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Abstract 

To achieve high speeds with legs, a hybrid leg mechanism, which has 

been named Buraq, is designed. Buraq is actuated by a motor driven crank 

in longitudinal direction, and by a hydraulic ram in vertical direction. The 

crank radius and the phase can be adjusted during operation to allow legs 

driven by the same shaft to change phase and longitudinal stroke, so that 

gait shift and steering can take place. Also a force analysis of the leg 

mechanism has shown that, when the vehicle is running, the Buraq legs can 

act like the spring of a bouncing mass-spring model. Using the method of 

energy storage and retrieval, it should be possible to travel at high speeds 

by saving considerable energy. 
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1.1 Introduction 

A vehicle which can adopt itself to various terrain conditions has great 

importance from a military-logistic support point of view. Wheeled and 

tracked vehicles have been used when terrain conditions are convenient. In 

case of rough terrain conditions, animals such as mules and horses are 

used. Using legged vehicles is proposed as an alternative to using animals. 

This research investigates some new methods which can enable the 

present level of science approach towards building an artificial horse. 

1.2 Why a Legged Vehicle? 

1.2.1 Problems of Traditional Oft-road Vehicles 

Traditional off-road vehicles which are those with wheels and tracks face 

various problems during operation. These problems can be summarised as 

follows: 

Problems in operating in paddy fields - In military and agricultural 

applications sometimes off-road vehicles are expected to operate on paddy 

fields where the surface conditions are very difficult for locomotion due to the 

water content of the soil. In paddy fields four-wheel-drive and tracked 

vehicles become handicapped (Tanaka 1984). The nominal pressure 

between the ground and the vehicle should not be more than a few hundred 

kPa, otherwise the vehicle cannot operate on such a soft ground (Larminie 

1988). 

Problems of travelling on sand - Off-road vehicles require low pressure 

distribution on the ground contact of the wheel to travel on sand. Otherwise 

the wheels either spin or the motor is stalled from the lack of torque (Dwyer 

1984), (Kemp 1990). An example in relation to this problem can be seen in 

both photographs 1.1 and 1.2 (Moorehead 1965). 

Problems from environmental point of view - Tracked and wheeled 

vehicles interact very vigorously with the terrain, and more importantly they 

leave a continuous track which induces erosion and reduces vegetation 

recovery (Abele et al 1984), (Baldwin and Stoddard 1973), (Braunack 1986), 
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(Coates 1981), (McGhee, 1981). 

1.2.2 Comparison of a Legged Vehicle with Wheeled and 

Tracked Ones 

The first question that comes to mind is why legs rather than wheels or 

tracks? Is not the symbol of the modern society wheels? As it was shown in 

the previous section, wheeled and tracked vehicles suffer from mobility and 

environmental factors. A legged vehicle can remedy the problems about 

wheeled and tracked vehicles. The studies show the following facts. 

First of all more than half of the landscape is inaccessible by wheeled 

vehicles. And if it is carefully examined, it can be seen that highway 

technology is the backbone of wheeled transportation. However, for a 

legged vehicle there is no such dependence (McGhee 1981). 

Second, from the mobility point of view, there is a fundamental difference 

between the ways a traditional off-road vehicle and a legged vehicle interact 

with the terrain. When a wheel is put on soft soil it creates a hole that 

continuously it has to climb out from during its motion. That is a waste of 

energy. Whereas the working principle of a legged vehicle is different, and 

that wasted energy can be saved. A leg, unlike a wheel or a track, does not 

push the soil forward, but backward, and the depression caused by the leg 

helps the vehicle to move forward since the foot pushes towards the ground 

during locomotion unlike a wheel or a track which depend on friction of the 

surface (McGhee 1981). Hence the mobility of a legged vehicle in paddy 

fields and on sand is quite high compared to wheeled and tracked off-road 

vehicles. Animals use %10 as much energy as wheeled or tracked vehicles 

over rough terrain (Song et al 1981). 

Third, a wheeled vehicle definitely needs gravity force to be able to roll 

without slippage on any surface. In space applications, where human 

labour cost is tremendously expensive, wheeled vehicles cannot be used 

due to lack of gravity. However a legged vehicle moves by pushing the 

surface, that way there is a potential for legged vehicles in future space 
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applications (McGhee 1981). 

Fourth, for military logistic support legged vehicles are much more 

preferable than stubborn mules or wheeled vehicles (McGhee 1981). 

Fifth, the manoeuvrability of a.wheeled vehicle on uneven ground is very 

poor compared to a legged vehicle due to the suspension function of the 

legs. 

Sixth, when a wheeled vehicle travels on uneven ground the body sways 

excessively. However a legged vehicle can move on the same ground 

without swaying, because of active function of its legs. Some work 

machines are designed to have the same active function to adapt to terrain 

variations. However, comparing to a legged vehicle, this adaptability is 

relatively small. 

Seventh, from the environmental point of view, the wheeled vehicles 

interact more vigorously with soil than the legged vehicles, and they leave a 

continuous track inducing erosion. The legs leave discrete foot prints on the 

terrain unlike wheeled or tracked off-road vehicles. When the damage 

caused by hundreds of thousands of caribou, which are quite large animals, 

can heal over within a year, the damage caused by a single passage of a 

caterpillar tractor on the same area may take up to 100 years to heal, and it 

may not heal at all (McGhee 1981). 

There can be many more advantages of legged vehicles that are not 

mentioned here, however, on level and hard surfaces the wheeled vehicles 

are ideal. This disadvantage of the legged vehicle can be solved by adding 

wheels to the system to be used as an additional operational mode of the 

vehicle. In fact, Titan Ill is an example to such a hybrid type legged vehicle 

(Hirose et at 1984). 

1.3 What is a Legged Vehicle? 

A legged vehicle is a conveyance with the ability to move on its legs for a 

specified purpose such as transportation of goods and passengers on land, 

patrolling an area for safety reasons, etc. Further definitions and 
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specifications about legged vehicles are given in the following sub-sections. 

1.3.1 Definitions 

Support Period: The time during which the foot supports the vehicle 

body through ground contact. 

Transfer Period: The time dunng which the foot travels in the air. 

Leg Cycle Time: The time spent to complete a support and a transfer 

Duty Factor: The ratio of the support period to the leg cycle time. 

Leg Stroke: Relative disposition of the foot with respect to the body. 

Froude Number: A non-dimensional number which is used to 

compare dynamic systems. It is expressed as u21gh where u is the speed 

at a particular time, h is the characteristic length, and 	g is the gravitational 

acceleration. In case of a mammal, h refers to the distance between the 

ground and the hip joint while the foot is supporting. 

Gait: Set of leg motions which help a legged system to move. A gait is 

called pe,iodlc (or regular) when all legs repeats the same pattern of states 

at the same leg cycle times (McKerrow 1990). 

Support Pattern: A two dimensional point set in a horizontal plane 

which is a polygon formed by the vertical projection of all foot points during 

support period (Song and Waldron 1987 (b)). 

Statically Stable Locomotion: A legged system is said to be 

adopting statically stable legged locomotion when its support pattern has at 

least three corners at all times. 

Dynamically Stable Locomotion: A legged system is said to be 

adopting dynamically stable legged locomotion when its support pattern is a 

line, a point or does not exist at any time during locomotion. 

Hybrid Type of Locomotion: A legged vehicle is said to be adopting 

a hybrid type of locomotion when both statically and dynamically stable 

locomotion are adopted interchangeably. For example, most mammals use 

statically stable gaits while walking, and they use dynamically stable gaits 
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during running. 

Relative Phase: When a periodic gait is adopted by a legged vehicle, 

all the legs have the same leg cycle time regardless of the value of the duty 

factor. Let a leg cycle be assumed to take place between time 0 and time 1. 

If a particular foot placement on the ground is taken as a reference with the 

relative phase value of 0, then all the other foot placements have to take 

relative phase values between 0 and 1. (Alexander 1984(a)) explains the 

use of a similar representation as beneficial because "ft avoids making gaits 

that are mirror images of each other seem grossly different." See figure 1.1 

for diagram of quadruped running gaits showing typical relative phases of 

the feet of a horse. The adapted figure is reproduced in a different format 

from (Alexander 1984(a)). 

Geometric Work: Geometric work is a factor that effects the 

mechanical efficiency of a legged vehicle (Waldron and Kinzel 1981). The 

studies done by Waldron and Kinzel show that low efficiencies of legged 

vehicles are largely due to the actuators "acting as brakes"; that is they are 

driven backwards. Geometric work is further explained in figure 1.2. It can 

be observed that early in the support period the torque generated by the 

actuator and the angular velocity of the joint are both in the same direction. 

Therefore the work done by the actuator is positive. Whereas later in the 

support period the actuator torque direction is opposite to that of angular 

velocity. In that case there is a negative work done, and the other actuators 

have to compensate for that energy lost. The energy converted into heat 

energy during this cycle is called geometric work. 

This phenomenon occurs when each joint is driven by a separate 

actuator. Therefore the suggestion of Waldron and Kinzel to minimise the 

geometric work is to operate actuators across more than one joint. 

Specific Resistance: Specific resistance of a legged vehicle is a 

non-dimensional value through which the performance of a legged vehicle 

can be evaluated. It is defined as the ratio of (the input power to the vehicle) 

to (the product of vehicle speed and total weight) (Todd 1985). The higher 
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the value of the specific resistance value, the worse the performance of a 

legged vehicle. 

Virtual Legs: This concept is developed by Dr. Raibert (Raibert, p92 

1986 (a)) to ease the control task. The leg pairs with the same relative 

phases are defined as virtual legs. For example, looking at figure 1.1, it can 

be seen that in cases of trot, pace and bound, virtual leg concept can be 

applied to the leg pairs with the same relative phase values. In case of 

pronk during which all legs act together with zero relative phase, 

theoretically, virtual leg concept can even be used for four legs. That way, 

the total number of legs are reduced from four to two and to even one in 

case of pronk. The concept eases the control and analysis of multi-legged 

vehicles. 

1.3.2 Specifications 

1.3.2.1 Terrain and Performance Characteristics 

Terrain characteristics are predicted according to the physical 

environment in which the vehicle operates. Since the environment may vary 

for various applications, these characteristics will change a great deal from 

one design to another. For example a legged vehicle designed to search for 

radiation leakage has to be able to adapt itself to various obstacles and 

gradients. On the other hand, a legged vehicle designed to act as a means 

of transport -which is the ultimate purpose of this research-, has a choice 

about the terrain that it wants to follow. Therefore it does not have to deal 

with a terrain with many obstacles. 

Performance characteristics are predicted according to the desired 

locomotion response of a legged vehicle. The performance characteristics 

are closely related to terrain characteristics. A legged vehicle searching for 

radiation leakage has to travel at low speeds since searching requires low 

speed. Also it is practically impossible to travel at high speeds due to too 

many obstacles. On the other hand, a legged vehicle acting as a means of 

transport has to travel at high speeds because the time is always an 
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important factor especially in transportation. 

A recent study done by R.A.Bryson (1988) defines tactical mobility for a 

battle tank as shown in figure 1.3. As the figure shows, tactical mobility 

covers terrain and performance characteristics. These charactenstics can 

be applied to any off-road vehicle such as 4WD's, agricultural vehicles, etc. 

However some vehicles perform better than others. A battle tank deals with 

obstacles better than any other off-road vehicle. Whereas a motorcycle with 

lightest weight and highest power/weight ratio deals with ground traverse 

and performance characteristics better than other oft-road vehicles (see the 

data in (Larminie 1988)). 

1.3.2.2 Locomotion 

The type of locomotion can be estimated by evaluation of terrain and 

performance characteristics. The type of locomotion can be either statically 

stable locomotion, or dynamically stable locomotion, or both. The type of 

locomotion is closely related to the number of legs of the whole vehicle and 

also its gait structures. 

A legged vehicle adopting statically stable legged locomotion always 

keeps its statical balance by using at least three legs on the ground. For 

example, a four legged vehicle can carry out statically stable locomotion by 

moving one foot at a time while the other three legs support the body in a 

statical balance condition. The minimum number of legs for a legged 

vehicle adopting statically stable legged locomotion is therefore four. 

A legged vehicle adopting dynamically stable locomotion is never 

statically stable. It continuously moves on its legs, and keeps a dynamical 

balance. A one legged hoping machine is a typical example (Raibert 1986 

(a)). By controlling the thrust force towards the end of the support period and 

the leg swing angle, the hopping machine can travel at low speeds as well 

as at high speeds. 

A legged vehicle adopting a hybrid type of locomotion is a vehicle 

adopting both locomotion types. Biological systems such as mammals 
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adopt statically stable legged locomotion at low speeds, and dynamically 

stable locomotion at high speeds. 

The type of stability, gaits, number of legs of a legged vehicle all affect its 

locomotion. 

1.3.2.3 Control 

Various control techniques have been used for legged vehicles. Control 

of legged vehicles adopting statically stable legged locomotion was first 

achieved after 1967 by Dr. Andrew Frank and Dr. Robert McGhee using 

basic flip flops (McGhee 1981). Control of legged vehicles adopting 

dynamically stable legged locomotion was first achieved in 1986 by Dr. 

Raibert (Raibert 1986 (a)). More complex control schemes have been 

developed since then for both types of locomotion purposes (Lapskin et al 

1991), (Tsai et al 1987). Especially having three degrees of freedom per 

foot makes the control very complicated for conventional walking machines. 

1.4 Previous Research 

1.4.1 A Brief History 

(Liston 1967) presents a brief history of studies in the field of legged 

vehicles; starting in 1954, a series of studies were conducted towards 

building a legged vehicle for off-road transport by U.S. Army. The first trial 

was made by Prof. Bernhard of Rutgers University, which proposed a 

walking and running vehicle, however the control during the flight period 

posed serious drawbacks. 

Therefore a comparatively slower machine was proposed by the 

University of Michigan. The work was taken over by Prof. Shigley, and a 

mechanical model was built with mechanical linkages to fulfil a set of 

requirements. Even though inertial forces from the legs were absorbed by a 

set of non-circular gears, the manufacture and operation of the gears posed 

the prime trouble. Also, due to having completely mechanical actuators, the 

vehicle was not terrain adaptive. 
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Numerous investigations were carried out, and a hydraulically controlled 

walking machine using 16 pantograph-like leg mechanisms was declared to 

be the optimum selection. Even when operating at speeds up to 20 mph, the 

inertial forces were tolerable. However, the control process was lacking 

force feedback. To remedy this problem, General Electrics Company 

developed a quadruped with force feedback control system. 

(McGhee 1981) gives, an account for the following years; a quadruped 

vehicle controlled by a master slave mechanism was constructed during the 

period between 1964 and 1967. The vehicle was operated by a human 

being. The operation principle was simply the magnification of the signals 

given by a human operator. Even though the force magnification ratio was 

as high as 1 to 100, it was a very difficult task to coordinate 12 joints, three in 

each leg. Therefore, even the designer of the machine was not able to 

control it for more than 10 minutes a day. Then the main interest of legged 

vehicle research began to centre around the computer control problem of 

the vehicle. A later attempt was made by Dr. Andrew Frank and Dr. Robert 

McGhee to prove that human intelligence is not necessarily required for 

walking motion. That fact was shown by using only 16 flip flops, and the joint 

motions were coordinated electronically Afterwards several legged 

vehicles were built. 

There are mainly two types of legged vehicle (Kaneko et al 1985) 

First type: Each leg has three degrees of freedom. The vehicle can adapt 

its feet to irregular terrain, and that kind of motion requires a tremendously 

complex control scheme. 

Second type: Legged vehicles with a fixed walking gait. All legs are 

linked mechanically by employing machine elements such as linkages and 

cams. This type lacks the most important function; active terrain adaptability. 

Also, only a few of these machines could be self-sufficient, that is carrying 

their own power and computing supplies on board. The Adaptive 

Suspension Vehicle (Waldron and McGhee 1986 (a)) is one of the 

exceptions which carries its own supplies on board, however it has a very 
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poor payload to weight ratio of less than 0.1. Nevertheless it deals with 

uneven terrain quite successfully. 

Odex I (Russell 1983) is a self-sufficient six legged vehicle with a 

significant 1.1 payload to weight ratio. 

The one legged hopping machine of Raibert is a good example to show 

that control problem of the vehicle during the flight period has been solved. 

1.4.2 Locomotion Studies of Biological Systems 

Biological systems, especially mammals, have been studied extensively 

to find a relation between energy expenditure, the means and the patterns of 

locomotion. Some of the results are mentioned briefly in the following 

sub-sections. 

1.4.2.1 Optimisation of Gaits During Locomotion 

The gaits of biological systems have been studied extensively in the past 

(Alexander 1980 1989), (Alexander and Jayes 1983), (Alexander et al 

1980). Also, the gaits of articulated systems have been studied (Raibert 

1986 (a) and 1990), (Song and Waldron 1987 (b)), (Song and Chen 1991). 

The research studies have shown that animals follow the most 

economical gaits during locomotion. The experiments conducted on a horse 

on a treadmill can be given as an example; horses change their gaits while 

increasing their speed. Hence they walk, trot and gallop keeping their 

energy expenditure always at minimum (Hoyt and Taylor 1981). Also other 

mammals follow the same minimum energy expenditure strategy by 

changing their gait during locomotion (Alexander 1980), (Alexander 

1984(a)). 

1.4.2.2 Dynamic Similarity in Locomotion 

A wide range of experiments conducted on animals have shown that 

mammals move in a dynamically similar fashion while travelling at equal 

froude numbers. Speeds of gait changes, leg strokes, duty factors, shapes 
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of force records and rates of performance of work all can be predicted fairly 

well using this dynamic similarity (Alexander and Jayes 1983), (Alexander 

1984(a)), (McMahon 1984). 

Studies have also shown that animals follow a symmetrical pattern of 

motion while running. In terms of balance and stability the concept of 

symmetry seems quite significant (Raibert 1986 (a)). 

1.4.2.3 Use of Springs in Animal Locomotion 

Studies have shown that animals use spring motions in locomotion in 

three different ways. They use their bodies as pogo sticks and save energy 

in their tendons, hence reducing unwanted energy loss in the form of heat 

and increasing the efficiency (Alexander and Vernon 1975), (Alexander and 

Goldspink 1977), (Jayes and Alexander 1982), (McMahon 1984), 

(Alexander 1984 (b)), (Alexander et al 1985), (Ker et al 1986), (Bennett 87), 

(Alexander 1988). During leg swing, tendons of the leg are used to transfer 

energy at the end of the forward and the backward stride (Alexander 1982), 

(Dimery and Alexander 1985), (Dimery et al 1986 (a)), (Dimery et al 1986 

(b)). And also on the foot, springs are used as compliant pads. Especially 

during running at high speeds this padding is essential, those pads are 

actually paw pads in animal structure (Alexander et al 1986), (Salathe et al 

1990). A collection of literature can be found in Alexander (1988), and a 

review specifically for robotics applications can be reviewed in Alexander 

(1990). 

1.4.3 Design of a Leg and Its Drive Units 

1.4.3.1 Leg Type 

Definitions of leg types are given in (Hirose and Umetani 1978) as 

following; 

The mammal type leg (Horse type) : The configuration of a leg in 

which the knee joint is always situated under the hip joint as in most 

mammals. 
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The insect type leg ( Spider type) : The configuration in which the 

knee joint is situated laterally or higher than the hip joint as in most insects. 

The insect type leg is considered superior for walking robots by Hirose 

and Umetani (1978) for the following reasons: 

- The insect type leg can extend the toe (the far end of the foot) very 

effectively permitting the vehicle to locomote in quite rough environment. 

- The insect type leg requires less energy compared to the horse type 

leg under the same conditions. 

The studies of Hirose and Umetani (1980) also point out the advantage 

of the insect type. The insect type leg is advised because long legs are 

applicable to this type, hence keeping the gravity centre of the body lower 

and maintaining high stability. The long legs are considered to enable the 

body to move faster and to be adaptable to comparatively large unevenness 

of the ground. 

In Waldron and Kinzel (1981) the mammalian type leg geometry is 

considered effective in avoiding power drain due to kinetic energy 

absorption. However it is also considered as being potentially subject to the 

more serious power loss mechanism that is geometric work. 

According to the author the mammal type leg has higher locomoting 

energy efficiency if geometric work is prevented. However to get use of the 

above advantages, insect type legs should be included in the leg geometry 

by a flexible design. Actually TITANIII (Hirose et al 1984) is the most hybrid 

vehicle built up to date, because not only does it include both of wheels and 

legs attached to its body, but also it has the flexibility for operating with both 

type of legs. 

1.4.3.2 Number of Legs 

According to Hirose and Umetani (1978) the fundamental considerations 

about the number of legs are as follows: 

The factors which are beneficial when the number of legs increases are 

- the stability to keep a standing posture 
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- the adaptability toward the roughness of the ground 

- the reduction of the total kinetic energy 

- the reduction of the load which each leg should support and resultant 

simplification of each leg. 

The factors which are beneficial when the number of legs decreases are 

- The simplicity of the total driving mechanism 

- The simplicity of control devices 

The simplicity of the total driving mechanism is considered as the biggest 

barrier to overcome in the development of a legged vehicle. 

1.4.3.3 Leg Geometry 

Studies done in Song et al (1981) indicate that the importance of the leg 

geometry for a legged vehicle as the most crucial aspect of the design, since 

it strongly influences the efficiency. Furthermore the most important property 

of the leg geometry was realised by (Hirose and Umetani 1978), (Song et al 

1981) and (Kaneko et al 1985). That is, in order to have good efficiency only 

one actuator per leg should be active during the support phase of the leg 

while ensuring the motion of the body is on a horizontal straight line, 

because most of the power has been wasted in the early generation of 

legged vehicles due to the up and down motion of the body causing 

potential energy losses. In addition to that, the leg should be simple in 

structure. 

The studies done in Orin et al (1976) indicate a trade off about leg 

geometry. The specific question raised is the effective length of a leg. The 

effective length of a leg is preferred to be large for the following reasons: 

- Adequate reach in moving over rocky or pock-marked terrain, 

- To climb over large obstacles, 

- To clear wide ditches, 

- For higher speed. 

However there is a trade off between the leg length and joint torque 

required for a given ground reaction force. The ground reaction force 
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directly depends on the vehicle weight and the payload. From the practical 

point of view the operating conditions of a vehicle have to be defined to find 

the optimum solution. 

1.4.3.4 Drive Units and Joint Types 

While mechanical drives suffer from the lack of terrain adaptability (Liston 

1968), hydraulic drives also have some disadvantages. The study done in 

Gardner et al (1983) indicates that one of the biggest trade offs of hydraulic 

circuit design, namely the trade off between good dynamic response and 

energy efficiency which must both be provided by the drive system. 

However the hydraulic circuit equipments fall short of satisfying both of these 

requirements together. To improve the characteristics a by-pass 

configuration is advised by Gardner et al (1983), however it is admitted that 

the valves and sliding joints are undesirable features of the drive system. 

McGhee (1981) clearly describes the disadvantages of hydraulic drives; 

"...The actuation mechanism is likely to be hydraulic, although that is a very 

serious problem. The efficiency of conventional hydraulic actuators is 

unacceptable, we must find something better ..." and "conventional hydraulic 

actuators are very inefficient," due in fact to the existence of sliding joints. 

Motion discontinuances in hydraulically driven mechanisms also cause 

undesired vibrations (Jones 1983). Also the mechanical reliability of drive 

systems with sliding joints is admitted to be less reliable (Song et al 1983). 

Hirose et al (1984) make a comparison between rotating and sliding joints 

as following; "Generally speaking, it has been maintained thus far that one 

should use rotating joints as much as possible when designing any 

component of the machine, and that it is better not to use sliding elements of 

linear movements because of the strength, low friction and reliability of ball 

bearings." 

1.4.3.5 Elastic Energy Storage in a Leg Mechanism 

In this section, some of the research carried out to accommodate flexible 
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linkages and springs in leg mechanisms are cited. 

For biped locomotion, a mathematical model of the swing period is 

developed during walking in Mochon and McMahon (1980(a)). An improved 

model is further presented in Mochon and McMahon (1980(b)). The model 

is justified by comparing the results with experimental data relating to 

kinematic measurements and gaits in human walking. 

Alexander, in his book titled "Elastic Mechanisms in Animal Locomotion" 

(Alexander 1988), sets aside a whole chapter to explain the basic 

knowledge about suspension springs and shock absorbers in relation to 

biological structures such as paw pads and animal skeletons. 

McGeer (1989 (a)) discusses a leg swing motion based on the natural 

mode of a pendulum. An experimental walking model is developed with 

torsional springs at the hip joints using only gravitational power to locomote 

downhill. The study further investigates the application of the same 

principles for level and uphill locomotion (see also (McGeer 1989 (b)) for 

further details about "Passive Running"). 

A study investigating the dynamic model of a mechanism with a flexible 

linkage declares that adding flexibility to a mechanism means only a slight 

variation in the existing rigid-link dynamic model (Bodner 1989). 

The relation between the running speed and the stiffness of a leg 

mechanism has been also investigated (McMahon and Cheng 1990). A 

mathematical model of a leg for terrestrial running is developed with similar 

properties of a simple spring, and results are compared with experimental 

force platform data. 

Three different ways of incorporating springy structures into a legged 

vehicle derived from the study of biological systems are discussed in 

Alexander (1990). One of these ways are further discussed in Brown and 

Raibert (1987) for an artificial leg mechanism. 

1.4.4 Ground Reaction Forces 

Legged locomotion involves force interaction between the legs and the 
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ground. Ground reaction force is the reaction of the ground acting on the 

body through the legs. Much research has been carried out about the 

subject since the results can be used in various fields such as medicine, 

locomotion and control. While building an artificial leg, all the results are 

valuable to an engineer. 

(Bobbert et al 1991), (Bryant et at 1987), (Cavanagh and LaFortune 

1980), (Dickinson et al 1985), (Elftman 1939), (Greene 1985) and (Hay and 

Nohara 1990) are representative of the research carried out to investigate 

the reaction forces due to walking, running and jumping. 

Munro et al (1987) measured the ground reaction forces on the legs of 

some running human objects. Also Ozguven and Berne (1988) have 

studied the impact forces for human jumping following experimental and 

analytical methods. For a different running technique (Groucho running), the 

variation in ground reaction forces has been measured by using force 

platforms (McMahon et al 1987). Also the effect of locomotion speed on the 

pressure of particular muscles has been studied by (Kirby et at 1988). 

Vertical movements in walking and running and coordination of body parts 

in vertical jumping have investigated in Alexander and Jayes (1978) and 

Bobbert and Schenare (1988) respectively. Fourier analysis of ground 

reaction forces are carried out in Alexander and Jayes (1980) and relations 

between the Fourier coefficients and locomotion characteristics were 

investigated. Some researchers have used the ground reaction forces to 

estimate the body size (Cavagna 1985). Also some have developed 

mathematical models for force evaluation (Seireg and Arvikar 1973). 

To investigate the internal reactions in the legs and body due to ground 

reaction forces, various studies have been carried out by testing specific 

organic parts to collect data such as, Ackland et al (1988) providing data 

about inertial characteristics of body parts, Weiss et al (1988) providing data 

about ankle joint stiffness, and Ashman and Rho (1988) providing data 

about the elastic modulus of a trabecular bone. 

For balanced locomotion, the distribution of ground reaction forces is a 
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key point. Therefore many researchers have contributed to the area of force 

control using different methods under various terrain conditions. Some 

representative references are (Gorinevsky and Shneider 1990), (Klein and 

Briggs 1980), (Klein et al 1983), (Majeed 1990), (McGhee and Orin 1976), 

(Waldron 1986) and (Waldron and Kinzel 1981). 

1.4.5 Some Legged Vehicles Built Up to Date 

Those Adopting Statically Stable Legged Locomotion: 

OSU HEXAPOD 

Several experiments have been done with the OSU Hexapod (Orin et al 

1976), (McGhee 1977), (McGhee et al 1978). The OSU Hexapod has six 

legs with 3 joints each, each individually powered by an electric motor. Its 

most significant property could be shown as the maximum joint output 

torque, which is about 275 Nm. Computer and power supplies are off board. 

The vehicle is able to climb over obstacles comparable to its own size. The 

leg mechanism is not efficiently designed, hence there are power losses and 

dynamical disturbance in the form of vibration. The speed of the vehicle is 

very low, about 0.75 rn/s. Force feedback is implemented on the vehicle by 

attaching strain gauges on its legs, and the necessity of force feedback is 

proven for the vehicle by the following experimental results: 

With force feedback the vehicle consumes 0.75 kW power and walks with 

a speed of 0.2m/s. 

Without force feedback the vehicle consumes 3 kW power and walks with 

a speed of 0.2 m/s. 

The most significant disadvantages of this vehicle are 

- not using a straight line generating leg design, hence causing potential 

energy losses, 

- having serially articulated joints which also causes energy losses 

(McCloy 1990). 



KUMO I (Hirose and Umetanl 1978) 

KUMO I was a legged vehicle for which the importance of the pantograph 

mechanism was realised, and the result is a more efficient legged vehicle. It 

has four legs with three joints each. The leg mechanism is a planar 

pantograph leg. Spider type legs are realised to save geometric work, 

however speed is sacrificed. Also, as a further step, kinetic energy of the leg 

is carried over to the other legs. However the walking speed is only 1.5 

rn/mm. It weighs about 14 kg. and the leg is 1.5 m. long. Computer and 

power supplies are off board. 

TITAN III (Hirose et all 1984) 

This vehicle is a hybrid type with four legs. The driving mechanism is a 

3D pantomec. The leg type is hybrid and both mammal and insect type legs 

can be realised. Linear actuators are used and computer and power 

supplies are off board. The maximum walking velocity is 3 rn/mm. 

MELWALK MARK Ill (Kaneko et al 1985) 

This vehicle has six legs and uses a special four bar mechanism. The 

drive mechanism is able to produce an approximate straight line by rotating 

one joint. Thus it enjoys mechanical efficiency. The main advantage of the 

vehicle is the usage of the decoupled freedom control approximation, hence 

simpler control hardware. The study results also indicate that a hexapod 

vehicle with fewer independently actuated degrees of freedom will be 

essentially faster, more energy efficient, and less expensive compared to the 

machine without mechanical actuators. The machine is limited to a one 

single gait. 

The model is admitted not to have sufficient freedom for terrain 

adaptability - in the sense that it cannot select the foot placement point in 3D 

space freely. To compensate with this disadvantage 2 solutions are given: 

- More freedoms per leg for terrain adaptability 
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- One more freedom to change stride length 

Some experimental data are given. The body mass is 35 kg, and it can 

carry a load of 24 kg. It has a specific resistance of 0.4 without payload and 

0.2 with three times machine weight, both at a speed of 0.3 m/s. 

ADAPTIVE SUSPENSION VEHICLE ( ASV  ) 
This vehicle has six legs each with three joints powered by linear 

hydraulic actuators. The driving mechanism is a 3D pantograph 

mechanism. High level control with one microprocessor per leg is adopted. 

The computer and power supply is on board. The design goals of the 

vehicle are given as follows (Gardner et al 1983), (Pugh et al 1990), 

(Waldron and McGhee 1986 (a) and (b)), (Waldron et al 1984 (a) and (b)); 

Weight 	 260 kg 

Payload 	 225 kg 

Speed 	 2.25 m/s cruise, 3.6 rn/s dash 

Grade Climbing Ability 	> 60 %, 70 % 

Length 	 5.2 m 

Width 	 2.4 m 

Height 	 3m 

Endurance 	 10 h. 

Leg Stroke 	 1.80 m 

Vertical Foot Height Variation 1.22 m 

Lateral Leg Swing 	 20 

Vertical Step Negotiation 	2.1 m 

Horizontal Ditch Negotiation 2.7 m 

Compared to the Melwalk Mark Ill, this design has a higher specific 

resistance of about 0.3 (Waldron et al 1984 (a)). The control structure is very 

complex and the cost of production is extremely high. Most of all, having 

sliding joints in the structure is a big disadvantage. Also another drawback 

of the design is having a rectangular foot trajectory which could be 

smoothed to increase efficiency (Choi and Song 1988), (McCloy 1989). 

30 



ODEX I 

Odex I (Russell 1983) has six legs and a mass of 168 kg. Each leg can 

lift about 180 kg. The robot can travel at about 1.5 rn/s. The robot raises 

three legs to advance, and uses a tripod gait. It is capable of climbing steps 

as high as 845 mm. The robot has 18 motors on board. It is completely 

self-sufficient. Further versions of the same robot have been built later (Byrd 

and DeVnes 1990). 

Those Adopting Dynamically Stable Legged Locomotion: 

ONE LEGGED HOPPING MACHINE 

A one legged hoping machine (Raibert 1986 (a)) has a single leg hinged 

to a body carrying electronics, sensors and valves. The leg is a 

double-acting pneumatic cylinder with a padded foot. Four electronic 

solenoid valves control the flow of air to the leg cylinder. It is possible to 

regulate the air pressure to adjust the speed. Peak amplitude of the body 

can be varied between 0.04 and 0.3 rn with corresponding hopping 

frequencies of 3 and 1.5 hops per second. The total mass of the machine is 

8.6 kg. Two legged and four legged versions of the same machine were 

built using the same basic control approach which consists of three parts; 

control of hopping height, forward speed and body attitude (Raibert et al 

1989), (Raibert 1990). 

1.4.6 Expectations From a Legged Vehicle- 

Some requirements of a legged vehicle are listed in Liston (1967) 

- The machine must have a uniform velocity while the feet are in contact 

with the ground, 

- The stride must be long in relation to the physical dimensions of the 

machine to achieve adequate speeds, 

- The height and length of the stride must be controllable by the operator, 
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- The height of the step should be large compared with the dimensions of 

the machine. 

- The feet should have a high stride-to-return-time ratio, 

- A mechanism integral to the legs must be provided for steering the 

vehicle, 

- The vehicle must be able to move forward and in reverse, 

- The inertia torques and forces must be balanced, 

- The energy lost in lifting the foot should be recoverable in lowering the 

foot, 

- The height of the body of the machine above the ground should be 

controllable by the operator. 

Hirose and Umetani (1978) comment that legged vehicles should be 

able to get over and stride over big obstacles sometimes higher than the 

vehicles own height, and move on such uneven terrain with minimum 

swaying and jumping movement. 

Hirose et al (1984) describe the design objectives of a legged vehicle; 

To develop a machine that can move freely on the uneven ground of the 

natural environment ( rugged and irregular surfaces and/or soft soil texture ) 

with high energy. efficiency and high adaptability to surface topography. 

1.5 Where Research is Needed 

Most research in the field of legged vehicles has been concentrated on 

walking vehicles. Some legged vehicles adopting dynamically stable 

legged locomotion at high speeds have been designed during the past five 

years. However their main emphasise has been the control of the 

dynamically stable legged locomotion rather than the performance. Also, 

some research has been carried out relating to biological systems. The 

research has suggested energy storage mechanisms for legged vehicles to 

enable more efficient locomotion. In this study, the findings of the above 

research are incorporated into one unified body with a specific purpose 

which is to design a leg mechanism with energy storage capacity for high 
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speed legged locomotion. The following areas have been identified to be 

studied: 

A Leg Mechanism: 

Even though the superiority of revolute (rotary) joints is accepted 

compared to sliding joints, present technology has concentrated on the 

pantograph leg design with sliding joints. Therefore there is a need for a leg 

mechanism with revolute joints and with similar positive properties of a 

pantograph mechanism such as avoiding geometric work, and producing a 

straight line during walking while only the longitudinal actuator is operating. 

However straight line foot trajectory during support period is significant only 

at walking speeds. Also, for high speed locomotion, the ratio of leg stroke to 

leg height is preferred to be relatively high in magnitude. 

A Drive Mechanism 

Mechanical actuators have the potential to reduce geometric work since 

they can be driven across more than one joint (Waldron and Kinzel 1981). If 

a compromise was to be made between using a hydraulic and a mechanical 

actuator, the control duty would be easier as well as the possibility of 

achieving very high speeds. Also a mechanical actuator would have the 

additional advantage of being more reliable and balancing inertial forces 

when all legs are driven through the same drive shaft. However electrical 

and hydraulic actuators are usually preferred due to their superiority in 

control. Therefore a mechanical actuator needs to be developed with more 

flexibility and control. In this way a mechanical actuator can be used 

especially for longitudinal motion directly to contribute to the speed of the 

vehicle. 

Elastic Energy Storage 

There have been various studies on elastic energy storage in legged 

locomotion (see section 1.4.3.5). However its practical application are 
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severely lacking. One legged hopping machine and its multi-legged 

versions are basically built as control applications, therefore the efficiency of 

the locomotion is not the main concern. Therefore there is a need to further 

study about elastic energy usage in legged vehicle locomotion. 

A Hybrid Type Legged Vehicle 

Previous research has been limited to two separate approaches to 

legged vehicles from the locomotion point of view. There has been no study 

investigating the possibility of a legged vehicle adopting both statically and 

dynamically stable legged locomotion with respect to the locomotion speed. 

1.6 Objectives 

The objectives of this research have been set out as follows; 

To design a leg mechanism 

- free from sliding joints 

- with straight line foot trajectory during the support period 

- better than previously designed leg mechanisms for high speed 

legged locomotion such as with higher leg stroke to leg height ratio. 

To develop an actuation strategy 

- free from geometric work 

- with full control in the vertical direction for terrain adaptability 

- with longitudinal mechanical actuation for fast locomotion 

- with steering and gait shift capacity during locomotion 

To study elastic energy storage by carrying out 

- an application method 

- a feasibility study 

To study a hybrid type legged vehicle by 

- setting the design parameters by using present off-road vehicles' 

experimental data 

- developing some proposals for mechanical design. 
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(Moorehead 1965) 
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Figure 1.1 Quadruped running gaits with typical relative phases 
(adapted from Alexander, 1984(a)). 
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Figure 1.2 Description of geometric work 
(adapted from Waldron and Kinzel, 1981). 
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2.1 Introduction 

To design a new leg mechanism satisfying some specified conditions 

has been set as the first objective of this research. Also, this leg mechanism 

is expected to have elastic energy storage capacity. The following 

procedure is proposed to achieve the desired leg design. 

Some of the leg mechanisms studied in previous research are evaluated. 

In addition to artificial leg mechanisms, some biological leg mechanisms are 

examined, since mammals especially use elastic energy quite efficiently 

during running. These investigations lead to the production of performance 

criteria especially for leg mechanisms operating at high speeds. A new leg 

mechanism is then designed and evaluated according to a set of 

performance criteria. 

2.2 Some Leg Mechanisms Used in Previous Research 

Some leg mechanisms used in previous research in the field of legged 

vehicles are evaluated in an order, starting from a simple mechanism 

towards the most recent one. That way the evolution of leg mechanisms 

according to the needs of researchers can be observed. 

2.2.1 Amplified Sweep Mechanism 

First, an amplified sweep mechanism was used (figure 2.1(a)); There is 

no linear relation between actuators and the foot movement. In addition, the 

mechanism which helps to move the foot is a major constraint keeping the 

working envelope of the mechanism small. 

2.2.2 Four Bar Mechanism 

The four bar leg is the leg design used by some early generation legged 

vehicles. When the importance of the mechanical efficiency question raised, 

more research was directed towards improving leg mechanisms. One study 

states that the four bar mechanism is found to be deficient and very difficult 

in mechanical design (Song et al, 1983). 
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Roberts mechanism (figure 2.1(b)) and Hoecken (figure 2.1(c)) 

mechanism are some examples of four bar mechanisms. According to 

(McCloy 1989) these two mechanisms can not generate a satisfactory 

horizontal straight line motion. 

Basically Hoecken mechanism and Four bar mechanism with a hinge 

joint (figure 2.1(d)) are the same designs except the way the foot linkage is 

actuated. Both mechanisms, similar to Robert's mechanism, decouple up 

and down motion of the foot, gaining some degree of controllability on the 

foot trajectory. That way terrain adaptability of a legged vehicle can be 

improved. Song's four bar mechanism (figure 2.1(e)) was an even higher 

achievement. The working envelope of a foot can be improved drastically by 

using Song's four bar mechanism. 

2.2.3 Pantograph Mechanism 

The real breakthrough in leg mechanism design came with the 

introduction of a pantograph mechanism (figure 2.1(f)) to legged vehicles. A 

pantograph leg has one of the most important properties required of a 

legged vehicle, that is only one actuator is active during the support phase, 

and the body moves on horizontal line. That property of a pantograph leg 

paves the way for its wide usage. The horizontal motion and vertical 

motions of the foot can be arranged so that they are either decoupled or can 

be achieved by moving the same joint. The design is simple because of the 

basic properties of the leg geometry. The force calculations also become 

very easy, therefore it is easy to control. 

The advantages and disadvantages of a pantograph leg are also given 

in (Song et al, 1983) as follows; 

Advantages: 

- It is more compact in the vertical direction. 

- It generates an exact straight line. 

- It has better energy efficiency. 

- The actuators can be placed high on the leg minimising rotating inertia. 
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- Simpler coordination control algorithm. 

Disadvantages 

- The two linear slides are hard to design and may have less mechanical 

reliability. 

Like a pantograph mechanism, a later design, the Odex leg mechanism 

(figure 2.1 (g)) proved to have a high performance. The odex leg mechanism 

shown in the figure is only another version of a pantograph mechanism 

which is actuated by electrical linear actuators instead of the more common 

hydraulic type of actuation (Russell 1983). 

2.2.4 Seven Bar Leg Mechanism 

Song (1983) came up with an alternative mechanism, a seven bar leg 

(2.1 (h)). Even though the mechanism consists of only revolute joints, some 

of the linkages included hydraulic actuators to change the length of the 

linkages for actuation. However these actuators increase the inertial forces 

of the mechanism. It is a combination of two four bar mechanisms. Linkages 

are compact enough and linear actuators should be used. The design is 

produced by using a software package called RECSYN (Song 1983), and 

computer simulation studies are carried out on the design. The advantages 

and disadvantages of the seven bar leg are given as follows; 

Advantages: 

- The mechanism is composed of rotary joints only. This makes the 

mechanical design easier and the mechanism more reliable. 

Disadvantages 

- It requires longer total mechanism to produce desired walking 

envelope. 

- It generates an approximate straight line foot path when only the drive 

actuator is used. 

- It is likely to have less energy efficiency because a linear motion is 

converted to a rotary motion and is converted back to a linear motion. 
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2.3 Leg Geometry of Mammals for Elastic Energy Storage 

In figure 2.2, the leg limbs of a horse and a cheetah are roughly shown at 

the beginning and at the end of the support period. Both front and rear legs 

are shown during running (Gray 1968). As can be seen from the figure, 

straight line foot trajectory is not a concern during running. Whereas large 

longitudinal stroke compared to the leg height is significant in a cheetah 

compared to a horse. The limb movements not only serve to push the body 

forward but also help to preserve energy in the muscles and tendons to be 

used for locomotion. 

2.4 Development of Evaluation Criteria for Leg Mechanisms 

and Their Actuation 

Evaluation criteria are developed by explaining desired specifications at 

each item as follows; 

2.4.1 Terrain Adaptability 

Terrain adaptability is what distinguishes a legged vehicle from other 

types of vehicle. To achieve terrain adaptability, the stroke or rotation of the 

actuators driving a leg mechanism should be able to be controlled in 

addition to timing and speed characteristics. While mechanical actuators fall 

short in complying with terrain adaptability requirements, the hydraulic and 

electrical actuators perform very well from the control point of view. 

For a legged vehicle travelling at high speeds, the terrain conditions can 

be specified assuming that an obstacle free path is always available. Hence 

the terrain adaptability in the longitudinal direction is not seen as a serious 

concern. However in the vertical direction, terrain adaptability is required. 

2.4.2 Load Handling 

A legged vehicle which is going to be used for off-road transport should 

be designed in such a way that it can handle considerable load compared to 

its weight. Therefore load handling is considered to be a desired 
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characteristic for an actuator. The hydraulic actuators are considered to be 

superior to electrical and mechanical actuators from the load handling point 

of view. In a leg mechanism, the following factors affect the load handling 

characteristics; 

The number of connections between the vehicle body and the leg 

mechanism (see figure 2.3(a)). 

The number of linkages with three or more connections (see figure 

2.3(b)). 
Since the number of connections and the linkages vary greatly in leg 

mechanisms, the ratio of these quantities should be used to the overall 

number in the leg mechanism. Hence these ratios are represented by L 1  

and L2  respectively. The higher are these ratios, the better are the load 

handling characteristics as shown in the figures. 

2.4.3 Dynamic Characteristics 

A leg mechanism for off-road transport is required to operate at various 

speeds. Especially it is necessary to operate at high speeds and to be able 

to incorporate the inertial forces of the mechanism into the leg cycle. 

Mechanical actuators are therefore considered to be superior than other 

types of actuators from dynamical point of view because they can operate at 

high speeds while balancing the inertial forces. 

2.4.4 Joint Type 

The leg mechanism can have the following joint types; 

- 	Sliding joints 

- 	Revolute joints 

- 	A point contact 

From the reliability point of view revolute joints are preferred. 

2.4.5 Geometric Work 

The significance of geometric work from the actuation point of view can 
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be explained as follows; Geometric work can be removed or reduced by 

actuating joints in pairs. In case of revolute joints, all joints can be arranged 

in such a way that one single drive can be used for all rotating parts. 

Whereas, in case of sliding joints each joint has to be driven by a separate 

actuator. Therefore actuators with revolute joints are preferable such as 

cranks. 

The significance of geometric work from the leg mechanism's point of 

view can be explained as follows; Geometric work in a mechanism can be 

avoided by decoupling the longitudinal and vertical actuator motions. In that 

way ground reaction forces can only effect the vertical actuator, hence 

avoiding geometric work. For example, all leg mechanisms which 

accommodate a pantograph mechanism in their structure avoid geometric 

work regardless of the way in which they are actuated. 

2.4.6 Straight Line Foot Trajectory At Walking Speeds 

Some leg mechanisms can produce a straight line foot trajectory during 

walking, hence avoiding potential energy losses due to body swing. This 

property is considered to be valuable during locomotion at low speeds 

(Cavagna and Kaneko 1977), (Hirose and Kunieda 1991), (Hirose and 

Umetani 1978), (Kaneko et al 1985), (Song and Lee 1988), (Song et al 

1981). However, at high speeds straight line foot trajectory characteristic 

has no role to play for energy efficiency, since the potential energy of the 

body significantly changes due to bouncing motion. In that case, the 

potential energy can be converted into elastic energy for storage during the 

support period as mammals do. 

2.4.7 Inertial Forces 

From the actuation point of view, rotary actuators such as crank-rocker 

and slider-crank are superior compared to the other type of actuation 

methods, since they absorb the inertial forces by keeping a constant rotation 

speed. Whereas in a hydraulic ram example, the backward and forward 
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motions brought to a halt at the end of each half cycle. 

From the leg mechanism point of view, having telescopic limbs in the 

structure of a leg mechanism increases inertial loads dunng leg swing and 

destabilises the motion. Therefore applications causing similar effects are 

undesirable in leg mechanisms. The closer the telescoping linkages are to 

the foot, the worse the inertial forces become. 

2.4.8 Elastic Energy Storage 

The leg mechanism should be able to store elastic energy during the 

support period so that it can use it during the transfer period to increase the 

potential energy of the vehicle. There has been no application involving 

storing energy in a hydraulic or pneumatic circuit, even though theoretically 

this is possible. Also the energy can be stored mechanically in a leg 

mechanism itself by using springy linkages. 

2.5 Development of A New Leg Design 

A pantograph leg geometry has been shown to be very advantageous 

among the previously designed leg mechanisms. Therefore its advantages 

should be benefited by incorporating its structure to the new leg design. 

When mammal leg geometries are examined, they can be assumed to be a 

pantograph with an extra limb attached to the end. The limbs of the front and 

rear legs of a cat are shown in figure 2.4(a) (Gray 1968). Figure 2.4(b) 

further shows how a pantograph leg can be substituted for the right upper 

limbs. The additional linkage can be supported by being connected to the 

extended linkage as shown in figure 2.4(c). This new leg design is called 

Buraq*. As it can be seen in figure 2.5, the Buraq leg can be used either as 

an insect type or as a mammal type leg. 

2.6 Actuation of the Buraq Leg Mechanism 

A compromise has to be made between adaptability and dynamic 

characteristic when a mechanical actuator is to be used. Moreover, the 

(*) In the Islamic tradition, Buraq refers to the horse-like animal with wings which 
took the Prophet of Islam from Makka to Jerusalem in no time. 



adaptability of a legged vehicle for off-road transport is not so crucial in the 

longitudinal direction since the terrain is mostly obstacle-free, and steering 

around the obstacles can be done by the driver (see section 2.4.1). For 

longitudinal drive, dynamic characteristics bear much greater importance 

due to the need to travel at high speeds. Hence, a mechanical actuator can 

be used for longitudinal drive. A slider-crank mechanism can be used, 

which can generate a linear motion. However, revolute joints are more 

desirable than sliding joints, therefore a four bar mechanism - a crank-rocker 

in particular - should be used for longitudinal motion (see figure 2.6). 

In the vertical direction, load handling and terrain adaptability 

characteristics are crucial Therefore a hydraulic actuator fits best for these 

purposes (see figure 2.6). 

Theoretically, increase in the overall length of a pantograph mechanism 

with an extra limb can allow the mechanism to be actuated by rotary motion, 

and the foot produce an approximate straight line during the support period. 

A model leg was built, and some simple experiments showed that the 

application is feasible. 

2.7 Evaluation of the Buraq Leg Mechanism 

The advantages of the Buraq leg mechanism can be listed according to 

the evaluation criteria as follows; 

- The vertical actuation is done by a hydraulic cylinder, therefore the leg 

mechanism satisfies the minimum terrain adaptability requirement. 

- Having the vertical actuation done by a hydraulic cylinder also satisfies 

the load handling characteristics from the actuation point of view. From the 

leg mechanism point of view, the ratios of L 1  and L2  have the values of 0.23 

and 0.33 respectively which is better than a pantograph leg mechanism ( L 1  

and L2  are 0.20 and 0.25). 

- Due to mechanical actuation in the longitudinal direction, the control 

task is easier, reliable and the dynamical characteristics are favourable 

unlike a pantograph mechanism. 
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- The leg mechanism is constructed completely by revolute joints except 

for one hydraulic actuator in its vertical direction. Hence there is one less 

sliding joint in the structure compared to a pantograph. Also having the 

sliding joint in the vertical direction is much better than having it in the 

longitudinal direction, because tension builds up much more in the 

longitudinal direction compared to the vertical direction due to the leg 

geometries of both leg mechanisms. 

- Geometric work also can be removed by actuating legs in pairs through 

the same drive shaft in the longitudinal direction. 

- From the inertial point of view, since all actuator units are concentrated 

on the vehicle body, the mechanism has similar advantages to a pantograph 

mechanism. From the actuation point of view, mechanical longitudinal 

actuation proves favourable for the Buraq leg mechanism compared to a 

pantograph while operating at high speeds. 

- The amount of fluid that needs to be circulated in the vertical actuation 

the circuit is less, since the Buraq leg mechanism is much more sensitive to 

vertical displacements than a pantograph leg. Also having mechanical 

longitudinal actuators, much higher speeds can be achieved than it would 

be practical with hydraulic cylinders used in the longitudinal direction. 

However, by using the slider-crank mechanism for a pantograph this 

problem can be sorted out for operation at high speeds. 

The disadvantages of the Buraq leg mechanism compared to a 

Pantograph leg are as follows; 

- Simple experiments on a Buraq leg model have shown that it is 

possible to obtain only an approximate straight line foot trajectory during 

walking. 

- The foot working envelope is smaller particularly in the vertical 

direction. 

- The longitudinal motion is not fully controllable. 

- The leg structure has more linkages which makes the construction of 

the leg relatively difficult, and also increases the backlash between the foot 
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and the actuated joints. 

2.8 Conclusions 

The new leg mechanism, Buraq, resembles a biological leg both for an 

insect and for a mammal when alternative versions are used ( see figure 

2.5). Also it inherits most of the advantages of a pantograph leg mechanism 

since it incorporates the same structure in its upper mechanism. Adding 

another limb to a pantograph mechanism is a promising development from 

the elastic energy point of view which is discussed in further detail in chapter 

6. 

Most of the disadvantages of the Buraq leg compared to a pantograph 

leg can be ignored considering that the leg is designed for high speed 

locomotion in obstacle free terrains. 
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(e) Song's Four 
Bar Leg 

Amplified Sweep 
	 Mechanism 

Mechanism 

(b)Roberts Mechanism 
(f) Pantograph 

Mechanism 

(c) Hoecken Mechanism 

Odex type leg 
Mechanism 

(d) Four Bar 
Mechanism with 

a hinge joint 

Linear actuator 

• Rotary actuator 

Figure 2.1 Some of the leg mechanisms studied in the 
previous research 
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beginning and at the end of the 	 the beginning and at the end 
half cycle 	 of the half cycle 

Front leg limbs of a cheetah at the 
beginning and at the end of the 

half leg cycle 

Rear leg limbs of a cheetah at 
the beginning and at the end 

of the half leg cycle 	
dli) Connection to the body 

0 Connection to the foot 

Figure 2.2 Leg limbs of a horse and a cheetah to show the limb 
configuration and movement during locomotion. Despite shorter 

legs, a cheetah has a longer forward leg stroke as the figure shows. 

51 



Figure 2.3 (a) Load handling 
characteristic: The parameter is the Vehicle 

number of connections between 
the vehicle and the leg mechanism 

ehicle 

Overall number of 
connections = 3 

Load 	 ILoad 

L = 2/3 	 L = 1/3 

Vehicle 

Vehicle 

Overall number 
of linkages = 3 

Load 	
Load 

L 2  = 1/3 	 L 2  = 0/3=0 

Figure 2.3 (b) Load handling characteristic: The parameter 
is the number of linkages with three connections 
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Rear leg limbs of a cat at the 
beginning and at the end of the 

half leg cycle 

Front leg limbs of a cat at the 
beginning and at the end of the 

half leg cycle 

Figure 2.4 (a) 

Figure 2.4 (b) 

Figure 2.4 (C) 

Figure 2.4 Development of a new leg mechanism starting with a 
pantograph fitting to the leg limbs of a cat, and further supporting the 

additional limb. Two different versions of the same leg mechanism are 
shown at the last stage (C). 
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Figure 2.5 Two different applications of the Buraq Leg 
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Hydraulic ram 

Figure 2.6 Actuation of two different 
applications of the Buraq Leg Mechanism 
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3.1 Introduction 

In this chapter, a computer simulation model for the Buraq leg 

mechanism is developed. The leg is considered to be actuated as 

proposed in chapter 2, that is, a crank-rocker is used for longitudinal drive, 

and a hydraulic ram is used for vertical drive (see figure 3.1). The procedure 

followed in this study can be briefly mentioned as follows; 

The leg mechanism dimensions are calculated in such a way that 

when the leg mechanism is actuated in longitudinal direction from point 0, 

the foot produces a straight line trajectory. 

A crank-rocker mechanism is designed to give the required 

trajectory of point Q. 

Using the overall leg mechanism and its drives, a simulation 

program for the leg and its drives is written, so that velocity and acceleration 

profiles of the foot can be examined through kinematical analysis. 

3.2 Definitions 

A sketch of the Buraq leg mechanism is shown in figure 3.2. All motions 

can be considered to be in the plane shown. Parameters in the figure are 

explained as follows. 

The upper actuated joint, 'U': This is point U in figure 3.2, where a 

hydraulic cylinder is applied for up and down motion of the foot. When the 

piston moves downwards, the foot raises up, and vice versa. During the 

support period, point U (U x , U) is fixed and taken as the origin. During the 

transfer period, it is moved down and up along the y axis to raise and to 

lower the foot respectively. 

The lower actuated joint, '0': This is point 0 in figure 3.2, where a 

crank-rocker is applied for longitudinal motion of the foot. The point 0 is 

represented as (Qx1Qy) in Cartesian coordinates. 

The foot, 'P': This is point P in figure 3.2 representing the foot. In 

section 7.3.5 details of the foot structure are given. For the simulation study, 

a point representation of the foot is sufficient. 
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A, B, C, 0 9  E, F, H, K : These letters represent the length of linkages 

used in the Buraq leg mechanism. 

R 1 , R2 , R3  and R 4  : These numbered letters represent the linkage 

lengths of the crank-rocker used to drive the Buraq leg mechanism (see 

figure 3.1). 

a, b, c and x : These letters represent the angular displacements 

shown in figure 3.2. The standard right hand rule is used for the orientation 

of angular displacements in Cartesian coordinates. 

3.3 Simulation Study 

The leg mechanism has four degrees of freedom in the plane, for 

example, knowing the position of one point and two angles is enough to 

calculate the position of any point on the mechanism. Following sections 

explain the simulation study carried out in sequential order. 

3.3.1 The Initial Position and Values 

A leg mechanism which was built as a small prototype model was used 

to assign the initial values of the linkage lengths of the leg mechanism. 

The prime constraint on the mechanism is producing a straight line 

trajectory during the support period. Therefore the position with the tibia 

vertical is set as the start of the support period. The initial values of angles a 

and c are 0 and -ic/2 shown in figure 3.3. Using the prototype linkage 

dimensions, the foot position and angle b (initially b 1 ) values are assigned. 

33.2 The Support Period 

The following steps are used during the simulation of the support period; 

- Initial position and values are set as described in the previous section. 

- As shown in figure 3.3, point U is fixed at the origin. Angular 

displacement b is given an increment. At this position, the foot (point P) is 

constrained to be on a perfect horizontal line as sh9wn in the figure. Hence 

the position of point U, vertical position of the foot and angle b are known. 



Horizontal position of point P and angles a and c need to be calculated. 

- Following equations are derived (see appendix 1.1 for details); 

Ux  + (A+B)cosa + (C+E)cosb + Kcosc - 	= 0 	 (3-1) 

Uy + (A+B)sina + (C+E)sinb + Ksinc - Py 	= 0 	 (3-2) 

2BHcos(a-c) + 2H(E-D)cos(b-c) + 

	

- 2B(E-D)cos(a-b) - (132  + H2  + (E-D)2  - F2 ) = 0 	 (3-3) 

During the support period point U is fixed at the origin and the value of P, 

is nil. There are three equations (3-1, 3-2 and 3-3) and three unknowns (Px ,  

a, c), hence the solution sets can be calculated for each b angular 

displacement value following the flow chart shown in figure 3.4. Angle b is 

increased until angle c variation changes its direction which means that the 

leg starts to lengthen to keep on a straight line foot trajectory instead of 

being shortened. Since this motion needs an action from the vertical 

actuator, and the support period is aimed to involve only the longitudinal 

actuator, the support period is considered to be finished at that point. 

Another way could have been followed to solve the equations. Instead of 

incrementing angle b and finding the horizontal foot position (Px) , the foot 

position could be assigned and angle b could have been calculated. 

However, it is easier to calculate an unknown which has a unique solution 

compared to an angle which has at least two different solutions. 

- Having calculated the angular positions, the trajectory of point Q for an 

exact straight line foot trajectory during the support period can be calculated 

using the following equations (see appendix 1.1 for details); 

U + Acosa + Ccosb - 0x 
	= 0 	 (3-4) 

Uy + Asina + Csinb - Q 
	= 0 	 (3-5) 

The trajectory of point Q is shown in figure 3.5. 

3.3.3 Lower Actuator Positions 

As figure 3.5 shows, the lower actuator positions, the trajectory of point Q, 

59 



is not an exact arc. Because the leg mechanism has been decided to be 

driven by a crank-rocker, the point Q should have a circular arc trajectory, 

since it refers to the end of the rocker. 

An arc is fitted to the trajectory of point Q by using the following method; 

- A curve is fitted to the trajectory of point Q using the standard least 

squares curve fit method (Faux and Pratt 1985). 

- Three normals are drawn inward from the beginning, the middle and 

the end points of the curve as shown in figure 3.6. 

- The arithmetic mean of the centre positions is calculated to find the 

average central point. 

- The arithmetic mean of the distances between three assigned points on 

the curve and the average central point are calculated to find the average 

radius. 

- Using the average central point and the average radius, the arc for the 

rocker arm is produced. To compare the errors obtained in the arc fitting 

procedure and the standard curve fitting procedure, both fittings are plotted 

in figure 3.7. As can be seen, the developed arc fitting method proves 

beneficial at least for this particular application since the errors are 

negligible. 

Through application of the arc fitting procedure, the rocker positions for 

the crank-rocker have been calculated. These positions repeat themselves 

for both support and transfer trajectory when the crank radius is fixed. 

3.3.4 The Transfer Period 

The initial values of the transfer period can be assigned the same as the 

last solution for the support period. To raise and to lower the foot, point U is 

moved along y axis. Hence the position of U is known. Also the trajectory of 

point Q is known. However the foot position(P(x,y)) and angular 

displacements (a, b, c) need to be calculated (see figure 3.8). The equations 

derived in section 3.3.2 are used to find the unknown values. 

The f 16w chart of the calculation procedure is shown in figure 3.9. 
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The same algorithm can be used to find the foot positions during the 

support period simply by assigning position of point U as the origin. 

Carrying out the calculations, the dimensions of the prototype leg 

mechanism are modified to obtain an approximate straight line mechanism. 

The non-dimensional figures adopted at the end of the several simulations 

can be listed as follows; 

A= 1, B = 2, C = 1, D = 2, E = 3.5, F = 2.7, H = 0.8, K=4.1. 

The dimensions used in the simulation studies are 32 times of the 

non-dimensional figures in mm since this happens to be the exact length of 

the built model leg. Using the modified linkage lengths, the foot trajectory for 

a complete leg cycle can be calculated (see figure 3.10) which is discussed 

in detail in section 3.6. 

3.3.5 Crank-Rocker Mechanism Design 

Various crank-rocker mechanisms can be designed to drive point Q, and 

to generate the desired trajectory. In figure 3.11 a general four bar 

mechanism is shown with its parameters. The main constraint in design is to 

choose the transmission angle (g in the figure) in the range of (40 1  - 1401) so 

that high forces can be transmitted by the mechanism (Mabie and Reinholtz 

1987). Overall, during the design, the following criteria is used; 

- The range of transmission angle is chosen in the range (60 0-1000 ) 

away from the critical values. 

- The distance between the centres of the crank and the rocker (R 1 ) is 

chosen small to have a compact mechanism and to avoid buckling of 

linkages. 

Using the triangles occurring at two singular position of the mechanism 

(shown in figure 3.12) equations of the mechanism are derived, and 

simulation studies are carried out (see appendix 1.2 for details). The 

crank-rocker has to be placed with some angular orientation to satisfy the 

desired criteria as shown in figure 3.13. The following non-dimensional 

figures are calculated for the linkage lengths; 
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R 1  = 3.5, R2 = 1, R3 =2.5, R4 =3.2. 

To confirm further, the calculated linkage lengths for a crank-rocker 

mechanism, Grashof's Mobility Criteria (see (Angelas and Bernier 1987) 

and (Angeles and Callejas 1984) for further detail) is applied. The criteria 

provide the necessary and sufficient conditions for the linkage lengths of a 

crank-rocker. The criteria were applied to the calculated set of the linkage 

lengths, and the set proved to be satisfactory (see appendix 1.3 fQr details). 

Also, through simulation studies, the variations of the angular 

displacements of the crank-rocker mechanism are calculated and shown in 

figure 3.14 (see appendix 1.4 for details). 

3.4 Effects of The Drive Parameters on the Leg Mechanism 

Motion 

In this section, the effects of hydraulic ram displacements and crank 

radius variation on the leg trajectory are examined through simulation 

studies. 
The hydraulic ram displacement is kept constant throughout the stroke, 

and the trajectory of the foot is calculated using the algorithm explained in 

section 3.3.4. Hence the figure 3.15 is produced which shows the leg 

trajectory with respect to the hydraulic ram displacement. 

The simulation study explained in sections 3.3.4 and 3.3.5 is used to 

produce figure 3.16 which shows the foot stroke with respect to the crank 

radius variation. 

The simulation study explained in section 3.3.5 is used, and the angular 

displacements of the crank-rocker mechanism for the whole leg cycle are 

calculated. Figure 3.17 is developed to show the rocker swing range and 

values with respect to the crank radius variation. 

The results are evaluated in section 3.6. 

3.5 Kinematical Analysis of the Buraq Leg Mechanism 

The vectorial velocity and acceleration expressions are derived for the 
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foot and the rocker to examine the mechanism from kinematical point of view 

(see appendix 1.5). Using the simulation results, the angular speeds and 

accelerations for the joints of the mechanism are calculated using the 

method developed by (DiBenedetto and Pennestri, 1983). The results are 

shown in a series of figures starting with 3.18 (see appendix 1.5 for details). 

3.6 Simulation Results 

The Buraq Leg Mechanism Linkage Dimensions 

Computer simulation studies have shown that the length of the additional 

limb, which can be called the tibia (see figure 3.2), affects the leg stroke, the 

magnification ratio, material strength and required power for the actuators. 

The longer the tibia length, the longer the leg stroke, however the higher the 

magnification ratio, the bigger the stress and the higher the required 

actuation power. 

Actuation of the joint in the support period is another factor affecting the 

length of the tibia. According to the computer simulations when a linear 

actuator such as a hydraulic cylinder is used at point Q to generate a 

horizontal motion, then the length of tibia decreases to produce the desired 

straight line foot path. However, when an arc generator such as a four bar 

mechanism is used to actuate Buraq, then the length of tibia increases for 

production of straight line motion. Since a crank-rocker is chosen for the 

actuation of point Q, to keep the required actuation power and the stresses 

in material as low as possible, the smallest tibia length enabling a straight 

line motion has been computed through several simulation studies. 

The pantograph mechanism which is inherited in the Buraq leg 

mechanism has the same linkage ratios as predicted in the studies done by 

Song and Waldron ( refer to the papers dated 1987 (a) and (1989)). 

Foot Trajectory 

Even though the support period calculations were carried out for a 

straight line foot trajectory, the magnification of the errors, which are the 
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result of the fitting procedure, causes the foot to travel on an approximate 

straight line(see figure 3.10). 

As figure 3.15 shows, the foot has an intrinsic ballistic foot trajectory. 

That is, the foot is much more sensitive toward the vertical actuation at the 

beginning of the transfer period compared to the end (see the leg orientation 

in figure 3.1). 

The Effects of the Actuators 

Figure 3.16 shows a directly proportional relation between the crank 

radius and the foot stroke. Figure 3.17 shows that the foot stroke shortens 

and lengthens symmetrically according to the rocker swing range. 

Foot Velocity and Acceleration 

A series of figures are produced while the angular velocity of the crank is 

set to a constant value, 2.123 rad/s in clock-wise direction. 

Figure 3.18 shows the x and y components of the foot velocity with 

respect to the foot displacements along x axis ( represented by fx ). As 

expected, x component of the foot velocity is greater than the y component. 

At the end of the support period the irregularities are due to sudden upward 

foot motion. However the landing occurs smoothly due to ballistic leg 

trajectory. 

Figure 3.19 shows the y component of the foot acceleration with respect 

to the foot displacements along x axis. The irregularities when the foot is 

raised at the end of the support period are very clear. This figure also shows 

the smooth landing of the foot. 

Figures 3.20 and 3.21 show the variation of the x and y components of 

the foot and the arm velocities respectively along the same longitudinal foot 

displacement axis. Since the rocker trajectory is the same for both support 

and transfer periods, the speed profiles of the rocker are also similar unlike 

the case for the foot. 

Another significant point to note is the speed difference between the 
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support and the transfer periods. The calculated foot speed during the 

transfer period is recorded to be at least 15% higher than that of the support 

period while the crank speed is constant. This is due to the change in foot 

trajectory which is shorter during the support period. 

3.7 Conclusions 

The following conclusions can be drawn from the simulation studies 

carried out in this chapter; 

The Buraq leg mechanism can produce an approximate straight line 

mechanism. It can be actuated either by two linear actuators or a linear 

actuator and a four bar mechanism in both cases producing an approximate 

straight line foot trajectory during the support period. 

A four bar mechanism with approved mobility can be designed, hence 

allowing the mechanism to be actuated as it was proposed in the previous 

chapter. 

Having analysed the kinematics of the mechanism, the speed and 

acceleration profiles showed a smooth landing which is suitable especially 

for fast running legged systems. 

The leg trajectory was shown to be a ballistic one, similar to the leg 

trajectories of mammals. 



Figure 3.1 The Buraq leg driven by a crank-rocker in 
longitudinal direction, and driven by a hydraulic ram in 

vertical direction. 
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Figure 3.2 The Buraq leg with its parameters 
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Figure 3.13 Angular analysis of the crank rocker mechanism 
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4.1 Introduction 

In the field of legged vehicles, proposing a new design in a crucial 

subject such as leg design makes it essential to back the theoretical analysis 

with experimental study. Therefore a model leg was built and a series of 

experiments were conducted with the following objectives; 

1 - To confirm the computer simulation results, 

2 - To use the model leg as a design aid to observe some features which 

would be hard to imagine without seeing them in action, so that this 

experience could be used when a real leg is built, 

3 - To produce some experimental data to compare the newly designed 

leg mechanism with previously built leg mechanisms. 

4.2 Design of a Model 

For practical reasons a single leg mechanism was built as a model leg 

instead of a complete legged vehicle. A picture of the model with the whole 

test rig is shown in photograph 4.1. Also the back view of the test rig is 

shown in photograph 4.2. More detailed pictures are presented in appendix 

2. The following sections briefly describe the model. 

4.2.1 Mechanical Design 

Using the simulation results for the Buraq leg from the previous chapter a 

model leg was built as a prototype. The mm dimensions used were three 

times the lengths used in the computer simulation. Linkage lengths for both 

the computer simulation model and the model used in the experimental 

study are shown in figure 4.1. 

For longitudinal drive a crank was used. To be able to change the 

longitudinal foot stroke, the crank length should be able to vary. To serve 

this purpose, a disk with four different crank position holes with different 

radii was used. The disk also helped to balance inertial loads. Hence the 

disk served two purposes, namely varying the crank length and balancing 

the inertial forces. 



4.2.2 Power System 

A hydraulic ram was used to actuate the foot up and down, and a four bar 

mechanism was used to actuate the leg forward and backward as shown in 

figure 4.1. In this section details of these actuators are presented. 

4.2.2.1 Longitudinal Drive 

The overall drive system for the longitudinal drive is shown in figure 4.2. 

A dc motor was used as the main drive unit. The power was supplied 

through a 3-phase variac and a diode-bridge to the motor. By changing the 

voltage setting from the variac, the dc motor could be operated at various 

speeds. To provide the necessary torque, a series of belt and chain drives 

formed a reduction gear. The manufacturer's advice and equations were 

followed in the selection and the sizing of drive train components. 

4.2.2.2 Vertical drive 

The overall drive system for the vertical drive is shown in figure 4.3. The 

pump was driven by the same motor which drove the crank. By operating 

the solenoid valves the foot could be moved up or down. Also foot motion 

could be stopped by selecting the stand-by position of the valves. Since no 

check valves are used in the system, reverse flow of the fluid in the hydraulic 

cylinder due to load could not be avoided. To keep a constant height during 

the support period, hydraulic pressure had to be used continuously causing 

extra power losses. 

4.2.3. Control 

To achieve high performance for a legged vehicle, the leg trajectory 

should be controlled effectively. The control of foot trajectory is mainly what 

distinguishes a legged vehicle from a traditional off-road vehicle. 

The control of the foot trajectory can be done in various ways. However 

what is aimed at is basically the same. Assuming that the foot trajectory can 
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be symbolically represented as in figure 4.4; 

The period to  ---> t 1  represents foot lowering 

tl ---> t2  represents foot on the ground (support period) 

---> t3  represents foot raising 

---> to  represents foot on the air (transfer period) 

The graphs shown in figure 4.4 refer to four different signals; 

The signal at t o  ends the transfer period, and starts the foot lowering 

action. 

The signal at t 1  ends the foot lowering action, and starts the support 

period. 

The signal at t2  ends the support period, and starts the foot raising action. 

The signal at t3  ends the foot raising action, and starts the transfer period. 

The following sections describe how sensor signals were used to control 

the actuators, and monitor the variables. The leg mechanism was originally 

driven by logic control. Then logic control was replaced by computer control. 

4.2.3.1 Logic Control 

The prototype model was driven purely by logic as a simple way of 

getting the model leg running. Digital signals ( t 0 , t 1  , t 2  , t 3  ) were 

generated using only microswitches to guide the foot along the leg cycle. 

Due to mechanical actuation of the leg mechanism, the start and the end 

of the foot stroke are predictable. Therefore, the signals t o  and t2  can be 

generated using the particular crank positions. Hence the microswitches 

were placed behind the disk to signal the start and the end of the foot stroke 

as shown in figure 4.5. 

Ideally a microswitch placed on the foot could be used to provide a signal 

(t 1  ) to stop lowering the foot, and another microswitch placed along the 

vertical drive could be used to provide a signal (t 3  ) to stop raising the foot. 

However, in the prototype model all four microswitches were placed behind 

the disk as shown in figure 4.5 to run the model leg in the simplest way. 



The logic circuit used to control the leg cycle is shown in figure 4.7. The 

circuit uses flip flops (see Savant et al, 1987). Normally two signals are 

used (set/reset) in a flip flop circuit. Since four microswitch signals are 

involved in this experiment, the basic flip flop circuit was improved to 

accommodate 2 set and 2 reset signals working together. As can be seen 

from the truth table of the circuit either of the reset signals (B or Q) could be 

used to stop the flow (see figure 4.6) . 

4.2.3.2 Computer Control 

The prototype model was then modified so that it could be computer 

controlled. Analog and digital signals were generated using a straight line 

potentiometer to measure the vertical drive position, and microswitches to 

determine the crank position (see figure 4.8). The same microswitches A 

and P (see fig. 4.5) were used to generate the signals t o  and t 2. Using the 

straight line potentiometer, the foot height could be controlled accurately, 

and kept in prescribed limits by occasional corrections during the leg cycle. 

The flow chart of the programme used to control the leg is shown in figure 

4.9. The value 'X' refers to the hexadecimal value of the digital interface. 

The called subroutines and explanations are as follows; 

Stand by: When called by main programme it sent a signal through AID 

board to the circuit setting stand_by value high and the rest low. 

Foot down: Used to set the valve which moves the foot downwards high 

and the rest low. 

Foot up: Used to set the valve which moves the foot upwards high and 

the rest low. 

Set values: Set the values used in the programme to adjust the foot 

height from the ground. 

Get values: Read the analog and digital values fed back to the computer 

from the test rig. 

Corr up: Corrected the foot upwards if vertical foot position was outside 

the prescribed limits (value2 < uvl_val ) by set—values. 



Corr down: Corrected the foot downwards if vertical foot position was 

outside the prescribed limit (value2 > bvl_val) by set—values. 

pdata: Printed the desired values on the screen. 

4.3 Experiments to Calculate Specific Resistance 

A set of experiments were carried out to calculate an approximate value 

of the specific resistance of a vehicle using Buraq legs. Specific resistance 

of a vehicle is described as expressed in the section 1.3.1; 

specific resistance = 	
power input

*  total weight speed 

The following sections describe the calculation method to determine the 

specific resistance. 

4.3.1 Initial Assumptions and Instrumentation 

Specific resistance is normally calculated for a complete vehicle 

according to its speed, power consumption and total weight. Since the 

prototype consisted of a single leg, a series of assumptions were made. 

To simulate the leg during support period, a foot trail was fitted along 

the foot trajectory pushing the foot upwards by a spring as shown in figure 

4.10. This gradual load on the foot was assumed to be due to the weight of 

the vehicle, and was measured by strain-gauges mounted on the critical 

point of the tibia of the leg as shown in the figure. 

At the same time using a current transducer and a voltmeter, the 

amount of power sent to the leg mechanism could be calculated. Assuming 

a constant speed throughout a complete leg cycle, an average value for the 

foot speed was also calculated to substitute for the vehicle speed. 

It was assumed that since the specific resistance value is 

non-dimensional, its calculation for a single leg would not make any 

difference to its calculation for a complete vehicle. 

4.3.2 Calibration of the Instruments 

4.3.2.1. Strain-gauge calibration 
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A pair of strain-gauges were fixed on the critical point of the tibia of the 

Buraq leg as shown in figure 4.11. The outputs of the strain-gauges were 

connected to the computer interface through a strain-gauge amplifier. A 

wooden board hinged from one end and suspended from another was 

placed as a foot trail. The foot was fitted with a pair of wheels which moved 

freely on the trail to simulate body motion. From the suspended end of the 

board, load was applied to the foot with a magnification ratio which was 

calculated using the ratio between the distances from hinged joint to the foot 

and to the suspended end. The leg mechanism was fixed to prevent vertical 

and longitudinal motion so that the foot could not move due to applied load 

as shown in the figure. That way a set of pairs, strain-gauge values with 

respect to particular foot positions along the foot trail, could be produced. 

For different positions of the foot, various loads were applied to the track 

at its end point, and simultaneously the strain-gauge readings (sgv) were 

recorded from the screen. This produced the plot shown in figure 4.12 which 

shows the load values acting at the end of the foot trail (N) and relative 

strain-gauge recordings (sgv). When there was no weight acting on the 

foot, the strain-gauge reading (sgv) was adjusted using the amplifier to give 

a computer reading of 500. To determine the calibration, a straight line 

approximation was made through the least squares method as shown in 

figure 4.12. 

4.3.2.2 Current transducer calibration 

A current transducer, a device producing voltage proportional to current, 

was installed in the dc drive circuit. Also an ammeter was connected 

through the cable on the same line. The output of the device was sent to the 

computer interface. By gradually increasing the voltage fed to the dc motor, 

the readings from the screen and the ammeter were recorded as shown in 

figure 4.13. To determine the calibration, line fit approximation was made as 

shown in the figure. 
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4.3.3 DC Motor Characteristics 

To find the input power term in the specific resistance expression, the dc 

motor characteristics were needed. Since the manufacturer's data was 

inadequate, some experiments and calculations were carried out to find the 

dc motor characteristics. 

4.3.3.1 Measuring stall torque 

The test rig was powered by a 180 V, 1.5 kW permanent magnet dc 

motor. The motor was disconnected from the test rig. A lever was attached 

to the motor shaft with a spring balance at its end. Varying the voltage from 

nil up to 14 V the ammeter and spring balance readings were recorded. 

Accordingly, using the length of the lever, the generated torque values (stall 

torque) were calculated. Hence, while do motor shaft speed was zero, table 

4.1 was obtained. 

4.3.3.2 No load speed 

The lever was disconnected from the motor, and the motor was run at 

various speeds under no load. Voltmeter and optical tachometer readings 

were recorded while torque applied to the shaft was zero. Hence table 4.2 

was obtained. 

4.3.3.3 Evaluations 

Point 1: Using the data in tables 4.1 and 4.2, the plot in figure 4.14 was 

produced. The figure shows the constant voltage lines on the torque (T, Nm) 

versus angular speed (w, rad/s ) plot. Using stall torque values the points 

on the T axis was produced. Then corresponding angular speed values 

were calculated using no load speed values. Following equations were 

produced as explained in the parenthesises; 

T0  = 0.4768 V - 1.576 	(from table 4.1) 	 (4-1 

w0  = 1.5198 V - 1.279 	(from table 4.2) 	 (4 - 2) 

wr  = w0 (1 Tr/To) 	(from figure 4.15) 	 (4-3) 
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Point 2: Using the torque and current values in table 4.1 the plot in 

figure 4.16 was produced. The relation between the torque, T, and current, i, 

was a linear one, and was expressed as follows; 

T 	= 0.6325 i - 0.645 	 (4-4) 

4.3.4 Calculation of the Specific Resistance 

The specific resistance of a vehicle is expressed as follows; 
power input 

specific resistance = total weight * speed 

Power input represented the power supplied to the leg mechanism from 

the dc motor, and was expressed as follows; 

power input =Vi-Ri 2  (W) 
	

(4-5) 

where R represents the armature resistance of the dc motor, and was 

measured as 2 0. Total weight was assumed to be the force imposed on the 

foot through the foot trail. 

The speed was taken to be the average foot speed through a whole leg 

cycle. It was expressed as follows; 
L 360 

(mis) 
160 

(4-6) 

where L represents the foot stroke length, and was measured to be 0.755 

m. during the experiments. f represents the period of the leg cycle. The 

support and transfer trajectories of the foot are different, and transfer 

trajectory is longer. Also, the foot goes through transfer period faster than it 

does for support period (see also section 3.6). Therefore average foot 

speed is faster than simply 21Jf value. Nevertheless the ratio 360/160 is an 

approximate value. 

During the experiments voltage readings were recorded from the 

voltmeter. Also the period of the leg cycle was measured by a stop-watch. 

The values relating to current and load values were recorded from the 

computer screen. The following algorithm was used to calculate the specific 

resistance at various speeds; 

1. Read the voltage ( V  ), the leg cycle period( f ), the strain-gauge 

recording (sgv) and current transducer recording (cur). 
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Calculate motor angular speed Wm (rad/s) using f. 
2icGR 

Wm 

where GA represents the gear ratio between the crank and the motor 

shaft. 

Calculate current ( I  ) and load (load) values using equations in 

figures 4.12 and 4.13; 

load = 0.399 sgv - 164.89 (N) 

= 0.0171 cur - 0.005 	(A) 

Find the position in figure 4.15, T-w plot, by using equations (4-1) and 

(4-2), hence finding T0  and w0 . 

Calculate the torque value,T, by inserting i value into equation (4-4). 

4. Calculate the power input to the leg mechanism from the dc motor 

which was equal to V I - A i2  by using equation (4-5). 

Calculate the average foot speed (vf  ) by using equation (4-6). 

Calculate the specific resistance value which can be expressed as 

follows; 
Vi - A 12 

sr= 
load v 

The algorithm is carried out for two cases, Case 1 and Case 2, so that the 

power loss due to not having check valves in the system can be taken into 

account. By evaluation of the results, a specific resistance value was 

obtained as explained in the following sections; 

Case 1. 

The pump was under full load and the hydraulic ram was active, applying 

force on the foot against the foot trail during the support period. The crank 

was rotating. Maximum values were recorded. The results are shown in 

table 4.3 where L represents the load acting on the foot, V represents the 

voltage value, i represents the current value, Vi represents the power drawn 

from the environment, Ri 2  represents the power loss inside the dc, v 
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represents the average foot speed and sr represents the specific resistance 

value. 

Case 2. 

In this case only the crank was active and rotating under load; the 

hydraulic pump was disconnected. Maximum values were recorded. The 

results are shown in table 4.4. 

Evaluation of both cases: When the foot made its first contact with 

the ground there was a sudden impulse acting on the foot. During the rest of 

the support period, the force started to drop after reaching a maximum value 

around the mid-stroke. Calculating the specific resistance according to the 

results in the Case 1 for the whole support period would be ignoring the fact 

that the recordings of the Case 1 were the maximum peak values. And also, 

by using check valves the power drain from the hydraulic circuit could be 

avoided soon after the foot contact with the ground, hence saving a 

considerable amount of energy. This was because, once the check valves 

were active, the fluid in the hydraulic ram would become blocked , and there 

would be no consumption of hydraulic power. When check valves were not 

used, hydraulic power was used continuously to overcome the ground 

reaction forces during the support period as in the Case 1. 

The specific resistance of the vehicle was then calculated by taking the 

average specific resistance values between the Case 1 and the Case 2, 

assuming that during the support period, both cases had an equal share to 

play even though Case 2 could be even more dominant due to long foot 

stroke. Figure 4.17 shows calculated specific resistance values with respect 

to the speed for both cases. In figure 4.18 average values of both cases are 

used to produce an approximate curve representing specific resistance 

variation of the legged vehicle with Buraq mechanism with respect to vehicle 

speed. 



4.3.5 Load sensitivity of the specific resistance 

During the calculation of the specific resistance above, one of the 

assumptions made was that the specific resistance value did not change 

when the load conditions changed. This assumption played a significant 

role while taking the average curve between the Case 1 and the Case 2 

(see figure 4.18). Each case represented a different loading condition for 

the same speed value. A set of experiments were carried out to find the load 

sensitivity of the specific resistance. By changing the load on the foot trail 

gradually and by keeping the speed and voltage constant, a set of results 

were produced as shown in table 4.5. The specific resistance values found 

were with ± 5 % variation as it can also be seen in figure 4.19 which is not 

a significant change. 

The experiment confirmed that loading changes do not affect the specific 

resistance of the leg mechanism as long as power input can be supplied to 

produce enough current to overcome the loading. Hence the procedure 

carried out to find the average curve in section 4.3.4 was justified. 

4.4 Foot Trajectory 

4.4.1 A Mechanical Constraint on the Foot Trajectory 

During simulation studies no solutions for the leg trajectory was found 

when the foot height value was specified higher than the knee at the 

beginning of the transfer period. 

During the experimental studies, it was also confirmed that the foot 

should not be raised higher than the knee joint at the beginning of the 

transfer period. When the foot was raised higher than the knee at the 

beginning of the transfer period, the mechanism could not complete the 

transfer period, since mechanically this was impossible. 

4.4.2 Calibration of the Straight Line Potentiometer 

For various positions of the upper actuated joint, U, computer readings 

from the straight line potentiometer (mon) were recorded. Having scaled the 
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upper actuation positions according to the simulation model by dividing with 

three, figure 4.20 is produced showing computer readings of the 

potentiometer with respect to the scaled upper actuated point positions. As 

the figure shows, there is a directly proportional relation which is calculated 

to be as follows; 

Uy  = -0.770 mon + 0.56 [mm] 	 (4-7) 

4.4.3 Measuring the Foot Trajectory 

The leg was operated at slow speed under no load. In the mean time a 

marker was fixed to the foot point (P) in such a way that the foot trajectory 

could be drawn to a sheet of paper fixed behind the leg during operation. 

This procedure was repeated for various upper actuator positions while 

straight line potentiometer readings (mon) were recorded. Figure 4.21 

shows the foot trajectories scaled down to the simulation model dimensions. 

To compare the experimental results with the simulation results, 

potentiometer values referring to the each foot trajectory were converted into 

upper actuated point positions using equation (4-7). Afterwards the 

simulation model was executed for each upper actuated point. Two pairs ol 

the experimental (*) and computational(o) foot trajectories are shown in 

figure 4.22. While the middle part of the foot trajectories fit well, the end 

parts seem to deviate slightly from each other which is likely to be due to 

backlash in the joints. 

4.5 Observations 

Some shortcomings were observed in the experimental model. 

Following are the proposed remedies; 

1. High bending moments were observed on the shafts at the crank 

connection and at the ram connection to the leg due to unsymmetrical 

loading. Some extra fittings were made to strengthen the shafts especially 

at the rocker point to resist high moments. Therefore it was found to be 

essential that a real leg should be built with a complete symmetry on all its 



joints. Later in chapter 7, a wooden legged vehicle model with completely 

symmetrical leg structure has been built (see photograph 7.2). 

Considerable slackness in the joints resulted from the individual 

manufacture of the linkages since the holes did not align properly during 

assembly. While preparing the linkages for the wooden leg, the linkages 

were prepared in pairs keeping the holes aligned. 

It was found to be essential that a real leg should accommodate 

bearings at joints where shaft contacts are kept as wide as possible to 

minimise the accumulation of slackness at the foot. 

4.5 Conclusions 

Building a model and conducting some experiments with it helped to 

achieve the objectives set out at the beginning of this chapter as follows; 

1. Computer simulation results were confirmed by seeing the model leg 

in action and observing it as being operational. Also the foot trajectory of the 

experimental model confirmed that of the simulation model (see figure 4.22). 

Experimentally it was proven that the Buraq leg provides an approximate 

straight line motion with a ballistic trajectory. Experiencing the mechanical 

constraint which was predicted during the simulation studies also helped the 

first objective to be achieved. 

2. The second objective was achieved by recording the observations 

from the experimental study. This experience will be valuable if a complete 

legged vehicle is built. 

3. The third objective was achieved by carrying out a series of 

experiments to estimate the specific resistance of a vehicle with Buraq legs 

so that a legged vehicle with Buraq. legs can be compared with other 

vehicles. Using the average curve obtained in figure 4.18, the legged 

vehicle with the Buraq legs, Buraq, is compared with previously built legged 

vehicles in figure 4.23. Figure 4.18 shows that Buraq has a good 

performance at low speeds, however, when the speed increases the 

performance decreases. Nevertheless it can be seen from figure 4.23 that it 

wo 



is still in the average range of the tracked vehicles. 

Figure 4.23 shows three previously built legged vehicles compared with 

Buraq, which are OSU Hexapod, GE Quadruped and Adaptive Suspension 

Vehicle (ASV) in addition to some biological and wheeled systems. The 

ideal for a legged vehicle is to be as efficient as a horse which is more 

efficient than any other system. Even though a Buraq legged vehicle is not 

comparable to a horse, it has a better efficiency at low speeds compared to 

other legged vehicles. It is expected that through elastic energy storage in 

the leg mechanism, a better performance can be achieved at high speeds as 

explained in chapter 6. 
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Voltage 
V 

Torque 
Nm 

Current 
A 

Torque 

Current 

5.0900 0.7684 2.4500 0.3136 
5.6500 1.0245 2.7700 0.3699 
7.2000 2.0491 4.0300 0.5085 
8.9100 2.5614 4.9800 0.5143 

10.4300 3.5859 6.4500 0.5560 
13.9000 5.0225 9.1000 0.5519 
14.5000 5.2508 9.4000 0.5586 

Table 4.1 Measurement of the stall torque 
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Table 4.2 and its plot 
Measurement of the no load speed of the dc motor. 

Line eqn: 	v4, =1.5198V.1.2796 
motor angular speed (rad/s) 

V: potential (V) 
where o' represents experimental readings from the 

table 4.2 

1.Oe-03 * 

Voltage Speed 
V rad/s 

0.0004 0 
0.0052 0.0660 
0.0083 0.1100 
0.0121 0.1640 
0.0141 0.1930 
0.0205 0.2850 
0.0267 0.3730 
0.0310 0.4370 
0.0351 0.4960 
0.0409 0.5800 
0.0455 0.6470 
0.0500 0.7130 
0.0561 0.8000 
0.0609 0.8720 
0.0659 0.9410 
0.0706 1.0100 
0.0754 1.0810 
0.0851 1.2180 
0.0954 1.3680 
0.1054 1.5210 
0.1154 1.6660 
0.1260 1.8170 
0.1355 1.9560 
0.1430 2.0670 
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V . Vi R 
 V sr 

2.7640 35.6000 11.2000 398.7200 250.8800 0.1440 0.3715 
2.7640 45.7000 11.4000 520.9800 259.9200 0.2145 0.4404 
2.8530 56.6000 11.6000 656.5600 269.1200 0.2794 0.4860 
2.8530 63.8000 11.8000 752.8400 278.4800 0.3242 0.5129 
2.8530 73.4000 12.2700 900.6180 301.1058 0.3661 0.5740 
2.8530 77.8000 12.5400 975.6120 314.5032 0.4164 0.5565 
0.3200 35.7000 12.7000 453.3900 322.5800 0.5625 0.7267 
0.3200 41.2000 13.4000 552.0800 359.1200 0.6795 0.8874 

Table 4.3 The results of the processed data for the Case 1 

V .1 Vi Ri 
V sr 

0.8094 12.0100 3.0902 37.1133 19.0987 0.1798 0.1238 
0.8094 17.0000 2.7311 46.4287 14.9178 0.2970 0.1311 
0.7935 22.4000 2.7482 61.5597 15.1052 0.4174 0.1403 
0.8094 27.4000 2.6627 72.9580 14.1799 0.5480 0.1325 
0.8094 33.0000 2.6969 88.9977 14.5465 0.6410 0.1435 
0.8094 38.6000 3.2441 125.2223 21.0484 0.7517 0.1712 
0.8094 43.5000 3.6374 158.2269 26.4614 0.8327 0.1955 
0.8094 48.6000 4.3556 211.6822 37.9425 0.9437 0.2274 
0.8174 53.8000 3.7913 203.9719 28.7479 1.0960 0.1956 
0.8154 59.6000 4.1846 249.4022 35.0218 1.2310 0.2136 
0.8294 54.5000 4.1333 225.2648 34.1683 1.1176 0.2062 
0.8294 49.0000 3.8768 189.9632 30.0592 0.9819 0.1963 

Table 4.4 The results of the processed data for the Case 2 

I. V i Vi 'R 	12 7 Sr 

0.5461 20.4000 1.8419 37.5748 6.7852 0.3792 0.1487 
0.6658 21.0000 2.2352 46.9392 9.9922 0.3817 0.1454 
0.7955 21.1000 2.5601 54.0181 13.1082 0.3835 0.1341 
0.8473 21.2000 2.7482 58.2618 15.1052 0.3742 0.1361 
0.8932 21.0000 3.2612 68.4852 21.2709 0.3826 0.1382 
0.9890 21.2000 3.9110 82.9132 30.5918 0.3669 0.1442 
1.0867 21.6000 4.6805 101.0988 43.8142 0.3809 0.1384 

Table 4.5 Load sensitivity of the specific resistance ( ±5%  ) 

I 	V I Vi 21 'Ri 
I  sr 	I 

kN volt Amper Watt Watt rn/s - 

UNITS 103 



Element # Computer model 
[mm] 

Experimental 
model 	[mm] 

1+2 32+65 291 
3+4 32+64 288 
4+7 32+112 432 

5 65 195 
8 86 258 

9+10 25+133 474 
11 80.2 241 
12 32 96 
13 103 309 

Figure 4.1 A sketch of the Buraq leg mechanism and a table 
containing its model dimensions 
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(see figure 4.2) 
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Figure 4.3 Hydraulic circuit operating the hydraulic ram 
for up and down motion of the foot 
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Figure 4.4 A symbolic representation of the foot trajectory and 
the order of the control signals driving the leg 
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Figure 4.5 Microswitch positions with respect to the crank 
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Figure 4.6 The truth table for the logic circuit 
shown in figure 4.7. 
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Figure 4.7 A schematic representation of the 
flip-flop circuit used to drive the leg purely by logic 
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Figure 4.8 A sketch of the Buraq leg mechanism driven 
by computer control 
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Figure 4.9 Flow chart of the program executed to drive the leg by 
computer 
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Spring 

Figure 4.10 Experimental set up to measure the specific resistance 
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Figure 4.11 Calibration of the strain-gauge. 
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Figure 4.12 Strain-gauge amplifier output (sgv ) versus 
load applied against the foot at the end of the foot trail 

The line eq'n: load = 0.399 sgv - 166.89 
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Figure 4.13 Current transducer output (cur) versus 
Ammeter readings (i) 

The line eq'n: i = 0.0171 cur - 0.0049 
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Figure 4.14 Torque vs dc motor speed variation with 
constant voltage lines produced using the data from tables 

4.1 and 4.2. Constant voltage values and respective 
intersection points on both axis are given below. 

torq = [0.7684 1.0245 2.0491 2.5614 3.5859 5.0225 5.2508] 
volt = [5.0900 5.6500 7.2000 8.9100 10.4300 13.9000 14.5000] 
wrad = [7.5151 8.3420 10.6305 13.1552 15.3994 20.5227 21.4086] 

Motor 
speed 
(rad/s) 

v = 

.1- 

-I. 
	

T0  Torque (Nm) 

Figure 4.15 Torque, speed and voltage values of 
the dc motor during operation at an arbitrary -point. 
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Figure 4.16 Current ( i  ) vs torque ( T ) produced from table 4.1 
I = 0.6325 I - 0.6446 
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Figure 4.17 Variation of the specific resistance with respect to the 
average foot speed for case 1 and case 2. 
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Figure 4.18 Finding an average curve as an approximation to 
the specific resistance variation of Buraq legged vehicle with 

respect to the vehicle speed. 
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Figure 4.19 Testing the load sensitivity of the specific resistance. 
The test values are plotted with the values of study Case 2. 
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Figure 4.20 The upper actuated joint positions U 
with respect to the recorded values from the 

straight line potentiometer (mon). 
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Figure 4.21 Experimental foot trajectories for various 
positions of upper actuated point U. The x and y 

components are scaled down to fit to the simulation 
model in chapter 3. 

121 



y 	-160 
positions 	

-180 

-200 

-220 

-240 

-260 

o 
0 	 Experiment values: * * * 

Theoretical values;: ° ° 
......................................... 
* o: Uy =9.8 

jD  .................................... 
0 

: .................°*c" 	................... 
00:0 	 . 

:f.. o*. ..... 
*:* 	C° Q 	: 

... 

-280L_ 
-200 

x positions 

Figure 4.22 Comparison of the experimental and 
theoretical results for two arbitrary foot trajectories 
referring to the same upper actuated joint positions. 
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Figure 4.23 Comparison of the specific resistance values of various 
vehicles and systems with respect to Buraq legged vehicle 

Some of the data is reproduced from (Waldron et al 1984(b))). 
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5.1 Introduction 

In this chapter gait shift and steering methods are developed for a legged 

vehicle with the Buraq legs. 

To shift gaits, the design objective is to achieve the control of foot 

placement patterns during locomotion. 

To steer, the design objective is to achieve not only the control of motion 

axis of the legs relative to the vehicle body, but also to achieve the control of 

foot strokes for each leg. In this chapter, the steering study is limited to the 

role of the crank which is the control of the foot strokes, and the control of 

motion axis of the legs is dealt with in section 7.3.3. 

The following points need to be considered in the design process of the 

mechanisms to achieve above objectives; 

The Buraq leg is actuated in the longitudinal direction by a crank 

mechanism which is purely a mechanical actuator. Mechanical actuators 

have very poor control characteristics compared to other actuators as was 

pointed out in section 2.4.1. Therefore an ordinary crank mechanism needs 

to be modified to control the foot stroke. 

The Buraq legs are driven in pairs through the same drive shaft 

(driven in parallel) in longitudinal direction. Therefore a gait shift requires 

the control of the phase between parallel driven legs. Design of a 

mechanism to produce phase shift between parallel driven legs therefore 

becomes necessary. 

5.2 Change of the Foot Stroke 

Fundamental knowledge about a four bar mechanism shows that the foot 

stride can be changed by varying the crank radius. Since the rocker is fixed, 

the length of its circular trajectory can be adjusted through changing the 

crank radius. To change the length of the crank, the introduction of a 

hydraulic cylinder may be proposed. However, since the crank is an active 

element with repeated rotations, the fluid cannot be supplied from the 

vehicle body to the cylinder without high-speed rotating couplings. 

Traditionally the most convenient way to transfer energy from a stationary 
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element to a rotating element has been by slip rings conducting electrical 

energy. Hence, choosing slip rings allows the selection of an actuator with a 

lead-screw mechanism to be used to change the radius of the crank as 

shown in figure 5.1. Using either of the arrangements shown in the figure, a 

four bar mechanism can be designed with variable crank length, hence 

variable foot stride. 

5.3 Change of Phase Between Two Parallel Driven Legs 

To serve this aim a mechanism can be designed to allow a phase shift 

between two rotating cranks connected to the same drive shaft. A similar 

mechanism is used to change valve timing to increase fuel efficiency in car 

engines. The mechanism shown in figure 5.2(a) is proposed by Dr. J. Todd. 

Another mechanism is also designed to serve this particular purpose as 

shown in figure 5.2(b). Both mechanisms proposed in figure 5.2 are to be 

placed in the centre of the shaft which drives both cranks in parallel. In both 

mechanisms, the phase change is achieved by rotating one shaft with 

respect to the other one while the shaft is rotating. 

5.4 	The Proposed Method for Change of the Foot Stroke and 

Change of Phase 

The methods to change the foot stroke and the phase examined in the 

previous sections 5.2 and 5.3 introduce additional actuators to the vehicle. It 

is possible to design a mechanism which can operate with a single actuator 

and yet cause similar effects on the foot stroke and phase. The proposed 

method is to build a crank on a disk in an off-centered position. The disk 

can be driven by the drive shaft. By rotating crank with respect to the rotating 

disk a 360 degrees phase change can be achieved. A sketch of the 

proposed design can be seen in figure 5.3. This new design is called 

variable crank mechanism. In the new mechanism, the crank is assembled 

off-centre on the disk so that the radius will be changing while the crank is 

rotating. The point where the crank is connected to the rocker is defined as 

crank point. . And the distance from the disk centre to the crank point is 

referred as the crank effective length (C e ). In this setting it can be seen 

126 



that the parameter which affects the rocker trajectory is not crank radius any 

more, and the crank effective length, Ce,  replaces this parameter. The crank 

can be actuated by a lead-screw mechanism driven by a speed reducer. 

The power can be supplied to the electrical motor through slip rings which is 

a common and an effective method. 

This simplification brings out the coordination requirement between the 

phase change and the foot stroke change, because both motions are no 

longer decoupled. In this chapter the simulation studies are aimed to show 

that coupled motion of the foot stroke and the phase change can be carried 

out for steering and phase-shift purposes. 

5.4.1 The Relation Between the Crank Point Position and the 

Crank Effective Length 

The relation between the crank point position and the crank effective 

length can be seen in figure 5.4. The figure consists of two columns, one of 

which shows crank point positions with respect to the disk, and the other 

column shows the crank point trajectory while the disk rotates. The radius of 

the crank point trajectory is the crank effective length as shown in the figure. 

As the figure shows, while the crank point approaches to the centre of the 

drive shaft, the crank effective length ( C e  ) shortens, hence the foot stroke 

becomes shorter. 

5.4.2 The Relation Between the Crank Point Position and the 

Phase in Parallel Driven Legs 

Figure 5.5 consists of three columns, the first one shows the phase shift 

while the crank effective lengths for both parallel driven legs are equal. The 

second column shows the crank effective length change while the phase is 

constant and equal to it. The third column shows the change in the ratio of 

the crank effective lengths in relation to the second column. 

As the figure shows, crank effective length ratios and phase variations 

can be expressed in the following ranges; 
(Ce)L - I (Ce)min . (Ce)max  

(Ce)R - L (Ce)m 	(Ce)min  

Phase= [0 :27c] 
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Where subscripts L and R stand for "Left" and "Right". Furthermore 

figures 5.6 and 5.7 are produced from figure 5.5. Figure 5.6 shows the 

distances (C e) max , (C e ) min  and d. Using figure 5.6, it can be shown that d is 

the geometric mean of (Ce  )max and (Ce  )min' that is; 

d = (Ce) max  (Ce)m in  

In figure 5.7, the analytical relation between both of the crank effective 

lengths is shown. As the figure shows, both crank effective lengths are 

equal when the phase between parallel driven cranks is nil. Also, due to the 

off-centered position of the crank on the disk, the function (Phase = it) is not 

a straight line. 

5.4.3 The Relation Between Phase and Gait 

Before studying the relation between phase and gait, running gaits 

should be examined in some detail. Gaits for running quadrupeds were 

mentioned in section 1.3.1 previously, and figure 1.1 was presented 

showing quadruped running gaits. In this study some running gaits for 

hexapods and octopods are proposed by using the quadruped running 

gaits. Even though no biological example exists running on more than four 

legs, the stabilisation problem is simpler when the number of legs gets 

bigger than four at walking speeds (see McGhee 1981). 

The following method is proposed for running gaits of the hexapods and 

octopods; using two or more legs as virtual legs (refer back to the definition 

of virtual leg in section 1.3.1), hence reducing the total number of legs from 6 

or 8 to 2 or 4 virtual legs. Since biped and quadruped running gaits have 

been studied in the previous research, the same running strategy can be 

applied to hexapods and octopods which are virtual quadrupeds and bipeds 

according to the adapted gait structure. The application of this method is 

shown in figure 5.8. 

To understand the relation between phase and gait, the mechanical 

structure of the leg mechanism should also be examined; each leg is 

actuated by a variable crank mechanism in longitudinal direction. Variable 

crank mechanisms are connected to drive shafts in pairs, and the drive 



shafts are connected to a main shaft driven by an engine. 

Centre of the crank relative to the drive centre is fixed. Therefore the 

crank mechanisms can be constructed in various ways. Four different 

positioning of crank centre with respect to the drive shaft centre are 

examined (see figure 5.9). 

The type of fixation of the crank centre with respect to the disk (N, S, W or 

E) affects the gaits of the vehicle. For example, if a vehicle was considered 

to have all the same type variable crank mechanisms, e.g. type N, then the 

vehicle would be travelling with trot gait at low speeds, and with pronk gait at 

high speeds. Figures 5.10 and 5.11 show this case for quadrupeds and 

hexapods respectively. The quadruped running gaits are very similar to 

octopods, since the octopods can be considered as virtual quadrupeds, 

therefore their phase-gait relation for an octopod can easily be figured out 

from the figure 5.10. 

By changing the type of the variable crank mechanisms, different gaits 

can be adapted. For example figure 5.12 shows how a hexapod can 

change its gait from virtual trot at low speeds to bound at high speeds. 

5.4.4 The Effect of Crank Effective Length Variation on the 

Gait of the Vehicle 

The gaits are presented assuming that the vehicle travels along a straight 

line. However, while the vehicle has to change its direction, it has to change 

the crank effective lengths in longitudinal drives. This section investigates 

how the crank effective length can be changed without affecting the gaits. 

In figure 5.13, the positions of crank points in variable crank mechanism 

pairs are shown for different turning angles at different vehicle operation 

speeds. The gaits are preserved by rotating both cranks simultaneously in 

symmetry to the drive shaft centre. Hence, the gait is preserved while 

changing the crank effective length for steering of the vehicle. As the figure 

shows, at walking speeds, the magnitude of angle a depends on the vehicle 

trajectory. The sharper the turn, the higher the value of angle a. At high 

speeds, the ratio of b/c depend on the vehicle trajectory. The sharper is the 
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turn, the higher is the angular ratio. 

5.5 Characteristics of a Variable Crank Mechanism 

In this section the characteristics of the variable crank mechanism are 

studied to lay a base for further studies. 

5.5.1 A Mechanical Constraint 

The leg mechanism has a mechanical constraint during the locomotion in 

the support period. The foot should be on the ground during the lower cycle 

of the crank point, and it should be off the ground during the upper cycle of 

the crank point as shown in figure 5.14. 

5.5.2 A Point to Consider in Control 

It is suggested that the crank should be driven only during the transfer 

period, and it should be kept locked during the support penod. That way the 

electrical motor and the gears could be chosen to be smaller since they 

would not be subjected to heavy loads during operation. 

5.5.3 The Crank Point Position on the Disk and 

Manoeuvrability 

Instantaneous radius for the arc of the vehicle trajectory towards right or 

left , (rot) can be expressed as follows (see appendix 3.1 for details); 

width 
rot ) 

R/1 	
(C9) A/l 

(C9)R - (COL I 
where width represents the distance between parallel driven legs and L 

represents the maximum foot stroke. Maximum crank effective length can be 

expressed as follows; 

(0e)max = r + Yo 

(Ce)m in  = r - Yo 

where r represents the radius of the crank and Yo  represents the distance 

between the centres of the drive shaft and the crank. The bigger the y 0  

value, the smaller is the rot value which means sharper turns. To be able to 

provide 2ir phase difference between parallel driven legs, r should be 

chosen bigger than y0  value (see appendix 3.1). 
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5.5.4 Maximum Time To Change Phase 

Following parameters are defined; 

oh,: Right leg crank speed with respect to the drive shaft 

we  Left leg crank speed with respect to the drive shaft 

= y, where ii is angular displacement of the right leg crank 

= 8 , where 0 is angular displacement of the left leg crank 

During locomotion, drive shaft operates at various speeds. In the mean 

time, the crank operates with respect to the disk during transfer period to 

change the foot stroke and phase. To find the longest time that will take the 

crank to change phase (which is equivalent to it phase difference) following 

equation can be used (see appendix 3.2 for details); 

g 	
27c 	

where cüando e are in [rad/s]. 
IO)w o)l 

As the equation shows, when the crank angular speeds are the same, no 

phase change takes place which is a reasonable and expected result. 

5.6 Simulation Results 

In this section the phase between parallel driven legs and variation of 

crank effective length are examined during locomotion. Simulation results 

are presented in figures 5.15-17. 

Both crank points are symbolically shown in the same crank to clarify the 

relative positions of the crank points. Also an additional plot shows the 

states of left and right feet (support or transfer period) for each foot. While 

left foot is on the ground, '0' symbol is printed on (y=1) line. And while the 

right foot is on the ground, '+' symbol is printed on (y=-1) line. While the feet 

are off the ground, y value is assigned as 0.5 for the left foot and -0.5 for the 

right foot. The phase difference can be recognised by looking at the upper 

plot. The lower plot shows values of the crank effective lengths for left and 

right legs with respect to the time. 

Figure 5.15 shows the case when the crank effective lengths of both legs 

take the same value. As the upper plot show, there is no phase difference, 
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and lower plot shows that the crank effective lengths take their maximum 

values. 

Figure 5.17 shows the case when the right leg crank effective length 

takes the maximum value while the left leg crank effective length takes the 

minimum value. The lower plot confirms the crank point positions. Also 

upper plot shows phase difference of it between legs. 

Figure 5.16 shows one of the intermediate positions between the two 

cases discussed above. 

5.7 Conclusions 

To collect the results obtained in this chapter, two tables are produced. 

The tables should be used with figure 5.18. Figure 5.18 shows various 

crank point positions on a single crank. These positions are used in the 

tables to specify the crank effective length and the phase. In table 5.1 

phase-gait-speed relation is shown. According to the crank point positions 

for left and right legs, phase, gait and speed of the leg pair are given for two 

extreme cases. Table 5.2 shows the relation between the phase and the 

direction examining all the possible crank point positions for both legs. 

The study presented in this chapter shows that it is possible to get use of 

the dynamical superiority of a crank mechanism even for systems which 

require certain degree of control, by introducing a method to change its 

stroke length. Moreover, it has been shown that the newly developed 

variable crank mechanism can be used to change gait and stroke lengths 

simultaneously in a legged vehicle. 
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Figure 5.1 Variation of the crank length by lead screw mechanism 
powered by a dc motor with two similar applications 
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other during operation 
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Figure 5.3 A sketch of the variable crank mechanism 

135 



Crank Point Position Crank Point Trajectory 

I Trajectory of Trajectory of 
Point F  Point C 

(:IIII::III;) to
ck  

disk 

I I 

I Trajectory of I Trajectory of 
Point F Point C 

I I 
I Trajectory of Trajectory of 

Point F Point C 

4  F 

I 	Point 0: The centre of the dis 
Point F: The centre of the 
crank fixed to the disk 
Point C: Crank point position 

Figure 5.4 The relation between the crank point position and the 
crank effective length.Realise the variation of the radius of the 

crank point trajectory which is equal to the crank effective length 
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Figure 5.9 Four types (N, W, S, E) of variable crank mechanism; 
realise the orientation according to the drive shaft centre ( 

8  ). 
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Figure 5.10 A quadruped case: The effect of the variable 
crank mechanism type on the gaits of a vehicle. Variable 

crank mechanisms are all the same type, therefore the gaits 
are trot and pronk. 
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Figure 5.11 A hexapod case: The effect of the variable crank 
mechanism type on the gaits of a vehicle. Variable crank mechanisms 

are all the same type, therefore the gaits are trot and pronk. 
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Figure 5.12 A hexapod case: The effect of the variable crank 
mechanism type on the gaits of a vehicle. Types of variable 

crank mechanisms are: The front pair (N), The middle and back 
pairs (S). Therefore the gaits are trot and bound. 
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Figure 5.13 A hexapod case: Preservation of the gait 
structure during rotation. 
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Figure 5.14 Mechanical constraint on the crank point 
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Figure 5.16 Keeping the right crank effective length at 
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6.1 Introduction 

Previously in section 1.5 the need for practical applications of elastic 

energy storage in legged vehicles was briefly discussed. For this chapter 

the following objectives are set out; 

- To investigate the way elastic energy is stored and is contributed back 

into leg cycle 

- To show the necessity of elastic energy storage for high speed legged 

vehicle applications 

- To carry out a feasibility study of the Buraq leg as a potential leg 

mechanism for elastic energy storage purposes. 

6.2 How Elastic Energy is Stored and Contributed Into the 

Leg Energy Cycle 

While running, the body is propelled into the air at an angle, using 

vertical actuation to push the foot against the ground during the support 

period. After the flight period, landing generates a ground reaction force. 

This force is directed to deform the springs in the linkages of the leg 

mechanisms. When the foot passes through the mid-stroke in the support 

period, the spring force changes direction, and tends to produce enough 

energy to supply the body with the necessary thrust force to continue 

running. Due to the vertical actuation input, repeating the above process 

builds up energy, and gradually the speed of the vehicle increases. Storing 

the increasing energy in the springs, and putting this energy back into cycle 

paves the way for very high speeds. 

6.3 Ground Reaction Forces During High Speed Legged 

Locomotion and The Need For Elastic Energy Storage 

While walking, it is assumed that a multi-legged vehicle uses one leg 

from each pair of legs for a better balance. Hence the payload, the body 

weight and the weight of the legs in the air are carried by the legs which are 

supporting the vehicle. It should also be remembered that each leg has its 
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own weight to support. Hence, the maximum ground reaction force can be 

expressed as follows during walking on flat terrain assuming that all ground 

reaction forces are acting in vertical direction; 

__ + W 	+ WpIoad 

Fri, = 	n 	 +Wieg (6-1) 

where Wieg  represents weight of a leg unit, W body  represents weight of the 

body, Wpay load represents weight of payload, and n represents number of 

legs. 

Unlike walking, while running, the maximum ground reaction forces are 

caused by the landing of the body on the ground after its flight on the air. An 

expression for the maximum ground reaction force (F m ) can be obtained in 

terms of a vehicle's total weight (W 0t) and its speed(V) by using the data in 

(Munro et al 1987); 

Fmax  =Wtt[O.15(V3)+2.5 ] 
	

(6-2) 

For running speeds, V value is either equal or bigger than 3 rn/s. 

The maximum speed of a battle tank is around 12.5 m/s. Having this 

speed value substituted in equation (6-2), the following is obtained; 

Fm = 3.925 W10t 
	 (6-3) 

The equation (6-3) shows a directly proportional relation between the 

maximum ground reaction force and the vehicle's weight at a constant 

speed. 

Assuming that no elastic energy storage takes place, to start the vehicle's 

flight period, a thrust force should be applied to the vehicle, and this thrust 

force should be less than or equal to the maximum ground reaction force. 

Hydraulic actuators are commonly used for load handling. Using an 

ordinary hydraulic ram operating at 200 bar, a basic relationship can be 

obtained from the manufacturer's data between thrust force and 

cross-sectional area of the ram as follows [see (Webtec Hydraulics 

Catalogue, 1988)]; 

Fthrust = 2,035 A 	 (6 - 4) 
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where Fthrust represents the thrust force (N) that the ram is able to stand 

at 200 bar pressure, and A represents cross-sectional area (cm 2). 

The Buraq leg mechanism has an average magnification ratio of 10 

between the foot and the vertically actuated joint. This factor can be 

contributed into the equation (6-3) as follows; 

Fthrust = 10 Fmax  = 39.25 W 0 	 (6 - 5) 

Combining equations (6-4) and (6-5), and by cancelling out Fth rust 

following equation can be obtained; 

Wtot  = 51.85A 	 (6-6) 

where W tot  is in (N) and A is in (cm 2). In terms of the diameter of the 

cross-sectional area, D (cm), equation (6-6) can be rewritten as follows; 

Wtot = 40.72 D2 	 (6-7) 

If Wtot = 10,000 N, then D= 15.67m. 

This huge diameter of the hydraulic ram to provide the necessary thrust 

force to start the flight period proves the necessity of the elastic energy 

storage to be incorporated into the leg cycle for running legged vehicles. 

6.4 Force Analysis of the Buraq Leg Mechanism for Elastic 

Energy Storage 

While running the total forces exerted on the body totals up to about 4 

times of the body weight as shown in equation (6-3). To be on the safe side, 

the maximum ground reaction force during running is taken as 5 times of the 

body weight for calculations while assuming that the vehicle's total weight is 

W 0  = 10,000 N. Hence; 

Fm 5Wtot  = 50,000N50kN 

The aim of the force analysis is to find the suitable linkages which can be 

accommodated as springs in the leg structure. In the leg mechanism only 

those linkages which are free of any bending moment can be 

accommodated as springs to avoid complications in manufacturing. The 

forces on the springy linkages should act similar to the spring forces of a 
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basic mass-spring model (see figure 6.1). These similarities are as follows; 

- The maximum force is achieved around the middle of the support 

period, 

- A sign change takes place as soon as the force achieves its maxima. 

The linkages carrying purely compression or extension forces are TO, 

WQ, ON and JV (see figure 6.2). A sample linkage for elastic energy storage 

is shown in figure 6.3. 

For a complete support period, the internal forces acting on linkages are 

calculated by statical analysis, and ground reaction forces are exerted for 

the cases of flat terrain, 600  uphill and 600  downhill conditions (see figure 

6.4). 

The calculations are carried out while the ground reaction force is 50 kN 

and the terrain is flat. The force variation on the specified linkages are 

shown in figures 6.5 through 6.8. To show the sign changes taking place, x 

and y components of the forces are shown separately. 

6.5 Evaluation of Results and Conclusions 

The force variation results are found similar to those of a mass-spring 

model. It can also be observed that the maximum spring force occurs at the 

linkage WQ, which is about 40 times the ground reaction force value. 

Using the force variation results, sign changes are recorded in figure 6.9. 

It can be seen from the figure that for all terrain conditions (flat, uphill and 

downhill) ON and JV linkage pair shift sign in opposite with TO and WQ 

linkage pair while positive sign represents extension forces. 

Legs can be placed in either directions on the body (see also section 

7.3.2). However the leg placement should be done in a such a way that the 

linkages with springs should be those going through compression cycle first, 

so that elastic energy can be stored. 

While running at high speeds, hydraulic rams can be used for two 

purposes 

1. During flight period, to raise and to lower the foot, 
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2. In the mid-support to increase the thrust on the springy linkages by 

pressing the foot towards the ground. The rest of the time the valves can be 

kept shut. 

The crank however should act continuously so that the speed of the 

vehicle can be maintained. 

The magnitude of forces on linkage WO is calculated for three different 

terrain conditions (see figure 6.10). Since the highest peak force is 

achieved during downhill locomotion, it can be said that maximum vehicle 

speeds can be achieved during downhill locomotion which is an expected 

result. 

Through this research, the Buraq leg mechanism has been justified to be 

a convenient leg mechanism for elastic energy storage purposes as the 

force results confirmed. During the calculations of the specific resistance in 

section 4.3.4, the force variation was experimentally observed to be 

maximum around the mid-stroke which confirms the simulation results. 

The study also showed that it is feasible to build self-sufficient legged 

vehicles for off-road transport to operate at various speeds. 
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Figure 6.1 The Spring Force Variation in a mass-spring model 
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III 

Figure 6.2 The Buraq Leg Mechanism with the crank-rocker 
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Figure 6.3 A sample springy linkage 
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Figure 6.4 Ground reaction forces acting on the Buraq leg 
mechanism at various terrain conditions during support period 
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Figure 6.5 Variation of spring force in the -x- direction on 
the linkage TO and WO during support period 

(See the orientation of the leg in figure 6.2). 
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Figure 6.6 Variation of spring force in the -x- direction on 
the linkages ON and JV during support period 

(See the orientation of the leg in figure 6.2). 
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(See the orientation of the leg in figure 6.2). 
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Figure 6.8 Variation of spring force in the -y- direction on 
the linkages TO and WO during support period 

(See the orientation of the leg in figure 6.2). 
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Figure 6.9 
Force Variation around the leg mid-stroke 

Extension forces are represented by plus '+' sign 
where compression forces are represented by minus '-' sign 

Orientation of the leg is as shown in figure 6.2. 
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7.1 Introduction 

In this chapter a hybrid type legged vehicle with the Buraq leg 

mechanisms is examined. The design parameters are specified for a case 

study. Some proposals are presented for the mechanical design of the 

legged vehicle. The study is not only expected to set a foundation for a real 

vehicle to be built in the future, but also serves as a medium to examine the 

feasibility of a legged vehicle with the Buraq legs. 

7.2 Setting the Terrain and the Performance Characteristics 

As it was mentioned in the first chapter, the motivation behind this thesis 

is to design a legged vehicle with competent performance to be used 

instead of traditional off-road vehicles due to the harm that they cause to the 

environment. Keeping this basic principle in mind, the legged vehicle 

proposal for off-road transportation represents the oft-road vehicle with the 

best performance. Since a competitive legged vehicle is aimed to be 

designed, the obstacle crossing characteristics of a battle tank, and the 

ground traverse and performance characteristics of a motor cycle are taken 

as desired design parameters which are described as follows (The data is 

reproduced from (Bryson 1988) and (Larminie 1988)); 

Desired parameters for obstacle crossing: 

Minimum ground clearance: 480 mm 

Maximum height: 3 m 

Fording depth: 1.5 m 

Length to breadth ratio (limits) :[1.2  - 1.8] 

Stability tilt angle : 40 degrees 

Desired parameters for ground traversing: 

Mean Maximum Ground Pressure < 140 kPa 

Ground pressure is the ratio of weight to the area of the track in contact 

with the ground. The motion of a wheeled or a tracked vehicle depends on 
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the friction force that treads or palettes provide. Whereas a legged vehicle 

moves by pushing its foot against the ground. According to the 

characteristics of the ground, a legged vehicle can adjust the reaction forces 

on its feet according to the necessary ground pressure unlike a wheeled or a 

tracked vehicle. 

Desired parameters for performance: 

Power to weight ratio: 22.5 kW/t (approx. 2.25e+08 W/N) 

Turning circle: Pivot turn 

Speed: 12.5 rn/s 

Gearbox: 30:1 - 4:1 

Brake: Able to stop on a 60 degree slope 

Suspension period: Bounce, mm: 0.75 S. 

Pitch, mm :1.5 s. 

Damping <Critical 

Available bump deflection from static, minimum : 210 mm 

7.3 A Mechanical Design Proposal 

In table 7.1 the performance (P.C.) and the terrain (T.C.) characteristics 

affecting the mechanical design process are shown. As it can be seen from 

the figure, the crucial part of mechanical design is the leg design. The leg 

should be designed by taking into account both terrain and performance 

characteristics unlike other steps of the mechanical design. The leg design 

is also affected by the number of legs from the strength point of view. The 

rest of the mechanical design, in sequence namely, vehicle body, steering, 

brakes, suspensions and foot can be designed according to required 

characteristics. 

7.3.1 Leg Mechanism 

The primary constraints on the leg structure are terrain characteristics. 

Maximum height of the vehicle has been specified as 3 m. in section 7.2. 
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There are a few methods to proceed from this point; 

the leg mechanism can be designed as high as 3 m. and the rest of 

the vehicle can be placed in between leg pairs. 

the leg mechanism can be designed as small as possible, so that the 

vehicle body can be placed over the leg mechanism, the same as in a car, 

where the body is over the wheels. 

the leg mechanism can be designed with an intermediate height. Part 

of the vehicle body can then be accommodated in between leg pairs, and 

the remainder over the legs. 

The third way is followed in this study. 

The Buraq leg mechanism is drawn in figure 7.1. Wooden model 

dimensions (WM) and non-dimensional figures are both shown for linkages, 

as well as along x and y axes. Non-dimensional figures are produced by 

dividing all dimensions to the crank length (13 2) which is 32 mm. according to 

the built wooden model. 

By calculation of the crank length under prescribed constraints, the 

dimensions of the rest of the mechanism can be calculated. 

The leg mechanism is designed to have an intermediate height. The 

overall height of the leg is set to be less than 2 m. As shown in figure 7.1, 

the leg height is represented in the table about the distances along y axis; 

"PW" which is also equal to 9.71 A 2  refers to the leg height. Hence, the 

following inequality can be written; 

Y, <2m 

	

9.71R2 	<2 m 

	

A2 	<O.206m 

R2  is chosen as 0.2 m. Since R2  is known, the rest of the leg 

dimensions can be found using non-dimensional figures from the tables in 

figure 7.1. 

Leg stroke length (PmjnPm) = 10.19 R2  = 2.038 m 
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7.3.2 Vehicle Body 

To find the body dimensions, the following constraints should be taken 

into account; 

-Avoid the leg trajectories intersecting at any point 

-Lower body (the part of the body which takes place between legs) 

should allow the leg to rotate for steering. Maximum steering angle should 

ensure pivot turn capability. 

-Body form should have its centre of gravity on the longitudinal symmetry 

axis to ensure balance 

The leg unit is connected to the vehicle along the vertical axis that pass 

through the drive shaft which also goes through point S in figure 7.1. The 

foot reaching length about point S is not symmetrical as can be seen by 

comparing to Pm i nS to SPmax  along x axis in the figure. SP max  is more than 

1.5 times greater comparing to P m i nS. 

A star form is proposed for the body. This has its centre of gravity in the 

centre of the star while all legs are on the ground. The body and its 

dimensions are shown in figure 7.2. Parameter la is used to ease the design 

process. p. represents the side length of the equilateral triangle used to form 

the vehicle body. For a pivot turn with a star form body, the front and rear 

legs require 60 degrees turning capability (see figures 7.3 and 7.4). 

To be able to come up with the shortest vehicle body, the leg placement 

on the vehicle is done as shown in figure 7.5 (see also photograph 7.1). The 

difference between P m j n S and SP m  is exaggerated in the figure. As the 

figure shows, this set of leg orientations avoids the feet interferences during 

steering. If the leg orientations were all the same, the vehicle body would 

need to be bigger. 

Using the guidelines set above, and using figure 7.1, following equation 

can be written; 

x: 	SP min  < p./3 

4.07 R2  < p./3 

2.442m< p. 
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When jt = 2.5 m, the body dimensions can be expressed as follows: 

Length 	 = 3.333 m. 

Width 	 = 2.887 m. 

Height = 	3.000 m. 

Turning circle = 	Pivot turn 

Leg swing angle = ± 600 

Full reaching length = 	p. + 12.26 r2 	= 4.952 m. 

Full reaching length refers to the distance between the front and the rear 

feet when they are stretched away from the body. 

7.3.3 Steering 

It was already dealt with the change of foot stroke for steering purposes 

in chapter 5. In this section, variation of the motion axis of the legs relative 

to the body is studied. Some steering mechanisms of off-road vehicles have 

been investigated widely by Dudzinski (1983,1986 and 1989). In this 

section a new mechanism is proposed. The proposed mechanism can be 

used for any type of multi-legged vehicle as long as leg placements on the 

vehicle body allows the mechanism to operate as it is described below. 

The mechanism involves a single linear drive actuator. The top view of 

the mechanism is shown in figure 7.6. The front and back are marked in the 

figure. The mechanism is symmetric according to y axis at all times. The leg 

units which are connected to the vehicle body from their centre are 

represented simply by a line which is 2b unit long. 

In case of a quadruped application, the leg positions are clear. In case of 

a hexapod application the middle pair legs are placed along the y axis, in 

the middle of the vehicle. Middle legs are not rotated relative to the body 

assuming that they are always in the centre of the vehicle trajectory. 

However, during steering the foot stroke change applies to all legs, front, 

middle and back pairs. 

The drive shaft and supports have to be placed all in the same line where 

the leg unit is connected to the vehicle body, so that a rotation can take 
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place (see photograph 7.1). The front and back leg unit pairs are connected 

by two linkages which are also joined to the actuated point in their centre 

point. The length of each linkage is 2a. 

Movement of the leg units relative to the vehicle body is achieved by 

positive or negative displacement of the actuated point along y axis. Due to 

mechanical constraint the actuated point cannot move along x axis. A 

positive displacement along y axis results in a right turn, and a negative 

displacement along y results in a left turn. 

Using the mechanical constraint of the mechanism, the minimum value 

of arc radius that the vehicle can travel through(R m j n) can be calculated to 

predict the manourebility of the mechanism (see appendix 4 for further 

detail); 
acos CIO  + b 

R•= 
sin M 

where 
1 IacosQ 0 + b 

M=cos L 	a+b 

a and b are linkage lengths, and 00  is the angular value measured 

while the vehicle travels along a straight line trajectory. Y m  is the maximum 

value of angle V. Note that when non-dimensional a and b values are used, 

M is found to be greater than 600  which satisfies pivot turn condition (refer 

back to section 7.3.2). 

A more elaborate steering mechanism can be designed as shown in 

figure 7.7. Steering arrangements are added for different modes of 

operation. The steering mechanism working according to the basic 

operation mode is explained above. During basic operation mode, all four 

points (A,B,C and D) are driven by a single actuator. Through this mode, 

pivot turn can be achieved around the left or right middle leg as shown in 

figure 7.4. 

Two more operation modes are added to the mechanism provided that 

all four points can be driven independently as shown in figure 7.7. 
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Through this proposed drive mechanism, during sharp action mode, front 

and rear leg units can be driven separately to change position suddenly. 

Also, pivot turn around the centre can be achieved if points A and B and 

points C and D can be driven in pairs as shown in the figure which also can 

be referred to figure 7.3. 

7.3.4 Brake and Suspension Systems 

To ease the production and the maintenance, a standard car brake 

mechanism is proposed as seen in figure 7.8. A disc with a pair of shoes is 

fitted on each drive shaft. A hydraulic system consisting of a servo, a master 

cylinder and a pressure control valve provide all three pairs of shoes. 

For the suspension of the vehicle, a similar approach followed. A typical 

spring damper pair is fitted to each leg unit as shown in figure 7.9. 

7.3.5 Foot Design 

To have a high performance of ground traversing, the mean maximum 

pressure (MMP) of the vehicle should be not more than 140 kpa on any 

terrain ( see section 7.2). For a legged vehicle MMP value should be 

defined. Hence for a leg it can be written as follows; 

[h'l 
Ground Reaction Force 

Area of Contact 

Ground reaction force for a leg was calculated as 3270 N while walking 

for the speeds up to 2.5 rn/s. Hence area of contact for the foot of a legged 

vehicle can be expressed as follows; 

Area of contact > 3270 N= 233.57 cm  
140 kPa 

Assuming a square foot form and complete contact between the foot and 

the ground, foot dimensions can be chosen as 16 x 16 ( 256  ) cm2 . It 

should be realised that this foot area has been calculated for walking 

speeds. Therefore, foot area for running speeds is required to be bigger to 

have the same MMP value. The side of the square foot needs to be at least 
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twice longer for running speeds. 

A sketch of the proposed foot design is shown in figure 7.10. The foot is 

equipped with a pair of microswitches to sense the foot contact. A piston 

head keeps pressing on the microswicthes through the spring force under 

no-load conditions. When load is applied on the foot the spring is 

compressed, and microswitches are released. Two microswitches are used 

in case one fails to operate. The bellows and the cylinder cover are to 

protect the switch mechanism from the environment. The spring and the 

bellows also serves as a padding surface along rubber sole especially 

during high landing impulses.ln similar way, various designs and sense 

mechanisms for the foot can be developed. 

7.4 Power Transmission 

The main power source of the vehicle is a 35 kW engine. The engine 

supplies a battery and the main drive shaft similar to a car example. A 

sketch of the power circuit is shown in figure 7.11. As the figure shows, the 

engine feeds the battery and its shaft is connected to the gear box. The gear 

box provides the pump and the main drive shaft. While pump actuates the 

vertical drives of the leg mechanisms, the power is further distributed to the 

front and the rear shafts so that the cranks can be actuated. The battery 

provides for the main steering motor in addition to high torque speed 

reducers which are mounted on variable crank mechanisms in each leg unit. 

In the following sections, more detailed description of the power 

transmission is given. 

7.4.1 Longitudinal Drive 

A sketch of the power transmission for longitudinal drive is shown in 

figure 7.12. For longitudinal drives variable crank mechanisms are used. 

The power, transmitted to the main drive shaft from the engine via the gear 

box, is further transmitted to the front and the rear shafts through chain 

drives. From each drive shaft, the power is further transmitted to 3 pairs of 

175 



variable crank mechanisms through universal joints. 

7.4.2 Vertical Drive 

A sketch of the power transmission for vertical drive is shown in figure 

7.13. The power, transmitted to the pump from the engine via the gear box, 

is further transmitted to six pairs of valves. Each valve pair is situated by the 

leg it drives, so that minimum flow losses can be achieved. Each pair 

consists of a three-way valve and a check valve. Check valves are used to 

minimise the hydraulic energy losses during support period as mentioned in 

section 4.3.4. 

7.4.3 Steering 

A sketch of the power transmission for steering is shown in figure 7.14. 

The power transmitted to the battery from the engine is further transmitted to 

the main steering motor and the six high torque speed reducers each 

mounted on variable crank mechanisms in leg units. The transmission of 

electrical energy from the leg unit to the rotating crank is carried out by using 

brushes and slip-rings as shown in the figure. 

7.5 Conclusions 

The studies conducted in this chapter have helped to examine the 

mechanisms designed throughout this research. Also additional questions 

such as steering and power transmission are answered relating to a legged 

vehicle with Buraq legs. According to the conducted study in this chapter, a 

wooden prototype legged vehicle is built which consists of a body and six 

legs (see photograph 7.1). Also a simplified wooden model of the leg driven 

by the variable crank mechanism is shown in photograph 7.2. 

Surely, there needs to be further study in the area to design a real legged 

vehicle. However, the study has served to give a rough idea about what the 

real vehicle should look like. 
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Photograph 7.1 A wooden model of the legged vehicle 

-while a 30 cm. ruler is placed on- to give an idea about its size 
which is about 1/8 of the proposed vehicle in this chapter. 
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Photograph 7.2 The detail of the variable crank mechanism 
driving the leg in the wooden model leg unit built with completely 

symmetric linkages with respect to the leg vertical axis. 
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Steps In 
Mechanical Design 

Constraints 
Type of 

Constrain 

Leg and Body Design 

Ground Clearance, fording depth, length to breadth, 
stability tilt angle, available bump deflection  

T . 

Number of legs, Gait Structures L.0 

Turning Circle P . C 

Engine, Actuators, 
Power Transmission Speed, Power/Weight, Gearbox ratio P.0 

Foot Dimensions Mean Maximum Pressure T.0 

Brake Design Brake Requirements p C 

Suspension Design Suspension Requirements P.0 

Table 7.1 The performance characteristics (P.C.), the terrain 
characteristics (T.C.) and the locomotion characteristics (L.C.) 

affecting the mechanical design process 
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WMND 

II 32 1 

B 65 2.03 

C 32 1 

0 64 2 

E 112 3.5 

F 86 2.69 

H 25 678 

K 133 4.16 

32 1 

R 80.2 2.51 
3 

163 3.22 

II. 

UI 

SI 

P 

MA 

F fl1fl  S 	W 	U 	PM aH . . 	• H 
Linkage Dimensions 

H WM ND 

P 	P 326.3 18.19 
ml rim a i 
P 	S 138.22 4.87 

mm 

SPmaH 196.08 6.13 

S  64.68 2.82 

UPmaH 131.4 4.11 

SW 38.26 1.19 

III  26.4 8.83 

U WM ND 

SW 185.18 3.29 

PS 285.52 6.42 

S  57.48 1.79 

U  47.7 1.49 

P  263 8.22 

P  318.7 9.71 

Distances along x axis 	 Distances along y axis 

Figure 7.1 The Buraq Leg Mechanism with the crank-rocker 
WM refers to the dimensions of the wooden model leg in mm. 

ND column refers to non-dimensional figures produced by dividing 
WM dimensions to the crank length which is 32mm. 
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Figure 7.2 Steps in the lower body design 
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Figure 7.3 Pivot turn around the center towards right 
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Figure 7.4 Pivot turn around right middle leg towards right 
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Figure 7.5 Leg placements according to the vehicle orientation 
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Figure 7.7 Steering modes 
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Figure 7.8 Brake system of the vehicle 
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Figure 7.10 Unscaled representation of the foot cross-section under load. 
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Figure 7.11 Power Flow in the Legged Vehicle 
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Figure 7.12 A symbolical representation of the 
mechanical power transmission for longitudinal drives 

(tension sprockets are not shown). 
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Figure 7.13 A symbolic representaton of the hydraulic 
power flow 
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Figure 7.14 A sketch of the power transmission for steering; 
High torque speed reducers are used to activate the cranks in variable 

crank mechanisms. The main steering motor is used to drive the leg units 
as proposed in figure 7.7 according to the basic operation mode. 
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Chapter 8 

A Summary and Evaluation of the Overall Research 

Contents 

8.1 Introduction 

8.2 A Summary and Evaluation of the Overall Research 

8.2.1 Design of the New Leg Mechanism 

8.2.2 Choice of the Actuation Method 

8.2.3 The Leg Unit Consisting of the Buraq Leg and 

Actuators 

8.2.4 The Legged Vehicle with Prescribed Leg Units 

8.2.5 Future Study 



8.1 Introduction 

In this chapter, the overall work carried out through out the thesis is 

evaluated according to the set objectives in section 1.6. These objectives 

includes designing a leg mechanism, developing an actuation strategy, 

studying the means for elastic energy storage and mechanical design of a 

legged vehicle. 

Looking through the chapter headings from chapter 2 up to chapter 7, all 

the topics included among objectives are dealt with. Since each chapter 

contains a conclusion set at the end, some comments relating to the 

objectives are already covered. However, the aim in this chapter is to give a 

complete picture of the research described in the thesis, so that its 

evaluation can be carried out to see to what extend the set objectives are 

achieved. 

8.2 A Summary and Evaluation of the Overall Research 

The whole thesis is devoted to showing the availability of a new leg 

mechanism for a high speed leg locomotion to be used in obstacle free 

terrain. The research study can be examined around this point under the 

following sub-titles; 

Design of the New Leg Mechanism 

Choice of the Actuation Method 

The Leg Unit Consisting of the Buraq Leg and Actuators 

The Legged Vehicle with Prescribed Leg Units 

Future Study 

Each topic can be explained as follows; 

8.2.1 Design of the New Leg Mechanism 

The new leg mechanism, Buraq, has the following characteristics; 

a. 	It has a long horizontal stroke compared to its height which is a 

positive attribute for a leg mechanism to be used for high speed legged 

locomotion. 
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b. 	It has no sliding joints in its structure which makes it reliable and 

easy to design. 

It can be actuated by various means; the linkage dimensions can be 

adjusted to allow either linear or rotary actuators. 

The experimental study has shown that the leg mechanism is 

structurally sound, and able to handle loads in the vertical direction. 

The magnification ratio between the foot and the actuated joints is 

quite high (max: 13/1) which makes the mechanism quite a compact one. 

The leg mechanism can be used as either an insect type or a 

mammal type leg due to its geometric characteristics. 

8.2.2 Choice of the Actuation Method 

Due to the dynamic superiority of mechanical actuation, the leg can 

achieve high speeds without requiring huge hydraulic circuits which avoids 

considerable hydraulic energy conversion losses. 

Despite mechanical actuation, varying the foot stroke, steering and 

gait shift are possible by using the variable crank mechanism. 

C. 	In the vertical direction the use of a hydraulic cylinder enables the 

terrain adaptability and load handling, while in the longitudinal direction the 

use of a mechanical crank-rocker provides dynamic superiority, reliability 

and ease in control. 

d. The compactness of the leg mechanism minimises the hydraulic 

energy conversion losses since the transferred amount of fluid in the 

hydraulic circuit becomes less. 

8.2.3 The Leg Unit Consisting of the Buraq Leg and Actuators 

The leg mechanism and its particular actuation method have been 

specifically chosen for an obstacle free terrain and high speed legged 

locomotion. 

A detailed comparison of the Buraq leg and a pantograph leg (see 

section 2.7) has shown that the Buraq leg fits better for high speed legged 
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locomotion despite its disadvantages. 

The number of sliding joints is minimised through the usage of a 

crank-rocker mechanism in longitudinal direction. 

The leg mechanism has an approximate straight line foot trajectory 

during the support period, and has a ballistic foot trajectory during the 

transfer period. 

Compared to other artificial legged systems, experimentally a 

smaller specific resistance value has been found for the Buraq leg with the 

way it is actuated which means a higher performance. 

8.2.4 The Legged Vehicle with Prescribed Leg Units 

By carrying out a design study of a legged vehicle with the Buraq 

legs, the possibility of such an application for high speed legged locomotion 

has shown to be feasible. 

A gait shift strategy during locomotion is introduced using a variable 

crank mechanism driving Buraq legs. 

A steering strategy with three different modes including pivot turn 

capability is introduced using Buraq legs. 

For running applications, in addition to existing quadruped running 

gaits, hexapod and octopod running gaits are introduced to ease the stability 

problem at walking speeds. 

For efficient running, compliance is introduced to the Buraq leg 

mechanism, and a feasibility study of the Buraq leg with proposed 

compliance method has given a positive result. 

A strong similarity has been revealed through kinematical analysis 

of the Buraq leg mechanism between the speed profiles of the foot driven by 

a crank-rocker and the mass of a basic mass-spring model. This is another 

positive point which makes the Buraq leg mechanism favourable for elastic 

energy storage. 

The vehicle with Buraq legs looks promising for both low and high 

speed applications for an obstacle free terrain. This is mainly because the 
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vehicle inherits the energy saving mechanisms which are used at low as 

well as at high speeds. At low speeds, an approximate straight line foot 

trajectory, avoidance of geometric work through driving legs across more 

than one joint and hence a low specific resistance value are energy savers. 

At high speeds, avoidance of hydraulic actuation in the longitudinal 

direction, usage of dynamically superior crank mechanisms, long foot stroke 

and elastic energy storage characteristics are energy savers. 

8.2.5 Future Study 

The objectives set out at the beginning of the thesis in chapter 1 have all 

been discussed through out the thesis. While experimental studies have 

also been carried out for the designed leg mechanism, the rest of the 

research such as variable crank mechanism for gait shift and foot stroke 

variation, steering mechanism, elastic energy storage and mechanical 

design of the legged vehicle depends on the theoretical calculations and 

computer simulations. A wooden prototype model of the legged vehicle with 

variable crank mechanisms has been built enabling to visualise all the 

mechanisms. However, to be able to build a real legged vehicle, future work 

should be concentrated on experimental studies of what has been already 

explained theoretically in the thesis. 

First, an experimental study of the variable crank mechanism should be 

carried out to further examine its characteristics. A prototype vehicle with a 

pair of parallel driven legs in front axis and a castor wheel in the centre of 

rear axis can be built to confirm the behaviour of the variable crank 

mechanism with the simulation study, while the balance problem is 

eliminated to ease the experimental procedure. 

Then,. a multi-legged vehicle can be built, and various gaits can be 

adopted as prescribed in chapter 5. 

A leg mechanism with elastic energy storage elements can be built and 

tested with the legged vehicle as proposed in chapters 6 and 7. 

The question of timing to change gaits with respect to the speed can be 
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answered by various trials of gait shifts during locomotion at different speeds 

while energy consumption is recorded for further evaluation. 

Finally, having completed all the steps satisfactorily, a real legged 

vehicle can be designed and built. 
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Appendix 1.1 

Derivation of equations for the Buraq leg mechanism 

Using figure 3.2, the distance between the point U and the point Q can be 

projected on the x axis and y axis as follows; 

Ux+AcOsa+CcOSbQx0 	 (A-i) 

Uy + Asina + Csinb - Qy = 0 

The distance between the point U and the point P can also be projected 

the same way; 

U + (A+B)cosa + (C+E)cosb + Kcosc - PX = 0 	 (A-3) 

U + (A+B)sina + (C+E)sinb + Ksinc - P y  = 0 	 (A-4) 

Following a different path from the figure, the same distance can be 

projected using angular displacement x. Hence the following equations can 

be written; 

(A+B)cosa + (C+E)cosb + Kcosc 

Acosa + (C+D)cosb + Fcosx + (H+K)cosc 	 (A-5) 

(A+B)sina + (C+E)sinb + Ksinc = 

Asina + (C+D)sinb + Fsinx + (H+K)sinc 	 (A-6) 

Equations (A-5) and (A-6) can be used to eliminate the angular 

displacement x from the equations by following procedure; 

From the equation (A-5): 

Fcosx = Bcosa + (E-D)cosb -Hcosc 	 (A-7) 

From the equation (A-6): 

Fsinx = Bsina + (E-D)sinb - Hsinc 	 (A-8) 

Adding (A-7) 2  to (A-8) 2 : 

2BHcos(a-c) + 2H(E-D)cos(b-c) - 2B(E-D)cos(a-b) = 

B2  + H2  + (E-D)2  - F2 	 (A-9) 

Note that equations (A-3, 4, 9, 1 and 2) refer to equations (3-1) through 

(3-5) respectively. 
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Appendix 1.2 

Derivation of equations for the linkage lengths of the 

crank-rocker drive mechanism 

Four bar mechanism inherits two singular positions. Using these 

positions trigonometric equations can be written (See figure 3.12). 

From figure 3.12(a), the following equations can be written; 

(A1 )2  = (R4)2  + (R2+R3)2  - 2(R2  + R3)R41OS9min  (Al 0) 

(R4)2 =(R1 )2 + (R2+R3)2  - 2(R2+R3) R 1 cosf (A-1 1) 

(R2+R3)2  = (A1 )2  + (A4)2  - 2 A 1  134coS(lt-g m i,, f) (A-i 2) 

From the figure 3.12(b), the following equations can be written; 

(R1 )2  = (A4)2  + (113  - A2)2  - 2(R3  - R2)R4cos g (A-i 3) 

(R4)2 = (R1 )2  + (133  - A2)2 - 2(R3  - R2)R1  cos k (A- 14) 

(133  - R2)2  = (A1 )2  + (R4)2  - 2 A 1  R4cos(it-gm 	- k) (A-i 5) 

Subtracting the equations (A-i 3), (A-i 4) and (A-i 5) from (A-i 0), (A-i 1) 

and (A-12) the following set of equations are obtained: 

4 R2  A3  -2 a0  R4  (132  + 113) + 2 d0  R4  (133  - A2) = 0 	 (A-i 6) 

4 A2  R3  -2 b0  A1  (132  + 133) + 2 e0  A1  (133  - 132) = 0 	 (A-i 7) 

4A2 R3 -2c0 A1R1+2t0R1R4=0 	 (A-18) 

where a 0  represents cosgj , b, represents cosf, c 0  represents 

cos(ic-g-t), d 0  represents cos grnax, , eo  represents cos k and f0  represents 

cos(1t-g 	- k). Also, it should be clear that minimum and maximum values 

of angle T4 are equal to 	+t ) and 	+ k) respectively. Using 

equation (A-18) following equation can be derived; 

A1 =2R2 R3 /[R4  (CO -t0 )] 	 (A-19) 

Substituting equation (A-19) into (A-17), the following equation can be 

found: 

A3 = [ (e0  +b0 ) R2 - (CO - f0 ) R4 1 / (e0  -b0 ) 	 (A-20) 

A3 



Substituting equations (A-19) and (A-20) into equation (A-16), the 

following equation can be obtained: 

P(R2)2 +QR2 +S=O 	 (A-21) 

where 	P=2(e0 +b0 ) 

0= 2 (f0  - c0  - a0  e0  + d0  b0 ) 

S= (co  -fo )(a0- do ) (R4)2  

Since all the variables in the equation (A-21) are known except A 2 , by 

solving equation (A-21), A 2  value can be found. And also, by substituting 

value of R2  into equations (A-19) and (A-20), R 3  and A 1  also can be 

calculated. Thus, the length of the four bar linkages are calculated. 
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Appendix 1.3 

Application of Grashof's Mobility Criteria 

Grashof's Mobility criteria are applied to the mechanism to check that the 

calculated crank-rocker linkage dimensions satisfy necessary and sufficient 

conditions for the mobility. Following quantities have been defined 

(Angeles, Callejas 1984); 

k1  = [(A1 )2  + (R2)2  - (R3)2  + ( A4)2 ] / (2 R2R4) 	 (A-22) 

 

 

Numerical values are as follows; 

R1 	= 111.93 	 k1  = 2.69 

= 	31.87 	 k2 	= 	3.51 

= 	80.22 	 k3 	= 	1.085 

Ft4  = 	103.10 

According to Grashof's Mobility Criteria; if the set { k 1  , k , k } verifies 

either set of inequalities, then the link lengths A 1  (i=1, 2, 3, 4) do not define a 

linkage. These inequalities are as follows: 

(k2 -k1 k3) 2 	> 	(k3) 4  

> 	4(k2 -k1 k3) 2  

	

(k1) 2 - (k2) 2 - 1 	> 	(k3) 2 

	

(k2  - k 1  k3) 2 	< 	( k3) 4 

	

(k2 -k1 k3) 2 	< 	(k3) 2 [(k1 ) 2 -(k2) 2 -1] 

The necessary and sufficient conditions to produce an input crank is that 

both of the following inequalities hold; 

2(k2 k1 k3) 2 (k3) 2 [(k1 ) 2 -(k2) 2 +(k3) 2 -1 ] > 0 

[(k1 k3) 2 (k2 -1) 2 ][(k1 +k3) 2 -(k2+1) 2 ] > 0 

Calculations prove that predicted values of R 1 , A2 , A3  do not satisfy the 

first set of inequalities, and satisfy the second set of inequalities. That way 

predicted results of linkage lengths in the section 3.3.5 have been verified. 
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Appendix 1.4 

Calculation of angular displacement values for the 

crank-rocker drive mechanism 

To find the angular displacements of each linkage (T 1 , T2 , T3  and T4 ), 

following equations are generated by projecting the crank-rocker linkage 

lengths on the axis x and y (see figure 3.13); 

f1 	: 13 1 cosT1  - R20osT2 - R3cosT3  + R4  cosT4  = 0 

f2 	: R 1 sinT 1  + R2sinT2  + R3sinT3  - A4  sinT4 	= 0 

Partial derivatives of these functions can be calculated as follows; 
af, 	 af 1  
_—=R3 sinT3 ,_=–R4sinT4,LR3Co5T3 ,  -=–R4 cosT4  

T 1  is known, changing T2  in small steps T3  and 14  can be calculated 

using Jacobian method which leads to the following matrix equation; 

f i 	af 1 	[ T3 	–f 1  
aT3  aT4 1 I 

IaT4  
aT3  aT4] [ 

Using the Cramer's rule following equations can be written; 

(aT4

af2 	af1
aT3  = –- f 1 f2 I! DET 

 aT4  ) 

(f2
a 	af1 	\ 

aT4 = jFf1 - :;f2 J/ 
DEl 

where DEl (the coefficients matrix's determinant) is as follows; 

DET= af
1  af2 	af1 af2 
------ 
aT3  aT4 	wr4  aT3  

Final T3  and T 4  values can be calculated after a series of iterations while 

the increase in the value becomes nil. 
T3  = T3 + aT3  

T4  = T4 + DT4  

The angular displacement results are shown in figure 3.14 during the 

complete leg cycle. 
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AppendIx 1.5 

For kinematical analysis of the Buraq leg, general expressions of the 

velocity and the acceleration of the foot are derived. The figures 3.1, 3.13 

and 6.2 can be used for the derivation of vectorial expressions. The point W, 

which is the centre of the rocker, has the coordinates of (Wx,Wy). Hence, 

the coordinates of point S can be calculated as follows; 

S, = W + R- cosT 1 , Sy = Wy  + A 1  sinT1  

The velocity of the foot can be obtained by the following vectorial 

equation. Superscript ' ° denotes the first derivative of the angular 

displacements; 
-9 0-4 -p 	0-4 -p 	0-+ -9 

V=akxUM + b k x W + ckxZP 

where; 

UM= (A+B) (cosa i + Sinai), v= (C+E)(cosb i +sinbj), 

-9 	 -4 

ZP=K(cosc i +sincj ) 

Velocity of the foot in Cartesian coordinates can be obtained from the 

following equation; 

VP x  +Vpy  

where; 
0 	 0 	 0 	 -* 

Vp = - [ a(A+B)sina + b(E+F)sinb + cKsinc] i 

"Py = [ a(A+B)cosa + b(E+F)cosb + cKcosc] 

Also, the acceleration of the foot can be calculated as follows; 

-) 00 -4 -9 0-+ 	0 -9 -9 

Ap=a k x UM + a  x (akxUM)+ 

00 -* -4 0-+ 	0-I -9 

b k x W + bk x (bk x rv) + 

00-9 	-p 0-* 	0-4  - 

c  x ZP +ck x (ckxZP) 

where '00' superscript denotes the second derivative of the angular 
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displacements. Acceleration of the foot in Cartesian coordinates; 

A= 'Px + '6'Py 

where; 

Ap = - (A+B) (asi na + a 2cosa) - (E4-F)(b si nb-f-b 2cosb) - K(csi nc+c 2cosc) 

= (A+B)(acosa - a 2si na) + (E-i-F)(bcosb-b 2s mb) + K(ccosc-c 2S  nc) 

Using above derived equations, velocity and acceleration of the foot can 

be calculated according to given angular displacement values and 

derivatives. 

DiBenedetto and Pennestri (1983) in their paper about analysis of 

angular velocities and accelerations in plane linkages have derived the 

following equations for numerical calculations; 

The total time of one cycle is calculated as t; 
- 60 * GEAR 

RPM 

where GEAR is the gear ratio between the motor and the crank, and RPM 

is the motor speed. Also, time difference between iterations is represented 

by at. CN being a common coefficient and k being step number, the following 

formulas are derived for angular velocity ( w ) and accelerations ( 8  ) of the 

joints. 

CN= 
12N 

tk=kat 	k=1,2,3, ,N 

Hence, angular velocities of a specific joint (j) can be calculated at any 

moment (k) during the operation cycle using following equations; 

Wi 
k = 1 	

(2 T J k+3 - 9 T J ,k+2+18 Tjk+l - ll T J k) k=0,1 ... N-3 
72CN 
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Wj,k 72 (11 TJ,k-18T1,kl +9TJ,k_ 2 -2TJ,k) k=N-2,..,N 
 CN 

Also, angular accelerations of a specific joint (j) can be calculated at any 

moment (k) during the operation cycle similarly; 

= 72 C (2 Wj,k+3 -9 Wj,k+2 + 18 Wj,k+1 -11 Wjk) k=O,1, N-3 

13j ,k = 1 
	

(11 WJ,k - 18 Wj,k_1 + 9 WJ,k_2 -2 Wj,k_3) k = N-2,.,N 
72 C 
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Appendix 2 

The Experimental Set up 

Photograph A2.1 The prototype leg mechanism driven by a crank-rocker 

in longitudinal direction, and by a hydraulic ram in vertical direction. 
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Photograph A2.2 A back view of the test rig; the DC motor driving the 

crank and the pump through a series of V-Belt and chain drives can be seen. 

Also solenoid valves controlling the flow and the diode bridge feeding the 

DC motor can be seen. 
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Photograph A2.3 The leg mechanism driven by computer control. The 

3-phase variac supplying power to the test rig and the straight line 

potentiometer in parallel to the hydraulic ram can also be seen. 
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Photograph A2A The logic control circuit driving the 
transistors which are used to turn on/off the solenoid valves 
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Photograph A2.5 The mechanical drive system in detail 

(realise the hydraulic pump with hose connections). 
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Appendix 3.1 

The Significance of the Crank Position on The Disk 

Derivation of equations of motion for the crank point is necessary to 

understand the significance of the crank point position on the disk. 

From figure A3.1 the following equations can be written; 

i =cosae— sinae and j=sinae1 +cosae, 

Hence, et=coSai +sinaj and e=—sinai +cosaj 

where alfa represents the angle between the unit vectors I and et.  Also 

following equations can be written for the vectorial quantities R, r and a; 

a=R+r, 	R=y0 en , 	r=rcosOe+rsinOe 

where r represents the radius of the crank. Hence, 

a = y0  e + r cosO et + r sinO e n  = r cose et + ( y0+ r sinO ) e 

Using the equivalent unit vectors i and j, a can be expressed as follows; 

a = [r cos(O+a) - y 0  sina] i + Er sin(O+a) + y 0  cosa] 

For the crank point coordinates (Xc, c)  following equations can be 

written using the vector a; 
X= rcos(O+cz)—y 0 sina and Y= rsin (O-i-a)+y 0 cosa 

where r represents the radius of the crank, y0  represents the distance 

between the shaft centre and the crank centre. Angle alfa represents the 

angular displacement of the disk while angle teta represents the angular 

displacement of the crank relative to the disk. 

Crank is placed in such a way that it is oft-centered. This allows the 

crank effective length to change. The distance between the crank centre 

and the disk centre (which is also the centre of the drive shaft) is y o. In case 

the crank effective length is represented by Ce,  it can be shown that Yo  is 

directly related to it as shown in the following equation; 

(Ce)2  = 'X+Y 	(C.)2 = r2+y+2ry0sine 
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reminder : sine = sin(O+a) cosa - sinc& cos(e+cz) 

Therefore Yo  plays a prime factor in the manoeuvrability of the vehicle. 

The maximum manoeuvrability of the vehicle depends on the maximum 

value of Ce , which can be calculated as follows; 

when 0 = I then Ce=iSJr2+y+2 ryo  sin ()=I+yo)2  

hence (Ce)m  = r + Yo 

For the minimum manoeuvrability of the vehicle a similar method can be 

followed; 

when 0 =- then Ce=V'r2+ y+ 2 ryosin(_) =f((r _ yo)2 
 IN 

hence (C e) n  = I r—y0  I 

As can easily be seen, while r = Yo the minimum crank effective length, 

(Ce ) min  becomes zero. However, while r:9 y0  phase change characteristic of 

the mechanism becomes constrained. As it can be seen in figure A3.2(a), 

while r=y0, the maximum phase is limited to it between right and the left leg. 

However, in figure A3.2(b), it is clear that the phase value is not limited and 

can be as big as 27t, which gives more potential to the mechanism to adjust 

the gaits during the locomotion. 

Hence, the choice of Yo  affects the vehicle trajectory. In figure A3.3 the 

trajectories of the left foot and right foot are represented symbolically. 

s, and S2  can be represented as follows; 
(COL 	 (Ce)R 

=L and 2 = 	L 
'."e)max 	 ''e)max 

where; 

(C9  )i  represents the left crank effective length 

(Ce )R  represents the right crank effective length 

L represents the maximum foot stroke 

and (C9 )max  represents the maximum crank length. 

For a left turn, the ratio of the arc lengths can be expressed as follows; 
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rot 	Si 

rot +width - S2 

where rot represents the radius of the vehicle trajectory and width 

represents the distance between the pair of legs. Following equations can 

be written for the vehicle trajectory during a left turn; 
Si 

s 1 width 	 2 
rot= 	 and tan —=— 

S2—S1 	 2 	rot 

For a right turn., similarly following equations can be written for the 

vehicle trajectory (hint 

2 width 
rot = 	 and 

Si - S2 

shift s, by s2 and vice versa). 

tan 
0 
- = 

2
- 

2 	rot 

A17 



Appendix 3.2 

Variable Crank Mechanism and the Leg Cycle 

The variables used in this section can be defined as follows, 

o: Shaft speed which is also equal to disk speed. 
0 

o)8 =a where ais angular displacement of'the shaft 
N: Right leg crank speed with respect to the shaft 

where 4f is angular displacement of the right leg crank 
con : Left leg crank speed with respect to the shaft 

(O=0 where 0 is angular displacement of the left leg crank 

Support Period 

As it was explained in section 5.5.2, the crank is locked while the leg is in 

support period. And the crank is activated only during the transfer phase. 

This implies that the support period for both legs is the same, and also is 

equal to half of the period of the shaft rotation. 
Assuming the time t =t +i dt while i =0,1, 2.... 

Hence for the support period at the moment of t , following equations can 

be written; 
For left leg: 01,1=01 , For right leg: 111+1 =v 
For the shaft (disk) : a11  = a 1  + cos  d t 

The period of the support period , TSUP  can be written as follows; 
TS R  

Tsup 
	cos 	 cos  

where T represents the period of the shaft motion. 

Transfer Period 

Unlike the support period, during the transfer period the cranks are not 

kept locked, according to the gait, direction and speed requirements , they 

are rotated with respect to the disks; 
For left leg: 	01+ 1 =01+co0 dt 

Forright leg: 	1+1='1+odt 
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For the shaft (disk) : 	= cz 1  + Co8  d t 

Hence the period of the left leg during the transfer period; 
2 

	

e 21c
trf 	

it 
Ttrf = 	 = 

2( cos  +we) 	 (O+O) 

And the period of the right leg during the transfer period; 
21r

T f = 	 T= 
Cos  + 

To find the period that the leg takes to complete one whole revolution, 

the time values calculated for support and transfer periods can be added 

together. The period for a complete revolution of the right leg, TA , can be 

expressed as follows; 
i 	 it 

TRT
ll 

 up  + Ttrf 	
it + 

COS 	(O+ CO 

The period for a complete revolution of the left leg, TL , similarly, can be 

expressed as follows; 
8 	8 	it 	it 

TLTSUP  + Tt r f 	+ 
O)s 	(O+ We 

Effect of the Crank Speed on the Leg Cycle 

Leg cycle period is the time that the leg takes to complete a whole 

revolution. 

It is clear that if crank speed is zero, the leg cycle period is the same as 

the shaft period or the disk period. 

From the transfer period expression, it is clear that if the angular 

velocities of the shaft and the crank are in the same direction (speeds having 

the same sign), the transfer period gets shorter than the support period. This 

implies that it takes a shorter time for the foot to travel on thö air than to 

support the body on the ground. Also the leg cycle period becomes shorter 

than the shaft period, that is, it takes less time for the leg to complete a whole 

revolution than the shaft to complete a whole revolution. 

In opposite, if the angular velocities of the shaft and crank are in opposite 

direction (speeds having opposite sign), the transfer period takes longer 

than the support period. This implies that it takes a longer time for the foot to 
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travel on the air than to support the body on the ground. Also the leg cycle 

period becomes longer than the shaft period, that is, it takes longer time for 

the leg to complete a whole revolution than for the shaft to complete a whole 

revolution. 

Speed of the phase change 

It is clear that the phase shift takes place gradually unless high speed 

actuators are used to rotate the crank with respect to the disk. In this section 

the relation between the crank speed and the time that it takes for the crank 

point to shift its position 180 degrees is studied in detail considering the 

simultaneous rotation of the shaft. Thus, the potential of the mechanism to 

adapt itself to phase changes can be estimated. 

g is defined as the period for the crank point to change its position it 

radians phase change. it radian is chosen because this is the longest 

possible change. Considering that both crank points motions can be 

incorporated to shorten the time for the necessary change, g value should 

be considered for the longest possible phase shift. 

The gait change takes place gradually by changing the phase. As it was 

mentioned previously, the support period takes the same time for both legs. 

However it is possible to change the time of the transfer period by changing 

the phase. 

The following equation can be written for the number of times that the 

shaft has to rotate - which is represented by c -, so that the difference 

between two cranks transfer periods becomes equal to the time that will take 

the crank point to rotate it radians, which takes half of the period of the 

rotation of the shaft, T; 

C I [Torf 	T f ] I - Ts  
2 

If the left and right leg periods' expressions are opened 

clii 	
- 	it 	111=1! 

[co-i-coe 	 2 

Hence for c the following statement can be obtained; 
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((OS 	(co+co) 

O)s 10Nr0)eI 
Then the maximum time to change phase with the value of it, g, can be 

expressed as follows; 
= 2n(a) + () (o + o) 

4 I0)w 0)9I 

which can also be expressed as follows; 

9=2E[ I1I ~ *( ~ w0r]] 

if we define the expression in the smaller parenthesis with the following; 

= ( (ow(Os+ ()eO)s+ 0)e(Ow) 

IO)w (OOI 

expression of g can be restated as follows; 
r 	1 

g=2it 

Since; 

2 >>1) => -i 0  
(Os 

Therefore it can be concluded that 
27r 	

where N and co o  are in [rad/s]. 
I 0)w (OoI 
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Figure A3.1 The parameters of the variable crank mechanism 
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Figure A3.2 (a) 

Figure A3.2 (b) 

Figure A3.2 The relation between the crank position on 
the disk and the phase 

A23 



rot, 	radius of 	 S 
2 

the 	vehicle 	 S1 
trajectory 

0 
width, 

0 

distanc 
etween 
the leg 

average 

pairs left foot 
trajectory 

/ 
average 

right foot 
trajectory 

Figure A3.3 A symbolic representation of the vehicle's 
trajectory while rotating around a central point. 
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Appendix 4 

Analysis of Steering Mechanism 

Figure A4.1 represents two events in the same time; while y = 0, and 

while y = y, meaning any value. In the figure only a part of the picture is 

shown, since it is easy to figure out the whole picture due to symmetry about 

the location of the actuated point. 

The quantities of a, b and 0 0  are constant, unlike y, Q and V. From figure 

A4.1, using the. equality of the parallel sides of a rectangle, following 

equations can be written; 

a sing) + y 	= b sin + asinQ 

(Realise that while y = 0, V = 0; and hence 0 = 0.0 

a cos + b cosY = a cosZ)  + b 

While Y max  is specified and quantities of a, b and CI O  are known, using 

above equations maximum n and y values can be found. 

Mechanical Constraint of the Mechanism 

In figure A4.2 the mechanism is shown when angle V takes its maximum 

value, Ym. As a characteristics of the mechanism, Q value takes its minimum 

value in this limit position, f1 m . Since the distance between leg-vehicle 

connections is fixed the same as the distance between the centres of two 

wheels of a car, maximum value of the turning angle, can be calculated 

using this mechanical limitation; 

2(a+b)cosc m +b(cosc m + cos M ) =2(acosc+b) 

Considering the symmetry of the mechanism, c m  is equal to VM. 

Therefore above equation can be rewritten; 

2(a+b) cos M  = 2 (acosc +b) 

For YM the following statement can be obtained; 
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I acos 0 + b 
M=C0S1 
	a + b 	I 

Manoeuvrability of the Vehicle 

Using the maximum turning angle of the vehicle minimum radius for the 

arc trajectory of the vehicle can be calculated to have an idea about the 

manoeuvrability performance of a vehicle using this particular mechanism 

for body steering. 

The angular positions of the vehicle front and back leg units are shown in 

figure A4.3 while turning. R represents the radius of the vehicle arc 

trajectory. To find the minimum value of the A, R m jn  can be substituted in 

stead of Y in the figure. Using the right triangle in the figure, the following 

equation can be obtained for R m in  

R 	
a cos  1 0 + b 

mm - 
- 

	SIflYM 

The same equation can be used to calculate the radius of the arc 

trajectory at any time using the value of Y. In the equation, value of Y can 

be substituted in stead of 

The Foot Stroke Variation with respect to the Steering of The 

Vehicle Body 

While the body of the vehicle is steered to anticipate turns, the foot stroke 

lengths of the legs of the vehicle also should be adjusted accordingly. 

Between the crank effective length and the produced foot stroke, there is 

a direct proportion. There is also a direct proportion between the radius of 

the leg arc trajectory and the arc length. Therefore the crank effective length 

of a leg is directly proportional to the radius of the leg arc trajectory. 

Moreover, it can be concluded that the ratio of crank effective lengths of 

parallel driven legs is equal to the ratio of the radii of leg arc trajectories. 

Hence following equation can be written; 
R+aR - (Cdout  

A 	- (C8), 
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where DR represents the distance between the inner leg and outer leg 

during the rotation. And C. represents the crank effective length for outer 

and inner legs. 

The figure A4.1 shows that the distance between the vehicle axis and the 

leg unit is equal to a sin. Therefore DR can be calculated; 

aR=2asincz, 

Hence, the equality of the ratios can be restated as follows; 

R + 2a sinZ - (Ce)OUt  

A 	- (Ce),n 
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Figure A4.1 Geometric relations in the 
steering mechanism 


