-40 BC 170

HP-201 2135 ±22 205-110 BC 95 350-50 BC 300

StB-2044 2086 ±20 160-50 BC 110 170-40 BC 130

StB-2136 2061 ±21 110-40 BC 70 170 BC-0 AD 170

BA-39 2013 ±23 45 BC -20 AD 65 90 BC-60 AD 150

SC-543 1706± 19 260-390 AD 130 250-400 AD 150

BE-503 1661 ±21 350-420 AD 70 330-430 AD 100

SC-3083 1599 ±21 420-540 AD 120 410-540 AD 130

SC-1269 1312 ± 23 660-770 AD 110 650-770 AD 120

DL3-19 1265 ±27 685-775 AD 90 660-820 AD 160

DL11-2 1264 ±25 690-775 AD 85 660-810 AD 150

BO-64 1108 ± 18 895-975 AD 80 890-985 AD 95

GA-165 1102 ± 15 895-980 AD 85 890-990 AD 100

OI-6 992 ± 23 1010-1150 AD 140 990-1160 AD 170

UJ-23 982 ±20 1010-1150 AD 140 1010-1160 AD 150

StB-1063B 958 ± 20 1020-1150 AD 130 1020-1160 AD 140

QG-A004 931 ±24 1030-1160 AD 130 1020-1160 AD 140

FL-JM76 912 ± 17 1040-1160 AD 120 1030-1170 AD 140

QG-A023 896 ±22 1040-1190 AD 150 1040-1220 AD 180

RH-3019 885 ±24 1050-1210 AD 160 1040-1220 AD 180

SC-206 781 ±27 1220-1270 AD 50 1215-1280 AD 65

RH-3004 645 ± 25 1290-1390 AD 100 1280-1400 AD 120

Table 5.10: Calibrated age ranges for all contexts, calculated from the weighted mean

terrestrial age. The size of the age range in calibrated years is shown for both the 1 a and 2a
intervals. The average la range is 109 y; the average 2a range is 154 y.
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Context 2ct calibrated age range Approximate archaeological

period
SA-013 6480-6420 BC Mesolithic

NO-5 6390-6230 BC Mesolithic

CMB-XIII 3650-3520 BC Neolithic

SkB-68 3370-3110 BC Neolithic

SkB-26 2870-2500 BC Neolithic

LO-6 2190-2020 BC Bronze Age
BB-XF 2130-1940 BC Bronze Age
BA-139 400-200 BC Early Iron Age

BA-146 210-40 BC Iron Age

HP-201 350-50 BC Iron Age

StB-2044 170-40 BC Iron Age

StB-2136 170 BC -0 AD Iron Age

BA-39 90 BC-60 AD Iron Age

SC-543 250-400 AD Late Iron Age/Pictish

BE-503 330-430 AD Late Iron Age/Pictish
SC-3083 410-540 AD Late Iron Age/Pictish

SC-1269 650-770 AD Norse

DL3-19 660-820 AD Norse/Christian

DL11-2 660-810 AD Norse/Christian

BO-64 890-985 AD Norse

GA-165 890-990 AD Norse

OI-6 990-1160 AD Norse

UJ-23 1010-1160 AD Norse

StB-1063B 1020-1160 AD Norse

QG-A004 1020-1160 AD Norse

FL-JM76 1030-1170 AD Norse

QG-A023 1040-1220 AD Norse

RH-3019 1040-1220 AD Norse

SC-206 1215-1280 AD Historic/Medieval

RH-3004 1280-1400 AD Historic/Medieval

Table 5.11: Contexts ordered according to archaeological period subdivisions (described in
section 3.2.2, Chapter 3).
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5.2 AR values calculated from the contexts

The AR values shown in Table 5.12 below were calculated from the data according to the
method described in section 4.2.3, Chapter 4. The values are ordered in the table primarily

according to geographic area of the context and secondly in order of calibrated age range.

Context Cal time period AR

DL3-19 660-820 AD -107±18

DL11-2 660-810 AD -69 ± 17

OI-6 990-1160 AD -142±16

SA-013 6480-6420 BC 46 ± 17

CMB-XIII 3650-3520 BC 148 ±20

FL-JM76 1030-1170 AD -84 ±15

RH-3019 1040-1220 AD -50 ± 18

RH-3004 1280-1400 AD 30 ±21

NO-5 6390-6230 BC 78 ±31

BA-139 400-200 BC -75 ±21

BA-146 210-40 BC -71 ±21

HP-201 350-50 BC -116 ± 21

BA-39 90 BC-60 AD -101 ± 16

BE-503 330-430 AD -27 ± 10

BO-64 890-985 AD -57 ± 14

GA-165 890-990 AD -89 ± 17

SkB-68 3370-3110 BC 28 ±23

SkB-26 2870-2500 BC -27 ±21

LO-6 2190-2020 BC -96 ± 17

BB-XF 2130-1940 BC -9 ± 18

StB-2044 170-40 BC -50 ±17

StB-2136 170 BC -0 AD -60 ± 17

StB-1063B 1020-1160 AD -96 ± 16

QG-A004 1020-1160 AD -98 ±17

QG-A023 1040-1220 AD -42 ±13

Table 5.12: AR values calculated for each context from the data in Tables 5.1-5.6 and Table

5.9 (continued below).
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Context Cal time period AR

SC-543 250-400 AD -290±16

SC-3083 410-540 AD 50 ±25

SC-1269 650-770 AD -121 ± 16

SC-206 1215-1280 AD 35 ± 15

UJ-23 1010-1160 AD 64 ± 13

Table 5.12: (Continued): AR values calculated for each context from the data in Tables 5.1-

5.6 and Table 5.9.
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5.2.1 Are AR values calculated using different mollusc species comparable?

Full details of the measured ages for each of the five different mollusc species included in
this assessment from HP-201 are given in Table 5.13. There was no significant difference in

age between the inner and outer portions of shell 201-02J, therefore, the two measurements

were combined to give a weighted mean age. The d'3C values were also combined. These are

the values that are given in Table 5.13 below.

Lab Code ID Sample ID Species Age BP ± Ict 513C

SUERC-93 201-01A Hordeum sp 2155 ±40 -24.2

SUERC-94 201-01B Hordeum sp 2120 ±40 -22.6

SUERC-95 201-01C Hordeum sp 2135 ±40 -22.8

SUERC-96 201-0 ID Hordeum sp 2110 ± 80 -24.5

SUERC-3208 201-02Q Patella vulgata 2435 ± 45 0.3

SUERC-3209 201-02R Patella vulgata 2485 ± 45 1.9

SUERC-4113 201-02S Patella vulgata 2410 ±35 1.4

SUERC-3211 201-02T Patella vulgata 2335 ±35 1.1

SUERC-3196 201-021 Mytilus edulis 2440 ±35 1.3

SUERC-3197 201-02J Mytilus edulis 2453 ± 43 1.2

SUERC-3199 201-02K Mytilus edulis 2395 ± 35 1.6

SUERC-3200 201-02L Mytilus edulis 2475 ± 35 0.6

SUERC-3201 201-02M Littorina littorea 2400 ± 35 2.2

SUERC-3202 201-02N Littorina littorea 2390 ±35 2.4

SUERC-4123 201-020 Littorina littorea 2415 ±35 1.6

SUERC-3207 201-02P Littorina littorea 2585 ±35 2.1

SUERC-3212 201-02U Ensis ensis 2520 ±35 -0.4

SUERC-3216 201-02V Ensis ensis 2455 ± 35 -0.1

SUERC-3217 201-02W Ensis ensis 2425 ± 35 0.5

SUERC-3219 201-02X Ensis ensis 2370± 35 0.4

SUERC-3220 201-02Y Cestroderma edule 2505 ± 35 2.4

SUERC-3 221 201-02Z Cestroderma edule 2440 ± 35 2.3

SUERC-3222 201-02A Cestroderma edule 2420 ±40 0.6

Table 5.13: C and 5 C results for samples measured for assessment of inter-species
differences.
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Species Mean 14C age ± la* T-statistic for species group

Hordeum sp. 2135 ±22 0.49 (x2o.o5 = 7.81)

Patella vulgata 2405 ±31 7.63 (X2:0.05 = 7.81)

Mytilus edulis 2441 ± 18 2.74 (X2:0.05 = 7.81)

Littorina littorea 2448 ± 46 20.84 (X2:o.O5 = 7.81)
Ensis ensis 2443 ±31 9.57 (X2:0.05 = 7.81)
Cestroderma edule 2458 ± 26 2.97 (X2:0.05 = 5.99)
* all age measurements included in calculations

Table 5.14: Mean age ± la and T-values for the six species measured.

Within the groups of measurements of Littorina littorea and Ens is ensis there were

significant differences in l4C age, as shown by the larger standard deviations and the
calculated values of T (Table 5.14). In both cases, the higher T-statistics were mainly derived
from single measurements. In the group of four measurements of Littorina littorea shells,
SUERC-3207 is significantly older than the other measurements and responsible for the high
T value. Similarly, in the group ofEnsis ensis measurements, SUERC-3212 is older than the

remaining measurements of this species. These outlying ages may represent either material
of an older age that was incorporated into the deposit during formation, or they may

represent measurement variability. If SUERC-3207 and SUERC-3212 are excluded from the
measurement groups, the values of T for these groups become T = 0.26 (x2:o.05 = 5.99) and T
= 3.03 (x2:0.05 = 5 .99), respectively, indicating that the other measurements were

indistinguishable at 95% confidence.
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5.3 Measurement of standards

Table 5.16 below shows the average values of known age samples measured during the
course of this research. The average measurements are comparable to the international
consensus values for the five standard materials.

Standard Consensus value Mean of measured values

SRM-4990C (OxII) 134.07 ± 0.19 pMC 134.1 ±0.28 pMC
Belfast wood 4485 ± 5 BP 4494 ± 46 BP

Belfast wood (bulk gas) 4485 ± 5 BP 4503 ± 39 BP

Barley mash 116.35 ± 0.0084 pMC 116.50 ± 0.59 pMC
Icelandic Doublespar 46, 750 ± 208 BP

0.18 ± 0.006 pMC

0.23 ± 0.0006 pMC

Interglacial wood No consensus value available 0.18 ±0.07

Table 5.15: Comparison of international standard consensus va ues with the average

measurement from all batches in this project (Gullikssen and Scott, 1994; Boaretto et al.,

2002; Scott, 2003).

5.4 5I3C values of measured samples

The 513C values of all samples fell within the typical ranges for terrestrial plants, terrestrial
mammal bone and marine mollusc shell (Aitken, 1990). The mammalian bone samples from
three contexts (SA-013, SkB-26, and BB-XF) were typical of bone collagen from animals

existing on terrestrial C3 plant material, showing that the animals had consumed a

homogeneous diet that did not include any significant amount of marine carbon. Table 5.17

shows the variation in S13C values of samples from individual contexts, and the variation in

the average §13C values between contexts. Variation in 8I3C values of terrestrial or marine

samples within each context was relatively low, with the maximum variation shown in
terrestrial plant material. The variation in average 813C values between contexts was higher
than the within-context figure. Full details of all measured 513C values are contained in
Tables 5.1-5.6.
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Material 513C values (%o) for
terrestrial plants

5I3C values (%o) for
mammalian bone

5I3C values (%o) for
marine mollusc shell

Typical range

(Aitken, 1990)

-25 ±3 -20 ±2 0 ± 3

Maximum value -21.4 -21.6 2.3

Minimum value -25.6 -22.2 0.1

Range 4.2 0.8 2.2

Max range within

any context

2 0.3 0.8

Table 5.16: Summary of variability in measured 8I3C values both within samples from a

context and between average values for all contexts.
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Chapter 6: Interpretations

The following chapter discusses the implications of the results presented in Chapter 5 for

understanding the North Atlantic MRE during the Holocene. The data were examined within

both a spatial and temporal framework, and related to climate and oceanographic changes in

palaeoenvironmental records that have been previously identified as potential mechanisms
for producing variation in AR.

6.1 Influence of mollusc species on AR values

As discussed in Chapter 4 (section 4.2.4), it is possible that species-dependant variability in
mollusc shell 14C could limit the extent to which AR values calculated using different species
are comparable (Forman and Polyak, 1997; Hogg et al., 1998). This provided the rationale
for an assessment of AR values using multiple samples of shells from five different species
from a single context, HP-201. Measurements of shells from a single species that were

statistically indistinguishable were combined to produce a weighted mean age (Table 6.1).
When the weighted mean ages for the five mollusc species were compared, no significant
differences were observed. The T-value of the five ages was T = 4.15 (xho.os = 9.49).

Similarly, T= 22.22 (x2:o.o5 = 26.3) for the entire group of ages, excluding SUERC-3207 and
SUERC-3212. The calculated values ofAR for the different species are detailed in Table 6.1
and again, a %2 test indicates no significant difference in AR value between the mollusc

species (T= 3.87 (xho.os = 9.49)).

Species Weighted mean 14C age ± 1 std dev AR

Patella vulgata 2405 ±31 -74 ± 20

Mytilus edulis 2440± 18 -47 ± 20

Littorina littorea 2402 ±20 -85 ± 22

Ensis ensis 2417 ±25 -71 ± 23

Cestroderma edule 2458 ± 26 -32 ± 23

Table 6.1: Weighted mean ages (excluding 2 outliers) and AR values for the five mollusc

species from HP-201.
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Figure 6.1: AR values from five mollusc species from HP-201.

Despite the differences in food sources and the ecological niches that the five mollusc

species occupy, the variation in measured 14C ages from a single, secure archaeological
context does not exceed that which would be expected to result from measurement

variability alone. The main conclusion that can be drawn from these results is that at HP-
201, where there are no large-scale sources of carbon that may be selectively incorporated
into specific mollusc species (eg. the presence of carboniferous rocks or a significant
freshwater input), no observable species-dependant variations in I4C age were observed.
This indicates that differences in habitat and feeding behaviour between the species that were
studied do not have a significant influence upon the 14C activity of precipitated shell
carbonate. The assessments of surface AR made with the various mollusc species used in this

study are therefore comparable, and no correction for species-dependant variation is

required.

The implications of these results may be extended to contexts from other sites that have been
selected according to the same criteria as HP-201. This means that it is legitimate to

compare AR values from contexts that have been calculated using measurement of different
mollusc shell species that have been examined in the HP-201 study. The majority of AR
values in this thesis were calculated using measurements of Patella vulgata. however in five
instances alternate shell species were used due to a lack of sufficient numbers of suitable
Patella vulgata specimens.
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Context Mollusc shell species measured

BA-146 Cockle (Cerastoderma edule)

BA-39 Cockle (Cerastoderma edule)

SC-206 Periwinkle (Littorina littorea)

NO-5 Periwinkle (Littorina littorea)

BE-503 Mussel (Mytilus edulis)

Table 6.2: Contexts for which AR values were calculated using other mollusc species than
Patella vulgata, showing species used.

6.2 Features of the Holocene MRE within the study area

7000 BC 6000 BC 5000 BC 4000 BC 3000 BC 2000 BC 1000 BC 0

Calibrated age BC/AD

□ West coast Ireland (Area 1 ) □ Outer Hebrides (Area 3) Shetland Isles (Area 5)

□ Mainland Scotland (Area 2) □ Orkney Isles (Area 4) Q Faroe Isles (Area 6)

] Hrisheimer (Iceland)

British Isles modern

regional mean
(Reimerand Reimer,2005)

Iceland and Faroes modern

regional mean
(Reimer and Reimer, 2005)

Figure 6.2: AR values for all contexts on a temporal scale showing the relevant geographic
area for each context. Sections of the overall data are incorporated into figures in the

following text, indicated by boxes.
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As can be seen from Figure 6.2 above, the overall data suggest a non-zero AR has applied
within the study area during the Holocene. Positive deviations extend to AR = 148 ± 20 14C
yr, and negative deviations to AR = -290 ± 16 14C yr. This latter value may be an anomaly, as
it outlies the remainder of the measurements by some way and is significantly different from
the remainder of the dataset. The next most negative deviation is AR = -142 ± 16 l4C yr, and
these results suggest a variability of c.290 I4C yr during the Holocene period within the study
area that may have both spatial and temporal aspects. Because the data do not provide

entirely continuous temporal and spatial coverage, this has an impact upon the level to which
trends in the data can be observed. This means in certain instances that it is difficult to

satisfactorily resolve uncertainties. However certain characteristics are apparent in this
dataset and are considered in the following sections.

In subsequent sections, where AR values are plotted against site age, the midpoint of the
calibrated 2a range of the weighted mean terrestrial age is used. Associated error bars
demonstrate the upper and lower limits of the range for each context data point.
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6.2.1 The Early Holoceneperiod

NO-5

SA-013 1

4000 3000

Calibrated age BC

Mainland Scotland (Area 2) Orkney Isles (Area 4)

□ Outer Hebrides (Area 3) |—| Brjtish |s|es modern
regional mean
(Reimer and Reimer, 2005))

Figure 6.3: Graph showing AR values for earlier Holocene contexts (6480-1940 BC)

showing geographic area of individual contexts.

The temporal coverage of the data is limited for earlier periods relative to that of the later
Holocene. This is due to a limitation of the methodological approach, identified in Chapter 2

(section 2.6.4), ie. there is a lower density of archaeological deposits that meet the sample
selection protocol from earlier periods. The period c.6480-1940 BC (c.4540 cal yr) is

discontinuously covered by seven contexts (Figure 6.3) located in Areas 2, 3 and 4, for
which the AR values are significantly different (T = 100.38 (%2:o..o5 = 12.59)).

When examined relative to the remainder of the data, AR values from the earliest contexts

(SA-13 (46 ± 17 ,4C yr), NO-5 (78 ± 31 l4C yr) and CMB-XIII (148 ± 20 14C yr)) are

significantly greater than the majority of values for all later periods. In later periods the AR
values are predominantly negative and when the correspondence between AR values from
these early contexts and those from later periods is examined, there are few values that are

statistically similar. SA-13 and NO-5 are similar only to SkB-68 (28 ± 23 14C yr), SC-3083
(50 ± 25 I4C yr), UJ-23 (64 ± 13 14C yr), SC-206 (35 ± 15 14C yr), and RH-3004 (30 ± 21
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14C yr), while the AR value from CMB-XIII is significantly greater than all other later
determinations. The AR values for the two earliest contexts, SA-13 and NO-5 are similar (T
= 0.82 (x2o.o5 = 3.84)), as are NO-5 and CMB-XIII {T= 3.60 (x20.05 = 3.84)), while the SA-
13 AR value is significantly smaller than that from CMB-XIII. With the exception of UJ-23,
these AR values from the early Holocene are the largest of any made within this study.

As well as the potential for temporal effects to influence AR, it is also important to consider
the potential influence of spatial effects. There is an absence of contexts in close proximity
to SA-013 and CMB-XIII within this study that correspond to later time periods. However
NO-5 is located in an exposed location in Area 3 (see Figure 3.5, Chapter 3), and can be

compared to several contexts within this area (Outer Hebrides) for later periods. Within Area
3 AR values are available for sites covering a maximum range of 6390 BC - 990 AD at 2a.
Determinations are available from eight contexts at six sites from Uist, Harris and Lewis.
The value from NO-5 is substantially older (by a min of c.5830 cal. yr) than the next

youngest context, BA-139, and the AR at NO-5 is significantly greater than all later
determinations within Area 3. These were made at sites within a radius of c.80 km from NO-

5, a distance that also includes SA on the mainland to the east. The closest sites to NO-5

were BA and IIP on the Uist Isles, located c.35 km southwest of NO-5. Three AR values

from BA and one from HP are similar to one another, (T = 3.28 (x2;0.05 = 7.81)), with a

weighted mean for four determinations of -92 ± 10, significantly smaller than the value from
NO-5. This suggests that the smaller values in Area 3 and on the west coast of Area 2 for the
earlier Holocene are not the result of spatial variation.

CMB-XIII is separated by a time span of 540-150 cal. yr from the next oldest context, SkB-

68, which is located in Area 4 (Orkney Isles). The AR value from SkB-68 (28 ± 23 l4C yr) is

significantly lower than that ofCMB-XIII (148 ± 20 14C yr) (T = 15.5 (x2:o.05 = 3.84)), but is
similar to the values from SA-13 (46 ± 17 14C yr) and NO-5 (78 ±31 14C yr) (T= 1.68 (x2o,05
= 5.99)). Although nine contexts are located within Area 4, the AR value from SkB-68 is

only similar to two other early values, from SkB-26 (-27 ± 21 14C yr) (T = 3.12 (x^o.os =

3.84)), and BB-XF (-9 ± 18 l4C yr) (T= 1.60 (x20.05 = 3.84)). The contexts SkB-68 (3370-
3110 BC) and SkB-26 (2870-2500 BC) are separated by between 870-240 cal. yr, and the
two AR values differ by c.55 14C yr. As the two values cannot be distinguished statistically it
is not possible to identify a temporal trend in the data at this site, however there is a

difference in the correspondence between each of the AR values from SkB-68 and SkB-26
with values from later contexts both within Area 4 and from other areas. The AR value from

SkB-68 is similar to a smaller number of later contexts (5) than SkB-26 (11). The values
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from SkB-26 (2870-2500 BC) and BB-XF (2130-1940 BC) are both statistically lower than
values from SA-13, NO-5, and CMB-XIII, giving possible support to a trend of falling
values from the early Holocene onwards. The T-statistic for the nine determinations for the

Orkney Isles area is 41.29 (x2:0.05 = 15.50). The highest contribution to this value is that of

SkB-68, the earliest determination.

Both AR values from SkB-68 and SkB-26 are similar to that from BB-XF (-9 ± 18 14C yr),

(T=3.21 (x2:o.o5 = 5.99)). BB-XF is later than SkB-26 by between 850-310 cal. yr. Another
site within Area 4 (LO-6) covers a very similar time period to BB-XF, where the calibrated

age ranges of the contexts are indistinguishable and cover a range of 2130-2020 BC. Here
there are significant differences in the AR values between the two contexts (ie. BB-XF and

LO-6) (7" =12.35 (x2o.05 = 3.84)), with a difference of c.87 l4C yr in the two values. It is
difficult to interpret the differences between AR at LO-6 and BB-XF, and this highlights the
lack of spatial and temporal data coverage at this point in time. It is possible that such
differences in values can be observed across a relatively small area at a single point in time.
The sites are located <50 km apart, and it is also possible that the data from the two sites
relates to different points within the calibrated age range of c.l 10 cal. yr. In this instance it
could be that both AR values were experienced at LO-6 and BB-XF where one is the AR that

applied during the earlier part of the age range, and one to the later. It may be that this was a

period of rapid fluctuations in surface water 14C at the sites that has resulted in the apparent

differences in AR values from the two contexts. Therefore, the difference in AR values may

be either a reflection of differences in the l4C content of the surface water at the two sites, or

may be a product of the resolution to which the methodology can determine AR in this
instance. In the former case this could result from local circulation differences or variation in

the input of terrestrial water components to surface water around the site. During the course

of this thesis a preliminary study was undertaken to provide further information on potential
differences in water characteristics across the study region. This was achieved by examining
5180 of modern coastal water and shell samples, and the study is described in Appendix A.
On the basis of these data, the 5180 of both water and mollusc shell appears significantly

higher at LO in a modern setting that that found at BB. Higher values of 5lsO can relate to

lower temperatures or to higher salinity in the water, and the results may be indicative of a
difference in water characteristics at the two sites due to unaccounted factors.
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6.2.2 The implications ofa higher AR valuefor the early Holocene

The suggestion of an overall decrease in AR from the early Holocene is apparent within the
data from this study. However, due to the lack of continuous temporal and spatial coverage
these data are indicative rather than definitive. Although it is not possible on this basis to

state a definitive correction for the early Holocene, the weighted mean AR value from
contexts analysed for this time period shows AR = 53 ± 15 14C yr (SA-013 and NO-5) for the
west coast of Scotland and the Outer Hebrides c.6480-6230 BC. This may increase to a

weighted mean of 127 ± 32 l4C yr for some or all of the period 6360-3530 BC (NO-5 and

CMB-XIII), subsequently reducing to near 0 l4C yr for 3370-2570 BC on the Orkney Isles.
A potential decrease in AR from the Early Holocene around the British Isles was also

proposed by Reimer et al. (2002), but again this interpretation was limited by data

availability. As discussed in Chapter 2 (section 2.8.2), available data from the pre-Holocene

period suggests that the MRE was substantially raised relative to present, and that this effect
continued into the Early Holocene with MRE values of 690 l4C yr off the west coast of

Norway, and 730 14C yr off the North Icelandic coast at c.9000 l4C yr BP (c.8300-7970 BC)

(Haflidason et. al., 2000).

An elevated AR in the study area in the early Holocene could be derived from a number of

palaeoclimatic forcing mechanisms documented in proxy records for this period. The most

important of these within the Holocene appears to be the "8.2 kyr event" at c. 7650-7200 14C
yr BP (8200-8000 cal. yr BP) (c.6500-6100 BC). This period encompasses SA-013 and NO-
5. Palaeoclimatic evidence (Alley et al., 1997) and modelling studies (Renssen et al., 2001;

2002) suggest that the 8.2 kyr event was stimulated by a freshwater pulse into the North
Atlantic from the waning Laurentide ice sheet. This freshwater pulse may have lowered the
surface water density in the Nordic Seas below a critical threshold and resulted in

perturbation of deepwater formation and northward heat transport. The climatic cooling
which is a signature of the 8.2 kyr event may also have been associated with an increase in
sea ice extent in northern latitudes. The combination of a decrease in influence of the North

Atlantic current surface waters and increase in sea ice cover on a centennial scale (the event

is estimated as being of c.500 cal. yr duration (Rohling and Palike, 2005)) provides a

potential mechanism for relative depletion of surface ocean 14C, and consequent raising of
the MRE during and subsequent to this period.

As discussed previously, careful critical assessment is required when suggesting causal links
between evidence of palaeoclimatic changes and evidence ofMRE variations when the two
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appear to coincide. At present there is a lack of quantitative data concerning the impact of

specific palaeoclimatic changes upon MRE values, and also of continuous time-series of
reliable calculations of pre-modern MRE characteristics. In addition it is important to

consider the implication that many of the palaeoclimatic variations that can provide potential

forcing mechanisms for MRE change are themselves placed on an absolute timescale using
l4C measurements of marine material (e.g. from marine cores). The accuracy of the

palaeoclimate chronology constructed from these measurements depends upon several

factors, including the accuracy of the correction for the MRE. The implication is that an
inaccurate MRE correction may lead to inaccuracies in correlation of palaeoclimate events

and interpretations involving forcing mechanisms and their effects. The timing of events that
is inferred from palaeoclimatic proxy data for the early Holocene is often relatively rapid.
For example during the climate transition from the Younger Dryas to the Holocene, factors
such as wind speeds, precipitation, temperatures, and sea ice appear to have changed

throughout the Northern Hemisphere on sub decadal time scales (Taylor et at., 1997).

Although a calendrical chronology can be confidently ascribed with c.1% precision from ice
core data for this period (Alley, 2000), identification of coinciding rapid changes in marine
cores highlights the need for both accurate and precise 14C measurements of marine material
to support interpretations.

The evidence for climatic and oceanic changes in the early Holocene is an area of intense
interest for palaeoclimatic research as these are key to an understanding of how the climate

system operates in the North Atlantic. This is particularly relevant given the current focus

upon the impact of climate changes and links to possible variations in the thermohaline
circulation system. An important difficulty for palaeoclimate investigation in the early
Holocene therefore remains the most accurate and precise correction that should be applied
to marine samples. As yet there is no definitive correction or universally accepted
standardised approach to the problem, and a critical review is required. There is a growing

body of evidence, which data from this study may support, that the ocean-atmosphere offset
in 14C age was greater for the early Holocene than present. However, the data remain
indicative rather than definitive. A major question that remains unaddressed is to what level
of precision it is in practice possible to determine the MRE for the early Holocene and

previous periods. This is mainly due to the lack of sample types that would provide the
desired level of accuracy and precision. The use of unsuitable data in an attempt to define the
MRE for this important palaeoclimatic period would be counter-productive and merely serve

to increase uncertainty. The question therefore remains over the most practical approach to

take to integrating palaeoclimatic evidence dated using marine material within a wider
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framework including terrestrial and ice-core records. It is conceivable that some of the

interpretations and correlations that have been made on the basis of 14C measurements of
marine material for the early Holocene and previous periods may contain additional

chronological uncertainties that have not yet been accounted for.

6.2.3 The North Atlantic MRE c.400 BC - 60 AD (during the Iron Age)
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Figure 6.4: AR values for six contexts for the calibrated age period 400 BC - 60 AD

showing geographic location of individual contexts.

Following the early Holocene, a period of 1930-1540 cal yr separates BB-XF from the next

youngest context, BA-139. This context represents part of a group of six AR values from
three sites at c.400 BC - 60 AD (c.460 cal. yr), two of which are located in Area 3 and one in
Area 4 (Figure 6.4). Data from contexts at the sites shows that AR values throughout this
time appear to represent a consistent, reduced offset between atmospheric and surface ocean

14C relative to the present day value of AR= c.O 14C yr. In Area 3, BA-139 is older than BA-

146 and BA-39, while the 2a calibrated age ranges from BA-146 and BA-39 overlap. The

age ranges from all three sites overlap with that of HP-201. The AR values from all four
contexts in Area 3 are statistically similar to each other (T = 3.28 (xVos = 7.81)), and also to

AR values from two contexts (StB-2136 and StB-2004) in Area 4 for an equivalent time

StB-2044

T StB-2136
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period (170 BC - 0 AD). The AR values from StB-2136 and StB-2004 are similar to each
other (T = 0.17 (x2:0.05 = 3 .84)), and the T-statistic for these values and the four

determinations from Area 3 is T = 9.31 (x2:o,05 = 11.1)). The range of AR values from the six

contexts is from -116 + 21 14C yr to -50 ± 17 14C yr, with a weighted mean value for the

whole group of-79 ± 10 14C yr. This compares to commonly used values of AR = c.O !4C yr

for UK waters, e.g.: 17 ± 14 14C yr (Reimer and Reimer 2005), and a MRE for the region of
405 ,4C years BP (Harkness, 1983). The results from these sites therefore indicate a

suppression of the MRE and consequently an elevation of the l4C content in surface ocean

waters around the sample sites between c.400 BC - 60 AD, an age range that corresponds to

the archaeological period known as the Iron Age.

6.2.4 Implications ofa revised AR valuefor the Iron Age.

The Scottish Iron Age period, conventionally defined as lasting from c.800 BC to c.800 AD

(Table 3.2; Armit and Ralston, 2003), was one when environmental changes coincided with
extensive cultural changes, including architectural developments. The AR values from six
contexts suggest that during this time the ocean environment with respect to 14C was

comparable on the Outer Hebridean and Orkney west coasts. The increased 14C content of
surface ocean waters that is implied by the data could be the product of a variety of possible
mechanisms. The period 400 BC - 60 AD corresponds to c.2000 cal. BP. The millennial-
scale events identified by Bond et al., (1997) in Holocene ocean sediments show apparent

peaks in ice-rafted debris (IRD) at 1400 and 2800 years ago, whereas c.2000 BP corresponds
to an IRD minimum in cores across the North Atlantic (core 14C ages corrected for 400-500

yr MRE). Times of lower IRD concentrations were interpreted in this study as

corresponding to warmer sea surface temperatures and similar circulation to present, while
IRD peaks correspond to southward or southwestward advection of surface waters from the
Greenland-Iceland seas. Warmer climatic conditions linked to ocean circulation at c.2000 BP

are also identified by Bianchi and McCave (1999), (see Figure 6.4) when a faster rate of
Iceland-Scotland Overflow Water at depth is correlated with warming of the northern

European climate (during the "Roman Warm Period").
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Figure 6.5: Variability in GISP2 8lsO record and speed of Iceland-Scotland Overflow Water

through the Holocene (Bianchi and McCave, 1999), showing the time period c.O AD/BC
within the Scottish Iron Age.

Identification of AR values that differ from present regional mean values has important

implications for archaeological interpretations. This is well illustrated by examining the

example of a revised AR for the Scottish Iron Age. Here, the environmental changes during
the Iron Age coincided with extensive cultural changes, including architectural

developments; meaning chronological accuracy has a critical effect upon archaeological

interpretations for this time. In particular, the timing of rapid transitions between several
distinct building styles in different regions is currently far from clear, as is the extent to

which a cultural change in settlement practice was a response to environmental variations.
Two of the architectural styles in question are "brochs" and "wheelhouses". The term

'broch' is traditionally used to define a group of prehistoric drystone-built roundhouses with
a range of characteristic internal features including hollow walls, intramural stairs and

galleries (Armit 2003). Some of them are tower-like and, for example, Mousa in Shetland is
over 13m high, but most are now ruinous and the tower-like structures may always have
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been exceptional (Fojut 1981). Wheelhouses, in contrast, are architecturally much less

impressive. While they often enclose spaces that are as large as those found within brochs

they are often dug into the landscape, especially into sandy deposits and were visually

unimpressive. Both site types had complex internal subdivision, usually radially arranged,
and this became the dominant feature of the wheelhouse where radial dividing walls suggest

the spokes of a wheel, giving rise to the site-type designation. The traditional interpretation
is that the construction of wheelhouses post-dates that of the brochs, however, an accurate

chronology of these architectural forms across the region is needed to determine whether the

developments were part of an ordered sequence progression or a more complex regional

pattern of co-existence.

Archaeological interpretations such as the relationship between brochs and wheelhouses are

often dependant upon the chronology of apparently successive events and processes. The
dominance of 14C measurements in construction of absolute chronologies upon which such

interpretations are based leads to the requirement of accurate and precise MRE corrections
where marine sample material is measured. A series of wheelhouses at HP were placed upon
an absolute (l4C) chronology using 10 bulk radiometric l4C measurements of marine shells

(Barber, 2003). Human occupation at HP is estimated to span no more than 330 l4C yrs. The

activity consists of a complicated and intensive series of building phases where later
structures often involved the use of material from earlier buildings and several wheelhouses
were constructed, occupied, and abandoned over a short period. The 14C measurements from
HP were calibrated with the atmospheric INTCAL98 curve on the basis of a site-specific
assessment of the MRE instigated by the site excavators. Here, the MRE was assessed using
a comparison of the 14C age BP of six radiometric measurements on terrestrial material

(either carbonised plant material or large animal bones) with equivalent marine shell

samples. The sample pairs were obtained from both Hornish Point (2 samples) and the

nearby site of Baleshare (4 samples). Due to the large volume of material required for each

age measurement, it was only possible to obtain marine and terrestrial material from the
same deposit in one instance, and other comparisons were made using samples from deposits
that were in close proximity. In two instances, the terrestrial sample was composed of
material from several immediately adjacent deposits, again due to the sample masses

required. In these cases, the equivalent shell age was calculated by interpolating between two
measurements made on marine shells from deposits directly above and below the bulk of the
terrestrial sample, assuming a known sedimentation rate for all deposits.

Using this methodology, the calculated differences between the marine and terrestrial 14C
ages of the six sample pairs ranged from +121 years to -405 years, a total range of 526 14C
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yr at a single site. Using the Students t-test, the differences, taken as a group, were not found
to be significantly different from zero at 95% confidence. On the basis of these results, the
authors elected to calibrate all 14C measurements in the report using the standard atmospheric
INTCAL98 curve. In contrast, the values of AR calculated within this study for HP and BA
are highly consistent, with a range of c.45 l4C yr where the four values are statistically

similar (T= 3.28 (X2:0.05 = 7.81)).

The approach to MRE correction used by the site excavators means that the ranges of
calibrated ages from the Hornish Point wheelhouse phases appear substantially older than
those obtained using the marine calibration curve and a AR of -79 ± 10 l4C yr (Figure 6.6).
These older age ranges for HP could imply that the wheelhouses were being constructed and
used at the same time as some of the earliest brochs in Scotland.
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Figure 6.6: Comparison of calibrated age ranges obtained using 10 14C measurements of
marine shells from wheelhouse phases at HP with the INTCAL98 atmospheric calibration
curve (squares; data from Barber, 2003) and with the MARINE 98 calibration curve and a

AR of -79 ± 10 14C yr (triangles). The traditional approximate phases of the broch and
wheelhouse architectural phases are indicated by shading.

The previously derived 14C measurements from HP were calibrated using the marine
INTCAL98 curve, firstly with a AR of 0 14C yr, and then with AR of -79 ± 10 14C yr. The
shift in calibrated age ranges of the measurements when the revised AR is applied is shown
in Figure 6.7. Because the majority of 14C determinations at the site were made on marine
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mollusc shells, the assessment of the relative duration and age of phases on this individual

site should not change radically through application of a revised AR value. However, the

position of various activity phases at Hornish Point on an absolute timescale, relative to that
of many other sites (including broch and wheelhouse structures), is significantly altered.

Wheel
houses

Brochs

,4C age BP

Figure 6.7: Comparison of calibrated age ranges obtained using 10 l4C measurements of
marine shells from wheelhouse phases at HP with the MARINE98 calibration curve and AR
= -79 ± 10 14C yr (triangles) and calibrated with AR = 0 14C yr (squares). The traditional

approximate phases of the broch and wheelhouse architectural phases are indicated by

shading.

The revised data, re-calibrated with the marine curve and a AR of -79 ± 10 14C yr, indicates

that the Hornish Point wheelhouses were constructed during a later period than that indicated

by previous assessment. This highlights the importance of a critical assessment of the MRE
when using measurements of marine material. The revised AR has important implications for
our understanding of the nature of the relationship between both monument types when the

ages are calibrated using the marine curve. The chronology of the wheelhouses at Hornish

Point, based on a AR of 0 14C yr, places these sites in a chronological span ranging from
about 158 BC to AD 252 - at the extremes of the calibrated ranges. However, using the
revised AR of -79 ± 10 14C yr, this range is revised to 252 BC to 149 AD. Traditionally,
wheelhouses were viewed as humble successors that evolved from brochs at a time when the

latter were effectively extinct, albeit that some brochs, especially those in the south of
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Scotland, persisted in use and construction into the first century AD. The Hornish Point dates

imply that there is a significant overlap in construction dates of brochs and wheelhouses.
This implies sophistication in the social landscape with impressive structures of several types

being built, perhaps for individuals of differing social status or for other functions.

6.2.5 Spatial variation at c.1000AD
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Figure 6.8: AR values for contexts with highly similar calibrated age ranges c. 1000-1200

AD, showing relevant geographic location of contexts.

A total of seven contexts are available for the period c.1000 AD to c.1200 AD that covers a

wide latitudinal range in Areas 1, 2, 4, and 6. The AR values for these contexts are

significantly different (T = 30.3 (%2:o.o5 = 12.60)), indicating that a single MRE offset did not

apply across the study area during this period. The highest and lowest AR values from this

group are located in the most northerly and southerly areas respectively (see Table 6.3 and

Figure 6.8).
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Context Area 2a cal. age range AR

OI-6 Area 1 990-1160 AD -142 ± 16

UJ-23 Area 6 1010-1160 AD 64 ± 13

StB-1063B Area 4 1020-1160 AD -96 ± 16

QG-A004 Area 4 1020-1160 AD -98 ± 17

FL-JM76 Area 2 1030-1170 AD -84 ± 15

QG-A023 Area 4 1040-1220 AD -42 ± 13

RH-3019 Area 2 1040-1220 AD -50 ± 18

Table 6.3: Contexts with calibrated age ranges c.1000 AD showing location within the study
area and AR values.

Within Area 2, the AR values for FL-JM76 and RH-3019 are statistically similar (T =

2.1 1(x2;o.o5 = 3.84)), being separated by c.34 14C yr with a weighted mean of AR = -70 ± 17
14C yr. In Area 4, the AR values from StB-1063B and QG-A004 are similar to those from
Area 2(T= 4.80 (x2:o.o5 = 7.81)), however the AR from QG-A023 is significantly higher than
StB-1063B and QG-A004. (T= 9.92 3 (x2:0.05 = 5.99)), and is separated from QG-A004 by
c.56 I4C yr. This variability could be the result of several factors. It is possible that although
the calibrated age ranges are similar, the two contexts represent different points over this 200
cal. yr interval, during which the AR values at the site were significantly different.

Alternatively, it is possible that the variability in AR values at QG is the result of additional
uncertainties that have not been identified and are related to this context or site. In this

instance it would not be possible to identify AR more precisely at this site from these two

contexts. Due to the similarity of QG-A004 to other values from Area 4 for this time period
and the consistency with other measurements from Area 2, QG-A023 is identified as an

outlying value from this dataset.

Excluding QG-A023 gives a weighted mean AR for Areas 2 and 4 of -83 ± 10 for the period
c. 1000-1200 AD, and the similarity of the measurements indicates that surface water 14C at

sites in Areas 2 and 4 was comparable at this time. In contrast, these consistent
determinations from Areas 2 and 4 cannot be combined with those from Area 1 (T = 15.45

(X2:0.05 = 9.49)) or Area 6 (T= 96.76 (x2o.05 = 9.49)) for this period.
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6.2.6 Possible mechanisms and implications ofspatial AR variation c.1000AD

As discussed in Chapter 2 (section 2.7.2), presently available assessments of the MRE for the
UK demonstrate a regional MRE of 405 14C yrs and a pre-industrial AR value of 17 ± 14 l4C
yrs (Reimer and Reimer, 2005). Available results from the Faroe Isles are limited to an MRE

value of 370 ± 99 14C yrs and AR of 19 ± 99 14C yrs, based upon measurement of known age

mussel shells (Mytilus edulis) from Sorvag (Krog and Tauber, 1974). This is included in the
calculation of a regional mean AR value for the Faroes and Iceland for modern pre-bomb

samples of 52 ± 19 14C yrs (Reimer and Reimer, 2005). This data corresponds with the

present general northward increase in MRE (and therefore in AR), interpreted as due to the
relative distribution of Atlantic and Arctic surface water masses in the North Atlantic. The

resulting spatial MRE variation is seen in gradients of apparent surface-water ages across

frontal systems such as the Polar Front that reflect climatic and oceanographic gradients

(Eiriksson et al., 2004). The relative position of the Polar Front (presently located north of

Iceland) is strongly correlated with records of climatic and oceanographic changes

(Ruddiman and Mclntyre, 1981; Dansgaard et. al., 1993; Haflidason et. al., 1995), and such

changes within the study area during the Holocene include significant shifts in the location
and intensity of surface and deep-water currents. For example, during colder phases, features
such as increased sea-ice cover may surround areas including the Faroes as a body of cold

polar waters, (from north of the Iceland-Faroes Front) extends southwards from the East
Iceland Current towards the Faroes (Moros et al., 1997; Humlum, 1998; Kuijpers et al.,

1998; 2002). Variability in the relative influence of Atlantic and Arctic waters around
Iceland has also been identified over short timescales (Knudsen et al., 2004). Also identified
is a relationship between variability in the influence of Arctic and Atlantic water masses and
MRE values on the North Iceland shelf over the past c.4000 years (Knudsen and Eiriksson,

2000b; Larsen et al., 2002; Eiriksson et al., 2004). Here, higher MRE values are associated
with periods of increased influence ofArctic waters (Larsen et al., 2002), whereas the period
between c. 750 and c. 1150 cal AD is characterised by dominance of Atlantic waters and a

lower offset between atmospheric and ocean surface apparent ages.

Differences in the oceanography of areas 1, 2, 4, and 6 (described in Chapter 3 (section

3.2.2), provide a potential mechanism for spatial variations in MRE. The strong influence of
North Atlantic Current (NAC) waters is linked to lower values of MRE, and around the
western coast of the British Isles, a branch of the NAC flows northwards. A mainly Atlantic
water origin is indicated by ocean salinities off the west coast of Ireland (Area 1), within
which OI-6 is located (OSPAR, 2000). The sites FL and RH within Area 2 are located in the
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eastern area of the northern Scottish mainland coast (see Figure 6.9). The surface water in
both Area 2 and Area 4 is derived from the northward flow of the Scottish Coastal Current

(SCC) clockwise into the North Sea. The SCC is derived as the NAC forms coastal water

that flows up the west coast of Scotland, reinforced by lower-salinity water from the major
west coast Firths (McKay et al., 1996). It is possible that the apparent similarity in AR values
at c.1000 AD at sites in areas 2 and 4 is due to the common dominance of surface waters in

these locations by a strong SCC that is not significantly modified by local effects.

Figure 6.9: Location of sites in Areas 2 and 4 from which contexts are available for the

period c. 1000 AD, showing major modern surface circulation patterns.

To the north, the Faroe Isles are influenced by a further branch of the NAC, forming the
Faroes current, and surface waters consist of modified North Atlantic water as terrestrial

freshwater input mixes with NAC water input (Hansen and 0sterhus, 2000). The Faroes are

situated in proximity to the Iceland-Faroe Front, presently located to the north of the Isles
(see Figure 6.10). This front represents the boundary between Arctic-influenced waters of
the East Icelandic Current and Atlantic waters derived from the North Atlantic Current.

Hydrographic observations over the past 100 years show the Iceland-Faroe Front is north of
the Faroes, though cold intrusions from the frontal region may occasionally reach the shelf

region (Hansen and Meincke, 1979). Over longer timescales however, it is possible that the

km 20 40 60 80 100
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position of frontal systems such as the IFF have varied in response to palaeoclimatic forcing
mechanisms.

Figure 6.10: Modern surface circulation around the Faroe Isles showing Atlantic dominated

(black) currents and Arctic dominated (grey) currents, together with the location of the
Iceland-Faroes Front (after Hansen and Meincke, 1979).

The results of the AR values for the period c.1000 AD across the study area are indicative of

possible spatial variability in the 14C content of North Atlantic surface waters at this period
that is significant with respect to the precision of the I4C method. This includes an overall
increase of c.200 14C years in AR between the west coast of Ireland and the Faroe Islands.
The results suggest a reduced offset between atmospheric and surface ocean 14C relative to

the present day at sites on the west coast of Ireland, northern Scotland and the Orkney Isles.
The lack of data from the Faroe Isles from modern samples precludes a rigorous comparison,
however the AR from UJ-23 is similar to the current regional mean for Iceland and the Faroe
Isles (T = 0.27 (X2:0.05 = 3 .84)). When compared to the spatial distribution of modern North
Atlantic MRE data, such a trend could imply that the relative differences in oceanic and
climatic regimes between the geographic locations are comparable to those that operate

today, and that surface l4C in areas of the North Atlantic during this time was raised relative
to present. If correct, these interpretations would have important implications for the study of

past climate and oceanographic variables in the North Atlantic, during the phase of Norse

expansion within the region. The cultural developments at this time are often linked with a

set of favourable environmental conditions that permitted the settlement and exploitation of a

— 66" N
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wide range of North Atlantic settings, including the initial settlement in the Faroes, Iceland
and Greenland (cf. Jones, 1986). It is possible that these conditions were comparable to the

present climatic situation, and that the subsequent retraction of settlements, such as the
termination of the Greenland and Labrador settlements, was linked to deterioration in

environmental conditions (cf. Davis et al., 1988; McGovern, 1991). The period represented
at c.1000 AD corresponds to a climatic warming that is known as the Mediaeval Warm
Period (MWP) and is identified in many palaeoclimatic records. This climatic phase peaked
at different times in various regions surrounding the North Atlantic basin between AD 900 to

1250 (c.750 - 1,050 cal. yr BP) (Lamb, 1985; Grove and Switsur, 1994). The characteristics
of the MWP have been linked to the strength of the North Atlantic limb of the global
thermohaline circulation (Broecker, 2001), and variation in the relative distribution of
Atlantic and Arctic water masses. For example, ocean changes in proximity to the study area

for this period include incursion of Atlantic water onto the Icelandic shelf (Knudsen et al.,

2004).

6.2.7 Correlation of values c.1000 AD with preceding periods

c.778 - 990 AD: The Outer Hebrides and Iceland

The consistent AR values for areas 2 and 4 at c.1000 AD are similar to the measurements for

areas 3 and 4 for the period c.400 BC - 60 AD, where the T-statistic for all these values (N =

10) is T= 12.47 (X2o.o5 = 15.5). In Area 4, AR values are available for a single site in both
time periods, and again values from these three contexts (StB-1063B (-96 ± 16 14C yr), StB-
2136 (-60 ± 17 l4C yr) and StB-2004 (-50 ± 17 14C yr)) are similar (T= 4.37 (x20.05 = 5.99).
These results suggest comparable oceanographic conditions at sites in Area 4 during both the
Iron Age and Norse periods. In both palaeoclimatic and archaeological records, these two

periods are interpreted as ones in which warmer climatic conditions (linked in palaeoclimatic
evidence to oceanographic characteristics) appear to have prevailed. The similarity of AR
values at c.400 BC - 60 AD in Areas 3 and 4 to AR values in Areas 2 and 4 at c.1000-1200

AD may mean that AR values in Area 3 at c. 1000-1200 AD were comparable to those in
Areas 2 and 4. By extension of this hypothesis, it may be that AR values during c.400 BC -
60 AD in Area 2 were comparable to those in Areas 3 and 4. Although no AR values are

available for c.1000 AD from Area 3 (Outer Hebrides), two values are available for the

preceding period, c.890- 990 AD from two sites within Area 3. These are BO-64 (-57 ± 14

l4C yr) and GA-165 (-89 ±17 l4C yr), and the AR values from these contexts are similar (T=

2.11 (x2:o.o5 = 3.84). The values from these two contexts are also statistically similar to the
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consistent measurements from Areas 2 and 4 for c.1000 AD ((T = 7.89 (x2:o.os = 11 -1))-
These results from BO-64 and GA-165 indicate that during the period c.890- 990 AD, AR
values on the Outer Hebrides (Area 3), were comparable to AR values in this area during
c.400 BC- 60 AD.
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Figure 6.11: Comparison of AR values for Areas 2, 3 and 4 for two time periods c.400 BC-
60 AD and c. 1000-1200 AD, showing the values from BO-64 and GA-165 for the period
c.890- 990 AD in Area 3. Relevant geographic locations of contexts are indicated.

During the course of this thesis, an opportunity became available to collect data from
contexts at a site in Iceland, Hrisheimar (HR). The relevant context and site details for

marine and terrestrial samples obtained from Hrisheimar are contained within Appendix B.
As a result, samples of Mytilus edulis shells and neo-natal cow bones were obtained from a

single, stratified midden deposit (HR-45) according to the context selection protocol
described in Chapter 3, in order to assess a AR value from this material. These samples were

measured at SUERC and pre-treatment and measurement followed the procedures described
in Chapter 4. As the T-statistics of the terrestrial and marine samples were T - 6.78 (%2:o.05 =
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7.81) and 7 = 1.11 (%2:o.o5 = 7.81) respectively, these were used according to the procedure
described in Chapter 4 to calculate AR = 96 ± 15 14C yr for (HR-45).

The weighted mean terrestrial 14C age at (HR-45) is 1165 ± 26 BP (7 = 6.78 (x2o.o5 = 7.81)),

giving a 2ct calibrated age range of 778-970 AD, which is similar to that of the period
covered by BO-64 and GA-165 (c.890- 990 AD). This enables an assessment of spatial

variability in AR for the period c.778 - 990 AD from the Outer Hebrides to Iceland. The
value from HR-45 (96 ± 15 14C yr) is significantly higher (7 = 82.67 (%2:o.o5 = 5.99) than the
AR values from BO-64 (-57 ± 14 14C yr) and GA-165 (-89 ± 17 14C yr). When compared
with the value for the current modern Iceland and Faroe Isles region (52 ± 19 14C yr), the AR
from HR-45 appears to be similar (7 = 3.30 (x2o.o5 = 3.84)). In addition, the AR from HR-45
is also similar to that of UJ-23 (7 = 2.60 (%2o.o5 = 3.84)). When correlated with the data
described above for c.1000 AD, these results suggest that spatial variability with a northward
increase in AR was also present in the North Atlantic within the study area for the period

preceding c. 1000 AD.
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Figure 6.12: Comparison of AR values from the Outer Hebrides and Iceland c. 750 - 1000
AD.
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c.250 - 820 AD: The Outer Hebrides, western Ireland and Shetland

Results from Area 3 for the periods c.400 BC- 60 AD and c.890- 990 AD suggest

consistency in ocean 14C content for these periods. As discussed above (section 6.2.1), these
data are not consistent with those of the Early Holocene for this Area. A AR value is
available from Area 3 for the period 330-430 AD (from BE-503) that is also not consistent
with other values in Area 3 during c.400 BC- 60 AD and c.890- 990 AD. The AR from BE-
503 (-27 ± 10) is significantly higher than values during the previous and subsequent time

period in Area 3 (T= 28.00 (x2o.05 = 12.6)), although it is similar to the lowest individual AR
values from these periods.

Context 2ct cal. age range AR

BA-139 400-200 BC -75 ±21

BA-146 210-40 BC -71 ±21

HP-201 350-50 BC -116 ± 21

BA-39 90 BC-60 AD -101 ± 16

BE-503 330-430 AD -27 ± 10

BO-64 890-985 AD -57 ± 14

GA-165 890-990 AD -89 ± 17

Table 6.4: Available AR values from Area 3 for the time periods preceding and succeeding
that of BE-503.

This makes interpretation of the AR from BE-503 difficult, and there are two main

possibilities. One is that the AR value for this period within Area 3 is consistent with the

previous and subsequent periods (i.e. c.400 BC- 60 AD and c.890- 990 AD), and the value
from BE-503 is an outlier that is the result of unknown sources of variability. Alternatively
BE-503 could be representative of an increased AR in Area 3 for 330-430 AD relative to

c.400 BC- 60 AD and c.890- 990 AD. To investigate this further, BE-503 was compared
with two contexts from Area 5 SC-543 and SC-3083. These have 2a calibrated age ranges

that are similar to BE-503 of 250-400 AD (SC-543), and 410-540 AD (SC-3083). The AR
values from the three contexts are not similar (T = 226.96 (x2:0.05 = 5.99)) (see Figure 6.13),
and it is not possible to make a definitive statement from the data. The AR value from SC-
3083 (-121 ± 16 14C yr) also appears to be increased relative to preceding and subsequent
values, and is significantly greater than BE-503. This could support an interpretation of

spatial variability in AR that corresponds to the northward increase observed at c.1000 AD in
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the data, and also possibly an increased AR within the study area at c. 330-540 AD.

However, the value from SC-543 does not correlate with these values, being at -290 ± 16
14C yr, the lowest value in the dataset. This value is not similar to any other value in this

study from any context, and is 142 yr lower than any other AR offset. This value may

represent a significant increase in surface ocean 14C either in the area surrounding the site, or

within the wider study area at a time within the period 250-400 AD. Alternatively, it is

possible that the value from SC-543 is an anomaly and produced by sources of variability
that may be associated with the archaeological sample provenance that have not been
identified. The AR value from SC-543 and potential variability over this time period

suggested by this value means that it is therefore not possible to state definitively from the
data whether BE-503 and SC-3083 represent a period of raised MRE values at c. 330-540
AD.

The variability between AR values from SC-543 and SC-3083 may be representative of an
area that is sensitive to changes in factors that underlie specific MRE changes. Alternatively
the period 250-540 AD may be one in which these factors were highly variable across the
wider study region. This would contrast with the previous apparent c.400 yr stability in
conditions on the Western Isles and Orkney. Subsequent to increased AR values in Area 5 at

410-540 AD (SC-3083), the value from SC-1269 (-121 ± 16 14C yr) shows a significantly
different AR value at the site for the period 650-770 AD from both SC-543 and SC-3083 (T=
142.48 (x2:o.05 = 5.99)). The AR from SC-1269 can also be compared with two values (at
DL3-19 (-107 ± 18 14C yr) and DL11-2 (-69 ± 17 14C yr)) from Area 1, which together cover
a comparable calibrated 2a age range to SC-1269 (i.e. 660-820 AD).
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Figure 6.13: Comparison of values from Areas 1, 3 and 5 for the period c.250-540 AD and
c. 650 - 820 AD.

To examine AR within Area 1, values from DL3-19 and DL11-2 can be compared with the
later value from Area 1, OI-6 (Figure 6.13). Here, only the higher value (DL3-19 AR = -107
± 18 14C yr) is similar to OI-6 (7" =2.11 (x2:o.os = 3.84)). It is possible that the AR for this
area was consistent in the two time periods and DL11-2 represents an outlying value, or that
AR values became smaller in this area between the period 660-820 AD and 990-1160 AD. It
is also possible that OI-6 represents an anomalously low value for this area, and AR values
were closer to those at Scottish sites than could otherwise be supposed. Previous assessments

of AR values were performed using measurements made of charcoal and shell pairs from
contexts at OI and DL11 by Reimer et al., (2002). Three AR values from contexts at OI (two
for c.1000 AD and one for c.2350-1910 BC) are similar (T = 1.68 (x2:0.05 = 5.99)), and give a

weighted mean AR of -135 ± 39. A AR from DL11 (660-810 AD) gave -110 ± 50. This data
was excluded from an assessment of a regional mean AR for the British Isles due to the

possibility at archaeological sites that charcoal samples represent re-use of old wood.
However, these values are noted here as they may indicate that the low AR values calculated
in Area 1 during this study are supported by other assessments.
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The AR values from DL3-19 (-107 ± 18 14C yr) and DL11-2 (-69 ± 17 14C yr) are similar to
each other (T = 2.36 (%2:o.o5 = 3.84)). When these are compared to the AR value from SC-
1269 (-121 ± 16 14C yr) the three values are similar (T = 5.20 (%2:o.o5 = 5.99)). The results
from these three contexts therefore do not indicate a spatial variation in AR over the study

period at 650-820 AD. It is possible however to compare these results with the value from
HR-45 (96 ± 15 14C yr), which has a 2a calibrated age range that within its lower range is
similar to DL3-19 and DL11-2. The AR from HR-45 for this time is higher than at the sites

from Ireland (see Figure 6.14), where T = 90.93 (%2:o.o5 = 5.99). This may therefore indicate a

latitudinal variation in AR between the west coast of Ireland and the north east coast of

Iceland for this time period.
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Figure 6.14: Comparison of AR values from Shetland, Ireland and Iceland for c.650-1000
AD, showing modern regional mean AR values for the British Isles and Iceland.
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6.2.8 AR valuesfor the later Holocene: c.1200-1400 AD
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Figure 6.15: AR values for the later Holocene, within the study area, showing geographic
location of individual contexts.

Two contexts cover the period c.1200-1400 AD, located in Area 2 (RH-3004 (30 ± 21 14C
yr)) and Area 5 (SC-206 (35 ± 15 l4C yr)). The AR values from these contexts are similar (T
- 0.04 (%2:0.05 - 3 .84)), and both are significantly larger than the majority of preceding
determinations. At the same site as RH-3004, the AR value from an earlier context RH-

3019, is significantly smaller than RH-3004 (T = 8.37 (x2;o.o5 = 3.84)) where the two contexts

are separated by a maximum of c.360 cal. yr at 2 ct (Figure 6.15). A rise in AR relative to

the next oldest value is also seen at SC-206, where the AR value (35 ± 15 14C yr) is higher

than the previous determination from SC-1269 (-121 ± 16 14C yr), (T = 50.59 (x2o.o5 = 3.84)).
The AR from SC-206 is however similar to that from SC-3083 (T = 0.26 (X2:o.os = 3.84)),
which is during a phase of possible increased AR values relative to other periods. It is
therefore possible that the AR values from the youngest contexts within this study could
indicate a rise in AR within the study area for the period post-1200 AD. The data are
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however indicative only of this possibility, and a larger number of measurements would be

required to show whether this hypothesis is supported.

If within the study area AR values increased in the period post 1200 AD, a potential
mechanism is the Little Ice Age (LIA) that appears to have succeeded the Medieval Warm

period from c. 1300-1400 AD. The LIA corresponds to a period of significant climatic

cooling within both the North Atlantic, and wider global areas that lasted c.500 yr and was

only definitively ended by 20th century climatic warming (Lamb, 1985). Palaeoclimatic
factors identified as potential mechanisms for the LIA cooling include variation in ocean

circulation features. For example Broecker (2000) proposed that features of the LIA could be
linked to oceanographic variations in the thermohaline circulation system, and Knudsen et

al. (2004), identified an increasing influence of water from the East Greenland Current on
the North Icelandic shelf from 700-800 yr BP (c. 1200-1300 AD).

6.3 Assessment of the methodological approach

The above interpretations were produced on the basis of c.300 l4C measurements of
terrestrial and marine samples that were selected from 30 contexts at 20 sites according to a

new multi-paired sample methodological protocol (described in Chapters 3 and 4) developed
within this thesis. This approach was designed to maximize the accuracy and precision ofAR
values that were produced as this would achieve the aim of examining the North Atlantic
MRE to a high level of resolution. The efficacy of the methodological approach in achieving
this can be assessed by examining the results of the x2_test upon samples from individual
contexts (Table 5.8). These data show that for a large number of contexts the T-statistic for a

group of terrestrial or marine measurements was below the critical test value for 95%

significance (x^o.os) for the appropriate number of samples (N) in a tested group. This result
demonstrates that the methodological protocol successfully achieved the aims for which it
was designed, and is a robust way of selecting samples with which to examine the MRE in
areas where suitable (archaeological) terrestrial deposits are available. The use of this

methodology has effectively reduced uncertainty over the association between terrestrial and
marine sample material, and enabled the production of a coherent dataset.
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Chapter 7: Conclusions

The overall aim of this thesis was to examine spatial and temporal characteristics of the l4C
marine reservoir effect (MRE) in the North Atlantic over the Holocene. This has resulted in
the determination of 30 AR values at 20 sites over an area including the island belts of
Northern and Western Scotland, the western and northern Scottish mainland coast, Western

Ireland and the Faroe Isles, with additional data from Iceland. These data cover a temporal

range from c.6500 BC to c.1400 AD, a total of c.8000 cal. yr and provide an assessment of
AR for this time period across the study area that has a high degree of both precision and

accuracy. A number of conclusions are drawn from this:

1. The sample selection protocol developed in this thesis is an effective way to

optimise the precision and accuracy of AR values produced using the paired sample

approach

2. It is possible using such a strict sample methodology to obtain the required level of
resolution to observe AR variations relative to present in the North Atlantic over the
Holocene

3. These potential variations include:
i. Higher AR values in the earlier Holocene
ii. Reduced AR values at c.400 BC - 90 AD

iii. Reduced AR values at c.1000 AD in Scottish waters

iv. Potential spatial variation in AR across the study area (e.g. at c.1000 AD)
v. Higher AR values from c.1200 - 1400 AD

4. It is possible to correlate spatial and temporal features of Holocene AR values in the
North Atlantic with climatic and oceanographic changes from palaeoclimatic
records.

The implications of this thesis for determining AR values

Increasing the accuracy and precision of available AR values is an important aim in order to
place 14C measurements from a wide range of geographical areas and time periods within a

common chronological framework. As discussed in this thesis this aim is of particular
relevance in palaeoenvironmental and archaeological investigations at times of rapid climatic
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or cultural transitions, when chronological resolution becomes more critical. In light of this,
the conclusions outlined above have important implications. Firstly, the dataset produced in
this study allows a more precise and accurate assessment of AR for the study region over the
Holocene period. This facilitates use of marine samples within research areas where these

samples are the optimal, or the only material available for 14C measurement. Both the

accuracy and precision of a calculated AR value are highly influenced by the particular

samples upon which the assessment has been made. Because of this, it is crucial that
effective sample selection protocols are developed and applied. If inappropriate samples are

used to produce AR or MRE assessments, the resulting data may be counter-productive,

giving inaccurate values that lead to inaccurate palaeoenvironmental or archaeological

interpretations. The efficacy of the sample selection protocol developed in this thesis
therefore highlights important considerations for the future development of such protocols:

> Samples for AR determination should be in as close association as possible within a

single deposit

> This deposit should exhibit several features:
i. A short (e.g. ideally < 20 yr) accumulation period
ii. A lack of post-depositional bioturbation or other disturbance
iii. A large volume of dateable material relative to the deposit size

> Multiple samples should be measured from each deposit

> It is important to consider the site microenvironment and potential for on-site

contamination, including groundwater runoff and input of geological carbonate. For

example, sampling in sheltered locations, bays, estuaries and inlets, and areas with a

high proportion of fresh water and sediment run off, should be avoided.

> Results of a study within this thesis suggest that at sites selected according to the

protocol described in Chapter 3, any of several marine mollusc species may be used
to accurately determine AR. However, consideration of organism behaviour (both
terrestrial and marine), and in particular feeding mechanisms, should be incorporated
into research strategies and possible interspecies variability in l4C content should be
considered.
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The implications of this thesisfor understanding of the North Atlantic MRE in the Holocene

The variations in AR that are identified in this thesis allow a more coherent picture to be

developed of changing ocean 14C content within the study area over the Holocene.

Throughout the time period covered by the dataset there are fluctuations in values relative to

the current regional mean AR for the British Isles. These Holocene variations occur on a

reduced scale relative to the MRE changes identified in pre-Holocene datasets (e.g. the

Younger Dryas). This is consistent with the evidence that variations in palaeoclimatic

forcing mechanisms thought to dictate the size of AR values occur at a lower amplitude

during the Holocene than previously. As identified in point 4 above, variations in these
mechanisms over the Holocenc can be correlated with features of the AR observed in this

study, particularly with respect to oceanographic features. The reduced AR values relative to

present on the Outer Hebrides, Northern Scottish mainland and Orkney for c.400 BC - 90
AD and c.1000 AD for example, occur during two climatic periods for which palaeoclimatic
and archaeological evidence suggest ameliorating conditions. These conditions are linked to

factors including warming sea surface temperatures, reduced sea ice extent and strengthened
inflow of Atlantic waters, and the consistency ofAR values at sites for these periods suggests

that the palaeoclimatic factors determining AR were comparable for the two time intervals.

Although it is outwith the scope of this study to provide quantitative relationships between
the strength of palaeoclimatic forcing mechanisms and AR values, the results give
considerable support for a relationship between specific features of the North Atlantic

palaeoclimatic record and AR values. These correlations highlight the potential to gain a

better understanding of the nature and mechanisms of the MRE itself through using
standardised methodologies and rigorous sample protocols to define AR values. The results
of this study suggest that if a better understanding of the links between palaeoclimate and
MRE variation is gained, it is possible that variations in the marine 14C record could be
themselves employed as a proxy record of palaeoenvironmental change.

The implications of this thesis for application ofAR corrections for North Atlantic samples
andpotentialfuture research directions

This thesis has resulted in the production of a unique large dataset of AR values that are

applicable to the study area of western Ireland, northern and western Scotland and the Faroe
Isles. The temporal range of the data over c.6500 BC - 1400 AD is discontinuously covered

by the data, however there are ranges where several determinations coincide. As outlined in
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point 3 above, several distinct features of AR can be identified in the dataset. The current

regional mean correction values for the study area include AR = 52 ± 19 14C yr for the Faroes
and Iceland and AR = 17 ± 14 14C yr for the British Isles (Reimer and Reimer, 2005). The

reproducibility of AR data generated within this thesis for specific intervals leads to the
recommendation of a revised correction value for specific areas at specific time periods.
These include the value of -79 ± 10 14C yr for Scottish coastal waters during the Middle Iron

Age period, derived from samples covering c.400 BC - 60 AD. These values can be used
with calibration programs such as OxCal (Bronk-Ramsey, 1995; 2001) and CALIB (Stuiver
and Reimer, 1993) to correct marine samples for the MRE. However, there are also intervals
where results are less conclusive and it is more difficult to definitively interpret the data. For

example, the variability observed in AR values for the period 250-540 BC at sites from the
Outer Hebrides and Shetland. At such intervals there is a need for more data to support

interpretations before any correction can be confidently ascribed. An important implication
of the MRE for 14C measurement of samples is that it is preferable where possible to use

samples that consist entirely of terrestrial-derived carbon. This removes the need to correct

for the MRE and AR values which have an associated level of uncertainty. Where it is not

possible to avoid measurement of samples containing marine-derived carbon, a careful
assessment must be made of the most appropriate correction value to be applied for the

samples geographic location and temporal period where relevant. At all times it is crucial
that full details are provided by authors of the method by which calibrated age ranges have
been obtained for samples containing marine carbon.

At present there is a growing recognition of the importance and potential of the MRE, and

correspondingly, an increased research effort to define and understand the effect. Refinement
of existing AR corrections in the North Atlantic would enable the re-evaluation or

confirmation of previous environmental and archaeological interpretations and ultimately
lead to an improvement in the datasets and methodology used in these research disciplines.
This thesis has resulted in the production of a unique dataset from which it is hoped future
research directions can be developed to enhance our understanding of the MRE on both a

regional and global scale.

167



Appendix A: A preliminary assessment of8,sO in coastal water and mollusc shell
carbonates

Appendix A: A preliminary assessment of 5lsO in coastal water and
mollusc shell carbonates.

A.l Introduction

This thesis examines characteristics of the 14C concentration of surface ocean water at a

range of study sites over the Holocene, using marine mollusc shells as a proxy record.

During this work the opportunity became available to examine modern features of surface
ocean water in proximity to the majority of archaeological sites that had been included in the
thesis. These features included the temperature and salinity of coastal water, and this was

achieved using S180 measurements of coastal surface water and marine mollusc shell
carbonates.

Water 5lsO (518Ow) is dependant upon rates of evaporation and freshwater input. Evaporation
raises water salinity and 518Ow (as 160 is preferentially removed) while freshwater input
lowers both the Sl8Ow and salinity of the water. Freshwater input to surface coastal water is
derived from terrestrial runoff, resulting from meteoric precipitation. The typical 5lsO range

of meteoric precipitation over Western Europe is between -5 and -15%o, with decreasing
values at higher latitudes (Bowen and Wilkinson, 2002). In contrast, observations of the

relationship between salinity and 518Ow%o in the Northeast Atlantic Ocean give a typical
surface 518Ow of c. 0.0%o for these waters, which have salinities of c. 35%o (Ostlund et al.,

1987). Measurements of coastal water 518Ow within this preliminary study therefore allowed
an assessment of the terrestrial freshwater input to the surface ocean close to a sampled site.
A feature of the selection criteria for archaeological sites from which to obtain samples for
14C dating was the absence of any significant freshwater input. This was because such an

input may alter the surface water 14C concentration in a specific location. This study enabled
the degree to which this criterion had been met to be identified at 19 sampled sites. The use

of mollusc shell carbonates as a record of S18Ow variations is possible as molluscs generally

precipitate their shell carbonate in equilibrium with water dl80 and the shells therefore

provide an isotopic record of the ambient water at the time of precipitation (Epstein et al.,

1953). The S180 of biologically precipitated marine carbonates (518Oc) is dependent upon the

isotopic composition and temperature of the ambient water. This means that a quantifiable

relationship exists between these three variables (Grossman and Ku, 1986). The carbonate
shells of different species of marine organism may have different values of 518Oc even

though the organisms inhabit the same environment. This is due to factors such as species-
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specific biogenic effects and season of shell growth. To investigate the relationship between
surface water isotopic composition and the shell CaC03 precipitated by Patella vidgata

inhabiting these waters, measurements of 518Ow and 818Oc at the 19 sample sites were

compared. The record of 818Ow contained within carbonates precipitated by marine

organisms has proved particularly useful in palaeoclimatic studies as a proxy for

oceanographic changes such as water temperature and salinity. A final part of this

preliminary study therefore investigated whether any difference could be identified in the

S18Oc ofmodern and fossil shells within the study area. This was achieved by comparison of
818Oc measurements made of Patella vulgata shells from both the modern shoreline and

archaeological contexts at six sites.

A.2 Methodology

Modern samples of coastal water and Patella vulgata shells were collected for 8180
measurement from 19 locations (Figure A.l). Of the sampled sites, 16 were close (<0.5 km)
to archaeological sites from which samples had been obtained for 14C measurement. Two
other sites (Lochmaddy (LM) and Skapa Flow (SF)) were close to coastal water monitoring
stations of the Fisheries Research Services (FRS), an agency of the Scottish Executive
Environment and Rural Affairs Department. At these sites water temperature is recorded

every 30 minutes and water salinity and nutrients are recorded weekly. The annual range of
sea surface temperature (SST) and sea surface salinity (SSS) was obtained from FRS records
at four monitoring stations within the study area, including LM and SF.

Site Lochmaddy Skapa Flow Fair Isle Scalloway
Location 57035"N,

07°09'W
58°57rN
002°58'W

59°32'N,
01°36'W

60°07rN,
001°16'W

SSS
measurements

2 years available 6 years
available

Not available 5 years
available

SST
measurements

1 year available 5 years
available

22 years
available

4 years
available

Table A.l: locations and available monitored data from FRS monitoring sites in the study
area.

In addition to samples of coastal water, S18Ow measurements were made on terrestrial run-off
water from a stream which was situated at the east of Skapa Flow, <0.5 km from the coastal
water sample site (SF). This was in order to assess the Sl8Ow of terrestrial (meteoric)
freshwater runoff for a typical location within the study area, which could then be compared
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with the measured coastal 518Ow, and typical values for Western Europe meteoric water 5I80
(-5 to -15%o).

Sample site Identifier code

Carding Mill Bay CMB

Lochmaddy LM
Hornish Point HP
Baleshare BA
Northton NO
Berie BE
Bostadh BO
Galson GA
Sand SA
Skara Brae SkB

Birsay Bay BB

Quoygrew QG
St. Boniface StB

Lopness LO
Pool Bay PB

Skapa Flow SF
Roberts Haven RH
Freswick Links FL
Undir Junkarinsflotti UJ
Table A.2: Identifier codes used in the text for sites from which samples of modern coastal
water and Patella vulgata were obtained.

The molluscs were obtained from the shoreline and where relevant in close proximity to the
excavated archaeological remains. Molluscs were removed live in small quantities (4
individuals per site) from the rocky foreshore when exposed by low tide. The shells were

immersed in boiling water for 2-3 minutes after which the flesh was removed and the dry
shells placed in labelled bags for transport to the laboratory. Water samples were collected in
1 litre plastic sample bottles then decanted into 12 ml Exetainer ™ vials and labelled.

Samples of coastal water were obtained from the surface water where the depth of the water

was c.lm. Samples were taken in clean 1 litre plastic containers, which were washed out

with the surface water three times before being filled. Water from the containers was then
decanted into 12 ml Exetainers, capped and labelled.

Six archaeological contexts were chosen from which to obtain measurements of mollusc
shell 5lsO. From each context, four shells were selected that had been measured for l4C
within this thesis for assessment of the MRE and the 14C ages of the shells within each
context were statistically similar on the basis of a f test (Table A.3). A 2a calibrated age
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range was provided for each context by 14C measurement of terrestrial material from within
the context.

Site /-statistic for 14C measurements of mollusc shells

from contexts

Context 2a cal. age

range

SkB-26 1.64; (x2o.o5 = 7.81) 2840-2570 BC

BB-XF 1-42; (x2:O.05 = 7.81) 2120-1960 BC

BA-139 1.65; (x20.05 = 7.81) 390-230 BC

HP-201 0.21; (x20.05 = 7.81) 205-110 BC

StB-

1063B

0.31; (x2o.o5 = 7.81) 1020-1150 AD

RH-3019 0.52; (x2:0.05 = 7.81) 1050-1210 AD

Table A.3: Archaeological contexts from which samples of Patella vulgata were taken for
5I80 measurement showing calibrated 2a age ranges (calculated from 14C measurements of
terrestrial material within the context), and /"-statistics for groups of measured mollusc shell
14C ages.
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Figure A.l: The study area: Red circles show the location of sites sampled for modern
coastal water and Patella vulgata. Atlantic Ocean waters are shown as red arrows and coastal
water currents as grey arrows. The identifier codes for sites are given in Table A.2. Green
circles show the location of four FRS water-monitoring stations (1: Scalloway, 2: Fair Isle,
3: Skapa Flow, 4: Lochmaddy).
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Mollusc shell samples for 180 measurement from contexts at archaeological sites were those
that had also been measured for 14C. These shells had therefore been subjected to the pre-

treatment method described in Chapter 4 (section 4.1.1), and a sub-sample of each pre-

treated shell was taken for l80 measurement. Post-depositional isotopic exchange would not

have affected the modern mollusc shells as these were collected from live specimens,

making surface removal unnecessary. A homogenised sample was obtained from each

archaeological or modern shell by crushing the shell to a powder. The organic component of

living shells is significantly higher than that of archaeological shell samples, as the shell is
covered by a further organic (proteinacious) layer, known as the periostractum, and it is

possible for a quantity of soft tissue to adhere to the shell after removal of the mollusc body.
It is necessary to remove this organic component from modern shells as the isotopic

composition of organic proteins may be significantly different to that of the shell carbonate.
The crushed samples of modern mollusc shells were therefore placed in a Biorad Polaron

plasma asher for a minimum of 5 hours to remove organic material. The plasma asher bonds

organic material from the shell CaC03 with an 02 plasma at 10"' millibars pressure, which
converts the organic component to C02 and H20 at room temperature without destruction of
the shell carbonate structure.

Samples of coastal water were prepared using 1 ml aliquots of sample water in 12 ml
Exetainers where 300 pi of C02 gas was then equilibrated with the water bicarbonate (C032")
in helium over 10 days. Two aliquots were measured from each water sample.

The stable isotopic ratio of shell carbonate was measured using a VG Isogas Prism II dual
inlet stable isotope mass spectrometer at SUERC, East Kilbride. The apparatus incorporated
a VG Isocarb common acid bath automated carbonate dissolution system. Between 1 and 1.5

mg of crushed sample shell was used for each measurement. The shell CaC03 was dissolved
at 90°C in "103"% phosphoric acid, produced with partially polymerized orthophosphoric
acid and having a specific gravity of 1.92 at standard temperature and pressure. The samples
were sequentially introduced to the acid bath and the evolved C02 passed across a water trap

before being frozen and collected. The measurement results were expressed using the 5-
notation (Craig, 1957) as per mille deviation from the VPDB standard, calibrated using the
IAEA COl (Carrara marble) international standard. The internal analytical precision of the
standards was 0.04%o for 8I3C and 0.08%o for 8lsO.
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Coastal water samples were measured using an Analytical Precision AP2003 stable isotope
mass spectrometer with Gas Preparation Interface. A reference sample of pre-calibrated CO2

gas was measured with each sample. Isotopic ratios were calculated with known standards

using standard linear regression (r2 for 8I80 and 8D = 1.000). The external precision (as
stated by the manufacturer) was ± 0.15 %o at natural abundance. The samples were run twice
with a five-day gap to exclude any influence induced by water salinity upon equilibrium. The
measurement results were expressed using the 8-notation (Craig, 1957) as per mille deviation
from the VSMOW standard, calibrated using Vienna Standard Light Antarctic Precipitate

(VSLAP) and Greenland Ice Sheet Precipitate (GISP) international standards.

The variation in 8l8Ow of samples measured at one site was assessed by examining the

average and standard deviation of two measured aliquots from each water sample. The

average of the two aliquots was then taken as the Sl8Ow value for a single site. These values

represent only the summer S18Ow and are not the result of continual monitoring, therefore can

only be taken as an estimate of the summer water S18Ow. The variation in shell 8lsO (Sl8Og)
at each site was assessed by examining the standard deviation of 8l8Oc measured on different
shells from a single site. This assessment included both modern shell samples and samples
from specific archaeological deposits. The variation in values of 818Oc between the modern

samples at measured sites was then examined to determine if any variation existed which
exceeded the average variation for measured shells at a single site. To examine the

variability on a single shell, 10 measurements were made of one shell from Roberts Haven

(14C sample code GU-10929). The average S18Oc measured for shells from the archaeological

deposits was then compared to the measured values for the modern samples from each of the
six sites.

The relationship between temperature, water S180 and shell S180 is different for the two main

species of carbonate, aragonite and calcite. Analysis of Patella vulgata using X-Ray
diffraction showed that the shells of this species are composed of calcite. The relationship
between biogenic calcite 8lsO (818Oc), water S180 (818Ow) and water temperature (T) is given
by:

T = 16.9 - 4.38(8,8Oc - 818Ow) + 0.10(S18Oc - S18Ow)2

(Equation A.l (O'Neil etal., 1969; Wefer and Berger, 1991))
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Both 518Oc and 518Ow values are expressed relative to VPDB, where d180w was converted

from the VSMOW to the VPDB scales using a correction value of -0.27%o (Hut, 1987;

Bemis et al., 1998).

518Ow (vpdb) = S18Ow (smow)-0.27
(Equation A.2)

By using Equation A.2 and a rearranged version of Equation A.l (Equation A.3) it is

possible to calculate a predicted value of Patella vulgata 518Oc that is based upon the
measured values of d18Ow together with the water temperature values from the FRS

monitoring station closest to each site.

/Vi c n tV \
sno„ =

16.9 - T

vv 4.38 ,

(Equation A.3)

+ A'sO

For each site the maximum (ie. indicating warmest/most saline conditions) and minimum (ie.

indicating coldest/least saline conditions) predicted values of §18Oc were calculated. These
were then compared with the average of the two measured samples at each site. This allowed
an examination of whether the relationship between measured 5l8Ow and 518Oc at the

sampled sites corresponded to that predicted by the palaeotemperature equation (Equation

A.l). It must be noted that within this assessment only the summer S18Ow values had been

measured at the sample sites. The relationship between 5l8Ow and temperature generally

means that at lower (i.e. winter) atmospheric temperatures, the 518Ow of coastal water is

higher. The predicted range of 5I8Oc at equilibrium calculated within this study for the

sample sites is therefore a preliminary assessment.
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A.3 Results

Coastal water characteristics across the study area

The average range in sea surface temperature (SST) and sea surface salinity (SSS) for the
four FRS monitoring stations shows an overall northward decrease in both variables (Table

A.4). In comparison to open ocean waters of the North Atlantic Current (NAC) between 50°-
64°N and 10°-30°W, the annual range in SST is comparable to that of open ocean waters,

while the SSS's are lower than values measured for the NAC.

SST (°C) SSS (%«,)

Site Max Min Range Max Min Range

NAC Between

18-12

Between 12-

6

6.00 35.7 35.2 0.5

Scalloway 13.45 5.86 7.59 35.13 33.6 1.53

Fair Isle 12.07 6.66 5.41 N/A N/A N/A

Skapa Flow 13.78 6.09 7.69 34.79 34.19 0.6

Lochmaddy 13.9 N/A N/A 34.64 32.83 1.81

Table A.4: Calculated mean SST and SSS for sites monitored by the Scottish Fisheries
Research Centre (FRS). Data from FRS, data for NAC waters from Levitus, (1982); Levitus,
and Boyer (1994); Rossbyera/., 1998.

For the samples of coastal water, the average of the measured 518Ow values at the 19 sample
sites range from -0.3%o to 0.5%o (a range of 0.8%o). The average range in measured values of
518Ow at a single site is 0.4%o. The variability in 518Ow at a single site is higher than average

at seven sites, of which four sites (LO, PB, StB, and BB) show variability on two

measurements of greater than 0.7%o. The average variability on measurements at individual
sites excluding these four sites is 0.2%o. This effect remains unexplained, and may be the
result ofmeasurement variability or non-homogeneity within the measured samples.
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Site Aliquot 1 518Ow
(SMOW)

Aliquot 2 518Ow
(SMOW)

Average 518Ow
(SMOW)

Range of measured
518Ow (SMOW)

UJ -0.5 -0.1 -0.3 0.4
LO 1.0 -0.1 0.5 1.1
PB 0.7 -0.1 0.3 0.8
StB 0.8 -0.2 0.3 1.0

QG -0.1 -0.5 -0.3 0.4
BB -1.0 -0.2 -0.6 0.8
SkB -0.3 -0.2 -0.3 0.1
SF -0.0 0.5 0.3 0.5
GA 0.1 0.0 0.1 0.1
BO 0.0 0.0 0.0 0.0
BE 0.1 0.2 0.2 0.1
NO 0.1 -0.1 0.0 0.2
HP 0.2 0.4 0.3 0.2

BA 0.4 0.3 0.4 0.1
LM 0.4 0.3 0.4 0.1
RH 0.3 0.2 0.3 0.1
FL -0.0 -0.2 -0.1 0.2
SA 0.1 0.2 0.2 0.1
CMB -0.2 0.4 0.1 0.6

Table A.5: Measured July values of 5 Ow (SMOW).

The 5lsO terrestrial freshwater from a stream at the east of Skapa Flow gave an average

518Ow of -7.4%o. This indicates that the terrestrial freshwater end member for the study area

conforms to typical values for meteoric precipitation for Western Europe (-5 to -15%o).

Site Aliquot 1
s18ow
(SMOW)

Aliquot 2
618Ow
(SMOW)

Average 5I8Ow
(SMOW)

Range of
measured 518Ow
(SMOW)

SF (terrestrial
freshwater)

-7.6 -7.3 -7.4 0.30

Table A.6: Measured values of 8 O for terrestrial freshwater runoff water in proximity to

Skapa Flow.

In comparison to typical open ocean 518Ow values and the typical and measured terrestrial

(meteoric) freshwater 8lsOw, the coastal water samples correlate more closely with a marine
end member. This can be shown by calculating a salinity (S) value from the average

measured 518Ow at each site using the regional salinity: Sl8Ow mixing line between fully fresh
and fully marine water for Scottish west coast waters calculated by Austin and Inall, (2002).
This is defined by the relationship:

5I8Ow = S*0.18 - 6.0
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(Equation A.4)

The salinity values for all 19 coastal sites calculated from the average measured 518Ow values

using the above relationship appear to be more consistent with a dominantly marine water

end member (see Figure A.2). It was possible to plot measured values of both salinity and

S18Ow from two sites, LM and SF, using the available FRS salinity monitoring data from
these sites. These data appear to be in good agreement with the relationship predicted by the
Austin and Inall, (2002) mixing line

Salinity (psu)

<^> FRS monitoring stations (measured average vs measured average Sl80 values)
Sampled sites (calculated average salinity vs measured average S'^O values)

Figure A.2: Red diamonds show measured average 5I8Ow values for sampled sites versus

salinities calculated using the Austin and Inall, (2002) regional salinity: 5lsOw mixing line
for Scottish west coast waters. The green diamonds indicate measured average annual

salinity versus the average S18Ow values measured in this study at FRS monitoring sites LM
and SF. The Austin and Inall, (2002) mixing line is indicated on the graph.

Although the measurement reproducibility discussed above limits the resolution to which

potential differences in 5I8Ow between sampled sites can be identified, the values show some

variation between 4 main areas. In Area A (mainland Scotland) the 518Ow at RH (0.3%o) is
similar to that of values on the west coast at SA (0.1%o) and CMB (0.6%c) within the average

measurement reproducibility (0.4%o). The 518Ow at FL (-0.1%c) appears to be lower than that
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of CMB, though similar to the other two sites from this area. In Area B (Outer Hebrides), the

variability in 51S0W over seven sites shows a low level of variability, ranging from 0.0%o
(NO and BO) to 0.4%o (LM and BA). This contrasts with the variation within Area C

(Orkney Isles), where the 5l8Ow over seven sites ranges between -0.6%c (BB) and 0.5%o

(LO). The three lower 5l8Ow values in Area C (BB (-0.6%c), SkB (-0.3%c) and QG (-0.3%c))
are located on the western coastline of the mainland and Westray, whereas the four higher

Sl8Ow values in this area (LO (0.5%c), PB (0.3%o), StB (0.3%c) and SF (0.3%c) are located
further east within the Orkney Island group. The 5lsO w value for UJ within Area D (Faroe

Isles) is -0.3%c and therefore appears to be similar to that of lower values from the Orkney
Isles.

1.5

1.0

0.5

-I
O 0.0

tb

-0.5

-1.0

-1.5

Site

Figure A.3: variation in 5l8Ow at sampled sites showing average variation in values at a

single site. Shaded areas indicate different geographic areas (see Figure A. 1), A: mainland
Scotland; B: Outer Hebrides; C: Orkney Isles; D: Faroe Isles.

Modern Sl8Oc ofPatella vulgata shells across the study area

The average measured 518Oc values at the 19 modern sampled sites ranged between 3.5%e to
\.l%c (range of 1.8%o). The average difference in measured values from two individual
shells from each of these sites was 0.2%e. At two sites (LO and HP) however, a difference of

0.6%c was observed between two measured shells from each site. The average difference
between measurements from the remainder of the sites was 0.1%c. During the course of
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sample measurement, 10 repeat analyses were performed upon a single shell from an

archaeological deposit at RH. The standard deviation in S18Oc of these measurements was

0.3%o. This apparent variability in repeat measurements of an individual shell appears to be

relatively large, and it is possible that this could represent heterogeneity in S18Oc across an

individual Patella vulgata specimen that has not been resolved by homogenising a larger
section of the shell for measurement. More detailed investigation of this effect is outwith the

scope of this preliminary study but it is possible that seasonal variations in 818Ow of the
ambient water are recorded in the 518Oc of Patella vulgata that may be resolved by further

study.

The average S13C of the measured shell carbonates (813Cc) from the 19 sample sites ranges

from -0.8%o to 0.9%o (range of 1.7%o), with an average difference between measurements at

a single site of 0.5%o. The variability in S13Cc at the sampled sites appears to be much greater

than that of 518Oc measurements upon the same shells, and at two sites (PB and LM) the
difference in 518Oc on two shells is greater than l%o.

Site Average
5I80%O

Difference Average 513C%o Difference

UJ 3.0 0.0 0.9 0.0

LO 3.5 0.6 -0.2 0.2
PB 2.6 0.2 -0.5 1.2

StB 2.9 0.0 -0.5 0.5

QG 2.0 0.0 -0.1 0.7
BB 2.6 0.2 0.0 0.3

SkB 2.5 0.1 -0.4 0.6
SF 2.6 0.4 0.2 0.4

GA 2.7 0.2 1.5 0.6
BO 2.1 0.1 0.3 0.2

BE 2.4 0.2 -0.3 0.1
NO 1.7 0.0 -0.6 0.5

HP 2.5 0.6 -0.8 0.5

BA 2.5 0.0 -0.3 0.5

LM 2.7 0.2 0.5 0.1
RH 2.1 0.0 -0.2 1.0
FL 1.7 0.1 -0.6 0.4

SA 2.3 0.3 0.0 0.4
CMB 2.3 0.0 -0.4 0.5
Table A.7: Measured values of 8 Oc for sampled sites. Each value and associated difference
is produced from the measured values of two individual shells from each site.

In contrast to the measured S18Ow values the variation in S18Oc between the 19 sampled sites

appears to include greater variability within all sampled areas. The most homogeneous
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geographical zone appears to be that of Mainland Scotland, where the 5l8Oc values of SA
(2.3%o), CMB (2.3%e) and RH (2.1%c) are similar, and the value from FL is lower (1.7%c).

In the Outer Hebrides region the 518Oc of five sites (LM, BA, HP, BE and GA) range

between 2.7%c and 2.4%o, with lower values at NO (1.7%o) and BO (2.1%c). On the Orkney
Isles the variability is higher then in other areas, with four sites (SF, SkB, BB. and PB)

ranging between 2.5 and 2.6, while a lower value is recorded at QG (2.0%e) and higher
values at StB (2.9%o) and LO (3.5%o). A higher than average value compared to other

geographical areas is also recorded on the Faroe Isles at UJ (3.0%e).

4
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Figure A.4: variation in 5l8Oc of modern samples at sites showing average difference in
values at a single site.
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Calculation of predicted fHOc using measured 6lsOw and comparison with measured

S,8Oc

Measured 5l8Oc Predicted S18Oc Water temperature 6I8Ow
Site Average Min Max Min Max Average
UJ 3.0 0.2 2.0 13.45 5.86 -0.3

LO 3.5 0.9 2.7 6.09 13.78 0.5

PB 2.6 0.7 2.5 6.09 13.78 0.3

StB 2.9 0.7 2.5 6.09 13.78 0.3

QG 2.0 0.1 1.9 6.09 13.78 -0.3

BB 2.6 -0.2 1.6 6.09 13.78 -0.6

SkB 2.5 0.1 1.9 6.09 13.78 -0.3

SF 2.6 0.7 2.5 6.09 13.78 0.3

GA 2.7 0.5 2.3 6.09 13.9 0.1

BO 2.1 0.4 2.2 6.09 13.9 0.0

BE 2.4 0.6 2.4 6.09 13.9 0.2

NO 1.7 0.4 2.2 6.09 13.9 0.0

HP 2.5 0.7 2.5 6.09 13.9 0.3

BA 2.5 0.8 2.6 6.09 13.9 0.4

LM 2.7 0.8 2.6 6.09 13.9 0.4

RH 2.1 0.7 2.5 6.09 13.9 0.3

FL 1.7 0.3 2.1 6.09 13.9 -0.1

SA 2.3 0.6 2.4 6.09 13.9 0.2

CMB 2.3 0.5 2.3 6.09 13.9 0.1

Table A.8: Measured versus predicted values of 518Oc%o for moc ern marine mo luscs

As the maximum (low water temperature) values of predicted 5l8Oc are calculated using
summer measured 518Ow values, these appear somewhat higher than would be the case if

they had been calculated using measurements of low temperature 5l8Ow from the sample
sites. It is possible, using the salinity: 8I8Ow mixing line equation ofAustin and Inall, (2002)
to predict a low temperature value of 518Ow for the three FRS monitoring stations

(Lochmaddy, Skapa Flow and Scalloway) where water temperature and salinity data are

available (see Table A.4). These predicted values can be used to estimate a low temperature

5I8Oc for the general areas of i. Mainland Scotland and the Outer Hebrides, ii. the Orkney
Isles and iii. the Faroe Isles, and these are shown in Figure A.5 as a dashed line. The

predicted 518Oc values based upon measured 518Ow from the sample sites are however

presented in Figure A.5 and used in interpretation as these data allow higher resolution
variation in 518Ow between the sample sites to be preserved.
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The pattern of site-to-site variation in the equilibrium values of Sl8Oc predicted from

measurements of 8'8Ow at 19 sites appears to be in agreement with the average values of

Sl8Oc measured on Patella vulgata specimens from these sites (Figure A.5). The measured

values of 818Oc from the 19 sample sites all appear closer to the maximum predicted 8I8Oc
values, indicating that the measured shells were precipitated at lower water temperatures.

<(^> Predicted maximum (low T) and minimum (high T) 818Oc

♦ Measured average 818Oc

Figure A.5: Predicted equilibrium values of Sl8Oc for the sample sites showing the average

measured value of 818Oc at each site. The dashed line indicates low temperature Sl8Oc based

upon salinity measurements from three FRS monitoring stations and the Austin and Inall,

(2002) salinity: 518Ow mixing line.
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Comparison ofmodern andfossil SI8Ocdata

Modern samples Archaeological samples

Site Average SI8Oc Average 818Oc Cal. age range BC/AD

SkB 2.5 ±0.1 2.4 ±0.1 2870-2500 BC

BB 2.6 ±0.2 2.4 ± 0.2 2130-1940 BC

BA 2.5 ±0.0 2.9 ±0.2 400-200 BC

HP 2.5 ±0.6 2.6 ±0.2 350-50 BC

StB 2.9 ±0.0 2.7 ±0.1 1020-1160 AD

RH 2.1 ±0.0 2.5 ± 0.4 1040-1220 AD

Table A.9: Comparison of mean Sl8Oc from modern and archaeological shells from 6 sites.

The average S18Oc of the archaeological Patella vulgata samples from six sites ranges from
2A%c (SkB and BB) to 2.9%c (BA), while the average S18Oc of modern Patella vulgata

samples from the same sites ranges between 2.1%e (RH) to 2.9%o (StB). The average

variability on the archaeological shell samples is 0.2%c and the average variability on the
modern shell samples is 0.1%o. At four sites, (SkB, BB, HP and StB) the difference between

average 8l8Oc values of modern and fossil shells is 0.2%o or less, however at RH and BA the

average archaeological and modern 518Oc values differ by 0.4%c.

-m- -m- « [A}-

StB BB SkB

Modem shell samples Site

Archaeological shell samples

Figure A.6: Comparison of mean 518Oc measured at six sites from archaeological and
modern Patella vulgata specimens. Modern values are shown in red and archaeological
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values in blue. The larger of the average variability on the archaeological and modern shell

samples is shown.

A.4 Interpretations

Coastal water characteristics across the study area

The overall northward decrease in annual SST range at the FRS monitoring sites reflects
known climatic gradients in the North Atlantic, where annual atmospheric temperatures

decrease with increasing latitude. Coastal water salinities are generally reduced relative to

open ocean values because a component of coastal water is derived from terrestrial

(meteoric) runoff, which is reflected in the SSS values at the monitoring stations, which are

lower than those of the NAC (Table A.4). A dominantly marine end member at all of the 19
measured sample sites is however indicated by the average Sl8Ow values and the

corresponding water salinities calculated from these. At no site is an anomalously large
freshwater input to the coastal water indicated from these data, suggesting that the surface
water in these locations is representative of typical coastal water composition. The protocol

by which archaeological sites were selected within this thesis for 14C measurement therefore

appears to have been effective in excluding sites where the modern surface water isotopic

composition is significantly influenced by freshwater sources away from typical coastal
water values.

Although the average 5l8Ow values from the sampled sites appear typical of coastal water,

variability in these values is apparent between the sampled sites. The relative homogeneity
of samples from mainland Scotland and the Outer Hebrides may reflect consistency in
coastal water characteristics at these sites, while the greater variation in S18Ow between sites
within the Orkney Isles indicates differences in coastal water temperature and/or salinity
exist at the samples sites in this area. Overall, the highest values of sampled sites are

recorded in the north of the study area on the Orkney Isles. A northward increase in 8lsOw is
consistent with decreasing temperatures at higher latitudes.

The three lower 518Ow values within the Orkney Isles are located on more exposed west

Island coasts, in comparison to LO, PB, StB and SF, which are located further east within
the island group. However, this difference does not readily explain the differences in
measured 518Ow values, as the coastal water that influences QG, SkB and BB would be

expected to be cooler and more saline than the eastern sites being derived more directly from

185



JO

Appendix A: A preliminary assessment ofS O in coastal water and mollusc shell
carbonates

the eastward flow of open ocean waters. The preliminary nature of this study limits the
resolution to which these potential site-specific variations can be assessed, particularly as the

temporal record of 518Ow at the sites is restricted to individual summer measurements. It is
desirable to examine these effects in more detail however, and a longer-term average record
of 518Ow values from the sites is required in order to achieve this.

Modern S,8Oc ofPatella vulgata shells across the study area

The general pattern in 518Ow is consistent with that observed in the 518Oc measurements from
the 19 sample sites. This correlation indicates that Patella vulgata precipitates its shell
carbonate in equilibrium with the ambient water, and that both the 5l8Ow and 5l8Oc
measurements within this study are valid assessments of the isotopic composition of coastal
water and shell carbonates from the sample sites. The data suggest an overall northward
increase in 5l8Oc similar to that in the 5l8Ow measurements from the sample sites. Along with

the influence of increasing 518Ow in the ambient water, increasing 518Oc is also a function of

decreasing temperatures, which is consistent with the northward climatic gradient in the
North Atlantic.

Calcareous organisms may precipitate their shell carbonate in isotopic disequilibrium with
that of the ambient water due to metabolic effects that may be specific to species, and these
effects appear to be common with respect to carbon isotopes (Wefer and Berger, 1991). The

apparently high variability in measured 813Cc at the measured sites indicates that along with
the isotopic composition of the ambient water, biological effects influence the 813Cc of
Patella vulgata.

Calculation ofpredicted S>8Oc using measured fHOw and comparison with measured $8Oc

The indication (from measured 518Ow and S18Oc) that Patella vulgata within the study area

precipitates its shells in isotopic equilibrium with the ambient water is supported by the
results of predicted 518Oc from the sample sites. From Figure A.5 it can be seen that the
measured values are similar to the equilibrium values predicted from the modified

palaeotemperature equation (Equation A.3). However, the measured 518Oc values lie much
closer to the maximum predicted values, which reflect lower water temperatures, however,
the fastest season of growth for Patella vulgata appears to be the summer (Hill, 2000). The
results of the predicted and measured 518Oc within this study may therefore be the result of
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two factors. Firstly, it is possible that rather than precipitating shell material in isotopic

equilibrium, there is a positive offset in Patella vulgata 518Oc. These effects have been
identified in other marine organisms (e.g. corals). For example, Burman and Schmitz, (2005)

found that 518Oc precipitated by Littorina littorea, another intertidal gastropod in Denmark

fjord sites was enriched by c.2%o relative to theoretical 5lsO isotopic equilibrium. Such an

offset would shift the measured 5l8Oc values significantly closer to the values predicted from
the maximum water temperatures (i.e. summer values) from the FRS monitoring station data.

Secondly, from examination of the water temperature data at the monitoring stations (Table

A.9), low temperatures persist in these locations until the month of April, rising above 10°C
from June onwards. It is possible that at the study region latitudes Patella vulgata grows a

larger portion of its shell material (in equilibrium) during the spring time than is otherwise

assumed, and that this is reflected in the measured 518Oc of shells from the study sites.

Month

Lochmaddy
water temp (°C)

Skapa
Flow
water

temp (°C)

Fair Isle
water temp
(°C)

Scalloway
water temp
(°C)

January N/A 6.83 7.25 6.63

February N/A 6.09 6.66 5.86

March 7.9 6.59 6.96 6.25

April 8.7 7.77 7.54 7.64

May 9.9 9.56 8.73 9.66
June 11.6 11.57 10.24 11.38

July 12.9 12.59 11.28 12.61

August 13.9 13.78 12.07 13.45

September 13.6 13.31 11.89 12.45

October 11.9 11.60 10.95 10.78

November 11.1 9.64 9.45 8.86

December 10.3 8.05 8.19 7.82
Table A.10: Monthly average water temperature data from the FRS monitoring stations
within the study area.

Comparison ofmodern andfossil 6180c data

The assessment of 5l8Oc from modern and archaeological Patella vulgata shells at six sites
shows a difference of 0.4%o at two sites (BA and RH), while the 518Oc of shells from the
other four sites are indistinguishable at the resolution afforded within this study. These data
indicate that the average SST and/or SSS at the archaeological sites at the time the shells
were precipitated were comparable to modern values on the Orkney Isles for the periods
2870-2500 BC (SkB), 2130-1940 BC (BB) and 1020-1160 AD (StB). The apparent
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difference in 5l8Oc between modern and fossil shells on the Outer Hebrides (at BA) for the

period 400-200 BC is however not reflected in the data for HP, which is located in close

proximity and relates to the comparable time period 350-50 BC. The archaeological samples
from RH are dated to a comparable time period (1040-1220 AD) to that of StB, where no

difference in archaeological and modern 518Oc can be identified. It is difficult therefore to

state to what extent variations between the 618Oc of modern and archaeological shells from
the sites are extant. The measurements were produced from homogenised whole shells

samples, meaning that seasonal variations in 518Oc are not resolved in these data.
Examination of such seasonal variations within Patella vulgata was outwith the scope of this

study; however it is possible that an investigation of these characteristics could identify
differences in the seasonal temperature and/or salinity ranges between modern and

archaeological shells at the sample sites.

A.5 Conclusions

The results of this preliminary study demonstrate the potential for added value to be obtained
from marine mollusc shells from archaeological sites, and of the value of further

investigation of coastal 5l8Ow and 518Oc within the climatically sensitive study area. The
results of the investigation indicate that the site selection protocol by which samples were

obtained within this thesis for 14C measurement was successful in excluding sites at which
there is an anomalously high freshwater input. The limited nature of the investigation

precludes a detailed interpretation of 518Ow and mollusc shell 5l8Oc across the study area;

however it does highlight potential variation in S18Ow and S18Oc across this region. This

suggestion could be further investigated by a more intensive assessment that could

incorporate information concerning annual variations in 5!8Oc and §18Ow. In particular the

potential of Patella vulgata within such further investigations should be noted, as the

prevalence of this species within both modern and prehistoric settings may mean that it is a

useful source of palaeoclimatic proxy data.
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Appendix B: Calculation of AR at Hrisheimar, Iceland.

B.l Introduction

During the course of this thesis an opportunity arose to obtain samples from Hrisheimar,

Iceland, a site at which excavation was being undertaken as part of research programmes

funded by the Leverhulme trust and the National Science Foundation of America. The site at

Hri'sheimar is a farm with associated midden deposits located in the interior highland basin
of Lake Myvatn, north Iceland. This afforded the possibility of extending the spatial range of
the dataset, particularly with respect to providing additional data to the Faroe Isles site of
Undir Junkarinsflptti.

Figure B.l: Location of Hrisheimar relative to the sites from which material for
measurement was obtained during this thesis, showing modern surface circulation patterns of
Atlantic (grey arrows) and Arctic (black arrows) derived currents.
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Figure B.2: Location of Hrisheimar within the Myvatn area, (north Iceland).

Modern northern Iceland is a low Arctic environment with a climate that is significantly
colder than the south of Iceland due to the influence of the East Icelandic Current (EIC),

derived from the southward-flowing Arctic waters of the East Greenland current. The North
Iceland shelf is positioned close to the modern Polar Front, which separates the waters of the
EIC from the Atlantic-derived waters of the Irminger Current (IC) as it flows clockwise
around Iceland. This means that the area contains a series of sensitive oceanographic and
climatic fronts, the position of which appears to have fluctuated over the Holocene according
to data from both historical and palaeoenvironmental records (Ogilvie, 1996: Knudsen et al.,

2004). Hrisheimar forms one of a large number of settlements identified in the Myvatn

region (Myvatnssveit), dated to between the 9th - 12th centuries AD (McGovern et al., 2005).
Excavations revealed that although Hrisheimar is situated c.60 km from the present

coastline, the archaeological fauna that had been incorporated into midden deposits
contained a significant proportion of marine resources, including seal bones, marine fish, sea
bird bones and mussel shells (McGovern et al., 2005; Perdikaris and McGovern, 2005).
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B.2 Methodology

The inland location of Hrisheimar required modifications of the site selection protocols

applied to coastal sites. Sample material was obtained from context 45 (HR-45), which was

a stratigraphically contained midden deposit in the upper site sequence. The material

comprised four individual neo-natal cow bones (Bos sp.), and four individual mussel shells

(Mytilus edulis). Sample pretreatment procedures followed those outlined in Chapter 4 for
terrestrial mammal bone and marine mollusc shells, as did the evolution of sample C02 and

production of graphite targets for AMS analysis. The sample l4C/13C ratios were measured
on the SUERC facility. The contemporaneity of groups of terrestrial and marine sample 14C
ages were assessed using the f test (c.f. Ward and Wilson, 1978), and sample ages that were
similar were used to calculate AR, following the procedure in Chapter 4 (section 4.2.3). A 2a
calibrated age range was calculated for HR-45 using a weighted mean value of terrestrial
measurements that were statistically the same on the basis of a f test. The weighted mean

terrestrial age BP was then converted to a calibrated range using the INTCAL04 atmospheric
dataset (Reimer et al., 2004) and the OxCal v3.10 calibration program (Bronk Ramsey,

1995; 2001).

B.3 Results

Terrestrial samples Marine samples

Context Lab Code Age BP ± 513C (%») Lab Code Age BP ± 513C (%„)

la la

45 6431 1220 ±35 -21.5 6438 1650 ±40 0.8

6432 1200 ±35 -21.4 6439 1610 ± 35 -0.3

6433 1120 ±35 -21.7 6440 1595 ±35 0.3

6437 1120 ±35 -21.6 6441 1615 ± 35 0.6

Table B.l: Measurement results for samp es from HR-45

T-statistic

(Terrestrial)

/"-statistic

(Marine)

Terrestrial

weighted mean

Cal. age

range (2a)

AR

6.78 (X20.05 = 7.81) 1.11 (x2O,05 = 7.81) 1165 ±26 14C y 778-963 AD 96 ± 15 14C y

and AR value based upon measurements from HR-45
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The x2 test showed that the groups ofmarine and terrestrial sample l4C ages were statistically

similar with T-statistics of T = 6.78 (x2o.os = 7.81) for the group of four terrestrial sample

ages and T = 1.11 (x2o.o5 = 7.81) for the four marine sample ages. The 2a calibrated age

range for the weighted mean terrestrial 14C age for the group of samples from HR-45 is 778-
963 AD, and calculated AR value was 96 ± 15 14C y.

B.4 Interpretations

The calibrated age range of HR-45 is consistent with other determinations made from this

site, where the calibrated ranges of these measurements at 2a lay between 770 - 1020 AD

(McGovern et al., 2005). These were measured on nine individual samples of cow and pig
bone from contexts including midden deposits and a deflated upper site deposit (McGovern
et al., 2005). When the 2a calibrated age range of HR-45 is compared to other contexts for
which AR was calculated within this study, it is similar to four individual contexts from the
west coast of Ireland (Area 1: contexts DL3-19 (AR = -107 ± 18) and DL11-2 (AR = -69 ±

17)) and the Outer Hebrides (Area 3; contexts BO-64 (AR = -57 ± 14) and GA-156 (AR = -

89 ± 17)). The AR value from HR-45 (96 ± 15 14C y) is compared with the values from these
contexts in Chapter 6 (section 6.2.7). This comparison shows a difference in the AR from

HR-45, which is significantly higher than values from both sites in Area 1 for the period
660-820 AD and sites in Area 3 for the period 778 - 990 AD. This may indicate spatial

variability in surface ocean 14C between the Areas for these time periods. Such a variation is

comparable to that observed at c.1000 AD between Ireland, the Outer Hebrides and the
Faroe Isles, which involves an overall northward increase in AR, with the highest values

located on the Faroe Isles. The AR value from HR-45 is similar to the value for the Faroe

Isles at c.1000 AD (UJ-23; 64 ± 13 14C y) where T = 2.60 (x2:o,05 = 3.84)), and also to the
current regional mean value for Iceland and the Faroe Isles (52 ± 19 14C y (Reimer and

Reimer, 2005)), where T= 3.30 (x2:o,05 = 3.84). This may represent a spatial variability in AR

during the period when the Norse settlers colonised Iceland (c.870-930 AD), that is

comparable with the variation which exists today.

B.5 Conclusion

An opportunity to perform an assessment of AR for the north coast of Iceland is possible
based upon measurements of neo-natal cow bones and mussel (Mytilus edulis) shells from
the archaeological site of Hrisheimar. Material was selected for dating from the context HR-

45, which gave a terrestrial weighted mean age of 1165 ± 26 14C y (778-963 AD at 2a). The
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resulting AR value from HR-45 (96 ± 15 l4C y) is similar to both the current regional mean
value for Iceland and the Faroe Isles (53 ± 19 14C y), and a value for the Faroe Isles at c.1000
AD (64 ± 13 14C y), but is significantly higher than values from the west coast of Ireland and
the Outer Hebrides of between -107 ± 18 l4C y and -57 ± 14 14C y. This indicates that a

spatial variation in AR existed between these areas for the periods 660-820 AD and 778 -
990 AD comparable to that which is observed in modern regional mean AR values within the
North Atlantic.
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Appendix C: Empirical assessment of AR values calculated for
individual pairings ofmarine and terrestrial samples for each
measured context.

The methodology used to determine AR for each measured context is described in Chapter 4

(section 4.2.3). From each context, terrestrial and marine samples were used to assess AR

that had been selected on the basis of a y2 test for contemporaneity. Although the
measurements within a group of terrestrial or marine samples selected on this basis were

statistically similar at 95% confidence, the group of measurements were produced from

separate individual samples and therefore had slightly different "underlying" 14C ages. To
account for any additional variability due to uncertainty about the precise pairing of
terrestrial and marine samples, a value of AR was calculated for each possible pairing of
terrestrial and marine HC ages from a context. The distribution was summarised by the

weighted mean and appropriate standard error for prediction. The full data from these
assessments is contained within the following tables, within which the individual contexts
are ordered by relevant geographic area and 14C age BP.

C.l Area 1: Western Ireland

Context: DL3-19

Terrestrial samp les Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(,4C y BP)
1080 1335 ± 35 3188 1605 ±35 -124 ±45
1080 1335 ±35 1089/3545 1515 ± 40 -214 ±49

1080 1335 ±35 1090/3189 1531 ± 34 -198 ±44
1080 1335 ±35 1091/3190 1583 ± 36 -146 ±45
1085 1220± 35 3188 1605 ±35 14 ±69
1085 1220 ±35 1089/3545 1515 ± 40 -76 ± 72
1085 1220± 35 1090/3189 1531 ±34 -60 ± 69
1085 1220± 35 1091/3190 1583 ±36 -8 ±70
1086 1225± 35 3188 1605 ±35 11 ±70

1086 1225 ±35 1089/3545 1515 ± 40 -79 ± 73
1086 1225 ±35 1090/3189 1531 ±34 -63 ± 70
1086 1225 ±35 1091/3190 1583 ±36 -11 ±71
1087 1280± 35 3188 1605 ±35 -61 ±59
1087 1280 ±35 1089/3545 1515 ±40 -151 ±62
1087 1280± 35 1090/3189 1531 ±34 -135 ±58
1087 1280 ±35 1091/3190 1583 ±36 -83 ± 60

Weighted
mean AR

-107 ±18

Table C.l: AR values for individual pairings of terrestrial and marine samples for DL3-19.
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Context: DL11-2

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
1842 1245 ±50 1850 1590± 35 -30 ± 89
1842 1245 ±50 1852 1595 ±40 -25 ±91
1842 1245 ± 50 1853 1545 ±40 -75 ±91
1842 1245 ±50 1854 1535 ±35 -85 ± 89
1847 1215 ±35 1850 1590 ±35 15 ±58
1847 1215 ±35 1852 1595 ±40 20 ±61
1847 1215 ±35 1853 1545 ±40 -30 ±61
1847 1215 ± 35 1854 1535 ±35 -40 ±58
1848 1260 ±35 1850 1590± 35 -67 ± 57
1848 1260± 35 1852 1595 ±40 -62 ± 60
1848 1260± 35 1853 1545 ±40 -112 ± 60
1848 1260 ±35 1854 1535 ±35 -122 ±57
1849 1325 ±35 1850 1590 ±35 -102± 69
1849 1325 ±35 1852 1595 ±40 -97 ± 72
1849 1325 ±35 1853 1545 ±40 -147 ±72
1849 1325 ±35 1854 1535 ±35 -157 ±69

Weighted
mean AR

-69 ± 17

Table C.2: AR values for individual pairings of terrestrial and marine samples for DL11-2.

Context: OI-6

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
3226 970 ± 35 1076 1225 ±35 -107± 70
3226 970 ±35 1077 1220 ±40 -112 ± 73
3226 970 ± 35 1078 1285 ±35 -47 ± 70
3226 970 ± 35 1079 1170 ±50 -162 ±79
1073 945 ± 45 1076 1225 ±35 -100 ±70
1073 945 ± 45 1077 1220 ±40 -105 ±73

1073 945 ± 45 1078 1285 ±35 -40 ± 70
1073 945 ± 45 1079 1170 ±50 -155 ±79
1074 1050 ±35 1076 1225 ±35 -195 ±43

1074 1050 ±35 1077 1220 ±40 -201± 47

1074 1050 ±35 1078 1285 ±35 -136 ±43
1074 1050 ±35 1079 1170 ±50 -251± 56

1075 980 ±45 1076 1225 ±35 -112 ±74

1075 980 ± 45 1077 1220 ±40 -117 ±77
1075 980 ±45 1078 1285 ±35 -52 ± 74

1075 980 ± 45 1079 1170 ±50 -167 ± 82

Weighted mean
AR

-142 ±16

Table C.3: AR values for individual pairings of terrestrial and marine samples for OI-6.
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C.2 Area 2: Mainland Scotland

Context: SA-013

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(l4C y BP)
3566/4953 7600 ± 40 241 8025 ± 60 52 ±61
3567/4957 7600 ±35 241 8025 ± 60 59 ±62
3566/4953 7600 ± 40 242 8028 ± 60 55 ±61
3567/4957 7600 ± 35 242 8028 ± 60 62 ±62
3566/4953 7600 ±40 3167 7975 ± 40 2 ±42
3567/4957 7600 ± 35 3167 7975 ± 40 9 ±43
3566/4953 7600 ± 40 3168 8045 ± 40 72 ±42
3567/4957 7600 ±35 3168 8045 ± 40 79 ±43

Weighted
mean AR

46 ±17

Table C.4: AR values for individual pairings of terrestrial and marine samples for SA-013.

Context: CMB-XIII

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
3587 4775 ± 35 4947 5330 ±35 154 ± 66
3588 4785 ± 45 4947 5330 ±35 149 ± 70

3592/4951 4816 ± 27 4947 5330± 35 137 ± 65
3587 4775 ± 35 4948 5310 ±40 134 ±69
3588 4785 ± 45 4948 5310 ±40 129 ±73

3592/4951 4816 ± 27 4948 5310 ±40 117 ± 68
3587 4775 ± 35 4949 5325 ± 40 149 ±69
3588 4785 ±45 4949 5325 ± 40 144 ±73

3592/4951 4816 ± 27 4949 5325 ± 40 132 ±68
3587 4775 ± 35 4950 5335 ±40 159 ± 69

3588 4785 ± 45 4950 5335 ±40 154 ±73
3592/4951 4816 ±27 4950 5335 ±40 142 ±68

Weighted
mean AR

148 ± 20

Table C.5: AR values for individual pairings of terrestrial and marine samples for CMB-XIII.
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Context: FL-JM76

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
1061 950 ±50 3130 1232 ±23 -95 ± 67
1063 910 ± 35 3130 1232 ±23 -66 ± 66
1064 940 ± 45 3130 1232 ±23 -90 ± 66
3181 870 ±35 3130 1232 ±23 -4 ±38
3182 920 ± 35 3130 1232 ±23 -78 ±61
1061 950 ±50 3131 1173 ±31 -154 ±70
1063 910 ± 35 3131 1173 ±31 -125 ±69
1064 940 ± 45 3131 1173 ± 31 -150 ±69
3181 870 ± 35 3131 1173 ± 31 -63 ± 43
3182 920 ± 35 3131 1173 ±31 -137 ± 65
1061 950 ±50 3132 1186 ±31 -141± 70
1063 910 ± 35 3132 1186 ±31 -112 ±69
1064 940 ± 45 3132 1186 ±31 -136 ±69
3181 870 ±35 3132 1186 ±31 -50 ± 43
3182 920 ± 35 3132 1186 ±31 -124 ±65

Weighted
mean AR

-84 ± 15

Table C.6: AR values for individual pairings of terrestrial and marine samples for FL-JM76.

Context: RH-3019

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
243 910 ±45 247 1210 ± 45 -87 ±83
243 910 ± 45 248 1175 ±45 -122 ± 82
243 910 ± 45 249 1220± 50 -77 ± 85
243 910 ± 45 253 1200± 50 -97 ± 85

244 855 ± 45 247 1210 ± 45 -12 ± 62
244 855 ±45 248 1175 ±45 -47 ± 62
244 855 ± 45 249 1220± 50 -2 ±66
244 855 ±45 253 1200 ±50 -22 ± 66

245 855 ±50 247 1210 ±45 -9 ±65
245 855 ± 50 248 1175 ±45 -44 ± 65
245 855 ±50 249 1220± 50 1 ±69

245 855 ±50 253 1200± 50 -19 ± 69
246 920 ± 50 247 1210 ± 45 -95 ± 84

246 920 ± 50 248 1175 ±45 -130 ±84
246 920 ± 50 249 1220 ±50 -85 ± 87
246 920 ± 50 253 1200 ±50 -105 ±87

Weighted
mean AR

-50 ± 18

Table C.7: AR values for individual pairings of terrestrial and marine samples for RH-3019.
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Context: RH-3004

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
254 655 ±50 258 1105 ±60 49 ± 87
254 655 ±50 259 1125 ±55 69 ± 84
254 655 ± 50 260 1020 ±50 -36 ±81
254 655 ±50 261 1080 ±50 25 ± 81
255 665 ± 50 258 1105 ±60 45 ± 88
255 665 ± 50 259 1125 ±55 65 ± 84
255 665 ± 50 260 1020 ±50 -40 ±81
255 665 ± 50 261 1080 ±50 20 ±81
256 650 ±50 258 1105 ±60 52 ± 87
256 650 ±50 259 1125 ±55 72 ± 84
256 650 ±50 260 1020 ±50 -33 ±81
256 650 ±50 261 1080 ±50 27 ±81
257 610 ± 50 258 1105 ±60 71 ± 87
257 610 ± 50 259 1125 ±55 91 ± 83
257 610 ±50 260 1020 ±50 -14 ± 80
257 610 ± 50 261 1080± 50 46 ± 80

Weighted
mean AR

30 ± 21

Table C. 8: AR values for individual pairings of terrestrial and marine samples for RH-3004.

C.3 Area 3: Outer Hebrides

Context: NO-5

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
AA-50332 7525 ± 80 AA-53250 7860 ±45 -4 ± 105

AA-50332 7525 ± 80 AA-53251 7880 ±45 16 ± 105

AA-50333 7395 ±45 AA-53250 7860 ±45 95 ±62

AA-50333 7395 ± 45 AA-53251 7880 ±45 115 ± 62
AA-50334 7420 ± 45 AA-53250 7860 ±45 65 ±75

AA-50334 7420 ± 45 AA-53251 7880 ±45 85 ±75

Weighted mean
AR

78 ±31

Table C.9: AR values for individual pairings of terrestrial and marine samples for NO-5.
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Appendix C: Empirical assessment ofAR values calculatedfor individualpairings of
marine and terrestrial samples for each measured context

Context: BA-139

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
AA-51177 2290 ± 40 AA-51180 2540 ±35 -80 ± 79

AA-51177 2290 ±40 AA-51181 2540 ± 40 -80 ±82
AA-51177 2290 ±40 AA-51182 2535 ±40 -85 ± 82
AA-51177 2290 ± 40 AA-51183 2480 ±40 -140± 82
AA-51178 2220 ±45 AA-51180 2540 ± 35 -42 ± 78
AA-51178 2220 ±45 AA-51181 2540 ± 40 -42 ±81

AA-51178 2220 ± 45 AA-51182 2535 ±40 -47 ±81
AA-51178 2220 ± 45 AA-51183 2480 ± 40 -102 ±81
AA-52318 2255 ± 70 AA-51180 2540 ± 35 -61 ±94
AA-52318 2255 ± 70 AA-51181 2540 ± 40 -61 ±96
AA-52318 2255 ± 70 AA-51182 2535 ±40 -66 ± 96
AA-52318 2255 ± 70 AA-51183 2480 ± 40 -121 ±96
AA-51179 2245 ±40 AA-51180 2540 ±35 -53 ± 82
AA-51179 2245 ±40 AA-51181 2540 ± 40 -53 ± 84
AA-51179 2245 ±40 AA-51182 2535 ± 40 -58 ± 84

AA-51179 2245 ±40 AA-51183 2480 ± 40 -113 ± 84

Weighted mean
AR

-75 ±21

Table C.10: AR values for individual pairings of terrestrial and marine samples for BA-139.

Context: BA-146

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
AA-48452 2135 ±50 AA-48456 2390 ± 50 -112 ± 99

AA-48452 2135 ±50 AA-48457 2385 ±50 -117 ± 99

AA-48452 2135 ±50 AA-48458 2345 ± 75 -157 ±114
AA-48452 2135 ±50 AA-48459 2355 ± 40 -147 ± 95

AA-48453 2115 ± 50 AA-48456 2390 ± 50 -60 ± 78

AA-48453 2115 ± 50 AA-48457 2385 ± 50 -65 ± 78

AA-48453 2115 ± 50 AA-48458 2345 ± 75 -105 ±96

AA-48453 2115 ± 50 AA-48459 2355 ±40 -95 ± 72

AA-48454 2165 ±55 AA-48456 2390 ±50 -132±102

AA-48454 2165 ±55 AA-48457 2385 ±50 -137 ±102
AA-48454 2165 ±55 AA-48458 2345 ± 75 -177 ±116
AA-48454 2165 ±55 AA-48459 2355 ±40 -167 ±97

AA-48455 2030 ± 50 AA-48456 2390 ±50 23 ±69

AA-48455 2030 ± 50 AA-48457 2385 ±50 18 ±69

AA-48455 2030 ±50 AA-48458 2345 ± 75 -22 ± 89

AA-48455 2030 ±50 AA-48459 2355 ±40 -12 ± 62

Weighted mean
AR

-71 ±21

Table C. 11: AR values for individual pairings of terrestrial and marine samples for BA-146.
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Appendix C: Empirical assessment ofAR values calculatedfor individual pairings of
marine and terrestrial samples for each measured context

Context: HP-201

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
23 2155 ±40 27 2365 ± 65 -166 ±92
23 2155 ±40 28 2375 ± 40 -156 ±77
23 2155 ±40 28 2385 ±40 -146 ±77
23 2155 ±40 30 2360 ± 40 -171 ±77
24 2120 ±40 27 2365 ±65 -85 ± 85
24 2120 ±40 28 2375 ± 40 -75 ± 66
24 2120 ±40 28 2385 ± 40 -65 ± 68
24 2120 ±40 30 2360 ± 40 -90 ± 68
25 2135 ±40 27 2365 ± 65 -130 ± 98
25 2135 ±40 28 2375 ±40 -120± 84
25 2135 ±40 28 2385 ± 40 -110 ± 84
25 2135 ±40 30 2360 ± 40 -135 ± 84
26 2110 ± 80 27 2365 ± 65 -119 ± 125
26 2110 ± 80 28 2375 ± 40 -109 ± 115
26 2110 ± 80 28 2385 ± 40 -99± 115
26 2110 ± 80 30 2360 ± 40 -124±115

Weighted mean
AR

-116 ± 21

Table C. 12: AR values for individual pairings of terrestrial and marine samples for HP-201.

Context: BA-39

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
AA-51177 2080 ± 45 AA-51180 2240 ± 45 -186 ±66

AA-51177 2080 ± 45 AA-51181 2255 ± 45 -171 ±66
AA-51177 2080 ± 45 AA-51182 2260 ± 45 -166 ±66

AA-51177 2080 ± 45 AA-51183 2260 ± 45 -167 ±66

AA-51178 1975 ±45 AA-51180 2240 ± 45 -81 ± 64

AA-51178 1975 ±45 AA-51181 2255 ± 45 -66 ± 64

AA-51178 1975 ±45 AA-51182 2260 ± 45 -61 ± 64

AA-51178 1975 ±45 AA-51183 2260 ± 45 -61 ± 64

AA-52318 2005 ± 45 AA-51180 2240 ± 45 -99 ± 64

AA-52318 2005 ± 45 AA-51181 2255 ± 45 -84 ± 64

AA-52318 2005 ± 45 AA-51182 2260 ± 45 -79 ± 64

AA-52318 2005 ± 45 AA-51183 2260 ± 45 -79 ± 64
AA-51179 1990 ±45 AA-51180 2240 ± 45 -92 ± 66

AA-51179 1990 ±45 AA-51181 2255 ± 45 -77 ± 66
AA-51179 1990 ±45 AA-51182 2260 ± 45 -77 ± 66

AA-51179 1990 ±45 AA-51183 2260 ± 45 -77 ± 66

Weighted mean
AR

-101±16

Table C. 13: AR values for individual pairings of terrestrial and marine samples for BA-39.
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Appendix C: Empirical assessment ofAR values calculatedfor individualpairings of
marine and terrestrial samples for each measured context

Context: BE-503

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
1049 1595 ±40 1054 1980 ±35 43 ±60

1049 1595 ±40 1055 1945 ±35 8 ±60
1049 1595 ±40 3179 1940 ±35 3 ±60
1049 1595 ±40 1056/3180 2014 ±27 77 ± 56
1050 1630± 35 1054 1980 ±35 -4 ±41
1050 1630 ±35 1055 1945 ±35 -39 ±41
1050 1630 ±35 3179 1940± 35 -44 ± 41
1050 1630 ±35 1056/3180 2014 ±27 30 ±34
1051 1725 ±40 1054 1980 ±35 -88 ± 64
1051 1725 ±40 1055 1945 ±35 -123 ±64
1051 1725 ±40 3179 1940 ±35 -128 ±64
1051 1725 ±40 1056/3180 2014 ±27 -54 ± 59
1052 1650± 35 1054 1980 ±35 -16 ± 41
1052 1650± 35 1055 1945 ±35 -51 ±42
1052 1650± 35 3179 1940 ±35 -56 ± 42

1052 1650 ± 35 1056/3180 2014 ±27 18 ±34

3176 1735 ±40 1054 1980± 35 -95 ± 64
3176 1735 ±40 1055 1945 ±35 -129 ±64

3176 1735 ±40 3179 1940 ±35 -134 ±64
3176 1735 ±40 1056/3180 2014 ±27 -60 ± 60

3177 1650 ±35 1054 1980 ±35 -16 ±42
3177 1650 ±35 1055 1945 ±35 -51 ±41

3177 1650 ±35 3179 1940 ±35 -56 ± 42

3177 1650 ±35 1056/3180 2014 ±27 18 ±34

Weighted mean
AR

-27 ±10

Table C. 14: AR values for individual pairings of terrestrial and marine samples for BE-503.
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Appendix C: Empirical assessment ofAR values calculatedfor individualpairings of
marine and terrestrial samplesfor each measured context

Context: BO-64

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
3169 1095 ±35 1041 1365 ±40 -105 ± 57

1038 1150 ± 35 1041 1365 ±40 -132 ±54
1039 1120 ±35 1041 1365 ±40 -117 ±56
1040 1065 ±35 1041 1365 ±40 -82 ±59
3169 1095 ±35 1042/3171 1470 ±25 0 ± 48
1038 1150 ± 35 1042/3171 1470 ±25 -27 ± 44
1039 1120 ±35 1042/3171 1470 ±25 -12 ±47
1040 1065 ±35 1042/3171 1470 ±25 23 ±50
3169 1095 ±35 1043/3172 1397 ±50 -73 ± 65
1038 1150 ± 35 1043/3172 1397 ±50 -100 ±61

1039 1120 ±35 1043/3172 1397± 50 -86 ± 64
1040 1065 ±35 1043/3172 1397± 50 -50 ± 66
3169 1095 ±35 4118 1415 ±35 -55 ± 54
1038 1150 ±35 4118 1415 ±35 -82 ± 50
1039 1120 ±35 4118 1415 ±35 -68 ± 53
1040 1065 ±35 4118 1415 ±35 -32 ± 56

Weighted mean
AR

-57 ± 14

Table C. 15: AR values for individual pairings of terrestrial and marine samples for BO-64.

Context: GA-165

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement No.

(SUERC-)
Age BP AR value

(14C y BP)
AA-48444 1060 ±50 AA-53257/SUERC-

4051/4052/4053/4054
1375 ±35 -72 ± 63

AA-48445 1110 ± 55 AA-53257/SUERC-
4051/4052/4053/4054

1375 ±35 -101 ± 60

AA-48446 1110 ±50 AA-53257/SUERC-
4051/4052/4053/4054

1375 ±35 -101 ±58

AA-48447 1130 ±50 AA-53257/SUERC-
4051/4052/4053/4054

1375 ±35 -111 ±57

AA-48444 1060 ±50 AA-53258 1360 ±40 -87 ± 66

AA-48445 1110 ± 55 AA-53258 1360 ±40 -116 ± 63

AA-48446 1110 ± 50 AA-53258 1360 ±40 -116 ± 62

AA-48447 1130 ± 50 AA-53258 1360 ±40 -136 ±60

AA-48444 1060 ±50 AA-53259 1415 ±35 -32 ± 63
AA-48445 1110 ± 55 AA-53259 1415 ±35 -61 ± 60

AA-48446 1110 ± 50 AA-53259 1415 ± 35 -61 ±58

AA-48447 1130 ± 50 AA-53259 1415 ±35 -70 ± 56

Weighted
mean AR

-89 ±17

Table C. 16: AR values for individual pairings of terrestrial and marine samples for GA-165.
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Appendix C: Empirical assessment ofAR values calculatedfor individualpairings of
marine and terrestrial samples for each measured context

C.4 Area 4: Orkney Isles

Context: SkB-68

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
3128 4555 ± 40 3130 4975 ± 40 65 ±92
3129 4605 ± 40 3130 4975 ± 40 -45 ± 62
4119 4525 ±40 3130 4975 ±40 81 ±90
4121 4530 ±35 3130 4975 ± 40 80 ±89
3128 4555 ± 40 3131 4995 ± 40 85 ±92
3129 4605 ± 40 3131 4995 ± 40 -25 ± 62
4119 4525 ± 40 3131 4995 ± 40 101 ±90
4121 4530 ± 35 3131 4995 ± 40 99 ± 89
3128 4555 ±40 3132 4960 ± 45 50 ±94
3129 4605 ± 40 3132 4960 ± 45 -60 ± 65
4119 4525 ± 40 3132 4960 ± 45 66 ±93
4121 4530 ±35 3132 4960 ± 45 65 ±91

Weighted mean
AR

28 ±23

Table C. 17: AR values for individual pairings of terrestrial and marine samples for SkB-68.

Context: SkB-26

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
3576 4140 ±40 232 4440 ± 50 -75 ± 96

4958 4015 ±40 232 4440 ± 50 83 ±64
3578 4110 ± 35 232 4440 ± 50 -46 ± 96
3582 4145 ±45 232 4440 ± 50 -78 ± 99
3576 4140 ±40 233 4370 ± 45 -145 ±94

4958 4015 ±40 233 4370 ± 45 13 ± 61
3578 4110 ± 35 233 4370 ± 45 -116 ±93

3582 4145 ±45 233 4370 ±45 -148 ±96
3576 4140 ±40 234 4445 ±50 -70 ± 96
4958 4015 ±40 234 4445 ±50 88 ±64

3578 4110 ± 35 234 4445 ± 50 -41 ± 96
3582 4145 ±45 234 4445 ± 50 -73 ± 99
3576 4140 ±40 235 4405 ± 45 -110 ±94
4958 4015 ±40 235 4405 ± 45 48 ±61
3578 4110 ± 35 235 4405 ± 45 -81 ±93

3582 4145 ±45 235 4405 ± 45 -113 ±96

Weighted mean
AR

-27 ± 21

Table C. 18: AR values for individual pairings of terrestrial and marine samples for SkB-26.
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Appendix C: Empirical assessment ofAR values calculatedfor individualpairings of
marine and terrestrial samples for each measured context

Context: BB-XF

Terrestrial samples Marine samples
Measurement Age BP Measurement Age BP AR value
No. (SUERC-) No. (SUERC-) (14C y BP)
3588 3640 ±35 221 3920 ± 50 -44 ± 62
3588 3640 ± 35 222 3980 ±50 16 ±62
3588 3640 ± 35 223 4000 ± 50 36 ±62
3588 3640 ±35 224 3956 ±55 -8 ±66
3572 3645 ± 40 221 3920 ± 50 -63 ± 75
3572 3645 ± 40 222 3980 ±50 -3 ±75
3572 3645 ± 40 223 4000 ± 50 17 ± 75
3572 3645 ± 40 224 3956 ±55 -27 ± 78
3573 3625 ± 40 221 3920 ± 50 -11 ± 82
3573 3625 ± 40 222 3980 ±50 50 ±82
3573 3625 ± 40 223 4000 ±50 70 ± 82
3573 3625 ± 40 224 3956 ±55 26 ± 85
3575 3685 ± 40 221 3920 ± 50 -91 ± 74

3575 3685 ±40 222 3980± 50 -31 ± 74
3575 3685 ± 40 223 4000 ± 50 -11 ±74
3575 3685 ±40 224 3956 ±55 -55 ± 78

Weighted mean
AR

-9 ±18

Table C. 19: AR values for individual pairings of terrestrial and marine samples for BB-XF.

Context: LO-6

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
1837 3735 ± 40 1840 3960 ± 40 -99 ± 67

1837 3735 ±40 1841 3915 ±35 -145 ±65

1837 3735 ± 40 3137 3950 ±35 -110 ± 65
1837 3735 ± 40 3139 3880 ±45 -180 ±70

1838 3690 ± 35 1840 3960 ± 40 -52 ± 67

1838 3690 ± 35 1841 3915 ±35 -97 ± 64

1838 3690 ± 35 3137 3950 ±35 -62 ± 64
1838 3690 ± 35 3139 3880 ±45 -132 ±70

3228 3690 ±35 1840 3960 ± 40 -52 ± 67

3228 3690 ±35 1841 3915 ±35 -97 ± 64
3228 3690 ±35 3137 3950 ±35 -62 ± 64
3228 3690 ±35 3139 3880 ±45 -132± 70
1839 3685 ±40 1840 3960 ± 40 -51 ±68
1839 3685 ±40 1841 3915 ±35 -96 ± 65
1839 3685 ±40 3137 3950 ±35 -61 ±65

1839 3685 ±40 3139 3880 ±45 -131 ±71

Weighted mean
AR

-96 ± 17

Table C. 20: AR values for individual pairings of terrestrial and marine samples for LO-6.
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Appendix C: Empirical assessment ofAR values calculatedfor individualpairings of
marine and terrestrial samples for each measured context

Context: StB-2136

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
107 2050 ±40 111 2280 ± 40 -101 ±56
107 2050 ± 40 112 2325 ± 45 -56 ± 60

107 2050 ± 40 113 2325 ± 90 -56 ± 98

107 2050 ±40 114 2390 ± 45 9± 60
108 2035 ±45 111 2280 ± 40 -89 ±61
108 2035 ± 45 112 2325 ± 45 -44 ± 64
108 2035 ±45 113 2325 ± 90 -44± 101
108 2035 ±45 114 2390 ±45 21 ±64
109 2120 ±40 111 2280 ± 40 -170 ±68
109 2120 ±40 112 2325 ± 45 -125 ±71
109 2120 ±40 113 2325 ± 90 -125 ±105
109 2120 ±40 114 2390 ±45 -60 ±71
110 2035 ± 40 111 2280 ±40 -91 ± 56
110 2035 ± 40 112 2325 ± 45 -46 ± 60
110 2035 ± 40 113 2325 ± 90 -46 ± 98
110 2035 ± 40 114 2390 ± 45 19 ±60

Weighted mean
AR

-60 ± 17

Table C. 21: AR values for individual pairings of terrestrial and marine samples for StB-2136.

Context: StB-2004

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
115 2085 ± 40 125 2385 ±40 -43 ±61
116 2100 ±40 125 2385 ±40 -50 ± 62
123 2090 ± 40 125 2385 ±40 -46 ± 62

124 2070 ± 40 125 2385 ± 40 -36 ± 60

115 2085 ± 40 126 2360 ± 40 -68 ±61

116 2100 ±40 126 2360 ± 40 -75 ± 62
123 2090 ± 40 126 2360 ± 40 -71 ±62

124 2070 ± 40 126 2360 ± 40 -61 ± 60
115 2085 ± 40 127/191 2388 ±26 -40 ± 53

116 2100 ±40 127/191 2388 ±26 -47 ± 54

123 2090 ± 40 127/191 2388 ±26 -43 ± 54
124 2070 ± 40 127/191 2388 ±26 -33 ±51

Weighted mean
AR

-50 ± 17

Table C. 22: AR values for individual pairings of terrestrial and marine samples for StB-2004.
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Appendix C: Empirical assessment ofAR values calculatedfor individualpairings of
marine and terrestrial samples for each measured context

Context: StB-1063B

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
129 965 ± 40 133 1240 ±40 -91 ± 74

129 965 ± 40 134 1270 ±40 -61 ± 74

129 965 ± 40 135 1260 ±40 -71 ± 74
129 965 ± 40 136 1250 ±40 -81 ± 74
130 995 ± 40 133 1240 ±40 -148 ±47
130 995 ± 40 134 1270 ±40 -118 ± 47
130 995 ± 40 135 1260 ±40 -128 ±47
130 995 ± 40 136 1250 ±40 -138 ±47
131 935 ± 40 133 1240 ±40 -79 ±71
131 935 ± 40 134 1270 ±40 -49 ± 71
131 935 ± 40 135 1260 ±40 -59 ±71
131 935 ± 40 136 1250 ±40 -69 ±71
132 935 ± 40 133 1240 ±40 -79 ±71
132 935 ±40 134 1270 ±40 -49 ±71
132 935 ± 40 135 1260 ±40 -59 ±71
132 935 ± 40 136 1250 ±40 -69 ±71

Weighted mean
AR

-96 ± 16

Table C. 23: AR values for individual pairings of terrestrial and marine samples for StB-1063B.

Context: QG-A004

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
3149 980 ± 40 3152 1235 ±40 -101 ±75
3542 875 ± 35 3152 1235 ±40 -26 ± 66
3150 960 ± 40 3152 1235 ±40 -95 ± 73

3151 925 ± 40 3152 1235 ±40 -78 ± 72
3149 980 ± 40 3156 1200 ±35 -136 ±72

3542 875 ± 35 3156 1200 ±35 -61 ±63
3150 960 ± 40 3156 1200 ±35 -130± 70

3151 925 ± 40 3156 1200 ±35 -114 ± 69

3149 980 ± 40 3157 1195 ±35 -141 ± 73

3542 875 ± 35 3157 1195 ± 35 -66 ± 63

3150 960 ± 40 3157 1195 ± 35 -135 ±71

3151 925 ± 40 3157 1195 ±35 -119 ± 69

3149 980 ± 40 3159 1210 ± 35 -126 ±73

3542 875 ±35 3159 1210 ± 35 -51 ±63

3150 960 ± 40 3159 1210 ± 35 -120 ± 71

3151 925 ± 40 3159 1210 ± 35 -104± 70

Weighted mean
AR

-98 ± 17

Table C. 24: AR values for individual pairings of terrestrial and marine samples for QG-A004.
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Appendix C: Empirical assessment ofAR values calculatedfor individualpairings of
marine and terrestrial samples for each measured context

Context: QG-A023

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
AA-52329 875 ± 45 3162/4109 1258 ±25 -9 ±67

AA-52330 835 ± 40 3162/4109 1258 ±25 51 ±49

AA-52331 835 ± 40 3162/4109 1258 ±25 51 ±49

AA-52332 945 ± 55 3162/4109 1258 ±25 -66 ±71

3160 940 ± 35 3162/4109 1258 ±25 -64 ± 62
3161 940 ± 35 3162/4109 1258 ±25 -64 ± 62
AA-52329 875 ± 45 4110 1175 ± 35 -92 ± 71
AA-52330 835 ± 40 4110 1175 ±35 -32 ± 55
AA-52331 835 ± 40 4110 1175 ±35 -32 ± 55
AA-52332 945 ± 55 4110 1175 ±35 -149 ±75

3160 940 ± 35 4110 1175 ±35 -147 ±67

3161 940 ± 35 4110 1175 ±35 -149 ±67

AA-52329 875 ± 45 3166/4111 1233 ±23 -34 ± 66
AA-52330 835 ± 40 3166/4111 1233 ±23 26 ±49
AA-52331 835 ± 40 3166/4111 1233 ±23 26 ±49

AA-52332 945 ± 55 3166/4111 1233 ±23 -91 ± 70

3160 940 ± 35 3166/4111 1233 ±23 -89 ±61
3161 940 ± 35 3166/4111 1233 ±23 -89 ±61

AA-52329 875 ± 45 4112 1210 ± 35 -57 ±71
AA-52330 835 ± 40 4112 1210 ± 35 3 ±58

AA-52331 835 ± 40 4112 1210 ± 35 3 ±55

AA-52332 945 ± 55 4112 1210 ± 35 -114 ± 75

3160 940 ± 35 4112 1210 ±35 -112 ±67

3161 940 ± 35 4112 1210 ± 35 -112 ± 67

Weighted mean
AR

96 ±15

Table C. 25: AR values for individual pairings of terrestrial and marine samples for QG-A023.
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Appendix C: Empirical assessment ofAR values calculatedfor individualpairings of
marine and terrestrial samples for each measured context

C.5 Area 5: Shetland Isles

Context: SC-543
Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

("C y BP)
AA-51153 1740 ±35 SUERC-

3140/4058
1763 ±35 -323 ± 54

AA-51154 1680 ±35 SUERC-
3140/4058

1763 ±35 -279 ±71

AA-51155 1680 ±50 SUERC-
3140/4058

1763 ±35 -278 ± 63

AA-51156 1710 ± 40 SUERC-
3140/4058

1763 ±35 -296 ± 66

AA-51153 1740 ±35 AA-
51162/SUERC-
4059

1749 ±28 -337 ±50

AA-51154 1680± 35 AA-
51162/SUERC-
4059

1749 ±28 -292 ± 59

AA-51155 1680 ±50 AA-
51162/SUERC-
4059

1749 ±28 -293 ± 67

AA-51156 1710 ± 40 AA-
51162/SUERC-
4059

1749 ±28 -310± 62

AA-51153 1740± 35 AA-
51 163/SUERC-
4061

1753 ±28 -333 ± 50

AA-51154 1680 ±35 AA-
51163/SUERC-
4061

1753 ±28 -288 ± 59

AA-51155 1680± 50 AA-
51 163/SUERC-
4061

1753 ±28 -289 ±67

AA-51156 1710 ±40 AA-
51163/SUERC-
4061

1753 ±28 -306 ± 62

AA-51153 1740 ±35 AA-
51164/SUERC-
3141/4062

1817 ± 56 -169 ±70

AA-51154 1680 ±35 AA-
51164/SUERC-
3141/4062

1817 ± 56 -224 ± 77

AA-51155 1680 ±50 AA-
51164/SUERC-
3141/4062

1817 ± 56 -225 ± 83

AA-51156 1710 ± 40 AA-
51164/SUERC-
3141/4062

1817 ± 56 -242 ± 79

Weighted mean
AR

-290 ±16

Table C. 26: AR values for individual pairings of terrestrial and marine samples for SC-543.
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Appendix C: Empirical assessment ofAR values calculatedfor individualpairings of
marine and terrestrial samples for each measured context

Context: SC-3083

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
AA-52324 1615 ± 40 AA-52310 1925 ±40 -21 ±66
AA-52324 1615 ±40 AA-52311 1975 ±45 29 ±69
AA-52324 1615 ±40 AA-52312/3147 2010 ±50 64 ±72

AA-52324 1615 ± 40 3148/4960 2034± 37 88 ±64
AA-52323 1570± 55 AA-52310 1925 ±40 1 ±70
AA-52323 1570± 55 AA-52311 1975 ±45 51 ±73
AA-52323 1570 ±55 AA-52312/3147 2010 ±50 86 ±76
AA-52323 1570 ±55 3148/4960 2034± 37 110 ± 68

Weighted mean
AR

50 ±25

Table C. 27: AR values for individual pairings of terrestrial and marine samples for SC-3083.

Context: SC-1269
Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(,4C y BP)
AA-51157 1300 ±35 AA-51165 1580± 35 -100 ±65

AA-51157 1300 ±35 AA-51166 1525 ±40 -155 ±68

AA-51157 1300 ±35 AA-51167 1655 ±35 -25 ± 65

AA-51157 1300 ±35 AA-51168 1580 ±35 -100 ±65

AA-51158 1375 ±35 AA-51165 1580± 35 -175 ±40

AA-51158 1375 ±35 AA-51166 1525 ±40 -230 ± 45

AA-51158 1375 ±35 AA-51167 1655 ±35 -100 ±40
AA-51158 1375 ±35 AA-51168 1580± 35 -175 ±40

AA-51159 1280 ±35 AA-51165 1580± 35 -86 ± 59
AA-51159 1280± 35 AA-51166 1525 ±40 -141 ±62

AA-51159 1280± 35 AA-51167 1655 ±35 -11 ±59

AA-51159 1280± 35 AA-51168 1580 ±35 -86 ± 59

AA-51160 1285 ±40 AA-51165 1580± 35 -91 ±63

AA-51160 1285 ±40 AA-51166 1525 ±40 -146 ± 66

AA-51160 1285 ±40 AA-51167 1655 ±35 -16 ±63

AA-51160 1285 ±40 AA-51168 1580± 35 -91 ±63

Weighted mean
AR

-121 ±16

Table C. 28: AR values for individual pairings of terrestrial and marine samples for SC-1269.

209



Appendix C: Empirical assessment ofAR values calculatedfor individualpairings of
marine and terrestrial samples for each measured context

Context: SC-206

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
AA-51169 815 ± 40 AA-

51173/SUERC-
3142

1202 ±26 18 ±42

AA-51169 815 ± 40 AA-51174 1135 ± 35 -50 ± 48
AA-51169 815 ±40 AA-51175 1230 ±35 46 ±48

AA-51170 740 ± 40 AA-
51173/SUERC-
3142

1202 ±26 66 ± 34

AA-51170 740 ± 40 AA-51174 1135 ± 35 -1 ±41

AA-51170 740 ± 40 AA-51175 1230± 35 94 ±41
AA-51171 730 ± 45 AA-

51173/SUERC-
3142

1202 ±26 72 ±35

AA-51171 730 ± 45 AA-51174 1135 ±35 5 ±42
AA-51171 730 ± 45 AA-51175 1230 ±35 100 ±42

AA-51172 840 ± 45 AA-
51173/SUERC-
3142

1202 ±26 -8 ±53

AA-51172 840 ± 45 AA-51174 1135 ± 35 -75 ± 58

AA-51172 840 ± 45 AA-51175 1230 ±35 20 ± 58

Weighted mean
AR

35 ± 15

Table C. 29: AR values for individual pairings of terrestrial and marine samples for SC-206.
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Appendix C: Empirical assessment ofAR values calculatedfor individualpairings of
marine and terrestrial samples for each measured context

C.6 Area 6: Faroe Isles

Context: UJ-23
Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
3400 1000 ±40 3404 1410 ± 35 17 ±44

3400 1000 ±40 3407 1460 ±40 67 ±48

3400 1000 ±40 3408 1445 ±35 52 ±44
3400 1000 ±40 3409 1440 ±35 47 ±44

3401 980 ± 40 3404 1410 ± 35 73 ±74
3401 980 ± 40 3407 1460 ±40 124 ±75
3401 980 ±40 3408 1445 ±35 109 ±73
3401 980 ± 40 3409 1440 ±35 104 ±73
3402 940 ± 45 3404 1410 ± 35 88 ±71
3402 940 ± 45 3407 1460 ±40 138 ±73
3402 940 ± 45 3408 1445 ±35 123 ±71
3402 940 ± 45 3409 1440± 35 118 ± 71
3403 995 ± 35 3404 1410 ± 35 24 ±40
3403 995 ± 35 3407 1460 ±40 74 ±44
3403 995 ± 35 3408 1445 ±35 59 ±40
3403 995 ± 35 3409 1440 ±35 54 ±40

Weighted mean
AR

64 ±13

Table C. 30: AR values for individual pairings of terrestrial and marine samples for UJ-23.

C.7 Hrisheimer: Iceland

Context: HR-45

Terrestrial samples Marine samples
Measurement
No. (SUERC-)

Age BP Measurement
No. (SUERC-)

Age BP AR value

(14C y BP)
6431 1220± 35 6438 1650 ±40 59 ±72
6431 1220± 35 6439 1610 ±35 19 ±70

6431 1220 ±35 6440 1595± 35 4 ±70

6431 1220 ±35 6441 1615 ±35 24 ±70
6432 1200 ±35 6438 1650 ±40 78 ±62

6432 1200 ±35 6439 1610 ± 35 40 ±58

6432 1200 ±35 6440 1595 ±35 45 ±58

6432 1200 ±35 6441 1615 ± 35 45 ±58

6433 1120 ±35 6438 1650 ±40 168 ±56

6433 1120 ±35 6439 1610 ± 35 128 ±53

6433 1120 ±35 6440 1595 ±35 113 ±53

6433 1120 ± 35 6441 1615 ±35 133 ±53

6437 1120 ± 35 6438 1650 ±40 168 ±56

6437 1120 ± 35 6439 1610 ± 35 128 ±53
6437 1120 ±35 6440 1595 ±35 113 ± 53

6437 1120 ±35 6441 1615 ± 35 133 ± 53

Weighted mean
AR

96 ±15

Table C. 31: AR values for individual pairings of terrestrial and marine samples for HR-45.
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Appendix D: Publications arising from this thesis.

Publications
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Historic Scotland for comments prior to submission to Proceedings of the Society of

Antiquaries ofScotland
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