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Abstract

Disease-associated balanced chromosomal rearrangements (DBCRs) are large-scale
alterations in normal genomic sequence, which occur without copy number change in
a phenotypically abnormal individual. Complete ascertainment of published DBCRs
was attempted via recursive searches of the literature. 775 cases were identified with
1672 breakpoints and 406 different phenotypes. Physical mapping of DBCR
breakpoints has elucidated the genetic basis of Mendelian disorders in 29 cases and
was the first indication of a subsequently verified disease locus in a further 30 cases.
Two interesting DBCR cases, which had no cell-lines or fixed cell suspensions, were
available for study: Case 1 had a t(2;12)(p25.1;q23.3) translocation associated with
upper limb peromelia and lower limb phocomelia; case 2 had a t(1;2)(q41;p25.3)
associated with lethal bilateral renal adysplasia. Archival paraffin embedded tissue
sections were available for both cases. A fluorescent in-situ hybridisation (FISH)
method was developed to enable physical mapping on dissociated nuclei from these
sections. In case 1, the 2p25 breakpoint was found to interrupt the ROCK?2 gene,
which, on the basis of the phenotype of null mice, was considered to be a poor
candidate for the peromelia/phocomelia phenotype. The 12q23.3 breakpoint lay 0-25
kb from the 5" end of the CMKLRI gene, which encodes a chemokine-like receptor,
the sole ligand for which is encoded by the retinoic acid responsive gene, RARRES?2.
Site and stage-specific expression of both the receptor and the ligand in the
developing limb bud suggested that CMKLR was a good candidate for a causative
gene. A phenotypically similar case was screened for mutations in CMKLR/ and a

candidate regulatory region, but none could be identified. A mouse model is being



developed to further elucidate the developmental role of this gene. In case 2, the
2p25.3 breakpoint mapped to a gap in the genome sequence. No good candidate gene
could be identified in the vicinity of this gap. The breakpoint at 1q41 interrupted the
USH2A gene, homozygous null mutations in which cause a well-characterised
disorder with retinal degeneration and deafness but no kidney abnormalities. The
only other transcript in this gene-poor region was ESRRG, encoding a nuclear steroid
hormone receptor family member. Esrrg showed expression in the ureteric bud and
collecting ducts of the developing kidney of mouse embryos. This gene appeared to
be a very good candidate, although no point mutations, deletions or protein
abnormalities could be detected in six cases of lethal renal adysplasia or four families
with dominant renal adysplasia. DBCRs continue to provide an excellent resource for
the discovery of new Mendelian phenotypes and are opening new avenues of

investigation in experimental developmental biology.
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1: Introduction

1.1. Chromosomal Abnormalities

Human chromosomal abnormalities occur in many different forms and can be
inherited from either parent (familial) or may occur during gametogenesis or in the
early mitotic divisions that follow fertilisation (de novo (new) abnormalities).

All chromosomal abnormalities can be placed into two broad groups:
numerical, involving the gain or loss of whole chromosomes, and structural, in which
the chromosomes have undergone rearrangement. These groups are not exclusive and
individuals can possess abnormalities from both groups. The most common
constitutional numerical abnormality is Down syndrome, which involves the gain of
a whole chromosome 21 (OMIM 190685). This is known as a trisomy syndrome as
there are three copies of a chromosome, instead of the normal two. There are only
two other autosomal (i.e. not chromosome X or Y) trisomies that are commonly
compatible with live births; these involve chromosomes 13 (Patau syndrome) and 18
(Edwards syndrome). Both are extremely severe phenotypes with over 90 % of
children reported to die within the first year of life, the median age of death being
around 10 days [1].

No other full autosomal trisomies are viable to birth, although mosaic
trisomies can occur for chromosomes such as 8, 16 and 22. Trisomies for most other
autosomes result in miscarriage, accounting for between 35 % and 41 % of all
spontaneous abortions [2;3] . Trisomies for chromosomes 1 or 19 are rarely
observed, even in miscarried embryos. This is thought to be due to the particularly

high gene density of these autosomes.



Constitutional autosomal monosomies (one copy of a chromosome instead of
two) are very rarely viable. Numerical abnormalities of the X and Y chromosomes
are generally much better tolerated than for the autosomes.

Structural abnormalities are caused by the occurrence of breaks or
recombinations in the DNA, leading to the normal sequence of the chromosomes
being altered. The different types of structural rearrangements will be discussed in

more detail in section 1.4.

1.2. DNA Breakage and Repair

1.2.1. Breakage in Somatic Cells

Chromosome breaks occur as a result of double strand breaks (DSBs) in the
genomic DNA. These breaks differ from other types of DNA damage in that they
affect both strands of the DNA helix and there is therefore no undamaged strand to
use as a template for repair. DSBs can occur as a direct result of damage from
mutagens such as chemicals or radiation or can occur spontaneously due to errors in
replication as the cell passes through the cell cycle. An example of this can be seen in
bacterial cells, where single strand breaks have been shown to cause the collapse of a
replication fork and the formation of a DSB [4]. It has been estimated that at least 1
% of single strand breaks escape repair in normal human cells and this results in
around 50 DSBs per cell per cell cycle [5].

DSBs are clearly detrimental to proper genome duplication and eukaryotic
cells have developed extensive checkpoints to prevent damaged cells from starting

DNA replication (the G1/S checkpoint), from continuing through replication (the



intra S checkpoint) or initiating mitosis (the G2/M checkpoint) [6]. The biological
consequences of errors in these checkpoints can be seen in the human syndrome,
ataxia telangiectasia (AT). This is characterised by a high incidence of chromosomal
translocations and frequent malignancies in lymphoid cells. Cells in individuals with
AT have errors in several of these checkpoint mechanisms, allowing damaged cells
to continue through replication and onto mitosis.

Correctly functioning cell cycle checkpoints will detect any broken
chromosome ends and will, where possible, repair them. This is generally performed
by capping the end with a telomere or by rejoining any broken ends. If this is
successful, the cell can then pass through the checkpoints and continue to mitosis.
However, errors in this process can produce chromosomes that have no centromere
(acentric) or with two centromeres (dicentric). These will not segregate in a stable
manner through mitosis and will subsequently be lost.

Even chromosomes with a single centromere and stable mitotic transmission
may have gained or lost genomic material or the broken ends of the wrong
chromosomes may have been re-joined. This is how somatic structural abnormalities

can arise.

1.2.2. Breaks during Meiosis

Although DSBs are potentially detrimental to the genomic integrity and
survival of cells in mitosis, they do occur normally during processes such as DNA
replication, immune system development and meiosis. Recombination between
homologous chromosomes in meiosis is essential for the generation of genetic

diversity and proper chromosome segregation and is a central event in almost all



organisms [7]. In meiosis, DSBs are generally repaired via homologous
recombination, although non-homologous end joining can also occur.

The absence of meiotic recombination in yeast cells results in the erroneous
segregation of homologues and production of aneuploid gametes, giving rise to

progeny that are either inviable or defective [8].

1.2.2.1. Meiotic DSB Repair by Homologous Recombination

The majority of the information on DSB repair in meiosis has come from
studies in the yeast Saccharomyces cerevisiae or Schizosaccharomyces pombe but
the process appears to be well conserved in eukaryotes [9].

Meiotic recombination is initiated by the formation of DSBs by the
topoisomerase II-like protein Spol1 and at least nine other gene products [10]. The
repair of these lesions results in the formation of connections, or crossovers, between
homologous chromosomes. The 5’ ends of the strands are resected to produce 3’
ended single strands, which can then invade a homologous DNA duplex, generally a
homologous chromosome. This results in the formation of a displacement loop (D-
loop), which anneals to the non-invading strand. DNA synthesis occurs and a
structure is formed containing two Holliday junctions. Cleavage of these by DNA
endonucleases results in recombinant molecules in which the flanking DNA
sequences have either been retained (non-crossover or parental) or have been
exchanged between the homologous chromosomes or sister chromatids (crossover or
non-parental). The type of molecule produced is dependent on the orientation of the
cleavage of each of the Holliday junctions, as these can be resolved by cleaving

either the inner or outer strands. If both junctions are cleaved in the same orientation,



there will be no crossover, whereas a crossover will occur if the two cleavage events

are in different orientations (see figure 1.1).
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Figure 1.1. Homologous recombination.
Red lines indicate the DNA strands in which the DSB occurs. Blue lines indicate
the homologous DNA that serves as a template for repair. Grey arrows indicate

the cleavage of the Holliday junctions. See text for details.
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1.2.2.2. Non-Homologous End Joining in Meiosis

Homologous recombination is the principal DSB repair mechanism during
meiosis but non-homologous end joining (NHEJ) can also occur, albeit at a lower
frequency. Studies in yeast have shown that proteins required for NHEJ are present
at much lower concentrations in meiotic cells than in mitotic cells, reducing the
capacity of NHEJ in cells undergoing meiosis [11].

NHE] is a more prominent mechanism in mitotic cells and will be discussed

in more detail in section 1.2.3.2.

1.2.3. Mitotic DSB Repair

1.2.3.1. Mitotic Homologous Recombination

Homologous recombination (HR) occurs in both mitosis and meiosis and the
mechanisms are similar. DSBs occurring as a result of damage to the cell are repaired
in largely the same way as those induced by Spol1. However, to ensure the greatest
number of recombination events in meiosis the template used for repair is generally a
homologous chromosome [12]. The opposite seems to be true in mitotic cells, where
the sister chromatid will be used, where possible, in order to minimise variation [13].
The number of crossover events occurring in the recombinant molecules also seems
to be reduced in mitotic cells, with crossovers occurring between 100 to 1000 times
less frequently that during meiosis [14]. Again, this is most likely to allow the DSB

to be repaired as conservatively as possible.



1.2.3.2. Non-Homologous End Joining

Whereas, homologous recombination appears to be the primary DSB repair
mechanism in yeast cells, higher eukaryotes, including mammals, preferentially
employ non-homologous end joining (NHEJ) over HR [15]. NHEJ results in the
ligation of broken ends, irrespective of the level of sequence homology and is a
relatively error-prone mechanism that can result in the addition or deletion of
nucleotides around the breakpoints. Three NHEJ mechanisms, namely re-ligation, fill
in and deletion, are outlined in figure 1.2. With re-ligation, the complementary
broken ends of the DNA are merely re-joined, resulting in a perfect repair of the
sequence. The fill in and deletion mechanisms both occur after regions of
microhomology on the broken ends (one or several bases pairs) become misaligned.
If the misalignment results in gaps, the nucleotides are filled in using the other strand
as a template, if an overlap of the ends occurs, the excess bases are removed,
resulting in a deletion. Deletion is the most common type of misrepair in both yeast
and mammalian cells, with deletions extending in both directions from the DSB site
[16]. The occurrence of several DSBs in the same cell can result in the wrong ends
being re-joined and structural chromosomal rearrangements such as translocations

and inversions can be produced (see section 1.4).
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See text for details.
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1.3. Genome Architecture

Although rare, the breakpoints of some structural chromosomal abnormalities
have been shown to cluster within specific genomic regions [17], suggesting that the
breaks do not occur at random. Although this may be partly explained by certain
genomic regions being haplo- or triplo-lethal, it also suggests that there are regions
of the genome that are unstable and thereby predisposed to rearrangements. This
instability suggests an underlying structure, or architecture, of the genome that can
mediate the production of chromosomal rearrangements via DSB repair mechanisms.

Some examples are outlined below.

1.3.1. Non-Homologous End Joining and Palindromic Repeats

The most common recurrent abnormality in humans is the constitutional
balanced translocation between chromosomes 11 and 22, the t(11;22)(q23;q11).
Carriers of this translocation do not, in general, show a phenotype and it is often only
identified after the birth of an offspring that has inherited an unbalanced product.

Children that inherit the derived chromosome 22 (der(22)) have a disorder
known as supernumerary der(22) syndrome, recently re-named Emanuel syndrome
(OMIM 609029) after Dr. Beverly Emanuel, one of the first to describe the disorder
[18]. These children have a partial trisomy of chromosomes 22 and 11 and show a
distinctive phenotype consisting of severe mental retardation, ear anomalies, cleft or
high arched palate, head, heart and kidney abnormalities.

The breakpoints on both chromosomes 11 and 22 were cloned from 40

independent t(11;22) families and found to lie within palindromic AT-rich repeats



(PATRRs) [19;20], which are predicted to form hairpin or cruciform structures.
Sequencing of the chromosome 11 PATRR in normal individuals showed that it was
445 bp long and consisted of a nearly perfect palindromic sequence and thereby
formed a symmetrical hairpin. Further mapping of this region led to the discovery
that the breakpoints were located at the tip of the hairpin, which is sensitive to
cleavage by nucleases [21]. If this cleavage occurs on both strands, a DSB can occur.

This led Kurahashi e a/ [22] to suggest that the initiating step in the
formation of the t(11;22) translocation may be a double stranded DNA break
mediated by the hairpin-nicking activity. If two DSBs occur in the same cell, a
translocation can be generated by non-homologous end joining (NHEJ). This has
also been shown in experiments using Saccharmyces cerevisiae where translocations
occur after the induction of two DSBs on different chromosomes [23].

The 22q11 region that is involved in the recurrent t(11;22) translocation has
been labelled a ‘hotspot’ for chromosomal rearrangements with as many as 1 in
3000-4000 live births having a deletion, duplication or translocation involving that
region [24]. As well as being involved in the t(11;22), the palindromic 22q11 region
is also involved in the recurrent t(17;22), which is associated with neurofibromatosis
type 1, the non-recurrent t(4;22) [25] and the ependymoma-associated t(1;22). As
with chromosome 11, breakpoints on the partner chromosomes at 17q11 and 4q35
were also found to be within a palindromic repeat, although the 1p21.2 breakpoint
did not appear to be. This may suggest that translocations occur between
chromosomal regions that have similar characteristics, such as the ability to form
palindromic hairpins or cruciform structures, but not necessarily sequence homology

[26].



1.3.2. Homologous Recombination and Low Copy Repeats

The 22q11 breakpoint of the recurrent t(11;22) localises to one of the low
copy repeats (LCRs) that have been identified on chromosome 22 [27;28]. LCRs,
also known as segmental duplications or duplicons, are estimated to make up
approximately 5-10 % of the human genome [29]. They usually consist of blocks of
DNA between 10 and 400 kb in size, with over 97 % sequence identity and are
thought to have arisen through duplication of genomic segments [30].

LCRs are unevenly distributed throughout the genome and are often clustered
in pericentromeric and subtelomeric regions. The reason for this is unknown but it
may be that these regions have a greater tolerance for the introduction of new genetic
material or suppressed recombination [31]. However, several LCRs have only been
identified by mapping rearrangement breakpoints, so there may well be further,
currently unidentified, LCRs dispersed throughout the genome.

LCRs facilitate both inter- and intra-chromosomal rearrangements through
non-allelic homologous recombination (NAHR). NAHR between LCRs that are on
the same chromosome and lie in the same orientation will cause deletions and
duplications, whereas those in the opposite orientation can produce inversions. If
NAHR occurs between LCRs on different chromosomes, reciprocal translocations
can occur [32].

NAHR has been shown over recent years to be a major mechanism in human
disease, with many diseases resulting from recurrent DNA rearrangements between
unstable genomic regions (see table 1.1). These diseases have been termed ‘Genomic
Disorders’ and are defined as “conditions that result from DNA rearrangements due

to regional genomic architecture” [33].



Table 1.1: A table of Genomic Disorders

. ’ 1 Chromosome Rearrange-
Disorder Inheritance OMIM Band Gene ABRE
Alpha-thalassemia AD 141800 16p13.3 HBA del
Angelman syndrome AD 105830 15q11.2-q13  UBE3A del
Bartter syndrome type 3 AR 607364 1p36 CLCNKB del
Beta-Thalassemia AR 141900 11p15.5 HBB del
Charcot-Marie-Tooth, Type 1A AD 118220 17p12 PMP22 dup
Congenital adrenal
hyperplasia due to 21- AR 201910 6p21.3 ? del
hydroxylase deficiency
t‘f:lf 2D6 pharmacogenetic  |,p 124030 22q13.1 CYP2D6  del/dup

; 188400/

DiGeorge/VCFS AD 192430 22q11.2 TBX1 del

Emery-Dreifuss muscular ;

dystrophy XL 310300 Xq28 EMD del/dup/inv

Facioscapulohumeral AD 158900 4q35 2 del

muscular dystrophy

Gaucher Disease AR 231000 1g21 GBA del

Haemophilia A XL 306700 Xq28 F8 inv

Hereditary neuropathy with

liability to pressure palsies AD 162500 17p12 PMP22 del

(HNPP)

Hyperaldosteronism, familial, CYP11B1/

type 1 AD 103900 8qg21 CYP11B2 dup

Ichthyosis, X-linked XL 308100 Xp22.32 STS del

) - . IKK-

Incontinentia Pigmenti XL 308300 Xqg28 N del

Kabuki syndrome? AD 147920 8qp22-p23.1 dup

Mucopolysaccharidosis |l ;

(Hunter syndrome) XL 309900 Xqg28 IDS inv/del

Nephronophthisis 1 AR 256100 2913 NPHP1 del

Neurofibromatosis type 1 AD 162200 17p11.2 NF1 del

Nonobstructive spermatogenic DBy,

e P 90MC N 415000 Yq11.2 USP9Y,  del
AZF1

Pituitary dwarfism 1 AR 262400 17923.3 GH1 del

Polycystic kidney disease 1 AD 601313 16p13.3 PKD1

Prader-Willi syndrome AD 176270 15q11.2-q13 ﬁgﬁp N, del

Red/Green coulourblindness XL 303800/ o8 RCP/GCP del

303900

Shametgn-Didiofid AR 260400 7q11.21 SBDS

syndrome

Smith-Magenis syndrome AD 182290 17p11.2 RAI del

Sotos syndrome* Sporadic 117550 5q35 NSD1 del



?pi”a' myseular atrophy, 1ype: jxp 253300 5q13.2 SMN1  invidup

Split-hand/foot malformation 3°Unknown 600095 10qg24 SHFM3 dup
ELN,

Williams-Beuren syndrome  AD 194050 7q11.23 LIMK1, dellinv
CYNL2

AD - Autosomal dominant, AR - Autosomal recessive, XL - X-linked, YL - Y-linked
del - deletion, dup - duplication, inv — inversion

'OMIM - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
2 [341,°[35], *[36], °[37]
All others: [38]

One genomic region that has been extensively studied is 17p11.2-p12. This
region is gene rich and highly unstable and is rearranged in a variety of structural
abnormalities that are associated with diseases such as Charcot-Marie-Tooth type 1A
disease (CMT1A) (OMIM 118220), hereditary neuropathy with liability to pressure
palsies (HNPP) (OMIM 162500), Smith-Magenis syndrome (SMS) (OMIM 182290)
and the more recently described dup(17)(p11.2p11.2) syndrome [39;40].

CMTI1A is caused by duplication of an approximately 1.4 Mb region on
chromosome 17p12. Deletion of the same region causes another disease, namely
HNPP. This 1.4 Mb region is flanked by two LCRs that are approximately 24 kb in
size and lie in the same orientation on the chromosome. The duplication or deletion
of this region is due to the LCRs acting as substrates for NAHR [41].

The same LCR/NAHR mechanism also causes Smith Magenis and the
dup(17)(p11.2p11.2) syndromes. Again, these are caused by the deletion (SMS) or
duplication (dup(17)) of the same approximately 4 Mb genomic region on 17p11.2.
This region is flanked by two LCRs (~260 kb and ~190 kb) and there is a third
positioned in the middle in the opposite orientation. Smaller deletions have also been

identified in SMS with breakpoints within this middle LCR [42].



The breakpoints of non-recurrent abnormalities have also been found to
associate with LCRs. A study looking at unusual sized deletions and reciprocal
translocations with breakpoints in the proximal part of chromosome 17p showed that
64 % of deletion breakpoints in 17p11.2 mapped within LCRs, whereas only 13 % of
translocation breakpoints were within an LCR. However, they did find that 63 % of
translocation breakpoints from the region mapped within, or immediately adjacent to,
the centromere [43]. This may be due to instability caused by variations in
heterochromatin condensation.

Another study of non-recurrent rearrangements, this time involving the 22q11
region, showed that 57 % (8/14) of translocation breakpoints mapped within LCRs
and all of the breakpoints on partner chromosomes mapped to the most telomeric
bands [44]. After performing a literature search, Spiteri ez a/ also stated that 57 % of
22q11.2 translocations involved the most telomeric bands of random partner
chromosomes and 39 % of reciprocal translocations involving any chromosomes had
one breakpoint within a telomeric band [45].

This suggests that there is an increased frequency of rearrangements
involving 22q11.2 and a telomeric band of another chromosome, as opposed to a
random distribution over all chromosome bands. It also appears that telomeric
regions are more prone to rearrangements in general. As stated previously, this may
be due to these areas having a greater tolerance for the introduction or deletion of
genetic material. It is possible that the deletion or rearrangement of more proximal

areas would be detrimental to survival or development.



The involvement of centromeres, telomeres and pericentromeric regions in
both recurrent and non-recurrent rearrangements suggests that genome architecture
consists of much more than just LCRs or palindromic AT-rich repeats. Although
non-allelic homologous recombination (NAHR) and non-homologous end joining
(NHEJ) have been discussed in detail here, these are unlikely to be the only
mechanisms that facilitate chromosomal rearrangements. The study of further
recurrent and non-recurrent abnormalities is likely to identify further features of

genome architecture and elucidate new rearrangement mechanisms.

1.4. Structural Chromosomal Abnormalities

The type of structural abnormality that occurs in a cell is dependent on the
number of chromosome breaks and whether they occur in one or more chromosomes.
If one break occurs, the result will generally be a terminal deletion as the end is
capped with a telomere. However, if the break occurs within the centromeric region,
an isochromosome can be formed, containing either both long or both short arms.
The exact mechanism of isochromosome formation is unknown but it has been
proposed that they are caused by either misdivision of the centromere or sister
chromatid exchange [46:47].

If two breaks are on the same chromosome, the segment between them can be
deleted, inverted, or in some cases, duplicated. Ring chromosomes can also be
formed in which the broken ends of the same chromosome join together to create a
circular structure, with the loss of the end pieces. Breaks in the arms of different

chromosomes can also result in deletions as well as translocations. The latter can be



reciprocal (or balanced) where the material from one chromosome joins onto the

other and vice versa, resulting in no apparent loss of genetic material; or unbalanced,

where part of one or both of the chromosomes is lost.

As the number of breaks increase, so does the possible complexity of the

abnormalities. When more than two breaks occur, insertions can also happen, where

a section of one chromosome is inserted elsewhere into the genome, whether it be

into the same chromosome or a different one.
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Figure 1.3. Structural chromosomal rearrangements.

A figure showing different types of structural chromosomal rearrangements.

Filled arrows indicate the location of the breakpoints. Long arrows indicate the

orientation of the chromosome fragment, bars the deleted regions. N indicates

the normal chromosome, and A the abnormal.



1.4.1. Balanced/Unbalanced Structural Rearrangements

All chromosome abnormalities can be placed into two broad groups,
unbalanced and balanced. Unbalanced structural rearrangements are those in which
there is a gain or loss of genetic material as compared to a prototypical diploid
human genome, for example, deletions, duplications and ring chromosomes.
Balanced abnormalities on the other hand, have no apparent change in the amount of
genetic material, although some rearrangement has occurred.

Unbalanced chromosome abnormalities tend to be associated with a
phenotype, which can often be severe or fatal. This is not surprising as a number of
genes may be lost or, more rarely, duplicated as a result of the rearrangement.

One example of an unbalanced phenotype is cri-du-chat (cat cry) syndrome
(CdCS) (OMIM 123450). This is thought to be one of the more common deletion
phenotypes with an incidence of approximately 1 in 20,000 to 1 in 50,000 births [48].
One of the most characteristic features of the syndrome in newborns is the high-
pitched, cat-like cry, hence the name. Other physical features include distinctive head
and facial abnormalities, such as a small head (microcephaly), round face, wide set
eyes, low set ears, small jaw (micrognathia), and severe mental and psychomotor
retardation.

The disorder is caused by a deletion of the short arm of chromosome 5
(5p15.2), which encompasses a number of genes, including the telomerase reverse
transcriptase gene (TERT, OMIM 187270), deletion of which is suggested to be
involved in the phenotype [49]. The majority of CdCS patients (~80 %) have a de
novo deletion that can vary in size from those just encompassing band 5p15.2, to

deletions of the whole short arm. Approximately 10 % of patients have an



unbalanced rearrangement that has been caused by malsegregation of a parental
translocation and the rest occur as a result of rare cytogenetic aberrations [50]. The
majority of the deletions seem to occur on the paternally inherited chromosome 5
[51].

The genes that cause CdCS are not known. Mapping of deletions has led to a
critical region for CdCS being assigned to the region of 5p15.2-p15.3. Deletions of
this region produce the typical phenotype, whilst patients with deletions that do not
include 5p15.2 have been reported that do not show classical CdCS or were normal
[52]. Molecular analysis has led to the identification of two distinct regions for
elements of the CdCS phenotype: one for the cat-like cry in 5q15.3 and another for
the facial dysmorphism and the developmental delay in 5p15.2 [53]. It has also been
noted that the size of the deletion does not correlate with the level of developmental
delay [54].

CdCS is just one example of an unbalanced chromosomal rearrangement
being associated with a clinical phenotype. There are many examples with differing
levels of chromosomal loss or gain affecting many different regions of the genome.

Individuals with balanced chromosomal rearrangements, such as reciprocal
translocations and inversions, can also show an abnormal phenotype, even though
there is no apparent loss or gain of genetic material. This suggests that an important
gene, or genes, around the breakpoints have somehow been disrupted.

This group of abnormalities are known as disease-associated balanced
chromosomal rearrangements (DBCRs). These will be discussed in more detail in

chapter 2.



2: Disease-associated Balanced Chromosomal

Rearrangements

2.1. Introduction

Balanced chromosomal rearrangements are estimated to occur in
approximately 1 in 500 individuals in the general population [55]. A study performed
by Warburton et al, 1991, looked at 377,357 amniocenteses results from over a 10
year period and found that approximately 1 in 2,000 had a de novo reciprocal
translocation, 1 in 9,000 a Robertsonian translocation and 1 in 10,000 had a de novo
inversion. The proportion of these that are disease-related is unknown but the risk of
a serious congenital anomaly associated with a rearrangement has been estimated to
be around 6.1 % for reciprocal translocations and 9.4 % for inversions [56].

Disease-associated balanced chromosomal rearrangements (DBCRs) have
already proved to be instrumental in the mapping of disease loci and positional
cloning of disease genes. They have been used to identify a growing number of
disease loci, and subsequently disease genes, for a variety of different conditions.

Some examples are detailed below.

2.1.1. X-linked Disorders

The first Mendelian disorder to be mapped on the basis of DBCR information
was Duchenne muscular dystrophy (DMD). In 1979, Lindenbaum et a/ [57] reported
the case of an 8-year girl with DMD and a de novo chromosomal abnormality,

consisting of an inversion of chromosome X and a reciprocal translocation between



the same chromosome X and chromosome 1. The gene for DMD was already
suspected to be on the X chromosome due to the observation that the disease
occurred almost exclusively in males and when it segregated through a family, it
showed a distinctive X-linked inheritance pattern [58]. The patient in this case was
female, which is unusual for X-linked recessive conditions but does occur. 46,XY
females or females that have Turner syndrome (monosomy X) can exhibit X-linked
recessive disorders if they inherit the X chromosome with the faulty copy of the gene
[59]. Cytogenetically normal females can also show the phenotype if the X
chromosome that contains the normal copy of the gene is inactivated.

Lindenbaum’s patient had a translocation and inversion of chromosome X
involving bands Xp11 and Xp21. The presence of the DMD phenotype and the de
novo rearrangement led the authors to hypothesise that the gene for DMD was
located at one of these breakpoints. This hypothesis was supported by reports of
three other X;autosome translocations in DMD females with breakpoints at Xp21: In
1977, Greenstein et al [60] reported a 16 year old girl with an X;11 translocation,
Verellen et al (1978) [61] reported an X;21 translocation in a DMD girl and Canki et
al (1979) [62] reported an X;3 translocation. The number of X;autosome
translocations with Xp21 breakpoints continued to increase over the years (e.g.[63-
65]) firmly establishing Xp21 as the DMD disease locus.

It was the X;21 patient reported by Verellen [61;66] that proved instrumental
in the identification of the DMD gene itself. The 21 breakpoint of this translocation
was found to split the large block of ribosomal RNA (rRNA) genes that are present
on the short arm of the chromosome [67]. This allowed Ray ez al [68] to use rRNA

gene probes to clone the translocation junction fragments of the derived



chromosomes. The fragment from the X-chromosome portion was found to contain a
restriction fragment length polymorphism (RFLP) that was closely linked to the
DMD gene. This was subsequently used to test male patients with DMD and some
deletions were detected.

The gene causing DMD (also named DMD) encodes a protein called
dystrophin. The most common phenotype-causing mutations in DMD are deletions,
which account for approximately 60 % [69]. Other mutations, such as point
mutations and duplications, do occur but at a much lower level and generally result
in premature termination of translation and hence no viable dystrophin protein being
produced.

Translocations and inversions can also disrupt the DMD gene in females,
resulting in a phenotype if the normal X is inactivated. Although X-inactivation still
occurs randomly in these females, it is generally only the cells in which the normal X
is inactivated that will survive. If the der(X) is inactivated, the cell will be
functionally disomic for the distal part of Xp and monosomic for the part of the
chromosome that is translocated to the der(X) as this will also be silenced. It is likely
that this genetic imbalance will either cause the cell to undergo apoptosis or the cell
will survive but be strongly selected against.

The inactivation of the normal X chromosome will not result in a gross
genetic imbalance as both parts of the X chromosome and the autosome will be
active. The cell should therefore be genetically balanced, although there is always the
possibility of small amounts of material being lost from around the breakpoints.

The method of using phenotypic females with X;autosome translocations to

map and clone disease genes was first used for DMD but has since then been used



for other X-linked diseases such as Choroideremia (OMIM 303100) [70], Lowe

syndrome (OMIM 309000) [71] and Lissencephaly (OMIM 300067) [72].

2.1.2. Autosomal Dominant Disorders

The DBCR mapping approach has been used for a number of autosomal
dominant disorders. As would be expected, these make up a large proportion of the
mapped disorders due to the fact that only one copy of the gene needs to be disrupted
to produce a phenotype. DBCRs are therefore more often associated with dominant
disorders as the rearrangement generally only affects one chromosome of the pair.

One autosomal dominant condition that was mapped using DBCRs is
Rubinstein-Taybi syndrome (RTS) (OMIM 180849). This condition is characterised
by mental retardation, broad thumbs and toes and facial anomalies [73]. In 1991,
Imaizumi and Kuroki [74] reported a teenage girl with RTS and a de novo
translocation between chromosomes 2 and 16 with breakpoints at p13.3 for both. On
the basis of a previous report of an RTS patient with a deletion of 2p, but with no
defined breakpoints [75], the authors suggested that the RTS locus was at 2p13.3.
Soon after, a 7;16 translocation [76;77] and an inversion of chromosome 16 [78]
were reported, both with breakpoints at 16p13.3, the same band as the Imaizumi
case. This led to the reassignment of the RTS locus.

In 1995, Petrij et al [79] studied the 16p13.3 breakpoints in all three
translocations and found that they all mapped within a region containing the CREB
binding protein gene (CBP), loss of one functional copy of which they proposed to

cause the phenotype. They have since preformed further work to conclude that



heterozygous mutation or loss of this gene, even just the C-terminal region, is
sufficient to cause RTS [80].

Another disorder in which DBCRs proved vital in the identification of the
causative gene was multiple exostoses type 1 (OMIM 133700), a disorder
characterised by multiple projections of bone that are capped with cartilage. The
gene for the disorder was thought to be on 8q24.1 as the exostoses were identical to
those observed in another disorder, Langer-Giedion syndrome (OMIM 150230),
which was associated with this chromosomal region.

Again, DBCRs were subsequently reported which confirmed this theory.
These included an 8;11 translocation with a breakpoint at 8q24.1 [81] and an §;13
translocation with a breakpoint at 8q23 [82]. Mapping of the rearrangements in these
patients resulted in the identification of a cDNA that spanned the chromosome 8
breakpoints [83]. This was designated the EXT/ gene.

Since then, mutations and further chromosomal rearrangements have been
identified in this gene in patients with both multiple exostoses and Langer-Giedion
syndrome, which is thought to be a contiguous gene syndrome caused partly by loss

of EXTI.

2.1.3. Autosomal Recessive Disorders

The number of autosomal recessive conditions mapped by DBCRs would be
expected to be significantly lower than the number of dominant disorders as both
copies of a gene need to be disrupted to produce a phenotype. DBCRs, in general,

will only disrupt one copy and an independent event is therefore required to affect



the other. Mapping of DBCRs in autosomal recessive conditions can, however, prove
fruitful, as evinced by the case of Alstrom syndrome (OMIM 203800).

Alstrom syndrome (ALMS) is a disorder characterised by cone-rod
dystrophy, obesity, cardiomyopathy, hearing loss and type 2 diabetes mellitus. The
disease locus was initially assigned to chromosome 2p by homozygosity mapping
[84] and was then further refined using linkage analysis to the 2p13 region [85]. In
2002, the gene was identified by two independent groups employing different
strategies [86;87].

Collin et al [88] had previously mapped the gene to within a 14.9 cM region
and by performing further recombination and physical mapping, narrowed the
interval to 2 ¢cM (around 1.2 Mb). In this region, they found 16 genes and EST
clusters. One of these, KI440328, was expressed in many of the tissues that are
affected by ALMS and when they sequenced the DNA of six unrelated ALMS
families, they found four frameshift mutations and two nonsense mutations,
indicating that this was indeed the ALMS/ gene.

Hearn ef al [89] took a different approach. They identified an individual with
ALMS who had also inherited a familial translocation between chromosomes 2 and
11. The breakpoints on the chromosome 2 were at 2p13, the ALMS locus, but the
mother, from whom he had inherited the rearrangement, did not have the disease, as
would be expected in a recessive disorder as only one copy of the gene was disrupted
by the rearrangement. This led Hearn ef al to postulate that the individual was in fact
a compound heterozygote and had inherited a translocation disrupting one copy of
the ALMS gene from his mother and an intragenic mutation in the other copy of the

gene from his father.



To determine what gene or genes had been disrupted, Hearn ef a/ mapped the
translocation breakpoint on chromosome 2 to a 1.7 kb fragment that contained exon
4 and the start of exon 5 of the newly identified ALMS! gene. Analysis of the
paternal allele revealed frameshift mutation caused by a 2 bp deletion in exon 8 of
ALMS]I, which was predicted to result in premature termination.

The ALMS individual was therefore a compound heterozygote and had both
copies of the gene disrupted. Hearn et @/ also analysed other ALMS cases and found
mutations in ALMS1. They stated that the discovery of six independent mutations,
combined with the report by Collin ez a/ [90], confirmed that dysfunction of ALMS!
causes Alstrom syndrome.

This was the first case of an autosomal recessive disease gene being found by
mapping DBCRs but it is hoped that there will be more cases in the future. These
cases are generally going to be observed when a chromosomal rearrangement is
passed through a family. This may interrupt a gene but not be associated with a
phenotype until it is inherited along with a mutation on the corresponding allele. If
this is the case, the phenotype may appear to be unrelated to the rearrangement.
These cases are therefore likely to be missed although, since the report from Hearn ez
al, any rearrangement that has a breakpoint in a previously identified locus may now

be mapped.

2.2. How do DBCRs Cause a Phenotype?

A number of hypotheses have been postulated to explain how a DBCR can

cause a phenotype, these include (1) the direct interruption of a gene or its cis-



regulatory elements leading to a change in function, (2) cryptic deletions at or around
the rearrangement breakpoints and (3) alteration of chromatin environment (position

effect).

2.2.1. Direct Interruption

There are many examples of DBCRs that have been shown to directly disrupt

genes, causing a phenotype. Just a few of these are going to be outlined here.

2.2.1.1. Isolated Lissencephaly

Lissencephaly is a brain malformation characterised by a smooth cerebral
surface. It can be associated with other abnormalities, such as abnormal facies in
Miller-Dieker syndrome (MDS), or occur on its own (isolated lissencephaly, ILS). 90
% of MDS patients have a deletion of the 17p13.3 region but this is only present in
approximately 15 % of patients with ILS [91]. In 1993, Reiner et al [92] isolated the
LIS1 gene, haploinsufficiency of which is responsible for the ILS phenotype.

Kurahashi ez al, 1998 [93], identified a patient with ILS and a de novo
reciprocal translocation between chromosomes 8 and 17 ((8;17)(p11.2;p13.3)). The
patient did not present with any of the facial features characteristic of MDS. Since
the lissencephaly gene was known to be located at 17p13.3, they decided to map the
chromosome 17 breakpoint. They found that the breakpoint of the DBCR mapped
within intron 1 of the LIS/ gene, thereby disrupting the 5’ untranslated region of the
gene and preventing the production of a functional protein from that allele. The

heterozygous loss of the LIS/ gene is sufficient to cause the ILS phenotype.



2.2.1.2. Holt-Oram syndrome

Holt-Oram syndrome (OMIM 142900) is an autosomal dominant disorder
that affects approximately 1 in 100,000 live births [94]. It is characterised by anterior
pre-axial limb and cardiac abnormalities and is caused by mutations in the T-box
gene, TBX5. These can be deletions, nonsense mutations, missense mutations,
rearrangements and also insertions [95]. In 1999, Basson et al [96] mapped the
chromosome 12 breakpoint of a translocation between chromosomes 5 and 12
(t(5;12)(q15;924)) in a young child with Holt-Oram syndrome. They found that the
breakpoint disrupted the 7BX5 gene in the intron following exon 1a and therefore
separated exons 2 to 9, the protein encoding exons, from the promoter elements and
5" untranslated sequences of the gene.

The translocation therefore causes haploinsufficiency of 7BX35, which is the

cause of the Holt-Oram phenotype.

2.2.1.3. Rubinstein-Taybi syndrome

As previously mentioned, the identification of the gene causing Rubinstein-
Taybi syndrome (RTS) was identified through mapping DBCRs. Petrij ef al, 2000
[97], stated that all breakpoints in the six RTS translocations and inversions so far
reported mapped to within the 5' part of the CBP gene, within the so called
breakpoint cluster region, an intronic region of approximately 13 kb. These
disruptions are thought to produce proteins that contain only a small part of the N-
terminus of the CBP protein.

One further case with a translocation between chromosomes 2 and 16,

t(2;16)(q36.3;p13.3), was found to have a chromosome 16 breakpoint in a different



region, namely between exons 16 and 17. This resulted in a stable protein that was
truncated and only about half the normal length. The expression of this along with
the protein from the normal allele resulted in the presence of the RTS phenotype in
the child. The results from the mapping of these rearrangements suggest that the loss

of the C-terminal domains of CBP is sufficient to cause RTS.

2.2.2. Deletions at Rearrangement Breakpoints

Although DBCRs may appear to be balanced by conventional cytogenetics,
there may be small changes in the amount of genetic material at or around the
breakpoints. There is evidence that cryptic deletions (i.e. those invisible by standard
cytogenetics) can occur in as many as two out of three apparently balanced
rearrangements [98].

In 2004, Astbury et al [99] performed a study to test the hypothesis that
deletions of varying sizes occur in DBCRs and that these are a significant cause of
the phenotypic abnormalities. They examined 15 patients with seemingly balanced
rearrangements and found that nine had deletions ranging in size from 0.8 to 15.3 Mb
and involving between 15 and 70 genes. In the remaining six cases, they found that
five had a known or putative gene, or genes, disrupted by the rearrangement. The
breakpoints in the remaining case did not apparently disrupt any genes.

The data from Astbury et a/ suggests that deletions occur more frequently
than gene disruptions in patients with DBCRs. However, of the 15 patients that were
examined in this study, two were already known to have a deletion and the remaining

13 were selected as it was believed they were more likely to harbour a deletion on



the basis of their phenotypical findings. The frequency of deletions in patients with
DBCRs may therefore be over estimated.

Astbury et al [100] showed that deletions can occur at the breakpoints of
DBCRs, although the incidence of this has still to be elucidated. However, deletions
can also be present that are not at the site of the breakpoint, but some distance away.
In 2003, Fantes et al [101] reported the case of a young girl with bilateral
anophthalmia (the absence of both eyes) and an apparently balanced translocation
between chromosome 3 and 11 (t(3;11)(q26.3;p11.2)). Mapping of this translocation
led to the discovery of a deletion approximately 740 kb in size that was located
around 600 kb from the breakpoint on chromosome 3. None of the genes located
around the breakpoint were considered to be good candidates and at the time of
mapping, the sequence for the deleted region was incomplete, showing only one
annotated gene that was not thought to be involved. SOX2 was already thought to be
a good candidate for the phenotype and although it had previously FISH mapped to
the 3q26.3-q27 region, it could no longer be located in the Ensembl genome browser.
However, BLAST searches performed using the sheep ortholog of the gene located a
series of human BAC clones that covered the SOX2 gene. These BACs were found to
be either fully or partially deleted in the t(3;11) case, suggesting that the bilateral
anophthalmia phenotype was due to the direct interruption, by deletion, of the SOX2
gene.

The phenotype in this case may have been caused by a deletion but this, and
subsequently the gene that causes bilateral anophthalmia, were located by mapping

the breakpoints of a DBCR.



A study performed by Gribble et a/, 2005 [102], concerned with looking at
any genomic imbalances around, or distant to, DBCR breakpoints, found a high level
of rearrangement complexity. Samples were examined using DNA microarrays, at 1
Mb resolution, and array CGH was performed to screen for any imbalances. Of the
ten cases studied, three were found to have complex rearrangements at or near the
DBCR breakpoints, three were found to have imbalances (one duplication and two
deletions) unrelated to the balanced translocations and the remaining four were found
to be simple balanced translocations, as originally suspected.

The three cases that proved to be more complex than first expected had
multiple rearrangements including inversions and insertions and two involved
chromosomes not previously implicated. Two of these three cases also had deletions
(approximately 5 Mb and 6 Mb in size) very close to one of the DBCR breakpoints.
The third had no detectable imbalance.

This data supports the hypothesis that deletions, or duplications, can
accompany an apparently balanced chromosome rearrangement. However, all of the
patients that had genetic imbalances had multiple clinical phenotypes, such as
learning difficulties, dysmorphic features, epilepsy or autism. These conditions do
not follow a Mendelian inheritance pattern and would be expected to be caused by
the disruption of many genes. A study of 13 individuals with DBCRs and no
discernable phenotypes found no imbalances at the translocation breakpoints. One
patient was found to have a deletion of approximately 2 Mb on a chromosome not
involved in the rearrangement but this was only found in a transformed cell line and
not in genomic DNA from the patient. It was therefore concluded to be an artefact

[103].



The results of Gribble et al [104] support those of two previous studies
looking for submicroscopic deletions or duplications in a subset of patients with
learning disability/mental retardation, dysmorphic features and apparently normal
chromosomes. A study of 50 patients found deletions in seven cases (14 %) and
duplications in five (10 %), approximately 24 % of cases therefore having an
imbalance [105]. A similar study of 20 patients discovered three deletions and two
duplications (25 % overall) [106]. These figures are comparable with the 30 % of
translocation independent imbalances found by Gribble e al.

These important studies support the hypothesis that the double stranded
breaks which underlie the cytogenetically visible rearrangement may be
accompanied by other breakpoints locally or throughout the genome. The complexity
of the clinical phenotype may help predict the presence of genomic imbalances in
DBCRs. Ideally both physical mapping of the breakpoints and array CGH should be

performed in all cases to allow adequate interpretation of the clinical phenotype.

2.2.3. Position Effect

Although the mapping of DBCRs may reveal the direct disruption of a gene,
or genes, that results in the accompanied phenotype, this is not always the case.
Breakpoints may occur outside the genes themselves and affect their regulation by
causing a change in their position within the genome, or occur within one gene and
have an effect on another. This phenomenon is known as position effect [107] and
can be a major hindrance in the identification of disease genes by mapping DBCRs.

Chromosome rearrangements can alter the transcriptional control of genes in

two ways, which may occur independently or in combination. Firstly, the
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rearrangement may dissociate the gene’s promoter and transcription unit from its cis-
acting regulatory elements and secondly, the rearrangement may result in an
alteration of the chromatin structure, either locally or more globally [108]. Only the

first mechanism will be discussed here.

2.2.3.1. Disturbance of long-range regulatory elements

The disturbance of long-range regulatory elements by chromosomal
rearrangements has been identified as the basis of a number of human diseases (see
table 2.1). One example of this comes from aniridia (the absence of the iris) and
other eye related disorders that are caused by a loss of function of one copy of the
PAX6 gene at 11p13. Two cases of aniridia had been described in association with a
DBCR in which the chromosome 11 breakpoints were mapped and found to be 125
and 150 kb downstream (3") of PAX6 [109-111].

Initially this raised the question of whether PAX6 was the only aniridia gene,
as had been suggested by other studies [112], or whether the translocation
breakpoints marked the location of another candidate gene in the 11p13 area. The
sequence around the breakpoint in one of the cases did suggest the interruption of an
exon, leading to the putative assignment of a second aniridia locus (AN2) [113]. In
2002, a novel gene, ELP4, was identified directly telomeric to PAX6. The
translocation breakpoints on both cases were found to map within the final intron of
this gene, although heterozygous loss of ELP4 was shown not to contribute to the
aniridia phenotype [114].

It therefore seemed likely that the aniridia phenotype in these cases was due

to the disruption of long-range control elements for PAX6 that are located within the



ELP4 gene. This was clearly shown using mouse-human somatic cell hybrids that
were capable of expressing mouse Pax6 but only expressed human PAX6 when a
normal chromosome 11 was present. The presence of chromosomes from aniridia
patients with the PAX6 transcription unit intact but harbouring a deletion of the
distant downstream regulatory elements did not produce expression [115].

The disturbance of long range control elements in humans is most readily
recognised when the phenotype is the same as that seen in point mutations or other
loss of function mutations in the coding region of the relevant gene. However, the
disruption of these elements may cause a different phenotype as the regulation of the
gene may only be affected in certain tissues or developmental stages. One example
of this was seen with the sonic hedgehog (SHH) gene in preaxial polydactyly (PPD).

PPD is one of the most common human congenital limb malformations and
the phenotype can vary markedly, from the addition of an extra phalanx (finger bone)
to create a triphalangeal thumb, to whole digit duplications and aplasia of the tibia
[116].

SHH is only expressed during embryogenesis and plays many important roles
in development, especially in the patterning of the early embryo. SHH has been
shown to be involved in the patterning of the ventral neural tube, the ventral somites
and also in the anterior-posterior limb axis. In mouse, Shh is transiently expressed in
the posterior part of the limb bud, where it sets up a morphogen gradient.

PPD is seen in the mouse mutant Sasquatch (Ssq), which was created by the
random insertion of a reporter cassette. This inserted approximately 1 Mb upstream
of the Shh gene, within intron 5 of the limb region 1 gene (Lmbrl) [117]. In this, as

well as two other mouse limb mutants with PPD, Sh# was shown to be expressed in



the anterior, as well as in the usual posterior site [118-120], suggesting that this was
the cause of the limb duplication and that the normal control of Shh expression in the
limb bud has been altered by the insertion [121]. This suggests the existence of a
limb regulatory element controlling Sk expression located 1 Mb away from the
actual gene.

As well as evidence from mouse mutants, there was also evidence from
human DBCRs. Shh maps to mouse chromosome 5, in a region that is homologous to
human chromosome 7q36, the PPD locus. Analysis of a patient with PPD and a de
novo translocation between chromosomes 5 and 7 (t(5;7)(q11:;q36)) showed the 7
breakpoint to lie within intron 5 of the LMBR gene [122]. This is the same region
that the Ssq insertion was found to occur.

Another human phenotype was found to involve the LMBRI gene, namely
acheiropodia, a condition characterised by bilateral congenital amputations of the
upper and lower extremities and aplasia of the hands and feet. The locus for this was
initially mapped to chromosome 7q36 [123] and then narrowed down, by mapping
affected families, to the LMBRI gene, with all affected individuals in the studied
families showing a deletion of exon 4 [124].

This initially led to the suggestion that the LMBR gene may play an essential
role in limb formation, but taken together with the evidence from the Ssq mouse
mutant, it seems more likely that the deletion caused a phenotype by deleting
regulatory elements of SHH that are located within the LMBR1 gene.

To confirm this theory, this region was sequenced in patients with PPD and

no apparent translocations or inversions to see whether there were any mutations that



were sufficient to cause the phenotype. Single point mutations were found in all
affected individuals and no non-affected in four families [125].

This shows that point mutations or deletions of a regulatory element located
approximately 1 Mb from the gene can have a detrimental effect on development and

that this effect can be restricted to a particular tissue type or developmental stage.



Table 2.1. Position Effect Genes in Human Disease

Distance of
. furthest . it
Disorder Gene breakpoint 3'or5'side  Reference
(kb)

Aniridia PAX6 125 3 [126]
Blepharophimosos-ptosis-epicanthus .
inversus syndrome FaxLe 170 . [127]
Campomelic dysplasia SOX9 850 5 [128;129]
Cataract, ocular anterior segment :
dysgenesis and coloboma MaF 1,000 . [+39]
Cleidocranial dysplasia (CCD) CBFA1 829 5! [131]
Facioscapulohumeral dystrophy FSHD 100 3! [132-134]
Familial adenomatous polyposis APC Unlnown ) [135]
(FAP)
Glaucoma/autosomal dominant '
iridogoniodysgenesis i 200 ? [136]
Greig cephalopolysyndactyly .
syndrome GLI3 10 3 [137]
Haemophilia B F9 - 5! [138]
Holoprosencephaly (HPE2) SIX3 <200 5 [139]
Holoprosencephaly (HPE3) SHH 265 5 [140]
Holt-Oram syndrome (HOS) TBX5 20 8 [141]
Lactase persistence LCT 15/20 5' [142]
Lymphedema distichiasis FOXC2 120 ) [143]
Mesomelic dysplasia and vertebral Hoxd 60 3 [144]
defects complex
Preaxial polydactyly SHH 1,000 5' [145]
Rieger syndrome PITX2 90 Y [146]
Saethre-Chotzen syndrome TWIST 260 3 [147]
Sex reversal SRY 3 5Y3' [148]
Specific language impairment FOXP2 >680 3 [149]
Split hand/foot malformation SHFM1 ~450 53" [150]
a-Thalassaemia HBA 18 g [151]
yR3-Thalassaemia HBB 50 5' [152]
Van Buchem disease SOST 35 3 [153]
X-linked deafness POU3F4 900 5' [154]

“For 3" breakpoints, the distance refers to that from the breakpoints to the 3" end of the gene or
complex.



2.2.3.2. Position effect and DBCR mapping

Position effect can be a major hindrance when mapping DBCRs with a view
to identifying disease genes. If there is already a candidate gene postulated to cause
the phenotype and the DBCR breakpoint falls outside of that gene and within
another, the presence of another disease locus may be inferred, as with ELP4 in
aniridia. The phenotypes of patients with disrupted elements may also differ from
those that have mutations in the coding regions of the gene. This can also lead to
speculation that another gene may be involved, disruption of which leads to a slightly
different phenotype.

Alternatively, the breakpoint may not actually fall within a gene, making the
DBCR seem coincidental and not the cause of the phenotype, when in fact it has
disrupted the regulatory elements of a distant gene.

Breakpoints may occur both 5’ and 3’ of the relevant gene and distances can
vary from a few kb to over 1 Mb. This can make the identification of new disease
genes extremely difficult and problematic as genes from a large area either side of
the breakpoints often need to be considered as candidates.

However, even with the afore mentioned difficulties that can be incurred
when mapping chromosomal rearrangements, DBCRs have already proved to be an

invaluable asset in the identification of both disease loci and disease causing genes.



2.3. DBCR Database

2.3.1. Introduction

Disease-associated balanced chromosome rearrangements (DBCRs) have
proven an invaluable resource to the human geneticist for mapping disease loci and
the positional cloning of disease genes. In any trait with a significant genetic
component they have the potential to identify the causative gene, establish the likely
inheritance pattern and elucidate the underlying biological mechanisms. However,
chromosomal rearrangements are complex mutational events and the study of
individual cases leaves scope for investigators to be misled, as there are a minimum
of two breakpoints to be considered in each case. The chance of error may be
minimised through judicious use of supporting evidence. This may come from
haploinsufficiency maps [155] or genetic linkage data but perhaps the most
convincing data comes from the identification of recurrent breakpoints associated
with a particular phenotype.

Such information is, however, difficult to access as most DBCRs are not
reported, or are reported with inadequate clinical data. A study in Denmark and
Southern Sweden showed that of the 216 DBCRs identified in the clinical
cytogenetic laboratories in the year 2000, only 25 (12 %) were actually reported in
the literature [156].

Even published DBCRs can be difficult to locate as there is no central
resource for these analogous to OMIM for non-chromosomal genetic disorders,
although initiatives such as the Mendelian Cytogenetics Network database (MCNdb,

http://www.mendb.org/) in Europe and the Developmental Genome Anatomy Project
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(http://www.bwhpathology.org/dgap) in the US are attempting to improve
ascertainment of unpublished cases and to systemise the phenotypic documentation
of DBCRs. However, at the time of initiating the DBCR database, the MCNdb had
been offline for some time with no indication of becoming re-accessible.

In order to improve the accessibility of information on these rearrangements,
a DBCR database was created to collate all available data into one central, easily
accessible and searchable facility. This not only simplifies the identification of
DBCRs but also allows some general conclusions to be drawn about rearrangement
breakpoints and the worth of breakpoint mapping in disease gene or loci

identification.

2.3.2. Aims of the DBCR Database

There are three specific aims of the DBCR database: Firstly, to catalogue
clinical, cytogenetic and molecular data on all published DBCR cases and
unpublished cases known to us; secondly, where molecular characterisation has been
carried out, to review the resolution of the reported mapping and the molecular
pathology associated with the breakpoints, and thirdly, to identify predictors for the
cases in which DBCR mapping has been unhelpful or misleading.

Every field in the database is searchable so that any similarities in fields such
as phenotype, rearrangement, chromosomes involved, chromosome breakpoints,
mapping resolution and molecular pathology can be determined. As well as
providing information on the phenotype and the rearrangement, each breakpoint is
also considered independently as to whether it has been previously implicated in the

relevant disorder, to what resolution it has been mapped and if there are any



breakpoint spanning FISH clones, whether a gene has been directly interrupted or
found near to a breakpoint, whether any imbalances have been found and further
information on the breakpoints, such as whether they occur in light or dark G-bands.
Any other relevant information is also extracted from the original papers and noted.
The database provides links, via hyperlinks, to the original data and to
information on the phenotype, where applicable, via Online Mendelian Inheritance in
Man (OMIM). The accessibility of the database allows data on DBCRs to be easily
and comprehensively obtained without the need for numerous literature searches.
The existence of a comprehensive, curated, regularly updated database of DBCRs

should prove to be invaluable for those interested in studying DBCRs.

2.3.3. Materials and Methods

The DBCRs in the database were obtained through numerous literature
searches performed using on-line resources such as Entrez PubMed
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed) and Online Mendelian
Inheritance in Man (OMIM, http://www.ncbi.nlm.nih.gov/omim/). Both text and
MeSH term searches were used. The full list of the search terms used is available in
appendix 2.4.1. Paper copies of 742/779 (95 %) original papers could be obtained
through local sources or the British Library. Each paper was reviewed and the
reference list searched for other relevant references. The extracted data was stored in
a relational database format using Access 2000 (Microsoft).

The database is currently in the process of being converted to a web-based
format to allow open access to the data and should shortly be available through the

research pages of Dr. David FitzPatrick, via the MRC Human Genetics Unit website
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(http://www.hgu.mrc.ac.uk/Research/Fitzpatrick). The latest version of the database

available at the time of writing is included on cd as an appendix.

2.3.3.1. Bioinformatic resources

e OMIM:
Online Mendelian Inheritance in Man, OMIM (TM). McKusick-Nathans Institute
for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National
Center for Biotechnology Information, National Library of Medicine (Bethesda,

MD), 2000. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/

e Entrez PubMed:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed

e Ensembl Karyoview (v.32 - Jul2005)

http://www.ensembl.org/Homo_sapiens/karyoview

2.3.3.2. Database Overview

The database was compiled using Microsoft Access 2000. A snapshot of the
two linked database forms and the relationship between them can be seen in figures

2.1 and 2.2 respectively.
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Figure 2.1. A snapshot of the database forms in Microsoft Access
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Figure 2.2. Relationship tables for the database.

Microsoft Access relationship tables for the DBCR database showing that the

two forms are linked via the individual case number.
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2.3.4. Cytogenetic Aspects

919 cases with a cumulative 2023 breakpoints have been entered into the
database to date. 396 of these 919 (43 %) DBCRs were apparently de novo events.
226/919 (25 %) were inherited; 96/919 (10 %) were maternally derived, 56/919 (6
%) paternally derived and 74/919 (8 %) segregated through multiple generations of a
family. The inheritance of the remaining 297/919 (32 %) was unknown, largely due
to parental chromosomes being unavailable for analysis.

DBCR breakpoints were observed on every chromosome. 1178/2023 (58 %)
of the breakpoints occurred in the gene-rich, light coloured Giemsa-bands (G bands),
with 361/2023 (18 %) of these occurring in the T-bands. These are the lightest G-
bands and are thought to be the most GC-rich. 426/2023 (21 %) of the breakpoints
fell within the relatively gene-poor, dark G-bands and 169/2023 (10 %) were in the
centromeric regions of the chromosomes. The remaining 250/2023 (12 %) were
either in the heterochromatic regions (24/2023, 1 %), the satellite regions of the
acrocentric chromosomes (16/2023, 1 %) or were unknown, predominantly due to G-
band misclassification.

552/919 (60 %) of the rearrangements in the database were only reported at
the cytogenetic Giemsa-banded (G-banded) level. 181/919 (20 %) have had one or
more of the breakpoints physically mapped and only 128/919 (14 %) have had both
or all of the breakpoints characterised. This is due to the fact that many of the
rearrangements were reported prior to the availability of locus specific FISH and
whole genome large insert libraries, which have simplified the high-resolution study
of breakpoints. To place the resolutions into broad groups, 1328/2023 (66 %) of the

breakpoints were not mapped below the 1 Mb level, 130/2023 (6 %) were mapped to



approximately 250 to 500 kb, 95/2023 (4 %) were to less than 250 kb and 225/2023
(11 %) were to base pair resolution. The mapping resolution of the remaining 245

breakpoints is unknown.

2.3.5. Molecular Pathology

2.3.5.1. Direct gene disruption

There were 48 cases in the database, with 34 different phenotypes, in which
the confirmed pathological gene had been directly interrupted by a rearrangement
breakpoint. These are listed in table 2.2. 20 of these cases were associated with
autosomal dominant conditions, 19 were X-linked and six were either sporadic or
unknown. Only two were autosomal recessive.

A further 114 cases in the database had one breakpoint that fell within or in
close proximity to the cytogenetic band containing the causative gene for the relevant
phenotype but had not been physically mapped. These breakpoints may disrupt the

relevant gene or could cause a position effect (see below).

2.3.5.2. Position effects

Breakpoints may occur outside the genes themselves and affect their
regulation by causing a change in their position within the genome, or occur within
one gene and have an effect on another. This phenomenon is known as position
effect (see section 2.2.3) and in most cases known to date results in loss of function

of the gene. In the database, there were 27 cases from 15 different disorders that were



stated to be caused by a position effect, with the breakpoints occurring some distance

away from the relevant causative gene. These are listed in table 2.2.

2.3.5.3. Microdeletions

As mentioned in section 2.2.2, DBCRs can be associated with deletions at, or
distant to, the rearrangement breakpoints. There were six cases in the database,
further to those of Astbury et a/ [157] (see section 2.2.2), in which deletions were
detected. Five of these had deletions at, or near to, the DBCR breakpoints,
encompassing all, or part of, the causative gene (see table 2.2). The sixth, isolated
bilateral anophthalmia case [158], had a deletion of approximately 740 kb in size that
was located around 600 kb from the translocation breakpoint, resulting in the

deletion of SOX2.
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2.3.6. Impact on Mendelian Disease

2.3.6.1. Phenotypic diversity

There were 501 apparently distinct phenotypes reported in the 919 DBCR
cases currently in the database. 225 of these phenotypes were catalogued in OMIM
of which 104 (21 % of the total number of phenotypes) were autosomal dominant, 47
(9 %) were autosomal recessive phenotypes and 30 (6 %) were X-linked. In the
remaining 320 disorders, the inheritance was uncertain. These may represent new

Mendelian disorders or coincidental but unrelated pathological processes.

2.3.6.2. Loci with supporting evidence for phenotypic effect

1502/2023 (74 %) of the DBCR breakpoints in the database were in areas that
had not been specifically implicated in the causation of the associated phenotype.
There were 459 breakpoints from 411 cases that were located in cytogenetic bands
that had been previously associated with the relevant disorder through some
supportive evidence. This is usually from other cytogenetic cases or from family
linkage data. 191 (41 %) of these implicated breakpoints had been physically mapped
to some extent.

217 of the 919 cases in the database were associated with a phenotype for

which the causative gene was known (82 genes from 501 phenotypes).



2.3.6.3. X-linked disorders

X-autosome translocations have been particularly important in human
genetics. Many disorders with X-linked inheritance patterns have been clinically
delineated. Both male and female cases with DBCRs involving the X chromosome
and an X-linked disorder are very good predictors of causative gene location. Table
2.3 lists seven X-linked disorders where the locus was first mapped using DBCRs. In
six of these, at least one DBCR identified the causative gene.

There was only one X-linked disorder in the database that had breakpoints
outside the band containing the causative gene, namely Rett syndrome. There were
five translocations associated with this phenotype [274-279], none of which
disrupted the MECP2 gene at Xq28 or the second locus, at Xp22, which has infantile

spasms as an additional feature [280].
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2.3.6.4. Autosomal disorders

In 23 autosomal disorders (17 dominant and two recessive) the confirmed
locus was first mapped by DBCRs and in 14 of these the gene was also identified
using physical mapping of DBCR breakpoints. Another seven have had the genes
identified from already known disease loci. All but one of these are autosomal
dominant disorders, which is to be expected since loss-of-function in a
haploinsufficient gene is the most obvious mutational mechanism underlying the
phenotypic effect of DBCR.

In only one autosomal-recessive condition, Alstrom syndrome, has the gene
been identified via a DBCR. In this case, the DBCR breakpoint interrupted one copy

of the ALMS] gene and a point mutation was identified in other allele [309].
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2.3.7. Apparent False Positive DBCRs

There were 42 cases in the database, with 30 different phenotypes, for which
there was a confirmed pathological gene where none of the breakpoints occurred
close to a known locus i.e. the breakpoints were in distant cytogenetic bands, on the
opposite arm of the chromosome or on a different chromosome altogether (tables 2.3
and 2.4). There are at least three possible explanations for this: the breakpoint may
be unrelated to the disease causing mutation, there may be locus heterogeneity for
the disease or the phenotype may have been clinically misclassified. These apparent
false positives thus merit further analysis.

An interesting and complex example is provided by the search for the gene
causing Cornelia de Lange syndrome (CdLS, OMIM 122470). Two patients with
classical CdLS have been reported with t(3;17)(q26.3;q23.1) [442] and
t(14;21)(q32;q11) translocations [443]. Partial phenotypic overlap between mild
CdLS and duplication 3q26.3-q27 syndrome [444,445] appeared to lend credence to
the 3q36.3 breakpoint. Characterisation of this breakpoint showed that a large gene,
NAALADL?2, was interrupted with no evidence of accompanying deletions or further
rearrangements. The direct interruption of this gene in combination with previous
supporting evidence would strongly suggest a causative event. However, the
expression pattern, the relatively recent evolution of NAALADL?2 and the apparent
absence of any mutations in other cytogenetically normal CdLS individuals did not
make it a good candidate for the phenotype [446].

The situation was somewhat clarified by the identification of N/PBL at 5p13
as a major CdLS gene by two separate groups, both mapping the same

t(5;13)(p13.1;q12.1) CALS associated translocation [447;448]. This was shown to



disrupt N/PBL in intron 1 and mutations were then identified in 15 CdLS individuals,
confirming it as the causative gene.

A subsequent report of mutational analysis in 120 unrelated CdLS individuals
found that 47 % had mutations in the NIPBL gene [449]. One of these patients was a
case with a t(14;21)(q32;q11) translocation, which was shown to have a de novo
nonsense mutation in exon 20 of NIPBL, confirming that the de novo DBCR was

unrelated to the phenotype [450].

2.3.8. Trends in Reporting DBCRs

The publication of individual DBCR cases has increased over the last 35
years (figure 2.3). As would be expected, the number of genes identified via

rearrangements has also increased with the availability of whole genome resources.
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Figure 2.3. A graph showing trends in DBCR reporting
A graph showing the number of DBCR reports in the database per year (blue)
and the cumulative number of genes identified through the physical mapping of

DBCRs (red). The number of DBCR publications can be seen to increase over

the last 35 years, as has the number of genes identified via DBCRs.

38



2.3.9. Conclusions

It is clear that DBCR research has contributed greatly to human genetic
knowledge. The major breakthroughs have, expectedly, been in X-linked, autosomal
dominant and sporadic disorders that are due to de novo loss of function mutations in
one allele. DBCRs have so far only been involved in the identification of the
causative gene for one autosomal recessive disorder, namely Alstrom syndrome, but
have the potential to identify more, especially in cases with rearrangements
segregating through multiple generations of a family.

In some cases, DBCR research has lead to the delineation of new and
previously unrecognised Mendelian disorders. Careful delineation of the clinical
phenotype is vital and a rigorous approach to syndrome diagnosis is necessary to
maximise the chances of success. With regard to the molecular pathology, it is
important to map all of the breakpoints in each DBCR case and a high index of
suspicion should be maintained for microdeletions at and around the breakpoints.

It is hoped that DBCR research will continue to identify a number of genes
for known Mendelian disorders and will also delineate new ““sporadic” genetic
syndromes and conditions. The existence of the DBCR database should help

facilitate this important research.



2.4. Appendices

2.4.1. Search terms

2.4.1.1. Pubmed:

®= De AND novo AND balanced AND translocation NOT leukaemia

* Translocation AND syndrome NOT leukaemia NOT cancer

= Translocation AND de novo NOT leukaemia

» Translocation AND reciprocal NOT leukaemia NOT cancer

* Translocation AND balanced NOT leukaemia NOT cancer NOT unbalanced

® (Translocation OR inversion) AND chromosom* AND human NOT (cancer OR

tumour OR tumor OR leuk* OR lymphoma)

2.4.1.2. MeSH terms

= “Translocation” AND "Human" AND "Chromosomes, Human" OR
"Chromosome Mapping" AND "Chromosome Aberrations" NOT "Leukemia"

NOT "Neoplasms"

2.4.1.3. OMIM

= Balanced AND translocation



2.4.2. Database statistics

2.4.2.1. Cases

There are currently 919 cases entered into the DBCR database:

» Rearrangement origins:

396 de novo events

96 maternally inherited
56 paternally inherited
74 segregating through multiple generations of a family

297 unknown

* Breakpoints mapped:

552 only reported at the G-band level
181 had one or more breakpoints mapped to some extent
128 had both or all breakpoints mapped to some extent

58 unknown

2.4.2.2. Breakpoints

There were 2038 breakpoints from the 919 cases:

= (G-band classification:

1178 breakpoints fell within Light G-bands
426 breakpoints fell within dark G-bands
169 fell within centromeric regions

250 fell in other areas or are unknown



* Mapping resolutions:

1328 not mapped below the 1 Mb level
130 mapped between 250 and 500 kb
95 mapped to below 250 kb

225 mapped to breakpoint level

245 unknown

= Previously implicated breakpoints:

1502 breakpoints not previously implicated in the relevant disorder

459 breakpoint had been previously implicated

2.4.2.3. Phenotypes

There were 501 apparently distinct phenotypes associated with the 919 cases:

= 225 were in the OMIM database:

[ ]

104 Autosomal dominant

47 Autosomal recessive

30 X-linked

44 unknown
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3: Materials and Methods

3.1. General Materials

3.1.1. Kits

Table 3.1. Kits and suppliers

Kit

Supplier

First strand cDNA synthesis kit for RT-PCR (AMV)

Roche Applied Science

Nucleon® BACC genomic DNA extraction kit

Nucleon

QIAprcp® midi kits, QIAquick” gel extraction kit, QIAquick® Qiagen
PCR purification kit
Vector lab ABC kit Vector labs

3.1.2. Bioinformatic resource URLs

Primer 3 programme: http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi

Ensembl Genome Browser: http://www.ensembl.org/index.html

UCSC Genome Bioinformatics: http://genome.ucsc.edu/

BACPAC Resources: http://bacpac.chori.org’/home.htm

Wellcome Trust Sanger Institute: http://www.sanger.ac.uk/

9 ‘\



3.2. Experimental Materials

3.2.1. Oligonucleotides

Oligonucleotides were obtained from Sigma Genosys. The primer sequences

are listed in the table 3.2. Riboprobe primers were prefixed with either the T7 or T3

polymerase recognition sequence:

Forward primers were prefixed with the T7 sequence: AATACGACTCACTATAGG

Reverse primers were prefixed with the T3 sequence: ATTAACCCTCACTAAAGG

Table 3.2. Oligonucleotides

Type Oligonucleotide  Nucleotide Sequence 5'-3’ Species

Long-Range

PCR 20X, | 42TE2F GAGAGAAGGGAGGGACAGGAAGGGAAGG  Human
427E2 R GCATGCACTGGGGACACCAAGTTTCTTT Human
C2orf22 F CTAGGTCCCTGAGCTGGGGAAGCTGAAG Human
C2orf22 R GAGACCATCCCGGCTAAAACGGTGAAAC Human
Cmkirl _LR1 F GGACACAAGGAGATGAGGGGGTGTCAAG Human
Cmklrl LR1 R AGGAAGACGCTGGTGAACATGTTGTGGA Human
Cmklrl LR2 F CCACCTGCCAACTGAGTGACATGGAATC Human
Cmkirl LR2 R TGAGCTGAAAGCCATCCCAAGCAGTTCT Human
E2F6_F GGCGAGGAAGTTACCCAGTCTCCTCCTG Human
E2F6 R GCAGAGCTGGAGAGAGGGCAAGGTACAA  Human
NM 182586 F GGGCTTCTCTCCAGTGTGAAGTGGCTGT Human
NM 182586 R AATCCATACCTGGCCTCATTGGGTTTGG Human
Q9Y4B7 LRI F GGAGTGAATTCATGGGGAACAGGAGCAA Human
Q9Y4B7 LRI R TTGACCTCAGGGGAGGCAAACACAATTC Human
Q9Y4B7 LR2 F GCACAGAACGGACCCTAGTATCCCAGCA Human
Q9Y4B7 LR2 R GCCTGGGCTTTTAAATGGTGCTCTGTCC Human
Q9Y4B7 LR3 F ATGAATGGCTTTGAGGTGGCCAGAACAG Human
Q9Y4B7 LR3 R TCACTGTTGGTGCCTGAGGTTCCTTGAA Human
Rock2 LRI F TTCACATTGTTGTGCAGCCATCACCACT Human
Rock2 LRI R TGACACCAGGGGTACACAAGCAAGAGGA Human
Rock2 LRl1la F CCCTCCTCCCTTGTCTTCCTCCTTCCTC Human
Rock2 LRla R TGCAGAACGGTTACCAAATGGCAAACAA Human
Rock2 LR2 F ACTGCAACCTTCCCTTCCTGGGTTCAAG Human
Rock2 LR2 R CCCTCTCCCTCATCCCTTCGAATCAGTC Human
Rock2 LR3 F TCTTCAACCACCTGACAGAAGCGTCAGC Human
Rock2 LR3 R TGGCTCATGCCTGTAATCCCAGCATTTT Human

El;g';f'l%al'(‘bge IK3 10 la F GAGAAGTGGTGGGTGGGATGAGGTCACT  Human
IK3 10 1a R CTTTTGCATGCCTTGTGAAAGCTGGTTG Human
IK3 10 1b F TGGAACAGAGACTTCACTGACCACACATGA Human
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IK3 10 1b R
IK3 10 2a F
IK3 10 2a R
IK3 10 2b F
IK3 10 2b R
13G14 10 _la F
13G14_10_la R
13G14 10 1b F
13G14 10 1b R
131118 10 la F
131118 10 _1a R
131118 10 _1b_F
131118 10 _1b R
427E2 10 la_
427E2 10 la
427E2 10 _1b
427E2 10 _1b
C20rf22 10 la F
C2orf22 10 _la R
C2orf22 10 _1b F
C2o0rf22 10_1b_ R
Cmklrl 10_1a F
Cmklirl 10 la R
Cmklrl 10 1b F
Cmkirl 10 1b R
F
R
F
R

F
R
F
R

Cmklrl 10 2a
Cmklrl_10 2a_
Cmklrl 10 2b
Cmkirl 10 2b
LR_ cmkex 1 F
LR cmkex 1 R
LR cmkex 2 F
LR cmkex 2 R
LR cmkex 3 F
LR _cmkex 3 R
LR_cmkex_4_F
LR cmkex 4 R
E2F6 10 la F
E2F6 10 la R
E2F6 10 1b F
E2F6 10 1b R

NM_182586_10_laF
NM_182586_10_laR
NM_182586_10_1bF
NM_182586_10_1bR

Q9Y4B7 10 _la F
Q9Y4B7 10 la R
Q9Y4B7 10 _1b F
Q9Y4B7 10 1b R
Q9Y4B7 10 2a F
Q9Y4B7 10 2a R
Q9Y4B7 10 2
QYY4B7_10_
Q9Y4B7_10_
QYY4B7_10_
QYY4B7_10

0

 F

R

aF

R

F
Q9Y4B7 1 R

2
3
3a_
3b
3b_

ATTTTAGAGTCCCCCACCTAGCCCCACA
AGCTTAGTGACCCAACTGCCCAAGCTGA
CCAGGGGACACAGGACAAAGAAGTGGAC
CCTTCCTCCCTCCCTCCCTCCTTTCTTT
ACCCACTCATTCACCGCAAGATCCATTC
CTGGGATTACAGGTGTGAGCCACTGTGC
TCAAGGAGACGCTTCCTGTGAAGCCCTA
CCACCAGCAAGACACAGCAGACACCATA
GGAAACAATCCAAATGCCCATCAACAGG
TCAAGCTCCACACTGACCGAGAGATTGG
CGTGGAGGTGCAGCTGATTCACTCATGTAT
GCATATGGGTAAACTGAGGCCCCAGGAG
ATCCAGGGGAAGCTTGCTAGGAATGCAG
GTGGAACTTGCGACACAGCAGAGAGGAA
GCCAATGCACCTGCCAAAGTGAAATACC
CCTGGCGTGATGTTTCTCTAAGCGTGAA
GCCACTGTACCTGGCCATCACCAAGTTT
GCTAGTGACAAAACCTGCTGGCCCTGAG
AGGCAGTGCCCTGTGACCACCAGTTAGT
AGACCGTGGAAAGAGAGGGAGAGGGAGA
GAGACCATCCCGGCTAAAACGGTGAAAC
AGGTTGGTTTGGAAGGACTTGGCCTCTG
TCTGACCACAATCAGCATCCACCCAAGT
AGGAGCCATCACAGAGGGTTCGCAGATA
TACAGAATGGGGTTCATGCAGCTGTTGG
GGGGCCAGGGAAGGGGAATGAATACTAA
AGTGAGGCCAGCAAGTCAAGGTCTCCAC
TGCTGATGGACGTAGGCATAGAGGCTGA
AAGCAGCCCTGAGAACTGCCAAGTTGAA
ACAGTGAGGTGGGTTTCAGG
ACTGCACCATCAGCTCTCCT
GGGTGGGTGAGTGAGTGAGT
CCATCATATCCCCTGTGACC
TAGGTTACCCAGGTTGTCACCTGCATTG
TAAATGCGGGAACCAGGACTTGAACGTA
AGAATGGAGTGCAGTGGCACGATCTCAG
CACCAGGCTATGGGCTGCATATGTGGTA
GGCGAGGAAGTTACCCAGTCTCCTCCTG
GCCTCATCTCACATGCTCGCCAGAACTA
CCAGGCCCTTGTAGGCTGTTTCTTGCTT
GCAGAGCTGGAGAGAGGGCAAGGTACAA
GAACAGAACCATCAGGACAGGGGCAAAA
TGAGTTCAAATGCCAGCTCTGCTGTGTG
CAAGAACCCTCTCTTGGGTTGTGGATCG
TTAGATGGAGCAGGGCTCCTGGAAGACA
TGCACACATGGGGGAATGATGAAATTGT
GAGCCTAGGAGGTCGAGGCAGTGAGCTT
AACCCAGCAGCTTCAGGTGTAAGGCAGA
CGACCCTGTATTTCTCTGGCCACATCGT
CCGCCCCAGTTCTAACTTCTGTCCCTGT
CTGAGCCAAAGCCCCATATCCTCAAAGG
TTTTTCTTTCCCCTGCAGGCAGCTCTTC
CACTGGAAACCAGGAGAAAGGCATGGAA
GAGAAGGAGGAAGAGGAGGAGGCAGCAA
CATGGACTGAGAAGTCGCCCCGTATCAT
TGGAGATGCTGGATCCTGGGTGTTAAGG
ACTTCAGCCTGGGTGACAGAGCAAGACC

Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human



Rock2 10 la F TGGAATTGCACTTTATGAGCAGGGCAGA Human
Rock2 10 la R CTGCCACTTAGCAGCTGCATGACTTTGG Human
Rock2 10 _1b F GCACTCACCACCATGCCCAGCTAATTTT Human
Rock2 10 _1b R TGTGTCTGCCTTTTGGGGCATATGGTTT Human
Rock2 10_2a F TGGGCCATATTTCCTTGTCTGTGGCCTA Human
Rock2 10 2a R TTCTGGCCTCCCTTTTCATTTCCACTGA Human
Rock2 10 2b F GCAGATTCTGAGCAACTGGCTCGTTCAA Human
Rock2 10 2b R AAGAATGATTCACAGGGCAAGGCCAGAA Human
Rock2 10_3a_F CTCTGGGCACATGCAGTCCCCTCATAAT Human
Rock2 10_3a R GAGATTCCAACACTGCACTCCAGCCTGA Human
Rock2 10 3b F CAGTGGCTCACACCTGTAATCCCAGCAC Human
Rock2 10 3b R CCATCTCAATCCCAGTGGGTCTTTTCCA Human
RT-PCR Alle_F ATTACCTGGTTCCCATGTCG Mouse
Alle R CCCAACCATCTGCTATGGAC Mouse
C2orf22 F GCTGAGCGGTCCCTTCTC Mouse
C2orf22 R GATACAGAGCAGGAGGATGACA Mouse
CmklIrl_F CTGGGACTAGCACAGCATCA Mouse
Cmklrl R GATGATCACCAGACCATTGC Mouse
Cmklrl 2 F AGTCACGCGCAGTAACAGAC Mouse
Cmkirl 2 R CCAGGTTGACAAACCACACA Mouse
Colecll_F CAGCTGAGGAAGGCTATTGG Mouse
Colecll R GTCCGAGTACACGAAAGCAC Mouse
E2F6 F TGCACATAAGGAGCACCAAC Mouse
E2F6_R GCCGCTACTGAGAACGAGAG Mouse
Esrrg 26610 _F ATGAGCCTCCTCCAGAGTGC Mouse
Esrrg 26610 R GGGCCTCATGTAACACATCC Mouse
Esrrg 26610 2 F GGATGAACTTGTCTATGCAGACG Mouse
Esrrg 26610 2 R AGCGTCATCAGCATCTTGC Mouse
NM_182586_F CTTCCCAGGTGACCAGACTC Mouse
NM_182586 R TGACACAGAGTGACGGGTGT Mouse
Q9Y4B7_F TTGCATGGACAGAAGGTTCC Mouse
Q9Y4B7 R GGTTGAACTCAGCCATGAGG Mouse
Q92626 F AGCCCTCATGGTAGAAGACC Mouse
Q92626 R AACAGTCCTGCCACACTCG Mouse
Rarres2 F AACCATAGGACTGAGGTGAAGC Mouse
Rarres2 R ATTGTGCACTCCGGCTTTT Mouse
RnaseHl1 F AGGACCGGAGTCTTCCTGAG Mouse
RnaseH1 R AAGAAAATGCGTCCTTGCTC Mouse
Rock2 F AGTGGAGCCAGTTGGAGAAA Mouse
Rock2 R CACCAACCGACTAACCCACT Mouse
Rps7 F GCTTAAATCTTTCCAGAAAATCC Mouse
Rps7 R TGTGTTCCACGTTGTTCTGC Mouse
Ush2a_F GAAGCCCACCCTCTCTCC Mouse
Ush2a R TGGAGACAGTTGACAGAATTGG Mouse
56735 2 3 F CCTGAGTCCCTTCACCACAT Mouse
56735 2 3 R CATTGTATGCCACCACTTGC Mouse
60749 9 10 F CAACCAAGGCAACTAAATGGA Mouse
60749 9 10 R TCAGGCTCTGTCCAGGAGAT Mouse
Q9D178 F GACGGTCTGGAGGAGAACAG Mouse
Q9D178 R CTCCTGCACCATTGGGAAT Mouse
Ush2a ex13 14 F CAGGTTCAATTTGACGATGG Mouse
Ush2a _ex13 14 R GACACTGGTGACAGCTACGC Mouse
Hum Es 1 F CAGTGACATCAAAGCCCTCA Human
Hum Es 1 R ACCAGCTGCAGGATAGCATT Human
Hum Es 2 F AGATCCCCAGACCAAGTGTG Human
Hum Es 2 R CTTTCAGCATGCCCACTTTT Human
Rock seq 1F CGAAGCCGGAGCTAGAGG Human



Sequencing

DOP-PCR
Riboprobe

Rock seq IR
Rock seq 2F
Rock seq 2R
Rock_seq 3F
Rock _seq 3R
Rock seq 4F
Rock _seq 4R
Rock seq SF
Rock seq 5R
Rock _seq 6F
Rock seq 6R
Rock seq 7F
Rock seq 7R
Rock seq 8F
Rock_seq 8R
Rock seq 9F
Rock seq 9R
Rock _seq 10F
Rock seq 10R
Rock seq 11F
Rock_seq 11R
Rock_seq 12F
Rock seq 12R
Cmk 1 F
Cmk_1 R
Cmk 2 F
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Cmklrl F
Cmklrl R

GACGAACCAACTGCACTTCA
TCCTGCTTTGAGGAAAAACAA
TACCATGCCTGTTTCATCCA
AGTTGTTCTTGCTCTGGATGC
TGTTATCCCAATGCCACTGA
TGTTTCCCTGAAGATGCAGA
TCCTCTTCTAGCTCCTTTGCTG
CAATCAAGGAAAAATGAAGTACGA
TCTCCAGCAGGCAGTTTTTA
CAACTGGATGAAACCAATGCT
TTTGGCTTCTTCGATGGACT
TCAGGAGAGATTTACTGATTTGGA
CTTTTCGAAGTTCAGCATTTTG
ACTCAGAAGCGCTGCCTTAC
GCATCTTTTTCCGTAAGTTCCT
CCCAACTGGAGATCACCTTG
CTTGATCATCTGCTGGGTCA
GGCTGAGATCATGAATCGAAA
TGGTCGGACATGAAATAACTTG
AGAAGGATGGCTTTCATTGC
CAGATTCTTTGCCGTTGAAA
CAACCAACTGTGAGGCTTGT
TTACAGGGAAAAGGGGAACA
TTGGTCTTGCTGGTATTGGTC
TGGACAGGCTGAAGTTGTTG
CCCCATCTCTCGTCTTCC
AAGACATATCCTTGGGTGTCC
GGTCTTGCTGGTATTGGTCAAC
GGTTCTGGGACCAGACAGG
TCCTCCCAATCCATATCACC
CACCAGCAGAGGAAGAAGGT
ACTGTCACCCGCTTCCTCT
AGGTTCTTGCCTTGATCTTCAG
GCTAAATAGCTGTGCCAGTCTC
GCTTCCCACGCAACATTTAT
CAAATTGCCTTCCCTTGAAT
TGAAATTGAATCTGCATGCTAAG
TCTACCTCTTTTGGTCTCTGTGC
AACCCATCATGTGAGGTTGG
ACATTGCCTTTGGGAAGCTA
TACCTCATCTTTTTCTGGTTTCTCT
TTTGTCACCTATGTGCTCTTGG
CCTTGGAGTCAGTAGGGATGG
TCAAAACACAAAATGCTCTAGG

AATTCACCCAAATCTATATACATAACC

ATGCAGAAGCCAGCTACCAT
ACAAACCAGGTCTAGCAAATCC
GGTTCAAGCTCAGAGAAGTTCAA
CAGGAACCTATGGAGGAATCTG
CCGACTCGAGNNNNNNATGTGG
CCGAGCCTCTACAACAGGAG
GGTAACTTCCTCACCCACGA
CAGAGGGAGGCTCTTAGGATGT
GGCTCCTGCGACTTCAGG
AGACCGTGAACACTGTGTGG
ACATGTTGTGGCTGAGCAAG
ACCACACCCTCTACCTGCTG

Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Mouse

Mouse

Mouse

Mouse

Mouse

Mouse

Mouse



Cmklrl_4 R
Cmklrl 5 _F
Cmklrl_5 R
Colecll F
Colecll R
Esrrg F
Esrrg R
Q92626 _F
Q92626 R
Rarres2 1 F
Rarres2 1
Rarres2 2
Rarres2 2
Rarres2_3
Rarres2 3 R
RnaseH1 F
RnaseH1 R
Ush2a F
Ush2a R

R
F
R
F

GGCCACCTTGAATTTTCTGA
CCGAGCCTCTACAACAGGAG
GGTAACTTCCTCACCCACGA
CATCTGAACGCCACCTTTTA
GACCAAGACAAGAGCTTCACAG
GATGAGCCTCCTCCAGAGTG
ACCAGCTGCAGGATAGCATT
TCTCACCCTATAGACACTGATGTG
GCCTTACACATGTGGCTTTG
CTGTACAGCTGTGGCAGCAC
TTGGAAAGGAACAGACTCAGC
GATCCTCAGGAGTTGCAATG
TGTCTAGGGCTTATTTGGTTCTC
AACCATAGGACTGAGGTGAAGC
GCTCTGTCCACACCGATCTC
CTGTGCATGGAGGACACAGT
AGTCAAGGCCACCTGAGTGT
GAAGTGTGCTCTCTCACAGTCC
AATGTGACCTTCTTAGAAATAGCC

Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
Mouse
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3.2.2. Primary antibodies

All primary antibodies used are listed in the table 3.3.

Table 3.3. Primary antibodies

Antibody Supplier Type Dilution
Estrogen Related AbCam Rabbit polyclonal [HC: 1 in 500
Receptor gamma (ab12988) to C-terminus
antibody
CMKLRI1 antibody AbCam Rabbit polyclonal [HC: 1 in 500

(ab13172) to N-terminus
extracellular

3.2.3. Animals

All mice used were obtained from inbred cd1 strain crosses.

3.2.4. BACs, PACs and Fosmids

BAC and PAC clones were obtained from either BACPAC Resource Center
(BPRC) at Children's Hospital Oakland Research Institute in Oakland, California or
the Wellcome Trust Sanger Institute, Cambridge. Fosmids were obtained from the

Wellcome Trust Sanger Institute.
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3.2.5. Imaging

3.2.5.1. Colour brightfield imaging

For magnifications of less than 2.5x, imaging was performed using an
imaging system comprising of a Leica MZFLIII fluorescence stereo microscope with
0.5x, 0.63x, 1x, 1.6x objectives, a 100W Hg source and Leica GFP1, GFP2, UV, B,
G filters fitted with a Hamamatsu Orca AG CCD camera (Hamamatsu Photonics
(UK) Ltd, Welwyn Garden City, UK) and CRI liquid crystal rgb filter (Cambridge
Research & Instrumentation, Woburn, MA). Hardware control, image capture and
analysis were performed using in-house scripts written for IPLab Spectrum

(Scanalytics Corp, Fairfax, VA).

For magnifications of 2.5x and above, imaging was performed using a
Coolsnap HQ CCD camera (Photometrics Ltd, Tucson, AZ) Zeiss Axioplan II
fluorescence microscope with Plan-neofluar objectives (Carl Zeiss, Welwyn Garden
City, UK) and colour additive filters (Andover Corporation, Salem, NH) installed in
a motorised emission filter wheel (Prior Scientific Instruments, Cambridge, UK)
were used sequentially to collect red, green and blue images, that were then
superimposed to form a colour image. Image capture and analysis were performed

using in-house scripts written for [PLab Spectrum (Scanalytics Corp, Fairfax, VA).



3.2.5.2. Fluorescent imaging

Imaging was performed using a Coolsnap HQ CCD camera (Photometrics
Ltd, Tucson, AZ) Zeiss Axioplan II fluorescence microscope with Plan-neofluar
objectives, a 100W Hg source (Carl Zeiss, Welwyn Garden City, UK) and Chroma
#83000 triple band pass filter set (Chroma Technology Corp., Rockingham, VT) with
the excitation filters installed in a motorised filter wheel (Prior Scientific
Instruments, Cambridge, UK). Image capture and analysis were performed using in-

house scripts written for IPLab Spectrum (Scanalytics Corp, Fairfax, VA).

3.2.5.3. 3D Fluorescent imaging

3D fluorescent images were captured on an imaging system comprising of a
Princeton Instruments Micromax CCD camera with Kodak 1400e sensor (Universal
Imaging, Maldon, UK), Zeiss Axioplan fluorescence microscope with Plan-neofluar
or Plan apochromat objectives, a 100W Hg source (Carl Zeiss, Welwyn Garden City,
UK)) and Chroma #83000 triple band pass filter set (Chroma Technology Corp.,
Rockingham, VT) with the excitation filters installed in a motorised filter wheel
(Ludl Electronic Products, Hawthorne, NY). A motorised stage and focus motor
were employed to move the specimen in the xy and z dimensions. Hardware control,
image capture and analysis were performed using in-house scripts written for IPLab

Spectrum (Scanalytics Corp, Fairfax, VA).



3.3. Solutions

3.3.1. General Solutions

0.5 M EDTA pH 8.0: 186.1 g EDTA per litre. pH with NaOH

20x TBE: 216 g Tris-base, 110 g boric acid, 100 ml 0.5M EDTA, pH 8 per litre
20x SSC: 175.3 g NaCl, 88.2 g sodium citrate in 1 litre

S5x Orange G loading dye: 0.06 % (w/v) Orange G, 50 % (v/v) glycerol in H,O.

70 % Ethanol: 70% (v/v) absolute ethanol in H,O.

TE: 10 mM Tris-HCI pH 8.0, 1 mM EDTA pH 8.0 in H,O.

0.1M tri-Sodium citrate: 2.94g in 100ml sterile water

0.1M Citric acid: 1.92g in 100ml sterile water

10 mM citrate buffer: 41 ml 0.1 M tri-sodium citrate, 9 ml of 0.1 M citric acid, 450
ml water

0.1 M citrate buffer, PH 6: 2.1 g citric acid monohydrate in 900 ml water. pH with
NaOH and make up to 1 litre.

80 % Glycerol: 80 % (v/v) glycerol with water

Heat-inactivated sheep serum: Sheep serum was heated to 60 °C for one hour
before being aliquotted and stored at —20 °C.

Glutaraldehyde: 50 % (w/v) stock made up in water. Stored at 4 °C



3.3.2. Bacterial Solutions

Chloramphenicol: 10 mg/ml stock made up in ethanol. Stored at —20 °C
Kanamycin: 10 mg/ml stock in water. Stored at —20 °C

LB: 10 g tryptone, 5 g yeast extract, 10 g NaCl, 15 g agar per 1 litre

3.3.3. Tissue Culture Solutions

Trypsin: 2 g trypsin, 5 ml phenol red, 0.06 g penicillin, 0.13 g streptomycin in 1 litre
PBS. pH to 7.8 with NaHCO;
Versene: 0.4 g sodium EDTA, 5 ml phenol red in 1 litre PBS

Penicillin/Streptomycin: 7 g penicillin, 13 g streptomycin per litre

3.4. General Methods

3.4.1. Cell Culture

3.4.1.1. Fibroblast culture

Cells were cultured in DMEM (Life Technologies) supplemented with 10 %
Foetal calf serum (FCS, Sigma) and penicillin/streptomycin. Cells were grownina 5
% CO, incubator at 37 °C in 25 cm?® or 75 cm? Falcon flasks. All solutions were
warmed to 37 °C prior to use. The medium was removed and the cells carefully
washed in PBS before incubation in 1 ml of trypsin/versene (1:1 v/v) solution at 37
°C, 5 % CO, for four minutes to lift cells off the surface of the flask. The flask was

tapped gently to help detach the cells and the trypsin inactivated with the addition of



5 ml of fresh culture medium containing FCS. The cell suspension was pipetted up
and down repeatedly to dissociate cell clumps and the cells split into clean flasks.

These were then topped up with fresh medium.

3.4.1.2. Freezing cells

Cells were detached from the flask as above and the trypsin inactivated with
the addition of fresh media. The suspension was transferred to a sterile 15 ml Falcon
tube and spun at 1,200 rpm in a centrifuge at room temperature. The supernatant was
then discarded and the pellet resuspended in 1 ml of freezing media, consisting of
foetal calf serum with 10 % DMSO. This was placed into a 1.8 ml CryoTube (Nagle

Nunc) and placed at —70 °C before being stored under liquid nitrogen.

3.4.1.3. Cell pellets

Cells were pelletted and stored at —40 °C until required for DNA or RNA
extraction. Cells were treated as in section 3.4.1.2 but pellets washed thoroughly in
PBS and then resuspended in 1 ml of sterile PBS, transferred into screw-top tubes
and spun at 6,500 rpm in a microcentrifuge. The PBS was removed and the pellet

frozen until ready for use.

3.4.1.4. Chromosome preparation

To enable rapid FISH screening for rearrangements, metaphase chromosome

preparations were made from each of the primary fibroblast cell lines. To obtain the



maximum number of dividing cells, the fibroblasts were split (see section 3.4.1.1.)
approximately 24 hours before treatment with colcemid (Gibco KaryoMAX). This
was added to the culture medium to a final concentration of 0.1 ug/ml and the flask
incubated at 37 °C for one hour. The medium was poured off and retained and the
cells trypsinised (see section 3.4.1.1.). The trypsin was neutralised with the retained
medium, the suspension transferred to 15 ml Falcon tubes and spun at 1,200 rpm for
five minutes.

The supernatant was discarded and 10 ml hypotonic solution added (1:1 tri-
sodium citrate: 0.56 % KCI). After incubation at 37 °C for ten minutes, the cells were
once again spun and the pellet washed twice with 3:1 methanol: acetic acid fix and
then resuspended in fresh fix to an appropriate concentration.

This suspension can then be stored at —20 °C indefinitely.

3.4.2. DNA Extraction and Purification

3.4.2.1. Isolation of genomic DNA from cells

DNA was isolated from cells using the Nucleon™ BACC Genomic DNA

Extraction Kit, according to the manufacturer’s instructions.

3.4.2.2. Isolation of genomic DNA from mouse spleen

Genomic DNA for use in PCRs was obtained from a cd1 mouse spleen. The
tissue was minced, lysis buffer added (100 mM Tris pH 8, 5 mM EDTA pH 8, 0.2 %

SDS, 200 mM NaCl, 4 mg proteinase K) and the mixture incubated overnight at 50-



55 °C. The tube was spun and the supernatant transferred to a new tube. Isopropanol
(1 volume) was added and the precipitated DNA spooled. The DNA was washed
thoroughly in 70 % ethanol, dried and resuspended in TE buffer. The DNA was then
stored at 4 °C.

If required, a phenol: chloroform purification step can be included (see

section 3.4.2.4.)

3.4.2.3. Preparation of BAC/PAC/Fosmid DNA

BAC, PAC and fosmid clones were grown in 5 ml Luria-Bertani broth (LB)
containing 20 pg/ml chloramphenicol (BACs and fosmids) or 25 pug/ml kanamycin
(PACs). Cultures were derived from either stabs or glycerol stocks and were
incubated overnight at 37 °C in a shaking incubator. DNA extraction was performed
by alkaline lysis, in accordance with the BACPAC resources protocol
(http://bacpac.chori.org/bacpacmini.htm).

Glycerol stocks were prepared for every clone used. 800 pl sterile 80 %
glycerol (v/v) was added to 200 pl of the relevant LB culture in a CryoTube (Nagle

Nunc). This was mixed thoroughly and stored at —80 °C.

3.4.2.4. Extraction of DNA from paraffin embedded tissue

Paraffin blocks were cut and sections placed into screw top tubes. The
paraffin wax was removed through three, five minute washes in xylene and the
sections rehydrated though an ethanol series (two, five minute washes in 100 %

ethanol and two minute washes in 80 %, 50 %, 30 % and distilled water). Once
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rehydrated, the water was replaced with 500 pl proteinase K solution (400 pg/ml in 5
mM Tris-HCI, pH 7.5, 1 mM CaCl,) and the tube incubated overnight in a 37 °C
waterbath.

To deproteinise and purify the DNA, one volume of
phenol:chloroform:isoamyl alcohol (25:24:1) was added and the tube contents mixed
by vortexing. After being spun at 13,000 rpm in a microcentrifuge for ten minutes,
the top layer containing the insoluble DNA was removed to a fresh tube and the
DNA precipitated by adding one volume of isopropanol and storing at —20 °C for
two hours to overnight. The tubes were then spun at 13,000 rpm for 30 minutes at 4
°C, the supernatant removed and the pellet rinsed with 70 % (v/v) ethanol. Once
completely dry, the DNA was resuspended in Tris/EDTA (TE) buffer, pH 8, or ultra-

pure water (Invitrogen).

3.4.3. Agarose Gel Electrophoresis

DNA molecules were separated according to size by agarose gel
electrophoresis. Gel solutions of 0.8 to 2 % (w/v) were created by combining agarose
with 0.5xTBE and microwaving until fully dissolved. Once the solution had cooled
to below 50 °C, ethidium bromide was added to a final concentration of 200 ng/ml,
and the gel was cast. DNA samples were mixed with 1x loading dye and run
alongside either a 100 bp or 1 kb DNA ladder (approximately 300-600 ng).

Gels were electrophoresed for lengths of time varying from 30 minutes to two

hours at between 50 and 100 volts. Gels were visualised using a UV transilluminator.



3.4.4. RNA Methods

3.4.4.1. RNA isolation

RNA was isolated from various tissues and cells using Trizol (Invitrogen)
reagent and Phase-lock heavy gel tubes (Eppendorf), according to the manufacturer’s

protocols.

3.4.4.2. cDNA synthesis

cDNA was synthesised using the first strand cDNA synthesis kit for RT-PCR

(AMYV) (Roche Applied Science) according to the manufacturer’s protocol.

3.4.5. Mouse Embryo Methods

3.4.5.1. Embryo dissection and fixation

Wild-type embryos were obtained from cd1 mouse crosses. The embryos
were dissected from the uterus, under RNase free conditions, in ultra-pure PBS and
fixed in 4 % PFA (w/v) in PBS for 2 hours at room temperature or overnight at 4 °C.
The embryos were then washed twice (for five minutes each) in PTW (PBS with 0.1
% Tween-20), once in 50 % PTW: methanol and twice in 100 % methanol. At this

stage the embryos could be stored in methanol at —20 °C indefinitely.



3.4.5.2. Paraffin embedding and sectioning

Embryos aged 11.5 dpc or over were processed using a TissueTek VIP
processor. Younger embryos and dissected kidneys were dehydrated through an
ethanol series, washed twice, for 15 minutes each, in 100 % ethanol, once in xylene
at room temperature, once in xylene at 60 °C and then taken through three, 30 minute
washes in paraffin wax (60 °C). Embryos were then embedded in clean paraffin wax
and placed on ice or at 4 °C to harden.

4-6 um sections were cut from the paraffin blocks using a microtome and
floated onto superfrost plus slides (BDH). The slides were air-dried and then baked

at 50 °C for 2 hours to overnight.

3.4.5.3. Wholemount in-situ hybridisations

See section 3.4.11.2.

3.4.6. Immunohistochemistry

3.4.6.1. Immunohistochemistry on paraffin sections

The paraffin wax on the slides was removed through three, five minute
washes in xylene and the slides rehydrated though an ethanol series (two, five minute
washes in 100 % ethanol and two minute washes in 80 %, 50 %, 30 % and distilled
water).

Antigen retrieval was performed to unmask the antigen sites. Boiling 10 mM

citrate buffer was poured into a glass coplin jar and the rehydrated slides added.



These were microwaved on full power for 30 seconds, left to stand for one minute
and then microwaved for a further 30 seconds. The slides were then left to cool in the
buffer for 20 minutes, washed twice in PBS, for five minutes each, and rinsed in
distilled water.

In order to minimise the amount of antibody required for the sections, and to
allow multiple antibodies to be applied to different sections on a single slide, a PAP
pen (Sigma) was used. This is a wax-based pen that forms a hydrophobic barrier
around the sections. The excess water was drained from the slide and the pen
applied. The relevant liquid could then be applied almost immediately.

After antigen retrieval, a blocking buffer (PBS with 10 % heat-inactivated
sheep serum) was applied to the sections to reduce non-specific binding. This was
incubated at room temperature, in a humidified chamber, for at least one hour. After
this time, the slides were washed twice in PBS and once in PTW (PBS with 0.1 %
Tween-20) (for five minutes each). The primary antibody could then be applied at
the relevant dilution, in blocking buffer and the slides incubated in a humidified
chamber overnight at 4 °C.

After incubation with the primary antibody, the slides were again washed
twice with PBS and once with PTW. The secondary antibody was then applied at the
relevant dilution in blocking buffer and incubated at room temperature for one hour.
The secondary antibody was washed off with PBS and PTW as before. If fluorescent
secondary antibodies were used, the slides were mounted at this point in Vectashield

mounting medium (Vector Labs), with or without the addition of 1 ng/ml DAPI

(Sigma).



[f the Vector lab ABC kit was being used, the ABC reagent was made up 30
minutes before use and left at room temperature. The reagent was applied for 30-60
minutes, after the secondary antibody had been washed off and the slides were
washed as before. The colour on the slides was produced with the application of
NBT and BCIP (3.3 ul and 3.5 pl per 1 ml respectively), which was applied in
NTMT (100 mM Tris-HCI, pH 9.5, 100 mM NaCl, 50 mM MgCl). Once the colour
had developed, the slides are washed with distilled water, counterstained with eosin
(1 part 1 % eosin solution to 3 parts 70 % ethanol. Acetic acid added to 0.05 %) and
dehydrated through three, two minute ethanol washes. The PAP pen was removed
through three, five minute changes of Histoclear (National Diagnostics) and the
slides were mounted in Histomount (National Diagnostics).

NBT/BCIP stained sections were imaged as in section 3.2.5.1. Sections for

which a fluorescent secondary antibody was used were imaged as in section 3.2.5.2.

3.4.6.2. Immunohistochemistry on cells

In order to determine the cellular localisation of proteins,
immunohistochemistry (IHC) was performed on cell lines. Approximately 5x10*
cells were seeded onto 12 mm diameter glass coverslips in 24-well plates and grown
overnight at 37 °C.

The next day, the cells were rinsed in PBS and then fixed in 4 %
paraformaldehyde (PFA) in PBS for 30 minutes at room temperature. This was
washed off with five changes of PBS and the cells permeabilised for 30 minutes in
PBS with 0.5 % Triton X-100 (Sigma). This was again removed through five

changes of PBS. To prevent non-specific antibody staining, the cells were treated



with blocking buffer (2 % BSA in PBS) for two hours before the primary antibody
was applied, diluted in the same blocking buffer, and incubated overnight at 4 °C.

The primary antibody was removed by washing the cells in PBS with 0.05 %
Tween-20 (Sigma) and a fluorescent secondary antibody applied in blocking buffer.
After one hour, the cells were again washed with PBS+0.05 % Tween and then post-
fixed in 4 % PFA in PBS for 15 minutes at room temperature. This was rinsed off
and the coverslips mounted on glass slides using Vectashield mounting medium
(Vector Labs) with 1 ng/ml DAPI. The edges of the coverslips were sealed with clear
nail varnish to prevent drying out.

Imaging was performed as in section 3.2.5.2.

3.4.7. Polymerase Chain Reaction (PCR)

3.4.7.1. Oligonucleotide Primers

All primers were designed using the Whitehead Institute for Biomedical
Research Primer 3 programme (http://frodo.wi.mit.edu/cgi-
bin/primer3/primer3_www.cgi). All, apart from those for riboprobe synthesis, were
resuspended to 1 mM using TE buffer, pH 8. These were diluted 1 in 100 to create
working stocks.

Riboprobe primers were diluted to 1 ng/ul and 1 pl of each primer diluted
with 18 ul Ultra-Pure water to create a working stock.

For primer sequences, see table 3.2.



3.4.7.2. Standard PCR

Standard PCR reactions were performed in 50 pl volumes using 1 unit
Amplitaq (Roche) with 200 uM dNTPs, 1xAmplitaq buffer, 1.25 mM MgCl, and 1
uM each primer. The amount of template DNA varied from 10-100 ng. All reactions
were carried out in thick walled 0.5 ml tubes and amplifications carried out in MJ
Research Peltier thermal cyclers.

The annealing temperature varied depending on the primers used but
generally fell with the 58 °C to 62 °C range. PCRs were thermal cycled on the

following touch-down programme:

TDS55: 1) 95 °C for 5 minutes
2) 94 °C for 15 seconds
3) 69 °C for 30 seconds
-1 °C each cycle
4) 72 °C for 30 seconds
5) Repeat step 2 to 4 for 13 cycles
6) 94 °C for 15 seconds
7) 55 °C for 30 seconds
8) 72 °C for 30 seconds
9) Repeat steps 6 to 8 for 34 cycles
10) 72 °C for 2 minutes

3.4.7.3. Reverse-Transcriptase PCR (RT-PCR)

RT-PCR reactions were performed in 25 pl volumes as in section 3.4.7.2,
using between 10 and 100 ng of cDNA (see section 3.4.4.2). In order to prevent any

false positives, the number of cycles in the PCR programme was reduced.



RT TDS55:

1) 95 °C for 5 minutes
2) 94 °C for 15 seconds
3) 62 °C for 30 seconds
-1 °C each cycle
4) 72 °C for 30 seconds
5) Repeat steps 2 to 4 for 8 cycles
6) 94 °C for 15 seconds
7) 55 °C for 30 seconds
8) 72 °C for 30 seconds
9) Repeat steps 6 to 8 for 25 cycles
10) 72 °C for 2 minutes

3.4.7.4. Long-Range PCR

Long Range PCR reactions were performed using the Expand Long Template

PCR system (Roche), according to the manufacturer’s protocol. The following

programme was used for all amplifications:

LR:

1) 92 °C for 2 minutes
2) 92 °C for 10 seconds
3) 65 °C for 30 seconds
4) 68 °C for 8 minutes
5) Repeat steps 2 to 4 for 10 cycles
6) 92 °C for 15 seconds
7) 65 °C for 30 seconds
8) 68 °C for 8 minutes
+20 seconds per cycle for 20 cycles
9) 68 °C for 7 minutes
10) 15 °C forever



3.4.7.5. Sequencing PCRs

Sequencing reactions were performed as in section 3.4.7.2 but using
AmpliTaq gold (Roche) combined with Native PFU DNA polymerase (Stratagene).
The PFU has proof reading activity and therefore reduces the chance of PCR induced
errors. They were combined in a ratio of nine units AmpliTaq gold with one unit of
PFU.

Sequencing PCRs were purified using either Qiagen gel purification kit or

Qiagen PCR purification kit.

3.4.7.6. Degenerate Oligonucleotide Primed PCR (DOP-PCR)

Chromosome arm specific paint primary DOP products were kindly provided
by Dr J. Trent. Primary DOP-PCR products were amplified through two rounds of
DOP-PCR. 3 pl of the primary or secondary DOP product was added to a 47 ul
standard PCR reaction mix (see section 3.4.7.2) containing 200 ng R710 primer (see
table 3.2).

DOP-PCRs were run on the following programme:

DOP_P: 1) 92 °C for 2 minutes
2) 92 °C for 30 seconds
3) 56 °C for 30 seconds
4) 72 °C for 2 minutes

+3 seconds per cycle for 30 cycles

10 pl of the tertiary DOP-PCR products were ethanol precipitated by adding

1/10" reaction volume 3M NaOAc, 2x volume ethanol and stored at —20 °C for two



hours to overnight. Tubes were then spun at 13,000 rpm for 20 minutes in a 4 °C
microcentrifuge, the pellet washed with 70 % ethanol, re-spun, air-dried and each
reaction resuspended in 40 pl TE buffer. These were then labelled by nick translation

(see section 3.4.10.2).

3.4.7.7. Riboprobe synthesis PCR

Riboprobe synthesis PCRs were performed as in section 3.4.7.2, with the
addition of 1 ul 1 in 50 dilution of mouse genomic DNA. PCRs were run on one of
the following programmes and purified using Qiagen PCR purification kit. Elution

was performed in ultra-pure water.

TDS55: See section 3.4.7.2.

RIBO: 1) 94°C for 5 mins
2) 94°C for 1 min
3) 49°C for 1 min
4) 60°C for 1 min
5) Repeat steps 2 to 4 for 35 cycles
6) 60°C for 15 mins



TD62: 1) 95°C for 5 mins
2) 94°C for 15 secs
3) 72°C for 30 secs
-1°C each cycle
4) 72°C for 30 secs
5) Repeat steps 2 to 4 for 10 cycles
6) 94°C for 15 secs
7) 62°C for 30 secs
8) 72°C for 30 secs
9) Repeat steps 6 to 8 for 34 cycles
10) 72°C for 2 mins

3.4.8. Sequencing of PCR Products

Sequencing reactions were set up using Big-Dye terminator version 3
(Applied Biosystems). 4 ul Big-Dye, diluted 1:1 with water was added to 5 ul PCR
product and 1 pl of the relevant primer (diluted 1 in 1000 from the main stock).

These were then run on the BDS5 programme.

BDS55: 1) 96 °C for 2 minutes
2) 96 °C for 30 seconds
3) 55 °C for 15 seconds
4) 69 °C for 4 minutes
5) Repeat steps 2 to 4 for 24 cycles

The reactions were purified by adding 50 pl ethanol, 2 ul 3M sodium acetate
and 0.5 ul NF co-precipitant pellet paint (VWR International). The tubes were

incubated in the dark, at room temperature, for 30 minutes and then spun at 13,000



rpm for 30 minutes. The pellets were washed in 70 % ethanol and dried in a 95 °C
hot-block for 2 minutes.
Samples were then run on a ABI Prism 3100 Genetic Analayser (Applied

Biosystems) and analysed using Sequencher software (GeneCodes Corporation).

3.4.9. Dissociation of Nuclei from Paraffin Embedded Tissue
Sections

Sections (10-20 um) were cut from paraffin blocks using a microtome and the
appropriate number of sections (normally two or three) placed into an eppendorf tube
containing Histoclear (National Diagnostics). The wax was removed through three,
ten minute washes in histoclear and the tissue rinsed in ethanol before being
rehydrated through an ethanol series (five minute washes in 100 %, 80 %, 70 %) and
rinsed twice with distilled water. Between steps, the tissue was sedimented through
centrifugation (9,000 rpm in a microcentrifuge).

To dissociate the nuclei within the tissue, the water was replaced with a
pepsin solution (4 mg/ml in 10 mM HCI) and the tube incubated at 37 °C for four
hours, vortexing thoroughly every 30 minutes. The cells were then passed through a
40 um cell strainer (Falcon) and rinsed through with PBS. Centrifugation at 1,000
rpm for eight minutes in a bench-top centrifuge produced a pellet that was rinsed
twice in PBS and once in 3:1 methanol: acetic acid fix. Fresh fix was added and the

suspension was stored at —20 °C.



3.4.10. Fluorescent In-Situ Hybridisation (FISH)

3.4.10.1. FISH locus specific probe preparation

DNA from BACs, PACs, fosmids and long-range PCR products were
labelled for FISH by nick translation, incorporating either digoxigenin 11-dUTP or
biotin16-dUTP (both from Roche). Approximately 1 ug DNA was added to 5 pl 10x
nick translation salts (500 mM Tris-HCI, pH 7.5, 50 mM MgCl,, 100 mM [+
mercaptoethanol, 100 ug/ml BSA), 5 ul 10x dNTPs (0.5 mM aATP, 0.5 mM dGTP,
0.5 mM dCTP and 0.3 mM dTTP) and 5 pul 0.2 mM biotin or digoxigenin dUTP. 1 ul
1:300 dilution of DNase I in water (10 units/pl, Roche) was added, along with 1 pl
DNA polymerase I (10 units/ul, Sigma or Invitrogen). The total volume of the
mixture was made up to 50 ul with water, the reaction mixed and incubated at 16 °C
for 90 minutes.

The size of the nick translation products were checked by running 5 pl of the
reaction on a 1 % agarose gel with ethidium bromide and a 100 bp ladder (see
section 3.4.3.). The required size range of the products was 200-600 bp. If the
products were too large, another 1 pul 1:300 DNase I was added and the mixture
incubated at 16 °C [or an extra 15 minutes.

The reaction was stopped using EDTA and unincorporated deoxynucleotides
removed by ethanol precipitation. For each 50 ul reaction, 5 ul 0.5 M EDTA and 5 ul
3 M NaOAc, pH 5, were added to each reaction, along with 100 ul ethanol. Tubes
were incubated at —20 °C for a minimum of one hour, generally overnight. Tubes
were then spun in a 4 °C microcentrifuge at 13,000 rpm for 30 minutes, the pellet

rinsed in 70 % (v/v) ethanol, air-dried and resuspended in 50 ul TE buffer.



3.4.10.2. Chromosome arm specific paint preparation

10 pl of the tertiary DOP-PCR products (see section 3.4.7.6) were labelled by

nick translation as in section (3.4.10.1).

3.4.10.3. FISH on fixed cell suspensions

Cell suspensions (see section 3.4.1.4.) were diluted to an appropriate cell
density with 3:1 methanol: acetic acid fix and dropped onto clean glass microscope
slides. These were air-dried and then baked at 68 °C for 30 minutes. Once remove
from the oven and cooled, slides were placed into pre-warmed 2xSSC at 37 °C for 30
minutes before being dehydrated through an ethanol series (70 %, 80 % and 100 %
for two minutes each) and air-dried. Slides were denatured for two minutes in pre-
warmed 70 % formamide/2xSSC (v/v), pH 7.5, at 72 °C and then dehydrated through
an ethanol series as before, beginning with ice-cold 70 % ethanol.

Approximately 100 ng of the labelled probe (see section 3.4.10.1) was mixed
with 1 ul salmon sperm DNA (Sigma; 10 mg/ml, sonicated to ~500 bp in size), 1.5 ul
human cot-1 DNA per probe (1 mg/ml; Life Tech) and 2 volumes of ethanol. The
mixture was dried in a vacuum drier and the resultant pellet resuspended in 3 pl
hybridisation mix (50 % formamide, 10 % dextran sulphate, 2xSSC) at 37 °C for 30
minutes. The probes were denatured in a 72 °C waterbath for five minutes and then
pre-annealed for 15 minutes at 37 °C. The probe could then be applied to the
denatured slide on a 11x11 mm coverslip, which was sealed and the slide incubated

for a minimum of 16 hours in a humidified chamber at 37 °C.



Post-hybridisation washes consisted of two, seven minute washes in 50 %
formamide/ 2xSSC at 45 °C and two seven minute washes in .01xSSC at 60 °C.
Blocking buffer (4xSSC/ 3 % BSA/ 0.1 % Tween-20) was applied and the slide
incubated at 37 °C for five minutes and then the detection antibodies were applied
(see table 3.4) in 4xSSC/ 1 % BSA/ 0.1 % Tween-20 and the slide once again
incubated at 37 °C in a humidified chamber for at least 30 minutes. To remove the
excess antibody, the slides were washed twice, for seven minutes each, in 4xSSC, 0.1
% Tween-20 at 37 "C. Slides were mounted with Vectashield mounting medium
(Vector Labs) with 1 ng/ml DAPI.

Imaging was performed as in section 3.2.5.2.

Species Stock concentration

Antibody e Source (mg/mi) Dilution
Fluorescein (FITC) Coait Vesor ) 1:500
avidin _ _ g
L Sheep Roche 02 1:100
digoxigenin

Table 3.4. Detection antibodies used for FISH

3.4.10.4. FISH on paraffin embedded tissue sections

Sections on superfrost-plus slides (BDH) were heated to 60 °C for 20 minutes
to melt the paraffin, which was then removed through four, ten minute washes in
xylene. The slides were rehydrated through an ethanol series (ten minutes in each)
into water. Sections were microwaved in 0.1 M citrate buffer for ten to 15 minutes
and allowed to cool in the buffer for a further 20 minutes. The buffer was removed

through several washes in water.

12]



Slides were rinsed in 2xSSC and then placed into 2xSSC at 75 °C for two
minutes, followed by denaturation in 70 % formamide/2XSSC for 3 minutes.
Dehydration was performed through three minute washes in 70 %, 80 % and 100 %
ethanol. The slides were then air-dried and FISH continued in the standard method

(see section 3.4.10.3).

3.4.10.5. FISH on nuclei dissociated from paraffin embedded
tissue

FISH on nuclei dissociated from paraffin embedded tissue was performed
using a modified version of the method described in section 3.4.10.3.

Slides were made from fixed cell suspensions, baked at 68 °C for 30 minutes
and then cooled. Pre-warmed proteinase K solution (5 mg/ml in 50 mM Tris, 1 mM
CaCl, pH 7.5) was applied and the slides incubated for a relevant length of time at 37
°C. The proteinase K was removed through two five minute washes in PBS and the
same in water, before being dehydrated through an alcohol series. Denaturation was
performed in 70 % formamide/2xSSC at 72 °C for 15 minutes and the slides once
again dehydrated.

Probes were prepared and applied and post hybridisation washes performed
according as in section 3.4.10.3. Imaging was performed as in section 3.2.5.2 or

3:2:5.3.



3.4.11. RNA In-Situ Hybridisations

3.4.11.1. Riboprobe synthesis

Riboprobes were synthesised in 20 ul reactions, as below.

2 ul  Transcription buffer (Roche)

1 ul  RNase Inhibitor (Roche)

2 ul  Dig RNA labelling mix (Roche)

x ul  Purified PCR product (100-200 ng) (maximum 14 pl)
2ul  RNA polymerase (T7 or T3) (Roche)

yul  Ultra-pure water

20ul TOTAL

Reactions were incubated at 37 “C for two hours. 1 pul of the product was then
run out on a 1 % agarose gel with ethidium bromide to check the quality of the
reaction. DNase treatment was performed by adding 1 pl DNase in 80 pl ultra-pure
water to the reaction and incubating at 37 °C for 10 minutes. The probe was then
ethanol precipitated (10 pul 3 M NaOAc and 250 pl ethanol to each) at —20 "C
overnight.

Reactions were spun at 13,000 rpm in a 4 °C microcentrifuge for 30 minutes,
rinsed in 70 % ethanol, air-dried and resuspended in 49 pl ultra-pure water and 1 pl
RNase inhibitor (Roche).

Aliquots of the probe were stored at —80°C.



3.4.11.2. Wholemount RNA in-situ hybridisations

RNA in-situ hybridisations were performed on wholemount mouse embryos

under RNase free conditions and all solutions were made using ultra-pure water.

Hybridisation mix:

50 % Ultra-pure formamide (Invitrogen)
Sx SSC
5 mM 0.5 M EDTA

100 pg/ml Yeast RNA (Sigma, 50 mg/ml in 100 mM NaOAc, pH 5)
0.2 % Tween-20

0.5 % 10 % CHAPS (w/v in water, Sigma)

100 pg/ml Heparin (50 mg/ml in 1xSSC, Sigma)

Pre-treatment and hybridisation:

Embryos (see section 3.4.5.1.) were rehydrated through a methanol: PTW
(PBS with 0.1 % Tween-20) series (75 %, 50 %, 25 %, PTW), letting the embryos
sink in each solution. Once rehydrated, the embryos were washed twice in PTW and
treated with 10 ug/ml proteinase K in PTW at 37 °C. The amount of time in
proteinase K depended on the age of the embryos: five minutes for embryos aged 6.5
to 7.5 dpc and an additional five minutes for each extra day of development. After
the relevant time, the proteinase K solution was very carefully removed and the
embryos rinsed in PTW and then post-fixed for 20 minutes at room temperature in 4
% PFA with 0.1 % glutaraldehyde. Embryos were then washed in PTW, 1:1 PTW:
hybridisation mix and then hybridisation mix, with embryos being allowed to sink in

each solution.



Fresh hybridisation mix was added and the embryos incubated at 65 °C for
three hours or overnight. Embryos could be stored indefinitely in this hybridisation
mix, either before or after the 65 °C incubation step, at —20 °C.

For hybridisation, approximately 1 pg/ml of the heat-shocked labelled RNA
probe (85 °C for five minutes) was added to pre-warmed hybridisation mix. The

embryos were incubated in this solution overnight at 65 °C.

Post-hybridisation washes:

Embryos were rinsed twice in pre-warmed (65 °C) hybridisation mix then
washed twice (30 minutes each) in pre-warmed hybridisation mix at 65 °C and once
in pre-warmed 1:1 hybridisation mix: TBST (0.1 M Tris pH 7.5, 0.4 M NaCl) for ten
minutes. Embryos were allowed to cool in this solution.

Once cool, the embryos were transferred to glass vials and washed in TBST
overnight (or longer) at room temperature on an orbital shaker, with the solution

being changed frequently.

Blocking and antibody application:

Embryos were incubated in blocking buffer (TBST with 3 % BSA and 20 %
heat-inactivated sheep serum) at room temperature for a minimum of three hours on
an orbital shaker. The alkaline-phosphatase anti-digoxigenin antibody (Roche) was

applied at 1 in 2000 in fresh blocking buffer and the embryos incubated overnight at

4°C.



Post-Antibody washes and signal detection:

Embryos were washed in large volumes of TBST to remove the antibody.
Washes were performed in glass vials at room temperature on an orbital shaker and
the solution was changed frequently (every 30 minutes for the first few hours and
then as often as possible). Washes were performed at least overnight to help reduce
background staining.

Signal detection was performed using NBT/BCIP. Embryos were washed
twice, for ten minutes each, in NTMT (100 mM Tris-HCI, pH 9.5, 100 mM NacCl, 50
mM MgCl,) and then placed into fresh NTMT with NBT/BCIP (3.3 ul and 3.5 pl per
1 ml respectively) in the dark. Colour development was checked every ten minutes
and once colour had developed, the embryos were washed at least twice (five
minutes each) in PTW pH 4.5 with | mM EDTA. This enhances the colour reaction
and helps to reduce the background. Embryos are kept in this, in the dark, at least
overnight before being washed in PBS, fixed in 4 % PFA with 0.1 % glutaraldehyde

overnight at 4 °C and then washed in PTW. Embryos were stored in the dark in

either PTW or PBS at 4 °C.

Imaging:

Embryos were imaged as in section 3.2.5.1



4: Strategy and Validation of Fluorescent in-situ
hybridisation (FISH) Mapping of Chromosome
Rearrangement Breakpoints in Interphase

Nuclei

4.1. Introduction

Most molecular cytogenetic mapping of balanced chromosomal
rearrangement breakpoints is performed on fixed cell suspensions made from
peripheral blood leukocyte culture or established cell lines. Cases that do not have
these available are generally considered impossible to study. This can be extremely
disadvantageous as it leads to a subset of cases being overlooked, many of which
may be associated with interesting phenotypes and could potentially lead to the
identification of disease-causing genes.

To redress this balance, a method was developed to allow chromosomal
rearrangements to be mapped using interphase nuclei from paraffin embedded tissue
samples to a similar resolution to standard metaphase FISH approaches. The purpose
of this chapter is to introduce the general approach that will be used to map the
breakpoints in the cases described in chapters 5 and 6. This chapter will also
demonstrate the broader utility of the interphase FISH mapping approach by
confirming mosaicism for a balanced translocation in uncultured cells from child

with Hypomelanosis of Ito.



4.2. Interphase FISH Breakpoint Mapping

Each structural chromosome anomaly studied was initially identified as an
apparently balanced chromosomal rearrangement by conventional G-banded
cytogenetic analysis (performed by the Lothian Regional clinical cytogenetic
laboratory) and the breakpoints assigned to specific chromosome bands. Written
consent was obtained from all families for use of the samples for research purposes.

Cytogenetic analyses of the cases described in chapters 5 and 6 were
performed on metaphase preparations but these were no longer available as fixed cell
suspensions had been discarded and the fibroblast cell-lines failed to recover from
storage under liquid nitrogen. The chromosomal abnormalities in these cases could
not, therefore, be studied any further using standard approaches. In the third case
presented in this chapter, the interphase FISH mapping approach was used to confirm

the presence of a mosaic balanced chromosomal rearrangement in uncultured cells.

4.2.1. Probe Testing

Before initiating interphase FISH mapping, each probe was tested on
metaphase preparations from normal, control cell lines to confirm that they mapped
solely to the expected chromosomal location. This is essential to the interpretation of
the interphase mapping results and only probes showing single copy hybridisation
signals at the expected loci were used.

The initial probes used for breakpoint mapping were BACs obtained from a
set spaced at approximately 1 Mb intervals throughout the genome (from Dr Nigel

Carter of the Sanger Centre, Cambridge). Clones were chosen from within the



cytogenetic band in which the breakpoint was reported, and from the bands on either

side.

4.2.2. General Mapping Strategy

The general strategy of the interphase FISH mapping was to allow the
position of a locus-specific probe to be unambiguously determined in relation to the
translocation breakpoint. A crucial component of this approach was the availability
of arm specific chromosome paints (a kind gift from Dr Jeff Trent [451]). In normal
interphase nuclei, these paints will display two discrete domains, representing each
homologous chromosome arm [452]. In the majority of reciprocal translocations,
three domains will be detected representing the normal chromosome arm and the two
derivative chromosomes, the identity of which can be determined by co-hybridising
with either centromere or telomere-specific probes (see figure 4.1). In some cases the
difference in the size of the domains is sufficient to distinguish between the two
derivative chromosomes. Co-localisation of locus-specific probes with arm specific
paints can be used to unambiguously map translocation breakpoints and has been
used to successfully map a translocation associated with anophthalmia in peripheral
blood leukocytes [453]. However, such an approach had not previously been applied

to either paraffin-embedded tissue sections or uncultured cells.



Figure 4.1.

Interphase FISH with chromosome arm-specific paints

Blue circles indicate the nuclei, green domains, the chromosome-arm specific
paints and red spots, the locus-specific clones. Arrows indicate the position of
the breakpoints, N the normal paint domain, D the derived chromosome and T
the translocated region. A) The breakpoint is at a position on the chromosome
that produces paint domains of different sizes, allowing the two derived
chromosomes to be distinguished. The largest domain is the normal
chromosome. In this example, the medium sized is the derived chromosome
and the smallest is the translocated region. B and C) The breakpoints are
located near to the centre of the chromosome long arm. The paint therefore
produces one large domain (the normal chromosome) and two similarly sized
domains that can be distinguished by co-hybridising either a centromere probe

(B) or telomere probe (C).



4.2.3. Mapping of Two DBCR Cases

Interphase FISH mapping was used to map the breakpoints in two
translocation cases, which will be discussed in more detail in chapters 5 and 6. The
mapping strategy had to be adapted slightly for some of the breakpoints, due to their
location at the end of the chromosome arm, near to the telomere. The translocated
region of the chromosome in these cases was too small to be detected with the
chromosome arm specific paint, meaning that only two paint domains were visible

instead of the expected three. The strategies used are outlined below.

4.2.3.1. Breakpoint mapping using arm-specific chromosome
paints

The translocations in the two cases studied were reported as a
t(1;2)(q32;p25) and a t(2;12)(p25.1;924.1). The breakpoints on chromosomes 1 and
12 resulted in three domains on the application of the relevant arm specific
chromosome paint. These domains were different sizes and could easily be
distinguished, meaning that the location of co-hybridised locus-specific probes was

easy to determine (see figure 4.2).
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Figure 4.2. Chromosome 1 or 12 mapping using arm specific chromosome

paints.
Blue circles indicate the nuclei, green domains, the chromosome-arm specific
paints and red spots, the locus-specific clones. Arrows indicate the position of
the breakpoints, N the normal paint domain, D the derived chromosome and T
the translocated region. There are three sizes of paint domain: the largest
representing the normal chromosome, the slightly smaller domain the derived
chromosome 1 or 12 and the smallest, the translocated region. Proximal clones
(A) can be seen to co-localise with the largest and slightly smaller paint
domains, whereas a distal clones (B) will co-localise with the largest domain
and the smallest domain. A breakpoint-spanning clone (C) will show three
signals, one in each domain, indicating hybridisation to the normal and both

derived chromosomes.



However, a complication arose when examining both chromosome 2
breakpoints, as these were located very close to the telomere of the chromosome.
The translocated region was therefore too small to be detected using the 2p specific
paint, a situation that would also arise if breaks were close to the centromere of the
chromosomes. The result was two paint domains of apparently equal size, namely
the normal 2p arm and the remaining part of 2p on the der(2) chromosome. In this
circumstance, BAC clones that do not localise to either paint domain will co-localise
with either a centromere or a telomere probe.

Therefore, for both cases, probes that were distal to the translocation
breakpoint on chromosome 2p would only co-localise with one paint domain (the
normal 2p) and, conversely, those that were proximal, would co-localise with both.
Breakpoint spanning probes would have smaller signals both inside and outside the
paint domain and also a signal in the normal domain (see figure 4.2). In both cases,
there should always be one co-localising signal, representing the probe on the
normal copy of the chromosome. In these cases, care has to be taken to ensure that
probes are obtained that are both proximal and distal to the breakpoints to exclude

the presence of deletions in the area undetectable by the chromosome paint.
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Figure 4.3. Chromosome 2 mapping using arm specific chromosome paints.
Blue circles indicate the nuclei, green domains, the chromosome-arm specific
paints and red spots, the locus-specific clones. Arrows indicate the position of
the breakpoints, N the normal paint domain, D the derived chromosome and T
the translocated region. Proximal clones (A) can be seen to co-localise with
both paint domains, whereas a distal clone (B) will co-localise with one domain
(the normal chromosome 2) and appear outside the other domain, on the
translocated region of the chromosome. A breakpoint-spanning clone (C) will
show three signals, one in the normal chromosome 2 paint domain and two
smaller signals; one in the other paint domain and one outside, indicating that

the clone hybridises to both derived chromosomes.



4.2.3.2. Breakpoint mapping using pairs of probes

Nuclei extracted from archival paraffin embedded tissue sections are of poor
quality for molecular cytogenetics. Although locus-specific probe signals may be
clearly visible, the chromosome paint domains are sometimes very diffuse and hard
to elucidate. To overcome this problem, it was decided to perform the high-
resolution mapping of some breakpoints using BACs (or fosmids) applied in pairs,
so that one can act as a reference for the other. Probes that have been localised using
the chromosome paint strategy can be hybridised along with another probe, which
has a different fluorescent label. The position of the probe can then be determined by

examining whether the two signals co-localise.
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Figure 4.4. Breakpoint mapping using pairs of differently labelled probes.
The blue circles indicate the nuclei, the green and red dots, the differently
labelled probes and the arrows, the position of the breakpoints. In this example,
the reference probe (green) has been previously determined to be proximal to
the breakpoint. If the test probe (red) co-localises with both green signals, the
probe is also proximal (A). If only one signal co-localises (B), the test probe is
distal, with one red signal being on the normal chromosome, and hence co-
localising, and the other being on the translocated region. A breakpoint-
spanning clone will produce three red signals, two of which co-localise with the
green signals and one that does not, indicating hybridisation to the normal

chromosome and both derived chromosomes.



4.2.4. Methods

For a description of the methods used, see sections 3.4.9 and 3.4.10.5.

4.2.5. Results and Discussion

4.2.5.1. FISH on tissue sections

The initial attempts at mapping were performed on paraffin embedded tissue
sections from control cases that were mounted on glass microscope slides before
FISH was performed. Although some signals were visible, the analysis of the co-
hybridising signals was difficult, predominantly due to the thickness of the sections
and the level of tissue autofluorescence (see figure 4.5). The samples from the cases
featured in chapter 5 and 6 were received as 20 um sections and the layers of
overlapping nuclei made it impossible to determine any signals, in spite of

optimisation of the proteinase K digestion times.
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Figure 4.5. FISH on paraffin embedded sections
FISH on paraffin embedded tissue sections using arm specific chromosome
paints labelled with biotin and detected with FITC (green). The paint signals
cannot be distinguished from the high level of background caused by both
autofluorescence and detection of biotin within the tissue. Two different controls
were used and pepsin treatment and fixation were altered in an attempt to
decrease the background staining and increase the permeability of the DAPI

stained nuclei (grey). No signals were discernable in any of the sections.



4.2.5.2. FISH on nuclei dissociated from tissue sections

In order to overcome the problems encountered when performing FISH on
tissue sections, nuclei were isolated from control tissue sections using a technique
adapted from Liehr ef a/ [454]. This involved de-waxing and rehydrating the
sections, then dissociating the nuclei by treating the sections with pepsin and
vortexing regularly. The solution was filtered through a cell strainer to remove any
clumps of cells or debris to produce a single cell suspension. The cells were
pelletted, washed, fixed in 3:1 methanol: acetic acid fix and then dropped onto
slides.

As these nuclei had been formalin fixed prior to embedding in paraffin, using
a standard clinical pathology protocol optimised for tissue histology, the nuclear
membrane proved difficult to penetrate for the purposes of hybridisation of
fluorescently labelled DNA probes. To improve penetration, the slides were treated
with proteinase K for varying lengths of time, depending on the age and fixation of
the sample. The length of time for denaturation of the samples was also increased as
compared to that for normal fixed cell suspensions.

Overall, this method has proved to be very successful for performing FISH
on nuclei from paraffin embedded tissue samples (see figure 4.5). Each sample
required very careful titration of the incubation time in proteinase K. In general, the
older samples required longer in proteinase K but this was not always the case as
fixation methods of the samples may differ. The required incubation times were
elucidated by performing a simple time-course experiment and times generally fell

within the 10-20 minute range (see table 4.1).



This method has provided an easy, efficient way to study those previously

difficult or impossible cases in which there are no fixed cell suspensions or viable

material available.

PK digestion (minutes)
5 10 12 15 17 20 25
Control 1 -+ + = - - : -
Control 2 - 3 - It Sty L 4
t(2;12) - - + e I 5 i
t(1;2) - - ++ e +++ - $

Table 4.1. Proteinase K treatment times

A table showing the optimum proteinase K (PK) digestion times (in minutes) for
each case. +++ indicates very good signals, ++ good signals, + average signals
and — indicates no or very poor quality signals. t(2;12) and t(1;2) are the

translocation cases described in chapters 5 and 6 respectively.



Figure 4.6. FISH on nuclei dissociated from paraffin embedded tissue
FISH using biotin labelled arm specific chromosome paints detected with FITC
(green) and co-localising rhodamine detected BACs (red) on DAPI stained
nuclei dissociated from control paraffin embedded tissue sections. BAC signals

are clear and can be seen within the distinct chromosome paint domains.



4.2.5.3. Advantages and disadvantages of FISH on dissociated
nuclei

As with all methods, FISH on nuclei dissociated from paraffin embedded
tissue sections has both advantages and disadvantages.

The disadvantages of this method depend upon the samples available. The
lack of dividing cells, and therefore metaphases, does not compromise the ability to
map chromosomal rearrangements but the quality of the nuclei dissociated from the
tissue sections, can. As many samples are obtained from formalin fixed archival
patient material, the nuclei can be hard to penetrate with the FISH probes or,
conversely, the nuclei may be extremely fragile and degraded. The intensity of the
signals from locus specific probes is also not as good as that on fresh fixed cell
suspensions, meaning that breakpoint spanning clones or small locus-specific probes
may not be discerned. The method itself, however, is fairly robust, only requiring
slight optimisation for each new sample.

The disadvantages are far outweighed by the advantages of this method. The
main advantage is that it allows the study of a previously impossible subset of cases,
namely those with only paraffin embedded material available. This utilisation is vital
for researchers wishing to study chromosomal rearrangements as cell lines often do
not survive retrieval from liquid nitrogen and fixed cell suspensions are often only
stored for a short time. The ability to map chromosomal rearrangements using nuclei
dissociated from archival patient material, or any other interphase nuclei, is a

valuable asset and can be utilised in all manner of ways using many different cell



types. One case demonstrating the broad applicability of this method is outlined

below.

4.3. FISH on Buccal Cells

Described below is a case that aptly demonstrates the broad applicability of
interphase FISH analysis and which proved to be very useful to the clinical
interpretation of the cytogenetic results. In this case, interphase FISH using arm-
specific chromosome paints on uncultured buccal cells was used to confirm a finding

of mosaicism in a young boy.

4.3.1. Case Report

The male child was diagnosed as having Hypomelanosis of Ito on the basis
of macrocephaly, developmental delay and pigmentary mosaicism Hypomelanosis
of Ito, is a rare sporadic disorder characterised by unilateral or bilateral macular (i.e.
spotty) hypopigmented whorls or streaks. A significant proportion of cases are
associated with chromosomal mosaicism. Routine cytogenetic analysis on peripheral
blood leukocytes showed a normal 46,XY karyotype.

Analysis of fibroblasts grown from a skin biopsy from this boy was found to
have a t(1;9)(q21-23;q22) translocation in 4 out of 50 metaphases. However, these
cells had grown very poorly in culture and in view of the normal blood cytogenetics
in 50 metaphases examined, the rearrangement was suspected to be a cultural
artefact. To test this hypothesis, FISH was performed on buccal cells from the

patient.



FISH on these cells has many advantages, the main one being that the cells
do not require culturing, meaning that FISH can be performed directly on the
sample, enabling a quick result and eliminating the risk of further abnormalities
developing in culture. They are also particularly useful for mosaicism studies as
large numbers of cells can be obtained non-invasively using either mouthwash or
cytobrushes, allowing an accurate elucidation of the proportion of translocation
carrying cells.

The initial protocol was obtained from the Nina T. Holland superfund
protocol library (http://ehs.sph.berkeley.edu/holland/ProtocolLibrary.html) but
results obtained using this were unsatisfactory. The method was adapted, mainly by
changing the fixation methods of the cells, to enable long-term storage of samples

and to increase the permeability of the cells to the FISH probes.

4.3.2. Methods

The FISH method for buccal cells was adapted from that obtained from the
Nina T. Holland superfund protocol library
(http://ehs.sph.berkeley.edu/holland/ProtocolLibrary.html).

Buccal cells were obtained by intraoral scraping using a soft nylon cytology
brush. The brush was agitated vigorously in 0.01 M Tris HCI, 0.1 M EDTA and 0.02
M NaCl at pH 7.0 to release the cells, which were washed twice in the same buffer
and once in 3:1 methanol: acetic acid fix, then stored in fresh fix at —20 °C. The
resulting cell suspension was dropped onto glass slides, baked at 68 °C for 30
minutes and treated with pepsin (300 pg/ml in 10 mM HCI at 37 °C for 30 minutes).

The slides were post-fixed in 4 % PFA in PBS for 20 minutes on ice, then washed in

144



water, followed by PBS and baked for a further 20 minutes at 68 °C. FISH was
performed using standard methods (see Section 3.4.10.5), with the following
modifications: denaturation time in 70 % formamide/2xSSC was increased to four
minutes, post-hybridisation washes consisted of two, seven minute washes in 50 %
formamide/2xSSC at 45 °C, then seven minutes in 2xSSC at 45 °C, followed by
seven minutes in 2xSSC at room temperature. The arm-specific chromosome paint
(a kind gift from Dr Trent [455]) for 1q was labelled in biotin and detected with

FITC and the paint for 9q was labelled in digoxigenin and detected with Rhodamine.

4.3.3. Results

Buccal cells were collected and FISH performed using arm-specific
chromosome paints for 1q (labelled in biotin and detected with FITC) and 9q
(labelled in digoxigenin and detected with Rhodamine). Three signals were
identified using the chromosome 1q paint, indicating the normal chromosome, the
derived chromosome 1 and the derived chromosome 9. The chromosome 9q paint
only showed two signals, which corresponded to the normal chromosome 9 and the
derived chromosome 1 (see figure 4.6). The der (9) was not visible because the
heterochromatin dominating this region did not stain well with the 9q chromosome
paint due to the competitive hybridisation with COT1 DNA in the hybridisation mix.
Using FISH, the translocation was detected in 5 % of the 200 buccal cells examined.
Two domains were seen for each chromosome paint in 100 control buccal cells

scored.
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Figure 4.7. Cytogenetic and FISH analysis of t(1;9)(q21 or q23;q22).
A partial ideogram and a partial karyotype showing the normal and derived
chromosomes 1 and 9 (a). The coloured bars represent the expected signals
from the arm-specific chromosome paints. The der (9) is not visible using the
9q paint as the heterochromatin dominating (pink bar) does not stain due to
competitive hybridisation with COT1 DNA in the hybridisation mix. (b) Two
uncultured buccal cell nuclei following FISH with arm-specific chromosome
paints for 1q (labelled in biotin and detected with FITC) and 9q (labelled in
digoxigenin and detected with Rhodamine). Three green signals were identified
with the 1q paint, indicating the normal chromosome, the derived chromosome
1 and the derived chromosome 9. The chromosome 9q paint only showed two
signals, which corresponded to the normal chromosome 9 and the derived

chromosome 1 (labelled).



4.3.4. Discussion

Buccal cells from the t(1;9) patient were FISHed with chromosome paints
specific for the long arms of chromosome 1 and 9 (1q and 9q) and scored for the
presence of the rearrangement. 10 of 200 nuclei scored (5 %) appeared to have the
translocation, a similar proportion to that found by cytogenetics. This was
determined by the presence of three domains for the 1q chromosome paint.
Although it was clear which cells contained the rearrangement by looking at the
number of domains for the chromosome 1 paint, the results were not as expected for
that of chromosome 9. As this was a balanced translocation, there should have been
three signals visible for each of the chromosome paint probes. However, there were
only ever two seen with the 9q paint, even in cells with three domains for 1q. This is
due to a lack of hybridisation of the 9q paint to the heterochromatic region on the
derivative chromosome 9. Therefore, instead of three signals, cells with the
translocation showed a large signal for the normal chromosome 9 and a smaller
signal for the region translocated to the derivate chromosome 1. This can be seen as
directly adjacent to a region of chromosome 1 paint.

Although the translocation was obvious and FISH on these buccal cells was
successful, it was decided not to map the breakpoints in this case any further due to
the low proportion of cells that contain the translocation. Interphase FISH on
uncultured buccal cells has already proved useful in confirming mosaic structural
and numerical chromosomal abnormalities [456;457] but we believe this is the first

time this approach has been used for balanced chromosomal rearrangements.



5: Mapping of a t(2;12) Translocation leads to
the Identification of a Candidate Gene for

Symmetrical Peromelia and Phocomelia

5.1. Abstract

DBCR breakpoints of a de novo t(2;12)(p25.1;q23.3) associated with upper
limb peromelia and lower limb phocomelia were mapped using interphase FISH on
nuclei extracted from archive paraffin embedded tissue sections. The breakpoint at
2p25.1 interrupted the ROCK?2 gene, which encodes a Rho-associated, coiled-coil
containing protein kinase. Mice homozygous for disruptions in this gene often die
before birth due to placental thrombosis but survivors are small with no major
malformations. This gene was therefore not a good candidate for the predicted
heterozygous loss-of function genetic mechanism with a major and specific effect in
the developing limb bud. The 12q23.3 breakpoint mapped between 0-25 kb 5’
(telomeric) of CMKLRI, which encodes chemokine-like receptor 1. Using RT-PCR
and immunocytochemical localisation with polyclonal antisera raised against
CMKLRI1, we show developmentally dynamic expression of the orthologous gene in
mouse embryos in migratory myoblasts from 9.5 days post coitum (dpc), prior to
their entry into the limb bud. This expression is maintained in embryonic skeletal
muscle. This receptor has only one known ligand, a retinoic acid receptor response
gene named RARRES?2. By RT-PCR this gene was co-expressed with Cmklr] in the

early limb bud. CMKLR1 appears to be a good causative candidate for the phenotype



of the proband. Our finding support recent data suggesting that myoblasts may be
required for normal limb outgrowth. One case with a similar phenotype was
available for study but no gene deletion or point mutations in CMKLR! or a
candidate regulatory region could be identified. A mouse model is being created to

further elucidate the novel developmental role of this signaling system.



5.2. Introduction

Peromelia and phocomelia are two types of limb reduction defects. Peromelia
results in the formation of a stump (asymmetrical), or stumps (symmetrical), with the
absence or malformation of the extremities, whereas in phocomelia, there is a
deficiency of the long bones of the limb but the relative preservation of the hands or
feet.

Most cases of peromelia are sporadic and affect only one side of the body
(unilateral). Symmetrical peromelia can be associated with many syndromes,
including, amongst others, aglossia-adactylia (OMIM 103300), acheiropody (OMIM
200500) and Poland syndrome (OMIM 173800). It may also have a vascular
aetiology as some limb reduction abnormalities, such as peromelia, have been
suggested to be linked to chorionic villus sampling, with the severity of the
phenotype being linked to the time of the sampling [458].

Symmetrical phocomelia is often associated with teratogens, such as
thalidomide, and can also be associated with syndromes, such as Roberts SC
syndrome (OMIM 268300). This syndrome is associated with cleft lip/palate and
chromosome analysis in these individuals shows characteristic puffing around the
centromere regions or premature centromere separation [459].

The phenotype in this case consists of both symmetrical peromelia of the
upper limbs and symmetrical lower limb phocomelia with no cleft lip/palate or other

gross abnormalities.



5.2.1. Clinical Case Report

This case was originally published by Murray et al [460]. The clinical details
are summarised below.

The foetus was the result of the third pregnancy of a healthy couple. An
ultrasound examination at 15 weeks showed pronounced limb shortening and am
amniocentesis was performed. Chromosome analysis of the foetal cells showed an
apparently balanced translocation between chromosomes 2 and 12,
t(2;12)(p25.1;924.1). The parental chromosomes were normal, indicating that the
rearrangement was a de novo event. The pregnancy was electively terminated at 20
weeks. Written consent was obtained from the family to use the clinical photographs,
case details and tissue samples for research purposes.

Post-mortem examination showed a female foetus with severe, symmetrical
shortening of all four limbs. The upper limbs had what appeared to be a rudimentary
digit and the both feet were abnormal, with cutaneous syndactyly giving the
appearance of only two digits. There were minor craniofacial abnormalities, poorly
developed external genitalia and long, narrow but histologically normal kidneys. All
other internal organs appeared normal. The brain was not examined.

X-ray analysis of the foetus showed that there was no calcification of the
femora, both tibiae were bowed and the feet were flipper-like. There was pointing of

the distal humeri in the upper limbs and an absence of any limb distal to this.



Figure 5.1. Images of the proband foetus

A clinical photograph (A) and X-ray (B) of the proband foetus showing the

symmetrical limb abnormalities.
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Figure 5.2. Partial ideogram of chromosome 2 and 12.
A partial ideogram showing the normal and derived chromosomes 2 and 12.

The breakpoints are indicated by arrows. Chromosome 2 is outlined for clarity.



5.2.2. The Chromosome 12 Breakpoint has been Previously
Implicated in Limb Development

The presence of a de novo translocation and a rare malformation phenotype
suggests the interruption of a vital gene, or genes, at the rearrangement breakpoints.
In this case the breakpoints are on the short arm of chromosome 2 and the long arm
of chromosome 12. There do not appear to be any previous reports of rearrangements
in the chromosome 2 region resulting in a limb phenotype and there are no
immediately obvious candidate genes in this area. The chromosome 12 breakpoint,
however, has some supporting evidence as the 7TBX3 and 7BX5 genes are located in
band 12g24.1 and these are both known to have a role in limb development.

TBX3 and TBX5 are members of the T-box family of transcription factors.
Mutations in 7BX3 have been shown to cause ulnar-mammary syndrome (UMS)
(OMIM 181450) [461], an autosomal dominant condition, characterised by upper
limb abnormalities, mammary hypoplasia, dental abnormalities and urogenital
abnormalities. Bamshad et a/ [462] found a 1 bp deletion in members of a family
affected by UMS that resulted in a frameshift and premature termination and they
also found a splice site mutation in another family. They hypothesised that both
mutations perturbed DNA binding and that the phenotype was caused by
haploinsufficiency of 7BX3.

Mutations in 7BX5 have also been shown to cause a phenotype, namely Holt-
Oram syndrome (HOS, OMIM 142900). This is a rare autosomal dominant disorder,
with a birth incidence of approximately 1 in 100,000 [463]. The condition was
described in 1960 by Holt and Oram, who reported atrial septal defects and

abnormalities of the thumbs segregating through four generations of a family [464].



Since then, many other cases have been described with the limb abnormalities
varying from abnormal or absent thumbs, to phocomelia [465]. Linkage studies had
mapped the gene to chromosome 12q and in 1997, Li ef al [466] mapped the
chromosome 12 breakpoint in a patient with HOS and isolated three exons that had
similarity to both 7BX3 and TBX3. They subsequently found mutations in 7BX3 in
both familial and sporadic cases of HOS. Further 7BX5 mutations were found in
affected members of two other families at around the same time [467].

However, although both of these genes have obvious roles in limb
development, they seem to be specific for the upper limbs. Misexpression studies in
the chick have shown that ectopic expression of 7BX3 in the leg bud induced wing-
like morphological changes, suggesting it plays a role in forelimb identity [468].
Both TBX3 and TBX3 are expressed in the developing forelimbs of embryos and
seem to play an important role in their development. However, although TBX3 is also
expressed in the hind limbs, loss of function mutations do not seem to have an effect
as individuals with ulnar-mammary syndrome generally have normal lower limbs.
This indicates that although disruption of 7BX3 and/or 7BX5 may result in the
peromelia present in the t(2;12) translocation case, it would not appear to be
responsible for the lower limb phocomelia.

This suggests that there may be another, as yet unknown, limb development
gene in the 12q24.1 region of chromosome 12, that the causative gene may be on
chromosome 2, or that the phenotype is the result of both breakpoints having a

combined effect.



5.2.3. Phenotypically Similar Cases

Although the symmetrical peromelia and phocomelia phenotype seen in the
translocation case is rare, a literature search did locate a very similar case [469] and
we had access to another case, which although slightly different, still showed some
striking similarities. The report from Witters ez al [470] was of a male foetus with
shortened humeri with distal hypoplasia and an absence of the forearms and hands.
The lower limbs showed an only one bone was present in the right leg, thought to be
the tibia, and the right food was malformed. There were no bones visible in the left
leg. There was no cleft lip or palate. Chromosome analysis showed a normal male
46,XY karyotype with none of the premature centromere separation characteristic of
Roberts-SC syndrome.

This phenotype in this case is practically identical to that of the t(2;12)
translocation case but unfortunately, there was no material of any type available,
making further studies impossible.

The second case was a male foetus of 14 weeks gestation with absent upper
limbs, absent femora and fibula and bowed tibiae. The feet were also abnormal (see
figure 5.3). Once again, the karyotype was 46,XY, that of a normal male and there
was no evidence of centromere puffing or premature centromere separation. Paraffin
embedded tissue sections and a fibroblast cell line (named T01-2856) were available

for this case.



Figure 5.3. Clinical photographs of a phenotypically similar case

Clinical photographs of case T01-2856 showing a similar phenotype to the
proband. This foetus has a lack of upper limbs (A), absent femora and fibula

and bowed tibiae (A and C). The feet are also abnormal (C).

5.2.4. A brief overview of Limb Development

5.2.4.1. The origin and development of the limb buds

Limb development is first apparent as limb buds in neurula stage embryos
(approximately 9.5 dpc in mice and 26 dpc in human). The dorsal (preaxial)
mesoderm separates into somites, which subsequently give rise to the cells that form,
amongst other things, the skeleton and skeletal muscles of the back, body wall and

limbs. The cells of the ventral part of the somite become the sclerotome, which will



give rise to cartilage and subsequently the axial skeleton. Cells from the lateral
portion of the somite will become the dermomyotome. This is double-layered, the
dorsal part being the dermatome, which gives rise to the dermis, and the inner layer
of cells being the myotome, which gives rise to the skeletal muscles of the back. The
cells that form the muscles in the limb migrate away from the lateral portion of the

dermomyotome, down towards the prospective limbs.
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Figure 5.4. The origin of skeletal muscle

A schematic diagram showing the origin of skeletal muscle. Cells migrate out
from the myotome (green) to form the skeletal muscles of the back, whilst at the
limb bud level, cells migrating from the dermomyotome (blue) form the skeletal

muscles of the limb.

The limb bud is formed from the accumulation of muscle and skeletal
precursor cells forming a bulge under the epidermal tissue of the embryo. These
mesenchyme cells proliferate and induce the overlying ectoderm to form the apical

ectodermal ridge (AER). The interaction of the AER with the underlying



mesenchyme, known as the progress zone (PZ) is essential for sustained limb
outgrowth and development [471;472].

The rapid proliferation of the mesenchyme results in the elongation of the
limb bud and the length of time that cells have spent in the PZ is thought to
determine their proximodistal (PD) identity [473;474]. Cells that have spent a long
time in the PZ and have undergone a large number of divisions become proximal
structures, such as the radius and ulna in the arm, and those that have undergone
fewer divisions become more distal structures [475]. This is shown by experiments in
which removal of the AER at an early stage results in only the humerus being formed
[476;477], whereas with later removal, the humerus, elbow and parts of the radius
and ulna develop.

The mesenchyme in the posterior region of the limb bud, known as the zone
of polarising activity (ZPA), specifies the pattern of the limb along the
anterioposterior axis. Transplantation experiments have shown that transferral of this
area to the anterior margin of a chick wing-bud results in mirror-image duplication of
the digits [478]. The dorsoventral limb pattern is specified via signals from the dorsal

ectoderm [479].

5.2.4.2. A timetable of limb development in humans

Limb development in humans is first apparent in the fourth week of gestation,
with the appearance of the arm limb buds at around day 26-28. The leg buds appear
at around day 30 and the all buds undergo rapid proliferation and outgrowth. By day
33, the AER will have reached its maximum thickness and the arm buds will be

paddle shaped. Histodifferentiation will be apparent at this point as a core of



chondrogenic cells appears in the centre of the bud, surrounded by the mesenchyme
that will form the future muscle and dermis. During the sixth week, the AER will
subside as the limbs lengthen and finger-rays become apparent. Further
differentiation and outgrowth are accompanied by limb rotation and joint formation
in the seventh week and muscle contraction in week eight. Ossification of the bones

begins in week 12.

5.2.4.3. Timing of the limb defects in the translocation case

The severity of the limb defects in the translocation case and the
phenotypically similar case suggests that the causative event occurred very early on
in limb development. The limbs are very short but have begun to form, indicating
that the limb buds were present. However, the outgrowth and subsequent
development of the limbs, including the patterning, appears to have been

dramatically disrupted.



5.3. Results

5.3.1. Chromosome 2 FISH Mapping

In order to identify the precise location of the chromosome 2 breakpoint,
FISH was performed using a range of probes from around the suspected breakpoint
region. The results of the FISH mapping can be seen in table 5.1. The location of the
chromosome 2 breakpoint is within band 2p25.1, between BAC clones RP11-295J19

and RP11-427E2 (see figure 5.6).



Chromosome Library Clone

Band name name il Result
2ptel GS1 8L3 0.33 Distal to breakpoint
2p25.3 RP11  352J11 2.23 Distal to breakpoint

RP11 168K7 2.83 Distal to breakpoint
2p25.2 RP11  350H23 5.63 Distal to breakpoint
RP11 485017 6.51 Distal to breakpoint
2p25.1 RP11  16D24 7.57 Distal to breakpoint
RP11  542B5 7.9 Distal to breakpoint
RP11  69D8 8.43 Distal to breakpoint
RP11  687B11 8.54 Distal to breakpoint
RP11  217D23 8.57 Distal to breakpoint
RP11  434B12 8.71 Distal to breakpoint
RP11  327F6 8.89 Distal to breakpoint
RP11 734K21 9.24 Distal to breakpoint
RP11  385J23 9.43 Distal to breakpoint
RP11  214N9 9.45 Distal to breakpoint
RP11  295J19 11.31  Distal to breakpoint
RP11  427E2 11.49  Proximal to breakpoint
RP13  912N19 11.8 Proximal to breakpoint
RP11 48409 11.88 Proximal to breakpoint
RP11  489A14 12.06 Proximal to breakpoint
RP11  375P12 12.36  Proximal to breakpoint
RP11 168G24 12.65 Proximal to breakpoint
2p24.3 RP11 33301 12.57  Proximal to breakpoint

Table 5.1. A list of BAC clones used to map the 2p breakpoint

A list of BACs used to map the 2p breakpoint, their position within the genome

and their position relative to the breakpoint as determined by FISH. The clones

highlighted in blue are those that flank the chromosome 2p breakpoint, located

within band 2p25.1.

*Figures from Ensembl NCBI 35, July 2004 assembly
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Figure 5.5. Diagram of the area around the 2p25.1 breakpoint.
A diagram of the area around the chromosome 2p breakpoint in the t(2;12)
translocation case. Green rectangles represent the BAC clones used for FISH
mapping. The position of the genes relative to the BACs can be seen. The
breakpoint falls within the shaded region between BACs RP11-295J19 (distal)

and RP11-427E2 (proximal) and may disrupt the ROCK2 gene.

*Figures from Ensembl NCBI 35, July 2004 assembly
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Figure 5.6. FISH with distal and proximal BAC clones and 2p paint

FISH with BACs RP11-295J19 (top panel) and RP11-427E2 (bottom) with a
chromosome 2p specific paint (green). The panels show selected sections
taken every 0.5 uM through a DAPI stained nucleus for each experiment. The
arrows indicate the paint domains (green) and BAC signals (red). The top panel
shows that the BAC only localises with one chromosome paint domain,
indicating that the BAC is distal to the breakpoint, on the translocated part of the
chromosome. In the bottom panel, both BAC signals co-localise with the paint
domains, indicating that the BAC is proximal. Arrows indicate the position of the

signals.



5.3.2. Chromosome 12 FISH Mapping

5.3.2.1. Mapping with BACs

In order to identify the precise location of the chromosome 12 breakpoint,
FISH was performed using a range of probes from around the suspected breakpoint
region. The results from the BAC mapping can be seen in table 5.2. The breakpoints
in this case lie within band 12q23.3, between BACs RP11-1K3 and RP11-13G14.
The clone between these two BACs (RP11-131118) cross-hybridised to another
chromosome, meaning that it could not be used for mapping purposes.

The TBX3 and TBX5 genes, known to be involved in upper limb
development, are located over 6 Mb from the translocation breakpoint and are

therefore not directly disrupted.



Chromosome Library Clone

Band name name i RResult
12923.3 RP11 1C11 106.39 Proximal to breakpoint
RP11 1K3 107.02 Proximal to breakpoint
RP11 131118 107.19 Cross hybridises to chr 2
RP11 13G14 107.26 Distal to breakpoint
RP11 951111 107.35 Distal to breakpoint
12924.11 RP11 689B22 107.52 Distal to breakpoint
RP11 423G4 107.63 Distal to breakpoint
RP11 117B7 107.89 Distal to breakpoint
RP11  443D10 107.99 Distal to breakpoint
RP11 256111 108.76 Distal to breakpoint
12q24.12 RP11 162P23  111.01 Maps to chr 10
12q24.13 RP11 30309 112.6 Distal to breakpoint
12q24.21 RP11  435A10 113.65 TBX5 Distal to breakpoint
RP11 162N7 113.85 TBX3 Distal to breakpoint
RP11 110L15 115.04 Distal to breakpoint
12g24.33 CTec 221K18 131.84 Distal to breakpoint

Table 5.2. A list of BAC clones used to map the 12q breakpoint

A list of BACs used to map the 12q breakpoint, their position within the genome

and their position relative to the breakpoint as determined by FISH. The clones

highlighted in blue are those that flank the breakpoint, located in band 12g23.3.

The clone between these two cross-hybridised to chromosome 2 and was

therefore excluded. The position of the TBX5 and TBX3 genes is also included

for reference. These are located over 6 Mb from the translocation breakpoint.

*Figures from Ensembl NCBI 35, July 2004 assembly
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Figure 5.7. Diagram of the area around the 12p23.3 breakpoint.
A diagram of the area around the chromosome 12 breakpoint in the t(2;12)
translocation case. Green rectangles represent the BAC clones used for FISH
mapping. The position of the genes relative to the BACs can be seen. The
breakpoint falls within the shaded region between BACs RP11-1K3 (proximal)

and RP11-13G14 (distal). The only gene in this region is CMKLR1.

*Figures from Ensembl NCBI 35, July 2004 assembly
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Figure 5.8. FISH showing proximal and distal 12q BACs
FISH on DAPI stained nuclei using proximal 12q BAC RP11-1C11 (green) along
with BAC RP11-1K3 (top panel) and RP11-13G14 (bottom panel). The arrows
indicate the position of the signals. Co-localising signals in the top panel
indicate that BAC RP11-1K3 is proximal to the breakpoint, whereas BAC RP11-
13G14 has only one co-localising signal, indicating that the BAC is distal to the

breakpoint, on the translocated part of the chromosome.



5.3.2.2. Long-Range PCR probe mapping

The BAC mapping put the breakpoint within the region of the CMKLRI gene.

To try to narrow the breakpoint further, long-range PCR products were designed for

the gene itself and for the distal part of the BAC RP11-1K3 (see figure 5.9). These

were labelled and used as FISH probes, named 1K3 1, CMKLR1 1 and

CMKLRI1 2. All three probes were found to be proximal to the breakpoint on the

derived chromosome 12. This puts the breakpoint either within, or distal, to the 5’

end of the CMKLRI gene.

RP11-1K3
I .
1K3-1 CMKLR1-1 CMKLRI-2
— ————— —
'i bbb A |
CMKLR]

RP11-13G14

Figure 5.9. Long-Range PCR FISH probes

A diagram showing the location of the long-range PCR probes used for FISH

mapping around the CMKLR1 gene. The green rectangles represent the BACs

previously used for breakpoint mapping and found to flank the breakpoint. FISH

with all three long-range PCR probes showed that they were proximal to the

translocation breakpoint, meaning that the breakpoint was located either within,

or distal to, the 5" end of the CMKLR1 gene.
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Figure 5.10. CMKLR1 PCR probes co-localise with proximal BACs
FISH with long-range PCR probes CMKLR1_1 (A) and CMKLR1_2 (B) (red
signals) applied with BACs that map proximal to the chromosome12q
breakpoint (green signals). Both BACs show two signals that co-localise with
the proximal BAC, indicating all probes are proximal to the t(2;12) translocation

breakpoint.



5.3.2.3. Mapping with fosmids

To attempt to map the chromosome 12 breakpoint to a higher resolution,
fosmids were ordered that formed a contig across the region. Fosmids
G248P89648H8 and G248P88875G1 were found to be proximal and distal to the

breakpoint, respectively.

Fosmid Name Mapping result
G248P86973A10 Proximal to breakpoint
G248P82022F 11 Proximal to breakpoint
G248P83714D2 Proximal to breakpoint
G248P81173A11 Proximal to breakpoint
G248P89648H8 Proximal to breakpoint
G248P88875G1 Distal to breakpoint
G248P85171H8 Distal to breakpoint

Table 5.3. List of fosmid clones used to map the chromosome 12 breakpoint

A list of the fosmid clones used to map the t(2;12) breakpoint and the results

obtained from FISH. The clones highlighted in blue are those that were found to

flank the translocation breakpoint.
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Figure 5.11. Location of the fosmids around the 12q23.3 Breakpoint

The green rectangles represent the fosmid clones used for FISH mapping. The
breakpoint falls within the approximately 40 kb area shaded yellow. This puts
the breakpoint within the 5' end of CMKLR1 or less than 25 kb from that end of

the gene.

*Figures obtained from UCSC gemone browser, NCBI build 25, May 2004



Figure 5.12. FISH with 12q23.3 fosmids
FISH experiments with a BAC that maps distal to the translocation breakpoint in
green (RP11-13G14) and a selection of 129g23.3 fosmids (red). Fosmids
G248P81173A11 (top) and G248P89648H8 (middle) show only one signal that
co-localises with the BAC (these co-localising signals represent the normal
chromosome 12) and one signal that does not co-localise. These fosmids are
therefore proximal to the breakpoint. Fosmid G248P88875G1 (bottom) shows
two signals co-localising with the distal BAC signals and is therefore also distal.

Arrows indicate the position of the signals.



5.3.3. RT-PCR

In order to determine the expression of Cmklirl and Rarres2 in the developing
mouse limb, RT-PCR was performed on dissected limb buds from 10.5 dpc to 13.5
dpc mouse embryos. A band of the expected size was seen for all stages of limb bud
tested. Extra bands of approximately 500 bp were seen in the Rarres2 reactions,
possibly indicating the presence of multiple isoforms. The negative control,
containing no RT template, showed no bands other than primer dimer. The results

show that both Cmklr] and Rarres2 are expressed in all stages of limb bud tested.

500 bp =
300 bp >

CMKLR1 RARRES2

Figure 5.13. Cmklir1 and Rarres2 RT-PCR results on mouse embryonic limb

buds
RT-PCR on limb buds from 10.5 to 13.5 dpc mouse embryos. Expression of
both Cmkir1 and Rarres2 can be seen in all stages of limb bud tested. The
double bands for Rarres2 may indicate the presence of multiple isoforms. The

lowest bands (under 100 bp) represent primer dimer.



5.3.4. Wholemount RNA In-Situ Hybridisation

To attempt to elucidate the expression pattern of Cmklrl throughout
development, wholemount RNA in-situ hybridisations were performed on mouse
embryos from a number of different developmental stages. However, the expression
pattern could not be determined due to a high level of background staining on the

embryos. Due to time constraints, these experiments were not repeated.

5.3.5. Antibody Staining on Embryonic Mouse Sections

In order to elucidate the expression pattern of the Cmklr1 protein throughout
embryonic mouse development, antibody staining was performed on paraffin
embedded sections from mouse embryos from 9.5 to 14.5 dpc. All negative controls,
in which no primary Cmklrl antibody was added, were clear of any staining on

addition of the detection agents, indicating that the Cmklrl signal was specific.

5.3.5.1. Cmklir1 expression through mouse embryogenesis

The expression of CmklIrl was seen to alter dynamically during embryonic
development. The expression is summarised in table 5.4. Examples of the staining

can be seen in figure 5.14.



9.5dpc  10.5dpc 11.5dpc 12.5dpc 14.5dpc

Limb bud ///////{///%

Lung / /

oot /%//

Muscle/ muscle
precursors

Bone/cartilage /
precursors _ _

Table 5.4. Expression of Cmkir1 through mouse embryogenesis

A table showing the expre of Cmklir1 in mouse embryos as determined by
antibody staining. Blue boxes indicate expression, grey boxes indicate a lack of

expression and question marks indicate that expression could not be

determined in the sections available. Hashed boxes indicate organs that could

not be identified in the developmental stage or the sections available.
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5.3.5.2. Cmkir1 expression in the developing mouse limbs

Cmklrl expression was observed in the mesenchyme of the limb buds of
mouse embryos aged 9.5 dpc (figure 5.15 A) and also in the myotome (figure 5.15
B). Embryos aged 10.5 dpc showed Cmklrl staining in a subset of cells in the limb
bud that appear to have migrated from the myotome (figure 5.15 C and D), although
this cannot be confirmed in fixed tissue. These cells are thought to be the muscle
precursor cells, the myoblasts.

At 11.5 dpc, the expression in the limb can be seen to be located around the
area where the bone will form (figure 5.16 A and B), a pattern that is maintained at
12.5 dpc (figure 5.15 C) and 14.5 dpc (figure 5.15 D to F). By 14.5 dpc the
expression is restricted to the muscle of the limb and the developing bone remains

negative.



Figure 5.15. Cmklir1 expression in the mouse limb bud
Cmklir1 antibody staining on mouse embryo sections. Sections are
counterstained with eosin (pink) and signal is detected with NBT/BCIP
(blue/purple). The dashed box shows the enlarged region in D. Expression can
be seen in (A) the mesenchyme of the limb bud and (B) in the myotome (M) but
not the dermamyotome (DM) of 9.5 dpc embryos. At 10.5 dpc, Cmkir1 positive
cells have appeared in the limb bud, possibly having migrated from the

myotome (C and enlarged in D).



6L1

"2|0SNW [}9[3%S ‘NS PuUB S3josnw S|ejsoalajul ‘|| ‘Weay ‘H ‘auoqg Bujuwuioy ‘g4 ‘qui| 8y jo ajosnw Buidojaasp ay) o} pajolisal
sI uolssaidx3 ‘g ul uoibal pabiejua ayy pajesipul paxoq paysep ay] (s|dind/an|q) 410g/19N Yim pajosiap si [eubis pue (3uid) uisos yjim

paule}siajunod aie suonoas ‘(4-a) odp G'¢L pue () gzl (g pue v) 'L L pabe sofuqua asnow wouj suoloas uo Buiuiels Apoqiue Lipw)

qui Buidojaaap ayj ul uoissaldxa Lapw ‘9L ainbi4

a




5.3.6. Case T01-2856

5.3.6.1. FISH

FISH using the clones that were found to flank the breakpoints in the t(2;12)
case were applied to this case and found to be present on both copies of the

chromosome, in apparently the correct position (see figure 5.17).

Figure 5.17. FISH on T01-2856 metaphases
FISH on case T01-2856 using breakpoint flanking BACs from the t(2;12) case.
Chromosomes are counterstained with DAPI (blue) and arrows indicate the
location of the signals. A) BACs RP11-1K3 (green) and RP11-13G14 (red) co-
localise and both appear on the expected region of both chromosome 12s. B)
BACs RP11-427E2 (green) and RP11-295J19 (red) co-localise and both appear

on the expected region of both chromosome 2s.



Long-range PCR probes described in section 5.3.2.2 were also applied and

found to be present and in the expected location on chromosome 12 (see figure 5.18).

Figure 5.18. CMKLR1 PCR probes on

T01-2856 metaphases

Chromosomes are counterstained with
DAPI (blue). Red signals are the PCR
probes A) 1K3_1, B) CMKLR1_1, C)
CMKLR1_2. All show two normal signals on

the chromosome 12s (arrowed).




5.3.6.2. CMKLR1 Sequencing

To check for mutations in CMKLR] in this cytogenetically normal case,
sequencing of genomic DNA, extracted from the fibroblast cell line, was performed.
Primers were positioned to ensure that all of the coding sequence and splice sites of
this one exon gene were obtained and to accommodate the poor quality sequence
obtained at the beginning and end of every reaction. As the exon is large, 1,119 bp,
overlapping primer sets were used. These were organised so that there was a
minimum of 100 bp of overlapping sequence to ensure that good quality sequence
was obtained for every nucleotide. Sequence was obtained via Ensembl (NCBI 35
assembly, June 2004) and the untranslated regions (UTR) were not sequenced.

No changes in the nucleotide sequence of CMKLR 1 were discovered. One
fibroblast cell line from a phenotypically and cytogenetically normal individual was

also sequenced as a control.

5.3.6.3. Sequencing of a possible CMKLR1 regulatory element

Genome alignment performed using the DCODE’s evolutionary conserved
region (ECR) browser (http://ecrbrowser.dcode.org/), led to the identification of a
conserved region, approximately 500 bp in size in human. This was located
approximately 145 kb from the 5’ end of CMKLRI, in an area with no other genes
and had over 70 % conservation between human and mouse, rat, chick or xenopus
(see figure 5.19). The conservation and situation of this region suggested that it may
have a possible role in the regulation of the CMKLRI gene. To rule out any

mutations in this potential element, the region was sequenced but no nucleotide



changes could be identified in relation to the reference sequence. The region was also
sequenced in one fibroblast cell line from a phenotypically and cytogenetically

normal individual as a control.
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5.3.6.4. ROCK2 cDNA sequencing

As the ROCK?2 gene comprises a large number of exons, it was decided to
attempt to sequence the mRNA transcript of the gene as opposed to the nucleotide
sequence. This, however, proved to be unsuccessful and the cell line had

subsequently become unviable, meaning that the experiment could not be repeated.



5.4. Discussion

5.4.1. The Chromosome 2 Breakpoint Appears to Disrupt the
ROCK2 Gene

The breakpoint on chromosome 2 is between BACs RP11-295J19 and RP11-
427E2, suggesting that the ROCK?2 gene is disrupted. ROCK?2 is an isoform of
ROCK, a Rho-associated kinase involved in signalling from the small GTPase Rho to
the actin cytoskeleton. The involvement of ROCK?2 in the cytoskeleton initially
suggested this as a promising candidate gene for the limb abnormality phenotype.
However, evidence from a mouse with a targeted disruption of ROCK?2 [480] was not
consistent with this gene being a causative candidate.

Thumkeo ef al [481] found that approximately 90 % of the homozygote
ROCK-/- mice died in utero after 13.5 days post coitum (dpc) and those that did
survive were born runts but then apparently developed normally. The only limb
abnormality observed was a slight abnormality of the toes in some of the mice, most
likely caused by haemorrhages that occur in the hind limb buds at 13.5 dpc. This
bleeding was caused by the blood vessels in the bud dilating and rupturing at 12.5
dpc and the bleeding generally resolved within a few days after birth. The rest of the
limbs appeared to be normal in the homozygote mice.

This suggests that although ROCK2 may be disrupted in the t(2;12)
translocation case, the disruption of the gene does not seem sufficient to cause the
phenotype. Although mice do not always represent accurate models of human

disorders, it would be expected that a homozygote loss in the mouse would present a



similar phenotype to the human, especially as in it would appear that only one copy
of the ROCK?2 gene had been disrupted by the translocation.

The other genes in the vicinity of the chromosome 2 breakpoint are
summarised in table 5.4. None of these were considered to be good candidates for the
peromelia/phocomelia phenotype based on their functional annotation, although no

genes can be definitely excluded at this point.



Gene Conserv.a g Description/ Function Prot.em type/
(nucleotide) family
D0g — 34 4 Putative voltage-gated potassium Potassium
0 (=] =
SCNFl llfdagu_sfﬁ ?9 o channel. channel
Chimp — 100 %
C2orf22 Dog — 84 % Hypothetical protein Unknown
Mouse — 83 %
NP 872306 Unknown Hypothetical protein Unknown
TS el lnd oo Gene regulated by estrogen in
GREB 1 Zebrafish — 76 % besat CALEEE Unknown
isoform a Chicken — 73 %
F_B83701/ | Momse— 55 5% Gene regulated by estrogen in
GREB 1 Zebrafish — 76 % - Unknown
isoform c Chicken — 73 %
NP 872392 Unknown Unknown Unknown
Rho-associated protein kinase 2
Essential in proliferation of yeast
Chimp — 98 % cells Ser/Thr
ROCK 2 Mouse — 91 % Regulates cytokinesis, smooth s
Rat —90 % muscle contraction, formation of prafEikinase
actin stress fibres and local
adhesions
Chimp — 100 % " E2F
E2F6 Rat — 84 % g-la}.]nl:é;['lng?lgrf R2F depradent transcription
Mouse — 83 % factor
5 . G-protein
NTSR2 II\)/I(())Z S—eS_O _g o Neurotensin receptor type 2 coupled
° receptor 1

Table 5.5. A summary of the genes around the chromosome 2 breakpoint

A table summarising the genes around the chromosome 2p breakpoint and the

proteins they encode. The conservation column lists the three species with the

highest conservation at the nucleotide level.
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5.4.2. The Chromosome 12 Breakpoint Lies Close to the

CMKLR1 Gene

The breakpoint on chromosome 12 was found to lie between 0 and 25 kb 5’
(telomeric) to the CMKLRI gene. No other genes in the region of the breakpoint
were considered to be good candidates for the peromelia/phocomelia phenotype
based on their functional annotation, although none of the genes can definitely be
excluded at this point. A list of these genes and the properties of the proteins they

encode can be seen in table 5.6.



Gene Conserv.a Hon Description/ Function Pmt.em type/
(nucleotide) family
Chimp — 99 %
NP _055468 Dog—90 % No description Unknown
Rat — 80 %
Chimp — 100 % —— e ,
NIFUN  Dog—95 % Eﬁﬁﬂ‘;ﬁ:jﬁ;ﬂal domsim e
Rat — 88 %
Chimp — 99 % Huntingtin interacting protein E
NP_009007 Dog— 89 % Mutations cause hyper-IgM TPR/ Fic
Mouse — 88 % syndrome
Could be a chemotactic peptide
Dog — 87 % receptor. May have a function in =~ G-protein
CMKLRI1 Mouse — 82 % bone metabolism. Acts as co- coupled
Rat— 81 % receptor for several SIV strains  receptor 1
and a primary HIV-1 strain
oy i Squamous cell carcinoma Rnp/ Elav
SARLS Dog—32 % antigen recognized by T cells 3 family
Mouse — 83 % © ©
Rat—77 %
NP _859075 Mouse—75% Hypothetical protein Unknown
Chicken — 62 %
Chimp — 97 % P-selectin glycoprotein ligand 1
SELPLG Mouse — 66 % precursor Unknown
Rat — 66 % Binds to P-, E- and L-selectins
Dog — 94 % Coronin 1C WD repieat
COROIC Mouse — 89 % May be involved in cytokinesis, family

Chicken — 81 %

motility, and signal transduction

Table 5.6. A summary of the genes around the chromosome 12 breakpoint

A table summarising the genes around the chromosome 12q breakpoint and the

proteins they encode. The conservation column lists the three species with the

highest conservation at the nucleotide level.
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5.4.2.1. CMKLR1

The CMKLR1 gene was first described in 1996 as encoding the chemokine-
like receptor 1, a functionally unknown protein with notable sequence and structural
homology to the seven transmembrane G-protein coupled chemokine receptors
[482]. These receptors are involved in cellular migration in response to ligand
binding. One example can be seen during inflammation, where the activation of these
receptors contributes to the recruitment of leukocytes and the defence against
microbes or antigens [483]. CMKLRI1 is expressed in dendritic cells and
macrophages and acts as a co-receptor for entry of human and simian
immunodeficiency viruses (HIV-1 and SIV respectively) into CD4+ cells.

The endogenous ligand for CMKLR is the retinoic acid receptor responder
protein, RARRES2, otherwise known as chemerin or Tazarotene induced gene 2
(TIG2) [484]. Analogues of retinoic acid, known as retinoids, bind the retinoic acid
receptors and alter the expression of retinoic acid responsive genes, such as
RARRES?.

RARRES?2 and CMKLR1 have been implicated in many physiological roles,
including bone development, immune and inflammatory responses and the
maintenance of the skin [485-487]. Much of the evidence from this has come from

analysis of their expression patterns.

5.4.2.2. Cmkir1 expression in the mouse

The mouse orthologue of CMKLR was described under the name Dez [488]

and in situ hybridisation in mouse embryos and adult mouse tissues showed the



receptor to be differentially regulated. Methner er al [489] stated that expression was
seen in the caudal part of the tongue and the umbilical cord at 11 dpc and that
expression in the forming bone and cartilage regions was seen to increase from 11 to
14.5 dpc, where abundant expression was present in all areas of osteogenesis and
chondrification. The signal was noted to subsequently diminish. No signal was noted
in neural tissue, even though Methner et a/ had originally isolated the DEZ clone
form a neuroblastoma cell line and had observed expression in cells with neuronal
characteristics.

The adult tissues showed a different pattern of expression. The expression in
the tongue remained and expression was seen in the parenchyme of the parathyroid
gland, the lung mesenchyme and in the walls of some blood vessels. Patchy
expression was noted in the medulla of the thymus and no expression was seen in the
liver, heart or skeletal muscle.

The expression seen by Methner et al [490] only partly correlates with the
results seen from the antibody staining of embryonic mouse sections. High levels of
expression were seen in the tongue and expression was also seen in the brain. The
most striking expression, especially in the older embryos, was that in the skeletal
muscle. Signal was seen in all of the muscles of the limbs, as well as those of the
body wall, intercostal muscles, diaphragm and facial muscles. In the early embryos,
the signal was seen to be myotome specific and could be seen to correlate with the
migration of the myoblast precursor cells. No expression was observed in any of the

developing bones.



Ideally, co-localisation studies with positive control antibodies for the
relevant tissues would have been performed in order to confirm the localisation of

the Cmklr1 signal. However, due to time constraints, these were not possible.

5.4.2.3. Retinoic acid in limb development

The endogenous ligand for CMKLRI1 is the retinoic acid responsive protein
RARRES?2. Retinoic acid (RA) is a transcriptional regulator that has long been
implicated in the development of the limb. The application of RA to the anterior
region of a limb bud will mimic the activity of a ZPA and result in duplication of the
limb along the anteroposterior axis [491]. RA has also been implicated in
proximodistal limb patterning with experiments in both axolotl and chick showing
that RA exposure increases proximalisation in the limb [492-495] and induces the
expression of proximal genes [496].

The level of active retinoic acid is determined by its synthesis from retinol
(vitamin A) by retinaldehyde dehydrogenases (RALDH) and its degradation by
cytochrome P450s (CYP26) enzymes. Mice with targeted disruptions of Raldh?2,
which is responsible for the majority of RA synthesis in early mouse embryogenesis,
die at 9.5 to 10 dpc due to severe cardiac defects and show no evidence of limb bud
formation [497]. Survival of the Raldh2”" mice could be prolonged via maternal RA
supplementation and surviving embryos exhibited highly reduced forelimb bud
outgrowth, the severity of which was dependent on the dose and stage to which RA
was provided, and apparently normal hindlimbs. The mutant forelimbs varied from
markedly hypoplastic with no anteroposterior patterning and a single rudimentary

digit, to near wild-type size but with variant anteroposterior patterning abnormalities



[498]. Examination of the phenotype of the rescued and unrescued mice led Mic ef al
[499] to determine that RA is required at two distinct time points during early limb
development; primarily, it is required for the initiation of forelimb budding and later
it is required for the expansion of the AER and, therefore, the maintenance of limb
outgrowth [500].

There were three possible explanations proposed by Neiderreither ef a/ [501]
for the lack of any detectable abnormalities in the hindlimbs of the Raldh2”
embryos: The maternal supplementation of RA fully rescues hindlimb development;
there is another RA synthesising enzyme that provides RA to the hindlimb; hindlimb
development may be predominantly controlled by other growth or inducing factors.
They do, however, state that hindlimb development is not likely to be RA
independent [502].

The lack of the CYP26BI1 protein in mice also results in limb abnormalities.
CYP26B1 is one of the three mouse cytochrome p450 enzymes that metabolise
retinoic acid to inactive, or less active forms. These isozymes show different
expression patterns in the embryo, with CYP26B1 being expressed in restricted
regions of the developing limb [503;504] particularly in the distal regions and the
AER [505]. Cyp26b1”" mice have severe limb abnormalities affecting both fore and

hindlimbs.

5.4.2.4. Retinoic acid and CMKLR1

Mice with targeted disruptions of Raldh2 or Cyp26b1 [506;507] both show
limb abnormalities, reiterating the role of RA in limb development. The endogenous

ligand of CMKLRI1 is circulating RARRES?2, a retinoic acid inducible protein. The



disruption of CMKLR1 by the chromosomal translocation in the
peromelia/phocomelia case would be expected to have an effect on the downstream
RA reactions. The chemoattractant nature of CMKLR1 and its expression in the
migratory myoblasts suggests that the disruption would interrupt a signalling cascade
or chemotactic event that is crucial to the outgrowth, development and patterning of
the limb. There is evidence to show that myoblasts may be required for normal limb
outgrowth. Chicken ovalbumin upstream promoter transcription factor II (COUP-
TFII) is a nuclear orphan receptor that is expressed in the myotome and muscle
precursor cells. Experiments using mice harbouring a conditional knockout of
COUP-TFII showed that loss of the receptor led to hypoplastic skeletal muscle and
shorter limbs [508]. This suggests that migration of the muscle precursor cells is
required for the maintenance of normal limb bud outgrowth. Disruption of the proper
migration of the myoblasts, and their subsequent signalling events, may contribute to

the phocomelia/peromelia phenotype.

5.4.2.5. Creation of a Cmklr1 mutant mouse model

In order to help elucidate the role of Cmklrl in development, a mutant mouse
is currently under development by Dr. Robert Hill (MRC Human Genetics Unit).
This will involve the targeted disruption of the Cmklr] gene using a construct that
will result in deletion of the coding exon of the gene. This construct will place
human placental alkaline phosphatase (HP-AP) under the control of Cmklr]
regulatory elements and allow the expression of the protein to be elucidated during
developmental processes. The phenotype in the translocation case is thought to be

caused by the disruption, by the translocation, of just one allele, although it was not



possible to sequence the other allele to check for mutations due to a lack of suitable
material. It is therefore possible that a phenotype will also be observed in the
heterozygous mouse. Although mouse models do not always accurately represent the
situation seen in humans, it is hoped that, if Cmklr! is the causative gene, some
phenotypic similarities will be observed in either the heterozygous or homozygous
mouse. The mutant mouse should help determine whether the disruption of Cmkir! is
sufficient to cause the peromelia/phocomelia phenotype seen in the translocation

casc.

5.4.2.6. CMKLR1 is a good candidate gene for the peromelia/
phocomelia phenotype

The chromosome 12 breakpoint in the peromelia/phocomelia case lies
between 0 and 25 kb from the 5’ end of the CMKLRI gene. The breakpoint may,
therefore, directly disrupt the gene or separate the gene from cis-regulatory elements,
such as the putative element located approximately 145 kb from the 5" end. The
expression and functional annotation of CMKLRI make it a good candidate for the
severe limb phenotype irrespective of the fact that no mutations were found in one
similar case. There have been a number of limitations in this study: the material
available excluded the possibility of sequence analysis of the proband case or studies
to check for CMKLR I mis-regulation or mis-expression. The rarity of the phenotype
was also disadvantageous as there was only one other case available, which did not
have an identical phenotype. However, CMKLR has been identified as a good

candidate gene for the symmetrical upper limb peromelia and lower limb phocomelia



phenotype and the development of a mouse model should help elucidate the function
and expression of the gene throughout development and determine whether

disruption of CMKLR1 is sufficient to cause the phenotype seen in the translocation

case.



6: Mapping of a t(1;2) Translocation Leads to
the Identification of a Candidate Gene for

Bilateral Renal Adysplasia

6.1. Abstract

The breakpoints of a de novo t(1;2)(q41;p25.3) with bilateral renal adysplasia
were mapped using interphase FISH on nuclei extracted from archive paraffin
embedded tissue sections. The human deletion map had previously predicted the
existence of a dosage sensitive gene critical to normal human kidney development in
the 1q region. The 1g41 breakpoint mapped within the USH2A4 gene, which encodes
a large basement membrane-associated protein. Homozygous loss of function
mutations in this gene cause Usher syndrome type 2A, associated with retinal
degeneration and hearing loss. No renal phenotype has been reported with USH24
mutations and this was not, therefore, considered to be a good candidate for the
bilateral renal adysplasia. The 1q breakpoint lies in a 1.5 Mb region containing only
USH2A and ESRRG, the latter of which encodes an orphan nuclear steroid hormone
receptor, estrogen-related receptor gamma. This genomic organization is conserved
down to fugu (Takifugu rubripes). Expression analysis of Esrrg in the mouse embryo
shows site and stage specific expression in the developing metanephric kidney.
Initially expressed in the mesenchyme or stroma surrounding the ureteric bud at 12.5
dpc, the expression becomes duct specific at later stages of embryogenesis. This,
combined with expression in the developing liver and lung, suggest a possible role in
duct formation or branching. Comprehensive mutation analysis in six cases of lethal

renal adysplasia and four families with dominant renal adysplasia did not identify



any mutations. This gene remains a very good candidate for the renal agenesis locus
on 1q. Efforts to produce a mouse deficient in this gene are currently underway. The
2p25.3 breakpoint was shown to lie in a gap in the reference sequence in a gene-poor
region, 3.1 Mb from the p arm telomere. The closest transcribed genes were a small
cluster consisting of RNASEH, RPS7, COLEC11, ALLC and two novel genes of
unknown function. None were obvious candidate on the basis of their functional

annotation or developmental expression as determined by RT-PCR analysis.



6.2. Introduction

Renal adysplasia is defined as abnormal metanephric differentiation and can
affect one or both of the kidneys (unilateral or bilateral respectively). It is generally a
sporadic condition but can also occur in several syndromes, such as Walker-Warburg
(OMIM 236670), Smith-Lemli-Opitz (OMIM 270400) or Townes-Brocks syndrome
(OMIM 107480).

The severity of the adysplasia phenotype is extremely variable. If only one
kidney is affected, renal function is usually unimpaired and no phenotype is
observed. In bilateral disease, both kidneys may be affected to the point of total
dysfunction, leading to a characteristic phenotype known as Potter sequence
[509;510]. The lack of functional kidneys leads to a loss of urine output and,
therefore, a severe reduction in amniotic fluid during the pregnancy
(oligohydramnios). This causes compression of the foetus by the mother’s uterus and
results in many physical deformities, including abnormal facies and positioning of
the hands and feet. Babies with bilateral renal adysplasia usually die very early in life
due to respiratory insufficiency, as lungs require amniotic fluid for normal

development.

6.2.1. Case Report/Clinical Data

This case was originally reported by Joss et al, 2003 [511]. The clinical data
is summarised here.
This was the first child of a healthy couple who were non-consanguineous. At

29 weeks, an ultrasound revealed the apparent absence, bilaterally, of renal tissue and



oligohydramnios. At 32 weeks, the foetal lungs were found to be hypoplastic and the
parents opted to have labour induced. The baby died an hour after birth.

The baby was male and had features of Potter sequence, including a flattened
nose, large squashed ears, rocker bottom feet and marked skin laxity over the trunk
and limbs. Post-mortem analysis revealed haemorrhagic masses with no recognisable
renal structuring in the place of kidneys. Histology revealed undifferentiated
mesenchyme with foci of cartilage, indicating bilateral renal adysplasia.

Cytogenetic analysis revealed the presence of a translocation between
chromosomes 1 and 2, namely t(1;2)(q32;p25). The parents’ chromosomes were
normal, indicating a de novo event. Written consent was obtained from the family to

use clinical photographs, case details and tissue samples for research purposes.
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Figure 6.1. Partial ideogram of chromosomes 1 and 2
A partial ideogram showing the normal chromosomes 1 and 2 and the derived
chromosomes resulting from the t(1;2)(q32;p25) translocation. Chromosome 2

is outlined for clarity.



6.2.2.Chromosome 1q has been Previously Implicated in
Kidney Disorders

Chromosome abnormalities have previously been associated with bilateral
renal adysplasia or Potter sequence but these are generally not recurrent and often
include other phenotypes. Chromosomes abnormalities include trisomy 7 [512-514],
chromosome 22q11 deletion [515], ring chromosome 4 [516], chromosome 4p
deletion [517] and chromosome 15q22-q24 deletion [518].

Brewer et al. [519], looked at deletions associated with human malformations
and found highly significant association between renal agenesis and chromosome
band 1931, a band just proximal to the breakpoint in the translocation case. Deletions
of 1q31-g32 have also been observed in two cases of unilateral renal agenesis and
multiple congenital abnormalities [520]. These deletions suggest the presence of a
gene, or genes, involved in kidney development in the 1q31-q32 region. The
breakpoint in the translocation case was reported to be in band 1932 and it was
hypothesised that disruption of a gene in this region would be responsible for the
kidney phenotype.

There is no human genetic evidence linking any renal anomalies with the

2p25 locus.

6.2.3. Other Renal Adysplasia Cases

Renal adysplasia can occur in many different forms that vary in severity from

unilateral cysts to bilateral lethal renal adysplasia. A number of cell lines were



available from individuals with either sporadic or familial adysplasia. The

phenotypes of these individuals are outlined below.

6.2.3.1. Lethal renal adysplasia cases

Cell lines T96-2020, T96-2338, T97-1060, T97-1759, T98-2209 and TO5-

0100 were from lethal renal adysplasia cases.

6.2.3.2. REWKI

This cell line was from a boy with unilateral cystic adysplasia of the kidney
born to a mother who a normal ultrasound renal scan but went on to have a bilateral
cystic adysplasia child by a different father. The result of a third pregnancy was

unknown to us, although an ultrasound scan at 22 weeks showed no abnormalities.

Normal male
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Figure 6.2. A pedigree of the cell line REWKI
A partial pedigree showing the immediate family of cell line REWKI. REWKI had
unilateral cystic adysplasia and his normal mother subsequently had a female
foetus, by a different father, with bilateral cystic adysplasia, which was electively

terminated. The result of the third pregnancy was unknown to us.



6.2.3.3. RUFUL

This is the cell line from a woman with a bifid ureter who had one child with
bilateral renal agenesis and further normal children by the same father. The result of
a fourth pregnancy, by another man, was unknown to us although an ultrasound scan
at 20 weeks showed the presence of at least one, and probably both, kidneys and

normal amniotic fluid content.

|:] Normal male
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Figure 6.3. A pedigree of the cell line RUFUL
A partial pedigree showing the immediate family of cell line RUFUL. RUFUL had
a bifid ureter and had a child with bilateral renal agenesis. She subsequently
went on to have two normal children with the same father and a fourth
pregnancy by another man. The result of this fourth pregnancy was unknown to

us.

6.2.3.4. EDPOR

This cell line is from a boy with multicystic kidneys, born to an apparently
normal mother. His mother’s cousin had unilateral renal agenesis and had lost two

children with cystic adysplasia before having a normal child.
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6.2.3.5. CRAST

This is the cell line from a woman who was examined at 7 years of age and
found to have a very small, rudimentary kidney on the right hand side, with an
ectopic ureter opening into the urethra. These were subsequently removed. Her
mother had an absence of the right kidney.

The daughter later married and produced two foetuses, both of which had
bilateral renal agenesis. The father of the foetuses had a normal renal ultrasound

scan.

Normal male

Unilaterally affected female

Affected child,

deceased, sex unknown
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Figure 6.5. A pedigree of the cell line CRAST
A pedigree of cell line CRAST, a female with a small rudimentary kidney born to
a mother with unilateral renal agenesis. CRAST went on to have two foetuses,

both with bilateral renal agenesis and a normal child.



6.2.4. A Brief Overview of Metanephric Kidney Development

Metanephric kidney development is very complex and involves many
different cell and genetic interactions. A brief outline of the development is given
here.

The metanephric kidney is the only kidney that persists into adult life in
mammals, reptiles and birds. Development of the metanephric kidney begins at
around day 11 dpc in the mouse (around day 30 in humans) with the aggregation of
mesenchymal cells near to the pelvic aorta. The ureteric bud, a finger-like projection
formed from the nephric duct, then invades the aggregated cells, known as the
metanephric mesenchyme. Reciprocal interactions occur between the mesenchyme
and the invading bud: The mesenchyme induces the bud to grow and branch to form
the collecting duct system and the ureters and the bud induces the mesenchyme to
proliferate and differentiate into nephrons. The first six to eight ureteric bud branches
go on to form the ureter, renal pelvis and parts of the bladder. The collecting duct
system is formed from subsequent branching events [521]. As the ureteric bud
continues to branch, it induces more and more cells to undergo nephrogenesis. This
branching is critical to normal renal development as it determines the number of
nephrons formed in the kidney.

The foetal kidney exhibits a gradient of development with regions inside the

kidney being more mature than those towards the outer cortex.



6.3. Results

6.3.1. FISH Mapping

FISH mapping was performed to determine the exact location of the

translocation breakpoints. The mapping strategy utilised is described in section 4.1.

6.3.1.1. Chromosome 1 breakpoint

The breakpoint on 1q was found to be within band 1g41, between BACs
RP4-723P6 and RP11-239122. The USH2A gene is directly interrupted. The only

other gene in the region is the orphan nuclear hormone receptor, ESRRG.



Chromosome Library Clone

Band name name Mp* Result

1q24.2 RP11 277C14 168.4  Proximal to breakpoint
RP11 480112 199.17  Proximal to breakpoint
RP11 739N20 200.68 Proximal to breakpoint
RP11 534L20 203.28 Proximal to breakpoint

1941 RP11 323K10 211.6  Proximal to breakpoint
RP11 438G15 212.68  Proximal to breakpoint
RP11 415H9 212.99  Proximal to breakpoint
RP5 861H2 213.14  Proximal to breakpoint
RP11 22M7 213.16 Proximal to breakpoint
RP4 723P6 213.32  Proximal to breakpoint
RP11 239122 2135 Distal to breakpoint
RP11 1562K20 213.59 Distal to breakpoint
RP11 23B9 213.74 Distal to breakpoint
RP11 426K17 213.8 Distal to breakpoint
RP11 66M7 214.2 Distal to breakpoint
RP11 224019 215.52 Distal to breakpoint
RP11 392017 216.47 Distal to breakpoint
RP11 332J14 217.69 Distal to breakpoint
RP11 528D17 218.2 Distal to breakpoint
RP11 239E10 220.3 Distal to breakpoint

1942.2 RP11 99J16 227.9 Distal to breakpoint

1944 CTB 160H23 245 Distal to breakpoint

Table 6.1. A list of BAC clones used to map the 1q breakpoint

A list of BACs used to map the 1q breakpoint, their position within the genome

and their position relative to the breakpoint as determined by FISH. The clones

highlighted in blue are those that flank the breakpoint. The clones highlighted in

blue are those that flank the breakpoint, which is located within band 1g41.

*Figures from Ensembl NCBI 35, July 2004 assembly
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Figure 6.6. Diagram of the area around the 1q breakpoint
Green rectangles represent the BAC clones used for FISH mapping. The
position of the genes relative to the BACs can be seen. The breakpoint falls
within the shaded region between BACs RP4-723P6 (proximal) and RP11-

239122 (distal) and disrupts the USH2A gene.

*Figures from Ensembl NCBI 35, July 2004 assembly
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Figure 6.7. FISH with proximal and distal 1q41 BACs

FISH experiments with BACs around the 1g41 breakpoint. In the top panel,
BAC RP11-723P6 (red) is applied with a BAC that is proximal to the breakpoint
(RP11-22M7 in green). The co-localisation of the signals indicated that RP4-
723P6 is also proximal to the breakpoint. Note, the 3 signals indicated by the
top arrow in the RP4-723P6 image were not present in every cell. However,
many nuclei were difficult to capture and the above nuclei showed the clearest
probe signals after capturing and was therefore included. In the bottom panel,
BAC RP11-239I122 (red) is applied with a chromosome 1q arm specific paint
(green). The BAC co-localises with the small paint domain, indicating that it is
on the translocated part of chromosome 1 (on the der(2)) and is therefore distal
to the breakpoint. 1(N) indicates the domain of the normal chromosome 1 and

the arrows indicate the positions of the signals.



6.3.1.2. Chromosome 2 breakpoint

The breakpoint on chromosome 2 was found to lie in a gap in the contig in
band 2p25.3. The flanking clones were BACs RP11-410L9 and RP11-568H24.

Hybridisations with the BAC between these two clones, RP13-512J5, failed in

numerous FISH experiments and these were not repeated due to a lack of material.

Chromosome Library Clone

Band name name Mb* Result

2ptel GS1 8L3 0.33 Distal to breakpoint

2p25.3 RP11 168K7 2.83 Distal to breakpoint
RP11 352J11 2.23 Distal to breakpoint
RP11 744D24 2.37 Distal to breakpoint
RP11 141G5 Distal to breakpoint
RP11 163G21 273 Distal to breakpoint
RP11 410L9 2.88 Distal to breakpoint
RP13 51245 FAIL
RP11 568H24 3.2 Proximal to breakpoint
RP11 327H5 3.51 Proximal to breakpoint

2p25.2 RP13  868N24 5.2  Proximal to breakpoint
RP11 350H23 5.63 Proximal to breakpoint
RP11 485017 6.51 Proximal to breakpoint

2p25.1 RP11 214N9 9.45  Proximal to breakpoint

2p24.3 RP11 33301 12.57 Proximal to breakpoint

Table 6.2. A list of BAC clones used to map the 2p breakpoint

A list of the BAC clones used for mapping the 2p translocation breakpoint, their

position within the genome and their position relative to the breakpoint as

determined by FISH. The clones highlighted in blue indicate those that flank the

breakpoint, which is located within band 2p25.3. The clone in between these

failed repeatedly in FISH experiments and was therefore excluded.

*Figures from Ensembl NCBI 35, July 2004 assembly
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Figure 6.8. Diagram of the area around the 2p breakpoint
Green rectangles represent the BAC clones used for FISH mapping. The
position of the genes relative to the BACs can be seen. The breakpoint falls
within the shaded region between BACs RP11-410L9 (distal) and RP11-
568H24 (proximal). The breakpoint could not be narrowed further due to the
presence of a gap in the reference sequence in this area, represented by the

red rectangle in the diagram.

*Figures from Ensembl NCBI 35, July 2004 assembly
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Figure 6.9. FISH with proximal and distal 2p BACs
FISH on DAPI stained nuclei using distal 2p BAC RP11-352J11 (green) along
with BACs RP11-410L9 (top panel) and RP11-568H24 (bottom panel). The
arrows indicate the position of the signals. Co-localising signals in the top panel
indicate that BAC RP11-410L9 is distal to the translocation breakpoint, whereas
BAC RP11-568H24 only has one co-localising signal, indicating that the BAC is

proximal. Arrows indicate the position of the signals.



6.3.2. RT-PCR

In order to determine whether Ush2a and Esrrg were expressed in the
developing mouse kidney, RT-PCR was performed on dissected kidneys from mouse
embryos aged 13.5 dpc, 14.5 dpc and adult mouse kidneys. Bands of the expected
size were seen in all stages of kidney tested. The negative reaction, containing no RT
template, showed no bands other than primer dimer. The results show that both
Ush2a and Esrrg are expressed at all stages of kidney development tested. However,

Ush2a is present only at low levels and probably has multiple transcripts.

300 bp >
100 bp >

Ush2a Esrrg

Figure 6.10. Esrrg and Ush2a RT-PCR on mouse embryonic and adult kidneys
RT-PCR on dissected kidneys from mouse embryos aged 13.5 and 14.5 dpc
and adult mice. Expression of Ush2a can be seen in the adult kidney and faintly
in the embryonic kidneys. The multiple bands indicate multiple isoforms. Esrrg
expression can be clearly seen in both embryonic kidney stages and in the adult

kidney. The bands under 100 bp represent primer dimer.



6.3.3. Wholemount RNA In-Situ Hybridisation

To attempt to elucidate the expression pattern of Esrrg throughout
development, wholemount RNA in-situ hybridisations were performed on mouse
embryos from a number of different developmental stages. However, the expression
pattern could not be determined due to a high level of background staining on the

embryos. Due to time constraints, these experiments were not repeated.

6.3.4. Esrrg Antibody Staining

In order to elucidate the expression pattern of the Esrrg protein throughout
embryonic mouse development, antibody staining was performed on paraffin
embedded sections from mouse embryos from 9.5 to 14.5 dpc. All negative controls,
in which no primary Esrrg antibody was added, were clear of any staining on

addition of the detection agents, indicating that the Esrrg signal was specific.

6.3.4.1. Antibody staining on embryonic mouse sections

The expression of Esrrg was seen to alter dynamically during embryonic
development. The expression is summarised in table 6.3. Examples of the staining

can be seen in figure 6.11.
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Table 6.3. Expression of Esrrg through mouse embryogenesis
Esrrg expression as determined by antibody staining. Blue boxes indicate
expression, grey boxes a lack of expression and question marks indicate that
expression could not be determined. Hashed boxes indicate organs that could

not be identified in the developmental stage or the sections available.



Figure 6.11. Esrrg staining on mouse embryo sections
Examples of Esrrg staining on sections from mouse embryos aged 9.5 (A), 10.5
(B), 11.5 (C) and 12.5 dpc (D). Sections are counterstained with eosin (pink)
and signal detected with NBT/BCIP (blue). Expression can be seen in the heart
(H), liver (Li) and the developing lung (Lu). Full details of expression can be
seen in table 6.3. Negative controls (9.5 dpc, E and 12.5 dpc, F) show no blue

signal, indicating that the staining is specific to the Cmkir1 antibody.



6.3.4.2. Esrrg antibody staining on embryonic and neonatal
mouse Kidneys

Antibody staining of embryonic kidneys from 12.5 to 18.5 dpc showed
dynamic developmental expression. At 12.5 dpc, expression appears to be in the
metanephric mesenchyme or the stroma towards the outer edge of the developing
kidney, towards where the capsule will form. As the kidney becomes more
developed, expression can be seen in the capsule (and the adrenal gland) and in the
collecting ducts, formed by branching of the ureteric bud. This expression in and
around the collecting duct continues throughout development and is still visible in
the neonate kidney, with the signal appearing strongest in and around the most
mature collecting ducts located in the pelvis (centre) of the kidney. The collecting
ducts in this region are surrounded by stroma, whereas younger ducts located
towards the outer cortex are not.

The forming nephrons appear negative for Esrrg staining.

6.3.4.3. Esrrg antibody staining on adult mouse kidneys

No expression could be seen in the adult mouse kidney sections examined.

Due to time constraints, this experiment was not repeated.



Figure 6.12. Esrrg antibody staining on 12.5 dpc mouse kidney sections
Kidney sections are counterstained with eosin (pink) and Esrrg is detected with
NBT/BCIP (blue). Signal can be seen in the metanephric mesenchyme or the
stroma towards the outer edge of the forming kidney, where the capsule will

form. The black bar represents 100 pym.



Figure 6.13. Esrrg antibody staining on 13.5 dpc mouse kidney sections
Sections are counterstained with eosin (pink) and Esrrg is detected with
NBT/BCIP (blue). Signal can be seen in the branching ureteric bud (UB) that
subsequently forms the collecting ducts (CD). Expression can also be seen in
the capsule (C) surrounding the kidney. The black bar represents 100 pm and

the hashed boxes indicate the area enlarged in the images below.
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Figure 6.14. Esrrg antibody staining on 14.5 dpc mouse kidney sections
Sections are counterstained with eosin (pink) and Esrrg is detected with
NBT/BCIP (blue). Signal can be seen in the collecting ducts (CD) formed from
the branching ureteric bud and expression is still visible in the capsule (C)
surrounding the kidneys and the adrenal glands (AG). The black bar represents

500 um.



Figure 6.15. Esrrg antibody staining on 15.5 dpc mouse kidney sections
Sections are counterstained with eosin (pink) and Esrrg is detected with
NBT/BCIP (blue). Signal can still be seen in the collecting duct system (CD) and
the capsule (C) surrounding the kidney and adrenal gland (AG). The black line

represents 200 pm.



Figure 6.16. Esrrg antibody staining on 16.5 dpc mouse kidney sections
Sections are counterstained with eosin (pink) and Esrrg is detected with
NBT/BCIP (blue). Esrrg expression can be seen in the collecting ducts (CD) and
the capsule (C) of the kidney. Dashed boxes indicate the enlarged regions seen

in the images below. The black bar represents 500 um.
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Figure 6.17. Esrrg expression in 17.5 and 18.5 dpc mouse kidney sections
Esrrg antibody straining in 17.5 dpc (A-F) and 18.5 dpc (G-L) mouse kidney
sections. Sections are counterstained with eosin (pink) and the Esrrg antibody
is detected with NBT/BCIP (blue). Dashed boxes indicate the enlarged region,
showing signal in and around the more mature collecting ducts located within

the pelvis (centre) of the kidney. The black bars represent 500 um.



Figure 6.18. Esrrg staining on neonate (day 0) mouse kidney sections
Sections are counterstained with eosin (pink) and Esrrg is detected with
NBT/BCIP (blue). The dashed box shows the enlarged region. Esrrg expression
can clearly be seen in and around the more mature collecting ducts located in

the pelvis (centre) of the kidney. The black bar represents 500 pm.
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6.3.4.4. ESRRG antibody staining on control cell lines

In order to determine whether ESRRG was expressed in fibroblasts and, if so,
the subcellular localisation of the protein, antibody staining was performed on
control human fibroblasts. ESRRG was expressed and appeared cytoplasmic and
punctate. The nucleus appeared negative and the negative control, which had no
ESRRG antibody added, was also negative, indicating that staining was specific.

The punctate cytoplasmic staining suggested that the protein may be inside,
or on the membrane of, the peroxisomes. To attempt to confirm this, the ESRRG
antibody was applied in combination with an antibody for catalase, a peroxisome
specific protein. The expression patterns co-localised, indicating that ESRRG was
associated with the peroxisomes (figure 6.19).

To determine whether ESRRG was expressed in other cell lines and if the
expression pattern was the same between types, the experiment was repeated on
human HeLa cells and also on M15 cells, a mouse embryonic kidney cell line
derived from the mesonephros. Both cell types showed a similar punctate staining
pattern (figure 6.20). The expression in both cell types did appear to vary from cell to
cell, with some staining appearing much brighter than others (see table 6.4). The

reason for this is unknown but it is possibly cell cycle related.
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Figure 6.19. ESRRG and catalase antibody staining on a control fibroblast cell

line
ESRRG antibody staining on control fibroblast cell line GM5756. Nuclei are
counterstained with DAPI (blue) and the ESRRG signal detected with an Alexa-
594 antibody (red). The top panel shows that ESRRG is expressed in the
cytoplasm of the cells. The panel below shows the negative experiment in which
the ESRRG antibody was not added, indicating that the expression is specific.
The bottom panel shows staining of the same cell line with both anti-ESRRG
and anti-catalase antibodies. Catalase is a peroxisome specific protein and the
co-localisation of the two signals suggests that ESRRG is located in, or on the

membrane of, the peroxisomes.
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Figure 6.20. ESRRG antibody staining in HeLa and mouse M15 cells.
ESRRG antibody staining in the human HelLa and mouse embryonic kidney
(M15) cell lines. Nuclei are counterstained with DAPI (blue) and ESRRG is
detected with an Alexa-594 anti-rabbit antibody (red). Both cell lines show
expression of ESRRG and show a similar pattern of punctate cytoplasmic
staining as the control fibroblast cell line. The staining intensity appears to vary

dramatically between cells (see table 6.4).



Approximate proportion of cells (%)
Very. b.nght Bright Staining Weak Staining
staining
HelLa 6 12 82
MI15 10 3 87

Table 6.4. ESRRG staining intensities in HeLa and M15 cells
A table showing the relative intensity of ESRRG antibody staining in HeLa and
mouse M15 cells. The proportion of cells with each intensity is shown. As can
be seen, the majority show weak staining, with only a small proportion showing

bright or very bright staining.

6.3.4.5. ESRRG antibody staining on lethal renal adysgenesis cell
lines

In order to determine whether ESRRG is expressed in the lethal renal
adysgenesis and whether the expression pattern is the same as in the control
fibroblast cell lines, antibody staining was performed on five of the six cell lines. The
results showed that there was expression in every cell line tested and that there was
no apparent protein mis-localisation (figure 6.21).

The intensity of the antibody staining was variable from cell to cell (see table

6.5) as in the HeLLa and M15 cells.
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Approximate proportion of cells (%)
Very‘ b.n ght Bright Staining Weak Staining
staiming
T96-2020 5 15 80
T96-2338 8 8 84
T97-1060 7 14 79
T98-2209 10 5 85
T05-0100 8 8 84

Table 6.5. ESRRG staining intensities in lethal adysgenesis cell lines

A table showing the relative intensity of ESRRG antibody staining in the lethal
renal adysgenesis cell lines. The proportion of cells with each intensity is
shown. As can be seen, the majority show weak staining, with only a small
proportion showing bright or very bright staining. This is a similar pattern than

seen in the HeLa and M15 cell lines.
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T96-2020

T96-2338

T97-1060

T98-2209

T05-0100

Figure 6.21. ESRRG antibody staining in five lethal renal adysgenesis cases.
Nuclei are counterstained with DAPI (blue) and ESRRG is detected with an
Alexa-594 anti-rabbit antibody (red). All cell lines show a similar expression
pattern that is comparable to that of the control cell lines, with the majority of
cells showing a weak punctate staining pattern, and others showing bright or

very bright staining. There is no evidence of any protein mis-localisation.



6.3.4.6. Punctate Esrrg staining on embryo sections

In order to confirm that the antibody staining on the paraffin embedded
mouse embryo sections matched the of the cell lines with regards to subcellular
localisation, high magnification images were taken of cells from different regions of
the embryos. Punctate cytoplasmic staining was observed. The expression did alter

between cell types but there was no evidence of nuclear staining observed.

Figure 6.22. Esrrg in paraffin sections at high magnification

Esrrg antibody staining in 12.5 dpc mouse embryo sections at high
magnification. Sections are counterstained with eosin (pink) and signal detected
with NBT/BCIP (blue). Esrrg appears cytoplasmic and punctate, as in the cell
lines, in A) mesenchymal cells from the head/face area and B) cells from the

dermis.



6.3.5. Patient Cohort ESRRG Mutation Screening

6.3.5.1. Cell line FISH analysis

Chromosome preparations from five of the six (cells from T97-1759 were
unavailable) lethal renal adysplasia fibroblast cell lines were screened for
rearrangements by FISH, using BACs which cover the ESRRG gene and also the
breakpoint flanking BACs from chromosome 2p, found in the t(1;2) case. All cell
lines showed two copies of the BACs in apparently the correct positions on the
chromosomes.

Chromosome preparations were unavailable for the familial cell lines.

6.3.5.2. Cell line ESRRG sequencing

Genomic DNA from all fibroblast cell lines and a normal fibroblast control
were screened for mutations in the ESRRG gene by sequencing. Primers were
designed with a minimum of 50 bp of intronic sequence before and after the exon to
ensure that all of the coding region and the splice sites were included and to
accommodate for any poor sequence at the beginning and end of each reaction.
Sequence was obtained via Ensembl (NCBI 35 assembly, June 2004) and all coding
exons were sequenced (exons 4 to 8 and part of exon 9). Introns and the untranslated
regions (UTR) that make up exons 1-3 and the last part of exon 9 were not examined.
No mutations were discovered although two different synonymous single nucleotide
polymorphisms (SNPs) were found in some individuals (see table 6.6.).

All of the individuals carrying SNP rs11572766, an intronic SNP, were

heterozygous for the nucleotide change. All other individuals had the most common



G/G genotype. All but one of the patients were heterozygous for the SNP in exon 8,

rs945453, with only one individual having the ancestral C/C genotype, whilst the

control cell line (GM5756) was T/T.

Exon 9
Exon 4 Exon 5 Exon 6 Exon 7 Exon 8 (245 bp
(416 bp) (117 bp) (111 bp) (162 bp) (270 bp) without
UTR)
T96-2020 |Wild-type Wild-type Wild-type (G/G) Wild-type SNP(’S?I‘.‘)S‘“’:’ Wild-type
; " SNP ; SNP rs945453 :
T96-2338 | Wild-type Wild-type rs11572766 (A/G) Wild-type (CIC) Wild-type
. ’ SNP . SNP rs945453 :
T97-1060 | Wild-type Wild-type rs11572766 (A/G) Wild-type - (€m Wild-type
T97-1759 | Wild-type Wild-type ~Wild-type (G/G) Wild-type SNP{S?I‘})M% Wild-type
; , SNP : SNP rs945453 ,
T98-2209 | Wild-type Wild-type rs11572766 (A/G) Wild-type (CIT) Wild-type
T05-0100 | Wild-type Wild-type Wild-type (G/G) Wild-type SNP('-S%MS:S Wild-type
CRAST |Wild-type Wild-type Wild-type (G/G) Wild-type SNP{S%‘.‘)ME’?' Wild-type
. , SNP : SNP rs945453 |, .
EDPOR |Wild-type Wild-type rs11572766 (A/G) Wild-type () Wild-type
; ; Wild-type s SNP rs945453 ..
REWKI |Wild-type Wild-type (GIG) Wild-type (CIT) Wild-type
‘ : SNP . SNP rs945453 ;
RUFUL | Wild-type Wild-type rs11572766 (A/G) Wild-type (CIT) Wild-type
GM5756 . s Wild-t . " .
(control) |Wild-type Wild-type (‘G’,gi’e Wild-type ~Wild-type (T/T) Wild-type

Table 6.6. Cell line ESRRG sequencing results

A table showing the results obtained from ESRRG sequencing of lethal renal
adysgenesis cell lines, familial renal adysgenesis cell lines and a phenotypically
and karyotypically normal control cell line (GM5756). The top row shows the
exons and their sizes. Two different synonymous SNPs were found in exons 6
and 8 in a number of individuals (one intronic and one coding respectively). The
nucleotides seen at these positions are noted in the table. As can be seen, all
but one of the SNP carriers are heterozygous. Case T96-2338 is homozygous

for the SNP in exon 8 (rs945453). No other nucleotide changes were observed.
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SNP rs11572766:

T96-2020:
T A T A G C A G AT G T 8 7T C T 6 GC T 1
T ACAG ARG AT 6 TG C G G T
T96-2338:
T AC A G C AG ATNTGETCTGE G CT T
' ARCT A G C ARG AT N G T C TG G C

T97-1060:

T A T A G G A B & T G T 5] T B T B G | = I
T RE A G E A G BT GT G T ET GG E T 1
M\/\N\/\/W\/\/\m/v\

T97-1759:
T A C
T A C

G A T
G AT

A G C A G
ARG C A G

id /\/ W\

T98-2209:
T A € A G € A B &T G.7T K T €T & B ©. .. T
THCHGERGRTGTGTW\/T\
T05-0100:
IAQA@J;QE%T@I@TQT@EETTT
1T H & G A G T 6 T G T CT G G CTT
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Figure 6.23. Chromatograms of SNP rs11572766

Chromatograms showing the sequence data in the region of SNP rs11572766
in all 10 renal adysplasia cell lines and one control. The SNP (in the centre of
the sequence) can be seen to be heterozygous (A/G) in five of the cell lines and

wild-type (G/G) in the remaining five and in the control.
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SNP rs945453:
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T97-1759:
C A T C T T C A A A N G A A& A G A G AC C
CAT CCT CAAANTGHRBARRAGR AT GRACLCL

M

T98-2209:
C A T C C T C AA ACG A A AG AG AC C
cﬂrccrcnnnccmﬂcc
T05-0100:
C AT CC T C A& A ACG A A AG AG ACC

G- R'T E &

T C ARARRACG ARAR ARG AG AC C
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CRAST:

EDPOR:
C A T E E
C AT CTC

VNN AN I

REWKI:
g A T € 6 T B AN A B G A A AG AG 8 C C
C AT CTC TC AAACG ARARAG ARG RARC C
RUFUL:
C A T C C T C A & A C G A & A G A G AC C
C ATCT C TCARAAC G AR AG AG AL C
GMS5756 (control):
C A T E L A A A A G A

A T G G__ 4 g [
C ATCCTCT TC AARATG AARARG AG AC C

AAAAAA AN NN NS,

Figure 6.24. Chromatograms of SNP rs945453

Chromatograms showing the sequence data in the region of SNP rs945453 in all 10
renal adysplasia cell lines and one control. The SNP (in the centre of the sequence)
can be seen to be heterozygous (C/T) in nine of the cell lines, homozygous (C/C) in

one and wild-type (T/T) in the control.



6.3.5.3. dHPLC screening of ESRRG

Denaturing high performance liquid chromatography (dHPLC) was
performed by Dr Kathy Williamson (MRC Human Genetics Unit) on DNA from all
10 renal adysplasia cell lines The SNPs found via sequencing were confirmed and no

further nucleotide changes were found in ESRRG (data not shown).

6.3.5.4. Tissue section ESRRG sequencing

DNA was extracted from the tissue sections with the intention of sequencing
the ESRRG gene. However, the DNA appeared degraded and the PCR products

required for sequencing would not amplify.



6.4. Discussion

6.4.1. The Chromosome 2 Breakpoint Lies Within a Gap in the

Contig

The translocation breakpoint on chromosome 2 appears to lie within a gap in

the contig in a relatively gene poor area. There is a small cluster of genes to one side

of the breakpoint but none appear to be directly interrupted and, on the basis of their

functional annotation, none were considered to be good candidates for the kidney

phenotype. A list of these genes is available in table 6.7.

Gene Conserv.a e Description/ Function Prot.eln type/
(nucleotide) family
Rat - 82 % Endonuclease that degrades Rk
RNASEHI  Mouse - 81 % RNA of RNA-DNA hybrids Famil
Xenopus - 76 %  specifically 4
Mouse — 90 % Encodes ribosomal protein that =~ S7E family of
RPS7 Rat — 88 % is a component of the 40s ribosomal
Xenopus — 83 %  subunit proteins
Mouse — 84 %
i
Xenopus — 75 % 2 = P Y
TMSL2 Unknown May l:?e 11}V01ved o cytosk.eletal Unknown
organisation and biogenesis
RE-82% | e ofurolytic
ALLC Mouse — 81 % i ; t Allantoicase
" pathway enzyme in fish and
Xenopus — 74 % iy
amphibians

Table 6.7. A summary of the genes around the chromosome 2 breakpoint

proteins they encode.

A table summarising the genes around the chromosome 2p breakpoint and the
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6.4.2. The Chromosome 1 Breakpoint Directly Interrupts the

USH2A Gene

The breakpoint on chromosome 1 lies in band 1g41 and falls between BACs
RP4-723P6 and RP11-239122 and therefore directly interrupts the USH2A4 gene.
USH2A is the gene responsible for Usher syndrome type 2A (OMIM 276901), an
autosomal recessive disorder characterised by adolescent onset retinitis pigmentosa
and moderate to severe congenital deafness.

USH2A was not considered to be a good candidate gene for the bilateral renal
adysplasia phenotype on the basis of mutations causing a known Mendelian disorder,
Usher syndrome type 2A, and the previous finding that Ush2a is not expressed in the
mouse or human kidney [522;523], although expression in the adult kidney was seen
via RT-PCR. The most convincing evidence against the gene comes from a knockout
mouse that has recently been created. This results in fully viable mice that have
progressive blindness but no other detectable abnormalities by two years of age (Dr.
Dominic Cosgrave, Personal communication). It is possible there could be yet
unknown USH2A isoform-specific effects or alternative promoters that may be vital
for renal development in spite of the apparently contradictory null phenotype.
However, there is no evidence for this in mice or humans and it was decided to
concentrate on ESRRG, given the expression data. The entire USH2A4 gene will be

sequenced in the future.



6.4.3. ESRRG Lies close to the Chromosome 1 Breakpoint

The only other gene in the region of the chromosome 1 breakpoint is the
orphan nuclear steroid hormone receptor, estrogen-related receptor gamma (ESRRG).
The 1.5 Mb region only contains these two functional genes and is conserved down

to fugu (Takifugu rubripes).

Conservation Protein type/

Gene (nucleotide) Description/ Function family
| May be important in
Rat — 79 % homeostasis of inner ear and
k24 Mouse — 79 % retina. Mutations in USH2A I
cause Usher syndrome type 2A
Orphan receptor. Binds to Nuclear
ESRRG Rat - 91 % estrogen response elements and = hormone
Mouse — 92 % regulates reporter genes receptor
controlled by them family

Table 6.8. A summary of the genes around the chromosome 1 breakpoint
A table summarising the genes around the chromosome 1q breakpoint and the

proteins they encode.

6.4.3.1. ESRRG encodes an orphan nuclear receptor

ESRRG, also known as ERRy or ERR3, was molecularly cloned on the basis
of sequence similarity to other nuclear receptors and was found to be expressed in a
number of adult and foetal tissues, including heart, kidney, brain and skeletal muscle
[524]. ESRRG encodes a nuclear receptor for which no endogenous ligand is known

(an orphan receptor), although there is evidence to show that the transcriptional
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activity of the receptor does not require ligand binding [525]. ESRRG binds, via the
DNA binding domain, to estrogen response elements (EREs) and estrogen related
receptor response elements (ERREs) and regulates the expression of genes driven by

these [526].

6.4.3.2. Esrrg is expressed throughout mouse embryonic kidney
development

Esrrg is expressed through the embryonic development of the mouse kidney.
This expression begins in the metanephric mesenchyme or stroma that surrounds the
invading ureteric bud and that which will go on to form the capsule of the kidney.
The expression is dynamic and becomes more collecting duct specific as
development continues, with expression in the capsule appearing to diminish by 17.5
dpc. As the kidney matures, the expression appears to be stronger in and around the
more mature collecting ducts, located in the kidney pelvis. The collecting ducts in
this region are surrounded by stroma, whereas younger ducts located towards the
outer cortex are not. Expression is also seen in the ureter.

Ideally, co-localisation studies with positive control antibodies for the
relevant tissues would have been performed in order to confirm the localisation of
the Esrrg signal. However, due to time constraints, these were not possible.

No expression was observed in antibody stained adult kidney sections
although strong expression was seen in the adult tissue via RT-PCR. As expression

appears to be restricted to the kidney pelvis in the neonate kidneys, it is possible that



all expression sites in the adult tissue were excluded in the tissue sections examined.

The staining experiment was not repeated due to time constraints.

6.4.3.3. ESRRG may play a role in branching or ductogenesis

The expression of Esrrg in the ureteric bud and, subsequently, the collecting
ducts and the stroma suggests that ESRRG may play a role in branching of the bud or
in the maturation of the collecting ducts. This hypothesis is strengthened by the
expression of Esrrg in the liver and the lung (figure 6.7), which employ branching
mechanisms similar to that of the kidney. Expression was also seen in the stomach
and the skin, both of which contain branched exocrine glands, namely the acid
producing gastric glands and the sebaceous and sweat glands of the skin. For normal
branching to occur in the kidney, the ureteric bud requires interactions with both the
metanephric mesenchyme and the stroma. It is thought that the stroma situated
around the collecting ducts, the medullary stroma, releases growth, differentiation
and transcription factors such as Foxdl (or BF-2) [527] and Fibroblast growth factor
7 (FGF-7 or KGF) [528], required for proper branching morphogenesis. The
presence of Esrrg in the stroma and the ducts themselves suggests that it may also be

involved in this process.

6.4.3.4. Mutation screening did not reveal any ESRRG mutations

Comprehensive mutation screening in six lethal and four familial dominant

renal adysplasia cases did not reveal any mutations in the ESRRG coding region.



Two synonymous SNPs, one intronic and one coding, were found in the patients
screened for ESRRG mutations. SNP rs11572766 is intronic and approximately 24 %
of the population are thought to be heterozygous, with 75 % having the G/G
genotype and 1 % having A/A. SNP rs 945453 is located within exon 8 of ESRRG
and approximately 42 % of individuals are heterozygous, with 40 % having the T/T
phenotype and 18 % having C/C, although these figures vary greatly between
populations. Within European populations tested, the proportion of C/C can be as
high as 37 % with C/T being around 58 %. The ancestral allele at this location is C
(all SNP information from NCBI dbSNP, build 125, 2005,
http://www.ncbi.nlm.nih.gov/SNP).

All of the individuals carrying SNP rs11572766, the intronic SNP, were
heterozygous for the nucleotide change. All other individuals had the most common
G/G genotype. All but one of the patients were heterozygous for the SNP in exon 8,
rs945453, with only one individual having the ancestral C/C genotype, whilst the
control cell line (GM5756) was T/T. There does appear to be an over-representation
of heterozygous individuals for both SNPs, but especially the coding SNP in exon 8.
However, as only one control cell line was sequenced, no conclusions can be drawn
from this.

Although these SNPs do not result in an amino acid change, it cannot be
confirmed that they have no effect as synonymous SNPs have been shown to affect
mRNA stability and folding [529;530] and could also have an effect on splicing. The
possible role of these SNPs in the phenotype is not investigated further here.

The lack of any mutations in the patients screened is perhaps not surprising

due to the small number of cases sampled. It is hoped that screening of further cases
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will result in mutations being discovered and this will be done as soon as cases
become available. The nucleotides present at the SNP positions will also be noted in
these cases and further normal cases will be sequenced to determine whether the

over-representation of heterozygotes in the affected individuals is a real finding.

6.4.3.5. ESRRG appears to be peroxisome specific

Antibody staining using anti-ESRRG and anti-catalase (a peroxisomal
protein) in fibroblasts produced co-localising signals, suggesting that ESRRG is
located in, or on the membrane of, the peroxisomes. Peroxisomes are involved in
lipid metabolism and hydrogen peroxide detoxification but also play a role in
development [531]. Signaling lipids released by the peroxisomes bind and activate
nuclear receptors such as retinoic acid receptors and peroxisome proliferator-
activated receptors (PPARs) [532], both of which are nuclear hormone receptors, as
is ESRRG. It is therefore entirely plausible that the endogenous ligand of ESRRG is
a product of peroxisomal metabolism and that the location of the protein on, or in,
the peroxisomes, reflects this.

The association of ESRRG with the peroxisomes is also interesting as
patients with Zellweger syndrome (OMIM 214100), a peroxisome biogenesis
disorder, have renal cysts, suggesting that disruption of ESRRG may also play a role
in cyst formation. Due to time constraints, further investigations into this could not
be performed but experiments to determine whether ESRRG has a role in renal cyst
formation, by knocking down the RNA in cultured mouse kidneys, are in the process

of development (Prof. Nicholas Hastie’s group, MRC Human Genetics Unit).



6.4.3.6. Creation of an ESRRG mutant mouse model

In order to help elucidate the role of ESRRG in kidney development, a mutant
mouse model is currently in the process of being created (Prof. Nicholas Hastie’s
group, MRC Human Genetics Unit). This should allow determination of the role and
expression of ESRRG throughout development and help determine whether
disruption of the gene would be sufficient to cause the severe kidney phenotype seen

in the translocation case.

6.4.3.7. ESRRG is a good candidate for the bilateral renal
adysplasia phenotype

The location of the ESRRG gene in relation to the translocation breakpoint
and the expression pattern in the developing mouse kidney make ESRRG a very good
candidate for the bilateral renal adysplasia phenotype seen in the translocation case.
The presence of haemorrhagic masses and undifferentiated mesenchyme in place of
kidneys suggests that the causative event occurred very early in kidney development.
ESRRG is expressed in the metanephric mesenchyme or stroma and the ureteric bud
and disruption of this expression, and therefore any subsequent pathways, could be
supposed to be the cause of the severe kidney phenotype. The mutant mouse model
and further mutation screening should help to elucidate this and screening of further

bilateral renal adysgenesis cases will hopefully reveal causative mutations.



7: Conclusions

7.1. DBCRs are an Important Tool in the Identification

of Disease Genes

Disease-associated balanced chromosomal rearrangements, predominantly
inversions or translocations, have proved to be very important in disease gene and
loci identification and are continuing to prove their worth. They have been
instrumental in the identification of causative genes for many disorders,
predominantly those with dominant or X-linked inheritance but also, more recently,
for an autosomal recessive disorder.

The process of mapping DBCRs with the aim of identifying disease genes or
loci does, however, have its disadvantages. The hypothesis that the rearrangement
directly interrupts a dosage sensitive gene, thereby causing the phenotype, does not
always prove correct. The breakpoint may occur some distance from the causative
gene, causing a position effect, or may interrupt one gene yet have an effect on
another, thereby implicating the wrong gene in the disorder. The rearrangement may
also have no discernable effect, with the individual having a causative mutation in
another gene or genes, totally unrelated to the DBCR.

In spite of these disadvantages, the presence of a DBCR in combination with
a phenotype can provide vital clues to disease loci and the potential to identify the
causative gene or genes. The presence of more than one DBCR with the same
phenotype and one or more similar breakpoints, increases the chances of the DBCR

being a causative, rather than a coincidental, event. This is also true for DBCRs in



which there is other evidence, such as linkage studies or deletion map data, that
implicate one of the rearrangement breakpoints.

The mapping of DBCRs remains, therefore, an effective method for the
identification of disease loci and phenotype causing genes, especially when used in
combination with other evidence sources and DBCRs should continue to benefit

human genetic research.

7.2. The DBCR Database - an Invaluable Tool for the

Study of DBCRs

A major disadvantage to anyone wishing to study DBCRs is the fact that only
a small number of DBCRs are actually reported in the literature. Only those that are
considered to be interesting cases are published, meaning that many cases are
inaccessible in individual laboratory archives. Even those that have been published
can be difficult to identify, involving numerous, time consuming searches.
Databases, such as the Mendelian Cytogenetics Network database (MDNdb,
http://www.mcndb.org/), have attempted to increase the ascertainment of cases.
However, at the time of initiating the DBCR database, the MCNdb had been offline
for some time with no indication of becoming re-accessible.

Therefore, to help redress the problem, a DBCR database was created. This
easily accessible, regularly updated, central resource allows easy searching for
similar cases, for example in phenotype or chromosomal abnormality. The data

contained covers the phenotype, the rearrangement and each breakpoint individually
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and in detail. Each case is also hyperlinked to the original data and to OMIM, where
applicable, so that references and phenotypic data can be easily obtained.

The database contains a large number of cases (919 at the time of writing)
and is continually being updated as new cases are identified. It is currently in the
process of being converted to a web-based format to allow open access to the data
and should shortly be available through the research pages of Dr. David FitzPatrick,
via the MRC Human Genetics Unit website
(http://www.hgu.mrc.ac.uk/Research/Fitzpatrick). Although the initial compilation of
the database was time consuming, the maintenance, involving the identification of
new cases and their subsequent entry, is quick and simple. Automatic literature
searches have been set up through the PubCrawler web service
(http://pubcrawler.gen.tcd.ie/about.html) and there are generally only a few new
DBCR cases appearing in the literature each week. The maintenance of the database
is being jointly undertaken by Louise Harewood and Dr. David FitzPatrick (MRC
Human Genetics Unit).

The DBCR database should prove to be an essential tool for anybody wishing
to identify or study DBCRs and will become more so as it continues to expand and

be updated.



7.3. FISH on Nuclei from Paraffin Embedded Tissue
allows the Study of Previously Impossible Cases

Ascertainment of an individual DBCR case does not necessarily mean that it
will be available for study. Many cases, especially those more than a few years old,
do not have viable cell-lines available, fixed cell suspensions are often only kept for
a short time, especially in diagnostic labs, and cell lines are not always viable after
recovery from liquid nitrogen or deep freezing. This leads to a subset of potentially
interesting cases being unavailable for study. This thesis presents a technique that
will enable the mapping of rearrangement breakpoints in cases with only archival
paraffin embedded patient material available.

The adaptation of an existing fluorescent in-situ hybridisation (FISH)
protocol allowed the mapping of these cases to a similar resolution to that on fixed
cell suspensions. This adaptation involved the addition of only a few steps, which do
not add considerably to the overall protocol time, allowing cases to be studied in a
similar timescale to those on other materials. Although some optimisation is required
for each sample, the protocol has proved to be robust on many ages of tissue, from a
few years old to over 15 years old, and on many different tissue types. The protocol
has since been given, or taught, to scientists from other laboratories and has proved
to be successful for numerous different types of home-grown and commercial FISH
probes, from chromosome specific paints, to BACs, to probes derived from 10 kb
PCR products.

The method of FISH on nuclei dissociated from archival paraffin embedded

tissue sections provides the ability to study a much larger number of DBCR cases



than previously possible and should result in the identification of many more disease
genes or loci. It has already been utilised, in this thesis, to map the breakpoints in two
translocation cases and has resulted in the identification of good candidate genes for

each phenotype.

7.4. The Study of Two DBCR Cases Identifies Good

Candidate Genes for each Phenotype

The cases studied using the adapted FISH method had very different
phenotypes, namely upper limb peromelia and lower limb phocomelia with a
t(2;12)(p25.1;q24.1) and bilateral renal adysplasia with a t(1;2)(q41;p25.3). Both
cases had supporting evidence for one of the breakpoints with genes involved in limb
development being located at 12q24 and a locus for kidney development being found
on 1q via the human deletion map. However, the cases could not be mapped past the
original Giemsa-banded cytogenetic level due to the fact that neither had fixed cell
suspensions or viable material available. FISH on nuclei dissociated from paraffin
embedded tissue sections allowed the previously impossible mapping of the
breakpoints in these cases.

One of the breakpoints in the renal adysplasia case was found to directly
disrupt a large gene, USH2A, mutations in which have been shown to cause Usher
syndrome type 2A, a disorder characterised by retinal degradation and hearing loss
and not associated with kidney abnormalities. Although this gene was directly
interrupted, it was not thought to be a good candidate for the kidney phenotype on

the basis of mutations causing a known Mendelian disorder and from a mouse



knockout model, which had apparently normal kidneys. Although it cannot be totally
excluded, it does not seem a likely candidate.

Similarly, in the limb abnormality case, the chromosome 2 breakpoint may
possibly interrupt the ROCK?2 gene. A mouse with a homozygous targeted disruption
of this gene showed only very minor toe abnormalities and not the dramatic limb
abnormalities that we would expect if disruption of ROCK?2 was responsible for the
phenotype in the peromelia/phocomelia case. Again, this gene could not be totally
excluded but seemed an unlikely candidate.

Although all of the genes in the region of the translocation breakpoints have
to be considered as candidates due to their location, analysis of their functional
annotation can allow the formation of a hierarchy of candidacy.

The genes identified as the most likely candidates for the two phenotypes
were located in the region of the translocation breakpoints and although one
(CMKLR1I) may have been disrupted, the other, ESRRG, definitely was not. These
genes were considered to be good candidates on their position, their functional
annotation and the expression of the RNA and protein in, amongst others, the
relevant locations: namely Esrrg expression in the developing kidneys and CmklIrl
expression in the limb buds.

However, mutation screening of a small number of phenotypically similar
individuals failed to reveal any mutations in these genes and due to the nature of the
material available in the proband cases, expression analysis was not possible. It is
hoped that further mutation screening and the production of mouse models will
provide some insight as to whether disruption of these genes are in fact responsible

for the phenotypes observed.



At the very least, the identification of CMKLRI and ESRRG as candidate
genes for peromelia/phocomelia and bilateral renal adysplasia (respectively) and the
subsequent expression analysis has led to the study of new developmental pathways
involved in both limb and kidney development. Further studies into the
developmental roles of these genes has the potential to confirm or redefine the

processes involved in the formation of these organs.

7.5. The Study of Two DBCRs has Initiated the Study
of New Developmental Pathways

FISH on nuclei dissociated from paraffin embedded tissue sections has
allowed the study of two previously impossible cases and identified two good
candidate genes for very different phenotypes. The identification of these genes has
opened up the study of new, previously unexplored developmental pathways and
provided new insights into both limb and kidney development.

Of particular interest is the role of CMKLR! in limb development and the
potential requirement of the muscle precursor cells in the development of not only
the muscle, but also the bones and digits of the limb. The identification of CMKLR1
as a candidate gene for phocomelia/peromelia has implicated this subset of cells, and
the associated signalling events, in the outgrowth and patterning of the developing
limb. Should this theory prove correct, this represents the identification of a novel
mechanism for limb formation.

Although the role of CMKLRI in limb development may be of interest to

developmental biologists, the identification of a candidate gene for the



phocomelia/peromelia phenotype is perhaps not as important as the identification of
one for bilateral renal adysplasia. The limb phenotype seen in the test case is
extremely rare and not necessarily fatal, whereas bilateral renal adysplasia is much
more common, whether as a sole abnormality or as a part of a syndrome, and is
always lethal. The identification of the causative gene and investigation into the
processes and mechanisms in which it is involved, may also help to identify other
genes involved in these mechanisms, which are mutated in similar phenotypes.
Ultimately, the understanding of the disorder could potentially result in a treatment,
or prevention, being found.

Therefore, although the postulation of CMKLRI and ESRRG as candidate
genes for the two phenotypes studied in this thesis are of interest in the development
field, they could also have much more of an impact in human genetics if they do
prove to be the causative genes.

Studies to further understand the role of these genes in development and to
attempt to prove their causality on the phenotypes are currently underway, or are

planned for the near future. Some of the ongoing/future work is outlined below.

7.5.1. Mouse Models are Under Construction

Mice that are deficient for the candidate genes identified via DBCR mapping
are currently under development. Although animal models do not always accurately
represent the situation seen in humans, the phenotypes caused by the disruption of
one copy of the gene in these cases are so severe that some effect is almost certain to
be seen in any mouse model created, assuming that they are viable to an appropriate

stage. The disadvantage of mouse models is that they are very time consuming and



laborious to produce and there is always the chance that the loss of the gene will
prove to be lethal at an early embryonic, or post-implantation, stage, or that the
heterozygous mice will be infertile and will not show a phenotype.

However, if successful, the mouse models should answer a large number of
questions about the roles of these genes in development and elucidate whether the
disruption of one copy of the gene is sufficient to cause the phenotypes seen in the

translocation cases.

7.5.2. RNAi on Cultured Tissue

Another method that can be used to determine the effect of gene disruption is
to knock down the RNA, and therefore protein levels in cultures of the relevant
tissue. Kidneys or torsos, complete with limb buds, can be dissected from mouse
embryos and cultured with the appropriate RNAI constructs. By comparing these
cultures with controls, the effect on growth and differentiation of the tissue should be
apparent. RNAI against Esrrg in kidney cultures would hopefully result in a lack of
differentiation of the metanephric mesenchyme and an absence of ureteric bud
branching. Renal cysts may also be apparent in later kidneys, as in patients with
Zellweger syndrome. RNAI against Cmklrl1 in limb bud cultures would be hoped to
result in significantly shorter limbs due to errors in limb bud outgrowth, possibly due
to disruption of the AER. Patterning of the limb may also be affected.

RNAI does, however, have disadvantages. Dissected tissues can prove
difficult to culture or may differentiate differently than they would in vivo. The tissue
can also prove difficult to penetrate, meaning that only the exterior structures of the

organ are affected, which can be problematic if there is expression in interior regions.



This method could be potentially very interesting and quick but may require a

considerable amount of optimisation.

7.5.3. Embryonic Stem Cell Studies

The creation of mice deficient for candidate genes can be very time
consuming and many problems can be encountered along the way. After the deletion
construct is made, it is injected into embryonic stem (ES) cells, which are
subsequently used to generate the mice. These ES cells can also be used to determine
the effect of the loss of the candidate gene by examining their differentiation
properties. As ES cells are pluripotent, they can differentiate into any cell type,
including kidney and muscle cells, on stimulation by the relevant signal. By
attempting to differentiate the Esrrg deficient cells along kidney associated lineages
and the Cmklrl deficient cells down limb associated lineages, the effect of the loss of
the gene should become apparent. Ideally, differentiation into the relevant cell types
will be impaired, proving the role of the gene in that pathway.

This method could provide quick, easy answers about the developmental role
of the two candidate genes and provide a good indication of their function in

different cell lineages.

7.5.4. Further Mutation Screening

Although good candidate genes have been identified for each phenotype
studied, these genes cannot be unambiguously proven to cause the phenotypes in the

study cases, as expression studies cannot be performed on the material available.



Although animal models may shed some light on the developmental role of these
genes and the effect of their disruption, the most compelling evidence will come
from the identification of mutations in phenotypically similar individuals. This will
be problematic in the case of CMKLR]I as the phocomelia/peromelia phenotype is
extremely rare and no further samples may become available. Bilateral renal
adysplasia on the other hand is relatively common and it is hoped that further

samples will soon become available for mutation screening.
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