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ABSTRACT 

Cerebral hypoperfusion can occur in normal ageing and is proposed to underlie white 

matter disturbances observed in the ageing brain. Moreover, cerebral hypoperfusion 

and white matter attenuation are early events in the progression of Alzheimer’s 

disease (AD). White matter mostly consists of myelinated axons which have distinct 

protein architecture, segregated into defined regions; the axon initial segment (AIS), 

the node of Ranvier, paranode, juxtaparanode, and internode. These sites are 

essential for action potential initiation and/or propagation and subsequently effective 

brain function. At the outset of the studies in the thesis there was evidence that the 

different regions within the myelinated axons are vulnerable to injury and disease. 

Thus it is hypothesised that in response to normal ageing and/or cerebral 

hypoperfusion these structures are altered and associated with cognitive impairment 

and that these effects are exacerbated in a transgenic mouse model (APPSw,Ind, J9 

line) which develops age-dependent amyloid-β (Αβ) pathology.  

The first study aims to investigate the effect of normal ageing and Aβ deposition on 

myelinated axons and on learning and memory. To address this, the effects of normal 

ageing on the integrity of the AIS, nodes of Ranvier, myelin, axons, synapses and 

spatial working memory are examined in young and aged wild-type and 

TgAPPSw,Ind mice. A significant reduction in the length of nodes of Ranvier is 

demonstrated in aged wild-type and TgAPPSw,Ind mice. In addition, the length of 

AIS, is significantly reduced in the aged wild-type animals while the young 

TgAPPSw,Ind have significantly shorter AIS than the young wild-type mice. These 

effects are not influenced by the presence of Aβ. Myelin integrity is affected by age 

but this is more prominent in the wild-type animals whilst axonal integrity is intact. 
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Moreover, there is an age-related decrease of presynaptic boutons only in the 

TgAPPSw,Ind mice. Contrary to the original hypothesis, working memory 

performance is not altered with age or influenced by increasing Aβ levels.  

The second study aims to examine the effects of cerebral hypoperfusion in 

combination with Αβ pathology and/or ageing on cognitive performance and the 

structure of myelinated axons. To address this, the effects of surgically induced 

cerebral hypoperfusion on the integrity of the nodes of Ranvier, paranodes, myelin, 

axons and spatial working memory performance are investigated in young and aged 

wild-type and TgAPPSw,Ind mice. A decrease in nodal length is observed in 

response to hypoperfusion in young and aged animals. This effect is shown to be 

exacerbated in the young TgAPPSw,Ind animals. Moreover, the disruption of the 

nodal domain is shown to occur without any gross alterations in myelin and axonal 

integrity. It is also demonstrated that in response to hypoperfusion, spatial working 

memory performance is defected in young and aged animals of both genotypes. This 

deficit is exacerbated in the young TgAPPSw,Ind. The observed changes in the nodal 

structure are associated with poor working memory performance indicating 

functional implication for the nodal changes.  

These data highlight that structures within myelinated axons are vulnerable to ageing 

and cerebral hypoperfusion. Therefore, the development of strategies that minimize 

injury or drive repair to these regions is necessary together with therapeutic 

approaches against the vascular insults that induce hypoperfusion and lead to white 

matter attenuation and cognitive decline. In the future, it would be interesting to 

investigate how alterations at the AIS/nodes of Ranvier affect neuronal excitability.  
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Chapter 

1 
Introduction 

1.1 White matter  

Early post-mortem observations of the central nervous system (CNS) introduced the 

concept of white matter and separated it from the grey matter (Meckel, 1817) on the 

basis of their colour difference upon examination with the naked eye 

(macroarchitecture). White matter is present throughout the CNS tissue of vertebrate 

animals. In humans, more than 50% of the total brain volume accounts for white 

matter (Figure 1.1A). This fraction of white matter abundance is by far the greatest 

seen in any species (Fields, 2008). In mice, for example, white matter is only 25% of 

the total brain volume. 

The interest in white matter began in the 19
th

 century. In 1858, Rudolf Virchow 

introduced the concept of neuroglia (Greek γλία,"glue, something sticky") for white 

matter. However, it was only considered to be a type of connective tissue without 

cellular components (Virchow, 1860). Later in the 19
th

 century, Camillo Golgi was 

the first who showed that glia contains cellular components different from the 

nervous cells (Golgi, 1870). In the early 20
th

 century, Santiago Ramon y Cajal and 

his pupil Pío del Río-Hortega described the three major cellular components: the 

astrocytes, the oligodendrocytes and the microglia. Hortega demonstrated the 
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myelinating properties of the oligodendrocytes rendering them the CNS equivalent of 

the Schawnn cell found in the peripheral nervous system (PNS). 

It is now recognised that white matter integrity is essential for normal brain function. 

White matter maintains the communication between the different brain regions and 

disruption to its components could lead to breakdown of the communication between 

the neurons of different brain regions that may ultimately translate into cognitive 

impairment. Alterations to white matter have been implicated in ageing and 

neurodegenerative diseases and associated with cognitive dysfunction. Throughout 

the thesis the integrity of white matter components in response to normal ageing and 

challenges to the brain (low blood flow, amyloid-β) will be closely examined. 

 

1.1.1 Components of white matter 

White matter consists of glial cells, blood vessels and myelinated axons. Axons 

connect neurons residing in different grey matter areas of the CNS and facilitate their 

communication (Figure 1.1B). In the CNS, glial cells are approximately 10 times 

more abundant than the neurons (Coyle and Schwarcz, 2000). Glia include different 

cell types such as astrocytes, microglia and oligodendrocytes.  
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Figure 1.1 White matter and its components. [A] Schematic of a coronal section of 

the human brain showing areas of grey and white matter tissue (Bear et al., 2007). 

[B] White matter consists of blood vessels, astrocytes, microglia, oligodendrocytes 

and axons (image adapted from http://en.wikipedia.org/).  

http://en.wikipedia.org/
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1.1.1.1 Astrocytes 

Astrocytes are the most numerous cell types in the CNS and second most abundant in 

white matter. Astrocytes serve multiple roles; their function has been implicated in 

the maintenance of synapses (Allen and Barres, 2005), the homeostasis of 

extracellular ions (Laming et al., 2000), the function of the vasculature (Mulligan and 

MacVicar, 2004), the regulation of signaling (McIver et al., 2013), the trophic 

support of the oligodendrocytes (Paspalas and Papadopoulos, 1998) and the initiation 

of the myelination (Franklin and Ffrench-Constant, 2008).  

 

1.1.1.3 Oligodendrocytes 

The oligodendrocytes are the most prevalent cell type in the white matter. They are 

the cells that produce myelin, a substance comprised of 70% lipids and 30% proteins 

(Raine, 1984). They extend processes that wrap around axons in a process known as 

myelination. The nature of myelination is segmented, with the myelin segments 

being interrupted by gaps of unmyelinated axon known as nodes of Ranvier (Figure 

1.2). One oligodendrocyte may ensheath multiple surrounding axons and different 

segments of myelin on the same axon may originate from different oligodendrocytes. 

Myelination acts as insulation proving higher conduction velocity of the electric 

impulses along the axons. It has been shown that conduction velocity increases up to 

100 times in the myelinated axons in comparison with the unmyelinated ones (Fields, 

2008). The presence of the myelin sheath is advantageous because it offers secure 
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signal transduction between the different brain regions and high speed conduction of 

the electric impulses by saving energy and space (Quarles et al., 2006). 

The myelinating oligodendrocytes originate from oligodendrocyte precursor cells 

(OPCs) and they are the product of a precise developmental program (Bradl and 

Lassmann, 2010). This includes the differentiation of the OPCs to pre-/immature 

oligodendrocytes which then differentiate into mature myelinating oligodendrocytes 

expressing multiple myelin-specific proteins (detailed later in chapter 1.1.2.1). The 

oligodendrocytes insulate the axons with myelin and have multiple other roles. For 

example, they are responsible for the clustering of sodium channels at the nodes of 

Ranvier which is necessary for saltatory conduction (Kaplan et al., 1997; Kaplan et 

al., 2001). In addition, they are necessary for axonal survival (Uschkureit et al., 2000; 

Garbern et al., 2002) and fast axonal transport (Edgar et al., 2004) and they also 

provide trophic support to the neurons with the production of neurotrophic factors 

such as glial cell line-derived neurotrophic factor (GDNF), brain-derived 

neurotrophic factor (BDNF), or insulin-like growth factor-1 (IGF-1) (Du and 

Dreyfus, 2002).  

The formation of the myelin sheath is a long process that proceeds from the caudal to 

the most rostral regions of the brain (Baumann and Pham-Dinh, 2001) and in some 

regions can form even during the sixth decade of life (Benes et al., 1994). However, 

myelination and the support of the myelin sheaths by the oligodendrocytes is 

extremely energy demanding and requires high amounts of oxygen and ATP 

(McTigue and Tripathi, 2008). The high metabolic rate of the oligodendrocytes 

produces toxic hydrogen peroxide and reactive oxygen species that need to be 
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metabolised (McTigue and Tripathi, 2008). In addition, the oligodendrocytes have 

high content in iron and low concentration in the anti-oxidative enzyme glutathione 

(Thorburne and Juurlink, 1996) which combined with the toxic byproducts of the 

metabolism makes them susceptible to oxidative damage.  
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Figure 1.2 The myelinating oligodendrocytes. Oligodendrocytes produce myelin 

and extend processes that wrap around the axon. The nature of myelination is 

segmented, with the myelin segments being interrupted by gaps of unmyelinated 

axon known as nodes of Ranvier (image adapted from http://en.wikipedia.org/).  

http://en.wikipedia.org/
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1.1.1.4 Blood vessels 

Blood supply to the white matter is mediated by a vascular network delivering 

oxygen, glucose and nutrients necessary for the cellular metabolism. From the pial 

network running on the surface of the brain, smaller arteries branch out and penetrate 

into the brain tissue (Cipolla, 2009). The penetrating arterioles further branch out at 

different directions going thought the cortex to the sub-cortical white matter. These 

arteries terminate in the capillary bed which is characterised by small branched 

vessels that supply distinct areas of white matter with blood (Lierse and Horstmann, 

1965). This places the white matter at the end of the blood supply route (Pantoni, 

2002) and it may be more vulnerable to cerebral blood flow (CBF) fluctuations 

(Pantoni and Garcia, 1997). This will be outlined in further detail in chapter 1.3.2. 

 

1.1.2 The myelinated axon 

Ramon Y Cajal was the first to introduce the concept of directionality for signal 

transmission and neuronal communication (Llinas, 2003). As mentioned earlier, the 

myelin sheaths insulate the axons and subsequently increase the velocity of the 

electric impulses along the axons by increasing the electrical resistance and 

decreasing the capacitance of the axonal membrane. The electric impulses are called 

action potentials (AP) and result from information processing of excitatory and 

inhibitory signals which converge at the neuron for the generation of an all-or-

nothing response. The segmented nature of myelination allows salutatory conduction 

of the action potentials. Action potential initiation and propagation is mediated by 
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molecular domains of the myelinated axon with unique morphological and functional 

characteristics. These domains are: (1) the axon initial segment (AIS) which is a 

region of unmyelinated axon located close to the soma just before the first myelin 

segment and is where the action potential is generated, (2) the node of Ranvier which 

is a region of unmyelinated axon found between neighbouring myelin segments and 

is rich in voltage-gated sodium (Na
+
) channels, (3) the paranode, the region where 

the myelin loops contact the axonal membrane, (4) the juxtaparanode, a region rich 

in potassium (K
+
) channels and (5) the internode, where the myelin is compactly 

wrapped (Figure 1.3).  
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Figure 1.3 Molecular domains of the myelinated axon. Schematic representation of 

a pyramidal neuron showing the localisation of the axon initial segment (AIS), the 

nodes of Ranvier, the paranodes, the juxtaparanodes and the internodes on the axon. 

Image adapted by Kole and Stuart (2012).  
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1.1.2.1 Myelin specific proteins  

Myelin has a unique composition which facilitates its insulating properties. It has a 

low content of water (40%) and its dry weight is comprised by high content in lipids 

(70-85%) and low content in protein (15-30%) (Quarles et al., 2006). The proteins 

and the lipids are produced by the oligodendrocytes. In the CNS the major protein 

components of myelin are oligodendrocytes-specific and almost 80% of myelin’s 

protein load is comprised by two proteins, the myelin basic protein (MBP) and the 

proteolipid protein (PLP). Other abundant proteins are the 2’,3’- Cyclic Nucleotide 

3’- Phosphodiesterase (CNPase), the myelin associated glycoprotein (MAG) the 

myelin oligodendrocyte glycoptotein (MOG) and the oligodendrocyte-myelin 

glycoprotein (OMgp). 

MBP is a family of membrane proteins located exclusively on the cytoplasmic 

surface. The family includes different isoforms differentially expressed in the various 

stages of oligodendrocyte maturation and their role is to facilitate compaction of the 

appositional cytoplasmic surfaces (Omlin et al., 1982; Roach et al., 1985). In humans 

there are four isoforms of different molecular weight (21.5, 20.2, 18.5 and 17.2kDa), 

with the 18.5 and 17.2kDa isoforms being the most abundant. In mice there are also 

four isoforms (21.5, 18.5, 17 and 14kDa), with the 18.5 and 14kDa being the most 

abundant (Campagnoni and Macklin, 1988; Staugaitis et al., 1990). PLP is a 30 kDa 

transmembrane protein with both the N- and C- terminals at the cytoplasmic side and 

second most abundant myelin protein. Its role is the compaction and stabilization of 

the myelin sheath (Nadon and West, 1998). CNPase is another myelin protein; it can 

be found in two isoforms (CNP1 and CNP2) and has a 2’,3’- Cyclic Nucleotide 3’- 
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Phosphodiesterase enzymatic activity (Lazzarini, 2004). MAG is a 100 kDa protein 

found on the oligodendroglial membranes of the myelin sheath that surround the 

axons and is involved in signalling mechanisms between the oligodendrocytes and 

the axons (Quarles, 2007). Other myelin proteins are MOG, which is a 26 KDa 

protein found on the outer surface of the myelin sheaths, and OMgp which is a 120 

kDa expressed by both oligodendrocytes and neurons (Quarles, 2002). 

 

1.1.2.2 Axonal cytoskeleton 

The axonal cytoskeleton is a three dimensional structure contributing to the structural 

architecture of the axon as well as to axonal transport. It comprises of three different 

filament components namely microtubules, neurofilaments and microfilaments. The 

core structural protein of microtubules is tubulin, which comprise of α- and β- 

tubulin heterodimers which polymerize and align in such way for the formation of a 

25 nm hollow tube. In addition, microtubules interact with multiple microtubule-

associated proteins. Multiple roles have been attributed to microtubules including 

organelle transport, neuritic extension during development and maintenance of 

intracellular compartmentalisation. The second type of filaments, are neurofilaments, 

a rope-like structure of 8-10 nm diameter with projecting side arms. Neurofilaments 

are formed by three subunits; the light (60-70 kDa, NF-L), medium (130-170 kDa, 

NF-M) and heavy (180-200 kDa, NF-H) chain. In addition α-internexin and 

peripherin may interact with neurofilaments. Neurofilaments are important for 

maintaining the morphology of the axons and axonal transport. Alterations in the 

levels and the phosphorylation of neurofilaments have been linked to neurological 
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diseases such as AD, motorneuron disease, Parkinson’s disease and others (Al-

Chalabi and Miller, 2003). Finally, the third type of filaments are microfilaments 

which comprise of polymerized actin (43-kDa). The actin cytoskeleton has multiple 

roles including cell migration and adhesion, distribution of the proteins at the plasma 

membrane and their restriction at respective compartments. 

 

1.1.2.3 Nodes of Ranvier  

Myelin sheaths throughout axons are segmented and interrupted by gaps of 

unmyelinated axon, the nodes of Ranvier, which serve the long distance rapid 

saltatory propagation of the action potentials. Action potentials are all-or-nothing 

responses initiated by the rapid influx of Na
+
 via voltage-gated sodium channels such 

as Nav, Na+/K+ ATPases and Na+/Ca+ antiporters which are accumulated at the 

nodes of Ranvier (Duflocq et al., 2008; Pan et al., 2006). There are different subtypes 

of Nav channels with Nav1.6 being the most abundant in the adult CNS and Nav1.2 

being expressed during development (Boiko et al., 2001; Kaplan et al., 2001). The 

Nav channels are comprised of an α subunit forming a pore through the axolemma 

and two β subunits interacting with cell adhesion molecules, extracellular matrix 

molecules and cytoskeletal scaffolds (Rasband, 2011). Targeting of Nav channels at 

the membrane of the nodes of Ranvier is controlled by the oligodendrocytes and 

includes the formation of a macro-molecular complex of multiple interacting proteins 

such as the cytoskeletal adaptor protein ankyrin G (AnkG), the actin binding protein 

βIV-spectrin, as well as the cell-adhesion molecules neurofascin 186 KDa isoform 

(NF186) and NrCAM (Rasband, 2011) (Figure 1.4A). Clustering of the Nav channels 
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at the nodes of Ranvier appears to be dependent on AnkG (Zhou et al., 1998; Pan et 

al., 2006; Dzhashiashvili et al., 2007). The neuron specific NF186 is responsible for 

AnkG recruitment at the node while AnkG is responsible for βIV-spectrin 

recruitment at the node (Dzhashiashvili et al., 2007; Susuki and Rasband, 2008b; 

Lacas-Gervais et al., 2004). 

 

1.1.2.4 Paranodes 

The paranodes are the principal site of axon-glial contact and serve as a diffusion 

barrier for the ion channels accumulated on either side of the paranode at the nodes 

of Ranvier and the juxtaparanodes (Figure 1.4A). This is achieved by the formation 

of septate-like junctions between the myelin loops of the oligodendrocytes and the 

axon membrane. The septate-like junctions have been thoroughly studied and it has 

been shown that a heterotrimeric molecular complex formed by contactin associated 

protein (Caspr) and contactin located on the axolemma and glial 155 KDa 

neurofascin isoform (NF155), is necessary for the axon-glial interaction. When any 

of the three members of the complex is absent, paranodal disruption and impaired 

signal propagation is observed (Bhat et al., 2001; Boyle et al., 2001; Pillai et al., 

2009; Sherman et al., 2005). Moreover, if the paranodal formation is disrupted, this 

subsequently influences the voltage gated sodium channels clustering at the nodes of 

Ranvier (Rios et al., 2003). It is proposed that Caspr is recruited at the paranodal 

region before myelination at the time of the first axon-glial interaction and Caspr and 

NF155 extracellular interaction is also necessary for Caspr recruitment at the 

paranodes (Eisenbach et al., 2009; Pedraza et al., 2009). Finally, the paranodal 
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complex interacts with the cytoskeletal adaptor protein 4.1B, which can be found in 

paranodes and juxtaparanodes, via the intracellular domain of Caspr. The 4.1B 

protein is in turn linked to the actin cytoskeleton (Denisenko-Nehrbass et al., 2003).   



 16 

 

Figure 1.4. Protein architecture of molecular domains of the myelinated axon. [A] 

The nodes of Ranvier are populated with voltage gated sodium channels (Nav), they 

are stabilised at the axonal membrane via interaction with NF186, NrCAM and 

AnkG. AnkG is a scaffold protein which binds on βIV spectrin to stabilize the nodal 

complex on the actin cytoskeleton. The paranodes are the principal site of axon-glial 

contact. Contactin, NF155 and Caspr interact to form septate-like junctions between 

the axonal membrane and the paranodal loops. The juxtaparanodes are rich in 

potassium channels (Kv). [B] The AIS is a region of unmyelinated axon located close 

to the soma before the first myelin segment with the nodes of Ranvier. It is rich in 

Nav channels (Nav1.6, 1.2 and 1.1) and in potassium channels. The AIS is also a 

post-synaptic site for axo-axonic synapses and the γ-aminobutyric acid (GABA) 

receptor is expressed at the AIS plasma membrane. Image adapted from Mayer and 

Meinl (2012).   
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1.1.2.5 Juxtaparanodes  

The juxtaparanodes are found adjacent to the paranodes and are characterised by 

accumulation of Shaker-type potassium channels (Kv) on the axonal membrane 

(Figure 1.4A). Their formation is controlled by a diffusion barrier formed by the 

septate-like junctions of the paranodes and the assembly of the juxtapanodal complex 

from axonal and glial interacting proteins that anchors on the cytoskeleton (Susuki 

and Rasband, 2008a). The juxtaparanodal complex is a heterotrimeric complex 

formed by TAG-1 (contactin-2) which is a cell adhesion molecule expressed on glial 

and axonal membranes, Caspr2 which is a second member of the Caspr family and 

the Kv channels (Poliak et al., 1999; Traka et al., 2003). Similar to the paranodal 

complex, Caspr2 of the juxtaparanodal complex interacts with 4.1B that anchors the 

whole complex on the actin cytoskeleton. TAG-1 is essential for juxtaparanodal 

organisation and Kv clustering (Savvaki et al., 2008). 

  

1.1.2.6 Internodes 

The internodes are the part of the myelinated axon found between neighbouring 

nodes of Ranvier and are characterized by compact myelin (Figure 1.4A). Typical 

myelin proteins such as MAG and MOG are expressed on the glial membranes of the 

internodes. MAG is expressed on the glial membrane most proximal to the axon 

while MOG is located on the outmost glial membrane. MBP and PLP are also 

expressed at the internodes. Moreover, the length of internodes is important for the 



 18 

velocity and the configuration of action potential during saltatory conduction (Brill et 

al., 1977). 

 

1.1.2.7 Axon Initial Segment 

The axon initial segment (AIS) is a region of unmyelinated axon located close to the 

neuronal soma before the first myelin segment (Figure 1.4B). It has a role in action 

potential generation, configuration and propagation (Buffington and Rasband, 2011). 

The AIS shares some remarkable similarities in protein architecture with the nodes of 

Ranvier. It is highly rich in voltage-gated sodium channels (Nav), Nav1.6 is the 

abudant type (Caldwell et al., 2000) but Nav1.2 and Nav1.1 can also be found on the 

axonal membrane of the AIS (Buffington and Rasband, 2011). Similar to the nodes 

of Ranvier, during development Nav1.2 is replaced by Nav1.6. However, in the AIS, 

Nav1.2 instead of being completed ablated it is restricted to proximal part of the AIS 

(Boiko et al., 2003; Hu et al., 2009). These channels provide the influx of Na+ 

necessary for action potential initiation (Peles and Salzer, 2000). Nav channels 

together with axon specific proteins NF186 and NrCAM interact with AnkG, the 

cytoskeletal scaffolding protein. AnkG interacts with spectin βIV to provide 

stabilisation to the actin cytoskeleton of the axon (Berghs et al., 2000; Buffington 

and Rasband, 2011). In the AIS, axon-glial interaction is not necessary for Nav 

channel recruitment at the axonal membrane (Bennett and Baines, 2001) which is in 

contrast to the glial-dependent mechanism at nodes. AnkG appears to be essential for 

Nav channel targeting at the AIS and when it is ablated the formation of the AIS 

protein complexes fails (Hedstrom et al., 2008). Moreover, NF186 has been shown to 
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be responsible for AIS maturation leading to the switch from Nav1.2 to Nav1.6 

expression (Buttermore et al., 2012).  

The plasma membrane of the AIS is enriched with potassium channels (Pan et al., 

2006). The Kv1 subtype interacts with Caspr2 at the AIS but the exact mechanism for 

AIS targeting is not known (Horresh et al., 2008; Ogawa et al., 2008; Ogawa et al., 

2010). In contrast, the Kv7 subtype, KCNQ2 and KCNQ3 interact with AnkG which 

targets and stabilises the channels at the AIS plasma membrane (Pan et al., 2006).  

The AIS also acts as a post-synaptic site for what is known as “axo-axonic” synapses 

(Huang et al., 2007). These synapses are implicated in synaptic integration and action 

potential generation. The GABA receptor is expressed on the AIS postsynaptic 

membrane and there is evidence that NF186 modulates the assembly of GABAergic 

synapses (Ango et al., 2004; Burkarth et al., 2007). Moreover, a few studies have 

shown that the AIS structure shows remarkable levels of activity-dependent plasticity 

and has the ability to change its size or location on the axon in response to altered 

electrical activity or synaptic input (Kuba et al., 2010; Grubb and Burrone, 2010a).  

 

1.1.1.2 Microglia  

Microglia are the main immune cells of CNS. Microglial cells are differentiated 

macrophages residing in the brain with an important role in brain injury and 

inflammation. Under normal conditions, in the healthy brain, they can be found in 

their “resting” ramified state, which is characterized by small soma and fine short 

processes and they are constantly surveying their environment. Any type of insult, 
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infection or disease which disrupts or alters brain homeostasis and potentially could 

be a danger to the brain results in what is known as “microglial activation” 

(Kettenmann, 2006). When activated, microglial cells lose their morphological 

complexity acquiring an amoeboid appearance. `Activated microglia are recruited at 

the site of the insult and are implicated with increased proliferation and migration of 

more activated microglial cells to the site of injury, phagocytosis of tissue debris, 

damaged cells or pathogens, release of chemotactic molecules which recruit immune 

cells to the CNS, antigen presentation and regulation of the extent of the immune 

response. In the aged brain as well as in many neurodegenerative diseases such as 

multiple sclerosis, Alzheimer’s disease (AD) and Parkinson’s disease, increased 

microglial activation is a common feature (von Bernhardi et al., 2010; Tambuyzer et 

al., 2009). In AD, in particular, microglial activation is well described and has been 

associated with the deposits of pathological proteins (amyloid-β, Aβ) to the brain 

parenchyma (Wisniewski et al., 1989). 
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1.2 The ageing brain  

Age has been highlighted as the most important risk factor for white matter 

attenuation and cognitive decline in healthy individuals. Studies in healthy 

individuals have suggested that, with ageing, there is a decline of cognitive processes 

such as the recall of verbal information, working memory, short-term recall and the 

speed of processing information (Craik et al., 1994; McDonald-Miszczak et al., 

1995; Petersen et al., 1992; Zelinski and Burnight, 1997). White matter mediates the 

communication of distinct brain regions and its properties that have been described 

earlier confer the speed of processing and conduction of information that is essential 

for higher cognitive functions (Bartzokis et al., 2004). Thus deterioration of myelin 

integrity disrupts signal conduction and communication between the different brain 

regions and subsequently may alter cognitive functions.  

Numerous studies using both histopathological and neuroimaging techniques have 

provided evidence about the nature of changes in white matter integrity that may 

contribute to the decline of the cognitive performance. For example, 

histopathological studies in humans have shown that the length of myelinated axons 

is decreased by approximately 45% between 20 and 80 years of age, reducing by 

10% every decade (Marner et al., 2003). Tang et al. (1997) also observed a 

significant reduction in myelinated fiber length and reported a loss in small caliber 

fiber with age. Other age-related changes in white matter include the decrease in the 

total number of the myelinated fibers (Meier-Ruge et al., 1992; Marner et al., 2003) 

and loss of myelin staining (Kemper, 1994; Lintl and Braak, 1983). There is also 

evidence that late-life myelinated fibers are more sensitive and the first lost in the 
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ageing brain (Bartzokis et al., 2003) In support of this data, detailed electron 

microscopy studies in aged non-human primates have shown the formation of splits 

and cavities (“balloons”) within the lamellae of the myelin sheath (Peters and 

Sethares, 2002; Peters et al., 2000; Feldman and Peters, 1998). In addition, evidence 

from non-human primates studies show a direct association between the percentage 

of fibers with age-related alterations and the level of cognitive impairment (Peters et 

al., 2001). 

There are a few studies in monkeys and rodents showing age-related changes in the 

excitable domains of the myelinated axons. For example, Hinman et al. (2006) 

showed an increased number of axons with the Kv1.2 channel abnormally localized 

within the paranodal region in aged monkeys and rats. Moreover, examination of the 

paranodal region with electron microscopy in aged mice showed paranodal 

disruption as indicated by the pilling of the paranodal loops and loss of transverse 

bands (Shepherd et al., 2012). 

Neuroimaging studies have also provided strong evidence connecting white matter 

alterations and normal ageing. A dominant feature of ageing is the reduction of total 

brain volume which accelerates after 50 years of age (Raz and Rodrigue, 2006). A 

number of studies have shown that white matter loss is more prominent than grey 

matter loss in aged individuals (Allen et al., 2005; Bartzokis et al., 2003; Jernigan et 

al., 2001). In addition, the presence of white matter lesions which appear as areas of 

increased signal (hyperintensities, Figure 1.5) on T2-weighted images of magnetic 

resonance imaging (MRI) scans is a well-established observation in the aged white 

matter. These hyperintensities are present in more than half of the individuals over 
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65 years of age (Enzinger et al., 2006) and their number correlates with the level of 

cognitive decline (Bunce et al., 2007; DeCarli et al., 1995; Hedden et al., 2012). 

Diffusion tensor imaging (DTI) has also been used to examine microstructural 

myelin integrity by measuring fraction anisotropy (FA) which is a measure of the 

anisotropy of diffusion of water in the brain based on its tendency to diffuse along 

the length of the myelinated fibers. FA studies have shown alterations in white 

matter integrity with increasing age in regions of the prefrontal cortex, the striatum 

and the corpus callosum (Gunning-Dixon et al., 2009; Janowsky et al., 1996; Salat et 

al., 2005; Sullivan et al., 2001). Moreover, there is evidence that deterioration of 

white matter integrity examined with DTI is associated with poor cognitive 

performance (Bucur et al., 2008; Deary et al., 2006; Kennedy and Raz, 2009; Jacobs 

et al., 2013; Kerchner et al., 2012; Papp et al., 2013).  

In addition to white matter alterations, the ageing brain is also characterised by a 

decrease in synaptic density which has also been suggested to be a contributing 

factor to age-related cognitive decline (Dickson et al., 1995; Scheff et al., 2006; 

VanGuilder et al., 2011). Synapses form between presynaptic boutons of the axons 

and the post-synaptic dendritic spines. A decrease in synaptic density has been 

observed in the brain of aged humans, primates and rodents (Geinisman et al., 1986; 

Bourgeois and Rakic, 1996; Liu et al., 1996). In addition there is evidence from 

studies in aged rats that the excitatory synaptic transmission changes with ageing 

(Burke and Barnes, 2010). Such alterations in synaptic transmission combined with 

alterations in myelin integrity that is essential for effective signal conduction could 

potentially result in perturbations synaptic plasticity and subsequently long term 
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potentiation (LTP) which is indicative of how the memory mechanisms function 

(Kumar and Foster, 2007).  
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Figure 1.5 White matter hyperintensities. Image of a MRI scan from an 80 year old 

individual, white matter lesions are showing as hypersintensities (asterisks). Image 

reproduced from Debette and Markus (2010).  

* * 
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1.3 Chronic cerebral hypoperfusion  

1.3.1 Cerebral blood flow and metabolism 

Cerebral blood flow (CBF) supplies the brain with glucose and oxygen necessary for 

its function. In humans, almost 80% of cerebral perfusion is supplied by the carotid 

while the two vertebra arteries, which join together to create the basilar artery, 

contribute to the remaining 20%. The brain, which is only 2% of the total body 

weight, receives 15% of the cardiac blood flow output and uses for its normal 

function 20% and 25% of the total body oxygen and glucose respectively (Zauner 

and Muizelaar, 1997). The neurons use almost 75% of the oxygen supply and almost 

80% of the energy produced is used for the maintenance of the ionic gradients 

necessary for action potential generation and propagation (Zauner and Muizelaar, 

1997). Thus, reduction or ablation of CBF may have severe effects on normal brain 

function. 

 

1.3.2 Chronic cerebral hypoperfusion in normal ageing 

Chronic cerebral hypoperfusion, or reductions in CBF, occurs in the normal ageing 

brain CBF is reduced gradually and continuously over time and during the eighth 

decade CBF is 20-25% lower than that of the third decade (Buijs et al., 1998; 

Stoquart-ElSankari et al., 2007). Total blood volume that flows into the brain, as well 

as oxygen consumption reduce by approximately 0.5% every year from the third to 

the eighth decade (Leenders et al., 1990). Morphological alterations in vasculature 

and particularly in the microvasculature have been reported including thickening of 
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the vascular wall, arteriosclerosis, and increase in arteriolar tortuosity, capillary loss 

and lipohyalinosis, (Brown and Thore, 2011; Farkas and Luiten, 2001; Kalaria, 

1996). These types of cerebrovascular pathologies have been linked with CBF 

reduction, impairment of white matter integrity and cognitive decline both in humans 

and in animal models (Appelman et al., 2010; Breteler et al., 1994; Farkas et al., 

2007; Pantoni and Garcia, 1997; Sekhon et al., 1994; Shibata et al., 2004).  

The exact mechanism that links the chronic cerebral hypoperfusion and white matter 

alterations is unclear. In the elderly, as indicated earlier, CBF is approximately 20-

25% lower to that of young individuals (Buijs et al., 1998; Stoquart-ElSankari et al., 

2007). Moreover, the brain regions with lower CBF such as the white matter appear 

to be more vulnerable to CBF fluctuations (Pantoni and Garcia, 1997). A likely 

explanation could be that, as described in chapter 1.1.1.4, white matter is at the end 

of blood supply with each penetrating arteriole providing blood to distinct white 

matter regions. Thus any reduction in CBF cannot be compensated by surrounding 

vessels because it is at a vascular end-zone (Borch et al., 2010; Rowbotham and 

Little, 1965). 

In addition, cerebral hypoperfusion in the human ageing brain may be caused by a 

large variety of vascular risk factors such as hypotension, hypertension, diabetes 

mellitus, atherosclerosis and cardiovascular disease (de la Torre, 2010). This makes 

it difficult to determine the exact cause of cerebral hypoperfusion and white matter 

pathology. Therefore, the development of animal models simulating cerebral chronic 

hypoperfusion alone is highly important because it could possibly unravel the 
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mechanisms by which hypoperfusion affects white matter integrity and cognitive 

performance. 

 

1.3.3 Models of chronic cerebral hypoperfusion 

Investigation, in isolation, of the effects of hypoperfusion on white matter integrity 

and cognition is possible with the development of animal models. The model that is 

used most often is the permanent bilateral common carotid artery occlusion 

(BCCAO) or 2 vessel occlusion (2VO) in the rat. In this model, hypoperfusion is 

induced with a surgical procedure by ligating the two common carotid arteries. 

Shortly after surgery, a significant reduction in CBF is observed which appears to be 

more severe in the cortex and in white matter areas (~35-45% of the baseline) than in 

the hippocampus (~65% of the baseline) (Choy et al., 2006; Ohta et al., 1997; Otori 

et al., 2003; Tomimoto et al., 2003; Tsuchiya et al., 1992). After one week there are 

signs of recovery but the CBF remains significantly lower than the baseline up to 4 

weeks after surgery (Otori et al., 2003; Tomimoto et al., 2003; Tsuchiya et al., 1992). 

Only after 8 weeks or longer is there complete recovery of CBF in some areas and 

signs of vascular remodeling (Choy et al., 2006; Otori et al., 2003).  

Induction of hypoperfusion with 2VO results in neuropathological changes such as 

neuronal cell death, synaptic loss, microglial activation and white matter alterations. 

Increased neuronal cell loss is observed in the hippocampus, particularly in the CA1 

region after one week (Farkas et al., 2006; Schmidt-Kastner et al., 2001), and is 

further increased over time (Farkas et al., 2004; Liu et al., 2006). Synaptic loss has 
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also been reported and associated with cognitive decline (Liu et al., 2005). In 

addition white matter integrity is disrupted after the onset of hypoperfusion. The 

optic tract is particularly sensitive in this model due to its direct supply with blood 

from the internal carotid artery (Ohta et al., 1997; Takizawa et al., 2003; Wakita et 

al., 2002) but the corpus callosum is also affected. A variety of white matter 

pathologies are observed including white matter rarefaction and vacuolation (Ohta et 

al., 1997; Wakita et al., 2002), disruption of the myelin sheaths (Farkas et al., 2004) 

and oligodendroglial and astrocytic cell death (Lee et al., 2006; Tomimoto et al., 

2003). Cognitive testing of the rats showed deficits in spatial and non-spatial 

memory and in anxiety-related tasks after the onset of 2VO (Farkas et al., 2007). 

However, in this model it could not be established whether neuronal cell loss or 

white matter alterations are driving the observed poor cognitive performance in the 

behavioural tests. At the same time in this model the visual system is severely 

compromised that could affect performance in cognitive tests using visual cues 

(Farkas et al., 2007).  

A second model that has been used to investigate the effects of hypoperfusion is a 

model of bilateral common carotid artery stenosis to the Mongolian gerbil. In this 

model, stenosis of arteries is achieved with the surgical application of wire coils 

(microcoils) of known diameter around the common carotid arteries inducing modest 

reduction to the blood flow. Stenosis with a 0.2-0.3 mm diameter microil showed 

grey matter damage as early as one week after the induction of hypoperfusion whilst 

white matter lesions (Hattori et al., 1992) develop after 8 weeks. In addition, after 2 

months of hypoperfusion axonal changes are observed (Kurumatani et al., 1998) 
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whilst impairment in cognitive performance is reported 3 months after the induction 

of hypoperfusion (Kudo et al., 1993).  

In 2004, Shibata et al adapted the bilateral common carotid artery stenosis model to 

the mouse. Application of microcoils with different diameter induces different levels 

of blood flow reduction after surgery. The 0.16 mm diameter microcoil reduces CBF 

to ~50% of the baseline 2 hours after surgery which gradually recovers to ~80% of 

the baseline after 1month. Using the 0.18mm diameter microcoil decreases CBF to 

~70% of the baseline 2 hours after hypoperfusion induction which also recovers to 

nearly 85% after one month.  

The use of the 0.18 mm microcoil in the common carotid artery model results in the 

development of diffuse white matter pathology (Holland et al., 2011; Shibata et al., 

2004). The initial study on this model by Shibata et al. (2004), using the 0.18 mm 

microcoil, reports that some white matter lesions first appear after 14 days in the 

corpus callosum, the caudate and the internal capsule; however, after 30 days from 

the onset of hypoperfusion there is severe white matter pathology in the same 

regions. Moreover, some damage in the optic tract is also observed but there is no 

evidence of any ischemic damage (Shibata et al 2004). In a later study, Shibata et al. 

(2007) show that 8 weeks after the induction of hypoperfusion, the hypoperfused 

animals performed poorly compared to controls in the 8-arm radial arm maze 

paradigm, which tests spatial working memory. In our lab, the 0.18 mm microcoil 

has also been used to investigate the integrity of white matter components (Coltman 

et al., 2011; Reimer et al., 2011) and cognitive performance in response to cerebral 

hypoperfusion (Coltman et al., 2011). For example, Coltman et al. (2011) investigate 
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white matter integrity in parallel with cognitive performance and it is demonstrated 

that in the absence of any grey matter pathology spatial working memory deficits are 

linked with disruption in myelinated fibers detected with antibodies against MAG 

and degraded MBP. However, in other tests of spatial memory such as the spatial 

reference memory in Morris water maze, no defect in the hypoperfused animals is 

observed one month after hypoperfusion (Coltman et al., 2011). In addition, in some 

hypoperfused animals some ischemic neurons are observed (Coltman et al., 2011). 

Moreover, detailed investigation of the myelinated axons showed that the nodes of 

Ranvier and the paranodes are vulnerable to the effects of hypoperfusion (Reimer et 

al., 2011). For example, as early as three days from the induction of hypoperfusion 

the length of Nav1.6 positive nodes of Ranvier was increased, an effect that persisted 

at one month. Moreover, investigation of paranodal integrity showed a loss of the 

paranodal NF155 from the paranodal region as early as 3 days after hypoperfusion 

whilst examination of the paranodal region with electron microscopy showed loss of 

the paranodal septate-like junctions after one month from the induction of 

hypoperfusion (Reimer et al., 2011).  

The common carotid artery stenosis mouse model is a very good tool for 

investigating the effects of hypoperfusion on white matter. It is well described that 

bilateral carotid stenosis (using microcoils of 0.18 mm diameter) induces diffuse 

white matter alterations which in turn are associated with specific cognitive 

impairment. Moreover, it can be useful for studying mechanisms implicated in AD 

since cerebral hypoperfusion is known to be an early feature of AD occurring prior to 

the onset of clinical symptoms (described in detail in chapter 1.4.4). This model will 
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be used in the thesis to study the effects of hypoperfusion on myelinated axon 

integrity and cognition in a mouse model of AD (Chapter 4).   
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1.4 Alzheimer’s disease 

Alzheimer’s disease (AD) is a highly heterogeneous and multifactorial 

neurodegenerative disorder characterized by progressive cognitive decline 

accounting for 50-75% of dementia cases worldwide. It is estimated that there are 36 

million patients worldwide. Over the next decades this figure is estimated to rise to 

66 million by year 2030 and 115 million by 2050 (World Alzheimer Reports 2010, 

http://www.alz.co.uk). In the United Kingdom the number of AD patients is 

estimated at 800,000 and expected to rise to 1 million by 2021 

(http://www.alzheimers.org.uk). AD comes third, after cardiovascular disease and 

depression, in the healthcare costs worldwide. In 2012, dementia related costs 

accumulated to £23 billion in the UK.  

 

1.4.1 Pathology of Alzheimer’s disease 

AD was named after the German psychiatrist and neuropathologist Alois Alzheimer 

who was the first to describe the clinical and pathological symptoms of the disease in 

1907 (Alzheimer, 1907). AD is characterized by the progressive deterioration of 

cognitive functions, the accumulation of β-amyloid (Aβ) in extracellular insoluble 

neuritic plaques and blood vessels, and the formation of intraneuronal neurofibrillary 

tangles (NFT) containing hyperphosphorylated tau protein. There is evidence that Αβ 

deposits (plaques) and NTF are present in the brain even at the early pre-clinical 

stages of the disease (Braak and Braak, 1997). The brain areas mostly affected are 

the cortex, hippocampus, entorhinal cortex and amygdala (Wenk, 2003) known to 

have an important role in higher cognitive functions such as learning and memory. 

http://www.alz.co.uk/
http://www.alzheimers.org.uk/
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Severe brain atrophy and neuronal loss are also observed (Castellani et al., 2010). 

Definite diagnosis for AD can only be done post-mortem with the detection of Aβ 

plaques and NFT in the brain of the patients. However, the recently developed 

methods for in vivo imaging of Aβ are promising for the development of a tool to aid 

AD diagnosis (McKhann et al., 2011; Morris et al., 2009; Roe et al., 2013).  

The reason for the development of AD remains unknown. However, there is a very 

small proportion (~1%) of familial AD cases (Hardy, 2009), early-onset, that can be 

attributed to the presence of dominant hereditary genetic mutations. These mutations 

are located at genes responsible for amyloid precursor protein (APP) or presenilins 1 

(PS1) and presenilin 2 (PS2) which are components of the γ-secretase enzymatic 

complex (Seiffert et al., 2000). So far more than 20 mutations in the APP gene and 

approximately 200 mutations in the presenilin genes have been identified (Kitazawa 

et al., 2012). These genes encode for proteins responsible for Αβ generation and 

affect Αβ production by increasing the levels of total Αβ or of specific Αβ species 

(Aβ40 and Aβ42) altering the ratio of Αβ42 to Aβ40 (Chartier-Harlin et al., 1991; 

Chui et al., 1999; Mullan et al., 1992). For the rest of late-onset or sporadic AD 

cases, there are numerous epidemiological studies highlighting a variety of risk 

factors. Age has been one of the most prominent factors as the prevalence of AD is 

doubled every 5 years after the age of 60 (Jorm et al., 1987).  

Amyloid-β deposition is a pathophysiological hallmark of AD. Aβ is a 4 kDa peptide 

(Glenner et al., 1984), 39-43 amino acids in length, which derives from the abnormal 

processing of APP. APP is a transmembrane protein expressed in abundance in the 

human brain. Its normal function has not yet been fully defined, however it has been 

reported that APP is implicated in synaptic transmission, axonal transport, cell 
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adhesion, cholesterol metabolism (Turner et al., 2003; Zheng and Koo, 2006). APP is 

proteolyticaly processed by at least 3 different proteases namely α-, β- and γ-

secretases via two different pathways; the non-amyloidogenic and the amyloidogenic 

which leads to the generation of Aβ protein (Nunan and Small, 2000) (Figure 1.6A). 

In the non-amyloidogenic pathway, APP is initially cleaved by α-secretase inside β-

amyloid domain producing a large soluble N-terminal fragment (sAPP-α), believed 

to be neuroprotective (Furukawa et al., 1996), and C-terminal fragment (C83). The 

C83 fragment is subsequently cleaved by the γ-secretase enzymatic complex 

producing a 3 KDa fragment known as p3 (Cole and Vassar, 2007). During the 

amyloidogenic pathway APP is processed by β-secretase (β-amyloid cleaving 

enzyme, BACE) for the generation of a secreted sAPP-β fragment and a C-terminal 

(C99) fragment which remains anchored on the plasma membrane. The C99 

fragment is subsequently cleaved by the γ-secretase enzymatic complex producing 

the Aβ peptides (Nunan and Small, 2000). The main products from amyloidogenic 

processing of APP are the 40 amino acids long Aβ40 and the 42 amino acids long 

Aβ42. In the early-onset AD the genetic mutations in APP, PS1 or PS2 genes 

dramatically increase Aβ42 production which highlights the key role of Aβ in the 

pathogenesis of AD. Aβ peptides are prone to polymerarization and form fibrils 

(Figure 1.6B) that aggregate in the vessels (cerebral amyloid angiopathy, CAA) or 

extracellularly in the brain forming Aβ plaques. Αβ42 is more hydrophobic and 

likely to form insoluble fibrils and is found in the extracellular plaques whilst Aβ40 

is primarily found in vasculature and associated with CAA (Jarrett et al., 1993).  
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Figure 1.6 Processing of APP and Aβ polymerization. [A] APP is proteolytically 

processed by α-, β- and γ-secretases via two different pathways; the non-

amyloidogenic and the amyloidogenic with leads to the generation of Aβ protein. [B] 

Aβ is prone to polymerization; it forms oligomers, then protofibrils and then fibrils 

that aggregate to form Aβ deposits.  
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The discovery the Aβ peptide which is the primary component of the amyloid 

plaques, a pathological feature of AD, together with the identification of the 

mutations in the APP gene responsible for early-onset AD lead to the hypothesis that 

Aβ deposition, which is an early event in AD, is the cause of AD pathology and all 

the other pathologies (NFT, neuronal loss and dementia) observed are driven by Aβ 

production and imbalanced clearance (Hardy and Selkoe, 2002; Hardy and Higgins, 

1992). This is now known as the amyloid cascade hypothesis. 

In support of the amyloid cascade hypothesis there is evidence for the neurotoxic 

properties of Αβ. The soluble oligomeric forms of Aβ have been shown to be highly 

neurotoxic compared to the insoluble Αβ species (Lesne et al., 2006; Shankar et al., 

2008) and proposed to damage synapses (Lambert et al., 1998). Moreover, the 

oligomeric Aβ levels and not the total burden of amyloid plaques correlate with 

cognitive deficits (LaFerla et al., 2007; Giannakopoulos et al., 2003) while the Aβ42 

type is suspected to be more toxic than the Aβ40 (Findeis, 2007). However, in 

contrast to what was predicted by the amyloid hypothesis, in clinical trials of 

immunization against Aβ, despite removing the Aβ plaques no concomitant 

improvement in AD symptoms was observed (Holmes et al., 2008). Additionally, 

there is evidence of amyloid plaque deposition in the brains of healthy non-demented 

individuals (Becker et al., 2011). The amyloid cascade hypothesis however does not 

give a satisfactory explanation for the early-events in AD progression occurring prior 

to Aβ deposition which may trigger Aβ pathology. Therefore, in an effort to 

formulate a hypothesis that better accounts for the data in AD research, Hardy (2009) 

updated the amyloid hypothesis by introducing the concept of vascular damage as a 
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contributing factor in AD neurodegeneration which may both induce Aβ damage or 

be the result of Aβ deposition.   

 

1.4.2 Risk factors for the development of Alzheimer’s disease 

Over the last decades several risk factors have been highlighted to play a role in the 

development of sporadic AD. Age is shown to be the single most important risk 

factor for the development of AD (Bartzokis, 2004). It appears that the incidence rate 

of AD is lower than 1% at the age of 65 years whereas it rises to over 25% at the age 

of 85 years (Breteler, 2000). Other factors associated with the development of AD 

include traumatic brain injury (Heyman et al., 1984), and vascular risk factors such 

as diabetes mellitus, cerebral ischemia, atherosclerosis, arteriosclerosis, 

hypertension, hypercholesterolemia, cardiovascular disease and cerebrovascular 

disease (de la Torre, 2010).  

In addition, the APOEε4 allele was the first genetic variation found to influence the 

risk for AD development; with abundance rate in the general population around 14% 

APOEε4 increases the risk for AD 3-4 times in the heterozygous carriers 

(APOEε2/ε4 or APOEε3/ε4) and more than 10 times in the homozygous (Farrer et 

al., 1997). Over the last years more genes associated with sporadic AD have been 

highlighted including genes encoding for sortilin-related receptor 1 (SORL1) 

(Rogaeva et al., 2007), clusterin (CLU) (Harold et al., 2009; Lambert et al., 2009), 

phosphatidylinositol-binding clathrin assembly protein gene (PICALM) (Harold et 

al., 2009; Lambert et al., 2009), triggering receptor expressed on myeloid cells 2 



 39 

protein (TREM2) (Guerreiro et al., 2013), bridging Integrator 1 BIN1 (Seshadri et 

al., 2010), protein phosphatase 1, regulatory subunit 3B PPP1R3B (Kamboh et al., 

2012), complement receptor 1 (CR1) ATP-binding cassette sub-family A, member 7 

(ABCA7), membrane-spanning 4 subfamily A (MS4A4E/MS4A6E), ephrin receptor 

A1 (EPHA1), CD33 and CD2-associated protein (CD2AP) (Hollingworth et al., 

2012). Thus a number of genes have now been identified that can modify risk of 

development of AD. 

The numerous risk factors for AD indicate that it is a highly complicated disease 

affecting an increasing number of individuals. Therefore, the development over 

almost the last 20 years of multiple mouse models featuring aspects of AD-related 

pathologies has been helpful in the investigation of how these may affect brain 

function and has increased the understanding of the mechanisms underlying the 

disease.  

 

1.4.3 Models of Alzheimer’s disease  

The identification of specific genetic mutations responsible for early-onset familial 

AD was crucial for the generation of transgenic AD mouse models. Mice do not 

naturally develop age-related Αβ aggregation and deposition possibly because the 

mouse APP protein differs from human APP by three amino acids (De Strooper et 

al., 1995). Therefore, the most popular strategy for transgenic AD mouse models 

generation is the overexpression of one or more familial AD associated mutated 

genes.  
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So far more than 50 different transgenic models have been described, overexpressing 

human wild-type or mutant APP (www.alzforum.org/res/com/tra/app/default.asp). 

Introducing one or more human APP mutations into the mouse genome usually 

results in the recapitulation of some features of AD pathology such as age dependent 

Aβ deposition and cognitive decline. Other pathophysiological features of AD 

observed in the mouse models include astrocytic reactivity, microglial activation, 

dystrophic neurons, synaptic loss and disrupted electrophysiology, however just the 

expression of mutated APP alone does not appear to induce the NFT pathology or 

severe neuronal loss observed in AD (Borchelt et al., 1996; Games et al., 1995; 

Hsiao et al., 1996; Mucke et al., 2000; Sturchler-Pierrat et al., 1997; Kitazawa et al., 

2012). 

The extent and the age of onset of Aβ pathology is related to the type of mutations 

expressed and the type of promoters used to drive transgene expression. The first 

model that was developed was the PDAPP, which expresses the human Indiana 

nutation (APPInd, V717F) driven by the platelet derived growth factor (PDGF) 

promoter. Aβ pathology is first observed at 6-9 months of age and is further 

progressed with advancing age (Games et al., 1995). Astrocytic reactivity is also 

observed adjacent to the Αβ deposits together with synaptic loss (Games et al., 

1995). Some studies report a 12-30% decrease in the volume of the hippocampus and 

the dentate gyrus (Redwine et al., 2003; Wu et al., 2004a). Cognitive performance is 

affected in PDAPP mice as young as 3 months old; they have impaired recognition 

and episodic memory that further deteriorates with age (Chen et al., 2000; Dodart et 

al., 1999). Moreover, incorporation of the same APP mutant transgene in another 

model (H6) was accompanied with hippocampal synaptic loss and neurodegeneration 

http://www.alzforum.org/res/com/tra/app/default.asp
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which was not associated with Αβ deposition in the brain suggesting that soluble Αβ 

may lead to neurodegeneration (Hsia et al., 1999).  

An APP mutation that has been broadly used in AD mouse models is the Swedish 

double mutation (K670N/M671L, APPSwe). A popular model is the Tg2576 mouse 

that expresses the APPSwe mutation under the control of hamster prion promoter 

that drives expression at the spinal cord and areas of the forebrain (Hsiao et al., 

1996). This transgenic mouse model develops dense Aβ plaques at 10-12 months of 

age. Cognitive deficits however, are reported as early as six months of age prior to 

any Aβ plaque pathology implicating oligomeric Aβ-mediated toxicity (Alpar et al., 

2006). Other AD-related pathological features observed in this model are synaptic 

loss at the entorhinal cortex as well as dendritic spine loss (Dong et al., 2007). 

However, no significant loss of neurons was reported in the Αβ affected areas in the 

Tg2576 model (Irizarry et al., 1997). A second model that expresses the APPSwe 

mutation but under the control of a different promoter (Thy-1.2) is the APP23. In this 

model, Aβ plaques are reported at the age 6 months and are exacerbated with age. 

Moreover, there is extensive activation of microglia adjacent to the Aβ plaques and 

evidence of phosphorylated tau (Sturchler-Pierrat et al., 1997). Hippocampal 

neuronal loss is also observed at 14-18 months old animals particularly at the CA1 

area (Calhoun et al., 1998).  

Studies of mouse models that express single APP mutations indicate that the 

temporal and regional profile of the development of Αβ pathology and the 

development of cognitive deficits or other AD-related pathologies is dependant on 

the mutation that is expressed. For that reason, a strategy that is used for the 

development of AD models is the introduction of more than one APP mutation in a 
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single APP transgene in an effort to accelerate Aβ pathology. For instance, there are 

two lines (J20 and J9 line) with the Swedish and the Indiana mutation incorporated 

on the same APP transgene (APPSw,Ind) under the PDGF promoter. However, the 

relative levels of the APPSw,Ind transgene expression in the J9 line is almost half of 

that of the J20 line animals (Mucke et al., 2000). The temporal profile and the 

severity of Aβ pathology are different as well. For example both lines develop Aβ 

deposition by 5-7 months of age, in the J20 line, however, there is rapid Aβ 

pathology up to 8-10 months of age while in the J9 line Aβ deposition is a slower 

process that continues up to 21-25 months of age (Mucke et al., 2000). In addition, 

comparison between J9 and J20 animals of the same age shows more severe Αβ 

pathology in the J20 animals (Mucke et al., 2000). Interestingly, the synaptic loss is 

observed in both lines by 2-4 months of age before any Aβ deposition, which 

correlates with Αβ levels but not with the Αβ plaque load (Mucke et al., 2000). 

Additionally, in both lines impaired synaptic transmission is observed by 2-4 months 

of age (Harris et al., 2010; Hsia et al., 1999) and long-term potentiation (LTP) 

deficits are observed in animals from 2-22 months of age (Dziewczapolski et al., 

2009; Harris et al., 2010). Behavioural deficits have also been described in these two 

lines. J9 mice perform poorly in tasks testing spatial learning and memory (Raber et 

al., 2000; Dziewczapolski et al., 2009) as early as 6 months on age (Raber et al., 

2000) whereas the J20 mice are reported to have impaired cognitive performance in 

spatial and non-spatial learning and memory and anxiety-related tasks by 2-3 months 

of age (Harris et al., 2010). 

Moreover, introduction to the mouse genome of multiple transgenes alters the 

temporal and regional profile of Aβ pathology. For example expression of both 
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mutant presenilin and mutant APP transgenes accelerates Aβ deposition and 

cognitive impairment in comparison with lines expressing a single APP mutant 

transgene (Borchelt et al., 1997). In addition, expression of mutant presenilin 

transgene alone results in high levels of Aβ42 (Duff et al., 1996). 

One pathological hallmark of AD that the APP and/or presenilin transgenic mouse 

models do not develop is the neurofibrillary tangles (NFT). Moreover, there are not 

any AD-related mutations in tau therefore in order to develop mouse models with tau 

pathology it was necessary to use transgenes that drive the expression of human 

mutant tau (P301L) responsible for frontotemporal dementia and Parkinsonism 

(Hutton et al., 1998). Overexpression of human mutant tau (P301L) in mice results in 

widespread tau pathology in the brain, neuronal loss, cognitive impairment and 

motor deficits (Lewis et al., 2000). In an effort to model both Aβ and NFT pathology 

observed in AD, the 3xTg-AD mouse model that expresses mutant APP (APPSwe), 

presenilin 1 (M146V) and tau (P301L) was developed (Oddo et al., 2003). In this, Aβ 

pathology in the form of intracellular deposits is observed at 3 months whilst Aβ 

plaques are reported at 6 months. NTFs are observed at 12 months of age. Moreover, 

synaptic transmission and LTP impairment is observed at 6 months (Oddo et al., 

2003). Cognition is also impaired in the 3xTg-AD mice and is reported as a 

deterioration of long-term retention at 4 months (Billings et al., 2005).  

The AD transgenic models have uncovered key mechanisms underlying AD 

neuropathology. There are, however, fundamental differences between human AD 

and how features of AD are recapitulated in mouse models that highlight the need for 

careful interpretation of the acquired data. For example, the mutations expressed in 

the AD models are associated with early onset familial AD that accounts for only a 
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small proportion of AD patients. Moreover, in contrast with humans, the appearance 

of Αβ deposition in the majority of AD models normally requires higher levels of 

APP expression. A possible explanation is that in humans the AD pathology 

develops over decades and in the mouse models this pathology is concentrated in the 

shorter life span of the mice. There are however some species such as the rhesus 

macaque, the cat and the dog that normally develop age related Αβ pathology and 

cognitive impairment (Gunn-Moore et al., 2007; Head, 2011; Ichinohe et al., 2009). 

Despite the fact that the pathology in these models has similarities with sporadic AD, 

the time needed for the appearance of the pathology, the ethical implications and the 

high cost are restrictive factors for their broader use. Thus mice are the most 

common model of choice for investigating AD due to ease of manipulation and 

maintenance, low cost and a short breeding cycle. 

 

1.4.4 Cerebral hypoperfusion and Alzheimer’s disease  

Regional reductions in cerebral blood flow are a feature of AD which can be 

observed from early preclinical stages of the disease and persist over disease 

progression (de la Torre, 2009). Early studies investigating cerebral blood flow in 

AD patients using inhalation or intravenous injection of a radioactive tracer e.g. 

133
Xenon and computed tomography (CT), single photon emission computed 

tomography (SPECT) or 2-deoxy-2-[F-18]fluoro-D-glucose (FDG-PET) imaging 

highlighted that CBF is significantly decreased in the temporoparietal cortex of AD 

patients compared to age-matched healthy individuals(Komatani et al., 1988). These 

findings have been further confirmed by more sophisticated and higher resolution 
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perfusion weighted magnetic resonance imaging (PW-MRI) techniques such as 

arterial spin labeling (ASL) MRI. It was shown using ASL-MRI that there is a ~40% 

overall reduction in CBF in the AD patients compared to age-matched healthy 

individuals (Asllani et al., 2008), there are, however, some specific regional patterns 

with regions such as the posterior cingulate and the lateral parietal cortex 

consistently affected (Austin et al., 2011). Moreover, the level of CBF reduction has 

been associated with the severity of cognitive impairment (Roher et al., 2012). 

Studies investigating blood perfusion in healthy ageing, AD, and mild cognitive 

impairment (MCI) which is considered to be a prodromal state of AD have shown 

that in both AD and MCI the CBF is significantly reduced compared to the healthy 

aged individuals but exacerbated in AD compared to MCI cases (Rombouts et al., 

2005). In addition, functional MRI (fMRI) studies have been a useful tool 

investigating functional connectivity namely the interregional synchronization of 

blood flow fluctuations (increases or decreases) in response to neuronal activity. 

These studies have shown that functional connectivity is disrupted in AD and 

progressively deteriorates in parallel with disease pathology (Zhang et al., 2010b). 

Moreover, during episodic memory and working memory tests, blood flow 

fluctuations in the MCI and AD patients is reduced in comparison with the healthy 

individuals. They are, however, more prominent in the AD cases (Rombouts et al., 

2005). These findings imply that CBF reduction is an early event in disease 

progression. 

Cerebrovascular pathology, observed in up to 90% of AD patients, has been 

proposed to underlie CBF reductions. This is suggested to result in energy, oxygen 

and nutrient deficiency in the brain while promoting disease progression and occurs 
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even prior to any overt neuronal of cognitive damage (Jellinger, 2002; de la Torre, 

2002). Cerebrovascular pathologies linked with AD include CAA, microvascular and 

blood-brain barrier (BBB) disruption, microinfarctions, cerebral hemorrhages and 

other vascular lesions (Jellinger, 2010). In addition, studies in animal models have 

linked cerebrovascular dysfunction with BBB dysfunction which is suggested to 

impair clearance of Aβ from the brain and promote accumulation in the brain and/or 

the blood vessels (Deane et al., 2008; Deane et al., 2004; Eisele et al., 2010; Zlokovic 

et al., 2010; Zlokovic, 2005). Increasing Aβ levels further may impede 

cerebrovascular integrity (Bell et al., 2009; Deane et al., 2004). CAA is observed in 

more than 80% of AD patients (Jellinger, 2010; Bell and Zlokovic, 2009) and is 

linked with microvascular damage (Kalaria, 2002). SPECT imaging has shown that 

CBF is significantly reduced in AD patients in regions where CAA pathology is 

observed (Chung et al., 2009). In addition, CAA pathology increases the risk of 

cerebral haemorrhages while the prevalence of vascular lesions is associated with the 

CAA (Olichney et al., 1997) and cognitive impairment (Cordonnier, 2011).  

The use of animal models has been helpful in further understanding the relationship 

between the cerebral hypoperfusion and vascular disturbances with AD-related 

pathology. For example, it was demonstrated that Aβ40 has vasoconstrictive 

properties and induced endothelial cell damage by excess production of free radicals 

(Thomas et al., 1996). Moreover, Niwa et al. (2002b) showed that in a transgenic 

model that develops aspects of AD (Tg2576) CBF and glucose utilization is reduced 

prior to the development of Αβ deposits. This is further confirmed by several studies 

in multiple APP mutant mice that have shown regional or full-brain decreases in 

blood flow (Hebert et al., 2013; Weidensteiner et al., 2009; Badea et al., 2010; 
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Delatour et al., 2006; Wu et al., 2004b) It has also been demonstrated that vascular 

dilatory responses (Iadecola et al., 1999; Park et al., 2004) and vascular 

autoregulation which is the ability to control CBF, is impaired in APP mutant mice 

(Iadecola et al., 1999; Niwa et al., 2002a; Niwa et al., 2000). Moreover, there is 

evidence that surgically induced hypoperfusion in APP mutant mice may increase Aβ 

levels (Kitaguchi et al., 2009; Yamada et al., 2011; Koike et al., 2010). 

 

1.4.5 White matter alterations and Alzheimer’s disease 

In addition to the alterations in CBF, a large number of studies has highlighted the 

involvement of white matter pathology in the development of AD (Brun and 

Englund, 1986b; Englund et al., 1988; Bartzokis et al., 2000; Braak et al., 2000; 

Bartzokis et al., 2003). Alterations in white matter integrity are observed early in 

disease development even before any clinical symptoms (Bartzokis et al., 2003; 

Douaud et al., 2013; Stokin et al., 2005) and studies in both humans and animal 

models have indicated that they could occur prior to any Αβ or NFT pathology 

(Desai et al., 2010; Desai et al., 2009; deToledo-Morrell et al., 2007; Redwine et al., 

2003; Stokin et al., 2005). Post-mortem examination of AD brains has shown that in 

~65% of the cases white matter pathology in combination with AD pathology is 

observed (Roher et al., 2002). 

White matter pathology that has been described in post-mortem brains of AD patients 

includes myelin damage, astrogliosis, microglial activation, axonal loss and 

reduction in the number of oligodendrocytes (Brun and Englund, 1986a; Brun and 

Englund, 1986b; Brun and Englund, 1981; Englund et al., 1988). In addition, 
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multiple MRI studies have provided evidence of changes in white matter volume 

(Balthazar et al., 2009; Li et al., 2008) and white matter hyperintensities (Gouw et 

al., 2008; Yoshita et al., 2006) in AD and during the progression of the disease. As 

described in chapter 1.2.1 alterations in white matter integrity can be observed in 

healthy aged individuals and there is evidence that white matter hyperintensities 

detected with MRI (T2 weighted) can be detected even 10 years before MCI (Silbert 

et al., 2012). MCI is considered to be prodromal to AD (Lonie et al., 2010) with 10% 

of MCI patients progressing to AD every year (Petersen, 2004). DTI studies have 

shown that in comparison with non-demented age-matched individuals, white matter 

integrity is compromised in MCI but this occurs to a greater extent in the brain of 

AD (O'Dwyer et al., 2011; Bosch et al., 2012). This finding suggests that there is a 

relationship between white matter integrity and cognitive performance (Douaud et 

al., 2013; Zhang et al., 2013). Regions that are affected in AD are located in both the 

posterior and anterior cerebral white matter (Chen et al., 2009; Mielke et al., 2009) 

whilst regions which are myelinated later in life appear to be more susceptible to 

myelin break-down (Bartzokis et al., 2004).  

Although there is compelling evidence supporting white matter alterations in AD, 

studies in APP mutant mouse models have provided information about the nature of 

these alterations and which components of white matter are particularly vulnerable. 

For example, Desai et al. (2009) showed, in the 3xTg-AD mice, myelin disruption 

and decrease in the expression of myelin marker such as MBP and CNPase in the 

hippocampus and entorhinal cortex before the onset of Αβ or NFT pathology. In 

addition, impairment in the expression of Nav1.6 channels, loss of oligodendrocytes 

and changes in axonal morphology is reported (Desai et al., 2010; Desai et al., 2009). 
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Similarly, in another AD mouse model (APP/PS1) axonopathy, that develops in an 

age-related manner (Wirths et al., 2007), and fibre tract atrophy (Chen et al., 2011; 

Delatour et al., 2006) have been reported. Neuroimaging studies using DTI in mice 

expressing APP transgene have shown axonal and myelin damage (Song et al, 2004; 

Sun et al, 2005). 

White matter alterations are considered to be linked with cerebrovascular pathology 

(Pantoni, 2002) which is driven by the deterioration in vascular integrity and 

disruption of BBB (Young et al., 2008). Therefore it is not surprising that white 

matter alterations have been linked with hypoperfusion (Fernando et al., 2006; 

Ruitenberg et al., 2005). For example, Fernando et al. (2006) showed in post-mortem 

tissue that at regions of white matter damage, identified as hyperintensities on MRI, 

the vascular morphology is altered and markers of ischemia are expressed which 

suggests that hypoperfusion may underlie the observed white matter alterations. In 

addition, Farkas and Luiten (2001) showed in patients with MCI that white matter 

damage and reductions in CBF coexist before the development of AD. Furthermore, 

evidence from animal models (described in chapter 1.3.3) suggest that cerebral 

hypoperfusion induces selective white matter damage that may be associated with 

cognitive impairment (Coltman et al., 2011; Holland et al., 2011; Shibata et al., 2004; 

Shibata et al., 2007).  

Although white matter damage occurs in both normal ageing and AD, the reason for 

which it is exacerbated in AD is not clear. There is some evidence that the Aβ 

oligomers are toxic to myelin and the oligodendrocytes (Torp et al., 2000; Xu et al., 

2001). In addition, Aβ may promote oligodendroglial cell death by inducing of 

oxidative stress and mitochondrial dysfunction (Castellani et al., 2002; Juurlink et al., 
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1998; Schapira, 1996; Dragicevic et al., 2010). However, Bartzokis (2011) suggested 

that white matter attenuation is a primary event in AD development and suggests that 

ageing disrupts the homeostasis of oligodendrocytes resulting in a failure of repair 

mechanisms, Aβ deposition and subsequent signal transduction failure and cognition 

impairment. Although the myelin model explains some features of AD, this needs 

further validation by studies in animal models.  
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1.5 Hypotheses and aims of the thesis  

The general aim of the thesis is to investigate the structure of myelinated axons and 

in particular their excitable regions (nodes of Ranvier, axon initial segment) and their 

susceptibility to the effects of normal ageing, cerebral hypoperfusion and increasing 

levels of Aβ.  

It was hypothesized that the AIS and nodes of Ranvier would be altered in ageing 

and that these effects would be exacerbated in the presence of increased levels of Aβ 

and that would be associated with impairment in learning and memory. Additionally 

it was hypothesised that altered synaptic input would play a role in AIS alterations 

given its activity-dependent plasticity. To address this, the effects of normal ageing 

on the integrity of the AIS, nodes of Ranvier, myelin, axons and synapses as well as 

on spatial working memory were examined in young and aged wild-type and 

TgAPPSw,Ind mice (Chapter 3). 

In addition, it was hypothesised that the integrity of the nodes of Ranvier and the 

paranodes would be altered in response to hypoperfusion and that these effects would 

be exacerbated in the presence of increased levels of Aβ and associated with working 

memory deficits in young and aged mice. To address this, the effects of cerebral 

hypoperfusion on the integrity of the nodes of Ranvier, paranodes, myelin and axons 

and on spatial working memory performance was investigated in young and aged 

wild-type and TgAPPSw,Ind mice (Chapter 4). 
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Chapter 

2 
Materials and Methods 

2.1 Animals 

All animals in the studies described in the present thesis were housed at 22°C with 

12h light/dark intervals. Food and water were freely available throughout the 

duration of the experiments except during testing at the radial arm maze where food 

intake and body weight of the animals was closely monitored. All experiments were 

carried out under the appropriate personal and project UK Home Office licenses and 

in accordance with the Animals (Scientific Procedures) Act (1986). 

The effects of ageing and hypoperfusion on white matter in relation to Alzheimer’s 

disease were investigated in a transgenic mouse model harbouring the familial 

Alzheimer’s disease linked mutations K670N/M671L and V717F (APPSw,Ind; J9a 

line) where expression of the transgene is regulated by the platelet-derived growth 

factor (PDGF) promoter. As described by Hsia et al. (1999) the line was originally 

derived by microinjection of the PDGF-APPSw,Ind transgene into (C57BL/6 × 

DBA/2) F2 single-cell embryos. The line was obtained via Professor L. Mucke at 

Gladstone Institute and bred in house at the University of Edinburgh. Maintenance of 

the line was achieved by crossing heterozygous TgAPPSw,Ind transgenic animals 

with non-transgenic (C57Bl/6J, Charles River, UK) resulting in the generation of 

TgAPPSw,Ind mice heterozygous for the APP transgene and wild-type littermates.  
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2.2 Chronic cerebral hypoperfusion surgery 

The induction of chronic cerebral hypoperfusion was performed as previously 

described (Shibata et al., 2004); surgeries were undertaken by Dr. Catherine Gliddon 

or Dr. Philip Holland. Animals were initially anaesthetized in a perspex box with 5% 

isoflurane. They were then transferred to a face mask and maintained under 

anaesthesia with 1.5% isoflurane. After a midline cervical incision, the common 

carotid arteries (CCA) were exposed and 0.18 mm diameter microcoils (Sawane 

Spring Co., Hamamatsu, Japan) were applied to each CCA. Between the application 

of the first and the second microcoil there was a 30 min interval. In the sham animals 

the same surgical procedure as in the hypoperfused was followed with the exception 

of microcoil application. Core body temperature was maintained at 37˚C. Finally, the 

cervical incision was closed with sutures. Following surgery the animals were given 

mashed food and were closely monitored for indications of poor recovery such as 

overt body weight loss. Animals that lost more than 20% of their pre-surgical weight 

or had poor recovery were culled.   
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2.3 Behavioural testing 

Prior to any behavioural testing the animals selected for the studies were handled for 

5 minutes over a period of 5 days in order to decrease stress due to handling during 

the experiments. 

 

2.3.1 Spatial working memory assessment in the eight-arm radial maze 

The eight-arm radial maze apparatus and its dimensions are shown in Figure 2.1. The 

radial arm maze (Stoelting Co. Europe, Dublin, Ireland) consisted of an octagonal 

central platform (20 cm diameter) with 8 equally spaced arms (47 cm length) 

radiating from it, each containing a small well at the distal end with a food pellet, 

confined by a 20 cm high transparent plastic wall and with a computer operated door 

at the entrance. The maze was placed in a well-lit room 1 m above the floor on a 

stable base with several extramaze two and three dimensional brightly coloured cues. 

The computer operated doors were controlled remotely by Any-Maze software 

(Stoelting Co. Europe, Dublin, Ireland), and the researcher could control their 

opening/closing. A camera attached to the ceiling, directly above the maze, tracked 

the animals’ movements and video recordings of the trials detailing the behaviour 

and position of the animals during each task were produced by AnyMaze software 

(Stoelting Co. Europe, Dublin, Ireland). 

One week prior to testing, mice were individually housed and subjected to food 

deprivation resulting in a reduction of body weight by 10–15%, which was 

maintained throughout the behavioural testing. Two pretraining days preceded the 
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actual task. On the first pretraining day all doors were open and food pellets (Bio-

Serv, USA) were scattered all over the maze and animals were free to explore for 5 

minutes. During the second pretraining day, each animal was placed at the entrance 

of an arm and monitored until having successfully retrieved a food pellet from the 

well at the distal end of the arm; this was repeated for all eight arms. Following 

pretraining, animals were trained over 16 days; for each daily testing session each 

arm was baited with a single food pellet or reward. Each session was initiated by 

placing the animal in the central area of the maze with all the doors closed. Once the 

animal was recognised by the software all doors opened and the animal was allowed 

to explore the maze and make an arm choice. The moment the body of the animal 

fully entered an arm the doors for the other seven arms closed and that was recorded 

as the first arm entry. The animal was monitored until found in the central area again; 

at that point the researcher confined the animal to the central platform for 5 seconds 

by remotely closing all doors. After the 5 second delay all doors opened and the 

animal was free to make another choice. This was repeated until all arms were 

entered or the maximum testing time (25 minutes) had elapsed. The number of novel 

(correct) entries in the first eight arm entries, the number of total arm entries, the 

number of revisiting errors and the duration of the task for all trials were recorded.  

 

2.3.2. Exclusion criteria 

Animals that were unable to perform in the eight-arm radial arm maze due to seizing 

behaviour during testing were excluded from further analysis   
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Figure 2.1 Eight-arm radial arm maze apparatus. [A] Schematic representation and 

dimensions of the eight-arm maze apparatus used for testing working memory 

performance. The central platform is 20 cm in diameter, each arm is 47 cm long and 

7cm wide and at the end of each arm a 3.5 cm diameter food well is found [B] 

Photograph of the eight-arm radial arm maze apparatus used for all experiments. The 

maze is placed 1 m above ground and extramaze cues surround the maze for spatial 

navigation  
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2.4 Perfusion and tissue preparation  

2.4.1 Perfusion for immunohistochemistry and biochemistry 

Animals selected for biochemical and immunohistochemical analysis were 

transcardially perfused. Animals were anaesthetized in 5% isoflurane in a Perspex 

box. The depth of the anaesthesia was evaluated by the presence of a hind-paw pinch 

reflex. Once it was confirmed that this reflex was absent the animal was transferred 

to a face mask on its back and kept under anesthesia for the whole procedure. The 

skin was cut to expose the thoracic cavity and the diaphragm was carefully cut. Then 

the ribs were cut through bilaterally with care not to damage the lungs and bent 

backwards and fixed to place for the heart to be exposed which was very carefully 

cleared from the surrounding connective tissue. A needle was placed into the left 

ventricle and fixed with a haemostat and then the left atrium was snipped. Through 

the clamped needle, 20 mL of 0.9% heparinised saline in phosphate buffer was 

administered at a rate of 2mL/min. After perfusion the animals were immediately 

decapitated and the brains were dissected from the skull and bisected across midline. 

The left hemibrains was post-fixed for 24 hours at 4˚C in 20 mL of 4% 

paraformaldehyde in phosphate buffer. From the right hemibrain a 2 mm 

hippocampal slice was coronally dissected using a mouse brain matrix as a guide 

[0.72mm to 2.74 mm interaural according to Franklin and Paxinos (1997)]. The 

hippocampal slice as well as the rest of the brain were placed in 1.5 mL Eppendorf 

tubes and instantly frozen in liquid nitrogen and stored at -80°C for biochemical 

analysis.  
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2.4.2 Tissue preparation and sectioning for immunohistochemistry 

After 24 post-fixation in 4% paraformaldehyde the brains were attached to a tissue 

mount with super glue (Loctite, Henkel, Germany). After a few seconds while 

making sure that the glue was set, the tissue was submerged in a phosphate buffer 

(PB) bath at room temperature to avoid dehydration. The hemibrains were cut 

sagittaly into 50 μm sections in a PB bath at room temperature (RT) by a vibrating 

(frequency set at 60 Hz and amplitude at 0.9 mm) razor blade (Wilkinson Sword Ltd, 

UK) starting at lateral 2.40 ± 0.1 mm, according to Franklin and Paxinos (1997) 

using a vibratome (Hyrax V50, Zeiss, Germany). The vibratome was set at an 

optimal speed of 8 mm/s. All sections were stored free-floating in 1.5 mL of 

cryoprotective medium (30% glycerol/30% ethylene glycol in phosphate buffer) at -

20˚C in 24-well plates for immunohistochemical staining.  
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2.5 Immunohistochemistry 

Sections selected for immunohistochemical experiments were taken out of the -20˚C 

and allowed to adjust to room temperature and placed in 24-well plates with 1 mL of 

cryoprotective medium in each well. Cryoprotective medium was washed off with 

three 15 minutes washes with phosphate buffered saline (PBS, pH7.4), added in each 

well with a Pasteur pipette. 

 

2.5.1 Fluorescent immunohistochemistry 

At the onset, any trace of cryoprotective medium was removed by three 15 minute 

washes with PBS (pH7.4) containing 0.1% Triton-X100 (PBSTx). Antigen retrieval 

was performed as detailed in Table 2.1. Non-specific binding sites were blocked 

using 0.25 mL 3% normal serum of the appropriate species (depending on the 

species where the secondary antibodies used were produced) in PBSTx for 1 hour. 

Sections were then incubated overnight at 4
o
C with 0.25 mL primary antibody or 

antibody cocktail at the optimal dilution (Table 2.1) in blocking solution. On the next 

day, sections were taken out of the cold room and allowed to reach room 

temperature. They were then washed three times for 15 minutes with PBSTx before 

adding 0.25 mL of secondary antibody or antibody cocktail in PBSTx and incubated 

overnight at 4ºC. The secondary antibodies used are detailed in Table 2.1 and were 

always against the species in which the primary antibodies were raised. Finally, after 

a series of washes with PBSTx (30 minutes), PBS (two washes for 15 minutes) and 

phosphate buffer (PB, pH7.4; 2 mL for 20 minutes) the sections were mounted onto 
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SuperFrost slides (WVR International, Lutterworth, UK) with Vectashield hard set 

mounting medium containing, if necessary, the nuclear stain 4',6-diamidino-2-

phenylindole (DAPI) (H-1500, Vector Laboratories, U.S.A). All washes and 

antibody incubations were performed on a shaker at room temperature, unless it is 

otherwise stated. 

 

2.5.2 Nissl neuronal cell body stain 

Nissl neuronal cell body staining was performed after completion of fluorescent 

immunohistochemistry protocol if necessary. After the last two PBS washes (15 

minutes) described above sections were incubated in 0.25 mL of fluorescent Nissl 

stain (1:20, NeuroTrace® 640⁄660 Deep-Red, Invitrogen, UK) solution for 20 

minutes. Sections were then washed with PBSTx for 15 minutes followed by a 2 

hour wash in PBS and a 20 minute wash in PB. Sections were then mounted onto 

SuperFrost slides (WVR International, Lutterworth, UK) with Vectashield hard set 

mounting medium. All washes and incubations were performed on a shaker at room 

temperature. 

 

2.5.3 Chromogenic Immunohistochemistry 

To ensure that every trace of cryoprotective medium was removed free-floating 

sections were washed 3 times with PB. The sections were mounted onto SuperFrost 

slides (WVR International, Lutterworth, UK) and air-dried for a minimum of 30 
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minutes. Sections were then rehydrated in phosphate buffer (PB, pH7.4). After 

rehydration of the sections, endogenous peroxidase was blocked by incubation for 30 

min with 3% H2O2 in methanol at room temperature. Antigen retrieval was 

performed in 10mM citrate buffer (pH 6) in a pressure cooker (MenaPath 

AccessRetrieval Unit, Model MP-2002-CE, A. Menarini Diagnostics Ltd. UK) filled 

with 0.5 L of distilled water. The retrieval programme was run for 10 minutes with 

pressure at 100˚C with an additional 10 minutes of cooling time. Sections were then 

taken out of the pressure cooker and allowed to cool down to room temperature for 

an extra 10 minutes followed by a 2 minute wash with PBS. Then non-specific 

epitopes were blocked with 0.25 mL of 10% normal serum from the appropriate 

species and 0.5% bovine serum albumin for 60 minutes. Blocking solution was then 

drained from the slides and 0.25 mL of primary antibody (detailed in Table 2.1) in 

blocking solution was applied to the sections which were incubated overnight at 4°C 

in a cold room. The next day, the sections were taken out of the cold room and 

allowed to come to room temperature. They were then washed two times for 10 

minutes by immersion in PBS followed by a 60 minute incubation with 0.25 mL of 

secondary antibody (against the species in which the primary antibody was raised) in 

PBS (1:100 dilution, Vector Laboratories, Burlingame, CA, USA). Another two 10 

minutes washes in PBS followed. The ssignal was enhanced by applying 0.25 mL of 

Avidin-Biotinylated enzyme Complex (Elite ABC Kit, Vector Laboratories, 

Burlingame, CA, USA) for 60 minutes followed by two 10 minutes washes in PBS. 

Immunostaining was visualized (brown staining) by incubating the sections for three 

minutes in 3, 3΄-diaminobenzidine (DAB kit, Vector Laboratories, Burlingame, CA, 

USA). The 3, 3΄-diaminobenzidine was washed off in running water for 10 minutes. 
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The sections were then dehydrated with serial washes in graduated alcohol solutions 

and xylene as described in Table 2.2. The final step was mounting the sections in 

DPX mounting medium (Thermo Fisher, Loughborough, UK) and coverslipping. 

 

2.5.4 Optimisation of antibodies 

Before performing any immunohistochemical experiment the optimal dilution of 

each primary antibody and the optimal antigen retrieval method was determined. 

Optimal dilutions were determined with concentration-curve experiments where 

different dilutions of the primary antibodies were used on serial sections from the 

same animal. The dilution and the antigen retrieval method that gave the most 

specific cellular staining with the lowest background were chosen as optimal. 

Negative controls were used in all immunohistochemical experiments; they 

underwent identical treatment without primary antibody application and minimal 

staining was detected. 

 

2.5.5 Exclusion criteria 

After performing the immunohistochemical experiments the quality of 

immunostaining was examined. In some isolated cases the tissue at the region of 

interest was disrupted or the quality of immunostaining was poor (minimal staining) 

compared to all the other sections indicating technical issues. In these sections 

imaging was impossible and they were excluded from further analysis   
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Table 2.2 Dehydration sequence in graduated alcohol solutions and xylene 

Solution Time in solution 

70% Ethanol in dH2O 2 minutes 

90% Ethanol in dH2O 2 minutes 

100% Ethanol 2 times for 5 minutes 

Xylene 10 minutes 

 

2.5.6. Regions of interest 

The regions of interest examined in this thesis included the corpus callosum and 

regions within the hippocampus such as CA3 and the stratum lacunosum moleculare 

(Figure 2.2).  

 

Figure 2.2 Regions of interest selected for examination. Sagittal diagram of the 

mouse brain with highlighted regions of interest; corpus callosum in blue (■), CA3 in 

yellow (■) and stratum lacunosum moleculare in green (■). Image adapted from 

Franklin and Paxinos (1997).  
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2.6 Image acquisition and quantitative image analysis 

Image acquisition and quantitative image analysis were performed by the author who 

was blind to the experimental conditions. To ensure reproducibility of the image 

analysis, images or image stacks acquired from three randomly selected animals 

were analysed accordingly for a minimum of three times. Reproducibility was 

achieved once there was less than a 10% difference of the three measurements from 

the median value. 

 

2.6.1 Image acquisition 

Before imaging sections that underwent fluorescent immunohistochemistry were 

screened at a fluorescent Leica DMR microscope (Leica Microsystems U.K.) to 

identify, by eye, the brightest stained section. This allowed determining the optimal 

imaging settings at the confocal and avoiding imaging at saturated levels of intensity. 

Then the sections were imaged with a Zeiss upright Axioskope LSM510 or with a 

Zeiss inverted AxioObserver LSM710 confocal laser scanning microscope using 

LSM software or ZEN software (ZEISS, Germany) respectively as the user interface 

at 1024x1024 pixels resolution. A pinhole of 1 Airy unit and identical confocal 

imaging settings for detector gain, digital offset, digital gain and laser power were 

used.  

Chromogenic immunohistochemistry was imaged with an Olympus BX51 

microscope (Olympus UK, Southendon-Sea, UK) using a QImaging MicroPublisher 
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3.3 camera (QImaging, Surrey, BC, CA) and QCapture Pro 7 software (QImaging, 

Surrey, BC, Canada) at 2048×1536 resolution. 

 

2.6.2 Quantification of MBP and total neurofilament immunostaining 

Fluorescently labelled sections with anti-MBP and anti-pan neurofilament 

(SMI312R) antibodies were imaged at the stratum lacunosum moleculare of the 

hippocampus and/or the corpus callosum with a confocal laser scanning microscope. 

Single optical images were acquired at a depth of 4 μm from the surface of the 

section and used to evaluate MBP and total neurofilament immunostaining. Images 

were opened using ImageJ as 8-bit colour images. Fluorescent intensity of all images 

was filtered with the application of a threshold that subtracts low intensity pixels due 

to non-specific/background staining. In order to determine the threshold value 5 grid 

boxes (20 x 20 pixels) per section were analysed in areas as good representation of 

the background intensity. From all the boxes, the average mean grey value (MGV) 

and standard deviation (SD) of the background was determined. The threshold was 

determined as the average mean grey value of the background plus three times its 

standard deviation (threshold = average MGV+3×SD). Background was subtracted 

consistently from all images. The percentage of the area (area fraction) occupied by 

MBP or SMI312R staining for each group and the fluorescent intensity (mean grey 

value) of MBP and SMI312R staining were determined and used for further analysis. 
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2.6.3 Quantification of myelin bulbs 

Observation of MBP immunostaining staining from the stratum lacunosum-

moleculare of the hippocampus revealed regional abnormalities of the myelin 

staining resembling bulbs on some myelinated fibres. These structures resemble in 

the myelin “balloons” observed with electron microscopy (Feldman and Peters, 

1998). The number of these myelin sheath bulbs which were defined as any MBP-

immunopositive formation that interrupts the continuity of the myelinated fibre, with 

a diameter 20% larger than the diameter of the fibre. The analysed image stacks were 

acquired with a Zeiss Axioskope LSM 510 confocal laser scanning microscope using 

a 40× oil-immersion objective (numeric aperture 1.3), from fluorescence labelled 

sections for MBP and total neurofilament. The corresponding Nyquist settings of 

4.6× zoom and 0.16 μm z-steps were used to allow image deconvolution (Huygens 

Professional Deconvolution Software; SVI). After deconvolution, which produces 

16-bit images, the images were transformed into 8-bit format. Before transformation 

the pixel intensities of 16-bit images were equalized across the full range of the 

histogram using ImageJ so that intensities at the 8-bit images are better distributed. 

Two adjacent confocal 40-slices stacks were acquired per animal where the average 

number of myelin sheath bulbs from two 76.8x76.8x10 μm
3
 confocal stacks was 

determined and was used for further analysis. 
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2.6.4 Quantification of synaptophysin immunostaining 

Presynaptic terminal density was assessed using an anti-synaptophysin antibody in 

the CA3 area of the hippocampus. Images were acquired with a Zeiss inverted 

AxioObserver LSM710 confocal laser scanning microscope using a 40× oil-

immersion objective (numeric aperture 1.3). Two adjacent single optical images were 

acquired from the CA3 region of each animal at a depth of 4 μm from the surface of 

the section. Images were opened using ImageJ as 8-bit colour images As described in 

chapter 2.6.2 the background was subtracted consistently from all images and the 

percentage of the area (area fraction) occupied by presynaptic terminals was 

determined and values from the two images were averaged for each animal to be 

used for further analysis. 

 

2.6.5 Nodes of Ranvier measurements 

Images were acquired with a 63× oil-immersion objective (numerical aperture 1.4) 

from sections labelled with anti-Nav1.6 channels and anti-Caspr antibodies. Nav1.6 

staining and Caspr immunostaining were imaged on the red channel and the green 

channel respectively. The corresponding Nyquist settings, 3.1× zoom and 0.13 μm z-

steps were used to allow image deconvolution (Huygens Professional Deconvolution 

Software; SVI). The 16-bit images produced after deconvolution, were transformed 

into 8-bit format. Before transformation the pixel intensities of 16-bit images were 

equalized across the full range of the histogram using ImageJ so that intensities at the 

8-bit images were better distributed. The length and width of the Nav1.6 positive 
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clusters as well the nodal gap length which is the space between two Caspr positive 

domains were measured in image stacks spanning 10 μm using the straight line tool 

on ImageJ. Having confirmed first that the gap is occupied by a Nav1.6 cluster, the 

distance between the two closest points of the Caspr domains was measured (Figure 

2.3 A). Only Nav1.6 clusters found between two Caspr positive domains on either 

side were analysed and due to their irregular shape the maximum length and width 

were measured (Figure 2.3 B). Furthermore, by moving between the slices of the 

stack it was possible secure that the full length of the Nav1.6 clusters or nodal gaps 

was measured in nodes imaged at an. Analysis was performed in the first 30 

appearing nodes in the acquired 47 × 47 × 10 μm
3
confocal stack for each animal. 

 

 

Figure 2.3 Measurements at the nodes of Ranvier. Measuring the nodal gap length 

between two Caspr positive paranodes [A] and the Nav1.6 cluster length and width 

[B]. Image of a complete node of Ranvier from the stratum lacunosum moleculare of 

the hippocampus [C]. Scale bar 2 μm.  

 

2.6.6 Quantification of nodal density 

The number of the nodes of Ranvier was determined on the same image stacks 

acquired for the nodal length measurements (described at chapter 2.6.5). The 

numerical density of the nodes was assessed in 47 × 47 × 10 μm
3
 confocal stacks 

from the hippocampus or in 47 × 47 × 5 μm3 confocal stacks for the corpus 



 70 

callosum. Only complete nodes namely Nav1.6 clusters that were paired with Caspr 

immunolabelled paranodes on either side were counted in maximum intensity z-

collapsed stacks. The original stacks were used at the side as a reference guide to 

secure that the overlapping nodes, which are difficult to separate within the collapsed 

stack, are counted. Nodes located on the first optical section and crossing the upper 

and the left edge of the stack were not counted.  

 

2.6.7 Axon initial segment length measurements 

Sections labelled with AnkG, Caspr and Nissl stain for neuronal cell bodies were 

imaged. Image stacks were acquired with a Zeiss inverted AxioObserver LSM710 

confocal laser scanning microscope using a 40× oil-immersion objective (numeric 

aperture 1.3). Two adjacent image stacks 30 μm thick were acquired from the CA3 

region of the hippocampus of each animal in order to ensure imaging of complete 

AIS. An AIS was considered complete when the neuronal cell body and the first 

paranode, labelled for Caspr, could be identified. Measurement of each AIS was 

achieved by isolating the mini-stacks that contained a complete AIS, collapsing the 

stack by using the z-collapse maximum intensity tool on ImageJ software and 

following the shape of the AIS from the cell body to the first paranode using the 

segmented line tool on ImageJ software. In total the length of 20 complete AIS 

labeled for ankG from each animal were measured. 
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2.6.8 Quantification of number of AIS 

The number of the AIS was determined on the same image stacks acquired for the 

AIS length measurements (described at 2.6.7). The numbers of AIS were assessed in 

212 × 212 × 10 μm
3
 confocal stacks. AnkG positive structures with typical AIS 

morphology indicated by a length >5μm, a wide base and a tapered end were counted 

in maximum intensity z-collapsed stacks. The original stacks were used at the side as 

reference guide to secure that all AIS are counted in regions where multiple AIS 

were overlapping. AIS located on the first optical section and crossing the upper and 

the left edge of the stack were not counted. 

 

2.6.9 Quantification of Kv1.2 immunostaining  

Sections stained for Kv1.2 and Caspr were imaged at an inverted Zeiss Axioskope 

LSM 710 with a 63× oil-immersion objective (numerical aperture 1.4). The 

corresponding Nyquist settings, 3.1× zoom and 0.13 μm z-steps were used to allow 

image deconvolution (Huygens Professional Deconvolution Software; SVI). A 4 μm 

(30 slices) thick confocal stack was acquired from the corpus callosum. After 

deconvolution, which produces 16-bit images, the images were transformed into 8-

bit format (as described in chapter 2.6.3). The background was subtracted 

consistently from all images by setting a common threshold for the red (Kv1.2) and 

the green (Caspr) channels (as described in chapter 2.6.2). For each slice of each 

stack the area occupied by Caspr staining and then the volume was calculated by 

multiplying with the z-step. Next the area occupied by both Kv1.2 and Caspr was 
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determined. This was achieved by subtracting from the area occupied by Kv1.2 

positive staining the binary mask of the area that was not occupied by Caspr positive 

staining for each slice of each stack with the Math tool on ImageJ. Then the volume 

that was occupied by both Kv1.2 and Caspr staining was determined by multiplying 

with the z-step and expressed as a percentage of the total Caspr volume. 

 

2.6.10 Quantification of amyloid-β immunostaining 

Sections immunolabelled for Aβ with the 6E10 antibody were imaged at the stratum 

lacunosum moleculare of the hippocampus using a ×20 objective at an Olympus 

BX51 microscope. Images were opened with ImageJ and converted into greyscale. 

The background was subtracted consistently from all images by setting a common 

threshold (as described in chapter 2.6.2). The percentage of the area (area fraction) 

covered with amyloid deposits was determined and used for further analysis.  
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2.7 Biochemistry 

2.7.1 Tissue homogenization 

Tissue stored at -80˚C for biochemical analysis was homogenized in ice cold tissue 

homogenisation buffer containing sucrose (250mM), Tris Base (20mM), 

ethylenediaminetetraacetic acid (EDTA; 1mM) and ethyleneglycoltetraacetic acid 

(EGTA; 1mM). Protease (1:100 dilution; Merck Biosciences AG, Germany) and 

phosphatase inhibitors (1:50 dilution Merck Biosciences AG, Germany) were added 

to the buffer before use. Homogenisation was performed with a Dounce homogeniser 

on ice. Homogenised samples were centrifuged at rotor speed of 3000 rpm for 5 

minutes at 4˚C with a Sigma 1-13 benchtop centrifuge (Sci Quip Ltd., Shrewsbury, 

UK). This short centrifugation allows the separation of the total homogenate from 

small pieces of non-homogenized tissue and facilitates the handling of the lysate in 

biochemistry experiments. Supernatant was carefully removed and was ready be used 

for assessing protein concentration. 

 

2.7.2 Protein concentration assessment 

Total protein concentration of each sample was determined with a BCA 

(bicinchoninic acid) protein assay (Thermo Fisher Scientific (Cramlington, UK). 

Working dilutions (1:10) in tissue homogenisation buffer (THB) of the homogenates 

and the standards were prepared and loaded in triplicate on to 96-well plates. 

Working reagent (solution of 4% cupric sulphate mixed 1:50 with a solution of 

sodium bicarbonate, bicinchoninic acid, sodium carbonate and sodium tartrate in 
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0.1M sodium hydroxide) was added to each well and incubated for 30 minutes at 

37˚C. The plates were left to cool down to room temperature for a few minutes and 

then the absorbance at 562 nm was read with a Dynex MRX plate reader (Dynex 

Technologies Ltd., Worthing, UK). For each sample (homogenate or standard) three 

values were obtained and the average was calculated. The readings for the standard 

were used to produce a standard curve and subsequently calculate the protein 

concentration in each sample. Before use samples were stored at -20˚C in 5μL 

aliquots. 

 

2.7.3 Enzyme-linked immunosorbent assay (ELISA) 

Tissue homogenates (prepared as described in chapter 2.7.1) with known protein 

concentration (determined as described in chapter 2.7.2) were used to determine total 

human Aβ42 (hΑβ42) concentration in TgAPPSw,Ind animals using a commercially 

available ELISA kit (Invitrogen, Camarillo, CA). On a 192-well ELISA kit 50μL of 

standards of hAβ42 peptide at different concentration (1000, 500, 250, 125, 62.5, 

31.25, 15.63 and 0 pg/mL) or samples (in duplicate) diluted 2.5 times with Standard 

Diluent Buffer were loaded. One well was kept empty to serve as the chromogen 

blank. Then 50 μL of human Aβ42 detection antibody were loaded to each well 

except from the chromogen blank. After incubating for 3 hours at room temperature 

with shaking, liquid in the wells was aspirated and the wells were thoroughly washed 

4 times with Wash Buffer. Next 100 μL of anti-rabbit IgG HRP. Working Solution 

was added to each well except from the blank followed by a 30 minute incubation at 

room temperature. After four thorough washes (Wash Buffer) 100μL of Stabilized 
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Chromogen was added to each well and the plate was incubated in the dark at room 

temperature for 30 minutes. Then 100μL of Stop Solution were gently mixed with 

the solution changing from blue to yellow. Absorbance was read for all wells at 450 

nm with a plate reader blanked against the chromogen blank. Next the standard curve 

was produced and the concentration in human hAβ42 corrected for the sample 

dilution was determined by using the average reading of the duplicates of each 

sample. The experiment was run twice and the average hAβ42 concentration between 

the two experiments for each sample was calculated. The final hAβ42 concentration 

was expressed as pg of hAβ42 in mg of total protein. 

 

2.7.4 Western blotting 

Samples with 1 μg/μL or 4 μg/μL final protein concentrations were prepared using a 

4x Laemelli buffer (1:4 dilution) and THB. Control sample from brain homogenate 

(prepared as described at chapter 2.7.1) from two 20 months old APPSw,Ind animals 

(perfused as described at chapter 2.4.1) was prepared in the same way.  

The proteins were denaturated at 70˚C for 10 minutes in a water bath. The 

appropriate amount of sample protein (Table 2.3) was loaded on precast NuPAGE 4-

12% Bis-Tris gels (Life Technologies, Carlsbad, CA) together with 5 μL of a 

molecular marker (LiCor Biosciences, Lincoln, Nebraska, USA). Control sample was 

also loaded on each gel. Samples were run with a 2-[N-morpholino] ethanesulfonic 

acid-sodiumdodecyl sulphate (MES-SDS) running buffer (Life Technologies, 

Carlsbad, CA) at 80V for approximately 90 minutes.  
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The proteins were then transferred to Amersham hybond-P polyvinylidene fluoride 

(PVDF) membrane at 30V for 2.5 hours in an XCell II™ Blot Module (Life 

Technologies, Carlsbad, CA). Successful transferring of the proteins onto the PVDF 

membrane was evaluated by staining gels in Coomasie Blue (Bio-Rad, Hemel 

Hempstead, UK) for one hour. Coomasie Blue detects proteins left on the gels and 

when these were strongly or unevenly stained, which is evidence of poor transfer or 

uneven loading, they were rerun. After transfer, PVDF membranes were rinsed in 

PBS and incubated for 1 hour on a shaker in Odyssey blocking buffer (1:1 in PBS, 

LiCor Biosciences, Lincoln, Nebraska, USA) in order to block non-reactive sites. 

Blocking buffer was then drained and the membranes were incubated overnight on a 

shaker at 4
o
C with a cocktail of primary antibodies against the protein of interest 

(detailed in Table 2.3) and against Glyceraldehyde 3-phosphate dehydrogenase 

(1:100000 dilution, rabbit or mouse anti-GAPDH, Sigma-Aldrich Ltd., Poole, UK) 

made in Odyssey blocking buffer containing 0.1% Tween-20. The following day 

after six washes (for 5 minutes) with PBS-0.1% Tween-20, the membranes where 

incubated for 45 minutes at room temperature with the appropriate secondary 

antibodies (Table 2.3) (1:3000 dilution; LiCor Biosciences, Lincoln, Nebraska, USA) 

in Odyssey blocking buffer-0.1% Tween-20-0.01% SDS in light proof boxes and 

then washed again (6 times for 5 minutes) with PBS-0.01% Tween-20 before a final 

wash in PBS. The membranes were then left to dry protected from light before being 

imaged using the Odyssey infrared imaging system (LiCor Biosciences, Lincoln, 

Nebraska, USA).  
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2.7.5 Quantification of protein levels 

Scanned images of western and dot blot membranes were analysed using Odyssey 

application software (version 3.0; Li-Cor, Cambridge, UK) in order to quantify the 

fluorescent intensity of the bands or dots of interest. 

For each protein of interest, western blots were run in duplicate. Fluorescent intensity 

(in arbitrary units) for the band corresponding to the protein of interest was expressed 

as a ratio of the intensity of the GAPDH band from the same sample to normalise for 

loading variation. The average ratio value from the duplicates of each sample was 

used for analysis. Bands were excluded from analysis when there were bubbles or 

other noise that made intensity calculations impossible. Fluorescent intensity of the 

GAPDH bands from each sample was averaged between the duplicates and 

compared with an independent samples t-test between groups to confirm that 

GAPDH is an accurate loading control and was not changed between groups. The 

test was performed for every set of western blots. No difference between groups in 

GAPDH intensity was ever observed (p > 0.05). An example of this comparison is 

shown in Figure 2.4. Similarity of the images and of the values obtained between 

duplicates was used to confirm reproducibility of the blots.  

In the dot blots, fluorescent intensity of each dot was quantified. Each sample was 

loaded in duplicate and the average intensity from each sample was expressed as a 

ratio of the average intensity value from the control sample. Any dot with evidence 

of noise was excluded from analysis.  
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Figure 2.4 Western blot reproducibility. [A] Similarity values obtained between 

duplicates (run A and B) was used to confirm reproducibility of the blots; shown 

here an example of data from total neurofilament (SMI312) blots [B & C] Integrated 

GAPDH intensity was used to normalise for loading variation. No differences were 

detected (p > 0.05) between the different groups. Here a representative example of 

young hypoperfused and sham WT and TgAPPSw,Ind animals where no effect of 

genotype or hypoperfusion is observed. WT sham: n=12, WT hypoperfused: n=14, 

TgAPPSw,Ind sham: n=13, TgAPPSw,Ind hypoperfused n=13. Graphs show mean ± 

SEM.  
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2.8 Statistical analysis 

All experiments were performed blind with regard to conditions (genotype, age or 

surgery).  

Behavioural performance in the 8-arm radial arm maze was analysed using SPSS 

v14.0 software (IBM, New York, USA). The number of novel (correct) entries in the 

first eight arm entries and the number of revisiting errors in the 8-arm radial arm 

maze task, expressed in two-trial blocks (average value of the measure for two 

consecutive days) were analysed. Difference of the means was assessed with two-

way repeated measures ANOVA for the appropriate factors followed by Tukey’s 

post hoc test if necessary. Additionally, the Greenhouse-Geiser correction was used 

when data violated sphericity (p < 0.05 at Mauchly’s test). Difference of the means 

for number novel entries in the first eight arm entries from chance reported to be 5.3 

entries (Olton and Samuelson, 1976) was analysed using student’s unpaired t-test. 

Cumulative frequency distribution of nodal length and AIS length measurements 

expressed as percentages were analysed with the two-sample Kolmogrov-Smirnov 

test. This analysis was performed with an open source statistics application 

developed by Kirkman (1996).   

MBP, total neurofilament, Aβ and synaptophysin immunostaining, number of myelin 

bulbs, nodes of Ranvier and AIS, protein levels (except Aβ and hAPP) detected with 

western blot, and Kv1.2/Caspr colocalization were analysed using GraphPad Prism 

v5.0 (Graphpad Software Inc. El Camino Real, USA). Difference of the means was 

assessed with a two-way ANOVA for the appropriate factors followed by 
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Bonferroni’s post hoc test if necessary. Difference of the means in Aβ42 

concentration and Aβ and hAPP protein levels was analysed using the student’s 

unpaired t-test. Association between means was analysed with the Spearman’s 

correlation analysis. 

All graphs were generated using GraphPad Prism v5.0 (Graphpad Software Inc. El 

Camino Real, USA). Statistical significance was established at p < 0.05. However, 

Bonferroni correction (Bland and Altman, 1995) was applied when multiple-

comparisons were performed simultaneously using identical datasets. Significance (p 

< 0.05) was Bonferroni corrected by dividing with the number (n) of comparisons 

using the identical datasets (p < 0.05/n).  
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2.9 Sample size calculations 

In order to secure that the studies are well-powered which means that if there is a 

difference between the investigated groups there is an increased chance of it to be 

detected, the adequate sample size for difference of the means was calculated were 

necessary. Firstly, the standardized difference (d) was calculated which equals to the 

target difference divided by the standard deviation. These values are not known in 

advance and are estimated based on the published literature of similar studies using 

similar methods. The sample size was then calculated with the formula   
 

  
 

         where n is the size of the group, d is the standardized difference and 

         is a constant determined by the values of the chosen statistical significance 

(p) and power. The studies included in the thesis comprise of a maximum of four 

groups therefore the use of identical data for multiple comparisons and the need for 

Bonferroni correction (described above) is a possibility resulting in stricter criteria 

for the calculation of sample size. Here for the calculation of sample size a p = 0.01 

and a power of 80% was used which makes                (Whitley and Ball, 

2002).  
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Chapter 

3 

Age-related changes in myelinated 
axons and cognition in wild-type and 
TgAPPSw,Ind mice 

 

3.1 Introduction 

Myelin alterations are a key feature of the ageing brain and are exacerbated in AD, 

and have been linked with poor cognitive function (Bartzokis et al., 2003; Salat et al., 

2005; Salat et al., 2009). Moreover, neuronal excitability is altered particularly 

within hippocampal networks (Disterhoft and Matthew Oh, 2003; Gleichmann and 

Mattson, 2010) in both normal ageing and AD. In view of the importance of the AIS 

and nodes of Ranvier in initiating and propagating action potentials, disruption of 

these regions could have a major impact on neuronal function in normal ageing and 

in AD. To date, there have been very few studies investigating the vulnerability of 

these regions and their structural integrity in normal ageing or AD.  

From the limited studies in ageing, there is evidence that components of the nodes 

are disrupted in ageing rodents and in aged primates (Rios et al., 2003; Hinman et al., 

2006; Shepherd et al., 2012). Moreover, in a transgenic mouse model featuring AD-

related pathology there is evidence of changes in Nav1.6 channel immunoreactivity 

(Desai et al., 2009). From studies using animal models of multiple sclerosis there is 

evidence that demyelination is the underlying mechanism for nodal disruption 

(Coman et al., 2006; Lasiene et al., 2008).  
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At the outset of the studies described in the thesis there were no studies which had 

investigated changes in AIS structure in normal ageing or AD. There was however 

some evidence that its integrity is challenged in response to other types of injury 

such as stroke (Schafer et al., 2009; Hinman et al., 2013) or brain trauma (Baalman et 

al., 2013) and a few studies have shown that AIS structure shows remarkable levels 

of activity-dependent plasticity in response to altered electrical activity or synaptic 

input (Kuba et al., 2010; Grubb and Burrone, 2010a). Synaptic loss has been 

described in aged non-demented individuals and is exacerbated in AD patients 

(Bertoni-Freddari et al., 1990) and correlates to cognitive impairment (Coleman and 

Yao, 2003). This is also supported by studies in aged rodents and AD mouse models 

where synaptic loss has been observed (Rutten et al., 2005; Geinisman et al., 1986; 

Landfield and Lynch, 1977).  

 

3.1.1 Hypothesis and aims 

Given the similar molecular architecture, it was hypothesised that the AIS and nodes 

of Ranvier would be altered in ageing and that these effects would be exacerbated in 

the presence of increased levels of Aβ. Additionally, it was hypothesised that altered 

synaptic input would play a role in AIS alterations given its activity-dependent 

plasticity. Moreover, alterations in these structures are hypothesised to be associated 

with impairment in learning and memory. To address this, the integrity of myelinated 

axons with a focus on the AIS and nodes of Ranvier, the synapses as well as 

cognitive performance were examined in young and aged wild-type and 

TgAPPSw,Ind mice which show increased amyloid levels with increasing age.  
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3.2 Materials & Methods 

3.2.1 Animals 

The transgenic mouse model used in this study is described in chapter 2.1. 

Experiments were performed in young (6 months old, n=14) and old (18-19 months 

old, n=15) TgAPPSw,Ind mice and compared to aged-matched wild-type C57Bl/6J 

control littermates (young n=14, old n=13).  

 

3.2.2. Behavioural testing  

Spatial working memory assessment for the animals was performed as described in 

chapter 2.3.1. The number of novel (correct) entries in the first eight arm entries, the 

number of total arm entries, the number of revisiting errors and the duration of the 

task for all trials were recorded 

 

3.2.3 Neuropathological assessment 

3.2.3.1 Perfusions and tissue preparation  

Five days after completion of the behavioural experiments the animals were 

sacrificed for further immunohistochemical and biochemical analysis as described in 

chapter 2.4.1. Tissue was prepared for immunohistochemical and biochemical 

experiments as detailed in chapter 2.4.2.  
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3.2.3.2 Immunohistochemistry 

Immunohistochemical experiments were performed on serial 50 μm sagittal sections 

starting at lateral 2.40 ± 0.1 mm, according to Franklin and Paxinos (1997). If 

necessary, exclusion criteria were applied after immunostaining as described in 

chapter 2.5.5. Immunohistochemisty for Aβ was performed as described in chapter 

2.5.3 to detected Aβ deposition in the hippocampus. The integrity of the myelinated 

axons was examined using antibodies against myelin basic protein (MBP) and total 

neurofilament. Alterations in the length and the number of nodes of Ranvier were 

examined using antibodies against Caspr and Nav1.6. In addition, the length of AIS 

was examined using antibodies against AnkG and Caspr combined with Neurotrace 

staining for the neuronal bodies. Moreover, synaptic integrity was investigated using 

an antibody against synaptophysin. The fluorescent immunochemistry and 

Neurotrace staining techniques used are described in chapters 2.5.1 and 2.5.3 

respectively. The Aβ load was assessed in the hippocampus as described chapter 

2.6.10 Myelin and axonal integrity was assessed in stratum lacunosum moleculare of 

the hippocampus in sections stained for MBP and total neurofilament as described in 

chapter 2.6.2. Myelin bulbs were also quantified at the same region as described in 

chapter 2.6.3. The length and the width of the Nav1.6 clusters, the nodal gap length 

and the number of the nodes were examined in the stratum lacunosum moleculare of 

the hippocampus in sections stained for Nav1.6 and Caspr as described in chapters 

2.6.5 and 2.6.6. The length and the number of the AIS as well as synaptic integrity 

were examined in the CA3 region of the hippocampus as described in chapters 2.6.7, 
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2.6.8 and 2.6.4 respectively. In some animals imaging was impossible because of 

poor quality of staining and tissue (exclusion criteria described in chapter 2.5.5). The 

final analysis was conducted in group sizes detailed in table 3.1. 

Table 3.1 Group sizes of the animals included in final analysis 

Analysis 

Groups size (n) 

wild-type 

young 

wild-type 

old 

TgAPPSw,Ind 

young 

TgAPPSw,Ind 

old 

AIS length and 

number 
14 12 14 15 

Nodal length, width 

and number 
11 12 14 15 

MBP analysis 14 12 14 15 

Total neurofilament 

analysis 
13 12 14 15 

Aβ deposition 13 12 13 15 

Synaptophysin 14 13 14 15 

 

3.2.4 Western blotting 

Before proceeding to tissue homogenisation as described in chapter 2.7.1, the 

hippocampi from the 2mm hippocampal coronal slices of the right hemibrain (cohort 

1) were dissected. The procedure was performed on a glass plate directly placed on 

ice. The hippocampi were then homogenized as described in chapter 2.7.1. Protein 

concentration was determined as described in chapter 2.7.2. MBP and pan 

neurofilament levels were determined using anti-MBP and anti-pan neurofilament 

antibodies whilst Aβ levels and human APP (hAPP) levels we determined with an 

anti Aβ antibody (clone 6Ε10). The details of the western blot technique and the 

antibodies used are described in chapter 2.7.4. Quantification of the protein levels for 
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MBP, total neurofilament, hAPP, monomeric Aβ and trimeric Aβ was performed as 

detailed in 2.7.5. 

 

3.2.5 Statistical analysis   

The AIS and nodal length measurements were analysed using the two-sample 

Kolmogrov-Smirnov test. Τhe number of nodes and AIS, results for Aβ, MBP, total 

neurofilament and synaptophysin immunostaing and MBP and total neurofilament 

western blot analysis were analysed with 2-way-ANOVA with genotype and age as 

the factors followed by Bonferroni’s post hoc test if necessary. Results for hAPP and 

amyloid-β western blot analysis were analysed using the student’s unpaired t-test. 

Data acquired at the 8-arm radial arm maze was analysed with two-way (effect of 

age and genotype over training days) repeated measures ANOVA followed by 

Tukey’s post hoc test. Spearman’s correlation analysis was used to associate changes 

between the Nav1.6 cluster and AIS length, Aβ levels and number of errors in the 8-

arm radial arm maze. The software used for statistical analysis and graph generation 

is detailed in chapter 2.8. For all statistical tests significance was established at p < 

0.05, except from the Kolmogrov-Smirnov test where the Bonferroni correction was 

applied adjusting significance at p < 0.025 as described in chapter 2.8 because 

identical datasets where used simultaneously twice.  
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3.3 Results 

3.3.1 Decreased AIS length in response to ageing in wild-type animals 

and in young TgAPPSw,Ind compared to wild-type mice 

The length of the AIS is proposed as a key mechanism to regulate neuronal 

excitability. The first aim of the study was to assess whether the length of the AIS 

may be altered in ageing and in response to increasing Aβ levels in CA3 pyramidal 

neurons of the hippocampus. The hippocampus is the primary region affected by Aβ 

deposition whilst the CA3 serves an important role in hippocampal circuitry. The 

AIS was immunolabeled for ankyrin-G and the length measured from the neuronal 

cells bodies identified by Neurotrace stain to the first paranode identified by Caspr 

immunolabelling (Figure 3.1 A). In general AIS were readily identifiable in all 

sections and there were no obvious morphological alterations in any of the individual 

mice. Quantification of the length of a number of AIS was undertaken in all cases. In 

the wild-type animals, the average length of AIS was found to be 49.2 ± 0.4 μm at a 

young age and 45.5 ± 0.4 μm in the older animals whilst in the young TgAPPSw,Ind 

average AIS length was 47.7 ± 0.4 μm and 46.8 ± 0.4 μm in the aged TgAPPSw,Ind. 

In the first instance the effect of age was studied in wild-type and TgAPPSw,Ind 

mice on AIS length. Notably, a significant decrease by 7.4 ± 1.2% in the length of 

the AIS was detected in aged wild-type when compared to young mice (p < 0.001, D 

= 0.2343; Figure 3.1 B and F). However, no significant change in the length of AIS 

was observed in the aged TgAPPSw,Ind when compared to younger animals (p = 

0.034, D = 0.1171; Figure 3.1 C and G). Following on from this, it was determined 

whether the alterations in AIS length may be differentially affected in TgAPPSw,Ind 
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mice compared to wild-type littermates. At a young age, a significant decrease by 3 ± 

1.2% in the length of AIS in young TgAPPSw,Ind mice when compared to wild-type 

animals of the same age (p < 0.01, D = 0.1610; Figure 3.1 D and H). However in the 

aged mice there was no difference in the AIS length between wild-type and 

TgAPPSw,Ind mice (p = 0.311, D = 0.0825; Figure 3.1 E and I).  
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Figure 3.1 AIS shortens in response to normal ageing in the wild-type animals and 

in young TgAPPSw,Ind compared to wild-type mice at CA3 pyramidal neurons. 
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The AIS [A] was immunolabeled for AnkG (red), the length was measured from the 

neuronal soma stained with Neurotrace stain (blue) to the first paranode labelled with 

Caspr (green). There was a significant age-dependent decrease (p < 0.001) of AIS 

length in the WT [B, C & F] but not in the TgAPPSw,Ind animals [D, E & G]. 

Young TgAPPSw,Ind animals had significantly (p < 0.01) shorter AIS than WT [B, 

D & H]. No significant change between aged animals of different genotypes was 

observed [C, E & I]. Twenty complete AIS arising from 20 pyramidal neurons of the 

CA3 were measured per animal. Length values were plotted as percentage of 

cumulative frequency distribution. WT young: n=14, WT old: n=12, TgAPPSw,Ind 

young: n=14, TgAPPSw,Ind old n=15. [A] Scale bar 5 μm. [B-E] Scale bar 20 μm.   
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3.3.2 Number of AIS unchanged with ageing in both wild-type and 

TgAPPSw,Ind animals 

Next it was determined whether the overall number of AIS changed with age or 

between genotypes by stereologically counting the number of AIS structures in the 

same confocal stacks used for AIS length measurements (Figure 3.2 A-D). The 

number of AIS was found to be unchanged by either age (F (1-51) = 0.1382, p = 

0.7116) or genotype (F (1-51) = 0.9817, p = 0.3265) and there was no interaction 

between age and genotype (F (1-51) = 3.391, p = 0.0714) (Figure 3.2 E). These 

findings combined with those described in chapter 3.1 suggest that although ageing 

and genotype may have an impact on the size of AIS, this does not result in a change 

in the number.  
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Figure 3.2 Number of AIS remains unchanged with ageing in both wild-type and 

TgAPPSw,Ind mice. The number of nodes was counted in 212x212x10 μm
3
 confocal 

stacks at the CA3 region of the hippocampus immunolabeled with AnkG [A-D]. 

Two-way ANOVA for age and genotype did not show any significant effect of 

genotype or age in the number of AIS (p > 0.05) [E]. WT young: n=14, WT old: 

n=12, TgAPPSw,Ind young: n=14, TgAPPSw,Ind old n=15. Scale bar 20 μm. 

Graphs show mean ± SEM.  
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3.3.3 Changes in nodal size in response to ageing in both wild-type and 

TgAPPSw,Ind animals 

Since the nodes of Ranvier share a similar molecular architecture to the AIS, it was 

predicted that alterations similar to those found at the AIS occur at the nodes of 

Ranvier with ageing and with Aβ. Nodal changes were examined in the stratum 

lacunosum moleculare of the hippocampus that contains fibres arising from the CA3 

where the alterations in AIS length were observed. In general, the nodes were readily 

identifiable (Nav1.6 immunopositive clusters bounded by pairs of Caspr 

immunopositive domains) in all sections and there were no obvious morphological 

alterations between the individual mice. The size of the nodes of Ranvier was 

investigated by measuring the length and the width of Nav1.6 clusters (Figure 3.3). In 

the wild-type animals, the average length of Nav1.6 cluster was found to be 1.40 ± 

0.03 μm at a young age and 1.23 ± 0.03 μm in the older animals whilst in the young 

TgAPPSw,Ind average Nav1.6 cluster length was 1.39 ± 0.03 μm and 1.21 ± 0.03 μm 

in the aged TgAPPSw,Ind. There was a significant reduction in the length of Nav1.6 

cluster in aged wild-type (p < 0.001, D = 0.1806, Figure 3.3 B) and TgAPPSw,Ind 

animals (p < 0.001, D = 0.1931, Figure 3.3 C) by 12.4 ± 2.8% and 13.1 ± 3.2% 

respectively when compared to young animals of the same genotypes. However, 

there was no significant effect of genotype on Nav1.6 cluster length; TgAPPSw,Ind 

mice had similar nodal lengths when compared to wild-type mice at both a young (p 

= 0.539, D = 0.0571, Figure 3.3 D) and old age (p = 0.273, D = 0.0753, Figure 3.3 

E).  
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Figure 3.3 Nav1.6 cluster length is decreased with normal ageing in wild-type and 

TgAPPSw,Ind mice in the stratum lacunosum moleculare of the hippocampus. 

Nav1.6 sodium channels (red) clusters bounded by the paranodal protein Caspr 

(green) outline the node of Ranvier [A]. There is a significant age-dependent 

decrease (p < 0.001) in the length [B & C] of the Nav1.6 clusters in both WT and 

TgAPPSw,Ind animals. No effect (p > 0.05) of genotype was observed in either 

young or aged TgAPPSw,Ind animals [D & E]. The lengths of thirty Nav1.6 clusters 

per animal were analysed and plotted as percentage of cumulative frequency 

distribution. WT young: n=11, WT old: n=12, TgAPPSw,Ind young: n=14, 

TgAPPSw,Ind old n=15. Scale bar 2 μm.  
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A similar pattern of changes was observed in the width of Nav1.6 clusters. In the 

wild-type animals, the average width of Nav1.6 cluster was found to be 0.91 ± 0.01 

μm at a young age and 0.87 ± 0.01 μm in the older animals whilst in the young 

TgAPPSw,Ind average Nav1.6 cluster width was 0.94 ± 0.01 μm and 0.89 ± 0.01 μm 

in the aged TgAPPSw,Ind. The width of the Nav1.6 domain was significantly 

reduced in the aged wild-type (p < 0.01; D = 0.1280 Figure 3.4 A) by 4.3 ± 2.1% but 

not in the aged TgAPPSw,Ind animals (p = 0.043, D = 0.1038, Figure 3.4 B) when 

compared to the young animals of the same genotypes. Moreover, there was no 

significant effect of genotype on Nav1.6 clusters width; TgAPPSw,Ind mice had 

similar Nav1.6 clusters width when compared to wild-type mice at both a young (p = 

0.181, D = 0.0799, Figure 3.4 C) and old age (p = 0.257, D = 0.0783, Figure 3.6 D).   
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Figure 3.4 Nav1.6 cluster width is decreased with normal ageing in wild-type mice 

in the stratum lacunosum moleculare of the hippocampus. There is a significant 

age-dependent decrease (p < 0.01) in the width of the Nav1.6 clusters in WT [A] but 

not in TgAPPSw,Ind animals [B]. No difference (p > 0.05) was observed between 

WT and TgAPPSw,Ind either at a young [C] or old age [D]. The widths of thirty 

Nav1.6 clusters per animal were analysed and plotted as percentage of cumulative 

frequency distribution. WT young: n=11, WT old: n=12, TgAPPSw,Ind young: 

n=14, TgAPPSw,Ind old n=15.  
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Since a decrease in the Nav1.6 cluster length was observed in the aged animals, it 

was then investigated whether the paranodes were similarly altered. In the wild-type 

animals, the average nodal gap length was found to be 1.07 ± 0.03 μm at a young age 

and 0.95 ± 0.02 μm in the older animals whilst in the young TgAPPSw,Ind average 

nodal gap length was 1.08 ± 0.03 μm and 0.98 ± 0.02 μm in the aged TgAPPSw,Ind. 

It was shown that the nodal changes in Nav1.6 length were mirrored in those seen 

with Caspr immunolabelling. Nodal gap was shown to be reduced in both the aged 

wild-types (p < 0.01, D = 0.1528, Figure 3.5 A) and the aged TgAPPSw,Ind (p < 

0.01, D = 0.1385, Figure 3.5 B) by 11.1 ± 3.2% and 9.5 ± 3.4% respectively when 

compared to the young animals of the same genotypes. However, there was no 

significant effect of genotype on nodal gap length; TgAPPSw,Ind mice had similar 

nodal gap lengths when compared to wild-type mice at both a young (p = 0.890; D = 

0.0441, Figure 3.5 C) and old age (p = 0.560, D = 0.0583, Figure 3. D).  
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Figure 3.5 Nodal gap decreased with normal ageing in wild-type and 

TgAPPSw,Ind mice in the stratum lacunosum moleculare of the hippocampus. 

There is a significant age-dependent decrease (p < 0.01) in the nodal gap [A-B] in 

both WT and TgAPPSw,Ind animals. No difference (p > 0.05) was observed between 

WT and TgAPPSw,Ind animals either at a young [C] or old age [D]. The nodal gap 

of thirty nodes per animal were analysed and plotted as percentage of cumulative 

frequency distribution. WT young: n=11, WT old: n=12, TgAPPSw,Ind young: 

n=14, TgAPPSw,Ind old n=15  
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3.3.4 Reduction in nodal length was not associated with reduction in 

AIS length  

To investigate whether the nodal length was associated with AIS length, for each 

animal the average Nav1.6 cluster length was plotted against the average AIS length. 

There was no significant correlation between AIS and Nav1.6 cluster length (Figure 

3.6, p = 0.1056, r = 0.227). These findings suggest that the changes in the length of 

AIS are not associated with the changes in nodal length. 

 

 

Figure 3.6 No association between the nodal and AIS length. Plotting the means of 

Nav1.6 cluster length together with the means of AIS length showed no significant 

association between with Nav1.6 cluster length and AIS length (p > 0.05, Spearman’s 

correlation analysis).  
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3.3.5 Number of nodes unchanged with ageing in both wild-type and 

TgAPPSw,Ind animals 

We next determined whether the overall number of nodes of Ranvier may be 

changed with age or between genotypes by stereologically counting the number of 

nodes in confocal stacks used for nodal measurements (Figure 3.7). The number of 

nodes was found to be unaffected by either age (F (1-48) = 0.4556, p = 0.5033) or 

genotype (F (1-48) = 2.368, p = 0.1311) and there was no interaction between age and 

genotype (F (1-48) = 1.036, p = 0.3145). These findings suggest that ageing or 

genotype whilst modifying the size of the nodes, do not result in an increase in the 

number. 

 

 

Figure 3.7 Number of nodes of Ranvier remains unchanged with ageing in the 

stratum lacunosum moleculare of the hippocampus. The number of nodes was 

stereologically counted in 47x47x10 μm
3
 confocal stacks of stratum lacunosum 

molecular of the hippocampus Two-way ANOVA for age and genotype did not show 

any significant effect of genotype or age in the number of nodes (p > 0.05). WT 

young: n=11, WT old: n=12, TgAPPSw,Ind young: n=14, TgAPPSw,Ind old n=15. 

Graphs show mean ± SEM.  
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3.3.6 Myelin alterations with normal ageing in the hippocampus  

Since myelin loss has been a feature of ageing and AD and myelin sheath alterations 

have been proposed to play a role in nodal disruption the integrity of myelin was next 

investigated in the stratum lacunosum moleculare; the same region where age-related 

decrease of nodal length was observed. This was achieved with immunolabelling for 

myelin basic protein (MBP) (Figure 3.8 A-D). Both the percentage area occupied by 

MBP as a measure for the myelinated fibers population and the intensity of MBP 

staining as a measure for the MBP content in the myelinated fibers were assessed in 

young (n=14) and old (n=12) wild-type mice and in young (n=14) and old (n=15) 

TgAPPSw,Ind mice. Notably, the area occupied by MBP staining was found to be 

reduced by age (p = 0.0234, F (1-51) = 5.463, Figure 3.8 E) but it was not affected by 

genotype (p = 0.1300, F (1-51) = 2.369) and there was not a significant overall 

interaction between age and genotype (p = 0.1741, F (1-51) = 1.900). Post-hoc 

analysis showed that there is a significant decrease in the percentage area occupied 

by MBP in the aged wild-type (p < 0.05, │t│= 2.559) but not in the aged 

TgAPPSw,Ind (p > 0.05, │t│= 0.6969) when compared to younger animals. 

Moreover, there was no significant difference between wild-types and TgAPPSw,Ind 

either at a young (p > 0.05, │t│= 2.046) or old age (p > 0.05, │t│= 0.1145).  
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Figure 3.8 Alterations of myelin integrity in response to ageing in the stratum 

lacunosum moleculare of the hippocampus. Myelin integrity was assessed in the 

stratum lacunosum moleculare of the hippocampus using myelin basic protein 

(MBP) immunostaining [A-D]. There was a significant overall effect of age in 

percentage area occupied by MBP (p < 0.05). Post-hoc testing showed that myelin 

density was significantly reduced (p < 0.05) in aged WT when compared to young 

WT mice. There was no significant difference (p > 0.05) in myelin density with 

increased Aβ in old TgAPPSw,Ind as compared to young TgAPPSw,Ind [I]. WT 

young: n=14, WT old: n=12, TgAPPSw,Ind young: n=14, TgAPPSw,Ind old n=15. 

*: p < 0.05. Graphs show mean ± SEM. Scale bar 20μm.  
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Similarly, the intensity of MBP staining was significantly reduced by age (p = 

0.0124, F (1-51) = 6.717) but not by genotype (p = 0.5329, F (1-51) = 0.3942) and no 

significant interaction between age and genotype (p = 0.2760, F (1-51) = 1.213) was 

observed (Appendix A1 A). Post-hoc analysis showed that a significant age-related 

decrease in the intensity of MBP staining in the wild-type animals (p < 0.05, │t│= 

2.54) but not in the TgAPPSw,Ind (p > 0.05, │t│= 1.084). Moreover, there was no 

significant difference between wild-types and TgAPPSw,Ind either at a young (p > 

0.05, │t│= 1.213) or old age (p > 0.05, │t│= 0.0337). 

Detailed observation of MBP staining revealed morphological alterations in the form 

of myelin bulbs that share similarities with the myelin sheath balloons observed in 

normal ageing. The number of myelin bulbs was stereologically counted in the same 

confocal stacks used for MBP measurements (Figure 3.9 A-D). Data showed a 

significant increase in the number of myelin bulbs in the aged animals (p = 0.0071, F 

(1-51) = 7.870) an effect which was independent of genotype (F (1-51) = 0.6524, p = 

0.4229) whilst no significant interaction between age and genotype (F (1-51) = 0.1033, 

p = 0.7492) was observed (Figure 3.9 E). These findings suggest that ageing has an 

effect in myelin integrity and may drive structural alterations at the myelin sheath.  
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Figure 3.9 Number of myelin bulbs increased with age in the stratum lacunosum 

moleculare of the hippocampus. The number of myelin bulbs was stereologically 

determined in 76.8x76.8x10 μm
3
 confocal stacks double stained for total 

neurofilament [A] and MBP [B] imaged at the stratum lacunosum moleculare of the 

hippocampus. There was a significant increase in the number of myelin bulbs [C & 

D] with age (p < 0.05) [E] but no significant difference between the genotypes was 

observed at any age. WT young: n=14, WT old: n=12, TgAPPSw,Ind young: n=14, 

TgAPPSw,Ind old n=15. [A-C] Scale bar 10 μm, [D] Scale bar 5 μm. Graphs show 

mean ± SEM.  
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3.3.7 No evidence of axonal damage with normal ageing in the 

hippocampus of both wild-type and TgAPPSw,Ind animals 

Given that loss of axons may be responsible for the observed age-related myelin 

alteration, therefore the integrity of axons was examined in the same region. This 

was achieved with immunolabelling for total neurofilament (SMI312) (Figure 3.10 

A-D). The percentage area occupied by total neurofilament and the intensity of 

SMI312 staining was assessed in young (n=13) and old (n=12) wild-type mice and in 

young (n=14) and old (n=15) TgAPPSw,Ind mice. It was shown that there was no 

significant effect of age (p = 0.4568, F (1-50) = 0.5624,) or of genotype (p = 0.3159, F 

(1-50) = 1.026) and no significant overall interaction between age and genotype (p = 

0.9843, F (1-50) = 0.0004) was observed in the percentage area occupied by total 

neurofilament (Figure 3.10 E). Similarly, no significant effect of age (p = 0.276, F (1-

50) = 1.212,) or of genotype (p = 0.8669, F (1-50) = 0.0284) and no significant overall 

interaction between age and genotype (p = 0.8158, F (1-50) = 0.0548) was observed in 

the intensity of SMI312 staining (Appendix A.1 B). This data suggests that although 

there is evidence of MBP staining loss in response to ageing this is not a result of 

axonal loss.   
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Figure 3.10 No alterations in axonal integrity in response to ageing in the stratum 

lacunosum moleculare of the hippocampus in both wild-type and TgAPPSw,Ind 

animals. Axonal integrity was assessed in the stratum lacunosum moleculare of the 

hippocampus using total neurofilament (SMI312) immunostaining [A-D]. Two-way 

ANOVA for age and genotype did not show any significant effect of genotype or age 

on percentage area occupied by total neurofilament (p > 0.05) [I]. WT young: n=13, 

WT old: n=12, TgAPPSw,Ind young: n=14, TgAPPSw,Ind old n=15. Graphs show 

mean ± SEM. Scale bar 20μm.  
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3.3.8 No change in levels of myelin basic protein and total 

neurofilament with ageing in both wild-type and TgAPPSw,Ind animals 

Levels of myelin basic protein (MBP) and total neurofilament were also examined in 

tissue homogenates from the hippocampus to determine if there are changes in 

protein levels overall. Western blotting for MBP showed four bands at 21.5, 18.5, 17 

and 14 KDa (Figure 3.11 A), all four bands were quantified. Western blotting for 

total neurofilament detected with the SMI312 antibody showed a band at 200 KDa 

(Figure 3.11 A), which was quantified. There was no significant effect of age (p = 

0.995, F (1-50) = 0.00003) or genotype (p = 0.7337, F (1-50) = 0.1171) and no 

significant interaction between age and genotype (p = 0.2872, F (1-50) = 1.157) in the 

levels of MBP (Figure 3.11 B). Similarly, there was no significant effect of age (p = 

0.5530, F (1-50) = 0.3567) or genotype (p = 0.2337, F (1-50) = 1.453) and no significant 

interaction between age and genotype (F (1-50) = 0.0015, p = 0.9694) in the levels of 

total neurofilament (Figure 3.11 C).  
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Figure 3.11 No change in levels of myelin basic protein and total neurofilament 

with ageing. Total levels of MBP and total neurofilament levels were assessed in 

tissue homogenates of the hippocampus using western blotting [A]. It was shown that 

there was no significant overall effect of age or genotype (p > 0.05) in the levels of 

MBP [B] or total neurofilament [C]. WT young: n=14, WT old: n=12, TgAPPSw,Ind 

young: n=13, TgAPPSw,Ind old n=15.Graphs show mean ± SEM.  
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3.3.9 Increased presynaptic terminal density in young TgAPPSw,Ind 

compared to wild-type mice and age-dependent decrease in 

TgAPPSw,Ind mice. 

Synaptic loss is observed in both normal ageing and in AD. Synaptic input is 

proposed to play a role in the plasticity of AIS length, therefore presynaptic terminal 

density was assessed in the CA3 region of the hippocampus where the alterations in 

AIS length were found using immunolabelling for synaptophysin (Figure 3.12 A-D). 

The percentage area occupied by presynaptic terminals was assessed, as a measure of 

presynaptic terminal density, in young and old TgAPPSw,Ind and wild-type mice. 

There was a significant effect of age (p = 0.0227, F (1-52) = 5.514) and of genotype (p 

= 0.0135, F (1-52) = 6.541) in the density of presynaptic terminals. There was however 

no interaction between age and genotype (p = 0.0227, F (1-52) = 5.514). Notably, post-

hoc analysis showed that there is a significant decrease postsynaptic terminal density 

in the aged TgAPPSw,Ind mice (p < 0.05, │t│= 2.701) but not in wild-types (p > 

0.05, │t│= 0.9484) when compared to young animals of the same genotype (Figure 

3.12 E). Moreover, there was a significant increase in presynaptic terminal density in 

the young (p < 0.05, │t│= 2.507) but not in the aged (p > 0.05, │t│= 0.8161) 

TgAPPSw,Ind mice when compared to wild-type animals of the same age (Figure 

3.12 E). These findings suggest that synaptic density is different between the wild-

types and the TgAPPSw,Ind and that is reduced in response to ageing.  
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Figure 3.12 Increased presynaptic terminal density in young TgAPPSw,Ind 

compared to wild-type mice and age-dependent decrease in TgAPPSw,Ind mice. 

Presynaptic terminal density was assessed in the CA3 region of the hippocampus 

using immunolabelling for synaptophysin [A-D]. There was a significant effect (p < 

0.05) of age and genotype in the area occupied by presynaptic terminals [E]. The 

young TgAPPSw,Ind mice have more presynaptic terminals when compared to WT 

of the same age (p < 0.05) while the density of presynaptic terminals in the aged 

TgAPPSw,Ind mice is significantly reduced in comparison with young animal of the 

same genotype (p < 0.05). WT young: n=14, WT old: n=13, TgAPPSw,Ind young: 

n=14, TgAPPSw,Ind old n=15. *: p < 0.05. Graphs show mean ± SEM. Scale bar 

20μm.  
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3.3.10 Increased Aβ deposition in the stratum lacunosum moleculare of 

the hippocampus of aged TgAPPSw,Ind mice. 

Aβ deposition at the hippocampus was also examined in the animals included in the 

study in order to confirm the Aβ load since the collected data so far did not show and 

difference between the aged wild-type and TgAPPSw,Ind animals. Deposition of β-

amyloid was localised to the hippocampus and particularly in the stratum lacunosum 

moleculare of TgAPPSw,Ind mice where it was analysed (Appendix A2 A-D). There 

was no Aβ deposition in the wild-type animals. The extent of Aβ immunostaining 

was significantly increased in the TgAPPSw,Ind animals (Appendix A2 E) compared 

to the wild-types (p = 0.0007, F (1-50) = 13.17). Moreover, the extent of Αβ load in the 

stratum lacunosum was significantly increased with age (p = 0.0258, F (1-50) = 5.28). 

There was also a significant interaction between age and genotype (p = 0.0239, F (1-

50) = 5.42). Post-hoc analysis showed that the aged APPSw,Ind have a greater extent 

of Aβ in the stratum lacunosum moleculare occupied by β-amyloid when compared 

to young TgAPPSw,Ind (p < 0.01, │t│= 3.401) and aged wild-types (p < 0.001, 

│t│= 4.201). There was no significant difference between young and aged wild-type 

mice (p > 0.05, │t│= 0.02902) or young wild-type and young TgAPPSw,Ind mice (p 

> 0.05, │t│= 0.922). These findings confirm the aged dependent nature of Aβ 

deposition in the TgAPPSw,Ind mice.  

 

 



 114 

3.3.11 Increased human amyloid precursor protein (hAPP) and 

monomeric Aβ levels in the hippocampus of aged TgAPPSw,Ind mice. 

Total levels of human amyloid precursor protein (hAPP) and levels Aβ species were 

also assessed in tissue homogenates to determine whether they are increased with 

age. Human APP, β-amyloid trimer and Aβ monomer were detected only in the 

TgAPPSw,Ind mice and not in wild-type mice. Western blotting for hAPP, β-

amyloid trimer and Aβ monomer showed bands at 100, 12 and 4 KDa respectively 

(Figure 3.13 A). Human APP levels were significantly increased in the ages 

TgAPPSw,Ind mice compared to the young (Figure 3.13 B, p = 0.0016, │t│= 3.567). 

Aβ trimer levels were unchanged in the aged TgAPPSw,Ind mice compared to the 

young (Figure 3.13 B, p = 0.2519, │t│= 1.174). Monomeric β-amyloid levels were 

significantly increased in the aged TgAPPSw,Ind mice when compared to young 

animals (Figure 3.13 B, p = 0.0343, │t│= 2.245). These findings show that both the 

expression of the hAPP and monomeric Aβ are elevated in the aged TgAPPSw,Ind 

mice. Thus the work indicates that despite the elevated levels of hAPP and Aβ in the 

aged TgAPPSw,Ind mice and their absence from the wild-type animals there is 

minimal effect of TgAPPSw,Ind genotype on nodal and AIS length, and gross 

myelin and axonal integrity.  
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Figure 3.13 Increased hAPP and monomeric β-amyloid levels in aged 

TgAPPSw,Ind mice. Human amyloid precursor protein (hAPP) and monomeric 

amyloid levels where assessed in tissue homogenates of the hippocampus using 

western blots [A]. In the TgAPPSw,Ind there was a significant increase of hAPP (p < 

0.01) and monomeric Aβ (p < 0.05) with ageing. Aβ trimer levels were unchanged. 

TgAPPSw,Ind young: n=12, TgAPPSw,Ind old: n=14. **: p < 0.01, *: p < 0.05. 

Graphs show mean ± SEM.  
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3.3.12 Working memory is not affected in aged wild-type or 

TgAPPSw,Ind mutant animals 

Since the AIS and the nodes of Ranvier have an important role in neuronal function it 

was predicted that the alterations observed in these structures would have a 

functional impact on spatial working memory performance. Spatial working memory 

performance of young and old TgAPPSw,Ind mutant and wild-type mice was 

examined in the eight-arm radial arm maze task. Data for number of novel arm 

entries in the first eight entries, number of errors were analysed.  

All groups significantly increased the number of novel arm entries in the first eight 

entries across the training period (p < 0.0001, F (7-364) = 33.987, Figure 3.14 A-D) and 

by block 5 (a trial block is two days) performed significantly better (WT young, p = 

0.0012; WT old, p = 0.0025; TgAPPSw,Ind young, p = 0.0004; TgAPPSw,Ind, p = 

0.0292) than chance (5.3 entries) suggesting that all groups learn the task. However, 

there was no significant effect of age (p = 0.609, F (1-52) = 0.265, Figure 3.14 A and 

B) or genotype (p = 0.080, F (1-52) = 3.180, Figure 3.14 C and D) and no significant 

interaction between age and genotype (p = 0.129, F (1-52) = 2.376) observed in the 

number of novel arm entries in the first eight entries. Similarly, the number of errors 

was significantly decreased across the training trials in all groups period (p < 0.0001, 

F (7-364) = 24.137, Figure 3.15 A-D). Similar to the novel arm entries results, it was 

shown that there was no significant difference between the different age groups (p = 

0.716, F (1-52) = 0.133, Figure 3.15 A and B) or between the different genotypes (p = 

0.781, F (1-52) =0.078, Figure 3.15 C and D) and no significant interaction between 

age and genotype (p = 0.781, F (1-52) = 0.078) was observed in the number of errors. 
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These findings suggest that despite the observed alterations in the AIS and the nodes 

of Ranvier described earlier in this chapter in response to ageing or genotype, spatial 

working memory performance is not affected.  
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Figure 3.14 Number of novel arm entries is not changed in aged TgAPPSw,Ind 

and wild-type mice. All groups significantly increased (p < 0.05) the number of 

novel arm entries in the first eight entries across the training period of 16 days (a trial 

block is two days). By trial-block 4 the mice have learned the task and perform 

above chance (5.3 entries, dash line). Overall the aged WT [A] and TgAPPSw,Ind 

animals [B] make the same number of novel entries when compared to young 

animals of the same genotype (p > 0.05). Moreover, there was no significant 

difference (p > 0.05) in the number of novel arm entries between WT and 

TgAPPSw,Ind mice at either age [C & D]. WT young: n=14, WT old: n=13, 

TgAPPSw,Ind young: n=14, TgAPPSw,Ind old: n=15.Graphs show mean ± SEM.  
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Figure 3.15 Number of revisiting errors is not changed in aged TgAPPSw,Ind and 

wild-type mice. All groups significantly decreased (p < 0.05) the number of revisiting 

errors across the training period of 16 days (a trial block is two days). Overall the 

aged WT [A] and TgAPPSw,Ind animals [B] make the same number of errors when 

compared to young animals of the same genotype (p > 0.05). Moreover, there was no 

significant difference (p > 0.05) in the number of errors between WT and 

TgAPPSw,Ind mice at either age [C & D]. WT young: n=14, WT old: n=13, 

TgAPPSw,Ind young: n=13, TgAPPSw,Ind old: n=15.Graphs show mean ± SEM.  
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3.3.13 Working memory performance of young and aged wild-type and 

TgAPPSw,Ind animals in the 8-arm radial arm maze is not associated 

with the nodal or AIS length 

In order to investigate whether the measures of nodal length and AIS length can be 

related to working memory performance in the 8-arm radial arm maze, for each 

animal the average Nav1.6 cluster and AIS length was plotted against the number of 

revisiting errors at trial block 8 (Figure 3.16 A and B). There was no significant 

correlation between the number of revisiting errors and the Nav1.6 cluster length 

(Figure 3.16 A, p = 0.9467, r = 0.009909) or the AIS length (Figure 3.16 A, p = 

0.3862, r = 0.1192). These findings suggest that the observed changes in the length 

of the AIS or the nodes may not be directly related to the working memory 

performance.  
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Figure 3.16 Working memory performance in the 8-arm radial arm maze is not 

associated with the nodal or AIS length. Plotting the number of revisiting errors 

(trial block 8) together with the means of Nav1.6 cluster length [A] and AIS length 

[B} showed no significant association (p > 0.05, Spearman’s correlation analysis).  
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3.3.14 Working memory performance of young and aged TgAPPSw,Ind 

animals in the 8-arm radial arm maze is not associated the hippocampal 

load of monomeric Aβ 

In order to investigate working memory performance in the 8-arm radial arm maze is 

related to the levels of Aβ in the hippocampus of the TgAPPSw,Ind mice for each 

animal the protein level of monomeric Aβ was plotted against the number of 

revisiting errors at trial block 8 (Figure 3.17). There was no significant correlation 

between the number of revisiting errors and the monomeric Αβ protein levels (p = 

0.5337, r = 0.1278). This data suggests there might not be a relation between Αβ load 

and working memory performance in the 8-arm radial arm maze.to the working 

memory performance. 

 

 

Figure 3.17 Working memory performance in the 8-arm radial arm maze is not 

associated with Αβ levels in the TgAPPSw,Ind mice. Plotting the number of 

revisiting errors (trial block 8) together with the levels of monomeric showed no 

significant association (p > 0.05, Spearman’s correlation analysis).  
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3.3.15 Summary of results 

The following table (Table 3.3) summarises the findings described in the present 

chapter. 

Table 3.2 Summary of results  

Feature examined Findings 

AIS length 

↓ in aged WT compared to young 

↓ in young APPSw,Ind compared to WT 

AIS number ↔ 

Nav1.6 cluster length  
↓ in aged WT and APPSw,Ind compared to young of the 

same genotype 

Nav1.6 cluster width  ↓ in aged WT compared to young 

Nodal gap length  
↓ in aged WT and APPSw,Ind compared to young of the 

same genotype 

Nodal number ↔ 

MBP (% area) ↓ in aged WT compared to young 

Number of myelin bulbs ↑ in aged animals compared to young 

SMI312 (% area) ↔ 

MBP and SMI312 

protein levels 
↔ 

Synaptophysin (% area) 

↑ increased in young APPSw,Ind compared to WT 

↓ decrease in aged APPSw,Ind compared to young 

Aβ deposition  ↑ increased in aged APPSw,Ind compared to young 

hAPP levels ↑ increased in aged APPSw,Ind compared to young 

Aβ monomer levels ↑ increased in aged APPSw,Ind compared to young 

Novel arm entries in the 

first 8 entries & number 

of revisiting errors 

(Working memory) 

 

↔ 

 

Note: ↑ increase, ↓ decrease, ↔ unchanged 
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3.4 Discussion 

It is known that with both normal ageing and AD neuronal networks are 

compromised particularly within the hippocampus and this has been linked with 

cognitive decline (Rosenzweig and Barnes, 2003; Geula, 1998; Celone et al., 2006; 

Kanak et al., 2013). The AIS and the nodes of Ranvier are specialized regions within 

the myelinated axons responsible for action potential initiation and propagation. 

Disruption to the AIS and nodes of Ranvier integrity could have critical effects on 

nervous system function. This study demonstrates that the structure of the AIS and 

nodes of Ranvier are markedly affected with age. A significant reduction in the 

length of nodes of Ranvier was demonstrated in aged wild-type and TgAPPSw,Ind 

mice. In addition, the length of AIS was significantly reduced in the aged wild-type 

animals while the young TgAPPSw,Ind had significantly shorter AIS than the wild-

type mice of the same age. In contrast to the original hypothesis these effects on the 

nodes and AIS were not influenced by the presence of amyloid-β.  

It has previously been shown that both the AIS and nodes of Ranvier are sensitive to 

different types of brain injury (Schafer et al., 2009; Hinman et al., 2006; Hinman et 

al., 2013; Reimer et al., 2011). Thus it was hypothesised that ageing would also have 

an effect on these structures. In support of this hypothesis marked alterations in AIS 

length and nodes of Ranvier were demonstrated, although there were no changes in 

their number. Ageing appears to reduce the AIS length by 7.4% in the wild-type 

mice. Here, the changes in AIS length are observed in the CA3 of the hippocampus, 

a region that which plays an important role in hippocampal circuitry as it is 

suggested that information enters the hippocampus via projections of the entorhinal 
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cortex to the dentate gyrus that in turn projects on the CA3 (Gilbert and Brushfield, 

2009). Similar findings come from a rat model of mild traumatic brain injury (mTBI) 

induced by a blast wave where there was a 1-4% decrease in AIS length in the 

hippocampus of the injured animals associated with long-lasting memory impairment 

(Baalman et al., 2013). In animal models of stroke however the proximity to the 

infarct area has a differential effect on AIS alterations. For example, middle cerebral 

artery occlusion induced stroke leads to proteolytic ablation of proteins such as 

AnkG and βΙV spectrin and no AIS structures could be identified within the infarct 

area (Schafer et al., 2009). Furthermore, in a mouse model of photothrombotic stroke 

of the motor cortex where focal ischaemic lesions are induced with retrograde 

neuronal tracing, it was demonstrated that in the peri-infarct region AIS morphology 

and length changes; with the AIS in the injured animals decreased by 14%, almost 

double the level of change observed in our aged wild-type animals (Hinman et al., 

2013). The number of AIS was also examined and found to be unchanged in 

response to ageing. Given that alterations in AIS number have been observed after 

ischemic insults where cell death is occurring (Hinman et al., 2013; Schafer et al., 

2009), it could be suggested that here the number of neurons in the CA3 is preserved 

in response to ageing which is consistent with multiple studies both in aged humans 

and rodents (Rapp and Gallagher, 1996; Rasmussen et al., 1996; West, 1993). 

Although, the observations in the present study are limited to alterations of the AIS 

length, over the last few years a number of studies have suggested that a mechanism 

for regulating neuronal excitability is alteration of AIS length. For example, in the 

chick it was shown that auditory synaptic deprivation results in elongation of AIS 

and decrease of excitation threshold thus increasing neuronal excitability (Kuba et 
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al., 2010). Moreover, in mouse model of Angleman syndrome, elongation of the AIS 

was observed in hippocampal pyramidal neurons and paired with increased action 

potential amplitude and rate of rise as well as decreased action potential threshold 

and this was associated with increased expression of AnkG (Kaphzan et al., 2011). In 

contrast, when reduction of AIS length was simulated in a computational model of 

pyramidal neurons, an increase in the threshold and the interspike interval of neurons 

fired repeatedly was observed (Baalman et al., 2013).  

Similar to the AIS, the length of the nodes of Ranvier was markedly reduced in 

response to ageing in the wild-type animals. The reduction of nodal length was 

observed in the stratum lacunosum moleculare which contains fibres that arise from 

pyramidal neurons in the CA3 and project onto the CA1 (Gilbert and Brushfield, 

2009). The observed reduction in nodal length is consistent with a number of studies 

that have reported age-related changes at the nodes of Ranvier and the surrounding 

regions such as the paranodes and the juxtaparanodes both in rodents and non-human 

primates. For example, a decrease, of the same magnitude, in the length of Nav 

cluster at the nodes of has been previously observed in the optic nerve of 2 years old 

wild-type mice (Rios et al., 2003). In the same study, it was suggested that the 

paranodal interactions play a key role in Nav channel distribution at the node of 

Ranvier as they act as a diffusion barrier for Nav clustering. Furthermore, the 

paranodes have been shown to be disrupted in normal ageing. In aged rats it was 

shown that piling of the myelin sheath paranodal loops are a feature of ageing. 

Furthermore not all the paranodal loops were in contact with the axon and there was 

loss of transverse bands (Shepherd et al., 2012). At a molecular level, Hinman et al. 

(2006) have shown alterations in the molecular architecture of the paranodes and the 
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juxtaparanodes with ageing. For example, they observed reduced expression of Kv1.2 

channels which were also mislocalized in the Caspr positive paranodal region. 

Moreover, in a mouse model, where oligodendrocyte-myelin glycoprotein (OMGp) 

was ablated, disorganized paranodal loops and a reduction of the nodal length as seen 

here were observed and there was also significant reduction of conduction velocity 

(Nie et al., 2006). These findings combined with our data indicate that ageing is 

responsible for alterations in nodes of Ranvier architecture. Our study is limited to 

the structural observation of the nodes of Ranvier but there is evidence that both the 

paranodes and the juxtaparanodes are affected by ageing. To assess paranodal 

disruption examination of the septate-like junctions with electron microscopy or 

Kv1.2 distribution at the paranodes would be necessary. 

The nodes of Ranvier and the AIS have similar molecular composition and it was 

hypothesised that the observed decrease in their length may be associated. In contrast 

with what was hypothesised no association was found between the length of the AIS 

and the nodes. A possible explanation is that two different markers were used to 

evaluate the length of these structures which may not be directly comparable. 

However, in both regions, the Nav1.6 channels are anchored in high concentrations, 

by direct interaction with the scaffolding protein AnkG. In the AIS, AnkG has the 

main role for organization of the AIS components as it was shown that in neurons 

lacking AnkG no Nav1.6 clustering was observed at the AIS (Hedstrom et al., 2008; 

Rasband, 2010). Hence the close relation between AnkG and Nav1.6 targeting at AIS 

may suggest that the decrease of AIS length detected with AnkG observed in the 

present study could suggest loss of Nav1.6 channels from that region. Hinman et al. 

(2013) have shown, that in a stroke mouse model, in the peri-infarct area where 
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decrease of AIS length was shown by AnkG there was no change in AnkG to Nav1.6 

length ratio suggesting that there is loss of Nav1.6 channels from the AIS. 

Additionally, the observed decrease in nodal length could suggest that there is loss of 

Nav1.6 channels from the nodes of Ranvier as well. Notably, Nie et al. (2006) in an 

OMGp-null mouse model, observed reduced nodal length together with decreased 

Nav subunit α levels. Moreover, studies in Nav1.6-null mouse models have shown 

that neurons lacking Nav1.6 channels have reduced spike frequency (Van Wart and 

Matthews, 2006) and increased threshold for spike initiation (Royeck et al., 2008) 

highlighting the importance of these channels for neuronal excitability. Assessment 

of Nav1.6 channel levels would determine whether these channels are altered in 

response to ageing both in the nodes and the AIS Moreover, in order to further 

investigate the effect of reduced AIS and nodal length on the neuronal excitability in 

aged animals, electrophysiological approaches or computational modeling of the 

changes would be necessary. 

The next aim of the study was to examine myelin and axonal integrity. Here it was 

demonstrated that there is age-dependent loss of MBP immunostaining in the wild-

type animals and an overall increased number of myelin bulbs in the stratum 

lacunosum moleculare. The decrease in MBP staining is in accordance with 

published data from studies in human and non-human primates that have reported a 

loss of white matter volume as well as ultrastructural alterations of splits and cavities 

(“balloons”) within the lamellae of the myelin sheath (Bartzokis et al., 2003; 

Feldman and Peters, 1998; Peters, 2002). Studies in other species has shown reduced 

myelin staining in response to ageing has been observed in canines (Chambers et al., 

2012) whereas in aged primates both loss of myelin staining (Sloane et al., 2003) and 
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thinner myelin sheaths (Bowley et al., 2010) have been observed. The structural 

alterations in the myelin sheath (myelin bulbs) observed here in the aged animals 

have similarities to the ultrastructural changes to the myelin sheath (myelin balloons) 

reported both in aged rodents and non-human primates (Bowley et al., 2010; Luebke 

et al., 2010; Peters, 2009; Sugiyama et al., 2002; Shepherd et al., 2012). These 

structures are suggested to be indicative of neurodegeneration (Peters, 2009) and 

have also been observed during demyelination (Summers and Appel, 1987; Ludwin, 

1978). Further ultrastructural analysis of these structures in ageing and 

TgAPPSw,Ind mice would be required. 

 In the present study there were no alterations in axons as assessed by total 

neurofilament in the stratum lacunosum moleculare. This finding is similar to other 

studies which show myelin alterations precede axonal degeneration (Sandell and 

Peters, 2003; Desai et al., 2009). Western blot analysis of MBP and total 

neurofilament levels in tissue homogenates of the hippocampus indicated that the 

levels were not changed in response to ageing. The discrepancy between MBP 

immunostaining and western blotting data may be due to the sensitivity of the two 

methods to detect differences. Immunostaining allows the identification of specific 

regional alterations whereas western blotting can only detect gross changes in protein 

levels. For example, Desai et al. (2009) show regional changes in MBP 

immunostaining within the hippocampus of aged 3xTg animals but when MBP levels 

are examined in hippocampal homogenates no change was found. 

Myelin integrity has been hypothesised to play an important role in nodal structure 

and has been closely investigated in demyelinated diseases or injury both in the CNS 
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and the PNS. For example, in PNS remyelination after nerve injury thinner myelin 

and shorter nodes are observed (Gaudet et al., 2011). In addition, a key feature of 

remyelinated axons is the decreased length of internodes (Powers et al., 2012; 

Lasiene et al., 2008) which subsequently increases the number of nodes (Black et al., 

2006). Ageing, however, did not appear to have an effect on the number of nodes. 

This is in accordance with another study where the number of nodes was examined 

by assessing the number of Caspr positive paranodal pairs in aged (17-22 months) 

wild-type mice (Shepherd et al., 2012). However, the decrease in nodal length 

without any changes in the number of nodes may be reflecting reduction in 

hippocampal fibre length which has been reported by studies in aged humans, non-

human primates and rodents (Marner et al., 2003; Calhoun et al., 2004; Ypsilanti et 

al., 2008). In addition, in multiple sclerosis diffusion of Nav channels along axons 

has been observed which has been attributed to profound demyelination, a hallmark 

of the disease (Coman et al., 2006; Smith, 2007). Although the changes in the nodes 

of Ranvier that have been observed here with normal ageing cannot be compared to 

the severity of those observed in demyelinating diseases such as multiple sclerosis, it 

becomes evident that the integrity of axon-glial crosstalk plays an important role. 

The assembly of the macromolecular complex required for Nav targeting at the AIS 

and the nodes of Ranvier requires cytoskeletal integrity (Susuki and Rasband, 

2008b). However, there is some evidence that some components of cytoskeleton such 

as αΙΙ spectrin are compromised with normal ageing, for example in aged rats it has 

been shown that there are elevated products of cytoskeletal breakdown mediated by 

calpain (Bernath et al., 2006). Moreover, in aged rhesus monkeys it was shown that 

there is an increase in calpain-mediated proteolysis of oligodendrocyte proteins 
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(Sloane et al., 2003). Calpain has also been pointed out as a key mechanism for AIS 

remodelling after stroke, Schafer et al. (2009) have shown elevation of the βΙV 

spectrin and AnkG calpain-mediated proteolytic products. Although, cytoskeletal 

integrity examined with an anti-total neurofilament antibody was found to be intact 

in the aged animals, it cannot be rejected that other cytoskeletal components, such as 

βIV spectrin, may be affected. Further investigation for calpain-mediated proteolytic 

products in hippocampal tissue homogenates of aged animals would be necessary to 

confirm age-dependent calpain activation.  

In addition, normal ageing is characterized by increased mitochondrial dysfunction, 

oxidative stress and neuroinflammation which are processes that have been linked 

with the integrity of the nodes of Ranvier (Bagh et al., 2011; Boumezbeur et al., 

2010; Stichel and Luebbert, 2007). The mitochondria are subcellular structures 

essential for energy production in the cell. In the normal ageing brain, there is 

evidence that the mitochondria accumulate mutations resulting in reduced 

cytochrome oxidase activity (Lin et al., 2002) and have reduced respiratory rates 

making the brain more susceptible to oxidative stress (Boveris and Navarro, 2008; 

Chakrabarti et al., 2011). Moreover, they play an important role in nodal function as 

they provide the required energy for the maintenance of plasma membrane potential 

equilibrium (Chiu, 2011). There is some evidence that there is dysregulation of  

mitochondrial distribution when then the axon-glial junction is disrupted (Einheber et 

al., 2006) suggesting that local energy metabolism at the node of Ranvier is regulated 

by axon glial-integrity which may be disrupted in normal ageing. As mentioned 

earlier, mitochondrial dysfunction leads to oxidative stress in the ageing brain. 

Moreover, neuroinflammation has been described in the healthy aged brain of many 
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species (Luo et al., 2010). Both these processes (oxidative stress and 

neuroinflammation) have been shown to reduce the oligodendroglial population 

(Balabanov et al., 2007; Cammer and Zhang, 1999; Deng et al., 2004; French et al., 

2009). Therefore, given that nodal assembly and maintenance is under glial control, 

alterations in the oligodendroglial cell number due to normal ageing could have an 

impact on nodal integrity. 

The hippocampus is a region vulnerable to AD-related damage thus it was 

hypothesised that in a mouse model which develops age-related deposition of 

amyloid within the hippocampus, as seen here, alterations to AIS and nodes may be 

exacerbated. In the present study, there is a baseline difference in AIS length with the 

young APPSw,Ind animals having shorter AIS than the young wild-types. However, 

there was no difference in AIS length in the aged animals between TgAPPSw,Ind 

and wild-type animals. There are very few studies investigating the integrity of AIS 

in AD. Interestingly, there is some evidence that genetic polymorphisms of ANK3 

gene which encodes for AnkG have been linked with late-onset AD (Morgan et al., 

2007). In addition, a recent study by Santuccione et al. (2013) showed in AD patients 

increased immunoreactivity against AnkG in their serum which reversely correlates 

with slower cognitive decline and altered distribution of AnkG and accumulation at 

the Αβ plaques. The integrity of AIS before the onset of Aβ pathology has never 

before been investigated and the reduction of AIS length measured by AnkG may 

also reflect loss of Nav1.6 from the region. Indeed there is evidence that in 4-7 

months old TgAPPSw,Ind (J20 line) mice that the expression of Nav1.6 channels is 

reduced in the cortex (Verret et al., 2012). However, similar to the current study, 

when the integrity of AIS was examined proximal to Aβ deposits in another model 
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(AβPP/PS1) at 12 months of age, no change in AIS length between APP 

overexpressing animals and wild types was observed (Leon-Espinosa et al., 2012). 

These findings suggest Aβ may drive an initial decrease in AIS length at a young age 

which this in not further exacerbated by age but is comparable with the decrease 

induced by ageing in the wild-type animals.  

Furthermore, in the aged APPSw,Ind mice nodal length was reduced but there was 

no evidence that this was different from the wild-type mice suggesting that this is not 

influenced by the presence of amyloid. The reduction in nodal length is similar to 

that observed in the wild-types here and in other studies (Rios et al., 2003). In 

contrast, a study in another AD model (3xTg) which develops overt amyloid 

pathology showed Nav1.6 immunoreactivity was reduced in the mutant animals at 6 

months of age (Desai et al., 2009). However, in that study the effect of ageing is not 

taken into account as young wild-type animals are used as controls. In the same study 

myelin disturbances where proposed to underlie the reduced in Nav1.6 

immunostaining. Here, in contrast to what was hypothesized, MBP and total 

neurofilament levels were unchanged in the aged TgAPPSw,Ind mice compared to 

young animals, there was however a significant overall increase in the number of 

myelin bulbs the aged animals. Myelin disruption has been described both in AD 

patients and other mutant APP models (Stokin et al., 2005; Desai et al., 2009) 

(deToledo-Morrell et al., 2007) and, similar to ageing, can occur prior to axonal 

damage (Bartzokis et al., 2003). However, there is evidence that alterations of myelin 

staining in the hippocampus of APP mutant animals are region-specific, with some 

regions such as the CA1 being affected while others such as the CA3 are not (Desai 

et al., 2009) which could explain the absence of myelin changes in the TgAPPSw,Ind 
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mice. Moreover, the current study is limited to the use of MBP and total 

neurofilament for the evaluation of myelin and axonal integrity. Examination of the 

myelinated axons at the stratum lacunosum moleculare with electron microscopy 

would provide evidence of myelin sheath and axonal disruption at an ultrastructural 

level. Axonal integrity could also be examined by investigating the level of 

neurofilament phosphorylation as there is evidence that it is increased in another AD 

model (Yang et al., 2009) whilst myelin integrity could be further investigated with 

the use of markers such as MAG which has been sensitive to axon glial disruption 

(Reimer et al., 2011).  

A number of studies have shown that AIS structure is not stable and there are 

homeostatic changes in response to altered synaptic input leading to changes of AIS 

length or axonal position (Kuba, 2010; Kuba et al., 2010; Grubb and Burrone, 2010a; 

Grubb and Burrone, 2010b). In this study synaptic integrity was investigated with the 

presynaptic vesicle protein synaptophysin. Interestingly, it was observed that the 

young TgAPPSw,Ind mice have increased baseline synaptophysin staining. This 

could be attributed to the neurotrophic properties of the sAPPα (Furukawa et al., 

1996) which is produced via the non-amyloidogenic processing of APP and may play 

a role in synaptic preservation (Bailey et al., 2011). In addition there are some 

evidence from animal models that in the early stages of Αβ pathology there is an 

increase in cholinergic, glutamatergic and GABAergic synaptic boutons (Bell et al., 

2003; Hu et al., 2003). Nevertheless, in accordance with previous studies in the 

TgAPPSw,Ind mice that have shown a deficit in synaptic electrophysiology (Hsia et 

al., 1999) and with studies in multiple AD animal models (Hsia et al., 1999; 

Chapman et al., 1999; Auffret et al., 2010), data from this study showed an age-
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dependent loss of synaptophysin positive presynaptic vesicles in the hippocampus. 

However, it remains unclear if these synaptic changes can be related with activity 

dependent changes in AIS structure. Loss directly associated with the AIS in 

GABAergic synapses has been demonstrated in an AD model (Leon-Espinosa et al., 

2012). Moreover, loss of axoaxonic GABAergic synapses, which are thought to be 

inhibitory, has been concomitantly observed with a decrease in AIS length in an 

animal model of stroke (Hinman et al., 2013). It becomes evident that this study is 

limited to a gross evaluation of presynaptic boutons and further investigation of the 

types of synapses that might be affected by ageing and/or increased Αβ levels would 

provide further insight on whether synaptic input alters AIS structure.  

The last aim of this study was to evaluate spatial working memory at the eight arm 

radial arm maze in aged wild-type and TgAPPSw,Ind mice. It was hypothesised that 

the observed alterations at the AIS and the nodes of Ranvier would have an effect on 

spatial working memory. However it was shown that spatial working memory was 

not impaired with ageing in either the wild-type or the TgAPPSw,Ind animals. 

Moreover the length of the nodes and the AIS was not associated with the 

performance (number of revisiting errors) in the 8-arm radial arm maze. This data 

suggests that the observed changes in the AIS and the nodes of Ranvier are not of 

enough magnitude to cause working memory impairment. This 8-arm arm radial arm 

maze test was chosen due to previous evidence that white matter disruption may 

result in poor working memory performance in the 8-arm radial arm maze (Coltman 

et al., 2011). Moreover, it is well established that spatial working memory 

impairment may be detected by the eight-arm radial maze test in aged rodents 

(Barnes et al., 1980; de Toledo-Morrell et al., 1984; Beatty et al., 1987; Caprioli et 
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al., 1991; Mizumori et al., 1996). However, the aged mice have inherent cognitive 

variability; for example, in a study where spatial working memory performance was 

examined in young (4 months old) and aged (18 months), the old animals were 

divided into good performers and bad performers based on the number of errors and 

only the bad performers showed slower improvement in learning the task (Ikegami, 

1994). Moreover, in the same study, by baiting with food pellets only four arms 

which made the task more difficult as it decreased chance for “correct” choices both 

subgroups of aged animals made more errors than the young animals. Furthermore, 

in a study where spatial working memory was examined at a later age (24 months 

old) with a delayed matching to place protocol at the eight-radial arm maze severe 

cognitive performance was impaired (Lebrun et al., 1990). From these studies it 

could be suggested that detection of spatial working memory deficits in the radial 

arm maze is dependent on the difficulty of the behavioural protocol used which 

might not have been sensitive enough to decipher differences between groups in the 

present study. Although, the data presented here does not suggest spatial working 

memory performance being related to Aβ load, there is evidence that memory is 

challenged in response to ageing both in the wild-type and TgAPPSw,Ind mice in 

hippocampus-specific tasks. For example, the 6-month old TgAPPSw,Ind mice show 

learning and memory deficits in Morris water maze (Valero et al., 2011) whilst aged 

wild-types show impaired spatial memory at 12 months old in Barnes maze (Bach et 

al., 1999). In addition, the eight-arm radial arm maze has two limitations, the 

presence of odours and the need for food deprivation. Odours from the food pellet 

placed at the end of each arm or from previously tested animals that might have 

remained, despite the thorough cleaning of the maze after each test, and facilitate 
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navigation. Further electrophysiological investigation would be necessary to 

establish the functional impact of the observed changes at the nodes of Ranvier and 

the AIS. For example, electrophysiological measurements (whole cell patch-clamp) 

form the CA3 region on hippocampal slices may give information for the way action 

potential amplitude or threshold changes when the AIS are shorter within that region. 

Overall, it has been demonstrated that ageing has direct effects on AIS and nodes of 

Ranvier structure. Both the AIS and the nodes of Ranvier appear to be sensitive in 

cerebral blood flow reduction. For example, after a stroke there is a pronounced 

disruption of the ablation of the AIS structure (Schafer et al., 2009) in the infarct area 

whilst in the perinfarct area reduction of the AIS length is observed (Hinman et al., 

2013). More modest reductions in cerebral blood flow can also cause rapid changes 

in axon-glial integrity and disruption of Nav1.6 within the nodes of Ranvier (Reimer 

et al., 2011). Given that hypoperfusion and cerebrovascular pathologies have been 

observed in normal ageing and AD both in humans and animal models (Stoquart-

ElSankari et al., 2007; de la Torre, 2009), it could be suggested that it is driving the 

observed changes. Additionally, hypoperfusion has been associated with white 

matter disruption (Shibata et al., 2004; Appelman et al., 2010), whilst myelinated 

axon and axon-glial integrity are important for AIS and nodal structure (Coman et 

al., 2006; Reimer et al., 2011; Zonta et al., 2011). The potential implication of 

hypoperfusion in nodes of Ranvier disruption will be investigated in the following 

chapter. 

To summarise, this is the first study demonstrating structural alterations in the AIS 

and/or the nodes in response to ageing and amyloid in the hippocampus. In the 
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future, it would be important to investigate the impact of these alterations on the 

electrophysiological properties of the neurons in the ageing brain. These alterations 

in the context of complex neuronal networks may play a role the breakdown of 

effective neuronal communication leading to age-related cognitive decline. Therefore 

it is essential to identify the mechanisms underlying the observed structural 

alterations and also to specify the implication of amyloid in these mechanisms. 
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Chapter 

4 

Effects of hypoperfusion on 
myelinated axon integrity and 
cognition in young and aged wild-
type and TgAPPSw,Ind mice 

 

4.1 Introduction 

Alterations to myelinated axons is a key feature of the ageing brain (Peters, 2002; 

Peters, 2009) and these changes are exacerbated in AD (Salat et al., 2009). These 

changes are associated with impairments in cognitive ability. The previous chapter 

demonstrated alterations to the protein architecture of myelinated axons, specifically 

in the node of Ranvier and the AIS, with ageing and modulation by amyloid, a key 

feature of AD.  

The mechanism responsible for alteration to myelinated axons in ageing and in AD is 

not clear. Cerebral hypoperfusion is a feature of normal ageing and is closely related 

with white matter changes. Modelling of cerebral hypoperfusion in rodents now 

permits the investigation of the effects of hypoperfusion in isolation which could 

provide a greater understanding of mechanisms underlying white matter alteration in 

response to hypoperfusion. Studies in this chapter build on previous work in a model 

of hypoperfusion where it was demonstrated that as early as three days after the 

induction of hypoperfusion the protein architecture of the nodes of Ranvier is 

changed and this change persists after one month in parallel with alterations at the 

paranodes (Reimer et al., 2011). In addition, other hypoperfusion studies in mice 

have provided evidence of widespread myelin damage and poor working memory 
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performance (Holland et al., 2011; Shibata et al., 2004). However, no previous 

studies have investigated the integrity of the nodes of Ranvier in response to 

hypoperfusion in relation with amyloid pathology and age.   

 

4.1.1 Hypothesis and aims 

It was hypothesised that the integrity of the myelinated axons and particularly the 

nodes of Ranvier and the paranodes would be altered in response to hypoperfusion 

and that these effects would be exacerbated in the presence of increased levels of Aβ 

and associated with working memory deficits in young and aged mice. In order to 

address this hypothesis the effects of surgically induced hypoperfusion on the 

integrity of the nodes of Ranvier, paranodes, myelin and axons and in working 

memory performance was investigated in young and aged wild-type and 

TgAPPSw,Ind mice which show increased amyloid levels with increasing age.   
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4.2 Materials & Methods 

4.2.1 Animals 

The transgenic mouse model used in this study is described in chapter 2.1. Animals 

were examined at 4 months and 16-17 months of age at the start of procedures in 

separated studies. Surgical procedures were performed Dr Cath Gliddon and Dr 

Philip Holland. 

Young study: Behavioural performance was examined in hypoperfused (n=14) and 

sham operated (n=13) TgAPPSw,Ind and compared to aged-matched wild-type 

C57Bl/6J control littermates (sham n=14, hypoperfused n=13). During behavioural 

testing, some animals had seizures which lead to their exclusion from the study under 

the exclusion criteria described in chapter 2.3.2. The final group numbers were n=12 

for the wild-type sham, n=12 for the WT hypoperfused, n=13 for the TgAPPSw,Ind 

sham and n=10 TgAPPSw,Ind hypoperfused. Tissue harvested from animals of this 

cohort was used for all biochemical experiments and for examining gross myelin and 

axonal integrity. Nodal and paranodal integrity was examined in a separate age-

matched cohort. The size of the groups was n=9 for the TgAPPSw,Ind hypoperfused; 

n=9 for the wild-type hypoperfused; n=9 for the TgAPPSw,Ind sham and n=9 for 

wild-type sham. The use of a different cohort was necessary because tissue at the 

appropriate level from the behavioural cohort was in shortage.  

Aged study: Behavioural performance was examined in hypoperfused (n=15) and 

sham operated (n=11) TgAPPSw,Ind and compared to aged-matched wild-type 

C57Bl/6J control littermates (sham n=14, hypoperfused n=12). All experiments were 
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performed on tissue harvested from animals of this cohort. However, nodal and 

paranodal integrity, in order to facilitate imaging and analysis, was examined in a 

subset of animals from each group with simple random sampling. For random 

sampling, the experimental numbers for each group were written on identical pieces 

of paper, folded and placed in a dark container, and then another researcher without 

direct visual contact with the container chose n number of papers. This was repeated 

for each group and the adjusted group sizes were n=9 for the TgAPPSw,Ind 

hypoperfused; n=9 for the wild-type hypoperfused; n=9 for the TgAPPSw,Ind sham 

and n=9 for wild-type sham.  

For the nodal measurements sample size calculations at both ages were performed to 

determine that the study is adequately powered as described in chapter 2.9. From a 

previously published study on the same model and under similar conditions by 

Reimer et al. (2011), the target difference in the length of the nodes was 0.24 μm 

(approximately 10% difference) and the standard deviation 0.705 μm which makes 

the standardized difference (d) = 0.340. With the use of the formula described in 

chapter 2.9, the 202 nodes need to be measured for the study to be well-powered. If 

30 nodes per animal are measured, each group should include a minimum of 7 

animals. This criterion is met by both studies.   

 

4.2.2. Behavioural testing  

4.2.2.1 Spatial working memory assessment 
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Behavioural testing in the radial arm maze began 4 weeks after the induction of 

hypoperfusion. Spatial working memory assessment for the animals of the young and 

the aged cohort was performed as described in chapter 2.3.1. The number of novel 

(correct) entries in the first eight arm entries, the number of total arm entries, the 

number of revisiting errors and the duration of the task for all trials were recorded. 

The experiments were performed by the author and Dr Gillian Scullion.  

 

4.2.3 Neuropathological assessment 

4.2.3.1 Perfusions and tissue preparation  

Mice were sacrificed 8 weeks after surgery as described in chapter 2.4.1. Tissue was 

harvested for immunohistochemical and biochemical analysis as described in chapter 

2.4.2. 

 

4.2.3.2 Immunohistochemistry 

The integrity of myelinated axons was examined using antibodies against myelin 

basic protein (MBP) and total neurofilament. Alterations to the length and the 

number of nodes of Ranvier were examined using antibodies against Caspr and 

Nav1.6 and paranodal integrity was examined with Kv1.2 and Caspr double labeling. 

The fluorescent immunochemistry techniques used are described in chapter 2.5.1. 

Myelin and axonal integrity was assessed on single confocal images acquired with a 

Zeiss Axioskope LSM 710 confocal laser scanning microscope using a 20× objective 
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(numeric aperture 0.8), a pinhole of 1 Airy unit and x1 zoom in the corpus callosum 

in sections stained for MBP and total neurofilament as described in chapter 2.6.2. 

The length, the nodal gap length and the number of the nodes were examined in the 

corpus callosum and stratum lacunosum moleculare of the hippocampus in sections 

stained for Nav1.6 and Caspr as described in chapters 2.6.5 and 2.6.6. Colocalization 

of Kv1.2 and Caspr was examined at the corpus callosum as described in chapter 

2.6.7. In some animals imaging was impossible because of poor quality of staining 

and tissue (exclusion criteria described in chapter 2.5.5). The final analysis was 

conducted in groups whose size is detailed in table 4.1 for the young study and in 

table 4.2 for the aged.  

Table 4.1 Group sizes of the animals included in final analysis for the young study  

Analysis 

(young study) 

Groups size (n) 

wild-type 

sham 

wild-type 

hypoperfused 

TgAPPSw,Ind 

sham 

TgAPPSw,Ind 

hypoperfused 

Nodal length, width 

and number 
9 8 8 8 

Kv1.2 9 9 8 9 

MBP and total 

neurofilament analysis 
10 12 13 10 

 

Table 4.2 Group sizes of the animals included in final analysis for the aged study  

Analysis 

(aged study) 

Groups size (n) 

wild-type 

sham 

wild-type 

hypoperfused 

TgAPPSw,Ind 

sham 

TgAPPSw,Ind 

hypoperfused 

Nodal length and 

number 
8 8 9 8 

Kv1.2  9 8 9 9 

MBP and total 

neurofilament analysis 
11 13 11 12 
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4.2.4 Biochemistry 

The 2mm hippocampal coronal slices of the right hemibrain from the animals of the 

young and the aged were then homogenized as described in chapter 2.7.1. Protein 

concentration was determined as described in chapter 2.7.2. MBP, pan 

neurofilament, 200KDa neurofilament, APP and APP C-terminal fragments levels 

were determined using anti-MBP, anti-pan neurofilament, anti-neurofilament 

200KDa, anti-APP and anti-APP C-terminal fragments antibodies respectively. 

Western blotting was performed as described in 2.7.4 by the author and Dr Gillian 

Scullion. Human Aβ42 levels were detected ELISA as described in chapter 2.7.3, the 

experiment was run by Mrs Natalia Salvadores. Quantification of MBP, pan 

neurofilament, 200KDa neurofilament, APP, C83 and C99 fragments and oligomeric 

amyloid levels performed as detailed in 2.7.5. 

 

4.2.5 Statistical analysis  

All nodal length measurements were analysed using the two-sample Kolmogrov-

Smirnov test. Spearman’s correlation test was used to associate changes between the 

Nav1.6 cluster to nodal gap length ratio with working memory performance. The 

number of nodes, MBP and total-neurofilament intensity and area fraction, 

Kv1.2/Caspr colocalization and MBP, total neurofilament, NF200, APP and APP C-

terminal fragments levels and the gradient of the line generated between the numbers 

of errors in block 1 to block 8 (8-arm radial arm mase) were analysed by 2-way-

ANOVA with genotype and hypoperfusion as the factors, followed by Bonferroni’s 
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post hoc test if necessary. Differences in the levels of oligomeric Aβ or hΑβ42 

concentration in sham and hypoperfused TgAPPSw,Ind mice were analysed using 

the student’s unpaired t-test. Data acquired at the 8-arm radial arm maze was 

analysed with two-way (effect of hypoperfusion and genotype over training days) 

repeated measures ANOVA followed by Tukey’s post hoc test. Additionally, the 

Greenhouse-Geiser correction was used when data violated sphericity (p < 0.05 at 

Mauchly’s test). Software used for statistical analysis and the graph generation is 

detailed in 2.8. For all statistical tests ,significance was established at p < 0.05, 

except from the Kolmogrov-Smirnov test where the Bonferroni correction was 

applied adjusting significance at p < 0.025 as described in chapter 2.8 because 

identical datasets where used simultaneously twice.  
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4.3 Results 

4.3.1 Hypoperfusion decreases Nav1.6 cluster and nodal gap length in 

the nodes of Ranvier of the corpus callosum but not of the 

hippocampus in young animals 

The nodes of Ranvier are important for action potential propagation and there is 

evidence that they are altered in length in response to cerebral hypoperfusion. The 

first aim of the study was to assess whether the integrity of the nodal domain may be 

altered in response to hypoperfusion and increased levels of Aβ in young animals. 

The myelinated axons were investigated in both the corpus callosum, known to be 

susceptible to the effects of hypoperfusion, and the hippocampus (stratum lacunosum 

moleculare) which is the primary site of age-dependent amyloid deposition in the 

TgAPPSw,Ind animals. In general the nodes were readily identifiable (Nav1.6 

immunopositive clusters bounded by pairs of Caspr immunopositive domains) in all 

sections and there were no obvious morphological alterations between the individual 

mice. 

Examination of at the corpus callosum of young wild-type and TgAPPSw,Ind mice 

revealed alterations to the Nav1.6 channel clusters size and the nodal gap in response 

to hypoperfusion (Figure 4.1 A). In the wild-type animals the average length of the 

Nav1.6 cluster was found to be 2.32 ± 0.05 μm in the shams and 2.01 ± 0.05 μm in 

the hypoperfused animals whilst in the sham TgAPPSw,Ind the average Nav1.6 

cluster length was 2.22 ± 0.05 μm and 1.74 ± 0.04 μm in the hypoperfused 

TgAPPSw,Ind mice. There was a significant reduction in the length of Nav1.6 cluster 

length in the hypoperfused wild-types (p < 0.0001, D = 0.2444, Figure 4.1 B) and 
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TgAPPSw,Ind animals (p < 0.0001, D = 0.2879, Figure 4.1 C) by 13.6 ± 2.9% and 

21.9 ± 3% respectively when compared to sham animals of the same genotype. 

Moreover, there was a significant difference (by 13 ± 3.1%) in the Nav1.6 cluster 

length between hypoperfused wild-type and TgAPPSw,Ind animals (p < 0.0001, D = 

0.1851, Figure 4.1 E), suggesting that hypoperfusion has an even greater effect in 

reducing the Nav1.6 cluster length in the TgAPPSw,Ind mice. No difference was 

observed between sham wild-types and sham TgAPPSw,Ind (p = 0.095, D = 0.1084, 

Figure 4.3 D).  

Since a decrease in the Nav1.6 cluster length was observed in response to 

hypoperfusion, it was then investigated whether the paranodes were similarly altered. 

A decrease in the nodal gap length defined by pairs of Caspr immunopositive 

domains (Figure 4.1 A) was observed in the hypoperfused animals. In the sham wild-

type animals the average nodal gap length was 1.27 ± 0.04 μm and 1.02 ± 0.04 μm in 

the hypoperfused wild-type animals whilst in the sham TgAPPSw,Ind the average 

nodal gap length was 1.27 ± 0.05 μm and 0.81 ± 0.03 μm in the hypoperfused 

TgAPPSw,Ind mice. When comparing sham and hypoperfused animals a significant 

reduction in nodal gap length both in the wild-type (p < 0.0001, D = 0.2494, Figure 

4.2 A) and the TgAPPSw,Ind (p < 0.0001, D = 0.3512, Figure 4.2 B) mice by 20.1 ± 

4.1% and 35.9 ± 4.3% respectively was found. Additionally, the nodal gap was 

significantly smaller by 20.1 ± 4.4% in the hypoperfused TgAPPSw,Ind mice 

compared to the wild-type animals (p < 0.0001, D = 0.2232, Figure 4.2 D). No 

difference was observed between sham wild-type and TgAPPSw,Ind animals (p = 

0.733, D = 0.0603, Figure 4.2 C).  
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Figure 4.1 Nav1.6 cluster length is decreased in the corpus callosum of young 

animals in response to hypoperfusion and this effect is exacerbated in 

TgAPPSw,Ind mice. Nav1.6 sodium channels clusters bounded by the paranodal 

protein Caspr outline the node of Ranvier [A]. There is a significant decrease (p < 

0.0001) in the length [B & C] of the Nav1.6 clusters in both WT and TgAPPSw,Ind 

hypoperfused animals, an effect that is exacerbated (p < 0.0001) in the 

TgAPPSw,Ind mice [E]. No difference (p > 0.05) was observed between sham 

animals of both genotypes [D]. The lengths of thirty Nav1.6 clusters per animal were 

analysed and plotted as percentage of cumulative frequency distribution. WT sham: 

n=9, WT hypoperfused: n=8, TgAPPSw,Ind sham: n=8, TgAPPSw,Ind hypoperfused 

n=8. Scale bar 2 μm.  
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Figure 4.2 Nodal gap length is decreased in the corpus callosum of young animals 

in response to hypoperfusion and this effect is exacerbated in TgAPPSw,Ind mice. 

There is a significant decrease (p < 0.0001) in nodal gap length [B-C] in both WT 

and TgAPPSw,Ind hypoperfused animals, an effect that is exacerbated (p < 0.0001) 

in the TgAPPSw,Ind mice [E]. No difference (p > 0.05) was observed between sham 

animals of both genotypes [D]. The nodal gap lengths of thirty nodes per animal 

were analysed and plotted as percentage of cumulative frequency distribution. WT 

sham: n=9, WT hypoperfused: n=8, TgAPPSw,Ind sham: n=8, TgAPPSw,Ind 

hypoperfused n=8.  
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The stratum lacunosum moleculare of the hippocampus was the second region that 

was examined and no change in the Nav1.6 cluster or nodal gap length was observed 

in response to hypoperfusion (Figure 4.3 A). The length of the Nav1.6 cluster was not 

different between hypoperfused wild-type (p = 0.501, D = 0.0704; Figure 4.3 B) or 

TgAPPSw,Ind mice (p = 0.354, D = 0.0815, Figure 4.3 C) when compared to sham 

animals of the same genotype. Moreover, no significant difference in the Nav1.6 

cluster length was observed between the two genotypes in the sham (p = 0.327, D = 

0.0833, Figure 4.3 D) or the hypoperfused (p = 0.083, D = 0.1074, Figure 4.3 E) 

animals. Similarly, the nodal gap length was not different between hypoperfused 

wild-type (p = 0.225, D = 0.0889, Figure 4.4 A) or TgAPPSw,Ind (p = 0.882, D = 

0.0514, Figure 4.4 B) animals when compared to sham animals of the same 

genotype. Moreover, no significant difference in nodal gap length was observed 

between wild-type and TgAPPSw,Ind in the sham (p = 0.907, D = 0.0495, Figure 4.4 

C) or hypoperfused (p = 0.435, D = 0.0741, Figure 4.4 D) animals. 

These findings suggest that in the corpus callosum of the young animals, 

hypoperfusion is causing a decrease to the size of the nodes of Ranvier and this effect 

is exacerbated in the TgAPPSw,Ind mice. However, this effect is region-specific as 

the nodes of Ranvier in the stratum lacunosum moleculare of the hippocampus are 

not altered by hypoperfusion.  
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Figure 4.3 Nav1.6 cluster is not altered in the hippocampus of young animals in 

response to hypoperfusion. Nav1.6 clusters bounded by the paranodal protein Caspr 

outline the node of Ranvier [A]. No significant change (p > 0.05) in the length of the 

Nav1.6 clusters in response to hypoperfusion was observed [B & C]. The Nav1.6 

clusters were not different (p > 0.05) between WT and TgAPPSw,Ind in the sham or 

the hypoperfused animals [D & E]. The Nav1.6 cluster lengths of thirty nodes per 

animal were analysed and plotted as a percentage of cumulative frequency 

distribution. WT sham: n=9, WT hypoperfused: n=8, TgAPPSw,Ind sham: n=8, 

TgAPPSw,Ind hypoperfused n=8. Scale bar 2 μm.  
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Figure 4.4 Nodal gap is not altered in the hippocampus of young animals in 

response to hypoperfusion. No significant change (p > 0.05) in nodal gap length in 

response to hypoperfusion was observed [A & B]. Nodal gap length was not different 

(p > 0.05) between WT and TgAPPSw,Ind in the sham or the hypoperfused animals 

[C & D]. The nodal gap lengths of thirty nodes per animal was analysed and plotted 

as percentage of cumulative frequency distribution. WT sham: n=9, WT 

hypoperfused: n=8, TgAPPSw,Ind sham: n=8, TgAPPSw,Ind hypoperfused n=8.  
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4.3.2 Hypoperfusion decreases Nav1.6 cluster and nodal gap length in 

the nodes of Ranvier of the corpus callosum and the hippocampus of 

aged animals 

The next aim of the study was to investigate whether the alterations to the nodal 

structure observed in response to hypoperfusion and increased Aβ levels in young 

mice would be exacerbated with ageing. Thus the same approaches to those used 

previously were employed to study nodes/paranodes in cohorts of aged wild-type and 

TgAPPSw,Ind mice.  

In the aged cohort the Nav1.6 cluster and nodal gap length were also analysed in the 

corpus callosum (Figure 4.5 A) and the stratum lacunosum moleculare of the 

hippocampus (Figure 4.7 A). In corpus callosum of wild-type animals the average 

length of the Nav1.6 cluster was found to be 1.82 ± 0.05 μm in the shams and 1.65 ± 

0.05 μm in the hypoperfused animals whilst in the sham TgAPPSw,Ind the average 

Nav1.6 cluster length was 1.8 ± 0.05 μm and 1.52 ± 0.04 μm in the hypoperfused 

TgAPPSw,Ind mice. Similar to the young cohort in the corpus callosum there was a 

significant reduction in the length of Nav1.6 positive domains in response to 

hypoperfusion both in wild-type (p < 0.01, D = 0.1661, Figure 4.5 B) and the 

TgAPPSw,Ind animals (p < 0.0001, D = 0.1917, Figure 4.5 C) by 9.7 ± 3.8% and 

15.7 ± 3.4% respectively when compared to sham animals of the same genotype. 

However, no significant difference in the Nav1.6 cluster length was observed 

between the two genotypes in the sham (p = 0.948, D = 0.0458, Figure 4.5 D,) or the 

hypoperfused (p = 0.190, D = 0.1012, Figure 4.6 E) animals.  
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Since a decrease in the Nav1.6 cluster length was observed in response to 

hypoperfusion, whether the paranodes were similarly altered was then investigated. 

Indeed similar changes were observed in the nodal gap length at the corpus callosum. 

In the sham wild-type animals the average nodal gap length was 0.97 ± 0.04 μm and 

0.72 ± 0.03 μm in the hypoperfused wild-type animals whilst in the sham 

TgAPPSw,Ind average nodal gap length was 0.92 ± 0.03 μm and 0.71 ± 0.03 μm in 

the hypoperfused TgAPPSw,Ind mice. Hypoperfusion significantly decreased the 

nodal gap length in both wild-type (p < 0.0001, D = 0.2077, Figure 4.6 A) and the 

TgAPPSw,Ind (p < 0.0001, D = 0.1949, Figure 4.6 B) animals by 25.3 ± 5.2% and 

22.9 ± 4.7% respectively. No changes were observed between the two genotypes in 

the sham (p = 0.498, D = 0.0727, Figure 4.6 C) or the hypoperfused (p = 0.839, D = 

0.577, Figure 4.6 D) animals.  
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Figure 4.5 Nav1.6 cluster length is decreased in the corpus callosum of aged 

animals in response to hypoperfusion. Nav1.6 clusters bounded by the paranodal 

protein Caspr outline the node of Ranvier [A]. There is a significant decrease in the 

length [B & C] of the Nav1.6 clusters in both WT (p < 0.01) and TgAPPSw,Ind 

hypoperfused animals (p < 0.0001). No difference (p > 0.05) was observed between 

genotypes in the sham or the hypoperfused animals [D & E]. The lengths of thirty 

Nav1.6 clusters per animal were analysed and plotted as percentage of cumulative 

frequency distribution. WT sham: n=8, WT hypoperfused: n=9, TgAPPSw,Ind sham: 

n=8, TgAPPSw,Ind hypoperfused n=8. Scale bar 2 μm.  
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Figure 4.6 Nodal gap length is decreased in the corpus callosum of aged animals 

in response to hypoperfusion. There is a significant (p < 0.0001) decrease in the 

nodal gap length [A & B] in response to hypoperfusion in both WT and 

TgAPPSw,Ind animals. No difference (p > 0.05) was observed between genotypes in 

the sham or the hypoperfused animals [C & D]. The nodal gap lengths of thirty nodes 

per animal were analysed and plotted as percentage of cumulative frequency 

distribution. WT sham: n=8, WT hypoperfused: n=9, TgAPPSw,Ind sham: n=8, 

TgAPPSw,Ind hypoperfused n=8.  
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In the aged cohort at the stratum lacunosum moleculare of the hippocampus, 

alterations to the Nav1.6 cluster and nodal gap length were observed in response to 

hypoperfusion (Figure 4.7 A). The average length of the Nav1.6 cluster was found to 

be 1.52 ± 0.04 μm in the shams and 1.40 ± 0.04 μm in the hypoperfused animals 

whilst in the sham TgAPPSw,Ind the average Nav1.6 cluster length was 1.56 ± 0.04 

μm and 1.38 ± 0.03 μm in the hypoperfused TgAPPSw,Ind mice. In hypoperfused 

wild-type the length of Nav1.6 clusters (p > 0.01, D = 0.1632, Figure 4.7 B) and the 

nodal gap length (p < 0.01, D = 0.1611, Figure 4.8 A) were significantly reduced 

compared to sham by 7.9 ± 3.2% and 13.4 ± 4.4% respectively. In the hypoperfused 

TgAPPSw,Ind animals, only the Nav1.6 cluster length was significantly decreased by 

11.9 ± 3.3% (p = 0.019, D = 0.1296; Figure 4.7 C) but not the nodal gap (p = 0.319, 

D = 0.0815, Figure 4.8 B) when compared to sham animals of the same genotype. 

Moreover, there was no significant difference in the Nav1.6 cluster length between 

the two genotypes in the sham (p = 0.340, D = 0.0829 Figure 4.7 D) or the 

hypoperfused animals (p = 0.346, D = 0.0795, Figure 4.7 E). Similarly, the nodal gap 

length was not different between wild-type and TgAPPSw,Ind either sham (p = 

0.041, D = 0.1224, Figure 4.8 C) or hypoperfused animals (p = 0.406, D = 0.0757, 

Figure 4.8 D) compared to wild-type animals. 

These findings suggest that similarly to the young animals, hypoperfusion causes a 

decrease in the size of the nodes of Ranvier in the corpus callosum of the aged 

animals. However, contrary to what is observed in the young mice, this effect was 

not exacerbated in the TgAPPSw,Ind mice. Additionally, ageing appears to increase 

susceptibility of the brain to hypoperfusion as the nodes of Ranvier in the 

hippocampus are also reduced in size.    
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Figure 4.7 Nav1.6 cluster length is decreased in hippocampus of aged animals in 

response to hypoperfusion. Nav1.6 clusters bounded by the paranodal protein Caspr 

outline the node of Ranvier [A]. There is a significant decrease in the length [B & C] 

of the Nav1.6 clusters in both WT (p < 0.01) and TgAPPSw,Ind (p < 0.025) 

hypoperfused animals. No difference (p > 0.05) was observed between genotypes in 

the sham or the hypoperfused animals [D & E]. The lengths of thirty Nav1.6 clusters 

per animal were analysed and plotted as percentage of cumulative frequency 

distribution. WT sham: n=8, WT hypoperfused: n=9, TgAPPSw,Ind sham: n=8, 

TgAPPSw,Ind hypoperfused n=8. Scale bar 2 μm.  
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Figure 4.8 Nodal gap is decreased in the hippocampus of aged WT animals in 

response to hypoperfusion. A significant decrease (p < 0.01) in nodal gap length of 

WT animals in response to hypoperfusion was observed [A]. Nodal gap length was 

not different (p > 0.05) between sham and hypoperfused TgAPPSw,Ind animals [B] 

or between WT and TgAPPSw,Ind either in the sham or the hypoperfused animals [C 

& D]. The nodal gap lengths of thirty nodes per animal was analysed and plotted as 

percentage of cumulative frequency distribution. WT sham: n=8, WT hypoperfused: 

n=9, TgAPPSw,Ind sham: n=8, TgAPPSw,Ind hypoperfused n=8.  
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4.3.3 Number of nodes unchanged with hypoperfusion in the corpus 

callosum and the hippocampus of young and aged animals  

It was next determined whether the overall number of nodes of Ranvier may be 

changed with hypoperfusion or between genotypes in young and aged animals in the 

same regions where the nodal size was measured by stereologically counting the 

number of nodes in the same confocal stacks used for nodal measurements.  

In the young animals (Figure 4.9 A and B) there was no significant effect of 

genotype (corpus callosum: p = 0.6824, F (1-29) = 0.1708; hippocampus: p = 0.5931, F 

(1-29) = 0.2916) or surgery (corpus callosum: p = 0.1875, F (1-29) = 1.822; 

hippocampus: p = 0.1551, F (1-29) = 2.124) in the number of nodes in either of the 

examined regions.  

Similarly in the aged animals (Figure 4.9 C and D), no significant effect of genotype 

(corpus callosum: p = 0.3568, F (1-29) = 0.8768; hippocampus: p = 0.4999, F (1-29) = 

0.4660) or surgery (corpus callosum: p = 0.6404, F (1-29) = 0.2229; hippocampus: p = 

0.6659, F (1-29) = 0.1900) in the number of nodes in either region was observed. 

These findings indicate that hypoperfusion does not result in a change of the number 

of nodes of Ranvier.  
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Figure 4.9 No change of the number of nodes in response to hypoperfusion either 

in young or aged animals. The number of nodes was stereologically counted in 

47x47x5 μm
3
 confocal stacks of the corpus callosum and in 47x47x10 μm

3
 confocal 

stacks of stratum lacunosum moleculare of the hippocampus. In both regions no 

significant change (p > 0.05) in the nodal number was observed in response to 

hypoperfusion in either the young [A & B] or the aged animals [C &D].Young: WT 

sham: n=9, WT hypoperfused: n=8, TgAPPSw,Ind sham: n=8, TgAPPSw,Ind 

hypoperfused n=8; Aged: WT sham: n=8, WT hypoperfused: n=9, TgAPPSw,Ind 

sham: n=8, TgAPPSw,Ind hypoperfused n=8. Graphs show mean ± SEM. 
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4.3.4 Nav1.6 cluster length to nodal gap length ratio is altered 

suggesting paranodal disruption in the corpus callosum of young and 

aged animals 

Normally there is a well-defined spatial distribution of Caspr and Nav1.6 in the 

paranodes and the nodes of Ranvier respectively. Since the length of both the Nav1.6 

cluster and nodal gap was reduced in response to hypoperfusion, it was investigated 

whether this well-defined spatial relationship was maintained or whether this was 

also disrupted which would suggest paranodal disruption was further investigated. 

Nodal gap and Nav1.6 cluster lengths were measured on identical nodes in the young 

and old animals which allowed the ratio between the Nav1.6 cluster and nodal gap 

length to be calculated. This could serve as a measure of paranodal disruption and 

expansion of the Nav1.6 channels into the paranodal domain. Lower values would be 

representative of Nav1.6 clusters restricted in the nodes of Ranvier, while higher 

values would represent Nav1.6 clusters expanding into the paranodal domain.  

In the young animals, the values for the Nav1.6 cluster to nodal gap length ratio were 

plotted as relative frequency graphs and the distribution of the ratio values was 

examined. It was shown that in response to hypoperfusion there is a significant shift 

of the ratio such that there is higher Nav1.6 clusters to nodal gap length ratio in 

hypoperfused mice as compared to sham. This indicates that that there are more 

nodes where there is greater expansion of the Nav1.6 channels into the paranodal 

domains. This observation occurs in both the wild-type (p < 0.01, D = 0.1474, Figure 

4.10 A,) and the TgAPPSw,Ind hypoperfused animals (p < 0.0001, D = 0.3181, 

Figure 4.10 B) compared to sham. There was no significant difference between the 

sham wild-types and TgAPPSw,Ind (p = 0.372, D = 0.0803, Figure 4.10 C,) mice. 
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However, it was shown that in response to hypoperfusion the shift towards higher 

Nav1.6 cluster to nodal gap length ratio was significantly greater in the 

TgAPPSw,Ind compared to the wild-type mice (p < 0.001, D = 0.1725, Figure 4.10 

D,), suggesting that the there is greater expansion of the Nav1.6 channels into the 

paranodal domains in the APPSw,Ind hypoperfused animals compared to the wild-

type hypoperfused mice.  
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Figure 4.10 Expansion of the Nav1.6 cluster into the paranodal domain in 

response to hypoperfusion exacerbated in TgAPPSw,Ind mice in the corpus 

callosum of young animals. The Nav1.6 cluster to nodal gap length ratio was used as 

a measure of paranodal disruption and expansion of the Nav1.6 cluster into the 

paranodal domain. There is a significant increase in the ratio [A-B] of both WT (p < 

0.01) and TgAPPSw,Ind (p < 0.0001) hypoperfused animals which is exacerbated in 

the hypoperfused TgAPPSw,Ind animals (p < 0.01) [D]. No difference (p > 0.05) 

was observed between genotypes in the sham animals [C]. Nav1.6 cluster and nodal 

gap length was measured on 30 identical nodes for each animal and the ratio of 

Nav1.6 cluster to nodal gap length was plotted as distribution of percentage of 

relative frequencies. WT sham: n=9, WT hypoperfused: n=8, TgAPPSw,Ind sham: 

n=8, TgAPPSw,Ind hypoperfused n=8.   
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Similarly, in the aged animals, it was shown that in response to hypoperfusion there 

is a shift in the Nav1.6 cluster to nodal gap length ratio towards higher values in both 

the wild-type (p < 0.0001, D = 0.2375, Figure 4.11 A) and TgAPPSw,Ind mice (p < 

0.01, D = 0.1509, Figure 4.11 B) compared to sham. This again suggests that Nav1.6 

channels expand into the paranodal domains with hypoperfusion in aged animals 

similarly to the young mice. However, there was no significant difference in the 

Nav1.6 cluster to nodal gap length ratio between the sham wild-type and 

TgAPPSw,Ind mice (p = 0.889, D = 0.0509, Figure 4.11 C) or between hypoperfused 

wild-type and TgAPPSw,Ind (p = 0.059, D = 0.1238, Figure 4.11 D). 

These findings suggest that although the nodes of Ranvier are shortened in response 

to hypoperfusion the well-defined spatial distribution between the nodal Nav1.6 

channels and the paranodal Caspr is disrupted. The Nav1.6 channels are expanded 

into the Caspr domain indicating a level of paranodal disruption. This is observed in 

young and aged wild-type animals and TgAPPSw,Ind animals; however, in the 

young TgAPPSw,Ind mice this phenotype is exacerbated compared to wild-type 

hypoperfused mice.   
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Figure 4.11 Expansion of the Nav1.6 channels into the paranodal domains in 

response to hypoperfusion in the corpus callosum of aged animals. Nav1.6 cluster 

to nodal gap length was calculated as a measure of paranodal disruption and 

expansion of the Nav1.6 channels into the paranodal domain There is a significant 

increase in the Nav1.6 cluster to nodal gap length ratio [A-B] in both WT (p < 

0.0001) and TgAPPSw,Ind (p < 0.01) hypoperfused animals. No difference (p > 

0.05) was observed between genotypes in either the sham animals or the 

hypoperfused [C-D]. Nav1.6 cluster and nodal gap length was measured on 30 

identical nodes for each animal and the ratio of Nav1.6 cluster to nodal gap length 

was plotted as distribution of percentage of relative frequencies. WT sham: n=8, WT 

hypoperfused: n=9, TgAPPSw,Ind sham: n=8, TgAPPSw,Ind hypoperfused n=8.  
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4.3.5 No altered distribution of juxtaparanodal Kv1.2 channels in 

response to hypoperfusion  

The previous work indicated that cerebral hypoperfusion induced paranodal 

disruption since Nav1.6 normally contained within the nodes overlapped with Caspr 

in paranodes. To further investigate paranodal disruption the distribution of the 

juxtaparanodal Kv1.2 channels was investigated by examining the percentage volume 

of Caspr immunolabeled paranodes that is occupied by Kv1.2 channels in a 

43.5x43.5x5 μm
3
 confocal stack imaged at corpus callosum of young and old, sham 

and hypoperfused, wild-type and APPSw,Ind mutant mice.  

However the data indicated that hypoperfusion does not result in expansion of Kv1.2 

channels into the paranodal area in either the young of the aged animals. In the 

young animals [Figure 4.12 A & B], there was no significant effect of genotype (p = 

0.5750, F (1-31) = 0.3211) or surgery (F (1-31) = 0.6127, p = 0.4397) in the percentage 

volume of Caspr immunolabeled paranodes occupied by Kv1.2 channels. Moreover, 

there was no interaction between age and genotype (F (1-31) = 0.4957, p = 0.4866). 

Similarly in the aged animals [Figure 4.12 C & D] there was no significant effect of 

genotype (F (1-31) = 0.0704, p = 0.7925) or surgery (F (1-31) = 0.1182, p = 0.7333) in 

the percentage volume of CASPR immunolabeled paranodes occupied by Kv1.2 

channels. Moreover, there was no interaction overall between age and genotype (F (1-

31) = 0.5037, p = 0.4832).   
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Figure 4.12 No evidence of altered Kv1.2 distribution in response to hypoperfusion 

in young or aged animals. Representative images of Caspr (green) and Kv1.2 (red) 

double immunostaining [A & C]. No change (p > 0.05) in [%] volume of Caspr 

positive domains that are colocalised with Kv1.2 was observed in either the young or 

the aged animals [B & D]. Colocalisation was analysed in a 43.5x43.5x5 μm
3
 

confocal stack from the corpus callosum. Young: WT sham: n=9, WT hypoperfused: 

n=8, TgAPPSw,Ind sham: n=9, TgAPPSw,Ind hypoperfused n=9; Aged: WT sham: 

n=9, WT hypoperfused: n=9, TgAPPSw,Ind sham: n=8, TgAPPSw,Ind hypoperfused 

n=9.Graphs show mean ± SEM. Scale bar 2μm  
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4.3.6 No evidence of gross myelin or axonal alterations in response to 

hypoperfusion in young animals  

White matter damage is closely related to both cerebral hypoperfusion and AD. In 

addition, myelin loss has been suggested to be implicated in the disruption of the 

protein architecture at the nodes of Ranvier, therefore both components of the white 

matter, the myelin and the axons were investigated in the corpus callosum of young 

animals. Gross myelin alterations induced by hypoperfusion were examined in 

corpus callosum using immunolabelling for MBP in young wild-type and 

TgAPPSw,Ind animals. The percentage area occupied by MBP was assessed (Figure 

4.13 A-D). It was shown that neither hypoperfusion (p = 0.6214, F (1-43) = 0.2476) 

nor genotype (p = 0.6601, F (1-43) = 0.1961) had a significant effect on the percentage 

area occupied by MBP (Figure 4.13 E). In addition, gross changes in axonal integrity 

in response to hypoperfusion were examined at the same area using immunolabelling 

for total neurofilament (SMI312) (Figure 4.14 A-D). There was no significant effect 

of hypoperfusion (p = 0.0587, F (1-43) = 3.758) or genotype (p = 0.3829, F (1-43) = 

0.7761) on the percentage area occupied by total-neurofilament (Figure 4.14 E). This 

finding suggests that no gross alterations in myelin or axonal integrity are induced by 

hypoperfusion in the corpus callosum of young wild-type and TgAPPSw,Ind 

animals.  
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Figure 4.13 No myelin alterations in response to hypoperfusion in the corpus 

callosum of young animals. Gross myelin integrity was assessed in the corpus 

callosum using an anti-MBP antibody [A-D]. Analysis of the [%] area of MBP 

staining did not show any significant (p > 0.05) effect of hypoperfusion or genotype 

[E]. WT sham: n=10, WT hypoperfused: n=12, TgAPPSw,Ind sham: n=13, 

TgAPPSw,Ind hypoperfused n=10.Scale bar 50 μm. Graphs show mean ± SEM.  
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Figure 4.14 No axonal alterations in response to hypoperfusion in the corpus 

callosum of young animals. Axonal pathology was assessed in the corpus callosum 

using an anti-total neurofilament antibody (SMI312). Analysis of the [%] area of 

total neurofilament staining did not show in the young [A-E] or the aged [F-J] 

animals any significant effect of hypoperfusion in either genotypes (p > 0.05). WT 

sham: n=10, WT hypoperfused: n=12, TgAPPSw,Ind sham: n=13, TgAPPSw,Ind 

hypoperfused n=10. Scale bar 50 μm. Graphs show mean ± SEM.  
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4.3.7 No evidence of gross myelin or axonal alterations in response to 

hypoperfusion in aged animals  

Gross myelin and axonal alterations induced by hypoperfusion were also examined 

in corpus callosum of aged wild-type and TgAPPSw,Ind animals. The percentage 

area occupied by MBP was assessed. It was demonstrated that neither hypoperfusion 

(p = 0.4565, F (1-43) = 0.5647) nor genotype (p = 0.0831, F (1-45) = 3.148) have a 

significant effect on the percentage area occupied by MBP (Figure 4.15 E). In 

addition, gross changes in axonal integrity in response to hypoperfusion were 

examined at the same area using immunolabelling for total neurofilament (SMI312) 

(Figure 4.16 A-D). There was no significant effect of hypoperfusion (p = 0.8101, F 

(1-43) = 0.05846) or genotype (p = 0.7288, F (1-43) = 0.1218) on the percentage area 

occupied by total-neurofilament. This finding suggests that no gross alterations in 

myelin or axonal integrity are induced by hypoperfusion in the corpus callosum of 

aged wild-type and TgAPPSw,Ind animals.  
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Figure 4.15 No myelin alterations in response to hypoperfusion in the corpus 

callosum of aged animals. Gross myelin integrity was assessed in the corpus 

callosum using an anti MBP antibody [A-D]. Analysis of the [%] area of MBP 

staining did not show any significant (p > 0.05) effect of hypoperfusion or genotype 

[E]. WT sham: n=11, WT hypoperfused: n=13, TgAPPSw,Ind sham: n=11, 

TgAPPSw,Ind hypoperfused n=12. Scale bar 50 μm. Graphs show mean ± SEM.  
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Figure 4.16 No axonal alterations in response to hypoperfusion in the corpus 

callosum of aged animals. Gross axonal integrity was assessed in the corpus 

callosum using an anti-total neurofilament antibody (SMI312) [A-D]. Analysis of the 

[%] area of MBP staining did not show any significant change (p > 0.05) in response 

to hypoperfusion or genotype [E]. WT sham: n=11, WT hypoperfused: n=13, 

TgAPPSw,Ind sham: n=11, TgAPPSw,Ind hypoperfused n=12. Scale bar 50 μm. 

Graphs show mean ± SEM.  
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4.3.8 Myelin basic protein and neurofilament levels are not changed in 

response to hypoperfusion in young and aged animals 

To further confirm that there is no overall change to the protein levels of myelin and 

axonal markers in response to hypoperfusion, the levels of myelin basic protein 

(MBP), total neurofilament and heavy neurofilament (NF-H, 200 KDa) were 

examined in the tissue homogenates of young and old TgAPPSw,Ind and wild-type 

hypoperfused mice with western blotting. Western blotting for MBP showed four 

bands at 21.5, 18.5, 17 and 14 KDa All four bands were quantified. Western blotting 

for total neurofilament and NF-H showed bands at 200 KDa which were quantified.  

In the young animals (Figure 4.17 A) no significant change in the protein levels of 

MBP, total neurofilament or NF-H in response to hypoperfusion (MBP: p = 0.5223, 

F(1-48) = 0.413; total neurofilament: p = 0.7662, F(1-49) = 0.0894; NF-H: p = 0.6835, 

F(1-48) = 0.1683) or between the different genotypes (MBP: p = 0.9019, F(1-48) = 

0.0153; total neurofilament: p = 0.4084,F(1-49) = 0.0954; NF-H: p = 0.2742, F(1-48) = 

1.223) was observed (Figure 4.17 B-D).  
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Figure 4.17 No change in the protein levels of myelin basic protein, total 

neurofilament and neurofilament 200 KDa in young animals. Total levels of MBP, 

total neurofilament (SMI312) and NF200 were assessed in tissue homogenates of 

young animals using western blotting [A]. There is no significant (p > 0.05) effect of 

hypoperfusion or genotype in the levels of MBP [B], total neurofilament [C] or 

NF200 [D]. Graphs show mean ± SEM.  
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Similarly in the aged animals the levels of MBP, total neurofilament and NF-H 

(Figure 4.18 A) were not significantly different in response to hypoperfusion (MBP: 

p = 0.1609, F(1-47) = 0.2029; total neurofilament: p = 0.8354,F(1-48) = 0.0436; NF-H: 

p = 0.9256, F(1-48) = 0.0088) between the different genotypes (MBP: p = 0.2656, F(1-

47) = 0.1.269; total neurofilament: p = 0.9747; F(1-48) = 0.0010; NF-H: p = 0.7585; 

F(1-48) = 0.0955) (Figure 4.18 B-D)  

These finding combined with those described in the previous chapter suggest that 

there are no changes in either the protein levels or the pattern of staining of myelin 

basic protein and neurofilament in response to hypoperfusion.  
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Figure 4.18 No change in the protein levels of myelin basic protein, total 

neurofilament and neurofilament 200 KDa in aged animals. Total levels of MBP, 

total neurofilament (SMI312) and NF200 were assessed in tissue homogenates using 

western blotting [A]. In the aged animals there was no significant effect of 

hypoperfusion or genotype (p > 0.05) in the levels of MBP [B], total neurofilament 

[C] or NF200 [D]. Graphs show mean ± SEM.  
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4.3.9 Human Aβ42 levels change in response to hypoperfusion in young 

but not aged TgAPPSw,Ind  

Some the observed changes in response to hypoperfusion described in this chapter 

are indicated to be exacerbated in the TgAPPSw,Ind animals which may reflect 

changes in the Aβ levels. To examine this, the levels of hAβ42 were examined in 

tissue homogenates of young and aged hypoperfused TgAPPSw,Ind animals.  

Interestingly in the young animals, chronic cerebral hypoperfusion significantly 

reduced hAβ2 levels in the TgAPPSw,Ind animals (p = 0.0145, │t│= 2.665, Figure 

4.19 A) as compared to sham animals.  

In the aged animals, however, there was no significant change in the levels of hAβ2 

in response to hypoperfusion in the aged TgAPPSw,Ind mice (p = 0.570, │t│= 

0.5759, Figure 4.19 B) as compared to sham. 

These finding suggest that cerebral hypoperfusion affects the levels of Aβ42 in the 

brain of young but not aged TgAPPSw,Ind animals.  
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Figure 4.19 Human Aβ42 levels are reduced in response to hypoperfusion in 

young but not aged TgAPPSw,Ind mice. Human Aβ42 levels detected with ELISA 

are significantly reduced (p < 0.01) in young TgAPPSw,Ind animals [A]. No 

significant (p > 0.05) change is detected in the aged TgAPPSw,Ind hypoperfused 

animals [B]. Young: TgAPPSw,Ind sham: n=13, TgAPPSw,Ind hypoperfused n=10; 

Aged: TgAPPSw,Ind sham: n=11, TgAPPSw,Ind hypoperfused n=15. Graphs show 

mean ± SEM.  
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4.3.10 Levels of APP and APP processing products unchanged with 

hypoperfusion 

Amyloid precursor protein and the C-terminal products, C83 and C99, of the 

amyloidogenic and non-amyloidogenic processing of APP were quantified in brain 

tissue homogenates in order to investigate whether total APP levels of APP-

processing are altered in response to hypoperfusion. Western blotting for APP in the 

TgAPPSw,Ind mice showed a triple band around 100 KDa detecting both mouse and 

human APP, while in the wild-type animals; it showed only one band around 100 

KDa. C83 and C99 are C-terminal fragments deriving from the proteolytic 

processing of the APP through the non-amyloidogenic and the amyloidogenic 

pathway respectively. Western blotting for C-terminal fragments showed a C83 band 

at 9 KDa and C99 at 11 KDa (Figure 4.20 A and 4.21 A). 

In the young TgAPPSw,Ind animals, there is a significant increase overall in APP 

levels (p < 0.0001, F(1-49) = 228.3) compared to wild-type (Figure 4.20 B). However, 

it was shown that hypoperfusion did not have any overall effect on APP expression 

levels (p = 0.0997, F(1-49) = 2.816). Post-hoc analysis showed that both in young 

hypoperfused and sham TgAPPSw,Ind mice, APP levels are significantly higher 

compared to young hypoperfused (p < 0.001, │t│= 10.55) and sham (p < 0.001, 

│t│= 10.82) wild-types. Moreover, there is a significant overall increase in the levels 

of C83 (, p < 0.0001, F(1-48) = 48.04) and C99 (p < 0.0001, F(1-49) = 27.06) fragments 

in the TgAPPSw,Ind mice compared to wild-type (Figure 4.20 C and D). However, 

hypoperfusion did not have any overall effect on C83 (p = 0.1515, F(1-49) = 2.124) or 

C99 (p = 0.2656, F(1-49) = 1.257) expression levels. Post-hoc analysis showed that in 

young hypoperfused and in young sham TgAPPSw,Ind mice C83 and C99 levels are 
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significantly higher when compared to young hypoperfused (for C83: p < 0.001, 

│t│= 5.543; for C99: p < 0.001, │t│= 4.285) and young sham (for C83: p < 0.001, 

│t│= 4.285; for C99: p < 0.01, │t│= 3.144) wild-types respectively.   
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Figure 4.20 APP protein levels and APP processing unchanged with 

hypoperfusion in young animals. Full length APP and the C-terminal products, C83 

and C99, of the amyloidogenic and non-amyloidogenic processing of APP were 

detected with western blotting [A]. There was a significant increase (p < 0.0001) 

overall in the levels of full length APP, C83 and C99 in the TgAPPSw,Ind animals 

compared to wild-types, but no change (p < 0.05) in response to hypoperfusion in the 

levels of APP, C83 or C99 was observed. Graphs show mean ± SEM.  
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Similarly, in the aged TgAPPSw,Ind mice APP levels (Figure 4.21 B) were overall 

increased compared to wild-type animals (p < 0.0001, F(1-48) = 222.2). However, it 

was shown that hypoperfusion did not change overall APP levels (p = 0.2783, F(1-48) 

= 1.203). Post-hoc analysis for the aged animals showed that in both the 

hypoperfused and the sham TgAPPSw,Ind mice APP expression levels are 

significantly increased compared to young hypoperfused (p < 0.001, │t│= 10.64) 

and sham (p < 0.001, │t│= 10.48) wild-types. In addition, a significant increase 

overall in the levels of C83 (p < 0.0001, F(1-49) = 57.05) and C99 (p < 0.0001, F(1-49) = 

41.69) fragments compared to wild-type animals was observed (Figure 4.21 C and 

D). However, hypoperfusion did not have any overall effect on C83 (p = 0.1515, F(1-

49) = 0.3842) or C99 (p = 0.3113, F(1-49) = 1.047,) expression levels (Figure 4.2 E & 

G). Post-hoc analysis showed that in aged hypoperfused and in aged sham 

TgAPPSw,Ind mice C83 and C99 levels are significantly higher when compared to 

young hypoperfused (for C83: p < 0.001, │t│= 6.092; for C99: p < 0.001, │t│= 

4.934) and aged sham (for C83: p < 0.001, │t│= 4.707; for C99: p < 0.001, │t│= 

4.262) wild-types respectively. 

These findings suggest that hypoperfusion does not alter APP levels or APP 

processing and not surprisingly the introduction of the APP transgene in the 

TgAPPSw,Ind increases the levels of full length APP and APP processing products.   
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Figure 4.21 APP protein levels and APP processing unchanged with 

hypoperfusion in aged animals. Full length APP and the C-terminal products, C83 

and C99, of the amyloidogenic and non-amyloidogenic processing of APP were 

detected with western blotting [A]. There was a significant increase (p < 0.0001) 

overall in the levels of full length APP, C83 and C99 in the TgAPPSw,Ind animals 

compared to wild-types, but no change (p < 0.05) in response to hypoperfusion in the 

levels of APP, C83 or C99 was observed. Graphs show mean ± SEM.  
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4.3.11 Impairment of spatial working memory in response to 

hypoperfusion in young animals 

Hypoperfusion is suggested to affect spatial working memory, thus this effect may be 

exacerbated in the TgAPPSw,Ind animals. To investigate that, spatial working 

memory performance was examined in response to hypoperfusion in young wild-

type and TgAPPSw,Ind mice.  

Spatial working memory performance was assessed by measuring the number of 

revisiting errors in the 8-arm radial arm maze. Over the 16-day training period (trial 

block 1-8) the number of errors made by the animals was reduced (F (5.4, 235) = 5.569; 

p < 0.001) which indicated that the mice were able to learn the task (Figure 4.22). 

There was also a significant main effect of hypoperfusion with hypoperfused mice 

making more revisiting errors than the shams (p < 0.001, F (1, 43) = 26.172) 

demonstrating that hypoperfusion impairs working memory performance (Figure 

4.22 A and B). In addition, there was also significant interaction between the 

different genotype and surgery condition over trial blocks (p = 0.02, F (5.4, 235.9) = 

2.645) which may indicate that the effect of hypoperfusion on spatial working 

memory is different between wild-type and TgAPPSw,Ind mice.  

Moreover, memory acquisition was examined by calculating the gradient of the line 

generated between the numbers of errors in block 1 to block 8. Each group yielded 

the following acquisition slopes WT sham: -0.452 ± 0.253, WT hypoperfused: -1.5 ± 

0.424, TgAPPSw,Ind sham: -1.093 ± 0.279 and TgAPPSw,Ind hypoperfused: 0.193 

± 0.281 where greater negative values are indicative of good memory acquisition 

ability and values greater or equal to zero suggest that the animals do not improve 
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their performance over time. Analysis showed a significant interaction between 

genotype and hypoperfusion (p = 0.001, F (1, 43) = 13.216) suggesting that the deficit 

induced by hypoperfusion differently affects wild-type and APPSw,Ind mice. Indeed, 

there was a significant difference in the acquisition rate between hypoperfused wild-

type and TgAPPSw,Ind (p < 0.01, │t│= 3.610), with the TgAPPSw,Ind 

hypoperfused mice showing slower memory acquisition (Figure 4.22 D). In addition, 

no difference in the acquisition rate was observed between the two genotypes under 

sham conditions (p > 0.05, │t│= 1.462) (Figure 4.22 C). 

These finding suggest that hypoperfusion impairs spatial working memory in both 

genotypes; however the deficit is more severe in the TgAPPSw,Ind hypoperfused 

animals.  
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Figure 4.22 Spatial working memory impairment induced by hypoperfusion is 

exacerbated in young TgAPPSw,Ind mice. Hypoperfused mice make significantly 

more revisiting errors than the sham mice (p<0.05) [A & B]. There is no difference 

between the genotypes under sham conditions [C] TgAPPSw,Ind hypoperfused mice 

showing significantly (p < 0.01) slower memory acquisition than the WT [D]. WT 

sham: n=12, WT hypoperfused: n=12, TgAPPSw,Ind sham: n=13, TgAPPSw,Ind 

hypoperfused n=10. Data presented in two-trial blocks. Graphs show mean ± SEM.  
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4.3.12 Impairment of spatial working memory in response to 

hypoperfusion in aged animals 

Spatial working memory was next examined in aged wild-type and TgAPPSw,Ind 

and in response to hypoperfusion. 

Over the 16-day training period (trial block 1-8) the number of errors made by the 

animals was reduced (F (5.29, 259.3) = 8.058; p < 0.001) which indicated that the mice 

were able to learn the task (Figure 4.23). There was also a significant main effect of 

hypoperfusion with hypoperfused mice making more revisiting errors than the shams 

(p < 0.001, F (1, 49) = 21.549) demonstrating that hypoperfusion impairs working 

memory performance (Figure 4.23 A and B). Moreover, memory acquisition was 

also examined. Each group yielded the following acquisition slopes: WT sham: -

0.887 ± 0.292, WT hypoperfused: -1 ± 0.25, APPSw,Ind sham: -0.195 ± 0.332 and 

TgAPPSw,Ind hypoperfused: -0.305 ± 0.274, however no difference (p > 0.05) in the 

performance of the two genotypes either under sham or hypoperfused conditions 

(Figure 4.23 C-D) was revealed. 

These findings indicate that in both aged wild-type and TgAPPSw,Ind mice 

hypoperfusion results in an impairment in spatial working memory. This impairment 

was severe, with both genotypes being poorly able to improve their performance and 

as a result it was similarly affected in both wild-type and TgAPPSw,Ind mice.  
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Figure 4.23 Spatial working memory impairment induced by hypoperfusion is 

exacerbated in aged TgAPPSw,Ind mice. Hypoperfused mice make significantly 

more revisiting errors than the sham mice (p<0.05) [A & B]. There is no difference 

between the genotypes under sham conditions [C] TgAPPSw,Ind hypoperfused mice 

made the same number of errors compared to WT [D]. WT sham: n=14, WT 

hypoperfused: n=12, TgAPPSw,Ind sham: n=11, TgAPPSw,Ind hypoperfused n=15. 

Data presented in two-trial blocks. Graphs show mean ± SEM.  
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4.3.13 Impairment of spatial working memory associated with nodal 

alterations in aged animals 

It is indicated here that hypoperfusion affects working memory in the eight-arm 

radial arm maze and causes alterations at the nodal/paranodal regions of the 

myelinated axons. These regions are important for saltatory conduction hence 

effective for neural function. Therefore it may be suggested that alterations to 

paranodal integrity are associated with spatial working memory performance  

To investigate that, in the aged animals, where spatial working memory performance 

was investigated in the same cohort, the association between the number of revisiting 

errors at trial block 8 with the average Nav1.6 cluster to nodal gap length ratio was 

determined. A significant correlation between spatial working memory impairment 

and paranodal disruption was found (Figure 4.24), indicating that the animals which 

make more errors are more likely to have higher Nav1.6 cluster to nodal gap length 

ratio (r = 0.3833, p = 0.0303), hence greater expansion of the Nav1.6 cluster into the 

paranodal domain. This data provides a link between nodal alterations and cognitive 

performance. Unfortunately, the same association was not possible in the young 

animals as different cohorts of animals were used the evaluation of working memory 

performance and nodal integrity.   
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Figure 4.24 Working memory performance correlates with Nav1.6 cluster to nodal 

gap ratio. Plotting the number of revisiting errors at trial block 8 with the average 

Nav1.6 cluster: nodal gap ratio revealed a significant correlation (p < 0.05) indicating 

a link between nodal alterations and cognitive deficits.  
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4.3.14 Summary of results 

The following table (Table 4.3) summarises the findings described in the present 

chapter 

Table 4.3 Summary of results  

Feature 

examined 
Age Findings 

Nav1.6 cluster 

length (corpus 

callosum) 

Y 
↓ with hypoperfusion (both WT and APPSw,Ind) 

↓ in APPSw,Ind hypoperfused compared to WT hypoperfused  

A ↓ with hypoperfusion (both WT and APPSw,Ind) 

Nodal gap 

length (corpus 

callosum) 

Y 
↓ with hypoperfusion (both WT and APPSw,Ind) 

↓ in APPSw,Ind hypoperfused compared to WT hypoperfused 

A ↓ with hypoperfusion (both WT and APPSw,Ind) 

Nav1.6 cluster 

length 

(hippocampus) 

Y ↔  

A ↓ with hypoperfusion (both WT and APPSw,Ind) 

Nodal gap 

length 

(hippocampus) 

Y ↔ 

A ↓ with hypoperfusion (only WT) 

Nodal number 
Y ↔ 

A ↔ 

MBP (% area) 
Y ↓ in aged WT compared to young 

A  

Nav1.6 cluster 

to nodal gap 

length ratio 

Y 
↑ with hypoperfusion (both WT and APPSw,Ind) 

↑ in APPSw,Ind hypoperfused compared to WT hypoperfused 

A ↑ with hypoperfusion (both WT and APPSw,Ind) 

Kv1.2 

distrubution 

Y ↔ 

A ↔ 
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MBP and 

SMI312 (% 

area) 

Y ↔ 

A ↔ 

Human Aβ42 

levels  

Y ↓ (in APPSw,Ind) 

A ↔ 

APP and APP 

prossessing 

products (C83 

and C99) 

protein levels 

Y 
↑ in APPSw,Ind compare to WT 

↔ in response to hypoperfusion 

A 
↑ in APPSw,Ind compare to WT 

↔ in response to hypoperfusion 

Spatial 

working 

memory 

(number of 

revisiting 

errors) 

Y 

↑ number of revisiting errors in response to hypoperfusion 

(both WT and APPSw,Ind) 

WT hypoperfused perform better than the APPSw,Ind 

hypoperfused perform (fail to improve) 

A 
↑ number of revisiting errors in response to hypoperfusion 

(both WT and APPSw,Ind) 

Note: ↑ increase, ↓ decrease, ↔ unchanged, Y: young cohort, A: aged cohort 
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4.4 Discussion 

Disruption of myelinated axons within the brain’s white matter in ageing and 

Alzheimer’s disease is associated with cerebral hypoperfusion (Fernando et al., 2006; 

Scheltens et al., 1995; Ruitenberg et al., 2005). This study sought to investigate the 

effects of cerebral hypoperfusion in specialized regions of myelinated axons, the 

nodes of Ranvier and the paranodes. This study demonstrated that these regions are 

vulnerable to the effects of hypoperfusion. A decrease in nodal length is observed 

and the well-defined spatial organization of Nav1.6 channels in the Caspr positive 

paranodes is disrupted in response to hypoperfusion in young and aged animals. This 

effect was shown to be exacerbated in the young TgAPPSw,Ind animals. Moreover, 

the disruption of the nodal domain was shown to occur without any gross alterations 

in myelin integrity or change in nodal density. It was also demonstrated that in 

response to hypoperfusion, spatial working memory performance is defected in 

young and aged animals whilst this deficit is exacerbated in young TgAPPSw,Ind 

animals. Interestingly, working memory performance was associated with nodal 

integrity. 

In support of this study, other work has shown that these regions within the 

myelinated axons are vulnerable to the effect of ageing. As discussed in Chapter 3, a 

decrease Nav1.6 cluster and nodal gap length was observed in the stratum lacunosum 

moleculare of the hippocampus in aged animals. Moreover, reduction in the length of 

the Nav cluster at the nodes has also been observed in the optic nerve of 2 year old 

wild-type mice (Rios et al., 2003). In contrast to the present study, previous work in 

our lab investigating the length of the Nav1.6 cluster in the same model of cerebral 
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hypoperfusion demonstrated increased nodal length after three and 30 days of 

hypoperfusion (Reimer et al., 2011). There are several explanations to account for 

these differences. Firstly, the duration of hypoperfusion is different between the two 

studies, here the alterations in nodal size were observed after 8 weeks of 

hypoperfusion. Secondly, only the distribution of Nav1.6 channels was examined by 

Reimer et al. (2011) whilst it is not known if the nodal gap also increased. Moreover, 

both studies are snapshots of the nodal integrity at specific time points which may be 

representative of a progressive pathology at the nodes induced by hypoperfusion over 

time. To further investigate that, nodal integrity could be examined at multiple time 

points after the induction of hypoperfusion which would provide information about 

the time course of nodal alterations. 

In the CNS after injury, the remyelinated axons are associated with a decrease in the 

length of internodes and a subsequent increase in nodal density (Powers et al., 2012). 

To determine whether there may be remyelination in the present study, the number of 

nodes was investigated. Hypoperfusion, however, did not appear to have an effect on 

the number of nodes in either the young or the aged animals suggesting that 

remyelination might not be responsible for the observed changes. However, in order 

to investigate myelin in further detail, ultrastructural analysis of the myelinated 

axons using electron microscopy may be helpful as new remyelinated axons appear 

to have thinner myelin sheaths (Patrikios et al., 2006; Peters and Sethares, 2003).  

Alternatively, the observed reduction in the size of the nodes could be attributed to a 

loss of Nav1.6 channels or a failure of Nav1.6 to anchor to the nodal region. In 

support of this, there is evidence that different Nav channels are down-regulated with 

ischemia or injury (Berta et al., 2008; Yao et al., 2005) whilst after stroke there is an 
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elevation of the βΙV spectrin and AnkG calpain-mediated proteolytic products 

(Schafer et al 2009). For example, Berta et al. (2008) showed in a rat model of spared 

nerve injury that the levels of Nav1.6 mRNA transcripts are reduced. Reduction in 

multiple Nav1 mRNA transcripts has also been observed in rat models of ischaemic 

brain injury (Yao et al., 2002; Yao et al., 2005). Furthermore, Schafer et al. (2009) 

showed in a mouse model of stroke an increase in AnkG and βIV spectrin proteolysis 

at the site of injury. These proteins are responsible for Nav channel anchoring to the 

nodal plasma membrane (Yang et al., 2007; Gasser et al., 2012) and their ablation 

results in abnormally formed nodes of Ranvier (Yang et al., 2004; Dzhashiashvili et 

al., 2007). Nevertheless, further investigation of the mechanisms underlying the 

observed changes would include the assessment of levels of Nav1.6 channels or 

calpain mediated proteolytic products.  

Paranodal integrity is crucial for the clustering of Nav1.6 channels at the nodes of 

Ranvier. Paranodal septate-like junctions act as a diffusion barrier by restricting the 

Nav.16 channels at the nodal region (Rios et al., 2003). Cerebral hypoperfusion was 

demonstrated here to have an effect on paranodal integrity. It was shown that the 

Nav1.6 cluster to nodal gap length ratio, used as a measure of paranodal disruption 

and expansion of the Nav1.6 channels into the paranodal domain, is increased in the 

hypoperfused animals. Paranodal disruption in response to hypoperfusion, ageing 

and disease has been previously described. For example, 30 days after the induction 

of hypoperfusion in our group using the same model provided evidence of axon-glial 

disruption resulting in an increase in the Nav1.6 cluster length. This was 

accomplished by a loss of septate-like junctions in the paranodes and a loss of the 

paranodal protein NF155 (Reimer et al., 2011). In addition, ageing affects the 
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number of septate-like junctions in aged rodents. Investigation at ultrastructural level 

showed that in 22 month old mice the number of paranodes with decreased number 

of paranodal loops contacting the axolemma, or with lost septate-like junctions was 

increased (Shepherd et al., 2012). Similarly, in aged rats loss of septate-like junctions 

(Sugiyama et al., 2002) at the paranodes was observed. In both cases, however, some 

intact paranodal junctions were preserved. In human patients of demyelinating 

diseases such as multiple sclerosis as well as in animal models there has also been 

evidence of paranodal disruption. For example, Howell et al. (2006) demonstrated 

that in brain demyelinating lesions the pattern of NF155 distribution at the paranodes 

is altered and there is an increased overlap between the paranodal NF155 and the 

juxtaparanodal Kv1.2 which is indicative of paranodal disruption. Similarly, in a rat 

model of dysmyelination, the expression profile of juxtaparanodal Kv1.2 altered, 

expanding into the paranodal region (Arroyo et al., 2002). In the present study, 

despite the observed alterations in Nav1.6 and Caspr overlay indicative of paranodal 

disruption, there was no alteration in the distribution of the juxtaparanodal Kv1.2 

channels within the Caspr positive paranodal domain in response to hypoperfusion. 

A possible explanation for this could be that although the septate-like junctions of the 

paranodes that act as diffusion barriers Nav1.6 of the nodes of Ranvier may be 

disrupted, they might not be completely ablated conserving, similarly to what is 

observed in normal ageing (Shepherd et al., 2012), their role as diffusion barriers for 

the Kv1.2 channels of the juxtaparanodes. However, the approach used here is limited 

to an evaluation of the space of Caspr positive domain that is occupied by Kv1.2 

channels and does not take how dense the Kv1.2 protein was into account. These 

findings suggest that the observed changes in response to hypoperfusion are different 
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from those in demyelinating diseases. The changes in response to cerebral 

hypoperfusion appear to affect the nodal and paranodal regions rather than the Kv1.2 

distribution. To further confirm paranodal disruption, ultrastructural investigation of 

septate-like junction integrity at the paranodes would be useful to provide further 

evidence of paranodal disruption. 

In addition, absence of demyelination and axonal damage was confirmed with the 

assessment of expression levels and pattern of cellular distribution of myelin basic 

protein and neurofilament. No axonal damage or myelin loss in response to 

hypoperfusion was found which is in accordance with previous studies in our lab 

using the same model which used immunohistochemical and neuroimaging (MRI) 

approaches for evaluating myelin and axonal integrity (Reimer et al., 2011; Holland 

et al., 2011). However, the use of MBP and neurofilament is limited to a gross 

assessment of myelin integrity as other myelin and/or axonal components may be 

altered and the use of other markers would be more likely to detect alterations if any. 

For example, other studies using the same model in our lab, have indicated that 

hypoperfusion may affect axon-glial cross-talk detected by alterations in myelin 

associated glycoprotein (MAG) immunostaining (Reimer et al., 2011; Holland et al., 

2011) and sometimes in the absence of alterations in MBP or neurofilament levels or 

staining (Reimer et al., 2011). In addition, a recent study by Funfschilling et al. 

(2012) showed that oligodendrocytes may use glycolytic metabolism as an 

alternative source for the maintenance of myelin and axonal integrity which if true 

makes the oligodendrocytes and subsequently myelin and axonal integrity more 

tolerant to the energy deprivation induced by hypoperfusion. To further investigate 

myelin integrity, the use of specific markers for myelin damage, such as an anti-
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damaged MBP antibody specific for pathological epitopes of MBP (Ihara et al., 

2010) or axon-glial integrity such as MAG may be helpful. Axonal integrity may 

also be further investigated with the use of markers specific for neurofilament 

phosphorylation which may serve as a marker of axonal injury (Petzold et al., 2011; 

Singh et al., 2011).  

At the onset of this study it was hypothesised that age exacerbates the effects of 

hypoperfusion. In support of this, it was demonstrated that in the young animals only 

the corpus callosum is affected whilst in the aged animals the nodes of both the 

corpus callosum and the hippocampus are affected. Previous studies using this 

cerebral hypoperfusion model in young animals have shown that it selectively 

induces diffuse white matter pathology (Shibata et al 2004; Coltman et al 2011). One 

explanation is that CBF may be compromised in the ageing brain. The white matter 

constitutes a vascular end zone (Borch et al., 2010) rendering it more sensitive to 

blood flow fluctuations and vascular insults such as those induced by hypoperfusion. 

At the same time, there is evidence that cerebral blood flow is attenuated by normal 

ageing (Park et al., 2007) which with the additional challenge induced by the 

hypoperfusion could result in greater blood flow alterations. However, blood flow 

measurements were not assessed in the present study which would securely estimate 

the nature of flood flow attenuation in young and aged animals.  

Another goal of this study was to assess nodal and paranodal integrity in a mouse 

model (TgAPPSw,Ind) which develops increased deposition of amyloid with age and 

the alterations at nodes and paranodes may be exacerbated. In confirmation of our 

hypotheses we showed that in young TgAPPSw,Ind hypoperfused mice the length of 
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the nodes of Ranvier is significantly decreased whilst the Nav1.6 cluster to nodal gap 

ratio is significantly increased compared to the wild type hypoperfused animals. 

These results suggest that there is an exacerbation of the effects of hypoperfusion 

(i.e. paranodal disruption and shorter nodes) in the TgAPPSw,Ind animals. There is a 

limited number of studies investigating components of the nodes of Ranvier in AD. 

In another AD model (3xTg) with overt amyloid pathology Nav1.6 immunoreactivity 

was decreased in the mutant animals (Desai et al., 2009). Similarly in the J20 line of 

the TgAPPSw,Ind, which develops Aβ pathology earlier than the J9 line that was 

used in the present study, Nav1.6 protein levels are reduced (Verret et al., 2012). 

Moreover, there is some evidence that that BACE1, a proteolytic enzymatic complex 

implicated in the amyloidogenic processing of APP, regulates voltage gated sodium 

channels (Kovacs et al., 2010). Kim et al. (2007) demonstrated that increased 

BACE1 protein levels result in reduced Nav1α subunit recruitment to the cell surface 

and marked reduction in sodium current examined with electrophysiology.  

The observed exacerbation in the changes induced by hypoperfusion at the nodes in 

the TgAPPSw,Ind animals could be the result of an additional vascular insult to an 

already compromised system. In support of this are studies which show that cerebral 

vasculature and cerebral blood flow are altered in animal models that develop Aβ 

pathology when compared with wild-type mice. For example, in a mouse model 

(APP23, 10 months of age), examination of the 3D vascular architecture showed 

pronounced alterations such as vessel deformation and elimination (Beckmann et al., 

2003). Similarly, in a study investigating multiple models overexpressing mutant 

human APP at a relatively young age, it was demonstrated that vascular 

autoregulation was disrupted and associated with Αβ levels (Niwa et al., 2002a). 
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Interestingly, the difference in nodal length observed between young TgAPPSw,Ind 

and wild-type mice in response to hypoperfusion was not maintained in ageing. One 

explanation could be that there is a limit by which the length can be reduced with 

hypoperfusion and with ageing this could have been reached.  

A few studies have investigated the impact of hypoperfusion in transgenic mouse 

models overexpressing human mutant APP to determine whether hypoperfusion 

increases Aβ levels and deposition. However the findings have been conflicting 

(Kitaguchi et al., 2009; Yamada et al., 2011; Lee et al., 2011; Koike et al., 2010). 

Here it was demonstrated that the levels of human Aβ42 are reduced in young 

hypoperfused TgAPPSw,Ind mice whist they are unchanged in aged animals. 

Moreover, the levels of APP and C-terminal fragments from the non- and 

amyloidogenic processing of APP remain unchanged in response to hypoperfusion. 

In contrast to the present study, Kitaguchi et al. (2009) using the same transgenic 

model  showed a significant increase in perinuclear Aβ42 immunostaining in neurons 

and an increase in the levels of fibrilar but not monomeric Αβ after one month of 

cerebral hypoperfusion. In another APP mutant model (3xTg) at a relatively young 

age, where blood flow was interrupted by occlusion of the common carotid arteries 

for 4 minutes, there was an increase in the levels of soluble and insoluble Αβ42 and 

the levels of C-terminal proteolytic products of APP without any change in APP 

levels in response to oligemia (Koike et al., 2010). Furthermore, Yamada et al. 

(2011) showed that for TgAPPSw,Ind mice (J20), after 6 months of hypoperfusion, 

soluble Aβ is increased whilst the deposition of Aβ42 is decreased in the 

hippocampus but not the cortex. In addition, in Tg2576 mice amyloid plaque 

pathology was not affected by hypoperfusion (Lee et al 2011). There are several 
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explanations to account for these differences. Firstly, the protein extraction technique 

used in the present study did not include extended centrifuging or the use of 

detergents such as formic acid. These procedures allow the separation of soluble and 

insoluble fraction and the disassociation and the insoluble Aβ aggregates. The 

method used here allowed the detection of only soluble Aβ which may be decreased 

if hypoperfusion induces insoluble Aβ deposition in the young animals. Secondly, 

there are several differences in the methods used to induce hypoperfusion and 

measure amyloid: the stage of amyloid pathology development at the onset of 

hypoperfusion together with underlying differences due to genetic strain which may 

contribute to the different outcomes of hypoperfusion on amyloid pathology in these 

studies. 

Attenuation of white matter in humans has been linked with poor working memory 

performance (Appelman et al., 2010; Kennedy and Raz, 2009). At the same time 

previous studies have shown that hypoperfusion results in poor performance in the 8-

arm radial arm maze task (Coltman et al., 2011; Shibata et al., 2004) which is a well-

established method to examine working memory in rodents (Cole and Chappell-

Stephenson, 2003; Olton and Samuelson, 1976; Hyde et al., 1998). We have 

confirmed that working memory performance assessed in the 8-arm radial arm maze 

is impaired with hypoperfusion in young wild-type mice. In addition, working 

memory impairment is exacerbated in the young TgAPPSw,Ind animals when 

compared to young wild-type mice in response to hypoperfusion. However, these 

effects were not observed in the aged animals, as both the hypoperfused wild-type 

and TgAPPSw,Ind mice were unable to perform well at the task. This suggests that 

cerebral hypoperfusion combined with the additional challenge of age, results in such 
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a deficit in working memory performance that does not decipher between the two 

genotypes. A possible explanation for these finding could lie in the anatomical basis 

of spatial working memory in rodents which is dependent on multiple brain regions 

such as the hippocampus, the parahippocampus and the prefrontal cortex (Hodges 

(Hodges, 1996; Shaw and Aggleton, 1993) and requires their effective 

communication. In the present study the nodal/paranodal changes observed in 

response to hypoperfusion were more extensive in the aged animals with both the 

corpus callosum and the hippocampus being affected whilst in the young animals 

changes were observed in only the corpus callosum. This difference between young 

and aged animals may be responsible for the observed behavioural changes. 

Changes at the nodes and paranodes may result in functional alterations that could be 

responsible for the observed spatial working memory deficit in response to 

hypoperfusion. To further investigate that working memory performance was 

associated with the nodal changes and a strong association was revealed between the 

numbers of errors in the 8-arm radial arm maze task and the Nav1.6 cluster to nodal 

ratio which is a measure of paranodal disruption. This finding suggests that 

alterations to the nodes of Ranvier and paranodes induced by hypoperfusion may 

impede action potential propagation and lead to defective communication between 

brain regions impacting cognition. In support of this, Nie et al. (2006) showed that 

decrease in nodal length and decrease in the Nav1α subunit resulted in decreased 

conduction velocity of action potentials. Additionally, it has been demonstrated that a 

working memory deficit in the T maze is linked with a reduction in action potential 

velocity (Tanaka et al., 2009). Furthermore a rat model of demyelination of the PNS 

was demonstrated to have reduced Nav channel density at the nodes, which was 
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associated with slower action potential conduction (Lonigro and Devaux, 2009). 

Similarly, in a mouse model where Caspr is ablated, which develops paranodes 

without septate-like junctions, action potential velocity is reduced (Boyle et al., 

2001). Moreover, Huff et al. (2011) showed that in spinal cord white matter, high 

frequency stimulation results in retraction of myelin from the paranodes suggesting 

that they can undergo activity-dependent alterations in the paranodes. Moreover, a 

study in an AD transgenic model, (TgAPPSw,Ind, J20 line ) that develops spatial 

learning and memory deficits in the Morris water maze and has decreased protein 

levels of Nav channels, showed that induction of the Nav1.1 expression can improve 

cognitive performance to the level of the wild-types (Verret et al 2012). Although 

there is evidence that nodal alterations are linked with altered action potential 

conduction and cognitive performance, investigation of these aspects on the same 

cohort of hypoperfused animals would provide confirmation of their association. 

This could be achieved with use of the developed system of in vivo recording in 

freely behaving animals (Lin et al., 2006; Ye et al., 2008) which would provide 

information on neural activity as the animals are performing in cognitive tasks with 

neuropathological analysis to follow. 

The question that needs to be answered, however, is how hypoperfusion drives the 

observed changes at the nodes of Ranvier and subsequently working memory in the 

wild-type animals and why these are exacerbated in the young but not the aged 

TgAPPSw,Ind mice. Firstly, there is evidence from studies in our lab that 

hypoperfusion alters the numbers of mature oligodendrocytes and the pool of 

oligodendrocyte precursor cells (McQueen et al, submitted) suggesting that the 

vascular insult affects the survival of oligodendrocytes. This is further supported by 
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studies using a rat model of chronic cerebral hypoperfusion where seven days after 

the induction of hypoperfusion the number of oligodendroglia decreased (Tomimoto 

et al., 2003). Given that nodal assembly and maintenance is under glial control 

(Mathis et al., 2001; Boiko et al., 2003) alterations in the oligodendroglial cell 

number may have an impact on nodal integrity. The oligovascular niche has been 

proposed as a model by which cross-talk occurs between the oligodendrocytes and 

the vascular elements and thus is necessary for maintaining the integrity and 

homeostasis of the white matter (Arai and Lo, 2009). From studies in our lab, the 

vasculature appears to be affected in response to hypoperfusion with the vessels 

increasing in width, suggesting vascular dysfunction (Dr G. Scullion, unpublished 

data). Furthermore, there is evidence that the oligodendrocytes are susceptible to 

oxidative stress and inflammatory signalling (Balabanov et al., 2007; Cammer and 

Zhang, 1999; Deng et al., 2004; French et al., 2009) which are suggested to be up-

regulated by hypoperfusion (Kasparova et al., 2005; Wang et al., 2010). Oxidative 

stress has been directly linked with paranodal abnormalities in the rat optic nerve 

(Szymanski et al., 2013) and mitochondrial dysfunction (Lin and Beal, 2006). 

Mitochondria are distributed along the axons and serve the metabolic demands of the 

distinct regions (Zhang et al., 2010a; Chiu, 2011) which suggests that the 

deterioration of mitochondrial metabolic capacity may affect nodal and paranodal 

integrity as they are regions with high metabolic demands. In addition, microglia 

have been demonstrated to be activated in response to hypoperfusion (Shibata et al., 

2004; Holland et al., 2011) and have been implicated in paranodal disruption in a 

mouse model of experimental autoimmune encephalomyelitis (EAE) (Howell et al., 

2010). Additionally, analysis of gene expression in response to hypoperfusion has 
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pointed out multiple altered genes implicated in inflammation, vasculature, and cell-

adhesion (Reimer et al., 2011) suggesting that there are multiple mechanisms 

involved in the mechanisms of damage driven by hypoperfusion.  

In the young TgAPPSw,Ind mice the effects of hypoperfusion are exacerbated. A 

possible explanation for this is the baseline difference between TgAPPSw,Ind and 

wild type mice in the vascular structure i.e. larger size vessels (Dr G Scullion, 

unpublished data) which may potentially result in baseline CBF differences between 

the two genotypes and subsequently to the effects of hypoperfusion. Additionally, 

there is evidence that transgenic models overexpressing hAPP are more susceptible 

to ischemic injury (Zhang et al., 1997) which is potentially mediated by increased 

microglial activation (Koistinaho et al., 2002). Moreover, as described earlier 

processes such as oxidative stress and mitochondrial dysfunction may be implicated 

in nodal and paranodal integrity and there are several studies that have demonstrated 

that these processes are upregulated both in humans and in AD models (Markesbery, 

1997; Korolainen et al., 2006; Dumont et al., 2010; Zhu et al., 2004; Aliev et al., 

2004; Aliev et al., 2003). Another potential mechanism implicated in nodal 

alterations could be the down-regulation of voltage gated sodium channels mediated 

by BACE1. BACE1 levels and activity are elevated in AD both in humans and 

animal models (Heneka et al., 2005; Corbett et al., 2013; Fukumoto et al., 2002). In 

animal models, cognitive performance and defective neuronal activity is associated 

with reduced recruitment of Nav1.1 channels at the membranes (Kim et al., 2007; 

Corbett et al., 2013). This suggests that Nav channel dysregulation may be a potential 

mechanism for neuronal network dysfunction observed in AD (Bakker et al., 2012 
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(Bakker et al., 2012; Verret et al., 2012; Sanchez et al., 2012); Sanchez et al., 2012; 

Verret et al., 2012).  

In conclusion, this study highlights the vulnerability of specific molecular domains 

(nodes and paranodes) within myelinated axons to the effects of hypoperfusion 

which may be associated with a deficit cognitive performance. In the future it would 

be interesting to investigate how the alterations at the nodes and paranodes affect 

neuronal excitability using electrophysiology and also to identify the molecular 

mechanisms behind the observed structural alterations. 
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Chapter 

5 

Discussion 

 

5.1 Summary 

The studies described within the thesis indicate the vulnerability of specialised 

regions within myelinated axons to ageing, cerebral hypoperfusion and to a lesser 

extent levels of amyloid. Importantly, breakdown of the nodal/paranodal regions is 

associated with working memory impairment. These findings may have implications 

for the development of strategies aimed to ameliorate cognitive impairment observed 

in ageing and AD. 

 

5.2 Vulnerability of the AIS and nodes of Ranvier  

Studying the effects of normal ageing, cerebral hypoperfusion or increasing Aβ 

levels on brain function in humans is highly complicated as they coexist with each 

other and/or other comorbidities. Therefore, the utilization of animal models is 

helpful because it allows the investigation of these pathological processes in 

isolation, under controlled conditions and the least possible genetic variability, and 

facilitates the unraveling of mechanisms that may drive changes in brain function.  



 211 

As discussed in chapter 3 cerebral hypoperfusion was suggested to underlie the 

changes observed in normal ageing. In the cerebral hypoperfusion model used in the 

second study, one month after induction of hypoperfusion, CBF is reduced by 10-

15% of the baseline (Shibata et al., 2004) which is comparable to the modest blood 

flow reduction observed in normal ageing where CBF is reduced by ~20% between 

the age of 20 and 60 years (Leenders et al., 1990). The effects of hypoperfusion on 

nodal integrity were examined in isolation and in relation with increased Aβ levels in 

young and aged animals. It was demonstrated that hypoperfusion induces age-related 

changes to the nodes by reducing their size and producing disruption at the 

paranodes, which was associated with the severity of the spatial working memory 

deficit. Similarly to ageing, these changes are occurring without overt myelin loss 

suggesting that they are an early event in pathology progression and possibly a 

therapeutic target. Furthermore, both the disruption at the nodes and cognitive 

decline were exacerbated in the young TgAPPSw,Ind animals. As discussed in 

chapter 4 this difference may be due to intrinsic changes in the vasculature between 

the wild-type and the TgAPPSw,Ind mice (Dr G. Scullion, unpublished data) which 

may induce a greater reduction in CBF. However, when ageing is combined with 

hypoperfusion nodal integrity in more regions is affected and the effects on nodal 

integrity and cognition are independent of the genotype. These findings indicate the 

susceptibility of the ageing brain and the necessity for early interventions against the 

effects of hypoperfusion.  
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5.3 Repairing the nodes of Ranvier 

Currently, there are not any therapeutic strategies that specifically repair the nodes of 

Ranvier. The majority of the strategies that examine nodal repair are investigated in 

the context of demyelination in diseases such as the leukodystrophies, where 

demyelination has a genetic basis, or diseases such as multiple sclerosis where 

autoimmunity is responsible (Franklin and Ffrench-Constant, 2008). In these 

diseases, damage at the oligodendrocytes is usually responsible for demyelination 

(Franklin and Ffrench-Constant, 2008). Therefore, the research on the development 

of therapeutic approaches focuses on restoring the integrity of the myelinated axons 

both structurally and functionally in a process known as remyelination (Smith et al., 

1979). The two main strategies followed are cell therapy which includes the 

transplantation of stem cells that would differentiate into myelinating 

oligodendrocytes, and promotion of myelination by the endogenous population of 

OPCs, and both have shown positive results. For example, Sasaki et al. (2006) 

showed, in demyelinating lesions of rat spinal cord, repair of the molecular 

architecture of the nodes of Ranvier in remyelinated mediated fibres after 

transplantation with olfactory ensheathing cells. Moreover, administration of the 

leukaemia inhibitory factor (LIF) results in the activation of OPCs and subsequent 

remyelination (Deverman and Patterson, 2012).  

The studies presented in this thesis do not suggest that demyelination is occurring in 

response to ageing or cerebral hypoperfusion. However, it has been proposed that a 

cross-talk between the oligodendrocytes and vascular elements is necessary for 

maintaining the integrity and homeostasis of the white matter (Arai and Lo, 2009). 
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Therefore, strategies that focus on the restoration of oligodendroglial function may 

be relevant.  

There is also evidence that the oligodendrocytes are susceptible to oxidative stress 

and inflammation (Balabanov et al., 2007; Cammer and Zhang, 1999; Deng et al., 

2004; French et al., 2009) which are suggested to be up-regulated by normal ageing, 

hypoperfusion and AD (Kasparova et al., 2005; Wang et al., 2010). Oxidative stress 

and microglial activation have been directly linked with paranodal abnormalities 

(Szymanski et al., 2013; Howell et al., 2010) which suggests that the use of 

antioxidant or anti-inflammatory agents may attenuate the damage at the nodal 

region. Indeed, administration of a known antioxidant (Vitamin E) prevents 

paranodal disruption in a rat of diabetic peripheral neuropathy (Algaidi, 2011) whilst 

administration of anti-inflammatory agents such as ibuprofen attenuates white matter 

damage after ischemia (Carty et al., 2011). Furthermore, administration of 

edaravone, which is an antioxidant that scavenges free radicals, attenuates white 

matter damage by reducing the loss of oligodendrocytes and demyelination in a rat 

model of chronic cerebral hypoperfusion (Ueno et al., 2009). In the same model, 

treatment with gypenosive, a compound with anti-inflammatory and antioxidant 

effects, is shown to decrease vacuolation and demyelination of the corpus callosum 

(Zhang et al., 2011).  
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5.4 Attenuating cerebral hypoperfusion 

Chronic cerebral hypoperfusion occurs in normal ageing (Stoquart-ElSankari et al., 

2007) and is further exacerbated in the presence of vascular risk factors (Leenders et 

al., 1990). The effect of chronic hypoperfusion is the deprivation of the brain from 

the necessary energy and metabolites for brain function (Leenders et al., 1990) 

resulting in white matter damage and changes in cognition which may further 

develop to dementia (Pantoni, 2002; Appelman et al., 2010). However, cerebral 

hypoperfusion is observed prior to the development of any clinical symptoms of 

cognitive decline (de la Torre, 2009) indicating that that there is a window for 

intervention after hypoperfusion is first observed and before cognition is impaired. 

The data presented in this thesis also highlight the importance of hypoperfusion in 

the development of white matter alteration - particularly within the excitable regions 

of the myelinated axons - and cognition, and also indicate that increasing age may 

render the brain more susceptible to its detrimental effects.  

The development of strategies to prevent, delay or attenuate hypoperfusion becomes 

necessary for prolonging cognitively healthy ageing. This may be achieved by the 

accurate diagnosis of the vascular risk factors underlying hypoperfusion and by 

applying the appropriate therapeutic strategies to ameliorate them. Jack de la Torre 

(2010) proposes a series of screens for the identification of individuals at risk. The 

primary screen includes low-cost, simple, and non-invasive procedures such as 

ultrasounds, blood tests and physical examination which will highlight any potential 

risk factor. The secondary screen includes neuroimaging, cognitive tests and 

biomarkers of cerebrospinal fluid (CSF) which would determine the white matter 
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damage and the extent of cognitive decline. Accurate detection of the risk factors 

may promote healthy ageing as a number of them are modifiable by either a change 

in lifestyle or commonly available drug treatments. For example, lifestyle changes 

could include a shift towards a healthy diet, low alcohol consumption and increased 

exercise (Pope et al., 2003), whilst diabetes mellitus, hypercholesterolemia and 

hypertension could be treated with insulin therapy, statins and angiotensin converting 

enzyme (ACE) inhibitors respectively (Rockwood et al., 1997).  

Furthermore, studies in animal models have indicated pharmacological compounds 

that attenuate hypoperfusion and its effects, such as white matter damage or 

cognitive decline. For example, Maki et al. (2011) demonstrated in a mouse model of 

chronic cerebral hypoperfusion that treatment with andromedullin attenuated the 

induced hypoperfusion, induces angiogenesis and conserved white matter integrity 

and cognition. Moreover, treatment with nimodipine, a dihydropyridine which is a 

calcium entry blocker specific for cerebral vasculature, after ischemic injury may 

ameliorate cerebral blood flow by reversing cerebral vasoconstriction (Milde et al., 

1986). However, further investigation is necessary in order to utilise these 

compounds as a therapeutic strategy for hypoperfusion.   
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5.5 Future studies 

In the future, further investigation could strengthen and expand the observations 

presented in this thesis in an effort to identify the molecular mechanism underlying 

structural alterations and also to specify the implication of Aβ in these mechanisms. 

For example, computational modeling (Baalman et al., 2013) of the observed 

alterations at the nodes of Ranvier and/or the AIS would offer some information 

about specific alterations in the size of the AIS and the nodes similar to those 

induced by ageing and hypoperfusion are affecting the firing properties of the 

neurons. In a more detailed approach, electrophysiological examination of firing 

properties of the axons at the same regions where pathological alterations at the 

nodes or the AIS are observed in animals that have developed cognitive deficit would 

provide the necessary link between pathological alterations, altered signal conduction 

and cognition. 

To further identify the nature of the alterations at the myelinated axons as well as the 

mechanisms responsible, further investigation would be necessary. Detailed 

ultrastructural analysis of myelinated axons using transmission electron microscopy 

(Shepherd et al., 2012) could provide evidence for structural alterations in the myelin 

sheath such as ballooning, decompaction and thinning, and in the paranodal junction 

(loss of septate-like junction, paranodal loops pilling or disconnection from the 

axolemma) as well as an estimation of changes in number of myelinated or 

unmyelinated axons. Other hypoperfusion studies (Coltman et al., 2011; Holland et 

al., 2011; Reimer et al., 2011) have highlighted MAG to be a sensitive marker of 

axon-glial disruption in response to hypoperfusion, therefore, examining its protein 
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levels and cellular distribution would provide additional evidence for myelin 

disruption. Additionally, down-regulation or proteolytic processing of components of 

the nodes of Ranvier of the AIS could be confirmed with western blot analysis. In 

order to gain further insight on the relevance of AD and Aβ pathology in the 

observed changes, the effect of specific Aβ species on the structure of AIS and the 

nodes of Ranvier as well as neuronal excitability could be investigated in vitro in 

combined neuronal and glial cultures. Finally, cerebral blood flow measurements in 

aged and in TgAPPSw,Ind animals would be helpful for examining whether there are 

age-related or genotype-dependent baseline alterations in CBF that hypoperfusion 

exacerbates. 

 

5.6 Conclusion 

The data presented in this thesis indicate the necessity for developing strategies to 

minimize injury at the nodes of Ranvier and drive their repair. In order to be 

successful it is necessary to ensure that the nodes are formed properly and 

maintained. Moreover, the importance of therapeutic approaches against the vascular 

insults that induce hypoperfusion and lead to white matter attenuation and cognitive 

decline is highlighted. 
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Appendix A1 Intensity of MBP and total neurofilament staining in the stratum 

lacunosum moleculare of the hippocampus. [A] There was a significant overall 

effect of age in intensity of MBP staining (2-way ANOVA: genotype*age; p < 0.05). 

Post-hoc testing showed that MBP intensity was significantly reduced (p < 0.05) in 

aged WT when compared to young WT mice. There was no significant difference (p 

> 0.05) in myelin density with increased amyloid in old APPSw,Ind as compared to 

young APPSw,Ind [B] Analysis of total neurofilament intensity did not show any 

significant effect of age or genotype. *: p ≤ 0.05. Graphs show mean ± SEM  

APPENDIX A 
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Appendix A2 Amyloid deposition in the stratum lacunosum moleculare of the 

hippocampus of TgAPPSw,Ind mice. Amyloid load in the stratum lacunosum 

moleculare hippocampus was assessed using 6E10 antibody in both WT [A & B] and 

TgAPPSw,Ind animals [C & D]. Aβ load (percentage area) in the hippocampus was 

significantly increased by age (p < 0.05) and by the TgAPPSw,Ind genotype (p < 

0.05). Post-hoc analysis showed that the aged TgAPPSw,Ind have significantly 

greater Aβ load in the stratum lacunosum moleculare when compared to young 

TgAPPSw,Ind (p < 0.01) and aged WT (p < 0.001). WT young: n=13, WT old: n=12 

TgAPPSw,Ind young: n=13, TgAPPSw,Ind old: n=15**: p < 0.01, ***: p < 0.001. 

Graphs show mean ± SEM. Scale bar 300μm.   
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