
SELF TEST AND SELF REPAIR STRATEGIES 

IN VLSI ARCHITECTURES FOR HIGH SPEED 

DIGITAL CORRELATION 

William Sinclair Blackley 

A Thesis Submitted to the Faculty of Science, 

University of Edinburgh, for the degree of 

Doctor of Philosophy. 

Department of Electrical Engineering 

1985 

I 



AB S T R A C T 

In this thesis, the concepts of self test and self 

repair are applied to a VLSI architecture for digital 

polarity correlation. A prototype correlator chip has 

successfully demonstrated the value of regular array 

architectures with built-in self test and self repair in 

the implementation of large area silicon systems. 

The polarity correlation function is implemented 

using an overloading integrating counter technique. This 

technique permits direct cascading of individual correla-

tor chips, without using additional components, to give 

complete flexibility in choice of correlator delay and 

resolution. Regularity, and a concerted strategy of design 

for testability in the chip's architecture, allow the 

correlator to perform self test and self repair in an 

economic and efficient manner. The built-in self test and 

self repair mechanisms automatically detect and eliminate 

failed channels in the VLSI circuit. 

A review of correlation techniques in VLSI, and the 

concepts of fault tolerance and yield enhancement are 

presented. The correlator has been fabricated on a five-

micron N-channel MOS process and results from the proto-

type chips are reported. 
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CHAPTER 1 

INTRODUCTION 

1.1. VLSI: Linking Design and Test 

The maturing of silicon integrated circuit technology 

from large scale to very large scale integration, has 

improved performance, reduced costs and opened new systems 

applications. However, one important facet of integrated 

circuit technology lags dangerously behind the complexity 

potential of VLSI: establishing the integrity of the VLSI 

design in terms of initial design validation, manufactur-

ing quality, and fault tolerance (1). 

This thesis addresses the need to embody a testabil-
ity scheme within the VLSI integrated circuit itself. It 
presents details of a digital polarity correlator archi-

tecture with built-in self test and self-repair mechan-

isms. Results obtained from a prototype integrated cir-

cuit chip fabricated in five-micron enhancement/depletion 

N-channel MOS technology demonstrate the concept. 

Correlation techniques are widely used in communica-

tions, instrumentation, telemetry, sonar, radar, and in 

medical diagnosis. Important correlation properties 

include the ability to detect a desired signal in the 

presence of noise or other signals, to recognise specific 

patterns, and to determine time delays through various 

media. Electronic systems for computation of the correla-

tion function have been available for many years, but they 

have been large and inefficient. With the development of 
VLSI, correlation can be performed efficiently and with 
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fewer components. 

The integrated circuit to be described here, offers a 

digital implementation of the polarity correlation func-

tion using an overloading integrating counter technique 

[.2]. The VLSI architecture offers high speed operation, 

long (programmable) integration time, and an arbitrarily 

long correlation time delay. The mathematical theory of 

correlation analysis, including the effects of finite sam-

pling and quantisation is presented as a prerequisite to 

deriving the overloading integrating counter technique. 

From this theoretical base the architecture of the corre-

lator chip is described. 

The architecture consists of a linear cascade of 

identical correlation elements. The performance of the 

correlator depends on the serial connection of correctly 

functioning correlation elements. To optimise the perfor-

mance and gain full advantage of the VLSI architecture, a 

design philosophy was adopted which includes design for 

testability, self test, and fault tolerance. 

The question "why design for testability?" 	is 
answered by discussing some existing test philosophies. 

Various approaches exist, and each has its specific appli-

cations, but there is no general agreement on how to 

design for testability. The thesis examines the "ad hoc" 

testability approach, which consists of circuit partition-

ing and added test points. This is contrasted with the 

"structured" testability approach, where the test problem 

is solved at a much lower design level. The object of a 

structured approach is to reduce the sequential complexity 

of a logic network and thus aid test generation and verif-

ication. 

Built-in test and self test techniques are also dis-
cussed. 	Built-in test techniques, 	when used in 



conjunction with redundant circuitry and reconfiguration 

techniques in VLSI, provide the basis of self repairing 

systems. The ease with which built-in self test and self 

repair techniques have been employed in the VLSI architec-

ture to be described here, is demonstrated by the very low 

overhead required in silicon area. 

1.2. Layout of Thesis 

In Chapter 2, a concise background and theory of 

correlation is presented. The effect of finite averaging 

time, discrete sampling, and quantisation of input data 

are discussed. Quantisation of the input data is used to 

link direct correlation to relay correlation, and to 

polarity correlation. The overloading integrating counter 

technique is then derived for the polarity correlator. 

A review of silicon correlators is presented in 

Chapter 3. In this chapter a comparison is made between 

the various published architectures (including the one 

expounded by this thesis), that have been realised as sil-

icon integrated circuits. In Chapter 4, the concept of 

design for testability is discussed, and the subject of 

integrated circuit yield statistics is introduced. Cir-

cuit redundancy is discussed as a method for achieving 

yield enhancement and fault tolerance. 

The integrated circuit design is described in Chapter 

5. The architecture of the basic correlator is shown 

modified to allow built-in self test and self repair. The 

performance of the prototype chip and the experimental 

results of the self repair concept are also presented in 

Chapter 5. 

Chapter 6 summarises and highlights observations from 

the work. In addition, areas of special interest that may 

be considered for further investigation are identified. 
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CHAPTER 2 

CORRELATION THEORY AND TECHNIQUES 

2.1. Introduction 

Correlation analysis is of great interest to 

engineers and scientists. A wide range of engineering 

applications of random data analysis centres around the 

determination of linear relationships between two or more 

sets of data. These linear relationships may be extracted 

in terms of a correlation function [3,4]. Correlation 

techniques are widely used in communications [5], sonar 

[6], radar [7,8,9], and medicine [10,11,12], where they 

are used to detect known signals in the presence of noise 

or other signals [13,14]. They have application in many 

areas such as spectral estimation [15), time response 

measurements of linear systems [16,17,18,19], pattern 

recognition [20,21,22,23,24], and time delay estimation 

[25,26,27] including flow measurement [28,29,30,31,32,33]. 

The bandwidths of the signals to be correlated vary from 

several Hz. in seismology and very low frequency (vif) 

radio wave studies [34],  to several MHz. in photon spec-

troscopy [35,36], radio astronomy [37,38], or plasma phy-

sics experiments [39,40,41], for example. Other fields in 

which correlators are useful include flaw detection and 

system health monitoring [42,43]. 

This chapter deals with the historical development of 

correlator systems, and the mathematical theory of corre-

lation analysis. A brief summary of random data concepts 

is included, on account of the statistical nature of 

correlations. The concept of the ideal correlation 
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coefficient, which is computed over an infinite number of 

data sets, is related to the correlation function, which 

is computed over a single data set for a finite length of 

time. This relationship is crucial to the physical reali-

sation of a correlation system. 

A correlator consists of three basic elements: a 

delaying device, a multiplier, and an averager or integra-

tor as shown in Figure 2.1. 

Signal 1 p 	( X )_ INTEGRATOR  F-o Output 

Signal 2 0-H DELAY 

Figure 2.1. Basic elements of a correlator. 

Direct implementation of the correlation function imposes 

a large processing cost. Consequently, considerable 

effort has been expended to devise approximations that 

will reduce the cost involved. Significant reductions are 

achieved when signals are converted to the sampled-data 

form, and the analogue integration process is replaced by 

one of summation. Further reductions follow when quan-

tised signal representations are used. This chapter 

discusses the various forms of correlator which arise from 

the use of quantisation, of a varied degree, and the use 

of "dither' signals. In addition, the inevitable process-

ing errors, which result from the necessary approximations 

to the ideal correlation coefficient, are examined. 

Firstly however, the interpretation of the correlation 

function shall be studied. 



2.2. Interpreting the Correlation Function 

Correlation functions may be divided into two 
categories: autocorrelation and crosscorre].atjon. The 

autocorrelation function r(r) of the time function x(t) 
is defined as 

T 
r(T) = urn 1 fx(t)x(t-t)dt 	 2.1 

T.00 TO 

where t is a continuous time delay parameter. 	Autocorre- 
lation represents a comparison of an input signal with a 
time delayed replica of itself. The autocorrelation func -.-
tion.. can yield useful information about the signal x(t). 
For example, the value of the autocorrelation function at 

zero delay, is simply the mean square value o of the 
signal, that is, 

r(0 )= o 	 2.2 

In addition, if the signal contains periodic components, 

then the resulting autocorrelation function will also 
exhibit periodic components. This feature is useful in 

recovering periodic signals buried in noise or other 
interference [ 1 3]. Other special properties of the auto-
correlation function are 

Ir xx ( -r)I < r( 0 ) 	 2.3 

and 

r(t) = r( -T) 	 2.4 

A typical autocorrelation function is illustrated in Fig-
ure 2.2. 
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Figure 2.2. Autocorrelation function of a zero-mean sig-
nal. 

The correlation between two signals x(t) and y(t) is 
given by the crosscorrelation function 

T 
yx 	= urn 	Jy(t)x(t-t)dt 	 2.5 

	

T-.co 	0 

where r is simply the averaged product of y lagged withyx  
respect to x. When the value of the crosscorrelation is 

high for some value of lag t, it can be said that x and y 

are similar, in some sense, at this lag value. Some spe-
cial properties are 

Ir yx (T)I < [rxx (0)r y (0)] ½ 	 2.6 

or 

Ir(t)I < OXOY 

where o, = r(0) 1  i.e. the mean square value of y, and 



r 
yx 	yx 	 yx 	xy (T) * r (-i) but r CT) = r (-i) 	2.7 

The most straightforward interpretation of the 

crosscorrelation function is in the context of time delay 

estimation [44,45,46,47]. Consider the propagation path 

shown in Figure 2.3. 

n (t) 

NON—DISPERSIVE 
x (t) 
	

Y(t) 

PROPAGATION PATH 

Figure 2.3. Non-dispersive propagation path. 

In this example the signal, represented by x(t), pro-

pagates through the nondispersive, linear path and com-

bines with statistically independent noise n(t), to pro-

duce the output response y(t). Assuming, for simplicity, 

that the frequency response function of the propagation 

path is a constant H(f) = K, that the propagation distance 

is d, and that the propagation velocity is c, it follows 
that [4] 

Y(t) = Kx(t-d/c) + n(t) 	 2.8 



S 

The crosscorrelation function between x(t) and y(t) is 

then 

T 
= urn 	f[Kx(t-d/c)+n(t)].x(t--t)dt 	2.9 

T-.°° T 0 

= Kr(t_d,c) 

So, in this simple example, the crosscorrelation function 

is given by the autocorrelation function of x(t) multi-

plied by K and displaced in time to have a peak at t 1=d/c. 
Thus, the crosscorrelation function can be used to deter -

mine either the distance d, the velocity c, or the time 

delay t 1  of the propagation path. In realistic situa-

tions, such as in flow metering, the model is less 

straightforward. Turbulence in the flow causes the 

crosscorrelation to become asymmetrical about its maximum 

and adopt a skewed form [48,49], as shown in Figure 2.4. 
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FLOW 

L 

CORRELATOR 	I 	ryx 

Figure 2.4. Skewing of crosscorrelation functions due to 

the effects of flow turbulence. 

Normalised correlation functions are defined by the 
following expressions. Firstly, for autocorrelation, 

T) 

r(T) = r(0) 	-1 < r(T) < 1 	2.10nxx nxx 

and secondly, for crosscorrelation, 

= 
ryx  

-1 	r 	(t) 	1 	2.11 
[rxx(0)ryy(0)]½ ' 	nzx 

where r 	 and rnyx  are the normalised correlationnxx 
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functions, and r(0) and r( 0 ) are the mean square 
values of the signals y and x respectively. 

Normalisation of the function makes interpretation 
clear when r 	 or r 	 equals ±1.0 or zero. However whennxx 
the result is less than 1.0 but greater than zero, the 

significance is less clear. To help with interpretation 

some associated functions are introduced. For the pur-

poses of this thesis they are mentioned only briefly; a 

more detailed account is given by Roth [4]. Firstly, the 

correlation integral is closely related to the convolution 

integral. The only significant difference being the time 

reversal operation required by the convolution integral. 
For example, 

T.ryx(T) =y(t)*x(_t) 	 2.12 

where the star indicates the convolution of the two time 

functions. Another useful function is the cross-power 
spectrum, Gyx i which is the Fourier transform of the 
crosscorrelation function, 

= F{ryx } 	 2.13 

In addition, the cross-power spectrum may be obtained from 

the linear spectrums, thus: 

* 
G yx  =S  y x S 	 2.14 

where Sy=F{Y(t)}i S x=F{X(t)}i and S indicates the complex 
conjugate of S. In addition, there are triple correlation 

functions, which are defined as the average product of the 

input signal at three instants in time, i.e. two time 

lags. Thus the triple correlation rxxx (T) is given by 

T 
r 	(Ti  ,T2) = limfx(t)x(t-T 1 )x(t-T 2 )dt 	2.15 
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A study of triple correlation is presented by Lohmann and 

Wirnitzer [50], and a correlator which can produce triple 
correlations has been reported by Corti et al [36]. In 

combination, therefore, these functions provide comprehen-

sive and powerful tools for measurement and analysis. 

2.3. Historical Development 

In the 1950's, computation of the correlation func-

tion was performed using a variable delay line, a single 

multiplier, and a single integrator. The delay line had 
to be non-dispersive over the frequency range of interest; 

Various early methods using magnetic tape loops are 
reviewed by Cheney [51] and Lange [52].  In 1952 Brooks 
and Smith proposed a general purpose analogue computer for 
correlation functions [53]. The delay parameter is pro-

vided by staggered magnetic tape inputs. In the following 
year Bennett used a tapped delay line to replace the stag-
gered tape inputs [54].  A complete integration period was 
required by these early systems for each successive value 

of the time delay i, and although they produced accurate 
estimates of the correlation function, their computation 

time was too long for many applications. 

A relentless demand for ever greater computational 

speed prompted the development of digital correlators. By 

quantising the input signals into two levels, the tasks of 

multiplication and integration become simple arithmetic 
procedures. Quantisation causes an increase in the vari-

ance of the output, but as we shall see later, the effect 
can be reduced by integrating over a longer time. 

With the development of Large Scale Integration 
(LSI), it became more economically feasible to make tapped 

delay lines, and arrays of multipliers and integrators. 
This heralded an era of parallel processing where values 
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of the correlation function, for many values of the time 
delay parameter t, are computed simultaneously. This 
improvement in processing power, made possible by LSI and 

VLSI, is essential for real time measurement and control 
applications. However, in each area of application of 

correlation analysis, there exists a need to compromise 
between sampling rate, the level of input quaiit;:,atjon, 
and the length of the integration period. 

The remaining sections of this chapter deal with the 

fundamentals of correlation theory. The effects of sam-
pling rate, input quantisation, and observation period are 

examined. To introduce the theory, a short summary of 
random data concepts is presented. 

2.4. Correlation Principles 

2.4.1. Random Data Concepts 

Physical phenomena of interest in engineering are 
usually described in terms of amplitude versus time func-

tions, known as "time history records". Many of these 
phenomena are "non-deterministic", or "random"; that is, 

each measurement produces a unique time history record 
which is not likely to be repeated, and cannot accurately 
be predicted. 

In the case where the measurements of a physical 
phenomena are considered random, then the resulting time 

history record represents only one instance of what might 

have happened. To gain a fuller understanding of the 
phenomenon one must consider a set of all possible time 

history records that could have occurred. For example, a 
set of all time history records x1 (t), 1=1,2,3,..., is 
illustrated in Figure 2.5. 
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xn(t) 

t1 - -r T 	t 

Figure 2.5. Ensemble of time history records defining a 

random process (x(t)}. 

This is referred to as the "ensemble" that defines the 

random process {x(t)l. Given an ensemble of time history 

records, the average properties can be computed at any 
specific time t 1  and t 1 -t, that is, the autocorrelation 
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function at time delay t, is given by 

N 
= urn 	E x (t 

N-+oo N 1=1 	
1 ).x(t 1 -t)dt. 	2.16 

In the general case, where one or more of the average 

values vary with time, the process is said to be "non-

stationary". In the special case, where the average 

values are constant from one ensemble to the next, the 

process is said to be "stationary". For almost all sta-

tionary data the average values computed over the ensemble 
at time t 1  will equal the corresponding average values 

computed over all time from any single time history 

record. Thus the autocorrelation function may be written 
as 

T 
= urn 	fx(t)x(t-t)dt 	 2.17 

.T-.00 	0 

where x(t) is any arbitrary record from the ensemble 

{x(t)}. The justification for the interchange of time and 

ensemble averaging is given by the ergodic hypothesis 

[55,56]. 

2.4.2. Fundamental Estimation Errors 

In practice the number of data records available for 

analysis by ensemble averaging techniques, or the length 

of a data record used for analysis by time averaging tech-

niques, will always be finite. Therefore, the average 

properties of the data can only be estimated and never 

computed exactly. As a result, certain errors arise. 

These are in addition to numerous potential errors from 

other sources, such as errors that might arise, for exam-

ple, from input transducers, signal pre-processing, and 

analogue to digital conversion (quantisation). 
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The estimation errors can be divided into two 

classes: bias error and random error. Bias error is a 

systematic error that will appear with the same magnitude 

and in the same direction from one analysis to the next. 
Random error is a haphazard scatter in the results from 
one analysis to the next, of different samples from the 
same random data. It is a direct result of averaging over 

a finite number of time history records, or over a single 

record of finite length; it is therefore present in all 
analyses. 

Random error is defined by the standard deviation of 
the estimate about its expected value, and it is often 

normalised to the parameter being estimated [3]. The nor-

malised value is inversely proportional to the square root 

of the number of records N, or record length T. Hence to 
reduce the random error to half its value, the number of 

records, or the integration time, must be increased by a 
factor of four. 

Also, for time averaged estimates, the normalised 
random error is inversely proportional to the square root 

of the data bandwidth B. This means that for those appli-
cations where the data bandwidth is very wide, as often 

occurs in communications, a relatively short record might 
provide highly accurate estimates. In contrast, for those 

applications where the data bandwidth is typically narrow, 
as occurs in studies of ocean movements or atmospheric 

turbulence, very long records may be required to obtain 
acceptably accurate results. 

In the next section the discussion is extended to 
include the correlation function of discrete time sampled 
data, and then to discrete time quantised data. 
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2.4.3. Discrete Time Correlation 

In the case of sampled inputs, the process of 

integration is replaced by one of summation, and Equations 

2.1 and 2.5 may be rewritten as 

1 N-i 
r' 	(kt) = 	E x(nt).x(nt-kt) 	2.18 

	

XX 	 n=O 

1 N-I 
r' (k 1 t) = N E y(nt).x(nt-kt) 	2.19yx 	 n=O 

where k, and n are integers. The notation r' (kt) 

represents 'an approximation to the defined correlation 

function, but for convenience the approximation will be 

written simply as r(kt). The analogue signals are nor -

mally sampled at equally spaced time intervals, it, with 

delay calculated at kt intervals, where k is an integer 

from 0 to K-I, equal to the number of correlation points. 

In practice the maximum number of samples N (corresponding 

to the maximum integration time Nat), is finite. 

The sampling period At is related to the signal 

bandwidth B and the number of correlation points required 

to define the peak of the function. If we assume that we 

require p points within the peak region to define the peak 

position adequately, then the sampling per Lod At is given 

by [57] 

At = B(p+I) 	 2.20 

In certain applications, such as flow rate measure-

ment or time delay estimation, a reduction can be achieved 

in the number of delay increments required to implement 

the function. At minimum flow velocities (that is, max-

imum time delays), the number of points computed to define 



the peak far exceeds the number required to determine the 

position of the peak accurately. The amount of redundant 
information in these situations can be reduced by increas-

ing the time delay increment at longer correlated time 

delays [58,16]. Alternatively, a variable sampling rate, 

which is derived from the flow velocity, may be used, 

although this approach is unreliable when there is a step 
change in the flow velocity [59]. 

As we have already seen, there are several sources of 

estimation error. Finite averaging time, finite 

bandwidth, noise, waveform sampling, and waveform quanti-

sation all contribute to the variance of the result. 
Expressions relating the variance to the averaging time, 

bandwidth, and mean square signal to noise ratios have 
been derived theoretically and confirmed experimentally by 

several authors [60,61,16]. Sampling and quantisation 
both introduce noise and, in addition, sampling can limit 
bandwidth. 

Intuitively, one would expect the accuracy of the 
correlation estimate to increase with increasing sampling 

rate. However, Kay [61] has shown that, for long averag-
ing times (time bandwidth product greater than 25), the 

variance does not significantly reduce as the sampling 

rate increases. For short averaging times (time bandwidth 

product less than 25), the variance does reduce when the 

analogue waveform is sampled faster than the Nyquist rate. 
Sampling at twice the Nyquist rate appears to be a good 

compromise between the desires of minimising the mean 

square error and of maintaining a low sampling rate. This 

result concurs with the earlier analysis of Bowers et al 

[62]. 
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2.5. Correlation Techniques 

Direct implementation of the correlation function 
imposes a large processing cost. Considerable effort has 

been expended to devise approximations that will reduce 
this cost. Notable reductions are achieved when signals 

are converted to sampled-data form, and the analogue 

integration process is replaced by one of summation. 

Further reductions follow when quantised signal represen-
tations are used. This section is concerned with the 

classes of correlator which arise from the use of quanti-
sation and dither. In Chapter 3, where integrated circuit 

correlators are reviewed, another facet of correlator 
implementation is introduced: that is, computation using 

parallel techniques, serial techniques, or a combination 
of the two. 

Four basic types of correlator, resulting from the 
use of quantisation and dither, can be defined as follows: 

Direct correlators, where both inputs are analogue. 

Stieltjes correlators (63,64,65], where one input is 

quantised and the other is analogue. 	The relay 
correlator is a limiting case, where the digital 

channel is quantised to just two levels, +1 and -1. 

Digital correlators, where both inputs are quantised. 

The polarity correlator is the limiting case of this 
class of correlator, where both input signals are 

quantised to two levels, +1 and -1, before correla-
tion. 

Modified correlators, where a dither signal is added 

to the digital input or inputs. The modified relay 

correlator is a special case of the modified 

Stieltjes correlator, and the modified polarity 
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correlator is the limiting case of modified digital 

correlators. 

These classes of correlators are described in more detail 

in the following sections. Firstly, however, a brief dis-

cussion about quantisation is presented. 

2.5.1. Quantisation of Input Data 

Quantisation is the process of replacing analogue 

samples with approximate values taken from a finite set of 

allowed values [66]. Quantisation is employed in the 

design of correlators so that the benefits of digital cir-

cuit techniques may be exploited. It will be seen that 

the disadvantages arising form the errors introduced by 

quantisation, are often compensated by the reduction in 

correlator's cost and complexity. 

There are various forms of quantiser, the more 

sophisticated of which add a minimum of distortion or 

quantisation noise to the signal. The simplest and most 

common form is the zero-memory quantiser. In this case, 

the output value is determined from only one correspond-

ing input sample, independent of the values of earlier (or 

later) analogue samples applied to the quantiser input. 

More sophisticated, is the block quantiser which looks at 

a group, or block, of input samples simultaneously, and 

produces a block of output values to represent the 

corresponding input samples. Another class of quantisers, 

which could be described as sequential, includes digitis-

ing schemes such as delta modulation, differential PCM, 

and other adaptive versions. A sequential quantiser 

stores some information about previous samples and gen-

erates the present quantised output using both the current 

input and the stored information. 



- 21 - 

For the purposes of this thesis, we need not be con-

cerned further with the details of quantisation, other 

than its effect on the realisation and accuracy of the 

correlation function. In this respect the most important 

parameter of quantisation is, the number of quanta, or 

quantum levels allocated to each input of the correlator.. 

For example, coarse quantisation in both inputs of a 

correlator permits the use of much less complex circuits 

for multiplication and summation etc., than would be the 

case for one with finely quantised data. On the other 

hand, coarse quantisation leads to a degradation in the 

accuracy of the correlation function. However, the degra-

dation in the output can be eliminated by averaging over a 

longer period, since the errors are essentially random. 

But, in the case of extremely coarse quantisation, i.e. 

two levels, significant bias errors are incurred which 

cannot be removed by simply extending the integration 

period. These bias errors are eliminated by the use of. 

dither, or auxiliary signals [67,68]. A dither signal is 

added to the input of a digital correlator before quanti-

sation. Unfortunately, dither signals introduce an addi-

tional source of random errors into the system, which, in 

turn, must be eliminated by integrating over a longer time 

[69]. 

Another form of quantisation, delta sigma quantisa-

tion, is the basis of a separate class of correlators. 

Delta sigma correlators are described by several authors 

[64,70,71,72,73,74], but they are beyond the scope of this 

thesis. 

Quantisation can have a significant effect on the 

complexity of correlators. In 1962, Watts [75] presented 

a detailed analysis of the effect that quantisation has on 

correlator performance and derived a general form for mul-

tiplier correlators. The direct analogue correlator, the 
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digital correlator, and the Stieltjes correlator are all 

shown to be special cases of the general form. 

Amplitude quantisation is a non-linear process. When 

such a non-linear operation is incorporated into a system, 

detailed analytical analysis of the system is made 

extremely difficult. The statistical analysis of such a 

system can be relatively easy because it is possible to 

investigate the statistical effects of quantisation in 

detail. It can be shown that, for many cases, quantisa-

tion is equivalent to the addition of random independent 

noise with a mean square value equal to one-twelfth the 

square of the quantisation interval [76). Thus, the quan-

tised signal x is considered to be equal to the original 

signal x, plus the additive quantisation noise a. For 

example, x+=x+a, y=y+b. The correlation function of two 
quantised signals x  and y (with zero means) may then be 
expressed as 

= r yx 
 +r 	+rb +rb 	 2.21ya  

where ryx  is the correlation between the signals y and x, 

rya  is the correlation between the signal y and the quan-
tisation noise a, rb X  is the correlation between the sig-
nal x and the quantisation noise b, and rb a  is the corre-
lation between the quantisation noise a and the quantisa-
tion noise b. 

2.5.2. Direct Analogue Correlation 

Analogue or continuous correlators are those correla-

tors in which the signals are processed directly, without 

any form of amplitude distortion being used. They have 

been termed ideal correlators because, with the same input 

signals and noise, their signal to noise ratio is not 

exceeded by any other form of correlator. However, they 
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possess important disadvantages such as drift. The imple-

mentation of analogue correlators has been described in 

Section 2.3. The analogue multipliers used in them can be 

realised using transistor circuits, and the delay opera-
tion can be performed by LC circuits, or tape recorder 

systems. The integration can be achieved using current 
summing amplifiers or low pass filters. 

When the analogue signals are sampled at the Nyquist 
rate, or faster, sampled data techniques, such as charge 

coupled devices, may be employed. Analogue correlators 

realised using integrated circuit techniques are described 
in Chapter 3. 

2.5.3. Stieltjes Correlation 

The Stieltjes correlator is a special form of the 
general configuration, in which one of the inputs is 

analogue and the other is coarsely quantised [63,64,65]. 
Since only one of the inputs is quantised, the output of a 
Stieltjes correlator is 

r 	=r +r syx 	yx 	bx 	 2.22 

The only error term is the term rbX ,  which, even for quite 
coarse quantisation of y, can be extremely small. Watts 

[75] has shown that when the digital channel is quantised 
into three levels, the Stieltjes correlation function is 

related to the direct correlation function to within 1%. 

The circuitry required to implement this correlator 
represents a considerable saving in complexity when coin-
pared with direct correlation [77]. The correlation delay 

is implemented digitally in one channel. The multiplica-

tion may be performed by a digital-to-analogue converter 
with the analogue signal as its reference. A disadvantage 
of the Stieltjes correlator, as with all analogue 
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correlators, are the difficulties concerning drift. 

2.5.4. Relay Correlation 

A special case of the Stieltjes correlator is the 
relay correlator, which is illustrated in Figure 2.6. 

analogue YO 
input 	

PHASE 	INTEG ~A ~R Output 

+ 
xO—I Sgn 	SHIFT REGISTER DELAY 

Figure 2.6. Basic configuration of a relay correlator. 

In this case one of the inputs is quantised into two lev-

els, denoted by the 'sgn" operator, and the other is 
analogue. Sgn(x) means signum(x), a function of the value 
+1 for positive x and - 1 for negative x. The output of 
the relay correlator rryxl for sampled inputs with Gaus-
sian statistics, is related to the direct correlation 
function by 

rryx(kt) = [2/u] r(T) a 	 2.23 

where 

i N-i 
rryx (kt) =N E y(nLit).sgn[x(nt-kt)] 	 2.24 

n=O 

and o is the RMS value of the signal y, given by 
(r(0)) . The relay correlator represents a compromise 
between the direct digital correlator and the polarity- 

coincidence correlator, both in terms of accuracy, and in 
terms of circuit complexity. To achieve results of the 
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same level of accuracy as the ideal analogue correlator, 

the integration time must be approximately 1.5 times 

longer. 

2.5.5. Multilevel Digital Correlation 

Direct digital correlation, or multilevel correla-

tion, in which quantisation is done using more than two 

levels per channel, is illustrated in Figure 2.7. 

yO-j QUANTISER 
	

DIGITAL 
	

ACCUMULATOR 

MULTIPLIER 

Output 

xo-j_QUANTISER 
	

DELAY 

Figure 2.7. Basic configuration of digital correlator. 

It has been shown that [76],  in many cases, even for 

fairly large quantisation intervals (for example, the 

total range of x or y divided into eight intervals), the 

terms rya  and rbxl  defined above, are negligible, and the 
term rba  is also negligible, except when x equals y, in 
which case rba = q 2/12, where q is the quantisation inter -
val. This is known as the Sheppard correction to the mean 

square for grouped data [78].  This correction is a sim-
plification of a more general expression, given by Gersho 

[66], and assumes that the intervals of quantisation qi  

are equal, that is, where i is an integer from 0 to 

L-1 in an L level quantiser. Thus, the output of the 

direct digital correlator rd YX I using uniform quantisa-
tion, may be taken to be 

rdyx 	=ryx  + q2/12, 	
t=0 

= ryxl 	 x*y, all t 	2.25 

=ryxl 	 x=y, t*0 
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The hardware realisation of a direct digital correla-

tor involves complex digital circuitry but results in an 

accurate correlation estimate. A description of a 2-bit 

by 2-bit digital correlator for measuring the spectra of 

radio astronomy signals is given by Ables et al [79],  and 

the Hewlett Packard correlator [80],  which quantises the 

input signals into three levels in one channel and seven 

levels in the other, has been used successfully for many 

years. Another digital correlator, which resembles a 3-

level by 3-level correlator is presented by Dewdney [81]. 

In this case the circuit complexity is reduced by accumu-

lating the product transitions rather than the products 

themselves. The penalty incurred by this technique is a 

six percent decrease in output signal to noise ratio, when 

compared with a normal three level correlator. The loss 

in signal to noise ratio may be recovered by increasing 

the integration time, since integration time is propor-

tional to the square of the signal to noise ratio. A spe-

cial case of multilevel correlation is digital relay 

correlation. This is in addition to polarity correlation, 

which is discussed in the next section. A digital relay 

correlator, illustrated in Figure 2.8, averages the pro-

duct of the quantised values of the y-input, and the 

polarity of the x-input, using a digital adder/subtractor 

and digital store. 

yO—jQUANTISER )1±CCUMULORJ>Output 

control 

xO 	Sgn_--k-4SHIFT REGISTER DELAY — 

Figure 2.8. Configuration of a digital relay correlator. 
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The circuit complexity represents a compromise between 

full multilevel correlation and polarity correlation. 

2.5.6. Polarity-Coincidence Correlation 

A special case of digital correlation is the 

polarity-coincidence correlator, shown in Figure 2.9. 

11  or 0 	 1 Output yO 	Sgn 	 DD- UP/DO 

COUNTER 

	

DELAY  
Syn 	SCALEb0r0 	

1=count up 
x   

O=count down 

Figure 2.9. Configuration of a polarity correlator. 

In this case the inputs are quantised to two levels, ±1, 

denoted by the sgn operator, as above. If the input sig-

nals have Gaussian statistics, the polarity correlation 
function r 	 may be related to the direct correlationpyx  
function by 

rpyx (kt) = 	arc sin rnyx(T) 
	

2.26 

where. 

1 N-1 
r 	(kt) = 	E sgn[y(nt)].sgn[x(nM_kt)] 	2.27 py 	

n=O 

and r(t) is the normalised correlation function of the 
signals y and x, and t is the time lag between the two 
signals, as given in Equation 2.11. The arcsine relation-
ship was first reported by Van Vieck in 1943 and subse-

quently by Van Vleck and Mid ileton in 1966 [ 8 2]. The 
hardware 	realisation 	of the polarity-coincidence 



correlator is very much more simple than the direct digi-

tal correlator. The signal delay is implemented by a 

single-bit shift-register, multiplication is achieved by 

exclusive-NOR gates, and the integration process is per -
formed by simple counters. The correlation estimate 

obtained from a polarity correlator is less accurate than 

one obtained from a direct digital correlator (83], and 

accordingly requires an integration time which is approxi-

mately 2.5 times longer, to achieve the same level of 

accuracy. Polarity correlation is treated in more detail 
in Section 2.6. 

2.5.7. Modified Correlators: Dither 

The significant bias errors incurred when extreme 

clipping operations, such as sgn(x), are used, can be 

eliminated by adding a dither signal to the signal to be 

clipped, as shown in Figure 2.10. 
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DITHER SIGNAL 

+ 	QUANTISER y  ~- 	 *( x 
Output 

x 
	 +) 	QUANTISER 	DELAY 

DITHER SIGNAL 

Figure 2.10. Configuration of a modified digital correla-
tor. 

It can be shown that 

r(t) 
2.28 r(nt) 	

A2  [r(0)(0)]½ 

where the signal input magnitude must be maintained equal 

to or less than the upper bound A on the amplitude of the 

dither signal. A detailed analysis of modified correla-

tors has been presented by Berndt [84), and by Chang and 

Moore [67]. Landsberg and Cohen [85] have reported a 

modified digital correlator which uses three levels of 

quantisation in both channels. 

A polarity correlator can be modified to give an 

unbiased output, and is applicable to any random process 

with bounded inputs. This modification is achieved by 
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adding uniformly distributed, statistically independent 

noise to each of the input signals before they are 

clipped. A wide range of random dither signals have been 

used to modify correlators, but it has been found, subse-

quently, that deterministic signals can be used-if they 

have uniformly distributed amplitude values [86,68,67]. 
Dither signals have found numerous applications in fields 

such as communications, where it enables capture of a 

wanted signal despite the presence of unwanted interfer -
ence [87],  and control, where it improves the performance 
of quantised sampled-data systems. 

2.6. Polarity Correlation and the Overloading Integrating 

Counter Technique 

2.6.1. Polarity Correlation 

Implementation of a high speed correlator requires an 

array of multipliers, delay elements, and accumulators, 

either analogue or digital. Polarity correlation methods 
minimise the complexity of the computational elements by 

discarding the magnitude information of the input 
sequences. Digital design techniques can then be employed 

to realise the multipliers by EXNOR gates, the delay ele-

ments by a digital shift register and the accumulators by 

simple counting circuits. This results in a more economi-

cal and more compact implementation than would otherwise 

be achieved, the penalty for which is an increase in 

integration time to obtain a correlation function with 

acceptable variance [88]. The polarity correlation func-
tion is nonlinearly related to the direct correlation 

function by the Van Vieck arc sine relation, Equation 
2.26, for input sequences which have Gaussian statistics. 

In Chapter 3 details are presented of previously 
reported techniques for obtaining the polarity correlation 
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function (89,90,91,92,93). 	These 	techniques 	include 
parallel counters [94,95,96,97], which are not directly 

cascadable and hence non-optimal for VLSI implementation. 

The prototype chip described here is based on an interpre-

tation of the polarity correlation function which permits 

the elimination of parallel counters and results in a 

highly regular - correlator structure amenable to VLSI 

implementation. The structure also permits direct cascad-

ing of correlator stages. A block diagram of a correlator 

using this approach is shown in Figure 2.11. 

Preset Integration Time N 
xy 4  ___ 

 ISAMPLECOUNTERI Flog when 
m Saples=N 

Counter r(0)=q0/N 

LiJ 

(I)  
erq1 r(1)=q1/N 

Counter _q2 r(2)=q 2/N 

(I) 

H-I 

	

I 	
Counter q3 	r(3)=q3/N 

	

<I 	I 

Figure 2.11. Block diagram of a polarity correlator. 

Polarity correlation is based on the computation of 
the discrete function, 

N-i 
r(t) = N E (sgn[y].sgn[x]) 	2.29 

n=0 

which is based on Equation 2.27, but, for convenience, the 
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time lag kt is replaced by the symbol t,and the sampled 

signals of the form y(nt) are replaced by a data sequence 

y with sequence index n. Complete positive correlation 

(rpyx = 1) occurs when the polarities of the input sam-

ples (assuming the mean of both inputs to be zero) are at 

all times equal, yielding an average product of +1. Com- 
plete negative correlation = -1) occurs when thePYX 
polarities of the input samples are never equal (inverse 

proportionality), yielding an average product of -1. In 
the case where the input samples are not related 

(rpyx  = 0) the sum of the positive products will equal 

the sum of the negative products and the average product 
will be zero. 

Implementation of polarity correlation requires an 

analogue comparator circuit to convert sgn[x]=x/IxI and 
sgn(y]=y/lyl into logic I if the signal is positive and 
logic 0 if the signal is negative. Note that this defini-

tion means that a logic 0 represents -1 (see Section 
2.5.6). The time delay t between the two signals is 

achieved by using a digital shift register where a partic-

ular value of delay is defined by the product of the 

number of preceding shift register stages and the sample 

clock period, At. Multiplication is performed by the 

Boolean coincidence function, EXNOR, whose output is I 

only if the inputs are both equal. If time-successive 

values of the coincidence function F n (T) are summed in a 
digital counting circuit for a period T seconds, where 

T = Nat, then the contents of the counter at the end of 

the period will be proportional to the relevant value of 

the correlation function. The EXNOR function can only be 

regarded as performing multiplication if the logic 0 is 
allowed to represent -1. Thus, a logic I in the coin-
cidence signal would indicate 'increment by one' the con-

tents of the counter and a logic 0 would indicate 'decre-

ment by one' the contents of the counter. This would 
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necessitate the use of up-down counters which are undesir-

able from a VLSI circuit design point of view. However, 

it is possible to use simple up-counters whose contents, 

q( -r), can be related to the correlation function in the 

following way. Firstly the contents of an integrating 

counter are given by 

N-I 
q(t) = 	E F (t) 	 2.30 

n=0 

where F(t) is the coincidence function bit stream defined 
by 

F(t) = 	+ sn[YflJ.sgn[xfl_] 	 2.31 

= lorO 

Thus, by substituting into 2. 30, 

N-I 1 	N-I 1  
q(t) = 	+ E 	sn[Y].sgn(x n- T] 	 2.32 

n=0 	n=0 	 nT 

N N = .. + 	.rpyx (t) 	 2.33 

Hence, 

g(T) 
rpyx (T) 	2 N - 2.34 

where r(t) is the polarity correlation function as 
given by Equation 2.29. Thus, Equation 2.34 gives a meas-

ure of the correlation function using the integration 

counter contents, q(t), after sampling N times. At max-

imum positive correlation (rpyx = +1) a maximum count 
q(t) = N is obtained after sampling N times. In the case 
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of maximum negative correlation 	= -1), where thePYX 
input samples are never equal, the coincidence signal is 

always zero, resulting in a zero count, q(r) = 0. In the 

case of zero correlation = 0), a count of q(t) = N/2PYX 
is reached after sampling N times. 

2.6.2. Overloading Counter Technique 

An alternative approach to polarity correlation is 
based on an integrating overloading counter technique 

(98,99,2], which eliminates the requirement for a value of 
q(T) to be available. Instead, the correlation function 

is computed using the number of samples required to 
achieve overload count conditions, q(T) = N, in a given 

integrating counter. The concept of the technique is 

illustrated by Figure 2.12, which shows the relationship 

between the contents of an integrating counter, q(t), and 
the number of samples, which is now a variable, m. 
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Figure 2.12. Relationship between the contents of the in-

tegrating counters and the number of input sample pairs. 

The number of samples, m, can be related to the polarity 

correlation function by writing q(t) as, 

	

rn-i 	1 	1 q(r) = N = E ( + sn[Y].sgn[x - 1) 	 2.35 

	

n=o 	 nt 

m m 

	

= - + 	 2.36 

where 

rpyx(t) 
= 	E (sn[Y].sgn(x]) 	 2.37 m 

Hence, in this case, 

	

= 2 12-  - 1 1 	for in > N 	 2.38 
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where N is the capacity of the integrating counters and m 
is the number of samples required to achieve overload con-

ditions in the integrating counter corresponding to time 
delay T. An overload occurs after m=N samples when corre-

lation is maximum and positive. In the case of zero 

correlation an overload occurs after m=2N samples and 

after an infinite number of samples when the correlation 

is maximum and negative. Note that an overload cannot 
occur until m > N. 

A polarity correlator using the overloading counter 

technique thus comprises a delaying shift register con-

nected to a parallel array of coincidence detectors and 

integrating counters. A block diagram of a polarity 

correlator using the ove doading counter technique is 
shown in Figure 2.13. 
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Figure 2.13. Polarity correlator block diagram using the 

overloading counter technique. 

An overload pattern shift register is used to inspect the 

overload condition of the counters. The evolving pattern 

of overload states defines the correlation function shape 

and the time delay position of the first integrating 

counter to overload defines the position of the most sig -
nificant peak of the function. A sample counter is 

included to count the number of input samples, m, so that 

the value of the correlation function may be computed for 



any integrating counter to overload. If the maximum capa-

city of the sample counter is set to be twice the capacity 

of the integrating counters the significance range is lim-

ited to I > r > 0. If it is required to cover the range 
I > r > —I, two correlator circuits working in parallel 
can be used with one covering the positive range and the 

other covering the negative range. 

Such a system is most suitably realised using 

integrated circuit technology and an early device imple-

mented 12 stages of correlation using pMOS technology 

[28]. The correlator chip described this thesis, con-

sists of a linear cascade of identical correlation ele-

ments, which has been fabricated in 5 micron nMOS technol-
ogy. The performance of the correlator depends on the 

serial connection of correctly functioning correlation 
elements. To optimise performance, and gain full advan-

tage of the VLSI architecture, a design strategy was 
adopted; which includes testability, yield enhancement, 

and improves reliability. The design incorporates built-
in self test (81ST) and self repair mechanisms, which 

automatically detect and eliminate failed correlation 
stages in the VLSI circuit [100,101,102,103]. 

2.7. Summary 

In this chapter, correlation theory has been 
presented. It has been shown that, for stationary, 

ergodic signals, a temporal correlation function with fin-
ite integration time can approximate the true correlation 

coefficient. The effects of sampling, quantisation, and 

dither have been described. The main conclusion is that 

any physically realisable correlation system must comprom-
ise accuracy with integration time, or circuit complexity. 

The overloading integrating counter technique for 
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polarity correlation has also been described, and the pro-

totype correlator chip, featuring built-in self test and 

self repair mechanisms, has been introduced. Design 

details of a 28 stage prototype chip (termed the Eu349) 

are reported in Chapter 5. In the next chapter a review 

of silicon integrated circuit correlators is presented, in 

which the Eu349 chip's architecture, and how it relates to 

other integrated circuit correlators, is discussed. 



-40- 

CHAPTER 3 

INTEGRATED CIRCUIT CORRELATORS 

3.1. Introduction 

Devices for computing correlation functions have been 

implemented using a variety of technologies and tech-

niques. They span the entire gamut of signal processing 

techniques from optical signal processors to microcomputer 

systems; from surface acoustic wave devices to charge cou-

pled devices; and from electronic systems built with small 

scale and medium scale integrated circuits, to full custom 

VLSI processors. This chapter reviews correlation tech-

niques which have been realised by silicon integrated cir-

cuits. Implementations based on optical techniques 

[104,105,106,107], acousto-optical techniques [108,109], 

ultrasonic and surface acoustic wave (SAW) techniques 

[110,111,42] are beyond the scope of this discussion. So 

to are integrated optical correlators [112], which have 

received considerable attention and will find applications 

in parallel array signal processing problems such as real 

time image processing. Also excluded from this discussion 

are the microprocessor based correlators. These, in gen-

eral, use a microprocessor to control a dedicated peri-

pheral circuit which performs the delay, multiply, and 

accumulate operations [113,114,59,115]. In some cases 

however algorithms are used which allow the microprocessor 

to compute the correlation function with a minimum of 

additional circuitry. Examples of this are the zero 

crossing algorithm of Henry [116], and the skip algorithm 
of Fell [117]. 
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In the remaining sections of this chapter silicon 

correlators are discussed. The architectural concepts, 

which distinguish the VLSI implementations, include serial 

correlators, parallel correlators, and serial/parallel 

correlators. The discussion also includes systolic arrays 

and examples are given for bit-systolic, word-systolic, 
linear, and two-dimensional systolic architectures. 

3.2. Correlation Architectures 

3.2.1. Serial Architecture 

The basic elements of a correlator are shown in Fig-

ure 3.1. In a serial correlator, this configuration 

y 
	

X )-H INTEGRATOR  H ryx(T) 

0-H DELAY 

Figure 3.1. Serial correlator. 

is implemented directly, and its operation is straightfor-

ward. The underlying principle can be described in terms 
of a temporal correlation lag and a temporal integration 
(architectures which implement spatial lags or spatial 
integrations are discussed in the next section). By mak-

ing use of temporal techniques, the serial correlator 

minimises the circuitry required to implement the func-

tion. However the penalty for this simplicity is a long 

processing time. To compute, for example r(T 1 ), the delay 
element is first set to the value 

t. Then, the input 
data sequences are multiplied, and the results are 

integrated. After the integration period, computation for 
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this single point of the function is complete. The entire 

computation is repeated for the next value of correlation 

delay, hence the term "temporal lag and temporal delay". 

Due to the long processing time, serial correlators are 

not common in VLSI implementations, although if the signal - 

bandwidth is large and has stationary characteristics, 

then serial correlation is useful and very simple to 

implement. One instance of an integrated serial correla-

tor, designed to verify a correlation algorithm which uses 

a pseudorandom dither signal, has been reported [86]. 

In general, there are two ways to increase the compu-

tation rate of a signal processing system. One is to use 

faster components and the other is to use concurrency. 

The last decade has seen an order of magnitude decrease in 

the cost and size of integrated circuit components, but 

only an incremental increase in component speed. With 

current technology, tens of thousands of gates can be 

fabricated on a single chip, but no gate is much faster 

than its TTL (Transistor-Transistor Logic) counterpart of 

ten years ago. Since the technology trend indicates a 

diminishing growth rate for component speed, any major 

improvement in computation rate must come from the con-

current use of many processing elements. The degree of 

concurrency is largely determined by the underlying algo-

rithm. Optimum performance can be achieved when the algo-

rithm is designed for the most effective degrees of pipe-

lining and multiprocessing [118]. However, it must be 

noted that, when a large number of processing elements 

work simultaneously, coordination and communication prob-

lems become significant [119,120]. The objective, there-

fore, is to design algorithms which allow high degrees of 

concurrency, while employing only simple, regular communi-

cations and control. Direct cascading of cells for system 

expansion is also important. 	Systolic architectures, 

introduced by Kung and Leirserson [121], provide 	a 
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solution to the above objectives. 

A systolic system consists of a set of synchronously 

clocked, interconnected cells, each of which are capable 

of performing some simple operation. The cells are usu-

ally connected together to form a systolic array or sys-

tolic tree. Information flows between cells in a pipe-

lined fashion and communication with the outside world 

occurs only at the boundary of the array. Features to 

avoid in the design of a systolic system are global broad-

casting of signals across the array, and fan-in of many 

outputs to a single computational element [122]. These 

criteriO. will be illustrated by the correlator architec-

tures in the remaining sections of this chapter. 

3.2.2. Parallel Architecture 

In the previous section, a serial correlator was 

described as employing temporal delay and temporal 

integration. The first parallel correlation architecture 

to be discussed here achieves concurrency by replacing the 

temporal delay with spatial delay. 

3.2.2.1. Parallel architecture with temporal integration 

and spatial delay 

This parallel architecture is shown in Figure 3.2. 
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Figure 3.2. Parallel architecture with temporal integra-

tion and spatial delay. 

It can be seen from Figure 3.2 that the correlation func-

tion is computed by an array of multipliers, integrators, 

and delay elements. Each point of the function is com-

puted simultaneously by a dedicated multiplier and 

integrator. The delay operation is implemented by a 

tapped shift register. At each cycle of the computation 

all the delayed values of the input signal are available - 

hence the term "spatial delay architecture". 
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The architecture considered here has a major disad-

vantage in that a parallel output is required by each 

integrator. In the case of a digital circuit this output 

is around 8-16 bits wide for each point of the function. 

Direct communication with every integrator would involve u 
large number of output pins unless some form of multiplex-

ing were used. An example of such an implementation 

(although not an integrated circuit) is reported by Corti 
et al [36],  where each integrated result is shifted seri-

ally across the array of counter/registers to the output. 

This technique defeats the purpose of the spatial time 

delay by reintroducing a temporal operation at the output. 

The method is only advantageous when the integration 

period greatly exceeds the maximum time lag, or the 

integration period is too long to be implemented by a spa-

tial integrator (spatial integration is discussed in sec-

tion 3.2.2.3). The correlator designed by Corti was 

designed to correlate weak optical signals over a range of 

108 delays with an integration period of approximately 

65,000 sample periods. Currently, the maximum integration 

period using spatial integration is 512 sample periods, 

which is only possible using analogue current summing 
techniques (123,63]. Integration times in digital 

integrated correlators are much shorter. Chips which 

comprise 128 integrating stages are state of the art (90]. 

The architecture of Figure 3.2 may be optimised for 

VLSI implementation by incorporating the overloading 

integrating counter technique, which is discussed in the 

next section. 

Another time-integrating correlator, but with a dif-

ferent architecture to the one described above, is 

reported by Burke et al [124]. The technique, which is 

illustrated in Figure 3.3, is peculiar to analogue corre-

lators employing charge coupled devices (CCDs), and will 
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be discussed again in section 3.2.2.4. The correlation 

delay is achieved spatially, but in this case N(N+1) 

shift register cells are required, compared with N shift 

register cells in the previous architecture. 
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Figure 3.3. CCD time integrating correlator. 

In the case of CCDs, there are advantages . in using the 

larger array of CCD cells. The principal advantage this 

array has over its equivalent using only N cells is that 

the requirement for non destructive sensing of the CCD 

outputs is eliminated. This greatly simplifies the CCD 

design and clocking scheme. 
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3.2.2.2. Parallel architecture with temporal integration 

and spatial delay using the overloading counter technique 

The architecture of the Eu349 chip falls into this 

category. It is shown in Figure 3.4. The arguments 

presented in the previous section apply also to this 
architecture. 

Sample clock r(-r)=N/m 

inputs SAMPLE COUNTER m 
Overload 

x 	y pattern 
0 Overload flag 

xy
INTEGRATOR 

DECODE N 

INTEGRATOR (I.) 
- 

DECODE N : 

ry 

INTEGRATOR 

0 
F- -J 

INTEGRATOR 
Ld 

- Xy DECODE N 

Counters 	Latches 

Figure 3.4. Architecture of overloading type correlator. 

A full description of the overloading counter technique is 

given in Chapter 2, but briefly the operation of the cir-

cuit is as follows: A small modification to the 
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integrating counters leads to a system which is much more 

suitable for realisation as a large scale integrated cir-
cuit. Instead of monitoring the total contents of each 

counter at the end of a predetermined integration period, 

the counters are arranged to indicate when a preset value 

is reached. Thus when a counter overloads (i.e. exceeds 

its preset capacity), an overload bit is stored in an 

associated latch. Clearly the first counter to overload 
indicates the position of the most significant peak of the 

polarity correlation function. If integration is allowed 

to proceed after the peak has been detected then progres-

sively more counters will overload and the pattern of 
overload states will grow as shown in Figure 3.5. The 

envelope of the overload pattern describes the shape of 
the function. 
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Figure 3.5. Overload patterns from overloading integrat-

ing counters. 

This architecture can be described as a linear systolic 

array. Advantages include cascadability, without the need 

for external components; long programmable integration 

time; and nearest neighbour communications. There is no 

fan-in. Two versions of this architecture have been real-

ised by silicon integrated circuits, one using pMOS tech-

nology [28,98], and the other, the Eu349 described by this 

thesis, in nMOS technology [2,100]. The Eu349 has, how-

ever, some novel design features which allow it to perform 

automatic self test and self repair [101,103,102]. This 

aspect of the design is discussed in Chapter 5. 
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3.2.2.3. Parallel architecture with spatial integration 

and temporal delay 

Figure 3.6 shows the elements of spatial integration 

correlator. The operation of such an architecture is as 

follows: both signals are stored in registers, with taps 

at each stage connected to a parallel array of multi-

pliers. The products are summed over the array to give 

the integrated result for a single value of correlation 

delay. Subsequent values of the correlation function at 

different delays are then computed by shifting one of the 

signals with respect to the other, and repeating the 

integration process. 

Y 
	

SHIFT REGISTER 
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P J>Jr 
Output 
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SHIFT REGISTER 

Figure 3.6. Parallel correlator using spatial integra-
tion. 

The architecture is especially suited to analogue correla-

tors due the ease with which the summing network can be 

implemented using analogue techniques. A purely analogue 

correlator has been reported which consists of 64 cascaded 

stages to give integration over 64 samples [125,126]. MOS 

storage capacitors are employed for the "static" channel, 
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charge coupled devices are used for the " active "  channel 

(i.e. the one to be shifted), and single MOS transistors 

perform the analogue multiplication. Currents from all 

the multiplier transistors are summed on a common source 

busbar and summing amplifier. 

The majority of the analogue correlators in this 

category implement relay (analogue-binary) correlation. 

Again, CCD shift registers are used in the active channel 

and digital shift registers are employed in the static 

channel. Current summing is a method of integrating the 

sample products which requires less silicon area than 

digital methods. Relay correlators with 64 stages [127], 

128 stages (128,129], and even 512 stages [63,123] have 

been reported. An example of an analogue/digital correla-

tor is reported [130]. Analogue information is sampled 

and held at fixed sites on the chip and digital informa-

tion is shifted past them. The digital channel, which is 

quantised into 7 bits, controls the selection of 7 binary 

area-ratioed MOS capacitors per correlator stage. The 

area penalty for employing a 7 bit digital channel is that 

the chip contains only 16 stages of correlation. 

However, analogue techniques have serious disadvan-

tages, not least with the CCD5. Complicated clocking 

schemes, clock breakthrough, bias, and leakage are some of 

the problem areas. Digital correlators are therefore 

desirable but generally require more silicon area to 

implement, unless the accuracy of polarity correlation is 

sufficient for the application. One digital polarity 

correlator architecture retains the analogue output and 

current summing technique in an attempt to enjoy the best 

of both worlds [131]. The chip consists of 64 stages of 

correlation each with its own current generator which 

feeds the current summing bus, as shown in Figure 3.7. 

/7 
II 	

JI 
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Figure 3.7. Digital correlator using current summing in-

tegration technique. 

A system for spread spectrum communications based on this 

chip, is described by Saethermoen et al [132]. To allow 

for over sampling (twice the Nyquist rate), in-phase and 

quadrature correlation, and 4-bit quantisation, the system 

required a total of 16 stages of correlation per integra-

tion sample. The correlator described has an integration 

time of 1024 samples, which was achieved by cascading 256 

correlator chips. 

The architecture of a correlator employing all digi-

tal techniques consists of digital shift registers, digi-

tal multipliers and a digital summing network. A recent 

digital correlator chip (90,89] consists of four, 32-bit 

polarity correlator modules. Their individual outputs can 

be combined in a variety of ways t imp i.merit 1x4 bit 

quantised inputs, 2x2 bit quantisation, 2x1, or lxi bit 

inputs, all with a corresponding compromise in integration 

time. There is also a facility for quadrature signal 

correlation. In the case of a polarity correlator the 
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multipliers are EXNOR gates and the summing network is a 

parallel counter. A parallel counter is a combinational 

circuit that determines how many of its inputs are at a 

given logical state (usually logic 1) expressing the 

result as a parallel, binary number of its outputs. Paral-

lel counters have been extensively researched 

(133,94,95,134]. They are difficult to design, in that 

they lack modularity in an arithmetic sense. For example 

a large parallel counter can only be made from two smaller 

parallel counters by using extra components to combine the 

separate outputs. As a result, a large parallel counter 

is best designed recursively, starting from the minimum 

implementation (3-input full adder) and working up, 

geometrically. Such an approach is the basis of a silicon 

compiler for parallel counters reported by Cappello [135]. 

The architecture of a 31-bit parallel counter is shown in 

Figure 3.8. Parallel counters occupy a significant por-

tion of the silicon area in digital correlator designs. 

Also, pipelining is normally employed to reduce the 

throughput rate, which increases the required area still 

further. Multi-valued logic techniques have been used to 

reduce the silicon area required by integrated parallel 

counters, as shown in Figure 3.9. Area savings of nearly 

50% using quaternary logic have been reported [96,97]. 

Multi-valued logic circuits are most easily realised in 

technologies such as ECL and IlL [136]. This means that 

very high chocking rates (50 MHz) are possible in digital 

correlators employing this technique [92,93]. 
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Figure 3.8. 31-bit binary parallel counter using binary 
full adders. 
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Figure 3.9. Quaternary logic parallel counter using full 

adder circuits. 

Note the lack of modularity in the architecture of paral-

lel counter, and the high degree of global interconnection 

and fan-in that is necessary. A method which solves these 

particular problems is the architecture shown in Figure 

3.10. Here the summation is distributed along the corre-

lator array. The operation of the circuit will be slower 

than one with a pipelined parallel counter unless pipelin-

ing is incorporated here also, and the circuit is operated 

in a systolic fashion. However, other problems are then 

introduced, since the summing network must be pipelined 

along with the other elements of the correlator. 
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Figure 3.10. Spatial integration using distributed 

adders. 

This is the basis of the systolic correlators discussed in 

section 3.2.4. 

3.2.2.4. Parallel architecture with spatial integration 

and temporal delay using pipe-organ structures 

A special architecture, shown in Figure 3.11 and 

termed a pipe-organ correlator, is equivalent to the con-

ventional spatial integrating correlator of Figure 3.6. 

It arises from the fact that those CCDs, which do not 

require non-destructive sensing techniques, are much 

simpler to construct than their destructive sensing coun-

terparts. Every delay element in the conventional archi-

tecture transfers its stored information to two inputs, 

namely the next delay element, and a multiplier. It is 

essential, therefore, that the information remains intact 

during the process. To avoid this situation, the same 

algorithm can be implemented using separate delay times 

for each correlation point. Every delay cell now feeds 
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only one input. 	The stored information may now be des- 

troyed during a transfer operation. 	In CCD technology, 
the simplification in circuit design (and control) that 

the technique of destructive sensing permits is often 

worth the extra area involved [137,138]. Miller and Berry 

have described a pipe-organ correlator, where the extra 

area required is reduced by merging CCD cells in groups of 
four [65]. 

A dual of this architecture, which uses temporal 

integration, has been described in section 3.2.2.1. 



Shift 
regis 
input 

Output 

ODD 

rs 

gue in 

memory 

y in (ODD) 

y in (EVEN) 

memory. 

gue in 

rs 

Output 

EVEN 

Figure 3.11. Spatially integrated pipe-organ correlator. 

3.2.3. Serial Parallel Architectures (DELTIC) 

The architectures described in the previous sections 

have comprised of functional elements, all of which 

operate at a common clock rate. This section deals with 
serial/parallel architectures, termed delay-line time 

compressor (DELTIC) correlators [6,139], where internal 
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circuitry operates at a higher rate than the sample rate. 

The configuration of a DELTIC correlator is shown in Fig-
ure 3.12. 
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Figure 3.12. DELTIC correlator configuration. 

Here the data is time compressed, or expanded in 
bandwidth, by a factor N, to permit a single, fast multi-
plier to perform the required NxN multiplications in a 
time equal to N input sample periods. Thus the data con-

tained in the recirculating store must be recirculated at 
a rate of N times the input sample rate. For a fixed data 
record, the memory information is held for N complete 
recirculations before being replaced by a new record. In 

the case of a varying input signal, the oldest memory sam-

ple is replaced by a new input sample after each recircu-

lation. Multiplying each sample of the recirculating data 

by a reference signal and integrating N samples provides 

one point of the correlation function. Further points are 

obtained on successive recirculations. The disadvantage 

of this architecture is that the correlation rate is lim-

ited by the speed of the single multiplication element. 

The concurrent use of an array of multipliers, as 
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described in section 3.2.2, increases the correlation rate 

significantly. It also renders a more modular design 

which is more suitable for VLSI implementation. 

3.2.4. Systolic Architectures 

Systolic architectures have been reviewed by several 

authors [122,121,140,141]. In this section, only those 

systolic architectures for integrated circuit correlation 

will be discussed. The algorithms that underlie these 

architectures can again be divided into two categories: 

spatially integrating correlators, and time integrating 

correlators. 

3.2.4.1. Temporal Integration 

The Eu349 correlator chip, shown in Figure 3.4 is a 

time integrating linear systolic array, which uses global 

control signals but no fan-in. There is only a single 

delay on both input and output shift registers, and the 

elements of the delay may be cascaded directly. This 

architecture can also be adapted to provide fault tolerant 

features by simply adding two multipliers and one latch 

per correlator stage. 	The circuit design of the Eu349 

chip is discussed in detail in chapter 4. 	A time 

integrating correlator chip, similar in concept to the 

Eu349, has been reported by Barral and Moreau [142], and 

is illustrated in Figure 3.13. 
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Figure 3.13. Bit-serial systolic correlator (single 
stage). 

The correlator stage shown in Figure 3.13 can compute a 

single correlation point integrated over a maximum of 512 

samples. The samples are 12-bit two's complement numbers 

and the chip contains 11 identical stages. The architec-

ture is bit serial. From the view point of this discus-

sion, however, the main difference between this architec-

ture and that of the Eu349 is the extra pipeline delay 

between each stage. The control signals propagate through 

the pipeline from one stage to the next; thus global con-

trol signals are avoided. Disadvantages of this architec-
ture include low correlation rate due to the bit-serial 
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implementation (300 kHz maximum); integration time limited 

to 512 samples; and only 11 parallel stages of correlation 
per chip. 

The remaining examples here, of systolic correlation 

chips, employ spatial integration. The conceptional 

difference between time integration and spatial integra-

tion is treated in Section 3.3. 

3.2.4.2. Spatial Integration 

In devising systolic architectures all the possible 

permutations of the three quantities (reference, input, 

and results) and the two parameters (moving or stationary) 

are explored. For example, the architecture shown in 

Figure 3.6 can be described as having "stationary refer-

ence signal, moving input signal and stationary output". 

At each shift cycle the stationary outputs fan-in to the 

single. summing network. A similar situation is shown in 

Figure 3.10, the only difference being the summing net-

work, which is now distributed over the array. 

Another permutation is shown in Figure 3.14. In this 

example, which is the architecture of a correlator chip 

described by Snelling and Penn [143], the summing network, 

and input signal channel, are pipelined. If the summing 

network alone were pipelined, an architecture is produced 

which has a stationary reference signal, moving input sig-

nal, and a moving output signal, which will not compute a 

correlation function unless the adjacent bits of the input 

signal (and hence the output signal) are separated by 

zeros. One alternative solution, adopted by Snelling and 

Penn, is to introduce a pipeline delay at each stage in 

the input signal, as well as in the summing network. The 

correlator described by Snelling and Penn is also pipe-

lined into bit slices. The complete architecture allows 
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1-bit x 8-bit correlation, but integration is only over 8 

samples. Another alternative solution, which is described 

by Kawahara (144], is to remove the delay entirely from 

the input signal. This architecture is shown in Figure 

3.15. The chip described by Kawahara computes a 3-bit' x 

4-bit correlation function integrated over 32 samples. 

The output word size is 11 bits. 
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Figure 3.14. Systolic correlator with pipelined summing 

network and input register. 
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Figure 3.15. Correlator architecture with pipelined sum-

ming network and global input signal. 

Finally, a two dimensional systolic array of simple 
1-bit processor and memory cells, which can compute corre-

lation functions, is described by McWhirter et al 

(145,1461. The silicon implementation of the architecture 

[147] provides 4-bit x 1-bit correlation, employing spa-

tial integrations over 64 data samples. The correlation 

algorithm uses a moving reference signal, moving input 

signal and moving results. Zeros are interspersed between 

adjacent bits of the input data words and the reference 

words to achieve the desired interaction of the com-

ponents. The architecture of the correlator is shown in 
Figure 3.16. 
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Figure 3.16. Two-dimensional systolic correlator of 

McWhirter et al. 

As a result of the interspersed zeros and the continual 
contra-flow of the data and reference bits, a diamond 

shaped region of valid interaction propagates down the 
array, as shown in Figure 3.17. 
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Figure 3.17. Data flow in the systolic correlator of 

McWhirter et al. 

The partial products inside the interaction area eventu-

ally reach the bottom edge of the array where they are 

accumulated by the adder cells (marked (b) in Figure 

3.16). Only those partial products which are relevant to 

the particular correlation point being accumulated, will 

have any effect, since all others will have a zero in one, 

or both of the multiplicands. The correlator operates in 

a bit serial manner, and produces a valid result every 

4N-1 clock cycles (for two's complement numbers), where N 

is the length (integration time) of the array. A CMOS 

realisation of this architecture, where N=64, operating at 

20 MHz could provide 16-bit results at a rate of just 

under 100 kHz. An important disadvantage, therefore, of 



0 

V 
U 
C 
V 

0 

U 
0 ' 

CL

4,  

U 

0 

mask 

In - 

- 67 - 

this type of systolic array is one of throughput, particu-

larly if the array is large. Another disadvantage is that 

arrays must be cascaded geometrically to allow for inter-

nal word growth in the partial products. In practice, 

truncation is used to limit the permitted word growth. 

3.3. Correlation Cube: The Difference Between Temporal 

and Spatial Integration 

In this section the contrasting architectures of time 

integrating correlators and spatially integrating correla-

tors are discussed. There are two points to note in par-

ticular: time delay implementation and integration tech-

nique. Figures 3.18 and 3.19 show respectively spatial 

integration and time integration architectures. 

integration time (N) 

Figure 3.18. Correlator architecture using a single 

parallel integrator. 
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Figure 3.19. Eu349 architecture using a parallel array of 

serial integrators. 

In Figure 3.18, the relative delay between the sig-

nals is achieved by dumping the x register contents into 

the reference register. In this way the x signal is held 

stationary while the y signal is shifted past. The time 

delay window is given by the period between the x register 

parallel dumps. In contrast the Eu349 architecture delays 

only one input signal. Hence each stage of the correlator 

introduces a unit of time delay between the input signals. 

For the Eu349 the time delay window is given by the number 

of correlator stages, and may be increased easily by cas-

cading the Eu349 chips. 

Integration time in the Eu349 is governed by the 

capacity of the integrating counters, which is programm-

able. Thus the integration time may be varied from I to 

32,766, regardless of the number of correlation stages in 

the cascade. 

In the architecture of Figure 3.18, the integration 

time is determined by the length of the correlator, that 

is, the number of bits in the shift registers. 



Integration time is therefore short. The integration time 

may be increased by cascading the chips, but this is dif-

ficult because the individual chip outputs (typically 7 

bits for an integration time of 64) must be added together 

using external circuitry [94,95]. 

The differences in the architectures of Figures 3.18 

and 3.19, may be summarised by viewing correlation in 

three dimensions: function amplitude, time delay, and 

integration time. A correlation cube to demonstrate this 

is shown in Figure 3.20. Both architectures incorporate 

two physical dimensions and one time dimension. It can be 

seen in Figure 3.20 how the two physical dimensions of the 

architectures occupy orthogonal slices of the correlation 

cube. 

architecture using 	architecture of 

parallel integration 
	

Eu349 

in -7- 

1-1 

Figure 3.20. The correlation cube showing the relation-

ship between the two contrasting architectures. 

3.3.1. Correlator Architecture based on Spatial Integra-

tion 

For this architecture, the correlation equation 
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N-i 
r(t) = E 'k Xk_T 	 3.1 

k=0 

is implemented by storing the reference signal Yk in a 

(maskable) register latch of N stages, where N represents 

the correlator integration time. The input signal x  is 
shifted along a tapped shift register and at the kth tap, 

on each clock cycle, the product Yk.Xk_t  is produced. 
Summing these individual products in a single (parallel) 

counter produces the desired correlation function. The 

output is one b-bit value of the function for each clock 
cycle. Effectively, the parallel counter is integrating 

the products for all k, from 0 to N-i, simultaneously, at 
a single delay value t, per clock cycle. 

Increasing code lengths by cascading individual 

correlator chips is complicated by the need to add 

together the b-bit words from individual parallel 

counters. In this parallel counter structure the correla-

tor integration time is less than (if masking is used), or 

equal to the reference code length. The correlator, 

therefore, has three degrees of freedom: integration time, 

correlation lag or delay, and correlation amplitude. 

These may be represented on the correlation cube as shown 

in Figure 3.21. 
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Figure 3.21. Correlation cube for the spatially integrat-

ing correlator. 

The correlation function of Figure 3.22, which has 

fixed integration time N, and produces one value of r(t) 

for each lag t, would be depicted as shown in Figure 3.21, 
on the rear face of the cube, since the integration over N 

samples is effectively performed instantaneously within 

the parallel counter. 

rç r) 

Figure 3.22. 3.22. The correlation function from the spatially. 

integrating architecture. 
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3.3.2. 	Correlation Architecture based on Temporal 
Integration 

In the Eu349, the correlation equation 

N-i 
r(t) = E y k Xk T 	 3.2 

k=O 

is implemented. The input signal x  is shifted through a 
tapped shift register and at each tap the product Yk.Xk.t 

is produced. Note that, in contrast to the previous 

architecture, the Eu349 does not involve on-chip latching 

of the reference waveform y k' and that each individual 

sample of y is applied simultaneously to all stages. A 

serial counter/integrator on each stage integrates the 

product values for all values of k, up to a maximum of N-
1. The value N, which represents the integration time, is 

simply the preset capacity of the serial counters, and has 

nothing whatsoever to do with the number of stages in the 

Eu349 correlator. Each integrating counter in the Eu349, 

is dedicated to integrating the product values for one 

particular value of lag or delay. The value of lag is 

determined by the position of the counter in the overall 

array. Thus the contents of the tth counter, after an 
integration time of N, will be 

N-i 
1 	Y1F Xl,_ = 
k=O ' ' 

3.3 

which is exactly the function produced by the spatially 

integrating correlator. 

The main difference between the two architectures can 

be visualised with reference to the correlation cube. 
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Figure 3.23. Correlation cube for the correlator Eu349. 

Whereas in the spatially integrating correlator, the 

integration over N samples is performed "instantaneously" 

in the parallel counter to produce one value of the corre-

lation function per clock cycle, in the Eu349, the array 
of serial counters simultaneously offer the values of the 

correlation function at all time lags as a function of 
integration time. Thus, after an integration time of N 

clock cycles, the values in the serial counters will 

represent the final correlation function, identical to the 

result from the spatially integrating device. 

In the Eu349, the values r(t) can be read out from 

the array of counters to yield the correlation function. 

In contrast to the spatially integrating device, the Eu349 

offers direct cascading of individual chips without 

requiring the use of additional circuitry, to increase the 

maximum length of reference code and lag value, whilst 
offering an independent variation of integration time N by 
the presettable serial counters. Also, the correlation 

rate is not affected by the size of the array. 

3.3.3. Display of Correlation Output 

With the spatially integrating correlator, the b-bit 

output of the correlation function is obtained each clock 

cycle. With the Eu349, a latency of N clock cycles (N is 
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the integration time through the correlation cube of Fig-

ure 3.23) is required before the correlation function can 

be read out. As an alternative display mechanism, the 

overloading counter technique can be used to provide a 

bit-serial output of the correlation function for applica-

tions where the integration time is significantly greater 

than the maximum lag value, or reference code length. 

Here, when one of the presettable serial counters over-

loads, a flag is set, the overload status (one bit for 

each counter) is read out for all counters from a serial 

shift register, and the time lag of the correlation func-

tion peak (see Figure 3.23) can be determined. On later 

clock cycles (representing lesser correlation signifi-

cance), several other counters will have overloaded, so 

that points around the main correlation peak, and other 

lesser peaks of the function may be displayed (see Figure 
3.24). 

counter index 	(T) 

Figure 3.24. Display technique for the Eu349 correlator. 

3.4. Summary 

In this chapter, several implementations of silicon 

correlators have been discussed. The architectures may be 

classified by observing whether time integrating or spa-

tially integrating techniques have been used. The 
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difference between these two concepts has been illustrated 

by the correlation cube. Further segregation of correla-
tor architectures may be made by observing which computa-

tional techniques have been used, namely bit serial, bit 
parallel, polarity, systolic etc. 

Parallel and concurrent techniques are employed to an 
ever increasing extent in integrated circuit correlators. 

However there exists a compromise between using a large 

number of very simple concurrent operations, and using a 

small number of complex cells, to achieve a common objec-
tive. In the DELTIC correlator, a single, fast, multi-

plier is used. In the systolic correlator of McWhirter et 
al. 	delay, multiply, and add operations are distributed 
over a large 2-dimensional array of simple cells. 	How- 
ever, partial products are only generated in cells within 

an interaction region and these in turn are only used to 
form a product on every alternate clock cycle. Further-

more, to achieve useful integration times a large array of 

cells is required, and to increase the integration time 
requires cells to be cascaded. Normally this would not be 

a disadvantage; it is in fact preferable for VLSI archi-
tectures.to  be modular and cascadable. However the output 
rate of this correlator is inversely proportional to the 
size of the array. 

The architecture of the Eu349 correlator achieves a 

balance between concurrency, cascadability and correlation 

rate. The architecture is concurrent in that each point 
of the correlation function is computed in parallel. The 

architecture is directly cascadable, and the correlation 
rate is independent of the length of the array. 
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CHAPTER 4 

VLSI DESIGN STRATEGIES 

FOR TESTABILITY AND FAULT TOLERANCE 

4.1.. Introduction 

The concepts of design for testability and fault 

tolerance in integrated circuit design become important as 

feature sizes shrink and chip sizes increase. The chip 

described in this thesis embodies a design for testability 

strategy and provides yield enhancement and fault toler-

ance through the use of redundancy. These two topics are 
discussed in this chapter. 

Design for testability addresses the two major facets 

of the chip testing problem: test pattern generation, and 

test response verification. At the circuit complexities 

presented by VLSI the need to design testable logic cir-

cuits is crucial, and considerable work has been done in 

recent years in devising design strategies that produce 

highly testable circuits [148,149,150,151,152]. Testabil-
ity can be achieved by: 

ad hoc partitioning of a VLSI design into small 
testable modules or stages, 

the inclusion of a systematic testability scheme, 
such as scan path, and 

C) 	built-in test and self test strategies, and associ- 
ated data compression techniques. 

Fault tolerance is undoubtly a desirable property in 
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any electronic system. In order to take full advantage of 

VLSI, the design strategy should include techniques for 

fault tolerance and yield improvement. Examples of these 

techniques are 

modified design rules, which reduce the probability 

of yield loss due to critical spacings, or random 

defects (defect avoidance), 

replication of critical circuits with associated 

majority voting schemes (concurrent fault tolerance), 
and 

C) 	modified VLSI architectures in which redundant cir- 

cuit modules can be switched into operation to com-

pensate for defective areas (nonconcurrent fault 

tolerance). 

In this thesis, attention will be restricted to non-

concurrent schemes, referred to in paragraph (c) above. 

Increased design and implementation costs should be 

expected when redundancy is incorporated into a VLSI 

design. A figure of merit can be defined, however, which 

takes into account the improvement of yield and the 

increase in implementation cost. The yield enhancement 

scheme is worthwhile, when the figure of merit is greater 

than unity i.e. the cost of the redundant chips will be 

lower than the cost of the nonredundant chips. The figure 

of merit for redundantly designed chips is a maximum when 
approximately 10% of the circuit is redundant [153]. This 

implies that chips can be designed around an optimum 

amount of additional circuitry to improve yield. 

The Eu349 chip described in this thesis, has been 

designed for testability and fault tolerance. Further-

more, the design strategy allows faulty stages to be 



detected and eliminated automatically. The circuit design 

is presented in Chapter 5, but as a precursor, the sub-

jects of VLSI design for testability, and design for fault 

tolerance and yield enhancement will be reviewed in this 
chapter. 

4.2. Test Philosophies and The Motivation Behind Design 

for Testability 

With the increase in complexity of logic that can be 

fabricated on a VLSI chip, there is a growing problem in 

validating the logical behaviour of the chip at manufac-

ture. Traditional test techniques require the derivation 

of input test stimuli, and associated output responses. 

Exhaustive testing of circuits demands the consideration 

of all possible logic states in which a circuit can exist. 

This strategy rapidly becomes uneconomical in complex, or 

deeply sequential circuits, since the costs and times 

involved in test pattern generation grow exponentially 

with increasing circuit complexity [152]. Techniques to 

reduce the number of test stimuli are based on the use of 

fault models and a knowledge of the internal structure of 

the circuit. The most common fault model is the stuck-at 

model. More comprehensive models are possible [154] but 

they substantially increase the difficulty of test pattern 

generation and do not offer any significant compensating 
advantages [151]. 

The efficiency of a test set is measured by its fault 

coverage, which, in the case of a stuck-at fault model, 

refers to the percentage of possible stuck-at faults the 

test set will detect. Fault simulation is commonly used 

in logic circuit testing to evaluate whether a generated 

test set does indeed detect the faults it was intended to 

detect. It is also used to compute the fault coverage. 
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There are a number of difficulties with this 

approach. Firstly, a fault model is required. In VLSI 

circuits the classical assumption that only single stuck-

at faults need be modelled is not sufficient [154]. More 

comprehensive models are possible, but they increase the 

task of test pattern generation. Secondly, test pattern 

generation is required. Automatic test pattern generation 

[155] is very costly and typically does not provide a suf-

ficiently high fault coverage. For sequential circuits at 

VLSI complexity, automatic test generation is extremely 

difficult, and manual generation is time consuming and 

error prone [149]. 

One method which avoids the problem of producing a 

specific test pattern is random testing [156]. In this 

case a relatively large number of random patterns are 

applied to the circuit under test. If the response is 

found to match the expected circuit response, then it can 

be assumed, within a specified confidence limit, that the 

circuit is fault-free. Random testing has been found to 

be. an extremely effective means for fault detection in 

combinational circuits, but its effectiveness in dealing 

with sequential circuits is not easily defined [151]. 

An alternative to gate level testing is functional 

testing. This approach has the advantage that tests can 

be generated without having a detailed knowledge of the 

gate structure of the chip. the problem with functional 

testing, however, is that the only way to be certain that 

the circuit is fault-free, is to perform an exhaustive 

functional test. Since exhaustive testing is only feasi-

ble for circuits which have few inputs and few sequential 

states, then functional testing, on its own, is not a 

practical approach to VLSI testing. 

From the foregoing discussion, it can be concluded 



that testing becomes increasingly difficult as designs 

approach VLSI complexity. Methods used to reduce the 

amount of test data reduce, in turn, the fault coverage, 

and in any case are difficult to automate for large cir-

cuits. The only solution to these problems is to reduce 

the complexity of VLSI circuits, at least with regard to 

testing. Hence the term "design for testability". Figure 

4.1 shows a comparison between test costs with, and 

without, design for testability. The test costs without 

design for testability grow exponentially with increasing 

complexity, in contrast to the almost linear characteris-

tics of test costs for circuits which incorporate a design 

for testability scheme [157]. 

100 
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test costs 

(%) 

 

5k 	 20k 

Circuit complexity (gates/chip) 

Figure 4.1. Comparison of test costs with, and without, 

design for testability. 

This thesis addresses the need to embody a testabil-

ity scheme within the VLSI integrated circuit itself, and 

describes a methodology which makes this possible for well 



structured systems. 

4.3. Design for Testability Methods 

4.3.1. Objectives 

Testability involves two important concepts: control-

lability and observability. Controllability is the abil-

ity to establish a circuit in a controlled initial state, 

and observability is the ability to observe externally, 

the internal states. Design for testability involves 

increasing the controllability and observability of the 

constituents of a design by decomposing the overall design 

into more manageable elements. The cost of design for 

testability can be measured by the number of additional 

package pins required for test purposes, the number of 

additional test circuits required, and any loss in perfor-

mance resulting from design for testability techniques. 

Increased circuit complexity reduces fabrication 

yield (153]. Thus, the increased chip costs involved in 

using extra silicon area for test purposes must be weighed 

against the savings in test costs, which are-usually 

reflected by test time. Typically the use of test cir-

cuits which increase the chip area by approximately 10% is 

considered reasonable [158]. The variation of relative 

test costs with test circuit area overhead is shown in 

Figure 4.2 [157]. 
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Figure 4.2. Typical variation of chip costs as a function 

of test circuit area overhead. 

The significance of the test circuit area overhead depends 

on the type, and application, of the chip being designed. 

For low cost, high volume, modest performance designs, an 

acceptable test overhead is around 10%, whereas for high 

performance, low volume applications, test overheads of 

100% may be acceptable. 

4.3.2. Ad Hoc Methods 

Ad hoc approaches to design for testability are in 

fact simply guidelines on how to improve the testability 

of a particular circuit. The testability problem has to 

be addressed again and again with every new design. The 

most common ad hoc method is circuit partitioning with 

added test points. This allows the circuit to be split 

into functional sub-modules, each of which may be accessed 



and tested individually. The type of circuit architecture 

is important to the choice of ad hoc testability scheme. 

For example, bus structured circuits, such as microproces-

sors, are easily partitioned, using the busses as test 

points. However, with growing VLSI complexity, additional 

design for testability schemes must be employed within the 

sub-modules. 

4.3.3. Scan Methods 

The scan path method of design for testability 

enhances the controllability and observability of a VLSI 

circuit by allowing access to the internal states of a 

circuit [159]. The principle of the technique is to pro-

vide additional facilities within the circuit, so that the 

storage devices can be tested separately from the rest of 

the circuit; the future state of the internal variables 

can be set to any desired value independent of their 

present values; and the values of the internal variables 

can be accessed and observed directly. These facilities 

can be achieved by establishing a scan path through the 

storage devices, as shown in Figure 4.3. The scan path 

operates in two modes. In normal mode, the storage dev -

ices in the scan path are not linked together and the nor-

mal operation of the circuit is not affected. In scan 

mode, the storage devices are linked to form a shift 

register. The serial input and serial output provide con-

trollability and observability to the internal states of 

the circuit, when in scan mode. 
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Figure 4.3. Scan path in design for testability. 

Level sensitive scan design (LSSD) is a method of 

constructing scan paths which relies on strict design 

rules and guidelines. They are designed so that their 

operation is as independent as possible from the circuit's 

a.c. parameters, such as degraded rise and fall times, 

degraded propagation delays, or other faults that may 

introduce race or hazard conditions. As a result, the 

potential effect of failure mechanisms that cause timing 

faults is reduced [160]. 

The method of testing using scan path is as follows. 

Firstly the scan path is itself tested. This is done by 

selecting scan path mode, i.e. the storage elements con-

figured as shift register. The status and operation of 

each storage device is tested using the Scan Data In, Scan 

Data Out, and Clock facilities shown in Figure 4.3. The 

test procedure uses a flush test followed by a shift test. 

Flush test begins by initialising the storage elements to 

0. Then a single 1 is clocked through the scan path from 
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the Scan Data In input to the Scan Data Out output. The 

test can be repeated with a single 0 flushed through a 

background of is. Flush test checks the ability of each 

storage device to assume a 0-state and a 1-state, and the 

ability to transfer the stored state to the output. Shift 

test consists of clocking the sequence 00110011... through 

the scan path shift register. This sequence exercises 

each storage device through all combinations of present 

state and future state [158]. 

Secondly, the circuitry between scan path nodes can 

be tested. This is done by selecting scan path mode and 

shifting a predetermined test pattern into the storage 

devices. Also, a set of test vectors are applied to the 

primary inputs. Then the circuit is switched to normal 

operation. The steady state output response of the cir-

cuit under test can now be clocked into the storage dev-

ices. Finally, scan path mode is reselected, and the con-

tents of the storage devices are clocked out. These 

values, plus the values directly observable on the primary 

outputs, can be compared with the expected fault-free 
response. 

The total test time is determined mainly by the 

number of stages in the scan path which, in turn, is 

determined by the number of individual logic blocks to be 

tested. Optimum scan testing requires the inclusion of a 

complete scan path which leaves no sequential logic cir-

cuits during test mode. However, speed, performance, or 

area constraints, may restrict the use of this technique, 

with the result that parts of the circuit are sequential 

during the test. 

The implementation overhead of a scan path test stra-

tegy, in terms of additional design and silicon area, 

depends on the basic structure of the circuit, and the 



availability of circuit elements that are suitable for 

conversion into scan path elements. The simplest form of 

scan path test strategy is to add scan path shift regis-

ters to the VLSI design. Clearly this involves increased 

circuit area. A more attractive scan path implementation 

involves functional conversion of existing circuit ele-
ments into the required reconfigurable storage elements, 

thus reducing test area overheads to a minimum. Such a 

strategy is often forced upon the designer by the archi-

tecture and design software of semi-custom integrated cir-

cuits. In the UK5000 gate array [161], for example, the 

rows of uncommitted logic cells are sandwiched between 

rows of predefined LSSD latches. When the designer 

requires a storage element he is forced to use one of the 

LSSD latches. In this way the design is guaranteed 

testable. In the case of the Eu349 correlator design, 

functional conversion of existing circuitry has been 

extensively used. 

The effect of scan paths on circuit performance is 

only of importance when additional scan path register 

stages have to be included in the design. Otherwise, only 

increased loading and routing need be considered. 

The primary advantage of the scan path method is that 

as few as three extra circuit pins need be used to allow 

test-enable, and data input and output. However, the scan 

path merely allows access to internal circuit nodes to 

enhance controllability and observability. Testing cir-

cuits that have scan paths incorporated still requires 

external test pattern generation, and test response moni-

toring, to derive the test result. 



4.3.4. Built-In Self Test Methods 

Built-in self test (BIST) is a design for testability 

strategy in which test pattern generation and circuit 

response monitoring is performed within the system. This 

can be done either concurrently or nonconcurrently. Con-

current (on-line) methods use a variety of error-

detecting, error-correcting, and self-checking codes. 

Nonconcurrent methods require an external activation which 

initiates the built-in test and inhibits the normal func-

tion of the circuit. The advantages of self test are that 

the test may be repeated as and when necessary during the 

service life of the system, and not simply at manufacture. 

For example, the system may be configured to initiate a 

self test automatically at each power-on. This thesis is 
primarily concerned with nonconcurrent self test methods, 

and the remainder of this section shall deal with two 

implementation techniques for. built-in test. These are 

signature analysis [162,163], and BILBO (Built-In Logic 
Block Observation) [164,165]. 

In built-in test, it is essential that the the test 

pattern is short, or at least that it can be generated 

easily by a small amount of additional circuitry. The 

same criterion applies to test response monitoring. Test 

pattern generation can be simplified by using pseudo-

random binary sequences (PRBS) [166] which are easy to 

generate on chip using a simple linear feedback shift 

register (LFSR), as shown in Figure 4.4. 
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Figure 4.4. Configuration of a PRBS generator. 

Data compression techniques, such as signature 
analysis, can greatly reduce the problem of test response 

monitoring [167,156]. Signature analysis is carried out 
using a linear feedback shift register, adapted to perform 

cyclic redundancy checking (CRC) on the test response 
sequence, as shown in Figure 4.5. 
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Figure 4.5. Signature analysis register. 

The test sequence is sampled and clocked into the shift 

register. The contents of the shift register are influ-

enced not only by the next sampled value of the test 

sequence, but, by virtue of the feedback structure, by the 

current contents of the register. In this way, any corr-

uption of the sampled bit stream causes a corresponding 

corruption in the contents of the shift register. At the 

end of the test period, the accumulated contents of the 

shift register represents the signature of the node under 

test. The signature is compared with the expected fault-

free signature, and a match indicates that the' node is 

fault-free; a mismatch indicates that the response 

sequence is corrupt in some way. For CRC signatures, the 

probability of a corrupt data stream generating the same 

signature as the fault-free data stream is extremely low, 

quickly approaching 2' as the length of the data stream 

exceeds the length n of the shift register [162]. 

The BILBO technique [164,165] is a recent innovation 

which draws together all the main elements of design for 

testability, including pseudo-random test pattern 



generation, scan path, and signature analysis. The tech-

nique reduces the test overhead by exploiting the shift 

register elements, common to all three schemes. The basic 

BILBO element is illustrated in Figure 4.6. 
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ZI 	 Z2 	 Z3 	 Z4 

mode control C 

mode control C 

SDI 

CLK 

SOC 

U] 	 U2 	 03 	 04 
parallel data outputs 

Figure 4.6. Basic BILBO element. 

Each BILBO consists of a latch register and some 'addi-

tional gates for shift and feedback operations. Four dif-

ferent functional modes can be selected using the two mode 
controls Cl and C2 (164). In the first mode (Cl = 1, C2 = 

1), each latch is independent and can be used in normal 

operation. In the second mode, the BILBO is configured as 

a shift register and operates as a scan path (Cl = 0, C2 = 

0). In the third mode (Cl = 1, C2 = 0), the BILBO is 

functionally converted into a multiple input signature 

register (MISR), and in the forth mode (Cl = 0, C2 = 1) 
the latches are reset. 

Multiple input signature registers can perform either 

pseudo-random sequence generation, or signature analysis. 

PBBS generation is achieved by setting the parallel inputs 



- 91 - 

to zero. 	As a signature analysis register the BILBO can 

operate in two modes: serial input, or parallel input. In 

serial input mode, the test data is clocked into Zi while 

the remaining parallel inputs are held at zero. In paral-

lel input mode, the test sequences are clocked into some, 

or all of the Z-inputs. The theory of multiple input sig-

nature analysis is complex, and is beyond the scope of 

this thesis. The most important aspect of signature 

analysis, as regards this thesis, is that the probability 

of fault detection is very high. It can be shown that the 

probability of detecting errors from L input vectors of m 

bits each, by an n bit MISR is [167] 

2mL-n 1 
mL 	 4.1 
2 -1 

assuming all error sequences to be equally likely. 

4.4. VLSI Design for Testability in the Eu349 Correlator 
Chip 

This section contains a summary of the design 

features that are relevant to the Eu349 correlator chip. 

Details concerning the operation of the architecture have 

been described in Chapter 3; details of the chip design 

will be presented in Chapter 5. 

A block diagram showing the main elements of the pro-

totype correlator is presented in Figure 4.7. The figure 

shows an array of coincidence detectors and integrating 

counters, whose inputs and outputs are linked together by 

two shift registers, the data shift register (DSR), and 

the overload shift register (OSR). In test mode the DSP 
and OSR act as scan paths, while the integrating counters 

perform signature analysis. Signature analysis provides a 

self test of the integrating counters, and after a 
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complete test period, the counters contain the compressed 

signatures of each correlator stage. There are only two 

primary data inputs to the correlator, therefore an 

exhaustive functional test is possible, and only requires 

four different test patterns. Each test pattern, however, 

must be repeated for the number of clock cycles necessary 

to complete the signature analysis. In a complete test 

period, four integrating counter self tests, and one 

exhaustive test of the coincidence detectors will have 
occurred. 
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Figure 4.7. Correlator block diagram showing Built-In 

Self Test features. 

At the end of each integrating counter self test the sig-

nature must be checked for correctness. This is done by 

an external signal called Fidelity-Test (F-Test), and the 

result, a single GO/NO-GO status bit is stored in the 

associated overload latch. The results of the full test 

for each correlator stage in the array may then be exam-

ined using the overload shift register in scan path mode. 
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The architecture of the Eu349 correlator uses the 

results of the self test (the GO/NO-GO status bits) to 

provide yield enhancement and fault tolerance. This 

aspect of the design is summarised in Section 4.7, and is 
addressed in more detail in Chapter 5. 

4.5. Integrated Circuit Yield Statistics 

4.5.1. Scope 

The integrated circuit described in this thesis con-

tains approximately 7500 MOS transistors interconnected to 

perform a specific electronic function. The probability 

that all the devices and their interconnections will func-

tion correctly depends on the control exercised during the 

series of complex processing steps used in their manufac-

ture. The fraction of chips that satisfy the final test 

programme is called the yield. This section of the thesis 

deals with the mathematical models used to predict yield. 

Yield statistics are important in both controlling a sem-

iconductor fabrication process, and in predicting the 

yield of future semiconductor products. They are also 

essential for analysing (or anticipating) the effective-

ness of a yield enchancement scheme. It is this particu-

lar application of yield statistics that is of primary 
interest here. 

The yield associated with integrated circuit fabrica-

tion can be divided into three parts. The first part 

results from catastrophic defects, such as wafer breakage, 

missing or erroneous processing steps etc., which prevent 

the circuits ever reaching final test. These defects will 

not be included in the discussion. The second part, known 

as pre-assembly test yield, deals with localised process 

defects, and the third part takes account of faults caused 

by packaging. The main area of interest here is the 
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second yield category, the pre-assembly test yield. This 

yield can be divided into two classes. Firstly, there are 

gross yields, which are the result of gross defects, such 

as process parameter variations, causing large areas of 

the wafer to fail, and secondly, random yields, which are 

the result of random defects, such as thin oxide pinholes. 

The dependence of yield upon chip area has been 

extensively studied in the literature. Various theories 

have been presented, and analytical expressions derived to 

fit statistical data based on defect density distributions 

[168,169,17O,171,172,173,174]. The work is based on ran-

dom defect distributions, and the papers differ in their 

treatment of various defects being distinguishable or 

indistinguishable from each other. 

Attempts at yield calculations that take redundancy 

into account have largely concerned memory chips 

(175,176,177]. The model presented by Schuster [177] is 

based on the exponential dependence of yield on the active 

chip area. The defects are separated as correctable, 

uncorrectable, and gross imperfections, and the net yield 

is calculated as the product of these three independently 

calculated yields. Stapper et al [175] have described a 

yield model with redundancy based on the Gamma distribu-

tion of defects. They then use mixed Poisson statistics 

to derive a yield expression to describe the yield of 

redundantly designed memory chips. 

Researchers have also been concerned with redundancy 

in non-memory VLSI chips [178,153,179], and they all agree 

that redundantly designed circuits have more chance of 

working than nonredundant designs. Mangir et al [153], in 

their model, account for the effects of the complexities 

of areas, connectivities between different areas, and the 

effect of regularity of interconnections, which would 



affect the processing tolerances, and hence yield. 

Before describing in detail a yield model for random 

defects, it is necessary to describe the yield losses due 

to gross defects. 

4.5.2. Yield Loss due to Gross Defects 

Gross defects, which are normally associated with 

errors in the process parameters, may cause large areas, 

or entire wafers, to have no functioning chips. Examples 

of these parameters are Lian.I:tor gain, threshold vol-

tages, contact resistance, and parasitic capacitances. 

Entire wafers will fail if the values of these parameters 

fall outside of their specified range. In marginal cases 

parts of wafers may fail, as shown in Figure 4.8. Gross 

yield losses may also be caused by errors in photolitho-

graphic processes. Examples of these are over or under 

exposure of the photosensitive resist material, optical 

distortions, and misalignment of mask patterns. The 

failures do not cause the chips to fail in random patterns 

on the wafer. This is why they must be treated separately 

from random defects. 

Figure 4.8. Wafer map showing gross yield. The shaded 

chips are functioning correctly. 
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Special test circuits for measuring the process parameters 

are usually fabricated on the wafer, either in the free 

space between the chips (the scribe channel), or in 

reserved areas of each chip (test stripe), or in a small 
number (5-6) of chip size replacement " drop - ins " . Mask 
misalignment can also be measured in this way. The frac-

tion of test devices whose measured parameters lie within 

the required range, contributes to the gross yield. 

Stapper (180] gives an example of the relative yield 

losses occurring in the manufacture of a 64k-bit random 

access memory (RAM) chip. These are reproduced in Figure 

4.9. The actual values of the yield losses are 

proprietary information and have not been published. Note 

that the parametric yield accounts for less than 5% of the 
total yield loss. 
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Figure 4.9. Relative yield losses. Random defects cause 
most of the losses. 

Figure 4.9 represents data obtained from a specific pro-

cess line for a specific product, and therefore may not be 

applicable to other circuit types or fabrication facili-
ties. 

4.5.3. Yield Model for Random Defects 

The data shown in Figure 4.9 indicates that random 

defects cause approximately five times as many chips to 

fail than gross defects. Random defect models are, there-

fore, an important factor in semiconductor yield statis-
tics. 

Due to the nature of random defects, and to the com-

plexity of the fabrication process, it is impossible to 



S. 

tell whether observed defects will cause actual chip 

failures. Therefore, the random defect model must be 

divided into two parts. The first part deals with the 

average number of failures of faults that can be caused by 

a large number of different defect mechanisms. The second 

part deals with the statistical distribution of the aver-

age number of faults per chip. According to this theory, 

each defect type is associated with a probability that it 

will cause a failure. This probability can be multiplied 

by the number of defects in the corresponding category to 

obtain the average number of failures or faults per chip. 

This must be done for each defect type. Several failure 

models that have been developed for this purpose are 

described by Stapper et al [180]. However, this theory 

leads to very cumbersome expressions involving hundreds of 

terms, the data for many of which would be very difficult 

to obtain. Fortunately, for the purposes of this thesis, 

a simpler model using a single average defect density will 
suffice. 

The simple theory using Poissoi statistics on a ran-

dom distribution of faults, predicts that the yield is 

proportional to the exponential of the average number of 

faults per chip, or the chip area (if the fault distribu-

tion is constant). In practice, however, it has been 

observed that the defect distribution is non-uniform and 

the yield falls off less sharply, but nevertheless signi-

ficantly with increasing chip area [181,182]. To account 

for this, a wide range of random defect models have been 

reported. Price [169], and later Mangir et al [153], 

maintained that defects should be modelled by Bose-

Einstein statistics. Others have favoured Maxwell-

Boltznian statistics [183,170,184]. Stapper et al [180] 

discuss Poisson, Binomial, and Generalised Negative Bino-

mial statistics, and conclude that each one of these may 

be applied to yield theory. The correct model is the one 
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which fits the data best, and according to Stapper et al 

the Generalised Negative Binomial, distribution is the most 

suitable for modelling present day semiconductor manufac-
turing. 

When simple Poisson statistics are used, the yield 

due to random defects is given by 

= e X 	 4.2 

where X is the average number of faults, given by the pro-

duct of the defect susceptible chip area A, and the aver-

age defect density D, 

=AD 	 4.3 

However, the average value of faults per chip X varies 

from chip to chip, from wafer to wafer, and from batch to 

batch. To take account of these variations a yield model 

that uses the sum of many thousands of fault terms is 

required. The sum may be approximated by an integral. 

The yield is then given by 

00 

S e'g(X)dX 	 4.4 

where g(A) is a probability distribution function of 

faults per chip. This model was reported by Murphy in 

1964 [168] with uniform and triangular distributions given 

fbr g(A). Murphy's results, however, took no account of 

the fact that defects in semiconductor fabrication tend to 

cluster. A more suitable yield model reported by Stapper 

in 1973 [171] uses a Gamma distribution for g(), and an 

expression for yield is obtained of the form 

Y  = (1+o2/_2b02 	 4.5 
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where X is the mean, and o is the standard deviation of 

the Gamma distribution. Defining a constant 

a = 	 4.6 

gives 

= (l +X/ a )_a 
	

4.7 

This distribution is known as the Generalised Negative 

Binomial distribution. The parameter a depends on the 

spread of the fault distribution and takes into account 

the clustering of defects. 

Clustering is believed to be caused by the aggrega-

tion of particles that have collected in the manufacturing 

equipment. When shaken loose by vibrations, pressure 

changes, etc., these clumps of particles form clouds in 

the fluids used for processing the integrated circuits. 

Where such clouds reach the wafer surface, particles are 

clustered. Even when contaminating particles are uni-

formly distributed in the fluids, they are electrostati-

cally attracted to the nearest edge of the wafer. This 

leads to edge clustering, a phenomenon in IC fabrication 

that has been widely observed [185,186,170,187]. 

A comparison of yield models is shown in Figure 4.10. 
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Figure 4.10. Comparison of yield models. 

It is interesting to note, that the expressions for yield 

given in Figure 4.10, can be linked to each other by the 

value of the clustering parameter. Low values of cx are 

used to model severe clustering. When a=1 the yield model 

in 4.7 takes the form = (1+X) which is the same, 
mutatis mutandis, as the Bose-Einstein model reported by 
Price [169], and Mangir et al [153]. When a • approaches 

infinity, 4.7 approaches e', which is the same as the 

simple Poisson model in 4. 2. In this case ti iere is no 

clustering, i.e. a uniform distribution. 

4.5.4. General Yield Model for VLSI Chips with No Redun-
dancy 

The yield model described in the previous section can 

be considered a general model for random yield. To com-

plete the model, gross yield, which was discussed in 
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Section 4.5.2, must be taken into account. Gross yields 

may be incorporated into the general model simply as yield 

multipliers. Thus, pre-assembly yield Y may be expressed 

by 

= 

= 
	

HU 

where Y G  is the average yield due to gross defects, listed 
in Section 4.5.2. 

In practice, it is a difficult task to obtain con-

sistent data for even these key features of a yield model. 

This is due to several important causes: 

The information is proprietary and is rarely dis-

closed. 

State of the art processes often change more quickly 

than the data can be compiled. 

C) 	A yield model that has -been derived for one particu- 

lar process will often not apply to another process, 

even of the same type. 

d) 	A yield model that has been derived for one particu- 

lar circuit will often not apply to a new circuit, 

because of the dependency on circuit complexity and 

interconnect [153]. 

Therefore, the general yield expression is often sim-
plified by assuming the values a-.00 and Y G=  1, to produce 
the Poisson yield expression, 

4.9 
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which assumes a uniform distribution of faults. 	This 

expression tends to produce a lower yield estimate than is 

observed in practice, so it can be considered as a lower 

bound. 	The upper bound can be expressed by the Bose- 

Einstein model, which is obtained by setting ct=1. 	This 
results in the expression for yield, 

Y = (1+X) 	 4.10 

4.5.5. Yield Model for VLSI Chips with Redundancy 

In the previous sections it has been stated that 

integrated circuit yield is reduced by gross defects, and 

by faults caused by random defects in the materials and 

photolithography. In a yield enhancement scheme, where 

faulty circuit stages are replaced by redundant stages, or 

in a scheme where faulty stages are simply bypassed to 

leave a partially functioning chip, it has been observed 

that the defect susceptible portion of the chip is divisi-

ble into two areas [177]. The first area is where random 
defects can cause failures in the circuit stages or 

modules (the words stage and module are synonymous in this 

context). Defects in this area are correctable by replac-

ing the faulty module. The remaining defect susceptible 

portion of the chip is uncorrectable, and any defects 

occurring in this area cause the chip to fail. Uncorrect-

able circuitry includes redundancy switching circuits, 

chip test status latches, clock lines and interconnect, 

input/output buffers etc. The net yield Y E after the 

enhancement scheme has been implemented, is, therefore, 

the product of the gross defect yield Y G' the correctable 
random defect yield Y CRD' and the uncorrectable random 
defect yield Y UNC' that is [188], 

= G UNC CRD 	 4.11 
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With the aid of a block diagram of the integrated 

circuit, shown in Figure 4.11, expressions for the 

correctable and uncorrectable yields can be obtained. 

ZA Uncorrectable bypass circuitry 

7,71 
LZA Uncorrectable peripheral circuitry 

Figure 4.11. Block diagram of Eu349, showing correctable 

and uncorrectable area in the yield enhancement scheme. 

Figure 4.11 shows an array of correlation stages 



- 106 - 

surrounded on three sides by pad drivers and buffer circu-

itry, some miscellaneous logic, and power and clock lines. 

This area, shown hatched, is uncorrectable. In addition, 

the area shown cross hatched contains the multiplexer con-

trol register; this too is uncorrectable. The yield of 

the hatched and cross-hatched region is denoted Y andUNC 
is expressed by 

UNC - 
- e _DAUNC 	

4.12 

where AUNC is the uncorrectable area, and D is the defect 
density. 

The module yield Y m  can be calculated by any of the 
yield models discussed in Section 4.5.2. For simplicity, 

a Poisson defect distribution will be assumed here. Thus, 

an expression for the module yield is 

-DA 
Ym=e 	

m 	
4.13 

where Am  is the module area. This expression can now be 

used to derive an expression for the correctable random 

defect yield Y CRD• 

The correctable yield of a one dimensional array of 

identical modules, each having the probability Y m of work-

ing, is determined using binomial statistics as follows. 

If there are no spare (redundant) modules, then the 

yield of the array is simply 

CRD - N 
	

4.14 

where N is the required number of modules in the array. 

If there is one spare module, the yield becomes 
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YY 
N+1 

CRD = 	+ (N+1)Y 1 (1-Y m 	 4.15 

Here the first term represents the probability that all 

Ni-i modules are functioning, and the second term 

represents the Ni-I possible combinations of N working 
modules and one defective module. 

Extending this approach to the case where there are N 

required modules and S spare modules in the array, then 

the probability of having at least N working modules from 

an array of N+S=M modules is 

CRD = j=0 (M-j) j! 	
M-i) (1 
	

4.16 

where (Mj' represents the number of possible combina-

tions of M modules taken j at a time. 

Finally, by substituting 4.16 into 4.11, the expres-
sion for the enhanced yield can be written as 

= G UNC j=0 (____fly 
 (M_) (1 _ )J 	 4.17 N jj m 	m 

_DAm 	 _DA 
UNC where Ym = e 	and Y UNc = e 	. This expression has 

been evaluated for a range of parameter values, and the 

results, enhanced yield versus redundancy, are plotted in 

Figures 4.12(a), 4.12(b), and 4.12(c). In each figure, 

the total number of modules N remains constant, and the 

gross yield has been normalised to unity. The following 

observations can be made: 

a) 	The yield saturates after a certain amount of redun- 

dancy. This occurs when the yield of the correctable 

areas approaches unity, and increasing redundancy 

ceases to have a significant effect on overall yield. 



b) 	The increase in yield is greatest for chips with the 

highest defect density. Therefore redundancy is most 

effective in low yielding processes. 

C) 	As the uncorrectable area increases, the yield 

decreases. 
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Figure 4.12(a). Yield vs. Redundancy for various defect 
densities. 
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Figure 4.12(b). Yield vs. Redundancy for various values 

of uncorrectable area. 
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Figure 4.12(c). Yield vs. Redundancy for various values 
of module area. 

4.5.6. Cost of Redundancy 

The increase in net yield is not obtained without 
cost. 	The redundant circuits require extra chip area. 

Therefore, there are fewer chips per wafer. 	Also the 
redundancy scheme requires switching mechanisms, or addi-

tional circuitry which is uncorrectable and thus detracts 

from the yield. The compromise between the increase in 

yield due to the action of a redundancy scheme, and the 

decrease in yield due to the implementation of such a 

scheme is discussed by many authors on yield enhancement 
[177,153,176]. 

The effective yield of a yield enhancement scheme is 
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found using the enhanced yield Y E  and the proportional 

increase in chip area that is required to implement the 

scheme. The penalty due to the increased area is 

expressed by ratio of chip area without redundancy A01  and 
the area with redundancy AE. The effective yield is 

defined as the product of the enhanced yield and the area 

penalty term, 

A0  

"eff 	'E 	 4.18 

For cost considerations a figure of merit FM may be 

defined. This takes into account the relative yield 

improvement and the relative increase in area required. 

The figure of merit is defined as 

FM = (YE/Yo)(Ao/AE) 	 4.19 

where Y is the yield without redundancy. If FM > 1 then 

a cost advantage is attained by the use of redundancy. 

Figure 4.13 shows how the figure of merit varies with 

redundancy. The relationship indicates that a circuit can 

be designed around an optimum amount of redundancy. 
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Figure 4.13. Figure of Merit vs. Redundancy for various 

values of defect density. 

4.6. Yield Enhancement Techniques 

4.6.1. Scope 

This section deals with the concept of yield enhance-

ment. Attention is focused, however, on yield enhancement 

techniques which incorporate redundant circuits and 

switching mechanisms, so that faulty circuit elements may 

be replaced by redundant ones after an initial test 

period. The discussion, therefore, does not include "on-

line" self checking circuits [189]. 
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4.6.2. Integrated Circuit Redundancy Schemes 

There are many techniques for implementing redundancy 

schemes. These range from non-volatile "once only" confi-

gurations, which normally are carried out by the manufac-

turer, to the volatile schemes which may be configured as 

often as necessary by the host system. For example, dis-

cretionary interconnect layers provide a method of repair 

in non-volatile schemes, as do fusible links, and laser 

personalisation. Electrically programmable storage ele-

ments, and programmable links, are used to configure vola-

tile redundancy schemes. Further more, latches and other 

electrically alterable configurations can be reprogrammed 

in the field if necessary. Thus, redundancy included on 

chip for yield improvement purposes can be used for field 

maintenance and improve reliability. 

The design effort in VLSI is minimised by using regu-
lar repeated architectures. Also, chips with a large 

number of identical cells are the most obvious candidate 

for yield enhancement. Memory chips certainly have such 

an architecture and were among the first to benefit from 

redundancy techniques. 	They are particularly suitable 
since there is no interaction between the cells. 	As the 
interconnection complexity increases, either an increasing 

amount of circuitry must be dedicated to routing faulty 

cells, or a less flexible use of the spares has to be 

accepted. In 1967 Tammaru and Angell [178] proposed the 

concept of treating groups of interconnected elements, 

rather than single gates, as the smallest units to be 

tested and replaced with spares. In this manner the com-

plexity and cost of reconfiguration can be reduced. 

Architectures for yield enhancement which are of interest 

here, consist of an array of identical cells. There are 

several reconfiguration schemes. These schemes fall into 

three categories: bypass schemes, nearest neighbour, and 
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simple chaining schemes. 

4.6.2.1. Bypass schemes 

Bypass schemes use a fixed sequence of cells but 

extra data paths are available so that one or more faulty 

cells may be bypassed, depending on which scheme is 

employed. These schemes should not be confused with 

chaining schemes which are described in Section 4.6.2.3. 

In the bypass scheme, the switching mechanism is part of 

the cell. Therefore, defective switching mechanisms 'can 

be bypassed. In the chain scheme, the switching network 

is regarded as separate from the array cells and accord-

ingly must be defect free. 

Examples of some bypass schemes are shown in Figure 
4.14. These schemes have been compared by Moore and Day 
[187]. 
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Figure 4.14. Bypass schemes. 

They were selected because they contain no crossovers and 

can be mapped compactly into silicon. An example of the 

silicon layout for the 1,3 zig-zag scheme is shown in Fig-
ure 4.15. 
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Figure 4.15. Layout of the 1,3 zig-zag scheme. 

4.6.2.2. Nearest neighbour schemes 

The nearest neighbour concept for yield enhancement 

is best suited to two dimensional arrays of regular cells 
as shown in Figure 4.16. 

Figure 4.16. Nearest neighbour scheme. 

The scheme depends on each cell being able to take any one 

of its neighbours as its successor. The resulting path 

therefore, is not fixed as in the bypass and chain 

schemes, but may snake around in any desired pattern 
[190,191]. 

4.6.2.3. Chaining schemes 

This category contains the simplest of all yield 

enhancement architectures. A chaining scheme consists of 

• fixed array of cells which can either be connected into 

• chain or not. The main advantage of this scheme is its 

simplicity, in both implementation and configuration. The 

concept can easily be extended to 2 dimensional arrays and 
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to architectures with interconnectivity which would be too 

complex for the alternative schemes [192]. The main draw-

back of this scheme is that, unlike the others, the 

switching network must be defect free, because it is 

uncorrectable. The chain scheme, for a linear array is 

shown in Figure 4.17. 

Figure 4.17. Chain scheme for yield enhancement. 

4.6.3. Comparison of Redundancy Schemes 

The differences between the above yield enhancement 

schemes can be described in terms of the amount by which 

they improve yield, and their implementation costs. The 

nearest neighbour schemes will not be considered because 

they are not suitable for linear array architectures, such 

as that of the Eu349 correlator chip. This leaves the 

bypass schemes and the chain schemes. 

The degree of yield enhancement that may be obtained 

using a bypass scheme, is determined, to a large extent, 

by the complexity of the scheme, and by the routing algo-

rithm. In one of the simplest algorithms, a faulty cell 

would enable the bypass route which connects its natural 

predecessor to its natural successor. This algorithm, 

however, only works for single faults, since two or more 

consecutive faulty cells result in total chip failure. 

This is illustrated by bypass 'a' in Figure 4.18. In a 

more sophisticated scheme, one that can implement a more 

complex routing algorithm, a faulty cell would enable 

bypass 'b' in Figure 4.18. 
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Figure 4.18. Bypass scheme with two consecutive faults. 

Thus, an increase in fault tolerance is achieved by pro-

viding more bypass routes. A study by Moore and Day [187] 

has shown that yields are improved by using more complex 

zig-zag schemes, but. for the same yield improvement the 

castellation schemes have consistently higher cost over-

heads, and therefore may be rejected. 

Bypass schemes have an advantage that the switching 

circuitry is an integral part of the array cells. Thus, 

defective switches can be tolerated by the scheme. A 

disadvantage is that special terminating cells are 

required at the ends of the array. These cells select the 

desired start and finish paths, and connect them to the 

input and output pads respectively, as shown in Figure 
4.19. 

STARTING 	 TERMINATING 
CELL 	 CELL 

Figure 4.19. Terminating a bypass architecture. 

By far the simplest yield enhancement technique is 
the chain scheme. 	In this case a faulty cell merely 
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enables its own bypass. It has an advantage that no spe-

cial terminating cells are required. Also, it can 

tolerate consecutive faulty cells, although it is possible 

that signals may be required to go through several bypass 

switches before reaching the next working cell. The addi-

tional delays through these switches may reduce the max-

imum attainable clock rate. This aspect of a chain scheme 

may be viewed as a restriction in the number of consecu-

tive faults that may be tolerated, if the circuit is to 

operate up to a specified maximum clock rate. The only 

serious disadvantage associated with the chain scheme is 

that the switching logic is critical and must work. Thus, 

the yield of chip is given, approximately, by the criti-

cal, uncorrectable areas of the chip. 

Due to its simplicity, the chain scheme can easily be 

extended to provide yield enhancement in arrays that have 

more than single inter-cell connections, and to two dimen-

sional arrays. The two dimensional array digital correla-

tor, reported by McCanny and McWhirter (192), incorporates 

this type of yield enhancement technique. 

4.7. Yield Enhancement Features in the Eu349 Correlator 
Chip 

This section contains a summary of the yield enhance-

ment features that have been used in the design of the 

Eu349 correlator chip. Details concerning the design can 

be found in Chapter 5. 

In the Eu349 digital correlator, there are two inter-

connections per cell which require switching mechanisms. 

Therefore, in view of the expandability, and low cost, the 

chain scheme has been chosen to provide yield enhancement 

in the correlator array. The disadvantage that is associ-

ated with the chain scheme, in that the switching network 
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is uncorrectable, is considered to be outweighed by the 

advantages listed above, since the area of the uncorrect-

able switching network is less than 10% of the area of the 

correctable correlator array. 

The yield enhancement scheme in the Eu349 correlator 

consists of, for each correlator stage, two multiplexers 

(one per inter-cell connection), and one controlling 
latch. 	The fault status of each correlator stage is 

stored in its associated latch. 	The stored information 

then controls the multiplexers; a faulty stage causes the 

relevant inputs to be switched to the respective outputs, 

thus isolating the faulty stage. A block diagram of the 

yield enhancement features of the Eu349 chip are shown in 

Figure 4.20. Details of the design are given in Chapter 
5. 
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Figure 4.20. Yield enhancement features of the Eu349 
correlator chip. 

4.8. Summary 

Two important subjects in integrated circuit design, 

namely testability and yield, have been discussed. 

Methods by which the testability of a design may be 

enhanced have been described and summarised for the par-

ticular case of the Eu349 correlator chip. Close linking 

of design and test has enabled the architecture of the 

Eu349 to achieve a high degree of testability at a very 
low overhead. 

Yield enhancement through the use of redundant circu-

itry is of central importance to the design of the Eu349 

correlator chip. Yield models and yield enhancement 
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techniques, have been described. A binomial model for the 

yield of redundantly designed circuits has been presented, 

and the curves produced by the model show that the yield 

of an array of identical modules, such as in the Eu349 

correlator, increases rapidly with the addition of spare 

modules, but saturates to a level determined by the defect 

density and the uncorrectable area of the chip. 

In the next chapter, details of the design, and test 

results of the correlator chip are presented. 
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CHAPTER 5 

DESIGN AND TEST OF THE PROTOTYPE INTEGRATED CIRCUIT. 

5.1. Introduction 

In this chapter, details of the prototype chip design 

are presented. A "top-down" approach is adopted, and in 

Section 5.2, the description begins with reference to a 

"floor plan" of the basic correlator system. This floor 

plan represents the architecture of the chip before 

built-in self test and repair features are added. 

In Section 5.3, the architecture is shown modified, 

to allow built-in self test and repair, and the circuitry 

required to perform self test and self repair is dis-

cussed. In Section 5.4, the integrated circuit design is 

described. 

In Section 5.5, the test strategy is described. This 

section refers to test programs and configuration pro-

cedures for the Tektronix Digital Analysis System (DAS 

9100). In Section 5.6, the test results for the batch of 

130 chips are presented. The results show the effective-

ness of the test strategy and yield enhancement scheme. 

5.2. Architecture of the Basic Polarity Correlator 

The theory of polarity correlation using the over-

loading integrating counter technique is presented in Sec-

tion 2.6. Figure 5.1 shows the architecture of a correla-

tor that implements the technique. The VLSI architecture 

offers high speed operation, long (programmable) integra-

tion time, and an arbitrary range of correlation time 
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delay or resolution. It consists of a data shift regis-

ter, or DSP, connected to a parallel array of coincidence 

detectors and integrating counters. The counters each 

have a single bit output which indicates the overload con-

dition of the counter. This overload output is latched, 

to be transferred subsequently, to the overload shift 

register, or OSR. The pattern held in the OSR may then be 

shifted serially off chip to display the correlation func-

tion. An additional output from the chip is the overload 

flag, which indicates when the first overload has 

occurred. 

- 
O 

Q_ 0•' 
KEY: 

0 
0 

0 OSR ove,load shift register 
0 

2 
- . 0 delay element 

11)  0 
C coincidence function 

CL 0 0 L one bit latch 

X 	y 0 0 0 Samples, m 

Preset Counter Capacity 

Figure 5.1. Architecture of the basic polarity correlator 

using the overloading integrating counter technique. 

The control circuitry required for this architecture 
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consists of a sample counter that has twice the capacity 

of the integrating counters, and additional circuitry to 

monitor the overload flag. Two modes of operation are 

necessary: peak detection, and function display. 

In peak detection mode, the objective is to locate 

the first integrating counter to overload. It operates as 

follows: 

Correlation commences with a reset pulse which clears 

the overload latches and presets the integrating counters 

to their start value. This sets their capacity to N. 
After at least N input sample pairs, the overload flag 

signals the arrival of the first overload, which 

represents the most significant peak of the correlation 

function. The contents of the sample counter m are used 
to compute the significance, or the ordinate, of the 

detected correlation peak, using Equation 2.38. The time 

lag, or the abscissa of correlation peak, is then calcu-

lated by transferring the contents of the latches to the 

overload shift register, and counting the leading zeros in 

the pattern as it is shifted out. The system is then 

reset and correlation begins once more. Successive over-

load patterns may be viewed as a pulse train whose fre-

quency is inversely proportional to the time lag at peak 

correlation. In other words, the frequency is propor-

tional to the flow velocity (in a correlation based flow 

meter for example). 

Display mode operates similarly to peak detection 

mode except that the system is not reset after the 

occurrence of the first overload. Instead, at suitable 

intervals of correlation significance (that is, at regular 

intervals along the vertical axis of the correlation func-

tion), the contents of the OSR are shifted out and 

displayed, as discussed in Section 3.2.2.2 and in Section 
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3.3.3. 

The initial design criteria for the basic correlator 
are as follows: 

Cascadability: the number of correlation points, or 

the resolution of the time delay axis, is determined by 

the number of cascaded correlation stages. In the proto-

type design, there is no limit to the number of stages 

that may be cascaded. 

Long, programmable integration time: in correlation 
applications where the time-bandwidth product (TB) is low, 

as discussed in Chapter 2, long integration times are 

required. The integrating counters in the Eu349 prototype 

chip have a capacity of approximately 215 states. To 

maintain flexibility, and allow the correlator to address 

both high and low TB applications, the integrating 
counters must be programmable. 

Design style, static or dynamic: there are two impor-
tant considerations here. First, the integrating counters 

are required to count at a rate determined by the number 

of coincidences in the data. In other words, the count 

rate is proportional to the correlation of the input bit 

streams, and therefore may vary from zero to the sample 

rate. Consequently the design of the integrating counters 

must be static, regardless of the factors that determine 

the sampling rate. Second, the shift registers, OSP and 

DSP, may be static or dynamic depending on the sampling 

rate requirements. However, to allow flexibility in 

choice of sampling rate, these shift registers must be 

static. Using static registers for the OSP and DSP func-

tions, incurs a small area penalty of approximately 2%. 

Note that the architecture in Figure 5.1 differs from 

that in Figure 2.14, in that the output of the integrating 
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counter comes from the left of the counter rather than the 

right. This detail allows the DSP, the coincidence gates, 

the OSR, and associated latches to be laid out close to 

each other on the silicon. The significance of this facet 

of the architecture will emerge in the next section, when 

the modifications to the basic correlator architecture to 

accommodate the self test and self repair philosophy are 

described. 

5.3. Architecture of the Correlator with Built-In Self 

Test and Self Repair Features 

The VLSI architecture considered here, consists of a 

long series connection of identical correlation stages. 

If any stage suffers faults during manufacture, or becomes 

faulty during service, the whole chip will fail. A self 

test and self repair strategy has been devised to overcome 

this problem. The self test sequence is started each time 

the chip is switched on; any faulty stages discovered as a 

result of the test are automatically bypassed. This 

reconfigures the working stages into a continuous serial 

connection. Thus, faults that develop during the working 

life of the chip are automatically eliminated every time 

the chip is switched on. Modifications to the basic 

correlator architecture, to accommodate the self test and 

self repair philosophy, are shown in Figure 5.2. Figure 

5.2(a) shows the basic correlator stage; Figure 5.2(b) 

shows the basic stage modified to perform built-in self-

test and self-repair. A block diagram showing 8 stages of 

the array is presented in Figure 5.3. The architecture is 

well structured and thus maps easily on to silicon. 
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Figure 5.2(a). Basic correlator stage; (b). 	Correlator 
stage with built-in self-test and self-repair circuitry. 
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Figure 5.3. Block diagram of the correlator array, show-

ing 8 of the repeated stages. 

The principal additions for self-test are the input 

signal "F-test' (for function test), and its associated 

anticoincidence detector (EXOR) at the "set" input of each 

latch. Also, there is a parallel set and reset facility 

in the data shift register. All other circuitry required 

by the test strategy already exists as part of the basic 
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correlator. The principal additions for self repair are 

the multiplexer control register, or MCR, and 2:1 multi-

plexers on the data shift register and overload shift 

register outputs. 

In test mode, the DSR, MCR, and OSR shift registers 

act as scan paths, and signature analysis is performed by 

the integrating counters. The result of the signature 

analysis is compared with the known good signature using 

the F-test input. The results are latched for subsequent 

use in the self repair scheme. (The test sequence is 

described in detail in Section 5.5.) Testability is 

achieved using functional conversion to such an extent, 

that the silicon area overhead is only 2%. This is illus-

trated by Figure 5.4, which shows the floor plan of one 

correlation stage in the Eu349 chip. 

clocks 	 F—Test 	 CND 

	

VDD 	MCR 	I exnor of PRBS counter 

	

mux 	mux 

'j( 

I 	 II 

	

Ad 	 1. 	
d d 

I 	overload latch 	integrating counter 
OSR 	 (15 bit) 

DSR exnor & clock drivers 

set & preset DSR 

1 = Area overhead for Built—In Self Test 

= Area overhead for Built—In Self Repair 

Figure 5.4. Floor plan of one correlation stage in the 

Eu349 chip, illustrating the relative areas of the com-

ponents in the design. 

The self-repair technique requires that the data 
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shift register, and the overload pattern shift register, 

each have a 2:1 multiplexer connected to their outputs. 

The technique requires a multiplexer control register for 

storing the control information for these multiplexers. 

The multiplexer control register is the key feature in the 

self repair scheme. After the self-test sequence, the MCR 

contains the pass/fail status for each stage. In the case 

of a failure, the input and output registers of the corre-

lator stage are bypassed via the multiplexers, so that the 

malfunctioning stage is short-circuited. The number of 

functioning stages on the chip can be read out serially 

from the MCR by reconfiguring it as a shift register. 

This parameter represents the maximum attainable correla-

tion delay (or resolution) and can be used for chip 

reject/accept decisions in production test. The self-test 

and repair sequence may be repeated as required during the 

service life of the chip. 

The layout of the MCR and its associated multi -

plexers, is simplified by manipulating the architecture of 

the correlator stage so that the DSR and OSP are laid out 

close to each other topographically, as discussed in the 

previous section. As a result, the overhead for self-

repair is not greater than 6% additional silicon area. 

The self repair features are shown cross-hatched in Figure 

5.4. 

5.4. Design of the Eu349 Correlator 

5.4.1. System Overview 

A prototype digital correlator featuring self test 

and self repair has been fabricated on a six-micron N-

channel MOS process. The prototype design, shown in Fig-

ure 5.5, contains 28 parallel stages of correlation, each 

of which implements the block diagram in Figure 5.2(b). 
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Peripheral area: pads, buffers 
- 	 .. 	 - 

Test stripe 

Figure 5.6. Eu349 correlator chip floor plan. 

The correlator design uses a two phase non-

overlapping clock system. The phases are denoted pl and 

p2, respectively, and in general, data is sampled on p1, 

and stored on p2. The design is semistatic through out. 

This means that during one clock phase (in this case (p2) 
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the stored state can be maintained indefinitely. Thus, 

the clock frequency, and therefc:c the sampling frequency 

of the correlator can range from dc to 4 MHz (for this 

fabrication process). 

The prototype devices have also been packaged in 40 

pin dual-in-line ceramic packages. The pin designations 

of the Eu349 device is shown in Figure 5.7. 

OSR o/p 
MCR o/p 
Y i/p 

(DsR) i/p 
VDD 
ç0  
DSR s/c 
DSR pl 
OSR pl 
MCR hold 
MCR shift 
ç02 
x (DsR) o/p 
reset 
VDD 
VDD 
MCR i/p 
OSR i/p 
OVERLOAD 
F—TEST 

1 

Co
-1114  

Ii (MSB) 
12 
13 
14 
15 
16 
17 
GND 
CND 
VBB 
GND 
GND 
18 
19 
110 
111 
112 
113 
114 
115 (L.sB) 

Figure 5.7. Pin designation for packaged Eu349 correlator 

chips. 
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A summary of the functional description of each pin is 

given in Table 5.1 

TABLE 5.1 

PIN-OUT FUNCTIONAL DESCRIPTION 

FUNCTION PIN NUMBER 

x (DSP) 	i/p 4 

yi/p 3 

MCR i/p 17 
Inputs 

OSR i/p 18 

F-TEST 20 

ii 	- 	115 21-28,34-40 

DSR s/c 7 

DSRp1 8 

OSRp1 9 
Controls 

MCR hold 10 

MCR shift 11 

Reset 14 

OSR 0/p 1 

MCR a/p 2 
Outputs 

x (DSP) a/p 13 

OVERLOAD 19 

01  6 
Clocks 

02 12 

VDD 5,15,16 
Supplies VSS 29,30,32,33 

VBB 31 

Truth tables for the operation of the control signals to 

the overload shift register, data shift register, and mul- 

tiplex control register are listed in Tables 5.2 to 5.4 
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respectively. 

TABLE 5.2 

OSR TRUTH TABLE 

OSR p1 Effect 

L Serial shift from input pin 

H Parallel load from latches 

TABLE 5.3 

DSR TRUTH TABLE 

DSR p1 DSR s/c Effect 

L L Serial shift from input pin 
L H Serial shift from input pin 
H L Parallel load zeros (CLEAR) 
H H Parallel load ones (SET) 

TABLE 5.4 

MCR TRUTH TABLE 

MCP shift MCR hold Effect 

L L Parallel load MCR from latches 
L H Hold MCR contents stationary 
H L Serial shift MCR 
H H Serial shift MCR 

The chip design is divisible into two main areas: 

correlator array circuitry, and peripheral circuitry. 

Each area can be subdivided further into its component 

nMOS modules. The nMOS modules are listed in Appendix 1. 



- 137 - 

5.4.2. Correlator Array Design 

The correlator array is composed of 28 identical 

stages of correlation. This number is arbitrary, but is 

determined by the amount of available silicon area. At 

the time of design, the maximum available chip size meas-

ured 5.08 mm by 5.08 mm. of which a border 0.5 mm wide is 

required for mandatory test structures and peripheral cir-

cuitry. Thus an area of approximately 4 mm by 4 mm is 

available for the layout of the correlator array; enough 
silicon for 28 stages. 

Each correlator stage, designated Module STGIOO, 

implements the circuit shown in Figure 5.8. The floor 

plan and layout of module STG100 is shown in Figure 5.9. 

DSR 	COMPIO MCR 	OSR 	LATCH 	COUNTER 

I -s 
fig ii 

H 

Figure 5.8. Circuit schematic of the repeated correlator 

stage in the Eu349 device. 

1 

[1 	

1 
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CLOCKS 	EXNOR  

Figure 5.9. Floor plan and nMOS layout of Module STGIOO. 

This represents the repeated correlator stage. 

The interstage connections are either bit serial, 

nearest neighbour communications, or globally broadcast 

control signals. This allows the stages to form a serial 

cascade by simple abutment in the y direction. All con-

nections to and from the correlator array are made via the 

peripheral circuitry. Connections to the outside world 

are made through pads in the peripheral area, where input 

protection and buffering takes place. Some control sig-

nals to the array are generated in the peripheral area, 

and therefore the inputs to the chip, as shown in Figures 

5.6 and 5.7, differ from the inputs to the correlator 

array, as shown in Figure 5.8. The circuitry of the peri-

pheral area is summarised in the next section. 

Referring to Figure 5.8, the data shift register, 

DSP, consists of three inverters and five pass transis-

tors. The three pass transistors that form the input to 

the shift register select the required input source. In 

one instance the source is the x data input (the x data 

output from the previous correlation stage), and in the 

other cases the input sources are VDD and GND, so that the 

register may be set or cleared respectively. These data 
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selectors only operate during (p1 (that is, while phase 1 

of the clock is high). Thus, data is transferred from the 

selected source to be stored, dynamically, on the gate of 

inverter Invi under the control of (p1. Static storage is 
implemented during tp2. Inverter Inv2 provides a feedback 

loop that regenerates the stored state so that it may be 

stored indefinitely (so long as p2 remains high to enable 

the feedback loop). The stored information is also 

transferred to the register output under the control of 

(p2. The same basic semistatic shift register circuitry 

can be found in the DSR, OSR, MCR, and the shift register 

stages that make up the integrating counter. 

The integrating counter is a 15 element PRBS counter. 

The feedback is the logical exclusive NOR of the 14th and 

15th output. Thus the count length is 215  less one for-
bidden state where all 15 registers contain logical ones. 

All of the other possible combinations are legal, and one 
such combination may be used to indicate that the counter 
has reached capacity. The simplest combination to detect 
using nMOS circuitry is the all zero state which requires 

a 15-input NOR gate. To detect the all ones state, which 

would be required if exclusive OR feedback were used, a 15 

input NAND gate is required. In nMOS, it is desirable to 

construct NOR gates in preference to NAND gates; therefore 

exclusive NOR feedback has been implemented. 

The 15-bit shift register in the integrating counter 

is laid out on silicon in the form of a ring. The benefit 

of doing this is that the length of the feedback connec-

tion is minimised, and thus the delays between stages of 

the shift register are approximately equal. 

The integration time, or counter capacity may be pro-

grammed by presetting the combination of ones and zeros 

that represents the starting point for the count sequence. 
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The counter then counts from this starting sequence and 

produces an "overload detect", or OD, pulse when the all 

zeros state is reached. The combination of ones and 

zeros, or start word, that represents a particular 

integration time is derived by simulating the action of 

the integrating counter in reverse. The simulation pro-

gram takes as its input the required integration time in 

clock cycles; it then steps back through the PRBS sequence 

from the all zero state for the specified number of clock 

cycles and prints the combination of ones and zeros at 

that point in the sequence. Table 5.5 lists some integra-

tion times and corresponding integrating counter start 
words. 

TABLE 5.5 

Integrating Counter Start Words 

Integration time Counter Start Code 
(clock cycles) (binary) 	(hex) 

5 000000000010101 0015 
10 000001010101010 02AA 
15 101010101010101 5555 
32 011001100110001 3331 
64 001011010011100 169C 

128 010010001110001 2471 
256 011100011100010 38E2 
512 001110110001011 1D8B 

1024 010011101001111 274F 
2048 011000011111110 30FE 
4096 001111000000011 1E03 
8192 000011111110000 07F0 
16384 000000011111111 00FF 
32766 100000000000000 1  4000 



- 141 - 

Referring again to Figure 5.8, the operation of the 

circuit is as follows. The x data and the y data inputs 

are compared by the comparator module, designated COMPIO. 

This module has two functions: first, to produce the count 

pulse for the integrating counter, and second, to syn-

chronise the RESET pulse with (p1. Producing the count 

pulse for the integrating counter, requires the module to 

perform the logical exclusive NOR of the x and y data, to 

perform the necessary logic so that the count pulse is 

disabled during a RESET, to synchronise the count pulse 

with (p1, and to provide adequate buffering for the count 

and RESET pulse. 

The purpose of the RESET pulse is to clear the over-

load latch and load a preset start word into the integrat-

ing counter. The input to each shift register stage in 

the integrating counter can come from one of two sources: 

the preceding shift stage, or the preset inputs ii to 115. 

The selection is controlled by either a count pulse or a 

RESET pulse and the operation must be mutually exclusive. 

To prevent both events occurring at the same time, the 

RESET signal disables the generation of a count pulse. 

There is similar reasoning behind the design of the other 

shift register control signals. The input select controls 

for the DSR are designed to mutually exclusive, as are the 

controls for the MCR and OSR respectively. 

After the RESET pulse has cleared the overload latch, 

and preset the integrating counter, the sampled data is 

shifted along the DSR. When the x and y inputs are equal 

(at the correlator stage under discussion) a count pulse 

is generated which increments the integrating counter. 

Eventually, as this operation continues, the counter 

reaches the overload state, i.e. all zeros, and produces 

an overload detect pulse. In normal circuit operation, 

the F-test signal is held low, and the overload detect 
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pulse sets the overload latch. This in turn causes the 

output signal "overload flag" to change state (high to 

low), which indicates that a correlation peak has been 

detected. The overload flag is a wired-OR output, so that 

the Eu349 devices may be arbitrarily cascaded. 

Under the control of OSR-pl (parallel load control 

for the OSR), the values stored by the overload latches 

are transferred, in parallel, to the overload shift regis-

ter OSR. Then, again under the control of the OSR-pl, the 

overload pattern is shifted off chip via the OSR serial 
output. 

In the above discussion, it has been assumed that the 

MCR contains the necessary bit pattern to configure the 

cascade of correlator stages into a continuous serial con-

nection of correctly functioning stages. The method by 

which this is performed is described in Section 5.5, but 

the circuitry used to perform self repair is discussed 
here. 

The MCP is similar in czign to the OSR and DSR. The 

controls to the MCR allow it operate in three modes: 

serial shift, parallel load, and hold. The output of MCR 

controls the multiplexers at the outputs of the DSP and 

OSR. When a logic one is stored in MCR element of a par-

ticular correlator stage the DSR and OSR inputs are short 

circuited to their respective outputs. When this is done, 

the affected correlation stage serves only to link 

together its two immediate neighbours. The overall 

effect, therefore, is that correlation stages may be 

selected and eliminated from the correlation array by 

inserting logic ones into the relevant bit positions in 

the [4CR. The built-in self test and self repair procedure 

is a method whereby faulty stages may be identified and 

eliminated automatically. 
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During self test, a correctly functioning correlator 

stage produces two overload detect pulses. The overload 

detect output is continuously compared with the expected 

good output using the F-test input and the exclusive OR 

gate, denoted OD-EXOR in Figure 5.8. Any deviation from 

the expected good output sets the overload latch. Thus, 

faulty correlation stages have their overload latches set 

during the self test period. The number of faulty stages 

in a cascade,. may be determined by transferring the con-

tents of the overload latches to the OSP and shifting the 

pattern off chip. The number of ones in this pattern 

represents the number of faulty stages in the cascade. 

Self repair is carried out by transferring the contents of 

the overload latches to the MCR. This is done using the 

MCR-hold and MCR-shift controls in combination (both con-

trols low). 

The multiplexers associated with the DSR and OSR out-

puts each consist of one inverter and two pass transis-

tors. In normal circuit operation, the "bypass" transis-

tor is turned off, and the "output" transistor is turned 

on (see Figure 5.8). When a correlator stage is identi-

fied as being faulty the bypass transistor is turned on, 

and the output transistor is turned off. Thus, the input 

data to a subsequent correlator stage will have passed 

through n bypass transistors and one output transistor, 
when n preceding, contiguous stages have been identified 

as faulty. If n is greater than three, then the operation 
of the DSR (or OSR) is degraded due to the excessive delay 

introduced by the series connection of output and bypass 

transistors. (The delay in a series connection of four 

pass transistors is approximately equal to the delay in 

one inverter.) This system, therefore cannot guarantee to 

repair more than three consecutive faults. However, the 

probability that more than three consecutive faults will 

occur is very low, and can be estimated to be less than 
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10 for an overall yield of 20%. 

5.4.3. Peripheral Circuit Design 

The peripheral circuitry consists of input and output 

pads, power supply pads, buffer circuits, and some random 

logic for generating or synchronising control signals. 

The peripheral circuitry is described in Appendix 1. 

5.5. Test Strategy 

The test strategy for the correlator consists of 

built-in self test and self repair procedures. These pro-

cedures are off-line,  therefore, they are distinct from, 
and do not impede the normal operation of the correlator 

in "run" mode. The test strategy is divisible into three 

parts which are summarised here. A detailed step by step 

test schedule is listed in Appendix 2. The three parts of 

the test strategy are: initial test, self test, and self 

repair. 

5.5.1. Initial Test 

During the initial test period three tests are car-

ried out on the critical elements of the design, namely 

the scan path registers. These registers (DSP, MCP and 

OSR) and their various control functions are not covered 

by the self test and repair strategy, and therefore must 

be tested to check that the subsequent self test and 

repair procedures are possible. The initial test sequence 

is as follows: 

a) 	Test MCP, OSP and DSP as shift registers and measure 

their delay. This is done using a flush test, as 

described in Section 4.3. The MCP must be flushed 

with zeros and held static while the DSP and OSH are 

tested. 
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b) 	Test the effect of the MCR on the DSR and OSR regis- 

ters. This is done by shifting n "ones" into the MCR 
and then measuring the delay of the DSR and 0SR 

registers, which should each be reduced by n. 

C) 	Test the parallel load facilities of the DSR, OSR and 

MCR registers, and the set and reset facilities of 

the overload latches. 

5.5.2. Self test 

In the self-test period, a full functional test of 

the correlation array takes place. In this test sequence 

(b) is repeated four times according to the possible corn-

binations of the two binary input s Lgnals, x and y. Ii-

tially the MCR must be flushed with all zeros and held 

static. 

Reset latches and integrating counters. The counters 

are loaded with 4000 (in hexadecimal), a number that 

• corresponds to the maximum integration time of 

215_2 = 32766 sample clock cycles, as described in 

Section 5.4.2. 

Set up the input conditions x and y and set or clear 

the DSP register as required. Shift x and y through 

correlator for 32766 clock cycles. When the inputs 

are equal, F-test must be set HIGH to coincide with 

the expected overload detect pulse. 

C) 	Parallel load latches into OSR. The overload pattern 

may be shifted out for observation. 
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5.5.3. Self Repair 

The self repair sequence follows the self test 

sequence. During the self test sequence the overload sig-

nal is compared with the expected value of overload sig--

nal. Any deviations from the expected signal results in a 

logic I stored in the corresponding latch. Thus, when the 

self test sequence has finished the logic l's and 0's 
stored in the latches are the results of the self test, 
where a logic I indicates a faulty stage. The self repair 

operation transfers this information to the MCR which in 

turn causes the faulty stages to be bypassed. The net 

effect is a series connection of correctly operating 

correlation stages. The following sequence is required. 

Parallel load MCR. 

Hold MCR static. 

5.5.4. Run 

The run period follows automatically after the self-

test and repair sequence is completed. After the test 

period the number of zeros stored in the MCP represents 

the number of correctly operating correlation stages. The 

following sequence may occur during the run period. 

Monitor the overload flag status, and/or display out- 

put from the OSR. 

Compute ordinate and abscissa of correlation peak. 

C) 	Reset, and repeat correlation. 
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5.6. Test System Configuration and Results 

5.6.1. Test Configuration 

The test equipment used to carry out the functional 

test comprises a Tektronix Digital Analysis System (DAS 

9100), one dual power supply unit, and a purpose-built 

test-jig. 

The test-jig incorporates power supply decoupling, 

one external load resister for the wired-OR overload out-

put from the correlator chip, and a 40 pin dual-in-line 

(DIL), zero insertion force IC socket. The test-jig pro-

vides an interface between the DAS and the device under 

test (DOT), which is either a packaged chip or a probed 

chip on a wafer. In both cases electrical connection is 

made via the 40 pin DIL socket. 

Initially 10 packaged chips, which had passed a 

visual inspection, were functionally tested. However, 

many more samples were required to demonstrate the yield 

enhancement capability of this design, Sc) the remaining 

wafers were probe-tested. The Eu349 chip was fabricated 

as part of a multi-project wafer, with only 24 chip sites 

per wafer. Consequently only 130 candidates were avail-
able for testing. 

5.6.2. Test Results 

The results are divisible into two parts. These are 

chip verification results, and yield enhancement results. 

Chip verification consists of initial test sequence 

results, and self test and repair sequence results. These 

results are demonstrated here using display material from 

the Tektronix DAS. Yield enhancement results are dis-
cussed in Section 5.6.3. 
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The initial test sequence is shown in Figure 5.10. 

These tests are equivalent to those described in Appendix 

.2, Sections A2.2 to A2.7, but are abbreviated and linked 

together to form a continuous display. These abbreviated 

elements of the initial test - sequence, and part of the  

self test sequence, are small enough to fit into a single 

DAS pattern generator program, and the resulting data 

sequences are short enough to fit into the DAS acquisition 

memory. This short hand method allows a large number of 

devices to be checked easily. Chips that pass this test 

can then be given a more exhaustive test according to 

Appendix 2. 

POOCH NAME  
X—i/p 	 I 	 I 	I 
YBAR—i/"p 

OSR—i/p I 	I 

MCR —i/p I Ti fl_________________________________________ 

X-0 /p 
OSR—o/p 

MCR—o/p 

OVERLOAD 

DSR—s/c I 	 I  

DSR—pi I 	 I 	I 

OSR—pt  

MCR—shft 
 

M CR-- ho d 

RESET 

F—TEST 

Figure 5.10. Results for initial test sequence. 

The left hand side of Figure 5.10 is shown expanded 
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in Figure 5.11. The figure shows 16 traces. The top four 

traces show the inputs to the device under test, and the 

group of four traces below these represent the outputs. 

The remaining eight traces are the chip control signals. 

This figure shows tests that verify the function of the 

MCR, DSP and the OSR. 

POD CH NAME  

YBAR—i,/p 	 II 
OSR—i,/p 	 if 
MCR—i/p 	 -11-I 	n 
X-0/p  

OSR—o/L a 
MCR—o/if a 	a  
OVER! n.4n Lis 	N 

D SR - s/c 
DSR—PI 

OSR—p! 

MCR—shft 

MC R 0 d 
RESET 

P—TEST 
921 

Figure 5.11. Tests to verify the function of the MCR, 

DSR, and the OSR. 

In Figure 5.11 there are three dense vertical lines 
labelled "T", "M", and "C ,', for "trigger", "marker", and 

"cursor" respectively. The sequence of events before the 

marker are concerned with flushing zeros through the MCP, 

DSP, and OSP. At the marker, the MCP controls indicate 

that the contents of the MCP are being held static, that 
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is, the MCP is neutralised. Also at the marker, single 

logic ones are presented to the x and the OSR inputs. 

After 28 clock cycles these logic ones, against a back-

ground of zeros, have shifted through the registers and 

appear at the x and OSR outputs. The point at which they 

appear is marked by the cursor. The time delay between 

the marker and the cursor is given in the top left of the 

figure in a line starting "C - M", and is shown to be 28 

is. This shows a sample of test A2.3. 

Starting at the cursor position, and moving to the 

right, a similar test is shown with logic ones being 

shifted through the MCR. Although it is not shown expli-

citly, the delay through the MCR is also 28 is.  This 
shows a sample of test A2.2. The next sequence tests the 

effect of the MCR on the other shift registers (test 

A2.4). The sequence starts where the £4CR input goes HIGH 

for the second time. This MCR input pattern represents a 

group of three consecutive logic ones which are shifted 

into the MCP and held static. Then a simple flush test is 

performed on the DSP and OSR, by shifting single logic 

ones into the DSP and OSP against a background of zeros. 

The resulting delay through these resisters can be meas-

ured as before, and is shown here to be 25 js. This test 

sequence is completed by flushing the MCP with zeros to 

neutralise it for the next test. In doing this, the logic 

ones that had been held static in the MCP, can be seen 

emerging from the MCR output. 

The next test sequence represents test A2.5, and is 

concerned with the SET and CLEAR features of the DSP. The 

sequence starts 28 clock cycles before the point where the 

control signals DSR-pl and DSP-s/c go HIGH. At the time 

when these signals go HIGH, a background of zeros have 

been shifted through the DSR. DSR-pl and DSP-s/c then 

cause the DSR to parallel load all ones, which can be 
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observed as a bank of 28 logic ones in the x serial out-

put. After this bank of ones has shifted out, the x input 

is set HIGH, and a background of ones is established in 

the DSP. When the pattern reaches the output, the signal 

DSR-pl is pulsed HIGH again, this time with DSP-s/c LOW, 

and the DSR is cleared. The result of this action can be 

seen as a large gap before the final block of ones in the 

x output. 

The second part of the initial test sequence is shown 

in Figure 5.12. This figure shows the waveforms relating 

to tests A2.6 and A2.7, where the MCP and OSP parallel 

load operations, and the overload latches set and clear 

operations are tested. 



- 152 - 

POD CH MME i 
X—i/p 

YBAR—i/p 

OSR—i/p 	II 
MCP—i/p 	II 
X -0/p Ill 
OSR—o/p 

tvlCR—o/p i 
OVERLOAD! 

DSR—s/c 
1 DSR—pI 

OSR—pI 

MCR—shft 

MCR—hd 
RESET 

F -TEST 

Figure 5.12. Initial test sequence relating to tests A2.6 
and A2.7. 

The sequence for test A2.6 begins with a RESET pulse 

to clear the overload latches. There immediately follows 

a control combination (MCR-shift LOW, MCR-hold LOW) which 

transfers the contents of the latches to the MCR. The MCR 

controls are then changed (MCR-shift HIGH) to shift the 

MCR contents out through the MCR output for observation. 

Since the latches were reset, the observed output should 

be all zeros, as can be seen in the MCR output in the 

region around the cursor in Figure 5.12. To complete the 

test, this sequence is repeated with one additional 

feature: the F-test pulse which immediately follows the 

RESET. In this respect the F-test signal works correctly, 

11 
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and sets the overload latches. 	The contents are then 

transferred as before, and shifted out for observation. 

The bank of logic ones, as expected, can be seen on the 

MCR serial output. 

Test sequence A2.7 is similar to A2.6 except that the 

OSR is tested instead of the MCR. Two pulses on the OSR-

p1 control indicate where the bank of zeros, and the bank 

of ones begin, respectively, on the OSR serial output. 

Figure 5.13 and 5.14 show some of the input and out-

put waveforms from two correlator chips, that have 

occurred during the self test and repair period. For 

display purposes the integration time of the correlator 

has been reduced to just 15 clock cycles. Figure 5.13 

shows the correlation output of a "golden chip", that is, 

a fully functional chip, while Figure 5.14 shows the out-

put of a chip that has one failed stage. The top four 

traces in each figure represent the inputs to the device. 

In each figure the x and y inputs sequence through their 

four possible combinations in accordance with the test 

strategy described in Section A2.8. 
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POD CH NAME 

YBAR - i/p 

OSR—i/p 
MCR—i/p 

If 	I 
X-0/p 
OSR—o/p 

MCR—o/p 
OVERLOAD 

DSR—s/c 
DSR—pJ 

OSR—p 

MCR—shft 

M CR - ho d 
RESET 
F—TEST 	I 
çoi 

Figure 5.13. Self test sequence for fully functional, or 

"golden chip" 
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(41 
POD CH NAME ll} 

X—i/p 

YBAR—i/p 

OSR—/p 

MCR—i/p 

31 
X-0/p  
OSR—o/p3 I! 	II 	I 	II 	I 	 I 
MCR—o/pE I 	________ ________ ___ ___ ___ 
OIERLOADI I ___ 	 I I 	I I I_i L_J L_1 

IL 

DSR—s/c 

DSR—pi 

OSR—pl 

MCR—shft 

I 
'ACR— Hoid 

RESET 

-TEST 
(0  1. 

Figure 5.14. Self test and repair sequence for a chip 

with one faulty correlation stage. 

The significant points to note in Figures 5.13 and 

5.14 are the MCR input and the OSP output. All the other 

signals are the same for both chips, with the exception of 

the MCR control signals, MCR-hold and MCR-shift. With 

reference to Figures 5.13 and 5.14 and moving left to 

right from the cursor, the overload output (OVRFLO) has 

changed from logic 1 to 0. This indicates that at least 

one integrating counter has overloaded after the 

prescribed period of 15 clock cycles. This result is 

expected since the inputs have been equal, x and y both 

zero over this period. 
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When OVRFLO next goes high, the correlator has been 

reset and the next correlation test, with x = 0 and y = 1, 

is begun. Also at this time, the overload pattern, that 

is, the contents of the latches, are transferred to the 

OSR and shifted out for display. Now we can see the 

difference between the "golden chip", Figure 5.13 and the 

faulty chip, Figure 5.14. The OSR should contain a series 

of 28 logic ones and in Figure 5.14 there is a logic 0 in 

position number 2, indicating a fault in stage 2. The 

correlation test is repeated for the remaining combina-

tions of x and y, and the fault is again exposed on the 

OSR output in the case where x and y are both equal to 1. 

Self repair is then carried out on the faulty chip. 

A single logic 1 is shifted into bit position 2 of the 

MCR. This causes stage 2 to be bypassed. The correlation 

test, with x and y are both equal to 1, is repeated 

several times at a period of 27 rather than 28 and the 

incorrect logic 0 on the OSR output has been eliminated. 

The result is a "golden chip" containing 27 stages of 

correlation. 

Figure 5.15 shows an expanded view of the repair 

sequence. The part of the figure labelled "A" represents 

the correlation overloads for the input combination x = y 

= 1. The overload pattern is displayed on the OSR serial 

output, and it should contain a continuous block of logic 

ones. However, with an apparent stuck-at-zero fault in 

stage 2 there is a zero at this position. 



POD CH NAME 
X—i/p 	ku 
YBAR— i/p 
OSR-1/p 
MCR—i/p 

X-0/p 
OSR—o/p 
MCR—o/p 

OVERLOAD :  
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DSR—s/c 
DSR—pl 	 I 

___ 	 -L OSR—p! 	 fl  
MCR—shft 

I 	 I 
MCR—hold 
RESET 
F—TEST 	 I 
921 

A 	B -L 	C 	0 

Figure 5.15. Zoom in on the self repair sequence. 

Part "B" shows the logic one in the MCP input being 

shifted into the bit position of the MCR that corresponds 

to the second stage in the correlator array. Part "C" 

represents a correlation of the input combination x = y = 

1. The overload output can be seen to go LOW, as 

expected, after the prescribed 15 clock cycle integration 

time. Part "D" of the figure shows the overload pattern 

displayed on the OSR serial output. The period between 

the RESET and OSR-pl pulses is now 27 clock cycles so that 

the OSR is reloaded with correlation results before data 

shifted from its serial input appears at the serial 
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output. 

The full self test and self repair sequence, as 

described in Appendix 2, uses the F-test signal to emulate 

the expected overload pattern. The action of the F-test 

signal is to invert the overload pattern shown in Figure 

5.15, so that it contains a logic one at the position of 

the faulty stage. The self repair sequence would then 

simply transfer this bit pattern, in parallel, to the MCR. 



>6 
0 
C 
Q) 

4 
0 
ci) 
L. 

Li 	2 

10 

EI 

[Si 4 	8 	12 	16 	20 	24 	28 

- 159 - 

The correlation test, as described in Section A2.10, 

is similar to the self test except for the action of the 

F-test signal. However, the self test sequence shown in 

Figures 5.13 and 5.14, is a modification of test A2.8 that 

demonstrates both self test and correlation test. There-

fore correlation test need not be treated separately. 

5.6.3. Yield Enhancement 

This section contains the results of the first 130 

processed chips. Figure 5.16 shows a chart of number of 

chips plotted against number of working stages. It shows 

that 29 of the 130 candidates passed the initial test and 

that 27 of these yielded more than 20 stages of correla-

tion. 

No. of working stages 

Figure 5.16. Distribution of functioning stages. 

Listed below are the test results for each wafer. 	The 

multi-project wafers each contained 24 correlator chips. 
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TABLE 5.6 

RESULTS OF CHIP TEST 

Candidates Without 	- With 

Self Repair Self Repair 
tested 

(100% working) (at least 75% working) 

Packaged (10) 0 2 

Wafer *1 	(24) 1 5 

Wafer *2 	(24) 0 5 

Wafer *3 	(24) 0 6 

Wafer *4 	(24) 0 0 

Wafer *5 	(24) 2 9 

TOTALS (130) 3 27 

YIELD (¼) 2.3 20.7 

Although these results are based on a small statisti-

cal population (130 chips), they show nevertheless a 

strong agreement with the theoretically predicted figures. 

For example, the expected distribution of number of work-

ing stages, as predicted by Equation 4.16, is shown in 

Figure 5.17. 
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No. of working stages 

Figure 5.17. Distribution of working stages according to 

Equation 4.16. 

5.7. Summary 

In this chapter, the architecture and design of the 

Eu349 digital correlator has been described. Additions to 

the basic architecture, that make possible built-in self 

test and self repair strategies have been discussed. The 

net result of the design strategy, that closely links 

design to test, is a well structured, and regular VLSI 

architecture. 

The test results show the correct operation of the 

device as a correlator, and demonstrate the principles of 

self test and self repair. 



- 162 - 

CHAPTER 6 

CONCLUSIONS 

6.1. Summary of Work 

This thesis has described built-in self test and self 

repair strategies in VLSI architectures for digital corre-

lation. In Chapter 2, correlation theory was presented. 

Correlation techniques from analogue through to digital 

polarity implementations were discussed. It has been 

shown that, for stationary, ergodic signals, a temporal 

correlation function with finite integration time can 

approximate the true correlation coefficient. The effects 

of sampling, quantisation, and dither have been described. 

The main conclusion is that any physically realisable 

correlation system must compromise accuracy with integra-

tion time, and measurement time with circuit complexity. 

The overloading integrating counter technique for 

polarity correlation has also been described, and the pro-

totype correlator chip, featuring built-in self test and 

self repair mechanisms, has been introduced. 

In Chapter 3, several implementations of silicon 

correlators have been discussed. The architectures may be 

classified by observing whether time integrating or spa-

tially integrating techniques have been. used. The differ-

ence between these two concepts has been illustrated by 

the correlation cube. Further segregation of correlator 

architectures may be made by observing which computational 

techniques have been used, namely bit serial, bit paral-

lel, polarity, systolic etc. 
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Parallel and concurrent techniques are employed to an 

ever increasing extent in integrated circuit correlators. 

However there exists a compromise between using a large 

number of very simple concurrent operations, and using a 

small number of complex cells, to achieve a common objec- 

tive. 	In the DELTIC correlator, discussed in Section 

3.2.3, a single, fast, multiplier is used. 	In the sys- 

tolic correlator, discussed in Section 3.2.4.2, delay, 

multiply, and add operations are distributed over a large 

2-dimensional array of simple cells. However, partial 

products are only generated in cells within an interaction 

region and these in turn are only used to form a product 

on every alternate clock cycle. Furthermore, to achieve 

useful integration times a large array of cells is 

required, and to increase the integration time requires 

cells to be cascaded. Normally this would not be a disad-

vantage; it is in fact preferable for VLSI architectures 

to be modular and cascadable. However the output rate of 

this correlator is inversely proportional to the size of 

the array. 

The architecture of the Eu349 correlator achieves a 

balance between concurrency, cascadability and correlation 

rate. The architecture is concurrent in that each point 

of the correlation function is computed in parallel. The 

architecture is directly cascadable, and the correlation 

rate is independent of the length of the array. 

In Chapter 4, two important subjects in integrated 

circuit design, namely testability and yield, have been 

discussed. Methods by which the testability of a design 

may be enhanced have been described and summarised for the 

particular case of the Eu349 correlator chip. Close link-

ing of design and test has enabled the architecture of the 

Eu349 to achieve a high degree of testability at a very 

low overhead. 
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Yield enhancement through the use of redundant circu-

itry is of central importance to the design of the Eu349 

correlator chip. Yield models and yield enhancement tech-

niques, have been described. A binomial model for the 

yield of redundantly designed circuits has been presented, 

and the curves produced by the model show that the yield 

of an array of identical modules, such as in the Eu349 

correlator, increases rapidly with the addition of spare 

modules, but saturates to a level determined by the defect 

density and the uncorrectable area of the chip. 

In Chapter 5, the architecture and design of the 

Eu349 digital correlator has been described. Additions to 

the basic architecture, that make possible built-in self 

test and self repair strategies have been discussed. The 

net result of the design strategy, that closely links 

design to test, is a well structured, and fault tolerant 

VLSI architecture. 

The test results show the correct operation of the 

device as a correlator, and demonstrate the principles of 

self test and self repair. Results from the first batch 

of processed wafers have demonstrated that yield can be 

improved considerably at a very low cost in circuit over-

head; the initial sample's yield enhancement factor was 

9.0 for 130 chips tested. In addition, any of these chips 

can be given an exhaustive functional test in less than 

150 ins at 1 MHz. 

6.2. Further Work 

The work described by this thesis provides a signifi-

cant base for further research. Both the self repair 

aspect of the VLSI architecture, and the advantages it 

holds for high speed digital correlation would be worth 

further investigation. One such project would involve 
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redesigning the correlator array on to a wafer of its own 

so that many thousands of the chips may be made With 

such large numbers of test candidates, a comprehensive 

yield model for the fabrication process could be esta-

blished. Another research topic would be to expand the 

correlation architecture and self repair technique to mul-

tibit direct-digital correlation. 

The investigation of large area silicon systems is 

rapidly becoming an important topic in microelectronics 

research. The correlator architecture discussed here 

would play a significant role in the development of a 

wafer scale, or large area silicon system. If, for exam-

ple, the correlator were fabricated on a 2pm CMOS process, 

the 7 mm x 7 mm chip would contain approximately 256 

parallel stages of correlation. Cascades of these chips 

would provide very attractive high speed, high resolution 

correlation systems. 

In the prototype device, the control circuitry has 

not been included on chip. An interesting situation can 

be envisaged where each chip contains the required control 

circuitry to supervise any arbitrary length of correlation 

cascade. When these chips are cascaded, either discretely 

or as part of a wafer scale system, a second tier of fault 

tolerance can be introduced. This situation would be 

achieved if each correlator control circuit could be iso-

lated from the correlation system. The system would con-

sist of a cascade of identical chips, each with their own 

controller. However, only one controller in the entire 

cascade may be active at any time. The important fact is 

that it would not matter which controller was active. 

Thus, for a cascade of four correlator chips, there would 

be three redundant control circuits. The active control 

circuit, in addition to controlling the correlation array, 

would also control the other redundant control circuits. 
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This controller, the "master" chip, would signal all other 

control circuits to adopt their transparent mode. The 

system would be reconfigurable. Thus, in addition to the 

normal self repair and reconfiguration of the correlator 

array stages, the "master" controller can be reselected, 

if it is found to be defective. This concept has been 

investigated in a Master of Science degree project, and 

silicon layout has been produced for an overloading corre-

lator with such a " master "  controller [193]. 

In conclusion, the design of regular, cascadable VLSI 

architectures for high speed digital correlation, coupled 

with low circuit-overhead self test and self repair stra-

tegies, holds potential for the fabrication of high yield-

ing large area silicon systems. 
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APPENDIX I 

EU349 COPRELATOR DESIGN 

A1.1. Introduction 

The Eu349 prototype polarity correlator is a monol-

ithic- n-channel MOS integrated circuit. The VLSI struc-

ture implements polarity correlation using an overloading 

integrating counter technique. The device architecture 

permits the direct cascading of individual correlator 

chips without the need for additional components, to give 

complete flexibility in choice of correlator delay and 

resolution. Additional features include programmable 

integration time, built-in self test, and built-in self 

repair capabilities. 

The prototype device consists of a cascade of 28 

identical correlation stages. Each stage comprises a 

delay element (DSR), an exclusive-NOR gate for the 

multiplication/comparison process of correlation, a 15-bit 

programmable integrating counter, and a counter overload 

latch. In addition the chip contains a parallel-

in/serial-out shift register (OSR) for serially shifting 

the values of the correlation function off chip, and a 

parallel-in/parallel-out shift register (MCR) used to con-

trol the self repair multiplexers. There are two multi-

plexers per stage. 
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A1.2. Silicon Design 

The Eu349 correlator chip consists of a correlator 

array and peripheral circuitry. The correlator array is 

composed of 28 identical modules. Each module, or corre-

lation stage, consists of a further level of sub-modules. 

The design is structured in such a way that correlator 

stages may be cascaded by simple abutment. The correlator 

chip is composed of the following hierarchy: 

	

<chip> 	: 	<array><peripheral circuitry> 

	

<array> 	: 	<28 x <STG100>> 

	

<STG100> 	: 	<DSR1O><COMP1O><MCR1O><OSRIO><OL1O><PNIOO> 

	

<PNIOO> 	: 	<PN30><7 x <PN10>><PN20> 

where the module names have the following meanings: 

<STG100> : 	 Correlator Stage 

<DSR10> : 	 Data Shift Register and Mux. 

<COMP10> : 	 Comparator and PN100 Clock Buffer 

<MCR10> : 	 Multiplexer Control Register 

<OSPIO> : 	 Overload Shift Register and MUX. 

<OL10> : 	 Overload Latch 

<PN100> : 	 Integrating Counter 

<PN30> : 	 Stage 15 and Feedback EXNOR 

<PNIO> : 	 Repeated Section of Counter 

<PN20> : 	 Link between Stages 7 and S 

A block diagram of the integrating counter, module 

PN100, is shown in Figure A1.1. The counter consists of a 

cascade of 15 semistatic shift register stages, and one 

exclusive NOR module. The reasons for implementing the 

integrating counter in the shape of a ring with semistatic 

shift register elements, and the reasons for choosing 

exclusive NOR feedback instead of exclusive OR, are 
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discussed in Section 5.4.2. The overload detect circui-

try, which consists of a 15 input NOB gate, is distributed 

throughout the counter. 

Integrating counter start code 

	

parallel input 	 VSS 
ii 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 

VDD  

co2 

~p j.c.RESET 	
1 2 3 4 5 6 7 

ci.RESET 	-H 

Overload 	

H_15 
14 13 12 11  10  9 8 Detect - 

	

VDD - 	___________________________________ 

vss 

Figure A1.1. Block diagram of integrating counter. 

The integrating counter is composed of three sub-

modules: PN10, PN20, and PN30. Module PN10 contains two 

shift register stages: stage n and stage 15 - n, where 1 

7, and is replicated seven times along the integrating 

counter. Module PN20 completes the connection between 

shift register stages 7 and 8, and provides the VSS con-

nection to the correlator array. Module PN30 provides the 

exclusive NOR feedback connection of the integrating 

counter, incorporates shift register stage 15 and the 

depletion mode pull-up transistor that forms part of the 

overload detect NOR gate. 

The shift register stages that make up the integrat-

ing counter are also used in other modules in the 
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correlator design. Simulation results for this basic sem-

istatic shift register stage are shown in Figure A1.2. 

The input data for this simulation is shown in Figure 

A1.3. Figure A1.2 shows four voltage traces. The non-

overlapping clocks, pl and tp2, are drawn together in the 

Lop ;rid. The middle grid shows the input waveform to the 

shift register, and the lower grid shows the output 

waveform. The figure shows that the input data, which is 

sampled on (p1, appears on the output when (p2 becomes 

active. The simulation shows the shift register working 

at 4 MHz. 

SEMISTATIC SHIFT REGISTER 	 (04/17/95 	12: 26: 18 

6.00 

v(30) q.21  

4.00 

V (40) 
2.00 

0.00 

v (10) Vit 

v(20)Vou.t 

I-.- 

0. 

TEMP = TNOM 

2 

time (micro-5econE) 

Figure A1.2. Simulation of basic shift register element. 
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SEMISTATIC SHIFT REGISTER 
.SUBCKT INVKB 10 20 500 100 
MEl 20 10 0 100 MENH2 6U 12U 
MD1 500 20 20 100 MDEP2 24U 6U 
.ENDS INVK8 
.SUBCKT INVK4 10 20 500 100 
MEl 20 10 0 100 MENH2 6U 12U 
MD1 500 20 20 100 MDEP2 12U 6U 
.ENDS INVK4 
.SUBCKT MINPAS 10 20 30 100 
MP1 10 20 30 100 MENH2 6U 6U 
.ENDS MINPAS 
.SUBCKT SRSS 10 20 30 40 500 100 
XPI 10 30 35 100 MINPAS 
XP2 35 40 45 100 MINPAS 
XP3 55 40 65 100 MINPAS 
XN1 35 55 500 100 INVK8 
XN2 55 45 500 100 INVK4 
XN3 65 20 500 100 INVKS 
.ENDS SRSS 
VDD 500 0 DC 5 
VBB 100 0 DC -2.5 
VP1 30 0 PULSE 0 5 20N 4N 2N lOON 250N 
VP2 40 0 PULSE 5 0 16N 4N 2N liON 250N 
VIN 5 0 PULSE 5 0 2N 8N 4N 134N 500N 
XSRI 10 20 30 40 500 100 SRSS 
CLOAD 20 0 0.05P 
.TRAN 5N 1000N 
.GRAPH TRAN V(10) '1(20) V(30) V(40) 
.WIDTH OUT=80 
.MODEL MENH2 NMOS (LEVEL=2 VTO=0.75 GAMMA=0.46 
+CGSO=4. 5E- 10 CGDO=4. 5E-10 CJ=1 .OE-4 CJSW=1 .OE-9 JS=1 . OE-7 
+TOX=8E-8 NSUB=8.5E14 NFS=1E10 XJ=1.5U LD=1.25U U0=700 
+UEXP=0.1 UTRA0.3 VMAX=5E4 NEFF=3.0 XQC=0.4 DELTAI.0) 
.MODEL MDEP2 NMOS (LEVEL=2 VTO=-4.7 GAMMA=0.7 
+CGSO4. 5E- 10 CGDO=4. 5E-10 CJ=1 .OE-4 CJSW=1 .OE-9 JS=1 .OE-7 
+TOX=8E-8 NSUB=2.0E15 NFS=1E10 XJ=1.5U LD=1.25U U0=550 
+UEXP=0.1 UTRA=0.3 VMAX=5E4 NEFF=3.0 XQC=0.4 DELTA=1.0) 
• END 

Figure A1.3. Input data for shift register simulation. 

A1.3. Peripheral Circuitry Design 

The peripheral circuitry consists of input and output 

buffers. 	It also contains three combinational logic cir- 

cuits for the generation of control signals. 	The output 
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buffers are standard library designs, slightly modified to 

fit the available space. The input buffers are designed 

according to the capacitive load that they must drive so 

that the chip can operate at 4 MHz. The capacitance is 

determined by calculating the number of gates to be 

driven, and the area of interconnect. A buffer with a 

drive capability of 5pF in a rise time of 20ns is adequate 

for all but two input pads. The remaining inputs are ( pl, 

which requires a drive capability of 12pF in 20ns, and p2, 

which requires a drive capability of 65pF in 20ns. Cir -

cuit simulations for each of these buffers are shown in 

Figures A1.4 to A1.9. 

F-I 1 ER  

Source 
	

ttii ::\1T:I1 

V (iO) 

vnp Lit 

Figure A1.4. Simulation results for 5pF input buffer. 
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INPUT BUFFER TO DRIVE 5PF IN 20NS 
.SUBCKT BUFF 10 30 500 100 
MEl 20 10 0 100 MENH2 6U 96U 
MD1 500 20 20 100 MDEP2 6U 24U 
ME2 30 20 0 100 MENH2 6U 96U 
MD2 500 10 30 100 MDEP2 6U 24U 
ME3 500 10 30 100 MENH2 6U 72U 
.ENDS BUFF 
VDD 500 0 DC 5 
VBB 100 0 DC -2.5 
VIN 5 0 PULSE 0 5 iON iON iON 60N 160N 
RCABLE 5 6 50 
CCABLE 6 0 50P 
RP61O1K 
CP 10 0 IP 
Xl 10 20 500 100 BUFF 
CL 20 0 5P 
.TRAN 2N 200N 
.GRAPH TRAN V(5) V(10) V(20) 
.MODEL MENH2 NMOS (LEVEL=2 VTO=0.75 GAMMA=0.46 
+CGSO=4.5E-10 CGDO=4.5E-10 CJ=1.OE-4 CJSW=1.OE-9 JS=1.OE-7 
+TQX=8E-8 NSUB=8.5E14 NFS=1E1O XJ=1.5U LD=1.25U U0=700 
+UEXP=O.1 UTRA=0.3 VMAX=5E4 NEFF=3.0 XQC=0.4 DELTA=1.0) 
.MODEL MDEP2 NMOS (LEVEL=2 VTO=-4.7 GAMMA=0.7 
+CGSO4. 5E- 10 CGDO=4. 5E-IO CJ=1 . OE-4 CJSW=i .OE-9 JS=1 .OE-7 
-4-TOX=8E-8 NSUB=2.0E15 NFS=IE10 XJ=1.5U LD=1.25U U0=550 
+UEXP=O.1 UTRA=0.3 VMAX=5E4 NEFF=3.0 XQC=0.4 DELTA=1.0) 
.END 

Figure A1.5. Simulation data for 5pF input buffer. 
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INPUT & UFFEk TO RIVE I2PF IN aONS 	 /:/eE 9: E: 42 Jl 
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Figure A1.6. Simulation results for 12pF input buffer. 
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INPUT BUFFER TO DRIVE I2PF IN 20NS 
.SUBCKT BUFF 10 30 500 100 
MEl 20 10 0 100 MENH2 60 96U 
MD1 500 20 20 100 MDEP2 6U 24U 
ME2 30 20 0 100 MENH2 6U 3840 
MD2 500 10 30 100 MDEP2 6U 96U 
ME3 500 10 30 100 MENH2 60 288U 
.ENDS BUFF 
VDD 500 0 DC 5 
VBB 100 0 DC -2.5 
VIN 5 0 PULSE 0 5 iON ION iON 60N 160N 
RCABLE 5 6 50 
CCABLE 6 0 50P 
RP 6 10 1K 
CP 10 0 1P 
Xl 10 20 500 100 BUFF 
CL 20 0 15P 
.TRAN 2N 200N 
.GRAPH TRAN V(5) V(10) V(20) 
.MODEL MENH2 NMOS (LEVEL=2 VTO=0.75 GAMMA=0.46 
+CGSO4. 5E- 10 CGDO=4. 5E-10 CJ=1 .OE-4 CJSW=1 .OE-9 JS=1 .OE-7 
-4-TOX=8E-8 NSUB=8.5E14 NFS=IE10 XJ=1.5U LD=1.25U U0=700 
+UEXPO.1 UTRA=0.3 VMAX=5E4 NEFF3.0 XQC0.4 DELTA1.0) 
.MODEL MDEP2 NMOS (LEVEL=2 VTO=-4.7 GAMMA=0.7 
+CGSO4. 5E- 10 CGDO4. 5E-10 CJ=1 .OE-4 CJSW=1 .OE-9 JS=1 .OE-7 
+TOX8E-8 NSUB=2.OEI5 NFS=IE10 XJ=1.50 LD=1.25U UO=550 
+UEXP=0.1 UTRA=0.3 VMAX=5E4 NEFF=3.0 XQC=0.4 DELTA=1.0) 
.END 

Figure A1.7. Simulation data for 12pF input buffer. 
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Figure A1.8. Simulation results for 65pF input buffer. 
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INPUT BUFFER TO DRIVE 65PF IN 20NS 
.SUBCKT BUFF65 10 30 500 100 
MEl 20 10 0 100 MENH2 6U 384U 
MD1 500 20 20 100 MDEP2 6U 96U 
ME2 30 20 0 100 MENH2 6U 3072U 
MD2 500 10 30 100 MDEP2 6U 768U 
ME3 500 10 30 100 MENH2 6U 2304U 
.ENDS BUFF65 
VDD 500 0 DC 5 
VBB 100 0 DC -2.5 
VIN 5 0 PULSE 0 5 ION iON iON 60N 160N 
RCABLE 5 6 50 
CCABLE 6 0 50P 
RP 6 10 1K 
CP 10 0 1P 
Xl 10 20 500 100 BUFF65 
CL 20 0 lOOP 
.TRAN 2N 200N 
.GRAPH TRAN V(5) V(10) V(20) 
.MODEL MENH2 NMOS (LEVEL=2 VTO=0.75 GAMMA0.46 
+CGSO4.5E-10 CGDO=4.5E-10 CJ=1.OE-4 CJSW=1.OE-9 JS=I.OE-7 
+TOX=8E-8 NSUB8.5E14 NFS=IE10 XJ=1.5U LD=1.25U U0=700 
+UEXP=0.1 UTRA0.3 VMAX=5E4 NEFF=3.0 XQC=0.4 DELTA=1.0) 
.MODEL MDEP2 NMOS (LEVEL2 VTO=-4.7 GAMMA=0.7 
+CGSO4. 5E- 10 CGDO4. 5E-10 CJ=1 . OE-4 CJSW=1 .OE-9 JS=1 .OE-7 
+TOX8E-8 NSUB=2.0E15 NFS=IE10 XJ=1.5U LD=1.25U UO=550 
+UEXP=0.1 UTRA0.3 VMAX=5E4 NEFF=3.0 XQC0.4 DELTA=1.0) 
.END 

Figure A1.9. Simulation data for 65pF input buffer. 

Combinational logic is included in the peripheral 

circuitry to generate control signals for the DSP, OSR and 

NCR. These circuits are shown in Figures A1.10 to A1.12 

respectively. The circuits perform input buffering in 

addition to their logic functions. 
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Figure A1.10. Logic for generating DSR control signals. 

OSR—pI 
Pi .OSR—pI 
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Figure A1.11. Logic for generating OSR control signals. 
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Figure A1.12. Logic for generating MCR control signals. 
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A1.4. Power Supply Considerations 

Supply currents for logic gates are calculated under 

the approximations that the pull-down's resistance is 

negligible, and that the the pull-up transistor is in 

saturation. Thus, 

'sat = k'(Vgs_Vth) 2  Vds  > (Vgs_Vth)1 	 A1.1 

0.3 	mA, 

where: 

k' Z 20pA/V 2 , 

V ZOV, gs  

Vth Z -4V,and 

V 5V. ds 

A1.2 

W and L are the width and length of the active area of the 

pull-up device. 

The VDD and VSS metal line width is determined by the 

current carrying capability of the aluminium tracks. The 

metal migration limit is estimated to be,  1uA/LiI 2 , where 

the metal thickness is 11im. Thus, a 101im metal track can 

carry lOmA. Taking the worst case condition where all 

inverters in the correlator chip are turned on, a supply 

current estimate can be estimated to be -'-150mA. There-

fore, the VDD and VSS metal line widths must be 150pm. 

However, since there are two each VDD and VSS pads, the 

major power line widths can be reduced to 75pm. 
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APPENDIX 2 

EU349 TEST SCHEDULE 

A2.1. Introduction 

The Test Schedule consists of a series of simple test 

procedures. Each procedure is presented as a subsection 

containing a list of the individual tests required to ver-

ify a specific chip function. 

The test schedule procedures are summarised in Table 

A2. 1. 

TABLE A2.1 

Summary of Test Schedule 

A2.2. Test MCR as shift register. 

A2.3. Test OSR and DSP as shift registers. 

A2.4. Test MCR effect on both OSR and DSP. 

A2.5. Test SET and CLEAR features of DSP. 

A2.6. Test latches and MCR parallel load. 

A2.7. Test latches and OSR parallel load. 

A2.8. Verify self test sequence. 

A2.9. Verify self repair sequence. 

A2.10. Verify correlation performance. 

A2.2. Test MCR as Shift Register 

The Multiplexer Control Register is a critical ele- 

ment in the correlator circuit. 	It is required to be 

functional and neutralised before other tests 	are 
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attempted. 	(It is neutralised by flushing with zeros and 

holding the all zero state static.) 

Perform a flush test on the. MCP. 	(Flush test is 

described in Section 4.3.3.) 

Perform a shift test by shifting 	the pattern 

00110011... 	through 	the 	MCR. 	(Shift test is 

described in Section 4.3.3.) 

Check that the time delay between MCR input and MCR 

output is 28 clock cycles. 

Neutralise MCP. 

A2.3. Test OSR and DSR as Shift Registers 

The MCR must be neutralised before carrying out this 

test. 

Neutralise MCR. 

Perform a flush test on both the OSR and DSP. 

Perform a shift test on both the OSR and DSP. 

Check that the time delays through the OSR and DSR 

are 28 clock cycles. 

A2.4. Test MCR Effect on both OSR and DSR 

This test should be repeated with the input patterns 

11001100..., 01100110..., 00110011... and 10011001.... 

1. 	Shift a binary pattern containing n ones into the 

MCP. 
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Hold MCR contents static. 

Flush test, and shift test the OSD and DSP. 

Check that the time delays through the OSR and DSP 

are 28 - n clock cycles. Note that the bypass circu-
itry is not guaranteed to work correctly if n con-

tains blocks of more than 3 ones together. 

A2.5. Test SET and CLEAR Features of DSR 

Neutralise the MCR before perfoming this test. 

Parallel load logic ones into DSR (SET DSP). This is 

done by asserting the control signals DSR-pl and 

DSP-s/c both HIGH. 

Serially shift 28 zeros into DSP and observe DSP out-

put. 

Serially shift 28 logic ones into DSP. 

Parallel load zeros into DSP (CLEAR DSR). 	Assert 

DSP-pl control HIGH, and DSR-s/c control LOW. 

Serially shift 28 logic ones into DSP and observe DSP 

output. 

A2.6. Test Latches and MCR Parallel Load 

Neutralise the MCP before performing this test. This 

test sets/resets the overload latches, and transfers the 

latch contents to the MCR. The normal input to the latch, 

that is, the overload detect output from the integrating 

counter, cannot be disabled. Therefore, the integrating 

counter start word must be set to 4000-hex, or some other 

suitably large number, to prevent the integrating counter 

generating an overload detect output during the test. 
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(The RESET control also loads the integrating start word.) 

1. 	Reset all latches using RESET control signal. 

2 	Parallel load latches into MCR. 	Assert MCR-shift 

LOW; MCR-hold LOW. 

Shift 28 zeros into MCR and observe MCR serial out-

put. Assert MCR-shift HIGH. 

Reset again all latches using RESET control signal. 

Set all latches using F-Test control signal. 	Assert 

F-test HIGH. 

Parallel load MCR. 

Shift 28 zeros into MCR and observe MCR serial out-

put. 

A2.7. Test Latches and OSR Parallel Load 

Neutralise the MCR before performing this test. This 

test sets/resets the overload latches, and transfers the 

latch contents to the OSR. The normal input to the latch, 

the overload detect output from the integrating counter, 

cannot be disabled. Therefore, the integrating counter 

start word must be set to 4000-hex, or some other suitably 

large number, to prevent the integrating counter generat-

ing an overload detect output during the test. (The RESET 

control also loads the integrating start word.) 

1. 	Reset all latches using RESET control signal. 

2 	Parallel load latches into OSR. Assert OSR-pl HIGH. 
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Shift 28 zeros into OSR and observe OSR serial out-

put. Assert OSR-pl LOW. 

Reset again all latches using RESET control signal. 

Set all latches using F-Test control signal. 	Assert 

F-test HIGH. 

Parallel load OSR. 

Shift 28 zeros into OSR and observe OSR serial out-

put. 

A2.8. Self Test Sequence 

The self test sequence consists of four repetitions 

of a single test. The test begins by reseting the corre-

lator and setting up the initial conditions to each corre-

lation stage. The objective of the test is to make each 

correlator stage correlate the same data. They should all 

then produce the same result which can easily be verified 

using the F-test signal to emulate the expected good 

response of the correlator array. The test is repeated 

for each of the four combinations of input data, xy = 00, 

01, 11, 10. The F-test signal is set HIGH to correspond 

to the expected overload detect pulse at the end of the 

integration period of the • 0 11  input combination. It is 

again set HIGH for the duration of the expected overload 

at the end of the integration period of the "11" combina-

tion. At all other times F-test is LOW. 

Neutralise the MCR before performing this test. 

1. 	Reset all latches and load 4000-hex into integrating 

counters using the RESET control. This number 

represents the maximum integration time of the corre-

lator. 
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Clear the DSR using the DSR-pl and DSR-s/c controls 

(DSR-pl HIGH; DSP-s/c LOW). Set up the input condi-

tions with x = 0 and y = 0, and shift zeros into the 

DSR. 

Emulate the expected response of the circuit with F- 

test signal. 	In this case F-test is set HIGH to 

coincide with the expected overload. 

Set up the input conditions with x = 0 and y = 1, 

shift zeros into the DSR. 

Emulate the expected response of the circuit with F-

test signal. In this case F-test is held LOW. 

Set the DSP using the DSP-pl and DSP-s/c controls 

(DSR-pl HIGH; DSP-s/c HIGH). Set up the input condi-

tions with x = 1 and y = 1, shift logic ones into the 

DSP. 

Emulate the expected response of the circuit with F- 

test signal. 	In this case F-test is set HIGH to 

coincide with the expected overload. 

Set up the input conditions with x = 1 and y = 0, 

shift logic ones into the DSR. 

Emulate the expected response of the circuit with F-

test signal. In this case F-test is held LOW. 

Parallel load latches into the OSP. 

Shift contents of the OSR to observe the number of 

detected faults. 
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A2.9. Self Repair Sequence 

This test directly follows the self test sequence. 

The self test status of the correlator array is stored in 

the overload latches. The self repair sequence consists 

simply of transferring this information to the MCR. 

Parallel load MCR using the controls MCR-shift and 

MCR-hold (both LOW). 

Hold contents of MCR static (MCR-shift LOW; MCR-hold 

HIGH). 

The self test procedure may now be repeated, without 

neutralising the MCR, to verify the self repair pro-

cedure. 

A2.10. Correlation Test Sequence 

Correlation test is similar to the self test sequence 

except that the F-test signal is inactive, that is, held 

LOW. As in self test, the data inputs are cycled through 

the four combinations 00, 01, 11, 10. This test is per-

formed using a short integration time so that the results 

of all four input combinations may be displayed together 

on the DAS screen. The integration time is chosen to be 

less than the length of the correlator array, which in the 

case of one Eu349 device is 28 delay stages. This means 

that when the input conditions are such that an overload 

should occur after the specified integration time, then it 

can be displayed by parallel loading the OSR and shifting 

out its contents every 28 clock cycles. 

The correlation test may be carried out either before 

or after self repair has been carried out. If it is to be 

performed before self repair, then the MCR must be neu-

tralised; OSR parallel load and RESET pulses should occur 
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every 28 clock cycles. In this case the test will show 

the response of all correlation stages, including faulty 

ones if they exist. When the test is performed after self 

repair, the MCR must be held static to maintain the confi-

guration of the array. Also, the OSP-pl and RESET pulses 

must occur every n clock cycles, where n represents the 

effective length of the correlator array,-i.e. n is the 

number of zeros held in the MCR. 

Correlation test requires the following sequence of 

events: 

Reset all latches and load 5555-hex into integrating 

counters using the RESET control. This number 

represents an integration time of 15 clock cycles. 

It is implied here that 5555-hex will be loaded on 

each subsequent RESET pulse. 

At the same time clear the DSP using the DSR-pl and 

DSP-s/c controls (DSR-pl HIGH; DSP-s/c LOW). Also, 

set up the input conditions with x = 0 and y = 0, and 

shift n zeros into the DSR. 

Parallel load the OSR (OSR-pl HIGH) and RESET corre-

lator. 

At the same time set up the input conditions with x = 

0 and y = 1, shift n zeros into the DSP. 

Parallel load the OSR (OSP-pl HIGH) and RESET corre-

lator. 

At the same time set the DSP using the DSR-pl and 

DSP-s/c controls (DSR-pl HIGH; DSP-s/c HIGH). Set up 

the input conditions with x = 1 and y = 1, shift n 

logic ones into the DSP. 



Parallel load the OSR (OSR-pl HIGH) and RESET corre-

lator. 

At the same time set up the input conditions with x = 

I and y = 0, shift n logic ones into the DSP. 

Parallel load the OSR (OSR-pl HIGH) and RESET corre-

lator. 

Shift contents of the OSR to observe the results of 

paragraphs 7 and 8 above. 
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APPENDIX 3 

EU349 TEST CONFIGURATION 

A3. 1. Introduction 

The specific configuration for the Digital Analysis 

System (DAS) is described here. The description is 

divided into seven subsections which describe the indivi-

dual menus and POD configurations, from the data probes, 

data acquisition, display and triggering menus, to the 

pattern generator program and instruction codes. 

A3.2. Prototype Test Configuration 

The bonding diagram and pin arrangement of the proto-

type IC is shown in Figure A3.1. 
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Figure A3.1. Eu349 bonding diagram. 

Patterns of input and control data are generated by 

the "pattern generator" section of the DAS. Outputs from 

the chip under test, and if required, inputs and control 

signal are acquired and displayed by the "data acquisi-

tion" section of the DAS. DAS input and output is 

achieved through data probes. 

A3.3. DAS Data Probes 

The DAS is composed, for the purposes of this test, 

of the following modules: 

One 91A32 Data Acquisition Module. 

One 91P16 Pattern Generator Module. 
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3. 	One 91P32 Pattern Generator Module. 

Each module has specific data probe connections, which are 

described here. 

A3.3.1. 91A32 Data Acquisition Module 

One 91A32 Data Acquisition Module with a maximum of 

32 data channels at 25 MHz. is installed. In this case 16 

channels are used to acquire and display inputs to, and 

outputs from the chip under test. These channels are 

listed in Table A3.1. 

POD 

TABLE A3.1 

Assignments for 91A32 Data Acquisition Module 

Channel Function Channel Function 

POD 2A 0 OSR 0/p POD 2B 0 MCR-hold 

POD 2A 1 MCR 0/p POD 2B 1 MCR-shift 

POD 2A 2 y i/p POD 2B 2 x (DSP) 	0/p 

POD 2A 3 x (DSP) 	i/p POD 2B 3 RESET 

POD 2A 4 pl POD 2B 4 MCP i/p 

POD 2A 5 DSP-s/c POD 2B 5 OSP i/p 

POD 2A 6 DSR-pl POD 2B 6 OVRFLO 

POD 2A 7 OSR-pl POD 2B 7 F-TEST 

POD 2AQ ... POD 2BQ 

A3.3.2. 91P16 Pattern Generator Module 

One 91P16 Pattern Generator Module with a maximum of 

16 data channels at 25 MHz. is installed. In this case 11 

channels are used to provide all the control signals 

necessary for the correlator chip. These channels are 

listed in Table A3.2. 
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POD 

TABLE 

Assignments for 91P16 

A3.2 

Pattern Generator Module 

Channel Function Channel Function 

POD lB 0 MCR i/p POD 1C 0 MCR-hold 

POD lB 1 OSR i/p POD IC 1 MCR-shift 

POD IB2 yi/p POD 1C2 - 

POD lB 3 x 	(DSR) 	i/p POD 1C 3 - 

POD lB 4 DSR-pl POD 1C 4 OSR-pl 

POD lB 5 DSR-s/c POD IC 5 - 

POD IB6 - POD IC6 - 

POD lB 7 RESET POD 1C 7 F-TEST 

POD lB STRB pl POD 1C STRB p2 

POD lB CLK - POD 1C CLK - 

A3.3.3. 91P32 Pattern Generator Module 

One 91P32 Pattern Generator Module with a maximum of 

32 data channels at 25 MHz. is installed. In this case 15 

channels are used to provide the parallel input, ii to 

i15, to the integrating counters of the correlator chip. 

These channels are listed in Table A3.3. 
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POD 

TABLE A3.3 

Assignments for 91P32 Pattern Generator Module 

Channel Function Channel Function 

POD 4A 0 ii 	(LSB) POD 4B 0 19 

POD 4A 1 i2 POD 4B I ilO 

POD 4A 2 i3 POD 4B 2 ill 

POD 4A 3 i4 POD 4B 3 i12 

POD 4A 4 15 POD 4B 4 113 

POD 4A 5 16 POD 4B 5 i14 

POD 4A 6 17 POD 4B 6 115 

POD 4A7 i8 POD 4B7 

POD 4A STRB ... POD 4B STRB 

POD 4A CLK ... POD 4B CLK 

The permitted values which may be given to the bits 

ii to i15 are summarised in the section on Pattern Genera-

tor Instruction Codes, Section A3.8. 

A3.4. Channel Specification 

The Channel Specification menu is for controlling the 

display format of the data acquisition channels. It 

divides channels into groups, sets display radix and 

polarity values, and determines probe input thresholds. 

Table A3.4 shows the grouping of the acquisition 

channels and their POD IDs into data inputs, data outputs, 

and control signals. 
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TABLE A3.4 

Grouping of Acquisition Data 

Group Name POD ID Function 

x 	(DSP) 	i/p 2A 3 

yi/p 2A2 
A Data Inputs 

OSR i/p 2B 5 

MCR i/p 2B 4 

x (DSP) 	0/p 2B 2 

B OSR 0/p 2A 0 Data Outputs 

MCP 0/p 2A 1 

C OVRFLO 2B 6 Overflow Flag 

DSP-s/c 2A 5 
D DSP Control 

DSR-pl 2A 6 

E OSR-pl 2A7 OSR Control 

MCR-shift 2B I 
F MCP Control 

MCP-hold 2B 0 

0 RESET 2B 3 Reset Latches & 

Load Counters 

1 F-TEST 2B 7 Set Latches or 

Fault Repair 

2 p1 2A 4 Chip's 	pl 

The display radix and polarity fields (not shown) are 

set to binary and positive respectively. The probe input 

thresholds are all set to 2.6 volts MOS. PODs 2D and 2C, 

which are not required in the correlator test, are unas-

signed. 
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A3.5. Timing Diagram 

Once in memory, acquired data may be displayed in a 

timing diagram format. In this format the DAS displays up 

to 16 logic waveforms-representing the high and low states 

in each clock cycle. Screen editing is used for viewing 

different portions of memory, altering the display magnif-

ication, and for labelling and rea rranging the channel 

orders. 

Table A3.5 shows how the channels are labelled and 

rearranged for the correlator test. 
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TABLE A3.5 

Arrangement and Labelling of Channels for Display 

POD ID Name Display 

2A 3 x 	(DSP) 	i/p 

2A 2 y i/p input data 

2B5 OSRi/p 

2B 4 MCR i/p 

2B 2 x 	(DSP) 	o/p 

2A 0 OSP 0/p output data 

2A 1 MCR 0/p 

2B 6 OVRFLO 

2A 5 DSP-S/C 

2A 6 DSR-pl 

2A 7 OSR-pl 

2B I MCR-shift 
CONTROL SIGNALS 

2B 0 MCR-hold 

2B 3 RESET 

2B 7 F-TEST 

2A 4 cpl CHIP'S ç1 

A3.6. Trigger Specification 

The Trigger Specification menu is for controlling the 

modules used during data acquisition. It specifies which 

modules are used, their clock rates, clock qualifiers, and 

trigger parameters. 

For the correlator test only one 91A32 data acquisi-

tion module is used, and it is operated from the DAS 



internal clock. The trigger word is positioned at the 

beginning of the acquisition memory. The acquisition 

memory of the DAS is not large enough to store all data 

from the correlator chip during a complete test, so suit-

able trigger words must be specified to acquire the 

desired portion of the test results. 

A3.7. Pattern Generator - Timing 

The Timing sub-menu of the pattern generator is for 

entering the characteristics of the strobe signals 

asserted in the Program sub-menu. It is also used to 

select the pattern generator's start mode, either single 

step or run. 

Figure A3.2 shows the Timing sub-menu. It indicates 

that STROBE 0, which is the output line labelled STRB from 

POD 1B, is set up to perform the t.pl function in the corre-

lator chip; and that STROBE 1, the STRB output line from 

POD 1C, is set up to perform the p2 function. (See also 

Table A3.2.) 

POD WIDTH DELAY 	SHAPE 

 

STROBE 1 10 70ns 
STROBE 0 lB liOns 

70ns; 	480ns 

P2 	:I 

11Ons 

480ns 
400ns 

STROBE 1 

STROBE 0 

 

DAS output clock 
l000ns 

Figure A3.2. DAS Pattern Generator Timing Sub-Menu and 

clock strobes. 
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Figure A3.2 illustrates the specified features of the 

two strobe signals. STROBE 0 is the short duration clock 

phase. When STROBE 0 is high, information id transferred 

from one circuit element to another. STROBE 1 is the long 

duration clock phase. During this phase information is 

stored and maintained by the semistatic clocking scheme 

adopted in the correlator design. 

A3.8. Pattern Generator Instruction Codes 

This section provides a key to the pattern generator 

program instructions. The program, which is given in the 

next section, consists of a sequence of in-line instruc-

tions, each containing, inter alia, three fields for gen-

erating a bit pattern on the 48 (maximum) output lines. 

In this case, the fields of interest are the two relating 

to the PODs 4B and 4A, and PODS lB and 1C. 

Tables A3.6 and A3.7 show a list of correlator chip 

functions and their associated codes in hexadecimal; 

Table A3.6 is concerned with data input signals to the 

chip, while Table A3.7 is concerned with the function con-

trol signals. 
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TABLE A3.6 

DAS Instruction Codes for Correlator Input Signals 

Input Data POD4BA PODICB 

x, 	DSP 	(0) 0000 0000 

x, 	DSP 	(1) 0000 0008 

Y 	(0) 0000 0004 

y 	(1) 0000 0000 

OSP (0) 0000 0000 

OSP 	(1) 0000 0020 

MCR (0) 0000 0000 

MCR (1) 0000 0001 

TABLE A3.7 

DAS Instruction Codes for Correlator Control Signals 

and Integrating Counters Start Value (ICSV). 

Chip Function POD4BA POD1CB 

OSR serial shift 0000 0000 

OSR parallel load 0000 1000 

DSP serial shift 0000 0000 

DSP set all ones 0000 0030 

DSP set all zeros 0000 0010 

IVICP serial shift 0000 0200 

MCR parallel load 0000 0000 

MCR hold contents 0000 0100 

RESET 	load & reset ICSV 0080 

F-TEST set latches 0000 8000 

A particular program instruction is obtained by OR- 

ing the required function and data input codes in Tables 
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A3.6 and A3.7. 

Whenever the RESET function is selected, which resets 

the correlator latches and loads the integrating counters 

to their start value, then that value must be supplied in 

the menu field for PODs 4B and 4A. Illegal start values 

are: 

15 zeros (0000-hex or 8000-hex), which represents a 

zero integration time. 

15 ones (7FFF-hex or FFFF-hex), which represents an 

infinite integration time. 

Apart from these two conditions there are 32766 permitted 

values. Some values, produced by simulating the integrat-

ing counter, are listed in Table 5.5. 

A3.9. Pattern Generator - Program 

The Program sub-menu of the DAS pattern generator is 

for entering the program instructions, and for selecting 

the output clock and strobe signals. 

The pattern generator program is listed in Figure 

A3.3. The output clock in this case, is derived from the 

DAS internal master clock, and the clock period, specified 

by the field on the third line of the menu, is lijs. 

The Interrupt, Pause, and Inhibit signals are not 

used in the correlator test, and their inactive, default 

values are selected. 
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Mum mmTm: IOfI 	 IH1tP1: Cum 08 U 
U.0Q 	rt 	p$ IMM PJSE G H D8flBIT 4: U 

P40C P0D4B1 PIc8 
SEg LABEL ui EM ME IWWIOHS STROBES 

II CM ME M - Io 
1 8889 4880 8194 QIlO M0G 012 
2 DIR 8000 9888 0109 812 
3 8080 0000 8184 ET 30 812 
4 8088 8808 0104 REM 812 
5 0 8080 8800 OW ROUT 6 812 
6 8088 0808 8284 FOOT 38 012 
7 8008 8088 8285 MUT 6 812 
8 8088 8888 8204 MUT 6 812 
9 8088 8088 8184 CJ. DIR 812 

10 0808 8889 8204 REPEAT 38 812 
11 8880 8808 em RETM 812 

.12 SET 8880 8800 e134 812 
13 8888 8880 8184 ROUT 30 012 
14 8888 8080 818C MOT 38 012 
15 8080 8880 811C 812 
16 8888 8808 eiec MST 38 812 
17 8008 8808 8294 MUT 38 812 
18 8800 0008 8284 RM  812 
19 FHCR 0880 4888 8184 012 
28 0088 8880 8194 812 
21 8080 8080 8084 812 
22 0888 8888 0294 REPEAT 30 012 
23 8988 9898 8184 REM 012 
24 FOSR 8800 4888 8184 812 
25 8808 0088 8184 812 
26 8888 0088 1184 812 
27 8888 0808 8184 MST 38 812 
20 8880 8880 8104 RETIN 812 
28 IEM. 8888 4880 9184 012 
38 0888 0088 8884 812 
31 0080 8088 8184 RERFM 812 
32 P10 8008 34€4 1184 812 

M i t =a 
______ 
=0 M I 

34 8000 8880 1184T0 10 812 
35 PU 0088 34E4 1188 012 
36 U 0888 8000 8180 MOT 38 812 
37 8098 8008 1188 GOlD LI 812 
38 PUB 0888 8082 IIBC 012 
39 LIB 8880 0888 818C MEAT 38 812 
48 8888 0808 IIBC GOlD L10 812 
41 Pi.81 8808 0802 1100 812 
42 1.81 0888 8908 9100 MUT 38 012 
43 8888 8888 1100 COlD 1.01 812 
44 PC 8880 0088 8184 C1. 088 e12 
45 8088 0800 0184 C1. rICR 812 
46 0080 0088 8184 CaJ. SET 012 
47 8800 0880 8184 CALL FPCR 012 
48 8880 8088 9194 CaL. FOIR 812 
49 8888 0888 8184 CALL L€1. 812 
1 - RM am III E!__ 

Figure A3.3. Pattern Generator Program for Prototype IC 

Test. 

The program consists of a sequence of in-line pattern 

generator code which is divided into seven columns. These 

are, from left to right in Figure A3.3: 
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SEQ: 	program sequence number. 	Each 	number 

corresponds to one program line. Altogether there are 245 

sequences. 

LABEL: up to four characters for labelling a specific 

program line, and up to 32 labels may be assigned. Labels 

are for use with GOTO, CALL, and INTERRUPT CALL instruc-

tions. 

POD4DC: 16 data output lines; not used in this pro- 

gram 

POD4BA: 16 data output lines; 15 lines are used to 

generate the integrating counters' start value (see Sec-

tion A3.8). 

PODICB: 16 data output lines; 11 lines are used to 

generate the control signals and the input signals for the 

correlator chip (see also Section A3.8). 

INSTRUCTIONS: program instructions for code compres-

sion, which include: CALL, GOTO, RETURN, REPEAT, HOLD, 

COUNT, and HALT. The REPEAT, HOLD, and COUNT instructions 

require numerical parameters; no more than six unique 

numerical parameters may be shared among them. 

STROBES: the numbers in this columns refer to the 

strobes as defined in the Timing sub-menu, which are to be 

asserted during the current program sequence. In this 

case STROBE 0 represents p1 on chip; STROBE 1 represents 

c.p2 on chip. Note that when the pattern generator is 

started any strobes asserted on SEQ 0 are ignored. These 

strobes will only be asserted if SEQ 0 is accessed again 

by a loop or call. 
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tlation: Polarity correlation is based on computa-
;crete function 

r(r) = 	(sgn [ye]  sgn [x5  -,]) (2) 

DIGITAL POLARITY CORRELATOR 
0 ON AN OVERLOADING COUNTER 
NIQUE 

Indexing terms: integrated circuits. VLSI 

A VLSI structure to implement a digital polarity correlator 
using an overloading integrating counter technique is report-
ed. The implementation permits direct cascading of individ-
ual correlator chips without using additional circuits, to give 
complete flexibility in choice of correlator delay and 
resolution. The design considered offers significant per-
formance advantages in high-speed correlation applications. 

uction: Correlation is based on computation of the cor-

n function, r5 ,(t), where 

r(r) = 	
k=O 	

(1) 

her Yk  and xk are analogue or digital sampled data' 
qu nces. Implementation of a high-speed correlator requires, 
ere ore, an array of multipliers, delay elements and accumu-

itor , either analogue or digital. Polarity correlation methods 
iinitnise the complexity of the computational elements by 
iscarding the magnitude information of the input sequences. 
)igi al design techniques can then be employed to realise the 
iulti pliers by EXNOR gates, the delay elements by a digital 
hiltregister and the accumulators by simple counting circuits. 
his results in a more economical and more compact imple-
entation than would otherwise be achieved, the penalty for 

rhich is an increase in integration time to obtain a correlation 
inc ion with acceptable variance.' The polarity correlation 
inc ion is nonlinearly related to the (direct) correlation func-
on, eqn. I, by the Van Vleck arc sine relation' for input 
qu nces which have Gaussian statistics. 
Pr viously reported techniques for obtaining the polarity 

orrlation function have included parallel counters,' -" which 

re tot directly cascadable and hence nonoptimal for VLSI 
nplmentation. This letter describes an interpretation of the 
olaiity correlation function which permits the elimination of 
aralel counters and results in a highly regular correlator 
trucure amenable to VLSI implementation. The structure 
[so permits direct cascading of correlator stages. Details of a 
8-stage prototype correlator chip based on this approach are 

omplete positive correlation (rpy-= 1) occurs when the pol-

rities of the input samples (assuming the mean of both inputs 
be zero) are at all times equal, yielding an average product 

I + I. Complete negative correlation = — 1) occurs when 
te polarities of the input samples are never equal (inverse 
roportionality), yielding an average product of — 1. In the 
ise where the input samples are not related (rpy,= 0) the sum 

the positive products will equal the sum of the negative 

roducts, and the average product will be zero. 
Implementation of polarity correlation requires an analogue 
)mparator circuit to convert sgn [x] = x/IxI and 

n [y] = I y  I into logic 11ff the signal is positive and logic 

if the signal is negative. The time delay r between the two 

ndIs is achieved by using a digital shift register where a 
trtiu1ar value of delay is defined by the product of the 
imber of preceding shift register stages and the sample clock 

ri d P. Multiplication is performed by the Boolean coin-
Ic cc function EXNOR, whose output is I only if the inputs 
e both equal. If time-successive values of the coincidence 
nc ion F(t)  are summed in a digital counting circuit for a 
nt d T seconds, where T = NP, then the contents of the 

un ten at the end of the period will be proportional to the 
cv nt value of the correlation function. The EXNOR func- 

tion can only be regarded as performing multiplication if the 

logic 0 is allowed to represent — I. Thus, a logic I in the 
coincidence signal would indicate 'increment by one' the con-
tents of the counter, and a logic 0 would indicate 'decrement 
by one' the contents of the counter. This would necessitate the 
use of up-down counters which are undesirable from a VLSI 
circuit design point of view. However, it is possible to use 

simple up-counters whose contents q(r) can be related to the 
correlation function in the following way. First, the contents 

of an integrating counter are given by 

q(t) = 
	

Fk(t) 	 (3) 
k O  

where Fk(r) is the coincidence function bit stream defined by 

Fk(t) = 4 + 4 sgn [y.]sgn [Xk,] = I or 0 	 (4) 

Thus, by substituting into eqn. 3, 

N N (5) 

Hence, 

r(r) = 2 
q(r)
-- — 1 
	 (6) 

where r(t) is the polarity correlation function as given by 

eqn. 2. Thus eqn. 6 gives a measure of the correlation function 

using the integration counter contents q(r) after sampling N 
times. At maximum positive correlation = + 1) a 

maximum count q(r) = N is obtained after sampling N times. 

In the case of maximum negative correlation = — 1), 
where the input samples are never equal, the coincidence 

signal is always zero, resulting in a zero count, q(r) = 0. In the 

case of zero correlation (rpy, =  0), a count of q(r) = N12 is 
reached after sampling N times. 

Overloading counter technique: An alternative approach to 
polarity correlation is based on an integrating overloading 
counter technique,' which eliminates the requirement for a 

value of q(r) to be at all times available. Instead, the correla-
tion function is computed using the number of samples 

required to achieve count conditions, q(t) = N, in a given inte-

grating counter. The concept of the technique is illustrated by 
Fig. 1, which shows the relationship between the contents of 

a. 

' 	overload occurs at q:N 

rpyx  
N 

N 4 tN 	2N 
contents of sample counter m 

Fig. I Relationship between an integrating counter overload and the 
contents of the sample counter 

an integrating counter q(r) and the number of samples, which 

is now a variable m. The number of samples m can be related 

to the polarity correlation function by writing q(r) as 

q(z) = N 
= 	

+ 4sgn [Yk]  sgn [x,] k _) 
k=O  

M in 
= .2 + - r,(r) 	 (7) 

where 

(sgn Lik]  sgn [x4 _,]) 	 (8) 
mkO 



ence. in this case, 

form ~!N 	 (9) 
in 

here N is the capacity of the integrating counter and in is the 
imber of samples required to achieve overload conditions in 
e integrating counter corresponding to time delay r. An 
erload occurs after in = N samples when correlation is 
aximum and positive. In the case of zero correlation an 
(erload occurs after in = 2N samples and after an infinite 
imber of samples when the correlation is maximum and 
gative. Note that an overload cannot occur until in 2t N. 

A polarity correlator using the overloading counter tech-
que thus comprises a delaying shift register connected to a 
trallel array of coincidence detectors and integrating 
unters. An overload pattern shift register is used to inspect 
e overload condition of the counters. The evolving pattern 
overload states defines the correlation function shape and 

e time-delay position of the first integrating counter to over-
ad defines the position of the most significant peak of the 
nction. A sample counter is included to count the number of 
put samples in so that the value of the correlation function 
ay be computed easily for any integrating counter to over-
ad. lithe maximum capacity of the sample counter is set to 

twice the capacity of the integrating counters the signifi-
nce range is limited to I ~: r ~: 0. If it is required to cover 
e range I ~ r > - I, two correlator circuits working in 
Lrallel can be used with one covering the positive range and 
e other covering the negative range. 
Such a system is most suitably realised using integrated-
cuit technology and an early device implemented 12 stages 
correlation using p-MOS technology. Fig. 2 shows the 

Key 
OSR overload shift register 

D 	delay element 

Je 0 	 C 	coincidence function 
L 	one bit latch 

cc t 
Y 	0 0 	r 	

samplesm 

I sample counter 

~over cc Ing integrating 

1111111 

F9 9-3—f2l 	
preset counter capacity 

g. 2 Layout diagram of polarity correlator using the overloading mt e-

ating counter technique 

block diagram of a polarity correlator with additional control 
circuitry to realise a technique for displaying the correlation 
function and to provide built-in self test and self repair. The 
built-in self test and self repair mechanism automatically 
detects and eliminates failed channels in the VLSI circuit. The 
failed channels are short-circuited to maintain a series connec-
tion of correctly operating channels. Design parameters of a 
prototype chip, containing 28 parallel stages of correlation 
and fabricated on a 5 pm n-channel MOS process are 4 MHz 
sample rate with integration time programmable to a 
maximum of 2 15  samples. The architecture shown allows 
direct cascading of chips, without using additional com-
ponents, to give correlation delays of arbitrary length. Sample 
rates up to 40 MHz with up to 512 parallel stages of correla-
tion per chip can be expected from available VLSI fabrication 
processes. 

Conclusions: A VLSI structure has been described which offers 
an attractive digital implementation of a high-speed polarity 
correlator. Individual chips may be directly cascaded to realise 
a correlator with arbitrary resolution or delay, in contrast to 
other digital correlator circuits, particularly those using the 
parallel counter technique, which cannot be easily cascaded 
and do not render regular VLSI structures. Furthermore the 
operating speed of parallel counter based correlators is limited 
by carry signal propagation delays whereas the correlator 
described here, which is composed mainly of simple shift regis-
ter stages can approach the maximum clocking rate of a 
chosen VLSI fabrication process. The architecture described, 
through built-in self test and self repair techniques, offers 
enhanced production yield and in-service reliability. 
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BUILT-IN TEST AND SELF REPAIR MECHANISMS 
IN A DIGITAL CORRELATOR INTEGRATED CIRCUIT 

by 
W.S. Blackley, M.A. Jack, J.R. Jordan 
Department of Electrical Engineering 
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King's Buildings 
Mayfield Road 

Edinburgh 
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EH9 3JL 

SUMMARY 

A VLSI digital correlator architecture which incorporates built-in self test 
and self repair mechanisms is described. The architecture offers' testability and 
reliability, and the overhead for the test and repair circuitry is only one latch 
and two multiplexers per correlator stage. The correlator has been fabricated on a 
5-micron nMOS process and results from the first batch of processed chips are 
reported. 

INTRODUCTION 

The advantages in terms of increased complexity, improved performance, reduced 
costs and new systems applications made available as silicon integrated circuit 
technology matures from the level of large scale integration (LSI) to very large 
scale integration (VLSI) have been widely recognised. However, one important - facet 
of integrated circuit technology which lags dangerously behind the complexity - poten-
tial of VLSI, is the problem of establishing the integrity of the VLSI design in 
terms of initial design validation, manufacturing quality and longer term opera-
tional reliability [1,2]. 

This paper addresses the need to embody a testability scheme within the VLSI 
integrated circuit itself and presents details of a digital polarity correlator 
architecture with built-in self test (and self-repair) mechanisms. The concept is 
demonstrated using results obtained from a prototype integrated circuit chip which 
has beed fabricated in 5-micron enhancement/ depletion n-channel MOS technology. 

Correlation techniques are widely used in communications, instrumentation, com-
puters, telemetry, sonar, radar, medical and other signal processing systems 
[3,4,5]. The desirable properties of correlation include the ability to detect a 
desired signal in the presence of noise or other signals; the ability to recognise 
specific patterns, and the ability to measure time delays through various media. 

Electronic systems for computation of the correlation function have been avail-
able for many years, but they have been large and inefficient. With the development 
,f VLSI, correlation can be performed efficiently now, with a minimal number of com-
ponents. 

The correlator chip presented here, consists of a linear cascade of identical 
:orrelation elements. The performance of the correlator depends on the serial con-
iection of correctly functioning correlation elements. To optimise the performance 
md gain full advantage of the VLSI architecture a design strategy was adopted which 
Includes testability, yield enhancement, and reliability improvement. 

LEST STRATEGY REQUIREMENTS IN VLSI DESIGN 

A VLSI test strategy must ideally allow for a range of differing test environ-
rents to be experienced by the circuit during its operational service. These 
nvironments can be summarised as: 

a) prototype characterisation; to include design validation and parametric test-
lag. 
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production test; to include yield enhancement features. 

service or maintenance test; to include self-repair features. 

In prototype characterisation it is essential to identify and localise indivi-
ial faults to enable fault diagnosis and correction. Prototype faults may be 
ocess-related faults statistically distributed over a processed wafer, or they may 
design faults (errors) such as forgotten contact holes, wrong interconnections or 
cessive signal delays. Prototype testing is invariably carried out by the 
signer(s) using automatic test equipment (ATE), microprobing or electron beam 
tcilities. 

Production test requirements include both process quality checks and functional 
tecks. Process quality control is achieved either by a number of chip-size - drop-
L' replacements spaced over the wafer or by using a small test area on each chip. 
asures of transistor parameters, contact resistance and capacitance values are 
Lde to check production tolerances. In production test, functional (and 
Lrametric) tests must be minimised since here testing time and costs are important. 
Lnctional tests (teed only yield a limited number of the significant internal states 
.nce it is not generally possible to redesign or repair at this stage. 

In maintenance and systems test, fault diagnosis is precluded so a simple 
p/NO-GO indication for the circuit is adequate. 

The correlator architecture considered here incorporates design for test which 
fers the potential of valid use at each stage in the life of a VLSI circuit. To 
preciate the ease with which this architecture has been adapted to perform self 
st and self repair, the concept of polarity correlation and its silicon realisa-
on must be discussed. 

LAR1TY CORRELATION 

Polarity correlation is based on the computation of the discrete function, 

N 
1 r  

PYX S 
(sgn[y].sgn[x._]) 

k O 
	 (1) 

Lere r(t) is the value of the correlation function between two signals, x and y. 
inplete positive correlation occurs when the polarities of the input samples 
ssuming the mean of both inputs to be zero) are at all times equal, yielding an 
'erage product of +1. Complete negative correlation occurs when the polarities of 
e input samples are never equal (inverse proportionality), yielding an average 
oduct of -1. In the case where the input samples are not related, the sum of the 
sitive products will equal the sum of the negative products and the average pro-
ct will be zero. 

Implementation of polarity correlation requires an analogue comparator circuit 
convert sgn[x]x/JxI and sgn[yJy/IyI into logic I if the signal is positive and 

gic 0 if the signal is negative. The time delay-t between the two signals is 
hieved by using a digital shift register where a particular value of delay is 
fined by the product of the number of preceding shift register stages and the sam-
e clock period, P. Multiplication is performed by the Boolean coincidence func-
on, EXNOR, whose output is I only if the inputs are both equal. If time-
ccessive values of the coincidence function are summed in a digital counting cir-
it for a period T seconds, where T = NP, then the contents of the counter at the 
d of the period will be proportional to the relevant value of the correlation 
nction. 

Polarity correlation methods minimise the complexity of the computational ele-
nts by discarding the magnitude information of the input sequences. Digital 
sign techniques can then be employed to realise a more economical and more compact 
plementation than would otherwise be achieved, the penalty for which is an 
crease in integration time to obtain a correlation function with acceptable van-
ce (6]. The polarity correlation function is nonlinearly related to the (direct) 
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:orrelation function by the Van Vleck arc sine relation [7] for input sequences 
hich have Gaussian statistics. 

Previously reported techniques [8,9] for obtaining the polarity correlation 
function have included parallel counters [10,11] which are not directly cascadable 
md hence non-optimal for VLSI implementation. This paper describes an interpreta-
:ion of the polarity correlation function which permits the elimination of parallel 
ounters and results in a highly regular correlator structure amenable to VLSI 
Lmplementation. As a consequence direct cascading of correlator stages to any arbi-
:rary level is possible. 

The structure is based on an integrating overloading counter technique [12,13], 
Ln which the correlation function is computed using the number of Input samples 
:aken to achieve overload count conditions, in a given integrating counter. An 
)verload flag bit for each counter is used instead of the counter contents. This 
reduces the complexity of the structure to bit-serial input and output. The number 
f input samples, in, can be related to the polarity correlation function by [14] 

r 	(-t) = 2 - 1 	for in > N 	 (2) 
pyx 	in 	 - 

there N is the capacity of the integrating counter and in is the number of samples 
equired to achieve overload conditions in the integrating counter corresponding to 
:ime delay t. An overload occurs after in = 'N samples when correlation is maximum 
md positive. In the case of zero correlation an overload occurs after in = 2N sam-
les and after an infinite number of samples when the corr ,  elation is maximum and 
megative. Note that an overload cannot occur until m > N. 

A polarity correlator using the overloading counter technique is shown in Fig-
ire 1. It comprises a delaying shift register connected to a parallel array of 
oincidence detectors and integrating counters. An overload pattern shift register 
.s used to inspect the overload condition of the counters. The evolving pattern of 
verload states defines the correlation function shape and the time delay position 
f the first integrating counter to overload defines the position of the most signi-
icant peak of the function. A sample counter is included to count the number of 
.nput samples, in, so that the value of the correlation function may be computed for 
fly integrating counter to overload. If the maximum capacity of the sample counter 
.s set • to be twice the capacity of the integrating counters the significance range 
.s limited to I > r > 0. If it Is required to cover the range 1 > r > -1, two 
orrelator circuits working in parallel can be used with one covering the positive 
ange and the other covering the negative range. 

ORRELATOR ARCHITECTURE FOR SELF TEST AND SELF REPAIR 

The VLSI architecture considered here consists of a long series connection of 
dentical correlation stages. If. any one of these stages suffers faults during 
anufacture or becomes faulty during service then complete chip failure will be 
xperienced. A self-test and self-repair structure has been devised to overcome 
his problem. The self-test sequence is initiated each time the chip isswitched-on 
nd any faulty stages discoered as a result of these tests will be automatically 
ypassed so that the working stages are reconfigured to form a continuous serial 
onnection. Faults developing during the working life of the chip will thus be 
utomatically eliminated every time the chip is switched on. The self-test control 
ircuit must offer high reliability and therefore employs redundant circuit tech-
iques, however assuming fault conditions to be evenly distributed over the chip 
rea it can be expected that the majority of faults will be experienced in the large 
rea taken by the integrating counters. Using these self-test and repair stra-
egies, an overall manufacturing yield of good working chips is enhanced and longer 
orking life can be expected. 

The principal additions to the basic correlator stage of Figure 2(a) to allow 
t to perform built-in self-test and self-repair are shown in Figure 2(b). The 
elay shift register (DSR) and the overload pattern shift register (OSR) each have a 
to 1 multiplexer added and a multiplexer control register (MCR) has been included 
store the control information for these multiplexers. Full functional testing is 



- 

124 

C) -... KEY: 
0 0 OSR 	overload shift register 

- 0 
o -  D 	delay element 
- 
0 

a a C 	coincidence function 

-3- 0 I. 	one bit latch 

E 
o J) 

k 

> 
41) 
> 

co x y 0 o a Samples, m 

t t t t t t t t t t t t t t t t 

Sample 	Counter 

loading Integrating 
Counter 

TTTTTTTTTTTY 
oading Integrating 

&Overloading 

Counter 
ITITTTTTTITT 

Integrating 
- 

 f=[ 1 
Counter 

WOF 

rM 
.Ik_i.ii..':imiii 

1i- 
L1_.{_J  1 -f__Ff --1  I TI 	 IT IT TI 

Preset Counter Capacity 

Igure 1. Layout diagram of digital polarity correlator using the overloading 
itegrating counter technique. 
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,ossible due to the extent of the link between design and test. A large degree of 
ircu1t partitioning is incorporated in the design and this, coupled with the DSR, 
)SR and MCR shift registers acting as scan paths [15] allows all the internal states 
to be controlled and observed. 

The key feature in the self repair mechanism is the Multiplexer Control Regis-
ter (MCR) which, after the self-test sequence, contains the pass/fail status for 
ach stage. A circuit schematic of the MCR and one multiplexer is shown in Figure 
3. In the case of a failure the Input and output registers of the correlator stage 
are bypassed using the multiplexers, thereby short circuiting the malfunctioning 
stage. The number of functioning stages on the chip can be read Out serially from 
the MCR by reconfiguring it as a shift register. This parameter represents the max-
imum attainable correlation delay and can be used for chip reject/accept decisions 
in production test. The self-test and repair sequence may be repeated as required 
luring the service life of the chip. 

I 
I 
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MCR 	Bypass 	 OSR 	 - 

Figure 3. 	Zoom in on floor plan: Bypass loop and multiplexer control register. 

EST STRATEGY 

The correlator operates in three distinct modes: initial test, self-test and 
epair, and run. During the Initial test period three simple tests are carried out 

it the most basic elements of the design, namely the scan path registers. These 
egisters (DSR, MCR and OSR) and their various control functions are tested to check 
hat a chip is acceptable immediately after fabrication. The initial test sequence 
s as follows: 

Test DSR, OSR and MCR as shift registers and measure their delay. 

Test the effect of the MCR on the DSR and OSR registers. 	This is done by 
shifting it ones Into the MCR and then measuring the delay of the DSR and OSR 
registers, which should each be reduced by n. 

Test the parallel load facilities of the DSR, OSR and MCR registers. 
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The self-test period is where the chip effectively tests itself and reconfig-
Lres its registers so that all of the working stages are connected in series. In 
:his test the following sequence is repeated four times according to the possible 
ombinationsof the two binary input signals, X and Y. 

Reset Latches and Integrating Counters. The counters are loed with 4000-hex, 
a number corresponding to the maximum integration time of 2 	-2 = 32766 sam- 
ple clock cycles. 

Set up the input conditions (X and Y) by setting or clearing the DSR register 
as required. Shift X and Y through correlator for 32766 clock cycles. 

Parallel load Latches into OSR. The overload pattern - may be shifted out for 
observation. 

The self repair sequence follows the self test sequence. During the self test 
equence the overload signal is compared with the expected value of overload signal 
nd any deviations form the expected signal results in a logic 1. stored in the 
orresponding Latch. Thus, when the self test sequence has finished the logic i's 
nd 0's stored in the Latches are the results of the self test, where a logic 1 
ndicates a faulty stage. The self repair operation essentially transfers this 
nformation to the Multiplexer Control Register which in turn causes the faulty 
tages to be bypassed. The net effect is a series connection of correctly operating 
orrelation stages. 

The run period follows automatically after the self-test and repair sequence is 
ompleted. Note that after the test the contents of the .MCR may be inspected to 
risure that enough of the correlator stages are working to satisfy the requirements 
f the system into which the chip is to be installed. 

WTOTYPE DESIGN 

A prototype digital correlator featuring self-test and self-repair has been 
abricated on a 5 micron n-channel MOS process. The prototype design contains 28 
arallel stages of correlation, each of which implements the block diagram of Figure 
(b). The area of the chip is 5.08mm by 5.08mm. 

The layout of the two parallel stages of correlation is shown, annotated, in 
igure 4. Each stage is composed of cells which may be repeated by abutting in the 
-direction. The largest cell is the presettable PRBS counter which has 15 shift 
gister stages. and thus a maximum count of approximately 32K samples. The layout 
E the presettable counter is in the form of a ring in order to minimise the circuit 
lays between each shift register stage. The correlator design is semi-static 
roughout. This means that the clock frequency and thus the sampling frequency of 
e correlator can range from d.c. to 4MHZ. (for this fabrication process). From 
Lgure 4 it may be seen that the presettable counter occupies most of the active 
ea of the chip. Also shown is the area taken up by the self-test and repair cir-
zitry. The overhead for self-test, and self-repair is approximately 6%. 

Figure 4. 	nNOS layout of 2 stages of correlation. 
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TEST RESULTS 

The correlator chip has been functionally tested using a Tektronix DAS 9100 
igital Analysis System coupled to a Teledyne Probe Station. Initially ib packaged 
hips, which had. passed a visual inspection, were functionally tested. However many 
Lore samples were required to demonstrate the yield enhancement capability of this 
[esign so the remaining wafers were probe-tested. Unfortunately, only 130 candi-
ates were available for testing since the chip was fabricated as part of a multi-
roject wafer. More wafers are however, to be processed. 

Figure 5(a) and (b) show some of the input and output waveforms from two corre-
ator chips, that have occurred during the self test and repair period. For display 
urposes the integration time of the correlator has been reduced to just 15 clock 
ycles. Figure 5(a) shows the correlation output of a golden chip,. while Figure 
(b) shows the output of a chip which -has one failed stage. The top four traces in 
ach figure represent the inputs.to  the device. In each figure the X and Y inputs 
equence through their four possible combinations in accordance with the test stra-
egy described above. For clarity, the control signals which cause, for example, 
arallel load OSR, or reset counters, have not been shown. 
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Igure 5. 	Test results from two correlator chips. A golden chip (a) and a chip 
Lth one faulty stage (b). 	- 



- 	204rI1I - 

2-8 

The significant points to note in Figure 5 are the Multiplexer Control Register 
input (MCR IP) and the Overload Shift Register output (OSR OF). All the other shown 
3ignals are the same for both chips. With reference to Figure 5 and moving left to 
right from the cursor, the overload output (OVRFLO) has changed from logic 1. to 0. 
this indicates that at least one of the integrating counters has overloaded after 
the prescribed period of 15 clock cycles (see above). This result is expected since 
the inputs have been equal (X=O, Y=O) over this period. 

When OVRFLO next goes high, the correlator has been reset and the next correla-
tion test (XO, Y=l) Is begun. Also at this time, the overload pattern, i.e. the 
ontents of the Latches are transferred to the OSR and shifted out for display. Now 
e can see the difference between the golden chip, Figure 5(a) and the faulty 
:hip, Figure 6(b). The OSR should contain a series of 28 logic Ps and In Figure 
(b) there is a logic 0 in position number 27, indicating a fault in stage 27. The 
orre1ation test is repeated for the remaining combinations of X and Y, and the 
ault is again exposed on the OSR output in the case where X = Y = 1. 

Self repair is then carried Out on the faulty chip. A single logic I is shifted 
Lnto bit position 27 of the MCR which causes stage 27 to be bypassed. The correla-
:ion test, with X=Y=1 is repeated several times at a period of 27. rather than 28 and 
:he incorrect logic 0 on the OSR output has been eliminated. The result is a gol-
len chip containing 27 stages of correlation. 

IELD ENHANCEMENT 

This section contains the results of the first 130 processed chips. 	The 
esults are preliminary and the sample is small. Figure 6 shows a chart of Number 
if Chips plotted against number of working stages. It shows that 29 of the 130 can-
Idates passed the initial test and that 27 of these yielded more than 20 stages of 
:orrelation. 

10 

8 
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Figure 6. No. chips vs. No. working stages. 

Listed below are the test results for each wafer. 	The multi-project wafers 
Lch contained 24 correlator chips. 
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Without 
(i.e. 	28 

Self-Repair 
stages working) 

With Self-Repair 
(i.e. >20 stages working) 

Packaged (10 candidates) 0 2 

Wafer #1 (24 candidates) 1 5 

Wafer #2 (24 candidates) 0 5 

Wafer #3 (24 candidates) 0 6 

Wafer #4 (24 candidates) 0 0 

Wafer #5 (24 candidates) 2 9 
==== = 

TOTALS (130 candidates) 3 27 

YIELD with no yield enhancement: 	2.3% 

YIELD with yield enhancement: 20.7% 

CONCLUSIONS 

A digital polarity correlator architecture which incorporates all of the 
required features of a built-in self-test and repair strategy has been described. 
The test strategy will carry the design through all of the varying test requirements 
to be encountered by the chip. Incorporating extra stages of correlation on-chip 
permits the use of self-repair mechanisms for enhanced production yield and in-
service reliability. 

The VLSI structure offers an attractive digital implementation of a high speed 
polarity correlator. Individual chips may be directly cascaded to realise a corre-
lator with arbitrary resolution or delay, in contrast to other digital correlator 
circuits, particularly those using the parallel counter technique, which cannot be 
easily cascaded and do not render regular VLSI structures. Furthermore, the operat-
ing speed of parallel counter based correlators is limited by carry signal propaga-
tion delays whereas the correlator described here, which is composed mainly of sim-
ple shift register stages can approach the maximum clocking rate of a chosen VLSI 
fabrication process. 

The results from the functional testing of the first batch of processed chips 
have been reported. They demonstrate that a considerable improvement in yield can 
be obtained at a very low circuit overhead. A yield enhancement factor of 9.0 has 
been obtained for the initial sample of 130 chips. In addition this chip can be 
given a exhaustive functional test in less than 150ms at 1MHz. 
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This chip's test and repair overhead is only one latch 
and two multiplexers per correlatoE stage. Yield on the 
first batch processed was enhanced nine to one. 

A Digital Polarity 
Correlator with Built-in 
Self Test and Self Repair 
William S. Blackley, Mervyn A. Jack, and James R. Jordan 
University of Edinburgh 

An earlier version of this article 
appeared in the International Test 

Conference Proceedings, October 1983. 

The maturing of silicon integrated 
circuit technology from large- 

scale to very large scale integration 
has improved performance, reduced 
costs, and opened new systems ap-
plications. However, one important 
facet of integrated circuit technology 
lags dangerously behind the complex-
ity potential of VLSI: establishing the 
integrity of the VLSI design in terms 
of initial design validation, manufac-
turing quality, and long-term opera-
tional reliability. 1,2 

This article addresses the need to 
embody a testability scheme within the 
VLSI integrated circuit itself. It also 
presents details of a digital polarity  

correlator architecture with built-in 
self-test and self-repair mechanisms. 
Results obtained from a prototype 
integrated circuit chip fabricated in 
five-micron enhancement/depletion 
N-channel MOS technology demon-
strate the concept. 

Correlation techniques are widely 
used in communications, instrumen-
tation, computers, telemetry, sonar, 
radar, medical, and other signal pro-
cessing systems. Desirable correla-
tion properties include the ability to 
detect a desired signal in the presence 
of noise or other signals, to recognize 
specific patterns, and to measure time 
delays through various media. 

Electronic systems for computa-
tion of the correlation function have 
been available for, many years, but 
they have been large and inefficient. 
With the development of VLSI, cor-
relation can be performed efficiently ,  
and with fewer components. 

Our correlator chip consists of a 
linear cascade of identical correlation 
elements. The performance of the 
correlator depends on the serial con-
nection of correctly functioning cor -
relation elements. To optimize per -
formance and gain full advantage of 
the VLSI architecture, we adopted a 
design strategy that includes testabili-
ty, enhances yield, and improves reli-
ability. 

Summary 
Correlation techniques are widely used in communications, in-

strumentation, computers, telemetry, and other signal processing 
systems to detect a desired signal in the presence of noise, to recognize 
patterns, and to measure time delays. With the development of VLSI, cor -
relation can be performed efficiently with a minimal number of com-
ponents. 

The correlator chip presented in this article consists of a linear 
cascade of identical elements; failure of any one element causes com-
plete chip failure. Therefore, we devised a self-test and self-repair struc-
ture to automatically bypass faulty stages. 

The overhead for self test and self repair was approximately six per-
cent of the chip area. The results of functional testing of the first batch of 
processed chips demonstrated a nine-to-one yield enhancement and an 
exhaustive functional test time of less than 150 milliseconds. The self-
repair mechanism provides high in-service reliability. 

0740-7475/84/0500-0042501.00 © 1984 IEEE 	 IEEE DESIGN & TEST 
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st strategy requirements 
VLSI design 

Ideally, a VLSI test strategy allows 
circuit to experience a range of 

t environments during its opera-
nal service. in summary, these en-
onments are 
• prototype characterization, to in-

clude design validation and para-
metric testing; 

• production test, to include yield-
enhancement features; and 

• service or maintenance test, to 
include self-repair features. 

In prototype characterization, it is 
sential to identify and localize in-
vidual faults to enable fault diagno-

and correction. Prototype faults 
n be process-related and statistical-
distributed over a processed wafer, 
they can be design faults (errors), 

ch as omitted contact holes, wrong 
terconnections, or excessive signal 
lays. Prototype testing is invariably 
.rried out with automatic test equip-
ent, microprobing, or electron 
am facilities. 
Production test requirements in-
ude both process quality checks and 
nctional checks. Process quality 
ntrol is achieved by means of a 
imber of chip-size, drop-in replace-
ents spaced over the wafer or by 
dicating a small area on each chip 
testing. 
Transistor parameters, contact re-
;tance, and capacitance values are 
easured in order to check produc-
)fl tolerances. In production test, 
inctional (and parametric) tests must 

minimized, since testing time and 
sts are important. Functional tests 
ed only yield a limited number of 
:e significant internal states, since it 
not generally possible to redesign or 
pair at this stage. 
In maintenance and systems test, 

Lult diagnosis is precluded; a simple 
0/NO-GO indication for the cir-
ut is adequate. 
The correlator architecture con-
Jered here incorporates a design for 
st with the potential for valid use at 
ch stage in the life of a VLSI cir-
it. The ease with which this ar-
itecture has been adapted to per -
rm self test and self repair can only 

be discussed within the context of 
polarity correlation and its silicon 
realization. 

Polarity correlation 
Polarity correlation is based on the 

computation of the discrete function 

I 	IV 

E (sgn[y].sgn[xk_T]) 
Nk0 (1) 

where r(r) is the Value of the correla-
tion function between two signals, x 
and y. Sgn[x] means signum[xJ, a 
function of the value + 1 for positive 
x and - 1 for negative x. Complete 
positive correlation occurs when the 
polarities of the input samples (as-
suming.the mean of both inputs to be 
zero) are at all times equal, yielding 
an average product of + I. Complete 
negative correlation occurs when the 
polarities of the input samples are 
never equal (inverse proportionality), 
yielding an average product of - I. 
In the case where the input samples 
are not related, the sum of the pos-
itive product will equal the sum of the 
negative products, and the average 
product will be zero. 

Implementation of polarity corre-
lation requires an analog comparator 
circuit to convert sgn[x] = x/kI and 
sgn[y] =y/IyI into logic I if the signal 
is positive and logic 0 if the signal is 
negative. The time delay 7 between the 
two signals is achieved by using a 
digital shift register in which the prod-
uct of the number of preceding shift 
register stages and the sample clock 
period P define a particular value of 
delay. 

Multiplication is performed by the 
Boolean coincidence function, EX-
NOR, whose output is 1 only if the in-
puts are equal. If time-successive 
values of the coincidence function are 
summed in a digital counting circuit 
for a period Tseconds, where T= NP, 
then the contents of the counter at the 
end of the period will be proportional 
to the relevant value of the correla-
tion function. 

Polarity correlation methods mini-
mize the complexity of the computa-
tional elements by discarding the  

magnitude information of the input 
sequences. Digital design techniques 
can then be employed to realize a 
more economical and compact im-
plementation than could otherwise be 
achieved. The penalty is the increased 
integration time needed to obtain a 
correlation function with acceptable 
variance. 6  The polarity correlation 
function is nonlinearly related to the 
(direct) correlation function by the 
Van Vleck arc sine relation 7  for input 
sequences with Gaussian statistics. 

Previously reported techniques 8 ' 9  

for obtaining the polarity correlation 
function have included parallel count-
ers, 10.11 which are not directly cascad-
able and hence nonoptimal for VLSI 
implementation. Our interpretation of 
the polarity correlation function per-
mits elimination of parallel counters 
and results in a highly regular cor - 

Our interpretation of the 
polarity correlation function 

permits elimination of parallel 
counters and results in a 
highly regular correlator 

structure amenable to VLSI 
implementation. 

relator structure amenable to VLSI 
implementation. As a consequence, 
correlator stages can be directly cas-
caded to any arbitrary level. 

The structure is based on an in-
tegrating overloading counter tech-
nique 12 ' 13  in which the correlation 
function is computed by using the 
number of input samples needed to 
reach overload count conditions in a 
given integrating counter. Under such 
conditions, an overload flag bit for 
each counter is used instead of the 
counter contents. This reduces the 
complexity of the structure to bit-
serial input and output. The number 
of input samples m can be related to 
the polarity correlation function by 

(r) = 2 - - I 	for m a: N (2) 

where N is the capacity of the in-
tegrating counter and m is the number 
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KEY: Correlator architecture 
OSR - OVERLOAD SHIFT REGISTER for self test and self repair 

0 - DELAY ELEMENT 
C - COINCIDENCE FUNCTION The VLSI architecture considered 
I 	ONE-BIT LATCH here consists of a long series connec- 

SAMPLES, m tion of identical correlation stages. If 
any one of these stages suffers faults t t t t 	i t t t t t tj±' 
during manufacture or becomes faulty 

SAMPLE COUNTER during service, the whole chip will 

t 	t 	1 	Itt 	f  	t 	4 	tttt' fail. 
OVERLOADING INTEGRATING I. 	'We have devised a self-test and 

COUNTER I 	self-repair structure to overcome this 
itt 	t 	ft 	ft 	t 	t 	ft 	t 1 t problem. The self-test sequence isin- 

OVERLOADING1NTEGRATING 

}' 
itiated each time the chip is switched 

COUNTER on; any faulty stages discovered as a 
t 	I 	t 	t 	t 	t 	t 1 	1 	t . 4 	t. 1 result of these tests are automatically 

r— 1 	OVERLOADING INTEGRATING 
 

D uj.-.i 	COUNTER 	 J 	°YP'. 	i iiis 	recontigures me 

t I T7 t t. I t , 	 working stages into a continuous 

	

OVERLOADING INTEGRATING 	 serial connection. Faults developing 
L 	 COUNTER 	 during the working life of the chip are 

t 	t 
	

I t 	t t 	t t 	t . t 	t t 	- 	
thus automatically eliminated every 

	

OVERLOADING INTEGRATING 	 time the chip is switched on. 
L 	 COUNTER 	- 	 Since the self-test control circuit 

	

11.11 	1 	f-if 	ttf't 	 i- i- 

	

OVERLOADING INTEGRATING 	
must oiier high reliability, it employs 

j:J.1 	COUNTER 	 .- 	
redundant circuit techniques. Assum 

. 	

ing fault conditions to be evenly 

	

OVERLOADING INTEGRATING 	
distributed over the chip area, 	the 

D 

D 

D 
- 

H o I. I_ 	C I H 0 I 	JJ..4 	COUNTER 	
majority or rauits are likely to occur 

t 	t It 	t 	t 	t 	t 	t 	 ' 	in the large area occupied by the in- 

	

I 	_-+-6---. .. . I 	OVERLOADING INTEGRATING 	 Legrating counters. 

	

D 	- 	 C 	D 	 COUNTER 	 Figure 2a shows the basic cor- 
f 	t t 	t 	t 	f 	t 	t 	relator stage; 	Figure 2b shows the 

PRESET COUNTER CAPACITY 	 principal additions that allow it to 
perform built-in self test and self 

igure 1. Layout diagram of digital polarity correlator that uses the overloading in- 	repair. The delay shift 	register, or 
'grating counter technique. 	 flR 	and  flip 	prlc,l ,-.tt,-n 	et 

Ul 

-J 	 Q 	U 
Cl 
Lii 	
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-J 	 -J 

cc LU 	LU 
> > U) 	 U)  

rni 

•1 
! 

! 
I 

III 

iI.riI 

MEME 

am 

f samples required to achieve over 
)ad conditions in the integratin 
ounter corresponding to time dela 

14  An overload occurs after m = P 
mples, when correlation is max 

num and positive. In the case of zerc 
orrelation, an overload occurs aftei 
= 2N samples and after an infinih 

umber of samples, when the correla 
on is maximum and negative. Ar 
verload cannot occur until m ~ N. 
Figure 1 shows a polarity correlatoi 

iat uses the overloading counter tech. 
que. It consists of a delaying  shift  
gister connected to a parallel array 
I coincidence detectors and in-
grating counters. An overload pat-
rn shift register inspects the overload 
indition of the counters. The evolv- 

- ing pattern of overload states defines 
the correlation function shape, and 

y the time-delay position of the first in-
1 tegrating counter to overload defines 
- the position of the most significant 
) peak of the function. A sample count- 

er is included to count the number of 
input samples m, so that the value of 

- the correlation function can be  com- 
puted  for any overloaded integrating 
counter. If the maximum capacity of 
the sample counter is set to be twice 

- the capacity of the integrating count- 
ers, the significance range is limited to 
I ~r~O. If it is required to cover the 

• range I ~ r ~ - I, two correlator cir - 
cuits working in parallel can be used— 
one to cover the positive range, one to 

• cover the negative range. 

• 	 flJI4SI }JatL'I II 31111 

register, or OSR, each have a two-to-
one multiplexer. They also have a 
multiplexer control register, or MCR, 
for storing the control information 
for these multiplexers. 

Close linking of design and test 
makes full functional testing possi-
ble. The design incorporates a high 
degree of circuit partitioning. The 
partitioning—coupled with the DSR, 
OSR, and MCR shift registers, which 
act as scan paths ' 5 —allows all the in-
ternal stages to be controlled and 
observed. 

The multiplexer control register is 
the key feature in the self-repair 
mechanism. After the self-test se-
quence, the MCR contains the pass/ 
fail status for each stage. Figure 3 
shows a circuit schematic of the MCR 
and one multiplexer. 
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gure 5. Chip plot of digital correlator featuring self-test and self-repair mechanisms. 
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igure 4. NMOS layout of two stages of correlation. 

In the case of a failure, the input 
nd output registers of the correlator 
tage are bypassed via the multiplex-
rs, so the malfunctioning stage is 
hort-circuited. The number of func-
oning stages on the chip can be read 
ut serially from the MCR by recon-
iguring it as a shift register. This 
arameter represents the maximum 
ttainable correlation delay and can  

be used for chip reject/accept deci-
sions in production test. The self-test 
and self-repair sequence can be re-
peated. as required during the service 
life of the chip. 

Test strategy. 
The correlator operates in three 

distinct modes: initial test, self test 
and repair, and run. 

Initial test. During the initial test 
period, three simple tests are carried 
out on the most basic elements of the 
design, the scan-path registers. These 
registers—DSR, MCR, and OSR-
and their various control functions 
are tested to determine whether a chip 
is acceptable immediately after fabri-
cation. The initial test sequence is as 
follows: 

Test DSR, OSR, and MCR as 
shift registers and measure their 
delay. 

Test the effect oF the MCR on 
the DSR and OSR. This is done by 
shifting n ones into the MCR and 
then measuring the delay of the DSR 
and OSR, which should each be re-
duced by n. 

Test the parallel load facilities 
of the DSR, OSR, and MCR. 

Self test and repair. The self-test 
period occurs when the chip effective-
ly tests itself and reconfigures its 
registers so that all working stages are 
connected in series. In this test, the 
following sequence is repeated four 
times, according to the possible com-
binations of the two binary input 
signals, x and y. 

Reset latches and integrating 
counters. The counters are loaded 
with 4000-hex, a number correspond-
ing to the maximum integration time 
of 2' - 2 = 32,766 sample clock 
cycles. 

Set up the input conditions (x 
and y) by setting or clearing the DSR 
as required. Shift x and y through 
correlator for 32,766 clock cycles. 
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pling frequency of the correlator can 

range from dc to 4 MHz (for this 

fabrication process). 

Figure 5 shows a plot of the com-

plete chip area. The presettable 
counter occupies most of the active 

area of the chip. Figure 5, of course, 

includes the self-test and repair cir-

cuitry; the overhead for self test and 
self repair is approximately six per -

cent. 

Test results 
The correlator chip has been func-

tionally tested with a Tektronix DAS 

9100 digital analysis system coupled 
to a Teledyne probe statiOn. Ten 

packaged chips that had passed a 

visual inspection were functionally 
tested. Because many more samples 

were required to demonstrate the 
yield enhancement capability of this 

design, the remaining wafers were 
probe-tested. Unfortunately, only 

130 candidates were available for 

testing, since the chip was fabricated 

as part of a multiproject wafer. More 

wafers are to be processed. 

Figure 6 shows some of the input 

and output waveforms from two cor-
relator chips. They occurred during 

the self-test and repair period. For 

display purposes, the integration time 

of the correlator has been reduced to 

just 15 clock cycles. Figure 6a shows 
the correlation output of a "golden 

chip," while Figure 6b shows the out-

put of a chip with one failed stage. 

The top four traces in each figure 

represent the inputs to the device. In 
each figure, the x and y inputs se-

quence through their four possible 

combinations in accordance with the 
test strategy described above. For 

clarity, we have omitted some control 
signals—those that cause, for example, 

parallel load OSR or reset counters. 

- 2ol-/19 

) Parallel load latches into OSR. 

overload pattern can be shifted 

for observation. 
he self-repair sequence follows 

self-test sequence. During the 
-test sequence, the overload signal 

ompared with the expected value 

he overload signal. Any deviation 
ii the expected signal result in a 

Ic 1, which is stored in the cor-

,onding latch. Thus, when the 
-test sequence has finished, the 

ic is and Os stored in the latches 
the results of the self test; a logic 1 

icates a faulty stage. 
he self-repair operation essential-

:ransfers this information to the 

R, which in turn causes the faulty 

, es to be bypassed. The net effect 
i series connection of correctly 

rating correlation stages. 

tun. The run period automatically 

Lows the self-test and repair se-
nce. After the test, the contents of 

MCR can be inspected to ensure 

t the number of working cor-

itor stages meets the requirements 
the system in which the chip is to 

installed. 

ototype design 
prototype digital correlator 

turing self test and self repair has 
ri fabricated on a five-micron 

channel MOS process. The pro-

ype design contains 28 parallel 

ges of correlation, each of which 
plements the block diagram in 

;ure2b. The area of the chip is 5.08 

n by 5.08 mm. 
Figure 4 shows, with annotations, 

layout of the two parallel stages 

correlation. Each stage consists of 
Is that can be repeated by abutting 
the y direction. The largest cell is 

presettable PRBS counter, which 

s 15 shift register stages and thus a 
Lximum count of approximately 

K samples. 
The presettable counter is layed out 

the form of a ring to minimize the 

cuit delays between each shift reg-

r stage. 
The correlator design is semistatic 

roughout. This means that the 
ck frequency and thus the sam- 
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Figure 6. Test results from two correlator chips: a "golden chip" (a) and a chip with 
one faulty stage (b). 
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24 	28 	7. 

igure 7. Number of chips vs. number of working stages. 

Table I. 
Test results for each wafer. 

Without With 
Self Repair Self Repair 

(28 stages working) (>20 stages working) 

Packaged (10 candidates) 0 2 
Wafer 1(24 candidates) 1 5 
Wafer 2(24 candidates) 0 5 
Wafer 3 (24 candidates) 0 -. 6 
Wafer 4(24 candidates) 0 0 
Wafer 5 (24 candidates) 2 9 

TOTALS (130 candidates) 3 27 

YIELD with no yield enhancement: 2.3 percent 
YIELD with yield enhancement: 	20.7 percent 

- 204-120 - 

The significant points to note in 
Figure 6 are the multiplexer control 
register input—MCR IP—and the 
Dverload shift register output—OSR 
DP. All other shown signals are the 
;ame for both chips. 

Moving left to right from the cur-
;or in Figure 6, the overload out-
put—OVRFLO—has changed from 
ogic I to 0. This indicates that at least 
ne of the integrating counters has 

)verloaded after the prescribed pen-
)d of 15 clock cycles. This result is ex-
)ected, since the inputs have been 
qual (x=O, y =O) over this period. 

When OVRFLO next goes high, 
the correlator has been reset and the 
next correlation test (x=0, y= 1) 
begins. Also at this time, the overload 
pattern—that is, the contents of the 
latches—is transferred to the OSR 
and shifted out for display. 

Now we can see the difference be-
tween the golden chip, Figure 6a, and 
the faulty chip, Figure 6b. The OSR 
should contain a series of 28 logic Is; 
in Figure 6b, a logic 0 is in position 
number 27, indicating a fault in stage 
27. The correlation test is repeated 
for the remaining combinations of x  

and y: the fault is again exposed on the 
OSR output in the case wherex=y = I. 

Self repair is then carried Out on 
the faulty chip. A single logic 1 is 
shifted into bit position 27 of the 
MCR, causing stage 27 to be by-
passed. The correlation test, with 
x—y= 1, is repeated several times at a 
period of 27 rather than 28 to elimi-
nate the incorrect logic 0 on the OSR 
output. The result is a golden chip 
containing 27 stages of correlation. 

The yield enhancement results are 
preliminary, and the sample is small-
130 processed chips. Figure 7 charts 
the number of chips against number 
of working stages. It shows that 29 of 
the 130 candidates passed the initial 
test and that 27 of these yielded more 
than 20 stages of correlation. 

Table 1 lists test results for each 
wafer. The multiproject wafers each 
contained 24 correlator chips. 

The VLSI structure offers an at-
tractive digital implementation 

of a high-speed polarity correlator. 
Individual chips can be directly cas-
caded to realize a correlator with 
arbitrary resolution or delay, in con-
trast to other digital correlator cir-
cuits—particularly those using the 
parallel counter technique—which 
cannot be easily cascaded and do not 
render regular VLSI structures. Fur -
thermore, the operating speed of 
parallel counter-based correlators is 
limited by carry signal propagation 
delays. The correlator described here, 
which is composed mainly of simple 
shift register stages, can approach the 
maximum clocking rate of a chosen 
VLSI fabrication process. 

Functional testing of the first batch 
of processed chips has demonstrated 
that yield can be improved con-
siderably at a very low cost in circuit 
overhead; the initial sample's yield 
enhancement factor was 9.0 for 130 
chips. In addition, any of these chips 
can be given an exhaustive functional 
test in less than 150 ms at 1 MHz. 

The time taken in linking design 
and test has proved to be time well 
spent. 
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