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UNIVERSITY OF EDINBURGH
ABSTRACT OF THESIS (Regulation 3.5.10)

This thesis examines the effects of hypoxia on cardiac muscle.
Changes in intracellular pH (pH-^) were used as a marker for the
cellular changes which occur during hypoxia and anoxia (the
latter was produced by chemical removal of oxygen by sodium
dithionite) . Measurements were made of pH^ in sheep Purkinje
fibres and developed tension in ferret papillary muscle during
both hypoxia and anoxia. Anoxia caused a larger fall in pH^ and
developed tension than hypoxia. The effects of prolonged exposure
to hypoxia were examined on pH-^ and the ultrastructure in sheep
Purkinje fibres and on developed tension and contracture in
ferret papillary. Sheep Purkinje fibres appeared to be more
resistant to hypoxic damage than ferret papillary muscle. The
intracellular acidification and change in developed tension
produced by sodium cyanide (NaCN) was compared with
anoxia/hypoxia. Anoxia caused the largest intracellular
acidification and there was no significant difference between
the size of acidification produced by NaCN and hypoxia.

Intracellular potassium activity decreased and
intracellular sodium activity increased in hypoxia, both changes
were larger in anoxia.

A decrease in temperature from 35°C to 22°C was found to
cause an intracellular alkalinisation and resulted in a smaller
decrease in pHj_ and developed tension during hypoxia.

Replacing glucose pyruvate or acetate had no effect on the
decrease in pH-^ during hypoxia. Lactate caused a larger
intracellular acidification during hypoxia.

Cinnamate was used to inhibit lactate efflux from the
cells. It increased the size of the acidification of pH^ during
hypoxia and slowed the rate of recovery on reoxygenation.
Inhibition of Na/H exchange had no effect on the decrease of pHj_,
while inhibition of the C1_/HCC>3_ exchanger produced an
increased intracellular acidification during hypoxia.

The effect of extracellular pH (pHQ) on pH^ changes seen in
hypoxia were investigated. Alkaline pHQ (pH 8.4) resulted in a
smaller decrease of pH-^ during hypoxia. The fall in developed
tension during hypoxia was larger at pH 8.4 than at pH 7.4.
Acidifying pHQ (pH 6.4) caused a larger decrease in pH-^ during
hypoxia and a larger fall in developed tension during hypoxia
compared to pH 7.4.

Changing from HEPES-buffered Tyrode to CC^/HCC^- buffered
Tyrode resulted in an intracellular acidification but a smaller
change in pH^ during hypoxia. Increasing extracellular buffering
power (with 40mM HEPES) reduced the size of the acidification of

pH-^ during hypoxia.
Many of the results obtained during hypoxia can be explained

in terms of the production of lactic acid by the tissues and an
increase in the intracellular inorganic phosphate concentration.
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"THE HEART HAS REASONS WHICH REASON DOES NOT KNOW."
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LIST OF ABBREVIATIONS

All the abbreviations in the text have

specifically defined when initially brought

However, a full list of these abbreviations

below.

a1^ intracellular Ca2 + activity
aJK intracellular K+ activity
axNa intracellular Na+ activity
[Ca2 + ]j intracellular Ca2+ ion concentration
[H"1"]} intracellular H+ ion concentration
[K+]j intracellular K+ ion concentration
[Na+]j intracellular Na+ ion concentration
[K+]0 extracellular K+ ion concentration
Em membrane potential

pHj intracellular pH
pH0 extracellular pH
pHs surface pH
P02 partial pressure of 02
DOG 2-deoxyglucose

NaCN sodium cyanide

HEPES N-2-hydroxyethylpiperazine-N'-2-

ethanesulphonic acid

PIPES pipiperazine-N,N'-bis(2-ethane-sulphonic acid]
TAPS Trislhydroxymethyl]methylaminopropanesulphonic

acid

SITS 4-acetoamido-4'-isothiocyanatostilbene-2-2'

-disulphonic acid disodium salt

been

into use.

is included

The lower case subscripts or superscripts "i" and
"o" refer to intracellular and extracellular

respectively.
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SUMMARY

(1) The effect of hypoxia was studied on intracellular

ion activities in sheep Purkinje fibres and on developed

tension of stimulated ferret papillary muscle. The

intracellular pH (pHj), surface pH (pHg), intracellular
potassium activity an<* intracellular sodium

activity of sheep Purkinje fibres was recorded

using liquid ion exchanger-filled microelectrodes.

(2) Techniques for inhibiting oxidative phosphorylation

were compared for their effect on pHj and developed
tension. These techniques were the use of hypoxia, anoxia

or NaCN. Hypoxia was produced by degassing solutions

under reduced pressure then bubbling with 100% nitrogen

gas. Anoxia was produced in a similar manner but with the

addition of the reducing agent, sodium dithionite (0.5

mM), to remove all traces of oxygen from the solutions.

Anoxia caused the most marked changes in pH^ and
developed tension.

(3) The effect of the duration of exposure to hypoxia

was examined and was found to cause a larger

intracellular acidification after 20 minutes compared

with 10 minutes exposure but there was no apparent

effect of duration of hypoxic exposure on the rate of

recovery after hypoxia. Periods of hypoxia exceeding 1

hour resulted in reversible changes in pHj in sheep
Purkinje fibre but irreversible contracture in stimulated

papillary muscle. There was no apparent effect on the

ultrastructure or glycogen content of sheep Purkinje

fibres.

(4) The effect of hypoxia, saponin and strophanthidin on

the a 1K of sheep Purkinje fibre were compared to try to
ellucidate the mechanism for changes in a1^ during
hypoxia and anoxia. All three procedures decreased a1^.
(5) The effect of hypoxia and anoxia on aJNa in sheep



Purkinje fibres were compared. Anoxia caused a larger

rise in axNa than hypoxia.
(6) The effect of temperature on pHj was examined, a
decrease of temperature from 35°C to 22°C caused an

alkalinisation of pHj in sheep Purkinje fibre and a rise
in developed tension in ferret papillary muscle. The

acidification of pHj and the fall in tension during
hypoxia was smaller at 22°C than at 35°C.
(7) Replacing glucose with the alternative substrates,

pyruvate or acetate had no effect on the size of the

intracellular acidification during hypoxia in sheep

Purkinje fibre. The presence of lactate however caused a

larger acidification of pHj during hypoxia and slowed the
rate of recovery of pH^.
(8) Inhibiting lactate efflux with cinnamate caused an

increase in the acidification of pHj produced during
hypoxia and a reduction in the rate of recovery of the
tissue from acidosis.

(9) Extracellular acidosis (pH0 6.4) caused a decrease
in developed tension in ferret papillary muscle, the fall

in developed tension was greater in pH0 6.4 hypoxia.
Alkalosis of pH0 (pH 8.4) resulted in an alkalinisation
of pHj in sheep Purkinje fibre and a decreased
acidification during hypoxia. Alkaline pH0 increased
developed tension in ferret papillary muscle during

hypoxia and caused a larger fall in developed tension

during hypoxia.

(10) Changing the extracellular buffer from HEPES to

C02/HC03~ caused an acidification of pHj and resulted in
a smaller change in pH} during hypoxia. Extracellular
buffering was increased to examine its effects on pH^
changes during hypoxia. Increasing extracellular

buffering from lOmM to 40mM HEPES caused a smaller

acidification of pHj during hypoxia.
(11) The role of Na-H exchange in the acidification of



pH^ during hypoxia was examined by inhibiting Na-H
exchange with amiloride (ImM). There was no observed
affect of amiloride on the acidification of pHj during
hypoxia. However there was a smaller acidification of
surface pH (pHs) during hypoxia in the presence of
amiloride than in normal Tyrode in sheep Purkinje fibres.

(12) The anion-exchange inhibitor 4-acetoamido-4'-

isothiocyanatostilbene-2-2'-disulphonic acid disodium

salt (SITS, lOOuM) was used to elucidate the role of Cl~

/HC03~ exchange on the acidification of pHj during
hypoxia. SITS resulted in larger changes in pH^ during
hypoxia.

(13) The effect of high extracellular potassium

concentration ([K+]0) was examined for its effect on pHj
during hypoxia. There was no effect observed on raising

[K+]0 from 6mM to 12mM in the perfusing solution.
(14) The dependence of the change in pHj during hypoxia
and the effect of the procedures described above are

discussed. It is suggested that many of the changes could

be due to the production of lactic acid in the cells

during hypoxia.
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INTRODUCTION

The introduction to this thesis is mainly in the
form of a review of the recent literature on the effects

of hypoxia, anoxia and ischaemia on the mammalian

myocardium. The cellular effects of hypoxia and ischaemia

are similar and therefore any study of hypoxia involves a

familiarity with the literature concerned with ischaemia.

The introduction is divided into sections which

are:-(l) a general review of the effects of hypoxia,
anoxia and ischaemia on the mammalian myocardium, (2)
methods of producing hypoxia, anoxia and ischaemia in

vivo, (3) techniques for studying intracellular ions, (4)

a review of the effects of metabolic substrates, H+ ion

buffering and temperature in ischaemia, hypoxia and

anoxia and (5) a description of the histology of the

myocardium.

(1) EFFECTS OF ISCHAEMIA. HYPOXIA. AND ANOXIA ON THE

MAMMALIAN MYOCARDIUM.

The factors limiting myocardial oxygen supply and

hence energy production have attracted the interest of

physiologists since the beginning of this century. The

anatomical basis of this supply boasts a more ancient

lineage with Galen's introduction of the term "coronary
arteries" in the 1st century A.D. and Harvey's
demonstration in the 17th century that there were vessels

from which the heart receives its nutrients (Gregg and

Fisher, 1963). As might be expected, over the last

century, results obtained with the more tractable

skeletal muscle have tended to form the framework within

which subsequent cardiac data have been interpreted.

Although cardiac physiology may have benefited, in part,

from this approach it has tended to obscure the unique
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nature of myocardial requirements and the devastating
outcomes if these requirements are not met.

Myocardial ischaemia is one of the major causes of

premature death and serious illness in developed
countries. The importance of the effects of ischaemia and

hypoxia on the heart and the resulting depression of

contractility have therefore been extensively studied.
This thesis describes my investigations of the

effects of restricting or removing oxygen supply to

isolated cardiac muscle and on its subsequent ability to

maintain ionic differences across its membrane.

(A) General Effects

The changes occurring in the mammalian heart during

hypoxia and ischaemia are diverse, involving alterations
in cellular metabolism and intracellular ion activities

(Opie,/1984).
In ischaemia, which is characterised by reduced

blood-flow, the heart is deprived of substrates, and

metabolites are able to accumulate in the intracellular

spaces. These changes lead to decreased tension

production (Katz and Hecht, 1 969) and possibly to the

appearance of arrhythmias. Therefore the effects of

ischaemia are of considerable interest, particularly in
the understanding of the pathophysiology associated with

myocardial infarction (MI). In addition to MI, certain

surgical procedures necessitate periods of ischaemia, for

instance, bypass and open heart surgery.

Ischaemia can be studied using different

experimental models which tend to produce different
results. Regional ischaemia is produced by occlusion of a

coronary artery which will eventually develop into MI.

This evolving process corresponds well with the early

stages in MI in man. Another model, is that of global
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ischaemia which results when the whole heart is deprived

of Its blood supply so that the mechanical work of the
heart as a whole is stopped. During global ischaemia the

systolic pressure (developed pressure) falls rapidly over

several minutes resulting in acute lschaemic failure

(Shine et al. 1976). After 10 to 20 minutes developed

pressure is small or absent and a gradual rise in
diastolic pressure occurs (ischaemic contracture). After

about 1 hour of ischaemia there is considerable evidence

of biochemical and histological damage (Ganote et. al.

1983).

Ischaemia is difficult to study experimentally as it

is not possible to apply drugs or to alter the
extracellular solution composition during ischaemia. In

addition, for small isolated muscle preparations it is
difficult to simulate ischaemia because of the problem of

cannulating the small blood vessels supplying the tissue.
For these reasons many studies of this subject have

maintained superfusion of the tissue but have removed all

or most of the oxygen (anoxia or hypoxia), or have

inhibited oxidative phosphorylation in the tissue by
chemical means such as cyanide exposure. Hypoxia and

anoxia are commonly used in vitro as methods by which

some aspects of ischaemic damage can be mimicked. However

there are several important differences which will be

discussed.

(B) Effects on metabolism

The general changes outlined above are the result of

disruptions of the metabolic processes of cardiac tissue.

These disruptions produce in turn ionic effects and
/ K p&rfb-<sjr

changes in contractility. One of the most obvious

biochemical processes to be affected will be glycolysis.
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Glycolysis

When 02 is excluded from the mammalian myocardium
glycolysis is accelerated. The loss of adenosine

triphosphate (ATP) and phosphocreatine (PCr), increase in

inorganic phosphate (P j) and adenosine monophosphate
(AMP) and decrease in citrate (as a result of decreased

flux through the TCA cycle) are all known consequences of

blocking oxidative phosphorylation (Kubler and

Spieckerman, 197 0). Glucose uptake by the cells is also

known to increase, as a result of the Pasteur effect

(first described in micro-organisms where glucose uptake
increases in anaerobic glycolysis facilitating

fermentation).

Ischaemia results in a build-up of the products of

glycolysis, probably with some residual degree of

oxidative metabolism, depending on the extent of

ischaemia. Rovetto, Lamberton and Neely (1975) found that
in the globally ischaemic rat heart glycolysis was

inhibited at the level of glyceraldehyde 3-phosphate

dehydrogenase which is the central reaction of glycolysis

(Newsholme and Leech, 1983).

The major factors responsible for glycolytic
inhibition in the ischaemic compared with the

hypoxic/anoxic myocardium appear to be the higher levels
of lactate and H+ ions in the former situation. Rovetto

et al. (1975.) found that increasing extracellular 1H + ]
concentration inhibited glycolysis in anoxic hearts far

more than in aerobically metabolising hearts.
Accumulation of tissue lactate and inhibition of

glycolysis were directly proportional to the decrease in

coronary flow in ischaemic tissue. Rovetto et al. (1975)

concluded that lactate accumulation represented a major
factor in the glycolytic inhibition of ischaemic hearts.

In the ischaemic isolated rat heart 02 deficiency,
as a result of decreased coronary flow, leads initially
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to an acceleration of glycolysis due to a more rapid rate

of glycogenolysis (Rovetto, Whitmer and Neely, 1973)y
They also showed that in ischaemla total glycolytic flux
decreases below control levels after tissue glycogen

stores are depleted (after approximately 8 minutes global
ischaemia) in isolated rat heart.

Changes in endogenous energy stores

Interference with glycolysis will inevitably affect

the endogenous energy stores in the myocardium, ATP and
PCr. During both ischaemia and hypoxia there is a

decrease in the 02 supply to the myocardial cells. This
results in a decrease in ATP formation via oxidative

phosphorylation. Dhalla et al. (1972.) found that in

isolated rat heart after 7 minutes perfusion with

substrate-free (glucose removed) hypoxic medium, the

levels of glycogen, PCr and ATP declined whereas the

concentration of lactate, ADP, AMP, creatine, and P^
increased during the first minute of hypoxia by which
time the contractile force and heart rate decreased to

about 20% of control values.

This decrease in high energy phosphates may be an

important factor in the contractile failure observed in

hypoxic and ischaemic hearts. Hearse (1979) demonstrated
that in the isolated rat heart a substantial decrease in

ATP and PCr concentration occurs after the onset of

anoxia but before the onset of contractile failure. Thus,

during the first 5 seconds of anoxia, contractile

activity is constant, [ATP] decreases by 25% and [PCr] by

50%. After this contractile failure occurs and therefore

utilization of ATP also decreases. However more recent

work by Allen et al. (1985) has shown much slower changes
in high energy phosphate levels. During inhibition of

oxidative phosphorylation and glycolysis the [PCr] fell
to about 10% of control after 5 minutes and ATP fell to

8



50% of its control over 10 minutes. This work was

performed in isolated ferret heart .

Piper et al. (1984^ found energy needs in cultured

rat ventricular muscle cells decline rapidly during

anoxia, yet glycolytic energy production remains

inadequate since this also declines and glycogenoly sis

stops after degradation of only half the glycogen

initially present. Once the ATP content falls below

2umol/g wet wt. cells become irreversibly damaged

indicating that in cultured cells the anoxic process

develops similarly to that of the 02 deficient heart.
Allen, Morris and Orchard (198.?) used 33P NMR to

measure the concentration of phosphorous metabolites in

Langendorff perfused ferret hearts. Intracellular levels

of P}, PCr, ATP and H+ were measured either under control
conditions or when oxidative phosphorylation and/or

glycolysis were prevented (glycolysis was prevented
either by removing the extracellular glucose and

depleting intracellular glycogen or by removing glucose

and blocking glycolysis with 2 - deoxyglucose (DOG)).
When oxidative phosphorylation was inhibited, developed

pressure fell to 35% of control in 5 minutes. PCr fell to

15% of the control level after 5 minutes while [ATP]}
declined very slowly to about 90% of the control value

over 10 minutes. It was concluded that when oxidative

phosphorylation alone is prevented, changes in pH} may
account for tension changes, while Pj increasing may also
contribute to this decline.

A more pronounced decline in pressure was observed

in the same set of experiments when both glycolysis and
oxidative phosphorylation were inhibited, this decline

could not be accounted for solely by changes in pH} or

P}. It was suggested that a fall in free energy of
hydrolysis of ATP may account for the fall in tension.

The subsequent hypoxic contracture observed could

9



adequately be explained as a result of the fall in [ATP]
which reaches its lowest levels at about the same time

that the contracture develops. It has been suggested that

two Ca2 + ions are pumped into the sarcoplasmic reticulum

(SR) per ATP split (Endo, 1977) and the free energy

required from ATP is 38kJ (Allen et al. 1983). During

hypoxia there is a substantial rise in ADP and Pj,
coupled with a small decrease in [ATP]. The free energy

available from ATP becomes close to that required to pump

Ca2 + into the SR. When glycolysis is also inhibited the

free energy will presumably decline below 38kJ/mole and

there will be decreased Ca2+ uptake by the S.R. and

myoplasmic Ca2+ levels will rise. Alternatively the rise

in Pi and ADP (Allen et al. 1983) might inhibit the SR
? +

[Ca^ ] pump. It has been shown that the maintainance of

the [ATP] while [PCr] falls and Pj rises results from the
re synthesis of ATP from PCr (Garlick, Radda and Seeley,

1979). Although this explains the phosphorous metabolite

changes when ATP consumption exceeds production, in

hypoxia and ischaemia the procedure is complicated by
other factors. These complicating factors include the

acceleration of anaerobic glycolysis in the first minute

of hypoxia and ischaemia by up to 20 fold. This high rate

of glycolysis is continued in hypoxia but as already

explained decreases in ischaemia as a result of

intracellular acidosis and lactate accumulation (Rovetto

et. al. 1975). Also the decrease in tension seen in both

hypoxia and ischaemia reduces the major cellular

consumption of ATP.

Second messengers

The role of cyclic adenosine monophosphate (cAMP) as

a second messenger in cellular functions is well accepted

(Tsien, 1 977). It is possible that this and cyclic

guanosine monophosphate (cGMP), which has antagonistic

10



properties, may have a role in the changes in metabolism/
contraction observed in hypoxia and ischaemia.

Metsa-Ketala et al. (1980) suggested that cAMP and

cGMP may play a role in the production of lactate in

spontaneously beating rat atria during the early stages

of hypoxia (50% C>2 saturation). They found that lactate
production decreased after 30 seconds of hypoxia but then

accelerated again after 2-4 minutes. It was suggested
that at the very early stages of hypoxia, cGMP could

inhibit and cAMP could accelerate lactate production.

Protein and amino-acid metabolism

The turn-over of myocardial proteins is influenced

by many factors. It may be that removal of 02 disturbs
the equilibrium of the synthesis and degradation of

protein leading to damage of the cardiac cells.

The effect of ischaemia on the regulatory sites for

proteins in cardiac cells have been investigated (Mudge
et al. 1 976). It has been shown (see Taegtmeyer and

Lesch, 1980) that in hypoxia and ischaemia, protein

synthesis in the heart is severely depressed, primarily

by inhibition of peptide chain elongation. However this

is reversible on reoxygenation in the presence of glucose

if irreversible damage to the tissue has not occurred.

The changes in synthesis are not found to be well

correlated with any changes in ATP levels. Myocardial

protein degradation can be inhibited by decreased [ATP]

under some conditions but in others it can be increased

(Taegtmeyer and Le^ch, 1980).

Fatty acid metabolism

It has been suggested that an excessive

concentration of free fatty acids (FFA) may exert a

depressant influence on myocardial metabolism in vivo

(Evans, 1 964). Henderson et al. (1970) investigated the
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influence of FFA and glucose on the mechanical

performance of rat papillary muscles during hypoxia and
anoxia. Although FFA did not alter mechanical performance
in normoxia, a decrease in contractility and an Increased

resting tension was observed in the presence of FFA

during anoxia. This effect of FFA was modified in part by

glucose which counteracted the depression of active
tension by FFA. The depressant effect of non-

metabolisable FFA was similar, suggesting that the effect

was mediated directly by FFA rather than by any product
of FFA metabolism.

Katz and Messineo (1982) investigated the effects of

saturated (palmitic and stearic acid) and unsaturated

(palmitoleic and oleic) fatty acids on Ca2+ uptake by
isolated rabbit skeletal sarcoplasmic reticulum vesicles.

In the presence of phosphate they all inhibited Ca2 +
uptake. The significance of the findings is equivocal,
but alterations of membrane function caused by
accumulation of endogenous fatty . acids may in part

explain some of the functional changes observed in the

ischaemic heart.

(C) Ionic Effects

The disruption of metabolism outlined above will of

course profoundly affect energy supply to ion regulatory
mechanisms and thus intracellular ion activities. The

changes in intracellular ion activities can be linked to

a number of sarcolemmal exchange mechanisms such as Na/K,

Na/H, and Na/Ca exchangers (Page and Storm, 1965, Reuter

and Seitz, 1968 and Deitmer and Ellis, 1980). The effects

of hypoxia and/or ischaemia will be discussed under the

headings of individual ion species.

12



Intracellular Calcium

Calcium is largely compartmentalized within the
cardiac cell. It is therefore difficult to obtain

reliable estimates of its concentration in the cellular

compartments. Total cell Ca has been shown not to

change during the first hour of ischaemia (Shen and

Jennings, 1972). Although total [Ca2 + li appears not to
change the distribution in the cell may be altered and

this may contribute to the various changes in contractile

properties of the heart which occur during ischaemia (the
effects of Ca on reperfusion damage will be discussed

later).

Jarmakani et al. (1979) studied the effects of

hypoxia and reoxygenation on Ca flux in neonatal

mammalian heart. They found that reoxygenation resulted

in an increase in tissue calcium, probably as a result of

increased calcium influx since neither hypoxia nor

ischaemia affected Ca efflux. An explanation for this

may lie in a depression of Na + /K+ ATPase activity and

therefore an increase in [Na + lj. This in turn would
increase Na + j/Ca + 0 exchange and increase Ca influx
(Glitsch et.al 1970). It was also found that removing

glucose from the perfusate increased Ca uptake on

re oxygenation, again suggesting that a depression of

(ATP] may be responsible.

Bers and Ellis (1982), measured intracellular Ca

activity (a*^) in sheeP Purkinje fibres and found that
inhibition of the Na + /K+ pump using strophanthidin

produced a slow increase in a *Ca and resting tension.
They suggested that the rise in aiCa occured following
loading of the intracellular Ca buffering systems. They
found a close relationship between the mechanisms

controlling aiCa, a*Na and pHj, since it appears that
changes of [Na)0 or inhibition of the Na + /K+ pump can
modify the function of sarcolemmal Na + /Ca2+ exchange and
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thus cause changes in a*N& and {Ca2 + ]j[ which in turn may
affect lH + ]j via the Na+/H+ exchange or intracellular
buffering systems (Vaughan-Jones 1986).

Allen and Orchard (1983) examined intracellular Ca

in rat, cat and ferret papillary muscles which had been

micro-injected with aequorin (which is a photoprotein
which emits light as function of Ca concentration).

Using this they investigated the effect of cyanide (CN))
and glycolytic inhibition (blocking glycolysis with

glucose free solutions and 2-deoxyglucose (DOG)) on early
contractile failure and [Ca2 + ]}. The study revealed that
when oxidative phosphorylation is blocked tension

development decreases with no change in the calcium

transient produced by the cells (a calcium transient is

the sudden increase of [Ca2 + ]i that initiates contraction
and is thought to be caused mainly by release of Ca

from the sarcoplasmic reticulum (Chapman, 1979)).
Perfusion with glucose-free solution caused a larger
decrease of tension in hypoxia accompanied by a decrease
in the magnitude of the Ca transients.

When cyanide and DOG were applied together, this
caused a rapid decrease in both developed tension and the

calcium transients which were not fully reversible. It
was concluded that in hypoxia alone the decrease in

tension was due to a decrease in the sensitivity of the
contractile proteins to Ca , perhaps due to a decrease
in pH^. The fall in tension observed in CN plus DOG or CN
in glucose-free solution could be due to a fall in the

free energy of hydrolysis of ATP to below the level

required to pump Ca into the SR, therefore resulting in
contractile failure and a decrease in the size of the

Ca transients.

Allen and Orchard (1984), extended their previous
work to describe further the decline of cardiac function

in hypoxia. Their experiments suggested that two
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independent processes are occurring during hypoxia. When

only oxidative phosphorylation is inhibited the fall in

developed tension is largely attributable to the
intracellular acidification which accompanies an increase
in the rate of glycolysis. When both oxidative

phosphorylation and glycolysis are blocked the
contractile failure observed (after 2-4 minutes) occurs

when PCr has fallen to zero but ATP levels are still

substantial. At the start of contracture (after about 10

minutes), [ATP] has fallen close to zero (see later).

Therefore it is suggested that the more extreme

contractile failure observed in complete metabolic

blockade is a combination of that seen in hypoxia and the

free energy of ATP hydrolysis dropping so low that the

cell is unable to overcome the energy barrier required to

move Ca2 + ions into the SR.

Lee et al. (1 987) used the cell permeant cytosol

Ca indicator (Indo-1 AM) to measure Ca transients

from the epicardial surface of rabbit ventricle. They

showed that myocardial ischaemia produces a rapid and

drastic increase in the calcium transients. It was found

that ischaemia caused a rapid decrease in resting

membrane potential which was initially independent of

extracellular K+ accumulation. Therefore it is possible

that the [ C a 2 + ] j increase which they observed may
directly alter the resting potential of ischaemic heart

cells by means of a Ca activated inward current

(Inesi, 1985). Na+ may enter the cells either via the

Ca2 + activated non-specific cation channels (Colquhoun
et al. 1981) or via the Na+/Ca2+ exchanger.
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Intracellular sodium

Current knowledge about the Na pump in cardiac cells

is summarized by Eisner ( 1 986). Generally influx of Na +
into the cell occurs via either voltage dependent

channels or exchangers (Na+/H+ or Na+/Ca2+ exchange).

In the ischaemic heart the large influx of Ca
i p i

implicates the sarcolemmal Na / Ca^ exchange as a route

for Ca2+ entry into the cell (Bourdillon and Poole-Wilson

1981).

Kleber (1983) found that a1N a did not change during
a 15 min. exposure to ischaemia. However, subsequently

Wilde and Kleber (1986) did show a rise in a1N a when
isolated guinea pig ventricle was exposed to a

combination of acidosis, hypoxia and glucose-free

conditions. They also found that an increase in [K + ]„ did
» U

not change a1Na.
Guarnieri ( 1 987) showed in experiments on ferret

papillary muscle that only during substrate-free hypoxia

does a!Na increase (during this same time period there
was no measurable rise in lCa2 + ]^) unless the Na + /K+ pump
was concomitantly inhibited. He suggested that the lack

of rise in aJCa was consistent with inhibition of the
Na+/Ca2+ exchange. Ellis and Noireaud (1987) found a

small rise in axNa on reoxygenation after hypoxia in the
presence of glucose. This small increase in a'Na was
attributed to stimulation of Na + /H+ exchange due to

intracellular acidification.

MacLeod ( 1 989) also measured a*Na during metabolic
inhibition (CN) and hypoxia and found a rise in aJNa
under these conditions in sheep Purkinje fibres. He also

observed a more rapid rise to a greater a1^ when the
tissue was exposed to both CN and glycolytic blockade

(DOG). MacLeod also showed that if exposure to CN is

followed by strophanthidin (which blocks the Na + /K+ pump)
the rapid increase in axNa does not produce a
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contracture. This suggests that whatever mechanism is

responsible for the generation of the contracture often
seen with hypoxia and metabolic inhibition, a1Na does not
appear to be involved. This finding lends support to the

suggestion by Guarnieri (1 987) that the Na + /Ca2 +
exchanger is inhibited because a rise in a1^a would be
expected to cause a rise in a1Ca during hypoxia. He found
that despite an increase in aJNa during glucose-free
hypoxia there was no change in a1Ca unless the Na/K pump
was inhibited. The lack of rise in a1Na he attributed to
Na/Ca exchange inhibition.

Intracellular and extracellular potassium

The onset of both hypoxia and ischaemia leads to an

increased K+ efflux from myocardial cells (Kleber, 1984)/
Reduced or absent blood flow results in K+ accumulation

in the extracellular spaces resulting in a

depolarization. He showed that [K + ]^ tends to fall while
[K+]0 tends to rise during ischaemia.

Weiss and Shine (1982) showed that during myocardial

ischaemia (K + l0 rose to 10-15mM in the extracellular
space during the first 10 minutes of ischaemia. McDonald

and McLeod (197a) had shown previously that K+ loss

during anoxia results from a decrease in the rate of

influx rather than an increase in the rate of efflux.

Guarnieri and Strauss (1982) also observed a

decrease in a*K during hypoxia in guinea pig papillary
muscle. Poole-Wilson* (1984) suggested that the increase

in (K+]0 can account for almost all the changes in the
action potential observed during ischaemia but not for

the changes in contractility.

However in more recent work Gaspardone et al. (1986)

have attributed the rise in [K+]0 to inhibition of the
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Na + /K+ pump, acidosis or a selective increase in cell
membrane permeability. Their results indicate that

changes in osmolarity and intracellular ion
concentrations during ischaemia, can modify K+ exchange

in the myocardium. They suggested that the K+ loss was

due to an increased efflux. There was no evidence of

decreased Na+ pump activity.
Leblanc et. al. (1987) showed that K+ loss from the

hypoxic myocardium can be dissociated from inhibition of
the Na+ pump, at least for a limited period of time. In

addition they showed that K+ loss was modified by

extracellular [K+]Q. A decrease in the extracellular
' concentration enhanced the K+ loss induced by hypoxia

whereas high (K + )0 prevented or delayed this. This
suggested that the K+ loss was along its electrochemical

gradient and therefore passive in nature.

This helps to explain the K+ loss in ischaemia since

an increase of (K+l0 to levels around lOmM and the
subsequent decrease in the electrochemical gradient for
K+ would inhibit further loss by the cells (Noble,

1979), until irreversible membrane damage and massive

leakage of K+ occured in the irreversible phase of
ischaemia.

Intracellular and extracellular pH

According to the hypothesis of Katz and Hecht

(1 969), rapid failure of the mechanical performance of
the heart in hypoxia and ischaemia could be due in part

to an effect of the associated intracellular acidosis,

which results from lactic acid formation by the cell

under these conditions. It is known that a decrease in pH

decreases the sensitivity of the contractile proteins to

Ca2+ (Fabiato and Fabiato, 1978).

Cobbe and Poole-Wilson (1980), suggested that an

important part of the fall in developed tension in
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hypoxia could be attributed to acidosis. In their

experiments however tension tended to fall before tissue

pH became acidic. It was clear that acidosis was not the
sole mechanism for hypoxic contractile failure. More

recently it has been suggested that the combined effects

of a decrease in pH^ and an increase in inorganic
phosphate (Pi) (Allen et al. 1985) may be responsible
since both will affect the ability of Ca2+ to generate

force from the myofibrils.

Allen et al.{ 1985) also found an alkalosis of

approximately 0.1 pH unit prior to the decline of

intracellular pH in hypoxia in the ferret ventricle

studied with NMR. This was explained as being due to the

breakdown of PCr to Pi and Cr with the net absorption of
protons.

Ellis and Noireaud (1987), using ion selective

microelectrodes, confirmed that these changes in pHj
occur in ferret papillary muscle and found similar but

somewhat smaller changes in sheep Purkinje fibres. They

also found a transient decline in developed tension on

re addition of 02- They found that the decline could be
explained by a v large transient intracellular

acidification prior to recovery of pHj on reoxygenation
after hypoxia.

Vanheel et al. (1987) measured pHj in isolated right
ventricular muscle from guinea pigs under conditions of

simulated ischaemia. The developed tension of the muscles

declined and a relatively small decrease in pH^ was
observed while the decrease in pH0 was considerably
greater. It therefore seems that the contractile failure

in early ischaemia cannot be completely explained by
intracellular acidification, since this was very small in
these experiments. The decrease in pH0 observed in
ischaemia may also influence the size of any change in

pHj (Vanheel et al. 1986). They found that acidification

19



at the surface layer by lowering extracellular buffering
from 20mM HEPES to 5mM HEPES in sheep Purkinje fibres
results in a subsequent acidifying of pHj which depresses
the rate of recovery of pHj following an imposed acid
load. This lowering of pHj correlated with the depression
of twitch tension (de Hemptinne et al. 1987) in cat

papillary muscle.
The size of pH changes will also be dependent on the

buffering capacity of the cells (Ellis and Thomas 1976).

This may change during the course of an exposure since

intracellular acidification will affect the buffering
mechanisms of cells. Several other mechanisms also seem

to contribute to pH regulation including Na + /H+ exchange,
a mechanism mainly used for regulation of an acid load

(Deitmer and Ellis, 1980) and a HCOg~/Cl~ exchange which
tends to be activated under alkaline intracellular

conditions (Vaughan-Jones, 1982).

By using NMR Bailey et al. (198 p found that during
ischaemia intracellular acidosis is of the order of 1.0

pH unit. Obviously a complete understanding of the

alterations in pHi which occur due to hypoxia and
ischaemia would enhance our knowledge of the subcellular

processes which lead to the various changes (such as

contractile changes).

(D) Effects on Contractile Activity

The gross outcome of the metabolic and ionic

disruptions outlined above is the failure of the heart as

a pump. This failure can be considered in terms of

ischaemic and hypoxic failure and contracture.

Ischaemic and hypoxic failure

It has been reported that during what may be
considered the reversible phase of hypoxia and ischaemia

(i.e. when it is possible to reperfuse or reoxygenate the
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preparation without causing further damage) there is an

early fall in tension (Carmeliet, 1984). There have been
three main suggestions to explain this phenomenon. (1)
that there is inhibition of the amount of Ca2+ available

to the myocardium, (2) that there is a decrease in the

myofilament sensitivity to Ca2 + as a result of
intracellular acidosis and (3) that there is insufficient

intracellular ATP for the maintainance of active tension.

The absence of clearly recorded decreases in Ca2 +
(Allen and Orchard, 1 984) suggest that a fall in Ca2 +
availability is not the likely cause. The effect of

acidosis on the myofibrils in early hypoxi a/ischaemia may

not be the cause of early contractile failure since early

and large decreases in pH^ have not been convincingly
demonstrated. It seems likely that the earliest effect

arises from the inhibitory action of a large rise of Pi

as a result of ATP breakdown. This rise is from l-3mM to

20mM in hypoxia and ischaemia (Kentish 1 986). Fabiato

(198 5) has shown that Pi has an inhibitory effect on

developed tension in skinned cardiac preparations.
Activation of the cardiac cell will obviously play

an important role in contractility in hypoxia and

ischaemia. McDonald and MacLeod ( 1 973) studied the action

potential in anoxic guinea pig papillary muscle and found
that in general there were large decreases in action

potential duration (APD) with only a small depolarization
of the resting membrane potential (RMP). In the presence

of 5mM glucose the APD fell during anoxia to about 40%

of control values over 60 minutes However during the time

when contractile failure occured the reduction in APD was

less than 5% and therefore unlikely to be responsible for

the decrease in contraction observed. Some criticism of

the work described above has been levelled in that the

action potentials were recorded from only the surface
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cells of a large muscle bundle. Carmeliet (1978) suggests

that changes in APD and amplitude which occur in hypoxia

(with inhibition of glycolysis) and ischaemia may

contribute to early contractile failure.

In addition to the biochemical mechanisms already

described certain purely mechanical factors may play a

role in the early failure of contraction in vivo, since

this decline occurs during the fall in perfusion pressure

and might therefore be attributed to reduced stretch in
the heart as a result of the fall in perfusion pressure.

Ischaemic and Hypoxic contracture

The rise in resting tension (ischaemic/hypoxic

contracture) which develops after extended exposure to

hypoxia or ischaemia has been explained by two

mechanisms , one involving a rise in Ca2 + , the other a

fall in ATP.

Allen and Smith (1985) have shown that at the time

the contracture was maximal the resting [Ca2 + ]j starts to
rise and therefore cannot be responsible for the

contracture.

The phenomenon of the "stone heart" was described by

Katz (1970) and explained by the attachment of rigor

cross - bridges precipitated by low levels of ATP in the

cells. Thus any interventions which would increase

tension production would lead to more rapid production of

rigor.

Miller and Smith (1985) placed a different

interpretation on the importance of ATP, by showing that
the presence of ADP caused an increase in rigor tension,
which was independent of ATP concentration in skinned

cardiac muscle. They demonstated that ADP may play a role
in the production of rigor.

Generally however, it is accepted that ischaemic and

hypoxic contractures are a direct result of ATP
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levels dropping to such a low level in the cell, as a

result of disruption of the cellular metabolism, that

rigor cross-bridges are formed.

(E) Reperfusion Damage

Paradoxically reperfusion does not halt all further

damage when a period of total ischaemia extends beyond 30

minutes (see Opie, 1984) as certain ischaemic damage

becomes irreversible. This is the result of a critical

decrease in the concentration of high energy phosphate,
or perhaps on the change in free energy of hydrolysis of

ATP. The decrease in energy availabilty inhibits the Na +
pump which results in calcium overload. In this situation
not only does reperfusion fail to produce a recovery but

damage may be aggravated by positive feedback mechanisms.

No-reflow phenomena

On reperfusing irreversibly damaged cells, swelling
of the cells is observed (Ganote et al. 1983J, and

disruptive contraction of the myofibrils occurs. Ca2 +
entry into the sarcoplasm is increased which results in

contracture and cellular damage leading to wash-out of

intracellular enzymes and an influx of extracellular

ions.

Humphrey et al. (1984) studied the relationship of
the release of enzyme (creatine kinase), the loss of

vascular competence (the no-reflow phenomenon) and the

distribution of morphological changes across the left
ventricular wall of the rat myocardium. They found that
the amount of creatine kinase released after 60 minutes

of global ischaemia was directly proportional to the
extent of the no-reflow area. They concluded that the
loss of vascular competence has a profound effect on the
distribution of myocardial damage and enzyme release
which follows reperfusion of ischaemic tissue.
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Ca2+ Overload

Naylor et al. (1979) suggested that mechanical

recovery after hypoxia is jeopardised when there is a

large net gain of Ca . This re-introduction of oxygen

resulting in Ca mediated cell damage is similar to the
Ca paradox, which is observed when Ca is re¬

introduced to a Ca -free solution, resulting in Ca

overload of the cells.

Deitmer and Ellis (1978) have shown that during low

[Ca2 + ]0 perfusion, [Naj^ increases. Therefore when
[Ca2 + )0 is increased, operation of the Ca2 + /Na+ exchanger
will result in a rapid increase in [Ca2 + ]j. It is
possible that Ca influx also triggers damage after

ischaemia, this being mediated by Na + /Ca2+ exchange and

caused by elevation of [Na+]j.
Higgins et al.( 1 980) found a deleterious effect on

membrane integrity of cultured myocytes by Ca during

hypoxia. They found that nifedipine and verapamil (both
Ca channel blockers) reduced the deleterious effects of

hypoxia.

Ganote et al. (1983) found that in rat myocardium

during Ca -free perfusion, anoxic contraction of the

my ocardial cells causes separation at the intercalated

discs and leads to a release of enzymes. It was proposed

that contracture mediates membrane damage and enzyme

release from cells exposed to the Ca paradox.

Nakanishi et al. (1984) used enzyme release from the

heart as a marker for sarcolemmal damage. Their study

suggested that although sarcolemmal damage was less in

the neonatal heart compared with the adult heart, both

produced a measurable release of enzyme without a

significant detectable change in permeability to divalent

cations. This suggested that (in contrast to previous

work) an increased passive permeability to Ca was not

responsible for the cellular disruption indicated by
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enzyme release.
Hearse et al. (1978) suggest that the Ca- and the

02 paradox (see next section) are facets of the same
problem. In both there is an abrupt release of enzymes.

They are related also in that they both depend on

critical changes in cellular mechanisms which are linked

to Ca transport and homeostasis. Hess and Manson (1984)

also suggest that the Ca and 02 paradox have a similar
final pathway leading to intracellular Ca2+ overload. In

both Ca paradox and the 02 paradox the generation of
oxygen free radicals is involved (see later section).

The Oo Paradox

Hearse et al.{ 1973) described the process whereby

reoxygenation of the hypoxic heart resulted in

significant damage rather than in the improvement in

cardiac function which might be expected. They showed

that reoxygenation after 100 minutes of hypoxia resulted

in a massive release of creatine phosphokinase (CPK) from

the cells. The amount released being over 75% of the

total myocardial [CPK].
It was thought that the 02 paradox may involve a

sequence of metabolic events which cause extensive

cellular damage. Perhaps the most important mediator of

cellular damage on repurfusion being the production of

oxygen radicals.
Ferrari et al. (1986) suggest that the triggers for

cell necrosis on reperfusion include; depletion of high

energy phosphates, loss of adenosine nucleotides and

catecholamines, accumulation of [Ca2"*"]^, cell tearing due
to contracture, myocardial cell swelling and 02 generated
free radicals.
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Oxygen Radicals

If the reintroduction of 02 causes damage, perhaps
some aspect of 02 metabolism is responsible for the
damage. Hess and Manson (1984) describe the reduction of

02 as following two pathways to the end-product of H20.
Mitochondrial enzymes convert about 95% of 02 to H20 by
tetravalent reduction with no production of

intermediates. However the remaining 5% proceeds via a

univalent pathway in which several intermediates may be

produced. The majority of the cell damage problems appear

to be caused by the superoxide anion and the hydroxyl
radical formed by hydrogen peroxide reduction.

If metabolism of 02 has an important role in
cellular damage on reoxygenation then lipid peroxidation

should be measurable and mannitol which is a scavenger of

the hydroxyl radical should reduce the extent of lipid

peroxidation (Kloner et al. 1976) as should application

of antioxidants like alpha-tocopherol (Guarnieri et al.

1978). The burst of 02 free radicals on reintroducing 02
to hypoxic tissue or reperfusing globally ischaemic
hearts may result in extensive intracellular and

sarcolemmal damage (Guarnieri et al. 1980). As a result

of this damage extracellular Ca2 + would enter the cells

resulting in a [Ca2 + Jj overload. It therefore seems that
02 free radical production is a very important factor in
the pathophysiology of myocardial ischaemia and hypoxia.

(F) Cardioplegia

To protect the myocardium from the deleterious

effects outlined above the process of cardioplegia has

been developed. Cardioplegia is defined as an

interruption of contraction of the myocardium as may be

produced by the use of chemical compounds or of cold,

usually applied during surgery on the heart.
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It is considered that the major components involved
in the cardioplegic protection of the mammalian heart are

as follows (for review see Hearse 1980):-

(1) Energy conservation by diastolic arrest.

(2) Slowing the metabolic and degenerative processes

(using hypothermia).

(3) Selective prevention or reversal of various

unfavourable ischaemic changes.

Diastolic arrest

Melrose et al. (1 955) produced the first

cardioplegic solution which contained high concentrations
of K+, causing reversible depolarization of the membrane

potential of the cells and therefore arrest. Other

agents will also produce arrest e.g. calcium-free and/or

high magnesium solutions. However the deleterious effects
of reperfusion with Ca2+ containing solution are well
established (descibed above) and therefore this technique
for inducing arrest is not used.

Hearse et al. (1 976) used Langendorff perfused rat

hearts to show that in high IK + ] (16mM) compared with

non-cardioplegic solution (5mM) the [ATP] was greater

after 30 minutes ischaemia (induced by aortic clamping).

They concluded that rapid diastolic arrest and conserved

ATP and PCr levels promote an improved post-ischaemic

recovery of cardiac function.

Hypothermia

Barner et. al. (1977) looked at the effects of

topical hypothermia on myocardial preservation since it

had previously been used as a method for inducing arrest.

Myocardial cooling can be produced by either continuous

irrigation of the pericardial sac with cold saline or by

surrounding the pericardium with ice made from

physiological saline. Barner et al. (1977) found that
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ventricular function was well conserved after 30 minutes

lschaemia at 5°C. They concluded that potassium arrest

combined with topical hypothermia might provide early

blocking of metabolic activity.
Hearse et al.{ 1976) found that, In rat heart at

least, the efficacy of hypothermic protection falls off

rapidly as the myocardial temperature rises above 28°C.
However below 24°C the protection is adequate. It was

subsequently suggested (Hearse et al. 1978) that the sharp

transition observed on raising the temperature of the

cardioplegic solution may be related to lipoprotein phase

transitions in cell membranes. Tyers et al.{ 1977) had

previously shown that intracoronary infusion of

cardioplegic solution at 10°C and 15°C gave significantly

better functional and metabolic protection than perfusate

at 4°C and 20°C on recovery from one hour of ischaemia.

Prevention of cellular changes

This is the most variable area in cardioplegic

protection. Protective measures can range from the use of
additional extracellular buffers to the provision of

glucose and insulin to stimulate anaerobic energy

production.
Hearse et. al. ( 1976) investigated the effect of

various compositions of cardioplegic solution. They
concluded that the most successful formula included high

potassium and magnesium concentrations in combination

with ATP, PCr and procaine (St Thomas' cardioplegic
ifcoJL •

solution) . However more recent work (Heinmeyer, 1987)A

suggests that inclusion of procaine in cardioplegic

solution leads to poor regulation of pHj. His study
compared St Thomas' solution (with procaine) with
Bretschneider's solution (without procaine)

(Bretschneider, 1980). The inclusion of procaine resulted
in incomplete recovery of human left ventricular
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papillary muscles after hypoxia which may have been due
to the reduction of a*Na and membrane permeabilty which
has been observed in the presence of procaine (Deitmer

eir-oi.
and Ellis, 1980). HeinmeyerA (1987) suggests that poor pH
regulation or the direct effects of procaine, are

responsible for the poor recovery of the tissue in St

Thomas' solution.

(2) EXPERIMENTAL HYPOXIA. ANOXIA AND ISCHAEMIA

Having described the changes produced by ischaemia,

hypoxia and anoxia on the mammalian myocardium, the

following section describes the techniques for producing

these conditions experimentally.
The study of true clinical ischaemia i.e. coronary

artery occlusion is not possible in isolated heart

tissue. Therefore hypoxia and anoxia coupled with various

metabolic blockers have been used to mimic aspects of

ischaemia in vitro.

By definition ischaemia means a deficiency of

bloodflow to a tissue. In the heart this is an imbalance

in the myocardial demand for, and the vascular supply of,

coronary blood. Not only does this create a deficit in 02
and substrates but also results in a reduced capacity for
the removal of C02, lactate and protons.

Anoxia and hypoxia are different from ischaemia in

their origins but not always in their consequences.

Hypoxia can be used as a model to ellucidate the relative

roles in myocardial ischaemia, of 02 lack, substrate
deficiency and accumulation or redistributon of the

products of metabolism.
Pirolo and Allen (1986) suggest that studies of

myocardial ischaemia and hypoxia would be greatly
assisted if glycolysis could be inhibited completely and

reversibly. This might be acheived by three commonly used

29



methods for inhibiting glycolysis. These are removal of

02 and depletion of glycogen stores,or the use of DOG and
thirdly the use of iodoacetate (this is a non-specific

alkylating agent which affects the cysteine residues of

enzymes). They conclude that DOG does not completely
inhibit glycolysis and iodoacetate blocks glycolysis but

irreversibly. The best method appears to be glucose-free
solution with depletion of glycogen stores.

During hypoxia, anoxia and exposure to NaCN,

oxidative phosphorylation can be inhibited to varying

degrees. Various methods can be used to produce hypoxia
the most popular being replacing 00 with No in the

et-o.1
superfusate. Metsa-Ketela „ (1981) has used chemical
anoxia produced with sodium dithionite (2mM). This is a

powerful reducing agent. A smaller concentration (0.5mM)

was used by Dart and Riemersma (1 989), the degree of

hypoxia being indicated by the dye resazurin changing
from blue to colourless on removal of 02-

(3) METHODS FOR STUDYING INTRACELLULAR IONS

The measurement of intracellular ions can be made

using a variety of techniques. The method employed

throughout this study to measure intracellular ions was

the use of liquid ion exchanger-filled glass
microelectrodes for K + , Na+ and H+ measurements. Each

type of electrode is calibrated using a variety of
concentrations of the ion of interest. The intracellular

activity of the ion is recorded by the microelectrode.
From this the concentration of the ion can be calculated

using the activity coefficient for the ion in question

(Robinson and Stokes 1968).

The advantages of using ion-selective
microelectrodes are many. The electrodes are very small
and therefore cause little damage to cells, they are easy

30



to fabricate, the calibration procedure is simple and

the stability of the electrodes is good. Hinke (1986)

suggests that liquid ion exchangers do not function

optimally as reliable and stable electrochemical

measuring devices. However despite some inadequacies the

technique is accessable as a method for elucidating

intracellular ion activities and the various ion-carrying

systems in the cardiac cell.

(4) THE EFFECTS OF SUBSTRATES. BUFFERING. AND TEMPERATURE

ON THE HEART IN ISCHAEMIA, HYPOXIA. AND ANOXIA

(A) Substrates

Cardiac muscle is capable of using a variety of

metabolic fuels, the two preferred being fatty acids and

glucose (Bing 1965, Opie 1968). In well oxygenated hearts

fatty acid is the preferred substrate with energy

production resulting from both B oxidation of fatty acids
and the tricarboxylic acid cycle. This is prevented in

ischaemia with fatty acid metabolism being significantly
inhibited by accumulation of long chain acyl CoA groups

and other metabolites (Neely et al. 1972).

Liedtke et al. ( 1 976) investigated whether pyruvate

and 2-amino 2 - (hy droxyme thy 1) propane-1,3 diol (tris)
buffer (Tris) favourably improved glucose metabolism and

energy production in working pigs hearts exposed to

ischaemia. They found that pyruvate buffered with Tris

improved mechanical function and concluded that metabolic

manipulation may provide another mode of therapy for

preservation of ischaemic myocardium.

Rau et al. (1 979) examined the effects of amino

acids on the fall of developed tension during anoxic and

ischaemic stress. They did not define the exact mechanism

of protection but several may be operating, including
non-metabolic or transaminase mechanisms. The results
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suggest that specific amino-acids (arginine, glutamate,
ornithine and aspartate) exert their protective effects

via the malate-aspartate shuttle, stimulating

mitochondrial metabolism.

Freminet (1981) examined carbohydrate and amino acid
metabolism during acute hypoxia in rat hearts. He

observed an 85% decrease in the glycogen content of the

heart, while glucose, lactate, alanine and succinate all

increased. The results appear to demonstrate a

utilization of stored glycogen following 02 deprivation.
Burton et al. (1980) showed in feline papillary

muscle that glucose availabilty affects the potential for

recovery of hypoxia-induced contractile depression,

suggesting that glucose alters the progression of damage.
This is consistent with the hypothesis that glucose is

protective in ischaemia and hypoxia via direct or

indirect effects on membrane integrity. Previous work by

Apstein et al. (1976) also suggested that improved

glycolytic substrate availability improved mechanical

function in isolated rat trabeculae during severe

hypoxia.

It is also suspected that accumulation of free fatty

acids elicits a depressant effect on the myocardium,

through their direct action on the cell membrane (Harada

et al. 1984). This accumulation of fatty acids occurs as

a result of inhibition of B oxidation.

Lactate appears to be detrimental as an infusion

during hypoxia and ischaemia (Hearse et al. 1976). In

conditions of 02 deprivation, the resulting metabolic
imbalance leads to the production of large quantities of

lactate which may be toxic to the tissue in high

concentrations.
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(B) Buffering of cardiac cells

An understanding of intracellular buffering and of

the parameters affecting the degree of buffering is

crucial for gaining an insight into pH^ regulation and
the transport processes involving H+ ions.

Buffering is a property of weak acids and bases

whereby these compounds minimise shifts in pH by reacting
with H+ according to the equation:

Bn + H+ ^ BHn+1
Where B is a weak base of valence n and BH n+1 is a weak

acid of valence n+1.

Intracellular buffering can be evaluated by

observing the amplitude of the pHj change following
acute alkaline or acid loads of known magnitude.

Buffering reflects the contributions of several

mechanisms. These include the physicochemical buffers,

metabolic processes and sequestration by certain

organelles.

Early recordings of pH^ using ion selective
microelectrodes were made by Thomas (1 976) in snail

neurones and the effects of CC>2. HCOg-, H+ and NH4+ on
pH y were examined. It was concluded that HCOg- made a
large contribution to the buffering capacity of the cell.

After internal acidification the pHj was restored to
normal by transport of H + , OH- or HCOg- across the cell
membrane. Ellis and Thomas (1976,1977) measured pHj and
subsequently buffering power in mammalian heart cells.

Curtin (1986) examined buffering power in frog
sartorius muscle using pH sensitive microelectrodes.

Since PCr splitting is a major reaction during
contractions of this muscle and this reaction is known to

absorb H+ ions, buffer reactions occur and contribute to

the overall change in [H + ]. Curtin found that the

buffering power of frog skeletal muscle was unexpectably

large suggesting that unidentified H+ ion reactions
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exist.

Vanheel et al. (1986) observed the effects of

external buffering on pH^ regulation and found that
lowering external buffering power decreases surface pH

(pHs, the pH measured at the outer surface of the cardiac
cell membrane) and causes intracellular acidification. In

the less buffered solution recovery of pH^ following an
acid loading of the cells was substantially slowed. They

concluded that the alteration of the buffering capacity

of the superfusate in in vitro experiments causes (via

modification of pHg) changes in pH^ and pHi recovery from
induced acidosis in sheep Purkinje fibre and rabbit

papillary muscle.

(C) Temperature and Buffering

Temperature effects on myocardial preservation

following hypoxia and ischaemia have already been

discussed (see Cardioplegia), but the effects of

temperature may also be important to other myocardial

processes. The effects of temperature on pH^ have not
been studied very extensively.

Work on rat cardiac muscle (Saborowski et al. 19 7 3*)

has indicated that in the extracellular and intracellular

compartments the C02 uptake curve (comparing PC02 with
arterial blood pH) shifted to the left at lower

temperature (changing from 38C.to 22°C). They considered

that the intracellular buffering may consist of a mixture

of phosphates and imidazole. However it is not thought

likely that any one buffer is paramount since, for

ex ample, a much larger ApH/At is observed than would be

predicted if be predicted if phosphate were the

predominant buffer. There is only a small effect of

temperature on the pH of phosphate buffer.

More recent work by Dawson <*«( fii.'ctt (1984) used NMR to

determine pHj as a function of temperature in frog
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skeletal muscle. It was concluded that malntalnance of

pH^ close to neutrality is a characteristic of the
intracellular buffers and does not depend on blood acid

base regulation or the in vivo equivalent.

(5) HISTOLOGICAL OBSERVATIONS

The histology of the myocardium is of interest in

studies on ischaemia and hypoxia since these

interventions may alter tissue structure as well as

function.

Glycogen content is generally higher in Purkinje
fibres than in ordinary myocardial cells. Thornell

(1984) identified glycogen in Purkinje fibres

ultrahistochemically and recorded the dimensions and

topography using the stain periodic acid-

thiosemicarbazide-silver proteinate (PA-TSC-SP). He

suggested that glycogen particles are bound to protein in

vivo, but the extent may vary in different tissues.

Enzymes related to the synthesis and degradation of

glycogen particles may also be associated. The special

character of glycogen in Purkinje fibres may be partly
due to the interaction between glycogen particles or

between glycogen particles and filaments in the fibre.

Polysaccaride deposits were also seen intercellularly but

they were thought to be preparatory procedure artifacts

or the result of biological degradation.

The conduction system of the heart may be expected

to exhibit special morphological features and differs

from the contractile myocardium in cell size and

content. The Purkinje fibres also contain myofibrillar
material with different histochemical, biochemical and

morphological properties compared with contractile

myocardium (see Thornell and Erikssen 1981, for review).
The results of several investigations indicate that the
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filamentous systems in Purkinje fibres maintain the
structure of the conduction cell bundles, functioning as

a cytoskeleton.

Schaper et al. (1979) investigated early
ultrastructural changes in the myocardial ischaemia and

infarction in dog hearts after 45 minutes, 90 minutes,

and 48 hours of coronary artery occlusion. Irreversibly

damaged cells showed destruction of the mitochondria with

mitochondrial debris, progressive destruction of the

sarcomeres and swollen or shrunken nuclei. From the study
it was evident that 45 minutes of ischaemia caused

irreversible damage in some cells. It has been shown that

the size of a myocardial infarction depends not only on

time but on the rate of 02 consumption (Schaper 1978).
In this study altering the composition andtP02 of the perfusing

solution were examined for their effects on the extent of acidification

of pH^ and the change in active tension produced by the exposure of
mammalian myocardial tissue to hypoxia. Measurements of pHj, a*K and
a*Na were made to try to describe the role of ion transport mechanisms
in the control of pHj during hypoxia. The addition of ion exchange
blockers, alteration of extracellular pH, raising extracellular buffering

and changing the perfusing solution temperature were used to examine
the nature of the cellular control of the acidification of pH^ during
hypoxia and the recovery of pH^ on reoxygenation.
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METHODS

(l)GENERAL

In this study I used sheep Purkinje fibres or

ferret papillary muscle. Fresh sheep hearts were obtained
from the local slaughter-house, the venticles cut open

and the hearts transported to the laboratory immersed in

modified St. Thomas' cardioplegic solution (see later) at

ambient temperature. Free-running Purkinje fibres were

dissected from the left ventricle.

Ferrets were anaesthetised , with either

intraperitoneal pentobarbitone sodium A(Sagatal,May and

Baker,U.K.) or ethyl carbamate solutiofi^fbrethane, Sigma
U.K.),25% in saline. The heart was removed and washed in

modified St. Thomas' cardioplegic solution. Thin

trabeculae or papillary muscles were dissected from the

right ventricle.

The experiments were carried out in a tissue chamber

of perspex with a glass front for viewing the preparation

(Fig.2.1). The bath volume was approximately 0.2 ml. At

the left end of the bath was a 2mm diameter hole through

which the bath electrode could be inserted. In the bottom

of the bath a second hole accommodated the oxygen elec¬

trode. The bottom of the bath (except at the oxygen

electrode position) was covered with a thin layer of

silicone rubber (Sylgard, Dow Corning, Belgium). Over

this several slightly raised stainless steel wires ran

across the chamber. Pinning the preparation across these

wires improved electrode penetration. The right end of

the preparation was pinned to the floor of the bath using

an entomological pin. The other end was attached to the
arm of the force transducer (see Fig.2.2 and next section

iar<\.eWr AiAlo'y
for details) by tying a loop of fine thready round the
preparation. The preparation was permanently submerged in
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FIGURE 2.1 A

A schematic diagram of the experimental bath showing
the position of the bath input tube (I), the thermocouple

(T), bath output (O), force transducer (F), the bath
electrode (BE) and the position of the electrodes (E).

Superfusing Tyrodes solution flowed continuosly over the

preparation entering the chamber from the right through
the input tube (which was heated to maintain a bath

temperature of 35°C) and leaving at the back of the bath

to the left. The preparation was usually penetrated with
two microelectrodes. One was a conventional 3M KCl-filled

microelectrode which measured membrane potential and the

other was an ion-sensitive microelectrode which measured

both membrane potential and the potential due to

intracellular ion activity. A third electrode was

occasionally used to measure surface pH, this measured
the surface ion signal.

FIGURE 2.IB

This shows a more detailed view of the experimental

chamber. A silicon rubber base of the bath allowed

preparations to be pinned to the bottom of the bath.
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FIGURE 2.2

Photograph of bath area and amplifiers for

measuring, membrane potential, intracellular ion
activities and tension in isolated heart preparations.
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FIGURE 2.3

Photograph of the general apparatus used for

measuring tension, membrane potential and intracellular
ion activities in isolated heart preparations. The lid

of the Faraday cage has been raised to view the interior.
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solution. The bath was usually maintained at 35°C +_1.0 by
a thermocouple at the bath entrance which controlled a

heating element surrounding the glass tube which carried

solution into the chamber. An eight way tap was used to

change the supply of solutions (similar to a design of

Partridge and Thomas, 1975). Solutions were oxygenated
with either 100% 02 or air bubbled directly into the
solution with a fish tank pump for normoxic experiments

(methods of producing anoxia will be discussed later in

this chapter). Solutions were heated to 35°C in a water

bath (Fig.2.3) and fed by gravity and gas pressure in the

reservoir bottle to the eight way tap by polythene or

stainless steel tubing. The metal tubing reduced any

diffusion of C02 from HC0g~/C02 solutions or of 02 into
hypoxic solutions. The bath perfusion rate was

approximately 10 bath volumes/min and the solution

exchange time (time taken for a solution change) as

measured using the response of a pH sensitive

microelectrode as an indicator was 90% complete in 18-21

sec.

Microelectrodes are prone to electrical interfer¬

ence, that is electrical " noise" can obscure the signal

to be measured. In general interference is greatest with

high resistance electrodes. Therefore the whole apparatus

(see Fig.2.2) except the water bath and eight way tap was

enclosed in a Faraday cage which was earthed to the metal

conduit carrying the electricity supply. The preparation
was illuminated from above and behind using fibre-optic

light guides from a light source (Fort EF 150S light

unit, France) outside the Faraday cage which minimized

electrical noise.

A horizontally mounted microscope (Kyoma 800450,

Tokyo) was used to view the preparation through a hole

cut in the Faraday cage, the microscope was also earthed.

Stimulating electrodes were placed on either side of
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the preparation to check the viability, by stimulating an

action potential or eliciting twitch contractions,

stimulating electrodes were placed on either side of the

preparation. The electrodes were connected to a Digitimer
stimulator and pulse generator (Digitimer U.K.).

Oxygen tension was continuously measured in the

bath fluid during some experiments using an O2 electrode
(Model 102, Instech Laboratories, USA.). See later for

detail of electrode membrane installation and

calibration.

(2) FORCE TRANSDUCER

The force transducer which measured tension in the

preparation was constructed from piezo-resistive elements

(Akers AE801, Aksjeselskapet Microelectronic, Horten,

Norway). These elements were composed of a silicon beam

("5mm long, 2mm wide and 0.1mm thick) with planar piezo-

resistive surfaces on either side of the beam. The beam

was attached to a supporting 'head' to which electrical

connections were made. A fine glass capillary tube with

the end tapered to form a hook was glued to the beam, the

hook was passed through the loop of thread tied to the

preparation. On deflecting the beam the diffused

resistors on the beam changed resistance, one decreasing,
one increasing. This was combined with another beam

element providing two passive resistors to form the

other two arms of a full Wheatstone Bridge circuit

(Fig.2.4). The whole assembly was housed in a brass tube,

a perspex tube housed the active beam and its supportive

head which was held in place with small screws. The beams

were powered by a stabilised 6V DC supply from a Bryans

DC bridge amplifier (Model 40550), which also provided

preamplification and bridge balance. The voltage output

of the force trancsducer was linear over the range of
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FIGURE 2.4A

Shows a diagram of the force transducer (approx.
x30). A glass beam was glued to. the silicon beam and it
was to this glass rod that preparations were tied.
Contraction of the muscle bent the beam and the changes

in resistance of the beam were proportional to force.

FIGURE 2.4B

A circuit diagram of a full wheatstone bridge

circuit, used in the force transducer.
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forces measured (Fig.2.5). Preparations were stretched

to a degree that provided maximal twitch tensions. The

force transducer output was usually recorded on one

channel of a pen recorder (Bryans BS314). However in some

experiments an Electromed (Type MX216) chart recorder was

used because the Bryans recorder had too slow a response

time to record twitch tension accurately but was adequate

for observations of contracture development.

(3) MICROELECTRODES

Membrane potentials were measured with conventional

3M KCl-filled glass microelectrodes. These

microelectrodes were pulled from lengths of 1.2mm i.d.

2.0mm o.d. borosilicate capillary tubing containing a

glass filament (Clark Electromedical Instruments,

Reading, U.K.). They were filled with 3M KC1 and had

resistances between 10 and 25Mn.

Ion sensitive microelectrodes were fabricated from
*

silanized micropipettes. These were initially back-filled

with aqueous solution by passing a fine plastic tube

along the barrel to as near the tip as possible and

injecting a suitable solution.The microelectrode tip was

then filled with a small column (c.200 urn) of liquid ion

exchanger by exerting negative pressure (Fig.2.6). Tips

were <lum in diameter. Estimates of their response time

were limited by the solution exchange time in the bath,

which was 90% complete in 18 to 21 s. For any drug used

in the experiments, the possibility of interference with

the ion selective resin was checked. Extracellular

recordings were made using ion sensitive electrodes

constructed in the same way except that once filled the

tips were broken back (tip diameter 5-20 um) to produce a

blunt electrode which was unable to penetrate the tissue.
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FIGURE 2.5

A calibration curve for the force transducer at

three sensitivities. Note the response of the force
transducer is linear over the range of forces measured

(lines drawn by eye).
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FIGURE 2.6

A schematic diagram of a typical ion-selective
microelectrode, the values for the size of the column of

ion-selective resin and the tip of the electrode are

approximate.
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Potassium Microelectrodes

The potassium-sensitive microelectrodes were filled

with either Corning 44731 ion exchanger (W.P.I, New

Haven, U.S.A.) or with Fluka K+ cocktail (Fluka, Buchs,

Switzerland). The silanized micropipettes were filled on

the day they were used. They were first back-filled with

a solution of lOOmM potassium chloride then a column

C200um) of the potassium selective resin was drawn by
suction into the tip of the microelectrode.

Sodium Microelectrodes

The sodium sensitive microelectrodes were produced
in the same way as the potassium microelectrodes except

that they were back-filled with lOOmM sodium chloride and

lOOmM sodium citrate then a column of sodium ionophore

(ETH 227, Fluka, Switzerland.) was drawn by suction into

the tip.

pH Microelectrodes

The fabrication of the pH electrodes was essentially

the same as for Na+ sensitive electrodes except that pH

microelectrodes had neutral H+ carrier (Fluka,

Switzerland) drawn into the tip after back-filling.

(4) SIGNAL RECORDING

Conventional 3M KC1 microelectrodes and the ion

selective microelectrodes had chlorided silver wires

inserted into the barrel of the electrode end. The wires

were chlorided by electrolysis in HC1. The chlorided

wire forms a stable electrical contact between the

filling solution of the microelectrode and the signal
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recording system.

The bath electrode (reference electrode) was made by

injecting heated Agar (4% dissolved in Tyrode solution)
into a glass tube (o.d. 2.0mm) about 30mm in length into
which was inserted a chlorided silver wire. The bath was

grounded with an earthed chlorided silver wire which

dipped into the bath solution. The KC1 electrode voltage
with respect to the reference electrode was displayed on

one channel of a pen recorder (Bryans BS314) or on an

oscilloscope (Tektronix 5113 Dual Beam). Signals from the
bath electrode and the KC1 electrode were pre - amplified

using RCA CA 3140 operational amplifiers wired for unity

gain. The signal from the bath electrode was also passed

through a CA 3140 pre - amplif ier to ensure that any power

supply changes or electrical interference would affect

each amplifier in the same way and would therefore be

cancelled out at the differential input to the recording

devices.

The conventional electrode resistance was measured

using a triangle wave form generator (Thomas 1978).

Triangular voltage signals were fed to a capacitor at the

pre-amplifier input. This, together with the resistance

of the microelectrode transformed the triangular waves

into square waves at the amplifier input. The resistance

of the microelectrode was proportional to the height of

the square wave and the system was calibrated using known
resistors.

Ion sensitive microelectrode potentials were

measured using an operational amplifier (Analog Devices

31 1J) wired for unity gain with a large input impedance

CIO1!) which makes it suitable for ion sensitive
microelectrodes.

The difference between the KC1 and the ion-sensitive

microelectrode signal, gave the intracellular activity of
the ion being measured. The subtraction of signals took
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place at the input to the chart recorder.

(5) THE SUBTRACTION PROCESS AND CALIBRATION OF

MICROELECTRODES

A diagram of the circuit is shown in Figure 2.7. The
KC1 microelectrode serves as the differential input to

the ion selective electrode. Where an extracellular

microelectrode was used, usually to measure extracellular

pH, the bath electrode signal was subtracted from the

extracellular pH signal at the input to the chart

recorder.

The calibration procedure for the three types of ion
sensitive electrode used during the experiments was

performed at the beginning and end of experiments as a

means of checking that there had been no change in
electrode characteristics during the course of the

experiment.

At the beginning of each experiment the preparation
and microelectrodes were set up in the bath and left to

stabilize for at least 10 minutes.

Potassium Microelectrodes

The calibration of potassium microelectrodes

required particular care due to the logarithmic

relationship between the activity of an ion and the

voltage output of the electrode. Thus at physiological
levels of intracellular potassium, relatively large

changes in potassium are associated with quite small

changes in the voltage output of the microelectrode. For

each calibration curve a linear regression was plotted

(on log-linear coordinates) to check that the electrode

calibration intercepted the x- axis at approximately 6mM
which was the [K+] in normal Tyrode. By using the same

49



FIGURE2.7 Aschematicdiagramoftheelectricalconnections
fromthemicroelectrodestotherecordingapparatus.The "high"sideoftheconventionalmicroe1ectrodewhich measuresmembranepotentialalsoservesasthe"low"side oftheintracellularion-selectiveelectrodeinput.The bathelectrodesignalwassubtractedfromthe extracellularion-sensitivemicroelectrodeinput(E3).
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linear regression it was possible to calculate a*k
directly from the intracellular measurements of the ion

sensitive electrode potentials. To check that each

impalement was successful the perfusing solution was

briefly switched to 12mM [K+j Tyrode. This produces a

slight depolarization in the preparation. The In¬
sensitive microelectrode signal had the membrane

potential (Em) signal subtracted from it in order to

obtain a value for if both electrodes were

intracellular no depolarisation was seen on the a1^
trace.

K+ microelectrodes were calibrated using 70, 129,

141 and 151mM K+ calibration solutions. (Fig.2.8 for

calibration and Fig. 2.9 for penetration procedure).

Sodium Microelectrodes

Sodium microelectrodes were calibrated

calibrating solutions containing 14, 8, 5, and 3mM

Potassium was used as a sodium substitute in

solutions (Fig.2.10).

pH Microelectrodes

The calibration procedure for pH microelectrodes was

to expose the microelectrode to solutions of pH 7.4

(normal Tyrode solution), 7.0 and 6.4 with a solution of

pH 8.0 being added for low temperature experiments. There

was an average response of 58mV for a tenfold change in

hydrogen ion activity. (Fig. 2.11 for calibration and

Fig. 2.12 for penetration procedure).

with
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FIGURE2.8 Themean(filledcircles)+s.d.(n=8)andan individualcalibrationcurve(crosses)forvalinomycin- filledion-selectivemicroelectrodes(A)andCorning- filledion-selectivemicroelectrodes(B)areshown(n=22). Thelinesarelinearregressionlinescalculatedfromthe fourcalibrationpointsforeachgraph.
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FIGURE2.9 ThepenetrationprocedureforaCorningK+-sensitive microelectrodeinferretpapillarymuscle.ArrowAshows theK+-sensitivemicroelectrodealreadyintracellular. ArrowBshowsthemembraneelectrodeintracellular(the ion-selectivemicroelectrodetracemovinginanequaland oppositedirection).ArrowsC,D,E,andFshowpoints wheretheK+microelectrodeisintracellular.Thespikes onthetraceassociatedwitharrowsEandFareasa resultofstimulatingthepreparationbrieflytoinduce anactionpotentialtoensurethattheK+electrodewas intracellular.
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FIGURE2.10 Themean+s.d.(n=6)andanindividualcalibration
curveforsodiura-se1ectivemicroelectrodes(linedrawnby eye).
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FIGURE2.11 Thisshowsa.meoA
andasinglecalibration sensitivemicroelectrodes

(n=20)+s.d. curve(filled (linedrawnby
(filledsquares) circles)forpH- eye).
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FIGURE 2.12

The penetration procedure for pH-sensitive
microelectrodes in a sheep Purkinje fibre. The membrane

potential microelectrode penetrates a cell at (A), the pH

trace moving in an equal but opposite direction to the Em

trace, followed by penetration with the ion selective

electrode at (B).
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Testing The Subtraction Procedure

The membrane potential (Em) signal must be
subtracted from the ion - sensitive microelectrode's total

potential. Therefore, in order that the correct
intracellular ion activity is measured it is essential
that both microelectrodes measure the same membrane

potential, and possibly more importantly that they
measure the same change in membrane potential. In this
situation the membrane electrode should register a change

of Em and, if the subtraction is accurate, the ion-

selective microelectrode should not respond. Addition of 12mM [K+]
Tyrode as a method for checking electrode impalement (see page 51)
could also be used to test the subtraction procedure. If the subtraction

wo.s adequate exposing the intracellular electrodes to 12mM [K+] would

produce no change in the a*K signal recorded ( a change of less than
lmV was considered acceptable for these experiments). It is difficult to

obtain stable recordings when the inter-electrode
distance is <100uM. However the cells of the Purkinje

fibres and of the papillary muscles are well coupled

electrically such that the two electrodes although in
different cells measure the same Em under most

conditions. It had to be assumed that if the cells became

uncoupled, as a result of any of the experimental

protocols, that the microelectrodes would measure the
same change in Em.

Ion Activities

The activity (a) of an ion (I) is related to its
concentration (c) by the equation

a5 = f x c}
where f is the activity coefficient of i. The activity of
a substance can be thought of as the effective free
concentration. For electrolytes in very dilute solution,

* -f » O'T^. K
- O'ls Tor



activity is nearly equal to the molar concentration. The

intracellular level of an ion species which is passively
distributed across the cell membrane is determined by the
extracellular activity of this ion and the membrane

potential. The equilibrium potential of the ion is

therefore the same as the membrane potential.

Ion-selective microelectrodes measure intracellular

ion activities, these may be converted to the equivalent
concentration of ions using the activity coefficient
for the ion in question (Robinson and Stokes,1968) if it

is assumed that the intracellular activity coefficient

of the ion is the same as that in the extracellular

solution.

(6) TEMPERATURE CONTROL

Some experiments were performed at low temperature

(22°C). To achieve a rapid change of temperature,

reservoir bottles of solution were pre-cooled in a

cooling water bath (Camlab DLK 500, Cooling Unit,

Cambridge, U.K.). The bath temperature feedback circuit

was altered from 35°C to 22°C. The solutions flowed from

the reservoir bottles to the bath through a stainless-

steel tube which was encased in plastic tubing through

which cold water was pumped using a peristaltic pump

(Gilson, Minipuls 2.). Using this cooling system the

temperature change from 35°C to 22°C was 90% complete in

4.5 minutes.

(7) CALIBRATION OF THE OXYGEN ELECTRODE

Oxygen tension in the experimental chamber was

constantly measured in some experiments using an oxygen

electrode which was connected to one of the channels of

the pen recorder. The oxygen electrode was calibrated at
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the beginning of each experiment. A zero point was

established by exposing the electrode to Tyrode solution

containing sodium dithionite which chemically removes

oxygen (sodium dithionite is a powerful reducing agent).
After a zero point had been established the solution was

changed to normal Tyrode solution bubbled with 21% 02
(approximate P02 = 150mmHg) and the amplifier sensitivity
was altered to give a suitable sized deflection on the

chart recorder trace, the electrode was then tested with

Tyrode solution bubbled with 10% O 2. The response of the
electrode was linear (Fig.2.13).

(8) SOLUTIONS

The normal Tyrode solutions were composed of Analar

grade chemicals. The normal Tyrode contained (mM) Na,140;

K,6; Ca,2; Mg.l; C1.147; Glucose,10; HEPES (N-2-

hydroxyethylpiperazine-N-2-ethane-sulphonic acid),10; and

was titrated with NaOH to give a pH of 7.40 +_ 0.05 at

35°C. The solution was equilibrated with 100% 02 or with
100% N 2 for hypoxic solution. When experiments were
performed at room temperature normal Tyrode was titrated

to give a pH of 7.4 +_ 0.05 at 22°C. The pH of the

solutions was measured with a pH meter ( Phillips PW9409

Digital Meter U.K.).
Bicarbonate buffered solutions were similar except

that the HEPES was replaced by sucrose (lOmM). They
contained 24mM NaHCOg, so the NaCl was reduced to 116mM.
Bicarbonate solutions were equilibrated with 95% 02, 5%
C02 or with 95% N2, 5% C02 for hypoxic solution.

The cardioplegic solution was a modified St. Thomas'

solution (mM) NaCl, 100; KC1, 20; MgCl2, 16; Procaine,
0.5; CaCl2, 2; Na2HP04, 1.92; NaH2P04, 6.74.

Saponin (25ugml-1, Sigma, U.K.) was added directly

to pre-gassed solution and bubbled very gently with 02 to
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FIGURE2.13 Thecalibrationprocedurefortheoxygenelectrode.
Theelectrodezerowassetusingsodiumdithionite (approximately20mM)toremoveallO2fromthesolution inthe.bath.Theelectrodewascalibratedwith atmosphericO2(150mmHg),10%02/90%N2gasmixtureand 5%02/95%N2gasmixture,thesewerebubbledintonormal Tyrode(linedrawnbyeye).



160 140 120 100
80

ArbitraryUnits60
40 20

0

10

_l

J

121416182022
%02Tension



prevent foaming. Strophanthidin (Boehringer Mannheim) was

dissolved in 50% ethanol: 50% water (v:v) to produce a

stock solution of 2xlO~2M. Thus with a concentration of

2x10-5M strophanthidin in the Tyrode solution the amount

of ethanol was less than 0.1%.

Amiloride (ImM, Sigma, U.K.) was added directly to

warmed Tyrode and stirred well before use. SITS (4-

acetamido-4-isothiocyanatostilbene-2, 2'-disulphonic acid

disodium salt), (lOOuM, Sigma, U.K.) was added directly

to solutions, protected from light and used immediately.

Sodium cyanide was added directly to normal Tyrode
solution.

To produce a chemically anoxic solution, sodium

dithionite (0.5mM) was added directly to Tyrode solution.
C.St<ynr*K/ U-KO

50uL/L of resazurin dyeK was added as a 1% aqueous

solution which acted as an indicator of the level of 02
in the solution (the dye changes from blue to colourless

on removal of oxygen).
loo^M

Sodium cinnamate was made up as a^stock solution in
130mM NaOH. 50ml of this stock solution was added to 1

litre of normal Tyrode (with the Na level suitably

adjusted) to produce a 5mM cinnamate solution.
Solutions of pH 6.4 and 8.4 were made up using the

buffers PIPES (Piperazine - N, Nbi s [ 2 - ethane - sulph onic

acid]) and TAPS (Tris[hydroxymethyl]methylaminopropane-

sulphonic acid) respectively instead of HEPES.

When experiments were performed with high HEPES

levels (high levels of extracellular buffering) the

normal [HEPES] Tyrode included 60 mM sucrose to ensure

that the osmolarity of the two solutions was the same.
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(9) HISTOLOGY

Electsn micrographs were produced for experiments on

prolonged exposure to hypoxia (1.5 hours) in sheep

Purkinje fibres. The fixation and staining protocol was

as follows:-

(1) Primary fixation with 2% glutaraldehyde in 0.13M

PIPES buffer, pH 7.4 for 2 hours at room temperature.

(2) Brief wash in 0.13M PIPES buffer, pH 7.4.

(3) Post fixed with freshly prepared 1.5% 0s04 and 2.5%
potassium ferrocyanide in 0.13M PIPES buffer, pH 7.4 for

2 hours at room temperature (Russell and Burguet, 1977).

(4) Brief wash in 0.13M PIPES followed by distilled H20.
(5) Overnight in 10% ethanol at 4°C.
(6) Dehydrated in graded ethanol (25%, 40%, 55%, 70%,

85%, 90%, 95% and 100%) 10 minutes each at room

temperature.

(7) 3 changes of 100% ethanol, 30 minutes each. 2 changes
of 100% ethanol and Spurr resin (1:2), 1 hour each.

(8) Specimens embedded in Spurr resin.

(10) Thin sections were cut with a Porter-Blum MT2B

ultramicrotome using glass knives.

(11) Sections were mounted on single-hole type-1000

specimen grids which were covered with Pioloform support

film.

(12) Sections were stained with aqueous uranyl acetate

followed by lead citrate (Reynolds, 1 963), then examined

in an AE1EM6B microscope.

(10) THE PRODUCTION OF HYPOXIC SOLUTIONS

During the majority of the experiments it was

necessary to produce solutions with oxygen tensions of

less than lOmmHg (see Results). It proved to be quite

difficult to remove and exclude 02 from the experimental
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set-up used for these studies. It was also important,
when changing from perfusate of one oxygen tension to

another, that the time course of the change in partial

pressure of oxygen be clearly known, to enable the

changes in behaviour of the tissue to be separated from
the dynamics of the perfusing apparatus. For these

reasons the factors governing the partial pressure of

oxygen in the bath and the dynamics of change from

normoxic to hypoxic superfusates and vice versa were

investigated.

Factors Affecting Partial Pressures Of 02 Under
Equilibrium Conditions

It was initially difficult to produce a stable and

reproducible level of hypoxia in the bath. For example,
when 250ml of perfusing medium had been bubbled

vigorously for 5 minutes with 100% N2 in an open vessel,
a flow through the bath of 3.2ml/min (the flow rate used

in these experiments) produced changes in 02 partial
pressure in the bath which were time related (Figure
2.14). This level of stability (during the first 5

minutes) would of course have been useless in the study
of the effects of hypoxia. It was initially suspected

that diffusion of atmospheric 02 into the bath was the
cause of this stability. Diffusion would have been

largely via the uncovered surface of the perfusate in the

bath and might perhaps be counteracted by increased rates

of flow into the bath, carrying away "oxygen-
contaminated" solution. It was therefore decided to

investigate the effects of covering the bath and altering

superfusate flow rate on 02 partial pressure in the bath.
The bath was perfused with a number of fixed flows of

normoxic and hypoxic perfusates a) with the surface

uncovered as normal,and b) with the whole surface of the
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FIGURE2.14 Approximately250mlofnormalTyrodewasvigorously
bubbledwith100%N2inanopenvessel.Whilebubbling wascontinuedthesolutionwasallowedtoflowintothe bathwhilecontinuouslymeasuringtheO2tension.The figureshowsthesubsequentchangesinpartialpressure ofO2(PO2)inarbitraryunitswithtime(linedrawnby eye)
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bath covered with a microscope slide to prevent

diffusion. 02 tension was measured in arbitrary units
because the 02 electrode had not been fully calibrated,
however zero on the arbitrary scale represented OmmHg

(P02). Oxygen tension in arbitrary units was read
continuously after allowing 2 min for equilibration. The

effects of varying flow and covering or uncovering the

bath surface (Figure 2.15). It can be seen that neither

covering the bath nor changing the flow rate materially
affected the partial pressure of 02 in the bath during
hypoxia or normoxia. The problems of producing a stable

and reproducible hypoxic perfusate were clearly not

related to diffusion into the bath due to uncovered

surfaces or low flow rates. I therefore turned my

attention to the treatment of the perfusate before it

entered the bath.

Production Of Hypoxic Perfusate

Movement of gas (02 and N2 in this case) into or out
of the superfusate is governed by Henry's Law, which
states that "at equilibrium the amount of gas dissolved

in a given volume of liquid at a given temperature is

proportional to the partial pressure of that gas". The

amount of gas dissolved is also proportional to the

solubility of that gas.

The solubility of 02 and N2 in water at 30°C is 2.6
and 1.15ml/100gm water respectively (Perry, 1 974).

Although this relationship is to the disadvantage of

producing hypoxia, it cannot be changed and therefore
the only way of producing solutions which were hypoxic

appeared to be to increase partial pressure of N2 and to
reduce partial pressure of 02 in contact with the
superfusate. This was done by heating the Tyrode solution
to 35°C and then exposing it to low pressure
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FIGURE2.15 TheeffectofvariousflowratesonPO2measuredin
hypoxicandnormoxicsolution.Theopencirclesrepresent thevaluesobtainedwhenthethebathwasuncovered,the closedcircleswhenthebathwascoveredwithaglass coverslip.ItcanbeseenthatthepartialpressureofO2inhypoxiaislittleaffectedbyuncoveringthebathand onlyslightlyloweredinhypoxicsolutionbyincreased

flow.
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(approximately lOOmmHg) for approximately 5 minutes. The

solution was then immediately gassed vigorously with 100%

N2, in a reservoir bottle which excluded atmospheric 02>
The superfusate was allowed contact with the air for only
the briefest possible time, Figure 2.16 shows the effect

of bubbling hypoxic solution with atmospheric 02. The
procedure outlined above proved to be adequate for

producing hypoxic solutions (<10mmHg). I then

investigated the dynamic properties of the perfusing

apparatus.

Dynamic Effects Of Changes In Perfusate

When a reliable and repeatable source of hypoxic

perfusate had been established the dynamic effects of

changing from normoxic to hypoxic solutions and vice

versa was investigated.

The ideal situation would have been an instantaneous

change from one solution to the other in the bath. This

was not possible but as can be seen the restrictions

introduced by the dynamic properties of the system were

very small (Figure 2.17). The type of flow existing in

the bath was not investigated as it was considered

sufficient in practical terms to allow 3 minutes to pass

after connection to a particular superfusate, by which

time the partial pressure of 02 in the bath would have
reached at least 95% of its equilibrium value.
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FIGURE2.16 Thedeleteriouseffectsofbubblingahypoxic
solutionwithairareshown.Itcanbeseenthat afterexposuretoO2itonlytakes4.5minsforthe solutiontobereoxygenated(linedrawnbyeye).
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FIGURE2.17 Illustrationofthedynamiceffectofchangingfrom
normoxiatohypoxiaandvice-versa.Thisshowsthatthe changetohypoxiafromnormoxiaandvice-versaisnot instantaneousbutiscompleteinapproximately2minutes. Thisisasufficientlyfasttimecourseforthetypeof experimentsperformedinthisstudy.(A)representsthe reoxygenationofhypoxicTyrodesolutionbybubblingwith air,(B)representsthechangeinPO2onswitchingfrom Tyrodebubbledwithairtohypoxicsolution(linesdrawn byeye).
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RESULTS

The results are presented in IS sections which are

described below. Except where stated the Paired T-test

was used to determine significance of difference between

means of sample groups. A value of P<0.05 was considered

to be a significant difference. Except where specifically
mentioned means are quoted +_ one standard deviation

(S.D.). The mean po2 value during hypoxia was 4.8 +2.6 mmHg (n=19).

(1) GENERAL OBSERVATIONS OF pH DURING HYPOXIA

Ellis and Noireaud (198>) measured cytoplasmic pHj
directly using ion-selective microelectrodes in isolated

mammalian myocardial tissue. These experiments revealed

large acidifications as a result of hypoxia and showed

large and rapid changes in pHj on re-addition of oxygen.
These results are confirmed and expanded by results

obtained in this study where exposure to hypoxia for 20

minutes in sheep heart Purkinje fibres resulted in an

acidification from pH 7.10 ±0.21 (n = 87 experiments) to

6.8 9 ±0.3 3 (P < 0.0 01) (Figure 3.1). This was accompanied

by a small depolarization of the resting membrane

potential from -73.9 +7.5mV to -72.6 ±9.6mV (P<0.01). In
a few preparations there was no measurable depolarization

in some there was even a hyperpolarization of a few mV

(e.g. Fig.3.2). The pHj transiently became significantly
more acid on re-oxygenation, decreasing to 6.82 ±0.3 6

(Fig.3.1). During the transient extra acidification of

pHj on reoxygenation there was normally a small transient
hyperpolarization of Em which coincided with the pHj
change perhaps suggesting a weak electrogenic process. In

most experiments there was some delay at the beginning of
the hypoxic exposure before the development of the

intracellular acidification (e.g. Fig.3.4). This is
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FIGURE3.1 TheeffectsonpHj(top)andmembranepotential(Em) (bottom)of20minutesexposuretohypoxicTyrode solutiononasheepheartPurkinjefibre.
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FIGURE3.2 TheeffectsonpH^(top),surfacepH,pHs(middle)
andmembranepotential(bottom)of20minutesexposureto hypoxicTyrode,onsheepPurkinjefibre.
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presumably a reflection of not only the time taken to

reduce 02 levels in the bath but also the time taken to
inhibit oxidative phosphorylation in the tissue.

In some preparations a small transient alkalosis was

observed on changing into hypoxic solution (e.g.

Fig.3.9). An alkalosis of pH^ has previously been
described in ferret heart by Allen et al. (1983a). There

was also a small alkalosis observed on recovery of pH^
after reoxygenation (e.g. Fig.3.9).

In addition to changes in the pHj, the pH on the
surface of the muscle preparation pHg, (as measured by a
blunt pH-sensitive microelectrode pushed against the

surface of the tissue) became acidified in hypoxia (see

Fig.3.2). The p H g changing from a mean value of 7.21
+0.09 (n=14) to 7.07 +_0.25 (P<0.05). On reoxygenation the

pHg normally became slightly more acid reaching a pH of
7.06 +0.25 (P<0.05) before recovery.

(2) EFFECT OF HYPOXIA ON FORCE OF CONTRACTION OF FERRET

VENTRICULAR MUSCLE

In this study exposing ferret papillary muscle to

hypoxia often caused a transient increase in force,

possibly as a result of a transient alkalinization of pHj
(Ellis and Noireaud, 1 987). This was followed by a

falling phase in developed tension during hypoxia. On

reoxygenation there is often a transient decrease in

force followed by a rapid initial recovery over the first

minute of reoxygenation, this is followed by a slower

phase of recovery over the following 20-30 minutes.

Hypoxia has been shown to lead to a rapid decline in

developed tension due to changes other than a decrease

in the [Ca2 + ]i available for contraction (Allen and
Orchard 1983). In the present study the effect of hypoxia
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on developed tension in isolated ferret papillary muscle

stimulated at a rate of 0.2 Hertz was Investigated.

Developed tension fell to approximately 35% ^14% of
control tension (mean + s.d n=15) after 20 minutes of

hypoxia (e.g. Fig.3.3).

(3) TECHNIQUES FOR BLOCKING OXIDATIVE PHOSPHORYLATION

Several methods have been used previously to inhibit

oxidative phosphorylation. The removal of 02 inhibits
oxidative phosphorylation. Alternatively, NaCN can be

used (Allen and Orchard, 1984) since a concentration of

2mM in the perfusing solution reversibly inhibits

cytochrome oxidase activity (Pirolo and Allen 1986).
Metsa-Ketela et a 1. (J. 981) induced hypoxia in

isolated rat atrial cells by using 2mM sodium dithionite

in the bathing medium. However, in more recent work Dart

and Riemersma ( 1 989) have shown that in bicarbonate

buffered solutions bubbled with 95% N2\5% C02 the
subsequent addition of sodium dithionite (final

concentration 0.5mM) removed all traces of oxygen. The

oxygen sensitive dye resazurin (0.5ugml-1) was used to

indicate anoxia (see methods).

Experiments were performed in the present study to

test the effectiveness of hypoxia in blocking oxidative

phosphorylation compared with chemical removal of 02 and
metabolic blockade with NaCN.

In 23 experiments where hypoxia and anoxia were

directly compared (e.g. Fig.3.4) in sheep Purkinje fibres

the pH} decreased from 7.18 +_0.13 to 7.03 +0.14 in
hypoxia, compared to an acidification to 6.95 +_0.15

during anoxia of 20 minutes. The difference between the

acidification of pH^ produced during hypoxia compared
with anoxia was significant (P<0.001 n = 23). On

reoxygenation there was a further transient acidification
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FIGURE3.3 Theeffectofapproximately20minutesexposureto
hypoxicTyrodesolutionondevelopedtensioninferret papillarymusclestimulatedat0.2Hz.



5mins



FIGURE3.4 Theeffectofapproximately20minutesexposureto
hypoxia,comparedwithexposuretoanoxiainsheep Purkinjefibre(anoxicsolutionwasproducedbyadding sodiumdithionitetonormalTyrodesolution).
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before recovery, to 6.94 ^0.2 in hypoxia which was

significantly smaller (P<0.001) than the transient
acidification to 6.78 ^0.26 seen on reoxygenation from
anoxia.

The onset of acidification of pHj appeared to be
more rapid in anoxic solution compared with hypoxia,

perhaps as a result of the more rapid and efficient
exclusion of 02 from the perfusate and thus from the
cells, in anoxia.

In 7 experiments where surface pH (pHg) was compared
during hypoxia and anoxia, there was a significant

difference in the acidification produced under the two

conditions. Hypoxia caused a decrease (P<0.01) from 7.19

+ 0.11 to 7.10 +.0.17, while anoxia caused an acidification
to 7.11 +_0.1 7 (P < 0.0 1). There was no significant
difference between the size of acidification of pHg in
hypoxia compared with anoxia.

The effect of hypoxia was compared with blocking

oxidative phosphorylation using NaCN (2mM) in 6

experiments (Fig.3.5). Hypoxia resulted in an

acidification of pH^ from the control value of 7.26 +^0.0 8
to 7.11 .08, compared with a change in NaCN to 7.10

+_<0.13. The difference between hypoxia and NaCN is not

significant. The change in pHj is not significantly
different on reoxygenation in hypoxia (7.03 +0.11) and

NaCN (7.03 +_0.16) although the maximum rate of

acidification and recovery on removal of NaCN is slower

than in hypoxia. This is presumably as a result of 02
entry occuring far more rapidly than washout of NaCN from
the tissue. In this group of experiments there was no

significant difference in membrane potential between the
two conditions. In Figure 3.6 the combined results for

changes in pHj under conditions of hypoxia, anoxia and
NaCN exposure are compared.
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FIGURE3-5 Theeffectofapproximately20minutesexposureto
hypoxiacomparedwithexposureto2mMNaCN.
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FIGURE 3.6

The change in pH^ during hypoxia compared with NaCN
and hypoxia (mean +. S.E.). The number of separate

experiments comparing the three conditions was 23 for

hypoxia and anoxia and 6 for NaCN.

% = Significant difference between anoxia and hypoxia (PC0.01).
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The effects of these three methods of inhibiting
oxidative phosphorylation were compared in ferret

papillary muscle for their effect on developed tension

(Fig.3.7). Figure 3.7 is unusual in that on reoxygenation
there are large transient rises in developed tension

after hypoxia and anoxia, this is atypical. During

hypoxia developed tension dropped to 34 ±13% (n = 14) of
the control tension compared with a fall to 24 ±19% (n = 5)
in anoxia. This decrease in tension in hypoxia compared
to anoxia was significant (P<0.05). In 3 experiments
where the effect of hypoxia on developed tension was

compared with NaCN, tension fell to 43 ±16% of the
control tension during hypoxia and to 53 ±15% during

exposure to NaCN. The latter was significantly less than

during hypoxia (P<0.05). Figure 3.8 illustrates the mean

changes in developed tension caused by the three methods

of blocking oxidative phosphorylation.

(4) DURATION OF HYPOXIC EXPOSURE

The severity of the effects of hypoxia on the

mammalian myocardium might be expected to be dependent on

several factors such as the length of exposure to

hypoxia. Figure 3.9 illustrates the effect of varying the

length of hypoxic exposure on pHj in a sheep Purkinje
fibre.

The change in pH^ was recorded after 4, 10 and 20
minutes exposure to hypoxia. During 4 minutes of hypoxia

pH| acidified from the control value of 7.09 ± 0.20 (n = 5)
to 6.89 ±0.26 compared with the change in pH^ after 20
minutes hypoxia to 6.62 ±0.27. This was significantly

larger (P<0.01). However the transient acidification on

reoxygenation after 4 minutes hypoxia was 0.11 ±0.03 pH
units and was significantly greater than that measured

after 20 minutes hypoxia, 0.09 ±0.04 pH units (P<0.01).
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FIGURE3.7 Theeffectof20minutesexposuretohypoxia,anoxia
or2mMNaCNondevelopedtensioninferretpapillary musclestimulatedat0.2Hz.
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FIGURE 3.8

The % of control developed tension levels in ferret

papillary muscle stimulated at 0.2 Hz. during hypoxia
compared with NaCN (n=3) and hypoxia compared with
anoxia (n=14). The results are mean values +S.E.

■* = Significant difference between hypoxia and NaCN (P<0.05).

** = Significant difference between hypoxia and anoxia (PC0.01).
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FIGURE3.9 Theeffectofexposuretohypoxiafor4,10and20
minutesonpHj^inasheepPurkinjefibre.
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After 10 minutes of hypoxia pH^ (6.67 ;+0.31) was
significantly higher than that after 20 minutes (P<0.05).
The transient change on reintroducing 02 was
significantly larger (0.14 ;+0.05, P<0.05) compared with
the change in pH^ observed following 20 minutes hypoxia.

The effect of longer periods of exposure to hypoxia

were investigated. Figure 3.10 shows the effect of one

hour of exposure to hypoxia on pH^ and recovery in sheep
Purkinje fibre. The recovery from the hypoxic response is

very rapid. From Figure 3.10 it can be seen that after

only 20 minutes recovery from hypoxia a second exposure

results in an acidification of pH^ at only a slightly
reduced rate compared to the initial exposure.

In two experiments sheep Purkinje fibres were

exposed to 90 minutes hypoxia. These were compared

histologically with control fibres (perfused with normal

Tyrode for 90 minutes). The fibres were fixed, stained

for glycogen and viewed with an electron microscope. The

electron-micrographs were examined qualitatively and

ranked (blind) for glycogen content (Appendix 1) and a

Mann-Whitney U test performed on the mean ranks. The test

is rather subjective but since it was not feasible to

measure the density of glycogen granules on the electron-

micrographs this was considered to be the next best

method for assessing glycogen content. There appeared to

be no significant difference in the glycogen content

between the control and hypoxic preparations. There was

also no evidence of any ultrastructural damage in the

hypoxic sheep Purkinje fibre samples (e.g. Fig.3.11).

Figure 3.12 illustates the effect of extended

hypoxia on developed tension in ferret papillary muscle.

A contracture is responsible for the rise in tension

after about 45 minutes of hypoxia presumably as a result

of depletion of [ATP]^ (Allen et al.1985) as a result of
y

inhibition of oxidative phosphorylation.
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FIGURE3.10 Theeffectof60minutesexposuretohypoxiaonpH^
comparedwitha20minuteexposuretohypoxia,inasheep Purkinjefibre.



 



FIGURE 3.11

An electron-micrograph of a sheep Purkinje fibre
after 90 minutes exposure to hypoxia. (A) indicates the

myofibrils, (B) mitochondrion (C) plasmalemma (D)

glycogen granules. The magnification is x30,000.
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Ferret papillary muscles exposed to hypoxia for an hour

or more did not recover from the contracture, and tended

not to recover twitch tension (Figure 3.12).

(5) THE EFFECT OF VARYING OXYGEN TENSION

A group of experiments was carried out to

investigate the dependence of the change in pH^ on the
concentration of 02 in the perfusing solution. In 4
experiments the P02 in the solution perfusing sheep
Purkinje fibres was altered (Figure 3.13) to compare

chemically induced anoxia with at least two other 02
tensions. The results of these experiments are plotted in

Figure 3.14 and 3.15 which show the effect of changing

P02 on the pH^ during hypoxia and on the transient
acidification observed during reoxygenation.

Since chemical anoxia (sodium dithionite) was used

as a technique to remove all the 02 from the system it
was important to establish that this had an effect

identical in mechanism, if greater in severity, on the

changes in pH^. There was no indication that the sodium
dithionite produced any extra effect other than might be

expected from its efficient removal of 02 from the
solutions.

(6) MEASUREMENTS OF a^ AND a*Na.

Sodium Measurements

Kleber (1983) found that during a 15 minute exposure

to global ischaemia in guinea-pig heart the [Na+]i did
not change. This he suggested was due to a large

depolarization. However in a later study Wilde and Kleber

(19 8 §■) demonstrated small rises in a*Na when isolated
guinea-pig ventricular muscle was subjected to the
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Figure3.12 Theeffectof60minutesexposuretohypoxiaonthe developedtensioninferretpapillarymuscle.Notethe developmentofahypoxiccontractureafterapproximately 45minutes.



FIGURE 3.13

The effect of varying the P02 in the hypoxic
solution on pH^ in a sheep Purkinje fibre. (A) is the pH^
change during 20 minutes exposure to solution

equilibrated with a P02 of 5 mmHg, (B) is the pH^ change
during 20 minutes exposure to anoxia (P02 0 mmHg), (C)
is the pH^ change during 20 minutes exposure to solution
equilibrated with a P02 of 5 mmHg and (D) is the pH^
change on exposure to solution equilibrated with a P02 of
12 mmHg.
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FIGURE3.14 ThechangeinpH^in4experiments(asindicatedby
thedifferentsymbols)plottedagainstPO2during hypoxiaatvariousO2partialpressuresinsheep Purkinjefibres.
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FIGURE3.15 ThechangeinpH^occuringasaresultofthe transientacidificationonreoxygenationofasheep PurkinjefibreplottedagainstPO2duringhypoxiaat variousO2partialpressuresin4experiments.
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combined effects of hypoxia, acidosis, and removal of

glucose as a substrate in an attempt to mimic certain

aspects of ischaemia. Ellis and Noireaud (1987) found
that during hypoxia there was a small rise in a1Na, and
on reoxygenation a transient rise after hypoxia (with

glucose present in the solution). This agrees with the

results of the present study where it was found that

after 20 minutes hypoxia a1*!,, increased from 5.5 +2.9mM
Uv:o-oS.) N a ~

(n = 6) to 5.8 +3.1mMA . This is equivalent to a mean
increase in [Na + ]j of 0.43 ^0.2 9mM. There was no
significant change in membrane potential (P>0.1).

Anoxic exposure (Fig.3.16), induced by adding 0.5mM

sodium dithionite, caused E^larjger rise in a1jsja from 5.5
+_3 .ImM (n = 6) to 6.8 ±2.8 m MA. This is equivalent to a rise
in [Na + l| from 7.4mM to 9.0mM, assuming an intracellular
activity coefficient of 0.75 (Ellis, 1977). These a*Na
changes were accompanied by a significant depolarization

(P < 0.0 5) of Em from 70.5 +6.0mV to 61.2 +11.7mV (Figure

3.16 is slightly atypical in that it shows no evidence of

a depolarization during anoxia)
The effects of hypoxia and anoxia on |Na + )j are

summarized in Figure 3.17.

Potassium Measurements

It was of interest to measure intracellular

potassium because this is another indicator of the

activity of the Na + /K+ pump activity. The results above

describe a rise in axNa which might be accounted for by
some inhibition of the Na + /K+ pump. Gaspardone et al.

(1986) examined potassium loss from rabbit myocardium

during hypoxia. They postulated that this loss could be

caused by Na/K pump inhibition, acidosis and/or a

selective increase in permeability of cell membranes to

K+ ions. They could find no evidence of a decrease in
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FIGURE3.16 Theeffectof20minutesanoxiaonintracellular
sodiumactivity(a1^a)inasheepPurkinjefibre.
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FIGURE 3.17

The effect of hypoxia and anoxia on axNa in sheep
Purkinje fibres. The results are mean changes in a*Na
(+S.E.) after 20 minutes for 6 experiments.

"* = Significant (PC0.05).

■fc-Jt" = Significant (P<0.01).
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sodium pump activity (they detected no change in [Na+]i
after 15 minutes exposure to hypoxia).

There are two popular types of potassium ion-
selective ligands available. These are the Corning K + -

selective liquid ion exchanger and the WPI valinomycin-

based liquid ion exchanger. Most previous recordings have

been made with the Corning ligand. Recent work by

Reverdin et al. ( 1 986) has suggested that the Corning K-

selective liquid ion exchanger (Corning Medical No

477317) can give spuriously high values for axK in ferret
papillary muscle. A series of experiments were therefore

performed to test whether there was a significant
difference between values for axK measured in the same
ferret papillary muscle using the two types of ion-

sensitive resin (Table 1). The measurements were made by

alternate penetrations of Corning and Valinomycin-filled

electrodes starting with a different ligand at the start

of each experiment. Although the Corning ligand gave

higher values for a*K in ferret papillary muscle the
difference was not significant between the two sets of

recordings (2-sample T-Test P > 0.1). Corning-filled

microelectrodes measured an aJK of 85.1 +16.3mM (n=19)
while valinomycin-filled microelectrodes measured an a*K
77.0 +20.7mM (n=17). These are equivalent to values of

[K + ]j of 115mM and 104mM respectively. The values of the
membrane potential for these experiments where aJK was
measured were 65.0 +5.3mV for the Corning impalements

(n=19) and 67.0 +5.0mV (n=17) for the valinomycin

recordings.

Having established that the type of electrode used

to measure [K+]j was not of paramount importance,
recordings of [K + ]j were made in sheep Purkinje fibres
during 20 minute periods of hypoxia or anoxia (Fig 3.18).
The Corning resin was used since the electrodes are of

lower resistance and therefore pick up less electrical
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TABLE1
Comparesthemeasurementofa1^usingCorning

sensor-fi11edandvalinomycinsensor-fi11ed mioroe1ectrodesin5experimentsonferretpapillary muscle.A-Elabeltheindividualexperiments,1-4 indicatethenumberofpenetrationswiththeion- selectiveelectrodes.



EXPERIMENT No.

CORNINGSENSOR PENETRATION

VALINOMYCINSENSOR PENETRATION

12341234
A

79.2

97.7

94.0

-

68.1

100.0

92.5

-

B

78.4

60.7

98.4

122.5

57.7

55.5

-

-

C

61.4

84.4

93.2

80.0

108.0

97.7

105.8

83.6

D

64.'4

71.8

71.8

65.1

51.1

62.9

40.0

52.5

E100.0100.0100.0107.387.387.383.674.0



FIGURE3.18 Thechangeina1^during20minutesexposureto'
hypoxiaandanoxiainasheepPurkinjefibremeasured withaCorningsensor-filledmicroe1ectrode.
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noise and thus permit more accurate measurements. No

previous problems have been reported (apart from Reverdin

et al. ( 1 986)) when this type of ligand has been used in

mammalian heart muscle preparations. Browning at- al-
(1981) measured aJK in cat papillary muscle and Guarnieri
and Strauss (1982) in guinea-pig papillary muscle.

The a^K decreased (P<0.05,n = 5) from 97.6 ^8.1 m M to
91.8 :M.9mM during hypoxia. Assuming an activity
coefficient for K+ of 0.74 (Davies, 1938), this is

equivalent to a change in [K+]^ from 131.9mM to 124.ImM.
During anoxia, produced by the addition of 0.5mM

sodium dithionite (n = 2), there was a mean decrease in

[K+]i of 9.7mM.

Effects of Saponin and Strophanthidin on a*K

Other procedures which are known to alter [K + ]j were
compared with the effects of hypoxia and anoxia. These

included the cholesterol attacking substance, saponin and

inhibition of Na + /K+ pump with the synthetic cardioactive

steroid strophanthidin. Saponin can be used to chemically
"skin" muscle cells e.g. to permit investigation of the

calcium dependence of force production. It has been

postulated that at sub-skinning concentrations it can

increase the passive permeability of the cell membrane

(Yamasakiei-.U 98 7) and it is known to increase developed
tension in myocardial tissue (EnomotoA 1 986). Thus the

effect of hypoxia and anoxia on a*K could be compared
with a substance known to inhibit the Na + /K+ pump

(strophanthidin) and with a factor that probably
increases the K+ permeability of the cell membrane

(saponin).

Figure 3.19 shows an experiment where the effect of

saponin at a sub-skinning concentration 25ugml_1 was

applied to ferret papillary muscle at two calcium
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FIGURE3.19 Theeffectofsaponinondevelopedtensioninferret papillarymuscle.Themusclewasstimulatedat1Hzin Tyrodesolutioncontainingeither2mMCa^+(normal[Ca]0) or1mMCa^+ .Duringtheperiodindicatedbythebars 0.025mg/mlsaponinwasaddedtothesuperfusing solution.
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concentrations. It shows that saponin produced rapid and

reversible increases in developed tension, the effect

being more marked, though slower to develop, at lower
Ca^+ concentrations.

The effect of a sub-skinning concentration of

saponin (25ugml-1) was compared with the effect of

strophanthidin (2xlO~^M) on the &1K* At the concentration
of strophanthidin used it is known to almost completely
inhibit the Na + /K+ pump (OeiViwer EAUs , 1 978).

Treatment with 2xlO~5M strophanthidin (Fig.3.20)
resulted in a decrease of a*K (P<0.01) from 93.2 +11.3mM
to 80.1 H^9.8mM with an accompanying depolarization from
66.4 +4.9mV to 59.2 + 6.1mV (P<0.001).

Saponin (Fig.3.21) resulted in a decrease (P<0.05,

n=5) in a*K from 93 +_7.2 to 78 +15.5mM). This was
accompanied by a large and significant (P<0.02)

depolarization of Em from 69.0 +5.0mV to 51.2 + 14.3mV.

(7) TEMPERATURE EFFECTS

Hypothermia has been shown to be effective in

combating the deleterious effects of ischaemia

(Barner, 1 977). It is therefore of interest to investigate
the effects of hypothermia on the changes of pHj observed
during hypoxia.

The effect of reducing temperature from 35°C to 22°C
was tested in 14 experiments (Fig.3.22) on the

acidification observed during 20 minutes hypoxia. On

changing the bath temperature from 35°C to 22°C resting

pHj rose approximately 0.3 pH units from 7.11 +_0.17 to
7.42 ^0.18. This change was significant (P<0.001 Two

sample T-Test). There was no significant difference

between the values for Em which were 73.6 +7.5mV and 73.9

+8.3 at 35°C and 22°C respectively.

The change in pHj observed in hypoxia was 0.26 +0.18
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FIGURE3.20 Theeffectofstrophanthidinona^(toptrace),the
membranepotential(Em,middletrace)andtheresting tensionbottomtraceinasheepPurkinjefibre. Strophanthidin(2x10"M̂)wasappliedduringtheperiod indicatedbythebar.
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FIGURE3.21 Theeffectofsaponinona1^(toptrace),the
membranepotential(Em,middletrace)andrestingtension (bottomtrace)inasheepheartPurkinjefibre.Thebar indicatesthepriodofexposureto0.025mg/mlsaponin.
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FIGURE3.22 TheeffectofhypoxiaonpH^insheepPurkinje
fibresat35°Cand22°C.Thedottedlineindicatesthe periodduringwhichtemperaturewaslowered.Thiswas completeinlessthan4.5minutes.ThepHelectrodeswere calibratedonlyat35°Candat22°C.RecordingsofpH^ duringtemperaturechangescouldnotthereforebe calibrated.
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at 35°C, (equivalent to a change in H+ ion concentration

of 6.3x10-8M). This was significantly greater (P<0.01 Two

sample T-test) than the acidification of 0.09 ±0.12

produced by hypoxia at 22°C, (equivalent to a [H + ]^
change of 9.0xl0~^M). The transient acidification on the
readdition of C>2 was 0.09 ±0.06 at 35°C compared with
0.06 ±0.08 at 22°C (no significant difference P<0.1).
During hypoxia at 35°C there was a significant

depolarization of Em (P<0.001 Two sample T-test) of 1.5mV

and a depolarization of 2mV during hypoxia at 22°C
(P < 0.01 Two sample T-test). Comparing hypoxia with anoxia

at 2 2° C (n = 4) revealed a larger acidification of 0.17

±0.07 in anoxia compared with an acidification of 0.05

±0.05 in hypoxia, this difference was significant. There
was no significant difference in the transient change in

pHj observed on reoxygenation (P>0.1). Figure 3.23
shows absolute changes in pH^ produced by hypoxia at
35°C and 22°C at three different durations of hypoxia.

This type of presentation was used because there is a

different time course of pH changes at the two different

temperatures. Figure 3.24 shows the maximum rate of

change of pHj during hypoxia against temperature in
eight experiments showing that for seven of the

experiments the rate of acidification was greater at 35°C
than at 22°C.

In other experiments the effect of temperature on

developed tension in ferret papillary muscle was tested.

Hypothermia increased developed tension (Fig.3.25) to 129

±13% (n=3) of control (35°C) developed tension. The
decrease in tension during hypoxia at 22°C was to 54 ±19%
of the control (22°C before hypoxia) compared with a fall

to 33 +13% in hypoxia at 35°C.
In two experiments the effect of raising

temperature to 38°C was tested on the response of

developed tension in ferret papillary muscle to hypoxia
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FIGURE 3.23

The effect of hypoxia on pHj at durations of 4, 10
and 20 minutes at temperatures of 22°C and 35°C. The

change in pHj is shown as the mean +.S.E. for 6
experiments in sheep Purkinje fibres.

X = Significant difference between 22°C and 35°C (P<0.001).

= Significant difference between 22°C and 35°C (P<0.01).
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FIGURE 3.24

The effect of temperature on

fall of pH} in hypoxia. The
experiments on sheep Purkinje fibres.
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FIGURE3.25 Theeffectofhypoxiaondevelopedtensioninferret
papillarymuscleat35°Cand22°C,stimulatedat0.2Hz.
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FIGURE3.26 Theeffectofincreasedtemperature(38°C)on
developedtensioninferretpapillarymusclecompared withtheeffectofhypoxiaat35°C.Thepreparationwas stimulatedat0.2Hz.
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(Fig.3.26). The developed tension fell to approximately
44% of the control on raising the temperature by 3°C.
During hypoxia at 35°G developed tension fell to 51% of

control tension compared with a fall to approximately 36%

of the control tension at 38°C.

(8) SUBSTRATE EFFECTS

The mammalian heart is able to utilize a number of

substrates in the absence of glucose. It has been

suggested (Liedtke et al.l97(y) that in globally ischemic

perfused heart preparations, pyruvate in a suitably

buffered medium reduces the severity of ischemic

injury. The effect of a number of substrates were

compared in the absence of glucose to see if they could

protect sheep Purkinje fibre preparations against

hypoxia-induced changes in pH^. The substrates used were
20mM pyruvate, acetate, lactate or 20mM glucose. The

preparation was exposed to the substrates in glucose-free

Tyrode solution for 30 minutes before a 20 minute

exposure to hypoxia and a 20 minute recovery period in

the substrate. Pyruvate like other weak acids produces a

transient acidification of pH^ (de Hemptinne et al,1983x).
This recovers in about 20 minutes (Fig.3.27).

There was no significant decrease in pH^ on adding pyruvate to normal
Tyrode solution. - There was no significant change in
membrane potential.

"Tkere was no significant cLlirerz^ce.
(PXM) between (:ke acidification of pH^ during hypoxia connf

w'^py^u^at'e? *<*• There was no significant difference
between the membrane potential changes (Fig.3.27).

Although Figure 3.27 appears to show a more rapid rate of

intracellular acidification during hypoxia in the

pyruvate solution, this was not the usual finding in

these experiments.
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FIGURE3.27 Theeffectof20mMpyruvateonthechangeinpHiin
hypoxiacomparedwithnormalTyrode(lOmMglucose,lOmM sucrose)duringhypoxiainasheepPurkinjefibre.
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Acetate did not alter pH^ except transiently in the
first 20 minutes of the equilibration period. The Em was

also unaffected by acetate. Hypoxia caused a decrease in

pH j from 7.0 ±0.21 to 6.7 2 ±0.35(n=8) which was not
significantly different from the acidification during

hypoxia in acetate solution which was 6.65 +0.34.

High glucose concentration (20mM) caused
o6 increase in pH^ from 6.9 ±0.3 (n = 5) to 6.94 ±0.3 5

in 20mM glucose the difference was not significant

(P>0.1). There was no significant change of Em. During

hypoxia there was a decrease in pHj to 6.55 ±0.3 7 in
normal Tyrode which was not significantly different from

the fall in 20mM glucose to 6.6 ±0.36. The cells

depolarised in normal hypoxia from 80.0 ±5.6mV to 79.4

±8 .lmV, which was not significantly different (P > 0.1)
from the 80.0 ±5.6mV to 74.6 ±7.6mV change in hypoxia in
20mM glucose (P<0.02).

In 2 experiments involving 20mM lactate as a

substrate, the pH^ transiently decreased from a mean
control value of pH 7.32 to pH 7.20 before returning to

the control level. The Em hyperpolarised slightly in

lactate from the control value of 70mV to 75mV during the

30 min equilibration period. During hypoxia pHj decreased
to a mean value of pH 7.10 in normal Tyrode, compared

with an acidification to pH 6.90 in lactate solution

(e.g. Fig. 3.28). The transient acidosis on reoxygenation

was approximately 0.1 pH units in both normal Tyrode and

lactate Tyrode.

(9) EFFECTS OF CINNAMATE

Previous work (Halestrap and Denton 1974), has shown

that cinnamate depresses pyruvate transport across the

cell membrane of human erythrocytes and the mitochondrial

membrane of rat liver cells. De Hemptinne et al. (1983)
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FIGURE3.28 Theeffectof20mMlactateonthepH^changeduring
hypoxiacomparedwiththatseeninnormalTyrode(lOmM glucose,lOmMsucrose)duringhypoxiainasheepPurkinjefibre.
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showed that cinnamate also had an effect on the transport

of a number of organic acids including lactic acid. Mason

and Thomas (1988) used cinnamate to block the carrier

mediated component of L-lactate transport across the

membrane of frog sartorius muscle.

The effect of blocking lactate transport during

hypoxia was investigated in sheep Purkinje fibres by

equilibrating the preparation for 20 min with Tyrode to
which was added 5mM sodium cinnamate. The preparation was

then subjected to 20 min hypoxia followed by 20 min

recovery still in the presence of cinnamate.
In 4 experiments on sheep Purkinje fibre (Fig.3.29)

pHj appeared to decrease in the presence of 5mM
cinnamate from a 7.21 ±0.10 pH units in normal Tyrode to
7.11 ^0.11 pH units however this change was found to be
not significant (P>0.1). In hypoxia pH^ acidified by
0.15 ^0.05 which was significantly less than the change
in pH^ in hypoxia in the presence of cinnamate (P<0.05)
of 0.2 1 4^0.16 pH units. On reoxygenation of the

preparation the pHj transiently decreased further by 0.34
+0.25 pH units in normal Tyrode and by 0.40 4^0.42 pH

units in cinnamate. This transient change in pH^ was not
significantly greater in cinnamate (P<0.1).

Figure 3.30 illustrates the effect of cinnamate in

substantially slowing the maximum rate of recovery of pH^
on reoxygenation in 4 experiments. The recovery of pHj
was also shown to be slower in the presence of

extracellular lactate as the cell substrate (see above).

Thus the decrease in lactate efflux caused by cinnamate

appears to have a similar effect on the recovery of pHj
on reoxygenation.

In 3 experiments the effects of hypoxia on pHg of
sheep Purkinje fibres in normal Tyrode and in cinnamate

were compared (not illustrated). On changing from normal

Tyrode to cinnamate the pHs became slightly more
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FIGURE3.29 Theeffectof5mMsodiumcinnamateonthesizeof
thechangeinpH^duringhypoxiacomparedwiththatin normalTyrodeinasheepPurkinjefibre.
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FIGURE 3.30

The effect of 5mM sodium cinnamate on the maximum

recovery rate of pH^ on reoxygenation after hypoxia
compared with the recovery rate on reoxygenation in
normal Tyrode in sheep Purkinje fibres (n=4).
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alkaline, changing from pH 7.2 +_0.1 to 7.2 5 4^0.1. During

hypoxia there was very little difference in the
acidification (7.14 + 0.11 in normal Tyrode and 7.13 ^0.11

in cinnamate).

(10) EXTRACELLULAR ACIDOSIS

During ischemic changes in the heart extracellular

pH becomes more acidic as H+ ions accumulate in the
extracellular space as a result of reduced or absent

blood flow (Katz and Hecht, 1969). Acidosis has also been

shown to depress the contractility of cardiac myofibrils

(Fabiato and Fabiato, 1978).

In one experiment the effect of low pH0 (6.4) on the
size of the acidification of pHj during hypoxia was
investigated (not illustrated). Exposure to pH 6.4 Tyrode

for 20 minutes resulted in an intracellular acidification

of about 0.1 pH unit. Exposure to hypoxia (pH 6.4) caused

a further acidification of pHi by 0.3 pH units (compared
to an acidification of 0.11 pH units in hypoxia at pH0
7.4). On reoxygenation there was a transient

acidification of pHj of 0.16 pH units at pHQ 6.4
(compared to 0.17 units at pH0 7.4). The experiment was
repeated on developed tension of ferret papillary muscle

and is illustrated by Figure 3.31. In 2 experiments on

ferret papillary muscle developed tension dropped to a

mean value of 27% of the control tension on switching to

pH 6.4 Tyrode (PIPES buffered). During hypoxia in normal

Tyrode tension dropped to 30% of the control. In pH 6.4

Tyrode hypoxia produced a decrease of developed tension

to 9% of the control.
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FIGURE3.31 TheeffectofacidextracellularpH(pH6.4)on
developedtensioninaferretpapillarymuscleduringhypoxiacomparedwithhypoxiaatpH7.4.



Hypoxia

Force

1.4x103N

L

5mins

Hypoxia

Force
8.2x10~4N

pH6.4



(11) EXTRACELLULAR ALKALOSIS

Figure 3.32 illustrates the effect of increasing the

pH of the superfusion solution to pH 8.4 (TAPS buffered).
The pH^ changes to a new alkaline steady-state level
within about 30-40 minutes. The hypoxic acidification is
reduced under these conditions as is the acidification on

reoxgenation.
The experiment was repeated to test the effect of

extracellular pH on developed tension in 2 ferret

papillary muscle preparations. Changing to pH 8.4

perfusate caused a large rise in developed tension

(Fig.3.33) to a mean value of 154% of the control
tension. During hypoxia in normal Tyrode tension dropped

to 30% of control, compared with a drop to 14% of the

control tension in pH 8.4 solution. In these experiments

20 minutes exposure to hypoxia resulted in the

development of a contracture soon after the readdition of

C>2 to the pH 8.4 solution.

(12) EXTRACELLULAR BUFFERING

Extracellular buffering may have an important

influence on the acidification of pH} during hypoxia
since the level of extracellular buffering will affect
the H+ ions at the outer surface of the cell and

therefore the pH inside the cell. De Hemptinne et al.

(1987) showed that high extracellular buffer capacity

gave a more alkaline pHj perhaps due to an acceleration
of proton extrusion. HEPES and bicarbonate buffered
solutions were compared for their effects on pHi during
hypoxia.

In 15 experiments where a direct comparison was made

between the two types of buffer (e.g. Fig.3.34), the pHj
became acidified on changing to bicarbonate buffer

118



FIGURE3.32 TheeffectofalkalinepH0(pH8.4)onthechangein
pHjduringhypoxiacomparedwithhypoxiainpH7.4 solutioninasheepPurkinjefibre.Thedottedlines indicatebreaksinthetraceofthesamelengthduring whichtimebothelectrodesremainedintracellular.
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FIGURE3.34 Theeffectofextracellularbufferingonthechange
inpHiseenduringhypoxiainsheepPurkinjefibre.The effectofhypoxiainnormalTyrode(1OmMHEPES)was comparedwiththeeffecthypoxiainCO2/HCO3-buffered solution(24mMNaHCOg,5%CO2)•
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(24mM HCOg, 5% C02). The pHj decreased from 7.06 ±0.2 in
HE PES to 6.83 ±0.2 5 in bicarbonate buffer. This
difference was significant (P<0.001). There was no

significant change in membrane potential from its control
value of 73.7 ^5.6mV. The change in pHj produced during
20 minutes of hypoxia was significantly greater in HEPES

buffered solution (0.38 +.0.29 pH unit) compared with
bicarbonate solution (0.20 ±0.17 pH unit) (P<0.002). The
transient acidification on reoxygenation was not

significantly different in HEPES (0.11 ±0.04 pH unit)

compared with bicarbonate (0.14 ±0.10 pH unit) (P<0.1).
In HEPES buffered hypoxia there was a significant

depolarization of Em by 3.3 ±1.9mV (P<0.001). There was

also a significant depolarization by 3.0 ±1.4mV in
bicarbonate buffered solution.

It could be suggested that the smaller change in pH^
observed in bicarbonate buffered Tyrode is a direct

result of the more acid pHj before hypoxia. If this were
the case one might expect to see a correlation between

the pH| before exposure and the amplitude of the
acidification produced by hypoxia. To investigate this

possibilty the Pearson correlation coefficient was

calculated for data from 64 experiments and a scatter

diagram was plotted (Figure 3.35). There was found to be

no correlation (positive or negative association) between

the initial pHj and the extent of acidification of pHj
during hypoxia.

In 5 experiments the effect of increasing the

extracellular buffering power was investigated. The

effect of hypoxia on pH^ of sheep Purkinje fibres in 40mM
HEPES Tyrode was compared with normal Tyrode (lOmM

HEPES), to which was added 60mM sucrose to produce a

solution of the same osmolarity (Fig.3.36). On changing
from normal Tyrode (high osmolarity) to high HEPES

solution, pH| appeared to increase slightly from 7.31
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FIGURE3.35
Scatter-plotshowingthechangeinpHjduring

hypoxiacomparedwiththepHj[beforehypoxiafor64experiments. Therewasnocorrelationbetweenthesizeoftheacidificationin hypoxiaandtheinitialpH^insheepPurkinjefibres.



ZZl

ChangeinpHduringhypoxia

Q)

O

o

c

T3

X



FIGURE3.36 Theeffectofhighextracellularbuffering(40mM
HEPES)onpHiinasheepPurkinjefibreduringhypoxia comparedwiththechangeinpH^onexposuretonormal lOmMHEPESTyrode(with60mMsucroseadded).
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+j0.06 to 7.34 +.0.04 but this was not significant
(P > 0.1). During hypoxia there was a significantly larger
decrease in pHj in normal Tyrode than in high HEPES
solution (P< 0.01). The pHj decreased to 7.11 +0.12 in
normal Tyrode compared with 7.21 +.0.09 in high HEPES

(e.g. Fig.3.36)e On reoxygenation the transient
acidification was greater in normal Tyrode (P<0.05 for

the change in pHj), 7.07 +^0.17 compared with 7.18 +.0.10
in high HEPES. In Figure 3.36 a large alkaline undershoot
occurs. However this was not common to the other

experiments. Figure 3.37 summarizes the results of

experiments comparing the change in pHj during hypoxia
in normal Tyrode (high osmolarity) with that in high
HEPES hypoxia. lOmM HEPES (plus 60mM sucrose) produced

the same intracellular acidification as normal Tyrode

(lOmM HEPES, no sucrose), there appeared to be no effect

of sucrose on pHj.
An experiment showing the effects of these

procedures on pHg during hypoxia is shown in Figure 3.38.
It can be seen that on changing from normal Tyrode to

40mM HEPES there is an alkalinization of pHs as might be
expected (Vanheel et al.,1986). However the reason for
the acidification of pHs in lOmM HEPES + 60 mM sucrose
Tyrode before hypoxia is unclear but may be the result of

the solution affecting the bath electrode.

(13) EFFECT OF AMILORIDE

Amiloride has been shown to inhibit the Na/H

exchanger in cardiac tissues (Deitmer and Ellis, 1980).

The effect of exposing sheep Purkinje fibres to ImM

amiloride for 20 minutes before, during and after

hypoxia, was examined to try to elucidate what role (if

any) that Na/H exchange has in pH changes associated with

hypoxia and recovery from hypoxia.
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FIGURE 3.37

The effect of high concentration (40mM) HEPES
buffered solution compared with lOmM HEPES Tyrode (60 mM

sucrose) on the acidification during hypoxia and the

transient extra acidification on reoxygenation after

hypoxia. The results are from 6 experiments on sheep

Purkinje fibres and are represented as mean +S.E.

•%= Significant difference between high sucrose and high HEPES

(PC0.01).

Significant difference between high sucrose and high HEPES
(P<0.05).
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FIGURE3.38 TheeffectofhighextracellularHEPESonthe
surfacepH(pHs)changesduringhypoxiacomparedwiththe effectof10mMHEPESTyrode(60mMsucrose)inasheep Purkinjefibre.
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Changing to amiloride appeared to cause a slight
acidification of pHj from 7.14 ±0.13 in normal Tyrode to
7.11 ±0.15. This was not significant (P>0.1, n = 12)
although previous work has shown a slow progressive
intracellular acidification (Ellis and MacLeod, 1985).

The mean Em was 73.5 +5.9mV under both conditions. In

hypoxia (e.g. Fig.3.39) the presence of amiloride did not
result in a significantly different acidification (0.26

±0.22) compared with that in normal Tyrode (0.29 ±0.17)
(P<0.01). On reoxygenatlon there was no significant

difference in the transient acidification in normal

Tyrode (0.10 ±0.13) compared to that in amiloride (0.12

±0.14) (P>0.1). Figure 3.40 compares the mean results for

changes in pH^ during hypoxia in normal Tyrode and
amiloride.

In 5 experiments (not illustrated) the effect of

amiloride in hypoxia on pHs was compared with that in
normal Tyrode. The pHg appeared to become slightly more
acid in amiloride changing from 7.22 ±0.0 7 in normal

Tyrode to 7.15 ±0.13 but this difference was not

significant (P>0.1). In hypoxia there was a significantly

greater change in pHg in normal Tyrode (0.13 ±0.13) than
in amiloride (0.10 ±0.15 P<0.05). There was no transient
acidification on reoxygenation.

(14) EFFECT OF SITS

SITS has been shown to inhibit HC0g~7Cl~ exchange in
mammalian cardiac muscle (Vaughan-Jones, 1979). The role

of HCOg-/Cl~ exchange in pH regulation may be of
importance in cardiac tissue under some conditions.

Therefore it was of interest to observe the effect of

blocking this anion exchange on the process of hypoxic

acidification.

In 4 experiments where hypoxia in normal Tyrode and
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FIGURE3.39 TheeffectofImMamilorideonthechangeinpHi
duringhypoxiacomparedwiththechangeinpH^innormal TyrodeduringhypoxiainasheepPurkinjefibre.
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FIGURE 3.40

The effect of ImM amiloride on the change in pHj
during hypoxia and on the transient extra acidification

on reoxygenation after hypoxia. The change in pH^ is the
mean +S.E. for 12 experiments on sheep Purkinje fibres.
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SITS were compared the preparation was exposed to lOOuM

SITS for 30 minutes before exposure to hypoxia. The
control pHj was found to be 7.16 +0.05 in both solutions.
Intracellular acidification during hypoxia was greater

in the presence of SITS (not illustrated). The
intracellular acidification was 0.27 +0.22 in normal

Tyrode hypoxia compared with 0.33 ;+0.26 in SITS hypoxia

(P< 0.05). There was no significant difference in the

amplitude of the transient acidification on reoxygenation

(P > 0.1). Figure 3.41 compares the mean change in pHj
during hypoxia and the transient acidification of pHj on
reoxygenation in normal Tyrode and SITS.

(15) EFFECT OF HIGH EXTRACELLULAR POTASSIUM

During ischemia [K+J0 is known to accumulate in the
extracellular space causing depolarization of the Em

(Kleber, 1984). It has been estimated (Weiss and Shine,

1982) that in ischaemia the [K + ]0 rises to 10-15mM. It
was therefore of interest to investigate how this facet

of ischaemia may affect pH changes in hypoxia. Changing
to 12mM [K+J0 caused a significant depolarization of Em
from 72.5 +9.9mV (n = 3) to 58 +8.2mV (Fig.3.42) but no

change in pHj at 7.2 ±0.2. After 20 min hypoxia there was
found to no significant difference in the decrease in

pH^, which changed to 7.07 +_0.24 in normal Tyrode and to
7.0 8 ^0.2 4 in 12mM |K + ]0. On reoxygenation there was no
significant difference in the further acidification of

pHj (7.03 +.0-27 in normal Tyrode, 6.99 ±_0.26 in high
[K+]0). Figure 3.42 shows an experiment where the
preparation was returned to 6mM (K + ]0 before
re oxygenation. However in the other two experiments 12mM

(K+]0 was maintained during the reoxygenation, producing
similar results.
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FIGURE 3.41

The effect of lOOuM SITS on the change in pHj
during hypoxia and the transient extra acidification on

reoxygenation compared with hypoxia in normal Tyrode. The
change in pHj is the mean +JS.E. for 4 experiments on
sheep Purkinje fibres.

\ = Significant difference between normal Tyrode and SITS

(PC0.05).
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FIGURE3.42 Theeffectofincreasing[K+]0
Tyrodeto12mMonthechangeinpH^ asheepPurkinjefibre.
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DISCUSSION

(A) GENERAL DISCUSSION

(1) GENERAL EFFECTS OF HYPOXIA ON PHj

This study shows that hypoxia results in an

acidification of approximately 0.2 pH unit after 20

minutes exposure (P02 mean value was 4.8 ±2.6 mmHg n = 19).
This is a similar change to that seen in previous studies

of hypoxia (see Ellis and Noireaud 1987). In the

ischaemic heart, when lactate cannot leave the cells, an

intracellular acidosis of 1.0 pH unit has been observed

(Bailey et al. 1981). Allen et al. (1985) found a

decrease of pHj during hypoxia of 0.13 pH units during 15
minutes exposure to hypoxia in ferret papillary muscle

using NMR techniques. The acidification of pH^ during
hypoxia was usually accompanied by a small depolarization

of the membrane potential (approximately 1.3 mV). In some

preparations however there was no measurable

depolarization or even a slight hyperpolarization

(e.g. Fig.3.2). These experiments indicate that when

oxidative phosphorylation is inhibited by hypoxia there

is a decrease of pH^ which may be due to the production
of lactic acid by anaerobic glycolysis (Williamson,

1966). Several mechanisms seem to contribute to the

regulation of intracellular pH including Na + /H+ exchange

which is mainly active under acid load (Deitmer and

Ellis, 1980) and a Cl_/HCOg~ exchange which is mainly
active under alkaline conditions (Vaughan-Jones, 1982).

Allen et al. (1985) described a transient

intracellular alkalinisation prior to acidification on

addition of NaCN in stimulated ferret heart. The

alkalinization was attributed to PCr breakdown absorbing

protons.
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Fry et al. (1987) describe a transient alkalosis in

ferret muscle exposed to NaCN. It was found to be

transient but did not develop into an acidosis in their

quiescent preparations.

In the present study, on reoxygenation after

hypoxia, the pH^ became transiently more acid presumably
due to production of protons on resynthesis of PCr (the
Pi being derived from ATP). The net reaction is:-

Cr + p ^ per + H

However extrusion of protons by mitochondria as ATP

synthesis is restarted or the hydration of C02 on
reactivation of aerobic respiration may also be involved.

An extra acidification on reoxygenation after hypoxia has

also been reported in rat slow-twitch skeletal muscle

after hypoxia (de Hemptinne and Hugeunin, 1984).

(2) GENERAL EFFECTS OF HYPOXIA ON CONTRACTION

In this study hypoxia has been found to cause a

decrease in developed tension to approximately 35% of

control values in ferret papillary muscle after 20

minutes exposure (e.g. Fig. 3. 3). Allen and Orchard (1984)

have shown that [ATP] does fall during CN exposure but

that the fall was not large, reaching 90% of the control

value after 15 minutes exposure to hypoxia. Unless the

free energy of hydrolysis of ATP is decreased below a

critical level, this would not greatly affect developed

tension. It seems likely that the free energy of

hydrolsis of ATP is reduced in hypoxia (Fiolet et

al., 1984) and that this may well decrease the force of

contraction of cardiac muscle.

Another explanation for the fall in tension during

hypoxia may be a reduction in the amount of Ca2 +
available for contraction. However, Allen and Orchard

(1984) have also shown that the action potential induced
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calcium transient does not seem to change during hypoxia

and therefore a limitation of the amount of Ca2 +
available for contraction is probably not the cause of

hypoxic contractile failure.
Acidosis is known to decrease the sensitivity of

myofibrils to Ca2+ (Fabiato and Fabiato 1978), and

hypoxia has been shown to produce intracellular
acidosis. However it has been shown that the size of the

decrease in pHj is very small when contractile force is
reduced (Ellis and Noireaud 1987, Vanheel et al. 1 987).

Despite the fact that intracellular pH may not be solely

responsible for the early contractile failure, it is

inevitable that as pH^ decreases in hypoxia this will
contribute to the further reduction of developed tension.

Another important factor which may affect twitch

tension in hypoxia is the level of inorganic phosphate

(Pi) (Allen et al. 1 985). The large rise in [Pi] may play

a role in inhibition of tension production during hypoxia

(Allen and Orchard, 1 987). Kentish ( 1 986) has shown that

PCr and ADP have little direct effect on developed

tension in skinned fibres. However increases in the

concentration of Pi from l-3mM to 20mM occur in hypoxia
and ischaemia. This produces a 50% fall in developed
tension in skinned fibres compared with controls. It

seems likely that increases in [Pi]j during hypoxia exert
a major depressant effect on tension. Kentish ( 1986) has

shown that Pi inhibits maximum Ca2 + -activated tension by

reducing the Ca2 + -sensitivity of the myofilaments. It is

possible that an explanation of the decrease in

contractile force observed during hypoxia in this study
is as a result of a combination of the explanations
offered above.

The phenomenon of hypoxic contracture did not occur

after only 20 minutes of hypoxia and is therefore

discussed in section 5 in the context of prolonged
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exposure to hypoxia.

(3) HYPOXIA VERSUS ANOXIA

The experiments comparing the effects of hypoxia and
anoxia indicate as might be predicted that anoxia is

more effective for inhibiting the metabolic processes of

the myocardium, since 20 minutes of anoxia produced a

larger decrease in pH than did hypoxia (e.g. Fig. 3.4). In

this study, anoxia (produced by sodium dithionite, 0.5mM)

reduced PO2 to zero whereas hypoxia reduced P02 to
approximately 5 mmHg. The P02 in anoxia in this study is
in keeping with that found in recent work (Dart and

Riemersma 1989). However Metsa-Ketela (1981) suggested

that sodium dithionite (2mM) reduced P02 to only 50%.
However their work was performed in isolated rat atria,

and it may be that they found it difficult to exclude 02
from their experimental apparatus. The 02-reducing
capability of sodium dithionite is well documented,

indeed it is the standard method used to calibrate the

zero position for oxygen electrodes.
Anoxia caused a marked fall in developed tension

(e.g. Fig.3.7) to approximately 25% of the control value,

in ferret papillary muscle. The severe exposure to oxygen

starvation probably causes radical intracellular changes.
For example pHj becomes more acidic in anoxia and may
therefore have a greater effect on contractility (Fabiato
and Fabiato, 1 978). There may also be a greater effect on

the free energy of hydrolysis of ATP during anoxia

(Fiolet et ah,1984).

It was of interest to see how varying the P02 of the
hypoxic solution affected the pH^ changes in hypoxia.
The extent of hypoxic changes in the heart might be

predicted to depend on the severity of the hypoxia to

which the heart is exposed i.e. the P02 of the perfusing
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solution. Anoxia was shown to produce a larger

acidification of pHj than hypoxia. The results are
variable but suggest that a P02 below 10 mmHg is required
to produce an acidification of pH^ after 20 minutes
exposure to hypoxia (Fig.3.14 and Fig.3.15). There was a

general increase in the size of the acidification,

dependent upon the decrease in PC>2- T^e effect of
decreasing P02 on the size of the transient reoxygenation
acidification seems more variable, but the amplitude of
this change is much smaller and therefore more difficult

to measure accurately.

The results of these experiments suggest that the

effects of sodium dithionite on pHj in sheep Purkinje
fibres are mediated via a decrease in P02 rather than by
any other action of the chemical on the heart (Figure

3.14). Figure 3.14 shows continuous curves to a P02 of
OmmHg. The effect of decreasing P02 is different in the
case of the transient reoxygenation acidification

(Figure 3.15) since the size of the acidification falls

on exposure to anoxia in two experiments but this may

just reflect the time taken to remove sodium dithionite

from the bath and perfusing solution.

While the bathing solution has a known P02 this does
not necessarily mean that cellular [ O 2 ] is the same. It
will be less due to the 02 consumption by the cells.
Mitochondria are able to function at very low levels of

09 (Newsholme and Leech, 1983).

(4) INHIBITING OXIDATIVE PHOSPHORYLATION

NaCN is commonly used for inhibiting oxidative

phosphorylation and therefore mimicking hypoxia in vivo
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(Pirolo and Allen, 1986). Therefore it was of interest to

compare this method with that of true hypoxia.

Comparing the effects of NaCN and hypoxia on pH^
showed no significant difference in the size of the

acidification produced. On removal of NaCN the recovery

was relatively prolonged (Fig.3.5) presumably reflecting

the gradual washout of NaCN from the tissue whereas the

02 level only has to be raised by a few percent to
overcome the effects on pH}. The fall in tension observed
during NaCN exposure in ferret papillary muscle was

approximately 10% less than in hypoxia.

Usually the physical methods of removal of 02 and
NaCN exposure are considered interchangeable techniques
for inhibiting oxidative phosphorylation (Allen et

ai.,1 985). The results of the present study indicate

that NaCN and hypoxia may not be identical in their

effects on isolated heart preparations. It seems that

although a convenient method for mimicking true hypoxia,

NaCN has limitations in that the decrease in tension in

ferret papillary muscle is not the same as in hypoxia,

and that the transient acidification of pHj in sheep
Purkinje fibre, on removal of NaCN, is slower than that

observed on reoxygenation after hypoxia.

Fry et al. ( 1 987) have shown that addition of

NaCN can not only alter the response of ferret and rat

cardiac muscle to decreased [Na]0 but also has transient
effects itself on [H+]j, [Ca2+]j and [Na+]j.

(5) DURATION OF EXPOSURE TO HYPOXIA

In the ischaemic heart the duration of exposure to

ischaemia dictates the extent and reversibility of cell

damage. It seemed likely that the length of exposure to
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hypoxia would dictate the extent of intracellular
acidification. As can be seen from Figure 3.9, exposures

to hypoxia over the range of exposure periods in these

experiments appear to have little effect on the rate of

recovery of pH^ on reoxygenation. However the size of the
pHj obviously increases with the length of hypoxic
exposure. The transient acidification seen on

reoxygenation was larger after 4 minutes (0.11 4^0.04 pH

units) and 10 minutes (0.14 +0.05 pH units) than after

20 minutes (0.09 +^0.03) hypoxia. This might indicate
that either more PCr is resynthesised (or is synthesised
more rapidly) after 10 minutes hypoxia than after 20

minutes. This is perhaps the result of a higher [H + ]^
after 20 minutes inhibiting the resynthesis reactions

or a greater decrease in [ATP] after 20 minutes hypoxia

making resynthesis of PCr slower.
The progressive acidification during hypoxia would

be in agreement with the theory that the intracellular
acidification is as a result of an increase in lactic

acid production produced by anaerobic respiration. This

might be accompanied by some inhibition of Na+/H +
exchange at the cell membrane if alNa. rises during
hypoxia. However the increased intracellular
acidification is more likely to have a significant

stimulatory action on Na + /H+ exchange than is the

relatively small increase in a1j^a (see section 7).
It could be postulated that extended periods of

hypoxia may result in an adaptive recovery of the Na + /H +
exchanger rate, by stimulation of the Na + /H+ exchanger by

intracellular acidification. This might result in some

recovery of pH^ during extended hypoxia. During extended
hypoxia (1 hour) no recovery of pHj is observed
(Fig.3.10) although the acidification reached a plateau

level when presumably acid production in the cell and
extrusion from the cell are balanced, perhaps with a
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degree of stimulation of the Na + /H+ exchanger by the acid

pH|. The effect of amiloride, which was used to block
Na/H exchange (see section 14), suggests that amiloride

has little effect on the intracellular acidification

produced in hypoxia. Therefore the proposed saturation of

Na/H exchange does not account solely for the sustained
intracellular acidification during extended periods of

hypoxia.
In the experiment illustrated in Figure 3.10

recovery of pH^ on reoxygenation was complete suggesting
that the exposure to hypoxia had not resulted in any

permanent cell damage. This was normally the case in

sheep Purkinje fibres.
Extended exposure to hypoxia has been previously

shown to cause the formation of a hypoxic contracture in

ventricular muscle and this has been suggested to be

caused by depletion in [ATP] levels resulting in rigor

cross-bridge formation (Katz, 1970). Allen et al. ( 1985)

have verified that [ATP]^ is very low when ferret heart
is in hypoxic contracture. Figure 3.11 shows the effect

of hypoxia after 1 hour on the developed tension in
ferret papillary muscle. The preparation did not recover

on reoxygenation and had presumably gone into contracture

as a result of depletion of ATP levels in the cell i.e.

the tissue was irreversibly damaged.

The effect of 90 minutes hypoxia on glycogen levels
in sheep Purkinje fibres was examined using electron-

microscopy (Fig.3.10a). There was no obvious depletion in
the glycogen content of the fibres and no evidence of

cellular or sub-cellular damage. Thus it appears that

sheep Purkinje fibres are more resistant to hypoxic

damage than ferret ventricular preparations. However it
should be remembered that the Purkinje fibres were

quiescent and ferret heart was stimulated. This would

result in faster ATP depletion in the ventricular muscle.
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(B) EFFECTS OF HYPOXIA AND ANOXIA ON OTHER INTRACELLULAR

IONS

I aimed to observe how hypoxia and anoxia affect the

concentrations of other intracellular ions as alteration

of these ions may also affect pHj and pHj regulation via
a variety of effects including cellular ion exchange
mechanisms. The ions studied were Na+ and K+.

(6) INTRACELLULAR SODIUM

This study showed that 20 minutes exposure to

hypoxia and anoxia caused a small rise in a1Na in sheep
Purkinje fibres, anoxia causing a larger rise than

hypoxia (e.g. Fig.3.16).

Hypoxia has previously been reported to produce a

large rise in aJNa in guinea pig papillary muscle
(McDonald and Macleod, 1 973a). In a later study, Kleber

(1 983) found no change in a*Na during 15 minutes of
ischaemia in guinea-pig heart. Nakaya et al.{ 1985) were

also unable to demonstrate a rise in alNa under the
combined conditions of hypoxia, acidosis and no glucose

in dog ventricular muscle. Results from my experiments
are in agreement with a recent study by MacLeod (1989)
who found a rise in &1Na which became greater when
glycolysis was blocked by DOG.

The rise in aJNa in hypoxia which has been observed
may be accounted for by inhibition, to some extent, of

Na + /K+ exchange, although this seems unlikely since the

total cell [ ATP] ^ does not fall very much in the first 15
minutes of hypoxia (Allen and Orchard, 1984). Guarnieri

(1981) suggests that the rise in a1 ^ a which he observed
was in fact due to inhibition of the Na + /K+ pump by a

fall in [ATP] in the cell. The lack of any large effect
of hypoxia and anoxia on axNa favours the explanation
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that stimulation of Na+/H+ exchange is responsible for

increased axNa (see also Ellis and Noireaud 1987) rather
than any substantial inhibition of the Na + /K+ pump. Kaila
and Vaughan-Jones (1987), have shown that in sheep

Purkinje fibres a rise in a*Na produced by inhibition of
the Na + /K+ exchange (they used strophanthidin) leads to a

stimulation of Na + /H+ exchange. However, this apparently

paradoxical result occurs because elevated axNa produces
inhibition of Na + /Ca2+ exchange leading an intracellular

acidosis via interactions between Ca2+ and H+ at various

intracellular sites. This leads to stimulation of Na+/H +
exchange. Thus if the Na+/K+ pump is inhibited in hypoxia
it may be responsible for the acidification of pHj but
not directly due to the rise in axNa. This question is
addressed in section 14 on the results of amiloride

exposure.

(7) INTRACELLULAR POTASSIUM

Before studying axK levels in sheep Purkinje fibres
and ferret papillary muscle during hypoxia and anoxia it

was important to establish that the K-selective

microelectrodes gave valid and accurate measurements of

axK. Reverdin et al. (1986) have suggested that the most
commonly used K-sensitive ligand (Corning) gave

spuriously high recordings of [K + ]j in ferret papillary
muscle (they report a mean value of 195mM but they also

recorded values of several thousand mM). They suggested

that the ligand reacted not only to K+ ions but possibly
to some other biological substance or substances within

the cells. I performed a series of experiments comparing
the recordings obtained using a valinomycin - based sensor

with a Corning ion - selective sensor in ferret papillary
muscle (see Table 1). Corning-filled microelectrodes
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measured a slightly higher a*K but this was not
significantly different from the valinomycin measurements

and no extremely high values for a1^ were recorded like
those reported by Reverdin et al.{ 1 986). It is difficult

to account for these differences although no attempt was

made to use identical electrodes to those produced by

Reverdin et al. (1986). The silanization procedure used

in the production of the microelectrode might have
influenced results. They used both single and double-

barrelled electrodes and a different batch of Corning

ion-selective resin. Corning resin has been used with

success in a variety of mammalian cardiac preparations in

previous studies (Browning et al. 1981, Baumgarten et al.

1981), producing measurements for a1^ of similar
magnitude to those of a*K in ferret papillary muscle in
this study. Therefore in most subsequent experiments

Corning-filled K-sensitive microelectrodes were used

because these electrodes were less noisy, of lower

resistance and proved to be more stable. Having
established that the technique for measuring a1^- was
satisfactory in normoxia the measurements could be made

in hypoxia.

(i) Effects of Hypoxia and Anoxia on a*K

The experiments on the effects of 20 minutes

exposure to hypoxia and anoxia on a1^ showed that both
conditions resulted in a decrease of a*K (alK decreased
by 5.8mM in hypoxia and 9.7mM in anoxia) which recovered

on reoxygenation (e.g. Fig. 3.17). Guarnieri and Strauss

(1982) reported that [ K + ]} fell by 70% (measured with
ion-selective microelectrodes) during a three hour

exposure to hypoxia in guinea pig papillary muscle.

Gaspardone et al. (1986) observed a rise in (K + ]0
during hypoxia which they attributed to Na + /K+ pump
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inhibition. They suggested that the cellular potassium

loss which occurs in hypoxia may also be attributed to an

increased efflux rather than a reduced influx of K+ ions.

Nakaya et al.{ 1985) found that after 30 minutes

exposure to hypoxia, acidosis and no glucose the a*K in
dog ventricular muscle decreased but they found no change
in a1Na. They therefore prefer the hypothesis that Na + /K +
exchange continues to function in hypoxia. An increase in

potassium outward current may play a role in the loss of

potassium from the cell or potassium may efflux

concomitantly with lactate on a carrier as was suggested

by Kleber (1983). Leblanc (1986) suggested that loss of

K+ can be dissociated from the inhibition of the sodium

pump at least for a limited period.

It is possible that hypoxia may cause a small rise

in [K+l0 in the intercellular spaces at the tissue
surface (perhaps an area of "dead space" where washout

of K+ by the perfusate is slow) due to K+ leaving the

cell along its concentration gradient. Therefore with an

increased efflux of K + , a*K will fall slightly. If the
Na + /K+ pump is inhibited by hypoxia then this would also

contribute to the decrease in a*K observed in hypoxia.
Thus it appears that more than one factor may be

responsible for the decrease in alK during hypoxia and
anoxia.

(ii) The Effects of Strophanthidin and Saponin.

Other procedures known to alter a1^ were used to
compare with the effects of hypoxia and anoxia.

Strophanthidin was used to reversibly inhibit the Na + /K +
pump (Ellis and Deitmer 1978). This produced larger
decreases in a*K (e.g. Fig. 3.19) which were
approximately twice as great as the change in aJK
(approximately 13mM) observed in hypoxia (e.g. Fig.3.17).
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In addition a depolarization was observed in

strophanthidin of about 7mV. These results suggest that

the Na + /K+ pump is probably only slightly inhibited in

hypoxia.

Saponin (0.25 ugml-1, 10 minute exposure) caused a

decrease in a*K of about the same magnitude as exposure
to hypoxia (approximately 7mM), but the size of the
decrease will be dependent on the concentration of

saponin and the duration of exposure. The reversible
decrease in a*K on exposure to saponin (e.g. Fig.3.20)
could be accounted for by an increased permeability of

the cell membrane to K+ (saponin is known to increase the

passive permeability of cell membranes (Yamasaki et

al. 1987)). Some inhibition of the Na + /K+ pump by saponin
cannot be ruled out. Since saponin produced a large

depolarization (approximately 18mV) of the cell this may

in part be responsible for some of the decrease in a^.
It therefore seems likely that the change in aiK

during anoxia and hypoxia cannot be accounted for in

terms of complete inhibition of Na + /K+ exchange since the

decrease in a*K during anoxia and hypoxia is less than
that observed during pump inhibition in strophanthidin.

However partial inhibition of the Na + /K+ or an increased

efflux of K+ may explain the small decrease in a*K
observed under these conditions. Experiments performed on

cardiac tissue with saponin show that there is almost no

change in pHj in saponin (Noireaud et al. 1989). Since
the, changes in a*K are of the same magnitude as the
changes seen in hypoxia, it seems unlikely that the

change in a*K seen in hypoxia can be responsible for the
acidification of pHj, unless this is mediated via a
different mechanism than in the saponin experiments.
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(C) FACTORS AFFECTING THE CHANGE IN INTRACELLULAR pH

DURING HYPOXIA

(8) TEMPERATURE EFFECTS

Lowering ambient temperature is a frequently used

technique for protecting the myocardium during heart

surgery (Barner et al. 1977). It was therefore of
interest to investigate the effect of low temperature on

pH^ changes during hypoxia.
Samson et al. (1977) studied the effects of lowering

temperature (from 33°C to 20°C) on intracellular ion

concentrations in isolated rabbit heart. They found that

low temperature caused a decrease of aJNa and an increase
of a1^. They also found an increase in action potential
amplitude at low temperature. If a decrease in alj\ja
occurs this may affect the pHj of the preparation, since
if the a1Na falls it may stimulate the Na + /H+ exchanger
causing an intracellular alkalinization. Glitsch and
Pusch (1984) described the effect of temperature on

active Na+ transport (measured with ion-selective

microelectrodes) and compared this to the Na+ K+-ATPase
activity in Purkinje fibres. They found an increase in

aXNa at 220C compared with 35°C. Isenberg and Trautwein
(1975), have shown that an outward current caused by

electrogenic Na-pumping is strongly reduced by cooling

from 37°C to 21°C in Purkinje fibre.

In this study, decreasing the temperature in the

bath from 35°C to 22°C resulted in a smaller

acidification of pH^ during hypoxia (the intracellular
acidification in hypoxia was approximately 0.17 pH unit

smaller than that seen at 35°C).
It has been shown that a 9°C decrease in

temperature slows the formation and breakdown of high

energy phosphates to about 50% the rate at 35°C (Jones et
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al. 1982). It is possible that at 22°C the slowing of the

high energy phosphate metabolism may affect the the
acidification of pH^ in hypoxia.
In the present study lowering temperature from 35°C to

22 °C caused a rise in pHj of approximately 0.3 pH units.
The effects of cooling may not be solely on the rate of

production of H+ ions due to slowing of anaerobic

glycolysis, there could also be a reduction in the rate

of H+ entry into the cells or an increase in the rate of

H+ ion efflux. A stimulation of the sodium hydrogen

exchange would lead to an intracellular alkalinization,

but much more slowly than the pHj change produced by
lowering the temperature. The temperature dependence of
buffers must also be an important factor influencing the

increase in pHj on lowering temperature.
Several studies on cold-blooded vertebrates have

suggested that the regulation of pHj is dependent on
temperature (Reeves, 1972). In measurements on whole
animals Howell et al.{ 19 70) showed that between 5°C and

37°C as temperature rises PC02 increases and HCOg-
decreases in frogs, toads and turtles. They suggest that

the temperature behaviour of certain protein systems led

to their selection as the most important buffers in

vertebrates. The bicarbonate-carbonic acid systems could

be adapted to temperature changes by controlling PC02 by
ventilation and HCOg- by renal regulation. Care is
required when interpreting these types of experiment
since the animals were usually acclimatised first before

measurements were taken. Aicken and Thomas (1977) found

that under conditions of constant pH and C02 the
measurement of pH^ changes may be influenced by the
temperature dependence of the intracellular buffers.

It appears that some of the protective effects of

hypothermia in cardioplegia (Barner et al. 1977) are as a

result of the alkalinization of pHj and the smaller
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acidification which occurs during hypoxia.

Tension Experiments

When the bath temperature was decreased from 35°C to

220 C in stimulated papillary muscle the developed tension

appeared to increase by about 30% (Fig.3.24) If the
Na + /K+ pump was inhibited and a*Na increased in the cell
this in turn would inhibit Na+0/Ca2+i exchange, cause an
increase in a1^ and subsequently allow larger release of
Ca2 + from the S.R. and therefore the development of a

larger contractile force. In most mammalian heart muscle

preparations, cooling leads to a large increase in

developed tension and an increase in active tension
duration due to a reduced rate of Ca2+ uptake by the SR

delaying relaxation. If cooling leads to an increase in
the Ca2+ sensitivity of the myofilaments (Fabiato, 1985)
this could contribute to the hypothermia-induced positive

inotropy. Shattock and Bers ( 1987) have shown the
increase in developed tension to be . fivefold in rabbit
and rat ventricle.

Rapid cooling to below 4°C induces contracture in
skinned cardiac muscle, thought to be due to release of

Ca2+ from the S.R. (Bridge, 1986). It is likely that a

lesser degree of cooling may also affect Ca2+ uptake and

release from the S.R.. Harrison and Bers (1989) suggest

that between 36°C and 29°C, when there is maximal

hypothermic positive inotropy, there is little or no

change in myofibril Ca2+ sensitivity in skinned rabbit

ventricular muscle.

If cooling leads to an alk alinization (as shown in

the present study), the increase in pHj would also lead
to increased Ca2+ sensitivity of the myofilaments

(Fabiato, 1985). In experiments where ryanodine was used

to inhibit S.R.
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function, Shattock and Bers (1987) have shown that a

functional S.R. is not essential for hypothermic

Inotropy.
The fall In tension during hypoxia is less In 22°C

solution than In 35°C solution which may be predicted If

the (ATP] Is conserved for longer at low temperature as a

result of the reduction in the rate of breakdown of high

energy phosphate described by Jones et al. (1982).
The effect of raising the perfusing fluid

temperature to 38°C causes a fall in developed tension
to almost half the developed tension at 35°C (Fig.3.25).
This may be the opposite of the effect observed at 22°C
in that Na + /K+ exchange may be accelerated at high

temperature and therefore so would Na+/Ca2+ exchange

resulting in less Ca2+ being available for contraction.
The fall In developed tension during hypoxia at 38°C was

greater than that observed at 35°C, perhaps as a result
of an acceleration of high energy phosphate metabolism by

the 3°C rise in perfusate temperature.

It therefore seems that low temperature is

beneficial to the preservation of cardiac function during

hypoxia both in terms of pHj and developed tension.

(9) THE EFFECT OF ALTERNATIVE SUBSTRATES

It is known that the mammalian heart will utilize a

number of substrates in the absence of glucose (Opie,

1968). The rates of utilization and selection of any one

substrate are dependent on a number of factors including

the concentration of that substrate in plasma, the

availabilty of alternative competitive substrates, O2
delivery to the myocardium and the mechanical activity of
the heart. In well-oxygenated heart, fatty acid is

utilized in preference to other substrates. It has also
been suggested that increased levels of pyruvate and
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buffer may help to protect the mechanical function of the

heart in ischaemia (Liedtke et al., 1976).

The effects of removing glucose from the perfusate

and providing an alternative substrate have been

investigated. The utilization of 20mM glucose, acetate or

pyruvate appeared to have no effect on the size of the

acidification produced in hypoxia compared with that

produced in lOmM glucose (normal Tyrode).The lack of

difference between glucose, acetate and pyruvate

(Fig.3.26) might be predicted if the acidification in

hypoxia is produced by lactic acid formation by the

anaerobic glycolysis pathway, although a difference might

have been expected between 10 and 20mM glucose. The use

of 20mM lactate as substrate (which is one of the main

products of anaerobic glycolysis) resulted in a larger

acidification of pHj during hypoxia. This could be due to
the reduced ability of lactate to leave the cells in the

presence of a high extracellular concentration. The

larger transient acidification on reoxygenation in

lactate might be explained by the fact that lactate is a

good substrate and may cause faster or greater

resynthesis of PCr after hypoxia and hence a larger
transient acidification.

It seems that during inhibition of oxidative

phosphorylation the deleterious effects of intracellular

acidification are not reduced when glucose is replaced
with pyruvate or acetate. An aggravation of the

deleterious effects of hypoxia is observed only in the

presence of extracellular lactate. This mimics the rise

in extracellular lactate predicted in the ischaemic heart

(Katz and Hecht, 1 969). This finding is in accord with

the work of Hearse et al. (1976) who suggested that

lactate should not be present in cardioplegic solutions

since, lactate is produced in large quantities in

ischaemia and can have a toxic effect.
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Apstein et al. (1976) found that increasing

substrate glucose concentration from 5.5 to 22mM improved

active tension development during the hypoxic period and

after reoxygenation and prevented the occurence of rigor

or contracture, in rat papillary muscle. They also found
that an increase in glucose after 30 minutes of hypoxia

was still effective in improving cardiac performance and

recovery. The effect of hypoxia on intracellular pH^ does
not appear to be affected by glucose, since doubling the

concentration of glucose had no effect on the size of the

acidification produced by hypoxia. This may just reflect
the fact that the preparation is different, for instance,

Purkinje fibres are known to have large intracellular
stores of glycogen. The comparision of glycogen levels in

electron- micrographs from sheep Purkinje fibres exposed

to 90 minutes hypoxia with controls does not reveal a

fall in glycogen levels (e.g. Fig.3.10a). It might be

suggested that sheep Purkinje fibres are resistant to

hypoxic damage, perhaps as a result of their large

intracellular glycogen stores prolonging the supply of

ATP and therefore retarding cell damage.

On changing from lOmM glucose to pyruvate or acetate

there was a transient acidification of pHj lasting about
15 minutes (see Fig 3.26). This occurs because the two

substances are weak organic acids and produce a transient

acidification as a result of their entry into the cell

in their undissociated acid form followed by dissociation

in the cell (de Hemptinne et al., 1 983). In the present

study the tissue was left to equilibrate in the new

substrate for about 30 minutes. Therefore the transient

acidification would have had little or no effect on the

acidification produced in hypoxia.

It might therefore be concluded that under

conditions where oxidative phosphorylation was severely

restricted, the addition of replacement substrates
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(pyruvate and acetate) appeared to have little effect on

the extent of anaerobic glycolysis as measured by the

degree of acidification of pHj produced by exposure to
hypoxia.

(10) EFFECT OF CINNAMATE

Cinnamate has been shown to inhibit pyruvate

(Halestrap and Denton, 1974) and lactate transport in

human erythrocytes.
In this study treatment with cinnamate did not

result in a significant acidification of pH^ in sheep
Purkinje fibres (the mean change in pH was 0.11 4^0.08,

n=4) although Figure 3.28 seems to suggest that the pH

change is significant. de Hemptinne et al. (1983)
observed an acidification of pHj of 0.1 pH unit on
average in 4mM cinnamate. In the present study 5mM

cinnamate was used. The lack of a significant pH change

may have been because a small sample group was used. The
mean acidification is of the same magnitude as that

measured by de Hemptinne et al. (1983) but the individual

measurements were very variable.

During hypoxia there was a larger acidification in

cinnamate treated fibres than was observed in normal

Tyrode, again presumably due to inhibition of lactate
efflux from the cells. On reoxygenation cinnamate caused

a marked slowing in the rate of recovery of pH^ (Fig.3.29
and 3.30), indicating that the recovery of pHj from
hypoxia is dependent on an efficient lactate efflux from

the tissue.

It has been shown that cinnamate slows the rate of

acidification of pH^ caused by addition of lactate, in
sheep Purkinje fibres (de Hemptinne et al., 1983) although

it does not affect the rate of acidification by acetic or

proprionic acid. This suggests that lactate crosses the

153



cell membrane via a carrier-mediated process and that
inhibition of lactic acid efflux results in increased

acidosis during hypoxia and slowing of the recovery of

pH| on reoxygenation.

(11) ALTERATION OF EXTRACELLULAR PH

Acidification of extracellular pH is known to have
an effect on contractility (Katz and Hecht,1969). It was

of interest to observe the effect of changing pH0 on
developed tension in ferret papillary muscle exposed to

hypoxia.
Acidification of pH0 to pH 6.4 caused a fall of

developed tension in normoxia, with a greater fall in

hypoxia than that seen at pH 7.4. This was presumably as

a result of an acidification of pH^ in pH0 6.4 solution
which became further acidified in hypoxia. Acidification
is known to decrease the sensitivity of the myofibrils to

Ca2+ (Fabiato and Fabiato, 1978) and could therefore

account for the difference in developed tension during

hypoxia at pH 7.4 compared with pH 6.4.

There are differences in the estimates of the effect

of pH0 on intracellular buffering capacity. It has
recently been shown that buffering capacity in sheep

Purkinje fibres is not constant over the physiological

range but increases approximately linearly as pH^ falls,
a doubling of buffering capacity occurring as pH0 falls
from 7.4 to 6.4 (Vaughan-Jones and Wu, personal

communication). It therefore seems unlikely that effects

of pH0 on intracellular buffering power are responsible
for the changes in tension which occur at pH 6.4 since a

high intracellular buffering would help to absorb excess

protons and thus decrease the effect of H+ ions in

reducing developed tension in myofibrils.

Altering the pH0 to a more alkaline pH (pH 8.4)
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caused a 50% rise in developed tension. The subsequent

decrease in developed tension during hypoxia was

approximately half the size of the fall recorded at pH

7.4. Curtin (1978) has shown that in amphibian skeletal
muscle an alkaline pH increases twitch tension.

At pH0 8.4 the decrease in the developed tension
which occurred during hypoxia was accompanied by a

contracture (see Fig.3.33). The reason for this

contracture is unclear but it may be that the larger

twitch tensions in pH 8.4 solution put a greater

metabolic stress on the muscle. Therefore in hypoxia

there is a faster exhaustion of high energy phosphate

compounds and a faster development of contracture.

The effect of an alkalinization of pH0 was an
alkalinization of pHj in sheep Purkinje fibres. During
hypoxia a slower and smaller acidification of pH^ was
observed than at normal extracellular pH. This was

perhaps due to the alkaline pH0 making acid efflux
easier.

(12) EXTRACELLULAR AND INTRACELLULAR BUFFERING

Changing the extracellular buffer from HEPES to

C02/bicarbonate resulted in a transient acidification
followed by a smaller sustained acidification of pH^.
This has been explained to be as a result of the cell's

high permeability to C02 which enters causing the
transient acidification (Thomas, 1976). The sustained

acidification has been suggested be due to bicarbonate

permeability (Vanheel et al. 1985). The change in pH^
during hypoxia was less than that observed in HEPES

buffered solution. This can be explained by an increased

intracellular buffering capacity in C02/bicarbonate
buffer (Thomas, 1976).

In one series of experiments high HEPES solution
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(40mM HEPES) was compared with lOmM HEPES (plus 60mM

sucrose). The acidification in hypoxia and transient

reoxygenation acidification were both found to be smaller
in 40mM HEPES compared with lOmM HEPES (Fig.3.36). This

suggests that raising the external buffering power

reduces the intracellular acidification observed during

hypoxia. It has been shown that superfusion of the sheep

Purkinje with low buffered solution (5mM HEPES compared

with 20mM in normal Tyrode) produced an acidification of

pH at the surface layer (pHg) and therefore a depression
of proton extrusion following an acid load (de Hemptinne
et al. 1987).

This study has illustrated that both raised external

buffering (HEPES) and intracellular buffering (C02/HC03
reduce the acidification during hypoxia. In the case of

increased HEPES buffering the transient acidification on

reoxygenation was also reduced compared to normal Tyrode

solution.

Surface pH (pHg) became more acid during hypoxia (by
approximately 0.14 pH units). This might be explained by

pHj becoming more acidic during hypoxia, the H+ ions
being removed from the cell via the Na + /H+ exchanger and

the outward movement of lactic acid. Lactic acid then

accumulating in the intercellular spaces and at the

surface of the tissue. This mechanism is probably similar

to the processes occuring in ischaemia when reduced flow

of blood to the tissue results in accumulation of large
amounts of H+ ions in the intercellular space (Katz and

Hecht 1969). Hypoxia is different in that there is

continued perfusion and therefore less H+ ions and

lactate will be able to accumulate.

The work of de Hemptinne and Hugeunin (1984), with

mammalian skeletal muscle, suggests that the difference

between pHg and pH0 (the pH in the bathing or bulk
solution) is due to an H+ gradient in the unstirred
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layers of fluid surrounding the cells which forms as a

result of metabolically produced C02 and lactic acid. As
a result the H+ gradient between the extracellular medium

close to the surface and the intracellular fluid is

smaller than the gradient of H+ activity between
intracellular fluid and the bulk solution.

Vanheel et al. (1986), conclude that in superfused
multicellular preparations buffer concentration of the

superfusate and therefore pHg can considerably influence
steady-state pH} and pH} recovery from an acid load. They
found that decreasing extracellular buffering from 20mM

to 5mM produces acidosis at the preparation surface and

slows the rate of acid extrusion after an imposed acid

load.

In mammalian preparations it has been demonstated

that the intracellular buffering capacity of cardiac

muscle is better than skeletal muscle (Clancy and Brown,

1966). Saborowski et al. (1973) suggest that the

buffering capacity is linked to the mechanical work load

which is to be performed by the muscle. This was found to

be the case when pH} was compared in normal and
hypertrophic rat hearts. Buffering capacity was found to

greater in the hypertrophic heart which performed more

mechanical work.

Several factors may contribute to intrinsic

buffering power. Metabolic changes in PCr and ATP can

either liberate or consume H+ (Allen et al. 1985).

Passive buffering may occur by ATP, PCr, and Pi.

Buffering by cytoplasmic proteins also occurs.

Intracellular acidosis has been shown not to

significantly alter intracellular phosphate compounds

(Allen et al. 1987a) so that changes in energy metabolism
(for instance in hypoxia) are unlikely to influence
intracellular buffering capacity. Passive buffering from

Pi will be less than ImM under resting conditions [Pi]}
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is less than lmM,(Allen et al. 1985) but rises to 20 mM

in hypoxia when it may affect buffering (Kentish, 1986).

Recently, House et al. (1989) have shown that in rat

ventricular muscle there is up to lOmM imidazole

buffering and therefore this may make up a large

proportion of the intracellular buffering capacity.

Vaughan-Jones and Wu (personal communication) have
estimated the total intracellular intrinsic (non-CC^)
buffering capacity as 20mM in sheep Purkinje fibres. It

therefore seems that several factors may influence the

intracellular buffering capacity of cardiac tissue and
therefore pH regulation during hypoxia.

(13) EFFECT OF AMILORIDE

Amiloride is a potassium-sparing diuretic and has

been reported to inhibit Na + /H+ exchange in sheep cardiac

Purkinje fibres (Deitmer and Ellis, 1980) as well as

Na,K-ATPase in human cardiac sarcolemma (Erdman and

Bolte, 1977).

In addition it would seem that inhibition of Na + /H +
exchange can affect myocardial activity by altering

intracellular H+ and Na+ concentrations. Changes in [H + ]j
may influence contractility by effects related to pH

sensitivity of the contractile proteins (Fabiato and

Fabiato, 1978), whereas, changes in [Na + ]j may alter
contractile force by action on the Na+/Ca2+ exchange.

Changes in the Na+ and Ca2 + levels within the cells may

have further effects on intracellular pH via various

cellular mechanisms (Deitmer and Ellis, 1980).

Kennedy et al. (1986), suggest that the positive

inotropic action of amiloride (at low concentration

(0.3mM)) is reduced and the negative inotropic action

(at high concentration (1.5mM)) is enhanced in low [Na + ]

solutions i.e. under conditions likely to favour Ca2 +
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influx via Na+/Ca2+ exchange. This suggests that there

is a complex interaction of amiloride with cardiac

muscle. Amiloride may produce its inotropic effects in

cardiac muscle by several mechanisms including, sodium

pump inhibition, Na+/Ca2+ exchange inhibition, or by

effects of Na+/H+ exchange inhibition.

In this study the effect of amiloride was tested (at
a concentration known to inhibit Na + /H+ exchange and not

produce ionotropic changes) on the acidification of pHj
produced during exposure to hypoxia. Hypoxia did not

cause a significantly different acidification of pH^ in
the presence of ImM amiloride compared with hypoxia in

normal Tyrode solution.
An explanation of these results is rather difficult

since it might be expected that amiloride inhibition of

Na + /H+ exchange might result in a larger acidification of

pHj during hypoxia. However, in view of the results
obtained using cinnamate, it seems likely that a

proportion of the acidification seen in hypoxia is the

result of lactate production in the cell during anaerobic

glycolysis. Perhaps the major factor controlling the

amplitude of the acidification of pHj during hypoxia and
the rate of recovery of pHj on recovery is the cinnamate
inhibited lactic acid carrier.

Ellis and Macleod (1985) have measured the rate of

pH recovery from various intracellular acid loads

produced by acid pH0 or C02. These recoveries were shown
to be primarily due to Na/H exchange. Their measurements

of the time course of recovery from acid loads appear to

be much slower than the time course of recovery of pH^
measured in this study after hypoxia. This suggests that

Na/H exchange is not the main controller of

intracellular acidification in, and recovery from,

hypoxia and therefore amiloride might be expected to have

little effect.
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(14) EFFECT OF SITS

The amine-reactive drug, SITS has been shown to

inhibit transmembrane anion-exchange carriers (Russell
and Boron, 1976).

Vaughan-Jones (1979), measured a*ci *n sheep
Purkinje fibre and found that inward pumping of Cl~ was

substantially inhibited by lOOuM SITS. Baumgarten and

Duncan ( 1 987), suggest that an alternative method for Cl~

uptake is Na+ - dependent Cl~ co-transport. Their

experiments indicate that while C1~/HC03~ exchange
occurs, it does not physiologically control in the

heart.

Ellis and Thomas (1976) looked at the rapid recovery

of pHj from acidosis in sheep Purkinje fibres and found
that unlike the situation in snail neurones where active

outward transport of H+ ions is selectively inhibitable

by SITS, recovery of Purkinje fibre pHj from C02-induced
acidosis was unaffected by SITS (Ellis and Thomas,

1976a). It was concluded that C1~/HC03~ exchange, Na-
dependent or otherwise, is not involved in pHj recovery
from acidosis.

The role (or lack of one) for C1~/HC03~ exchange in
pH j regulation during hypoxia was therefore of some
interest. In this study it was found that in the

preparations exposed to SITS (lOOuM), hypoxia produced a

larger acidification of pHp If SITS were inhibiting a

C1"/HC03" exchange mechanism intracellular HC03~ levels
would rise, there would be a more efficient removal of H +
ions by HC03~ to produce H20 and C02. These would leave
the cell therefore reducing [H + ]^ and causing a more
alkaline pH^. However in this study exposure to SITS
caused a larger acidification of pH^ than was observed in
normal Tyrode. The weight of evidence is generally
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against C1-/HC03- exchange having an important role in
pH j regulation. It is also possible that SITS may have
effects on the tissue other than that of inhibiting Cl~

/HCOg- exchange. The only HC03~ available for exchange in
HEPES buffered solutions is that produced by the cellular

processes of the tissue. The results of these experiments

remain ambiguous and further experiments would be

required to elucidate the role of C1-/HC03- exchange in
pH} regulation under conditions of hypoxia.

(15) EXTRACELLULAR POTASSIUM

It has been shown that in ischaemia [K+]^ tends to
decrease and there is an accumulation of K+ outside the

cell (Kleber, 1984). K+ may also play a role in the

development of arrhythmias. Harris (1954) found

increasing levels of K+ in coronary venous blood during
the onset of arrhythmias after coronary ligation. The

accumulation of K+ during ischaemia may have other

deleterious effects on the heart and it was of interest

to mimic this aspect of ischaemia in the hypoxic heart.

The application of 12mM [K+] caused a

depolarization of the membrane potential of about 15mV,

with no measurable change in pH^. The depolarization
therefore appears not to affect Na + /H+ exchange or also
affects another process in an equal and opposite fashion.

The acidification of pH^ in hypoxia was not significantly
different in high (12mM) and low (6mM) lK + ]0 (e.g.
Fig.3.41), suggesting that the mechanisms of regulation
of pH j are not dependent on (K + ]0 or the membrane
potential in this range. This would fit in with an

electroneutral regulatory mechanism e.g. a lactic acid

carrier. The lack of large Em changes during hypoxia also

suggest an electroneutral process. However a noticable

small hyperpolarisation of Em on the readdition of 02
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suggests a slight contribution of an electrogenic
mechanism.

In summary, this study indicates that the effects of

hypoxia and anoxia on the pH^ of sheep Purkinje fibres
may be largely due to the production of lactic acid by
the hypoxic tissue. This hypothesis is substantiated by
the experiments investigating the effect of cinnamate on

the extent of the acidification of pH^ during, and the
recovery of pHj, after hypoxia. The experiments performed
using amiloride to inhibit Na/H exchange indicate that

Na/H exchange is not solely responsible for the

regulation of pH| during hypoxia.
Hypoxia, anoxia and NaCN were compared for their

effects on pH^ and contraction, it should be noted that
although all three may be assumed to inhibit aerobic

glycolysis to some extent there was some variation
between the three conditions.

It was shown that there was no adaptive recovery of

pHj during prolonged hypoxia and that there appears to be
no decrease in stored glycogen levels in sheep Purkinje

fibres after extended periods of hypoxia.

Temperature, extracellular buffering and

extracellular pH were all found to alter the extent of

the acidification of pH^ during hypoxia while changing
the extracellular substrate or raising extracellular [K + ]

had little effect on pH^ during hypoxia.
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APPENDIX 1

SI S2 S3 S4 S5 MEAN

6H 1 2 5 2 2 2. W

6H 4 6 6 6 5 5.4

8H 7 8 8 8 7 7.6

4H 8 7 4 5 7 6.0

1H 10 9 9 9 9 9.2

2C 2 1 1 1 1 1.2

3C 3 4 3 4 3 3.4

10C 5 3 2 3 4 3.4

9C 6 5 7 7 8 6.6

7C 9 10 10 10 10 9.8

The table shows the subjects (S1-S5) and the rank they

assigned to electron-micrographs (labelled 1-10) from

either hypoxic (H) or control (C) Purkinje fibres. " ThisC
data was used to perform a Mann-Whitney U test on the

mean ranks.
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The effect of temperature on intracellular pH (pH,) and the response to
hypoxia in quiescent sheep heart Purkinje fibres in vitro
Bv C. M. Bright and D. Ellis. Department ofPhysiology, University Medical School,
Teviot Place, Edinburgh EH8 9AG

When oxidative phosphorylation is blocked by hypoxia there is an intracellular
acidification which is followed on reoxygenation by a further transient intracellular
acidification before recovery (Ellis & Noireaud, 1987). Low temperature has been
shown to have an effect on the ischaemic myocardium (Jones et al. 1982) by delaying
the depletion of high energy phosphate. This study was designed to investigate
whether hypothermia could delay the onset and the extent of the intracellular
acidification caused by hypoxia. Experiments were performed to measure changes in
pH, during hypoxia at 35 and 22 °C.

66 ' ' ' '

PHi 7 0

7-4

(mv) ~80
-85

10 min

Fig. I. The changes of intracellular pH and membrane potential (Em) during exposures to
10, 4 and 20 min of hypoxia (as indicated by the bars) at 35 °C. Solutions were buffered
with 10 mM-HEPES. Hypoxic solutions were bubbled with 100% N,.

The resting level of pH4 at 35 °C was 7-11 +017 (mean + s.d., n = 14). Following
20 min exposure to hypoxia the pH, became more acidic by 0-26 + 0-18 pH units
(n = 14). "On reoxygenation a further transient acidification of 0 09 + 0 06 pH units
occurred before recovery. At 22 °C the resting pHj was 742 + 0-18 (n = 14). During
20 min of hypoxia it became more acid by O09±O12 pH units (n = 14). The
transient extra acidification on reoxygenation was 006 + 008 pH units. The
acidification during hypoxia was significantly greater at 35 °C than at 22 °C (P < 0-01
on a two sample t test).

This work was supported by the British Heart Foundation.
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P-55THE EFFECT OF METABOLIC SUBSTRATES ON INTRACELLULAR pH (pHj)
DURING HYPOXIA IN QUIESENT SHEEP HEART PURKINJE FIBRES. C.M. Bright
and D. Ellis. Department of Physiology, University Medical School,
Teviot Place, Edinburgh, EH8 9AG.

When oxidative phosphorylation is blocked by hypoxia there is an
intracellular acidification whioh is followed on reoxygenation by a
further transient acidification before recovery (Ellis & Noireaud,
1 987. J. Physiol. .383 , 1 25-14 1 ). Cardiac tissue can utilize different
metabolic substrates so the effects of glucose, pyruvate or acetate
(20mM) during hypoxia were investigated. 30 minutes exposure to the
substrate was followed by 20 minutes of hypoxia. In 6 experiments
there appeared to be no significant difference (P>0.1 in a 2 sample t-
test) between hypoxia induced acidification in 20mM glucose, acetate
or pyruvate compared to that in normal Tyrode (lOmM glucose). This
lack of significance could have been due to the wide variation in the
effects of the various substrates. It is possible that the large
glycogen stores of Purkinje fibres prevent the different effects of
the substrates from being apparent in these relatively short term
exposures. (Supported by the British Heart Foundation).



EFFETS DE LA SAPONINE SUR LES ACTIVHES
IONIQUES INTRACELLULAIRES (Na+. K+ H+)
DE LA FIBRE DE PURKINJE DE MOUTON.
J.Noireaud1. C.M.Bright2, D. Ellis2, I.PhysioIogie
G6n6rale, . U.R.A. C.N.R.S.1340, Nantes, France,
2.Physiology, Univ. Med. Sch., Edimbourgh, GB.

Utilis6e A des doses n'induisant pas un pelage de la
membrane cellulaire, la saponine poss&de une action
inotrope positive sur le muscle papillaire de mammiffere
(Enomoto et al, Brit J Pharmacol 1986, 88: 259). Le but
de ce travail fut d'examiner si des variations
concommittante du sodium et/ou du pH intracelluiaire
pourraient permettre d'interpr6ter les effets de ce
glycoside sur la force contractile du muscle cardiaque.
Les activity sodique (Nai), potassique (Ki) et
protonnique (Hi) de la fibre de Purkinje de mouton ont
6t6 mesur6s & I'aide de la technique des
micro-6lectrodes sensibles.
En presence de 0.015-0.04 mg/ml de saponine, on
observe une depolarization d'environ 20 mV de la
membrane, une augmentation de 40% de Nai, une
diminution de 9% de Ki et aucun effet sur le pHi.
Les effets de la saponine semblent done li£s A une
perm£abilisation non sp£cifique de la membrane et
("augmentation r£sultante de Nai permet d'expliquer via
Exchange Na/Ca I'effet inotrope positif de cette
substance.
Travail soutenu financiferement par le M.R.C. et la
British Heart Foundation.
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Effects of Saponin on Contractile Force and Intracellular Ion
Activities of Cardiac Tissues

J. Noireaud,t C. M. Bright and D. Ellis*
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J. Noireaud, C. M. Bright and D. Ellis. Effects of Saponin on Contractile Force and Intracellular Ion
Activities of Cardiac Tissues. Journal of Molecular and Cellular Cardiology (1989) 21, 291-298. The effects of the
glycoside saponin on ferret ventricular muscle have been investigated. Saponin produced a positive inotropic
effect, the extent ofwhich was determined by the bathing calcium concentration. If the bathing calcium concen¬
tration is reduced to levels equivalent to those found intracellularly then similar saponin concentrations are able
to "skin" the cardiac cells. The effects were further investigated in sheep heart Purkinje fibres. In the presence of
normal extracellular calcium concentrations (to prevent skinning), saponin produced increases in sodium activ¬
ity, decreases in potassium activity but little change in intracellular pH. The decreases of potassium activity
were compared to the effects ofstrophanthidin. The changes in intracellular ion levels were accompanied by the
development of a contracture. The effects ofsaponin could be explained by its interaction with cholesterol in the
cell membrane resulting in an increase in membrane permeability to sodium which may be part of a nonspecific
increase in membrane permeability.
Key Words: Intracellular pH; Intracellular K; Intracellular Na activity; Cardiac Purkinje fibre; Cardiac
ventricular muscle.

Introduction

Saponins form a complex with cholesterol,
resulting in the production of holes in a
cholesterol-containing membrane (Bangham
and Home, 1962; Glauert et al., 1962). This
makes these molecules useful tools to skin
muscle preparations chemically (Endo et al.,
1977). At 25°C, 30 min treatment with 0.05
mg/ml saponin is a standard procedure for
chemical skinning of cardiac muscles (Endo
and Kitazawa, 1978). Using lower concentra¬
tions, which did not skin the muscle mem¬

branes, Enomoto et al. (1986) have shown that
several saponins of animal and plant origin,
have a positive inotropic action on atrial and
papillary muscles of the guinea-pig. They sug¬
gested that modification of the calcium
channel could be involved in this effect.

Recently Yamasaki et al. (1987) have sug¬

gested that the passive permeability of sarco-
lemmal vesicles could be increased and that
there was an indication of the stimulation of
sodium-calcium exchange. "Sub-skinning"
concentrations of saponins also induced depo¬
larization in cardiac muscles (Enomoto et al.,
1986), smooth muscles (Osa and Ogasawara,
1984) and squid axons (De Groof and Nara-
hashi, 1976). The latter authors concluded
that holothurin A (a saponin obtained from a
sea cucumber) increased sodium per¬
meability. In heart, the positive inotropic
effect of increasing the intracellular sodium
activity (a^a) is we^ documented and prob¬
ably occurs via an effect on the sodium-
calcium exchange system (Reuter and Seitz,
1968). On the other hand, an increase of
intracellular pH [pH-Pj is also known to poten¬
tiate the developed tension of muscles

* Please address all correspondence to: D. Ellis.
t Present address: Laboratoire de Physiologie Generale, URA 1340, Ecole Nationale Veterinaire, CP 3013, F 44087,

Nantes, Cedex, France.
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(Fabiato and Fabiato, 1978). The interaction
of saponins with cholesterol could have per-
turbated such membrane functions as the

regulation ofpH{ and thus have affected force
production.

The aim of the present experiments has
been to study whether or not the saponin
induced modification of the mechanical per¬
formance of cardiac muscles could be related
to changes in and/or pH{.

Methods

General

Fresh sheep hearts were obtained from the
local slaughterhouse. They were cut open and
transported to the laboratory immersed in a
Tyrode solution at ambient temperature that
was either bicarbonate-buffered and bubbled
with 95% 02, 5% C02 gas mixture or
HEPES (n-2-hydroxyethylpiperazine-N'-2-
ethanesulphonic acid) buffered and bubbled
with 02 . No differences were noticed between
the experiments using hearts collected in the
two types of solution. Free-running Purkinje
fibres were removed from the left ventricle.
Ferrets were anaesthetized with intraperitone¬
al pentobarbitone sodium (Sagatal, May and
Baker). The heart was removed rapidly and
washed in Tyrode solution. Thin papillary
muscles were dissected from the right ventri¬
cle. Methods of mounting both types of prep¬
aration in the experimental chamber to
record tension were essentially the same as
described previously (Bers and Ellis, 1982;
Ellis and MacLeod, 1985).

Solutions

The normal Tyrode solution contained (mm):
Na+ 140, K+ 6, Ca2+ 2, Mg2+ 1, CI" 152,
glucose 10, HEPES 5, and was titrated with
NaOH (c. 6 mm) to give a pH of 7.4 + 0.05 at
35°C. The solution was equilibrated with
100% o2.

Solutions for calibrating sodium-sensitive
microelectrodes were made by substituting
potassium for sodium in Tyrode solution. The
Tyrode solutions used to calibrate the sodium-
and potassium-sensitive microelectrodes had
no calcium added. The calibrating solutions
for potassium had the following potassium
concentrations (mm) 70, 110, 129, 141 and

151. The latter was slightly hypertonic (by 20
mOsmol). This hypertonicity had such a
small effect on the response of the electrode
that the effect was neglected. The 12 mM
[K + ] Tyrode used to check impalement with
the potassium-sensitive electrode was identical
to normal Tyrode except that it contained
(mm) Na+ 128, and K+ 12.

Saponin was obtained from Sigma. It con¬
tains about 20% of sapogenin isolated from
the white roots of Dianthus gypsophila. Strop¬
hanthidin (Boehringer Mannheim) was used
at a concentration of 2 x 10~5 m. This con¬

centration was obtained by diluting 10 m
strophanthidin (dissolved in a 50/50 mixture
of ethanol and water) in normal Tyrode solu¬
tion so that the final solution did not contain
more than 0.5% ethanol.

Micro-electrodes

Membrane potentials (Em) were measured
with conventional 3 m-KCl-filled micro¬
electrodes with resistances 10 to 25 Mf2. pH-
sensitive and sodium-sensitive microelectrodes
were filled with neutral H+ carrier (Fluka)
and sodium-ionophore I (ETH 227, Fluka)
respectively. The potassium-sensitive elec¬
trodes were filled with Corning liquid ion
exchanger (W.P.I.). The silanized micro-
pipettes were filled on the day they were used.
The micropipettes were first back-filled with a
solution of lOOmM sodium chloride and 100
mM sodium citrate for both hydrogen ion and
sodium-sensitive electrodes or 100 mM pot¬
assium chloride for potassium electrodes.
Then a column (c. 200 ^m) of the hydrogen,
sodium or potassium selective resin was drawn
by suction into the tip of the microelectrode.
Their tips were < 1 pm in diameter. Estimates
of their response time were limited by the sol¬
ution exchange time in the bath. This was
90% complete in 18 to 21 s. For each drug
used, the possibility of an interference with the
ion-sensitive electrode was checked.

Calibration ofelectrodes
All electrodes were calibrated at 35°C in the

experimental chamber before and after each
experiment as described previously for sodium
and hydrogen-sensitive electrodes (Ellis,
1977; Deitmer and Ellis, 1980). Particular
care is necessary in calibrating potassium-



Saponin and Cardiac Tissue 293

sensitive electrodes due to the logarithmic
relationship between the activity of an ion
and the voltage output of the electrode. Thus
at physiological levels of intracellular pot¬
assium, relatively large potassium changes are
associated with quite small changes in the
voltage output of the microelectrode. For each
calibration curve a linear regression was
plotted to check that the electrode calibration
intercepted the *-axis at approximately 6 mM
which was the [K+] in normal Tyrode. By
using the same linear regression it was possible
to calculate a'K directly from the intracellular
measurements of the ion-sensitive electrode

potentials. To check that each impalement
was successful the perfusing solution was
briefly switched to 12 mM [K+] Tyrode. This
produces a slight depolarization in the prep¬
aration, the K +-sensitive micro-electrode
signal has the Em signal subtracted from it in
order to obtain a value for . If both elec¬
trodes are intracellular no depolarization is
seen on the trace.

Results

Effects ofsaponin on the developed tension offerret
papillary muscle

The effects of saponin, at various [Ca]0 , were
measured in ferret papillary muscles. The
papillary muscles were stretched to a length
giving optimal force production and stimu¬
lated at a frequency of 1 Hz for about 30 min
in order to allow the developed tension to
equilibrate to a steady amplitude. Thereafter
saponin was applied to the muscle. Typical
records of the effect of adding 0.025 mg/ml
saponin on the developed tension are shown

in Figure 1. Saponin at this concentration
added to normal Tyrode ([Ca]0 = 2 mM)
increased the amplitude of the developed
tension by 35% compared to the control.
Then [Ca]0 was reduced to 1 mM and the
same procedure repeated. Now the amplitude
of the developed tension was increased by
63% on adding an identical amount of
saponin. A subsequent reduction of [Ca]0 to
0.5 mM (not illustrated) further potentiated
the effect of 0.025 mg/ml saponin. The ampli¬
tude of the developed tension was increased
by 74% compared to the control in the
absence of saponin.

Saponin concentrations of 0.025 mg/ml
resulted in the development of a contracture
in some preparations. A contracture was
always apparent if a saponin concentration of
0.05 mg/ml or higher was used.

Effects ofsaponin on membrane potential,
intracellularpH, and intracellular sodium activity of

sheep Purkinjefibres
Figure 2 shows the effect of adding 0.04 mg/ml
saponin to the Tyrode solution while pH\, a}^
and membrane potential were being recorded
with ion-sensitive micro-electrodes in a Pur¬

kinje fibre of sheep heart. Saponin treatment
was accompanied by a depolarization (of 14
mV in this case). During the change of Em,
there was an increase of ajv,a (46% compared
to the control) but little or no change ofpHt.
The effects were completely reversible on
return to normal Tyrode solution. Different
concentrations of saponin have been tested up
to 0.1 mg/ml and under these experimental
conditions, the half-maximum effect on Em
and a^a seems to occur with approximately
0.03 mg/ml saponin. The effects were however

Saponin
2 mM Calcium

Saponin
mM Calcium

FIGURE 1. The effect ofsaponin on developed tension from ferret papillary muscle. The muscle was stimulated at 1
Hz in Tyrode solution containing either 2 mM Ca (normal [Ca]0) or 1 mM Ca. During the period indicated by the bars
0.025 mg/ml saponin was added to the superfusing solution.
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FIGURE 2. Effect of saponin on the pHK (top trace),
the intracellular Na+ activity («ka, middle trace) and the
membrane potential (Em, bottom trace) of a Purkinje
fibre from sheep heart. During the period indicated by
the bar 0.04 mg/ml saponin was added to the superfusing
solution. After 10 min the muscle was returned to the
control Tyrode solution.

Saponin

FIGURE 3. The effect of a long exposure to saponin on
the intracellular Na+ activity (aija, top trace) the mem¬
brane potential (Em, middle trace) and on the resting
tension (bottom trace) of a Purkinje fibre from sheep
heart. During the period indicated by the bar, 0.065
mg/ml saponin was added to the superfusing solution.
After 70 min the muscle was returned to the control

Tyrode solution. The break in the trace was for approx¬
imately 45 min.

rather variable. When higher concentrations
were used (>0.1 mg/ml), reversibility was
often difficult to obtain.

Figure 3 shows that in some experiments
the effects ofsaponin appeared to be reversible
even in the continued presence of the com¬
pound. Figure 3 shows the effects of a long
exposure (70 min) to a Tyrode solution con¬
taining 0.065 mg/ml saponin, while resting
tension, a^a and membrane potential were
recorded in a Purkinje fibre of sheep heart.
The addition of saponin induced a depolar¬
ization of about 35 mV of the membrane. The
intracellular sodium activity increased in
parallel by 54% compared to the control.
Ffowever, after about 25 min even in the con¬
tinued presence of saponin, the resting
tension, and Em had almost recovered to
their control values.

The sodium-potassium pump appeared to
be still functional in the presence of saponin as
removal of extracellular potassium produced
an extra increase of«Na (not illustrated) which
recovered on adding back potassium.

In another series of experiments undertaken
in Purkinje fibres of sheep heart, the ammon¬
ium rebound technique (Boron and de Weer,

1976) was used to test the integrity of pH{
regulation after a long exposure to saponin.
After 60 min in the presence of a high concen¬
tration of saponin (0.15 mg/ml), pH{ was still
able to recover both on addition and removal
of NH4C1 in some preparations while in others
there was inhibition of the pH{ recovery fol¬
lowing acid loading even at a concentration of
0.05 mg/ml.

Calcium and magnesium dependency of the effects of
saponin

Figure 4 shows an example of the effect of
adding 0.025 mg/ml saponin to Tyrode solu¬
tions containing 2 mM Ca2+ (normal [Ca]0)
or 0.5 mM Ca2 + . In normal Tyrode, saponin
depolarized the membrane by only 5 mV and
no change of was recorded. The mem¬
brane potential had recovered to its control
value after less than 3 min on removal of

saponin. On reducing calcium to 0.5 mM, the
same amount of saponin induced a depolar¬
ization of 15 mV, and increased by 20%.
Recovery was much more difficult to obtain.
Similar effects were obtained by varying the
external magnesium concentration in the pre¬
sence of low concentrations ofcalcium.
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10 min

Saponin Saponin
2 mM Calcium | 0.5 mM Calcium

FIGURE 4. The effect of saponin on the intracellular Na activity (a(ja, top trace) and the membrane potential
[Em , bottom trace) of a Purkinje fibre from sheep heart. During the periods indicated by the bars 0.025 mg/ml saponin
was added to the superfusing solution containing either 2 mM Ca (normal [Ca]0) or 0.5 mM Ca.

Measurement of intracellular potassium activity and
the effects ofsaponin

Measurements were made ofa^ in order to try
to assess the possible effect of saponin on K +
permeability. For comparison, changes of a'K
were also induced by application of high con¬
centrations of cardiac glycosides to inhibit the
sodium-potassium pump.

The effects of saponin on alK were investi¬
gated in both sheep Purkinje fibres and ferret
papillary muscle with Corning sensor filled
electrodes. In Purkinje fibres on exposure to
saponin (0.025 mg/ml) a significant
(P < 0.01) decrease in mean alK was recorded
from 82.4 + 15.2 mM (control value mean
+ s.D.) to 75.4+ 15.5 mM (n — 5). Saponin
also had a considerable effect on Em , decreas¬
ing it by a mean 20.4 + 13.2 mV (n = 5). In
addition to these effects saponin also caused
the development of a contracture (see Fig. 5).
We have compared the effects of saponin on
a'K with strong inhibition of the sodium-
potassium pump using strophanthidin
(2 x 10"5 m). Strophanthidin (10 min
exposure) caused a significant (P < 0.002)
decrease in mean a'K from 90.1 + 16.4 mM to
77.7 ± 14.0 mM (n = 8). This was accompa¬
nied by a depolarization of 9.6 mV ± 3.0 mV
(n = 8). In addition, strophanthidin also
caused an increase in resting tension (Fig. 6).

In two experiments performed on isolated
ferret papillary muscle, exposure to saponin
caused a decrease in a'K from a mean value of

101.5 mM to 90.3 mM in = 2). The membrane
potential decreased from 67 mV to 53 mV
after saponin treatment. For comparison,
strophanthidin (10 min exposure of 2 x 10~5
m) caused a decrease in the mean a'K from
101.7 to 90.7 mM. This was accompanied by a
decrease of jEm from a mean value of 67 to 55
mV (n = 2).

Discussion

The results reported here have confirmed that
saponin induces a depolarization of cardiac

10 min

5 lOOp 1 1
I? 70 L

— 50 r

>

J -60 •

-70-

Saponin

FIGURE 5. The effect of saponin on the intracellular
potassium activity top trace), the membrane poten¬
tial (Em, middle trace) and resting tension (bottom trace)
in a sheep heart Purkinje fibre. The bar indicates the
period ofexposure to 0.025 mg/ml saponin.
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FIGURE 6. The effect of strophanthidin on the intracellular potassium activity (a'K, top trace), the membrane
potential (£m, middle trace) and the resting tension (bottom trace). Strophanthidin (2 x 10~5 m) was applied before
the period indicated by the bar.

cell membranes (Enomoto et al., 1986) and
have shown that the depolarization is con¬
comitant with an increase of the intracellular
sodium ion activity and a decrease of intracel¬
lular potassium. The cardiac tissue was depo¬
larized to about —40 mV in Tyrode solution
following treatment with 0.15 mg/ml saponin
for about 1 h. Therefore the skinning of the
surface membrane was incomplete under
these conditions.

In "sub-skinning" concentrations of
saponin the sodium-potassium pump still
appears to be operative. Under these condi¬
tions the removal of extracellular potassium
caused an extra increase of intracellular
sodium. Subsequent readdition of potassium
was followed by a reduction of sodium. Also,
in some experiments, there was an apparent
partial reversal of the effects of saponin on
and on membrane potential even in the con¬
tinued presence of the glycoside. This effect is
difficult to explain. Following the rise of
sodium there might have been a slow recruit¬
ment of extra sodium pumps from a reserve
pool as was suggested by Lamb and Ogden
(1982) in HeLa cells.

The literature concerning the relationship
of cholesterol to the sodium pump enzyme

system is often contradictory (see e.g. Peters et
al., 1981). Some results appear to indicate
that cholesterol is not essential for Na-K-
ATPase activity (Roelofsen et al., 1966;
Wheeler and De Caldentey, 1980). The
present results suggest that the interaction of
saponin with cholesterol in these experiments
did not impair greatly the function of the
sodium-potassium pump. An alternative
explanation for the partial recoveries of
and membrane potential in the continued
presence of saponin may be that either the
sodium permeability decreased, or the
sodium-potassium pump activity increased,
due to changes in other intracellular factors.

One possible explanation for the apparent
recovery of a^a in saponin was that cells pen¬
etrated by the ion-sensitive and by the con¬
ventional microelectrodes became electrically
uncoupled (the voltage recorded by the con¬
ventional electrode is electronically sub¬
tracted from that recorded by the ion-sensitive
electrode in order to obtain the «Na)- This
seems unlikely as quite large and rapid
changes of membrane potential occurred
without apparent artifacts on the recording of
^Na ■

Saponin caused reversible decreases of a'K
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(Fig. 5). These effects could be accounted for
by an increased permeability of the cell mem¬
brane to potassium but some inhibition of the
sodium-potassium pump cannot be ruled out.
However, complete inhibition of the sodium-
potassium pump with high concentrations of
cardiac glycosides normally produces mem¬
brane depolarization of only 10 mV or less
(Fig. 6; Deitmer and Ellis, 1978) whereas
larger depolarizations were produced by
saponin. It is conceivable that the large depo¬
larizations were at least partly responsible for
the observed decreases of intracellular pot¬
assium activity.

Saponin had relatively little effect on
steady-state pH{. Even if the resting H+ influx
was increased in saponin little change in pHt
would be expected due to the high buffering
capacity of these cells and efficient proton
pumping (Ellis and Thomas, 1976). In some
experiments/)//; recovery from an acidosis was
inhibited but this might have occurred as a
result of an increase of ajs,a . The latter would
be expected to inhibit sodium-hydrogen
exchange, the major factor involved in pHK
recovery from acidosis (e.g. Ellis and
MacLeod, 1985).

Divalent cations and saponin
Interaction between the effect of saponin and
the stabilizing action of divalent cations has
already been reported to exist in smooth
muscles (Osa et al., 1985). The present results
indicate that in cardiac tissue, changing
[Ca]0 or [Mg]0 modulates the effect of
saponin, it being more effective at low diva¬
lent cation concentrations. This could explain
why incomplete skinning was obtained in the
present experiments when concentrations as
high as 0.15 mg/ml were added to the normal

Tyrode solution (which contains 2 mM
calcium and 1 mM magnesium). When such
concentrations were added in the presence of
only trace amounts of [Ca]0 (plus 130 mM
[K]0 , 10 mM [Na]0 to mimic the intracellular
medium) then the cells became skinned.
Saponin has surfactant properties. However
the divalent cation dependence does not
appear to be like the interaction of calcium
and soap (where insoluble calcium stearate is
produced thereby lowering the soap
concentration) as calcium does not cause pre¬
cipitation in saponin solutions (100 mM
calcium added to 50 mg/ml saponin).

To conclude, therefore, saponin is able to
produce a positive inotropic effect on cardiac
muscle and to produce cell skinning. Saponin
is more effective the lower the divalent cation
concentration. At subskinning concentrations
there is an increase of «Na and a decrease of
that appears not to be accounted for solely by
an inhibition of the sodium-potassium pump.
Even small increases of «Na can produce large
increases in force (Eisner et al., 1984) via the
sodium-calcium exchange mechanism. Thus
the positive inotropic effects, the changes in
intracellular ion levels and the depolarization
could be explained by a saponin induced
increase in membrane permeability to sodium
which may be part of a nonspecific increase in
ion permeability. The positive inotropy is
probably not due to a change in intracellular
pH.
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