

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429727448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Instance compression of parametric problems

and related hierarchies

Chiranjit Chakraborty
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2013

Abstract

We define instance compressibility ([13, 17]) for parametric problems in the classes

PH and PSPACE. We observe that the problem ΣiCIRCUITSAT of deciding satisfiabil-

ity of a quantified Boolean circuit with i−1 alternations of quantifiers starting with an

existential quantifier is complete for parametric problems in the class Σ
p
i with respect

to w-reductions, and that analogously the problem QBCSAT (Quantified Boolean Cir-

cuit Satisfiability) is complete for parametric problems in PSPACE with respect to

w-reductions. We show the following results about these problems:

1. If CIRCUITSAT is non-uniformly compressible within NP, then ΣiCIRCUITSAT

is non-uniformly compressible within NP, for any i≥ 1.

2. If QBCSAT is non-uniformly compressible (or even if satisfiability of quanti-

fied Boolean CNF formulae is non-uniformly compressible), then PSPACE ⊆
NP/poly and PH collapses to the third level.

Next, we define Succinct Interactive Proof (Succinct IP) and by adapting the proof

of IP = PSPACE ([11, 6]) , we show that QBCNFSAT (Quantified Boolean Formula

(in CNF) Satisfiability) is in Succinct IP. On the contrary if QBCNFSAT has Succinct

PCPs ([32]) , Polynomial Hierarchy (PH) collapses.

After extending the notion of instance compression to higher classes, we study the

hierarchical structure of the parametric problems with respect to compressibility. For

that purpose, we extend the existing definition of VC-hierarchy ([13]) to parametric

problems. After that, we have considered a long list of natural NP problems and tried

to classify them into some level of VC-hierarchy. We have shown some of the new w-

reductions in this context and pointed out a few interesting results including the ones

as follows.

1. CLIQUE is VC1-complete (using the results in [14]).

2. SET SPLITTING and NAE-SAT are VC2-complete.

We have also introduced a new complexity class VCE in this context and showed

some hardness and completeness results for this class. We have done a comparison

of VC-hierarchy with other related hierarchies in parameterized complexity domain as

well.

i

Next, we define the compression of counting problems and the analogous classi-

fication of them with respect to the notion of instance compression. We define #VC-

hierarchy for this purpose and similarly classify a large number of natural counting

problems with respect to this hierarchy, by showing some interesting hardness and

completeness results.

We have considered some of the interesting practical problems as well other than

popular NP problems (e.g., #MULTICOLOURED CLIQUE, #SELECTED DOMINATING

SET etc.) and studied their complexity for both decision and counting version. We have

also considered a large variety of circuit satisfiability problems (e.g., #MONOTONE

WEIGHTED-CNFSAT, #EXACT DNF-SAT etc.) and proved some interesting results

about them with respect to the theory of instance compressibility.

ii

Acknowledgements

I would like to thank to my PhD advisor, Dr. Rahul Santhanam, for his continuous

support to my PhD study and research, for his patience, motivation, enthusiasm, and

immense knowledge. His guidance helped me in all the time of my research and writ-

ing of this thesis. I could not have imagined having a better advisor and mentor for my

PhD study.

I also like to thank my second supervisor, Dr. Kousha Etessami for his critical

review and guidelines about my research. My sincere thanks also goes to Dr. Elham

Kashefi for her very useful feedback in my yearly reviews.

Last but not the least, I would like to thank my parents, Anita Chakraborty and Di-

pak Chakraborty, for giving birth to me at the first place and supporting me throughout

my life specially when I went through tough time.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Chiranjit Chakraborty)

iv

Table of Contents

1 Introduction 1
1.1 Project aims and objectives . 1

1.1.1 Introduction: Complexity Theory 1

1.1.2 An example . 2

1.1.3 Primary objective behind this work 3

1.2 Review of related works and primary motivation 4

1.2.1 Part I: Implications to Parameterized Complexity Theory . . . 4

1.2.2 Part II: Implications to PCPs 6

1.2.3 Part III: Implication to Structural complexity and other related

fields . 6

1.3 Review of some important complexity theory notions 7

1.3.1 Parameterized complexity and related notions 7

1.3.2 Counting problems and complexity class #P 12

1.4 Contribution of this work . 14

1.4.1 Chapter 2: Instance Compression for the Polynomial Hierar-

chy and Beyond . 15

1.4.2 Chapter 3: VC hierarchy classification 15

1.4.3 Chapter 4: Counting hierarchy with respect to Compression . 16

1.4.4 Chapter 5: Conclusion . 17

2 Instance Compression for the Polynomial Hierarchy and Beyond 18
2.1 Some Complexity Theory Notions 20

2.2 Instance Compression for Polynomial Hierarchy 25

2.2.1 Instance Compression in second level 25

2.2.2 Instance Compression for higher levels in Polynomial Hierarchy 28

2.3 Instance Compression for PSPACE 32

2.4 Succinct IP and PSPACE . 34

v

2.5 Related Open Questions . 39

3 VC hierarchy classification 40
3.1 Definitions and other important notions 40

3.2 VC hierarchy classification of some natural problems 43

3.2.1 Positions of some of the parametric problems 43

3.2.2 VC1 and corresponding problems 48

3.2.3 Problems in higher level of VC-hierarchy 67

3.3 Introduction to new complexity class VCE 81

3.4 Comparison with existing hierarchy 86

3.5 Appendix: Definitions of the NP parametric problems we have consid-

ered . 89

4 Counting hierarchy with respect to Compression 97
4.1 Definitions and other important notions 97

4.2 Completeness Results . 106

4.3 Different types of circuit problems with respect to compression 123

4.4 Counting complexity class #VCE and related problems 144

4.5 Exact Satisfiability Problems . 152

4.6 Appendix: Definitions of the parametric counting problems 156

5 Conclusion 162

Bibliography 166

vi

Chapter 1

Introduction

1.1 Project aims and objectives

1.1.1 Introduction: Complexity Theory

Computational complexity theory is one of the popular branches of Theoretical Com-

puter Science that deals with classifying computational problems with respect to their

inherent difficulty ([48, 39]). In complexity theory we are particularly interested to

solve the harder problems. Harder problems are classified in different classes. NP

is one such complexity class we are mostly interested in. To deal with such difficult

computational problems several well-known techniques are developed, such as, ap-

proximation algorithms, parametric complexity, sub-exponential algorithms, average-

case complexity etc. Here we are specially interested to deal with such problems in a

little bit different manner: Compressibility. Harnik and Naor [13] have introduced this

concept mainly for the NP problems. Independently Bodlaender et al.[17] have de-

veloped a framework for analysing and studying polynomial kernelizability for natural

parametric problems. Here we are not interested to find the direct solution of the prob-

lem instances, rather we are interested to know whether we can find a shorter instance

with the same solution (yes/no) in an efficient manner. We emphasise that we are not

interested to maintain the information about the problem instance, rather we are trying

to maintain the solution. It is possible that we can find the solution of the problem

in an efficient way and maintain the solution in just one bit (yes/no). Eventually, the

output can be much shorter in size compared to the initial input if not as small as just

one bit. Hence the term compression is used. So, initially we study the compressibility

of NP problems. After that we are specifically interested to extend the idea to other

1

Chapter 1. Introduction 2

comparatively harder complexity classes.

In our work, any problem instance x has two important characteristics. One of

them is instance size, (denoted by m) and another one is the length of the witness w or

parameter (denoted by n). We are particularly interested in relatively harder problem

instances for which instance size m is larger and witness length n relatively shorter but

not too short. In particular, we are interested in those cases when n << m and m <<

2n. When we will come to the formal definition and example (section 1.1.2) later it

will be clearer why we are interested in these cases.

1.1.2 An example

To explain this particular setting in complexity theory, we are going to discuss it with

an example. We start with SAT problem as it is one of the most popular NP problem.

Let us consider the formal definition of the problem first.

SAT:

Input: A formula φ in CNF (conjunctive normal form) with n variables.

Task: Decide whether φ is satisfiable.

Parameter: n

As we can see in the definition, an instance φ for SAT problem is given to us. φ is a

Boolean formula in conjunctive normal form over n variables. So, φ is satisfiable (i.e.,

yes SAT problem instance) if there exists an assignment to the n input variables such

that every clause in φ has at least one True literal. In this example, suppose we are in-

terested to compress the SAT instance (φ) to another shorter SAT instance. This kind

of compression where we compress a problem instance to a shorter instance of same

language, is termed as proper-compression or self-compression. In other cases, when

after the compression the compressed instance is an instance of some other language

L, is termed as improper-compression.

Here, our objective is to find a self-compression algorithm of SAT problem in-

stances. So we ask, does there exist an efficient algorithm (running in time poly(m))

and a polynomial p() with the following input and output?

Input: A formula φ in CNF with n variables where |φ| = m.

Output: Another Boolean formula in CNF (say ψ) of size poly(n) such that φ is sat-

isfiable if and only if ψ is satisfiable.

Chapter 1. Introduction 3

The idea is, the length of the output formula ψ, should not be related to the length m

of the original problem instance, but to the parameter of the problem which is number

of variables n (which is the witness length for this problem). Any kind of positive or

negative result related to this question of compression will be very interesting. We are

going to discuss about it in more details soon.

It is already mentioned that we are interested about those problems for which n is

much smaller than m. The reason behind this can be explained as follows. Our ob-

jective here is to take a problem instance of length m and produce another problem

instance in polynomial time, whose size is polynomially bounded in witness length or

parameter. At the same time, we also like to maintain the yes/no answer. If m and n

are comparable (i.e., polynomially bounded to each other), the trivial identity function

will be a compression function. Similarly, if n is too small, i.e., m > 2n, we can search

for every possible witnesses and find the solution in polynomial time. That is why we

are particularly interested in non-trivial cases when n << m and m << 2n.

1.1.3 Primary objective behind this work

Harnik and Naor [13] introduced this concept mainly motivated by its cryptographic

applications. They have also shown some applications related to complexity theory.

Independently, Bodlaender et al. [17] also introduced similar concepts motivated by its

application in the field of parameterized complexity. Our work is actually motivated by

both of them. We have studied the importance of this notion in the classical complexity

theory, as well as its implication in parameterized complexity domain. Besides, this

approach has significance in some other fields as well. Using compression we can try

to store many problem instances in much smaller space and so this approach can give

us some ways to save space instead of storing many many big problem instances. But

Fortnow and Santhanam showed ([32], Theorem 3.1) that the compressibility of the

satisfiability problem for Boolean formulae (even non-uniformly) is unlikely, since it

implies that the Polynomial Hierarchy (PH) collapses. Since then, there has been a

very active stream of research extending this negative result to other problems in NP

(e.g., [55]). Instance compressibility is a useful notion for structural complexity theory

as well. We have discussed about that in the next section in more details.

Chapter 1. Introduction 4

1.2 Review of related works and primary motivation

As primary motivation behind this approach, Harnik and Naor [13] have mostly shown

some of its cryptographic applications. But at the same time, this notion is closely

related to the notion of polynomial kernelizability in parametrized complexity ([17,

47, 25]), which is motivated by algorithmic applications. However, in [13], the ap-

plications are shown in two opposite directions related to cryptography. They have

shown that the constructions of some of the cryptographic primitives are possible us-

ing compression technique. But at the same time, they have pointed out the possibility

of cryptanalysis using compression algorithms. It can be shown that for some appli-

cations in cryptography, the incompressibility of some of the languages is very much

important. Some of the other related notions is also very much related to this idea of

instance compression. Dubrov and Ishai [7] have shown the relevance of the notion

of compression to derandomization. Dziembowski [53] shows that compression is re-

lated to the study of forward-secure storage. But our work is motivated mainly by its

application in the field of complexity theory. Now we will see the specific application

of the notion of compression in the field of complexity theory.

1.2.1 Part I: Implications to Parameterized Complexity Theory

The relationship between complexity and compression is always interesting and in gen-

eral, has been studied as an interesting topic since the very early days of Complexity

Theory. For example, concept of Kolmogorov Complexity [4] has similarities with the

idea of instance compression. But, they have some fundamental differences. Here, we

are not interested about the compressibility of the instances alone. We are interested

to compress any instance maintaining the same solution, i.e., an yes or no instance

will be mapped to an yes or no instance respectively (formal definition is in chapter

2). Hence, this work has some fundamental distinguishing features from several other

related works. Primary aim in most of the previous works was how to retrieve the input

of a compression algorithm, not the solution.

This idea of compression is rather mostly related to the idea of parameterized com-

plexity (Downey and Fellows [44], Niedermeier [47], Flum and Grohe [25]). In pa-

rameterized complexity theory, we study the tractability of the problems when some

parameter of the problem is fixed. This notion is known as fixed parameter tractability

(FPT). Kernelization is known to be one of the basic techniques to find an efficient

Chapter 1. Introduction 5

algorithm in this context. We are now going to discuss about this in more details.

Parameterized complexity: In Parameterized complexity we ask about the complex-

ity of NP problems based on some inherent parameter. For example, in satisfi-

ability problem, the number of variables in a formula or in CLIQUE problem,

clique size in a graph can be taken as parameter. In parameterized complexity,

fixed-parameter tractability is an important concept as it specifies the property

of tractable problems. Let us look at it in more formal way.

Definition 1. A problem is fixed-parameter tractable (FPT) if it has an algo-

rithm running in time f (k)nO(1) where n is the input size and f (k) is an arbitrary

function of the parameter k.

Kernelization is one technique used to show fixed-parameter tractability of cer-

tain parametric problem. In this technique, one tries to find a reduction from

the given instance to an instance whose size depends only on the parameter,

maintaining the solution of the problem. This new reduced instance is known as

problem kernel. Chen et al. [31] has shown that a problem is FPT if and only if

it has a kernelization. But, this kernel is a function of the parameter and hence it

can be arbitrarily large. So, we can basically interpret this kernelization in some

other perspective to view the compression. Technically we can say that polyno-

mial kernelization (where the problem kernel size is a polynomial function of the

initial problem parameter) is equivalent to the deterministic compression to size

poly(n) (n is the parameter of the initial problem instance).

Because of the above mentioned similarities, the W -hierarchy [25] and other hi-

erarchies in the field of parameterized complexity is very much connected to the

VC-hierarchy [13]. This VC-hierarchy is a hierarchy which is defined depend-

ing on the notion of compression. (We have discussed about it in more details in

chapter 3). Basically both are defined by the reductions to some kind of circuit

problems. So, finding the solution to some of the open questions in compression,

gives us some results in the field of Parameterized complexity as well. As our

work very much related to the field of parameterized complexity, we will discuss

about this in more details in the next section.

Chapter 1. Introduction 6

1.2.2 Part II: Implications to PCPs

Not only parameterized complexity, study of Probabilistically Checkable Proofs ([50,

49]) are also very much related to this notion of compressibility.

Probabilistically checkable proofs: Probabilistically checkable proofs or PCPs are

one of the most popular field of studies in the field of complexity theory. The

PCP theorem ([50, 49]) is known to be one of the famous landmark results in the

field of complexity theory. It states that any decision problem in the complexity

class NP has polynomial size proofs (polynomially bounded in problem instance

size) that can be verified probabilistically by reading only a constant number

of bits of the proof. Fortnow and Santhanam [32] have defined succinct PCPs,

which are intuitively PCPs where the proof size depends polynomially on the

witness length (parameter) rather than the length of the input. In the framework

of parametric problems (formal definition is in chapter 2), this corresponds to the

proof size to be dependent polynomially on the parameter rather than the length

of the input. They have also shown that if SAT has succinct PCPs, then SAT is

self-compressible with error less than 2−m. So eventually it can be shown that

SAT does not have succinct PCPs unless PH collapses. Besides, if SAT is self-

compressible, then SAT has succinct PCPs [32]. All these results are very much

important in complexity theory and keep us motivated to study further about this

compression of hard problems.

1.2.3 Part III: Implication to Structural complexity and other related

fields

Although Harnik and Naor said that finding compression algorithm will be a great help

in the field of cryptography, some of the strong negative results related to this compres-

sion makes this field more popular in different domains of complexity theory. Fortnow

and Santhanam [32] have shown that an error-less compression algorithm for SAT im-

plies that the polynomial hierarchy will collapse. Very recently Andrew Drucker [2]

has shown that compression of another interesting problem, AND-SAT is also impos-

sible unless the polynomial hierarchy collapses. Not only that, he has shown some

evidence against probabilistic compression (definition in [13, 32]) as well. Chen and

Muller [58] pointed out that this generalises to compression with a one-sided error.

These results restrict the application of error-free compression to construct collision

Chapter 1. Introduction 7

resistant hash functions as initially shown in [13]. But after such negative results,

application of compressibility to different complexity theory branches becomes more

prominent compared to cryptography. One such branch of complexity theory is Struc-

tural complexity.

Structural complexity: Structural complexity is a popular domain in complexity

theory which studies the complexity classes directly, rather than the computa-

tional complexity of individual hard problems and corresponding algorithms.

Here the researchers work mainly on the internal structures of different com-

plexity theory classes and the relationships among them. The research in this

direction was mainly started to solve P-NP problem. Most of the researches are

done taking the assumption P 6= NP and on a more far-reaching conjecture that

the polynomial time hierarchy of complexity classes is infinite [27]. We already

know that, if there exists certain compression algorithm, Polynomial Hierarchy

collapses[32]. Basically, using the idea of compression, we can study the density

or internal nature in the structure of different complexity classes. For example,

Buhrman and Hitchcock [18] have shown that hard sets S for NP problems must

have exponential density unless CoNP ⊆ NP / poly. These kind of results are

very much related to the infeasibility of instance compression as one needs find

compression algorithm (incompressibility proof) to prove such results.

1.3 Review of some important complexity theory no-

tions

We are now going to discuss some of the existing and well known concepts in com-

plexity theory which are very much related to our work.

1.3.1 Parameterized complexity and related notions

Parameterized complexity is very much related to our work. That is why we like to

discuss some of the important concepts related to this domain in more details. We

start with some basic idea behind this approach. The idea behind the field parame-

terized complexity, as mentioned in [41], is that we should look more deeply into the

actual structure of the problem in order to seek some kind of hidden feasibility. It

Chapter 1. Introduction 8

can be considered as a sub-field in complexity theory, which is more fine-tuned to ac-

tual applications. The reason is, in actual application, very often we have some more

knowledge about the problem structure. For example, in most of the graph-theoretic

applications, the graph instance has some specific structure rather than just some gen-

eral graph or in real life quantified Boolean circuit problems, we do not generally tend

to work with more than a few alternations of quantifiers. Parameterized complexity

theorists study these kind of problems extensively. We are now going to define some

of the important concepts related to this field.

Definition 2. [43] A parameterized problem is a set L ⊆ Σ∗ × Σ∗ where Σ is a fixed

alphabet.

We have already seen the definition of fixed parameter tractability in this context.

But now let us see this definition in more formal way as given by Downey and Fellows

[43].

Definition 3. A parameterized problem L is (uniformly) fixed-parameter tractable if

there exists a constant α and an algorithm to determine whether (x,y) is in L which

runs in time f (|y|).|x|α, where f : N→ N is an arbitrary function. The class of fixed-

parameter tractable problems are denoted by FPT .

There are parameterized problems which are not fixed-parameter tractable. So it

is natural to ask if there is any way to classify these intractable problems with respect

to degree of intractability. To answer this question, different hierarchies are developed

in parameterized complexity domain. W -hierarchy ([43]) is the most popular among

them. Before defining that hierarchy formally, we need to define some kind of reduc-

tion suitable for this domain. We are now going to see that definition. In this context we

like to mention that, for a parameterized problem L and y ∈ Σ∗, Ly is generally used to

denote the associated fixed-parameter problem (y is the parameter) Ly = {x|(x,y) ∈ L}.
Now, let us see the definition of the reduction from a parameterized problem L to

another parameterized problem.

Definition 4. [43] A (uniform) reduction of a parameterized problem L to a parame-

terized problem L
′

is an oracle algorithm A that on input (x,y) determines whether x

∈ Ly, and satisfies the following.

1. There is an arbitrary function f : N → N and a polynomial q such that the

running time of A is bounded by f (|y|).q(|x|).

Chapter 1. Introduction 9

2. For each y ∈ Σ∗ there is a finite subset Jy ⊆ Σ∗ such that A consults oracles only

for fixed-parameter decision problems L
′
w where w ∈ Jy.

If, additionally the functions f and y → Jy are both recursive we say that the re-

duction is strongly uniform. (All of the reductions in this paper are strongly uniform).

The implication of this reduction is better understood by the following result given

in [43], lemma 1.1.

Lemma 1. If the parameterized problem L reduces to the parameterized problem L
′
,

and if L
′
is fixed-parameter tractable, then L is also fixed-parameter tractable.

We are now going to see the definition of W -hierarchy gradually. As mentioned

above, W -hierarchy and VC-hierarchy ([13]) have some similarities. Both of them are

defined using some circuit problems. We will discuss about this VC hierarchy in more

details in our context in chapter 3. But before that we like to consider Boolean circuits.

Definition 5. [43] A Boolean circuit is of mixed type if it consists of circuits having

gates of the following kinds.

1. Small gates: Not gates, And gates and Or gates with bounded fan-in. It is usually

assumed that the bound on fan-in is two for And gates and Or gates, and one for

Not gates.

2. Large gates: AND gates and OR gates with unrestricted fan-in.

Mixture of upper and lower cases is used to denote small gates (And gates and Or

gates), and upper case to denote large gates (AND gates and OR gates).

Definition 6. [43] The depth of a circuit C is defined to be the maximum number of

gates (small or large), not counting not gates, on an input-output path in C. The weft

of a circuit C is the maximum number of large gates on an input-output path in C.

Using the similar notation as used in [43], we say that a family of circuits F has

bounded depth if there is a constant h such that every circuit in the family F has depth

at most h. We say that F has bounded weft if there is constant t such that every circuit

in the family F has weft at most t. F is a decision circuit family if each circuit has a

single output. A decision circuit C accepts an input vector x if the single output gate

has value 1 on input x. The weight of a boolean vector x is the number of 1′s in the

vector. We have used same notation through out this work unless otherwise specified.

Now we can understand the formal definition of W -hierarchy using the circuit problem

defined next.

Chapter 1. Introduction 10

Definition 7. [43] Let F be a family of decision circuits where F may have many

different circuits with a given number of inputs. The parameterized circuit problem LF

is associated with F as follows, LF = {(C,k) : C ∈ F and C accepts an input vector of

weight k}.

Definition 8. [43] A parameterized problem L belongs to W [t] (monotone W [t]) if L

uniformly reduces to the parameterized circuit problem LF(t,h) for the family F(t,h)

of mixed type (monotone) decision circuits of weft at most t, and depth at most h, for

some constant h.

We will see later that VC-hierarchy has some similarities with the above definition.

Downey and Fellows have also shown the following relation among these classes in

the W -hierarchy.

Theorem 1. [42] FPT ⊆W [1]⊆W [2]⊆

We will now consider the example of some of the natural parameterized problems

and their position in this hierarchy.

CLIQUE:

Input: A graph G with n vertices, and an integer k.

Task: Decide whether G has a clique of size k (a pairwise adjacent subset of k vertices).

Parameter: k

DOMINATING SET:

Input: A graph G with n vertices, and an integer k.

Task: Decide whether G has a dominating set of size k (a set D of k vertices for which

every vertex not in D has a neighbour in D).

Parameter: k

These problems are quite popular and well known NP-complete problems. Among

them CLIQUE is known to be W [1]-complete ([43]) and DOMINATING SET is known

to be W [2]-complete [42].

If we consider the parameter of these problems, we can see that k is not actually

the natural witness length for either of them. Hence, in our settings of instance com-

pression, parameter choice should be different and we need different hierarchy with

respect to compression. VC-hierarchy is defined in this context that we will discuss

later (chapter 3).

Flum and Grohe have given an alternate characterization to define the same W -

hierarchy ([25]). We discuss about that here as some of the hierarchies (WK and MK

Chapter 1. Introduction 11

hierarchy as in [14]) related to VC-hierarchy are defined in the similar way as char-

acterized by Flum and Grohe. We will see those WK and MK hierarchies formally in

chapter 3.

Flum and Grohe have termed the reduction between two parameterized problems

as f pt-reduction which is defined as below. From the example above, we can see that

the parameter is actually the function of that specific instance. This notion is used in

the following definition.

Definition 9. Let (Q,κ) and (Q
′
,κ
′
) be parameterized problems over the alphabets Σ

and Σ
′
, respectively. An f pt-reduction (more precisely, f pt many-one reduction) from

(Q,κ) to (Q
′
,κ
′
) is a mapping R : Σ∗→ (Σ

′
)∗ such that:

1. For all x ∈ Σ∗ we have (x ∈ Q↔ R(x) ∈ Q
′
).

2. R is computable by an f pt-algorithm (with respect to κ). That is, there is a

computable function f and a polynomial p() such that R(x) is computable in

time f (κ(x))p(|x|).

3. There is a computable function g : N→ N such that κ
′
((R(x)) ≤ g(κ(x)) for all

x ∈ Σ∗.

As mentioned above, they have also shown a different characterization of the W -

hierarchy. Before that we need to consider some other definitions.

For t ≥ 0 and d ≥ 1, we inductively define the following classes Γt,d and ∆t,d of

formulas following [25]:

Γ0,d := {λ1∧ . . .∧λc : c ∈ [d] and λ1, . . . ,λc are literals },
∆0,d := {λ1∨ . . .∨λc : c ∈ [d] and λ1, . . . ,λc are literals },
Γt+1,d := {

∧
i∈I δi: I is a finite non-empty index set and δi ∈ ∆t,d for all i ∈ I},

∆t+1,d := {
∨

i∈I δi: I is a finite non-empty index set and δi ∈ Γt,d for all i ∈ I}.
Thus, it is easy to understand that Γ1,3 is nothing but the set of all the 3-CNF

formulae, and Γ2,1 is nothing but the set of formulae in CNF .

Let us now consider any general class of formula Φ. We take Φ+, Φ− ⊆ Φ to

denote the restrictions of Φ to formulas containing only positive and negative literals,

respectively. Now for any t ≥ 2 we define the following problem.

Definition 10. p-WSat(Γ+
t,1): For any t ≥ 2 consider the counting problem called p-

WSat(Γ+
t,1):

Input: A formula φ over n variables of size m where φ ∈ Γ
+
t,1 and an integer k (≤ n).

Chapter 1. Introduction 12

Parameter: k

Task: Decide whether there exists an assignments for φ such that exactly k variables

are assigned to be True.

In the similar way one can define p-WSat(Γ−t,1), p-WSat(∆+
t,d) and p-WSat(∆−t,d)

for t ≥ 2 and d ≥ 1. Now we can see that by the following theorem we can get a

different characterization for the W -hierarchy (more detailed discussion about these

concepts including the proofs can be found in [25]).

Theorem 2. ([25], Theorem 7.1) For every t > 1, the following problems are W [t]-

complete under f pt-reductions:

1. p-WSat(Γ+
t,1) if t is even and p-WSat(Γ−t,1) if t is odd.

2. p-WSat(∆+
t+1,d) for every d ≥ 1.

Our work is very much related to this field of parameterized complexity theory as

any compression algorithm (or incompressibility result) in our domain will contribute

to the work related to polynomial kernelization. In many cases we have used some of

the existing results or techniques to prove some of the results in the domain of instance

compression. We will discuss about them in more details along with our results.

1.3.2 Counting problems and complexity class #P

So far we have seen those problems answer to which is either yes or no. These kind of

problems are known as decision problems. Now we are going to see counting problems

where rather than finding some witness for the yes instance, we are interested to know

how many such witnesses are there. This concept was introduced by L. G. Valiant

[33, 34]. He has defined the counting Turing machine as follows.

Definition 11. A counting Turing machine is a standard non-deterministic Turing Ma-

chine with an auxiliary output device that (magically) prints in binary notation on a

special tape the number of accepting computations induced by the input. It has (worst-

case) time-complexity f (n) if the longest accepting computation induced by the set

of all inputs of size n takes f (n) steps (when the T M is regarded as a standard non-

deterministic machine with no auxiliary device).

Depending on this, a new complexity class #P of counting problems are defined as

follows.

Chapter 1. Introduction 13

Definition 12. [33] #P is the class of functions that can be computed by counting T Ms

of polynomial time complexity.

The hardness and completeness with respect to this class is also defined in [33] by

Oracle Turing Machine. But these concepts are easier to understand in terms of witness

function. For that we first see the definition of NP verification algorithm (taken from

[40]).

Definition 13. According to the definition of complexity class NP, for every language

L in NP, there exists an algorithm V such that:

1. x ∈ L if and only if there exists y such that V (x,y) = 1.

2. There exists a polynomial q such that if V (x,y) = 1 for some x and y then |y| ≤
q(|x|).

3. The running time of V is polynomial in its input.

Here V is known as verification algorithm for L.

For the alphabet {0,1}, we now consider the function w : {0,1}∗ →℘({0,1}∗),
where ℘({0,1}∗) denotes the power set of {0,1}∗. If x is a problem instance, w(x) is

used to denote the witnesses of x. The function G : {0,1}∗→ N is termed as counting

problem where for any problem instance x, G(x) = |w(x)|.
For satisfiability problem, suppose x is an encoding of the Boolean formula φ and

y ∈ {0,1}∗ is an encoding of a Boolean assignment to its input variables. For this

problem instance, set of witnesses is, w(x) = {y|V (x,y) = 1}, where V is a verification

algorithm for satisfiability problem which verifies if y is a satisfiable assignment for φ

or not.

In terms of witness function we can see the following definition of the class #P.

Definition 14. [12] The class #P is the class of counting problems with witness func-

tions w such that:

1. There is a polynomial-time algorithm to determine, for given x and y, if y ∈ w(x).

2. There exists a constant k ∈ N such that for all y ∈ w(x), |y| ≤ |x|k. (The constant

k can depend on w).

We are now going to see the definition of counting reductions which are used to

define the concept of hardness and completeness.

Chapter 1. Introduction 14

Definition 15. [12] Let w : {0,1}∗→℘({0,1}∗) and v : {0,1}∗→℘({0,1}∗) be the

witness functions of two counting problems G and H respectively (where ℘({0,1}∗)
denotes the power set of {0,1}∗). A weakly parsimonious reduction from G to H

consists of a pair of polynomial-time computable functions σ : {0,1}∗→ {0,1}∗ and

τ : {0,1}∗×N→ N such that |w(x)| = τ(x, |v(σ(x))|).
A counting reduction is strongly parsimonious if |w(x)| = |v(σ(x))|.

We can also see another notion of reduction.

Definition 16. [12] Let w : {0,1}∗→℘({0,1}∗) and v : {0,1}∗→℘({0,1}∗) be the

witness functions of two counting problems G and H respectively. A Turing-reduction

from G to H is an algorithm with an oracle for |v(y)| that finds |w(x)| for any instance

x of w in time polynomially bounded in |x|.

It is easy to see that if there is a weakly parsimonious reduction from G to H, there

is also a Turing-reduction from G to H. Now we can look into the following definition.

Definition 17. A counting problem G is #P-hard if there is a Turing-reduction from H

to G for all problems H ∈ #P. A counting problem G is #P-complete if it is #P-hard

and G ∈ #P.

There are many decision problems which are solvable in polynomial time where

their counting versions are #P-hard. Permanent is probably the most popular among

them. The Permanent problem for 0-1 matrices, which is equivalent to the problem of

counting perfect matchings in a bipartite graph, is proved to be #P-complete by L. G.

Valiant [33]. But the decision problem of finding a perfect matching in a bipartite graph

is known to be in complexity class P ([22, 8, 35, 37, 20]). Not only Permanent, it can

also be proved that many other easy P problems correspond to very hard #P problem

when we consider corresponding counting counterpart. DNF formula satisfiability

problem is one of them. We will use these concepts of counting problems later in

chapter 4 in more details.

1.4 Contribution of this work

We are now going to give a brief overview regarding what we are going to see in the

remaining part of the thesis. Main contribution of this project is divided into three

chapters. Let us now see the motivation and importance of each of them individually.

Chapter 1. Introduction 15

1.4.1 Chapter 2: Instance Compression for the Polynomial Hierar-

chy and Beyond

In this chapter we have extended the concept of instance compression from its existing

scope. The notion of instance compressibility for NP problems was defined by Harnik

and Naor ([13]) which is closely related to the notion of polynomial kernelizability in

the field of parametrized complexity. In this chapter, we define instance compressibil-

ity ([13, 17]) for parametric problems in higher complexity classes, PH and PSPACE.

We observe that the parametric problem ΣiCIRCUITSAT of deciding satisfiability of a

quantified Boolean circuit with i− 1 alternations of quantifiers starting with an exis-

tential quantifier, is complete for parametric problems in the class Σ
p
i with respect to

w-reductions (definition is in chapter 2, it is the reduction from a parametric problem

to another with respect to compression). Analogously it can be shown that the problem

QBCSAT (Quantified Boolean Circuit Satisfiability) is complete for parametric prob-

lems in PSPACE with respect to w-reductions. We show the following results about

these problems:

1. If CIRCUITSAT is non-uniformly compressible within NP, then ΣiCIRCUITSAT

is non-uniformly compressible within NP, for any i≥ 1.

2. If QBCSAT is non-uniformly compressible (or even if satisfiability of quanti-

fied Boolean CNF formulae is non-uniformly compressible), then PSPACE ⊆
NP/poly and PH collapses to the third level.

Next, we define Succinct Interactive Proof (Succinct IP) and by adapting the proof

of IP = PSPACE ([11, 6]), we show that QBCNFSAT (Quantified Boolean Formula

(in CNF) Satisfiability) is in Succinct IP. This result is different compared to analogous

result for Succinct PCP, as it is know that, if QBCNFSAT has Succinct PCPs ([32]),

Polynomial Hierarchy (PH) collapses.

1.4.2 Chapter 3: VC hierarchy classification

One of the most important objectives of this research work is to provide a structural

theory of compressibility, analogous to the theory in the classical settings of solvability.

To extend this theory further after extending it to higher classes, the next step is to de-

velop a hierarchical structure of the parametric problems with respect to compressibil-

ity, something similar to W -hierarchy. Such hierarchy is already defined (VC-hierarchy

Chapter 1. Introduction 16

[13]), but there are many open questions related to this. We have tried to answer some

of the open questions in this phase and give some more interesting results.

Firstly, we have slightly modified the existing definitions of VC-hierarchy to make

it suitable for parametric problems with natural witness length as parameter. The sig-

nificance of this hierarchy is, the problems in the lower classes are comparatively eas-

ier to compress, and if we go higher, corresponding problems are tougher to compress.

Although it was defined in [13], not too many natural problems were classified with

respect to compression. Besides, there was not much significant hardness or complete-

ness results for these classes in VC-hierarchy. In this chapter 3, we have considered

a long list of natural NP problems and tried to classify them into some level of VC-

hierarchy. We have shown some of the new w-reductions in this context and pointed

out a few interesting results including the ones as follows.

1. CLIQUE is VC1-complete (using the results in [14]).

2. SET SPLITTING and NAE-SAT are VC2-complete.

Harnik and Naor have provided two ways to define this VC-hierarchy ([13]). We

have considered both of them and studied them further for some other interesting para-

metric problems. We have also introduced a new class in this hierarchy and discussed

its importance with some related results. We have done a comparison of this VC-

hierarchy with other related hierarchies in parameterized complexity domain as well.

In this context we also like to mention that for any problem there can be more

than one way to choose the actual parameter of the problem. The reason is, there can

be different Non-deterministic Turing machine for the same problem and hence more

than one way to choose the natural parameter. In our work we have considered same

language with different parameter as different parametric problem and studied them

separately to place them in VC-hierarchy.

1.4.3 Chapter 4: Counting hierarchy with respect to Compression

So far we have considered only the decision problems. We have already seen that the

counting problems are difficult compared to decision problems and many easy decision

problems have very hard counting counterpart. Hence it is a natural question to ask that

how far the same thing is true with respect to compression. We have tried to answer

that in this chapter 4 which helps to develop the structural theory of compressibility

even further.

Chapter 1. Introduction 17

In this chapter we have defined parametric counting problems and a counting hier-

archy depending on the notion of instance compression. We named this hierarchy as

#VC-hierarchy. Similar approach to consider the counting problems is not used much

in the field of parameterized complexity theory. Although, Downey and Fellows have

defined the counting counterpart of W -hierarchy, i.e., #W -hierarchy [26] and presented

some interesting results.

In this chapter we have discussed which of the reductions for decision problems are

working for counting problems as well and which are not and analysed them in details

to present analogous results in counting hierarchy. But we primarily focused on those

counting problems which have different behaviour compared to their decision counter

part. Other than that, we have considered some of the interesting practical problems

here that we have not considered in the previous chapter and studied their complexity

for both decision and counting version.

We have also considered a large variations of circuit satisfiability problems (e.g.

weighted monotone satisfiability, exact satisfiability etc.) as these kind of problems

are quite relevant to real world applications. It is because in real world problems, most

often we have more information about the problem structure and/or we need to satisfy

a few more extra conditions. That is why, we have studied them here in details to

present some of the interesting results about those problems with respect to our theory

of instance compressibility.

1.4.4 Chapter 5: Conclusion

In the final concluding chapter, we have mainly discussed some of the open questions

that we could not answer. We have also given a brief overview of an alternate approach

to consider counting hierarchy that we have defined in previous chapter. After that we

have tried to make a list of interesting open problems and discuss the future direction

of further research in this field. Here we have mainly discussed the future direction

related to the work in chapter 3 and 4. For work related to chapter 2, open problems

are discussed separately there as they are in slightly different direction.

Chapter 2

Instance Compression for the

Polynomial Hierarchy and Beyond

An NP problem is said to be instance compressible if there is a polynomial-time reduc-

tion mapping instances of size m and parameter n to instances of size poly(n) (possibly

of a different problem). As mentioned already, the notion of instance compressibility

for NP problems was defined by Harnik and Naor ([13]) motivated by applications in

cryptography. This notion is closely related to the notion of polynomial kernelizability

in parametrized complexity ([17, 47, 25]), which is motivated by algorithmic applica-

tions. Fortnow and Santhanam showed ([32], Theorem 3.1) that the compressibility

of the satisfiability problem for Boolean formulae (even non-uniformly) is unlikely,

since it would imply that the Polynomial Hierarchy (PH) collapses. Since then, there’s

been a very active stream of research extending this negative result to other problems

in NP ([17, 55] etc.). Instance compressibility is a useful notion for complexity theory

as well - Buhrman and Hitchcock [18] use it to study the question of whether NP has

sub-exponentially-sparse complete sets.

Given different possibilities of application of this notion, it is a natural question

whether we can extend it to other complexity classes, such as PH and PSPACE. Our

first contribution here is to define such an extension. The key to defining instance

compressibility for NP problems is that there is a notion of “witness” for instances of

NP problems, and in general the witness size can be much smaller than the instance

size. We observe that the characterization of PH and PSPACE using alternating time

Turing machines yields a natural notion of “guess size” - namely the total number of

non-deterministic or co-non-deterministic bits used during the computation. We use

this characterization to extend the definition of compressibility to parametric problems

18

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 19

in PH and PSPACE in a natural way.

Some proposals ([24, 28]) have already been made in the parametrized complexity

setting for defining in general the parametrized complexity analogue of a classical com-

plexity class. Our definition (Section 2.1) seems similar in spirit, but all the problems

we consider are in fact fixed-parameter tractable. What we are interested in is whether

they are instance-compressible, or equivalently whether they have polynomial-size ker-

nels.

One of our main motivations is to provide a structural theory of compressibility,

analogous to the theory in the classical setting. Intuitively, instance compressibility

provides a different, more relaxed notion of “solvability” than the traditional notion.

So it is interesting to study what kinds of analogues to classical results hold for the new

notion. The result of Fortnow and Santhanam ([32]) can be thought of as an analogue

of the Karp-Lipton theorem ([46], Theorem 6.1), since non-uniform compressibility is

a weakening of the notion of non-uniform solvability. Other well-known theorems in

the classical setting are that NP has polynomial-size circuits iff all of PH does, as well

as the Karp-Lipton theorem for PSPACE ([46], Theorem 4.1). The main results we

prove here are analogues of these results for instance compressibility.

Our first main result is, if the language CIRCUITSAT is non-uniformly compress-

ible within NP (i.e., the reduction is to an NP problem), then so is the language

ΣiCIRCUITSAT, which is in some sense complete for parametric problems in the class

Σ
p
i . Note that we need a stronger assumption here compared to that in the Fortnow-

Santhanam result ([32]): they need only to assume that SAT is compressible. This

reflects the fact that the proof is more involved - it relies on the Fortnow-Santhanam

result ([32]) as well as on the techniques used in the classical case. In addition, the

code used by the hypothetical compression for CIRCUITSAT shows up not just in the

resulting compression algorithm for ΣiCIRCUITSAT, but also in the instance gener-

ated - this is why we need to work with circuits, as they can simulate any polynomial-

time computation. This ability to interpret code as data is essential to our proof. We

give more intuition about the proof in Section 2.2, where the detailed proof can also

be found. We also observe that under the assumption of Σ3CIRCUITSAT being com-

pressible (we make no assumption about the complexity of the set we are reducing to,

nor do we require the compression to be non-uniform), all of the PH is compressible

as well.

Our second main result is that if QBCNFSAT is non-uniformly compressible, the

Polynomial Hierarchy collapses to the third level. The proof of this is easier and is

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 20

a direct adaptation of the Fortnow-Santhanam technique ([32]) to PSPACE. Here we

consider an “OR” version of the problem as they do, and derive the collapse of the

hierarchy from the assumption that the OR version is compressible. In the case of NP,

showing that compressing the OR version is at least as easy as compressing SAT is

easier as there are no quantifiers; however, this is not the case for PSPACE and this is

where we need to work a little harder.

Our third result is an analogue of the IP = PSPACE ([11, 6]) result in the parametric

world. We define the class Succinct IP, which consists of parametric problems with in-

teractive protocols where the total amount of communication is polynomial in the size

of the parameter. We observe that the traditional proof of IP = PSPACE ([11, 6]) can

be adapted to show that the problem of determining whether a quantified Boolean for-

mula is valid, has succinct interactive proofs. This demonstrates a difference between

succinctness in an interactive setting and succinctness in a non-interactive setting - it

is shown in [32] that if SAT has succinct probabilistically checkable proofs, then PH

collapses.

There are many open problems in the compressibility theory for NP, such as,

whether there are any unlikely consequences of SAT being probabilistically compress-

ible. Our hope is that extending the theory to larger classes such as PH and PSPACE

will give us more “room” to work with. Besides, if we manage to settle these questions

for the larger classes, the techniques can be translated back to NP.

2.1 Some Complexity Theory Notions

Definition 18. Parametric problem: A parametric problem is a subset of { 〈 x, 1n 〉
| x ∈ {0,1}∗, n ∈ N }. The term n is known as the parameter of the problem.

NP problems in parametric form: Now consider some popular NP languages in

parametric form.

SAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable formula in CNF , and n is the number of variables

in ϕ}.
VC = {〈 G, 1k log(m) 〉 | G has a vertex cover of size at most k, where m = |G|}.
CLIQUE = {〈 G, 1k log(m) 〉 | G has a clique of size at least k, where m = |G|}.
DOMINATINGSET = {〈 G, 1k log(m) 〉 | G has a dominating set of size at most k, where

m = |G|}.
OR-SAT = {〈 {ϕi }, 1n 〉 | At least one ϕi is satisfiable, and each ϕi is of bit-length at

most n}.

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 21

For the parametric problems above in NP, the parameter can be interpreted as the

witness size for some natural NT M (Nondeterministic Turing Machine) deciding the

language. For example in SAT, the number of variables, which captures the witness

of satisfiability problem, is taken as the parameter. Note that in the definitions of the

CLIQUE, VC and DOMINATINGSET problems, the parameter is k log(m) rather than

k as in the typical parametrized setting. This is because, here k log(m) bits will be

required to represent the witness. We say that a parametric problem is in NP if there

is a polynomial-time NT M solving it. We are now formally going to define instance

compression ([13, 32]) for parametric problems.

Definition 19. Compression of parametric problem: Suppose here L is a parametric

problem. L is said to be compressible within a complexity class A if there is a polyno-

mial p(.), and a polynomial-time computable function f : {0,1}∗ → {0,1}∗, such that

for each x ∈ {0, 1}∗ and n ∈ N, | f (〈x,1n〉)| ≤ p(n) and 〈x,1n〉 ∈ L iff f (〈x,1n〉) ∈ LA

for some problem LA in the complexity class A.

We say the parametric problem L is compressible in general, if there exists any such

complexity class A as mentioned above, for the problem L to be compressed within.

We can now define the probabilistic version of compression.

Definition 20. Probabilistic compression of parametric problem: Let L be a para-

metric problem and A ⊆ {0,1}∗. L is said to be probabilistically compressible with

error ε(t) within A if there is a probabilistic polynomial-time computable function f

such that for each x ∈ {0,1}∗ and n ∈ N, with probability at least 1− ε(|x|) we have:

1. | f (〈x,1n〉)| ≤ poly(n)

2. f (〈x,1n〉) ∈ A iff x ∈ L

L is probabilistically compressible if there is an A such that L is probabilistically

compressible within A with error 1/3. L is errorless compressible if there is an A such

that L is probabilistically compressible within A with error 0.

Definition 21. Non-uniform Compression: A parametric problem L is said to be com-

pressible with advice if the compression function is computable in deterministic poly-

nomial time when given access to an advice string of size s(m, n) which depends only on

m and n but not on the actual instance. Here m is the length of the parametric problem

instance and n is the parameter. L is non-uniformly compressible if s is polynomially

bounded in m and n.

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 22

In other words, we can say that the machine compressing the parametric problem

in the preceding definition takes advice in case of Non-uniform Compression. We can

think of advice string s as a Boolean circuit.

Definition 22. w-Reduction: [13] Given parametric problems L1 and L2 , L1 w-

reduces to L2 (denoted L1 ≤w L2) if there is a polynomial-time computable function f

and polynomials p1 and p2 such that:

1. f (〈 x, 1n1 〉) is of the form 〈 y, 1n2 〉 where n2 ≤ p2(n1).

2. f (〈 x, 1n1 〉) ∈ L2 iff 〈 x, 1n1 〉 ∈ L1.

The semantics of a w-reduction is that if L1 w-reduces to L2 , it is at least as hard

to compress L2 as it is to compress L1 . If L1 ≤w L2 and L2 is compressible, then

L1 is compressible. One can prove that OR-SAT ≤w SAT ([57]). To prove this, we

can introduce log(m) new variables to encode which smaller formula in OR-SAT is

staisfiable (m is number of sub-formulae in OR-SAT instance).

As we have already mentioned, our primary objective is to extend the idea of compres-

sion to higher classes, namely Polynomial Hierarchy (PH) and PSPACE (definitions

can be found in standard complexity theory text book, e.g., [48]). In our work, by a

quantified Boolean formula, we mean a Boolean formula in prenex normal form where

the quantifiers are in the beginning as follows, ψ = Q1 x1 Q2 x2 . . . Qn xn φ, for any

Boolean formula φ. Similarly we can consider quantified Boolean circuits. Let us now

consider some standard PH and PSPACE languages but in parametric form.

CIRCUITSAT = {〈C, 1n 〉 |C is a satisfiable circuit, and n is the number of variables

in C}

ΣiSAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable quantified Boolean formula in CNF (in prenex

form) with i−1 alternations where odd position quantifiers are ∃ and even posi-

tion quantifiers are ∀, and n = (n1 +n2 + . . .+ni) where ni is the number of the

variables corresponding to ith quantifier}

ΣiCIRCUITSAT = {〈 C, 1n 〉 | C is a satisfiable quantified circuit (in prenex form)

with i− 1 alternations where odd position quantifiers are ∃ and even position

quantifiers are ∀, and n = (n1 + n2 + . . .+ ni) where ni is the number of the

variables corresponding to ith quantifier}
Similarly we can define ΠiSAT and ΠiCIRCUITSAT in parametric form.

QBCNFSAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable quantified Boolean formula (in prenex

form) in CNF, and n is the number of variables}

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 23

QBFORMULASAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable quantified Boolean formula (in

prenex form but not necessarily in CNF), and n is the number of variables}
If ϕ is replaced by the circuit C, then similarly we can define QBCSAT.

OR-QBCNFSAT = {〈 {ϕi }, 1n 〉 | Each ϕi is a quantified Boolean formula in CNF

(in prenex form) and at least one ϕi is satisfiable, and each ϕi is of bit-length at

most n}.

Now we can generalize. For any language L we can define, OR-L = {〈 {xi }, 1n 〉
| At least one xi ∈ L, and each xi is of bit-length at most n}.

Here we would like to mention that the non-parametric versions of ΣiCIRCUITSAT

and ΣiSAT are complete for the class Σ
p
i according to Cook-Levin reduction, and simi-

larly the non-parametric versions of QBCNFSAT, QBFORMULASAT and QBCSAT

are complete for PSPACE.

We can define a parametric problem corresponding to any language L in the class

Σ
p
i , or more precisely to the (i+1)-ary polynomial-time computable relation R defining

L, as follows.

Definition 23. For any (i + 1)-ary polynomial-time computable relation R, we can

define a parametric problem in Σ
p
i , LR = {〈 x, 1n 〉 | ∃ u1 ∈ {0,1}n1 ∀ u2 ∈ {0,1}n2

. . . Qi ui ∈ {0,1}ni R (x, u1 , . . . , ui) = 1 and n = (n1 + n2 + . . .+ ni) where ni is the

parameter corresponding to ith quantifier}

We can do essentially the similar thing for any language L ∈ PSPACE using the

characterization of PSPACE as alternating polynomial time ([3], Corollary 3.6) as fol-

lows:

Proposition 1. Any language L is in PSPACE if and only if it is decidable by an

Alternating Turing machine in polynomial time.

Now we can define,

Definition 24. For any binary polynomial-time computable relation R, we can define

a parametric problem in PSPACE, LR = {〈 x, 1n 〉 | Q1 u1 ∈ {0,1}n1 Q2 u2 ∈ {0,1}n2

. . . Qi ui ∈ {0,1}ni R (x, 〈 u1 , . . . , ui 〉) = 1 and n = (n1 +n2 + . . .+ni) where all the

Q variables denote ∃ or ∀ alternately, depending on whether its suffix is odd or even,

i is polynomially bounded with respect to the size of x, 〈 . . . 〉 encodes a sequence of

numbers as a bit string and ni is the parameter corresponding to ith quantifier}

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 24

So using the general definition of compression of any language in parametric form

given above, we can define the compression for all the PH and PSPACE parametric

problems where the “witness length” or “guess length” is the parameter of the problem.

Proposition 2. ΣiCIRCUITSAT is a complete parametric problem with respect to w-

reduction for the class of parametric problems in Σ
p
i .

Proof. Firstly we can observe that ΣiCIRCUITSAT is among the parametric problems

in the class Σ
p
i as there is an Alternating Turing Machine accepting this language with

i−1 alternations, starting with existential guesses. Let us now consider the parametric

problem LR ∈ Σ
p
i . So there exists a polynomial-time computable relation R such that,

〈 x, 1n 〉 ∈ LR⇔ ∃ u1 ∈ {0,1}n1 ∀ u2 ∈ {0,1}n2 . . . Qi ui ∈ {0,1}ni R (x, u1 , . . . , ui) =

1, where Qi denotes ∃ or ∀ depending on whether i is odd or even respectively. Here n

= (n1 +n2 + . . .+ni).

Now for the parametric problem LR the parameter is the number of guess bits used

by R which is n in this case. We know that any polynomial time computable relation

has uniform polynomial size circuits ([48], Theorem 6.7). Let Cm be the circuit on

inputs of length m - we can generate Cm from 1m in polynomial time. Hence, 〈x, 1n〉
∈ LR ⇔ ∃ u1 ∈ {0,1}n1 ∀ u2 ∈ {0,1}n2 . . . Qi ui ∈ {0,1}ni Cm (x, u1 , . . . , ui) = 1,

where Qi denotes ∃ or ∀ depending on whether i is odd or even respectively. This gives

a w-reduction from the parametric problem LR to ΣiCIRCUITSAT, since the length of

the parameter is preserved.

A similar proposition holds for ΠiCIRCUITSAT as well. We can also show, using

a similar proof, a completeness result for PSPACE as follows.

Proposition 3. QBCSAT is a complete parametric problem for the class of parametric

problems in PSPACE with respect to w-reduction.

We note that all the parametric problems we have defined so far are in fact fixed-

parameter tractable, simply by using brute force search.

Proposition 4. QBCSAT is solvable in time O(2n poly(m)) by brute force enumera-

tion.

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 25

2.2 Instance Compression for Polynomial Hierarchy

2.2.1 Instance Compression in second level

In this section, we are going to show that non-uniform compression of CIRCUITSAT

within NP implies the non-uniform compression of Σ2CIRCUITSAT within NP as well.

In the next subsection, essentially by using induction we show how to extend this to

the entire Polynomial Hierarchy (our work related to these results is published in [9]).

We have used the following result by Fortnow and Santhanam ([32], Theorem 3.1):

Theorem 3. If OR-SAT is compressible, then CONP ⊆ NP/poly, and hence PH col-

lapses.

The same technique actually shows that, any language L for which OR-L (section

2.1) is compressible, lies within CoNP/poly.

Theorem 4. If CIRCUITSAT is non-uniformly compressible within NP, then the prob-

lem Σ2CIRCUITSAT is non-uniformly compressible within NP.

We first give some intuition for the proof. The natural approach is to proceed as

in the classical setting. Let us assume SAT is compressible, and suppose we wish

to derive that Σ2SAT is compressible. Let us consider an arbitrary Σ2SAT instance

φ of size m with n variables - let u be the existentially quantified variables, and v be

the universally quantified ones. Suppose we fix u to say a string u1. This gives an

instance of a CoNP language whose input consists of φ together with u1. We can

use our compression hypothesis to compress this instance to a new instance of size

polynomial in size of v, which is an instance of a CoNP language (since our original

assumption is that NP problems are compressible within NP, it follows that CoNP

problems are compressible within CoNP). However, what we are left with is still a

Σ2SAT formula.

This is where the result of Fortnow and Santhanam [32] comes useful. They show

that under the compressibility assumption, NP⊆ CoNP/poly (as we know that CoNP⊆
NP/poly implies NP ⊆ CoNP/poly), so the universal quantifier can be flipped (modulo

a polynomial amount of advice). However, doing this still doesn’t give us a Σ1 formula

of size polynomial in m. The reason is that the compressed formula we obtain when

using the compressibility assumption depends on u1. It is unclear how to get a single

formula of size polynomial in m uniformly in u1.

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 26

This is why we need to work with the assumption about CIRCUITSAT rather than

about SAT. The idea is that since the compression operates in polynomial time, we

can encode the output of the compression as a polynomial-size circuit. This allows us

to get from our assumption a Σ1 problem instance of size polynomial in m which is

equivalent to our original instance - the new instance succinctly encodes compressed

circuits for all possible u1. Now we can use our compression assumption again to

compress this Σ1 problem instance and hence get a compressed form of our original Σ2

problem instance as well. Throughout this procedure, we’ll need to carry along various

advice strings. The details are given below.

Proof. Let us consider the parametric problem Σ2CIRCUITSAT first. For the sake

of convenience, we often omit the parameter when talking about an instance of this

problem. According to the definition,

C ∈ Σ2CIRCUITSAT⇔∃u ∈ {0,1}n1∀v ∈ {0,1}n2C(u,v) = 1 (2.1)

C /∈ Σ2CIRCUITSAT⇔∀u ∈ {0,1}n1∃v ∈ {0,1}n2C(u,v) = 0 (2.2)

Let m be the length of the description of the circuit C and n = (n1 + n2) to be the number

of variables of C.

Let us now fix a specific u = u1. Now, we can define a new parametric problem L
′

as follows,
〈C,u1,1n2〉 ∈ L

′
⇔∀v ∈ {0,1}n2C(u1,v) = 1 (2.3)

〈C,u1,1n2〉 /∈ L
′
⇔∃v ∈ {0,1}n2C(u1,v) = 0 (2.4)

It is clear from the above definition that L
′
is a parametric problem in CoNP (of instance

size≤O(m+n1)) and any instance of L
′
can be polynomial-time reduced to an instance

of CIRCUIT-UNSAT, say C
′

(because CIRCUIT-UNSAT, the parametric problem of

all unsatisfiable circuits, is CoNP-Complete with respect to w-reduction). As shown in

Proposition 2, the size of the witness will be preserved in this reduction.

C ∈ Σ2CIRCUITSAT ⇔ ∃u1〈C, u1〉 ∈ L
′

and 〈C, u1〉 ∈ L
′ ⇔ C

′ ∈ CIRCUIT-

UNSAT. Here the instance length |C| = m and |C′| = poly(m). poly(.) is denoting just

an arbitrary polynomial function.

Let g be the polynomial-time reduction used to obtain C
′

from C and u1. Namely,

C
′

= g(C, u1). If CIRCUITSAT is non-uniformly compressible within NP, using the

same reduction we can non-uniformly compress CIRCUIT-UNSAT within CoNP. That

means we can reduce a CIRCUIT-UNSAT instance into another CIRCUIT-UNSAT in-

stance in polynomial time, as CIRCUIT-UNSAT is CoNP-complete with respect to w-

reduction. Assume this polynomial time compression function be f1 with polynomial

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 27

size advice. So we will use f1 to compress CIRCUIT-UNSAT instance C
′

to another

CIRCUIT-UNSAT instance, say C
′′
, of size poly(n2).

Therefore, C
′ ∈ CIRCUIT-UNSAT ⇔ C

′′
= f1(C

′
, w1) = f1(g(C, u1), w1) ∈

CIRCUIT-UNSAT, where |C′′ | = poly(n2) and the string w1 (of size at most poly(m))

is capturing the notion of polynomial size advice. Here the compression function f1 is

computable in polynomial (in m) time.

Now, if CIRCUITSAT is non-uniformly compressible within NP so is SAT as SAT

is w-reducible to CIRCUITSAT. Now, OR-SAT is also non-uniformly compressible

as OR-SAT w-reduces to SAT. It can be proved from Theorem 3 that if OR-SAT is

non-uniformly compressible then CoNP ⊆ NP/poly, as mentioned in the beginning of

this section.

Now combining the statements in the above paragraph we can say that if CIRCUIT-

SAT is non-uniformly compressible within NP then CoNP ⊆ NP/poly. So we can now

reduce our parametric problem in CoNP (here CIRCUIT-UNSAT) instance C
′′

to a NP-

complete parametric problem instance using polynomial size advice. As CIRCUITSAT

is a NP-complete with respect to w-reduction, we can reduce C
′′

to a CIRCUITSAT in-

stance, say C
′′′

, using a polynomial time computable function f2 with advice w2. In the

above procedure, the length of the instance definitely will not increase by more than a

polynomial factor. So clearly |C′′′ | = poly(n2).

So from the above arguments we can say that,

C
′ ∈ CIRCUIT-UNSAT⇔C

′′′
= f2(C

′′
, w2) = f2(f1(g(C, u1), w1), w2) ∈ CIRCUIT-

SAT, where |C′′′ | = poly(n2) and the string w2 (of size at most poly(n2)) is capturing

the notion of polynomial size advice which arises in the proof of Theorem 3. Here the

function f2 is computable in polynomial (in n2) time.

Now we define a new circuit C1 as follows. C1 is a non-deterministic circuit whose

non-deterministic input is divided into two strings: u of length n1 and v of length

poly(n2). Given its non-deterministic input, C1 first computes C
′′′

= f2((f1(g(C, u),

w1), w2). This can be done in polynomial size in m since the functions f2, f1 and

g are all polynomial-time computable and C, w1 and w2 are all fixed strings of size

polynomial in m. It then uses its input v as non-deterministic input to C′′′ and checks

if v satisfies C′′′. This can be done in polynomial-size since the computation of a

polynomial-size circuit can be simulated in polynomial time. If so, it outputs 1, else it

outputs 0. Now we have

C ∈ Σ2CIRCUITSAT⇔∃u ∈ {0,1}n1∃v ∈ {0,1}n2C1(u,v) = 1 (2.5)

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 28

C /∈ Σ2CIRCUITSAT⇔∀u ∈ {0,1}n1∀v ∈ {0,1}n2C1(u,v) = 0 (2.6)

The key point is that we have reduced our original Σ2CIRCUITSAT question to a

CIRCUITSAT question, without a super-polynomial blow-up in the witness size. This

allows us to apply the compressibility hypothesis again. Also, note that C1 is com-

putable from C in polynomial size.

After that, using the compressibility assumption for CIRCUITSAT, we can non-

uniformly compress C1 to an instance C2 of size poly(n1 + n2) of a parametric problem

in NP. Our final compression procedure just composes the procedures deriving C1 from

C and C2 from C1, and since each of these can be implemented in polynomial size, our

compression of the original Σ2CIRCUITSAT instance is a valid non-uniform instance

compression. Thus it is shown that if CIRCUITSAT is non-uniformly compressible

within NP, Σ2CIRCUITSAT is also non-uniformly compressible within NP.

Corollary 1. If CIRCUITSAT is probabilistically compressible with error < 2−m

within NP, where m is the instance size, Σ2CIRCUITSAT is non-uniformly compress-

ible within NP.

Proof. This result is almost immediate from the above theorem. This extension uses

“Adleman’s trick” [29] to embed a “good” random string in the advice, and then applies

the argument for non-uniform compression. Existence of such “good” random string

can be seen by following argument. As the error is < 2−m, by a union bound, there

must be some choice of randomness that yields a correct compressed instance for each

instance of length m. Let z be such a random string of size at most poly(m) (since the

compression algorithm runs in probabilistic polynomial time). Fortnow-Santhanam’s

result works for probabilistic compression with error < 2−m as well, because of same

“Adleman’s trick”. Now we just use the same argument as in the proof above except

that we also include z in the advice string. Hence, the corollary is proved.

2.2.2 Instance Compression for higher levels in Polynomial Hier-

archy

Now we are going to extend the idea for higher classes. It is not that difficult to see,

if Σ2CIRCUITSAT is non-uniformly compressible within NP, Π2CIRCUITSAT is non-

uniformly compressible within CoNP. We will use this in the following theorem.

Theorem 5. If CIRCUITSAT is non-uniformly compressible within NP, then the prob-

lem ΣiCIRCUITSAT is non-uniformly compressible within NP for all i > 1.

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 29

Proof. Suppose C is a ΣiCIRCUITSAT instance. So from the definition we can say

that,

C ∈ ΣiCIRCUITSAT⇔ ∃ u1 ∈ {0,1}n1 ∀ u2 ∈ {0,1}n2 . . . Qi ui ∈ {0,1}ni C (u1 , . . . ,

ui) = 1,

where Qi denotes ∃ or ∀ depending on whether i is odd or even respectively.

Now, suppose CIRCUITSAT is compressible. To prove ΣiCIRCUITSAT is com-

pressible for all i > 1, we have to check the base case at the first place, that is for

the case when i = 2. From the Theorem 1, we can say that if CIRCUITSAT is non-

uniformly compressible within NP, Σ2CIRCUITSAT is also non-uniformly compress-

ible within NP. So the statement is true for base case.

Now suppose the statement is true for all i≤ k. We have to prove that the statement

is true for i = k + 1 as well. So, assuming CIRCUITSAT is non-uniformly compressible

within NP implies ΣiCIRCUITSAT is non-uniformly compressible within NP for all i≤
k, we have to prove that Σk+1CIRCUITSAT is also non-uniformly compressible within

NP.

Suppose C is a Σk+1CIRCUITSAT instance of size m. So from the definition we

can say that,

C ∈ Σk+1CIRCUITSAT

⇔ ∃ u1 ∈ {0,1}n1 ∀ u2 ∈ {0,1}n2 . . . Qk+1 uk+1 ∈ {0,1}nk+1 C (u1 , . . . , uk+1) = 1,

where Qk+1 denotes ∃ or ∀ depending on whether (k+1) is odd or even respectively.

Now, let us fix u1 to u
′
. So now we can define a new parametric problem as follows,

〈C,u
′
,1n2+n3+...+(nk+1)〉 ∈ L

′ ⇔ ∀ u2 ∈ {0,1}n2 . . . Qk+1 uk+1 ∈ {0,1}nk+1 C (u
′
, u2 ,

. . . , uk+1) = 1,

where Qk+1 denotes ∃ or ∀ depending on whether (k+1) is odd or even respectively.

So it is clear from the above definition that L
′

is a parametric problem in Π
p
k (of

instance size ≤ O(m+ n1)) and any instance of L
′

can be polynomially reduced to

an instance of ΠkCIRCUITSAT (because ΠkCIRCUITSAT is Π
p
k -Complete with re-

spect to w-reduction). As shown in Proposition 2, the size of the witness will be pre-

served in this reduction. So this reduction is essentially a w-reduction. Suppose this

Π
p
k CIRCUITSAT instance is C

′
.

So from the above arguments,

C ∈ Σk+1CIRCUITSAT

⇔ ∃u′〈C, u
′〉 ∈ L

′
and 〈C, u

′〉 ∈ L
′

⇔C
′ ∈ ΠkCIRCUITSAT

Here the instance length |C| = m and |C′| = poly(m). poly(.) is denoting just an

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 30

arbitrary polynomial function.

Suppose g is the function to obtain C
′

from C, running in polynomial (in m) time.

Namely, C
′
= g(C, u

′
).

From the induction hypothesis we can say, ΣkCIRCUITSAT is non-uniformly com-

pressible within NP. So any ΠkCIRCUITSAT instance, say C
′

is non-uniformly com-

pressible to a CoNP instance as ΠkCIRCUITSAT = CoΣkCIRCUITSAT. After com-

pression suppose the instance is C
′′

which, without loss of generality, can be taken as

a CIRCUIT-UNSAT instance as it is a complete for CoNP with respect to w-reduction.

Here |C′′ | = poly(n
′
) where n

′
= (n2 +n3 + . . .+nk+1)

So, C
′ ∈ ΠkCIRCUITSAT⇔C

′′ ∈ CIRCUIT-UNSAT.

Assume f1 to be the above compression function. So from the above arguments we

can say,

C
′ ∈ ΠkCIRCUITSAT ⇔ C

′′
= f1(C

′
, w1) = f1(g(C, u

′
), w1) ∈ CIRCUIT-UNSAT,

where |C′′ | = poly(n
′
) and the string w1 (of size at most poly(m)) is capturing the notion

of polynomial size advice. Here the compression function f1 is running in polynomial

(in m) time.

Now, if CIRCUITSAT is non-uniformly compressible within NP so is SAT as SAT

is w-reduced to CIRCUITSAT. Now, OR-SAT is also non-uniformly compressible as

OR-SAT w-reduces to SAT. It can be proved from Theorem 3 that if OR-SAT is non-

uniformly compressible then CoNP ⊆ NP/poly, as mentioned in the beginning of this

section.

Now combining the above statements we can say that if CIRCUITSAT is non-

uniformly compressible within NP then CoNP ⊆ NP/poly. So we can now reduce

our instance of parametric problem in CoNP (here CIRCUIT-UNSAT), C
′′

into an in-

stance of a parametric problem which is NP-complete, using polynomial size advice.

As CIRCUITSAT is a NP-complete with respect to w-reduction, we can reduce C
′′

to

a CIRCUITSAT instance, say C
′′′

, using a polynomial time computable function f2

with advice w2. In the above procedure, the length of the instance definitely will not

increase by more than a polynomial factor. So clearly |C′′′ | = poly(n′).

So from the above arguments we can say that,

C
′ ∈ ΠkCIRCUITSAT ⇔ C

′′′
= f2(C

′′
, w2) = f2(f1(g(C, u

′
), w1), w2) ∈ CIRCUIT-

SAT, where |C′′′ | = poly(n
′
) and the string w2 (of size at most poly(n

′
)) is capturing

the notion of polynomial size advice which arises in the proof of Theorem 3. Here the

compression function f2 is running in polynomial (in n
′
) time.

Now we define a new circuit C1 as follows. C1 is a non-deterministic circuit whose

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 31

non-deterministic input is divided into two strings: u1 of length n1 and v of length

poly(n
′
). Given its non-deterministic input, C1 first computes C

′′′
= f2((f1(g(C, u1),

w1), w2). This can be done in polynomial size in m since the functions f2, f1 and

g are all polynomial-time computable and C, w1 and w2 are all fixed strings of size

polynomial in m. It then uses its input v as non-deterministic input to C′′′ and checks

if v satisfies C′′′. This can be done in polynomial-size since the computation of a

polynomial-size circuit can be simulated in polynomial time. If so, it outputs 1, else it

outputs 0.

Now we have,

C ∈ Σk+1CIRCUITSAT ⇔ ∃u1 ∈ {0,1}n1 ∃v ∈ {0,1}n
′
C1 (u1,v) = 1 (2.7)

C /∈ Σk+1CIRCUITSAT ⇔ ∀u1 ∈ {0,1}n1 ∀v ∈ {0,1}n
′
C1 (u1,v) = 0 (2.8)

The key point is that we have reduced our original Σk+1CIRCUITSAT question

to a CIRCUITSAT question, without a super-polynomial blow-up in the witness size.

This allows us to apply the compressibility hypothesis again. Also, note that C1 is

computable from C in polynomial size.

After that, using the compressibility assumption for CIRCUITSAT, we can non-

uniformly compress C1 to an instance C2 of size poly(n1 + n
′
) i.e., poly(n1 + n2 + . . . +

nk+1) of a parametric problem in NP. Our final compression procedure just composes

the procedures deriving C1 from C and C2 from C1, and since each of these can be

implemented in polynomial size, our compression of the original Σk+1CIRCUITSAT

instance is a valid non-uniform instance compression.

So using mathematical induction we can say if CIRCUITSAT is non-uniformly

compressible within NP, ΣiCIRCUITSAT is also non-uniformly compressible within

NP for all i > 1.

Corollary 2. If CIRCUITSAT is compressible within NP, ΠiCIRCUITSAT is also non-

uniformly compressible within NP for all i ≥ 1.

As ΠiCIRCUITSAT w-reduces to Σi+1CIRCUITSAT, the above Corollary is trivial.

Theorems 4 and 5 require an assumption on non-uniform compressibility in NP. But

we don’t need this for compressibility of a problem higher in the hierarchy.

Proposition 5. If Σ3CIRCUITSAT is compressible, then ΣiCIRCUITSAT is compress-

ible for any i > 3.

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 32

Proof. This proposition follows from the fact that Σ3CIRCUITSAT being compress-

ible implies that SAT is compressible. So, by the result of Fortnow and Santhanam

(Theorem 3), PH collapses to Σ
p
3 . As a result, every parametric problem in the class

Σ
p
i w-reduces to Σ3CIRCUITSAT, as Σ3CIRCUITSAT is complete for the class Σ

p
3 with

respect to w-reduction. Hence, Σ3CIRCUITSAT being compressible, ΣiCIRCUITSAT

is compressible for any i > 3.

We can also find the following result easily using the “Adleman’s trick” as men-

tioned already.

Corollary 3. If CIRCUITSAT is probabilistically compressible with error < 2−m

within NP, where m is the instance size, ΣiCIRCUITSAT is non-uniformly compressible

within NP for all i > 1.

2.3 Instance Compression for PSPACE

In this section, we show that QBCNFSAT is unlikely to be compressible, even non-

uniformly - compressibility of QBCNFSAT implies that PSPACE collapses to the

third level of the Polynomial Hierarchy. The strategy we adopt is similar to that in

Theorem 3 where it is shown that compressibility of SAT implies NP ⊆ CoNP/poly.

To show their result, they used the OR-SAT problem, which is w-reducible to SAT

([57]). Thus an incompressibility result for the OR-SAT problem translates directly to

a corresponding result for SAT.

We similarly defined OR-QBCNFSAT problem in Section 2.1. But it is not that

easy to show that OR-QBCNFSAT w-reduces to QBCNFSAT. There are a couple of

different issues. First the quantifier patterns for the formulae {φi}, i = 1 . . .m might all

be different. This is easily taken care of, because we can assume quantifiers alternate

between existential and universal - this just blows up the number of variables for any

formula by a factor of at most 2. The more critical issue is that nothing as simple as

the OR works for combining formulae. ∃x∀yφ1(x,y)∨∃x∀yφ2(x,y) is not equivalent

to ∃x∀y(φ1(x,y)∨ φ2(x,y)). We are forced to adopt a different strategy as explained

below. Later we have found similar strategy is used in [57], though it was in the

context of OR-SAT, not OR-QBCNFSAT.

Lemma 2. OR-QBCNFSAT is w-reducible to QBCNFSAT

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 33

Proof. Let 〈{φi},1n〉 be an OR-QBCNFSAT instance of length m. Assume with-

out loss of generality that each φi has exactly n variables and that the quantifiers al-

ternate starting with existential quantification over x1, continuing with quantification

over x2,x3 etc. We construct in polynomial time in m an equivalent instance of QBC-

NFSAT with at most poly(n) variables and of size poly(m). We first take care of

quantifications. The quantifier patterns for the formulae {φi}, i = 1 . . .m might all be

different. But we can assume quantifiers alternate between existential and universal -

this just blows up the number of variables for any formula by a factor of at most 2.

Then we check if the number of input formulae is greater than 2n or not. If yes, we

solve the original instance by brute force search and output either a trivial true formula

or a trivial false formula depending on the result of the search. If not, then we define

a new formula with dlog(m)e additional variables y1,y2 . . .yk. We identify each num-

ber between 1 and m uniquely with a string in {0,1}k. Now we define the formula ψi

corresponding to φi as follows. Let the string wi ∈ {0,1}k correspond to the number i.

Then ψi = z1∧ z2 . . .∧ zk ∧φi, where zr = yr if wr = 1 and the complement of yr oth-

erwise. The output formula ψ starts with existential quantification over the y variables

followed by the standard pattern of quantification over the x variables followed by the

formula which is the OR of all ψi’s, i = 1 . . .m. So ψ will be as follows:

ψ = ∃ y1 ∃ y2 . . . ∃ yk Q1 x1 Q2 x2 . . . Qn xn (ψ1 ∨ ψ2 ∨ . . . ∨ ψm).

Where Qi’s are the quantifications of the xi’s as before. It is not that hard to check that

ψ is valid iff one of the φi’s is.

We are now going to show a result related to the notion of incompressibility of

QBCNFSAT problem (our work related to this result is published in [9])

Theorem 6. If QBCNFSAT is compressible, then PSPACE ⊆ NP/poly, and hence

PSPACE = Σ
p
3 .

Proof. Using Lemma 2, if QBCNFSAT is compressible, OR-QBCNFSAT is also

compressible. From the proof of Theorem 3 we can say for any parametric problem

L for which OR-L (section 2.1) is compressible, lies in CoNP/poly. Thus, since the

parametric problem QBCNFSAT is PSPACE-complete and PSPACE is closed under

complementation, a compression for OR-QBCNFSAT implies PSPACE is in NP/poly.

Hence by the result of Yap [10], it follows that PH collapses to the third level. Com-

bining this with the Karp-Lipton theorem for PSPACE ([46], Theorem 4.1), we have

that PSPACE = Σ
p
3 .

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 34

In the similar manner, we can consider a small amount of error here which doesn’t

make any difference in the result.

Corollary 4. If QBCNFSAT is probabilistically compressible with error < 2−m within

NP, where m is the instance size, PSPACE = Σ
p
3 .

2.4 Succinct IP and PSPACE

IP ([54, 30]) is the class of problems solvable by an interactive proof system. An

interactive proof system consists of two machines, a Prover, P, which presents a proof

that a input string is a member of some language, and a Veri f ier, V , that checks that

the presented proof is correct. Now we are extending this idea of IP to Succinct IP,

where the total number of bits communicated between prover and the veri f ier in all

the interactions is polynomially bounded in parameter length instead of input instance

size.

We define Veri f ier to be a function V that computes its next transmission to the

Prover from the message history sent so far. The function V has three inputs:

(1) Input String, (2) Random bits and (3) Partial message history
m1#m2# . . .#mi is used to represent the exchange of messages m1 through mi be-

tween P and V . The Verifier’s output is either the next message mi+1 in the sequence or

accept or reject, designating the conclusion of the interaction. Thus V has the function

from V : Σ∗ × Σ∗ × Σ∗→ Σ∗ ∪ { accept, reject }.
The Prover is a party with unlimited computational ability. We define it to be a func-

tion P with two inputs:

(1) Input String and (2) Partial message history
The Prover’s output is the next message to the Verifier. Formally, P: Σ∗ × Σ∗ → Σ∗.

Next we define the interaction between Prover and the Verifier. For particular input

string w and random string r, we write (V ↔ P)(w, r) = accept if a message sequence

m1 to mk exists for some k whereby

1. for 0 ≤ i < k, where i is an even number, V (w, r, m1#m2# . . .#mi) = mi+1;

2. 0 < i < k, where i is an odd number, P(w, m1#m2# . . .#mi) = mi+1; and

3. the final message mk in the message history is accept.

In the definition of the class Succinct IP, the lengths of the Verifier’s random bits and

each of the messages exchanged are p(n) for some polynomial p that depends only

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 35

on the Verifier. Here n is the parameter length of input instance. Besides, total bits of

messages exchanged is at most p(n) as well.

Succinct IP: A parametric problem L (⊆ {〈x,1n〉|x ∈ {0,1}∗,n ∈ N}) is in Succinct

IP if there exist some polynomial time function V and arbitrary function P, with

total poly(n) many bits of messages communicated between them and for every

function P̃ and string w,

1. w ∈ L implies Pr[V ↔ P] ≥ 2/3, and

2. w /∈ L implies Pr[V ↔ P̃] ≤ 1/3.

Here poly(n) denotes some polynomial that depends only on the Verifier and n

is the parameter length of input instance w.

We know that QBCNFSAT is in IP, as IP = PSPACE ([11, 6]). But we can even prove

something more. We can actually construct Succinct IP protocol for QBCNFSAT

and hence claim that QBCNFSAT ∈ SUCCINCT IP. To prove that we are basically

going to scrutinize the existing protocol in the formal proof of the part, PSPACE ⊆ IP

([11, 6, 39]) and establish the succinctness result.

Theorem 7. QBCNFSAT ∈ SUCCINCT IP

Proof. The key idea is to take an algebraic view of Boolean formulae by representing

them as polynomials. We are considering the inputs are from some finite field F. We

can see that 0, 1 can be thought of both as truth values and as elements of F. Thus

we have the following correspondence between formulae and polynomials when the

variables take 0/1 values:

x ∧ y↔ X . Y

x̄↔ 1 - X

x ∨ y↔ X+Y

This is termed as arithmetization of Boolean formula. We can see that if a Boolean

expression is satisfiable for certain Boolean assignment, value of the polynomial cor-

responding to that will be non-zero. So, if there is a Boolean formula φ(x1,x2, . . . ,xn)

of length m in CNF , we can easily convert that into a polynomial p of degree at most

m following the rules described above. But we can observe that if φ(x1,x2, . . . ,xn) is in

DNF (Disjunctive Normal Form), the degree of any single variable will be at most 1,

which may not be the case if φ is in CNF . So in this proof technique, we will convert a

formula in CNF to DNF , to ensure that the degree of the polynomial is not too large.

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 36

Let the given formula be,

ϒ = q1 x1 q2 x2 q3 x3 . . . qn xn φ(x1, . . . ,xn),

where the size of ϒ is m. φ is any Boolean formula over n variables in CNF . Here qi ∈
{∀,∃}, for all i = 1, 2, . . ., n.

So we need to arithmetize the quantifiers as well to arithmetize ϒ. We will replace

∃ y by ∑Y∈{0,1} and ∀ y by ∏Y∈{0,1} and then arithmetize rest of the Boolean expres-

sion as described above. After this arithmetization of quantifiers, we can evaluate the

polynomial to some integer value. So corresponding to any quantified Boolean for-

mula we can get some numeric value (in the finite field F which will be chosen later).

It can be proved easily by mathematical induction that a quantified Boolean formula is

satisfiable iff corresponding numeric value after arithmetization will be non-zero [6].

Let us now consider negation of ϒ as follows. Ψ = ϒ̄ = Q1 x1 Q2 x2 Q3 x3 . . . Qn xn

φ̄(x1, . . . ,xn) where Qi is ∃ or ∀ if qi is ∀ and ∃ respectively, for all i = 1, 2, . . ., n. If

φ is in CNF , clearly φ̄ will be in DNF . Hence the polynomial corresponding to φ̄ will

have degree at most 1 for any single variable, as discussed above. We can say that if ϒ

is satisfiable, Ψ must be un-satisfiable, and hence corresponding numeric value for Ψ

after arithmetization will be 0.

To arithmetize Ψ we will convert ∀ to multiplication and ∃ to summation as de-

scribed below. But this conversion can once again increase the degree of the overall

polynomial which was quite smaller before for un-quantified formula φ̄. To reduce

that degree, we will now introduce some new terms in quantification and rewrite the

expression in the following manner:

Ψ
′

= Q1 x1 R x1 Q2 x2 R x1 R x2 Q3 x3 R x1 R x2 R x3 . . . Qn−1 xn−1 R x1 R x2 . . . R

xn−1 Qn xn φ̄(x1, . . . ,xn),

Here R is introduced to enable linearise operation on the polynomial as explained later.

We now rewrite this Ψ
′
as follows : Ψ

′
= S1 x1 S2 x2 S3 x3 . . . Sk xk [φ̄],

where each Si ∈ { ∃,∀,R }. We are going to define R very soon. We can see that value

of k can be at most O(n2).

For each i ≤ k we define the function fi. We define fk(x1,x2,. . . ,xn) to be the

polynomial p [i.e., p(x1,x2, . . . ,xn)] obtained by arithmetization of φ̄. For i < k we

define fi in terms of fi+1:

Si+1 =∀: fi(. . .) = fi+1(. . . ,0). fi+1(. . . ,1);

Si+1 =∃: fi(. . .) = fi+1(. . . ,0)+ fi+1(. . . ,1);

Si+1 =R: fi(. . . ,a) = (1-a) fi+1(. . . ,0) + a fi+1(. . . ,1).

Here we reorder the inputs of the functions in such a way that variable yi+1 is

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 37

always the last argument. If S is ∃ or ∀, fi has one fewer input variable than fi+1 does.

But if S is R, both of them have same number of arguments. To avoid complicated

subscripts, we use “. . .” which can be replaced by a1 through a j for appropriate values

of j after the reordering of the inputs.

We can observe that operation R on polynomial doesn’t change their values for

Boolean inputs. So f0() is still the numeric value of Ψ
′

after arithmetization. Now

we can observe that these Rx operation produces a result that is linear in x. We added

Rx1 Rx2 . . .Rxi after Qixi in Ψ
′
in order to reduce the degree of each variable to 1 prior

to the squaring due to arithmetization of Qi.

We are now ready to describe the protocol. P is denoted to be the prover and V to

be the verifier as we always use.

Phase 0: [P sends f0()]

P→ V : P sends f0() to V . V checks that f0() = 0 and rejects if not.

Progressing similarly,

Phase i: [P persuades V that fi−1(r1, . . .) is correct if fi(r1, . . . ,r) is correct]

P→ V : P sends the coefficients of fi(r1, . . . ,z) as a polynomial in z. (Here r1 . . . de-

notes a setting of the variables to the previously selected random values r1, r2, . . .)

V uses these coefficients to evaluate fi(r1, . . . ,0) and fi(r1, . . . ,1). Then it checks that

the polynomial degree is at most 2 and that these identities hold:

fi−1(r1, . . .) =

{
fi(r1, . . . ,0). fi(r1, . . . ,1) if Si = ∀
fi(r1, . . . ,0)+ fi(r1, . . . ,1) if Si = ∃

and

fi−1(r1, . . . ,r) = (1− r) fi(r1, . . . ,0)+ r fi(r1, . . . ,1) if Si = R

If either fails, V rejects.

V → P: V picks a random Boolean value r from F and sends it to P. If Si = R, this r

replaces the previous r

Then it goes to phase i+1, where P must persuade V that fi(r1, . . . ,r) is correct.

Progressing similarly,

Phase k+1: [V checks directly that fk(r1, . . . ,rn) is correct]

V evaluates p(r1,. . .,rn) to compare with the value V has for fk(r1, . . . ,rn). If they are

equal, V accepts, otherwise V rejects. That completes the description of the protocol.

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 38

Here polynomial p is nothing but the arithmetization of the formula φ̄, as we have

already seen. It can be shown that the evaluation of this polynomial can be done in

polynomial time.

For the evaluation of the polynomial p for r1, . . . ,rn, we will consider φ̄ and apply

the arithmetization for the nodes individually. We will evaluate the nodes from lower

level. Before we evaluate for any node, corresponding inputs are already evaluated

and ready to use. Evaluation for each node will take constant amount of time. So total

evaluation of p for r1, . . . ,rn through modified φ̄ will take poly(m) time.

Now we can try to prove that the probability of error is bounded within the limit.

If the prover P always returns the correct polynomial, it will always convince V . If P

is not honest then we are going to prove that V rejects with high probability:

Pr[V re jects]≥ (1−d/|F|)k (2.9)

where d is the highest degree of the polynomial sent in each stage. We can see that

value of k can be at most O(n2). As the value of d is 2 in our case, the right hand side

of the above expression is at least (1 - 2k/|F|), which is very close to 1 for sufficiently

large values of |F|. It will be sufficient for us if |F| is bounded by a large enough

polynomial in m not dividing the numeric value of Ψ
′
when it is not 0. Using the prime

number theorem we know that we can find such value with small error bound as there

are much more prime numbers≤ poly(m) than number of prime factors of the numeric

value of Ψ
′
(can be found in standard number theory book, e.g., [16]).

Now we are going to see how the proof works when the prover is trying to cheat

for “no” instance. In the first round, the prover P should send f0() which must be 0.

Then P is supposed to return the polynomial f1. If it indeed returns f1 then since f1(0)

+ f1(1) 6= f0() by assumption, V will immediately reject (i.e., with probability 1). So

assume that the prover returns some s(X1), different from f1(X1). Since the degree d

non-zero polynomial s(X1) - f1(X1) has at most d roots, there are at most d values r

such that s(r) = f1(r). Thus when V picks a random r,

Prr[s(r) 6= f1(r)] ≥ (1−d/|F|) (2.10)

Then the prover is left with an incorrect claim to prove in all the phases. So prover

should lie continuously. If P is lucky, V will not understand the lie. To prove equation

(2.9), we will use induction here. We assume the induction hypothesis to be true for

k−1 steps, that is, the prover fails to prove this false claim with probability at least ≥
(1−d/|F|)k−1. Base case is easy to see from equation (2.10). Thus we have,

Pr[V re jects] ≥ (1−d/|F|).(1−d/|F|)k−1 = (1−d/|F|)k (2.11)

Chapter 2. Instance Compression for the Polynomial Hierarchy and Beyond 39

If P is not lucky, as the verifier is evaluating p() explicitly in the last stage, V will

anyway detect the lie.

Here in the description of the protocol, we can see that the degree of the polynomial

at each stage is at most 2. So we need just constant number of coefficients for encoding

such polynomials. Coefficients are from the field F which is of size poly(m). So

O(log(poly(m))) i.e., O(poly(n)) size messages are sent in any phase. Even, it will

be sufficient for us if |F| is bounded by a large enough polynomial in n. Number of

such phases are bounded by (k+1) which is O(n2). So we have constructed a Succinct

Interactive proof protocol for QBCNFSAT.

Issue in finding Succinct IP protocol for QBCSAT: In case of QBCSAT, similar

arithmetization technique will give polynomial of degree much larger size, actually

exponential in m. Now, to reduce the error, we have to use Field F of larger size,

basically exponential in m. This will give us each coefficients of the polynomials

exchanged between prover and veri f ier to be of size log(epoly(m)), i.e., poly(m), which

means the protocol is not succinct.

2.5 Related Open Questions

There are various possible future directions from this work. Suppose CIRCUITSAT

is compressible within a class C. In this work we have considered C to be the class

NP and got some interesting results. For any general class C we know from Theorem

3 that the immediate consequence is the collapse of PH at third level. But it is still

not known how our results for compression at second level of Polynomial Hierarchy

will be affected for compression into an arbitrary class C. Besides, one could try

to work under the weaker assumption that SAT or OR-SAT or OR-CIRCUITSAT is

compressible instead of CIRCUITSAT. We also don’t know whether there are similar

implications for probabilistic compression where we allow certain amount of error in

compression. One could also try to find a Succinct IP protocol for QBCSAT to show

Succinct IP = PSPACE or try to find some negative implications of such a protocol

existing for QBCSAT.

Chapter 3

VC hierarchy classification

One of the most important objectives of this research work is to provide a structural

theory of compressibility, analogous to the theory in the classical settings of tractabil-

ity. We have already defined compressibility for higher complexity classes in the pre-

vious chapter and obtained both positive and negative results. So the next natural

question that arises in our mind is whether there is any way to classify these problems

further with respect to compressibility. Hence, to extend the development of theory

of compressibility, the next step is to develop a hierarchy of the parametric problems

depending on compressibility, something similar to W -hierarchy. Such hierarchy is

already defined (VC-hierarchy [13]), but there are many open questions related to this.

We have tried to answer some of the open questions in this chapter and give some more

interesting results.

We have introduced a new class in the VC-hierarchy and discussed its importance.

We have also done a comparison of the VC-hierarchy with other related hierarchies in

parameterized complexity domain.

3.1 Definitions and other important notions

VC-hierarchy was first defined by Harnik and Naor ([13]). But we have changed it a

little bit to fit the definitions for parametric problems with natural witness length as the

parameter. In the original definitions, NP languages are considered. But that does not

fit directly to the parametric problems that we have considered so far. So here we have

extended those definitions for parametric problems in NP where the parameter can be

interpreted as the witness size for some natural NT M deciding the language (as we did

in previous chapter).

40

Chapter 3. VC hierarchy classification 41

Before defining some of the problems in this context, we would like to mention

that by a circuit of depth k we mean a circuit which consists of k alternating AND and

OR gates where the fan-in of the gates are bounded only by the circuit size and the

NOT gates are present only on the input variables. Let us now consider the following

definition.

Definition 25. DEPTHkCIRCUITSAT (where k ≥ 2):

Input: A circuit C of size m and depth at most k over n variables.

Membership: C ∈ DEPTHkCIRCUITSAT if there exists a satisfying assignment to C.

Parameter: n

Definition 26. LOCALCIRCUITSAT:

Input: A string x of length m and a circuit C over (n + n.log m) variables and of size

O(n+n.log m).

Membership: (x, C) ∈ LOCALCIRCUITSAT if there exists a list I of n locations in x

such that C(〈x(I), I〉) = 1.

Parameter: n + n.log m

Definition 27. The VC classification of parametric problems: Consider parametric

problems in NP where m denotes the instance size and n denotes the parameter. We

define the class VCk for every k ≥ 0. The definition is divided into three cases:

k = 0: The class VC0 is the class of all parametric problems that admit compression

algorithms.

k = 1: The class VC1 is the class of all parametric problems that W-reduce to LO-

CALCIRCUITSAT.

k ≥ 2: The class VCk is the class of all parametric problems that W-reduce to

DEPTHkCIRCUITSAT.

For any function k(m,n) (where k(m,n) ≤ m) also define VCk(m,n) as the class of all

parametric problems that W-reduce to Depthk(m,n)CircuitSAT . Finally, define VC =

VCm (the class for k(m,n) = m).

A parametric problem L is called compression-hard for a class VCk (k≥ 2), if there

is a w-reduction from DEPTHkCIRCUITSAT to L. If L is also present in VCk, it is called

compression-complete for VCk. Analogously, we can define the compression-hardness

and completeness for the classes VC1 and VCOR.

Chapter 3. VC hierarchy classification 42

Definition 28. Verification with Preprocessing: Let L (⊆ {〈x,1n〉|x ∈ {0,1}∗,n ∈N}
) be a parametric problem with instance size |x| = m and parameter n. A pair of

polynomial-time algorithms (P,V) is called a verification with preprocessing for L if

the following two-step verification holds:

• Preprocessing: P gets an instance 〈x,1n〉 and outputs a new instance P(〈x,1n〉).

• Verification: There exists a polynomial p(.) such that 〈x,1n〉 ∈ L if and only if

there exists a witness w of length at most p(n) such that V (P(〈x,1n〉),w) = 1.

We can observe that when we are allowing preprocessing, all problems solvable in

polynomial time have a pair (P,V) where P solves the problem and stores the answer

while V simply accepts this answer to be correct. So if we consider the complexity of

V in this definition, we can see that the easy problems indeed have very low complexity.

The VC Classification via Verification with Preprocessing: An alternative and

equivalent way to view the classes in the VC hierarchy is based on the verification

algorithm V in a verification with preprocessing pair (P,V) [13]. The problems are

divided into two families:

• The class VC1 is the set of the parametric problems that have very efficient ver-

ification (i.e., poly(n) rather than poly(m)). We assume random access to the

instance thus such a verification algorithm only accesses a sub-linear fraction of

the instance.

• The parametric problems whose verification is not very efficient (run in time

poly(m)). This family is further classified into sub categories. The class VCk

is the class of parametric problems where the verification algorithm V has a

representation as a depth k polynomial size circuit (polynomial in m).

This second definition is equivalent to the definition via w-reductions in the fol-

lowing way. The w-reduction to the complete problem can simply be viewed as the

preprocessing stage. In the other direction, every preprocessing stage is actually a

w-reduction to the parametric problem defined by V .

We are now going to re-consider the OR-L problem (section 2.1) more formally.

Definition 29. OR-L: Let L be a parametric problem in NP. We define the parametric

problem OR-L as follows:

Chapter 3. VC hierarchy classification 43

Input: m instances x1 , . . . , xm of the problem L, each of length n.

Membership: (x1 , . . . , xm) ∈ OR-L if there exists i ∈ [m] such that xi ∈ L.

Parameter: n+ log(m)

The class VCor is the class of all parametric problems that w-reducible to the prob-

lem OR-CIRCUITSAT.

The following relation is already shown in [13].

Theorem 8. VC0 ⊆VCor ⊆VC1 ⊆VC2 ⊆VC3 ⊆

3.2 VC hierarchy classification of some natural prob-

lems

In this section we are going to place some natural parametric problems in the VC

hierarchy. We will also present some hardness and completeness results. Some of the

problems are already classified in [13]. We will show some improvements of them

as well. We start with some of the existing results. We are going to see the formal

definitions of these problems gradually. (All problems used here are defined together

in the appendix, section 3.5.)

* CLIQUE is Compression-hard for VCor [13]

* SAT is Compression-complete for VC2 [13]

We are now going to classify some of the problems with respect to their difficulty in

compression.

3.2.1 Positions of some of the parametric problems

We start with the definitions of some simple problems. They are not simple in terms

of solvability. But comparatively simpler in terms of compression as they are present

in the lower levels of VC hierarchy.

k-COLOURABILITY PROBLEM:

Input: A graph G(V,E) with n vertices, and an integer k.

Task: Decide whether G is k colourable.

Parameter: n.log(k)

k-CYCLE:

Input: A graph G with n vertices, and an integer k.

Chapter 3. VC hierarchy classification 44

Task: Decide whether G has a cycle of length k.

Parameter: k.log(n)

k-COLOURABILITY PROBLEM ∈ VC0: In this problem we try to find the assign-

ments of k colours in n vertices of graph G(V,E) (|V | = n), such that no two adja-

cent vertices have same colours. More formally, we try to find a function C : V →
{1,2, . . . ,k} such that, (u,v) ∈ V and C(u) 6= C(v). We can encode any such colouring

(natural witness of the problem) in n.log(k) bits. So here the parameter of the problem

k-COLOURABILITY PROBLEM is n.log(k). Instance size |G| is clearly bounded poly-

nomially by the parameter n.log(k). So by definition G is already compressed. So this

NP parametric problem belongs to VC0.

k-CYCLE ∈ VC1: In k-CYCLE problem we try to find a proper ordering of k ver-

tices in a graph such that they construct a cycle. In a graph G(V,E), |G| = m is the

instance size (which is polynomially bounded in both |V | and |E|). A k-cycle consists

of k vertices in order. So any witness can be encoded in k.log(n) bits. Hence, the

parameter K = k.log(n). Now, whether these k vertices are forming k-cycle or not,

can be easily verified in poly(K) time. We don’t access the whole graph. So this NP

parametric problem belongs to VC1.

We now consider slightly more interesting problems.

SUB-GRAPH ISOMORPHISM:

Input: Two graphs G = (V1, E1) with n vertices, and H = (V2, E2) with k vertices.

Task: Decide whether G contains a sub-graph isomorphic to H (a subset V ⊆ V1 and a

subset E ⊆ E1 such that |V | = |V2|, |E| = |E2|, and there exist a one-to-one function f :

|V2| → |V | satisfying {u,v} ∈ E2 iff { f (u), f (v)} ∈ E).

Parameter: k.log(n)

CLIQUE:

Input: A graph G with n vertices, and an integer k.

Task: Decide whether G has a clique of size k (a pairwise adjacent subset of k vertices).

Parameter: k.log(n)

SUB-GRAPH ISOMORPHISM ∈ VC1 and w-reducible from CLIQUE: The sub-

graph isomorphism problem is a decision problem in which two graphs G and H are

given as input, and one must determine whether G contains a sub-graph that is iso-

morphic to H. This problem can be polynomially reduced from CLIQUE problem and

eventually this reduction is w-reduction. In CLIQUE problem the input is a single graph

Chapter 3. VC hierarchy classification 45

G and a number k, and the question is whether G contains a complete sub-graph with

k vertices or not. To translate this to a SUB-GRAPH ISOMORPHISM problem, we will

simply take H to be the complete graph with k vertices. Then the answer to the sub-

graph isomorphism problem for G and H is equal to the answer to the clique problem

for G and k. Here the witness for the sub-graph isomorphism is actually the mapping of

k vertices of H in G. Clearly, the witness size is polynomially bounded in k.log(n). So

CLIQUE problem is w-reducible to SUB-GRAPH ISOMORPHISM. As we already know

that CLIQUE is compression-hard for VCor [13], then SUB-GRAPH ISOMORPHISM is

also compression-hard for VCor.

Proof of the containment in VC1 is rather easy. Once the mapping of k vertices

of H in G is given, the verification can be done easily in poly(k.log(n)) time. We do

not need to consider the whole graph G for verification. So clearly this NP problem

belongs to VC1.

We now consider a few similar problems.

LARGEST COMMON SUBGRAPH:

Input: Two graphs G = (V1, E1) and H = (V2, E2) and an integer k. Suppose n is the

maximum of the numbers of vertices in these two graphs.

Task: Decide whether there exist subsets V
′
1 ⊆V1 and V

′
2 ⊆V2 with |V ′1| = |V

′
2| = k such

that two vertex induced subgraphs G
′
= (V

′
1, E

′
1) and H

′
= (V

′
2, E

′
2) are isomorphic.

Parameter: k.log(n)

MAXIMUM SUBGRAPH MATCHING:

Input: Two directed graphs G = (V1, A1) and H = (V2, A2) and an integer k. Suppose n

is the maximum of the numbers of vertices in these two graphs.

Task: Decide whether there is a subset R⊆V1 ×V2 with |R| = k such that for all 〈u,u′〉,
〈v,v′〉 ∈ R, (u, v) ∈ A1 iff (u

′
, v
′
) ∈ A2.

Parameter: k.log(n)

In the similar way we can prove the w-reductions from SUB-GRAPH ISOMOR-

PHISM to LARGEST COMMON SUBGRAPH and MAXIMUM SUBGRAPH MATCHING

and their containment in VC1. In fact, we can also conclude that these two new prob-

lems are compression-hard for VCor. Where the reduction to LARGEST COMMON

SUBGRAPH is very similar, for the reduction to MAXIMUM SUBGRAPH MATCHING,

we will simply replace every undirected edge of both the graphs by 2 bi-directional

edges.

Let us now consider another similar type of problem.

Chapter 3. VC hierarchy classification 46

BALANCED COMPLETE BIPARTITE SUBGRAPH:

Input: A Bipartite graphs G = (V , E) with n vertices and an positive integer k ≤ |V |.
Task: Decide whether there are two disjoint independent sets V1, V2 ⊆V such that |V1|
= |V2| = k and u ∈ V1, v ∈ V2 implies that {u,v} ∈ E.

Parameter: k.log(n)

We can see that w-reduction from BALANCED COMPLETE BIPARTITE SUBGRAPH

to SUB-GRAPH ISOMORPHISM, LARGEST COMMON SUBGRAPH, and MAXIMUM

SUBGRAPH MATCHING are also similar. Hence the BALANCED COMPLETE BIPAR-

TITE SUBGRAPH problem is in VC1.

We can also consider simple Graph Isomorphism problem.

GRAPH ISOMORPHISM:

Input: Two graphs G = (V1, E1) and H = (V2, E2) both with n vertices.

Task: Decide whether G and H are isomorphic to each other.

Parameter: n.log(n)

It is easy to see that GRAPH ISOMORPHISM problem is in VC0, as in that case in-

stance size is polynomially bounded with respect to the parameter of the problem.

We now consider slightly different type of problems.

SUBSET SUM:

Input: A set S of m non-negative integers, and another integer B.

Task: Decide whether there is a subset S
′ ⊆ S such that the summation of all the

elements is S
′
is B.

Parameter: |S′|.log(m)

For solving SUBSET SUM problem, we are given a set of m values and a target sum

B. In this problem, the objective to find a subset S
′

(total size O(|S′|.log(m))) from

the set S such that the values from the subset add up exactly to the target sum B. So

the parameter K is O(k.log(m)) if k = |S′|. Suppose we are given such a witness of

k values, the verification may be done easily in poly(K) time rather than in poly(m)

time, just by adding those k values. We may not need to consider the whole set of size

m for verification. But it does not mean that we can put this NP problem into VC1.

Because, the above mentioned verification can be done in poly(K) only if we assume

that the size of each of the m integers are constant. But that is not the general case.

Hence we can not place the problem into VC1. In fact, we can not add k integers by

a circuit of constant depth when the size of the integers are not constant. Hence, we

can not place them in VCt for any constant t. Nevertheless, variations of this SUBSET

Chapter 3. VC hierarchy classification 47

SUM problem are quite interesting and we are going to consider this problem in much

more details later.

We now consider following two popular problems.

INDEPENDENT SET:

Input: A graph G with n vertices, and an integer k.

Task: Decide whether G has an independent set of size k (a pairwise non-adjacent

subset of k vertices).

Parameter: k.log(n)

SET PACKING:

Input: A set V with |V | = n, a family of sets E with |E| = m where E ⊆℘(V) (℘()

denotes the power set) and an integer k.

Task: Decide whether there is a set packing of size k (a subset S ⊆ E such that, for all

distinct pair of sets S1, S2 ∈ S, S1 and S2 are mutually exclusive).

Parameter: k.log(m)

INDEPENDENT SET problem is w-reducible to SET PACKING: In SET PACKING

problem, we have a finite set V and a list of subsets E (= {S1,S2, . . ., Sm}) of S. Then,

the SET PACKING problem asks if there is some subset of size k from the list such that

the elements of the subset are pairwise disjoint (in other words, no two of them have

non-null intersection). There is a very simple w-reduction from INDEPENDENT SET to

SET PACKING problem. Suppose a graph G is given to us which is our INDEPENDENT

SET instance. We produce the sets S1,S2, . . ., Sm as follows: we generate a set Si for

each vertex vi in G, so that the set contains exactly the edges e incident on vi. Clearly,

m = number of vertices of G. V of the SET PACKING instance is just the set of all edges

in G. Finally, for this SET PACKING problem, we ask if there is a set packing of size k

or not.

Now it is not difficult to see that the INDEPENDENT SET instance G has an inde-

pendent set of size k iff SET PACKING problem instance (V,E) has a set packing of

size k. For proving this claim, suppose G has an independent set of size k. Let us name

this set as IS. We now construct S by including exactly the Si’s corresponding to vi ∈
IS. Obviously, the size of S is equal to the k. Since no two vertices in S can share an

edge, the sets Si we picked must be pairwise disjoint, and hence we have found a valid

set packing of k sets.

Now, assume that we have a set packing S of size k for the SET PACKING problem

instance (V,E). Then, we construct a vertex set IS by taking exactly those vis for which

Chapter 3. VC hierarchy classification 48

Si ∈ S. The size of IS is the same as that of S. For any edge e, there is at most one set

Si with e ∈ Si and Si ∈ S. So at most one node vi ∈ IS can be incident on any edge

e. Thus, no two selected nodes are connected by an edge, and hence IS is in fact an

independent set of size k.

So INDEPENDENT SET problem is w-reducible to SET PACKING. As we already

know that INDEPENDENT SET is compression-hard for VCor (as INDEPENDENT SET

and CLIQUE are equivalent with respect to common w-reduction), then SET PACKING

is also compression - hard for VCor.

There are a few interesting problems which have polynomial size kernels. This

shows that those problems are compressible and hence in VC0. For example, FEED-

BACK ARC SET on tournament has a linear size Kernel [51]. FEEDBACK VERTEX

SET has a cubic Kernel on undirected graph [19]. As mentioned in chapter 1, polyno-

mial kernelization (where the problem kernel size is a polynomial function of the initial

problem parameter) is equivalent to the deterministic compression to size poly(n) (n is

the parameter of the initial problem instance). In case of compression, the parameter

is chosen in such a way that it can be interpreted as the witness size for some natu-

ral NT M deciding the language. We have not considered the above mentioned VC0

problems here and hence are not going to discuss them in details. We are more inter-

ested in those problems which are not known to be compressible. That is why, we are

now going to consider some higher levels of VC-hierarchy and corresponding natural

problems in more details.

3.2.2 VC1 and corresponding problems

We are now going to consider the class VC1 in more details. This is the class of para-

metric problems which are locally verifiable. That means, we can verify the witness

of such problem instance in time polynomial in parameter where we take some natural

witness length as parameter. We can understand that a large number of popular natural

problems belong to this class, which makes this class very interesting. We have already

considered a few of them before.

We are now going to consider a few more problems here which are related to this

interesting class VC1. We first consider the primary completeness results for VC1 and

then finally, we will summarize the positions of several natural parametric problems

with respect to VC1. In many cases, we have considered different variations of the same

Chapter 3. VC hierarchy classification 49

problem. The problem with seemingly more natural parameter are named without any

subscript. Other variations are named with some subscript depending on the definition

and parameter of the problem. We have followed same convention throughout this

work (especially in this chapter and chapter 4).

We are going to prove the first completeness result for VC1 using the idea used in

[14], though the parameter choice was different in their work. We first define a new

problem and prove the next result.

BINARY NDTM HALTING:

Input: The code of a Turing machine M of size n with a binary alphabet, and an integer

k.

Task: Decide whether M halts on the empty string in k steps.

Parameter: k.log(n)

In the original work ([14]), parameter was k instead of k.log(n).

Proposition 6. BINARY NDTM HALTING is VC1-complete.

Proof. Firstly we are going to prove the membership of the BINARY NDTM HALTING

problem in VC1. In this problem, a Turing machine M of size n with a binary alphabet,

and an integer k are given. We want to decide whether M halts on the empty string in k

steps. Parameter K is k.log(n). If k transitions are given as the witness, we can verify

if that given k steps can lead the machine to halting state. So clearly the verification

can be done in poly(K) time. Hence, the membership in VC1 is proved.

To prove the hardness result, we are going to show a w-reduction from LOCAL-

CIRCUITSAT to this problem (as shown in [14], Theorem 5). In LOCALCIRCUITSAT

a string x of length m and a circuit C over (t + t.log m) variables and of size O(

t + t.log m) are given. We decide whether there exists a list I of t locations in x such

that C(x(I), I) = 1. Parameter is t+t.log(m). Without loss of generality we can assume

that the circuit size is polynomially bounded by t.log(m). To show the reduction we

are going to use the well known result which says that a Turing machine can be con-

structed to simulate a fixed circuit in a number of steps that is polynomial in the circuit

size ([23], chapter 3 and [5], chapter 9). So clearly we can take k = poly(t.log(m)).

To reduce a LOCALCIRCUITSAT instance, in the beginning we will encode the in-

put string of length m into the Turing machine. So we can easily see that the size of

the Turing machine n will be polynomially bounded by m. Now the machine non-

deterministically chooses the t positions in k = poly(t.log(m)) steps and writes the

Chapter 3. VC hierarchy classification 50

corresponding contents of the string onto the tape, followed by the positions. After

that the circuit will be simulated by the Turing machine according to the well known

result mentioned above. Here the parameter of the BINARY NDTM HALTING prob-

lem K will be k.log(n) = poly(t.log(m).log(m)) = poly(t.(log(m))2). Clearly it is a

w-reduction. Hence BINARY NDTM HALTING is VC1-complete.

We are now going to present our next completeness result. In [13], it was pointed

out that many natural problems are in VC1 and asked if any one of them can be proved

as VC1-complete. Our next result answers that question using some of the techniques

used in [14].

Theorem 9. CLIQUE is VC1-complete.

Proof. It is already known that CLIQUE is present in VC1 ([13]). Now to show the

hardness result, we are going to show a w-reduction from BINARY NDTM HALT-

ING to CLIQUE problem, as BINARY NDTM HALTING is already proved to be VC1-

complete in the Proposition 6. Now, we are going to show the reduction in three steps.

Firstly we will show a w-reduction from BINARY NDTM HALTING to WEIGHTED

3-CNF SATISFIABILITY. Then w-reduction from WEIGHTED 3-CNF SATISFIABIL-

ITY to ANTIMONOTONE WEIGHTED 2-CNF SATISFIABILITY. And in the end w-

reduction from ANTIMONOTONE WEIGHTED 2-CNF SATISFIABILITY to CLIQUE.

Let us first see the definitions of the newly introduced problems.

WEIGHTED 3-CNF SATISFIABILITY

Input: A formula φ in 3-CNF (each clause contains at most 3 literals) with n input

variables, and an integer k.

Task: Decide whether φ is satisfiable by an assignment of Hamming weight k (an

assignment that assigns exactly k variables the Boolean value 1).

Parameter: k.log(n)

ANTIMONOTONE WEIGHTED 2-CNF SATISFIABILITY

Input: A formula φ in 2-CNF (each clause contains at most 2 literals) with n input

variables where all the literals in φ are negative literals, and an integer k.

Task: Decide whether φ is satisfiable by an assignment of Hamming weight k (an

assignment that assigns exactly k variables the Boolean value 1).

Parameter: k.log(n)

Formal definitions of the problems are given above. Now for proving the reduction

in the first step (w-reduction from BINARY NDTM HALTING to WEIGHTED 3-CNF

SATISFIABILITY), we are going to use the reduction used by Hermelin et. el.(Lemma

Chapter 3. VC hierarchy classification 51

13, [14]). Though the parameter used there for BINARY NDTM HALTING is different

from our parameter, it can be checked that the same reduction will work here and the

reduction will be still a w-reduction with our parameter. Although this technique has

similarity with the proof of the well known Cook’s theorem ([52]), this reduction is

w-reduction where the Cook’s reduction is not. We are now briefly going to discuss

that reduction here to understand that the above mentioned claim is correct.

Suppose the code of a Turing machine M of size n with a binary alphabet and an

integer k are given. We also assume that M has s states with l edges in its transition

diagram. We now construct a 3-CNF formula φ such that φ has a satisfying assign-

ment of weight k
′
, iff M accepts the empty string in k steps. We will choose k

′
as a

polynomial function of k as mentioned later. To construct the formula φ, we will use

following set of variables.

• Variables Si,t , i ∈ [s] and t ∈ {0}∪ [k], signifying that the machine is in state

number i after t time steps.

• Variables Me,t , e ∈ [l] and t ∈ [k], signifying that edge e of the machine’s state

diagram is followed as step t.

• Variables Hp,t , 0≤ p, t ≤ k, signifying that the machine’s tape head is in position

p after t time steps.

• Variables Tp,t , 0 ≤ p, t ≤ k, signifying that position p of the tape contains value

1 after t time steps.

• Variables Tp,t , 0 ≤ p, t ≤ k. These are constrained so that Tp,t 6= Tp,t for all

values of p and t, allowing us to control the weight of any satisfying assignment

for φ.

We will now add clauses into the formula φ to maintain all the constrains of the

Turing machine. We firstly add 2 clauses of size 2 as follows, (Tp,t ∨ Tp,t) and (¬Tp,t

∨ ¬Tp,t), for all values of p and t. It is done to ensure that Tp,t 6= Tp,t for all values

of p and t. Then we will ensure that at most one variable among S.,t , H.,t , and M.,t

is True for each t. We do that by creating a conjunction of clauses of size 2 over the

corresponding variable sets (for each pair of variables, we take disjunction of negations

of them to ensure two of them can not be True together). We additionally enforce

that the final state of the machine is an accepting state (by adding clauses of size 1,

containing only one negative literal). We then add clauses enforcing consistency of

Chapter 3. VC hierarchy classification 52

states, head, tape, and transition variables as shown by Hermelin et. el.(Lemma 13,

[14]). Finally, we will add clauses to encode ¬Hp,t → (Tp,t = Tp,t+1) for all p and t

and clauses to control the initial set up of the machine. We can see that the number of

literals in any clause of the formula φ is at most 3. As a result, number of variables and

the size of the formula φ, both are polynomially bounded in n. It is not very difficult to

see that we can choose our above mentioned k
′
as 2(k+1)+(k+1)2+k and hence the

reduction is actually w-reduction. More detailed proof for this reduction can be found

in [14] (Lemma 13).

To show the second step (w-reduction from WEIGHTED 3-CNF SATISFIABILITY

to ANTIMONOTONE WEIGHTED 2-CNF SATISFIABILITY), again we are going to use

the reduction used by Hermelin et. el.(Lemma 2, [14]). There, from a t-CNF formula

φ (each clause contains at most t literals) for any constant t, they have constructed

another formula ψ, where ψ is in 2-CNF with all negative literals (using the tricks

used in [25]). It can be observed that φ has a satisfying assignment of weight k iff

ψ has a satisfying assignment of weight k
′
, where k

′
is polynomially bounded in k.

The parameter of the reduced instance is polynomially bounded with the initial one

and hence, it is a w-reduction. Taking t = 3, w-reduction from WEIGHTED 3-CNF

SATISFIABILITY to ANTIMONOTONE WEIGHTED 2-CNF SATISFIABILITY directly

follows from that result (Lemma 2, [14]).

Now to prove the last step, we are going to use a very simple reduction. From the

given ANTIMONOTONE WEIGHTED 2-CNF SATISFIABILITY instance (a formula φ in

2-CNF with n input variables), we will construct a graph. We will take a vertex in the

graph G for each variable in the formula φ, the ANTIMONOTONE WEIGHTED 2-CNF

SATISFIABILITY instance. Then we will add an edge in the graph G corresponding to

every clause of size 2. Single literal clauses can be easily removed in polynomial time

before constructing this graph, by assigning required values to the variables. In this

process, if the problem instance is solved to be a NO instance, we can out put a trivial

graph with no independent set of size k. Otherwise, it is easy to see that φ is satisfiable

with weight k iff the graph G has an independent set of size k. INDEPENDENT SET is

well known to be w-equivalent to CLIQUE. Hence CLIQUE is VC1-complete.

We are now going to consider a series of popular NP problems and their relations

with respect to w-reduction. They will help us to prove some new hardness or com-

pleteness results. Before going into formal definitions of the problems and proof for

the reductions, we will give a brief summary about what we going to see next. The

Chapter 3. VC hierarchy classification 53

Figure 3.1: w-reductions among parametric problems

problems we have considered here are present in Figure 3.1. In this diagram, arrow

from the problem A to B implies that we claim that there is a w-reduction from prob-

lem A to B. We are going to show the reductions soon.

We also see from the diagram (Figure 3.1) that, though most of the problems are

quite natural and popular, MULTICOLOURED CLIQUE is not that natural. But it is an

important problem as it is connecting CLIQUE with many other natural problems such

as, EXACT HITTING SET, EXACT COVER etc. more directly. For the same reason we

have considered WEIGHTED EXACT CNF SATISFIABILITY problem with two differ-

ent parameters. They are really the key problems to prove some of the completeness

results as we will see soon. To prove the reductions, in many cases we use the standard

reductions and either verify or modify them slightly to see that they are essentially

w-reductions. But in some other cases we have to work a bit more, e.g. reduction

from WEIGHTED EXACT CNF SATISFIABILITYn to EXACT HITTING SET. There are

several interesting techniques we will see in these reductions. Some of them use graph

theory tricks (reductions related to CLIQUE, MAX CUT, PERFECT CODE etc.), some

others use Boolean formula manipulation (reductions connecting WEIGHTED EXACT

Chapter 3. VC hierarchy classification 54

CNF SATISFIABILITY) or in some cases simple but useful set theory or number theory

techniques (connections among the problems EXACT HITTING SET, EXACT COVER,

SUBSET SUM etc.). We are now going to discuss them in more details.

We have already considered the problem SUBSET SUM. Let us now define another

similar problem PARTITION.

PARTITION:

Input: A set S of m non-negative integers.

Task: Decide whether there is a set S
′ ⊆ S such that, ∑a∈S′ a = ∑a∈S−S′ a.

Parameter: (min(|S′|, |S−S
′|)).log(m)

We have considered SUBSET SUM before and explained why we can not put it into

VC1. We are going to consider the same problem once again to prove the following

simple result.

Proposition 7. SUBSET SUM and PARTITION problems are w-reducible to each other.

Proof. In SUBSET SUM problem, a finite set S of non-negative integers are given with

a target integer B. For this problem instance, we ask if there exists a subset S
′ ⊆ S such

that, ∑a∈S′ a = B. Here S contains m non-negative integers. The elements in S
′

are the

witness. If k = |S′|, it is easy to understand that the parameter K = k.log(m) as k.log(m)

bits can capture a natural witness.

Similarly for PARTITION problem it is easy to see that, if k = min(|S′|, |S− S
′|),

the parameter K of the problem can be k.log(m) as k.log(m) bits can capture a natural

witness.

w-reduction from PARTITION to SUBSET SUM: This reduction is very much straight

forward. We can take B = (∑a∈S a)/2, from the PARTITION problem for SUBSET SUM.

Clearly we can calculate B in poly(m) and the reduction is a w-reduction.

w-reduction from SUBSET SUM to PARTITION: To show this reduction (original

reduction shown in [45]), we introduce two new variables of values T −B and T −
(∑a∈S a−B) in our set. Let us consider the new set is named as S∗. We will choose T

to be sufficiently large. Any T > ∑a∈S a will work for this reduction. But at the same

time, T should be sufficiently small so that it is a w-reduction. We will choose T to be

just large enough so that both the new elements can not go to the same partition as in

that case they will overweight all the other elements. Now we ask whether this new set

S∗ can be partitioned in two sets of equal summation of values within it. Clearly the

individual summation will be of values T as ∑a∈S∗ a = 2T . If there exists a partition for

the set S∗, after taking out the new two values from both the partitions, clearly we will

Chapter 3. VC hierarchy classification 55

get a partition of original set S into two sets of total summation B and (∑a∈S′ a−B).

Hence, it is now easy to see that, there exists a PARTITION for S∗ iff there exists a

SUBSET SUM of S for target value B. Clearly this reduction is w-reduction as we are

introducing a constant number (which is 2 here) of new values where the size of the

values are polynomially bounded in problem size.

We are now going to consider another popular problem.

EXACT COVER:

Input: A set V with |V | = n, a family of sets E with |E| = m where E ⊆℘(V) (℘()

denotes the power set).

Task: Decide whether there is an exact cover S ⊆ E for V (Exact cover is a subset S ⊆
E of pairwise disjoint sets with

⋃
S = V).

Parameter: |S|.log(m)

We are now going to prove the following.

Proposition 8. EXACT COVER is w-reducible to SUBSET SUM.

Proof. We have used the standard polynomial reduction from EXACT COVER to SUB-

SET SUM ([45]) to show this result.

Let us consider that V = {t0, t1, . . . , tn−1} in the given instance of Exact Cover (V ,

E). Number of elements in E (i.e., the collection of the subsets of V) is m. Now for tx
∈ V , 0≤ x≤ n−1, let us define,

#x = |{A ∈ E|tx ∈ A}|, the number of elements of E containing tx, 0≤ x≤ n−1.

Let us consider p to be a number just exceeding all #x, 0≤ x≤ n−1. We will keep the

size of p polynomially bounded in problem size. Next, we encode A ∈ E as follows,

w(A) = ∑tx∈A px, for all tx ∈ V .

and take

B = ∑
n−1
x=0 px = (pn−1)/(p−1).

We consider the set S = {w(A)|A ∈ E}. In p-ary notation w(A) looks like a string of 0

and 1 with 1 in position x (0≤ x≤ n−1) for each tx ∈ A and 0 elsewhere. The number

B in p-ary notation looks like a string of length n containing all 1. Adding the numbers

w(A) simulates the union of the sets A. The number p was chosen big enough so that

we do not get into trouble with carries. Now asking whether there is a SUBSET SUM

of the set S that gives B, is the same as asking for an EXACT COVER for V . Clearly

the same sets within the collection E for the construction of an EXACT COVER will

correspond to the subset S
′ ⊆ S to get the sum B. Parameter for the SUBSET SUM

Chapter 3. VC hierarchy classification 56

problem instance is |S′|.log(m). So clearly this is a w-reduction from EXACT COVER

to SUBSET SUM.

We are now going to consider another interesting problem. It is interesting because

of the parameter choice.

SET COVERkn:

Input: A set V with |V | = n, a family of sets E with |E| = m where E ⊆℘(V) (℘()

denotes the power set) and an integer k.

Task: Decide whether there is a set cover of size k (a subset S ⊆ E with
⋃

S = V).

Parameter: kn

Here kn is a valid parameter as one can encode any set in E in n bits.

We now prove the following.

Proposition 9. SET COVERkn is in VC1 and w-reducible to SUBSET SUM.

Proof. It is not difficult to see that SET COVERkn is in VC1. Any witness consisting of

k sets, each encoded in n bits, can be easily checked in poly(kn) time to verify if they

are forming a set cover or not. Hence, SET COVERkn ∈ VC1.

We will prove this result by showing a reduction which is quite similar to the result

shown just before it. Let’s consider that V = {t0, t1, . . . , tn−1} in the given SET COVERkn

instance (V , E). For this problem instance, we ask if there is a set cover of size k.

Parameter for this problem is kn. Number of elements in E (i.e., the collection of the

subsets of V) is m. Now for tx ∈ V , 0≤ x≤ n−1, let us define,

#x = |{A ∈ E|tx ∈ A}|, the number of elements of E containing tx, 0≤ x≤ n−1.

Let us consider p to be a number just exceeding all #x, 0 ≤ x ≤ n−1 and k. We will

keep the size of p polynomially bounded in problem size. For each A ∈ E we define,

w(A) = ∑tx∈A px + pn, for all tx ∈ X .

In p-ary notation w(A) looks like a string of 0 and 1 with 1 in position x (0 ≤ x ≤
n−1) for each tx ∈ A and in position n with 0 elsewhere. Here the nth bit will ensure

that the size of the set cover is always k.

We also introduce following extra elements as follows.

w(Bi, j) = pi, for all 0 ≤ i ≤ n−1, 1 ≤ j ≤ k−1.

It means, we are introducing extra (k−1)n elements. We can also see that w(Bi, j)

looks like a p-ary number of length n+ 1 where values are zeroes at all the positions

except at ith (0 ≤ i ≤ n− 1) position where it is 1. We can also consider that Bi, j

is a set containing just one element ti and w(Bi, j) is the decimal value for its p-ary

representation.

Chapter 3. VC hierarchy classification 57

We now take

B = ∑
n
x=0 kpx = k(pn+1−1)/(p−1).

We consider the set S = {w(A)|A ∈ E}∪{w(Bi, j)|0 ≤ i ≤ n− 1,1 ≤ j ≤ k− 1}. The

number B in p-ary notation looks like a string of length n+1 containing all k. Adding

the numbers in S simulates the union of the sets A ∈ V and Bi, j, 0≤ i≤ n−1,1≤ j ≤
k− 1. The number p was chosen big enough so that we do not get into trouble with

carries. Now asking for a Set Cover for V of size k, is the same as asking whether

there is a Subset Sum (of size at most k
′

= k + (k− 1)n) of the set S that gives B.

Clearly the same sets within the collection E for the construction of a Set Cover of size

k will correspond to the subset to get the sum B with some extra elements from the

set {w(Bi, j)|0 ≤ i ≤ l− 1,1 ≤ j ≤ k− 1}. Parameter for the SUBSET SUM problem

instance is k
′
.log(|S|). So clearly this is a w-reduction from SET COVERkn to SUBSET

SUM.

We now define the following.

MAX CUT:

Input: A weighted graph G(V,E) with m edges and n vertices, an integer B.

Task: Decide whether there exists a subset V
′ ⊆ V such that the total size of the cut

(sum of weights of edges between vertex sets V
′
and V −V

′
) is ≥ B.

Parameter: |V ′|.log(n)

We can not place this problem into VC1 as to check if the cut size is equal to B or

not, we have to consider the cross edges between V −V
′
and V

′
. Hence, the algorithm

run time will not be poly(K) where K is the parameter of the problem instance. But

we can prove the following. This particular reduction was first pointed out in [45].

Proposition 10. PARTITION is w-reducible to MAX CUT.

Proof. Suppose we have a PARTITION instance, a set S of m non-negative integers.

From this S, we are going to construct a graph G(V,E) as follows. For each integer ai

∈ S, 1 ≤ i ≤ m, we will construct a vertex vi of the graph G. We connect every pair

of distinct vertices (ui,vi), i 6= j, from V by an edge with weight aia j. We take the cut

size for the MAX CUT problem as B = (∑m
i=1 ai)

2/4.

Firstly, we can see that, any subset of S, map a subset of vertices from the vertex set

V of G. If there is a partition S
′
for S, such that ∑a∈S′ a = ∑a∈S−S′ a, S

′
it will similarly

map a subset V
′ ⊆ V . Moreover, it is now easy to see that, any such partition S

′
will

result in a cut between V −V
′

and V
′

of size ∑a∈S′ a×∑a∈S−S′ a = ((∑m
i=1 ai)/2)×

((∑m
i=1 ai)/2) = (∑m

i=1 ai)
2/4. So in one direction proof is done.

Chapter 3. VC hierarchy classification 58

Now suppose, there is subset V
′ ⊆V such that the total size of the Cut with respect

to the rest of the vertices V −V
′

is B = (∑m
i=1 ai)

2/4. Similarly, any such subset V
′

⊆ V will map a subset S
′ ⊆ S. We name this mapping as f . Now we claim that,

the maximum size of any cut in graph G is (∑m
i=1 ai)

2/4 and it happens only when

the vertices of V is partitioned into V
′

and V −V
′

in such a way that ∑a∈ f (V ′) a =

∑a∈ f (V−V ′) a. We prove this claim as follows.

Suppose V is partitioned into V
′

and V −V
′
. It is now easy to see that the total

size of cut in this case is ∑a∈ f (V ′) a×∑a∈ f (V−V ′) a. We take f (V
′
) = S

′
, f (V −V

′
) =

S− S
′

as f (V) = S and also ∑
m
i=1 ai = T . So we have to partition the set S, i.e., total

value T in such a way that cut size C = ∑a∈S′ a×∑a∈S−S′ a = ∑a∈S′ a× (T −∑a∈S′ a)

is maximum (S
′

and S− S
′

are the partition of S). We take ∑a∈S′ a = x. Hence, C =

x(T − x) = T x− x2.

Differentiating C with respect to x it is now easy to see that the cut size C is max-

imum when ∑a∈S′ a = x = T/2 and the maximum cut size is T.T/2− (T/2)2 = T 2/4.

Hence we have found a reduction from PARTITION to MAX CUT. As the parameter of

both the problem instances are polynomially bounded, it is clearly a w-reduction.

PERFECT CODE:

Input: A graph G(V,E) with n vertices.

Task: Decide whether G has a Perfect Code V
′ ⊆ V (a set of vertices V

′ ⊆ V with

the property that for each vertex u ∈ V there is precisely one vertex in N[u] ∩ V
′
.

N[u] denotes the set containing vertex u and its neighbours, also known as closed

neighbourhood.)

Parameter: |V ′|.log(n)

WEIGHTED EXACT CNF SATISFIABILITY:

Input: A formula φ in CNF of size m, and an integer k.

Task: Decide whether φ has a satisfying assignment of weight k (k variables are as-

signed to be True) such that exactly one literal in each clause is satisfied.

Parameter: k.log(m)

Following relations can be proved between these two problems.

Proposition 11. WEIGHTED EXACT CNF SATISFIABILITY and PERFECT CODE are

w-reducible to each other.

Proo f idea: To prove the w-reduction from PERFECT CODE to WEIGHTED EX-

ACT CNF SATISFIABILITY, we will take each vertex of PERFECT CODE instance G

to be an input variable of WEIGHTED EXACT CNF SATISFIABILITY instance φ. Then

Chapter 3. VC hierarchy classification 59

corresponding to vertices in closed neighbourhood of each vertex in the graph G, we

will add a clause to φ. Each vertex in the closed neighbourhood will correspond to

each literal in that clause. Clearly G has a perfect code of size k iff φ has weight k truth

assignment that makes exactly one literal in each clause true. Clearly the reduction is

a w-reduction. This simple reduction is mentioned in [43], Lemma 4.2. It is easy to

see that same reduction works for our different parameter as well.

The reduction in the opposite direction is also mentioned by Downey and Fellows

([43], Lemma 4.3). Basically, to show the reduction from WEIGHTED EXACT CNF

SATISFIABILITY to PERFECT CODE, we can use the same transformation used my

them in the proof of Theorem 2.1 of [42]. (We have considered this transformation

later in chapter 4 in more details). The parameters of both the problem instances are

also polynomially bounded in each other and the result is proved.

We are now going to consider the following problem.

EXACT HITTING SET:

Input: A hypergraph (V , E) with |V | = n and |E| = m.

Task: Decide whether (V,E) has an exact hitting set S⊆V (Exact hitting set is a subset

S ⊆ V such that |S∩ e| = 1 for all e ∈ E).

Parameter: |S|.log(n)

We now prove the following relation of this problem with EXACT COVER.

Proposition 12. EXACT COVER and EXACT HITTING SET are w-reducible to each

other.

Proof. We use a very standard technique ([45]) to prove this result.

EXACT HITTING SET to EXACT COVER: To show the w-reduction from EXACT

HITTING SET to EXACT COVER, let us consider a EXACT HITTING SET instance

(V,E) and denote our reduced EXACT COVER instance as (V
′
,E
′
). For each hyperedge

e in E, we will take an element in V
′
. Now we will construct a set corresponding to

each vertex in the hypergraph (V,E), containing the elements corresponding to the

hyperedges which contain that vertex. Collection of all those sets will be taken as E
′
.

So clearly |V | = |E ′| and |V ′| = |E|. It is now easy to see that (V,E) has an Exact

hitting set iff (V
′
,E
′
) has an Exact cover. Parameter of both the problem instances are

polynomially bounded in each other.

EXACT COVER to EXACT HITTING SET: Similarly, to show the w-reduction

from EXACT COVER to EXACT HITTING SET, let us consider an EXACT COVER

instance (V
′
,E
′
) given to us and denote the EXACT HITTING SET instance that we

Chapter 3. VC hierarchy classification 60

want to construct as (V,E). Corresponding to each set in E
′
, we will construct a vertex

in the hypergraph (V,E). Clearly |V | = |E ′|. Now we will add hyperedges to it in the

following way. For each element in V
′

we will add a hyperedge connecting vertices

corresponding to the sets from E
′

where the element is present. Hence, clearly |V ′| =
|E|. It is now easy to see that (V,E) has an Exact hitting set iff (V

′
,E
′
) has an Exact

cover. Parameter of both the problem instances are polynomially bounded in each

other.

Hence, EXACT COVER and EXACT HITTING SET are w-reducible to each other.

We have already considered the CLIQUE problem. Now we are going to consider

another variation of this same problem.

MULTICOLOURED CLIQUE:

Input: A graph G = (V , E) with |V | = n, an integer k and a colouring function c : V →
[k].

Task: Decide whether G has a multicoloured clique of size k (a clique containing

exactly one vertex of each colour).

Parameter: k.log(n)

Following relation is already pointed out by Hermelin et. el. ([14], Lemma 10)

where the explicit proof can be found in [38].

Proposition 13. CLIQUE and MULTICOLOURED CLIQUE are w-reducible to each

other.

As CLIQUE is already proved to be VC1-complete in Theorem 9, the above propo-

sition also proves that MULTICOLOURED CLIQUE is VC1-complete with respect to

w-reduction. In the previously mentioned paper, Hermelin et. el. ([14], Lemma 11)

also proved the following.

Proposition 14. MULTICOLOURED CLIQUE is w-reducible to EXACT HITTING SET.

In that result, although EXACT HITTING SET problem has different parameter, it

is easy to observe that the same reduction works for our parameter as well. From the

graph G, the MULTICOLOURED CLIQUE instance, they have constructed a EXACT

HITTING SET instance (V,E), such that G has a multicoloured clique of size k iff

(V,E) has an exact cover. Size of the exact cover in this reduction will be
(k

2

)
.

We are now going to discuss the following result.

Proposition 15. PERFECT CODE is w-reducible to SUBSET SUM.

Chapter 3. VC hierarchy classification 61

Proo f idea: The reduction corresponding to this result is done by Downey and

Fellows ([43], Lemma 4.4). We are briefly discussing that same reduction here which

is working with our different parameter as well. Let G(V,E) be a graph for which we

are interested to know if it has a perfect code of size k. Without loss of generality, in

this case we can consider that the vertex set of the graph V = { 0, . . . (n−1) }. We take

L = {x[i, j] | 1 ≤ i ≤ k, 0 ≤ j ≤ n−1} and the positive integer B, where

x[i, j] = (k+1)n+k−i + ∑u∈N[j] (k+1)u, B = ∑
n+k−1
t=0 (k+1)t

Here the objective is to construct the set of positive integers L such that L has a

subset of size k summing up to B if and only if G has a perfect code of size k. Basi-

cally we can view that the numbers of L are represented in base k+1. In this way the

correctness is easier to see. Parameter of both the problems are polynomially bounded

as the number of vertices in G is polynomially bounded in number of elements in the

set L. The proof idea is similar to what we have used to prove the w-reduction from

EXACT COVER to SUBSET SUM.

Proposition 16. INDEPENDENT SET is w-reducible to PERFECT CODE.

The reduction corresponding to the above proposition is shown by Downey and

Fellows. Though the parameter in their work was k instead of k.log(n), the same re-

duction works for us as well. Explicit proof can be found in [43] (Theorem 4.1).

We now define the following problem. We have already considered slightly differ-

ent variation of this problem and placed it into VC1 (k-CYCLE in section 3.2.1).

WEIGHTED K-CYCLE:

Input: A weighted graph G with m edges and n vertices, integer k and S.

Task: Decide whether there a cycle through k vertices of total cost S.

Parameter: k.log(n)

As we can see in the definition, in WEIGHTED K-CYCLE problem we try to find

a proper ordering of k vertices in a graph G(V,E), |V | = n, |E| = m, such that they

construct a cycle and total weight is a given value, say S. Parameter is k.log(n). A

k-cycle consists of k vertices in order. Now, whether a given k vertices are forming

k-cycle or not, can be easily verified in poly(k.log(n)) time. But to check if the total

cost is S or not, we need to sum the weights. That may not be done in poly(k.log(n))

Chapter 3. VC hierarchy classification 62

time. Hence, though we do not access the whole graph, we can not place this problem

into VC1 (same reason as SUBSET SUM, as explained in section 3.2.1). Now we can

observe the following result. (Reduction originally shown in [43].)

Proposition 17. SUBSET SUM is w-reducible to WEIGHTED K-CYCLE.

Proof. To prove the reduction let us consider a SUBSET SUM instance with the set S

= {x1,x2, . . . ,xt } and weight B. Now we construct a graph G as follows. For each

xi we construct two vertices ai and bi for the graph G. We join ai to bi with an edge

of weight xi. Let d is more than ∑
t
i=1 xi. We also join ai to b j when i 6= j and give

all such edges weight d. Now it is easy to see that the SUBSET SUM instance has a

subset with k elements of total sum B iff G has a cycle with 2k vertices of total weight

b = B + kd. Parameter for the SUBSET SUM instance is k.log(t) and the WEIGHTED

K-CYCLE instance is 2k.log(n). Clearly they are polynomially bounded to each other

as the number of vertices in G, n is polynomially bounded with number of elements in

set S, t. Hence the proof is done.

We have already defined the problems MAXIMUM SUBGRAPH MATCHING and

LARGEST COMMON SUBGRAPH (section 3.2.1). We are now going to see the follow-

ing relation between them.

LARGEST COMMON SUBGRAPH:

Input: Two graphs G = (V1, E1) and H = (V2, E2) and an integer k. Suppose n is the

maximum of the numbers of vertices in these two graphs.

Task: Decide whether there exist subsets V
′
1 ⊆V1 and V

′
2 ⊆V2 with |V ′1| = |V

′
2| = k such

that two vertex induced subgraphs G
′
= (V

′
1, E

′
1) and H

′
= (V

′
2, E

′
2) are isomorphic.

Parameter: k.log(n)

MAXIMUM SUBGRAPH MATCHING:

Input: Two directed graphs G = (V1, A1) and H = (V2, A2) and an integer k. Suppose n

is the maximum of the numbers of vertices in these two graphs.

Task: Decide whether there is a subset R⊆V1 ×V2 with |R| = k such that for all 〈u,u′〉,
〈v,v′〉 ∈ R, (u, v) ∈ A1 iff (u

′
, v
′
) ∈ A2.

Parameter: k.log(n)

Proposition 18. LARGEST COMMON SUBGRAPH is w-reducible to MAXIMUM SUB-

GRAPH MATCHING and both are in VC1.

From the definition it is easy to see that both the problems are quite similar, dif-

ference is, one problem is defined on directed graph and the other one is on undi-

rected graph. So putting directions (both ways) in the edges we can easily w-reduce

Chapter 3. VC hierarchy classification 63

a LARGEST COMMON SUBGRAPH problem instance to a MAXIMUM SUBGRAPH

MATCHING instance.

The proof of membership in the VC1 is easy as we can easily verify any witness in

poly(k.log(n)) time. (the idea is similar to the way we have proved that SUB-GRAPH

ISOMORPHISM ∈ VC1, section 3.2.1.)

In this context we like to point out that the subgraphs defined in both the problems

are actually vertex induced subgraphs. That is why just by removing directions, we

can not reduce a MAXIMUM SUBGRAPH MATCHING instance to a LARGEST COM-

MON SUBGRAPH instance. But if the problems are defined in terms of edge induced

subgraphs, reduction in that opposite direction works as well just by removing direc-

tions. We are not going to discuss that here. Rather, we are now going to consider the

problem WEIGHTED EXACT CNF SATISFIABILITY again with different parameter.

WEIGHTED EXACT CNF SATISFIABILITYn:

Input: A formula φ in CNF of size m over n variables, and an integer k (≤ n).

Task: Decide whether φ has a satisfying assignment of weight k (k variables are as-

signed to be True) such that exactly one literal in each clause is satisfied.

Parameter: k.log(n)

From the definitions, it is trivial to see that the problem WEIGHTED EXACT CNF

SATISFIABILITY is w-reducible to WEIGHTED EXACT CNF SATISFIABILITYn. We

are now going to prove the following.

Proposition 19. WEIGHTED EXACT CNF SATISFIABILITYn and EXACT HITTING

SET are w-reducible to each other.

Proof. Reduction from EXACT HITTING SET to the problem WEIGHTED EXACT

CNF SATISFIABILITYn is quite straight forward. Suppose we have a EXACT HIT-

TING SET instance, hypergraph (V,E) (|V | = n, |E| = m). For each vertex in V , we

simply take an input variable for our reduced formula φ in CNF . For each hyperedge

e in E, we construct a clause taking conjunction of variables corresponding to the ver-

tices in e. It is now easy to see that (V,E) has an exact hitting set of size k iff φ has

a satisfying assignment of weight k (k variables are assigned to be True) such that ex-

actly one literal in each clause is satisfied. Clearly the parameters for both the problem

instances are k.log(n).

Now we have to prove the reduction in the opposite direction. To do that, we define

a new problem as follows.

MONOTONE WEIGHTED EXACT CNFSAT:

Chapter 3. VC hierarchy classification 64

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are positive literals, and another variable k (≤ n).

Task: Decide whether φ has a satisfying assignment of weight k (k variables are as-

signed to be True) such that exactly one literal in each clause is satisfied.

Parameter: k.log(n)

Now we are going to show a w-reduction from the problem WEIGHTED EXACT

CNF SATISFIABILITYn to MONOTONE WEIGHTED EXACT CNFSAT. This proof

idea is inspired by the technique used by J. Flum and M. Grohe ([25], Lemma 7.5).

Let φ be a Boolean expression in conjunctive normal form consisting of l clauses

C1, C2, . . ., Cl with variables x1, x2, . . ., xn. We are going to construct another Boolean

formula φ
′

from φ with n
′

(polynomially bounded in n) number of variables such that,

φ is satisfiable with k number of variables assigned to be True with exactly one literal

in each clause satisfied iff φ
′

is also satisfiable with k
′

(polynomially bounded in k)

number of variables assigned to be True with exactly one literal in each clause satisfied.

In our construction of φ
′
, it will be conjunction of two different formulae. First formula

(ψ) will not be dependent on φ, but the second one (ψ
′
) will be. We have described the

constructions of these two formulae below.

To construct such new formula, we introduce two sets of new variables Xi, j (for i ∈
[k] and j ∈ [n]) and Yi, j, j′ (for i ∈ [k−1] and 1 ≤ j < j

′ ≤ n) with intending meanings

as below:

Xi, j : the ith variable set to be True is x j,

Yi, j, j′ : the ith variable set to be True is x j and the (i+1)th is x j′ .

So total number of variables n
′

are bounded by (k.n+(k−1)n(n−1)/2) which is

clearly polynomially bounded in n as k ≤ n.

We are now going to construct a new Boolean formula as conjunction of k Boolean

formulae as follows:

ψ = φ0 ∧ φ1 ∧ . . . ∧ φk−1 . . .(i)

where φ0 = (
∧k

i=1
∨

a∈Xi
a) ∧ (

∧k−1
i=1

∨
b∈Yi

b), Xi = {Xi, j| j ∈ [n]}, Yi = {Yi, j, j′ |1 ≤ j <

j
′ ≤ n}

φi =
∧

j∈[n](
∨

1≤ j1< j2≤n, j1 6= j(Xi, j ∨Yi, j1, j2)∧
∨

1≤ j1< j2≤n, j2 6= j(Xi+1, j ∨Yi, j1, j2)), i = 1,2,

. . ., k−1.

We claim that

Lemma 3. Let l1, l2, . . ., lk ∈ [n] be k distinct integers. Any assignment of weight

(2k−1) satisfying ψ with exactly one literal in each clause satisfied and setting X1,l1 ,

X2,l2 , . . ., Xk,lk to True, must set Y1,l1,l2 , Y2,l2,l3 , . . ., Yk−1,lk−1,lk to True.

Chapter 3. VC hierarchy classification 65

Proof. In φ0, we can see there are exactly 2k−1 clauses (corresponding to Xi, 1≤ i≤ k

and Yi, 1 ≤ i ≤ k−1). All of them are consists of different sets of input variables. So

clearly exactly one variable in each Xi and Yi should be True for any assignment of

weight (2k−1) satisfying ψ.

Let us now consider that Xi,li be the variable of Xi set to be True. For any such

fixed i ∈ [k−1], let Yi,l,m be the variable of Yi set to True. If l 6= li, then in φi the sub-

formula
∨

1≤ j1< j2≤n, j1 6= j(Xi, j ∨Yi, j1, j2) will not be satisfied. Similarly if m 6= li+1 the

sub-formula
∨

1≤ j1< j2≤n, j2 6= j(Xi+1, j∨Yi, j1, j2) will not be satisfied. Hence the lemma is

proved.

Now we will replace all the positive literals x j of the initial formula φ by the fol-

lowing disjunction:∨
i∈[k]Xi, j

and all the negative literals x̄ j by the following formula (which is basically disjunctions

of variables):∨
j1∈[n], j< j1 X1, j1 ∨ (

∨
i∈[k−1]

∨
j1, j2∈[n], j1< j< j2 Yi, j1, j2)∨

∨
j2∈[n], j> j2 Xk, j2 . . .(ii)

to construct the new Boolean formula ψ
′
.

It is easy to see that x j is True iff exactly one variable in the disjunction
∨

i∈[k]Xi, j is

True. But if x j is False, i.e., x̄ j is True, x j is either smaller (with respect to the ordering

of the variables of φ by their indices, x1, x2, . . ., xn) than the first variable set to be True

or between two consecutive variables set to be True or after the last variable set to be

True. The formula (ii) above captures this.

We present φ
′

= ψ ∧ ψ
′

as our final formula. We can see that in φ
′
, all the literals

are positive literals. Hence, it is a Monotone formula. From the above explanations we

can understand that φ is satisfiable with k variables assigned to be True with exactly

one literal in each clause satisfied iff φ
′
is also satisfiable with k

′
(k
′
= 2k−1) variables

assigned to be True with exactly one literal in each clause satisfied. The parameter of

the initial WEIGHTED EXACT CNF SATISFIABILITYn instance is k.log(n) where as

the parameter of the final instance is (2k−1)log(n
′
). So clearly it is a w-reduction.

Remaining part of the proof is again quite simple. Suppose we have a MONOTONE

WEIGHTED EXACT CNFSAT instance φ
′
with n

′
input variables. For each variable of

φ
′
, we construct a vertex of hypergraph (V,E), our final EXACT HITTING SET instance.

For each clause C in φ
′
, we construct a hyperedge for (V,E) containing the vertices

corresponding to the variables in C. It is now easy to see that (V,E) has an exact

hitting set of size k
′

iff φ
′

has a satisfying assignment of weight k
′

such that exactly

Chapter 3. VC hierarchy classification 66

one literal in each clause is satisfied. Clearly the parameters for both the problem

instances are k
′
.log(n

′
). Hence, we have finally proved that, WEIGHTED EXACT CNF

SATISFIABILITYn and EXACT HITTING SET are w-reducible to each other.

We have now seen all the w-reductions as presented in Figure 3.1. It is easy to

see from the diagram, if either INDEPENDENT SET or CLIQUE is complete for VC1,

all the problems except BALANCED COMPLETE BIPARTITE SUBGRAPH in the Figure

3.1 are hard for VC1.

In Theorem 9, we have already mentioned that CLIQUE is compression-complete

for VC1. Hence, we can conclude that all the above mentioned problems (except BAL-

ANCED COMPLETE BIPARTITE SUBGRAPH in the Figure 3.1), are hard for VC1. In

this context we like to discuss about the problem SUBSET SUM once again.

In section 3.2.1 we have mentioned why we can not place this problem into VC1.

In fact, we can not add k integers by a circuit of constant depth when the size of the

integers are not constant. Hence, we can not place them in VCt for any constant t. But

we can always add k integers by a binary tree of depth Ω(log(k)) where each node in

the tree is adding two integers. We can add two binary integers by a circuit of constant

depth (as integer addition is computable in AC0). Circuit representation of each node

do not need to be of constant size. Hence, it is easy to see that there is a straight

forward way to put this SUBSET SUM problem into VCK where size of the subset is k

and K = Ω(log(k)) (similar idea is used in [13], Section 2.6).

As can not place SUBSET SUM in VC1, we can not place Exact Cover and EX-

ACT HITTING SET in VC1 using the w-reductions mentioned above where both the

problems are w-reducible to SUBSET SUM. But we can see the following result.

Proposition 20. PERFECT CODE is VC1-complete.

It is already mentioned that this problem is VC1-hard. To show the completeness,

we have to show that PERFECT CODE ∈VC1. For that purpose we use the result proved

in [36]. But before that we need to define another problem.

NDTM HALTING:

Input: The code of a Turing machine M of size n, and an integer k.

Task: Decide whether M halts on the empty string in k steps.

Parameter: k.log(n)

Here the Turing machine may not have binary alphabet. Now we briefly discuss

the proof idea.

Chapter 3. VC hierarchy classification 67

Proo f idea: Reduction technique from PERFECT CODE to NDTM HALTING is

shown in [36] (Theorem 1). It is easy to see that this reduction can be directly used

to claim that PERFECT CODE is w-reducible to NDTM HALTING. On the other hand,

from the results in [14] (Theorem 3) it is easy to see that NDTM HALTING is VC1-

complete (it is better understandable from the detailed comparisons of different hierar-

chies in section 3.4). As all these above reductions are w-reductions, this result directly

follows from it.

As the parametric problems WEIGHTED EXACT CNF SATISFIABILITY and PER-

FECT CODE are w-reducible to each other (from Proposition 11) the above result im-

plies that WEIGHTED EXACT CNF SATISFIABILITY is also VC1-complete.

3.2.3 Problems in higher level of VC-hierarchy

We are now going to consider some of the problems in the higher level of VC-hierarchy

and show some hardness and completeness results. We have already worked with

the problem SET COVERkn before. Here we are considering the same problem with

different parameter. Here is the definitions of the problems we are interested in next.

SET COVER:

Input: A set X with |X | = n, a family of sets S with |S| = m where S ⊆℘(X) (℘()

denotes the power set) and an integer k.

Task: Decide whether there is a set cover of size k (a subset S∗ ⊆ S with
⋃

S∗ = X).

Parameter: k.log(m)

HITTING SET:

Input: A hypergraph (V , E) with |V | = n and |E| = m, and an integer k.

Task: Decide whether (V , E) has an hitting set of size k (a subset S ⊆ V such that |S|
= k and S∩ e 6= φ for all e ∈ E).

Parameter: k.log(n)

We are now going to place these problems in some higher level of VC-hierarchy

using the alternate definition of VC classification by Verification with Preprocessing

(Definition 28). There are few similar examples mentioned in [13] (Section 2.6) for

some other problems.

SET COVER ∈ VC3: In SET COVER problem a set X = {x1,x2, . . . ,xl} and a col-

lection S (of size m) of subsets of X is given to us. Question is, whether there is any

sub-collection S∗ of size k (|S∗| = k) of S such that each element in X is contained in

at least one subset in S∗. Sub-collection S∗ can be encoded in k.log(m) bits. Hence the

Chapter 3. VC hierarchy classification 68

witness of the problem, i.e., our parameter is K = k.log(m). So for every witness in S∗,

the verification algorithm tests that

∀xi ∈ X ∃s ∈ S∗ (xi ∈ s).

Verification of xi ∈ s can be done in following way: ∃y ∈ s (xi = y). ∀ translates to

AND gate over all xi in X . Similarly ∃ translates to OR gate over inputs from S∗ and

s as shown above. Two consecutive OR is translated into one OR level. (xi = y) is

tested by an AND over the bits of xi and y. So the overall depth of the circuit is now

3 (AND−OR−AND). Here the witness S∗ can be encoded in size poly(K). This

section of the circuit above is taking witness w as input according to the definition.

Remaining part of the circuit is taking the output after preprocessing according to the

Definition 28 and is of size polynomially bounded in instance size. Clearly the overall

size of the circuit is polynomially in the instance size as well (as all of X , xi, s and S∗

are polynomially bounded in input instance size). Hence, this NP parametric problem

SET COVER belongs to VC3.

Similar to the SET COVER problem, we can consider HITTING SET to be defined

in terms of set S and family of sets C and then place it in VC3 as described below.

HITTING SET ∈ VC3: In HITTING SET problem, we have a collection C of sub-

sets of finite set S and a positive integer k ≤ |S|. Question is, whether there is a subset

S
′ ⊆ S with |S′| = k such that S

′
contains at least one element from each subset in C.

Here |C| = m and |S| = n. Clearly the parameter is K = k.log(n). So the verification can

be done in the following way:

∀Si ∈C ∃xi ∈ S
′
(xi ∈ Si).

Verification of xi ∈ S
′

can be done in following way: ∃y ∈ S
′

(xi = y). ∀ translates to

AND gate over all Si in C and ∃ translates to OR gate over all xi and y as shown above.

Two consecutive OR is translated into one OR level. (xi = y) is tested by an AND over

the bits of xi and y. So the overall depth is now 3 (AND−OR−AND). Here S
′

can

be encoded in size poly(K). This section of the circuit above is taking witness w as

input according to the definition. Remaining part of the circuit is taking the output

after preprocessing according to the Definition 28 and is of size polynomially bounded

in instance size. Clearly the overall size of the circuit is polynomially bounded in the

instance size as well (as all of C, Si, xi and S
′

are polynomially bounded in input in-

stance size). So this NP parametric problemHITTING SET belongs to VC3.

It can be proved easily that the HITTING SET and SET COVER problems are w-

Chapter 3. VC hierarchy classification 69

reducible to each other. But we will come to the reductions later. We now define the

following problem.

HITTING STRING:

Input: A finite set A of binary strings, each of same length n.

Task: Decide whether there is a string x ∈ {0,1}∗ with |x| = n such that for each string

a ∈ A there is some j, 1 ≤ j ≤ n, for which jth symbol of a and the jth symbol of x are

identical.

Parameter: n

We can also prove the following for this problem.

HITTING STRING ∈ VC3: We can see the definition of the HITTING STRING

problem above. Clearly the parameter is |x| = n. So the verification can be done in the

following way:

∀a ∈ A ∃ j ∈ [1,n] (x j = a j).

∀ translates to AND gate over all a in A and ∃ translates to OR gate over all j. (x j = a j)

is tested by an AND over the bits of x j and a j. So the overall depth of the circuit is now

3 (AND−OR−AND). Here each x j is taking input from the witness x. This section of

the circuit is taking witness w as input according to the definition. Remaining part of

the circuit is taking the output after preprocessing according to the Definition 28 and

is of size polynomially bounded in instance size. Clearly the overall size of the circuit

is polynomially bounded in the instance size as well (as all of a, A and j are polynomi-

ally bounded in input instance size). So this NP parametric problem HITTING STRING

belongs to VC3.

We now define the following problem.

LONGEST COMMON SUBSEQUENCE:

Input: A finite set A of strings over the alphabet {0,1} and an integer k.

Task: Decide whether there is a common string of length k which is present in all the

strings of A as a sub-string.

Parameter: k

LONGEST COMMON SUBSEQUENCE ∈ VC3: In LONGEST COMMON SUBSE-

QUENCE problem, we have a finite set A of strings over the alphabet {0,1}. Let us

consider that |A| = m. Question is, whether there is a common string of length k which

is present in all the strings of A as a sub-string. Clearly k is the parameter. Suppose W

(of size k) is given as the witness. So the verification can be done in the following

way:

Chapter 3. VC hierarchy classification 70

∀wi ∈ A ∃v contained in wi such that ∀i ∈ |W | (v[i] = W [i]) ([i] denotes the value at ith

position).

∀ translates to AND gate over all wi and [|W |] and ∃ translates to OR gate over all v.

(v[i] = W [i]) is tested by an AND over the bits of v[i] and W [i]. So the overall depth is

now 3 (AND−OR−AND). Here in the circuit W can be encoded in size k. Remaining

part of the circuit is taking the output after preprocessing according to the Definition

28 and is of size polynomially bounded in instance size. Clearly the overall size of the

circuit is polynomially bounded in the instance size as well (as all of A, v and wi are

polynomially bounded in input instance size, total number of sub-strings from a given

string is also polynomially bounded in the length of the string). So this NP parametric

problem LONGEST COMMON SUBSEQUENCE belongs to VC3.

There are many such problems that can be placed in some level of VC hierarchy

using the technique described above. We have just discussed some of them. But this

approach gives just the upper bound of the problems in the hierarchy. To find the lower

bound, we have to find the hardness results that we are going to discuss gradually. Just

before finishing, we like to show how to place the problem Exact Cover in VC6.

EXACT COVER ∈ VC6: In Exact Cover problem a set X = {x1,x2, . . . ,xn} and a

collection S (|S | = m) of subsets of X is given to us. Question is, whether there is any

sub-collection S∗ of size k of S such that each element in X is contained in exactly one

subset in S∗. So the parameter is K = k.log(m). The verification need to check whether

each of the elements in X is assigned to a unique set in S∗ or not. So the verification

can be done in the following way:

∀xi ∈ X ∃s ∈ S∗ [(xi ∈ s)
∧
∀s′ ∈ S∗ [(s

′
= s)

∨
(xi /∈ s

′
)]].

Verification of xi ∈ s can be done in following way: ∃y ∈ s (xi = y). Verification of

xi /∈ s
′

can be done in following way: ∀z ∈ s
′

(xi 6= z). ∀ translates to AND gate over

all possible values of the variable z. Similarly ∃ translates to OR gate as shown in the

diagram (Figure 3.2). (xi = y) is tested by an AND over the bits of xi and y. Similarly

we can test (s
′
= s). The circuit is shown in Figure 3.2. Thick lines corresponding to

the OR and AND gates are for ∃ and ∀ respectively, as they are ANDing of ORing over

more than 2 inputs. Thin lines are used when we are taking OR or AND of exactly two

inputs. All gates are marked below to understand which one is doing what. Unmarked

gates are simply AND or OR of two inputs. So the overall depth considering alternating

AND and OR gates is 6.

Chapter 3. VC hierarchy classification 71

Figure 3.2: Verification circuit diagram for EXACT COVER

Here S∗ can be encoded in size poly(K). This section of the circuit above is taking

witness w as input according to the definition. Remaining part of the circuit is taking

the output after preprocessing according to the Definition 28 and is of size polyno-

mially bounded in instance size. Clearly the overall size of the circuit is polynomi-

ally bounded in the instance size as well (as all of X , s, s
′

and S∗ are polynomially

bounded in input instance size). So this NP parametric problemEXACT COVER be-

longs to VC6.

We are now going to prove the following.

Theorem 10. HITTING STRING is w-reducible to HITTING SET.

Proof. Suppose we have a HITTING STRING instance A containing m binary strings,

each of length n. Now for each string si ∈ A, 1 ≤ i ≤ m, we will create following n

elements (〈0〉,si[0]),(〈1〉,si[1]), . . . ,(〈n− 1〉,si[n− 1]) and put them in a set Si. Here

〈 j〉 (0 ≤ j ≤ n− 1) denotes the binary encoding of j and si[j] denotes the jth bit of

string si. We put all these Si (1 ≤ i ≤ m) into the set of hyperedges E for our reduced

HITTING SET instance. We also include following n sets into E, {(〈0〉,0),(〈0〉,1)},
{(〈1〉,0),(〈1〉,1)}, . . ., {(〈n−1〉,0),(〈n−1〉,1)}. It is easy to see that all these lastly

mentioned n sets are mutually exclusive. These n sets are constructed to ensure that

exactly one element from each such set can contribute to a hitting set of size n.

We construct V , the set of vertices for our reduced HITTING STRING instance, as

follows. V = {(〈 j〉,0),(〈 j〉,1)|0≤ j≤ n−1}. We can observe that |E| = m+n and |V |

Chapter 3. VC hierarchy classification 72

= 2n. It is now easy to see that the HITTING STRING instance A has a hitting string

of size n iff (V,E) has a hitting set of size n. Parameter for our reduced HITTING

SET instance instance is n.log(2n), which is clearly polynomially bounded in n, the

parameter for the HITTING STRING instance. Hence, the result is proved.

We are now going to show some completeness and hardness results for VC2. We

start with the definitions of the following two problems.

NAE-SAT:

Input: A formula φ in CNF with n variables.

Task: Decide whether φ has a satisfying assignments such that each clause of φ con-

tains at least one True and one False literal.

Parameter: n

SET SPLITTING:

Input: A set S of n elements and a collection C (|C | = m) of subsets of S.

Task: Decide whether there exists a partition of the set S into 2 subsets s1 and s2 (s1
⋃

s2 = S and s1
⋂

s2 = φ), such that none of the sets in C is contained in either of s1 and

s2.

Parameter: n

Now we prove the hardness result in the next lemma.

Lemma 4. SET SPLITTING is compression-hard for VC2.

Proof. We will show a w-reduction from SAT to SET SPLITTING to prove this result

as SAT is VC2-complete from the definition ([13]). Let us now consider that a SAT

instance φ over the variables x1, x2, . . ., xn is given to us. Let us also consider that c1,

c2, . . ., cl are the clauses of φ. Now we consider a separate variable y, other than x1,

x2, . . ., xn. We modify each clause ci as c
′
i = ci ∨ ¬y and introduce a new clause c

′
=

y. Now our modified formula φ
′

= c
′
1 ∧ c

′
2 ∧ . . . ∧ c

′
l ∧ c

′
. It is now easy to see that

to make φ
′

satisfiable y must be assigned to be True. So each of the clauses c
′
1, c

′
2,

. . ., c
′
l will contain at least one literal (i.e., ¬y) which is assigned to be False. Hence

the clauses c
′
1, c

′
2, . . ., c

′
l will satisfy the property of NAE-SAT but not the clause c

′
.

We can easily understand that φ is satisfiable iff φ
′

satisfiable and the reduction is w-

reduction. Because the parameter of the reduced instance, the number of variables is

increased by just one compared to the parameter of the given instance.

Now we consider the following construction of SET SPLITTING instance from φ
′
.

We construct a set S containing all the variables in the formula φ
′

and their negations.

Chapter 3. VC hierarchy classification 73

This S is the set to be split for our reduced SET SPLITTING instance. For each variable-

negation pair ((y, ¬y), (x1, ¬x1), (x2, ¬x2), . . ., (xn, ¬xn)) we make a subset. We

also construct a subset for each clause of φ
′
, containing elements corresponding to the

literals present into that clause, except the clause c
′
.

Now, if φ
′
has a satisfying assignment, we will put all the literals assigned to be True

in one set (say s1) and all the literals assigned to be False into other (say s2). It is now

easy to see that it is a valid set splitting where each subset contains at least one element

from both the sets s1 and s2. Now suppose, S can be split in the required way. We

take one part of the split set to represent True literals, the other False literals. We will

make the part containing y to be True. We can check that each subset must contain one

True element and one False element, which is exactly what the satisfiability problem

requires for the clauses c
′
1, c

′
2, . . ., c

′
l . The clause c

′
will be satisfiable as we have

chosen the part containing y to be True. Hence there exists a SET SPLITTING for S iff

φ
′

is satisfiable iff φ is satisfiable. Here the size of the parameter for SET SPLITTING

is (2n+ 2) which is polynomially bounded by the parameter size of the initial SAT

problem φ. So clearly the reduction described above is a w-reduction. Hence SET

SPLITTING is compression-hard for VC2.

Now we are going to discuss the following completeness result.

Theorem 11. SET SPLITTING is VC2-complete.

Proof. We have already shown the hardness result for the SET SPLITTING problem

in lemma 4. Now we are going to show that SET SPLITTING ∈ VC2 to prove this

theorem. We have already seen the problem definition. Parameter of the problem is n,

the number of elements in the set S. The containment of this problem in VC2 will be

shown in two steps. Firstly, w-reduction from SET SPLITTING to NAE-SAT and then

w-reduction from NAE-SAT to SAT.

Let us consider a SET SPLITTING instance (S,C). We now represent each Si ∈
C as a clause of a NAE-SAT instance φ, containing its members as literals. So the

elements, x1,x2, . . . ,xn are the variables here. Now we can easily observe that there

exists a Set Splitting for (S,C) iff φ is satisfiable with NAE-SAT property (because

variables in one split set will be assigned to be True and the other to be False). Besides,

the parameter size is also preserved. So clearly it is a w-reduction.

For proving the next part, let us consider an NAE-SAT instance φ. Now for each

clause ci we will construct another clause c
′
i in the following way: for each literal l

∈ ci we put ¬l in c
′
i. Now inserting all the new clauses into φ we will construct a

Chapter 3. VC hierarchy classification 74

new formula ψ. So ψ is twice in size with respect to φ. Both of them have the same

variables. We can easily see that ψ is satisfiable iff φ is NAE-satisfiable. So clearly this

is a w-reduction.

Hence we have proved that SET SPLITTING ∈ VC2 and the theorem follows.

We are working with the NAE-SAT problem for quite some time. It is now the

time to prove the completeness result for this problem. We have already shown a w-

reduction from NAE-SAT to SAT above in the final part of the proof for Theorem

11. It proves that NAE-SAT ∈ VC2 as SAT is VC2-complete from the definition

([13]). Besides, we have already shown a w-reduction from SET SPLITTING to NAE-

SAT above in the first part of the proof for Theorem 11. As SET SPLITTING is VC2-

complete from the above theorem, the above mentioned reduction proves that NAE-

SAT is VC2-hard. Combining them we can state the following theorem.

Theorem 12. NAE-SAT is VC2-complete.

We can find a direct reduction from SAT to NAE-SAT to show the hardness result

for NAE-SAT. We have used this technique later in chapter 4 (Theorem 25).

Theorem 13. SAT w-reducible to NAE-SAT.

Proof. Let us now consider a SAT instance φ over input variables x1, x2, . . ., xn. Let

us also consider that c1, c2, . . ., cl are the clauses of φ. Now we consider two separate

variables y and z, other than x1, x2, . . ., xn. We modify each clause ci as c
′
i = ci ∨ ¬y

and introduce a new clause c
′

= y ∨ z. Now our modified formula φ
′

= c
′
1 ∧ c

′
2 ∧ . . . ∧

c
′
l ∧ c

′
. Now we are going to prove that φ is satisfiable iff φ

′
is NAE-satisfiable.

Suppose φ is satisfiable. Now for any satisfying assignments to x1, x2, . . ., xn for φ,

we will use the same assignments for those variables in φ
′
. Next, we will assign y = 1

and z = 0. We can now see that φ
′
is NAE-satisfiable. So for any truth assignments for

φ there exists a truth assignments for φ
′
satisfying NAE-SAT property.

Now suppose φ
′

is NAE-satisfiable. So obviously either y = 1 and z = 0 or y = 0

and z = 1. If y = 1, we will use the same assignments of x1, x2, . . ., xn from φ
′

to φ. If

y = 0, we will invert the assignments to all the variables in φ
′
. We can understand that

still it is NAE-satisfiable. Now we will use the same procedure to assign x1, x2, . . ., xn

for φ as now y = 1. Clearly we have found a satisfying assignment for φ.

Here we can see that the parameter, the number of variables (for both the prob-

lems number of variables are the parameters), is increased by just two for the reduced

Chapter 3. VC hierarchy classification 75

instance. So the above reduction is w-reduction. Hence, SAT w-reducible to NAE-

SAT.

We are now going to consider a slightly different variation of the SET SPLITTING

problem.

SET SPLITTINGk:

Input: A set S of n elements and a collection C (|C | = m) of subsets of S.

Task: Decide whether there exists a partition of the set S into 2 subsets s1 and s2 (s1
⋃

s2 = S and s1
⋂

s2 = φ), such that none of the sets in C is contained in either of s1 and

s2.

Parameter: min{|s1|, |s2|}.log(n)

We prove the following hardness result for this problem.

Theorem 14. SET SPLITTINGk is VC2-hard.

It is easy to see that SET SPLITTING is trivially w-reducible to SET SPLITTINGk as

any witness of second problem instance can be encoded in bits polynomially bounded

in the parameter for the first problem instance. As SET SPLITTING is VC2-complete

(Theorem 11), the above argument shows that SET SPLITTINGk is VC2-hard.

The reduction used in lemma 4 can also be used to prove that SAT is w-reducible to

SET SPLITTINGk. The only difference is, the parameter for the final reduced instance

will be (n + 1).log(2n + 2) instead of 2n + 2. As SAT is VC2-complete from the

definition, in this way we can get an alternate proof for the above theorem. We can

also find a direct reduction from NAE-SAT to SET SPLITTINGk.

Theorem 15. NAE-SAT is w-reducible to SET SPLITTINGk

Proof. Let us consider that a NAE-SAT instance φ over variables x1, x2, . . ., xn is given

to us. We now consider the following construction of SET SPLITTINGk instance from

φ. We construct a set S containing all the variables in the NAE-SAT formula φ and

their negations. This S is the set to be split for our reduced SET SPLITTINGk instance.

For each variable-negation pair ((x1, ¬x1), (x2, ¬x2), . . ., (xn, ¬xn)) we construct a sub-

set. We also construct a subset for each clause, containing elements corresponding to

the literals present into that clause. We can observe that the set-to-be-split S can be

split in the desired way if and only if the formula φ has a required satisfying assign-

ment. Because, one part of the split set represents True literals, the other False literals.

Hence, we can check that each subset must contain at least one True element and one

False element, which is exactly what this NAE-SAT problem requires. Here the size

Chapter 3. VC hierarchy classification 76

of the parameter for the reduced SET SPLITTINGk instance is n.log(2n) which is poly-

nomially bounded in n, the parameter of the initial NAE-SAT problem instance. So

clearly the reduction described above is a w-reduction.

The reduction used above can also be used to show a direct w-reduction from NAE-

SAT to SET SPLITTING.

Now, we are going to use the technique of verification algorithm once again to

place the problem SET SPLITTINGk into VC4.

SET SPLITTINGk ∈ VC4: In SET SPLITTING problem a set S = {x1,x2, . . . ,xn}
and a collection C (|C | = m) of subsets of S is given to us. Question is, whether there

exists a partition of the set S into 2 subsets s1 and s2 (s1
⋃

s2 = S and s1
⋂

s2 = φ),

such that none of the subsets in C is contained in either of s1 and s2. Let us take our

parameter k = min{|s1|, |s2|}.log(n). Now, the verification can be done in the following

way:

∀Si ∈ C [(Si * s1)
∧

(Si * s2)]

The part (Si * s1) can be re-written as:

∃xi ∈ Si ∀y ∈ s1 (xi 6= y).

∀ translates to AND gate over all possible values of the variable y. Similarly ∃ trans-

lates to OR gate. (xi 6= y) can be tested by OR gate as shown in the diagram (Figure

3.3). So the above part will give a circuit of depth 3 as shown in the diagram. Similarly

we can re-write the section (Si * s2). Final ∀ will correspond to another AND gate

over all possible values of Si. Thick lines corresponding to the OR and AND gates are

for ∃ and ∀ respectively, as they are ANDing of ORing over more than 2 inputs. Thin

lines are used when we are taking OR or AND of exactly two variables. So the overall

depth considering alternating AND and OR gates is 4.

As all the terms C, s1, s2 and Si, used in the verification circuit are bounded polynomi-

ally in instance size, the over all size of the circuit is polynomially bounded in the size

of the input problem instance.

Here in the circuit, minimum of s1 and s2 can be encoded in size poly(k). This

section of the circuit above is taking witness w as input according to the definition.

Remaining part of the circuit is taking the output after preprocessing according to the

Definition 28 and is of size polynomially bounded in instance size. Hence, this NP

problem belongs to VC4.

Chapter 3. VC hierarchy classification 77

Figure 3.3: Verification circuit diagram for SET SPLITTINGk

SET SPLITTING, the same same problem as above but with larger parameter, is

already proved to be VC2-complete. Same problem with smaller parameter intuitively

looks more difficult to compression, though we can not prove anything specific for this

particular problem. But one can definitely try to prove that SET SPLITTINGk ∈ VC3 to

minimize the gap.

We are now going to define another quite popular parametric problem.

WEIGHTED CNF SATISFIABILITY:

Input: A formula φ in CNF with n variables, and an integer k.

Task: Decide whether φ is satisfiable by an assignment of Hamming weight k (an

assignment that assigns exactly k variables the Boolean value 1).

Parameter: k.log(n)

Proposition 21. WEIGHTED CNF SATISFIABILITY is VC2-hard.

Proof. SAT is already known to be VC2 complete [13]. So we are going to show a

w-reduction from SAT to WEIGHTED CNF SATISFIABILITY to prove the hardness

result. Let us consider a SAT instance φ with n variables. The parameter is n. Let

us consider x1, x2, . . ., xn to be those n variables of φ. Now we introduce another n

variables y1, y2, . . ., yn such that y1 = ¬x1, y2 = ¬x2, . . ., yn = ¬xn. Now we replace

all the negative literals of φ by corresponding y variable. After that we add following

clauses to the formula: (yi ∨ xi) ∧ (¬yi ∨ ¬xi) for all i = 1, 2, . . ., n to ensure the above

mentioned relations between x and y variables. Let us denote the resulting formula by

φ
′
. Clearly the number of variables of φ

′
is 2n. Now we take the weight k of the problem

WEIGHTED CNF SATISFIABILITY to be n. It is now easy to see that φ is satisfiable iff

Chapter 3. VC hierarchy classification 78

φ
′

is satisfiable with an assignment that assigns exactly k (= n) of its 2n variables the

Boolean value 1. The parameter for the WEIGHTED CNF SATISFIABILITY problem

is k.log(2n) = n.log(2n). So the reduction mentioned above is a w-reduction. Hence

WEIGHTED CNF SATISFIABILITY is VC2-hard.

We have already defined SET COVER and HITTING SET before and placed them

into VC3. Now we are going to consider them again and show the next result.

Proposition 22. SET COVER and HITTING SET are w-reducible to each other.

Proof. We will show this result by using the well known reductions between these two

problems (similar idea is already used to proof the Proposition 12). We are going to

see that those reductions are actually w-reduction.

HITTING SET to SET COVER: To show the w-reduction from HITTING SET to

SET COVER, let us consider a HITTING SET instance (V,E) and denote our reduced

SET COVER instance as (V
′
,E
′
). For each hyperedge e in E, we will take an element in

V
′
. Now we will construct a set corresponding to each vertex in the hypergraph (V,E),

containing the elements corresponding to the hyperedges which contain that vertex.

Collection of all those sets will be taken as E
′
. So clearly |V | = |E ′| and |V ′| = |E|. It is

now easy to see that (V,E) has a hitting set of size k iff (V
′
,E
′
) has a set cover of size

k. Parameter of both the problem instances are polynomially bounded in each other.

SET COVER to HITTING SET: Similarly, to show the w-reduction from SET

COVER to HITTING SET, let us consider an SET COVER instance (V
′
,E
′
) given to us

and denote the HITTING SET instance that we want to construct as (V,E). Correspond-

ing to each set in E
′
, we will construct a vertex in the hypergraph (V,E). Clearly |V | =

|E ′|. Now we will add hyperedges to it in the following way. For each element in V
′

we will add a hyperedge connecting vertices corresponding to the sets from E
′

where

the element is present. Hence, clearly |V ′| = |E|. It is now easy to see that (V,E) has a

hitting set of size k iff (V
′
,E
′
) has a set cover of size k. Parameter of both the problem

instances are polynomially bounded in each other.

Hence, SET COVER and HITTING SET are w-reducible to each other.

We now define the following problem.

DOMINATING SET:

Input: A graph G with n vertices, and an integer k.

Task: Decide whether G has a dominating set of size k (a set D of k vertices for which

every vertex not in D has a neighbour in D).

Parameter: k.log(n)

Chapter 3. VC hierarchy classification 79

Proposition 23. DOMINATING SET is w-reducible to SET COVER.

This proof is very much straight forward. For each vertex of a DOMINATING SET

instance G, we will take an element in the set X for the reduced SET COVER instance

(X ,S). Now for each vertex, we will construct a subset containing all the elements

corresponding to the neighbouring vertices as well as that vertex itself. Collection of

all those subsets will be taken as S. Clearly there is a dominating set of size k for G iff

there is a set cover of size k for (X ,S).

In [13], it is already shown that DOMINATING SET is in VC3. We are now going to

show the next result.

Proposition 24. HITTING SET and WEIGHTED CNF SATISFIABILITY are w-reducible

to each other.

Proof. This idea behind this proof is quite similar to what we have used in the proof

of the Proposition 19. Suppose we have a HITTING SET instance, hypergraph (V,E)

(|V | = n, |E| = m). For each vertex in V , we simply take an input variable for our

reduced formula φ in CNF . For each hyperedge e in E, we construct a clause taking

conjunction of variables corresponding to the vertices in e. It is now easy to see that

(V,E) has a hitting set of size k iff φ has a satisfying assignment such that k variables

are assigned to be True). Clearly the parameters for both the problem instances are

k.log(n).

Now to show the reduction in the opposite direction we will define the following

problem.

MONOTONE WEIGHTED CNFSAT:

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are positive literals, and another variable k (≤ n).

Task: Decide whether φ is satisfiable by an assignment of Hamming weight k (an

assignment that assigns exactly k variables the Boolean value 1).

Parameter: k.log(n)

Now, we can show that there is a w-reduction from WEIGHTED CNF SATISFIA-

BILITY to MONOTONE WEIGHTED CNFSAT. The idea behind this proof is inspired

by the technique used by J. Flum and M. Grohe ([25], Lemma 7.5). We have already

used that technique in the proof of Proposition 19 few times back. Exactly same reduc-

tion works here as well. (We will review this technique in detail once again in chapter

4.)

Chapter 3. VC hierarchy classification 80

Remaining part of the proof is again quite simple. Suppose we have a MONOTONE

WEIGHTED CNFSAT instance φ
′

with n
′

input variables. For each variable of φ
′
,

we construct a vertex of hypergraph (V,E), our final EXACT HITTING SET instance.

For each clause C in φ
′
, we construct a hyperedge for (V,E) containing the vertices

corresponding to the variables in C. It is now easy to see that (V,E) has a hitting set of

size k
′

iff φ
′

has a satisfying assignment of weight k
′
. Clearly the parameters for both

the problem instances are k
′
.log(n

′
). Hence, we have finally proved that, HITTING

SET and WEIGHTED CNF SATISFIABILITY are w-reducible to each other.

Downey and Fellows [42] (Theorem 2.1) has already shown a reduction from the

problem WEIGHTED CNF SATISFIABILITY to DOMINATING SET, but that reduction

is not w-reduction. Because, in that construction, number of vertices of the reduced

graph will depend on number of clauses of the initial formula. We will discuss about

that construction in more details later as that can be used to find a direct w-reduction

from WEIGHTED CNF SATISFIABILITY to SET COVER.

We are now going to define the following parametric problem which is very popular

in the domain of VLSI design and testing.

MINIMUM TEST SET:

Input: A set S with |S| = n, another set T ⊆ Pair(S) where Pair(S) denotes all the

distinct pairs of elements from S, a family of sets C with |C| = m where C ⊆℘(S) (℘()

denotes the power set), and an integer k.

Task: Decide whether there is a subset C ′ ⊆C with |C ′| = k, such that for every distinct

pair u and v from T , there exists a set c in C ′ such that either of u and v is present in c,

but not both.

Parameter: k.log(m)

We now prove the following.

Proposition 25. MINIMUM TEST SET and SET COVER are w-reducible to each other.

Proof. We are now going to show w-reductions from MINIMUM TEST SET to SET

COVER and vice versa.

We first show a w-reduction from MINIMUM TEST SET to SET COVER. For that,

we are going to consider all the distinct pairs of elements from T of the given MINI-

MUM TEST SET instance (S,T,C). We take this set of pairs as V for our reduced SET

COVER problem instance (V,E). So the number of elements in V is at most n(n−1)/2

when |S| = n. Now for each set Ci in C we construct a set Ei for the family of sets E.

Ei is containing elements from V corresponding to all (u,v) from T such that either

Chapter 3. VC hierarchy classification 81

of u and v is in Ci but not both. So the number of sets of E will be m when |C| = m.

Now it is easy to see that the MINIMUM TEST SET instance has a k-element test sets

iff the SET COVER instance has a k-element set cover. Parameter of both the problem

instances are clearly polynomially bounded with each other.

We are now going to show the w-reduction from SET COVER to MINIMUM TEST

SET. For that, we take an element x which is not present in V for our given SET

COVER instance (V,E). Now we take S for our reduced MINIMUM TEST SET problem

instance (S,T,C) as follows: S = V ∪ {x}. We take T =
⋃

vi∈V{vi,x}. We take C of

the MINIMUM TEST SET problem instance to be same as E of the given SET COVER

problem instance. So the number of elements of C will be m when |E| = m. Now it is

easy to see that the MINIMUM TEST SET instance has a k-element test sets iff the SET

COVER instance has a k-element set cover. Parameter of both the problem instances

are clearly polynomially bounded with each other.

Hence, MINIMUM TEST SET and SET COVER are w-reducible to each other.

We have seen some w-reductions recently. Let us represent them in a diagram as

follows.

In the diagram above, arrow from the problem A to B implies that there is a w-

reduction from problem A to B that we have considered. Now combining Proposition

21, 22, 24 and 25 we can see that (also clear from the diagram) WEIGHTED CNF

SATISFIABILITY, HITTING SET, MINIMUM TEST SET and SET COVER are VC2-hard

and belong to VC3.

3.3 Introduction to new complexity class VCE

We are now going to define a new complexity class with respect to a very popular

parametric problem that we have considered already, but with different parameter.

EXACT CNF-SAT:

Input: A formula φ in conjunctive normal form of size m over n variables.

Task: Is there any satisfying assignment for φ such that exactly one literal in each

Chapter 3. VC hierarchy classification 82

clause of φ is assigned to be True ?

Parameter: n

We are now defining a complexity class VCE as follows:

Definition 30. VCE is the class of parametric problems which are w-reducible to EX-

ACT CNF-SAT.

Harnik and Naor ([13]) have already pointed out that there are many natural prob-

lems present in VC1 and it is always interesting to further classify this VC1. Intro-

duction of this new class is primarily motivated by this. We are going to prove that

VCE is a subset of VC1. Hence, in this way we can further classify VC1. Besides, in

section 3.4 we are going to see that weighted and un-weighted version of satisfiability

problems are in different level of hierarchies. From Proposition 11 and 20 we already

know that the problem WEIGHTED EXACT CNF SATISFIABILITY is VC1-complete.

So, it is quite natural to define a new complexity class with respect to the un-weighted

version of the same problem.

Theorem 16. VCE ⊆ VC1

To prove Theorem 16, we will show a w-reduction from EXACT CNF-SAT to

WEIGHTED EXACT CNF SATISFIABILITY.

Proof. Let us consider a EXACT CNF-SAT instance φ with n variables. The parameter

is n. Let us consider x1, x2, . . ., xn to be those n variables of φ. Now we introduce

another n variables y1, y2, . . ., yn such that y1 = ¬x1, y2 = ¬x2, . . ., yn = ¬xn. Now

we replace all the negative literals of φ by corresponding y variable. Then we add

following clauses to the formula: (yi ∨ xi)∧(¬yi ∨ ¬xi) for all i = 1, . . ., n to ensure

the above mentioned relations between x and y variables. Let us denote the resulting

formula by φ
′
. Clearly the number of variables of φ

′
is 2n. Now we take the weight k

of WEIGHTED EXACT CNF SATISFIABILITY problem to be n. It is now easy to see

that φ is satisfiable with exactly one True literal in each clause iff φ
′

is satisfiable with

an assignment that assigns exactly k of its 2n variables the Boolean value 1 and makes

exactly one True literal in each clause of φ
′
. If the size of φ

′
is m, the parameter for the

reduced instance is k.log(m) = n.log(m). As log(m) is polynomially bounded in n, the

parameter of the input EXACT CNF-SAT instance φ, the reduction mentioned above

is a w-reduction. Hence, VCE ⊆ VC1.

We are now going to define some of the interesting decision problems and then

going to show that, they are eventually, VCE-complete.

Chapter 3. VC hierarchy classification 83

EXACT HITTING SETn:

Input: A hypergraph (V , E) with |V | = n and |E| = m.

Task: Decide whether (V , E) has an exact hitting set (a subset S ⊆ V such that |S∩ e|
= 1 for all e ∈ E).

Parameter: n

EXACT COVERn:

Input: A set V with |V | = n, a family of sets E with |E| = m where E ⊆℘(V) (℘()

denotes the power set).

Task: Decide whether there is an exact cover (a subset S ⊆ E of pairwise disjoint sets

with
⋃

S = V).

Parameter: m

Theorem 17. EXACT HITTING SETn and EXACT COVERn are VCE-complete.

Proof. We will prove this result by showing a series of reductions. We have already

used similar techniques to prove some different results in previous sections.

EXACT CNF-SAT to EXACT HITTING SETn: Suppose EXACT CNF-SAT in-

stance φ is given to us with n variables and l clauses. Corresponding to each variable

and its negation, we introduce one element in V for our reduced EXACT HITTING SETn

problem instance (V,E). So, there will be 2n elements in V . Corresponding to each

clause, we introduce one set in E which contains elements from V corresponding to the

literals in that clause. So each clause contribute to one set in E of our reduced EXACT

HITTING SETn problem instance. Besides, we introduce n new sets, containing xi and

x̄i in one set, for each i = 1,2, . . . ,n. All these new sets, along with the sets correspond-

ing to all the clauses, form the hyperedge set E of our reduced EXACT HITTING SETn

problem instance. It is now easy to see, φ is exactly satisfiable, iff (V,E) has a exact

hitting set. The parameter of the reduced problem 2n is also polynomially bounded

with respect to the initial one. Hence, it is a w-reduction.

EXACT HITTING SETn to EXACT CNF-SAT: This reduction is quite straight

forward. Suppose we have a EXACT HITTING SETn instance, hypergraph (V,E) (|V |
= n, |E| = m). For each vertex in V , we simply take an input variable for our reduced

formula φ in CNF . For each hyperedge e in E, we construct a clause taking conjunction

of variables corresponding to the vertices in e. It is now easy to see that (V,E) has an

exact hitting set iff φ has a satisfying assignment such that exactly one literal in each

clause is True. Clearly the parameters for both the problem instances are n and hence,

it is a w-reduction.

Chapter 3. VC hierarchy classification 84

EXACT HITTING SETn to EXACT COVERn: To show the w-reduction from EX-

ACT HITTING SETn to EXACT COVERn, let us consider a EXACT HITTING SETn

instance (V,E) and denote our reduced EXACT COVERn instance as (V
′
,E
′
). For each

hyperedge e in E, we will take an element in V
′
. Now we will construct a set corre-

sponding to each vertex in the hypergraph (V,E), containing the elements correspond-

ing to the hyperedges which contain that vertex. Collection of all those sets will be

taken as E
′
. So clearly |V | = |E ′| and |V ′ | = |E|. It is now easy to see that (V,E) has

an Exact hitting set iff (V
′
,E
′
) has an Exact cover. Parameter of both the problem

instances are polynomially bounded in each other.

EXACT COVERn to EXACT HITTING SETn: Similarly, to show the w-reduction

from EXACT COVERn to EXACT HITTING SETn, let us consider an EXACT COVERn

instance (V
′
,E
′
) given to us and denote the EXACT HITTING SETn instance that we

want to construct as (V,E). Corresponding to each set in E
′
, we will construct a vertex

in the hypergraph (V,E). Clearly |V | = |E ′|. Now we will add hyperedges to it in the

following way. For each element in V
′

we will add a hyperedge connecting vertices

corresponding to the sets from E
′

where the element is present. Hence, clearly |V ′| =
|E|. It is now easy to see that (V,E) has an Exact hitting set iff (V

′
,E
′
) has an Exact

cover. Parameter of both the problem instances are polynomially bounded in each

other.

From the above reductions, it can be concluded that both EXACT COVERn and

EXACT HITTING SETn are VCE-complete.

We are now going to define another interesting problem as follows to prove the

next completeness result.

EXACT TEST SET:

Input: A set S with |S| = n, another set T ⊆ Pair(S) where Pair(S) denotes all the

distinct pairs of elements from S, a family of sets C with |C| = m where C ⊆℘(S) (℘()

denotes the power set).

Task: Decide whether there is a subset C ′ ⊆ C , such that for every distinct pair u and

v from T , there exists exactly one set c in C ′ such that either of u and v is present in c,

but not both.

Parameter: m

Theorem 18. EXACT TEST SET is VCE-complete.

Proof. We will prove this result but showing w-reductions from EXACT TEST SET to

EXACT COVERn and vice versa.

Chapter 3. VC hierarchy classification 85

w-reduction from EXACT TEST SET to EXACT COVERn: Firstly, we are going

to consider all the distinct pairs of elements from T of the given EXACT TEST SET

instance (S,T,C). We take this set of pairs as V for our reduced EXACT COVERn

problem instance (V,E). So the number of elements in V is at most n(n−1)/2 when

|S| = n. Now for each set Ci in C we construct a set Ei for the family of sets E. Ei

is containing elements from V corresponding to all (u,v) from T such that either of u

and v is in Ci but not both. So the number of sets of E will be m when |C| = m. Now

it is easy to see that the EXACT TEST SET instance (S,T,C) has an exact test sets iff

the EXACT COVERn instance (V,E) has an exact cover. Parameter of both the problem

instances are clearly polynomially bounded with each other.

w-reduction from EXACT COVERn to EXACT TEST SET: Now, we take an

element x which is not present in V for our given EXACT COVERn instance (V,E). Now

we take S for our reduced EXACT TEST SET problem instance (S,T,C) as follows: S =

V ∪ {x}. We take T =
⋃

vi∈V{vi,x}. We take C of the EXACT TEST SET problem

instance to be same as E of the given EXACT COVERn problem instance. So the

number of elements of C will be m when |E| = m. Now it is easy to see that the

EXACT TEST SET instance (S,T,C) has an exact test sets iff the EXACT COVERn

instance (V,E) has an exact cover. Parameter of both the problem instances are clearly

polynomially bounded with each other.

From the above reductions, it can be concluded that EXACT TEST SET is VCE-

complete.

As VCE ⊆VC2, it is easy to understand that there is some w-reduction from EXACT

CNF-SAT to SAT. Now we are going to prove a direct w-reduction from EXACT

CNF-SAT to SAT. The trick used to prove this result is very simple and similar things

are used later to prove some more interesting results (chapter 4).

Proposition 26. EXACT CNF-SAT is w-reducible to SAT.

Proof. To prove this result, we consider a EXACT CNF-SAT instance φ (in conjunc-

tive normal form) with n variables (x1, x2, . . ., xn) and l clauses. We assume that its

clauses are C0, C1, . . ., Cl−1. We also consider that

Ci =
∨it−1

j=0 li, j, 0 ≤ i ≤ l−1.

It means, for 0 ≤ i ≤ l−1, any clause Ci is disjunctions of it literals.

Now we construct C
′
i corresponding to each Ci, 0 ≤ i ≤ l−1 as follows.

C
′
i = Ci ∧

∧
0≤p<q≤(it−1)(¯li,p∨ ¯li,q).

Chapter 3. VC hierarchy classification 86

It is easy to see that C
′
i is satisfiable iff exactly one literal in Ci is assigned to be

True.

Now we construct the new formula φ
′
as follows.

φ
′
=
∧l−1

i=0 C
′
i

It is easy to see that φ
′

is satisfiable iff exactly one literal in each clause of φ is

assigned to be True. The number of variables (parameter) in both φ and φ
′

are same.

Hence, EXACT CNF-SAT is w-reducible to SAT.

3.4 Comparison with existing hierarchy

There are some other related hierarchies that we are going to consider now. Let us

start with the definitions of these existing hierarchies. But before that, we consider the

following definitions.

For t ≥ 0 and d ≥ 1, we inductively define the following classes Γt,d and ∆t,d of

formulas following (as defined in [25]):

Γ0,d := {λ1∧ . . .∧λc : c ∈ [d] and λ1, . . . ,λc are literals },
∆0,d := {λ1∨ . . .∨λc : c ∈ [d] and λ1, . . . ,λc are literals },
Γt+1,d := {

∧
i∈I δi: I is a finite non-empty index set and δi ∈ ∆t,d for all i ∈ I},

∆t+1,d := {
∨

i∈I δi: I is a finite non-empty index set and δi ∈ Γt,d for all i ∈ I}.

From the definitions above we can see that, Γ1,3 is actually the set of all the 3-

CNF formulae, and Γ2,1 is nothing but the set of formulae in CNF . Given a class

of Boolean formula Φ, we consider Φ+, Φ− ⊆ Φ to denote the restrictions of Φ to

formulas containing only positive and negative literals, respectively (as introduced in

[14]). For any given Φ, let us consider the following two parametric problems:

Definition 31. Φ-WSAT (k.log(n)):

Input: A formula φ ∈ Φ over n input variables and an integer k (≤ n).

Membership: Decide whether φ has a satisfying assignment of weight k.

Parameter: k.log(n)

Definition 32. Φ-SAT (n) :

Input: A formula φ ∈ Φ over n input variables.

Membership: Decide whether φ has a satisfying assignment.

Parameter: n

Chapter 3. VC hierarchy classification 87

In particular, we will be focusing in Γ-WSAT (k.log(n)) and Γ-SAT (n) to see the

definitions of the following hierarchies as defined in [14].

Definition 33. Let t ≥ 1 be an integer. The classes WK[t] and MK[t] are defined by

– WK[t] := All the parametric problems w-reducible to
⋃

d∈N[Γt,d-WSAT (k.log(n))].

– MK[t] := All the parametric problems w-reducible to
⋃

d∈N[Γt,d-SAT (n)].

The relation between WK and MK hierarchies as shown in [14]:

Theorem 19. MK[1]⊆WK[1]⊆MK[2]⊆WK[2]⊆MK[3]⊆ . . .⊆ FPT .

In the original definitions for WK and MK hierarchies ([14]), there is no restriction

in the parameter choice for the problems. But in our VC-hierarchy the parameters can

be interpreted as the witness size for some natural NT M deciding the language. So if

we now restrict the parameters to be natural witness length in both the WK and MK

hierarchies, we can compare them with VC hierarchy as below. In the very first place

we can point out that, when parameters can be interpreted as the witness size for some

natural NT M deciding the language,

• MK[1] is the class containing the languages having polynomial size kernel. Hence,

it is same as our VC0.

• From the proof of Proposition 6 and Theorem 5, [14], we can see that WK[1]

and VC1 are equivalent.

Let us now try to find the relation between MK[t] and VCt for t ≥ 2. For that let us

consider the following definition.

Definition 34. DEPTHkFORMULASAT: For any k ≥ 2 consider the parametric prob-

lem called DEPTHkFORMULASAT:

Input: A formula φ of size m and depth at most k over n variables.

Membership: φ ∈ DEPTHkFORMULASAT if there exists a satisfying assignment to φ.

Parameter: n

In [13], it is already pointed out, how without loss of generality we can assume

that the top level Boolean operation for the given formula in the above definition can

be taken as AND operation. It is also easy to observe that SAT is VC2-complete

(as pointed out in [13]) as any depth 2 circuit is equivalent to CNF formula. From

Chapter 3. VC hierarchy classification 88

the Lemma 5, [14], we can eventually see that the problem DEPTHkFORMULASAT

is complete for MK[t]. But for constant depth, we can see that it is equivalent to

DEPTHkCIRCUITSAT (as for any out-degree more than one in the circuit, we can copy

that sub-circuit constant number of times to make sure that all the out-degrees in the

circuit is one, satisfying the property of a formula). So MK[t] = VCt , for all t ≥ 2.

Hence, restricting the parameter as the length of a natural witness and combining

Theorem 8 and 19 with above arguments, we can say,

Theorem 20. MK[1] = VC0 ⊆WK[1] = VC1 ⊆ MK[2] = VC2 ⊆WK[2] ⊆ MK[3] =

VC3 ⊆ . . .⊆ FPT .

From the above relations we can see that, weighted (to which WK hierarchy is

based on) and un-weighted (to which VC hierarchy is based on) variations of same

satisfiability problems are in different alternate levels with respect to the difficulty in

their instance compression.

Important Observation:
SET COVER (as well as HITTING SET) is already proved to be WK[2]-complete in

[14]. We have proved that these problems are VC2-hard and present in VC3 (= MK[3]).

From the relation mentioned above (specifically, VC2 ⊆WK[2] ⊆ VC3 = MK[3]), we

can see that WEIGHTED CNF SATISFIABILITY, HITTING SET, MINIMUM TEST SET

and SET COVER are not VC3-complete unless WK and MK hierarchies coincide with

each other at level 3 of MK-hierarchy. Besides, DOMINATING SET is also proved to be

WK[2]-complete in [14] together with WEIGHTED CNF SATISFIABILITY, HITTING

SET, and SET COVER. It implies that all these above mentioned problems (WEIGHTED

CNF SATISFIABILITY, HITTING SET, and SET COVER) are w-reducible to DOMI-

NATING SET, which we could not show before. On the other hand, we can see that

MINIMUM TEST SET is WK[2]-complete which is not shown in [14]. In this way,

work for either of the hierarchies can help to find new results for all of them.

Chapter 3. VC hierarchy classification 89

3.5 Appendix: Definitions of the NP parametric prob-

lems we have considered

NP languages in parametric form:

ANTIMONOTONE WEIGHTED 2-CNF SATISFIABILITY

Input: A formula φ in 2-CNF (each clause contains 2 literals) with n input variables

where all the literals in φ are negative literals, and an integer k.

Task: Decide whether φ is satisfiable by an assignment of Hamming weight k (an

assignment that assigns exactly k variables the Boolean value 1).

Parameter: k.log(n)

BALANCED COMPLETE BIPARTITE SUBGRAPH:

Input: A Bipartite graphs G = (V , E) with n vertices and an positive integer k ≤ |V |.
Task: Decide whether there are two disjoint independent sets V1, V2 ⊆V such that |V1|
= |V2| = k and u ∈ V1, v ∈ V2 implies that {u,v} ∈ E.

Parameter: k.log(n)

BINARY NDTM HALTING:

Input: The code of a Turing machine M of size n with a binary alphabet, and an integer

k.

Task: Decide whether M halts on the empty string in k steps.

Parameter: k.log(n)

CLIQUE:

Input: A graph G with n vertices, and an integer k.

Task: Decide whether G has a clique of size k (a pairwise adjacent subset of k vertices).

Parameter: k.log(n)

DEPTHkCIRCUITSAT:

Input: A circuit C of size m and depth at most k over n variables, k ≥ 2.

Task: Decide if there exists a satisfying assignment to C.

Parameter: n

DEPTHkFORMULASAT:

Input: A formula φ of size m and depth at most k over n variables, k ≥ 2.

Task: Decide if there exists a satisfying assignment to φ.

Parameter: n

DOMINATING SET:

Input: A graph G with n vertices, and an integer k.

Task: Decide whether G has a dominating set of size k (a set D of k vertices for which

Chapter 3. VC hierarchy classification 90

every vertex not in D has a neighbour in D).

Parameter: k.log(n)

EXACT CNF-SAT:

Input: A formula φ in conjunctive normal form of size m over n variables.

Task: Is there any satisfying assignment for φ such that exactly one literal in each

clause of φ is assigned to be True ?

Parameter: n

EXACT COVER:

Input: A set V with |V | = n, a family of sets E with |E| = m where E ⊆℘(V) (℘()

denotes the power set).

Task: Decide whether there is an exact cover S ⊆ E for V (Exact cover is a subset S ⊆
E of pairwise disjoint sets with

⋃
S = V).

Parameter: |S|.log(m)

EXACT COVERn:

Input: A set V with |V | = n, a family of sets E with |E| = m where E ⊆℘(V) (℘()

denotes the power set).

Task: Decide whether there is an exact cover (a subset S ⊆ E of pairwise disjoint sets

with
⋃

S = V).

Parameter: m

EXACT HITTING SET:

Input: A hypergraph (V , E) with |V | = n and |E| = m.

Task: Decide whether (V,E) has an exact hitting set S⊆V (Exact hitting set is a subset

S ⊆ V such that |S∩ e| = 1 for all e ∈ E).

Parameter: |S|.log(n)

EXACT HITTING SETn:

Input: A hypergraph (V , E) with |V | = n and |E| = m.

Task: Decide whether (V , E) has an exact hitting set (a subset S ⊆ V such that |S∩ e|
= 1 for all e ∈ E).

Parameter: n

EXACT TEST SET:

Input: A set S with |S| = n, another set T ⊆ Pair(S) where Pair(S) denotes all the

distinct pairs of elements from S, a family of sets C with |C| = m where C ⊆℘(S) (℘()

denotes the power set).

Task: Decide whether there is a subset C ′ ⊆ C , such that for every distinct pair u and

v from T , there exists exactly one set c in C ′ such that either of u and v is present in c,

Chapter 3. VC hierarchy classification 91

but not both.

Parameter: m

GRAPH ISOMORPHISM:

Input: Two graphs G = (V1, E1) and H = (V2, E2) both with n vertices.

Task: Decide whether G and H are isomorphic to each other.

Parameter: n

HITTING SET:

Input: A hypergraph (V , E) with |V | = n and |E| = m, and an integer k.

Task: Decide whether (V , E) has an hitting set of size k (a subset S ⊆ V such that |S|
= k and S∩ e 6= φ for all e ∈ E).

Parameter: k.log(n)

HITTING STRING:

Input: A finite set A of binary strings, each of same length n.

Task: Decide whether there is a string x ∈ {0,1}∗ with |x| = n such that for each string

a ∈ A there is some j, 1 ≤ j ≤ n, for which jth symbol of a and the jth symbol of x are

identical.

Parameter: n

INDEPENDENT SET:

Input: A graph G with n vertices, and an integer k.

Task: Decide whether G has an independent set of size k (a pairwise non-adjacent

subset of k vertices).

Parameter: k.log(n)

k-COLOURABILITY PROBLEM:

Input: A graph G(V,E) with n vertices, and an integer k.

Task: Decide whether G is k colourable.

Parameter: n.log(k)

k-CYCLE:

Input: A graph G with n vertices, and an integer k.

Task: Decide whether G has a cycle of length k.

Parameter: k.log(n)

LARGEST COMMON SUBGRAPH:

Input: Two graphs G = (V1, E1) and H = (V2, E2) and an integer k. Suppose n is the

maximum of the numbers of vertices in these two graphs.

Task: Decide whether there exist subsets V
′
1 ⊆V1 and V

′
2 ⊆V2 with |V ′1| = |V

′
2| = k such

that two vertex induced subgraphs G
′
= (V

′
1, E

′
1) and H

′
= (V

′
2, E

′
2) are isomorphic.

Chapter 3. VC hierarchy classification 92

Parameter: k.log(n)

LOCALCIRCUITSAT:

Input: A string x of length m and a circuit C over (k + k.log m) variables and of size

O(k+ k.log m).

Task: Decide whether there exists a list I of k locations in x such that C(x(I), I) = 1.

Parameter: k + k.log m

LONGEST COMMON SUBSEQUENCE:

Input: A finite set A of strings over the alphabet {0,1} and an integer k.

Task: Decide whether there is a common string of length k which is present in all the

strings of A as a sub-string.

Parameter: k

MAX CUT:

Input: A weighted graph G(V,E) with m edges and n vertices, an integer B.

Task: Decide whether there exists a subset V
′ ⊆ V such that the total size of the cut

(sum of weights of edges between vertex sets V
′
and V −V

′
) is ≥ B.

Parameter: |V ′|.log(n)

MAXIMUM SUBGRAPH MATCHING:

Input: Two directed graphs G = (V1, A1) and H = (V2, A2) and an integer k. Suppose n

is the maximum of the numbers of vertices in these two graphs.

Task: Decide whether there is a subset R⊆V1 ×V2 with |R| = k such that for all 〈u,u′〉,
〈v,v′〉 ∈ R, (u, v) ∈ A1 iff (u

′
, v
′
) ∈ A2.

Parameter: k.log(n)

MINIMUM TEST SET:

Input: A set S with |S| = n, another set T ⊆ Pair(S) where Pair(S) denotes all the

distinct pairs of elements from S, a family of sets C with |C| = m where C ⊆℘(S) (℘()

denotes the power set), and an integer k.

Task: Decide whether there is a subset C ′ ⊆ C with |C ′| = k, such that for every distinct

pair u and v from T , there exists a set c in C ′ such that either of u and v is present in c,

but not both.

Parameter: k.log(m)

MONOTONE WEIGHTED CNFSAT:

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are positive literals, and another variable k (≤ n).

Task: Decide whether φ is satisfiable by an assignment of Hamming weight k (an

assignment that assigns exactly k variables the Boolean value 1).

Chapter 3. VC hierarchy classification 93

Parameter: k.log(n)

MONOTONE WEIGHTED EXACT CNFSAT:

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are positive literals, and another variable k (≤ n).

Task: Decide whether φ has a satisfying assignment of weight k (k variables are as-

signed to be True) such that exactly one literal in each clause is satisfied.

Parameter: k.log(n)

MULTICOLOURED CLIQUE:

Input: A graph G = (V , E) with |V | = n, an integer k and a colouring function c : V →
[k].

Task: Decide whether G has a multicoloured clique of size k (a clique containing

exactly one vertex of each colour).

Parameter: k.log(n)

MULTICOLOURED WEIGHTED CNF SATISFIABILITY:

Input: A formula φ in CNF with n variables, an integer k and a colouring function c :

X → [k].

Task: Decide whether φ is satisfiable by an multicoloured assignment of Hamming

weight k (an assignment where no two variables of same colour are assigned to 1).

Parameter: k.log(n)

NAE-SAT:

Input: A formula φ in CNF with n variables.

Task: Decide whether φ has a satisfying assignments such that each clause of φ con-

tains at least one True and one False literal.

Parameter: n

NDTM HALTING:

Input: The code of a Turing machine M of size n, and an integer k.

Task: Decide whether M halts on the empty string in k steps.

Parameter: k.log(n)

PARTITION:

Input: A set S of m non-negative integers.

Task: Decide whether there is a set S
′ ⊆ S such that, ∑a∈S′ a = ∑a∈S−S′ a.

Parameter: (min(|S′|, |S−S
′|)).log(m)

PERFECT CODE:

Input: A graph G(V,E) with n vertices.

Task: Decide whether G has an Perfect Code V
′ ⊆ V (a set of vertices V

′ ⊆ V with

Chapter 3. VC hierarchy classification 94

the property that for each vertex u ∈ V there is precisely one vertex in N[u] ∩ V
′
.

N[u] denotes the set containing vertex u and its neighbours, also known as closed

neighbourhood.)

Parameter: |V ′|.log(n)

SAT:

Input: A formula φ in CNF with n variables.

Task: Decide whether φ is satisfiable.

Parameter: n

SET COVER:

Input: A set V with |V | = n, a family of sets E with |E| = m where E ⊆℘(V) (℘()

denotes the power set) and an integer k.

Task: Decide whether there is a set cover of size k (a subset S ⊆ E with
⋃

S = V).

Parameter: k.log(m)

SET COVERkn:

Input: A set V with |V | = n, a family of sets E with |E| = m where E ⊆℘(V) (℘()

denotes the power set) and an integer k.

Task: Decide whether there is a set cover of size k (a subset S ⊆ E with
⋃

S = V).

Parameter: kn

SET PACKING:

Input: A set V with |V | = n, a family of sets E with |E| = m where E ⊆℘(V) (℘()

denotes the power set) and an integer k.

Task: Decide whether there is a set packing of size k (a subset S ⊆ E such that, for all

distinct pair of sets S1, S2 ∈ S, S1 and S2 are mutually exclusive).

Parameter: k.log(m)

SET SPLITTING:

Input: A set S of n elements and a collection C (|C | = m) of subsets of S.

Task: Decide whether there exists a partition of the set S into 2 subsets s1 and s2 (s1
⋃

s2 = S and s1
⋂

s2 = φ), such that none of the sets in C is contained in either of s1 and

s2.

Parameter: n

SET SPLITTINGk:

Input: A set S of n elements and a collection C (|C | = m) of subsets of S.

Task: Decide whether there exists a partition of the set S into 2 subsets s1 and s2 (s1
⋃

s2 = S and s1
⋂

s2 = φ), such that none of the sets in C is contained in either of s1 and

s2.

Chapter 3. VC hierarchy classification 95

Parameter: min{|s1|, |s2|}.log(n)

SUB-GRAPH ISOMORPHISM:

Input: Two graphs G = (V1, E1) with n vertices, and H = (V2, E2) with k vertices.

Task: Decide whether G contains a subgraph isomorphic to H (a subset V ⊆ V1 and a

subset E ⊆ E1 such that |V | = |V2|, |E| = |E2|, and there exist a one-to-one function f :

|V2| → |V | satisfying {u,v} ∈ E2 iff { f (u), f (v)} ∈ E).

Parameter: k.log(n)

SUBSET SUM:

Input: A set S of m non-negative integers, and another integer B.

Task: Decide whether there is a subset S
′ ⊆ S such that the summation of all the

elements is S
′
is B.

Parameter: |S′|.log(m)

VERTEX COVER:

Input: A graph G(V,E) with n vertices, and an integer k.

Task: Decide if there is a vertex cover (a set D⊆V , such that for every edge {u,v} ∈
E, either u or v are in D) of size k in G.

Parameter: k.log(n)

WEIGHTED 3-CNF SATISFIABILITY

Input: A formula φ in 3-CNF (each clause contains at most 3 literals) with n input

variables, and an integer k.

Task: Decide whether φ is satisfiable by an assignment of Hamming weight k (an

assignment that assigns exactly k variables the Boolean value 1).

Parameter: k.log(n)

WEIGHTED CNF SATISFIABILITY:

Input: A formula φ in CNF with n variables, and an integer k.

Task: Decide whether φ is satisfiable by an assignment of Hamming weight k (an

assignment that assigns exactly k variables the Boolean value 1).

Parameter: k.log(n)

WEIGHTED EXACT CNF SATISFIABILITY:

Input: A formula φ in CNF of size m, and an integer k.

Task: Decide whether φ has a satisfying assignment of weight k (k variables are as-

signed to be True) such that exactly one literal in each clause is satisfied.

Parameter: k.log(m)

WEIGHTED EXACT CNF SATISFIABILITYn:

Input: A formula φ in CNF of size m over n variables, and an integer k (≤ n).

Chapter 3. VC hierarchy classification 96

Task: Decide whether φ has a satisfying assignment of weight k (k variables are as-

signed to be True) such that exactly one literal in each clause is satisfied.

Parameter: k.log(n)

WEIGHTED K-CYCLE:

Input: A weighted graph G with m edges and n vertices, integer k and S.

Task: Decide whether there a cycle through k vertices of total cost S.

Parameter: k.log(n)

Chapter 4

Counting hierarchy with respect to

Compression

We have considered several parametric problems so far. They are basically decision

problems. That means, answer to those problems are either True or False. In this chap-

ter we have defined parametric counting problems and a counting hierarchy depending

on the notion of instance compression. After the #P-completeness results for Perma-

nent by L. G. Valiant [33], counting problems gained a lot of interests in the field of

complexity theory. We have considered them more formally in parametric form and

defined classification of them with respect to compression. We have extended both

VC and WK hierarchy here for counting versions and compared them. Other than the

classification of some of the interesting counting problems in hierarchical complexity

classes, we have also considered a large varieties of circuit satisfiability problems (e.g.

weighted monotone satisfiability, exact satisfiability etc.) and studied their behaviour

with respect to this notion of compression.

4.1 Definitions and other important notions

Definition 35. Parametric relation: A parametric relation is a subset of { 〈x, y, 1n〉
| x ∈ {0,1}∗, y ∈ {0,1}n, n ∈ N }. The term n is known as the parameter and y is

known as a witness of the problem.

Definition 36. Parametric counting problem: Suppose R ⊆ { 〈x, y, 1n〉 | x ∈ {0,1}∗,
y ∈ {0,1}n, n ∈ N } is a parametric relation. A parametric counting problem corre-

sponding to R is a function F : {0,1}∗ × N→ N such that F(x,n) = |{y | 〈x,y,1n〉 ∈
R}|.

97

Chapter 4. Counting hierarchy with respect to Compression 98

Similarly, we can define Parametric relation and Parametric counting problem cor-

responding to any alphabet Σ, not just {0,1}.
A Parametric counting problem F is said to be in #P if corresponding parametric

relation R is polynomially computable in size of x.

Definition 37. Let F : Σ∗ × N → N and G : Π∗ × N → N be parametric counting

problems.

A weakly parametric w-parsimonious reduction from F to G consists of a pair of poly-

nomial time computable functions σ : Σ∗ × N→ Π∗ × N and τ : Σ∗ × N→ N such

that F(x,n) = τ(x,G(σ(x,n))) and if (y, l) = σ(x,n), l is polynomially bounded in n.

A parametric w-parsimonious reduction is called strong if F(x,n) = G(σ(x,n)) (i.e.,

τ(x,G(σ(x,n))) = G(σ(x,n))).

We write F ≤w
pars G to denote that there is a strongly parametric w-parsimonious

reduction from F to G. The weaker version is denoted by ≤w
′

pars.

Definition 38. Let F : Σ∗ × N → N and G : Π∗ × N → N be parametric counting

problems.

A parametric w-T -reduction from F to G is an algorithm with an oracle for G that

solves any instance (x,n) of F in time polynomially bounded in |x| in such a way that

for all oracle queries the instances (y, l) satisfy the condition that l is polynomially

bounded in n.

We write F ≤w
T G to denote that there is a parametric w-T -reduction from F to G.

Analogous to weakly parametric w-parsimonious reduction, we can interpret para-

metric w-T -reduction from F to G by pair of algorithms (σ,τ). The difference for

parametric w-T -reduction is, in this case the algorithm τ (which is now the algorithm

with an oracle for G as in Definition 38) can make queries to oracle for G multiple

times (polynomial in input problem size). Besides, for all such oracle queries for G,

the instances (y, l) satisfy the condition that l is polynomially bounded in n where n is

the parameter of the input problem instance. Thus, it is easy to see that if F ≤w
′

pars G or

F ≤w
pars G, then F ≤w

T G. Hence we can summarize the relations among different type

of counting reductions as follows,

F ≤w
pars G⇒ F ≤w

′

pars G and F ≤w
′

pars G⇒ F ≤w
T G

Definition 39. #DEPTHt CIRCUITSAT: For any t ≥ 2 consider the counting problem

called #DEPTHt CIRCUITSAT:

Input: A circuit C of size m and depth at most t over n variables.

Chapter 4. Counting hierarchy with respect to Compression 99

Parameter: n

Task: How many satisfying assignments are there for C ?

Definition 40. #LOCALCIRCUITSAT:

Input: A string x of length m and a circuit C over (n + n.log m) variables and of size

O(n+n.log m).

Parameter: (n+n.log m)

Task: How many lists I of n locations in x is there such that C(〈x(I), I〉) = 1 ?

Definition 41. Weakly-Parsimonious Compression for counting problem: Any #P

parametric counting problem F : Σ∗ × N → N is called Weakly-Parsimonious com-

pressible if there are polynomial-time computable functions f : Σ∗ ×N→Π∗ ×N and

τ : Σ∗ × N→ N, such that for each x ∈ Σ∗ and n ∈ N, if f (x,n) = (y, l), both |y| and

l are polynomially bounded in n and F(x,n) = τ(x,G(f (x,n))) for some parametric

counting problems G : Π∗ × N→ N.

Definition 42. Turing Compression for counting problem: Any #P parametric count-

ing problem F : Σ∗ × N→ N is called Turing compressible if there is a polynomial-

time computable algorithm with an oracle for G for some counting problem G : Π∗

× N→ N that can solve any instance (x,n) of F in time polynomially bounded in |x|
in such a way that for all oracle queries, the instances (y, l) satisfy the condition that

both y and l are polynomially bounded in n.

Similarly, it is easy to see that if any counting problem is Weakly-Parsimonious

compressible, it is also Turing compressible. But the opposite may not be true.

Theorem 21. If there is a parametric w-T -reduction from F to G and G is Turing

compressible, F is also Turing compressible.

Proof. To prove this result we will describe a Turing compression algorithm for the

counting problem F . Suppose that A is the algorithm with an oracle for G that can

solve any F instance (x,n). So A is the w-T -reduction from F to G. We also assume

that B is the Turing compression algorithm with an oracle for H for some counting

problem H, that can solve any instance (y, l) of G in time polynomially bounded in

|y| in such a way that for all oracle queries, the instances (z,k) satisfy the condition

that both z and k are polynomially bounded in l. Hence, B is the Turing compression

algorithm for G.

We are now going to describe another compression algorithm with an oracle for

H for some counting problem H which will solve any instance (x,n) of F in time

Chapter 4. Counting hierarchy with respect to Compression 100

polynomially bounded in |x| in such a way that for all oracle queries, the instances

(z,k) satisfy the condition that both z and k are polynomially bounded in n. This com-

pression algorithm will work as follows. To solve any (x,n) of F , this algorithm will

follow the steps of algorithm A. Whenever algorithm A needs to make an oracle query

for a G instance (y, l), our compression algorithm will follow the steps of algorithm

B to solve the G instance (y, l). To solve this G instance (y, l), similar to algorithm

B, our compression algorithm will also make oracle quarries (oracle for H for some

counting problem H) such that for all those oracle queries the instances (z,k) satisfy

the condition that both z and k are polynomially bounded in l. As A is a w-T -reduction

from F to G, we know that l is polynomially bounded in n and also |y| is polynomially

bounded in |x|. Hence, both z and k are polynomially bounded in n. So, our algo-

rithm with an oracle for H can solve any instance (x,n) of F where for all the queries

for the instances (z,k), both z and k are polynomially bounded in n. As runtime of

algorithm A is polynomially bounded in |x| and algorithm B is polynomially bounded

in |y|, runtime of our compression algorithm is also polynomially bounded in |x| (as

|y| is polynomially bounded in |x|). Hence, F is Turing compressible and the result is

proved.

From the above proof, it is also easy to understand that If there is a parametric w-

T -reduction from F to G and another parametric w-T -reduction from G to H, there

is a parametric w-T -reduction from F to H. Similarly, we can also prove that, if

there is a weakly parametric w-parsimonious reduction from F to G and G is Weakly-

Parsimonious compressible, F is also Weakly-Parsimonious compressible.

Definition 43. #VC0 is the class of those #P parametric counting problems F : Σ∗ ×
N→ N which are Turing compressible.

We are now going to introduce a new hierarchy for parametric counting problems.

Definition 44. For t ≥ 2, #VCt is the class of counting problems that are parametric

w-T -reducible to #DEPTHt CIRCUITSAT. #VC1 is the class of all parametric counting

problems that are parametric w-T -reducible to #LOCALCIRCUITSAT.

Similar to its decision counterpart, we can also prove that,

Theorem 22. #VC0 ⊆ #VC1 ⊆ #VC2 ⊆ . . .⊆ #VCpoly(m).

The original proof for VC-hierarchy ([13]) is strongly parsimonious and work for

analogous counting problems as well.

Chapter 4. Counting hierarchy with respect to Compression 101

We are now going to define the counting hierarchy corresponding to another exist-

ing hierarchy.

For t ≥ 0 and d ≥ 1, we inductively define the following classes Γt,d and ∆t,d of

formulas following [25]:

Γ0,d := {λ1∧ . . .∧λc : c ∈ [d] and λ1, . . . ,λc are literals },
∆0,d := {λ1∨ . . .∨λc : c ∈ [d] and λ1, . . . ,λc are literals },
Γt+1,d := {

∧
i∈I δi: I is a finite non-empty index set and δi ∈ ∆t,d for all i ∈ I},

∆t+1,d := {
∨

i∈I δi: I is a finite non-empty index set and δi ∈ Γt,d for all i ∈ I}.
Thus, it is easy to understand that Γ1,3 is the set of all the 3-CNF formulae, and Γ2,1

is nothing but the set of formulae in CNF . Now for any t ≥ 2, we define the following

problem.

Definition 45. #Γt,1-WSAT: For any t ≥ 2 consider the counting problem called

#Γt,1-WSAT:

Input: A formula φ over n variables of size m where φ ∈ Γt,1 and an integer k (≤ n).

Parameter: k.log(n)

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True ?

Now we are going to define #WK-hierarchy that is basically the counting counter-

part of the WK-hierarchy which is defined in [14].

Definition 46. For t ≥ 2, #WK[t] is the class of counting problems that are parametric

w-T -reducible to #Γt,1-WSAT.

Similar to the decision version, it can also be proved that,

Theorem 23. For t ≥ 2, #VCt ⊆ #WK[t].

The original proof (for decision versions as mentioned in chapter 3, Theorem 20,

using the results in [14]) is strongly parsimonious and work for counting version as

well. Hence the above corollary directly follows from that. Similarly, it is also men-

tioned in chapter 3 that WK[t] ⊆ VCt+1 (Theorem 20). But for counting versions, we

prove the analogous result in similar but much simpler way. Corresponding reduction

is going to be weakly parsimonious.

Theorem 24. For t ≥ 2, #WK[t] ⊆ #VCt+1.

Chapter 4. Counting hierarchy with respect to Compression 102

Proof. Let us consider a Γt,1 (t ≥ 2) formula φ over n input variables. This φ is our

#Γt,1-WSAT instance which asks how many satisfying assignments of weight k are

there for φ. To prove this theorem we are going to reduce this instance to a #VCt+1

instance ψ, which will be a circuit of depth at most t +1.

To prove this, we consider a problem corresponding to any general class of formula

Φ. Given a class of Boolean formula Φ, we consider Φ+, Φ− ⊆ Φ to denote the

restrictions of Φ to formulas containing only positive and negative literals, respectively.

Now we define the following problem:

#Φ-WSAT:

Input: A formula φ over n variables of size m where φ ∈ Φ.

Parameter: k.log(n)

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True ?

Now we start the proof by dividing it into in two parts. Firstly we consider the case

when t is even. We will consider the case of odd t later.

t is even:
For even t, Flum and Grohe has already shown a reduction (which is strongly w-

parsimonious) ([25], Lemma 7.6 (1)) from #Γt,1-WSAT to #Γ
+
t,1-WSAT. Using the

same reduction, we can reduce φ to another formula φ
′

which contains only positive

literals. φ has a satisfying assignment such that exactly k variables are assigned to be

True iff φ
′
has a satisfying assignment such that exactly k

′
variables are assigned to be

True. Suppose number of variables of φ
′
is n

′
. k
′
and n

′
are polynomially bounded in k

and n respectively. The reduction is strongly w-parsimonious.

Now we are going to reduce this #Γ
+
t,1-WSAT instance φ

′
to a #VCt+1 instance

as follows. Suppose the input variables of φ
′

are x0,x1, . . . ,xn′−1. Parameter for φ
′

is

k
′
.log(n

′
). We consider l =

⌈
log(n

′
)
⌉

. Now we introduce following k
′
l variables, Xi, j,

1 ≤ i ≤ k
′
, 0 ≤ j ≤ l−1. We use these variables with following interpretation. If the

ith-variable (1≤ i≤ k
′
) set to be True in φ

′
is xp (0≤ p≤ n

′−1), Xi,0Xi,1 . . .Xi,l−1 will

represent the binary string which is actually the binary encoding of p.

Using these newly introduced variables, we are going to construct a new Boolean

formula. As t is even, the bottom level Boolean operation is ∨ for φ
′
. All the literals in

the bottom level are positive literals. We now replace any variable xi (0 ≤ i ≤ n
′ − 1)

in φ
′

by
∨k
′

i=1((Xi,0⊕b0)∧ (Xi,1⊕b1)∧ . . .∧ (Xi,l−1⊕bl−1)) where b0b1 . . .bl−1 is the

binary representation of integer i, (Xi, j⊕ b j) = Xi, j if b j = 1 and (Xi, j⊕ b j) = ¬Xi, j if

b j = 0, 0≤ j ≤ l−1. After these replacements, we name the new formula by φ
′′
. It is

Chapter 4. Counting hierarchy with respect to Compression 103

easy to see that φ
′′

is a Boolean formula of depth t +1.

We can also see that if φ
′
has a satisfying assignment of weight k

′
, Xi, j variables of

φ
′′

can correctly encode the k
′

variables of φ
′

assigned to be True. But in the opposite

direction, it is not true yet. For that we have to ensure that all the k
′

variables of φ
′
,

encoded by Xi, j variables of φ
′′

are different. So we construct another formula ψ
′

as

follows.

ψ
′
= φ

′′ ∧
∧

1≤i< j≤k′ (
∨l−1

p=0((Xi,p∧¬X j,p)∨ (¬Xi,p∧X j,p))).

If n
′
is not a power of 2, Xi, j variables for ψ

′
can still choose some xp where p ≥ n

′

but p ≤ 2l− 1. So we have to make sure that no such xp is selected. It is easy to do.

Suppose the binary representation of one such p (≥ n
′
but ≤ 2l−1) is c0c1 . . .cl−1. So

we will add following sub-formula by conjunction with ψ
′
.∧k

′

i=1((Xi,0⊕c0)∨ (Xi,1⊕c1)∨ . . .∨ (Xi,l−1⊕cl−1)), where (Xi, j⊕c j) = Xi, j if c j =

0 and (Xi, j⊕ c j) = ¬Xi, j if c j = 1, 0≤ j ≤ l−1.

After taking care of all such unwanted variables, suppose the final formula is ψ.

For t ≥ 2, it is easy to see that ψ is a depth t +1 formula. This ψ is our final #VCt+1

instance. We can also see that for each satisfying assignment of weight k
′
for φ

′
, ψ has

k
′
! satisfying assignments. So total number of satisfying assignments of weight k

′
for

φ
′

is total number of satisfying assignments of ψ, divided by k
′
!. Hence clearly this

reduction is weakly w-parsimonious and #WK[t] ⊆ #VCt+1 when t is even.

Now we consider the other case.

t is odd:
For odd t ≥ 3, we will reduce #Γt,1-WSAT instance φ to a #∆t,1-WSAT instance

φd by a very simple reduction. We will just take φd = φ̄. Applying De Morgan’s law,

we can see that φd is a ∆t,1 formula and # of satisfying assignments of weight k for φ

=
(n

k

)
- # of satisfying assignments of weight k for φd . Clearly this reduction is weakly

w-parsimonious.

For odd t ≥ 3, Flum and Grohe has already shown a reduction (which is strongly

w-parsimonious) ([25], Lemma 7.6 (1)) from #∆t,1-WSAT to #∆
+
t,1-WSAT. Using the

same reduction, we can reduce φd to another formula φ
′
d which contains only positive

literals. φd has a satisfying assignment such that exactly k variables are assigned to be

True iff φ
′
d has a satisfying assignment such that exactly k

′
variables are assigned to be

True. Suppose number of variables of φ
′
d is n

′
. k
′

and n
′

are polynomially bounded in

k and n respectively. The reduction is strongly w-parsimonious.

Now we will reduce #∆
+
t,1-WSAT instance φ

′
d to a #Γ

−
t,1-WSAT instance φ

′
using

the similar technique used just a while ago. We will just take φ
′

= φ̄
′
d . Applying De

Chapter 4. Counting hierarchy with respect to Compression 104

Morgan’s law, we can see that φ
′

is a Γ
−
t,1 formula and # of satisfying assignments of

weight k
′

for φ
′
d =

(n
′

k′
)

- # of satisfying assignments of weight k
′

for φ
′
. Clearly this

reduction is weakly w-parsimonious.

Now we are going to reduce this #Γ
−
t,1-WSAT instance φ

′
to a #VCt+1 instance

as follows. Suppose the input variables of φ
′

are x0,x1, . . . ,xn′−1. Parameter for φ
′

is

k
′
.log(n

′
). We consider l =

⌈
log(n

′
)
⌉

. Now we introduce following k
′
l variables, Xi, j,

1 ≤ i ≤ k
′
, 0 ≤ j ≤ l−1. We use these variables with following interpretation. If the

ith-variable (1≤ i≤ k
′
) set to be True in φ

′
is xp (0≤ p≤ n

′−1), Xi,0Xi,1 . . .Xi,l−1 will

represent the binary string which is actually the binary encoding of p.

Using these newly introduced variables, we are going to construct a new Boolean

formula. As t is odd, the bottom level Boolean operation is ∧ for φ
′
. All the literals

in the bottom level are negative literals. We now replace any literal x̄i (0≤ i≤ n
′−1)

in φ
′

by
∧k
′

i=1((Xi,0⊕b0)∨ (Xi,1⊕b1)∨ . . .∨ (Xi,l−1⊕bl−1)) where b0b1 . . .bl−1 is the

binary representation of integer i, (Xi, j⊕ b j) = Xi, j if b j = 0 and (Xi, j⊕ b j) = ¬Xi, j if

b j = 1, 0≤ j ≤ l−1. After these replacements, we name the new formula by φ
′′
. It is

easy to see that φ
′′

is a Boolean formula of depth t +1.

Remaining part of the proof is same as the case when t is even. Because, we

can also see that if φ
′

has a satisfying assignment of weight k
′
, Xi, j variables of φ

′′

can correctly encode the k
′

variables of φ
′

assigned to be True. But in the opposite

direction, it is not true yet. For that we have to ensure that all the k
′

variables of φ
′
,

encoded by Xi, j variables of φ
′′

are different. So we construct another formula ψ
′

as

follows.

ψ
′
= φ

′′ ∧
∧

1≤i< j≤k′ (
∨l−1

p=0((Xi,p∧¬X j,p)∨ (¬Xi,p∧X j,p))).

If n
′
is not a power of 2, Xi, j variables for ψ

′
can still choose some xp where p ≥ n

′

but p ≤ 2l− 1. So we have to make sure that no such xp is selected. It is easy to do.

Suppose the binary representation of one such p (≥ n
′
but ≤ 2l−1) is c0c1 . . .cl−1. So

we will add following sub-formula by conjunction with ψ
′
.∧k

′

i=1((Xi,0⊕c0)∨ (Xi,1⊕c1)∨ . . .∨ (Xi,l−1⊕cl−1)), where (Xi, j⊕c j) = Xi, j if c j =

0 and (Xi, j⊕ c j) = ¬Xi, j if c j = 1, 0≤ j ≤ l−1.

After taking care of all such unwanted variables, suppose the final formula is ψ. For

odd t ≥ 3, it is easy to see that ψ is a depth t +1 formula. This ψ is our final #VCt+1

instance. We can also see that for each satisfying assignment of weight k
′
for φ

′
, ψ has

k
′
! satisfying assignments. So total number of satisfying assignments of weight k

′
for

φ
′

is total number of satisfying assignments of ψ, divided by k
′
!. Hence clearly this

reduction is weakly w-parsimonious and #WK[t] ⊆ #VCt+1 for both odd and even t ≥

Chapter 4. Counting hierarchy with respect to Compression 105

2.

All the parametric decision problems in complexity class P, are trivially in VC0.

But corresponding counting versions may not be in #VC0. We will see a few such

examples later. If the parameter of any parametric problem is polynomially bounded

in the problem input size, once again the problem is trivially in VC0 (e.g. 3SAT).

For those problems, corresponding counting versions are in #VC0 as well. Now we

are going to see a problem, for which both the decision and counting versions are

compressible for non-trivial reasons.

VERTEX COVER:

Input: A graph G(V,E) with n vertices, and an integer k.

Task: Is there a vertex cover (a set D ⊆V , such that for every edge {u,v} ∈ E, either

u or v are in D) of size k in G?

Parameter: k.log(n)

Corresponding counting version is,

#VERTEX COVER:

Input: A graph G(V,E) with n vertices, and an integer k.

Task: How many vertex covers of size k are there in G?

Parameter: k.log(n)

It is already proved in [13] (Claim 2.1) that VERTEX COVER is in VC0. We are now

going to use the same compression algorithm to show that it works for counting ver-

sion as well to prove the next corollary. The original algorithm (standard polynomial

kernelization) can be seen in [44] using the technique presented in [21].

Corollary 5. #VERTEX COVER ∈ #VC0.

Proof. Suppose, a graph G(V,E) with n vertices is given to us. Now, if a vertex cover

D of size k exists in G, any vertex of degree greater than k must be inside the set D.

The compression algorithm will simply identify all such vertices and list them in the

cover, while removing all their outgoing edges (because they do not need to be covered

by other vertices). Suppose the algorithm has identified k
′ ≤ k vertices like that. The

graph left after this process (let us name it by G
′
) has degree at most k, and furthermore

all edges have at least one end in the cover. Now it is clear that G has a vertex cover of

size k iff G
′
has a vertex cover of size k− k

′
. Thus, if the original graph G has a vertex

cover of size k, the total number of edges left in G
′

is at most k2 (at most k vertices in

the vertex cover for G
′

where each of them covering at most k edges each). If there

are more then k2 edges then the answer to the problem is NO, otherwise, such a graph

Chapter 4. Counting hierarchy with respect to Compression 106

can be represented by listing all edges, which takes O(k2.log(k)) bits. If the answer to

the problem is NO, the compression algorithm will output a trivial compressed graph

with no vertex cover of size k− k
′
. It is now easy to see that the total number of

vertex covers of the original #VERTEX COVER instance is same as the total number of

vertex covers of the reduced #VERTEX COVER instance. Hence, #VERTEX COVER is

Weakly-Parsimonious compressible and present in #VC0.

4.2 Completeness Results

We are now going to consider some interesting counting problems and going to show

the hardness and completeness results corresponding to that.

#SAT:

Input: A formula φ in CNF with n variables.

Task: How many satisfying assignments are there for φ ?

Parameter: n

#NAE-SAT:

Input: A formula φ in CNF with n variables.

Task: How many satisfying assignments are there for φ such that each clause of φ

contains at least one True and one False literal ?

Parameter: n

We have already shown that the decision problem NAE-SAT is VC2-complete

(chapter 3, Theorem 12). Now we prove the following.

Theorem 25. #NAE-SAT is #VC2-complete.

Proof. Firstly we will show that #NAE-SAT ∈ #VC2. Let us consider an NAE-SAT

instance φ. Now for each clause ci we will construct another clause c
′
i in the following

way: for each literal l ∈ ci we put ¬l in c
′
i. Now inserting all the new clauses into φ we

will construct a new formula ψ. So ψ is twice in size with respect to φ. Both of them

have the same variables. We can easily see that ψ is satisfiable iff φ is NAE-satisfiable.

So clearly this is a strongly w-parsimonious reduction and hence #NAE-SAT ∈ #VC2.

We are now going to show a weakly w-parsimonious reduction in the opposite

direction (we have used this reduction before in chapter 3, Theorem 13).

Let us now consider a SAT instance φ over x1, x2, . . ., xn. Let us consider c1, c2,

. . ., cl are the clauses of φ. Now we consider two separate variables y and z, other than

x1, x2, . . ., xn. We modify each clause ci as c
′
i = ci ∨ ¬y and introduce a new clause c

′

Chapter 4. Counting hierarchy with respect to Compression 107

= y ∨ z. Now our modified formula φ
′

= c
′
1 ∧ c

′
2 ∧ . . . ∧ c

′
l ∧ c

′
. Now we are going to

prove that φ is satisfiable iff φ
′
is NAE-satisfiable.

Suppose φ is satisfiable. Now for any satisfying assignments to x1, x2, . . ., xn for

φ, we will use the same assignments for φ
′
. Now we will assign y = 1 and z = 0. We

can now see that φ
′

is NAE-satisfiable. So for any truth assignments for φ there exists

a truth assignments for φ
′
satisfying NAE-SAT property.

Now suppose φ
′

is NAE-satisfiable. So obviously either y = 1 and z = 0 or y = 0

and z = 1. If y = 1, we will use the same assignments of x1, x2, . . ., xn from φ
′

to φ. If

y = 0, we will invert the assignments of all the variables in φ
′
. We can understand that

still it’s NAE-satisfiable. Now we will use the same procedure to assign x1, x2, . . ., xn

for φ. Clearly φ ∈ SAT .

Here we can see that the parameter, the number of variables, is increased by just

two. So the above reduction is w-reduction. Now we are going to prove that this

reduction is parsimonious. For that we have to calculate the total number of satisfying

assignments of φ from total number of NAE-satisfying assignments of φ
′
.

Now let us consider that N is the total number of satisfying assignments of φ. We

also consider that N1 is the total number of NAE satisfying assignments for φ. It means

each of those N1 assignments will keep at least one true and one false literal in each

of the clauses in φ. N2 is the other type satisfying assignments for φ. So clearly N =

N1 + N2. Now we will try to calculate the total number of NAE satisfying assignments

for φ
′
. Now for each of the N1 assignments, we can set either y = 1 and z = 0 or y

= 0 and z = 1 for φ
′
. Either of those will make φ

′
NAE satisfiable. So total number

of witnesses for φ
′
, corresponding N1 will be 2.N1. For each of the N2 assignments,

we have to set y = 1 and z = 0 for φ
′

to make it NAE satisfiable. So total number of

witnesses, corresponding N2 in φ will be again N2 for φ
′
. But we can observe, if we

flip the truth assignments of all these N2 witnesses corresponding to (n + 2) variables

in φ
′
, it will still be the NAE satisfying assignments for φ

′
. In this way we can get

another set of witnesses for φ
′

which we haven’t considered before. So total number

of NAE satisfying assignments for φ
′

is N
′

= 2(N1 +N2). So we can easily calculate

the total number of satisfying assignments of φ from total number of NAE-satisfying

assignments of φ
′

by dividing it by 2. So clearly the reduction is weakly parametric

w-parsimonious. Hence #NAE-SAT is #VC2-complete.

Let us now consider the following counting problem.

#SET SPLITTING:

Chapter 4. Counting hierarchy with respect to Compression 108

Input: A set S of n elements and a collection C (|C | = m) of subsets of S.

Task: How many ways the set S can be partitioned into 2 subsets s1 and s2 (s1
⋃

s2 =

S and s1
⋂

s2 = φ), such that none of the sets in C is contained in either of s1 and s2 ?

Parameter: n

In chapter 3, we have already shown that SET SPLITTING is VC2-complete (Theo-

rem 11). There, it is also shown that SET SPLITTING and NAE-SAT are w-reducible

to each other (reduction in Theorem 15 and 11 ; although the reduction in Theorem 15

is shown for SET SPLITTINGk, as mentioned there, the same reduction works for SET

SPLITTING as well). Using the same reductions, we can also prove that,

Theorem 26. #SET SPLITTING is #VC2-complete.

As shown in chapter 3, the reduction from SET SPLITTING to NAE-SAT (first

part of reduction in the proof Theorem 11) is eventually strongly parsimonious and

works for corresponding counting problems as well. For the reduction in the opposite

direction (reduction in Theorem 15), it is also easy to see that for any set splitting for

the SET SPLITTING problem instance (S,C), the reduced NAE-SAT instance, formula

φ, has exactly 2 satisfying assignments such that each clause of φ contains at least one

True and one False literal. So clearly, the reduction is weakly w-parsimonious and

hence, the above theorem directly follows from it.

Let us now define one very simple problem #DNF.

#DNF:

Input: A formula φ in disjunctive normal form of size m over n variables.

Task: How many satisfying assignments are there for φ ?

Parameter: n

It is easy to see that the decision version of this problem is easily solvable in poly-

nomial time (as we can make any particular clause satisfiable just making all its literals

True) and hence in VC0. But for counting version, we prove the following result.

Theorem 27. #DNF is #VC2-complete.

Proof. We will show weakly parametric w-parsimonious reduction from #DNF to

#SAT and vice versa to prove this result. Let us consider a formula φ in disjunc-

tive normal form of size m over n variables. This φ is our #DNF instance where we

ask how many satisfying assignments are there for φ. We take another formula ψ =

φ̄. Applying De Morgan’s law, we can see that ψ is in conjunctive normal form and

hence our SAT instance for this reduction. Clearly this reduction from φ to ψ is in

Chapter 4. Counting hierarchy with respect to Compression 109

polynomial time in m. If the total number of satisfying assignments for φ and ψ are

N1 and N2 respectively, we can observe that N1 = 2n - N2. So clearly the reduction is

weakly parametric w-parsimonious. Hence #DNF ∈ #VC2.

In the similar manner, taking complement of the SAT instance, we can find a

weakly parametric w-parsimonious reduction from #SAT to #DNF. Hence #DNF is

#VC2-complete.

Now we define the weighted version of the previous problem and prove the com-

pleteness result mentioned below.

#WEIGHTED-DNFSAT:

Input: A formula φ in disjunctive normal form of size m over n variables.

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True?

Parameter: k.log(n)

Before proving the next result we define the following problem.

#WEIGHTED-CNFSAT:

Input: A formula φ in conjunctive normal form of size m over n variables.

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True?

Parameter: k.log(n)

From the definition (Definition 46) it is easy to understand that #WEIGHTED-

CNFSAT is #WK[2]-complete.

Theorem 28. #WEIGHTED-DNFSAT is #WK[2]-complete.

Proof. The proof is very much similar to the previous one. We will show weakly

parametric w-parsimonious reduction from #WEIGHTED-DNFSAT to #WEIGHTED-

CNFSAT and vice versa to prove this result. Let us consider a formula φ in disjunctive

normal form of size m over n variables. This φ is our #WEIGHTED-DNFSAT instance

where we ask how many satisfying assignments are there for φ, such that exactly k

variables are assigned to be True. We take another formula ψ = φ̄. Applying De

Morgan’s law, we can see that ψ is in conjunctive normal form and hence our reduced

#WEIGHTED-CNFSAT instance. Clearly this reduction from φ to ψ is in polynomial

time in m. If the total number of satisfying assignments of weight k for φ and ψ are

N1 and N2 respectively, we can observe that N1 =
(n

k

)
- N2. So clearly the reduction is

weakly parametric w-parsimonious. Hence #WEIGHTED-DNFSAT ∈ #WK[2].

Chapter 4. Counting hierarchy with respect to Compression 110

In the similar manner, taking complement of the #WEIGHTED-CNFSAT instance,

we can find a weakly parametric w-parsimonious reduction from the counting problem

#WEIGHTED-CNFSAT to #WEIGHTED-DNFSAT. Hence #WEIGHTED-DNFSAT

is #WK[2]-complete.

The decision version of #WEIGHTED-DNFSAT is easily solvable in polynomial

time and hence in VC0. But for counting version, we have proved that it is #WK[2]-

complete. Below, we have briefly described how to prove that the decision problem

WEIGHTED-DNFSAT is solvable in polynomial time.

Let us consider a formula φ in disjunctive normal form of size m over n variables

(if there is any clause containing both positive and negative literals corresponding any

single variable, we can easily remove them in polynomial time replacing it by 0.).

Suppose another integer k (≤ n) is given. Now, we will search for a clause in φ which

contains ≤ (n− k) negative literals and ≤ k positive literals.

Suppose we have found one such clause which contains k1 (≤ (n−k)) negative lit-

erals and k2 (≤ k) positive literals. Now we will assign all the variables corresponding

to negative literals in that clause to 0 and all the variables corresponding to positive

literals to 1. So k2 variables are so far assigned to be True. Now we are sure that there

are at least (k− k2) variables left un-assigned (as k1 ≤ (n− k)). So we will pick any

(k− k2) variables from the un-assigned variables arbitrarily and assign them 1. We

will assign any remaining un-assigned variables to 0. So we have found one satisfying

assignment for φ such that exactly k variables are assigned to be True.

Now suppose there is no such clause present in φ. So if we try to make φ satisfiable,

we have to set more than (n− k) variables to 0 (i.e., less than k variables set to 1) or

more than k variables set to 1. So we can say that there is no satisfying assignment for

φ such that exactly k variables are assigned to be True. Hence, WEIGHTED-DNFSAT

∈ VC0.

Let us now consider the following definition.

#CLIQUE:

Input: A graph G with n vertices, and an integer k.

Task: How many cliques of size k (a pairwise adjacent subset of k vertices) are there

in G ?

Parameter: k.log(n)

In chapter 3, we have already mentioned the proof of VC1-completeness of the

CLIQUE problem (Theorem 9). It is easy to see that same reductions work for counting

Chapter 4. Counting hierarchy with respect to Compression 111

problems as well and hence, we can conclude that,

Proposition 27. #CLIQUE is #VC1-complete.

In chapter 3, section 3.2.2, we have shown several reductions related to VC1 prob-

lems. It is easy to see that all of them work for corresponding counting problems as

well. As a result we get more harness and completeness results corresponding to class

#VC1. Although most of them are strongly w-parsimonious, all of them are not. Be-

low we show a reduction which is actually weakly w-parsimonious. For that we define

the counting version of MULTICOLOURED CLIQUE problem that we have considered

before (Proposition 13).

#MULTICOLOURED CLIQUE:

Input: A graph G = (V , E) with |V | = n, an integer k and a colouring function c : V →
[k].

Task: How many multicoloured cliques of size k (a clique containing exactly one

vertex of each colour) are there in G ?

Parameter: k.log(n)

Proposition 28. #CLIQUE is weakly w-parsimonious reducible to #MULTICOLOURED

CLIQUE.

Proof. Let us consider that a graph G(V,E) with n vertices are given to us with another

integer k (k≤ n). From this graph G we construct another graph G
′
as follows. For each

vertex vi ∈ V , 1 ≤ i ≤ n, we construct k copies of the same vertices, vi,1,vi,2, . . . ,vi,k,

colouring each vertex vi, j with colour j, 1≤ j≤ k. We add two vertices vp,q and vr,s (q

6= s) in G
′
by an edge iff vp and vr are connected by an edge in G. It is now easy to see

that G has a clique of size k iff G
′
has a multicoloured clique of size k. We can also see

that for any clique of size k in G, there will be exactly k! multicoloured cliques of size

k in G
′
, one corresponding to each of k! permutations of k colours. Hence, it is clearly

a weakly w-parsimonious reduction and the result is proved.

Now we will consider slightly different kind of problems. Suppose G(V,E) is a

graph with n vertices and m edges. We will start with the definition of a property in a

graph.

Definition 47. Complete-CycleSet: Complete-CycleSet is a set of vertex disjoint cycles

in a graph, removal of whose edges makes the graph cycle free.

Chapter 4. Counting hierarchy with respect to Compression 112

We want to point out here that the problem of finding a Complete-CycleSet in a

graph is in complexity class P. Using Depth-first search algorithm we can find a cycle

and remove all the edges of that cycle from the graph. And then keep doing the same

thing until we find that the graph is cycle free. Clearly we can do that in polynomial

time as Depth-first search algorithm can be run in O(m) time.

Definition 48. Unique-cycle: Unique-cycle is a cycle in a graph containing at least

one edge, participating in no other cycle except this.

Definition 49. Unique complete-cycleSet: Unique complete-cycleSet is a set of vertex

disjoint unique-cycles in a graph, removal of whose edges makes the graph cycle free.

It is easy to see that the problem of finding a Unique complete-cycleSet in a graph

is also in complexity class P as checking whether a cycle is unique or not, can be done

again by depth first search.

Now we are formally going to define parametric counting problem related to this

and show that the problem is #VC2-hard.

Definition 50. #K-UNIQUE COMPLETE-CYCLESET:

Input: A directed graph G(V,E) with n vertices and m edges and an integer K ≤ m.

Parameter: K.log(m)

Task: How many Unique complete-cycleSet are there in the graph containing at most

K unique-cycles ?

The proof of the hardness result of this problem is inspired by the technique used

in [1]. There they have given an alternate proof of #P-completeness of Zero-One-

Permanent. This result was originally proved by L. G. Valiant [33]. Before proving

that result, we are going to give some more definitions.

Definition 51. We say that a n-node weighted directed graph G(V,E) and a n × n

matrix A correspond to one another if for every i, j ∈ {1,2, . . . ,n}, Ai, j is the weight of

the edge i→ j.

Definition 52. Suppose R ⊆ E is a K-Unique complete-cycleSet. The weight of R,

denoted by W (R), is the product of the weights of the edges in R.

Now, we are ready to prove the result.

Theorem 29. #K-UNIQUE COMPLETE-CYCLESET is #VC2-hard.

Chapter 4. Counting hierarchy with respect to Compression 113

Proof. We will prove this by finding a weakly parsimonious reduction from #SAT to

#K-UNIQUE COMPLETE-CYCLESET. Suppose φ is a SAT instance with n variables.

We will firstly construct a weighted directed graph Gφ corresponding to φ such that

there is a mapping between assignments for φ and K-Unique complete-cycleSet in Gφ.

We will take K = n. This mapping satisfies the following conditions:

• The sum of weights of all the Unique complete-cycleSets which correspond to

each satisfying assignment is equal to 1.

• The sum of weights of all the other Unique complete-cycleSet is equal to 0.

Construction of Gφ using Clause Components:
The graph Gφ is constructed as follows:

• For each variable xi in φ there is a node in G. We refer to these nodes as variable

nodes.

• For each clause c j = (α1∨α2∨ . . .∨αt j) in φ, there is a clause component in Gφ,

denoted by H j. The literals in the clauses are sorted with respect to their indices.

The clause component has t j input edges labelled I1, I2, . . ., It j , and t j output

edges labelled O1, O2, . . ., Ot j . These edges connect the component to other

components or to variable nodes. Intuitively, the edges It and Ot (1≤ t ≤ t j) of

H j correspond to the literal αt in c j.

• For each variable xi in φ we form two cycles in the graph Gφ.

– Let c j1 , c j2 , . . ., c jl be the clauses that contain the literal xi in the order they

appear in φ. The T -cycle of xi starts at the variable node xi, visits the clause

components H j1 , H j2 , . . ., H jl and goes back to xi. If xi is the kth literal in

a clause c j, then the T -cycle of xi enters H j through the input edge Ik and

exits it through the output edge Ok.

– Let c j′1
, c j′2

, . . ., c j′l
be the clauses that contain the literal x̄i in the order they

appear in φ. The F-cycle of xi starts at the variable node xi, visits the clause

components H j′1
, H j′2

, . . ., H j′l
in the similar way and goes back to xi.

Formally, there is an edge from the output edge Ok1 of H j1 to the input edge Ik2

of H j2 if the next occurrence of the kth
1 literal of the clause c j1 is as the kth

2 literal

of the clause c j2 . If the literal xi does not appear in φ, then the T -cycle of xi is a

Chapter 4. Counting hierarchy with respect to Compression 114

self loop, and the same goes for x̄i. The weights of all the edges in the T -cycles

and F-cycles of every literal are one.

• If c j = (α1∨α2∨ . . .∨αt j) we denote input and output nodes as i1, i2, . . ., it j and

o1, o2, . . ., ot j inside the clause component H j. We will add edges as follows:

{i1,o1}, {o1, i2}, {i2,o2}, {o2, i3}, . . ., {ot j−1, it j}, {it j ,ot j}, {ot j , i1}. All these

edges are of weight 1. We will introduce another extra node inside each clause

component, say p j. We will add edges {ot j , p j} and {p j, i1} as well. {ot j , p j} is

of weight -1 and {p j, i1} is of 1.

For the formula φ = (x1∨x2∨ x̄3)∧(x̄1∨x2∨x3), corresponding graph Gφ is shown

below.

In the diagram, we can see that, inside each clause component, there are 2 unique

cycles, one of weight 1, and another of weight -1 (taking either of the two paths con-

necting output node of the last literal and input node of the first literal). Let us denote

T -cycle and F-cycle as external cycles as they are containing edges outside clause

components. Now we can see that, in any Unique complete-cycleSet, if there is a T -

cycle or F-cycle through a clause component, say H j, none of those internal cycles can

not be there in the Unique complete-cycleSet. Because in that case, the cycles won’t be

disjoint. Now corresponding to any assignment for n variables in φ, we will uniquely

map a set of external cycles as follows:

• If variable xi is assigned to 1, we will take T -cycle corresponding to vertex xi in

Gφ.

• If variable xi is assigned to 0, we will take F-cycle corresponding to vertex xi in

Gφ.

Chapter 4. Counting hierarchy with respect to Compression 115

It is easy to see that, for any assignment in φ there exists at least one Unique complete-

cycleSet in Gφ. For any assignment, if certain clause component is not touched by

corresponding T -cycle or F-cycle, we can choose either of the internal cycle to make

it a Unique complete-cycleSet.

Now we observe that,

• Any satisfying assignment for the formula φ will correspond to exactly one K-

Unique complete-cycleSet where K = n. Weight of that K-Unique complete-

cycleSet will be 1.

• For any unsatisfying assignment, sum of weights of all the K-Unique complete-

cycleSet will be 0. There can be K-Unique complete-cycleSet which does not

correspond to any assignment (taking input and output edges of different liter-

als). Sum of weights of all such K-Unique complete-cycleSet will be 0 as well.

Above statements are easy to see as internal cycles are constructed in pairs, one of

weight 1, another of weight -1. So in any K-Unique complete-cycleSet, we can choose

either of them or none of them. In all the cases, sum of weights of all the K-Unique

complete-cycleSet will be 0. Hence,

Total number of satisfying assignments in φ = Sum weights of all the K-Unique

complete-cycleSet in Gφ.

We can see that the graph Gφ is actually a weighted graph. Now we will convert

the graph Gφ into an unweighted directed graph, say G
′

such that the sum of weights

of all the K-Unique complete-cycleSets becomes same as the number of K-Unique

complete-cycleSets in the graph.

Conversion from negative weight to positive weight:
For doing that we will use the similar technique used in [1], Section 5.1. Let us con-

sider that A is the adjacency matrix of Gφ. We also consider that Sum(A) = Sum

weights of all the K-Unique complete-cycleSets in the graph corresponding to A. We

will obtain another n × n matrix from A as follows:

• We know that Sum(A) < 2n2
. So we will choose Q = 2n2+1 + 1.

• Then we will compute A
′
= A mod Q.

• After that we compute P = Sum(A
′
) mod Q.

• if P < Q/2 then Sum(A) = P. Otherwise Sum(A) = Q - P.

Chapter 4. Counting hierarchy with respect to Compression 116

We can observe that the transformation from A into A
′

is polynomial in n as the

number of bits that we need to write Q is polynomial in n. The graph corresponding to

A
′
doesn’t contain any edge of negative weight.

Conversion from any positive weights to weights of 0 or powers of 2:
For doing that we will use the same technique used in [1], Section 5.2. It is shown in

the diagram below. Basically, we will replace any edge {u,v} by a sub-graph as shown

in the diagram. It is now easy to see that, if the edge {u,v} is taken in any Unique

complete-cycleSet, sum of weights of all the paths from u to v is equal to the weight of

the original edge {u,v}.

Conversion from weights of powers of 2 to weight 0 or 1:
For doing that we will use the same technique used in [1], Section 5.3. It is shown in

the diagram below. Similarly, we will replace any edge {u,v} by a sub-graph as shown

in the diagram. It is now easy to see that, if the edge {u,v} is taken in any Unique

complete-cycleSet, sum of weights of all the paths from u to v is equal to the weight of

the original edge {u,v}.

Chapter 4. Counting hierarchy with respect to Compression 117

After using all the above reductions, we will finally get the required graph G
′
.

Total number of K-Unique complete-cycleSets in the graph G
′

modulo Q is same

as the total number of satisfying assignments of φ. Here the parameter of the #K-

UNIQUE COMPLETE-CYCLESET problem is K.log(m) where m is the number of edges

in G
′
. Here K = n and clearly m ≤ 2poly(n). Parameter of the #SAT problem is n.

So clearly the reduction is keeping the parameter of the reduced problem polynomi-

ally bounded. Hence it is a parsimonious reduction and #K-UNIQUE COMPLETE-

CYCLESET is #VC2-hard.

Now we are going to define some problems which will be useful to prove an inter-

esting theorems below. We have already considered some of them before.

SUBSET SUM:

Input: An integer k, a set S of m non-negative integers, and another integer B.

Task: Decide whether there are k integers in S which sum up to exactly B.

Parameter: k.log(m)

This decision problem is VC1-hard (chapter 3, Theorem 9 and Figure 3.1).

#SUBSET SUM:

Input: An integer k, a set S of m non-negative integers, and another integer B.

Task: How many sub-sets of k integers of S are there, elements of which sum up to

exactly B ?

Parameter: k.log(m)

As all the w-reductions for the decision problem are parsimonious and work for

counting problems as well, we can say that #SUBSET SUM problem is #VC1-hard.

KNAPSACK:

Input: An integer k, a set T of m non-negative integers, and another integer A.

Chapter 4. Counting hierarchy with respect to Compression 118

Task: Decide whether there are k integers in T which sum up to less than or equal to

A.

Parameter: k.log(m)

This decision problem is in P. We can sort all the m integers in O(m.log(m)) time

and take smallest k integers. If summation of all these smallest k integers are less than

or equal to A then the answer to this problem is yes, other wise no.

#KNAPSACK:

Input: An integer k, a set T of m non-negative integers, and another integer A.

Task: How many sub-sets of k integers of T are there, elements of which sum up to

less than or equal to A ?

Parameter: k.log(m)

Theorem 30. #KNAPSACK is #VC1-hard.

Proof. We will prove this theorem by showing a w-T -reduction from #SUBSET SUM

to #KNAPSACK. Let us consider the following #SUBSET SUM problem instance.

Suppose S = {a1,a2, . . . ,am}. value is a function which maps each ai to some

non-negative integer value, value : S→ N. #SUBSET SUM problem finds, how many

sub-sets of k integers of S are there, elements of which sum up to exactly B. If we

consider F to denote the #SUBSET SUM counting problem, and x to be the problem

instance described above, then F(x,k.log(m)) = |{S′| S′ ⊆ S, |S′|= k, ∑bi∈S′ value(bi)

= B}|.
Now we are going to construct a #KNAPSACK instance from the above instance as

follows. T = S = {a1,a2, . . . ,am}. value is a function which maps each ai to some

non-negative integer value, value : T → N. #KNAPSACK problem finds, how many

sub-sets of k integers of S are there, elements of which sum up to less than or equal to

A. We will take A = B. If we consider G to denote the #KNAPSACK counting problem,

and y to be the problem instance described above, then G(y,k.log(m)) = |{T ′| T ′ ⊆ T,

|T ′|= k, ∑bi∈T ′ value(bi) ≤ A}|.
Now we have to prove that the reduction described above is actually parametric

w-T -reduction. For that we are going to construct σ and τ. σ is reducing a F instance

to a G instance. It is clear that σ(x,k.log(m)) = (y,k.log(m)) and σ is computable in

time polynomial in m. Now we have to show that some polynomial time computable

algorithm τ exists which is basically the algorithm with an oracle for G as in Def-

inition 38). So, we are going to construct an algorithm (or function) τ which takes

problem instance x as input, uses functions G and σ and computes F(x,k.log(m)) in

Chapter 4. Counting hierarchy with respect to Compression 119

time polynomial in m.

The algorithm τ will work as follows. It will first construct another #SUBSET SUM

problem instance x
′

from x. x
′

consists of same set S = {a1,a2, . . . ,am}. But this new

problem finds, how many sub-sets of k integers of S are there, elements of which sum

up to exactly (B-1). So instead of B, the sack size is (B-1), that is the only difference.

We denote this slightly changed problem as x
′
. Clearly the algorithm can construct

this new problem in constant time. Now τ will compute F(x,k.log(m)) as follows,

F(x,k.log(m)) = G(σ(x,k.log(m))) - G(σ(x
′
,k.log(m))). Clearly this calculation is

correct. We can also observe that the parameter is same throughout. Hence the reduc-

tion is parametric w-T -reduction and #KNAPSACK is #VC1-hard.

We are now going to define another interesting problem.

MULTI CLIQUE-COLOURING:

Input: An undirected graph G(V,E) over n vertices and l disjoint cliques (there is no

edge {u,v} ∈ E such that u and v are part of two different cliques) inside the graph,

each of size k.

Task: Is the graph k colourable ?

Parameter: (n− kl).log(k)

Similarly we can define the counting version of this problem. But before that, we

have to prove that (n− kl).log(k) is a valid parameter for this problem. For that, we

have to prove,

Proposition 29. If all the neighbouring vertices of a clique of size k in a graph G is

coloured by k colours, we can check in polynomial time (polynomial in size of graph

G) if there is a valid k colouring for that clique.

Proof. We prove this result by constructing a separate graph. Suppose the vertices

in the clique are V1,V2, . . . ,Vk. We denote the k colours by C1,C2, . . . ,Ck. Let V =

{V1,V2, . . . ,Vk} and C = {C1,C2, . . . ,Ck}. Now for each vertex Vi, 1 ≤ i ≤ k, we con-

struct a list Li which contains all the colours by which it can be coloured. Basically

we will just check all the neighbouring vertices of Vi and their colours. Then we will

construct the list Li by removing those colours from the set C. Clearly we can con-

struct the lists L1,L2, . . . ,Lk in time polynomial in n, number of vertices in G. If any of

those lists is empty, we will conclude that there is no valid k colouring for that clique.

Otherwise we will construct a new graph G
′
as follows.

G
′

will contain 2 sets of vertices, one for each of V and C. For each Vi ∈ V , we

will add vertex NVi and for each Ci ∈ C, we will add vertex NCi in G
′
. For each colour

Chapter 4. Counting hierarchy with respect to Compression 120

C j ∈ Li, we will connect NVi to NC j by an undirected edge in G
′

for all 1 ≤ i ≤ k. We

can observe that G
′

is a Bipartite graph. Now it is easy to see that there is a valid

k colouring for the given clique iff there is a perfect matching in the Bipartite graph

([56], 7.10.2) G
′
. The problem of finding a perfect matching in a Bipartite graph is

well known to be in complexity class P ([22, 8, 35, 37, 20]). Hence the proposition is

proved.

Now we consider the counting problems as follows.

#MULTI CLIQUE-COLOURING:

Input: An undirected graph G(V,E) over n vertices and l disjoint cliques (there is no

edge {u,v} ∈ E such that u and v are part of two different cliques) inside the graph,

each of size k.

Task: How many valid k colourings are there for the graph ?

Parameter: (n− kl).log(k)

It is easy to see that, for the problem of general k colouring of any graph with

n vertices, k colouring of that graph can be encoded in n.log(k) bits. So the natural

witness length or the parameter of that problem is n.log(k). The given input problem

size is clearly polynomially bounded in n.log(k). Hence the problem is trivially in

VC0. Corresponding counting problem is in #VC0 for the same reason. But for MULTI

CLIQUE-COLOURING problem, we prove the following result.

Theorem 31. MULTI CLIQUE-COLOURING is VC2-hard.

Proof. We will prove this result by showing a w-reduction from NAE-SAT to MULTI

CLIQUE-COLOURING. In chapter 3, we have already proved that NAE-SAT is VC2-

complete (Theorem 12). Hence, this theorem will directly follow from that reduction.

We consider a NAE-SAT instance φ over x1, x2, . . ., xn. Let us consider c1, c2,

. . ., cl are the clauses of φ. We consider a graph G(V,E) from φ as follows. We will

introduce following set of vertices.

V1 = {xi, x̄i|1≤ i≤ n},
V2 = {pi(li,1), pi(li,2), . . . , pi(li,ti)|ci = li,1∨ li,2∨ . . .∨ li,ti,1≤ i≤ l},
V3 = {pi(li,ti+1), pi(li,ti+2), . . . , pi(li,n)|ci = li,1∨ li,2∨ . . .∨ li,ti, ti < n,1≤ i≤ l},
V4 = {vi|1≤ i≤ n−2},
V5 = {n1,n2}.
V =

⋃5
i=1Vi

We can see that total number of vertices are N = 3n+ nl. Now we will connect

these vertices introducing following set of edges.

Chapter 4. Counting hierarchy with respect to Compression 121

E1 = {〈vi,v j〉|vi,v j ∈V4, i 6= j},
E2 = {〈pi(li,1), li,1〉,〈pi(li,2), li,2〉, . . . ,〈pi(li,ti), li,ti〉|ci = li,1 ∨ li,2 ∨ . . .∨ li,ti,1 ≤ i ≤ l,

li,1, li,2, . . . , li,ti ∈V1},
E3 = {〈pi(li,r), pi(li,s)〉|1≤ r < s≤ n,1≤ i≤ l},
E4 = {〈n1,v j〉,〈n2,v j〉,〈xi,v j〉,〈x̄i,v j〉,〈xi, x̄i〉|v j ∈V4,1≤ j ≤ n−2,xi, x̄i ∈V1,1≤ i≤
n,n1,n2 ∈V5},
E5 = {〈n1,a〉,〈n2,a〉,〈n1,n2〉|∀a ∈V3,n1,n2 ∈V5}.
E =

⋃5
i=1 Ei

Our graph construction is now complete. We are now giving a brief description

of what is already written in mathematical notation above. Firstly, without loss of

generality we can assume that there is no clause in φ such that both xi and x̄i are present

in the same clause for any 1≤ i≤ n. Because, we can remove such literals easily from

φ in polynomial time. Hence, any clause can contain at most n literals. If we look into

the graph construction, for each literal in each clause, we have introduced a vertex in

V2. If any clause contains less than n literals, we have introduced extra vertices for all

such clauses to make the vertices corresponding to each clause n. These vertices in V2

and V3 are the vertices of l disjoint cliques (there is no edge {u,v} ∈ E such that u and

v are part of two different cliques) inside the graph, each of size k.

). It is easy to see that edge set E3 is constructing l disjoint cliques, one for each each

clause, each of size n. There is another clique of size n−2 produced by edge set E1.

Now we claim that φ has a satisfying assignment such that each clause of it contains

at least one True and one False literal iff G is n colourable. We prove this claim as

follows.

Without loss of generality, we assume that the n colours are 0,1, . . . ,n−1. Suppose

φ has a satisfying assignment such that each clause of it contains at least one True and

one False literal. Now, any such assignment will assign some Boolean value to xi and

x̄i for all 1 ≤ i ≤ n. We will assign colours 0 and 1 to all the vertices in V1 according

to that assigned Boolean values. Colours 2 to n−1 will be assigned to the vertices in

V4 such that no two vertices in V4 get the same colour. Any of the (n−2)! colourings

is fine. n1 and n2 can take either 0 or 1 as they are connected to all the vertices in V4.

They are also connected to each other. So we will arbitrarily assign 0 to n1 and 1 to

n2. The opposite assignment is fine as well. Now, as each clause contains at least one

True and one False literal, vertices corresponding to those in V1 have taken at least one

0 and one 1 colour already. For any clause ci, 1 ≤ i ≤ l, suppose li,r is True and li,s
is False, 1 ≤ r,s ≤ ti,r 6= s. So the colour to the vertex corresponding to li,r (present

Chapter 4. Counting hierarchy with respect to Compression 122

in V1) is 1 and the colour to the vertex corresponding to li,s (present in V1) is 0. Now,

we will assign colour 0 to pi(li,r) and 1 to pi(li,s). Hence, the clique corresponding

to clause ci has two vertices with assigned colours (0 and 1). All its neighbouring

vertices are coloured by either 0 or 1. So now we can assign colours to remaining n−2

vertices easily. It is now easy to see that we have found a valid colouring when φ has

a satisfying assignment such that each clause of it contains at least one True and one

False literal.

Now, we are going to prove our claim in opposite direction. Suppose, there is a

valid colouring for graph G. So the clique corresponding to vertex set V4 of size n−2

have n−2 different colours, one for each vertex. Without loss of generality, we assume

that the n colours are 0,1, . . . ,n−1 and denote the colours assigned to the vertices in V4

by 2,3, . . . ,n−1. So clearly, the colours of vertices in V1 and V5 are either 0 or 1 as all

of them are connected to the vertices in V4. As a result, we can also see that the vertices

in V3 can not take colour 0 or 1 as they are connected to the vertices in V5. So, each

clique corresponding to each clause has colour 0 and 1 in it for some vertices present

only in V2. Suppose colour 0 is assigned to pi(li,r) and 1 to pi(li,s) for some clause ci,

1≤ i≤ l, 1≤ r,s≤ ti,r 6= s. So clearly colour 1 is assigned to the vertex li,r (present in

V1) and 0 to li,s (present in V1). Now, if we take the Boolean values corresponding to

the colour assignments for vertices in V1, we can see that it is a satisfying assignment

for φ such that each clause of it contains at least one True and one False literal. Hence

our claim is proved.

The parameter for the MULTI CLIQUE-COLOURING problem instance is (N −
ln).log(n). Clearly it is polynomially bounded in n (number of input variables in φ),

the parameter of the NAE-SAT problem instance. Hence, we have found our required

w-reduction which proves the theorem.

We are now going to prove the following result corresponding to the counting ver-

sion of this problem.

Corollary 6. #MULTI CLIQUE-COLOURING is #VC2-hard.

Proof. In Theorem 25, we have already proved that #NAE-SAT is #VC2-complete.

So, to prove this result we are just going show that the reduction presented in the proof

of Theorem 31 is weakly w-parsimonious.

We use exactly the same notations here as used in the proof of Theorem 31. Firstly,

we want to point out again that the parameter of the problem is (N−kl).log(k) where k

= n. Because, there is a natural witness of length (N−kl).log(k) bits for this problem.

Chapter 4. Counting hierarchy with respect to Compression 123

So now, we are going to find, for any satisfying assignment for φ such that each clause

of it contains at least one True and one False literal, how many witnesses are there for

the #MULTI CLIQUE-COLOURING problem instance of length (N− kl).log(k) where

k = n. So we have to find, how many ways we can properly colour vertices in V1, V4 and

V5. Firstly, we can see that for any valid (such that each clause of it contains at least one

True and one False literal) satisfying assignment for φ, we can choose n− 2 colours

for V4 from n in
(n

n−2

)
=
(n

2

)
ways. Those n−2 colours can be given to vertices in V4

in either of (n−2)! ways. For each such colour assignment, vertices corresponding to

positive and negative literals in V1 can be coloured in 2! ways. Finally, for each such

colour assignment for V1 and V4, vertices in V5 can be coloured in another 2! ways.

So, for any valid (such that each clause of it contains at least one True and one False

literal) satisfying assignment for φ, total number of witnesses for #MULTI CLIQUE-

COLOURING problem instance is
(n

n−2

)
(n− 2)!2!2! = 2n!. Hence, total number of

witnesses for the #NAE-SAT instance = total number of witnesses for the #MULTI

CLIQUE-COLOURING instance divided by 2n!. Hence, we the reduction is weakly

w-parsimonious and #MULTI CLIQUE-COLOURING is #VC2-hard.

4.3 Different types of circuit problems with respect to

compression

We are now going to define an interesting parametric counting problem #MONOTONE

WEIGHTED-CNFSAT and other related problems. Then we are going to prove some

completeness and hardness results for all of them.

#MONOTONE WEIGHTED-CNFSAT:

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are positive literals, and another integer k (≤ n).

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True?

Parameter: k.log(n)

Similarly we can define:

#ANTIMONOTONE WEIGHTED-CNFSAT:

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are negative literals, and another integer k (≤ n).

Task:How many satisfying assignments are there for φ such that exactly k variables

Chapter 4. Counting hierarchy with respect to Compression 124

are assigned to be True?

Parameter: k.log(n)

#WEIGHTED-HORNSAT:

Input: A formula φ in conjunctive normal form of size m over n variables where each

clause contains at most one positive literal and another integer k ≤ n.

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True?

Parameter: k.log(n)

It is easy to see that any #ANTIMONOTONE WEIGHTED-CNFSAT instance is a

#WEIGHTED-HORNSAT instance, but the converse may not be true.

Similarly, we can define corresponding decision problems. Now we are going to

prove the hardness and completeness results corresponding to the above problems.

Throughout this discussion, when we say that there is some assignment of weight k,

we mean that exactly k variables are assigned to be True.

Now we are now going to show a strongly parametric w-parsimonious reduction

from #WEIGHTED-CNFSAT to #MONOTONE WEIGHTED-CNFSAT. As the count-

ing problem #WEIGHTED-CNFSAT is #WK[2]-complete from Definition 46 and any

#MONOTONE WEIGHTED-CNFSAT instance is also a #WEIGHTED-CNFSAT in-

stance, in this way we can prove that MONOTONE-WEIGHTED-CNFSAT is #WK[2]-

complete. We will first consider the decision version and argue that the reduction

works for counting version as well. The result for the decision version is presented in

[14] (Theorem 1) which applies the technique used by J. Flum and M. Grohe ([25],

Lemma 7.5). We have already used this technique for a different problem in the proof

of Proposition 19 (in chapter 3).

Theorem 32. #MONOTONE WEIGHTED-CNFSAT is #WK[2]-complete.

Proof. Let φ be a Boolean expression in conjunctive normal form consisting of l

clauses C1, C2, . . ., Cl with variables x1, x2, . . ., xn. We are going to construct another

Boolean formula φ
′

from φ with n
′

(polynomially bounded in n) number of variables

such that, φ is satisfiable with k number of variables assigned to be True iff φ
′

is also

satisfiable with k
′

(polynomially bounded in k) number of variables assigned to be

True. In our construction of φ
′
, it will be conjunction of two different formulae. First

formula (ψ) will not be dependent on φ, but the second one (ψ
′
) will be. We have

described the constructions of these two formulae below.

To construct such a new formula, we introduce two sets of new variables Xi, j (for i

Chapter 4. Counting hierarchy with respect to Compression 125

∈ [k] and j ∈ [n]) and Yi, j, j′ (for i ∈ [k−1] and 1≤ j < j
′ ≤ n) with intending meanings

as below:

Xi, j : the ith variable set to be True is x j,

Yi, j, j′ : the ith variable set to be True is x j and the (i+1)th is x j′ .

So total number of variables n
′

are bounded by (k.n+(k−1)n(n−1)/2) which is

clearly polynomially bounded in n as k ≤ n.

We are now going to construct a new Boolean formula as conjunction of k Boolean

formulae as follows:

ψ = φ0 ∧ φ1 ∧ . . . ∧ φk−1 . . .(i)

where φ0 = (
∧k

i=1
∨

a∈Xi
a) ∧ (

∧k−1
i=1

∨
b∈Yi

b), Xi = {Xi, j| j ∈ [n]}, Yi = {Yi, j, j′ |1 ≤ j <

j
′ ≤ n}

φi =
∧

j∈[n](
∨

1≤ j1< j2≤n, j1 6= j(Xi, j ∨Yi, j1, j2)∧
∨

1≤ j1< j2≤n, j2 6= j(Xi+1, j ∨Yi, j1, j2)), i = 1,2,

. . ., k−1.

We claim that

Lemma 5. Let l1, l2, . . ., lk ∈ [n] be k distinct integers. Any assignment of weight

(2k− 1) satisfying ψ and setting X1,l1 , X2,l2 , . . ., Xk,lk to True, must set Y1,l1,l2 , Y2,l2,l3 ,

. . ., Yk−1,lk−1,lk to True.

Proof. In φ0, we can see there are exactly 2k−1 clauses (corresponding to Xi, 1≤ i≤ k

and Yi, 1 ≤ i ≤ k−1). All of them are consists of different sets of input variables. So

clearly exactly one variable in each Xi and Yi should be True for any assignment of

weight (2k−1) satisfying ψ.

Let us now consider that Xi,li be the variable of Xi set to be True. For any such

fixed i ∈ [k−1], let Yi,l,m be the variable of Yi set to True. If l 6= li, then in φi the sub-

formula
∨

1≤ j1< j2≤n, j1 6= j(Xi, j ∨Yi, j1, j2) will not be satisfied. Similarly if m 6= li+1 the

sub-formula
∨

1≤ j1< j2≤n, j2 6= j(Xi+1, j∨Yi, j1, j2) will not be satisfied. Hence the lemma is

proved.

Now we will replace all the positive literals x j of the initial formula φ by the fol-

lowing disjunction:∨
i∈[k]Xi, j

and all the negative literals x̄ j by the following formula (which is basically disjunctions

of variables):∨
j1∈[n], j< j1 X1, j1 ∨ (

∨
i∈[k−1]

∨
j1, j2∈[n], j1< j< j2 Yi, j1, j2)∨

∨
j2∈[n], j> j2 Xk, j2 . . .(ii)

to construct the new Boolean formula ψ
′
.

Chapter 4. Counting hierarchy with respect to Compression 126

It is easy to see that x j is True iff exactly one variable in the disjunction
∨

i∈[k]Xi, j is

True. But if x j is False, i.e., x̄ j is True, x j is either smaller (with respect to the ordering

of the variables of φ by their indices, x1, x2, . . ., xn) than the first variable set to be True

or between two consecutive variables set to be True or after the last variable set to be

True. The formula (ii) above captures this.

We present φ
′

= ψ ∧ ψ
′

as our final formula. We can see that in φ
′
, all the literals

are positive literals. Hence, it is a Monotone formula. From the above explanations

we can understand that φ is satisfiable with k variables assigned to be True iff φ
′

is

also satisfiable with k
′

(k
′

= 2k− 1) variables assigned to be True. The parameter

of the initial WEIGHTED-CNFSAT instance is k.log(n) where as the parameter of

the final instance is (2k− 1)log(n
′
). So clearly it is a w-reduction and it works for

counting version as well as the reduction is strongly parsimonious. Hence, MONO-

TONE WEIGHTED-CNFSAT is WK[2]-hard and corresponding counting problem is

#WK[2]-hard.

Any MONOTONE WEIGHTED-CNFSAT instance is a WEIGHTED-CNFSAT in-

stance. So clearly MONOTONE WEIGHTED-CNFSAT ∈WK[2] (similar to its count-

ing counter-part) and the theorem follows.

Now, we are going to give an alternate proof of the above theorem. In this proof we

will use the technique applied by Downey and Fellows (Theorem 2.1 [42]). Here we

will reduced the #WEIGHTED-CNFSAT instance to a #SET COVER and then #HIT-

TING SET instance in the intermediate stage. As a result, it also proves the #WK[2]-

completeness of the problems #SET COVER and #HITTING SET. Corresponding re-

sults for decision versions are pointed out in [14].

Alternate proof of Theorem 32:

Proof. According to Definition 46, the counting problem #WEIGHTED-CNFSAT is

#WK[2]-complete. Hence, we prove the #WK[2]-completeness result of #MONOTONE

WEIGHTED-CNFSAT, showing a reduction from a #WEIGHTED-CNFSAT instance

to an instance of the problem #MONOTONE WEIGHTED-CNFSAT.

We can observe that, a #MONOTONE WEIGHTED-CNFSAT instance φ with n

number of input variables is also a #WEIGHTED-CNFSAT instance. Hence it is trivial

to prove that #MONOTONE WEIGHTED-CNFSAT ∈ #WK[2].

Now we are going to prove the hardness result. There are several steps to prove

this result. We are going to show the steps one by one. Let φ be a Boolean expression

in conjunctive normal form consisting of l clauses C1, C2, . . ., Cl with variables x1, x2,

Chapter 4. Counting hierarchy with respect to Compression 127

. . ., xn. Downey and Fellows (Theorem 2.1 [42]) have shown the technique to produce

a graph G(V,E) from φ in polynomial time, such that it has a dominating set of size 2k

if and only if φ is satisfied by a truth assignment of weight k.We are going to use same

technique to get a #SET COVER instance from φ as described below.

The vertex set V of G is the union of the following sets of vertices:

V1 = {a[r,s] : 0≤ r ≤ k−1,0≤ s≤ n−1},
V2 = {b[r,s, t] : 0≤ r ≤ k−1,0≤ s≤ n−1,1≤ t ≤ n− k+1},
V3 = {c[j] : 1≤ j ≤ l},
V4 = {a′[r,u] : 0≤ r ≤ k−1,1≤ u≤ 2k+1},
V5 = {b′[r,u] : 0≤ r ≤ k−1,1≤ u≤ 2k+1},
V6 = {d[r,s] : 0≤ r ≤ k−1,0≤ s≤ n−1}.

The edge set E of G is the union of the following sets of edges.

E1 = {c[j]a[r,s] : Xs ∈C j},
E2 = {a[r,s]a[r,s′] : s 6= s

′},
E3 = {b[r,s, t]b[r,s, t ′] : t 6= t

′},
E4 = {a[r,s]b[r,s′, t] : s 6= s

′},
E5 = {b[r,s, t]d[r,s′] : s

′ 6= (s+ t)(mod n)},
E6 = {a[r,s]a′[r,u]},
E7 = {b[r,s, t]b′[r,u]},

Chapter 4. Counting hierarchy with respect to Compression 128

E8 = {c[j]b[r,s, t] : ∃i x̄i ∈C j,s < i < (s+ t)(mod n)},
E9 = {d[r,s]a[r′,s] : r

′
= (r+1)(mod n)}.

It can be easily seen that G(V,E) has a dominating set of size 2k if and only if φ is

satisfied by a truth assignment of weight k. It is also easy to see that no vertex from set

V3 can be present in dominating set of size 2k, because of verities in V4 and V5.

Now we will construct a SET COVER instance (S,C) from G(V,E). Corresponding

to all the vertices in G except those in V4, we will construct a set containing that vertex

with all its neighbouring vertices. Collection of all those sets is C for our SET COVER

instance. Set of all the vertices V of G is S for our SET COVER instance. So clearly,

SET COVER instance (S,C) has a set cover of size 2k if and only if there is a satisfying

assignment for φ with weight k. This reduction is clearly strongly parsimonious and

works for corresponding counting problem as well. Number of sets in C is bounded by

poly(n) and hence the parameter for the SET COVER instance is 2k.log(poly(n)). So

clearly the reduction is strongly w-parsimonious.

We can now construct a HITTING SET instance (Sh,Ch) from SET COVER instance

(S,C) using the standard well known reduction mentioned in chapter 3 (Proposition

22). This reduction is also strongly w-parsimonious.

So far all the reductions from #WEIGHTED-CNFSAT to #HITTING SET are strongly

w-parsimonious. Now we are going to show another strongly w-parsimonious reduc-

tion from #HITTING SET instance (Sh,Ch) to a #MONOTONE WEIGHTED-CNFSAT

instance.

Now let us try to described the reduction and corresponding function σ and τ.

Firstly we describe the function σ. Let us denote the counting problem #HITTING SET

as F and #MONOTONE WEIGHTED-CNFSAT as G. σ will take the #HITTING SET

instance (Sh,Ch) and corresponding to each element ai ∈ Sh it will construct a variable

yi. Corresponding to each set ch
j in Ch, it will construct horn clause c j taking yt ∈ c j

iff at ∈ ch
j . Now taking conjunction of all these clauses, σ will construct the HornSat

instance ψ. It is easy to see that the #HITTING SET instance (Sh,Ch) has a hitting set

of size k iff ψ has a satisfying assignment with number of 1 in each assignment equal

to k. We will take this ψ as our #MONOTONE WEIGHTED-CNFSAT instance (as all

its literals are positive literals) which is asking how many satisfying assignments for

ψ are there with weight k. Now we describe the algorithm τ. It will take #HITTING

SET instance (Sh,Ch), use σ, G and will return the number of hitting set of size k for

the instance (Sh,Ch). Let us denote the instance (Sh,Ch) as x which asks the number

of hitting set of size k for the instance (Sh,Ch). Now we can see that G(σ(x)) is the

Chapter 4. Counting hierarchy with respect to Compression 129

number of satisfying assignments of ψ with number of 1 in each assignment equal to k.

Clearly it is equal to the number of hitting sets of size k for the #HITTING SET instance

(Sh,Ch). τ is clearly running in time polynomial in size of x. We can also see that σ is

not increasing the parameter, it is still k.log(n) where n is the number of elements in

Sh. Hence, #MONOTONE WEIGHTED-CNFSAT is #WK[2]-complete.

Theorem 33. #ANTIMONOTONE WEIGHTED-CNFSAT is #VC[2]-hard.

Proof. We will prove this result by showing a w-reduction from SAT to ANTIMONO-

TONE WEIGHTED-CNFSAT. Then we will argue that the reduction is strongly parsi-

monious and works for counting version as well. As #SAT is #VC[2]-complete (from

Definition 44), this theorem will directly follow from that argument.

To prove this theorem we are going to re-define 2 problems with different parameter

as follows.

WEIGHTED-CNFSATn:

Input: A formula φ in conjunctive normal form of size m over n variables, and another

integer k (≤ n).

Task: Is there any satisfying assignments for φ such that exactly k variables are as-

signed to be True?

Parameter: n

MONOTONE WEIGHTED-CNFSATn:

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are positive literals, and another integer k (≤ n).

Task: Is there any satisfying assignments for φ such that exactly k variables are as-

signed to be True?

Parameter: n

Previously we considered k.log(n) as the parameter for both the problems. But we

know that the number of input variables n is also a natural witness length for these

problems. Similarly we can define the counting versions of these problems.

#WEIGHTED-CNFSATn:

Input: A formula φ in conjunctive normal form of size m over n variables, and another

integer k (≤ n).

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True?

Parameter: n

#MONOTONE WEIGHTED-CNFSATn:

Chapter 4. Counting hierarchy with respect to Compression 130

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are positive literals, and another integer k (≤ n).

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True?

Parameter: n

Now, suppose φ is a Boolean formula in CNF with n variables. This φ is our SAT

instance which is asking if there is any satisfying assignment for φ. We now convert

φ to φ
′

where φ
′

is basically a WEIGHTED-CNFSATn instance. So here we ask, if

there is any satisfying assignment of weight k for φ
′
, i.e., exactly k (≤ n

′
, number of

variables for φ
′
) variables are assigned to be True. We can use our original reduction

to do that as we have used in chapter 3 (Proposition 21). Suppose x1,x2, . . . ,xn are the

input variables for φ. We will introduce a new set of variables y1,y2, . . . ,yn. We will

replace each x̄i in φ by yi, 0 ≤ i ≤ n. We rename this new formula as φy. Now we

construct our φ
′
as follows:

φ
′
= φy∧

∧n
i=1((xi∨ yi)∧ (x̄i∨ ȳi))

It is now easy to see that φ is satisfiable iff φ
′
has a satisfying assignment of weight

k = n. Number of variables of φ
′

is n
′

= 2n. So clearly it is a w-reduction and also

works for counting versions.

Now, following similar technique as in the proof of Theorem 32, we reduce this

φ
′

to a MONOTONE WEIGHTED-CNFSATn instance φ
′′
. φ

′′
is a monotone formula

in CNF and here we ask if there is any satisfying assignment of weight k
′′

= 2k
′ − 1

for φ
′′
. k

′′
is less than or equal to n

′′
, the number of variables of φ

′′
. From the proof

of Theorem 32 we can also see that n
′′

= (k.n
′
+(k− 1)n

′
(n
′ − 1)/2) which is clearly

polynomially bounded in n
′

as k ≤ n
′
. Hence, all the reductions we have used so far

are strongly parametric w-parsimonious.

Now we will convert this φ
′′
, to our final ANTIMONOTONE WEIGHTED-CNFSAT

instance ψ as follows. We will just invert all the literals in φ
′′

to their negations and

construct a new formula ψ. Now for this new reduced instance, we ask, if there is

any satisfying assignment for ψ such that (n
′′ − k

′′
) variables are assigned to be True.

We take (n
′′ − k

′′
).log(n

′′
) as the parameter for this ANTIMONOTONE WEIGHTED-

CNFSAT instance ψ. We can see that (n
′′ − k

′′
).log(n

′′
) is polynomially bounded in

n
′′
. It is now easy to see that if any assignment, say b1b2 . . .bn (bi ∈ {0,1}, 1≤ i≤ n)

satisfies φ
′′
, b̄1b̄2 . . . b̄n will satisfy ψ. b̄1b̄2 . . . b̄n contains exactly (n

′′ − k
′′
) 1s in the

binary string of length n
′′

iff b1b2 . . .bn contains k
′′

1. So clearly, we have found a w-

reduction from SAT instance φ to ANTIMONOTONE WEIGHTED-CNFSAT instance

Chapter 4. Counting hierarchy with respect to Compression 131

ψ which is strongly parsimonious and works for both decision and counting versions.

Hence, #ANTIMONOTONE WEIGHTED-CNFSAT is #VC[2]-hard.

As any ANTIMONOTONE WEIGHTED-CNFSAT instance is also a WEIGHTED-

CNFSAT instance, it is easy to see that #ANTIMONOTONE WEIGHTED-CNFSAT ∈
WK[2]. As any #ANTIMONOTONE WEIGHTED-CNFSAT problem instance is also

a #WEIGHTED-HORNSAT instance (where each clause contains at most one positive

literals), similar proof as Theorem 33 works for #WEIGHTED-HORNSAT as well. Sim-

ilarly, this problem is present in WK[2] as well.

We can also consider slightly different version of the previous two problems as

follows:

#ANTIMONOTONE WEIGHTED-CNFSAT≤:

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are negative literals and another integer k (≤ n).

Task: How many satisfying assignments are there for φ such that number of variables

assigned to be True ≤ k?

Parameter: k.log(n)

It is easy to see that decision versions of the above problem is easy to solve as we

can set all the variables False. So any such problems are trivially solvable and hence in

VC0. But for counting versions, both the problems ∈ #WK[2] and are #VC2-complete.

Theorem 34. #ANTIMONOTONE WEIGHTED-CNFSAT≤ is #VC2-hard and present

in #WK[2].

Proof. We will prove this result by showing a parametric w-T -reduction from the

counting problem #ANTIMONOTONE WEIGHTED-CNFSAT to the problem #ANTI-

MONOTONE WEIGHTED-CNFSAT≤ and vice versa. We denote the counting problem

#ANTIMONOTONE WEIGHTED-CNFSAT as F , and the counting problem #ANTI-

MONOTONE WEIGHTED-CNFSAT≤ as G. Suppose φ is a F instance and the counting

problem asks how many satisfying assignments are there for φ of weight k. We denote

this counting problem as (φ,k.log(n)). To reduce this problem to a #ANTIMONOTONE

WEIGHTED-CNFSAT≤ instance, our counting reduction algorithm σ will trivially

output the same instance φ. But the output counting problem is asking how many

satisfying assignments of φ are there of weight at most (instead of exactly) k.

We will now construct τ (the algorithm with an oracle for G) to get the total num-

ber of satisfying assignments of the F instance from G instance. τ will consider two

different F instances (φ,k.log(n)) and (φ,(k− 1).log(n)) give (G(σ(φ,k.log(n)))−

Chapter 4. Counting hierarchy with respect to Compression 132

G(σ(φ,(k−1).log(n)))) as output. G(σ(φ,(k−1).log(n)) gives total number of satis-

fying assignments of φ of weight at most k− 1 and G(σ(φ,k.log(n))) gives the same

of weight at most k. So clearly if we subtract the first from the second, we will get

total number of satisfying assignments of φ of weight exactly k. Hence the algorithm

τ is correct and the counting problem #ANTIMONOTONE WEIGHTED-CNFSAT is

parametric w-T -reducible to #ANTIMONOTONE WEIGHTED-CNFSAT≤.

To show the reduction in the opposite direction, suppose ψ is a #ANTIMONOTONE

WEIGHTED-CNFSAT≤ instance and the counting problem asks how many satisfying

assignments are there for ψ of weight at most k. In this reduction, our σ will be same

as before, i.e., it will trivially output the same instance ψ. But the output counting

problem is asking how many satisfying assignments of ψ are there of weight exactly

(instead of at most) k.

Now we are going to construct τ (the algorithm with an oracle for F) to get the

total number of satisfying assignments of the G instance from F instance. τ will con-

sider k+1 different G instances (φ,0.log(n)) (it is asking for satisfying assignments of

weight 0), (φ,1.log(n)), . . ., (φ,k.log(n)) and give ∑
k
t=0(F(σ(φ, t.log(n))) as output.

F(σ(φ, t.log(n)) gives total number of satisfying assignments of φ of weight exactly

t. So clearly ∑
k
t=0(F(σ(φ, t.log(n))) gives total number of satisfying assignments of

φ of weight at most k i.e., G(φ,k.log(n)). Hence, #ANTIMONOTONE WEIGHTED-

CNFSAT≤ is w-T -reducible to the counting problem #ANTIMONOTONE WEIGHTED-

CNFSAT and the proof of the theorem completes.

Now we can similarly define following problem and prove the results related to

them as mentioned.

#MONOTONE WEIGHTED-CNFSAT≤:

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are positive literals and another integer k (≤ n).

Task: How many satisfying assignments are there for φ such that number of variables

assigned to be True ≤ k?

Parameter: k.log(n)

Corollary 7. #MONOTONE WEIGHTED-CNFSAT≤ is #WK[2]-complete.

Above corollary can be proved similarly by showing parametric w-T -reductions to

and from the problems #MONOTONE WEIGHTED-CNFSAT.

We can consider the following problem as well:

Chapter 4. Counting hierarchy with respect to Compression 133

#WEIGHTED-HORNSAT≤:

Input: A formula φ in conjunctive normal form of size m over n variables where each

clause contains at most one positive literal and another integer k ≤ n.

Task: How many satisfying assignments are there for φ of weight ≤ k ?

Parameter: k.log(n)

As any #ANTIMONOTONE WEIGHTED-CNFSAT≤ problem instance is also a

#WEIGHTED-HORNSAT≤ instance, #WEIGHTED-HORNSAT≤ is #VC2-hard (Theo-

rem 34) as well. It is not surprising that, corresponding decision version, WEIGHTED-

HORNSAT≤ is in P, same as ANTIMONOTONE WEIGHTED-CNFSAT≤. But the proof

is not so trivial as ANTIMONOTONE WEIGHTED-CNFSAT≤. We have briefly men-

tioned this proof below.

Proposition 30. WEIGHTED-HORNSAT≤ is in VC0.

Proof. We are going to describe a polynomial time algorithm to prove this. Suppose

φ is a Horn Boolean formula presented as WEIGHTED-HORNSAT≤ instance. So each

clause of φ contains at most one positive literal. We have to check if there is any

satisfying assignment of φ of weight at most k. Firstly we will check if there is any

clause containing single positive literal in the formula. If so, we will pick any such

clause and assign corresponding variable to True and remove that clause from φ. If

the same variable is present in any other clause as positive literal we will remove that

clause from φ as well. If the same variable is present in any clause as negative literal,

we will remove only that literal from that clause. If that negative literal is the only

literal in the clause, we will stop and declare that φ is not satisfiable. Otherwise we

will check if the new formula still contains any clause containing any single positive

literal. If so we will continue like above until the formula doesn’t contain any single

positive literal clause. When all the single positive literal clauses are removed (new

single positive literal clauses, not present in φ, can arise in intermediate steps, we have

to remove all of them), we will just count how many variables of φ are assigned to

True so far. If that count is greater than k, we will declare that there is no satisfying

assignment of φ of weight at most k. Otherwise, we will assign all the remaining

variables False and can see that we have already found a satisfying assignment of φ of

weight at most k. The runtime of the algorithm is polynomially bounded in number of

variables of φ as at each step we will assign exactly one variable to True until all the

single literal clauses are removed. Hence, WEIGHTED-HORNSAT≤ is in VC0.

Now we are going to consider the un-weighted version of these problems and see

Chapter 4. Counting hierarchy with respect to Compression 134

where they stand in #VC hierarchy. But before that, we are going to prove a very

simple result. Let us consider the following problems.

#DEPTHiOR CIRCUITSAT:

Input: A Boolean circuit C of depth at most i over n variables where the top level

Boolean operation is OR.

Task: How many satisfying assignments are there for C ?

Parameter: n

Similarly we can define:

#DEPTHiAND CIRCUITSAT:

Input: A Boolean circuit C of depth at most i over n variables where the top level

Boolean operation is AND.

Task: How many satisfying assignments are there for C ?

Parameter: n

Similarly we can define the counting versions of these two problems. They are

already defined in [13]. It is clear that both of these problems are present in #VCi.

Analogous result in decision version is also true. It is also proved in [13] that, for

i ≥ 3, DEPTHiAND CIRCUITSAT is VCi-complete but DEPTHiOR CIRCUITSAT ∈
VCi−1 (Claim 2.16, [13]). But for counting versions, that proof does not work. So, we

prove the following result here.

Theorem 35. For i ≥ 3, both #DEPTHiAND CIRCUITSAT and #DEPTHiOR CIR-

CUITSAT are #VCi-complete.

Proof. To prove this result we have to consider both the problems one by one. So

we consider #DEPTHiAND CIRCUITSAT (i ≥ 3) first. For that we have to show w-

T -reductions to and from #DEPTHiCIRCUITSAT (Definition 44). We know that any

#DEPTHiAND CIRCUITSAT instance C is after all a circuit of depth at most i. So it

is trivial that #DEPTHiAND CIRCUITSAT ∈ #VCi (i ≥ 3).

To prove the hardness result, we show a reduction from #DEPTHiCIRCUITSAT to

#DEPTHiAND CIRCUITSAT. Suppose one circuit C of depth at most i (i≥ 3) is given

to us with n input variables. If the top level Boolean operation in C is already AND,

we do not need to do anything else. Because, in that case it is already a #DEPTHiAND

CIRCUITSAT instance. But if the top level Boolean operation is OR, we just take C
′
=

C̄ as our final #DEPTHiAND CIRCUITSAT instance. It is easy to see that the top level

operation of C
′
is AND (applying De Morgan’s law) when the top level operation of C

is OR.

Chapter 4. Counting hierarchy with respect to Compression 135

We can also see that total number of satisfying assignments of C = 2n - total num-

ber of satisfying assignments of C
′
. Because, any assignment that will make C

′
un-

satisfiable, will satisfy C. Hence, clearly we have found a weakly w-parsimonious

reduction from #DEPTHiCIRCUITSAT to #DEPTHiAND CIRCUITSAT and conclude

that #DEPTHiAND CIRCUITSAT is VCi-complete.

The proof for VCi-completeness of #DEPTHiOR CIRCUITSAT is very much the

same. The containment result is similarly trivial to see. Hardness proof is also similar,

except, in this case if the top level operation is not OR then only we will take the

complement. Hence, For i ≥ 3, both #DEPTHiAND CIRCUITSAT and #DEPTHiOR

CIRCUITSAT are #VCi-complete.

Now we define the following problems.

#DEPTHi MONOTONE CIRCUITSAT:

Input: A Boolean circuit C of depth at most i over n variables where all the literals at

the bottom level are positive literals.

Task: How many satisfying assignments are there for C ?

Parameter: n

Similarly we can define:

#DEPTHi ANTIMONOTONE CIRCUITSAT:

Input: A Boolean circuit C of depth at most i over n variables where all the literals at

the bottom level are negative literals.

Task: How many satisfying assignments are there for C ?

Parameter: n

It is easy to see that decision versions of both the above problems are easy to solve.

We can set all the variables to Boolean True (or False) to make any DEPTHi MONO-

TONE CIRCUITSAT (or DEPTHi ANTIMONOTONE CIRCUITSAT) instance satisfiable.

So finding one witness is easy. Now we are going to prove some interesting results cor-

responding to their counting versions.

Theorem 36. #DEPTHi MONOTONE CIRCUITSAT is #VCi-complete for any i ≥ 3.

Proof. We show a parametric w-T -reduction from #DEPTHiAND CIRCUITSAT to

#DEPTHi MONOTONE CIRCUITSAT to prove this theorem. We use F to denote the

counting problem #DEPTHiAND CIRCUITSAT and G to denote #DEPTHi MONO-

TONE CIRCUITSAT. Let us consider that C is a Boolean circuit of depth at most i (≥
3) over n variables. This C is our #DEPTHiAND CIRCUITSAT instance. The top level

gate is AND gate. If we consider the bottom level literals of C, it can contain both

Chapter 4. Counting hierarchy with respect to Compression 136

positive and negative literals. Suppose the variables of C are x1,x2, . . . ,xn. We now

introduce another set of n variables, y1,y2, . . . ,yn. Now we will replace any literal x̄i

present in C by yi. If for any j ∈ {1,2, . . . ,n}, x̄ j is not present at all in C, we can ignore

corresponding y j variable. Let us consider this new circuit is C
′
and also consider that

S (⊆ {1,2, . . . ,n}) is the set such for any i ∈ S, x̄i is present in C. After that, we will

construct C
′′

from C
′
as follows:

C
′′

= C
′ ∧

∧
i∈[n],i∈S(xi∨ yi)

In our w-T -reduction, σ will construct this new circuit C
′′

from C in polynomial

time. It is clear that C
′′

is a #DEPTHi MONOTONE CIRCUITSAT instance as all the lit-

erals are positive literals here. Now we have to construct τ which can use (C,n), σ and

G and should give total number of witnesses of the counting problem #DEPTHiAND

CIRCUITSAT instance (C,n) as output.

τ (the algorithm with an oracle for G) will use σ to construct C
′′

from C, and then

construct another circuit C
′′′

from it as follows:

C
′′′

= C
′′ ∧

∨
i∈[n],i∈S(xi∧ yi)

We assume n
′′′

to be the number of variables of C
′′′

. We can see that C
′′′

is still a

#DEPTHi MONOTONE CIRCUITSAT instance for any i ≥ 3. After constructing this

new circuit, τ will give following as output:

G(σ(C,n)) - G(C
′′′
,n
′′′
)

To prove that the algorithm τ is correct, we have to prove that F(C,n) = G(σ(C,n))

- G(C
′′′
,n
′′′
). It is easy to see that, total number of satisfying assignments of C is equal

to the total number of satisfying assignments of C
′ ∧

∧
i∈[n],i∈S(xi∨yi) ∧

∧
i∈[n],i∈S(x̄i∨

ȳi). But this circuit is not Monotone though C
′′

is. But clearly, total number of satis-

fying assignments of C
′′

is ≥ that of C. So we have to subtract the extra assignments

to get our result. That is why C
′′′

is constructed as C
′′ ∧

∧
i∈[n],i∈S(x̄i∨ ȳi) which is

same as C
′′ ∧

∨
i∈[n],i∈S(xi ∧ yi) as mentioned above. C

′′′
is a #DEPTHi MONOTONE

CIRCUITSAT instance for any i ≥ 3. Hence, the algorithm τ is correct.

Total number of variables of all the circuits are polynomially bounded by n. So

clearly it is a w-T -reduction. Any #DEPTHi MONOTONE CIRCUITSAT instance is

also a #DEPTHiCIRCUITSAT instance. Hence #DEPTHi MONOTONE CIRCUITSAT

∈ #VCi and the theorem follows.

Theorem 37. #DEPTHi ANTIMONOTONE CIRCUITSAT is #VCi-complete for any i≥
3.

Proof. We will prove this result by showing a strongly w-parsimonious reduction from

Chapter 4. Counting hierarchy with respect to Compression 137

#DEPTHi MONOTONE CIRCUITSAT to #DEPTHi ANTIMONOTONE CIRCUITSAT

and vice versa. This reduction actually works for i = 2 as well. Let us consider that

C is a Boolean circuit of depth at most i over n variables. This C is our #DEPTHi

MONOTONE CIRCUITSAT instance. The top level gate is AND gate. If we consider

the bottom level literals of C, it contains only positive literals. Suppose the variables

of C are x1,x2, . . . ,xn. We now introduce another set of n variables, y1,y2, . . . ,yn. Now

we will replace any literal xi present in C by ȳi and call this new circuit as C
′
. If X||n||

denotes binary string of length n it is easy to see that for any assignment X||n|| that

satisfies C, X||n|| (this is bit by bit complementation of the binary string X||n||) satisfies

C
′
. So clearly total number of satisfying assignments of C is same as total number

of satisfying assignments of C
′
. Total number of variables are also same for both the

circuits. Hence this reduction is strongly parsimonious.

The reduction in the opposite direction is actually very similar. We can similarly

replace any negative literal z̄i of some #DEPTHi ANTIMONOTONE CIRCUITSAT in-

stance D by yi and construct a new circuit D
′
. D

′
is a #DEPTHi MONOTONE CIR-

CUITSAT instance which has same number of satisfying assignments as D. Hence,

#DEPTHi MONOTONE CIRCUITSAT and #DEPTHi ANTIMONOTONE CIRCUITSAT

are equivalent to each other with respect to strongly parametric w-parsimonious re-

duction and #DEPTHi ANTIMONOTONE CIRCUITSAT is #VCi-complete for any i ≥
3.

Next, consider another interesting problem.

#OR-SAT:

Input: m Boolean formulae φ1 , . . . , φm, each with n input variables and of size at

most poly(n).

Task: How many assignments to the input variables are there such that for each as-

signment, there exists i ∈ [m] such that φi is satisfiable ?

Parameter: (n+ log(m))

In the above problem, all the Boolean formulae φ1 , . . . , φm, are consists of different

sets of input variables. That is why the parameter is taken as (n+ log(m)) as in this

case, any witness will encode the satisfiable smaller formula in log(m) bits and then

represent the truth assignments of its input variables in n bits. Even if they are sharing

some common variables, we can still encode the natural witness in (n+ log(m)) bits.

So it is a legitimate choice of parameters for this problem. Harnik and Naor [13] have

already proved that, decision version of this problem is VCor-complete and Fortnow

Chapter 4. Counting hierarchy with respect to Compression 138

and Santhanam [32] have proved that this problem is unlikely to be in VC0 unless

polynomial hierarchy collapses. But if we consider the counting version, we can see

following result.

Theorem 38. #OR-SAT is in #VC0.

Proof. We will prove this result by showing a Turing compression algorithm for the

#OR-SAT counting problem. Let us consider ψ consists of a disjunction of m Boolean

formulae φ1 , . . . , φm, each with n input variables and of size at most poly(n). This ψ

is our #OR-SAT instance. Let us denote the counting problem #OR-SAT as F and

the #SAT counting problem (parameter n, the number of input variables) as G. F and

G take instance of corresponding counting problem as input and give total number of

witnesses of that instance as output. To compress any #OR-SAT instance, we will

find a pair of polynomial time computable algorithms (σ,τ). σ will take any #OR-

SAT instance as input and give a Boolean formula in CNF as output. But the output

formula will be polynomially bounded in (n+ log(m)), the parameter of the #OR-SAT

problem. On the other hand, τ can use ψ, G and σ and gives total number of witnesses

of ψ as output. We also have to make sure that within τ, whenever we are using G to

find the total number of witnesses of any #SAT instance, that instance size should be

polynomially bounded in the parameter of ψ.

We now describe our σ and τ (the algorithm with an oracle for G). If ψ contains

exactly one small Boolean formula (of size poly(n)) φ1 with n input variables, it is

already compressed. So in that case σ will output only φ1. Otherwise, σ takes ψ as

input and gives any trivial Boolean formula of size poly(n+ log(m)) as output. On the

other hand, τ will take ψ and split it into individual smaller CNF Boolean formulae

φ1 , . . . , φm. Then it will give ∑
m
i=1 G(σ((φi,n)) as output. It is easy to see that

∑
m
i=1 G(σ((φi,n)) is exactly the total number of witnesses of ψ. We can also see that,

within τ, whenever we are using G to find the total number of witnesses of any #SAT

instance φi, that instance size is polynomially bounded in n. Hence our σ and τ are

legitimate compression algorithm pair and #OR-SAT is in #VC0.

Although the above proof is quite simple, the implication is quite interesting. Here

we are trying to develop a theory of compressibility analogous to the theory of solv-

ability. In theory of solvability, we know that counting problems are always difficult

to solve compared to its decision version. If we can find the solution of any counting

problem, we can check if it is greater than 0 or not. If yes, we know that corresponding

Chapter 4. Counting hierarchy with respect to Compression 139

decision version is a yes instance, other wise no instance. But in theory of compress-

ibility, the same thing is not true. Theorem 38 is giving one such counter example

where the decision version is difficult to compress but the counting version is easy to

compress.

Now we define a few more interesting problems.

SELECTED DOMINATING SET:

Input: A graph G(V,E) with n vertices, and a subset N ⊆ V .

Task: Is there a subset N
′ ⊆ N, such that it is a dominating set of graph G and every

vertex in N is dominated by exactly one vertex in N
′
?

Parameter: |N|
Above, we can see that the problem is defining a special kind of dominating set

with respect to some other vertex set N. We refer them as selected dominating set.

SELECTED SET COVER:

Input: A set S with |S| = n, a family of sets C with |C| = m where C ⊆℘(S) and a

subset N ⊆ S.

Task: Is there a subset C
′ ⊆C, such that it is a Set Cover of the set S and every element

in N is covered by exactly one set in C
′
?

Parameter: m

SELECTED HITTING SET:

Input: A set S with |S| = n, a family of sets C with |C| = m where C ⊆℘(S) and a

subset N ⊆C.

Task: Is there a subset S
′ ⊆ of S, such that it is a Hitting Set of C and every set in N is

hit by exactly one element in S
′
?

Parameter: n

Similarly we can define the term selected set cover and selected hitting set. The

problems defined above are actually combination of general SET COVER (or DOM-

INATING SET/HITTING SET) and corresponding exact versions of them. We have

already seen in previous chapter that EXACT COVER and EXACT HITTING SET are

VC1-hard. With different parameter they are actually VCE-complete. On the other hand

SET COVER, DOMINATING SET and HITTING SET are VC2-complete and present in

VC3. Hence, it is interesting to define the selected versions of these problems and

check how they behave with respect to compression.

We are now going to prove the following theorem.

Theorem 39. SELECTED HITTING SET is VC2-complete.

Chapter 4. Counting hierarchy with respect to Compression 140

Proof. We already know that SAT is VC2-complete [13]. So we will prove this result

by showing w-reductions from SAT to SELECTED HITTING SET and vice versa.

Hardness Result:
To prove the hardness result, we have to show a w-reduction from SAT to SE-

LECTED HITTING SET. We will show this reduction step by step. Firstly we will show

a w-reduction from SAT to SELECTED DOMINATING SET. This part of the proof is

inspired by the technique used by Downey and Fellows (Theorem 2.1 [42]). We have

already used that in the alternate proof of Theorem 32. Here, we are going to generalize

that technique.

Let φ be a Boolean expression in conjunctive normal form consisting of l clauses

C1, C2, . . ., Cl with variables x1, x2, . . ., xn. Now we are going to construct a graph G

from φ such that φ is satisfiable iff G has an Selected dominating set. The graph con-

struction is going to be similar to what we have seen in the alternate proof of Theorem

32. In that proof, for a given k, we constructed a gadget. Now, for for all k = 0,1, . . .,

n, we are going to construct separate gadgets similar to that. For k = 2,. . ., n, gadget

construction will be exactly similar. So let us describe that first. For k = 2,. . ., n,we

will construct sub-graph Gk with vertices Vk and edges Ek, as follows.

The vertex set Vk of Gk is the union of the following sets of vertices:

V k
1 = {a[r,s] : 0≤ r ≤ k−1,0≤ s≤ n−1},

V k
2 = {b[r,s, t] : 0≤ r ≤ k−1,0≤ s≤ n−1,1≤ t ≤ n− k+1},

V k
3 = {a′[r,u] : 0≤ r ≤ k−1,1≤ u≤ 2k+1},

V k
4 = {b′[r,u] : 0≤ r ≤ k−1,1≤ u≤ 2k+1},

V k
5 = {d[r,s] : 0≤ r ≤ k−1,0≤ s≤ n−1}.

The edge set Ek of G is the union of the following sets of edges.

Ek
1 = {a[r,s]a[r,s′] : s 6= s

′},
Ek

2 = {b[r,s, t]b[r,s, t ′] : t 6= t
′},

Ek
3 = {a[r,s]b[r,s′, t] : s 6= s

′},
Ek

4 = {b[r,s, t]d[r,s′] : s
′ 6= (s+ t)(mod n)},

Ek
5 = {a[r,s]a′[r,u]},

Ek
6 = {b[r,s, t]b′[r,u]},

Ek
7 = {d[r,s]a[r′,s] : r

′
= (r+1)(mod n)}.

For any such fixed k and fixed r, the graph is shown in the picture.

Besides, we will add some extra vertices and edges as follows.

V
′
= {c[j] : 1≤ j ≤ l}

E
′
1 = {c[j]a[r,s] : Xs ∈C j for all a[r,s] in V k

1 ,2≤ k ≤ n},

Chapter 4. Counting hierarchy with respect to Compression 141

E
′
2 = {c[j]b[r,s, t] : ∃i x̄i ∈C j,s < i < (s+ t)(mod n), for all b[r,s, t] in V k

2 ,2≤ k ≤ n}.
For k = 0, V0 is just one vertex. This vertex will be connected to c[j] : 1≤ j ≤ l, if

∃i x̄i ∈C j.

For k = 1,

V 1
1 = {a[s] : 0≤ s≤ n−1},

V 1
2 = {b[s] : 0≤ s≤ n−1},

V 1
3 = {a′[u] : 1≤ u≤ 2n+1},

V 1
4 = {b′[u] : 1≤ u≤ 2n+1},

E1
1 = {a[s]a[s′] : s 6= s

′},
E1

3 = {a[s]b[s′] : s 6= s
′},

E1
5 = {a[s]a′[u]},

E1
6 = {b[s]b′[u]}.

Now to connect these vertices with V
′
, similarly we will connect c[j]a[s] : Xs ∈C j

for all a[s] ∈ V 1
1 . We also connect c[j]b[s] if ∃i x̄i ∈C j and i 6= s for all b[s] ∈ V 1

2 .

There will be another set of vertices and edges as follows (this part is working as

weight controller):

U1 = {q[s] : 0≤ s≤ n},
U2 = {q′[t] : 1≤ t ≤ 2n+1},
Eq

1 = {q[s]q[s′] : s 6= s
′},

Chapter 4. Counting hierarchy with respect to Compression 142

Eq
2 = {q[s]q′[t]},

Eq
3 = {q[s]a : ∀a ∈Vk,0≤ k ≤ n,k 6= s}.

So, as we can see above, we have connected q[s] to all the Vk vertices except when

k = s. Besides, we have used another set of 2n+1 vertices (U2) which are connected to

all the q[s] : 0≤ s≤ n. This part is ensuring that exactly one vertex from U1 is always

selected.

Now our graph construction is complete. Combining all the smaller graphs men-

tioned above, we will get our desired graph G where N is all the vertices except V
′
.

So clearly number of vertices in N is polynomially bounded in n. Now, it is not that

difficult to see that φ is satisfiable iff G has a Selected dominating set where parameter

is |N|. Let us explain why this claim correct. Suppose φ is satisfiable. So there is some

satisfying assignment of weight k, 0≤ k≤ n. We will select u[k] from U1 as one vertex

in our final dominating set. So, all the vertices except those in Vk and V
′

are covered.

Now, we can not select any other vertex from anywhere except those in vertex set Vk.

After that, depending upon the assignment, correct vertices will be selected from Vk

as shown by Downey and Fellows (Theorem 2.1 [42]). Clearly, all the vertices except

those in V
′
, will be dominated by exactly one vertex. The proof in the opposite di-

rection is also similar. Suppose there is a desired Selected dominating set for G. So

clearly exactly one vertex, say u[k], from U1 is selected. Now remaining selection of

vertices will map one satisfying assignment of weight k for φ.

Hence, we have proved that SELECTED DOMINATING SET is VC2-hard. Now we

are going to show another w-reduction from SELECTED DOMINATING SET to SE-

LECTED SET COVER.

We will construct a SELECTED SET COVER instance (S,C) from G(V,E) as fol-

lows. Corresponding to all the vertices in N, we will construct a set containing that

vertex with all its neighbouring vertices (i.e., all the vertices connected directly with

that vertex). Collection of all those sets is C for our SELECTED SET COVER instance.

Set of all the vertices of G is the set of elements S and set of vertices N is same N ⊆ S

for our SELECTED SET COVER instance. So clearly, SELECTED SET COVER instance

(S,C) has a set cover such that the elements corresponding to N is covered exactly once

if and only if G has a Selected dominating set. The parameter of both the problems are

clearly polynomially bounded. Thus, we have proved that SELECTED SET COVER is

VC2-complete.

Now, we are going to reduce this SELECTED SET COVER instance (S,C) to our

final SELECTED HITTING SET instance (Sh,Ch) to prove the hardness result. The

Chapter 4. Counting hierarchy with respect to Compression 143

reduction is quite simple. Corresponding to each set si ∈ C, we will construct one

element for Sh. Corresponding to each element ai ∈ S, we will construct a set ci for

Ch. ci will contain all those elements of Sh corresponding to all the sets in C where ai

is present. We also construct Nh = {ci|ai ∈ N}. So clearly Nh ⊆ Ch. It is now easy to

see that (S,C) has a selected set cover with respected to N iff (Sh,Ch) has a selected

hitting set with respect to Nh. Clearly the parameter is also polynomially bounded and

we have proved that SELECTED HITTING SET is VC2-hard.

Membership Result:
To prove the membership, we are going show a w-reduction from SELECTED HIT-

TING SET to SAT. Let us consider a SELECTED HITTING SET instance (Sh,Ch). We

are now going to construct a Boolean formula φ
′

which will be in CNF . We will just

construct one clause corresponding to each set in Ch such that a ∈ st for some st ∈Ch,

a ∈ ct where ct is a clause (disjunction of literals) for φ
′
. All the elements in Sh will be

the variable of φ
′
. We can now notice that (Sh,Ch) has a selected hitting set with respect

to Nh iff φ
′

has a satisfying assignment such that each of the clauses corresponding to

the sets in Nh has exactly one literal assigned to be True. Suppose φ
′

is of following

format:

φ
′
=
∧l−1

i=0 Ci∧
∧l
′−1

i=0 D
′
i

So φ
′

has l + l
′

clauses (Ci, 0 ≤ i ≤ l−1 and D
′
i, 0 ≤ i ≤ l

′−1) and (Sh,Ch) has a

selected hitting set with respect to Nh iff φ
′
has a satisfying assignment such that exactly

one literal in every Ci, 0≤ i≤ l−1, is assigned to be True. Number of variables of φ
′

is same as the parameter of the SELECTED HITTING SET instance. But this φ
′

is not

our final SAT instance. To obtain our final SAT instance, we consider that:

Ci =
∨it−1

j=0 li, j, 0 ≤ i ≤ l−1.

It means, for 0 ≤ i ≤ l−1, any clause Ci is disjunctions of it literals.

Now we construct C
′
i corresponding to each Ci, 0 ≤ i ≤ l−1 as follows.

C
′
i = Ci ∧

∧
0≤p<q≤(it−1)(¯li,p∨ ¯li,q).

It is easy to see that C
′
i is satisfiable iff exactly one literal in Ci is assigned to be

True.

Now we construct the new formula φ
′
as follows.

φ
′′

=
∧l−1

i=0 C
′
i ∧

∧l
′−1

i=0 D
′
i

It is easy to see that φ
′′

is satisfiable iff φ
′

is satisfiable such that exactly one literal

in each Ci, 0 ≤ i ≤ l− 1 is assigned to be True. The number of variables (parameter)

in both φ
′

and φ
′′

are same. So clearly we have found a w-reduction from SELECTED

HITTING SET to SAT. Hence, SELECTED HITTING SET is VC2-complete.

Chapter 4. Counting hierarchy with respect to Compression 144

From the above proof we can see that we have already proved the following corol-

lary.

Corollary 8. SELECTED DOMINATING SET and SELECTED SET COVER are VC2-

complete.

The counting versions of these problems are defined below.

#SELECTED DOMINATING SET:

Input: A graph G(V,E) with n vertices, and a subset N ⊆ V .

Task: How many subsets of N are there, such that each of them is a dominating set of

graph G and every vertex in N is dominated by exactly one vertex ?

Parameter: |N|
#SELECTED SET COVER:

Input: A set S with |S| = n, a family of sets C with |C| = m where C ⊆℘(S) and a

subset N ⊆ S.

Task: How many subsets of C are there, such that each of them is a Set Cover of the

set S and every element in N is covered by exactly one set ?

Parameter: m

#SELECTED HITTING SET:

Input: A set S with |S| = n, a family of sets C with |C| = m where C ⊆℘(S) and a

subset N ⊆C.

Task: How many subsets of S are there, such that each of them is a Hitting Set of C

and every set in N is hit by exactly one element ?

Parameter: n

As all the reductions in the proof of Theorem 39 are strongly parsimonious and

work for counting versions as well, we can now prove the following corollary.

Corollary 9. #SELECTED HITTING SET, #SELECTED DOMINATING SET and #SE-

LECTED SET COVER are #VC2-complete.

4.4 Counting complexity class #VCE and related prob-

lems

We have already introduced the new class VCE in chapter 3 (section 3.3). We are now

going to consider the counting counterpart of that problem.

Chapter 4. Counting hierarchy with respect to Compression 145

#EXACT CNF-SAT:

Input: A formula φ in conjunctive normal form of size m over n variables.

Task: How many satisfying assignments are there for φ such that exactly one literal in

each clause of φ is assigned to be True ?

Parameter: n

We are now defining the counting complexity class #VCE as follows:

Definition 53. #VCE is the class of counting problems which are w-T -reducible to

#EXACT CNF-SAT.

We have already proved that VCE ⊆ VC1 in chapter 3 (Theorem 16). It is easy to

see that corresponding reductions are eventually strongly w-parsimonious and hence

works for counting problems as well. As a result, we can conclude that,

Theorem 40. #VCE ⊆ #VC1

We are now going to consider some counting problems, decision versions of which

are already considered in chapter 3 (section 3.3).

#EXACT HITTING SETn:

Input: A hypergraph (V , E) with |V | = n and |E| = m.

Task: How many exact hitting sets (a subset S ⊆ V such that |S∩ e| = 1 for all e ∈ E)

are there for (V,E) ?

Parameter: n

#EXACT COVERn:

Input: A set V with |V | = n, a family of sets E with |E| = m where E ⊆℘(V) (℘()

denotes the power set).

Task: How many exact covers (a subset S ⊆ E of pairwise disjoint sets with
⋃

S = V)

are there for (V,E) ?

Parameter: m

#EXACT TEST SET:

Input: A set S with |S| = n, another set T ⊆ Pair(S) where Pair(S) denotes all the

distinct pairs of elements from S, a family of sets C with |C| = m where C ⊆℘(S) (℘()

denotes the power set).

Task: How many subsets C ′ ⊆ C are there, such that for every distinct pair u and v

from T , there exists exactly one set c in C ′ such that either of u and v is present in c,

but not both ?

Parameter: m

Chapter 4. Counting hierarchy with respect to Compression 146

In chapter 3, we have already proved that corresponding decision versions are VCE-

complete (Theorem 17 and 18). It is easy to see that corresponding reductions are

strongly w-parsimonious and hence we can conclude that,

Theorem 41. #EXACT HITTING SETn, #EXACT COVERn and #EXACT TEST SET

are #VCE-complete.

In chapter 3, we have mentioned about a direct w-reduction from EXACT CNF-

SAT to SAT (Proposition 17). It is easy to see that same reduction works for counting

problems as well as corresponding reduction is strongly w-parsimonious.

Let us now define some counting problems that we wish to consider in this section.

We have already seen slightly different version of these problems before (Theorem

30). There we actually considered the weighted version of these problems. Now we

are considering more general versions.

#KNAPSACKn:

Input: T is a set of n items as follows, T = {b1,b2, . . . ,bn}. f : bi→ N is a function

mapping each item to some natural number. Another integer A is given.

Task: How many binary strings x of length n (x = x1x2 . . .xn, xi ∈ {0,1}) are there

such that Σn
i=1 f (bi)xi ≤ A ?

Parameter: n

#SUBSET SUMn:

Input: T is a set of n items as follows, T = {b1,b2, . . . ,bn}. f : bi→ N is a function

mapping each item to some natural number. Another integer A is given.

Task: How many binary strings x of length n (x = x1x2 . . .xn, xi ∈ {0,1}) are there

such that Σn
i=1 f (bi)xi = A?

Parameter: n

It is easy to see that the decision version of #KNAPSACKn problem is easy to solve

in polynomial time. We can just test the smallest value (some f (b j)) in the given set

whether it is smaller than or equal to A or not. If yes, we will set corresponding bit x j

to 1 and make all the remaining bits to 0. So we have just found one witness and we

are done. If no, there is no such witness for this problem. Hence it is solvable in O(n)

and hence it is in VC0. But for counting version, we can find the following result.

Theorem 42. #KNAPSACKn is #VCE-hard.

Proof. We will prove this result step by step. We will first show that SUBSET SUMn is

VCE-hard. Then we will argue that corresponding reduction is strongly w-parsimonious

Chapter 4. Counting hierarchy with respect to Compression 147

and hence it works for counting version as well, i.e., #SUBSET SUMn is #VCE-hard.

After that we will show a w-T -reduction from #SUBSET SUMn to #KNAPSACKn.

To show that SUBSET SUMn is VCE-hard, we will show a reduction from EXACT

CNF-SAT to SUBSET SUMn. This reduction technique is inspired by the standard

polynomial reduction from 3-SAT to SUBSET SUM ([39, 15]). Although, that original

reduction is not a w-reduction. Suppose an EXACT CNF-SAT instance φ is given to us

with n variables (x1, x2, . . ., xn) and l clauses. To construct a SUBSET SUMn instance

from φ, we construct 2n items, 2 for each variable xi , one corresponding to xi itself

(denoted as bi) and another one corresponding to x̄i (denoted as b̄i). The function f will

map each item to a natural number, represented as (n+ l) bits long string as follows.

For each bi and b̄i, ith bit is set to 1, i = 1, 2, . . ., n. If xi is present in jth clause,

(n+ j)th bit corresponding to bi is set to 1. Similarly, if x̄i is present in tth clause,

(n+ t)th bit corresponding to b̄i is set to 1. Rest of the bits are set to 0. This technique

is represented in following table.

Table 4.1: Knapsack construction from φ

Item x1 x2 . . . xn c1 c2 . . . cl

b1 1 0 . . . 0 0 1 . . . 0

b̄1 1 0 . . . 0 1 0 . . . 1

b2 0 1 . . . 0 0 0 . . . 1

b̄2 0 1 . . . 0 0 1 . . . 0

. .

bn 0 0 . . . 1 0 0 . . . 0

b̄n 0 0 . . . 1 0 0 . . . 1

A 1 1 . . . 1 1 1 . . . 1

In this table, we have assumed that the clause c2 of formula φ contains x1, clause

c1 and cl contain x̄1 and so on. Let us take any value b > 2n. We consider each of

those binary strings mentioned above, are actually b-ary strings. So they are actually

represented in base b and hence the value corresponding to any string s1s2 . . .sn+l (si

∈ {0,1}, i = 1, 2, . . ., n+ l) is the natural number ∑
n+l−1
i=0 si+1bi. We choose A for our

SUBSET SUMn instance, to be the string of length n+ l containing all 1. This is also

represented in base b.

Now suppose φ has any satisfying assignment such that exactly one literal in every

clause is assigned to True, and corresponding assignment is represented as y1y2 . . .yn

Chapter 4. Counting hierarchy with respect to Compression 148

(yi ∈ {0,1}, i = 1, 2, . . ., n). Then it is clear that Σn
i=1 f (bi)yi + Σn

i=1 f (b̄i)ȳi= A and

thus we can find our 2n bits binary string for the SUBSET SUMn problem. Similarly,

if there exists some binary string z1z̄1z2z̄2 . . .znz̄n (zi ∈ {0,1}, i = 1, 2, . . ., n) such that

Σn
i=1 f (bi)zi + Σn

i=1 f (b̄i)z̄i = A, we can see that z1z2 . . .zn is a satisfying assignment

for φ such that exactly one literal in every clause is assigned to True. We can see that

to obtain a sum A, we can not choose both bi and b̄i for any i = 1, 2, . . ., n as the ith

bit of both f (bi) and f (b̄i) is 1. The base b is chosen large enough such that there is

no overflow in the summation. That is why z1z̄1z2z̄2 . . .znz̄n is written above instead of

more general z1z2 . . .z2n. The parameter of the initial EXACT CNF-SAT instance is

n and SUBSET SUMn is 2n. So clearly it is a w-reduction. We can also see that this

reduction is strongly w-parsimonious and hence works for counting version as well.

Hence, #SUBSET SUMn is VCE-hard.

Now to show a w-T -reduction from #SUBSET SUMn to the counting problem

#KNAPSACKn we can use similar technique as used in the proof of Theorem 30. In that

proof we have shown a w-T -reduction from #SUBSET SUM to the counting problem

#KNAPSACK. But exactly same technique works for the un-weighted version as well.

Hence #KNAPSACKn is #VCE-hard.

We now consider another interesting problem MAX CUTn. We have already con-

sidered a different version of it in chapter 3 (section 3.2.2).

MAX CUTn:

Input: A weighted graph G with m edges and n vertices, an integer A.

Task: Decide whether there exists a cut in G of size A.

Parameter: n

In the above definition the parameter is n as here any witness can be represented

by a binary string of length n, 1 or 0 corresponding to each vertex. 1 represents that

corresponding vertex is in set 1 and 0 in other set. In this way the vertex set of the

graph can be split into two sets and we can consider the cross edges to check if the

cut is of size A or not. We can also define the counting version corresponding to this

problem and denote as #MAX CUTn.

Theorem 43. MAX CUTn is VCE-hard.

Proof. To show that MAX CUTn is VCE-hard, we will show a reduction from EXACT

CNF-SAT to MAX CUTn. Suppose an EXACT CNF-SAT instance φ is given to us

with n variables (x1, x2, . . ., xn) and l clauses. We assume that the size of φ is m and

Chapter 4. Counting hierarchy with respect to Compression 149

Figure 4.1: Clause-clique corresponding to clause Ci = xo∨ xp∨ x̄q∨ x̄r∨ xs

Figure 4.2: Corresponding to pair xi and x̄i

also assume that its clauses are C0, C1, . . ., Cl−1. To construct a MAX CUTn instance

from φ, we construct a graph G as follows.

G has 2n vertices, corresponding to each possible literal: x1, x2, . . ., xn, x̄1, x̄2,

. . ., x̄n. For each clause with t distinct literals, we just make a clique of size t in G

connecting the corresponding literal vertices. For any clause Ci (0≤ i≤ l−1), we set

the weight for each edge in corresponding clique to bi, where b an integer sufficiently

large (any integer just greater than m, e.g. (m+1) will be fine). If any edge is present

in more than one clause-clique, clearly the weights will be assigned more than once

for that edge. For any such edge, where the weights are assigned for than once, we will

just add all the weights corresponding to that edge and provide the summation as the

final weight.

We also connect all the pairs of vertices corresponding to xi and x̄i (1 ≤ i ≤ n) by

Chapter 4. Counting hierarchy with respect to Compression 150

an edge of weight bl . As xi and x̄i (1≤ i≤ n) can not be present in a single clause of φ

(if they are present, we can easily remove them doing some pre-processing in poly(m)

time), these edges will not be present in any clause-clique. We do not need to bother

about clause with single literal as we can remove such clauses by pre-processing the

formula in poly(m) time, forcing them to be True and propagate corresponding changes

through out the formula φ. Suppose t0, t1, . . ., tl−1 are the number of literals in clauses

C0, C1, . . ., Cl−1 of φ respectively (after any pre-processing when required). Now we

set the cut size of our MAX CUTn instance A as ∑
l−1
i=0(ti−1).bi +n.bl . As the weights

of every edge and A are at most exponential of poly(m) where the exponent is also at

most poly(m), we can easily represent them in poly(m) bits (taking logarithm).

Now we are going to show why the above construction is correct. Suppose φ has

a satisfying assignment such that exactly one literal in each clause is True. Any such

assignment will make each vertex either 0 or 1, corresponding to their logical value.

We claim that if all such 0-valued vertices are put into one set, and all the 1-valued

vertices into another set, the cut size will be exactly A. It is easy to see that in any

clause Ci (0≤ i≤ l−1), when exactly one literal is true, it will cut exactly ti−1 edges,

each of weight bi (at least bi, because one edge may be present in more than one clause-

clique). So that will contribute to (ti−1).bi towards A, for all i, 0 to (l−1). As for any

pair xi and x̄i (1≤ i≤ n), exactly one of them is True, all those vertices will contribute

exactly n.ml towards A. If we add them up, we can see that the cut size becomes A

= ∑
l−1
i=0(ti−1).bi +n.bl . Hence, if φ has a satisfying assignment such that exactly one

literal in each clause is True, G has a cut of size exactly A.

To prove it for opposite direction, we first like to point out that A can be written

as a b-ary string of length (l +1) as follows, (t0−1)(t1−1) . . .(tl−1−1)n. Here each

bit position corresponds to each clause except the last one, which corresponds to set

of pairs. Now if G has a cut of size exactly A, it must cut every clause-clique cutting

exactly ti− 1 edges, 0 ≤ i ≤ l− 1 and cut every pair xi and x̄i (1 ≤ i ≤ n). As b is

sufficiently large (b is always greater than total number of literals in any clause and

total number of pairs), there is no possibility of overflow when we will add the weights

to get A. Hence, if G has a cut of size exactly A, φ has a satisfying assignment such

that exactly one literal in each clause is True.

Here the parameter of the MAX CUTn instance is the number of vertices in G,

which is 2n. It is clearly polynomially bounded by the parameter of the EXACT CNF-

SAT instance n. Thus, MAX CUTn is VCE-hard.

Corollary 10. #MAX CUTn is #VCE-hard.

Chapter 4. Counting hierarchy with respect to Compression 151

In the proof of Theorem 43, it is easy to see that the reduction is strongly w-

parsimonious and hence works for counting version. Thus the above corollary is cor-

rect. In this context I would like to mention that if we consider the same MAX CUTn

problem for un-weighted graph G, corresponding problem is in VC0. Analogous result

for the counting version is also true. When the graph is un-weighted, we can any-

way encode whole graph and the cut size in poly(n), as number of edges are always

polynomial in n. So clearly both decision and counting versions are compressible.

We are going to define another interesting problem now.

EXACT TOURn:

Input: A weighted graph G with m edges and n vertices, an integer A.

Task: Decide whether there exists a tour in G of total cost A.

Parameter: n

Similar problem is already defined in [43]. Adapting their work and modifying it

according to our requirement, we are now going to prove the following theorem.

Theorem 44. EXACT TOURn is VCE-hard.

Proof. In Theorem 42, we have already proved that SUBSET SUMn is VCE-hard. Here,

we are going to show a reduction from SUBSET SUMn to EXACT TOURn to prove this

theorem.

Suppose T , a set of n items (T = {b1,b2, . . . ,bn}) given to us. f : bi→N is a func-

tion mapping each item to some natural number. Another integer A is also given. This

SUBSET SUMn instance asks, is there any binary string x of length n (x = x1x2 . . .xn,

xi ∈ {0,1}), such that Σn
i=1 f (bi)xi = A? We construct a graph G from T as follows.

For each bi we have two vertices pi and qi. Join pi and qi with an edge of weight

f (bi). For i not equal to j, we join pi and q j by two edges (that means, by inserting

another intermediate vertex). We put the weight +1 for one of those edges and −1 for

another one. Now we ask if G has a tour of total cost A? It is now easy to see that T has

a subset sum A iff G has a tour of total cost A Hence, EXACT TOURn is VCE-hard.

Here, we would like to mention that the above reduction is not parsimonious. So

it does not work for counting version. For any specific witness for SUBSET SUMn

instance, there can be k! witness for the EXACT TOURn problem where k is the number

of items contributing to the subset sum in that specific witness. But this k is not fixed

and dependent on specific witness. That is why the above proof can not say if #EXACT

TOURn is #VCE-hard or not.

Chapter 4. Counting hierarchy with respect to Compression 152

4.5 Exact Satisfiability Problems

We are now consider some more interesting circuit satisfiability problems. In this case

we are basically generalising the notion of EXACT CNF-SAT problem. Firstly, let us

consider the following problem.

EXACT DNF-SAT:

Input: A formula φ in disjunctive normal form of size m over n variables.

Task: Is there any satisfying assignment for φ such that exactly one clause in φ is

satisfiable ?

Parameter: n

#EXACT DNF-SAT:

Input: A formula φ in disjunctive normal form of size m over n variables.

Task: How many satisfying assignments are there for φ such that exactly one clause in

φ is satisfiable ?

Parameter: n

We first consider the decision version. After that we will see what we can say about

its counting counterpart.

Theorem 45. EXACT DNF-SAT is VC2-complete.

Proof. We know that SAT is VC2-complete [13]. To prove this theorem, we are going

to show a w-reduction, from SAT to EXACT DNF-SAT and vice versa.

Hardness Result:
Suppose a SAT instance φ is given to us with n variables (x1, x2, . . ., xn) and l

clauses. We assume that its clauses are C0, C1, . . ., Cl−1. We will construct an EXACT

DNF-SAT instance from φ in two steps.

We first define another problem DNF-UNSAT and show a w-reduction from SAT

to this problem.

DNF-UNSAT:

Input: A Boolean formula ψ in disjunctive normal form of size m over n variables.

Task: Is there any un-satisfying assignment for φ ?

Parameter: n

Reduction from SAT to DNF-UNSAT is very simple. We just take ψ = φ̄ as our

reduced instance. It is easy to see that ψ is a Boolean formula in disjunctive normal

form. Besides, any assignment that will satisfy φ, will make ψ unsatisfiable. Similarly,

any assignment that will make ψ unsatisfiable, will satisfy φ. Number of variables, i.e.,

the parameter of both the problems are same, n. So clearly it is a w-reduction.

Chapter 4. Counting hierarchy with respect to Compression 153

Now we are going to reduce this DNF-UNSAT instance ψ to an EXACT DNF-SAT

instance ψ
′
. We denote the clauses of ψ (here the clauses are conjunction of literals)

as C
′
0, C

′
1, . . ., C

′
l−1 and construct ψ

′
as follows.

ψ
′
=
∨l−1

i=0(C
′
i ∧ y) ∨ y, where y is an extra variable for ψ

′
other than x1, x2, . . ., xn.

Hence, ψ
′

has an extra input variable y and an extra clause containing just y. We

denote this extra clause as C
′
l . Now it is easy to see that if ψ has an unsatisfying assign-

ment, ψ
′
has an assignment such that only the last clause C

′
l is satisfiable. Because, we

can just keep the assignments for x1, x2, . . ., xn in ψ
′
same as ψ and set y = 1.

To prove it in the opposite direction, suppose that ψ
′

has exactly one clause sat-

isfiable. We claim that, in that case only C
′
l can be satisfiable, and other clauses will

be unsatisfiable. It can be proved by contradiction. Suppose that some clause C
′
j

(0 ≤ j ≤ l− 1) is satisfiable and all other clauses, including C
′
l , are unsatisfiable. As

C
′
j is satisfiable, all its literals are assigned to True. We know that y is also a literal

in C
′
j. So y must be assigned to 1. But it will make C

′
l satisfiable as well, making

more than one clause in ψ
′

satisfiable. It is a contradiction. Hence, ψ
′

has exactly one

clause satisfiable iff C
′
l is the only clause which is satisfiable. As all other clauses are

unsatisfiable and y = 1, at least one of the original literals in C
′
j (0≤ j≤ l−1) from C j

must be assigned to False or logical 0. So clearly, any such assignment (that will make

exactly one of the clauses in ψ
′

satisfiable) for the input variables in ψ
′

will assign

Boolean values to x1, x2, . . ., xn in such a way that ψ is unsatisfiable.

In the above discussion, it is also easy to see that the parameter for the new instance

ψ
′

is increased only by one. So clearly it is a w-reduction and SAT is w-reducible to

EXACT DNF-SAT. Hence, EXACT DNF-SAT is VC2-hard.

Membership Result:
To prove the membership result, we have to reduce an EXACT DNF-SAT instance

to a SAT instance. Suppose a EXACT DNF-SAT instance φ (in disjunctive normal

form) is given to us with n variables (x1, x2, . . ., xn) and l clauses. We assume that its

clauses (which are disjunctions of literals) are C0, C1, . . ., Cl−1. We first construct φ
′

from φ as follows.

φ
′
= φ ∧

∧
0≤i< j≤l−1(C̄i∨C̄ j) . . . Equation (i)

When φ has an exact satisfying assignment, clearly all the disjunctions, (C̄i ∨ C̄ j)

(0 ≤ i < j ≤ l− 1) will be satisfiable. Hence, φ
′

will be satisfiable. Similarly, when

φ
′

is satisfiable, if at least two clauses, say Ci and C j are satisfiable, (C̄i∨ C̄ j) will be

unsatisfiable. So exactly one of C0, C1, . . ., Cl−1 should be satisfiable. Hence, φ has

a satisfying assignment such that exactly one of its clauses is satisfiable iff φ
′

has a

Chapter 4. Counting hierarchy with respect to Compression 154

satisfying assignment.

But φ
′
is not a SAT instance. Because φ

′
is a depth 3 Boolean formula. So we have

to reduce the depth by one to keep it in conjunctive normal form. In φ
′

, we can see

that φ is in DNF and if we can convert it into CNF , whole φ
′

will be in CNF . We are

going to do that as follows.

We are going to introduce t = log(l) new variables for that. We have already used

similar strategy in the proof for Lemma 2 in chapter 2 (similar tricks are used in [13],

Claim 2.16, as well). If l is not a power of 2, t will be fraction. But we will always

take the ceiling of that. Basically, we can always make l power of 2 by introducing

some extra (less than double) empty clauses and then we can follow the same technique

below. Suppose these t variables are y0, y1, . . ., yt−1. It is easy to see that, we can we

encode any value from 0 to l− 1 in t bit long binary string. Suppose b j
0b j

1 . . .b
j
t−1 is

such binary encoding for j (0 ≤ j ≤ l− 1). We also assume that l0, j, l1, j, . . ., lt j, j are

the literals of clause C j (0 ≤ j ≤ l− 1). Now we modify each literal lr, j in clause C j

(0≤ r ≤ t j, 0≤ j ≤ l−1) as follows:

l
′
r, j = lr, j

∨t−1
i=0(yi⊕b j

i), 0≤ j ≤ l−1, where yi⊕b j
i = yi when b j

i = 0 and yi⊕b j
i =

ȳi when b j
i = 1.

We also write,

C
′
j =

∧t j
r=0 l

′
r, j, 0≤ j ≤ l−1

We construct ψ =
∧l−1

i=0 C
′
j. It is easy to see that ψ is in CNF . If φ is satisfiable,

at least one of the clauses C0, C1, . . ., Cl−1 will be satisfiable. Then, if the binary

encoding of the index of any such satisfiable clause is assigned to the y-variables of ψ

with the same assignments for the x-variables, ψ will be satisfiable. Similarly, when

ψ is satisfiable, y variables are assigned to the index of one of the clauses C0, C1, . . .,

Cl−1. For that particular clause (say jth clause),
∨t−1

i=0(yi⊕ b j
i) will be False, but for

any other clause C j′ , j
′ 6= j,

∨t−1
i=0(yi⊕ b j

′

i) will be True. But l
′
r, j must be True, for

0≤ r≤ t j. It implies, lr, j will be True, for 0≤ r≤ t j. So now the x variables will make

both C
′
j and C j satisfiable making φ satisfiable. We have now proved, φ is satisfiable

iff ψ is satisfiable. Number of variables in ψ is also polynomially bounded, as t is

polynomially bounded in n. So it is a w-reduction.

Now replacing φ by ψ we modify our φ
′
as follows (from equation (i)):

φ
′′

= ψ ∧
∧

0≤i< j≤l−1(C̄i∨C̄ j)

Clearly φ
′

is satisfiable iff φ
′′

is satisfiable. But now φ
′′

is in CNF and also have

number of variables polynomially bounded in n. That is why, φ
′′

is our final SAT

instance. Hence, φ has a satisfying assignment such that exactly one of its clauses

Chapter 4. Counting hierarchy with respect to Compression 155

is satisfiable iff φ
′′

has a satisfying assignment. It proves that EXACT DNF-SAT ∈
VC2. Combining both the parts, we can finally conclude that EXACT DNF-SAT is

VC2-complete.

If we compare, EXACT CNF-SAT is VCE-complete hence within VC1, but EXACT

DNF-SAT is VC2-complete. Now if we consider the counting version, we obtain the

following corollary.

Corollary 11. #EXACT DNF-SAT is #VC2-hard and within #VC3.

Proof of the above corollary directly follows from Theorem 45. We can see that

the reduction for the hardness proof for Theorem 45 is actually strongly parsimonious.

Hence #EXACT DNF-SAT is #VC2-hard. In the containment proof, we have firstly

constructed a DEPTH3CIRCUITSAT instance from the EXACT DNF-SAT instance.

This reduction is strongly parsimonious which proves that #EXACT DNF-SAT ∈
#VC3. But the remaining part of the reduction is not parsimonious, and hence we

can not say that #EXACT DNF-SAT ∈ #VC2.

Chapter 4. Counting hierarchy with respect to Compression 156

4.6 Appendix: Definitions of the parametric counting

problems

List of parametric counting problems we have considered here:

#Φ-WSAT:

Input: A formula φ over n variables of size m where φ ∈ Φ.

Parameter: k.log(n)

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True ?

#ANTIMONOTONE WEIGHTED-CNFSAT:

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are negative literals, and another integer k (≤ n).

Task:How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True?

Parameter: k.log(n)

#ANTIMONOTONE WEIGHTED-CNFSAT≤:

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are negative literals and another integer k (≤ n).

Task: How many satisfying assignments are there for φ such that number of variables

assigned to be True ≤ k?

Parameter: k.log(n)

#CLIQUE:

Input: A graph G with n vertices, and an integer k.

Task: How many cliques of size k (a pairwise adjacent subset of k vertices) are there

in G ?

Parameter: k.log(n)

#DEPTHiAND CIRCUITSAT:

Input: A Boolean circuit C of depth at most i over n variables where the top level

Boolean operation is AND.

Task: How many satisfying assignments are there for C ?

Parameter: n

#DEPTHi ANTIMONOTONE CIRCUITSAT:

Input: A Boolean circuit C of depth at most i over n variables where all the literals at

the bottom level are negative literals.

Task: How many satisfying assignments are there for C ?

Chapter 4. Counting hierarchy with respect to Compression 157

Parameter: n

#DEPTHiCIRCUITSAT:

Input: A circuit C of size m and depth at most i over n variables, i ≥ 2.

Task: How many satisfying assignments are there for C ?

Parameter: n

#DEPTHi MONOTONE CIRCUITSAT:

Input: A Boolean circuit C of depth at most i over n variables where all the literals at

the bottom level are positive literals.

Task: How many satisfying assignments are there for C ?

Parameter: n

#DEPTHiOR CIRCUITSAT:

Input: A Boolean circuit C of depth at most i over n variables where the top level

Boolean operation is OR.

Task: How many satisfying assignments are there for C ?

Parameter: n

#DNF:

Input: A formula φ in disjunctive normal form of size m over n variables.

Task: How many satisfying assignments are there for φ ?

Parameter: n

#EXACT CNF-SAT:

Input: A formula φ in conjunctive normal form of size m over n variables.

Task: How many satisfying assignments are there for φ such that exactly one literal in

each clause of φ is assigned to be True ?

Parameter: n

#EXACT COVERn:

Input: A set V with |V | = n, a family of sets E with |E| = m where E ⊆℘(V) (℘()

denotes the power set).

Task: How many exact covers (a subset S ⊆ E of pairwise disjoint sets with
⋃

S = V)

are there for (V,E) ?

Parameter: m

#EXACT DNF-SAT:

Input: A formula φ in disjunctive normal form of size m over n variables.

Task: How many satisfying assignments are there for φ such that exactly one clause in

φ is satisfiable ?

Parameter: n

Chapter 4. Counting hierarchy with respect to Compression 158

#EXACT HITTING SETn:

Input: A hypergraph (V , E) with |V | = n and |E| = m.

Task: How many exact hitting sets (a subset S ⊆ V such that |S∩ e| = 1 for all e ∈ E)

are there for (V,E) ?

Parameter: n

#EXACT TEST SET:

Input: A set S with |S| = n, another set T ⊆ Pair(S) where Pair(S) denotes all the

distinct pairs of elements from S, a family of sets C with |C| = m where C ⊆℘(S) (℘()

denotes the power set).

Task: How many subsets C ′ ⊆ C are there, such that for every distinct pair u and v

from T , there exists exactly one set c in C ′ such that either of u and v is present in c,

but not both ?

Parameter: m

#K-UNIQUE COMPLETE-CYCLESET:

Input: A directed graph G(V,E) with n vertices and m edges and an integer K ≤ m.

Parameter: K.log(m)

Task: How many Unique complete-cycleSet are there in the graph containing at most

K unique-cycles ?

#KNAPSACK:

Input: An integer k, a set T of m non-negative integers, and another integer A.

Task: How many sub-sets of k integers of T are there, elements of which sum up to

less than or equal to A ?

Parameter: k.log(m)

#KNAPSACKn:

Input: T is a set of n items as follows, T = {b1,b2, . . . ,bn}. f : bi→ N is a function

mapping each item to some natural number. Another integer A is given.

Task: How many binary strings x of length n (x = x1x2 . . .xn, xi ∈ {0,1}) are there

such that Σn
i=1 f (bi)xi ≤ A ?

Parameter: n

#LOCALCIRCUITSAT:

Input: A string x of length m and a circuit C over (n + n.log m) variables and of size

O(n+n.log m).

Task: How many lists I of n locations in x is there such that C(〈x(I), I〉) = 1 ?

Parameter: (n+n.log m)

#MONOTONE WEIGHTED-CNFSAT:

Chapter 4. Counting hierarchy with respect to Compression 159

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are positive literals, and another integer k (≤ n).

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True?

Parameter: k.log(n)

#MONOTONE WEIGHTED-CNFSAT≤:

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are positive literals and another integer k (≤ n).

Task: How many satisfying assignments are there for φ such that number of variables

assigned to be True ≤ k?

Parameter: k.log(n)

#MONOTONE WEIGHTED-CNFSATn:

Input: A formula φ in conjunctive normal form of size m over n variables where all

the literals in the formula are positive literals, and another integer k (≤ n).

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True?

Parameter: n

#MULTI CLIQUE-COLOURING:

Input: An undirected graph G(V,E) over n vertices and l disjoint cliques (there is no

edge {u,v} ∈ E such that u and v are part of two different cliques) inside the graph,

each of size k.

Task: How many valid k colourings are there for the graph ?

Parameter: (n− kl).log(k)

#MULTICOLOURED CLIQUE:

Input: A graph G = (V , E) with |V | = n, an integer k and a colouring function c : V →
[k].

Task: How many multicoloured cliques of size k (a clique containing exactly one

vertex of each colour) are there in G ?

Parameter: k.log(n)

#NAE-SAT:

Input: A formula φ in CNF with n variables.

Task: How many satisfying assignments are there for φ such that each clause of φ

contains at least one True and one False literal ?

Parameter: n

#SAT:

Chapter 4. Counting hierarchy with respect to Compression 160

Input: A formula φ in CNF with n variables.

Task: How many satisfying assignments are there for φ ?

Parameter: n

#SELECTED DOMINATING SET:

Input: A graph G(V,E) with n vertices, and a subset N ⊆ V .

Task: How many subsets of N are there, such that each of them is a dominating set of

graph G and every vertex in N is dominated by exactly one vertex ?

Parameter: |N|
#SELECTED HITTING SET:

Input: A set S with |S| = n, a family of sets C with |C| = m where C ⊆℘(S) and a

subset N ⊆C.

Task: How many subsets of S are there, such that each of them is a Hitting Set of C

and every set in N is hit by exactly one element ?

Parameter: n

#SELECTED SET COVER:

Input: A set S with |S| = n, a family of sets C with |C| = m where C ⊆℘(S) and a

subset N ⊆ S.

Task: How many subsets of C are there, such that each of them is a Set Cover of the

set S and every element in N is covered by exactly one set ?

Parameter: m

#SET SPLITTING:

Input: A set S of n elements and a collection C (|C | = m) of subsets of S.

Task: How many ways the set S can be partitioned into 2 subsets s1 and s2 (s1
⋃

s2 =

S and s1
⋂

s2 = φ), such that none of the sets in C is contained in either of s1 and s2 ?

Parameter: n

#SUBSET SUM:

Input: An integer k, a set S of m non-negative integers, and another integer B.

Task: How many sub-sets of k integers of S are there, elements of which sum up to

exactly B ?

Parameter: k.log(m)

#SUBSET SUMn:

Input: T is a set of n items as follows, T = {b1,b2, . . . ,bn}. f : bi→ N is a function

mapping each item to some natural number. Another integer A is given.

Task: How many binary strings x of length n (x = x1x2 . . .xn, xi ∈ {0,1}) are there

such that Σn
i=1 f (bi)xi = A?

Chapter 4. Counting hierarchy with respect to Compression 161

Parameter: n

#VERTEX COVER:

Input: A graph G(V,E) with n vertices, and an integer k.

Task: How many vertex covers of size k are there in G?

Parameter: k.log(n)

#WEIGHTED-CNFSAT:

Input: A formula φ in conjunctive normal form of size m over n variables.

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True?

Parameter: k.log(n)

#WEIGHTED-DNFSAT:

Input: A formula φ in disjunctive normal form of size m over n variables.

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True?

Parameter: k.log(n)

#WEIGHTED-HORNSAT:

Input: A formula φ in conjunctive normal form of size m over n variables where each

clause contains at most one positive literal and another integer k ≤ n.

Task: How many satisfying assignments are there for φ such that exactly k variables

are assigned to be True?

Parameter: k.log(n)

#WEIGHTED-HORNSAT≤:

Input: A formula φ in conjunctive normal form of size m over n variables where each

clause contains at most one positive literal and another integer k ≤ n.

Task: How many satisfying assignments are there for φ of weight ≤ k ?

Parameter: k.log(n)

Chapter 5

Conclusion

In this concluding chapter we like to discuss some of the open questions related to

classifications of problems with respect to compression and give an overview of future

direction of research in this domain. But before that, we would like to give an alternate

interpretation of #VC-hierarchy. For that, we are going to show a result that is basically

the application of the theorem proved by N. Livne [40] in our context.

Before that, we would like to discuss the notion of witnessing relation. In the intro-

ductory chapter, we have already discussed about the concept of verification algorithm

of NP problem. We can easily observe that for any VCi problem for some i ≥ 2, there

is a verification algorithm as any such VCi problem is also a NP problem.

It is easy to understand that any such verification algorithm V defines the parametric

problem L as follows: L = {〈x,1|y|〉|∃yV (〈x,1|y|〉,y) = 1}. We also know that such a

verification algorithm is not unique. In fact, any problem L in VCi for some i ≥ 2 has

infinitely many verification algorithms. Every such algorithm induces a relation R. We

have already defined this concept of parametric relation in chapter 4. This relation also

well-defines L as follows: L = {〈x,1|y|〉|∃y(x,y,1|y|) ∈ R}. We refer such a relation

as witnessing relation here (as used in [40]), and say that L is the parametric problem

defined by the relation R.

Proposition 31. L (⊆ {〈x,1n〉|x ∈ {0,1}∗,n ∈ N}) be a parametric problem in VCi

for some i ≥ 2. Suppose there exists a polynomial time computable function f :

{〈x,1n1〉|x ∈ {0,1}∗,n1 ∈ N} → {〈y,1n2〉|y ∈ {0,1}∗,n2 ∈ N} where n1 and n2 are

polynomially bounded to each other, such that:

1. image(f) ⊆ L.

2. f is 1-1.

162

Chapter 5. Conclusion 163

3. f is honest (f is said to be honest if there exists some polynomial q such that for

all x, |x| ≤ q(| f (x)|)).

4. There exists another parametric problem S in VCi such that L \ image(f) ⊆ S

and image(f) ⊆ S̄.

Then, L has a witnessing relation that is #VCi -complete.

Proof. To prove the proposition, we are going to construct a new verification algo-

rithm for the parametric problem L. The relation defined by this new verification al-

gorithm essentially embeds the natural witnessing relation for DEPTHiCIRCUITSAT

(using similar technique as suggested in [40]), but still defining L. Since the problem

#DEPTHiCIRCUITSAT is #VCi-complete, it will show that L is also #VCi-complete.

Let us assume that VL and VS are the verification algorithms for L and S respectively.

Let us also consider that C is some DEPTHiCIRCUITSAT instance with n
′

number of

variables. We define the following verification algorithm V
′
for L which accepts w (|w|

≤ n) as a witness for 〈x,1n〉 if and only if one of the following conditions hold:

1. w = 〈0,w′〉, where w
′

is some trivial string polynomially bounded with n
′

and

f (〈C,1n
′
〉) = 〈x,1n〉.

2. w = 〈1,τ〉 where f (〈C,1n
′
〉) = 〈x,1n〉 and τ is a satisfying assignment for C.

3. w = (y,z) where VS(〈x,1n〉,y) = 1 and VL(〈x,1n〉,z) = 1.

Firstly, we will show that V
′

defines L. To prove this, we can observe that every

instance in L is either in image(f) or in S, and thus will be accepted by conditions 1

or 3 of V
′
, respectively. On the other hand, every instance not in L is not in image(f)

and hence can not be accepted by conditions 1 and 2 of V
′
. Condition 3 accepts only

instances in L, so it does not play any role in this part.

To complete the proof, we have to prove that we can find the total number of wit-

nesses of the DEPTHiCIRCUITSAT instance C from the reduced L-instance, using the

function f . We are now going to show that total number of witnesses of C, #R(〈C,1n
′
〉)

= #RV ′ (f (〈C,1n
′
〉))-1, where R is the natural witnessing relation for the parametric

problem #DEPTHiCIRCUITSAT and RV ′ is the relation induced by V
′
. To see that the

relation is true, we can observe that for every unsatisfiable C, the L-instance f (〈C,1n
′
〉)

is accepted by condition 1, and only by it. Since f is 1-1 such f (〈C,1n
′
〉) will have

exactly one witness under RV ′ . For every satisfiable C, every satisfying assignment

contributes exactly one witness to the L-instance f (〈C,1n
′
〉) (by condition 2 of V

′
),

Chapter 5. Conclusion 164

and since f is 1-1, no other circuit is mapped to f (〈C,1n
′
〉), thus there are no other

witnesses contributed by condition 2 of V
′
. The first condition contributes exactly one

more witness (again, since f is 1-1). Condition 3 does not play any role here as it

contributes no witness (since f (〈C,1n
′
〉) is not in S).

From the above result, we find an alternate way to prove the completeness results in

#VC counting hierarchy. We have not done much work in this direction. But it can be

considered a promising future direction for further research to investigate more useful

properties of these counting hierarchies.

We now like to discuss some of the interesting problems that we could not solve.

Firstly, we like to mention that, the nature of complexity class VCE (section 3.3) is not

completely clear, e.g. relation between VCOR and VCE is not known. One can try to

investigate further in this direction to answer some interesting questions in this con-

text. For example, one can try to prove if VC0 = VCE , some of the strong complexity

theoretic assumptions are violated.

In chapter 4 we have proved that #DEPTHi MONOTONE CIRCUITSAT is #VCi-

complete for any i ≥ 3. same result for #DEPTHi ANTIMONOTONE CIRCUITSAT is

also true. But we do not know whether it is correct for i = 2. To be more specific, let

us consider the following two problems.

#MONOTONE SAT:

Input: A Boolean formula φ in CNF over n variables where all the literals are positive

literals.

Task: How many satisfying assignments are there for φ ?

Parameter: n

#ANTIMONOTONE SAT:

Input: A Boolean formula φ in CNF over n variables where all the literals are negative

literals.

Task: How many satisfying assignments are there for φ ?

Parameter: n

It is easy to check that both the above mentioned problems are equivalent with

respect to w-T -reduction (Theorem 37, chapter 4). Corresponding decision problems

are easy to solve and present in VC0. But the counting versions are only known to be

present in #VC2 (as any #MONOTONE SAT and #ANTIMONOTONE SAT instances are

SAT instances). Finding some hardness result will be quite interesting in this context.

We can even consider the following problem.

Chapter 5. Conclusion 165

#HORNSAT:

Input: A Boolean formula φ in CNF over n variables where any clause contains at

most one positive literal.

Task: How many satisfying assignments are there for φ ?

Parameter: n

HORNSAT is known to be P-complete and corresponding counting version is #P-

complete. But once again, #HORNSAT is only known to be present in #VC2 without

any known hardness result with respect to #VC-hierarchy. It is easy to observe that any

hardness result for #MONOTONE SAT or #ANTIMONOTONE SAT will prove hardness

result for #HORNSAT as well.

We have already proved that #KNAPSACKn is #VCE-hard in chapter 4. There is a

scope of further improvement of this result. We have proved results related to #EX-

ACT CNF-SAT and #EXACT DNF-SAT in chapter 4 (section 4.4 and 4.5). A few

more results work for decision versions as mentioned there. If we extend those prob-

lems to depth k, similar techniques can be used to place them into VCk. If one can

prove those problems to be hard for VCk (and #VCk for counting problems), that will

be really interesting. Not only this, there are many other related results one can try

to improve specially in the counting hierarchy classifications (e.g. results related to

#EXACT TOURn problem in chapter 4, section 4.4).

Finally, we think that we have just scratched the surface of a very interesting re-

search topic. In future, we hope to see many other interesting results connecting this

notion of instance compression with parametrized complexity, structural complexity,

cryptography and other fields that we did not consider.

Bibliography

[1] A. Ben-Dor and S. Halevi. Zero-one permanent is #P-complete, a simpler proof.

In Proceedings of the 2nd Israel Symposium on Theory of Computing Systems -

ISTCS ’93. Pages 108-117. IEEE, 1993.

[2] A. Drucker. New Limits to Classical and Quantum Instance Compression. IEEE

53rd Annual Symposium on Foundations of Computer Science (FOCS), pages

609-618, 2012.

[3] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the

ACM, Volume 28, Issue 1, pp. 114-133, 1981.

[4] A. Kolmogorov. On Tables of Random Numbers. Theoretical Computer Science

207 (2): 387395, 1998. doi:10.1016/S0304-3975(98)00075-9. MR 1643414.

[5] A. Maruoka. Concise Guide to Computation Theory. Springer, 2011.

[6] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869-877, 1992.

[7] B. Dubrov and Y. Ishai. On the randomness complexity of efficient sampling. In

38th ACM Symposium on the Theory of Computing, pages 711-720, 2006.

[8] C. Berge, Two theorems in graph theory, Proc. Nat. Acad. Sci. U.S.A., 43 (1957),

pp. 842-844.

[9] C. Chakraborty, R. Santhanam. Instance Compression for the Polynomial Hierar-

chy and Beyond, Proceeding of 7th International Symposium on Parameterized

and Exact Computation (IPEC 2012), LNCS, pages 120-134, 2012.

[10] C. K. Yap. Some consequences of non-uniform conditions on uniform classes.

Theoretical Computer Science, 26: 287-300, 1983.

[11] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive

proof systems. Journal of the ACM, 39(4):859-868, 1992.

166

Bibliography 167

[12] D.C. Kozen. The design and analysis of algorithms, chapter 26: Counting prob-

lems and #P, pages 138-143. Springer-Verlag, 1992.

[13] D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic

applications. In Proceedings if the 47th Annual IEEE Symposium on Foundations

of Computer Science, pages 719-728, 2006.

[14] D. Hermelin, S. Kratsch, K. Soltys, M. Wahlstrom and X. Wu. Hierarchies of

Inefficient Kernelizability. arXiv:1110.0976v1 [cs.CC].

[15] E. Tardos and J. Kleinberg. Algorithm Design. Addison-Wesley 2005. ISBN 0-

321-29535-8.

[16] G. A. Jones, J. M. Jones. Elementary Number Theory. Springer 1998.

[17] H. Bodlaender, Rod Downey, Michael Fellows, and Danny Hermelin. On prob-

lems without polynomial kernels. In Proceedings of 35th International Collo-

quium on Automata, Languages and Programming, pages 563-574, 2008.

[18] H. Buhrman, J. M. Hitchcock: NP-Hard Sets are Exponentially Dense Unless NP

is contained in CoNP/poly. Electronic Colloquium on Computational Complexity

(ECCC) 15(022): (2008).

[19] H. L. Bodlaender. A cubic kernel for feedback vertex set. In Proceedings of the

24th annual conference on Theoretical aspects of computer science (STACS’07),

Wolfgang Thomas and Pascal Weil (Eds.). Springer-Verlag, Berlin, Heidelberg,

320-331.

[20] H. W. Kuhn, The Hungari The Hungarian methodjbr the assignment problem,

Naval Res. Logist. Quart., 2 (1955), pp. 83-97.

[21] J. Buss and J. Goldsmith. Nondeterminism within P. SIAM Journal on Comput-

ing. 22:560-572, 1993.

[22] J. E. Hopcroft, R. M. Karp: An n5/2 Algorithm for Maximum Matchings in Bi-

partite Graphs. SIAM J. Comput. 2(4): 225-231 (1973).

[23] J. E. Savage. Models of Computation: Exploring the Power of Computing. Addi-

son Wesley Publishing Company, 1997.

Bibliography 168

[24] J. Flum and M. Grohe. Describing parameterized complexity classes. Information

and Computation 187, 291-319 2003.

[25] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag New

York, Inc., 2006.

[26] J. Flum and M. Grohe. The Parameterized Complexity of Counting Problems.

SIAM J. Comput. 33(4): 892-922 (2004).

[27] J. Hartmanis, New Developments in Structural Complexity Theory (invited lec-

ture), Proc. 15th International Colloquium on Automata, Languages and Pro-

gramming, 1988 (ICALP 88), Lecture Notes in Computer Science, vol. 317

(1988), pp. 271-286.

[28] K.A. Abrahamson, R.G. Downey, and M.R. Fellows. Fixed-parameter tractability

and completeness IV: On completeness for W[P] and PSPACE analogs. Annals

of pure and applied logic, 73:235-276, 1995.

[29] L. Adleman. Two theorems on random polynomial time. In Proceedings of the

20th Annual IEEE Symposium on the Foundations of Computer Science, pages

75-83, 1978.

[30] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and a

hierarchy of complexity classes. Journal of Computer and System Sciences, 36:

p.254-276. 1988.

[31] L. Cai, J. Chen, R. Downey, and M. Fellows. Advice classes of parameterized

tractability. Annals of Pure and Applied logic, 84(1):119-138, 1997.

[32] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct

PCPs for NP. Journal of Computer and System Sciences, 77(1):91-106, January

2011. Special issues celebrating Karp’s Kyoto Prize.

[33] L. G. Valiant. The Complexity of Computing the Permanent. Theoretical Com-

puter Science, Vol. 8 (1979), North-Holland Publishing Company, pp. 189-201.

[34] L. G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM

J. Comput. 8(3): 410-421 (1979).

[35] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press,

Princeton, N.J., 1965.

Bibliography 169

[36] M. Cesati. Perfect Code is W[1]-complete. Inf. Process. Lett. 81(3): 163-168

(2002).

[37] M. Hall, Distinct representatives of subsets, Bull. Amer. Math. Soc., 54 (1948),

pp. 922-926.

[38] M. R. Fellows, D. Hermelin, F. A. Rosamond, S. Vialette: On the parameterized

complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1): 53-

61 (2009).

[39] M. Sipser. Introduction to the Theory of Computation (ISBN 0-534-95097-3).

Course Technology, 2nd edition, 2005.

[40] N. Livne. A note on #P-completeness of NP-witnessing relations. Inf. Process.

Lett. 109(5): 259-261 (2009).

[41] R. G. Downey, D. M. Thilikos. Confronting intractability via parameters. Com-

puter Science Review 5(4): 279-317 (2011)

[42] R.G. Downey, M. R. Fellows. Fixed-parameter tractability and completeness I:

basic results. SIAM J. Comput., 24 (1995), pp. 873921.

[43] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness

II: On completeness for W[1]. Theor. Comp. Sc., 141:109-131, 1995.

[44] R. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,

1999.

[45] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and

J. W. Thatcher (editors). Complexity of Computer Computations. New York:

Plenum. pp. 85-103, 1972.

[46] R. M. Karp and R. J. Lipton. Some connections between nonuniform and uni-

form complexity classes. Proceedings of the Twelfth Annual ACM Symposium

on Theory of Computing, pp. 302-309, doi:10.1145/800141.804678, 1980.

[47] R. Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University

Press, 2006.

[48] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, 2009.

Bibliography 170

[49] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification

and the hardness of approximation problems. Journal of the ACM, 45(3):501-

555, 1998.

[50] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization

of NP. Journal of the ACM, 45(1):70122, 1998.

[51] S. Bessy , F. V. Fomin , S. Gaspers , C. Paul , A. Perez , S. Saurabh , S. Thomasse.

Kernels for Feedback Arc Set In Tournaments. Journal of Computer and System

Sciences, Volume 77, Issue 6, November 2011, Pages 1071-1078.

[52] S. Cook. The complexity of theorem proving procedures. Proceedings of the

Third Annual ACM Symposium on Theory of Computing. pp. 151158, 1971.

[53] S. Dziembowski. On forward-secure storage. In Advances in Cryptology -

CRYPTO ’06, Lecture Notes in Computer Science, volume 4117, pages 251-270.

Springer, 2006.

[54] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge complexity of inter-

active proof-systems. Proceedings of 17th ACM Symposium on the Theory of

Computation, Providence, Rhode Island. 1985, pp. 291-304.

[55] S. Kratsch, M. Wahlstrom: Preprocessing of Min Ones Problems: A Dichotomy.

ICALP (1) 2010: 653-665.

[56] U. Manber. Introduction to algorithms - a creative approach. Addison-Wesley

1989, ISBN 978-0-201-12037-0, pp. I-XIV, 1-478.

[57] Y. Chen, J. Flum, M. Muller. Lower bounds for kernelizations. CRM Publica-

tions, Nov. 2008.

[58] Y. Chen and M. Muller. SAT is unlikely to be compressible. Manuscript, 2007.

	PhD coversheet April 2012
	Thesis_Chiranjit

