
Language Interoperability and Logic

Programming Languages

Jonathan J. Cook

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429727153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
We discuss P#, our implementation of a tool which allows interoperation between a

concurrent superset of the Prolog programming language and C#. This enables Prolog

to be used as a native implementation language for Microsoft’s .NET platform. P#

compiles a linear logic extension of Prolog to C# source code. We can thus create C#

objects from Prolog and use C#’s graphical, networking and other libraries. P# was

developed from a modified port of the Prolog to Java translator, Prolog Café.

We add language constructs on the Prolog side which allow concurrent Prolog code to

be written. We add a primitive predicate which evaluates a Prolog structure on a newly

forked thread. Communication between threads is based on the unification of variables

contained in such a structure. It is also possible for threads to communicate through

a globally accessible table. All of the new features are available to the programmer

through new built-in Prolog predicates.

We present three case studies. The first is an application which allows several users to

modify a database. The users are able to disconnect from the database and to modify

their own copies of the data before reconnecting. On reconnecting, conflicts must be

resolved. The second is an object-oriented assistant, which allows the user to query the

contents of a C# namespace or Java package. The third is a tool which allows a user to

interact with a graphical display of the inheritance tree.

Finally, we optimize P#’s run-time speed by translating some Prolog predicates into

more idiomatic C# code than is produced by a naı̈ve port of Prolog Caf́e. This is

achieved by observing that semi-deterministic predicates (being those which always

either fail or succeed with exactly one solution) that only call other semi-deterministic

predicates enjoy relatively simple control flow. We make use of the fact that Prolog

programs often contain predicates which operate as functions, and that such predicates

are usually semi-deterministic.

iii

Acknowledgements
I would like to acknowledge the kind advice and assistance of my supervisor, Stephen

Gilmore, who has read through and suggested improvements to many versions of this

thesis, my publications and other documents. Stephen has met with me almost every

week during my Ph.D. and offered a great deal of good advice and support throughout

my time in Edinburgh.

I thank my internal examiner, Mike O’Boyle, and external examiner, Phil Trinder, for

their helpful comments and constructive criticism.

The helpful comments of the anonymous referees on all the papers that I’ve submitted

during my time at Edinburgh and in particular those which are contained in this thesis,

are gratefully appreciated.

I would also like to acknowledge the helpful advice of my second supervisor Ian Stark

and my other progress review panel members, David Aspinall and Don Sannella.

I would like to acknowledge Mutsunori Banbara and Naoyuki Tamura, the developers

of Prolog Caf́e, the tool on which P# is based, and without whom P# would not exist.

I thank the flat mates I have lived with during my time in Edinburgh: Laura Wisewell,

Jeremy Brookman, Andrea Greve, Markus Edelbluth, and Jeroen van Bergeijk; and the

office mates I have worked along side: Sam Lindley, Miki Tanaka, Shin-ya Katsumata

and Hongqian Liang, for making my four years here so enjoyable.

I thank Douglas Blackwood, Sean Cross, Jonathan Crowson and Paul McAllister for

their support during my time in Edinburgh.

During the first three years of my Ph.D., I had financial support from the EPSRC.

Finally, I thank my parents and sister for their love, and good advice.

iv

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Most of the text of chapters 3 to 5 of this thesis has appeared as the paper [Coo04a]. A

reduced form of chapter 6 has appeared as the paper [Coo04b]. Chapters 1 and 7 both

contain elements from both of these papers.

(Jonathan J. Cook)

v

Table of Contents

1 Introduction 1

1.1 Contributions of this Thesis . 3

1.2 Source-to-Source Language Translation 5

1.3 Logic Programming Languages . 7

1.3.1 Prolog . 7

1.3.2 Linear Logic Variants . 11

1.4 The Java and .NET Platforms . 11

1.4.1 The Java Platform . 11

1.4.2 The .NET Platform . 13

1.4.3 The .NET Common Intermediate Language (CIL) 14

1.4.4 C# . 16

1.5 Other Forms of Language Interoperation 18

1.5.1 Foreign Language Interfaces for Prolog 19

1.6 P#: A Concurrent Prolog for the .NET Platform 20

2 Existing Technology 25

2.1 Logic Languages and Functional Logic Languages 25

2.1.1 The Warren Abstract Machine 25

2.1.2 Translating Prolog to C: GNU Prolog 31

2.1.3 Translating Prolog to Java: Prolog Café 34

2.1.4 Jinni . 36

2.1.5 Mercury . 37

2.1.6 HAL . 39

vii

2.2 Functional Languages . 39

2.2.1 Translating ML into C . 39

2.2.2 MLj . 39

2.2.3 SML.NET . 40

2.2.4 A Haskell COM Server . 40

2.3 Other Implementations . 41

2.3.1 Translating Java to C . 41

2.3.2 Translating Java to C# . 41

3 Translating Prolog to C# 43

3.1 Porting Prolog Café . 43

3.1.1 Bootstrapping the Translator 43

3.1.2 The Run-time System . 44

3.1.3 Architecture . 45

3.2 Use of C# Features . 47

3.3 Example Code Generated by P# . 51

3.4 Example Web Application: Noughts and Crosses 54

4 Concurrency 57

4.1 Design of Concurrent P# . 57

4.1.1 Design Before the Addition of Concurrency 58

4.1.2 P# Concurrency Features . 59

4.1.3 Existing Concurrent Prologs 62

4.1.4 Justification and Comparison with Existing Work 65

4.2 Examples . 68

4.2.1 Communication between Threads 68

4.2.2 Queuing of Multiple Solutions 70

4.2.3 The Global Database . 71

4.3 Implementation . 72

4.3.1 Making P# Thread Safe . 72

4.3.2 Forking Threads and the Global Database 75

4.3.3 The wait for /1 Predicate 77

viii

4.3.4 Monitors . 78

4.3.5 Interoperation with C# . 79

4.4 Semantics . 80

4.4.1 Comparison with Semantics of C# 80

4.4.2 Semantics of Message Passing 82

5 Case Studies and Performance Measurement 85

5.1 A Disconnected Shared Database . 85

5.2 An Object-Oriented Assistant . 87

5.3 A Class Hierarchy Viewer . 92

5.4 Performance Measurement Before Optimization 95

5.4.1 Comparison with Other Tools 95

5.4.2 Speed of Concurrent Operations 96

5.4.3 Effect of the Number of Threads on Efficiency 99

6 Optimizing P# 101

6.1 Optimizations in Prolog Café . 101

6.2 Other Optimizations in Existing Tools 101

6.3 Further Optimization of P# . 103

6.4 Idiomatic Compilation . 104

6.4.1 Generating Naı̈ve Idiomatic Code 106

6.4.2 Coalescing Adjacentif Statements 116

6.4.3 Tail-Recursion Converted to Iteration 117

6.4.4 Rewriting Blocks as awhile Loop 118

6.4.5 Liveness Analysis . 122

6.4.6 Compiling Disjunctive Constructs and thenot Construct . . . 124

6.4.7 Multiply Moded Idiomatic Predicates 126

6.4.8 Type Consistency . 127

6.5 Example Code—The Eight Queens Problem 128

6.6 Comparison with Mercury . 131

6.7 Performance Measurement After Optimization 131

7 Conclusions 137

ix

7.1 Translating Prolog to C# Source Code 137

7.1.1 Security . 138

7.1.2 Interoperation with Other APIs 138

7.2 Concurrency . 139

7.3 Idiomatic Compilation . 141

7.3.1 Idiomatic Translation of Database Primitives 142

7.3.2 Idiomatic Translation of Concurrent Code 142

7.3.3 Idiomatic Translation of Failure Driven Loops 143

7.3.4 Support for More Modes . 144

7.3.5 Other Extensions to the Idiomatic Compiler 146

7.4 Closing Remarks . 147

A Example Source Code: Object-Oriented Assistant 149

A.1 Prolog Code . 149

A.2 Interoperating C# Code . 156

Bibliography 163

x

List of Figures

3.1 Obtaining a bootstrapped translator to C# 45

3.2 Separation into a DLL and an EXE 47

3.3 How the user generates their EXE file 47

3.4 A simple Prolog predicate . 51

3.5 C# code generated from the simple predicate 52

3.6 WAM code produced by GNU Prolog 54

3.7 A Web Application . 56

4.1 Control flow logic of unification and waitfor 83

5.1 Example of the treeification algorithm at work 90

5.2 Screen-shot of the object-oriented assistant 92

5.3 Screen-shot of the class hierarchy viewer 94

6.1 Control flow for a semi-deterministic predicate that only calls other

semi-deterministic predicates . 107

xi

List of Tables

3.1 Experiments with structs and delegates 49

5.1 Comparison of P# with other tools before optimization 97

5.2 Numbers of benchmarks better and number worse than P# 97

5.3 Time taken for concurrent operations 98

5.4 Effect of number of threads on concurrent matrix multiply 100

6.1 Speed-up due to the use of idiomatic code and mode/type declarations

(times in ms) . 132

6.2 Efficiency comparison between P# and human generated program . . 135

xiii

Chapter 1

Introduction

It is believed by some that the declarative programming language paradigm is particu-

larly helpful in developing succinct and correct programs that are easy to understand. It

can also be argued that it is easy to find and correct errors in a program written in such

a language. Similarly, it is believed by many that modern object-oriented languages

such as Java [GJSB00] and C# [Cor01] also have these advantages. Programming lan-

guages are sometimes chosen for a project because, when executed, programs written

in those languages are more efficient in terms of time or space. Languages are also

chosen because they have well developed libraries. In many cases, however, a great

gain in productivity is achieved by using a language better suited to the problem to

be solved. This is particularly the case when such a language supports interoperation

with other languages that may provide features that it lacks, or that may be useful for

solving other parts of the problem to be solved.

Declarative programming languages allow programs to be written that are modelled

more on the problem that the program is to solve, than on the steps by which that

problem is to be solved. The logic programming language Prolog [CM94], being a

declarative language, has the advantages stated above, although it is an untyped lan-

guage and the correctness of programs relies to some extent on the programmer not

making mistakes such as using inconsistent naming, as such errors are not always de-

tected by Prolog compilers. This is in contrast to a language such as SML [MTHM97],

1

2 Chapter 1. Introduction

which is strongly typed and it is argued by some that once an SML program type

checks it is likely to be correct. In this case, the programmer’s effort can be expended

more on getting the program to type-check than on writing functions which model a

problem. If correctness is our primary concern, this effort is well rewarded. There are

many problems for which a declarative language such as Prolog or SML is far better

suited than an imperative language.

Imperative languages, which tend to be more widely used than declarative languages

in commercial settings, have more of an emphasis on specifying the steps by which

a problem should be solved. With an imperative language it is arguably easier for a

programmer to make errors in their code which are less likely to be discovered during

the development of the program and more likely to manifest themselves in a poten-

tially more destructive manner when the program has been deployed to a user. This is

because the question of how to solve a problem is one step removed from the problem

itself, and errors can be introduced in making this step. Programs written in imperative

languages tend to be more efficient than those written in declarative languages.

Modern object-oriented languages are usually imperative languages, however the

object-oriented features of these languages are another approach towards representing

problems rather than the steps used to solve them. Indeed, many programmers prefer

and find it easier to program in such languages than in declarative languages. This

could be because the imperative style of programming is more accessible because it is

more concrete. Modern object-oriented imperative languages tend to have extensive

support for Graphical User Interface (GUI) programming and networking.

For an implementation of a programming language to be successful it is important that

it provides access to the best features of the platform or platforms on which it runs.

The practicality of using a declarative language can often be significantly enhanced by

providing well designed mechanisms that allow it to interoperate with other, possibly

more widely used, languages. Virtual Machine (VM) based execution environments

centred on a modern object-oriented imperative language, such as the Java platform

[GJSB00, LY99] and Microsoft’s .NET Platform [Pla02, NET, TL01] are becoming

increasingly popular. Such environments are often used as multiple language platforms

1.1. Contributions of this Thesis 3

because this allows many languages to interoperate with the platform’s core language

and other languages. Thus, it is desirable to implement declarative languages on these

platforms. This allows the different programming language paradigms to interoperate

and allows us to ‘get the best of both worlds’.

In the remainder of the introduction we will first summarize the contributions of this

thesis and then discuss how language interoperation can be achieved by compiling

source code written in one language to source code expressed in another language. We

will then discuss logic programming languages, modern Virtual Machine platforms and

ways of allowing languages to interoperate other than by source-to-source translation.

The final section of the introduction discusses our contribution to improving language

interoperation for the logic programming language, Prolog.

1.1 Contributions of this Thesis

The main contribution reported on in this thesis is an implementation of Prolog for

Microsoft’s .NET platform, which operates by compiling Prolog to C# source code.

Our tool is useful for allowing legacy and new Prolog programs to easily access the

extensive libraries of the .NET platform. The tool is directed at developers who require

or wish to use a implementation of Prolog, rather than of similar languages derived

from Prolog. These similar languages can be difficult to use if there is an existing

legacy Prolog code base.

Our implementation is a demonstration that a programming language implementation

based on source-to-source translation can result in efficient compiled programs and

promote language interoperation between the source and target languages.

The implementation is based on a pre-existing Prolog to Java translator. Chapter 3

of this thesis discusses how our implementation was obtained and the design of an

architecture for our tool that fits well with the .NET platform.

The other contributions of this thesis fall into three categories. Firstly, a concurrent

Prolog is described in chapter 4. Secondly, case studies, and techniques used in their

4 Chapter 1. Introduction

development, are discussed in chapter 5. Thirdly, in chapter 6, we discuss how more

efficient and higher-level C# code can be produced from Prolog.

The implementation of Prolog on which ours is based had no support for concurrency.

We show how to modify our port so that multiple Prolog engines can run concurrently

in a thread safe manner. We then describe a set of Prolog concurrency primitives which

we feel are a good match for the concurrency features of C# and yet provide higher-

level capabilities. These features are drawn from the existing literature on concur-

rent Prolog. A forking primitive is provided, which makes all uninstantiated variables

passed to it become bidirectional message channels. Then, either the forked thread,

or the thread that forked it, can wait for that variable to become instantiated on the

other thread. One feature of our primitives is that the waiting operation is automat-

ically abandoned when all the threads which might pass it a value have completed

their execution or are themselves waiting for the same variable. Another feature of the

primitives is a lock which protects with a mutex all the code deeper than the lock in

the proof tree.

One of our case studies demonstrates the use of our waiting operation to wait for all

threads performing different parts of a task to be completed before proceeding to the

next task. Other case studies that we report on in chapter 5 demonstrate an extension of

our tool which allows larger databases to be queried without resulting in a stack over-

flow error. This is achieved by reducing the number of clauses involved in disjunctions

by converting a predicate with a large number of clauses into a set of predicates with a

tree structure.

We demonstrate how certain semi-deterministic predicates can be translated to code

closer to the code that a human developer would produce. This code is found in some

instances to be both more efficient and readable. Such predicates are first translated

into a method with a block for each clause. Then, rewrites and liveness analysis are

applied in an attempt to convert tail-recursion in Prolog to iterativewhile loops in C#.

This last exercise provides evidence that a source-to-source compilation system can

benefit from attempting to produce target code which is close to the code that a hu-

man programmer would produce. This is because typically the compiler for the target

1.2. Source-to-Source Language Translation 5

language will be optimized for compiling such code.

1.2 Source-to-Source Language Translation

There are now many programming languages available and often it may be convenient

to use a number of languages in one project. This raises the issue of how the languages

are to interoperate. Language translation is one way of achieving language interoper-

ation. If we translate source code to source code the final program can be expressed

in a single language, although it has been written in many. This can make compilation

easier than it is when developers use tools that allow one language to call another lan-

guage. It can also promote a closer integration between the languages involved than is

achieved with other forms of interoperation between languages.

When a team of programmers is working on a project, some will be more familiar with

some of the languages that are being used than with others. Also, some programmers

will be required to maintain code written in a language other than one of those with

which they are most familiar. In both these cases it can be helpful for the programmer

to be able to use a tool which translates from a language with which they are less

familiar to one with which they are more familiar. They can then either use this tool to

better understand the code written in another language, or to abandon the less familiar

language altogether and just use the language to which the code has been translated for

the project.

Generally, however, automatic translators produce code which is difficult for a human

to understand and modify. Exceptions to this are Microsoft’s Java to C# converter: the

Java Language Conversion Assistant and the Octopus .NET Translator [Oct]. Octo-

pus can perform some of the source-to-source translations between Java, C#, native

C++, Visual C++.NET and Visual Basic.NET. This is made possible by the similarity

between the languages.

We would like such a compiler to generate code that executes efficiently and uses the

target language’s constructs idiomatically. We would also like the tool to fully exploit

6 Chapter 1. Introduction

the features of the target language. The ideal would be to develop a tool that produces

code that is readable, well-structured and can easily be modified by a human. Fully

realizing this ideal is a long way off, but progress can be made towards it.

Language translation represents a considerable challenge to computer science, partic-

ularly when there is a significant semantic gap between the source and destination

languages. Logic languages and imperative languages are separated by such a gap.

Many commercial language translation projects have involved the translation of legacy

code in an older language such as COBOL or PL/I to a newer language. Older lan-

guages are still widely used, but there is a lack of skilled programmers in these lan-

guages. Thus, it is desirable to translate these languages into languages such as C++,

Java and C#. Once the code is translated, there is a need to maintain and modify the

new code. If the translator is reliable and does not need much human intervention, it is

acceptable to modify the original code and re-translate it. However, it is preferable to

be able to modify the translated code. Thus, we would like for it to be easy to read and

to modify the translated code without inadvertently introducing errors into the code.

Many such projects have ended in failure and financial loss. The paper [TV00] ar-

gues that this is because conversions between programming languages are inherently

difficult. Many software managers are fooled into thinking that a change of language

can solve all of their problems. On hearing the name ‘COBOL to Java’ and without

looking more deeply into the implications of language translation it is easy to assume

that such a change will lead to a significant gain in productivity. A loose chain of

reasoning is followed where, given the facts that Java code is high-quality code and

that the COBOL to Java translator generates Java, it is inferred that the COBOL to

Java translator generates high-quality code. The phenomenon of being convinced by a

name, rather than by the reality for which that name is a label is known asname magic

[TV00].

The difficulties of source-to-source translation are manifold. Even integral data types

cause problems. Some of the programming languages in which legacy software was

written have, by modern standards, bizarre means of representing a fixed range of in-

tegers and equally bizarre exact representations or approximations to real numbers.

1.3. Logic Programming Languages 7

Thus, it can be nearly impossible to translate code using such types without resort-

ing to, usually inefficient, code which simulates the operations of the older language’s

types. When translating between two more modern languages, differences in the size

and precision of numeric types can cause problems. The size of numeric data types in

the language C is platform dependent, whereas with Java it is platform independent,

for example. Another problem is dealing with idiosyncratic library functions. Many

such functions take or return special values to indicate exceptional circumstances, and

the values used in such cases differ from language to language. For example, the

java . lang . Str ing . indexOf (in t c) method of Java, which finds the location of

a character in a string returns 0 to indicate the first location of the string and−1 to indi-

cate that the character does not occur in the string. Turbo Pascal’s analogous procedure

pos returns 1 to indicate the first location and 0 to indicate that the character does not

occur. Translations of strings between languages can also cause problems because lan-

guages have differing conventions on issues such as escape characters, termination and

indexing.

The paper [TV00] gives an example of a process for language conversion. This in-

volves restructuring the original program to make it suitable for asyntax swap. A syn-

tax swap involves merely exchanging syntactical constructs in the original language

with those of the new language. The resultant code is then restructured to produce

code which is more readable to make future maintenance as easy as possible. This

process is usually difficult and involves many compromises.

1.3 Logic Programming Languages

1.3.1 Prolog

Prolog [CM94] is the seminal logic programming language and is well suited to artifi-

cial intelligence programming. To write a program, say, to find a means of winning a

game can be far more natural in Prolog than in other languages. The same can be said

for the problem of writing a program to draw logical, rather than statistical, conclusions

8 Chapter 1. Introduction

from a set of data.

Prolog has features, its use of unification for example, which carry a significant per-

formance penalty. However, ingenious techniques have been conceived for making it

more efficient. In many applications we might be prepared to sacrifice speed in order

to have a clear, concise program. Prolog is not ideally suited to numerical computa-

tion, the most obvious example of a field of computing that usually requires an efficient

language. However sometimes, expert systems for example, may be required to draw

logical inferences from a large amount of data; or to solve a problem in which a large

number of cases may have to be considered. In such cases it would be desirable for

Prolog to be faster. Unfortunately attempts to translate Prolog to languages such as C

have failed to yield programs which run faster than the corresponding Prolog program

run on an efficient Prolog implementation. Other benefits may be gained, though, such

as portability and the ability to easily integrate Prolog with programs written in the

faster languages.

A Prolog termis an atom, an integer term, a floating point number term, a list term, a

structure term or a variable term. Structure terms and list terms are collectively known

as compound terms. An atom is represented by a string of characters. If an atom

begins with a capital letter or contains symbols with other meaning in Prolog, then

it must be typed surrounded by single quotes. Examples of atoms areyes, abcdef,

and ’Atom 1 ’ . Integer termsrepresent integers, andfloat termsrepresent floating

point numbers. A list can either be the empty list, written[] , or a head together

with a tail, written [Head | Ta i l] or as a list of items, such as[1 ,2 ,3] , which is

equivalent to [1 | [2 | [3 | []]]] . A variable termcan be regarded as a hole which

can at some point be instantiated to one of the other kinds of term. The names of

variable terms start with a capital letter. A structure consists of afunctor, which is an

atom associated with an arity, and a number of arguments, for example the structure

foo (1 , [2 |T] ,T) has the functorfoo /3 and three arguments of which the first is the

integer 1, the second is a list whose first element is 2 and whose remaining elements

are the same as the third argument. In fact, Prolog is an untyped language and thus a

term such asfoo ([] , 3 , [1 , [2 , 3] , 4]) , containing a heterogeneous list, is also a valid

term. The dot functor,. / 2 can be used to represent lists as structures, for example

1.3. Logic Programming Languages 9

[1 ,2 ,3] is equivalent to. (1 , . (2 , . (3 , []))) .

A fact is a structure without any variables. For examplemarried (’ John ’ , ’ Lucy ’) .

is a fact which might represent the fact that John and Lucy are married. Aclause

consists of a head and a body separated by the symbol : – . Agoal consists of a

structure, which is intended to be executed. Theheadconsists of a structure, and the

bodyof a conjunction of goals separated by commas. An example of a clause is

s ib l i ng (X,Y) :− parent (Z,X) , parent (Z,Y) .

This is read as:X is a sibling ofY if Z is a parent ofX andZ is a parent ofY for someZ.

Two atoms unify if they are the same atom. Two integer terms unify if they are the

same integer, and similarly for floating point numbers. Two list terms unify if they

are both the empty list; or their heads unify and their tails unify. Two structures unify

if they have the same functor and arity and the arguments respectively unify. If a

variable term is unified with another variable term, then they effectively become the

same variable. If a variable term is unified with another type of term, then that variable

becomes instantiated to that term.

A predicateis defined by a number of clauses all having the same head functor. When

the predicate is called, all of those head goals which unify with the calling goal have

their bodies executed. The goals are executed in a depth-first manner. This is referred

to asbacktracking. A cut is a goal indicated by a! . If a cut is encountered there will

be no further backtracking during the current predicate call. The cut may indicate that

the single solution has been found or may be used as a way of controlling the flow of

control through the predicate.

A Prolog program consists of a set of predicate definitions. The program is executed

by issuing a query. Aqueryis a goal which is typed in at the top-level prompt.

A näıve Prolog program for finding the length of a list is as follows:

length ([] , 0) .
length ([|T] , N) :− length (T, L) , N is L + 1.

10 Chapter 1. Introduction

This problem can be solved more efficiently by using thetail-recursiveidiom, where

the recursive call occurs as the final goal in the body as follows:

length (L is t , Length) :−
len (L is t , 0 , Length) .

len ([] , N, N) .
len ([|T] , N, Length) :−

N1 is N + 1 ,
len (T, N1, Length) .

Here, the second argument oflen /3 is anaccumulatorto which the result is instanti-

ated when the base case is reached.

Failure driven loops are examples of another Prolog idiom. They are best illustrated

via the built-inrepeat /0 predicate which is defined by:

repeat .
repeat :− repeat .

This predicate is used in the following way:

repeat ,

〈code,C, to be repeated, this must always succeed〉
〈a goal,G, which fails when the loop is to be continued〉

! .

The code block,C, is repeatedly executed. On each iteration if the loop is to be con-

tinued the goal,G, fails causing backtracking to the call to therepeat /0 predicate.

WhenG succeeds, it is immediately followed by a cut to prevent further backtracking,

and thus to prevent the next failure from causing the loop to be iterated further. One

limitation of this idiom is that cuts cannot be used in the code block,C.

Prolog is equipped with a database feature, which allows terms to be asserted (added)

to the database, retracted (removed) from the database and called (retrieved) from the

database. With most Prolog implementations it is even possible to modify in this way

1.4. The Java and .NET Platforms 11

the clauses of the running program, and thereby modify the behaviour of the program

dynamically.

For more information on the Prolog language, see [CM94].

1.3.2 Linear Logic Variants

Linear logic programming is based on intuitionistic linear logic. For more information

on linear logic, see [Gir87, Gir95]. The resource-conscious nature of the languages

makes them idea for the solving problems involving resources, which can only be used

a fixed number of times. Linear logic is a very natural logic for describing many

problems, for example in the case of the Eight Queens problem, each row and each

column might be a resource.

Examples of linear logic programming languages include Lolli and LLP, which are

both supersets of Prolog. LLP is a subset of Lolli.

1.4 The Java and .NET Platforms

1.4.1 The Java Platform

Implementations of the Java programming language [GJSB00] compile Java to an in-

termediate language called the Java Virtual Machine Language (JVML) [LY99], also

known as Java byte-code, which is stored in Java class files. The JVML is either inter-

preted, or more usually compiled Just-In-Time (JIT) to native code by a Java Virtual

Machine (JVM). This JIT compilation allows efficient code, which is tailored to the

relevant processor, to be generated on almost any modern desktop computer. Using

an intermediate language offers many advantages [MM]. They include the fact that

the JVML is far more compact than Java source code and therefore more easily trans-

mitted across the Internet. Now that there is an implementation of the JVM on most

desktop machines, the same JVML code can be widely distributed, without the need to

12 Chapter 1. Introduction

distribute different binaries for different platforms. Also a client computer onto which

a Java class file has been downloaded is better able to enforce security requirements

on the JVML code than it would on native code, as native code is usually untyped

and runs without a security manager. These are also advantages in the cases of other

intermediate languages. The JVML has only enough features to be an excellent target

language for Java.

The JVML is a stack based language. Byte-code instructions pop items off an operand

stack, operate on them and then push the result back onto the operand stack.

When a method is called a stack frame is created containing arguments to the method

and local variables, amongst other data. The data types of the JVML are Boolean, byte,

short, char, int, long, float, double and address. Where relevant a separate instruction

is provided for each type. The type of each argument, local variable and operand

stack slot at each point in the byte-code can be determined statically from the byte-

code. However an individual local variable or argument may contain different types at

different points during the execution of a method. Every argument, local variable and

operand stack slot is 4 bytes wide: long and double values occupy two slots. This can

cause difficulties for compiler developers as the necessary additional bookkeeping can

be hurtful to efficiency.

Instructions are provided which perform arithmetic operations, push constants onto

the stack, load from arguments, local variables or arrays onto the stack, save the top

item of the stack into an argument, local variable or array, get and put static data, and

rearrange or duplicate items near the top of the stack.

There are instructions which transfer control within a method based on a condition or

a switch statement and instructions for jumping to and returning from a subroutine

in the same method. Four instructions are provided for calling other methods and for

most of the internal types of the JVM a return instruction is provided. In some cases

one of the return instructions covers several similar types.

Other instructions create new objects or arrays, push the length of an array onto the

operand stack, throw an exception, deal with casting between types, enter or exit a

1.4. The Java and .NET Platforms 13

monitor in concurrent code and convert between types.

Garbage collection, threads and monitor locks are supported at the virtual machine

level. Each Java object has a lock associated with it, allowing code to acquire or

release a lock on that object.

The Java Platform is supported by mature and comprehensive libraries which have

evolved over a number of years.

1.4.2 The .NET Platform

The Microsoft .NET Platform [Pla02, NET, TL01] consists of a number of technolo-

gies, including development environments, enterprise servers and operating systems.

One of the principal goals of the platform is to support the interaction of web ser-

vices and clients via XML, with a view to enabling these services to be called across

languages and platforms. In order to facilitate the writing of web services and Win-

dows applications, the .NET Framework has been developed, which allows a number

of languages to work together by compiling them all down to a common intermedi-

ate language. Arguably, XML Web services are likely to revolutionize the way users

interact with applications, with applications being invoked across the Internet.

The .NET Framework is central to the .NET Platform and consists of the Common

Language Runtime (CLR) and libraries which are shared between all of the languages

available for the .NET Platform. These include support for Web Services, Web Forms,

Windows Forms, and XML. The design goals of the .NET Framework include support

for a component infrastructure which does not have the constraints nor require the

excessive plumbing that COM [Box98] does. Other goals were to promote reliability,

security and interoperation with the Internet. The .NET Framework tries to simplify the

processes of development and deployment, and to eliminate what has become known as

‘DLL Hell’. It has often occurred in the past that updating the DLL for one application

on a Windows system causes another application to stop working. A Global Assembly

Cache (GAC) is provided, which ensures that each application uses the DLLs with

which it was built.

14 Chapter 1. Introduction

The CLR provides run-time support for .NET languages, and is roughly the .NET

analogue of the JVM. It handles garbage collection, memory layout of data, security,

exception handling and threading. The CLR’s Virtual Execution Engine accepts .NET

executable files, which consist of code, data and metadata. The Virtual Execution

Engine consists of a class loader and JIT compiler which verifies code and then JIT

compiles it, and support for executing and managing the native code that is produced

by the JIT compiler.

The CLR is able to execute both managed and unmanaged code. Unmanaged code is

compiled for specific hardware and is not subject to the control of run-time with regard

to issues such as memory management and security. Managed code is expressed in the

.NET Common Intermediate Language (CIL).

1.4.3 The .NET Common Intermediate Language (CIL)

Microsoft’s .NET Framework allows multiple languages to interoperate by compiling

them to the .NET Common Intermediate Language (CIL) also known as MSIL. This

is similar to the JVML, with the Common Language Infrastructure (CLI) being anal-

ogous to the JVM.1 However, the CLI has a number of additional features [MM], in

order to extend the class of languages which can be effectively compiled to the interme-

diate language to a wide range encompassing almost all language paradigms. Whereas

Java byte-code is sometimes interpreted, CIL is designed to be always compiled to

native code before being run.

There are now additional advantages of using an intermediate language to those men-

tioned above. Implementing̀languages onp platforms requires̀+ p compilers when

an intermediate language is used. Otherwise`× p compilers are required. Also the

languages that are compiled to CIL can more easily interoperate with one another than

can binaries.

Weaknesses of the JVML as an intermediate language for languages other than Java

1The CLI is a subset of the CLR, which has been submitted to ECMA, to assist in the implementation
of the CLR for platforms other than Windows.

1.4. The Java and .NET Platforms 15

include the lack of support for type-unsafe features, such as pointers. Unboxed struc-

tures and unions are required for languages such as Pascal. Tail calls are required for

functional languages where recursion is the only form of repetition. Variable length

argument lists and function pointers are required by C. Some languages also require

overflow sensitive integer arithmetic. Whereas the JVML supports none of these, the

CIL supports them all.

However, it is difficult to get an intermediate language intended to be a target for many

languages right first time, and the CIL is certainly not perfect. For example, when

it became desirable to extend C# to generic C#, this necessitated changes to the .NET

Platform virtual machine itself. Indeed, it is evident that Virtual Machines are complex

pieces of software and improving on them or modifying them [Coo02] is not a trivial

task.

The CIL has an evaluation stack, the analogue of the JVML’s operand stack. Code is

organized into namespaces (similar to Java packages) which are composed of classes.

These are themselves composed of methods. Unlike Java, whose methods cannot be

longer than 65,535 bytes, CLI methods have unlimited length. With the CLI, unlike

the JVM, an individual local variable has the same type throughout a method call. Also

with the CLI, arguments and local variables are separated into two zero-based arrays;

and arguments, local variables and evaluation stack slots may have any length.

Central to language integration in the .NET Framework is the Common Type System

(CTS). This is a type system which every .NET language much adhere to. The types

available are divided into value types, which include primitive types and user-defined

value types; and reference types, such as objects. The primitive types of the CLI in-

clude objects, strings, Booleans, integers of various sizes, unsigned integers of various

sizes and machine dependent native integers, single and double precision floating point

values and typed references. A typed reference is composed of a pointer and a type.

Type constructors are available which convert a type reference into a value type, class

or array. Also function pointers can be generated.

Many of the CLI’s instructions are similar to JVML instructions. A major difference is

16 Chapter 1. Introduction

that CIL instructions only need their return type hard-coded into them, instead of hav-

ing their argument types hard coded as with the JVM. This shifts some burden from

compilation that targets the intermediate language, to JIT compilation. Other instruc-

tions which have no JVML counterpart include those which allow boxing, unboxing,

tail-calls, call by reference, and the invoking of a function pointer.

All CIL code falls into one of four categories. Invalid CIL is CIL that cannot be

compiled to native code by a JIT compiler. Valid CIL can be compiled to native code

and may use facilities such as type-unsafe pointer arithmetic. Type-safe CIL is CIL

which respects the accessibility constraints publicly provided by code with which is

interacts. Verifiable CIL is both type-safe and can be proved to be type-safe using a

specified algorithm.

1.4.4 C#

The principal .NET language is C# [Cor01, Lib01, Alb]. Thus, C# is an important

language. C# and .NET are each to some extent designed to work well with the other.

C# is a relatively new object-oriented programming language which has drawn on the

languages C++ [Str00] and Java [GJSB00, LY99]. Many features not present in Java

have been added. Some of these features are intended to allow the writing of efficient

code, and some are aimed at making it possible to write clearer and more concise code.

The cost of this is that the language is more complex than Java. Below the essential

points of C# are summarized.

C# shares certain features of Java not found in C++, such as garbage collection, re-

flection, thread support, static inner classes, and the ability to addf i na l l y clauses to

t ry blocks. Also like Java, arrays and strings are stored with information about their

size and on every access it is checked whether or not an index is out of range. Unlike

Java, if a method is to be overridden it must be explicitly declared asv i r tua l and the

overriding method must explicitly be declared as overriding. It is even possible to hide

inherited methods instead of overriding them, in much the same way that in Java class

instance fields are hidden by declaring a field with the same name as an inherited field.

1.4. The Java and .NET Platforms 17

C# supports Java-style interfaces, and abstract methods, and like Java does not allow

multiple inheritance except for interfaces. The support for multi-threading is similar

to that of Java, being based on locked regions and monitors. The support for reflection

goes so far as to make it possible to emit intermediate language instructions on the fly

and therefore dynamically construct methods.

C# also has features of C++ not found in Java, such as operator overloading, names-

paces, jumps,enums, preprocessing directives and pointer arithmetic. Most of these

are more restrictive in C# than they are in C++. Jumps cannot jump into loops. Pointer

arithmetic can only be used in blocks of code markedunsafe . It is necessary to ‘pin’

objects which are accessed via a pointer, using thef ixed keyword, to ensure that the

garbage collector does not try to move them while they are being accessed. C#’s opera-

tor set is very similar to that of C++, however fewer of the operators can be overloaded.

With respect to efficiency, in addition to the possibility of using pointers, two types

of array can be defined distinguished by different syntax. Firstly, one can use Java

style ‘jagged arrays’, that is every array is an object. The array creation expression

new int [2] [3] [5] creates 1+2+6 arrays. Secondly, one can define C++ style rectan-

gular arrays, and in this case the code,new int [2 , 3 , 5] , creates 1 array. In addition,

C++ stylestruct s are available which can be used instead of objects in order to ob-

tain more efficient code. Thestruct s can encapsulate methods, but have no concept

of inheritance. Value types, which includestruct s, are allocated either on the stack or

inline, for example as a field of an object. Objects are allocated space on the heap. It

is possible to allocate an array of value types on the stack using thestackalloc key-

word. Thestruct concept is an integral part of C#’s type system. The primitive types

are all reallystruct s, although the compiler is able to give them special treatment to

avoid a performance penalty.

Function parameters can be passed by reference, and the formal arguments of a method

may end with an array of any type (with the keywordparams) so that any number of

parameters of that type can be used at the end of the actual arguments. This allows C#

to have aWriteLine() method similar to C’sprintf(), as even integers, beingstruct s,

can be regarded asobject s.

18 Chapter 1. Introduction

Event handling is implemented using delegates, a concept described in [Alb] as a

‘type-safe object-oriented function pointer, which is able to hold multiple methods’.

Certainly this is safer than function pointers in C++, but seems less elegant than Java’s

interfaces. If a delegate is declared to store methods which do not return a value, it is

referred to as a multicast delegate, and can hold more than one method (of the specified

type). When such a delegate is invoked all the methods it contains are invoked in the

order that they were added. The use of delegates is not, however, restricted to event

handling.

C# has extensive library support for XML and regular expressions. It also shares with

Java support for networking, something that can be a difficulty when using C++.

C# has also learnt some lessons from Visual Basic, for example theforeach statement,

which iterates through an array or collection.

Finally various syntactical concepts are added such as properties (getters and setters)

and indexers for treating objects as arrays.

1.5 Other Forms of Language Interoperation

Language designers and developers should consider language interoperation carefully.

There are various ways in which languages can talk to one another other than by

source-to-source translation. One is to use foreign language interfaces. These often

result in code which is ugly and difficult to maintain. Many languages have foreign

language interfaces which enable them to interoperate with C. For example, Java has

the Java Native Interface (JNI) [Gor98] for this purpose.

Another approach that can be used in some instances is to compile from one language

to the Virtual Machine intermediate language of another language. An example of

this is MLj [MLj, BK99, BKR99], which is a tool that compiles SML [MTHM97] to

the JVML. The Jython language [Jyt] is implemented as a compiler from Python to

the JVML. The Kawa Scheme system [Kaw] is a implementation of the Scheme LISP

dialect which is written in Java and compiles Scheme [Dyb96] to the JVML.

1.5. Other Forms of Language Interoperation 19

The SML.NET [SML, BKR04] compiler compiles SML to the .NET intermediate lan-

guage, CIL, allowing interoperation between SML and the other languages available

on the .NET Platform. The Scala [OCRZ03] language, which is described as a fusion

between the object-oriented and functional programming paradigms is implemented

for both the Java and the .NET Platforms. The Mondrian language [Mon] is a lazy

functional language designed for interoperation with object-oriented languages. It is

implemented as a compiler to the CIL.

Many other languages are supported under .NET, most of which are implemented by

direct compilation to the CIL. Microsoft’s Visual Studio Integrated Development En-

vironment supports by default the languages C#, managed C++ and Visual Basic.NET.

Managed C++ is a variant of C++ with added keywords which allow the C++ program-

mer to exploit .NET facilities such as garbage collection. Mercury is a functional logic

language available on the .NET Platform. Other, third party, .NET languages [Lan]

include APL, Cobol, Eiffel, Forth, Fortran, Haskell, Pascal, Perl and Scheme among

others. This thesis describes the addition of Prolog to this list.

Microsoft’s Common Object Model (COM) [Box98] and the Common Object Request

Broker Architecture (CORBA) [Pop97] provide another method of language interop-

eration. A program written in, say, Haskell, can be expressed as a COM or CORBA

object, and then this program is able to interoperate with code in other languages ex-

pressed as such an object.

The XML is an example of a protocol that allows interoperation between languages by

specifying a common format for the representation of data when it is passed between

the languages.

1.5.1 Foreign Language Interfaces for Prolog

There are many instances where a C library call is required in a Prolog application. An

implementation of the Prolog language which lacks such a facility is likely to be little

used. In almost all cases the internal representation of Prolog terms, even integers, is

incompatible with the types of the language with which it is to interoperate by a foreign

20 Chapter 1. Introduction

language interface. Code is required to perform necessary conversions when control

passes from Prolog to the other language and back again. Also naming conventions are

required so that identifiers in one language can be referred to from the other language.

Difficulties arise from the fact that the language with which Prolog is to interoperate

almost always lacks control structures that are integral to Prolog, for example back-

tracking. In the case of exceptions, both C++ and many Prolog implementations have

such a facility, but the details are different, so that, for example, it is not possible for

Prolog to catch an exception thrown by a call to a C++ function.

There are several ways in which code, in C say, can be linked to a Prolog program. If,

as is usually the case, the Prolog engine is written in C, it can be combined with the

required C code and recompiled. Alternatively, the engine and the additional C code

can reside in separate object files which are linked together. A final possibility is that

the Prolog engine dynamically loads C objects.

The paper [BC02] discusses these issues and details the foreign language capabilities

of several Prolog systems.

1.6 P#: A Concurrent Prolog for the .NET Platform

Microsoft’s .NET Platform [NET] offers an unparalleled opportunity to build systems

based on a number of interoperating languages. Logic programming is currently un-

derrepresented on the .NET Platform, with no direct support for the seminal logic pro-

gramming language, Prolog. We add support for Prolog to .NET by translating it to the

core .NET language, C#. By translating Prolog to C# we gain the ability to interoperate

with C# and hence with the other languages available on the .NET Platform.

There already exist translators that translate from Prolog to C, see [DM94], for example

GNU Prolog [GNU, CD95], Janus and Erlang. GNU Prolog was formerly known as

wamcc. There are also many Prolog tools that are based on Java, such as Prolog Café

[BT97, BT98, BT99, HWTK98, PC], BinProlog [Bin], Jinni [Jin] and the commercial

product MINERVA [MIN]. The Prolog to C translators have an emphasis on efficiency

1.6. P#: A Concurrent Prolog for the .NET Platform 21

that leads them to produce unnatural code, in the case of GNU Prolog involving jumps

into functions. However, Java is more restrictive in the way in which flow of control

can be programmed, for example it does not have agoto construct, and so the output of

Prolog Caf́e is more readable than that of the Prolog to C translators. As a consequence

of the code being better structured, some run-time efficiency is lost, but the ability to

easily use Java’s libraries from Prolog is gained. With Prolog Café, Prolog code and

Java code interoperate in much the same way as any other foreign language interface

[BC02]. However, the integration is closer and more easily programmed than with, for

example, a C to Java foreign language interface since in Prolog Café all of the Prolog

types are internally represented as Java objects.

C# attempts to combine the efficiency of C++ with the elegance and simplicity of Java.

So it seems natural to modify existing translators to translate from Prolog to C#. We

hoped, in this way, to find a compromise between speed and readability which would

produce reasonably efficient, well-structured code.

Translating Prolog to C# provides a means of using Prolog within the .NET Frame-

work, as Prolog can then be translated first to C# and then to the .NET Intermediate

Language, CIL. This enables us to take advantage of the close relationship between C#

and .NET in a way that would not be possible if, for example, we used GNU Prolog to

translate Prolog to CIL via C.

Another way in which Prolog could be used within the .NET Framework is by trans-

lating Prolog directly to CIL. However, if we translate through C#, the C# compiler

will do much of the optimization for us, and few languages, if any, are in a better po-

sition to produce well optimized CIL code than C#. This provides a strong incentive

for generating code which is as close as possible to code written by programmers—

the C# compiler should be better at optimizing this code than at optimizing machine-

generated code that is less idiomatic. The choice to compile to C# rather than to CIL is

an engineering compromise. It requires the development of a far less complicated, and

therefore more likely to be correct, compiler. This choice also promotes interoperation

between Prolog and C#, and the easy use of C# libraries from Prolog.

We developed P# [P#] (pronounced ‘P sharp’) by porting and extending the Prolog to

22 Chapter 1. Introduction

Java translator, Prolog Café. We found that there was scope for interesting work on

implementing for P# some of the many existing extensions of Prolog. In particular,

it is useful to add support for concurrency by taking advantage of the multi-threading

constructs that C# shares with Java. Most Prolog implementations are built on lan-

guages that do not have as good support for concurrency as C# does. In adding a form

of concurrency to P# we wished to choose a design that would focus on interoperation

with C#. In designing our language features, we drew inspiration from existing con-

current versions of Prolog, such as DeltaProlog [PN84] and FCP [Mie84]. We wanted

the concurrency to be explicit, with the programmer explicitly stating in the Prolog

source code where it is to be used. In general we did not want to add features in such a

way as to make it difficult for programmers with experience of just the core of Prolog

to use P#.

We did not want any non-concurrent P# Prolog program to be broken, provided that it

did not happen to use predicate names that were to be given new meaning. In addition

we wanted programming multi-threaded operations to ‘feel like’ programming in Pro-

log. Finally, we sought a model that would naturally and efficiently integrate with the

C# threading model. That is, we wanted clean integration on the C# side as well as the

Prolog side.

We achieved this by adding to P# several new built-in predicates, without changing the

Prolog syntax. These predicates approximately match the facilities for concurrency

found in C#: that is creating a thread, locking and more sophisticated functions of

monitors such as waiting and pulsing. Pulsing is the C# term for notification.

We retained a Prolog feel to these features by using shared variables as message chan-

nels and unification as a means of sending messages, as with other concurrent forms

of Prolog.

We also allow interaction between threads by providing a global database that all

threads are able to read and modify, while still associating with each thread a local

database allowing it to manipulate data imperatively without interference from other

threads.

1.6. P#: A Concurrent Prolog for the .NET Platform 23

Having done this, it is possible for multiple P# threads and multiple C# threads to

interact with each other. In particular, a C# thread may interact with a P# thread while

it is running, rather than having to wait for it to succeed or to fail.

In this thesis we will discuss three case studies which show the P# language in typical

use. The first case study is an application which allows several users to modify a

database. The users are able to disconnect from the database and to modify their own

copies of the data before reconnecting. On reconnecting, conflicts must be resolved.

The other two case studies are both P# implementations of software engineering tools.

The first is a tool for querying the contents of an object-oriented library. The second is

a tool for viewing an object-oriented class hierarchy. These tools provide a motivation

for an extension to P# which allows larger databases to be stored and queried than

those which can be handled by Prolog Café.

The C# produced by version 1.1.3 of P#, which has concurrency support but retains

the compilation scheme of Prolog Café, is very unlike the code which a human pro-

grammer might produce. We will show how, aided by mode and type annotations,

more idiomatic C# can be generated by translating tail-recursion intowhile loops

and by applying liveness analysis to remove unnecessary variables. We apply these

optimizations to semi-deterministic and deterministic predicates which do not have

non-deterministic predicates beneath them in the call tree, since such predicates enjoy

relatively simple control flow. We demonstrate the benefit of generating C# code closer

to that which a human programmer might produce and which can therefore be com-

piled efficiently and well by a C# compiler. This improvement in the high-level code

generated by P# significantly speeds up the execution of a range of benchmarks that

we have compiled. A secondary benefit of this approach is that the generated code is

easier for a human programmer to read or to modify without inadvertently introducing

flaws in the program logic which manifest themselves as subtle run-time errors.

Chapter 2

Existing Technology

2.1 Logic Languages and Functional Logic Languages

2.1.1 The Warren Abstract Machine

Many of the fastest Prolog interpreters are based on a sophisticated compilation tech-

nique known as the WAM [AK91, War83, War88] (Warren Abstract Machine), named

after its inventor David H. D. Warren. Work has been done on formally verifying that

this compilation technique is correct [Pus96].

Since the invention of the WAM, variations on it and optimizations of it have been

suggested [KN90, Han92, Li96]. More major variants include the LLPAM [TK96],

which compiles the linear logic extension of Prolog, LLP.

The book [Cam84] from 1984 brings together many articles concerning techniques for

implementing Prolog at the time the WAM was proposed, including a Prolog inter-

preter implemented as a very short LISP program.

The book [AK91] builds up the WAM in stages, starting with an abstract machineM0,

which is only capable of determining whether a goal unifies with a given term. This is

then extended to a machineM1, where the program may consist of more than one fact,

with at most one fact per predicate name. The machine at the next stage,M2, is capable

25

26 Chapter 2. Existing Technology

of compiling Prolog without backtracking, that is the ability to express conjunction by

having rules of the form

a0 :– a1, ..., an

is introduced.

With the machineM3, this is extended to pure Prolog, by adding disjunctive definitions

(allowing more than one rule for each predicate). Hence, support for backtracking is

added at this stage. However, this machine still does not support the cut.

Finally, support for the cut is added, various design optimizations employed, and sup-

port for constants, lists and anonymous variables is added.

Below the construction process is briefly summarized.

2.1.1.1 M0: Unification

Terms, for examplea(X,b(Y)), are represented on the heap using pointers to avoid

duplication. Each term consists of a cell storing its predicate and arity, for example

a/2 followed by, in this case, two cells each pointing to structures representing the

termsX, b(Y). A query term is translated into instructions that build a representation

of the query term in the form described, on the heap.

The program term is translated into instructions in a similar way to the query term

except that the first instruction is for the outermost term, whereas the query term is

built bottom up. When executing the program it can be assumed that the query has

already been built. The instructions for the program, however, operate in two different

modes: aREAD mode and aWRITE mode. The Prolog evaluator starts off in theREAD

mode with the program term being matched functor for functor against the query term.

When an unbound variable is encountered in the query, theWRITE mode is entered and

the corresponding term in the program is built on the heap. Then the unbound variable

is bound to this newly created term.

2.1. Logic Languages and Functional Logic Languages 27

The READ mode uses a standard unification algorithm (UNION/FIND), which uses a

stack to recursively match the query term against the program term. During this match

at every stage if a binding is not possible then the unification fails, and if it is, the two

heap cells are bound by making an unbound one point to the other.

2.1.1.2 M1: Allowing Programs with more than One Fact

Next, several unification equations have to be solved simultaneously. This is done by

storing the code for each fact in aCODE area, and introducing instructions to jump to

the relevant piece ofCODE. There can only be one fact per predicate name, so it is

known immediately from the query which piece of code to execute.

2.1.1.3 M2: Adding Conjunction

The program is now a set of clauses of the form

a0 :– a1, ..., an

wherea0 is referred to as the head. For each predicate name there is at most one clause

whose head has that predicate as its outermost predicate. A query is of the form:

?–g1, ..., gk

The semantics of executing such a query involve the repeated application of leftmost

resolution. That is the evaluator attempts to unify the leftmost goal (g1) with the head

of the clause in the program that has the same outermost predicate asg1. If this fails,

the entire query fails. If it succeedsg1 is replaced in the query with the body,a1, ..., an,

on the right of the program clause that has been selected.

This continues until the query fails, or the empty query remains, which trivially suc-

ceeds. In the process of getting to this point all the relevant bindings will have been

made and can be reported to the user.

28 Chapter 2. Existing Technology

Consider, for example, the following program:

a(X) :− b(X) , c (X) .
b (1) .
c (1) .

and the query?− a(1) , a(Y) .

The reduction proceeds in the following steps:

?− a(1) , a(Y) .
b (1) , c (1) , a(Y) . expanding a (1) .
c (1) , a(Y) . expanding b (1) .
a(Y) . expanding c (1) .
b(Y) , c (Y) . expanding a(Y) .
c (Y) . expanding b(Y) . Y=1
true . expanding c (Y) . Y=1

Y = 1.

When a query is executed, then, code is needed for each clause of the program, which

checks whether unification is possible, and if so replaces the head with the body.

To a first approximation the clause

p0(...) :– p1(...), ..., pn(...)

is translated into the WAM instructions:

get arguments of p0

put arguments of p1

call p1
...

put arguments of pn

call pn

The problem that is encountered is that variables are reused by each successivepi and

so it is necessary to save permanent variables, being those which occur in more than

one body goal, in an environment stored in a stack of environments. The instructions

allocate N anddeallocate are added. These instructions make space for the permanent

2.1. Logic Languages and Functional Logic Languages 29

variables at the beginning of a call and pop it off at the end. Thus, the code given above

is modified by adding anallocate at the start and adeallocate at the end.

2.1.1.4 M3: Adding Disjunction

Now, backtracking is added. When a goal fails it may be the case that there exists

another clause in the program with the same predicate that would succeed. Hence,

failure at this point should not cause the entire query to fail. Instead the evaluator

should backtrack to the lastchoice-pointand continue from there.

The choice point consists of the argument registers, a pointer to the current environ-

ment, a pointer to the choice point to backtrack to if everything from that choice point

fails, the next clause to try and so forth. In effect, it contains all the data needed to

reconstruct the state before the failed attempt at unification began.

Initially one might think of allocating the choice points on a separate stack to the envi-

ronments. There is the problem, however, that environment frames on the environment

stack might end up being popped and then needed again because of backtracking. This

is solved by putting both the environment frames and choice points onto a single stack.

Then, the choice points can protect the environments that preceded them. Only when

all courses of action from a given choice point have failed, is that choice point popped,

and then the environment frames that are no longer needed can be popped as well.

Thus, this scheme does not prolong the life of environment frames for longer than is

necessary.

Three instructions are added:try-me-else, retry-me-else andtrust-me, described below,

and the code for a predicate name becomes:

30 Chapter 2. Existing Technology

try-me-else L1

[code for first clause] (as above)

L1: retry-me-else L2

[code for second clause]
...

Lk−1: retry-me-else Lk

[code for penultimate clause]

Lk: trust-me

[code for final clause]

Thetry-me-else L instruction pushes a new choice point frame with its next clause field

set toL. Theretry-me-else L’ instruction loads the data stored in the choice point back

into the relevant machine variables and changes the next clause field toL’. Finally, the

trust-me instruction loads the data in the choice point and then pops it from the stack.

2.1.1.5 Optimizations

Optimization is based on three WAM principles. Firstly, heap space should be used

sparingly. Secondly, registers should be allocated to minimize unnecessary data move-

ment and code size. Thirdly, special instructions for special situations should be used

where that is more efficient.

Constants and lists enjoy special representations on the heap and special instructions

for putting them there and reading them therefrom. Anonymous variables need no

registers; and multiple anonymous variables in a row can be processed in one go by a

single instruction.

Registers are allocated in a clever way so that some of the instruction instances in the

program become vacuous and can be eliminated.

2.1. Logic Languages and Functional Logic Languages 31

2.1.1.6 The Cut

A backtrack cut register is added, which records the choice point to return to when

backtracking over a cut. Cuts can be classified as shallow cuts where the cut comes

before the first body goal, for example,

h :– !,b1,b2.

and deep cuts, for example,

h :– b1, !,b2.

There are specialized instructions for these two cases.

2.1.2 Translating Prolog to C: GNU Prolog

GNU Prolog (formerly known as wamcc) [CD95] translates Prolog to C via the WAM.

The paper [CD95] lists as requirements for a Prolog compiler: extensibility, portabil-

ity, efficiency and modularity. The authors go on to note that emulating the WAM

instructions in C is either inefficient, or if optimized, excessively complex. Hence,

they decided to exploit features of the C language to go beyond emulation. The main

issue addressed is how branches performed by the WAM are implemented. In a emula-

tor, the program counter is stored as a variable and modified as appropriate after each

instruction. An emulator is slowed by its reliance on a fetch, decode, execute cycle.

Much of the paper [CD95], which we summarize below, details how four systems,

namely Janus, KL1, Erlang and, GNU Prolog itself, deal with control flow. The rea-

son for this restriction is that the code for each instruction, setting aside control flow,

closely follows that of the original WAM described above.

Each system has a different way of dealing with the two types of branch. There are

direct branches, where the location to be jumped to is known when the program is

compiled. In addition, indirect branching is needed, where the location to be jumped

to is only known when the program is run on account of it, in the WAM, being stored

in a register. The principal example of an indirect branch is theproceed instruction,

which ends the code written for a given predicate.

32 Chapter 2. Existing Technology

2.1.2.1 Janus, KL1 and Erlang

In Janus, normal C branching with thegoto statement is used. However ANSI C does

not support an indirect version of thegoto statement, andgoto cannot jump outside the

current function call. Thus, Janus compiles a Prolog program into a single C function

using a switch statement. The resultant large C function takes a long time to compile.

In KL1, each predicate is compiled into a separate function and branching is imple-

mented as a function call. One might consider a scheme that resembles the use of con-

tinuations, in that the functions never return. Instead, each function calls another func-

tion before returning. However this can lead to stack overflow. The solution adopted

is to use a supervisor function of the following form:

f c t superv isor () {
while (PC)

(∗PC) () ;
}

This calls each function, which changes the value of PC to the appropriate continua-

tion, and then returns. The supervisor function then calls the next function. The authors

of the paper feel that this would be the best solution if one wished to avoid anything

beyond ANSI C.

The third system, Erlang, exploits a feature of gcc, which makes it possible to store

a label in a pointer, and then to jump to the location contained in that pointer. Each

predicate is again compiled into a separate C function, and a global table of addresses

to which we may wish to jump is maintained. This approach has a number of disad-

vantages. For instance, all variables used must be global, as functions are called by

jumping into them, bypassing any setup for local variables.

2.1.2.2 GNU Prolog

GNU Prolog translates a WAM branch into a native code jump, by using theasm di-

rective in C. The compiler is fooled into thinking that the label is an external function

by declaring a prototype for it. The example given in the paper is for the program:

2.1. Logic Languages and Functional Logic Languages 33

p :− q , r .
q .

which is translated into:

void labe l p () ;
/∗ . . . other prototypes for labels . . .∗/

#define Direct Goto (lab) lab ()
#define Indi rect Goto (p lab) (∗ p lab) ()

void f c t p () {
asm(” label p ”) ;
push(CP) ;
CP = label p1 ;
Direct Goto (label q) ;

}

void f c t p1 () {
asm(” label p1 ”) ;
pop(CP) ;
Direct Goto (l a b e l r) ;

}

void f c t q () {
asm(” label q ”) ;
Indi rect Goto (CP) ;

}

Hence, f c t p () is the function first called when executing the clausep :− q , r .

This tries the goalq, making a note to jump to the code which tries the goalr afterwards

by putting the labellabel p1 into the continuation pointer.

2.1.2.3 Summary

Thus, much of the work aimed at translating into C has been directed towards the

production of code that is as fast as possible by exploiting the ability in C to get close

to the machine level.

34 Chapter 2. Existing Technology

To some extent, the translation of each predicate into a separate function makes the

code more readable and natural.

C# on the other hand, does not allow these tricks. It is hoped that there will be other

ways to exploit C#’s features to produce fast indirect jumping without resorting to

deceiving the compiler, as GNU Prolog does in the way that it jumps into the middle

of functions. There may be some scope for ingenuity in doing this.

2.1.3 Translating Prolog to Java: Prolog Caf́e

Prolog Caf́e is a program developed by Mutsunori Banbara and Naoyuki Tamura. P#

is based on version 0.4.4, which was released in 1999. Since the work described in

this thesis was carried out, version 0.6.1 has been released, which includes support for

concurrency of a different nature to ours. Prolog Café translates LLP via a linear logic

extension of the WAM, namely the LLPAM [TK96], to Java.

The linear logic features that P# has inherited from Prolog Café are detailed with ex-

amples in the paper [TK97].

Prolog Caf́e is an extension of jProlog [jPr], which uses a continuation passing style of

compilation referred to as binarization and described in [TB90].

Prolog Caf́e consists of a run-time system written in Java, which simulates the WAM

derivative, and several Prolog/LLP files that implement:

• translation to Java,

• a Prolog interpreter,

• input/output, and

• the ability to call certain Java methods from Prolog.

These Prolog files are translated by Prolog Café into Java. Thus the compiler is boot-

strapped, in that it is able to compile that part of itself that is written in Prolog. Then,

both these sets of Java files are added to a Jar file.

2.1. Logic Languages and Functional Logic Languages 35

The user is able to run this program as a normal, but limited, Prolog interpreter. In

addition, the program can be used to compile some other Prolog source files to Java.

The resultant Java files can be compiled with a standard Java compiler to produce class

files that can be coupled with the Prolog Café class files.

The Prolog source file will usually have an entry predicate, calledmain/0 , say. Prolog

Caf́e can then be told to run this predicate when started. It should be noted that the Java

class files of the run-time system of Prolog Café are essential. The class files generated

from the Prolog source can do nothing on their own.

In Prolog Caf́e, each term is represented as an object, which is an instance of one

of the classes:VariableTerm, IntegerTerm, DoubleTerm, SymbolTerm, ListTerm,

StructureTerm andJavaObjectTerm. These classes are all subclasses of an abstract

class calledTerm which declares methods for unification and testing for equality of

two terms, amongst other things.

Hence, the inheritance mechanism of Java is exploited to allow us to have functions

which take terms as arguments, without knowing what type of terms they are.

Each predicate is implemented as a subclass of thePredicate class. This has fields

for the arguments passed to the predicate and for aPredicate representing the goal to

try next (using a continuation style); and the code which ‘executes’ the predicate.

A predicatef/n is compiled into a class calledPRED f n. This contains a function for

each clause, compiled as follows: first the head is compiled, then the body is compiled

in continuation form, that is, with each goal of the body calling the next.

2.1.3.1 Dealing with Resources

As mentioned above, Prolog Café actually translates a linear logic programming lan-

guage into Java. It has, therefore, to deal with the creation and consumption of re-

sources.

Resource formulae are compiled into closures, each containing a reference to the bind-

ings of free variables (resource formulae without free variables can be treated as nor-

36 Chapter 2. Existing Technology

mal), and a pointer to the code. In Java, these closures are represented as objects.

A resource table is created, which contains an array of objects, each representing a

primitive resource. Each primitive resource consists of a consumption level and clo-

sure, amongst other things. Resources are added to the table by the use of the operators

⇒ and(, and removed on backtracking.

A register,L, is added, which stores thecurrent consumption level. At some point in

the proof tree, only resources with a consumption level equal to the current value ofL

may be consumed. When creating a new resource, if it is an exponential resource (one

which may be consumed as many times as wished) then the value 0 is stored in the

consumption level field. Otherwise it is allocated an initial consumption level equal to

the current value ofL. It is also necessary to storedeadlineinformation, indicating the

point by which a given resource must have been used. These issues are dealt with in

detail in [HWTK98].

2.1.3.2 Summary

This technique of compilation, with its use of classes, makes intelligent use of Java’s

object-oriented features, and appears to be a good starting point for a translator to

C#. Also, it adopts the continuation style strategy used by some of the translators

to C mentioned above. To implement in Java the strategy used by GNU Prolog for

branchings is, though, inconceivable.

2.1.4 Jinni

Jinni [Jin] is a Prolog implementation which compiles Prolog to Java byte-code or

to the CIL. A Prolog file is compiled to a Jar file containing the compiled Prolog

predicates and the Jinni run-time system, or to an .NET executable file. Jinni, which

stands for, Java INference engine and Networked Interactor is designed for combining

knowledge processing capabilities with Java objects in distributed applications.

Java can be called from Jinni through a reflection mechanism, which converts Prolog

2.1. Logic Languages and Functional Logic Languages 37

data-types to their closest matches in Java. If there is no Java method which is an exact

match for the types of the arguments in a call from Prolog, then Jinni searches through

the available methods and attempts data conversions in an attempt to find the behaviour

intended by the programmer. A table of persistent objects is maintained, to which Java

object can be added and from which they can be removed. This table contains object

handles which can be used from the Prolog side to invoke Java methods and access

Java fields.

Jinni supports an object-oriented extension of Prolog, which integrates with Java’s

object-oriented features. It is possible to wrap a Java class up in a Jinni class, using the

reflection mechanisms described above.

Jinni code can be called from Java code, by expressing a query as the same string that

might be typed in to a Prolog interpreter, with a modified syntax for returning results

to the Java side, for example

prologMachine . run (”X :− X is 1 + 1”)

evaluates to2.

Jinni supportsfluents, which represent stateful resources. The state can be modified by

putting and getting operations. When all of the resources of a fluent are used, it reaches

the end of its life. Fluents can be used for interoperation with Java, for example reading

from and writing to files, strings or sockets.

2.1.5 Mercury

A functional logic language, called Mercury [Bec, CSH, HCS+, Mer], is available

for use with the .NET platform. Mercury, despite being reminiscent of Prolog, is a

fully declarative language. Thus, the developers of Mercury did not have to deal with

some of the issues arising from the use of Prolog cuts. The basic syntax of Mercury

is similar to that of Prolog, with added notation for mode declarations and function

declarations. Because Mercury is declarative, I/O has to be programmed by passing a

variable around which represents the current ‘state’.

38 Chapter 2. Existing Technology

In many cases, it can be difficult or tedious to translate existing Prolog applications to

Mercury. This is because Mercury does not support failure driven loops, user defined

operators or difference lists; and the support for cuts and I/O is different from that of

Prolog. These issues are dealt with in [CSH].

In Mercury, unlike in Prolog, it is possible to declare function facts and function rules.

A function fact is of the form:Head = Result and a function rule is of the form

Head = Result :− Body .

The following is an example taken from [Bec].

:− func f ibonacci (i n t) = i n t .
:− mode f ibonacci (in) = out i s det .

f ibonacci (N) = F :−
(i f N =< 2 then

F = 1
else

F = f ibonacc i (N − 1) + f ibonacci (N − 2)
) .

The functionf ibonacci is defined as one from integers to integers taking the argument

N and returningF. The mode declaration indicates that theN is an in parameter, that

is, it is instantiated on the call tof ibonacci and theF is anout parameter, that is, it

is instantiated on exit from the function. Thedet mode declaration indicates that the

function is deterministic which means that the function produces exactly one solution.

Other possible modes aresemidet which means that the function or predicate produces

zero or one solution,mul t i which means that it produces at least one solution and

f a i l u r e which means that it produces no solutions.

The equivalent Prolog for this example would be:

f ibonacci (N, F) :−
(N =< 2 −>

F = 1
; (f ibonacci (N − 1 , F1) ,

f ibonacci (N − 2 , F2) ,
F is F1 + F2)

) .

2.2. Functional Languages 39

This contains no hints to the Prolog compiler thatf ibonacci /2 is going to be used in

a functional manner, and without the compiler seeing the client code there is no way

for it to infer this.

Failure driven loops cannot be coded in Mercury because of its declarative nature.

2.1.6 HAL

The HAL language [HAL, dlBDMS02] is, like Mercury, a functional logic language.

It is strongly typed and is focused on supporting the construction and extension of con-

straint solvers. The design objectives of HAL also included efficient constraint solving,

low-overhead interoperability with languages such as C and providing more compile-

time checking than preceding Constraint Logic Programming (CLP) languages.

2.2 Functional Languages

2.2.1 Translating ML into C

The paper [TLA92] describes a translator that translates ML of New Jersey code to

C without the use of assembly code, unlike preceding tools. The initial program is

translated into a continuation-passing style, which the authors note, results in code

very similar to a C program.

2.2.2 MLj

MLj [MLj, BK99, BKR99] translates SML to Java byte-code, and thus allows the in-

tegration of SML code with a Java program. SML and Java are similar in many ways,

including the strength of typing, store management strategy and exception handling

semantics. However each has many features that the other does not. The approach

taken is to translate the SML source code into a typed intermediate language, Monadic

40 Chapter 2. Existing Technology

Intermediate Language (MIL). Each structure is compiled into a MIL term and these

terms are then combined to form a term for the whole program. This is then trans-

formed into low-level code, which is then translated to byte-code. The whole-program

approach to compilation allows significant optimization to be performed.

2.2.3 SML.NET

The interoperation of SML [SML, BKR04] with other .NET languages is integral to

the design of the SML.NET language. Where SML has features equivalent to .NET

features the SML feature is mapped to the appropriate .NET feature. In other cases, the

SML language itself is extended with a feature similar to the .NET feature. For exam-

ple, the module system is mapped to namespaces and classes, and SML constructors

are mapped to .NET class constructors of the same name. The primitive types of SML

are a good match for the .NET types. Types of .NET objects map to a similar SML

type wrapped in anoption constructor so thatnul l objects can be handled. Methods

which are declaredvoid have un i t result type. Methods which take no arguments

have un i t argument type, and those which do take arguments have a tuple argument

type.

The close analogies between SML and C# mirror those between SML and Java re-

marked on above and allow SML.NET to achieve close integration of SML with the

.NET platform. Indeed, SML.NET is based on MLj.

2.2.4 A Haskell COM Server

The paper [FLMJ99] discusses a Haskell COM server. This allows Haskell programs

to be expressed as COM objects using any Haskell implementation that has a for-

eign language interface that allows Haskell functions and pointers to be imported into

Haskell and exported from Haskell. That paper details how developing such a tool re-

quired consideration of subtle issues. The implementation had to minimize what was

required from the foreign language interface of the Haskell implementation in order

2.3. Other Implementations 41

that the tools which generate the COM code do as much as possible of the work, and

the range of supported Haskell compilers is as broad as possible.

2.3 Other Implementations

2.3.1 Translating Java to C

Toba [PTB+97] translates Java byte-code into C. It does this in a fairly direct manner.

It does, however, avoid the creation of an explicit operand stack in the resultant C by

taking advantage of Java byte-code’s stack invariant. That is, at any point in the byte-

code the number and type of items on the stack is the same regardless of the path used

to get there. Thus, it uses local variables for the operand stack slots, having computed

the types of the slots at each point in the byte-code at compile time.

2.3.2 Translating Java to C#

Translation from Java to C# can be easily automated, producing in most cases readable

and idiomatic C# code. This is a result of the similarity of the language’s syntax and

libraries. Many Java keywords have direct equivalents in C# with identical or almost

identical semantics.

Chapter 3

Translating Prolog to C#

3.1 Porting Prolog Caf́e

3.1.1 Bootstrapping the Translator

In developing P# from Prolog Café, the most fundamental modification was to the

translator, which is written in Prolog. Modifications needed to achieve the generation

of näıve C# were straightforward, as the Java produced is simple and does not rely

on libraries. The only modifications needed were changes of syntax, for example,

‘extends’ becomes a colon; and changes due to the fact that, unlike in Java, in C# one

needs to be explicit about method overriding.

The Prolog Caf́e translator can, with minor modifications, be compiled by SICStus

[SIC] Prolog version 3.7.1. However, some of the other parts of Prolog Café that are

written in Prolog use linear logic resources in places, and so cannot be compiled by

SICStus Prolog. Resources are used in the interpreter and the input/output code. We

were able to obtain a bootstrapped compiler to C# written in C#, from Prolog Café, by

running only Java programs. How this was done will be explained in prose and with

the aid of a diagram.

We will denote a program that compiles LLP to languageD, which is itself written in

43

44 Chapter 3. Translating Prolog to C#

languageE, by PD
E . Thus we start withPJava

Java. We denote the LLP to Java translation

engine byT, and the modification that produces C# byT ′. EssentiallyT = PJava
LLP and

T ′ = PC#
LLP.

By runningPJava
Java, on T ′ we obtain a program that compiles LLP to C#, but which is

written in Java, that isPC#
Java. By then runningPC#

Java on T ′ we obtain a program that

compiles LLP to C#, but which is written in C#, that isPC#
C# .

Finally, we apply this program toT ′ to verify that it is correctly bootstrapped, that is,

PC#
C# run onT ′ yieldsPC#

C# .

By writing A(B) to mean the source code output of the program with source code,

A, run on the source code of programB we can summarize this entire process by the

equation: (
PJava

Java

(
PC#

LLP

))(
PC#

LLP

)
= PC#

C#

In this equation,PJava
Java is the unmodified Prolog Café implementation, andPC#

LLP is the

part of Prolog Caf́e that translates Prolog to Java modified so that it translates to C#

instead.

Figure 3.1 shows this process in the form of a T-diagram. Each T represents a program

that occurs at some point in the bootstrapping. At the bottom of each T the language

in which that program is written is printed. The top part of the T shows the language

that the program translates from and the language that it translates to. On the top of

the arrow the name of the program is written. Theplcs program is the translator from

LLP to C# that was obtained by modifying the Prolog file that translates from LLP to

Java in Prolog Café.

3.1.2 The Run-time System

The above process produces the C# files corresponding to the translator. It does not,

however, produce a run-time system. This part had to be hand-translated from Java

to C#. On the whole this was a straightforward process. The libraries of the two

3.1. Porting Prolog Caf́e 45

P#plcs

plcs

Prolog Cafe

LLP C#

LLP
LLP

Java

Java

LLP C#

Java

C#

C#LLP

LLP

C#LLP

intermediate

Figure 3.1: Obtaining a bootstrapped translator to C#

languages are similar, as are the semantics. Some of C#’s keywords are semanti-

cally practically equivalent to those of Java, and these could be changed by a search

and replace procedure. For example:public f ina l class A extends B becomes

public sealed class A : B.

3.1.3 Architecture

The basic unit of deployment for the .NET Framework is an assembly. An assembly

consists of a number of modules, metadata and possibly resources. An assembly may

be a DLL (dynamic link library) or an EXE (executable) file.

It was necessary to decide whether the core of P# should be placed in a DLL and

the user generated files in an executable file orvice versa. The two possibilities have

different advantages, and both seem to be sensible. It is easier for a user to generate an

EXE file, which can have a standard class to call the DLL incorporated into it. On the

other hand, it is the P# code that is called first, is in control, and calls the user’s code.

Furthermore, the user may wish to split their code across several .NET assemblies.

The P# interpreter uses reflection to locate the C# translations of Prolog predicates.

Reflection is also used to locate the main predicate when running a translated Prolog

program. Whether P#’s main code resides in a DLL or not, we need to locate classes

46 Chapter 3. Translating Prolog to C#

in assemblies other than the assembly containing the main P# code. This is because

the main P# code needs to be deployed as a unit to the user, who will then generate

their own code in separate assemblies. Thus, we added to P# a class storing a list of

assemblies, and a predicate that loads a given assembly. This predicate can be called

both during an interpreter session and from Prolog that has been compiled to C#. To

dynamically find a class P# first looks in its own assembly and then tries each of the

assemblies in the assembly list.

We decided that it was important to protect the user from the issues involved in gener-

ating a DLL and then having to make it visible to the executable program that uses it.

Thus, the P# run-time system and libraries were placed together in a DLL. The user,

having used P# to generate C# files for their predicates, then compiles their C# files

together with a specialLoader class.

TheLoader class simply calls the main method of P# in the DLL. This method discov-

ers which assembly called it, that is, the user’s assembly, and then adds that assembly

to the list of assemblies mentioned above. P# can now find the user’s main predicate by

reflection and call it. This process is summarized in Figure 3.2. Usually after the first

two reflections have occurred the predicates that are to be called can be determined

statically, thus there is little overhead associated with the use of reflection. When a

C# field is read or altered or a C# method is invoked, however, we need to use reflec-

tion again. As with Prolog Café, some of the more frequently required calls into the

libraries are hard coded into built-in predicates. This is the section of the DLL labelled

‘built-in library’ in the figure.

It is necessary also to give the C# compiler a path to some copy of the DLL since the

user’s C# files will contain references to classes in the DLL.

In some cases the user may wish to create two or more assemblies of their own to

exploit P#. In this case one of the assemblies can call the assembly load predicate to

load the other one. In addition we provide a trivial executable file that contains only a

class similar to theLoader class mentioned above. This loader runs the DLL directly

in the interpreter mode. This program therefore allows the interpreter to be run as a

command-line application. Thus, we have essentially allowed P# to be used as either

3.2. Use of C# Features 47

.NET
libraries

namespace Psharp.Resources

loader class

standard

P# runtime system
rest of P#

library
built−in

find

run

EXE

DLLlibrary

namespace Psharp.Predicates namespace Psharp.Lang
namespace Psharp.Lang.Resource

DLL
ref

lec
t

reflect

user’s predicates

and resources

Figure 3.2: Separation into a DLL and an EXE

P#
compilersource

Prolog
source
C#

compiler
C#

EXE file

user’s

Loader
(C#)

Figure 3.3: How the user generates their EXE file

a DLL or as an executable application.

Figure 3.3 shows the process by which a user is able to generate a stand-alone C#

application from a Prolog/LLP source file.

3.2 Use of C# Features

We investigated whether value classes or delegates (essentially type-safe function point-

ers) could be used to improve the efficiency of the translated code.

48 Chapter 3. Translating Prolog to C#

P# inherits from Prolog Café a supervisor function scheme for continuation style code.

The supervisor function is of the following form:

Predicate code = < i n i t i a l code>;
while (code != nul l)

code = code . exec (engine) ;

Thus, each predicate call returns thePredicate object which is to be executed next,

that is the continuation. ThePredicate object is being used as a function pointer, so

the same effect can be achieved using delegates. EachPredicate class can be given

a static field that stores a pointer to a staticexec () method, and these can be passed

around instead of objects.

The delegate is defined as follows:

public delegate void PredicateCal l (Cal lArray a) ;

whereCallArray is a class containing a stack ofCal l objects, and aCal l object is

a class orstruct containing an instance of thePredicateCal l delegate and some

arguments to be passed to the predicate (an array ofTerms). Let the delegate field be

namedd.

The supervisor function now becomes:

CallArray ca = < i n i t i a l stack of ca l ls >;
while (true) {

next = ca .Pop() ;
i f (next . d == nul l)

break ;
next . d(ca) ;

}

Each predicate is compiled into code that pushes new predicate calls onto the stackca

that it is passed.

A test program was written to make many simple Prolog calls using the original scheme

and using the delegate scheme described above. In each case, the Prolog querya . was

run with the following program a large number of times.

3.2. Use of C# Features 49

Table 3.1: Experiments with structs and delegates

Constructs used time in seconds time in seconds
with Debug build with Release build

Objects only (original) 13.2 5.2
Delegates 7.9 5.9
Delegates and structs 11.1 8.8
Interfaces 10.4 5.5

a :− b , c , b , c .
b :− c .
c .

With the delegate scheme theCallArray variable was initialized to contain just a call

to a. The timings were taken by using the C#System . DateTime .Now. Ticks property.

It was found that the delegate scheme was marginally slower in the Release build and

somewhat faster in the Debug build. This difference is probably due to the fact that the

C# compiler is good at optimizing code that makes heavy use of objects, but is unable

to optimize so effectively the less natural use of delegates. Although the methods

pointed to by the delegates are static, the call to the delegate is translated into a virtual

call in the CIL.

We also measured the effect of using astruct to store the data for a predicate call.

We found that the use ofstruct s was far less efficient than the use of objects.

We also investigated the efficiency of a scheme where aPredicate interface was used

instead of predicates being subclasses of aPredicate superclass.

Table 3.1 shows the results of the experiment.

We concluded that delegates, structs and interfaces should not be used in this way in

P#.

We decided that it was desirable for a P# project to be free of unmanaged code. Thus

we took a design decision not to make any use of unsafe code blocks. In so doing we

had to sacrifice a potential improvement in run-time performance as for example the

50 Chapter 3. Translating Prolog to C#

use of pointers may have improved the efficiency of the Prolog stacks of P#.

C# has adopted the Visual Basic ability to declare property setters and getters. This

practice allows fields to be accessed and assigned to as though they were variables,

when in fact they are properly encapsulated in their own class and accesses go through

methods that the programmer specifies using a special syntax. This is a pattern that

occurs frequently in Prolog Café, and indeed most object-oriented code, so where pos-

sible setters and getters were used in P#.

It is possible to call other .NET languages from C#, and for other languages to call

C#. Thus, by going via C#, it is possible for P# Prolog code to interoperate with other

.NET languages.

C# is a typed language and Prolog is an untyped language. However, in Prolog, terms

may be one of integers, floats, atoms, structures, lists, variables and in P#, also C#

objects. As in Prolog Café, Prolog integers map to thein t type, Prolog symbols map

to strings and Prolog lists map to arrays of objects. In the implementation of P# integers

are represented by objects of the classIntegerTerm, which encapsulates a C# integer.

Implementing types in this way, with each P# Prolog type implemented as a C# type,

promotes interoperation between Prolog and C#.

We define a new predicate: / 2 , which is used as an infix operator for calling C# meth-

ods. For example theMax method inSystem . Math, which takes two integer arguments

and returns their maximum, can be called in the following way:

’System . Math ’ : ’Max ’ (3 , 4 , M) .

This call will instantiate the variableM to 4. A method can also be called on an object,

with for example, the following code:

Object : ’Method ’ (InArg1 , InArg2 , InArg3 , Out) .

The colon is usually used in Prolog to separate a module name from a predicate in the

module. This usage is analogous to our use of the colon, which separates a C# class or

object from a method defined therein.

3.3. Example Code Generated by P# 51

a(X) :− b(X) , c (2) .
a(X) :− d(X) , e(X, Y) .

Figure 3.4: A simple Prolog predicate

The C# libraries contain methods that compile C# source code to either an executable

file or to an assembly that resides in memory. This enabled us to define a predicate

calledplcomp/1 that compiles a given Prolog file into memory.

3.3 Example Code Generated by P#

Figure 3.4 shows a simple Prolog predicate, chosen to illustrate the way in which both

conjunction and disjunction are compiled, and Figure 3.5 shows part of the C# class

into which it is compiled. Figure 3.6 shows the WAM code produced by GNU Prolog

for this Prolog predicate. Thet r y and t r u s t WAM instructions can be seen in both

the C# code and the WAM code. Theexecute WAM instruction is implemented in C#

by adding a predicate call object to the continuation. Theal locate anddeal locate

WAM instructions are implemented by the P# run-time system.

The C# code is directly comparable to the Java code produced by Prolog Café, with

the main difference being the use of namespaces. The predicates are run by a supervi-

sor method. This method calls each predicate, which returns the predicate that is to be

called next (the continuation), and then calls the next predicate. Theexec () method of

A 1 generates a choice point frame by constructing aPredicate that models the opera-

tion of the t r y WAM instruction. This callsA 1 1 first, which executes the first clause

of the Prolog predicatea/1 . If this fails or more solutions are requestedA 1 sub 1 is

then called, which in turn callsA 1 2. This executes the second clause of the predi-

cate. Theexec () methods ofA 1 1 andA 1 2 both construct a chain ofPredicate

objects, whoseexec () methods are executed in sequence. Thus afterA 1 1 . exec ()

has been called, thePredicate object created bynew Predicates . B 1 (a1 , p1) will

be called, and so on.

52 Chapter 3. Translating Prolog to C#

namespace JJC. Psharp . Predicates {

using JJC. Psharp . Lang ;
using JJC. Psharp . Lang . Resource ;
using Predicates = JJC. Psharp . Predicates ;
using Resources = JJC. Psharp . Resources ;

public class A 1 : Predicate {
stat ic i n te rna l readonly Predicate A 1 1

= new Predicates . A 1 1 () ;
stat ic i n te rna l readonly Predicate A 1 2

= new Predicates . A 1 2 () ;
stat ic i n te rna l readonly Predicate A 1 sub 1

= new Predicates . A 1 sub 1 () ;

public Term arg1 ;

public A 1(Term a1 , Predicate cont) {
arg1 = a1 ;
this . cont = cont ;

}

public A 1(){}

/∗ . . . code to set the arguments . . .∗/

public override Predicate exec (Prolog engine) {
engine . aregs [1] = arg1 ;
engine . cont = cont ;
return c a l l (engine) ;

}

public v i r tua l Predicate c a l l (Prolog engine) {
engine . setB0 () ;
return engine . j t r y (A 1 1 , A 1 sub 1) ;

}

/∗ . . . code to return ar i ty and str ing representation . . .∗/
}

Figure 3.5: C# code generated from the simple predicate

3.3. Example Code Generated by P# 53

sealed class A 1 sub 1 : A 1 {

public override Predicate exec (Prolog engine) {
return engine . t r u s t (A 1 2) ;

}
}

sealed class A 1 1 : A 1 {
stat ic i n te rna l readonly IntegerTerm s1 = new IntegerTerm (2) ;

public override Predicate exec (Prolog engine) {
Term a1 ;
Predicate p1 ;
a1 = engine . aregs [1] . Dereference () ;
Predicate cont = engine . cont ;

p1 = new Predicates . C 1(s1 , cont) ;
return new Predicates . B 1 (a1 , p1) ;

}
}

sealed class A 1 2 : A 1 {

public override Predicate exec (Prolog engine) {
Term a1 ;
Predicate p1 ;
a1 = engine . aregs [1] . Dereference () ;
Predicate cont = engine . cont ;

p1 = new Predicates . E 2 (a1 , engine . makeVariable () , cont) ;
return new Predicates . D 1(a1 , p1) ;

}
}
}

Figure 3.5 (continued): C# code

54 Chapter 3. Translating Prolog to C#

predicate (a/1 ,1 , s ta t i c , pr ivate , user , [
try me else (1) ,
a l locate (0) ,
c a l l (b /1) ,
put in teger (2 ,0) ,
deallocate ,
execute (c /1) ,

labe l (1) ,
t rus t me e lse fa i l ,
a l locate (1) ,
get var iab le (y (0) ,0) ,
put value (y (0) ,0) ,
c a l l (d /1) ,
put value (y (0) ,0) ,
put void (1) ,
deallocate ,
execute (e / 2)]) .

Figure 3.6: WAM code produced by GNU Prolog

3.4 Example Web Application: Noughts and Crosses

One of the most appropriate uses of our tool is to combine a Prolog back-end with

a Windows front-end, such as a Web Service. As an example we discuss how we

implemented a Graphical User Interface (GUI) front-end to a Prolog program which

allows the user to play a game of noughts and crosses (or Tic Tac Toe).

As a variation on the usual game we used a 4×4 grid, rather than a 3×3 grid. One

player insertsOs in the grid and the other insertsXs. The two players insert their

symbols alternately until one player wins by obtaining a line of four of their symbol.

Often the game ends in a draw with all the squares filled.

We implemented the game as a Web Application, where at every point in the game the

user is allowed either to take the move themselves or to ask the Prolog program to take

the next move. The user can play the computer or another user, or the computer can

play itself.

3.4. Example Web Application: Noughts and Crosses 55

The current board is stored at the C# level, and passed as a parameter to a Prolog pred-

icate on each move. The code which requests that the back-end perform a move itself

is as follows:

private void ComputerMove() {
PrologInterface sharp = new PrologInterface () ;
Term resu l t = new VariableTerm () ;
Predicate compMove = new Rule 3 (currentPlayer , currentBoard ,

resu l t , new ReturnCs (sharp)) ;
sharp . SetPredicate (compMove) ;
sharp . Cal l () ;

this . currentBoard = resu l t . Dereference () ;
DrawBoard((ListTerm) currentBoard) ;
SwapPlayer () ;
CheckForWinningLine () ;

}

The predicate returns the new board, which the C# code then draws. The predicate

ru le /3 takes as arguments the current player and the current board and returns the

modified board after the computer’s move.

The ru le /3 predicate encodes three rules. The first rule plays the winning move if the

game can be won by the computer in the next move. The second rule blocks a potential

win by the other side, and the third rule calculates a score for each potential move and

chooses the first maximum scoring move.

The following code draws the board. It does this by unpacking the Prolog list data

structure:

private void DrawBoard(ListTerm newBoard) {
Term resu l t = newBoard ;
for (in t i = 0; i < 16; i ++) {

Term elm = ((ListTerm) resu l t) . car . Dereference () ;
Cel ls [i] . Text = Convert (elm . ToString ()) ;
resu l t = ((ListTerm) resu l t) . cdr . Dereference () ;
i f (! (resu l t i s ListTerm)) break ;

}
}

56 Chapter 3. Translating Prolog to C#

Figure 3.7: A Web Application

The calling mechanism used is that inherited from Prolog Café: the arguments are

constructed as Prolog terms, and these are used to construct aPredicate object which

can then be called, with the call blocking until the predicate succeeds or fails. A

screen-shot of a game that the X player has won is included as Figure 3.7.

The squares of the board are implemented as C# Buttons, with a large font size chosen

for the labels.

Chapter 4

Concurrency

4.1 Design of Concurrent P#

The P# language is designed to allow easy interoperation between Prolog and C#.

Since concurrency is one of the principal C# features that thereby becomes accessi-

ble from Prolog, we felt that it would be beneficial to build some higher-level Prolog

primitives on top of the C# concurrency features.

The addition of concurrency features significantly enhances the ease with which P#

programs can be written. This is because whenever a call is made from C# to Prolog,

the called code is executed starting with an empty Prolog database. Several separate

calls to Prolog from C# will therefore operate on different databases. The concurrency

features provide two ways to work around this problem. Firstly, a thread-safe Prolog

database, called theglobal databaseis provided which is shared between all threads.

Secondly, messages can be passed between a Prolog thread and the C# thread that

started it.

In this section, we give an overview of the design of P# given in the last chapter and

then discuss the design of the concurrent features of P#. These features are justified

and compared with those of existing Prolog implementations.

57

58 Chapter 4. Concurrency

4.1.1 Design Before the Addition of Concurrency

P# translates Prolog/LLP to C# in the same way that Prolog Café translates Prolog/LLP

to Java. However, P# has an architecture more suitable for the .NET platform. The

main code of the P# run-time system and built-in predicates resides in a DLL, which

can be added to a .NET project that requires interoperation with Prolog. A C# loader

class is provided which can be compiled together with C# files generated from Prolog

to produce an executable file. The loader class calls the P# run-time system in the P#

DLL, which in turn calls the user’s code in the executable file.

When a Prolog predicate is translated into a C# class, its name is translated into a

C# class name. This translation is designed to convert typical Prolog predicate names

into typical C# class names. For example,conver t en t i re s t ruc tu re /2 becomes

ConvertEntireStructure 2 . Underscores and the case chosen for characters are

used to ensure that no two Prolog names map to the same C# name, and that no illegal

characters occur in the C# names.

A predicate namedload assembly /1 is added to P#. This allows the predicates de-

fined in the assembly passed as an argument to theload assembly /1 predicate to

be called from a P# program. The C# class in the P# run-time system which stores

the list of assemblies has a number of methods which can be used to control whether

predicates from a given assembly are accessible from Prolog code and if a predicate is

defined in more than one assembly, which one has priority and should be called.

C# methods and fields can be accessed from Prolog by using predicates that are ap-

propriately renamed predicates present in Prolog Café, namely,cs constructor /2 ,

cs method /3 , cs term /2 , cs get f ie ld /3 , cs set f ie ld /3 andcs object /1 . In

P#, the colon operator is used to call methods and convert the result from a C# object

to a P# Prolog term automatically.

As with Prolog Caf́e, P# Prolog programs can be either executed by an interpreter or

compiled to C# code. Naturally, the compiled code generally executes much faster

than interpreted code. A predicate not present in Prolog Café, namelyplcomp /1 , is

added to P#. This predicate, which can be called from the interpreter, loads a Prolog

4.1. Design of Concurrent P# 59

file and compiles it to memory, so that its compiled predicates can be called from the

interpreter. A further predicate, namedplcomp /2 is provided. This compiles a Prolog

file to a .NET executable file whose filename is given by the second argument passed

to theplcomp /2 predicate.

P# inherits from Prolog Café support for linear logic programming with the language

LLP. These features operate in the same way in P# as they do in Prolog Café. Logic

programming is based on classical mathematical logic. Linear logic can be better at

representing problems that involve resources being created and consumed than classi-

cal logic. Thus, it can be more natural to solve such a problem in LLP than in Prolog.

4.1.2 P# Concurrency Features

Support for concurrency was added to P# by introducing a number of new built-in

predicates. These predicates are described below:

In order to make it possible to create new threads, thefork /1 predicate is added to

P#. This predicate takes a structure as an argument and then forks a new thread, which

evaluates the structure. The call tofork /1 does not wait for the new thread to complete

its execution.

A fork /2 primitive is also available. This predicate forks the first argument and returns

a Prolog representation of a C# object representing the new thread. This object can then

be returned to the C# part of the program where it can be used to stop that thread.

A predicate, namedstop /1 is provided, which can be used to stop a thread from the

Prolog side using the value returned by a call tofork /2 .

Having calledfork /1 with a structure containing an uninstantiated variable, anywhere

in the syntax tree of the structure, the thread that calledfork /1 can use that variable

to interact with the newly forked thread.

The wait for /1 predicate takes as an argument a variable that is shared with an al-

ready forked thread. It then waits until one of the threads instantiates that variable

60 Chapter 4. Concurrency

and succeeds with the given instantiation. Except for this the instances of variables on

different threads do not interact.

The wait for /1 predicate is equipped with the feature that when a thread is waiting

for a variable and all other threads with a copy of that variable have terminated or are

also waiting for the same variable, then the call towait for /1 fails. This is a de-

sirable high-level behaviour since when all the threads have terminated, this indicates

that there are no further solutions. If we fork several threads which produce multiple

solutions, and we consume the solutions by callingwait for /1 repeatedly by back-

tracking, then when there are no further solutions it is far better for the call to fail, than

for it to block indefinitely.

Thezap queue /1 predicate takes as an argument a concurrent variable and retracts all

solutions that have been so far generated but not consumed. This can be useful when

developing user interfaces that have a facility to stop a search while it is underway.

The fork /1 andwait for /1 predicates provide a higher-level mechanism for remote

evaluation and message passing than is present in C#. Messages are sent when a uni-

fication occurs of a shared variable, however deeply embedded in a structure that vari-

able may be. Another high-level feature of this design is that any Prolog term can be

passed in such a way.

A sleep /1 predicate is provided which causes the current thread to sleep for a given

time period expressed in milliseconds.

Each forked thread is equipped with a private database that it can use in the normal

way. In addition we provide a global database, which is shared between all the threads.

Accesses are automatically protected by a mutex. The database can be modified by

primitives global assert /1 , global retract /1 and so on.

A global cal l /1 predicate is provided, which can be used to query the global

database: this retrieves a clause present on the global database and then evaluates it. If

no matching clause is present the call fails.

The C# object which encapsulates the table which underlies the global database can be

obtained by calling theglobal table /1 predicate.

4.1. Design of Concurrent P# 61

The lock /1 predicate enters a monitor lock on a Prolog atom, a variable or a C# ob-

ject. This is particularly useful when applied to a variable shared with another thread.

Similarly, theunlock /1 predicate releases the monitor lock on the atom, variable or

object. All locks on a thread are released when it terminates.

The backtrackable lock /1 predicate enters a lock which is held until the control

flow backtracks through the call tobacktrackable lock /1 . The effect is that all

code deeper in the Prolog proof tree forms a critical region.

It is possible for a variable to be concurrently shared between a C# thread and a P#

Prolog thread. For this situation C# methods are provided which allow messages to be

passed.

A C# program that calls a P# Prolog predicate may wrap such a call within a fork. Any

variables passed to the predicate then become concurrent, allowing communication

between the C# code and the P# Prolog before the Prolog terminates.

As we saw in section 3.2, a P# Prolog predicate can call a C# method in the following

way:

’System . Console ’ : ’ WriteLine ’ (’ Hello World ! ’ ,) .

The argument following the colon consists of the method name and any actual argu-

ments. These C# arguments may include uninstantiated variables, in which case the

C# will be passed aVariableTerm object. Thus, a concurrent variable can be passed

from the P# Prolog side to the C# side. In this case the use of: / 2 should be wrapped

in a fork, for example:

run cs method (In , Out , ObjectToCall) :−
fork (ObjectToCall : ’ CsThreadStart ’ (In , Out)) .

This code would be matched on the C# side by code of the following form:

public object CsThreadStart (VariableTerm vt) {
vt .Send(new IntegerTerm (7)) ; / / send message
return (in t) (v t . Receive () . ToCsObject ()) ; / / await message

}

62 Chapter 4. Concurrency

4.1.3 Existing Concurrent Prologs

Concurrent Prolog derivatives can be classified into those with explicit concurrency

constructs and those with implicit parallelism. With explicit concurrency constructs,

the programmer must direct how the concurrency is to be exploited. With implicit

parallelism the concurrency is exploited automatically by the evaluator. The survey

paper [Cia92] gives examples of both types of language.

Explicitly concurrent languages can be divided into those that have explicit message

passing primitives, for example DeltaProlog; those that have a shared blackboard for

communication; and those that make use of guards or committed choice, for example

Parlog [Gre87]. The concurrent logic languages Parlog, Guarded Horn Clauses and

Concurrent Prolog are discussed in Part I of [Sha87].

DeltaProlog [PN84] is an extension of Prolog based on CSP [Hoa85]. And-parallelism

is achieved via a ‘fork goal’. Communication is via special event goals, which come in

several different flavours depending on whether the goal is backtrackable and whether

it is synchronous.

SICStus MT [EC98] is an multithreaded extension of SICStus Prolog. SICStus MT

has a predicate that spawns a thread, namedspawn/2 . Messages can be sent from one

thread to another thread, by specifying in the call to thesend/2 predicate the desti-

nation thread’s identifier. This message can then be received by callingreceive /1

on the thread that is the destination of the message. The other primitives provided in-

clude these l f /1 predicate that returns an identifier for the currently executing thread,

a predicate that waits for a period of time, and a predicate that kills a thread.

Jinni [Jin] also has support for concurrency, based on Linda blackboards. Terms can

be read from and written to the shared blackboard.

Languages that have implicit parallelism can be divided into or-parallel languages,

such as Aurora, independent and-parallel languages such as &-Prolog [HG91] and de-

pendent and-parallel languages such as Andorra, the latter being related to committed

choice languages. [GPA+01], is a recent survey of languages with implicit parallelism.

4.1. Design of Concurrent P# 63

Aurora [LBD+88] is an or-parallel Prolog, well suited to the parallel programming of

parallel processors. This means that a predicate which is marked as parallel can have

its clauses evaluated in parallel. Parallelism in Aurora is, in fact, semi-explicit, in that

the user does not specify the details of parallel evaluation, but does give hints to the

Prolog compiler that the code should be evaluated in a parallel fashion.

The following is an example of parallel programming in Aurora taken from [Cia92].

:− p a r a l l e l se lect /3

select (X, [X|Xs] , Xs) .
se lect (X, [Y|Ys] , [Y|Zs]) :−

select (X, Ys, Zs) .

The solutions,Z, of the queryselect (X, L , Z) are all those lists which are the

list L with one occurrence of the elementX removed. This definition is the same as a

standard definition of this predicate with the exception of the line:

:− p a r a l l e l se lect /3

which specifies that the clauses can be evaluated in parallel.

Aurora provides two types of database modification primitive. With one, the alteration

to the database can occur concurrently, asynchronously, anywhere in the proof tree.

The other blocks until it is in the leftmost branch of the search tree, adding some degree

of determinism. In Aurora, and also the language MUSE, this behaviour is extended

to other extra-logical predicates allowing these languages to mimic the semantics of

sequential Prolog.

The parallel Prolog language &-Prolog automatically parallelizes standard Prolog code.

However, it also allows explicit parallelism. A conjunction of goals can be executed

in parallel by separating them with the& operator. In addition &-Prolog has predicates

that wait for variables and acquire and release locks on terms. The &-Prolog language

is an independent and-parallel language. This means that when conjoined goals are

evaluated in parallel there can be no variable conflicts. Both strict and non-strict in-

dependent and-parallelism are supported. With strict and-parallelism goals performed

64 Chapter 4. Concurrency

in parallel do not share variables. Built-in predicates are provided that can be used

to control the use of memory and multiple processors. A construct called the Condi-

tional Graph Expression (CGE) is added to the language. This allows a set of goals to

be either executed in parallel or sequentially depending on whether a given condition

succeeds or fails. The source code is translated by the compiler into PWAM (Parallel

Warren Abstract Machine) code. The run-time system consists of one or more PWAMs

executing in parallel.

Flat Concurrent Prolog (FCP) [Mie84] is a stream-based parallel logic language. Com-

munication is via shared variables. Each clause is guarded by goals. The clause that

is executed is one of those whose guard succeeds. If more than one succeeds, any of

those may be executed. This is referred to as ‘don’t care non-determinism’. The guards

may only contain predefined predicates, hence ‘flat’, for efficiency reasons.

FCP is and-parallel. This means that conjoined goals in a clause can be evaluated in

parallel. Communication via variables is facilitated by the ability to mark variables as

read only with a question mark: such a variable will await an instantiation from another

goal. Thus, a producer can be coupled with a consumer as follows, see [Cia92]:

?− prod (X) , cons (X?) .

FCP is very unlike Prolog. Indeed it is non-trivial even to simulate Prolog programs in

FCP.

FCP, Parlog and FGHC (Flat Guarded Horn Clauses) are examples of committed

choice languages [Tic95]. In general, programs written in these languages consist

of guarded Horn clauses. A guarded Horn clause consists of a set of ask guard goals,

tell guard goals and body goals. The difference between ask guards and tell guards

is that ask guards can only match arguments, whereas tell guards can make variable

bindings. The term ‘committed choice’ refers to these language’s use of ‘don’t care’

non-determinism.

Andorra is a dependent and-parallel Prolog derivative. Such languages tackle the prob-

lem of avoiding redundant computation when executing two goals in parallel where

there is a dependency between the variables used in the two goals. This problem is

4.1. Design of Concurrent P# 65

solved by ensuring that one of the goals, the consumer, cannot bind the dependent

variable. The other, which can, is referred to as the producer.

The Prolog system, Ciao Prolog [Cia], also has support for concurrency consisting of

an extensive choice of predicates which spawn new threads and occasion cuts or back-

tracking on the created threads. There are also predicates for locking and unlocking on

an atom and a predicate that can be used to assert that a given predicate is concurrent

allowing it to be used for communication and synchronization between threads. Ciao

Prolog uses a Prolog database for communication in the same way as a blackboard, an

idea proposed in [CH99].

4.1.4 Justification and Comparison with Existing Work

Our primitives were chosen primarily because they are a close match for the concur-

rency features of C#. In C#, when wishing to create a new thread, a delegate holding

a method is passed to a method which runs that method on a new thread. Ourfork /1

predicate is passed a structure, which is to be evaluated as a new thread. In C# message

passing is typically achieved by waiting on one thread while sending a value and then

pulsing on another. While our message sending primitives are higher-level than this,

they are used in the same way. Our locking primitives are directly based on C#’s lock-

ing methods, although again they provide higher level capabilities and greater safety.

The global database corresponds to a thread-safe data structure, which is able to store

any Prolog ground term. A difference is that only one global database exists for the

entire program, whereas in C# each object may contain its own data. Since data stored

on the global database can be highly structured, this is not a problem.

Our wait for /1 predicate is reminiscent of the and-parallelism used in FCP [Mie84]

and of the forking and event sending used in DeltaProlog [PN84].

In the former case, that of FCP, rather than calling a conjunction of goals with some

of the variables specially marked, we fork the goals of the conjunction with variables

shared between them, and then one of these threads calls thewait for /1 predicate.

An alternative approach we could have adopted would have been to mark variables as

66 Chapter 4. Concurrency

being message channels in the code by changing the syntax of the language, or to add

declarations which indicate which variables are message channels. We felt that it was

simpler to allow all uninstantiated variables passed through a fork to become potential

message channels. This does not add excessive overhead to the implementation as

uninstantiated variables passed to a fork could serve no other purpose.

A similar scheme to ours can be found in the implementation of &-Prolog, and is re-

ported on in the paper [HGC95], where it is described as Kernel &-Prolog (K&P). The

K&P language consists of a number of predicates which fork threads, either interleaved

on the current processor or on another processor and either waiting for the thread to

finish or not waiting. It also provides ‘fair’ forking primitives which start threads that

execute in a fair interleaved way, and placement primitives which queue up the term

to be executed on a given node. There is await predicate that waits until a variable is

bound, and a locking primitive which takes as an argument a term and returns a handle

to the lock. This handle can then be used to unlock the term. A Linda library is also

provided which allows terms to be stored on a blackboard.

Our scheme lacks the features of K&P which are not relevant in the context of C#. It

adds the failure of the wait operation when shared variables can no longer be instanti-

ated because of the termination of threads, and the backtrackable lock feature. It also

avoids the use of a handle for a lock. Rather than a Linda blackboard we provide a

shared data area that is closer in concept to the Prolog database that standard Prolog

uses, and therefore more familiar to users new to concurrent programming in Prolog.

We have also allowed the send and receive operations to be performed from the C#

side, allowing Prolog code to wait for a value produced by C# or for C# to wait for an

instantiation on the Prolog side.

Our global database is similar to the Linda blackboards of Jinni [Jin]. Linda black-

boards are based on the following four operations:

• out(Term): This is equivalent to ourglobal assert /1 predicate;

• in(Term): If the term is present on the database it is removed, if not the process

waits for it to appear and then it is removed;

4.1. Design of Concurrent P# 67

• rd(Term): This is the same as thein operation, except that the term is not removed

from the database;and

• eval(Term): This places a term to be evaluated on the database. The result is

placed on the database. This is similar to ourglobal cal l /1 predicate.

Thus, Linda blackboards also provide a synchronization facility as attempting to re-

trieve a term can block if there is no term to retrieve. This behaviour can be obtained

in P# by sharing a variable between threads which write to the global database and

threads which read from it. This variable is pulsed (by unifying it with an arbitrary

value and then un-doing this unification by backtracking) whenever the global database

is modified. A thread can then wait for such a pulse and check whether the term it is

waiting for has appeared.

Concurrent programming in Prolog based on threads interacting by asserting, calling

and retracting facts on a shared database is described in the paper [CH99]. In our

implementation the message passing primitives pass messages via a shared database,

so the forking and waiting operations are built on top of access to a shared database.

As with other concurrent Prolog implementations, the messages passed in P# can be

any Prolog term. Thus, it would be possible, for example, to pass a predicate call to be

evaluated.

While we use variables to communicate we do not make use of guards in P#, as lan-

guages which use guards, such as FCP, tend to be very unlike standard Prolog. Our

typical intended user is a developer who wishes to use standard Prolog, rather than a

derivative of Prolog, perhaps because they have existing Prolog code. Languages with

guards can have greater expressive power than P#, because of the introduction of non-

determinism. Guards also provide a higher level of abstraction relative to C#, than the

features of P# do, but at the cost of a loss of interoperability with standard Prolog.

The current implementation of P# is designed to be executed in an interleaved fashion

on a single processor. The implementation would have to be modified for a parallel

architecture that lacked shared memory.

We have allowed the P# programmer to choose between shared variable concurrency

68 Chapter 4. Concurrency

and shared database concurrency, by providing primitives for both that do not interfere

excessively with standard Prolog features. Both of these sets of primitives fit well with

the C# concurrency model.

4.2 Examples

4.2.1 Communication between Threads

The following program demonstrates how thefork /1 andwait for /1 predicates can

be used:

a(2 , 7) .

and(Y) :−
fork (a(1 , Y)) , fork (a(2 , Y)) , fork (a(3 , Y)) ,
wait for (Y) .

Three threads are forked, each calling the predicatea/2 with different values of the

first argument. Only the second will instantiateY, the second argument to 7. The call

to wait for (Y) will wait until this happens and thenand/1 will succeed withY = 7.

It is also acceptable for a forked thread to wait for the thread which forked it or for

forked threads to fork more threads.

The following example shows that forking integrates with backtracking.

alpha (’a ’) .
alpha (’b ’) .
alpha (’ c ’) .
alpha (’d ’) .

correct (X, Y) :−
\+ var (X) , % prevent cheating
X = ’ c ’ ,
Y = X.

4.2. Examples 69

guess (Z) :−
alpha (X) ,
fork (correct (X, Z)) ,
f a i l .

guess (Z) :−
wait for (Z) .

The guess/1 predicate has the task of discovering which of’a’, ’b’, ’c’ or ’d’ is the

correct answer. It can only find out this by callingcorrect (X, Y) with the correct

letter asX, in which caseY is instantiated to that letter. Theguess/1 predicate forks

a thread for each letter and waits for one of them to succeed. The variableZ correctly

retains its concurrent information on backtracking, as it comes into existence as soon

asguess (Z) is called.

The following example is similar to the last, except that tail-recursion is used instead

of backtracking. The user enters a square integer between 0 and 202. The program

forks 21 threads to try each of the possible square roots, and then waits for one of them

to signal that the answer has been found.

sqroot (S, R) :−
sqroot threads (S, R, 0) ,
wait for (R) .

sqroot threads (S, R, 21) :−
! .

sqroot threads (S, R, N) :−
fork ((S =:= N ∗ N, R = N)) ,
N1 is N + 1 ,
sqroot threads (S, R, N1) .

Note that the double brackets in thefork /1 are necessary as the fork takes only one

argument, which in this case is a structure with functor, /2 . This provides a way of

writing the code to be forked ‘in-line’.

70 Chapter 4. Concurrency

4.2.2 Queuing of Multiple Solutions

It may be that the programmer wishes to use a concurrent variable more than once, in-

deed if he or she cannot, then some algorithms will require unnatural implementations.

If a bound concurrent variable is later unbound by backtracking, and then bound again

to the same or a different value, then that new binding is enqueued on the queue of

messages to be consumed.

Thus, a producer can give multiple bindings to a concurrent variable, possibly com-

posing a set of solutions; and a consumer can repeatedly callwait for /1 to take each

binding.

The wait for /1 predicate can be called repeatedly by using therepeat /0 predicate,

howeverwait for /1 also creates a choice-point and will yield the next solution on

backtracking.

The following code creates two threads, a producer and a consumer. The producer

generates integer values from 0 up to 10 and the consumer consumes each produced

value, doubles it and outputs the corresponding result. The producer uses a predicate

called pulse /2 , which makes a binding and then undoes it straight away. The first

clause ofpulse makes the binding, and then fails. This failure causes backtracking to

the last choice-point, which undoes the binding we made in the first clause and then

executes the second clause which succeeds. Thus, the predicate call succeeds having

made no lasting binding. This allows us to imperatively give successive bindings to

the same variable.

main :−
fork (prod (X)) ,
cons (X) .

cons (X) :−
wait for (X) ,
X2 is X ∗ 2 ,
write (X2) , nl ,
f a i l .

cons (X) .

4.2. Examples 71

prod (X) :−
enum(X, 0) .

enum(, 11) :−
! .

enum(X, N) :−
pulse (X, N) ,
N1 is N + 1 ,
enum(X, N1) .

pulse (X, N) :−
X = N,
f a i l .

pulse (,) .

When it is detected that all of those threads that have a copy of a concurrent variable

are waiting for that variable, then all of those calls towait for /1 fail. Thus, in the

example above both of the threads eventually terminate, and in the square root example

above, if the user asks for the root of a non-square integer the query will fail. If all of

the forked threads with a variable succeed or fail having sent no message then a call

to wait for /1 on the remaining thread will fail. However, care must be exercised.

If we had definedmain/0 to fork both the producer and the consumer, then the main

thread running under the interpreter would still have a copy of the variableX although

it would never use it. This would stop the consumer thread from terminating. It is still

possible to fork both threads by forking a thread which itself first forks the producer

thread and then runs the consumer code. In this case the variableX is introduced on

the consumer thread, not on the interpreter thread.

4.2.3 The Global Database

We now give an example which illustrates the use of the global database. The following

code will instantiateY to [1 ,2 ,3] . In this case we could have just passed back the

information in the concurrent variable,X.

72 Chapter 4. Concurrency

global example (Y) :−
fork (global example thread (X)) ,
wait for (X) ,
global cal l (i n fo (Y)) .

global example thread (X) :−
global assert (i n fo ([1 ,2 ,3])) ,
X = [] . % arbitrary instant iat ion

4.3 Implementation

4.3.1 Making P# Thread Safe

The version of Prolog Café that we modified has no direct support for concurrency.

The necessary stacks for the LLP/Prolog engine are encapsulated in an engine object.

Unfortunately, creating two or more such objects, and running the resultant engines

simultaneously, resulted in chaos because various static fields were shared between the

engines.

The first task in the pursuit of adding concurrency to P# was to find these problematic

fields, and to alter P# so that different threads no longer interfered with each other.

Changes of this nature tend to degrade performance, because it is quicker to find static

fields than it is to find instance fields. For this reason, we had to plan our changes with

efficiency in mind.

When we searched for problematic static data in the run-time system, we found three

problems:

Firstly, there was a problem with the choice point frame stack which is a stack of

entries representing choice points. This stack is stored as an array in Prolog Café. The

object representing an entry contained a static field, which was used to optimize the

operation of this stack. This problem was solved by moving the static field into the

stack object, where it became an instance field. This field is passed as an argument to

the entry objects when necessary.

4.3. Implementation 73

Secondly, an integer timestamp is used to identify aVariableTerm. A VariableTerm

object represents a Prolog variable. The next value to be allocated is stored in a static

field. This field needed only to be protected by a mutex.

Finally, we synchronized access to the hash-table storing Prolog symbols.

Having made these changes, multiple engines were still unable to execute concurrently.

There remained a problem with thePredicate objects. Each Prolog predicate is trans-

lated into a C# class that contains methods for setting the arguments and for actually

calling the predicate. In the case of a predicate with more than one clause, each clause

after the first is compiled into a subclass of the first.

EveryPredicate object has an instance field for the engine currently running the pred-

icates, and another instance field for the continuation, that is thePredicate to run next.

Predicates that have more than one clause have static fields that are statically, and fi-

nally, initialized to object instances of subclasses of thePredicate in question. Two

threads running one of these subclassPredicates will be working with the same object

that was statically created. Thus, when two or more threads tried to manipulate the

engine and continuation fields of such an object, they interfered with one another.

There are two possible solutions to this problem. The first is instead of relying on

these static fields, to create a new object every time one is required. This solution

would have been inefficient. A better solution is to redesign the storage of the engine

and continuation data.

The engine field is only used in theexec () method of thePredicate. This method is

always called by the engine. In the original code a method that initializes the engine

value was called just before a call to theexec () method. Instead we added an argument

to theexec () method, whereby the engine could pass a reference to itself to each call

to exec () .

When the continuation field is used in the principalPredicate class of the translation

of a predicate, there is no problem, as each thread will create a separate object. The

continuation field in a subclass of this is initialized at the beginning of theexec ()

method by retrieving a value recorded in the engine. Before, this overwrote the super-

74 Chapter 4. Concurrency

class continuation field. However, there is no need for this. Instead of using the object

field we create a new local variable and initialize the new variable from the engine.

There are also fields that store the arguments to the predicate, but these are already dealt

with in a manner similar to our modified treatment of the continuation field. Thus, we

did not have to worry about the arguments to a predicate interfering with those of the

same predicate running on a different thread.

Finally a problem arose with the implementation of first call optimization (FCO).

The FCO is used when a predicate has clauses that have the property that their first

body goal has the same functor as their head goal. For example, consider the second

clause of the following predicate.

member(X, [X|]) .
member(X, [|L]) :− member(X, L) .

When the second clause is executed, a new choice point need not be created, instead we

make a note of the last choice point when the predicatemember/2 is called and re-use

this choice point when the second clause callsmember/2 . Thus, the FCO allows the

first body goal to call the predicate without consuming an unnecessary choice point.

The FCO is discussed in [FSW98]. When thePredicate class representing the first

clause was entered, a reference to thisPredicate object was stored in thestaticfield of

the Predicate class, calledentry code. A subclass representing a later clause could

then use this value to call the first clause again. It seemed that we needed to move

this data into the engine. We could not, however, place it in a simple variable in the

engine to be retrieved when needed. This was because between the storing of the value

and its recall, another predicate that also uses the FCO could be called and wish to

store itsentry code. Given that usually only one such code need be stored, and never

more than one per predicate in the source Prolog program, our solution was to use a

hash-table in the engine that mapsPredicate classes, that is, the type of thePredicate

object, toPredicate objects, that is, the currententry code for that predicate.

Having made all of these changes, multiple engines could run different, or the same,

Prolog programs concurrently, without interference.

4.3. Implementation 75

4.3.2 Forking Threads and the Global Database

When a fork is called on a structure, a deep clone of that structure is created. For the

most part this is just a copy, however, in the case ofVariableTerms we wish to maintain

links between copies of the same variable on different threads, so that they can act as

message channels.

For each variable in a forked structure, we create aConcurrentVariable object, which

records which of those threads with a copy of that variable are still running. Each

VariableTerm object of a concurrent variable keeps a reference to itsConcurrentVariable

object. If twoVariableTerms are unified, and one is concurrent, then the other is made

concurrent, by copying this reference across.

The cloning process is recursive so that anyVariableTerm that can be reached from the

predicate call’s arguments is correctly cloned in this way. The entire cloned structure

is then built in a new Prolog engine, and executed.

Messages are stored on the global database. If one thread places a term in the global

database, and another retrieves it, then that term passes from one engine to another.

Whenever a term does this it must be rebuilt in the new engine, sinceVariableTerms

make use of the engine’s trail. As a general solution, we provide a special engine for

the global database. When a term is globally asserted it is first built on the global

database engine, then the Prolog assertion code is run on the global database engine.

We do not wish to create a new thread every time this occurs, so the assertion code

is run on the global databaseengine, but on the thread that calledglobal assert /1 .

Thus, a call toglobal assert /1 does not exit until this has happened.

At the lowest level, all of the above is implemented by using a new internal predicate

called$run on global engine /1 , which given a structure, executes it on the current

thread, but on the global engine. The arguments are cloned onto the global engine

before the call. All of the solutions to the query are cloned back and asserted on the

calling engine. Theglobal cal l /1 predicate is implemented so that it then executes

these solutions on the calling engine by calling this internal predicate. This is imple-

mented in such a way thatglobal cal l /1 creates a choice point and each solution

76 Chapter 4. Concurrency

can be retrieved in the usual way.

The definitions of the global predicates all call the normal assertion predicates wrapped

in a call to $run on global engine /1 . The $run on global engine /1 predicate

can only be executed by one thread at a time. The dollar sign is used to distinguish

predicates internal to P# from those which are intended to be used directly by program-

mers using P#.

This following code shows the Prolog side of the implementation of some of the global

database operations.

:− dynamic (’ $soln ’ /1) .

global assert (ClauseToAssert) :−
global table (Table) ,
’ $run on global engine ’ (assert (Table , ClauseToAssert)) .

global cal l (ClauseToCall) :−
global table (Table) ,
’ $run on global engine ’ (

clause (Table , ClauseToCall , ToCall)) ,
ca l l (’ $soln ’ (clause (, ClauseToCall , ToCall))) ,
ca l l (ToCall) .

The call global table (Table) instantiatesTable to the object encapsulating the

global table. Theglobal cal l /1 predicate first retrieves this table, and then runs on

the global engine a call which converts the clause into code which can be executed (the

variableToCall). The code of$run on global engine /1 asserts the structure

’ $soln ’ (clause (Table , SolnClause , ToCall))

which can then be called to obtain the structureToCall which can then be executed

with anotherca l l .

The addition of the global database and its associated predicates to P# enables us to

rewrite the noughts and crosses example above, so that the state of the board can be

stored on the Prolog side and does not have to be passed back and forth every time a

move occurs.

4.3. Implementation 77

4.3.3 The wait for /1 Predicate

When a concurrent variable is bound to a term, this binding is detected and a call

to global assertz /1 is made, asserting the fact that the relevant variable has been

bound to the relevant term. We useglobal assertz /1 as it asserts the fact at the end

of the database so that the facts will form a queue and be retrieved in the order that

they were asserted. In addition, theConcurrentVariable object of that variable is pulsed

to notify any waiting thread of the new instantiation.

The call toglobal assertz /1 is inserted into the stack of calls to be made at the first

available opportunity after the binding has occurred. It is necessary to ensure that this

call involves no cuts as this would destroy the logic of the code currently running at

that time.

The wait for /1 predicate is built on top ofglobal cal l /1 . It looks in the global

database to see if an un-consumed instantiation has occurred, and if so it consumes

it by calling global retract /1 , and succeeds having made the equivalent binding

on its own thread. If not, it waits for a notification of an instantiation and when this

occurs, it tries again.

Since the set of assertions in the global database for a variable are specific to that

variable, the assertions for different variables do not interfere with one another.

The Prolog side of the implementation ofwait for /1 is as follows:

wait for (X) :−
’ $get concurrent root ’ (X, R) ,
backtrackable lock (R) ,
’ $ca l l sp in ’ (X, R) .

’ $ca l l sp in ’ (X, R) :−
global cal l (’$msg ’ (R, B)) ,
global retract (’$msg ’ (R, B)) ,
’ $protected uni fy ’ (X, B) .

’ $ca l l sp in ’ (X, R) :−
’ $wait on ’ (R) ,
’ $ca l l sp in ’ (X, R) .

78 Chapter 4. Concurrency

backtrackable lock (L) :−
(’ $lock ’ (L , LOCKVAR)
;

f a i l) .

’ $on unify ’ (CR, T) :−
lock (CR) ,
global assertz (’$msg ’ (CR, T)) ,
’ $pulse on ’ (CR) ,
unlock (CR) .

The predicate$on unify /2 is called every time a concurrent variable is unified. It

is passed the concurrent variable object which we refer to as theconcurrent root, CR

and the term to which that variable has been instantiated,T. While holding a lock on

CR it asserts the instantiation on the global database using the internal predicate$msg,

and then pulses the concurrent variable object to wake up any threads waiting for an

instantiation to occur.

The wait for /1 predicate obtains the concurrent root for the concurrent variable, and

then while holding a lock on the concurrent root, it calls$ca l l sp in /2 on the variable

and its root. The$protected uni fy /2 predicate unifies its arguments without calling

$on unify /2 . If there is a solution in the queue of solutions, it is retracted and then

the concurrent variable is unified with the same term as that which it was unified with

on the other thread. This unification is done without sending another message, hence

‘protected unified’. Otherwise$ca l l sp in /2 waits by calling$wait on /1 for the

concurrent variable object to be pulsed as a result of an instantiation, and then control

returns to the first clause of$ca l l sp in /2 .

This implementation works correctly on backtracking and within failure driven loops.

4.3.4 Monitors

Our system includes two primitives to ensure mutual exclusion among executing

threads, namely,lock /1 andunlock /1 . Both of these take as an argument a Prolog

atom or variable, and respectively acquire or release a monitor lock on the C# object

4.3. Implementation 79

representing that term. In the case of a concurrent variable, we lock on itsConcurrent-

Variable object.

On the implementation side, we are greatly helped by the fact that in C#, unlike in

Java, a monitor can be entered or exited at any time by a library method call.

A backtrackable lock /1 predicate is also provided. This creates a variable and

then binds it to an arbitrary term, setting a field in the correspondingVariableTerm

object to indicate that this variable represents a lock. The monitor is then entered. The

backtrackable lock /1 predicate creates a choice-point before making this binding,

to ensure that on backtracking the variable will be unbound. When this un-binding is

detected, the monitor is exited. The effect of callingbacktrackable lock /1 is that

everything deeper down the proof tree forms a critical region.

The P# run-time system keeps track of each lock and unlock operation and maintains

a variable, which stores the current depth of locking. When the P# Prolog thread

terminates all of its locks are automatically released. This semantics mirrors that of

the C#lock keyword, where af i na l l y clause releases the monitor when the critical

region is exited. Thus, if the thread is aborted, all of its locks are released.

4.3.5 Interoperation with C#

The locks dealt with bylock /1 andunlock /1 are C# locks on C# objects. Similarly

fork /1 initializes and starts a new C# thread, unification calls thePulseAl l () method

on an object andwait for /1 calls theWait () method on an object, although they do

far more besides this.

TheSend() andReceive () C# methods mentioned in section 4.1.2 use a temporary

P# engine to respectively perform a unification and execute thewait for /1 predicate.

Each undoes any existing binding of the concurrent variable that it is given first, and

thus may be called repeatedly from the C# code. Such repetition must, however, be

matched by backtracking on the P# side.

80 Chapter 4. Concurrency

4.4 Semantics

4.4.1 Comparison with Semantics of C#

A P# program is entirely implemented in C#: it consists of a run-time system written

in C# and C# files which have been generated from Prolog predicates. Thus, the se-

mantics of concurrent P# is a subset of that of C#. Indeed it is a large subset, since

most of the concurrency features of C# can be accessed by calling methods that can be

called directly from P#. If this is excluded, certain capabilities are lost. For example,

at present thread priorities cannot be set from P# without calling C# methods from P#.

Any P# thread directly corresponds to a C# thread. Unifications of concurrent vari-

ables in P# correspond to the C#Pulse () method, and waiting for a variable to be

instantiated corresponds to the C#Wait () method. Locking and unlocking in P# are

directly implemented by the corresponding C# locking methods. The global database

in P# corresponds to shared data protected by a mutex in C#.

Both deadlock and livelock can occur in P#. Both can be found in versions of the

Dining Philosophers Problem. The following is a description of a situation in which

livelock can occur. Five philosophers are arranged in a circle, with a chopstick between

each adjacent pair of philosophers. The philosophers alternate between eating and

thinking. When a philosopher wishes to eat he waits until the chopstick on his left is

free and then he picks it up. He then looks at the chopstick on his right. If it is free he

picks it up, eats and then puts both chopsticks down starting with the one on his right.

On the other hand, if the chopstick on his right is currently held by the philosopher to

his right, he releases the chopstick in his left hand and continues to think. Livelock

occurs when all of the philosophers repeatedly pick up the chopstick to their left and

then put it down again, without eating.

The code for this problem is included below:

% chopstick (X) is on the global database i f chopstick X is held .

din ing ph i losophers l ive lock :−
% i n i t i a l l y a l l chopsticks on table .

4.4. Semantics 81

global abolish (chopstick /1) ,
fork (ph i l (c1 , c0)) .
fork (ph i l (c2 , c1)) .
fork (ph i l (c3 , c2)) .
fork (ph i l (c4 , c3)) .
fork (ph i l (c0 , c4)) .

% phil (ChopstickOnLeft , ChopstickOnRight)
ph i l (Left , Right) :−

at tempt le f t chops t ick (Lef t) ,
at tempt to eat (N, Left , Right) ,
th ink ,
ph i l (Left , Right) .

eat :− . . .
th ink :− . . .

a t tempt le f t chops t ick (Lef t) :−
lock (Lef t) ,
global cal l (chopstick (Lef t)) , ! ,
% chopstick is held by a philosopher
unlock (Lef t) ,
a t tempt le f t chops t ick (Lef t) .

a t tempt le f t chops t ick (Lef t) :−
% chopstick is not held
global assert (chopstick (Lef t)) ,
unlock (Lef t) .

at tempt to eat (Left , Right) :−
lock (Right) ,
global cal l (chopstick (Right)) , ! ,
% right chopstick is not available
unlock (Right) ,
global retract (chopstick (Lef t)) .

at tempt to eat (Left , Right , Not i fy) :−
% right chopstick is available
global assert (chopstick (Right)) ,
unlock (Right) ,
eat ,
global retract (chopstick (Right)) ,
global retract (chopstick (Lef t)) .

82 Chapter 4. Concurrency

4.4.2 Semantics of Message Passing

Figure 4.1 shows the control flow logic of the unification andwait for /1 operations.

The symbol=# indicates the unification symbol= as used in P#, and the symbol= in the

diagram represents unification as in standard Prolog. The figure, therefore, indicates

that in P# unification first performs a standard Prolog unification and then in the case

of unification with a concurrent variable, sends a message to a waiting thread.

The wait for /1 predicate invokes theglobal cal l /1 predicate to search for mes-

sages in the global database.

If it is successful, the message is consumed and then code deeper in the Prolog proof

tree is executed without the lock being released. This deeper code consists of the code

executed after thewait for /1 predicate succeeds and up until there is backtracking

back through the call towait for /1 . When wait for /1 is re-executed on back-

tracking the lock on theConcurrentVariable object is still held, and is held until

wait for /1 can no longer be re-executed.

In general the way in which backtracking in predicates with side effects is handled is

that there is no un-doing, see [EC98]. Thus on backtracking the side effect is performed

again. The only exception to this is thebacktrackable lock /1 predicate, which

releases the lock on backtracking. It is thebacktrackable lock /1 predicate that

allows the lock to be held throughout the execution of deeper code.

If the call to global cal l /1 fails, then we wait until a message appears, or in the case

that all of the threads are waiting, the call towait for /1 will fail. For each concurrent

variable associated with each Prolog thread, there are two Boolean flags, namely the

waiting flag and the awaiting release flag. The waiting flag indicates whether the thread

is currently waiting on the appropriate concurrent variable. The awaiting release flag

is set when all of the threads are waiting and indicates that all the threads should be

released and all of the calls towait for /1 for that variable should fail.

4.4. Semantics 83

lock

global
call

succ

deeper
code

succeed

fail

backtrack

fail

no

wait_for(X)

yes

no

this thread
awaiting

no

succeed

yes

declare

waiting
this not

all

this thread
awaiting

declare
all
awaiting
release

declare
this
waiting

pulse

wait

declare
this not

pulse

waiting

global
retract

unify X

unlock

yes

awaiting
release
flag

pulse

unlock

pulse

global assert

lock

X=B

unlock

release?

waiting?

release?

X=#B

clear this

Figure 4.1: Control flow logic of unification and waitfor

Chapter 5

Case Studies and Performance

Measurement

In this chapter, we consider three case studies which illustrate the use of P#: a dis-

connected shared Prolog database, an object-oriented assistant and a class hierarchy

viewer. We also give a performance measurement taken before the developments re-

ported in the next chapter.

5.1 A Disconnected Shared Database

We now give an example that illustrates the usefulness of our concurrency support in

Prolog. Suppose that we have a central Prolog database that stores a generic set of

facts. Several users are able to connect to this database, and to alter its facts. Each user

can, at any time, disconnect from the database and manipulate their private copy. When

they reconnect, their private copy must be synchronized with the shared database and

with those of all the other connected parties.

Synchronization of two databases consists of determining which, if any, facts conflict;

and in this case asking the user which fact to use. Much of the work in solving this

problem occurs at the Prolog level, and concurrency is useful here. While a user is

85

86 Chapter 5. Case Studies and Performance Measurement

trying to decide which fact is correct, we want to be checking other facts for consis-

tency. Interoperation with C# is useful as we require network communication between

the agents, and we would like a, possibly web based, graphical user interface.

Each predicate can be considered separately. The user can mark some predicates as

being only allowed to have one fact: detecting inconsistencies here is trivial. Also the

user can mark one or more of the arguments of a predicate as being key fields. In this

case there cannot be two facts for that predicate that share the same key. The front-end

can take care of what the facts are supposed to mean.

The central database runs as a server on a Linux machine. This is possible as P# runs

on Mono version 0.26 or higher. Mono is an ‘open source implementation of the .NET

Development Framework’, which runs on Windows and several distributions of Linux.

On starting, the server is passed an XML file, which details the list of predicates al-

lowed, and for each predicate which fields are key fields. Having stored this data in the

Prolog database, it waits for connections from clients.

Each agent runs as a client on a separate Windows machine. The client is able to send

messages to and receive messages from the server by using SSH port forwarding. The

user is able to connect to and disconnect from the server by selecting appropriate menu

items. When disconnected, facts may be asserted in the local copy of the database. On

connecting all these facts are united with the facts on the server, and then conflicts are

detected. For each conflict, the connecting agent asks the user which one of the set of

conflicting facts should be used. When the user has specified this fact, all of the other

facts in the conflicting set are retracted. Finally, the new database is broadcast to all

the currently connected agents.

Conflicts are found as follows. For each predicate we first look to see if there are any

conflicts by searching until the first is found. If there are no conflicts, we move on to

the next predicate. If there are conflicts, then a new thread is forked to form a complete

list of conflicts and to ask the user to choose between the conflicting facts.

Recall that await for /1 call detects when all the remaining threads are waiting for

a certain variable. We exploit this by passing a variable to all forked threads and

5.2. An Object-Oriented Assistant 87

then waiting for that variable on the main thread. This ensures that the main thread

waits until all conflicts have been resolved before it broadcasts the new database to the

agents.

The code which maintains the database and to detect and resolve conflicts is written in

Prolog. The code to manage the GUI and the socket communication is written in C#.

The Prolog and C# code interact using the scheme inherited from Prolog Café. That is,

the C# code can call a Prolog predicate by using a method provided in the P# run-time

system, and the Prolog can call an arbitrary C# method by using the: / 2 predicate or

equivalently thecs method /3 predicate.

5.2 An Object-Oriented Assistant

When a programmer begins learning to use a new C# namespace or Java package, they

have to investigate how the classes interoperate. Often, having constructed an object,

they need to find how to use it. They wish to know, for example, which methods it can

be passed to, or which methods can be invoked upon it. Alternatively, they discover

that they require an object of a certain type and need to find out how to obtain one:

either by using a constructor or by invoking a method that returns an object of that

type.

We discuss our implementation of a tool that allows a programmer to issue queries

on a set of C# namespaces or Java packages. P#’s principal intended use is to couple

a Prolog back-end to a C# front-end. The back-end, in this case, searches a database

representing a namespace: a classic use of Prolog. The front-end consists of a graphical

user interface: a standard use of C#.

If the tool was to be used to investigate only the C# namespaces, then we could use

reflection to search for the fields and for the methods. We want, however, to develop

a generic tool that can be used for multiple object-oriented languages; in particular we

want the tool to search Java packages in addition to C# namespaces.

We now briefly summarize how these requirements are achieved, and then give more

88 Chapter 5. Case Studies and Performance Measurement

details below. First, we compile the C# namespace data or Java package data into a

file containing a set of Prolog predicates representing the types of the methods and

the fields. Two such programs are required: one for C# and one for Java. Both of

these use reflection and are written in C# and Java respectively. Then, in order to avoid

stack overflow, this flat database must be converted into a tree structured database.

Next, these facts are compiled into a set of C# classes, and these classes are compiled

into a Windows DLL. Each namespace or package is compiled into a separate DLL.

Finally, the graphical front-end is executed and the user enters a query. The DLLs

corresponding to the required namespaces are loaded usingload assembly /1 and a

Prolog thread is spawned to execute the search. This thread passes solutions back

to the user interface which displays a list for the user to select from. The solutions

are passed via a synchronized queue. When the user has selected a field or method

to investigate, an instance of the Internet Explorer Web browser is spawned which

displays the documentation for that method or field.

Our database generation program reflects on the fields and methods of a namespace or

package, storing this data in predicates of the form:

• classmember(〈namespace〉, 〈class name〉, static|instance, field,

〈field name〉(〈field type〉)).

• classmember(〈namespace〉, 〈class name〉, static|instance, method,

〈method name〉(〈return type〉, 〈argument types〉,...)).

• interfacemember(〈namespace〉, 〈class name〉, static|instance, field,

〈field name〉(〈field type〉)).

• interfacemember(〈namespace〉, 〈class name〉, static|instance, method,

〈method name〉(〈return type〉, 〈argument types〉,...)).

• derives(〈superclass〉, 〈class〉).

In the case of C# there are additional constructs beyond methods and fields to consider.

C# struct s,enums anddelegate s are treated as classes (which is, roughly speaking,

how they are implemented). Properties are dealt with as fields, however the get and set

methods are also included as methods.

5.2. An Object-Oriented Assistant 89

If we try to compile a large flat database to C# and then compile the corresponding

C# classes into a P# program, we find that the stack overflows when the compiled P#

Prolog program is executed. This is because large disjunctions cause deep recursion.

We solved this problem by writing a Prolog program which takes as input a generic

Prolog database, and converts it into a form which will not cause stack overflow. This

is a significant improvement of P#, as it enables users to query larger databases.

We convert the flat database into a balanced tree. The facts in the database are separated

into those having different predicates. We then choose a number which we refer to as

thearity, and which we will write asα. For each predicate we split the set of facts into

sets containingα nodes each, with the exception that possibly one of the sets contains

less thanα nodes. For each of these sets ofα or less nodes, we create a new clause

which has as its head a newly chosen predicate and has as its body a disjunction of

the members of the set ofα nodes. We then take this new set of clauses, and split it

up into sets containingα nodes, possibly with one of the sets containing less thanα
nodes. We continue constructing this tree until we reach a single node for which we

create a clause having a head which is the predicate name that we started with. This is

best illustrated by an example:

Suppose that we begin with the set of seven clauses in the left hand box of Figure 5.1,

and choose an arity of 2. This is translated into the set of all the clauses in the outer

right hand box. The four boxes inside this outer box correspond to different stages of

the generation algorithm. The names of the predicates in the generated clauses can be

decoded as follows. The first number appended to the original predicate name is the

stage of the algorithm, that is the level in the tree. The second number is the number

of the original clause that the new clause corresponds to.

By entering the above clauses into any Prolog implementation, the reader can verify

that the query?− a(X) . yields the solutions:X = 1, X = 2, X = 3, X = 4, X = 5,

X = 6, X = 7 in that order. The stack no longer overflows as the execution path no

longer involves large disjunctions.

We exploit the concurrency features of P# to allow solutions to the user’s query to be

passed from P# Prolog to C# via a synchronized queue. When a query is entered a

90 Chapter 5. Case Studies and Performance Measurement

a(1).

a(2).

a(3).

a(4).

a(5).

a(6).

a(7).

a_1_1(1).

a_1_2(2).

a_1_3(3).

a_1_4(4).

a_1_5(5).

a_1_6(6).

a_1_7(7).

a_2_1(X) :− a_1_1(X).

a_2_1(X) :− a_1_2(X).

a_2_3(X) :− a_1_3(X).

a_2_3(X) :− a_1_4(X).

a_2_5(X) :− a_1_5(X).

a_2_5(X) :− a_1_6(X).

a_2_7(X) :− a_1_7(X).

a_3_1(X) :− a_2_1(X).

a_3_1(X) :− a_2_3(X).

a_3_5(X) :− a_2_5(X).

a_3_5(X) :− a_2_7(X).

a(X) :− a_3_1(X).

a(X) :− a_3_5(X).

Figure 5.1: Example of the treeification algorithm at work

P# Prolog predicate is called which forks a thread which searches for solutions. This

thread is passed a new uninstantiated variable which is used to coordinate communica-

tion between the P# Prolog and C# threads. The C# code then spawns a new C# thread

which receives the solutions by repeatedly calling theReceive () method.

The user interface allows the user to select one of the following options:

• Find methods: This finds all of the methods in the specified classes or names-

paces.

• Find methods which take arguments (unordered subset): The user enters a subset

of the arguments of the method in any order.

• Find methods which take arguments (unordered): The user enters all of the ar-

guments in any order.

• Find methods which take arguments (ordered): The user enters all of the argu-

ments in the correct order.

• Find methods which return type: The user enters the required return type.

• Find fields: This finds all of the fields in the specified classes or namespaces.

• Find fields of type: The user enters the type of the required fields.

5.2. An Object-Oriented Assistant 91

• Find classes: This finds all of the classes in the specified namespace.

• Find classes which define member: The user enters the name of the member

being sought.

• Find superclasses of: The user enters a class and is given the chain of classes

from that class to the root of the hierarchy.

• Find direct subclasses of: The user enters a class and is given its immediate

subclasses.

Having entered this data, the user may specify a limit on the number of solutions to

be returned and the set of namespaces and/or classes to search. If no namespaces are

specified then the entire database is searched.

Solutions are passed from the P# Prolog thread to the C# thread and are added to a

combobox (see Figure 5.2) as they are received. The user can then select an item of

this box and click on a button which spawns an instance of Internet Explorer with

the appropriate URL for the required item. In the case of C# this URL has protocol

mshelp : / / . In the case of Java the URL is an anchor in a Javadoc generated HTML

file.

The concurrency features of P# were exploited in order to improve efficiency by load-

ing and then priming the databases on starting the application. As soon as the applica-

tion starts the namespace databases are loaded one at a time. When they are all loaded,

they are each primed by issuing a query that has no solution. This querying process has

the effect of causing all of the C# classes in the database to be JIT compiled as each

has to be accessed to ascertain that there is no solution. Because this process takes

several minutes, each namespace database is separately locked by a mutex. When a

query is issued by the user, this mutex is acquired by that process and locked until the

query is completed. Thus, if a query is issued the priming process temporarily stops

and then resumes when the query is completed. This optimization has little effect in

cases where the user issues a query localized to a single namespace. If the query is

over the entire C# API, however, there is a significant speed improvement as a result

of the priming process. In the case of the query shown in the screen-shot, if the query

92 Chapter 5. Case Studies and Performance Measurement

Figure 5.2: Screen-shot of the object-oriented assistant

is entered as soon as the application is started it takes roughly two minutes, and in the

case that we wait for the databases to be primed first it takes two seconds. As a result

of this scheme, the time during which a query is not being executed is not wasted.

Some of the source code for this case study is given in Appendix A.

5.3 A Class Hierarchy Viewer

We discuss an implementation of a tool that allows the part of the Java or C# class

hierarchy surrounding a given class to be displayed. This tool operates as follows. The

user is asked to provide a single class from the C# or Java class hierarchy and is then

provided with a graphical inheritance diagram having their chosen class at the centre.

In this application the Prolog back-end determines a suitable subset of the inheritance

tree and then computes coordinates for each of the lines and text labels. The back-end

then calls C# methods that render these graphically.

We need an algorithm to lay out the tree on the screen. The paper Functional Pearls:

Drawing Trees [Ken96] gives an SML program for drawing trees in an aesthetically

5.3. A Class Hierarchy Viewer 93

pleasing manner. The MLj homepage [MLj] includes full source code and an on-line

demonstration of this program. We first translated the SML program into Prolog by

hand. This task was surprisingly straightforward, because of similarities between the

functional and logical paradigms.

For example the SML type declaration

datatype ’a Tree = Node of ’a ∗ (’ a Tree l i s t)

might have as an instance

Node(5 , [Node(4 , []) , Node(3 , [])]) .

which could be represented in Prolog as

node(5 , [node(4 , []) , node(3 , [])]) .

and the SML function declaration

fun movetree (Node((label , x) , subtrees) , x ’ : rea l) =
Node((label , x+x ’) , subtrees)

can be translated into the Prolog

movetree (node(pa i r (Label , X) , Subtrees) ,
Xprime ,
node(pa i r (Label , XSum) , Subtrees)) :−

XSum is X + Xprime .

Higher-order functions can also be implemented in Prolog. For example, themap func-

tion maps a function and a list to a list containing the list of functional applications of

the function to the items of the list. For example,map(f , [a , b , c]) evaluates to

[f (a) , f (b) , f (c)] . We can implement themap function in Prolog as follows:

map(, [] , []) :− ! .
map(F, [H1|T1] , [H2|T2]) :−

ToCall = . . [F, H1, H2] ,
ca l l (ToCall) ,
map(F, T1, T2) .

94 Chapter 5. Case Studies and Performance Measurement

Figure 5.3: Screen-shot of the class hierarchy viewer

In the Prolog case there is less type safety. Although higher-order programming of this

type is possible in Prolog, it is a functionality that is little used in practice.

We considered various contrived schemes for deciding which nodes to draw. The sim-

plest sensible approach that does not lead to an immense tree always being drawn is to

draw the tree below the class of interest down to a certain depth, and to show the path

to theObject class above the class of interest. We then position the scrollbars so that

the class that we are interested in is central on the screen. If the user clicks on a class

in the tree, the tree is redrawn with that class in the centre.

A screen-shot of the class hierarchy viewer is included as Figure 5.3.

5.4. Performance Measurement Before Optimization 95

5.4 Performance Measurement Before Optimization

5.4.1 Comparison with Other Tools

We benchmarked concurrent P# against the Java-based Prolog systems Jinni 8.48 [Jin],

MINERVA 2.4 and Prolog Caf́e 0.4.4, and against the non-concurrent version of P#,

as shown in Table 5.1.

The bottom row of the table indicates where appropriate the geometric mean average

over the tests of the ratio of the time taken to execute the benchmark with P# to the time

taken to execute the benchmark with the tool heading the column. This is a measure

of the speed of each tool relative to P#.

Some of the original benchmarks supplied with Prolog Café ran too quickly on our

machine for the time to be measured. These benchmarks were replaced by identi-

cal benchmarks with the main code of the benchmark being run repeatedly by a tail-

recursive loop. The second column of the table indicates, where this was done, how

many runs of the benchmark the timing was taken over.

We used Sun’s JVM (Java Virtual Machine), version 1.4.0 for Windows for the tests.

The tests were carried out on a 2 GHz Pentium 4 machine with 512 Mb of memory

running Windows XP Professional. All times are in milliseconds.

We also considered how many benchmarks were better than, worse than and within

5% of the speed of P# in each case. These results are presented in Table 5.2.

The results indicate that, on these benchmarks, P# has a speed comparable with the

Java based tools Jinni and MINERVA, although P# is slower on most of the bench-

marks. P# has a speed roughly double the speed of Prolog Café on average for these

benchmarks.

P# tends to have better performance than other tools on the numerically intensivetak

benchmark, and better or similar performance on list intensive benchmarks such as

nreverse and qsort . This may be due to the efficiency with which C# handles inte-

gers and and head and tail pairs encapsulated in an object.

96 Chapter 5. Case Studies and Performance Measurement

Benchmarks performed by the developers of Prolog Café report [BT99] that MIN-

ERVA 2.0 is 2.2 times slower than Prolog Café 0.4.3 on these benchmarks.

The fact that porting Prolog Café from Java to C# could roughly double its speed of

execution could be due to the typical code generated from Prolog by the tools happen-

ing to be faster as C# than Java. Much of the tools’ implementation consists of a large

number of Java or C# files which are all very similar in structure. It could be that the

Microsoft C# compiler is better optimized for compiling code of this particular nature.

Non-concurrent programs suffer a small loss of performance due to the addition of

concurrency support. This penalty is, in our opinion, acceptable, given the greatly

enhanced possibilities for interoperation with C#, some of which we have presented

in this thesis. Prolog programs that do not involve concurrency experience a relatively

small overhead from these changes. In a concurrent program, the most significant over-

head is due to extra work that must be done when a unification involves a concurrent

variable. In particular, fields of theVariableTerm objects involved may need to be

updated, and a call toglobal assertz /1 made. On the consuming side, after a wait

has been woken it must check the other threads to see if a binding has occurred. It

is, in our opinion, acceptable for there to be an extra overhead when a unification oc-

curs, as the programmer knows that the unification will lead to a message being passed

between threads.

We also investigated the relative sizes of the Java class files and C# executable file.

There was little point comparing the size of the Java and C# source files as they are

very similar. The class files produced by Prolog Café were on average 1.5 times larger

than the executables produced by P#. The Prolog Café Jar file, which contains the

compiled class files for the run-time system, and library is roughly 3 Megabytes in

size. The corresponding file for P#, the DLL, is roughly 1 Megabyte in size.

5.4.2 Speed of Concurrent Operations

Table 5.3 compares the number of operations per second for the four programs de-

scribed below. This value is obtained from the time taken to execute each program

5.4. Performance Measurement Before Optimization 97

Table 5.1: Comparison of P# with other tools before optimization

Benchmark repeat P# Jinni MINERVA Prolog non-
factor time time time Caf́e concurrent

time P# time

boyer 2870 2370 844 3766 2792
browse 1380 1640 724 1052 1130
chatparser ×10 1042 391 104 2932 1062
crypt ×10 68 47 120 250 78
fast mu ×40 156 52 140 297 99
metaqsort ×10 245 312 239 531 224
mu ×80 135 67 120 266 115
nreverse 57 172 94 120 31
poly 10 146 110 146 475 146
prover ×40 125 78 94 401 109
qsort ×20 47 47 99 130 31
queens (8 all) 78 52 167 151 68
queens (10 all) 1703 1177 1386 818 1443
queens (16 first) 1036 594 1172 500 891
query ×10 161 58 125 500 157
reducer 282 130 130 1078 380
tak 406 521 1474 495 365
zebra ×10 469 427 229 589 458

average speed, with P# 1.00 1.36 1.16 0.55 1.13
normalized to 1.00

Table 5.2: Numbers of benchmarks better and number worse than P#

Language Number Number Number with time
better than P# worse than P# within 5% of P#

Jinni 13 4 1
MINERVA 11 6 2
Prolog Caf́e 3 15 0
Non-concurrent P# 14 3 5

98 Chapter 5. Case Studies and Performance Measurement

Table 5.3: Time taken for concurrent operations

Operation time for 10,000 operations normalized
operations in ms per second operations per s

pass integer + 2 arithmetic 8,937 1,119 1.00
global database + 2 arithmetic 8,781 1,139 1.02
local database + 2 arithmetic 2,032 4,921 4.40
2 arithmetic 78 128,200 115

with n = 10,000.

• The first program forks two threads. Each thread waits for a value from the other

thread, increments in, and then passes the incremented value back to the other

thread. Both threads stop when one of them reaches a value ofn. The threads

are started by passing one of them the value 0.

This test measures the time taken for a integer to be passed from one thread

to the other, with an added overhead of two arithmetic operations: namely an

increment and a comparison.

• The second program begins by asserting the structurea(0) on the global

database. It then retrieves this value, increments the integer, retracts the old

value from the database, and asserts the new value. This is repeated until the

integer reachesn.

This test measures the time taken for a structure whose only argument is an

integer to be retracted from and then asserted on the global database, with the

same added overhead of two arithmetic operations as the first program.

• The third program is the same as the second, except that it works on the local

Prolog database, rather than the global database.

• The fourth program starts a counter at 0 and repeatedly increments it until it

reachesn using a tail-recursive loop.

This measures the overhead due to the two arithmetic operations of the first three

programs, and also provides a familiar point of reference.

5.4. Performance Measurement Before Optimization 99

That the first two programs are have similar timings is little surprise, as passing a

message from one thread to another involves an assertion, call and retraction on the

global database. The results indicate that global database accesses are roughly four

times slower than local database accesses. This is due to the need to rebuild terms

from a local database on the global database, and to rebuild terms from the global

database back on a local database; and the need to create a Prolog engine to execute

code on the global database engine. To a lesser extent the slow down is due to the

overhead of acquiring and releasing the monitor lock on the global database.

These results also indicate that passing an integer from one thread to another using

unification and thewait for /1 primitive takes approximately,

8937−78
1
2 ×78

≈ 230

times longer than an arithmetic operation.

5.4.3 Effect of the Number of Threads on Efficiency

We benchmarked a program that multiplies twon×n matrices together in a concurrent

manner. For a given number of threads,t, which dividesn, the matrix is split into

blocks each containingnt rows. Then,t threads are forked, each of which is passed

one of the blocks of rows of the first matrix and the entire second matrix. The threads

each then compute a block of rows of the result. The main thread waits for all of these

blocks to be computed.

The results, forn = 128 are shown in Table 5.4.

This data suggests that the time taken to multiply the matrices is logarithmic in the

number of threads.

Including the outlier att = 32, there is a logarithmic fit to the data with a coefficient

of determination (R2 value) of 0.88. Excluding the outlier, anR2 value of 0.94 can be

obtained indicating a close fit.

100 Chapter 5. Case Studies and Performance Measurement

Table 5.4: Effect of number of threads on concurrent matrix multiply

Number of threads time taken to
t obtain result in ms

1 8,140
2 8,359
4 9,657
8 10,843
16 13,750
32 12,906
64 17,688
128 21,984

Chapter 6

Optimizing P#

6.1 Optimizations in Prolog Caf́e

Much effort has been invested in the optimization of Prolog implementations. Index-

ing [AK91, Han92] is an example of an optimization of the WAM that is used in the

implementation of Prolog Café and is therefore also used in P#. Indexing involves

using an argument of a predicate as an key. A WAM instruction namedswitch on term

is given four locations to jump to depending on whether the argument is a variable,

constant, list or structure. Other extra instructions narrow the search further.

First Call Optimization was discussed earlier, on page 74. Again, P# inherits this

optimization from Prolog Café.

Prolog Caf́e and P# prevent, in most cases, excessive use of the Java or C# call stack

by running code with a supervisor function, also known as a trampoline.

6.2 Other Optimizations in Existing Tools

The Vienna Abstract Machine (VAM) [KN90] is an optimization of the WAM. The

VAM performs the setup for the arguments of a goal and the actual unification with a

101

102 Chapter 6. Optimizing P#

head in one instruction. Two variants of the VAM are described in [KN90]: the VAM2P

and the VAM1P. The VAM2P is more suited to an intermediate code implementation

of Prolog and the VAM1P is more suited to a native code compiler.

SICStus Prolog treats theif −> then ; else construct specially, converting it to a

branch and thereby removing the backtracking overhead. There are restrictions on

what the test can be for this optimization to be performed. This optimization is also

applied to a predicates whose clauses, except for the last, are guarded. Guarded clauses

are those of the form:

Head :− Guard , ! , Body .

The optimization is only used when the guards fall into a restricted range of predicates.

SICStus Prolog and Quintus Prolog [Qui] also perform Last Call Optimization (LCO).

This reclaims the a predicate’s temporary storage just before the final goal in a clause.

This can only be done when there can be no further backtracking within that predicate

call.

Ciao Prolog [Cia] allows the programmer to declare ‘data facts’, which can be shared

between threads, and more quickly updated and retrieved than with a standard Prolog

database.

Some systems, such as Mercury, exploit extra information provided by the program-

mer or inferred from the program in order to improve efficiency. Examples of such

information are modes, types and determinacy.

Various optimizations have been proposed for parallel logic languages. These include

the Last Parallel Call Optimization [XPGC94], which is a generalization of LCO to

parallel processors that can be used to speed-up and-parallel languages. This opti-

mization is used when a parallel conjunction contains a goal which matches a clause

with a parallel conjunction at the end of its body. The knowledge that predicates are

deterministic can be used in other ways to improve efficiency of languages such as

&-Prolog.

6.3. Further Optimization of P# 103

6.3 Further Optimization of P#

In this chapter, we discuss a major optimization of P#. This optimization is based on

the exploitation of semi-deterministic predicates. A predicate issemi-deterministicif

it always either fails or succeeds with exactly one solution. If a predicate is semi-

deterministic then there may be backtracking from one clause of the predicate to the

next, if an earlier clause fails at some point. A semi-deterministic predicate which only

calls other semi-deterministic predicates has the property that an individual clause will

not be executed more than once by backtracking. In such cases we can do away with

the Prolog stacks, which govern backtracking, and simulate in C# the fairly simple flow

of control which is permitted for such a predicate. A predicate isnon-deterministicif

it may produce more than one solution.

A more specific class of predicates than the semi-deterministic predicates is that of

thedeterministicpredicates. A predicate is deterministic if it always succeeds exactly

once. Deterministic predicates occur frequently in idiomatic Prolog. Often, they are

the result of coding a function in Prolog. When one wishes to code a predicate which

will be used as a function, one generally expresses this as a Prolog predicate, some

of whose arguments areinput arguments, with the other arguments beingoutputargu-

ments. Input arguments are arguments which are known to be instantiated on entry into

the predicate, and output arguments are those which are not instantiated on entry into

the predicate, but which will be instantiated on exit from the predicate. The property

of an argument of being input or output is referred to as itsmode.

Developer experience suggests that these functional predicates often perform some

simple utility, that is, they frequently occur as leaf predicates. Such a predicate might,

for example, concatenate two lists, or takes as arguments integersm andn and return

the list of integers:[m,m+ 1, . . . ,n−1,n]. Another feature of leaf predicates is that,

often, they are called frequently. Thus, if we can reduce the time taken to execute such

predicates, we may effect a significant optimization.

104 Chapter 6. Optimizing P#

6.4 Idiomatic Compilation

We now discuss how the compilation scheme presented in the preceding chapters can

be changed so that certain predicates are compiled to C# code that is closer to the code

which a C# developer would have produced. This new compiler has several phases.

The first phase compiles each predicate into an abstract syntax tree representation of a

C# class containing a method calledid iomat ic () which consists of a block for each

clause. Within each block, input variables are first extracted from the arguments, then

each goal is executed in turn and finally output variables are copied back into the argu-

ments. The second phase attempts to convert any recursive calls in theid iomat ic ()

method into jumps back to the first block of the idiomatic method. If this proves pos-

sible, the third phase attempts to convert the body of the method into awhile loop.

The fourth phase then performs a liveness analysis, and the final phase converts the

abstract syntax tree to C# code. The abstract syntax representation of C# just after the

first phase can also be converted to C# code. Thus, we will be able to give an example

of the state of the code at that stage.

We will refer to predicates which are compiled to more idiomatic C# asidiomatic

predicates, and to those which continue to use the original compilation scheme as

non-idiomatic predicates. If we are going to translate some semi-deterministic predi-

cates into more idiomatic C#, then we will find that when control passes from a non-

idiomatic predicate to an idiomatic predicate, the arguments must be converted ac-

cordingly. A significant improvement in efficiency should be obtained if idiomatically

compiled predicates work with nativein t s rather than withIntegerTerms. Thus,

when calling an idiomatic predicate which uses integers, from non-idiomatic code we

should convert theIntegerTerms to in t s. In order to call a non-idiomatic predicate

from an idiomatic one, we would have to start a new Prolog interpreter—which would

lead to an unacceptable performance penalty.

In light of the above, it seems sensible to idiomatically compile a large a slice as

possible at the bottom of the call stack. Thus, whenever a non-idiomatic predicate

calls an idiomatic one, we convert its arguments; and an idiomatic predicate never calls

6.4. Idiomatic Compilation 105

a non-idiomatic one. When an idiomatic predicate calls another idiomatic predicate

there is also sometimes a need for the conversion of arguments, for example, when a

predicate passes anint to a predicate which takes aterm as an argument.

The exec () method of a non-idiomatic predicate is replaced in the idiomatic case by

a method similar to the following which calls theid iomat ic () method.

public override Predicate exec (Prolog engine) {
in t outarg3 = 0;
bool success = id iomat ic ((arg1 . Dereference ()) ,

((IntegerTerm) (arg2 . Dereference ())) . value () ,
out outarg3) ;

i f (success) {
arg3 . Unify (new IntegerTerm (outarg3) , engine . t r a i l) ;
return cont ;

} else
return engine . f a i l () ;

}
}

Arguments are always dereferenced before being passed on to theid iomat ic ()

method, as they may beVariableTerms instantiated to some other type of term. Also

observe thatIntegerTerms are converted to nativein t s when that argument of the

predicate is declared to be anint. If the argument is declared to be aterm, no conver-

sion is necessary. Floats and atoms are also treated in this way. Theexec () method

shown above illustrates the restriction of idiomatic compilation to semi-deterministic

predicates. The predicate can either fail or instantiate some of its arguments to new val-

ues. This is the only interaction the idiomatic predicate can have with the predicates

above it in the call tree. Thus, there cannot be calls to the standard Prologassert /1

predicate or to other database modification predicates.

In order to call an idiomatic version of a predicate from another idiomatic predicate

it is essential that we know its type and mode signature. Thus, when multiple files

are compiled at different times, it is necessary for each file to see the type and mode

signatures of the others.

106 Chapter 6. Optimizing P#

6.4.1 Generating Näıve Idiomatic Code

We now discuss the first phase of the translation into idiomatic code. This produces

code which despite being more recognizable as C# code is still not particularly id-

iomatic.

In the following, we assume that each clause of a predicate which is to be idiomatically

compiled is a conjunction of goals. Some disjunctions can be converted into an equiv-

alent predicate definition with more clauses. Other disjunctions and the if-then-else

construct can be compiled by creating dummy predicates. See the section 6.4.6 for a

discussion of dummy predicates.

A semi-deterministic predicate executes as follows. The first head goal which matches

the calling query is found and then that clause begins to execute. If the end of the

clause is reached with all the goals having succeeded then the predicate succeeds and

exits at that point. If at any point one of the conjoined goals fails, and we have not

encountered a cut, then we backtrack to the call to the predicate and execute the next

clause that matches the calling query. If one of the goals fails and we have encountered

a cut, then the predicate fails at that point. When all the matching clauses have been

tried and have failed, the predicate fails and the call returns.

Figure 6.1 illustrates this control flow. The thick horizontal lines represent the execu-

tion of the different clauses of the predicate. The lines beginning in the middle of the

horizontal lines indicate control flows which can occur between goals in the clause.

The lines beginning at the end of the horizontal lines indicate control flows which can

occur just after the final goal of the clause, that is, success.

The difference with a predicate that may produce more than one solution because it

calls predicates which themselves may have more than one solution, is that there may

be backtracking to before a previous goal within a clause. This greatly complicates the

control flow.

There are several ways in which this can be implemented. The most elegant imple-

mentation approach is probably to use exceptions. Each clause is compiled into at ry

block and a failure manifests itself as an exception throw. Thecatch block is either

6.4. Idiomatic Compilation 107

clause 1

clause 2

final clause

(no cut)
fail

fail
(no cut)

FAIL

SUCCEED

Figure 6.1: Control flow for a semi-deterministic predicate that only calls other semi-

deterministic predicates

empty, allowing control to pass to the nextt ry block; or contains the code for the next

clause. The use of exceptions does, however, carry a performance penalty, and since

our main objective is to improve efficiency, this is unacceptable. Such an approach

would produce code similar to the following:

public bool id iomat ic (. . .) {
/ / clause 1
t ry {

i f (! clause 1 goal 1 ())
throw new FailException () ;

i f (! clause 1 goal 2 ())
throw new FailException () ;

return true ;
} catch (Fai lException) {
}
/ / clause 2
t ry {

i f (! clause 2 goal1 ())
throw new FailException () ;

return true ;
} catch (Fai lException) {
}
return false ;

}

108 Chapter 6. Optimizing P#

Another approach would be to usedo . . . while (false) blocks. Each clause

would be compiled into such a block, which executes its contents exactly once. We

would then use the C#break statement to jump to the next block from the middle of a

block. This is a dishonest approach, in that thedo . . . while construct is not intended

to be used in this way. If we were translating to Java, this is probably the approach that

would be used. Such an approach would produce code similar to the following:

public bool id iomat ic (. . .) {
/ / clause 1
do {

i f (! clause 1 goal 1 ())
break ;

i f (! clause 1 goal 2 ())
break ;

return true ;
} while (false) ;
/ / clause 2
do {

i f (! clause 2 goal1 ())
break ;

return true ;
} while (false) ;
return false ;

}

A final approach, and the one for which we opted, is to use thegoto construct. The

goto construct is shunned by many because of its tendency to produce unstructured

code. For an example of this point of view, see [Dij68]. However, it is arguably

acceptable to use thegoto construct in a tightly controlled structured way, see [Knu74].

Indeed the C# language places significant restrictions on the use of thegoto construct.

It is not permitted to jump into a different block, for example. In particular it is not

permitted to jump into or out of a loop. Thus, this is both an honest and flexible

approach.

We structure the code in the following way. Each clause is compiled into a block of

C# code. Each block is preceded by a label of the formclause1, clause2, . . ., and so

on.

6.4. Idiomatic Compilation 109

The method that is generated is similar to the following. In this example, the second

of the three goals of the first clause is a cut.

public bool id iomat ic (. . .) {
bool cut = false ;
clause1 : {

. . . / / in arguments dealt with
i f (! clause 1 goal 1 (. . .))

goto clause2 ;
cut = true ;
i f (! clause 1 goal 3 (. . .))

goto clause2 ;
. . . / / out arguments dealt with
return true ;

}
clause2 : {

i f (cut) goto f a i l ;
. . . / / in arguments dealt with
i f (! clause 2 goal 1 (. . .))

goto f a i l ;
. . . / / out arguments dealt with
return true ;

}
f a i l : {

/ / out arguments set to default values
return false ;

}
}

The declaration of the idiomatic method should reflect which arguments are input argu-

ments and which are output arguments. For example, if we are considering a predicate

of arity two, whose first argument is an input argument, and whose second argument is

an output argument, and both are integers, then we can use the following declaration:

public stat ic bool id iomat ic (in t arg1 , out in t arg2)

The first thing that must be done in each clause block is to find whether that clause

matches the arguments that have been passed to the predicate. In this stage, we also

want to unpack any lists or structures and extract the values of input variables embed-

ded in such structures.

110 Chapter 6. Optimizing P#

For each argument of the predicate, we recurse through the structure of the argu-

ment, keeping track at each point of the path through the structural tree of that ar-

gument to the current point. Thus, on encountering the head:p(f ([X|Y] , 5)) ,

when processing the first argument, on reaching the variableY we have a path of

l i s t (t a i l , s t ruc ture (f /2 , 1 , arg (1))) . This means that we start with the

first argument. This is a structure with functorf /2 , we take its first argument. This is a

list, and we take its tail. In the C# code this is translated into:Term Y = arg1 [1] . Ta i l .

In reaching this point, we will have already generated code which checks that the first

argument really does have a functor off /2 , and that its first argument is a list. The

code, assuming that it occurs in the first clause, is as follows:

i f (arg1 . Functor () == nul l) goto clause2 ;
i f (! (arg1 . Functor () . Equals (” f ”)) goto clause2 ;
i f (arg1 . A r i t y () != 2) goto clause2 ;
i f (! arg1 [1] . I s L i s t ()) goto clause2 ;

These i f statements, which share athenclause, will be combined into one neati f

statement in a later phase.

When the value of 5 is reached a C# statement is produced which tests that this part of

the argument is 5:i f (! (arg1 [2] . Equals (5))) goto clause2 ; .

In order that all this works, the classTerm in the run-time system of P# is extended with

several methods and properties. TheHead and Ta i l properties return the head and tail

of a ListTerm, failing with an exception if passed something other than aListTerm.

TheTerm class becomes an indexer, so that if theTerm, t , is a StructureTerm, then

t [2] returns the second argument of the structure. Methods calledFunctor () and

Ar i t y () are added to allow the string valued functor and arity of a structure to be

determined.

An Equals (s t r i ng s) method is added to theTerm class. This returns true if the

Term is a SymbolTerm representing a symbol with functors and arity 0. A similar

method is provided, which deals with integers. Finally anEquals (Term t) method is

provided, which performs a content equality test.

6.4. Idiomatic Compilation 111

Next, all of the variables which might be used within the clause are declared and those

which are input values are initialized to the arguments passed to the idiomatic method.

As the clause is a conjunction of goals, each is executed in turn, using agoto to jump

to the next clause if a goal fails. At the point that a cut occurs a Boolean variable called

cut, which is initially set to false, is set to true. At the start of each clause after the first,

we test thecut variable, and return false ifcut is true, indicating that the predicate has

failed. If there are any output arguments, then they must be set to default values before

the method returns, thus in order to fail we jump to a block at the end of the method

labelled f a i l : .

For example, ifa/2 is idiomatic, then the calla(1 , 2) is translated to:

i f (! Predicates . A 2 . id iomat ic (1 , 2)) goto < nextclause >;

When calling a C# method, some of whose arguments are markedout or ref , it is

necessary to include the sameout or ref keyword in the call. Thus, ifa/3 is idiomatic,

with mode signaturemode (a(in , in , out)) then a call toa/3 may be similar

to the following:

i f (! Predicates . A 3 . id iomat ic (Term. ToInt (X) ,
new IntegerTerm (Y) ,
out Z))

goto < nextclause >;

Some type conversions may be necessary. In this case, the variableX is anIntegerTerm

in the calling method, but anin t in the methodA 3 . id iomat ic () . The variableY is

an int in the calling method and anIntegerTerm in the methodA 3 . id iomat ic () .

When one of the arguments being passed to the predicate being called is anout argu-

ment which is a structure, for example a call tocal lee predicate (a(X, [Y|Z])) ,

we need to create a dummy variable to hold the result. This code fragment is translated

into something similar to the following:

112 Chapter 6. Optimizing P#

Term formal goal1 arg1 ;
i f (! (Predicates . CalleePredicate . id iomat ic (

out formal goal1 arg1))) {
goto f a i l ;

}
i f (! (((formal goal1 arg1) . Functor () != nul l

&& ((formal goal1 arg1) . Functor ()) . Equals (”a”)
&& (formal goal1 arg1) . A r i t y () == 2
&& ((formal goal1 arg1) [2]) . I s L i s t ()))) {

goto f a i l ;
}
Z = ((formal goal1 arg1) [2]) . Ta i l ;
Y = ((formal goal1 arg1) [2]) . Head;
X = (formal goal1 arg1) [1] ;

We translate the Prolog relational infix predicates:=:=/2, =\=/2, </2, =</2, >/2 and

>=/2 directly into their corresponding C# operators which have the same semantics.

The infix is /2 predicate instantiates an uninstantiated variable on its left hand side to

the result of evaluating the arithmetic expression on its right hand side. If the term on

the left hand side of theis /2 predicate is instantiated thenis /2 acts in the same way

as =:=/2. That is, it tests for equality. Thus, depending on the state of instantiation

of the left hand side we need to translate a call tois /2 to either an assignment or an

arithmetic comparison. In order for it to be able to make this decision the compiler

keeps track of the state of knowledge regarding whether variables are instantiated or

not throughout the course of the execution of the clause. At the beginning of the

clause we know thatin arguments are fully instantiated and thatout arguments are

uninstantiated variables. If during the course of the execution of the clause a predicate

is called all of whose arguments are eitherin arguments orout arguments, then we

know that all the arguments are instantiated after the call. If a variable occurs which

has not previously appeared at all in either the head or a previous goal to the one under

consideration, we know that this variable is uninstantiated.

A similar issue arises with the translation of the unification infix predicate,=/2. We

recurse through the structure of the term on both sides of the unification, failing at any

point if we find unmatched functors.

6.4. Idiomatic Compilation 113

If we have a compound term on one side and on the other side we have a term which is

not compound and also not a variable, an integer for example, the unification will fail

and we translate it to a jump to the next clause. If we reach a fully instantiated variable

on one side and a fully instantiated compound term on the other, we translate this into

an equality test. If one side is a fully instantiated variable and the other is a partially

instantiated compound term, for example:

Y = f (1 , 2) ,
f (A, B) = Y.

then this is a situation similar to that encountered when arguments to a clause are un-

packed at the beginning of the clause. Indeed, we use this unpacking code to generate

the following:

i f (! (((Y) . Functor () != nul l &&
((Y) . Functor ()) . Equals (” f ”) &&

(Y) . A r i t y () == 2))) {
goto < nextclause >;

}
Term A = (Y) [1] ;
Term B = (Y) [2] ;

If there is an uninstantiated variable on one side and a compound term on the other, we

translate this into an assignment, where the compound term is assigned to the variable.

The only remaining cases are those where neither side is a compound term. If we

know that both of the terms are instantiated variables or ground terms, we test them

for equality, succeeding if they are equal and failing if they are not. If we know that

one side is instantiated and the other is an uninstantiated variable, then we assign the

instantiated value to the uninstantiated variable. Finally, if both sides are uninstantiated

variables we currently fail to idiomatically compile the predicate. This situation occurs

rarely, and a translation which changed all of the following occurrences of one of the

variables into the other could lead to aliasing problems if another predicate was called

with these two variables.

After all of the goals have been executed, we need to assign the values held by variables

representing output arguments to the output arguments of the idiomatic method. The

114 Chapter 6. Optimizing P#

idiomatic method returns true or false on success or failure respectively.

At this stage of the compilation process, the following predicate, which can be used to

find the length of a list,

len ([] , Z, Z) .
len ([|T] , A, Z) :−

A1 is A + 1 ,
len (T, A1, Z) .

has been translated into the following code:

namespace JJC. Psharp . Predicates {

using JJC. Psharp . Lang ;
using Predicates = JJC. Psharp . Predicates ;

public class Len 3 : Predicate {

public Term arg1 , arg2 , arg3 ;

public Len 3 (Term a1 , Term a2 , Term a3 ,
Predicate cont) {

arg1 = a1 ;
arg2 = a2 ;
arg3 = a3 ;
this . cont = cont ;

}

public Len 3(){}
public override void setArgument (Term [] args ,

Predicate cont) {
arg1 = args [0] ;
arg2 = args [1] ;
arg3 = args [2] ;
this . cont = cont ;

}

public stat ic bool id iomat ic (Term arg1 , in t arg2 ,
out in t arg3) {

bool cut = false ;
clause1 : {

6.4. Idiomatic Compilation 115

i f (! ((arg1) . Equals (” [] ”))) {
goto clause2 ;

}
in t Z = arg2 ;
cut = true ;
arg3 = Z;
return true ;

}
clause2 : {

i f (! ((arg1) . I s L i s t ())) {
goto f a i l ;

}
Term 1 = (arg1) . Head;
Term T = (arg1) . Ta i l ;
in t A = arg2 ;
in t Z;
i f (cut) {

goto f a i l ;
}
in t A1 = (A + 1) ;
i f (! (Predicates . Len 3 . id iomat ic (T,

A1, out Z))) {
goto f a i l ;

}
arg3 = Z;
return true ;

}
f a i l : {

arg3 = 0;
return false ;

}
}

public override Predicate exec (Prolog engine) {
in t outarg3 = 0;
bool success = id iomat ic (

(arg1 . Dereference ()) ,
((IntegerTerm)

(arg2 . Dereference ())) . value () ,
out outarg3) ;

i f (success) {
arg3 . Unify (new IntegerTerm (outarg3) ,

116 Chapter 6. Optimizing P#

engine . t r a i l) ;
return cont ;

} else
return engine . f a i l () ;

}

public override in t a r i t y () { return 3; }

public override s t r i ng ToString () {
return ” len (” + arg1 + ” , ” + arg2 + ” , ” +

arg3 + ”) ” ;
}

}

}

6.4.2 Coalescing Adjacentif Statements

The way in which structures and lists are unpacked in the initial processing for each

clause leads to a number ofi f statements all of which branch to the same place (the

next clause) and have noelse clause. In order to rewrite the code as awhile loop

where possible, it helps to rewrite thesei f statements as a singlei f statement.

Written in the intermediate language, thei f statements are of the form:

i f (not (Cond1) , goto (nextclause))
i f (not (Cond2) , goto (nextclause))
. . .
i f (not (Condn) , goto (nextclause))

These are equivalent to thei f statement:

i f (not (Cond1) | | not (Cond2) | | . . . | | not (Condn) ,
goto (nextclause))

where | | is the or shortcut operator, which stops evaluating its arguments when it

becomes apparent what the final result will be.

6.4. Idiomatic Compilation 117

By considering all of the possible execution paths it can be shown that De Morgan’s

rule applies, despite the use of the shortcut operators, and that thisi f statement is

equivalent to the more succinct statement:

i f (not (Cond1 && Cond2 && . . . && Condn) ,
goto (nextclause))

When the initial unpacking code, in the intermediate language, of the clause block is

generated thei f statements are often separated by declarations of variables. Typically,

these declared values are used in the conditions of lateri f statements as well as in the

subsequent code.

We could coalesce onlyi f statements which are adjacent, leading to severali f state-

ments separated by declarations of variables. We want, however, all of thei f state-

ments in the prologue to collapse to a singlei f statement, so that it may be possible

to rewrite some of the blocks as awhile loop. This can be achieved by collecting all

of the i f statements together. It is necessary not to use the declared variables in the

i f statements, but rather to extract the values directly from the arguments again each

time they are required in the condition of ani f statement. This results ini f conditions

which are longer and also degrades performance slightly. Both of these penalties are

acceptable, we feel, if the code can be written as awhile loop.

6.4.3 Tail-Recursion Converted to Iteration

Often a predicate will contain a recursive call. In this case we have to decide between

translating the call into recursion or iteration in the C# code. Recursion is easier from

an implementation point of view, however iteration is preferable as it avoids the risk of

stack overflow and is often more efficient. The only case where translation to iterative

code can be done in a natural way is when the recursive call occurs as the final goal of

a clause. This is because at such a point we can merely jump back to the first clause

having modified the arguments appropriately and maintain the same semantics for the

code. Fortunately, for efficiency reasons, tail-recursion is the most common form of

recursion in Prolog code.

118 Chapter 6. Optimizing P#

In order to translate a recursive call into iterative code, it is also necessary that any

output argument in the head of the tail-recursive clause, is matched by an identi-

cal output argument in the recursive call itself. For example, if we have a pred-

icate p/2 where only the second argument is an output argument, then the clause:

p(X, Y) :− X1 is X − 1 , p(X1, [Y]) cannot be converted to iterative code

(using the current scheme), whereasp(X, Y) :− X1 is X − 1 , p(X1, Y) can.

In this latter case the code generated for the recursive call, prior to liveness analysis

and rewriting as awhile loop, will be: arg1 = X1; goto clause1 ; .

The conversion to iteration would not be performed by the C# compiler if it were not

performed by the idiomatic code generator.

6.4.4 Rewriting Blocks as awhile Loop

In cases where the tail-recursion optimization has been applied, the intermediate code

generated often contains code of the following form (where we write the code in its C#

form):

clause1 : {
i f (< Condition >) goto clause2 ;
< Code Block 1 >
return true ;

}
clause2 : {

< Code Block 2 >
goto clause1 ;

}

Code of this form can be rewritten as the following, provided that there are no other

goto statements in the code:

while (< Condition >) {
< Code Block 2 >

}
< Code Block 1 >
return true ;

6.4. Idiomatic Compilation 119

Note that there is no code before thei f statement inclause1 because of the way we

have coalesced thei f statements and collected them at the beginning of the block.

If there were we would have difficulties with scopes of variables, because such code

would have to appear both before and within thewhile loop. We would also run into

difficulties when considering tail-recursive predicates which have more than one base

case.

The rewrite can be performed because thewhile loop above can be rewritten as:

loop : i f (!< Condition >) goto end ;
< Code Block 2 >
goto loop ;

end : < Code Block 1 >
return true ;

which can be rewritten as:

loop : i f (< Condition >) goto L ;
< Code Block 1 >
return true ;

L : < Code Block 2 >
goto loop ;

Usually, there are othergoto s, namely statements of the form

i f (cut) goto f a i l ;

which occur in the C# code for all but the first clause. Since thef a i l : block is usually

small, it is acceptable to in-line this block wherever agoto f a i l occurs.

We refer to a clause which ends in a tail-recursive call as astep case, and any other

clause as abase case. Recursive predicates which have two clauses tend to have a base

case as their first clause and a step case as their second clause, as above. If a recursive

predicate has more than two clauses, it is usual for the predicate to be in the form of

a number of base cases followed by a number of step cases. Even when this is not

the case, it is common for the clauses to be mutually exclusive, that is, for any set of

120 Chapter 6. Optimizing P#

arguments, only one clause can match. In this case, we can re-order the clauses so that

all of the base cases come before all of the step cases.

A predicate with a number of base cases followed by a number of step cases is first

translated into code which has the following general form:

/ / base cases
clause1 : {

i f (< Condition B1 >) goto clause2 ;
< Code Block B1 >
return true ;

}
clause2 : {

i f (< Condition B2 >) goto clause3 ;
< Code Block B2 >
return true ;

}
/ / . . . more base cases . . .
clause< n >: {

i f (< Condition Bn >) goto clause< n+1 >;
< Code Block Bn >
return true ;

}

/ / step cases
clause< n+1 >: {

i f (< Condition S1 >) goto clause< n+2 >;
< Code Block S1 >
goto clause1 ;

}
clause< n+2 >: {

i f (< Condition S2 >) goto clause< n+3 >;
< Code Block S2 >
goto clause1 ;

/ / . . . more step cases . . .
clause< n+m >: {

i f (< Condition Sm >) goto f a i l ;
< Code Block Sm >
goto clause1 ;

}

f a i l : {

6.4. Idiomatic Compilation 121

< Fa i l Block >
return false ;

}

This can be re-written as the following code:

while (< Condition B1 > && < Condition B2 > &&
. . . && < Condition Bn >) {

i f (!< Condition S1 >) {
< Code Block S1 >

}
else i f (!< Condition S2 >) {

< Code Block S2 >
}
. . .
else i f (!< Condition Sm >) {

< Code Block Sm >
}
else {

< Fa i l Block >
return false ;

}
}
i f (!< Condition B1 >) {

< Code Block B1 >
}
else i f (!< Condition B2 >) {

< Code Block B2 >
}
. . .
else i f (!< Condition Bn >) {

< Code Block Bn >
}
return true ;

This re-write is only applied when none of the code blocks contain any jumps to blocks

other than the fail block. Jumps to the fail block are in-lined. Sometimesi f statements

are coalesced or moved to the beginning of the block in order to make the re-write

possible.

122 Chapter 6. Optimizing P#

Observe that the situation where we have just base cases is not a special case of this

scheme because of the way in which the final clause block would branch to the fail

block. Indeed, there is nothing to be gained from applying the re-write in this case,

and in fact the most logical extension to this case results in rather odd code. Thus, in

this case we do not apply the re-write.

One major impediment to the generation ofwhile loops is instances where there are

other branches to the next clause within the code for a clause. This occurs when a

non-tail-recursive call is made at some point in the body of one of the clauses. This

is not a problem, provided that the non-tail-recursive call cannot fail. If it cannot fail,

then thegoto will never be executed. Thus, we have a motivation for distinguishing

deterministic predicates from those that are merely semi-deterministic.

6.4.5 Liveness Analysis

The code produced by the above tends to have more variables than are necessary. Often

code similar to the following is produced.

in t X = arg1 ;
in t 1 = arg2 ;
in t Z;
Z = X + 1;
arg1 = Z;

where 1 is never used. This can be replaced byarg1 = arg1 + 1 by applying live-

ness analysis [App98] to the code. This is a standard technique which involves analyz-

ing which variables are live at the same time at each point during the execution of the

program. If two variables are never live at the same time, then one of the variables can

be consistently changed to the other.

A control flow graph is generated, then the set of liveness equations is solved iteratively

with the order of nodes being the reverse of the order that statements were encountered

in the generation of the control flow graph. This significantly reduces the number

of steps needed to solve the equations. Then for each type, an interference graph is

6.4. Idiomatic Compilation 123

generated for the variables of that type, and coloured with the argument variables:

arg1, and so on, pre-coloured. A map is then obtained which maps the set of variables

to a smaller set of variables, and this map is applied to the code being rewritten and

the number of variables used is usually decreased. There is practically no limit to

the number of registers available, so during the colouring we start with the node of

minimum degree and work up to the node of maximum degree. Finally, dead code,

including assignments of the formx = x are removed.

We also strip out statements involving thecut variable, if they are superfluous. The

id iomat ic method always begins with the statementbool cut = false ; , and the

only other statements involvingcut that can occur in the code arecut = true ; and

i f (cut) goto If we find a example of the latter which can never be proceeded

by an instance ofcut = true ; then we remove thati f statement.

Using thewhile loop rewrite and liveness analysis, thelen /3 predicate, which we

mentioned earlier:

len ([] , Z, Z) .
len ([|T] , A, Z) :−

A1 is A + 1 ,
len (T, A1, Z) .

has the idiomatic method shown below:

public stat ic bool id iomat ic (Term arg1 , in t arg2 , out in t arg3) {
while (! (((arg1) . Equals (” [] ”)))) {

i f (! (((arg1) . I s L i s t ()))) {
arg3 = 0;
return false ;

}
arg1 = (arg1) . Ta i l ;
arg2 = (arg2 + 1) ;

}
{

arg3 = arg2 ;
return true ;

}
}

124 Chapter 6. Optimizing P#

The extraneous brackets,{ and}, at the end of this method are necessary in some

cases in order to avoid a difficulty with C#’s variable scoping rules. Notice also that

the liveness analysis has determined that the head ofarg1 should be removed, and that

arg2 should be incremented in each iteration of the loop.

6.4.6 Compiling Disjunctive Constructs and thenot Construct

Recall that to compile the disjunction operator, denoted by; and the if-then-else con-

struct, (i f) −> (then) ; (else) we need to create dummy predicates. Similarly

for thenot construct:not (.) or \+(.) .

For example, the predicate

a(X, Y) :− b , (c (X) ; d(Y)) , e .

would be converted into

a(X, Y) :− b , dummy a 2 1(X, Y) , e .
dummy a 2 1(X, Y) :− c (X) .
dummy a 2 1(X, Y) :− d(Y) .

This is exactly what Prolog Café does to simplify its compilation algorithm. However

we have an additional problem. We will refer to a predicate ina’s position as the

calling predicate. If we are to compile the calling predicate idiomatically, we must

also compile the dummy predicate idiomatically. Thus, we need to know the modes

and types of the arguments of the dummy predicate. If we cannot infer some of the

types, we can use the generic type,term. However, if some of the modes cannot be

inferred from the calling clause we have to abandon the idiomatic compilation of the

calling predicate.

An argument markedin is assumed to be fully instantiated on entry into the relevant

predicate. An argument markedout is assumed to be an uninstantiated variable on

entry into the relevant predicate and fully instantiated on exit from the predicate if the

predicate succeeds.

6.4. Idiomatic Compilation 125

We use the original P#/Prolog Café predicates which take as input a clause possibly

containing disjunctive constructs or thenot construct, and return a modified clause

together with a set of new dummy clauses, neither of which contain these constructs.

For each argument in a call to a dummy predicate, we try to infer either that it can be

given thein mode or that it can be given theout mode.

If all of the variables occurring in the argument occur as part ofin arguments in the

calling predicate, then we can infer that the argument to the dummy predicate is anin

argument.

With the above definitions of thein and theout modes, any variable which has occurred

in a previous goal in the same clause is known to be fully instantiated. This is because

if it is an in argument it is known to have been instantiated before the earlier goal, and

the goal cannot uninstantiate it. If it is anout argument it is known to be instantiated

after the earlier goal, and no subsequent goal in the relevant clause can uninstantiate

it. Therefore if all of the variables occurring in an argument in the call to the dummy

predicate

1. occur asin arguments in the head of the calling predicate; or

2. occur earlier in the body of the calling clause

then we can infer that that argument to the dummy predicate is anin argument.

We can infer that a single variable argument of a dummy predicate is anout argument

when it:

1. is anout argument of the calling predicate; and

2. is known to be uninstantiated on entry into the dummy predicate; and

3. is known to be instantiated on exit from the dummy predicate.

We can infer condition 2 when the variable does not occur earlier in the calling clause.

We can infer condition 3 when the variable does not occur later in the calling clause,

since it must be instantiated when the clause exits. We can also infer condition 3 when

the variable occurs in the directly following goal as anin argument.

126 Chapter 6. Optimizing P#

This only leaves two cases where an inference cannot be made from the above:

The first such case is where there is more than one variable embedded in the argument

to the dummy clause and they are not all input variables.

The second case is where the argument is a single variable which:

1. is anout argument of the calling predicate; and

2. does not occur earlier in the calling clause; and

3. occurs later in the calling clause, but not as an input argument of the directly

following goal.

In this case we can look at the predicates involved in the disjunction ornot construct.

In the construct:b(X) ; c (X) , whereX is an input argument of bothb/1 andc /1 , X

must be an input argument of the dummy predicate. If it is an output argument of both,

thenX must be an output argument of the dummy predicate. If one is an input argument

and the other is an output argument we cannot infer either mode and therefore cannot

compile such code.

The construct:\+(a(X)) has to haveX as an input argument since thenot con-

struct cannot instantiate its variables. This is because this construct is equivalent to

(a(X) , ! , f a i l) ; true .

The construct:a(X) −> b(X) is equivalent to

(a(X) , ! , b (X)) ; f a i l .

If X is an input argument ofa/1 or of b/1 , then it is also an input argument of the

dummy predicate. If it is an output argument of both then the code is not consistent

with the modes and it will not be compiled.

6.4.7 Multiply Moded Idiomatic Predicates

Often we wish to give a predicate more than one mode. An example of this is the

built-in = . . predicate. This can take a structure and gives us a list whose head is that

6.4. Idiomatic Compilation 127

structure’s functor and whose tail is the structure’s arguments. For example:

?− f (1 , 2 , 3) = . . L .

L = [f ,1 ,2 ,3] .

In this usage, the= . . predicate has the mode signature:in, out.

Alternatively the predicate takes a functor and its arguments and gives us the corre-

sponding structure. For example:

?− S =. . [f , 1 , 2 , 3] .

S = f (1 ,2 ,3) .

In this usage, the= . . predicate has the mode signature:out, in.

If more than one mode is declared for a predicate, we translate it into several

id iomat ic () methods, distinguished by the use of theout modifier in their decla-

rations. For the= . . predicate, these would have signatures:

public stat ic id iomat ic (Term arg1 , out Term arg2) ;
public stat ic id iomat ic (out Term arg1 , Term arg2) ;

In the C# language, these are different methods. Because in C# we must also use the

out modifier when calling the method, we are able to select the correct method to call

based on the state of instantiation of the arguments to be passed to the method. This

manifests itself as ani f statement in theexec () method of the idiomatic code for the

predicate. When calling a multiply moded predicate from an idiomatic method, if we

know the state of instantiation of its arguments, we do not require ani f statement.

6.4.8 Type Consistency

In the intermediate code, variables are represented as tuples giving their name and type

and if appropriate which clause they occur in. When the intermediate code is translated

to C# care is taken to check that these types match up. A predicate in the idiomatic

128 Chapter 6. Optimizing P#

compiler finds the overall type of each relevant expression and a conversion is inserted

if two expressions do not have the same type when they should.

This phase also deals with the question of whether the== operator or theEquals ()

method should be used for comparisons.

6.5 Example Code—The Eight Queens Problem

Suppose that we are using the following code to solve the Eight Queens Problem:

queens(N,Qs) :−
range (1 ,N,Ns) ,
queens(Ns , [] ,Qs) .

queens ([] , Qs,Qs) .
queens(UnplacedQs , SafeQs ,Qs) :−

select (UnplacedQs , UnplacedQs1 ,Q) ,
not at tack (SafeQs ,Q) ,
queens(UnplacedQs1 , [Q|SafeQs] ,Qs) .

:− mode (not at tack (in , in)) .
:− type (not at tack (term , i n t)) .
not at tack (Xs,X) :−

not at tack (Xs,X, 1) .

:− mode (not at tack (in , in , in)) .
:− type (not at tack (term , in t , i n t)) .
not at tack ([] , ,) :−

! .
:− type (not at tack /3 , 2 , [N1= i n t]) .
not at tack ([Y|Ys] ,X,N) :−

X =\= Y+N,
X =\= Y−N,
N1 is N+1,
not at tack (Ys,X,N1) .

select ([X|Xs] ,Xs ,X) .
select ([Y|Ys] , [Y|Zs] ,X) :−

select (Ys , Zs ,X) .

6.5. Example Code—The Eight Queens Problem 129

:− mode (range (in , in , out)) .
:− type (range (in t , i n t , term)) .
range (N,N, [N]) :− ! .
:− type (range /3 , 2 , [M1= i n t]) .
range (M,N, [M|Ns]) :−

M < N,
M1 is M+1,
range (M1,N,Ns) .

This code, less the mode and type declarations, forms one of the benchmarks provided

with Prolog Caf́e. Observe that we have given mode and type declarations to the

predicatesnot at tack /2 , not at tack /3 and range /3 as these are the predicates

which can be idiomatically compiled. The type declarations with one argument refer

to the types of the arguments of the predicate as a whole. The type declarations with

three arguments: the functor, the clause number and the types of the variables, give the

types for variables in the clause of that number which cannot be inferred from the type

declaration for the clause as a whole. In fact, it is possible to infer thatN1 andM1 are

ints, see the section on future work. If a type is not given, the generic type,term, is

used.

The predicatenot at tack /3 is translated into awhile loop. This predicate checks

for a given configuration of queens generated byselect /3 , that no two queens are

attacking one another.

public stat ic bool id iomat ic (Term arg1 , in t arg2 , in t arg3) {
while (! (((arg1) . Equals (” [] ”)))) {

i f (! (((arg1) . I s L i s t ()))) {
return false ;

}
in t Y = Term. ToInt ((arg1) . Head) ;
arg1 = (arg1) . Ta i l ;
i f (! (arg2 != (Y + arg3))) {

return false ;
}
i f (! (arg2 != (Y − arg3))) {

return false ;
}

130 Chapter 6. Optimizing P#

arg3 = (arg3 + 1) ;
}
{

return true ;
}

}

The predicaterange /3 is compiled into the following method. This predicate takes

a pair of integers and produces the list of consecutive integers starting with the first

integer and ending with the second.

public stat ic bool id iomat ic (in t arg1 , in t arg2 , out Term arg3) {
bool cut = false ;
clause1 : {

i f (! ((arg2 == arg1))) {
goto clause2 ;

}
arg3 = new ListTerm (new IntegerTerm (arg1) , Term. N i l) ;
return true ;

}
clause2 : {

Term Ns;
i f (! (arg1 < arg2)) {

goto f a i l ;
}
in t M1 = (arg1 + 1) ;
i f (! (Predicates . Range 3 . id iomat ic (M1, arg2 ,

out Ns))) {
goto f a i l ;

}
arg3 = new ListTerm (new IntegerTerm (arg1) , Ns) ;
return true ;

}
f a i l : {

arg3 = nul l ;
return false ;

}
}

Notice that we could not compile this into awhile loop because the output argument

in the recursive call is not the same as in the head of the clause containing the call.

6.6. Comparison with Mercury 131

The predicateselect /3 cannot be idiomatically compiled as it is non-deterministic.

Sinceselect /3 occurs belowqueens/2 andqueens/3 in the call tree, these two pred-

icates cannot be idiomatically compiled. All non-idiomatic predicates continue to be

compiled using the original Prolog Café/P# compilation scheme.

6.6 Comparison with Mercury

Work has been done on translating Mercury [HCS+] to high-level C, see [HS02]. That

paper lists the advantages of translation to higher-level code. Generating low-level

code usually leads to the Prolog compiler having to do more work, producing less

readable code and often ending up working against the compiler of the language that

Prolog is being compiled to.

As with Mercury we exploit type and mode information, but we do not attempt to id-

iomatically compile non-deterministic predicates. This is because our existing scheme

for compilation of such predicates is as efficient as a more idiomatic compilation. P#

generates highly idiomatic and readable code in many instances, often being able to

translate a simple predicate into awhile loop. As such simple predicates often occur

as leaf predicates that are called frequently, this significantly reduces the number of

method calls, and allows us to avoid this overhead.

As we do not need to implement cuts for non-deterministic predicates, there is no need

to unwind the stack when a P# cut occurs as there is when a commit occurs in a non-

deterministic Mercury predicate. Thus, with P# Prolog, testing a cut flag after each

failure is an acceptable solution.

6.7 Performance Measurement After Optimization

We benchmarked both the idiomatic and original versions of P#, against Jinni 2004

[Jin] (using Sun’s Java SDK 1.4.2), MINERVA 2.4 [MIN] and SICStus Prolog 3.10.1

132 Chapter 6. Optimizing P#

[SIC] as shown in Table 6.1. The speed-up column gives the factor by which P# is

speeded-up by the optimization.

Table 6.1: Speed-up due to the use of idiomatic code and mode/type declarations (times
in ms)

Benchmark idiomatic original P# Jinni Minerva SICStus
P# time P# time speed-up time time time

browse 125 1360 11 1250 703 63
poly 25 1609 6781 4.2 6172 3500 226
queens (10 all) 438 1954 4.5 1250 1609 78
queens (16 first) 203 1234 6.1 734 1078 63
nreverse (2000) 485 4922 10 8047 921 62
tak 31 10969 350 11094 3938 437
zebra 140 140 1.0 62 78 16

The tests were carried out on a 2 GHz Pentium 4 machine with 512 Mb of memory

running Windows XP Professional. All times are in milliseconds.

Fewer benchmark programs are reported on in Table 6.1 than are reported on in Ta-

ble 5.1 because of the additional work involved in adding mode and type annotations

to the benchmarks.

The performance of thezebra benchmark is not changed as its computational predi-

cates are all non-deterministic. The speed-ups of thequeens andbrowse benchmarks

are almost entirely due to the idiomatic compilation of thenot at tack /3 predicate

and the list concatenation predicate respectively. All of the predicates of thepoly 25

benchmark, which computes(1+ x+ y+ z)25 symbolically, could be idiomatically

compiled.

The table suggests that the use of idiomatic code compilation and mode and type an-

notations results in code which is on average more efficient than Jinni and MINERVA

but still slower than SICStus Prolog.

It should be noted that the optimizations we employed are of particular benefit to nu-

merical code and that Jinni, MINERVA and SICStus Prolog did not have the benefit of

mode or type declarations. Observe that the ‘most numerical’ benchmark,tak, which

6.7. Performance Measurement After Optimization 133

computes the Takeuchi function with arguments 24, 16 and 8, experienced the most

significant speed-up. Indeed this benchmark is the only one on which idiomatic P# is

faster than SICStus Prolog, and this is probably mostly due to the use of the mode and

type annotations. However, some of the other benchmarks involve list operations, and

these too were speeded up. The idiomatically compiled list operation predicates can

operate on heterogeneous lists. While SICStus Prolog accepts programs containing

mode declarations, it does not use the declarations.

The idiomatic code generated by P# is somewhat different from the code that a human

programmer would produce.

The predicatetak /4 is defined as follows:

:− mode (tak (in , in , in , out)) .
:− type (tak (in t , i n t , i n t , i n t)) .

:− type (tak /4 , 2 , [X1=in t , Y1=in t , Z1=in t , A1=in t , A2=in t , A3= i n t]) .

tak (X, Y, Z, Z) :− X =< Y, ! .
tak (X, Y, Z, A) :−

X1 is X − 1 ,
Y1 is Y − 1 ,
Z1 is Z − 1 ,
tak (X1, Y, Z, A1) ,
tak (Y1, Z, X, A2) ,
tak (Z1, X, Y, A3) ,
tak (A1, A2, A3, A) .

The code generated for this predicate by P# is as follows:

public stat ic bool id iomat ic (in t arg1 , in t arg2 , in t arg3 ,
out in t arg4) {

bool cut = false ;
while ((! (arg1 <= arg2))) {

i f (! (cut)) {
in t X = arg1 ;
in t Y = arg2 ;
in t X1 = (X − 1) ;
in t Y1 = (Y − 1) ;
in t Z1 = (arg3 − 1) ;

134 Chapter 6. Optimizing P#

i f (! (Predicates . Tak 4 . id iomat ic (X1, Y, arg3 ,
out arg1))) {

arg4 = 0;
return false ;

}
i f (! (Predicates . Tak 4 . id iomat ic (Y1, arg3 , X,

out arg2))) {
arg4 = 0;
return false ;

}
i f (! (Predicates . Tak 4 . id iomat ic (Z1, X, Y,

out arg3))) {
arg4 = 0;
return false ;

}
}
else {

arg4 = 0;
return false ;

}
}
{

arg4 = arg3 ;
}
return true ;

}

A C# programmer would, however, be far more likely to code this function as follows:

in t tak (in t x , in t y , in t z) {
i f (x <= y)

return z ;
else

return tak (tak (x−1, y , z) ,
tak (y−1, z , x) ,
tak (z−1, x , y)) ;

}

Table 6.2 compares a P# executable containing the idiomatic P#tak /4 method with an

executable generated from a C# implementation of thetak /4 predicate. This second

6.7. Performance Measurement After Optimization 135

Table 6.2: Efficiency comparison between P# and human generated program

Program Time Peak memory usage

C# program (recursive) 3719 ms 4540 K
Idiomatic P# tak program 3370 ms 7084 K
Ratio 1.10 0.641

program contains no elements of P#. In both cases the time taken for the value to be

computed 100 times is measured. In the P# case the repetition is tail-recursive and in

the C# case afor statement is used.

These two versions of the function take similar time to compute tak(24,16,8), although

the memory used is greater when the P# run-time system is present. Thus, in this case

we have reached an efficiency level comparable with the C# that a human programmer

would produce, if not the readability.

Chapter 7

Conclusions

7.1 Translating Prolog to C# Source Code

Prolog is, as a language, particularly suited to solving problems involving logical de-

duction from a set of facts. There are many cases where a program such as this requires

a modern user interface or sophisticated networking capabilities. By allowing interop-

eration between Prolog and C#, this can be easily achieved.

We achieved such interoperation by porting the Prolog to Java translator Prolog Café

to a similarly bootstrapped Prolog to C# translator. Both the translator, written in

Prolog/LLP and the run-time system, written in Java, had to be ported. In the former

case, this involved changing code which produces Java to code which produces C#. In

the latter case, this involved changing Java code into equivalent C# code.

We investigated the possibility of using the constructs which C# possesses and Java

does not, to improve the C# code. While some of these constructs could be used to

cosmetically improve the code of P# and the code that it generates, few were of any

use for improving its efficiency. One that could have been used to improve efficiency,

namely, pointers, would have resulted in unsafe code—something that we wished to

avoid.

We have given several examples in which a Prolog back-end is coupled with a graphical

137

138 Chapter 7. Conclusions

C# front-end. These demonstrate that P# is a useful tool for Prolog–C# interoperation.

It is possible in addition to exploit other features of C# in this way, such as its rich

support for networking.

A performance measurement shows that P# has a similar level of efficiency to other

Prolog implementations available that are based on an modern object-oriented lan-

guage.

Possible extensions are detailed in the following subsections.

7.1.1 Security

The C# language and the .NET platform have sophisticated mechanisms for enforcing

security requirements. Among these is the ability to add security meta-data to a C#

class. This might, for example, indicate that a method is only allowed to write to a

single, named, file. Recent versions of the Windows operating system have an area of

the file-system referred to asisolated storage. Such areas are intended for the storage of

data such as application initialization data files. An application is granted permission

to modify its own isolated storage files, without being allowed to write to those of

another application. A possible future research question is: what is the best way to add

language constructs to P# that allow such security requirements to be expressed and

then added to the generated C# classes?

The C# language also has support for versioning and strong names. Work could be

done on adding such a capability to P#.

7.1.2 Interoperation with Other APIs

The success of a new language hinges on its interoperation with APIs which are used

by programmers. One future direction of research could be integrating Prolog for

the ADO.NET [Sce01] database architecture of the .NET Framework. This would be

beneficial for those wishing to use P# in a setting where large quantities of data need

to be processed. We would also like to support the use of legacy database technology.

7.2. Concurrency 139

It is desirable for a language to be able to easily interoperate with foreign data for-

mats. A P# programmer currently has access to the extensive XML namespaces of the

.NET libraries. However, it has been argued that XML support should be incorporated

into the core of the C# language, hence the Cω [Cw] language. Thus, perhaps, XML

support ought to be incorporated into the P# language.

7.2 Concurrency

We have modified the P# engine in order to make it thread safe; and have added sev-

eral built-in predicates to P# in order to allow concurrent code to be written. These

predicates are as follows:

• fork /1 and fork /2 : these run their first argument on a new thread. Any unin-

stantiated variables in this argument become potential message channels. Such

a forked call cannot return terms through output variables in the usual way, so

such uninstantiated variables are only required in the structure for establishing a

message channel.

• stop /1 : this can be used to stop a thread.

• sleep /1 : this causes the current thread to sleep for a given time period.

• global cal l /1 , global assert /1 and so on: these act in a similar way to the

ca l l /1 , assert /1 and so on, predicates but deal with facts on a global database

which is shared between all of the threads in a P# program.

• wait for /1 : this takes as an argument a variable which has been passed in a

fork, and waits for that variable to become instantiated on another thread. When

this occurs the binding that occurred on the other thread is copied to the thread

that calledwait for /1 . Thus the argument ofwait for /1 becomes instanti-

ated. Every time the variable is instantiated on another thread a new message is

enqueued on the message queue, which is stored in the global database.

140 Chapter 7. Conclusions

• lock /1 , unlock /1 andbacktrackable lock /1 : these acquire or release locks

on terms.

We have also added methods that can be called from C#, which send and receive mes-

sages.

Our concurrent version of Prolog is well suited to interoperation with C#. Our ap-

proach, like DeltaProlog, retains a Prolog feel and retains Prolog as a subset. Our use

of forking and event sending is similar to that of DeltaProlog, except that the sending

mechanism is closer to FCP. We do not use guards in any way as this would lead to

a language too far removed from Prolog. All of the new features are implemented by

defining new built-in predicates. There are no syntactic changes to the language. This

means that it is often straightforward for a developer to translate another dialect of

Prolog to P#.

With Prolog, complex programming possibilities arise as a consequence of a simple

underlying set of rules. It is interesting to observe that as a consequence of this, our

simple changes to these rules have yielded many new possibilities. Examples of these

are the way in which a conjunction of goals can be passed to a fork, and the fact that

a message may consist of any Prolog term. The higher order and type-less nature of

Prolog afforded a freedom which allowed many of the features mentioned in this thesis

to be easily implemented partly in Prolog.

The concurrency features of P# could be improved by allowing the P# programmer to

work with a higher level view of concurrency. We could support concurrent data-types

such as semaphores and mutexes, building these on top of the concurrent primitives

which we have discussed in this thesis and which are in turn built on top of C#’s

concurrency primitives. This work could mirror the work that has been done on con-

currency for ML [Rep99].

7.3. Idiomatic Compilation 141

7.3 Idiomatic Compilation

The efficiency of P# and the readability of the code it produces can be significantly

improved by compiling to more idiomatic C# with the assistance of mode and type

declarations. This is because the C# compiler is designed to compile code written

by human programmers. Particularly significant improvements are observed for Pro-

log programs that are predominantly numerical. Our compilation scheme avoids the

overheads of the Prolog stacks used by the WAM in situations where they are not nec-

essary. Our technique tends to be able to compile those predicates that are called most

frequently. Thus, even when only a few of the program’s predicates can be idiomati-

cally compiled, efficiency will often still be improved.

We attempt to compile tail-recursive predicates, an example of a common Prolog id-

iom, into iterative loops in C#, the equivalent idiom for an imperative language. Where

possible, we translate these iterative loops intowhile loops. We perform a liveness

analysis, which prunes the code in such loops down to the basic function of the loop.

In many cases these optimizations result in code far closer to that which a C# developer

would have produced.

Up until the work on optimizing P# it appeared that for our purposes C# was not

a significant advance on Java. Whenever we considered a C# feature that was not

present in Java, we found that it would not lead to improvement. With the work on

optimization, however, features of C# such as thegoto statement and indexers have

proved useful.

It is interesting to observe that our idiomatic compilation scheme resembles, in some

ways, the operation of the WAM. Indeed, it has been suggested to the author by an

anonymous referee that the WAM is such a good compilation technique for Prolog

compilation, that the more the idiomatic compilation scheme is sophisticated, the

closer it will get to following WAM principles. The code at the beginning of each

block representing a clause resembles theget and uni fy WAM instructions. Also,

liveness analysis is usually performed during register allocation in a WAM-based Pro-

log compiler.

142 Chapter 7. Conclusions

There remain many interesting potential extensions to the idiomatic compiler. These

are detailed in the following subsections, during which we draw attention to the limi-

tations of what can and should be idiomatically compiled.

7.3.1 Idiomatic Translation of Database Primitives

We would also like to compile primitives that modify the database (assert /1 ,

retract /1 and so on) to more idiomatic C#, but there is a problem due to the fact

that the database can be modified from non-idiomatic code and then called from id-

iomatic code orvice versa. However, where the programmer has specified that this

does not happen and the accesses of the database are of a simple nature, we would be

able to do this.

We could also investigate the translation of stateful operations, such as database access,

into functional operations, such as threading an argument through the code, in order

to be able to idiomatically compile code which uses such stateful operations. In some

cases this would be likely to lead to inefficient code, however the use of idiomatic

translation would counteract this effect to some extent.

If database operations could, somehow, be accommodated by the idiomatic transla-

tor, we would be able to idiomatically translate the idiomatic translator itself, which

is written in P# Prolog. This might significantly improve the efficiency of idiomatic

compilation. We would also be able to idiomatically compile the Prolog to C# transla-

tor that was derived from Prolog Café’s Prolog to Java translator, as this too is written

in Prolog.

7.3.2 Idiomatic Translation of Concurrent Code

We now discuss how we could idiomatically compile predicates involving the concur-

rent primitives:fork /1 , wait for /1 and unifications involving concurrent variables.

We can only idiomatically compile such a predicate when it is semi-deterministic. This

rules out predicates which produce multiple solutions and in particular those which

7.3. Idiomatic Compilation 143

produce or consume a queue of solutions through a concurrent variable by backtrack-

ing. Predicates which queue solutions using thepulse /2 predicate, which makes a

temporary binding in order to send a message and then undoes it, can be idiomatically

compiled.

There would need to be some way to indicate to the idiomatic compiler the fact that a

variable passed to a predicate is a concurrent variable. This could either take the form

of a mode declaration or a type declaration.

Knowing that a variable is concurrent, we would need to detect all instances where

that variable is instantiated. Wherever in the code the variable was assigned to, as part

of a unification for example, a call to the C#Send() method of theVariableTerm

class would have to be made. Whenever thewait for /1 predicate was encountered

we would need to call theReceive () method of theVariableTerm representing the

concurrent variable.

It would be straightforward to implement the predicates:stop /1 , sleep /1 , lock /1

andunlock /1 . Given that we know that the predicates involved are semi-deterministic,

it should also be straightforward to implement thebacktrackable lock /1 predicate.

With regard to the global database operations, similar comments apply to those given

above for the database modification primitives.

Finally, we would have to implement thefork /1 predicate. This is a case where it

would be acceptable to start a new Prolog interpreter as a fork always does this. Thus,

it would not matter if the thread to be forked had a non-idiomatic predicate as its entry

predicate, which is likely to be the case.

7.3.3 Idiomatic Translation of Failure Driven Loops

When a Prolog program is required to read in a file, or to do some other repetitive

action associated with input/output streams, failure driven loops are often used. An

example taken from the implementation of P# looks similar to the following:

144 Chapter 7. Conclusions

i n t e rp re te r :−
write (’ Prolog In te rp re te r ’) , nl ,
repeat ,

write (’ | ?− ’) ,
read wi th var iables (Goal , Vs) ,
’ $cafe execute ’ (Goal , Vs) ,
Goal == end o f f i l e ,
! ,

nl , write (bye) , nl .

We will, however, rarely be able to convert such a loop to an iterative C# loop, as it is

likely that one of the predicates called in the loop, possibly via other predicates, cannot

be compiled to idiomatic code for some reason.

7.3.4 Support for More Modes

Ideally, we would like to be able to idiomatically compile a larger class of predicates

including those with modes other than input and output.

In particular we would like to be able to idiomatically compile predicates that have

arguments which are uninstantiated or partially instantiated on entry into the predicate

and may or may not be further instantiated by the predicate call.

One solution is to use the C#ref modifier, which is similar to the C#out modifier

except that the variable passed must be initialized before the call and may or may not

be changed during the call.

While we are unpacking the arguments to the predicate in order to generate the start

of the block representing each clause, if we reach an uninstantiated variable, a C#

variable is created whose name is based on the position of that variable in the argument.

This variable stores the uninstantiatedVariableTerm which has been passed to the

predicate.

When the final part of the block representing the clause is reached where values are

copied back into the arguments, either

7.3. Idiomatic Compilation 145

1. in the case that the variable is still fully uninstantiated, we return the original

VariableTerm; or

2. in the case that the variable is now fully instantiated, we return the instantiation;

or

3. in the case that the variable is now partially instantiated, we return the structure

with newVariableTerms in the place of the holes.

The problem with this approach is aliasing. Consider the following code:

:− mode (p(ref , re f)) .
:− mode (q(ref , re f)) .
p (X, Y) :− X = Y, q(X, Y) .
q([H|T] , Y) :− H = 1.

If we call the predicatep/2 with two uninstantiated variables, then they become the

same variable and the first becomes partially instantiated to a list beginning with the

integer 1. On returning fromp/2 , we need also for the variableY to become the same

partially instantiated list. With the above scheme it will not be.

A solution to this problem is to extend our treatment of unification to unification of

two uninstantiated variables in the way suggested earlier on page 113 and then the call

to q becomes:q(X, X) . However, this would only work when the aliasing occurred

during a call to an idiomatic predicate. It would still be possible for the aliasing to occur

in a non-idiomatic predicate and then for aliased variables to be passed to an idiomatic

predicate. One way to deal with this is to search for all aliasing during theexec ()

method of the idiomatic predicate, which could be prohibitively time consuming.

One solution to the problem of aliasing is to introduce a mode called, say,noal ias

which is used when the programmer knows that the variable declared to benoal ias

has no relation via aliases to any other variable being passed to the predicate. In fact,

there is a similar problem with theout mode, ourout mode must mean ‘out with no

aliasing’.

Now, as we know that the variables are unrelated, case 3 above is the correct transla-

tion.

146 Chapter 7. Conclusions

If more modes were supported, we would encounter situations when dealing with arith-

metic relational operators and unifications where we do not know the state of instanti-

ation of some of the terms involved. In this case we need to usei f statements in the

C#, which first test whether the variable is instantiated and then act accordingly.

A problem arises with suchi f statements. We cannot test whether a variable repre-

senting a nativein t is instantiated or not without adding a Boolean variable to keep

track of the state. As such Boolean variables would make the code very unnatural and

error prone to modify, our solution to this would be to only idiomatically compile such

predicates when the variable whose state of instantiation is ambiguous is declared to

be aterm.

Our experience of attempting to idiomatically translate predicates suggests that the

need for suchi f statements would not occur often.

It is not clear, however, that idiomatically compiled code which supports more modes

than justin andout would be any more efficient than the original P#/Prolog Café com-

pilation scheme.

We would like for it to be possible for a P# programmer to specify that, in a structure

occurring in the head of a clause, some of the variables are input variables and some

are output variables.

7.3.5 Other Extensions to the Idiomatic Compiler

It is possible to infer more of the types than is done at present. For example, ifA is

an int then so isA+1, and givenA1 is A + 1, we can infer thatA1 is anint. Also, the

programmer currently has to specify which predicates can be idiomatically compiled.

Tools could be developed that aid the programmer to modify their Prolog programs in

order to make them suitable for idiomatic translation.

Work has been done on making Mercury programs tail-recursive [ROS99]. We could

adapt this work to make P# predicates tail recursive, and hence be able to translate

more of them to iterative constructs in C# such aswhile loops.

7.4. Closing Remarks 147

7.4 Closing Remarks

We have discussed one way in which language interoperation can be achieved, that

is, by source-to-source language translation. We have shown in our specific case, the

translation of Prolog to C#, that such a translation is feasible and the resultant tool is

efficient and useful. We have been able to use the tool successfully to implement the

case studies detailed in this thesis. The usefulness of the tool is also evidenced by the

fact that interest in the tool is not limited to its developer and his institution. A number

of students and external developers from both academia and industry have contacted

the author, expressing an interest in using P#, asking questions about P# and thanking

the author for developing P#.

The reader may wish to obtain our tool, which is available from

http://www.lfcs.ed.ac.uk/psharp

http://www.lfcs.ed.ac.uk/psharp

Appendix A

Example Source Code:

Object-Oriented Assistant

This appendix lists most of the Prolog code and the interoperating parts of the C# code

for the Object-Oriented Assistant example described in section 5.2.

A.1 Prolog Code

% load and prime the namespaces in turn while queries
% are not being executed
do load all namespaces (L is t , Lock , Thread) :−

fork (load and prime namespaces (L is t , Lock) , Thread) .

load and prime namespaces (L is t , Lock) :−
load namespaces (L is t , Lock) ,
prime namespaces (L is t , Lock) .

load namespaces ([] , Lock) :− ! .
load namespaces ([H|T] , Lock) :−

load namespace (H, Lock) ,
load namespaces (T, Lock) .

load namespace (H, Lock) :−
lock (Lock) ,

149

150 Appendix A. Example Source Code: Object-Oriented Assistant

atom chars (H, AtomChars) ,
atom chars (’ database ’ , EndChars) ,
append(AtomChars , EndChars , AssName) ,
atom chars (AssemblyName, AssName) ,
(load assembly (AssemblyName) −> true ; true) ,
write (’Loaded : ’) , write (AssemblyName) , nl ,
unlock (Lock) .

prime namespaces ([] , Lock) :− ! .
prime namespaces ([H|T] , Lock) :−

prime namespace (H, Lock) ,
prime namespaces (T, Lock) .

prime namespace (H, Lock) :−
lock (Lock) ,
write (’ priming . . . ’) , nl ,
atom chars (H, AtomChars) ,
atom chars (’ database ’ , EndChars) ,
append(AtomChars , EndChars , AssName) ,
atom chars (AssemblyName, AssName) ,
(load assembly (AssemblyName) −> true ; true) ,
oo search class defines prime (H, [’ x ’]) ,
write (’ Primed : ’) , write (H) , nl ,
unlock (Lock) .

oo search namespaces (Namespaces, Type , Classes , Stat ic , Input , X, Limit ,
Lock , Thread) :−

global abolish (l im i t coun t /1) ,
global abolish (l i m i t /1) ,
global assert (l im i t coun t (0)) ,
global assert (l i m i t (L imi t)) ,
reverse (Namespaces, NamespacesR) ,
reverse (Input , InputR) ,
fork (oo search namespaces lock (NamespacesR, Type , Classes , Stat ic ,

InputR , X, Lock) , Thread) .

oo search namespaces lock (A, B, C, D, E, F, Lock) :−
lock (Lock) ,
oo search namespaces inner (A, B, C, D, E, F) ,
unlock (Lock) .

oo search namespaces inner ([] , , , , , X) :−
! ,
pulse (X, 0) .

A.1. Prolog Code 151

oo search namespaces inner ([H|T] , Type , Classes , Stat ic , Input , X) :−
atom chars (H, AtomChars) ,
atom chars (’ database ’ , EndChars) ,
append(AtomChars , EndChars , AssName) ,
atom chars (AssemblyName, AssName) ,
load assembly (AssemblyName) ,
! ,
oo search i terate classes (H, Type , Classes , Stat ic , Input , X) ,
(reached end −>

pulse (X, 0)
;

oo search namespaces inner (T, Type , Classes , Stat ic , Input , X)
) .

oo search namespaces inner ([H|T] , Type , Classes , Stat ic , Input , X) :−
oo search namespaces inner (T, Type , Classes , Stat ic , Input , X) .

oo search i terate classes (H, Type , [] , e i ther , Input , X) :−
! ,
once (oo search (H, , , Type , Input , X)) .

oo search i terate classes (H, Type , [] , Stat ic , Input , X) :−
! ,
once (oo search (H, , Stat ic , Type , Input , X)) .

oo search i terate classes (H, Type , L is t , e i ther , Input , X) :−
! ,
once (oo search i terate c lasses inner (H, Type , L is t , , Input , X)) .

oo search i terate classes (H, Type , L is t , Stat ic , Input , X) :−
once (oo search i terate c lasses inner (H, Type , L is t , Stat ic ,

Input , X)) .

oo search i terate c lasses inner (, , [] , , ,) :− ! .
oo search i terate c lasses inner (H, Type , [ClassHead | ClassTai l] , Stat ic ,

Input , X) :−
oo search (H, ClassHead , Stat ic , Type , Input , X) ,
oo search i terate c lasses inner (H, Type , ClassTail , Stat ic ,

Input , X) .

% u t i l i t y
%−−−−−−−

append([] , L , L) .
append([H1|T1] , L2 , [H1|L3]) :−

append(T1, L2 , L3) .

reverse (L is t , Reversed) :−

152 Appendix A. Example Source Code: Object-Oriented Assistant

reverse (L is t , [] , Reversed) .
reverse ([] , Reversed , Reversed) .
reverse ([Head | Ta i l] , SoFar , Reversed) :−

reverse (Tai l , [Head |SoFar] , Reversed) .

% go to appropriate predicate
%−−−−−−−−−−−−−−−−−−−−−−−−−−−

oo search (N, Class , Stat ic , meth args , Args , L i s t) :−
oo search meth args (N, Class , Stat ic , Args , L i s t) .

oo search (N, Class , Stat ic , meth exact args , Args , L i s t) :−
oo search meth exact args (N, Class , Stat ic , Args , L i s t) .

% . . . [etc .] . . .

% classes , interfaces and structs are a l l members
%−−−

members(A, B, C, D, E) :− ca l l (classmember (A, B, C, D, E)) .
members(A, B, C, D, E) :− ca l l (interfacemember (A, B, C, D, E)) .
members(A, B, C, D, E) :− ca l l (structmember (A, B, C, D, E)) .

% pulse and counting solut ions so far
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

pulse (X, N) :−
X = N,
inc count ,
f a i l .

pulse (,) .

inc count :−
global cal l (l im i t coun t (C)) ,
C1 is C + 1 ,
global retract (l im i t coun t (C)) ,
global assert (l im i t coun t (C1)) ,
write (’ L imi t count i s : ’) , write (C1) , nl .

reached end :−
global cal l (l i m i t (L)) ,
global cal l (l im i t coun t (C)) ,
C == L .

not reached end :−
global cal l (l i m i t (L)) ,

A.1. Prolog Code 153

global cal l (l im i t coun t (C)) ,
C =\= L .

% method args
%−−−−−−−−−−−

oo search meth args (N, Class , Stat ic , Args , X) :−
meth args (N, Class , Stat ic , Args , Result) ,
pulse (X, Result) ,
reached end , ! .

oo search meth args (, , , ,) .

meth args (N, C, Stat ic , Args , class method (C, M, Args2 , S ta t i c)) :−
members(N, C, Stat ic , method , MArgs) ,
MArgs = . . [M | [RetType | Args2]] ,
once (l i s t subse t (Args , Args2)) .

l i s t subse t ([X|Xs] , Ys) :−
select (X, Ys, Zs) ,
l i s t subse t (Xs, Zs) .

l i s t subse t ([] ,) .

se lect (H, [H|T] , T) .
se lect (X, [H|T] , [H|L]) :−

select (X, T, L) .

% method exact args
%−−−−−−−−−−−−−−−−−

oo search meth exact args (N, Class , Stat ic , Args , X) :−
% . . . [omitted] . . .

% method exact ordered args
%−−−−−−−−−−−−−−−−−−−−−−−−−

oo search meth exact ordered args (N, Class , Stat ic , Args , X) :−
% . . . [omitted] . . .

% search for method which returns given type
%−−

oo search meth return (N, Class , Stat ic , [RetType] , X) :−
% . . . [omitted] . . .

154 Appendix A. Example Source Code: Object-Oriented Assistant

% search for f ie ld by type
%−−−−−−−−−−−−−−−−−−−−−−−−

oo search f ie ld type (N, Class , Stat ic , [] , X) :−
% . . . [omitted] . . .

% search for a class which defines a given member name
%−−

oo search class defines (N, C, [] , X) :−
\+ var (C) ,
% return the class C i f i t i s in th is namespace
not reached end ,
once (members(N, C, , ,)) ,
pulse (X, class (C)) .

oo search class defines (N, C, [Member] , X) :−
\+ var (C) ,
% return the class C i f i t defines the member Member
not reached end ,
once ((members(N, C, , , M) , M = . . [Member|])) ,
pulse (X, class (C)) .

oo search class defines (N, C, [] , X) :−
var (C) ,
f i nda l l (Class , ca l l (members(N, Class , , ,)) , L i s t) ,
sor t (L is t , Uniq) ,
global cal l (l i m i t (L)) ,
global cal l (l im i t coun t (LC)) ,
LC < L ,
LLeft is L − LC,
truncate (Uniq , LLeft , Truncated) ,
p u l s e l i s t (X, Truncated) .

truncate (L , N, LO) :−
t runcate (L , N, LO, 0) .

truncate ([] , , [] ,) :− ! .
t runcate (L , N, [] , N) :− ! .
t runcate ([H|T] , N, [H|TO] , C) :−

C1 is C + 1 ,
truncate (T, N, TO, C1) .

p u l s e l i s t (X, []) :− ! .
p u l s e l i s t (X, [H|T]) :−

A.1. Prolog Code 155

pulse (X, class (H)) ,
p u l s e l i s t (X, T) .

oo search class defines (N, C, [Member] , X) :−
var (C) ,
c lass def ines (N, Member, Result) ,
pulse (X, Result) ,
reached end , ! .

oo search class defines (, , ,) .

c lass def ines (N, Member, class (Class)) :−
members(N, Class , , , M) ,
M = . . [Member |] .

% priming version of the above
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−

oo search class defines prime (N, [Member]) :−
class def ines (N, Member,) ,
f a i l .

oo search class defines prime (,) .

% find a l l superclasses star t ing with the direct one
%−−

oo search class superclass ([Class] , X) :−
once (ca l l ((derives (Class ,) ; derives (, Class)))) ,
pulse (X, class (Class)) ,
i te ra te up h ierarchy (Class , X) .

i te ra te up h ierarchy (Class , X) :−
ca l l (derives (Superclass , Class)) ,
pulse (X, class (Superclass)) ,
not reached end , ! ,
i te ra te up h ierarchy (Superclass , X) .

i te ra te up h ierarchy (,) .

% direct subclasses
%−−−−−−−−−−−−−−−−−

oo search class direct subclasses ([Class] , X) :−
% . . . [omitted] . . .

156 Appendix A. Example Source Code: Object-Oriented Assistant

A.2 Interoperating C# Code

/∗ textBox1 is the box in which the item (s) to search for are entered .
∗ textBox2 is the box in which the l i s t of namespaces is entered .
∗ textBox3 is the box in which the maximum number of solut ions
∗ i s entered .
∗ textBox4 is the box in which the l i s t of classes to search is entered .
∗ comboBox1 l i s t s the solut ions .
∗ comboBox2 allows the search mode to be selected .
∗ comboBox3 allows namespaces to be selected for searching .
∗ statusBar1 shows the current status .
∗ radioButton1 is the s ta t i c button .
∗ radioButton2 is the instance button .
∗ radioButton3 is the s ta t i c or instance button .
∗ button1 is the search button .
∗ button2 is the stop button .
∗ button3 is the clear button .
∗/

s t r i ng d i r = ” . ” ;
s t r i ng f i l e S u f f i x = ” database . d l l ” ;
s t r i ng classhierarchyName = ” ClassHierarchy ” ;
s t r i ng c lasshierarchyFi le = ” ClassHierarchy database . d l l ” ;
SymbolTerm emptyList = SymbolTerm.MakeSymbol(” [] ” , 0) ;
Term mutex = new VariableTerm () ;

public Form1() {
Ini t ial izeComponent () ;
this . Closed += new System . EventHandler (this . Close) ;
button2 . Enabled = false ; / / disable stop button
statusBar1 . Text = ” Results so fa r : none” ;
comboBox1. Sorted = true ;

Term l i s t = emptyList ;
D i rec tory In fo d i r i n f o = new Directory In fo (d i r) ;
F i l e In fo [] f i l e s = d i r i n f o . GetFiles () ;
foreach (F i l e In fo f i l e in f i l e s) {

s t r i ng filename = f i l e .Name;
i f (fi lename . EndsWith (this . f i l e S u f f i x) &&

! fi lename . Equals (this . c lasshierarchyFi le)) {
s t r i ng nsname =

filename . Substring (0 ,
fi lename . Length − f i l e S u f f i x . Length) ;

l i s t = new ListTerm (

A.2. Interoperating C# Code 157

SymbolTerm.MakeSymbol(nsname) , l i s t) ;
comboBox3. Items .Add(nsname) ;

}
}

comboBox3. Sorted = true ;

sharp = new PrologInterface () ;
sharp . AddAssembly(

System . Ref lect ion . Assembly . GetExecutingAssembly ()) ;
Term loadThread = new VariableTerm () ;
sharp . SetPredicate (new DoLoadAllNamespaces 3 (

l i s t , mutex , loadThread , new ReturnCs (sharp))) ;
sharp . Cal l () ;
this . load in ter face = (PrologInterface) (loadThread . ToCsObject ()) ;

}

/ / search
private void button1 Cl ick (object sender , System . EventArgs e) {

button1 . Enabled = false ; / / disable search
button2 . Enabled = true ; / / enable stop
button3 . Enabled = false ; / / disable clear

/ / get l imi t on number of solut ions

s t r i ng maxSolns = textBox3 . Text ;
in t max = Int32 . Parse (maxSolns) ;

/ / get namespaces and classes

s t r i ng namespaces = textBox2 . Text . Trim () ;
Term n s l i s t = nul l ;
s t r i ng classes = textBox4 . Text . Trim () ;

/ / establ ish which mode has been selected

s t r i ng mode = comboBox2. SelectedItem . ToString () ;
s t r i ng mode psharp = nul l ;
switch (mode) {

case ”Methods” :
case ”Methods which take arguments (unordered subset) ” :

mode psharp = ” meth args ” ;
break ;

158 Appendix A. Example Source Code: Object-Oriented Assistant

case ”Methods which take arguments (unordered) ” :
mode psharp = ” meth exact args ” ;
break ;

case ”Methods which take arguments (ordered) ” :
mode psharp = ” meth exact ordered args ” ;
break ;

case ”Methods which return type ” :
mode psharp = ” meth return ” ;
break ;

case ” Fields ” :
case ” Fields of type ” :

mode psharp = ” f i e l d t ype ” ;
break ;

case ” Classes ” :
case ” Classes which define member” :

mode psharp = ” class def ines ” ;
break ;

case ” Superclasses of ” :
mode psharp = ” class superclass ” ;
namespaces = classhierarchyName ;
break ;

case ” Di rect subclasses of ” :
mode psharp = ” c lass direct subclasses ” ;
namespaces = classhierarchyName ;
classes = ” ” ;
break ;

case ” A l l subclasses of ” :
mode psharp = ” c lass al l subclasses ” ;
classes = ” ” ;
break ;

default :
throw new Exception () ;

}
SymbolTerm modeSymbol = SymbolTerm.MakeSymbol(mode psharp) ;

/ / extract namespace l i s t

s t r i ng onlyOneNamespace = nul l ;
i f (namespaces . Length == 0) {

/ / search a l l namespaces
n s l i s t = listOfNamespaces ;

}
else {

n s l i s t = emptyList ;

A.2. Interoperating C# Code 159

s t r i ng [] arrayOfNamespaces = namespaces . S p l i t (’ ’) ;
in t count = 0;
foreach (s t r i ng ns in arrayOfNamespaces)

i f (ns . Trim () . Length > 0) {
n s l i s t = new ListTerm (

SymbolTerm.MakeSymbol(ns) , n s l i s t) ;
count++;

}
i f (count == 1)

onlyOneNamespace = namespaces ;
}

/ / extract class l i s t

Term c l a s s l i s t = emptyList ;
s t r i ng [] arrayOfClasses = classes . S p l i t (’ ’) ;
foreach (s t r i ng c l in arrayOfClasses)

i f (c l . Trim () . Length > 0) {
s t r i ng next = c l . Trim () ;
i f (onlyOneNamespace != nul l &&

next . IndexOf (’ . ’) == −1)
next = onlyOneNamespace + ” . ” + next ;

c l a s s l i s t = new ListTerm (
SymbolTerm.MakeSymbol(next) , c l a s s l i s t) ;

}

/ / get argument l i s t

s t r i ng restOfArgs = textBox1 . Enabled ? textBox1 . Text : ” ” ;
Term argl istTerm = emptyList ;
s t r i ng [] arrayOfArgs = restOfArgs . S p l i t (’ ’) ;
foreach (s t r i ng arg in arrayOfArgs)

i f (arg . Trim () . Length > 0)
argl istTerm = new ListTerm (SymbolTerm.MakeSymbol(

RewriteTypes (arg . Trim ())) , argl istTerm) ;

/ / invest igate s ta t i c / instance / ei ther

s t r i ng staticMode =
radioButton1 .Checked ? ” s t a t i c ” :
radioButton2 .Checked ? ” instance ” :
” e i ther ” ;

Term staticModeTerm = SymbolTerm.MakeSymbol(staticMode , 0) ;

160 Appendix A. Example Source Code: Object-Oriented Assistant

Term resu l ts = new VariableTerm () ;
Term thread = new VariableTerm () ;

/ / send query to Prolog engine

PrologInterface sharp = new PrologInterface () ;
sharp . AddAssembly(

System . Ref lect ion . Assembly . GetExecutingAssembly ()) ;
sharp . SetPredicate (new OoSearchNamespaces 9(

ns l i s t , modeSymbol, c l a s s l i s t , staticModeTerm , argl istTerm ,
resul ts , new IntegerTerm (max) , mutex , thread ,
new ReturnCs (sharp))) ;

sharp . Cal l () ;

this . th read in ter face = (PrologInterface) (thread . ToCsObject ()) ;
setConcurrent ((VariableTerm) resu l ts) ;
setMax (max) ;
ThreadStart ts = new ThreadStart (ConsumeSolutions) ;
consumeThread = new Thread (ts) ;
consumeThread . IsBackground = true ;
consumeThread . Star t () ;

}

private void ConsumeSolutions () {
VariableTerm resu l ts = getConcurrent () ;
in t max = getMax() ;
in t count = 0;
statusBar1 . Text = ” Results so fa r : none” ;
while (true) {

Term resu l t = (Term) (resu l ts . Receive () . Dereference ()) ;
i f (resu l t . IsSt ructure ()) {

StructureTerm resu l tS t ruc ture = (StructureTerm) resu l t ;
count++;
statusBar1 . Text = ” Results so fa r : ” + count ;
comboBox1. Items .Add(GetDisplay (

resu l tS t ruc ture . ToString ())) ;
} else {

break ;
}

}
MessageBox .Show(” Finished generating solut ions . ”) ;
button1 . Enabled = true ; / / enable search
button2 . Enabled = false ; / / disable stop
button3 . Enabled = true ; / / enable clear

A.2. Interoperating C# Code 161

}

/ / stop button cl ick

private void button2 Cl ick (object sender , System . EventArgs e) {
i f (thread in ter face != nul l) {

this . th read in ter face . Stop () ;
PrologInterface sharp = new PrologInterface () ;
sharp . SetPredicate (

new ZapQueue 1(getConcurrent () ,
new ReturnCs (sharp))) ;

sharp . Cal l () ;
/ / send message to indicate end of solut ions
getConcurrent () . Send(new IntegerTerm (0)) ;

}
th read in ter face = nul l ; / / allow garbage col lect ion
consumeThread = nul l ; / / allow garbage col lect ion

button1 . Enabled = true ; / / enable search
button2 . Enabled = false ; / / disable stop
button3 . Enabled = true ; / / enable clear

}

Bibliography

[AK91] Hassan Äıt-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruc-

tion. MIT press, 1991.

[Alb] Ben Albahari. A comparative overview of C#.http://genamics.com/

developer/csharp comparative.htm [12 December 2004].

[App98] Andrew W. Appel.Modern compiler implementation in C. Cambridge

University Press, 1998.

[BC02] Roberto Bagnara and Manuel Carro. Foreign language interfaces for

Prolog: A terse survey, 2002. The Association for Logic Programming

Newsletter, vol 15. Association for Logic Programming.

[Bec] R. Becket. Mercury tutorial.http://www.cs.mu.oz.au/research/

mercury/information/documentation.html [12 December 2004].

[Bin] BinProlog home page. http://www.binnetcorp.com/BinProlog/

[12 December 2004].

[BK99] Nick Benton and Andrew Kennedy. Interlanguage working without

tears: Blending SML with Java. InInternational Conference on Func-

tional Programming, pages 126–137, 1999.

[BKR99] Nick Benton, Andrew Kennedy, and George Russell. Compiling Stan-

dard ML to Java bytecodes. InProceedings of the ACM SIGPLAN Inter-

national Conference on Functional Programming (ICFP ’98), volume

34(1), pages 129–140, 1999.

163

http://genamics.com/developer/csharp_comparative.htm
http://genamics.com/developer/csharp_comparative.htm
http://www.cs.mu.oz.au/research/mercury/information/documentation.html
http://www.cs.mu.oz.au/research/mercury/information/documentation.html
http://www.binnetcorp.com/BinProlog/

164 Bibliography

[BKR04] Nick Benton, Andrew Kennedy, and Claudio Russo. Adventures in in-

teroperability: The SML.NET experience. InProceedings of the 6th

ACM-SIGPLAN International Conference on Principles and Practice of

Declarative Programming (PPDP)., 2004.

[Box98] Don Box.Essential COM. Addison Wesley, 1998.

[BT97] Mutsunori Banbara and Naoyuki Tamura. Java implementation of a Lin-

ear Logic Programming language. InProceedings of the 10th Exhibi-

tion and Symposium on Industrial Applications of Prolog, pages 56–63,

1997.

[BT98] Mutsunori Banbara and Naoyuki Tamura. Compiling resources in a Lin-

ear Logic Programming language. InProceedings of Post-JICSLP’98

Workshop on Parallelism and Implementation Technology for Logic Pro-

gramming Languages, 1998.

[BT99] Mutsunori Banbara and Naoyuki Tamura. Translating a Linear Logic

Programming language into Java.Electronic Notes in Theoretical Com-

puter Science, 30(3), 1999.

[Cam84] J. A. Campell, editor.Implementations of PROLOG. Ellis Horwood,

1984.

[CD95] Philippe Codognet and Daniel Diaz. WAMCC: Compiling Prolog to

C. In International Conference on Logic Programming, pages 317–331.

MIT Press, 1995.

[CH99] Manuel Carro and Manuel V. Hermenegildo. Concurrency in Prolog

using threads and a shared database. InInternational Conference on

Logic Programming, pages 320–334, 1999.

[Cia] Ciao home page. http://clip.dia.fi.upm.es/Software/Ciao/

[12 December 2004].

[Cia92] Paolo Ciancarini. Parallel programming with logic languages: A survey.

Computer Languages, 17(4):213–239, 1992.

http://clip.dia.fi.upm.es/Software/Ciao/

Bibliography 165

[CM94] William F. Clocksin and Christopher S. Mellish.Programming in Pro-

log. Springer, 4th edition, 1994.

[Coo02] Jonathan J. Cook. Reverse execution of Java bytecode.The Computer

Journal, 45(6):608–619, 2002.

[Coo04a] Jonathan J. Cook. P#: A concurrent Prolog for the .NET Framework.

Software: Practice and Experience, 34(9):815–845, 2004.

[Coo04b] Jonathan J. Cook. Optimizing P#: Translating Prolog to more Idiomatic

C#. InProceedings of CICLOPS 2004, pages 59–70, 2004.

[Cor01] Microsoft Corporation. Microsoft C# Language Specifications. Mi-

crosoft Press, 2001.

[CSH] Thomas Conway, Zoltan Somogyi, and Fergus Henderson.The Prolog

to Mercury Transition Guide. http://www.cs.mu.oz.au/research/

mercury/information/documentation.html [12 December 2004].

[Cw] Cω home page.http://research.microsoft.com/Comega/ [12 De-

cember 2004].

[Dij68] Edsger W. Dijkstra. Goto considered harmful.Communications of the

ACM, 11(3):147–8, 1968.

[dlBDMS02] Maŕıa Garćıa de la Banda, Bart Demoen, Kim Marriott, and Peter J.

Stuckey. To the gates of HAL: a HAL tutorial. InProceedings of the

Sixth International Symposium on Functional and Logic Programming,

number 2441 in LNCS, pages 47–66. Springer-Verlag, 2002.

[DM94] Bart Demoen and Greet Maris. A comparison of some schemes for

translating logic to C. InICLP Workshop: Parallel and Data Parallel

Execution of Logic Programs, pages 79–91, 1994. Published as UP-

MAIL Technical Report No. 78, Upsala Univesity, Computing Science

Department.

[Dyb96] R. Kent Dybvig. The Scheme programming language. Prentice Hall,

Inc., 1996.

http://www.cs.mu.oz.au/research/mercury/information/documentation.html
http://www.cs.mu.oz.au/research/mercury/information/documentation.html
http://research.microsoft.com/Comega/

166 Bibliography

[EC98] Jesper Eskilson and Mats Carlsson. SICStus MT — A multithreaded

execution environment for SICStus Prolog.Lecture Notes in Computer

Science, 1490:36–53, 1998.

[FLMJ99] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon L. Peyton Jones.

Calling hell from heaven and heaven from hell. InInternational Con-

ference on Functional Programming, pages 114–125, 1999.

[FSW98] Juliana Freire, Terrance Swift, and David S. Warren. Beyond depth-first

strategies: Improving tabled logic programs through alternative schedul-

ing. Journal of Functional and Logic Programming, 1998(3), April

1998.

[Gir87] Jean-Yves Girard. Linear logic.Theoretical Computer Science, 50:1–

102, 1987.

[Gir95] Jean-Yves Girard. Linear logic: Its syntax and semantics. In J.-Y. Gi-

rard, Y. Lafont, and L. Regnier, editors,Advances in Linear Logic (Proc.

of the Workshop on Linear Logic, Cornell University, June 1993), num-

ber 222. Cambridge University Press, 1995.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Brancha.The Java Lan-

guage Specification, Second Edition. Addison Wesley, 2000.

[GNU] GNU Prolog home page. http://pauillac.inria.fr/∼diaz/

gnu-prolog/ [12 December 2004].

[Gor98] Rob Gordon.Essential JNI Java Native Interface. Prentice Hall PTR,

1998.

[GPA+01] Gopal Gupta, Enrico Pontelli, Khayri A. M. Ali, Mats Carlsson, and

Manuel V. Hermenegildo. Parallel execution of Prolog programs: a sur-

vey. Programming Languages and Systems, 23(4):472–602, 2001.

[Gre87] Steve Gregory.Parallel Logic Programming in PARLOG, The Language

and Its Implementation. Addison Wesley, 1987.

http://pauillac.inria.fr/~diaz/gnu-prolog/
http://pauillac.inria.fr/~diaz/gnu-prolog/

Bibliography 167

[HAL] The HAL home page.http://www.csse.monash.edu.au/∼mbanda/

hal/ [12 December 2004].

[Han92] Werner Hans. A complete indexing scheme for WAM-based abstract

machines. InPLILP 1992, pages 232–244, 1992.

[HCS+] Fergus Henderson, Thomas Conway, Zoltan Somogyi, David Jef-

fery, Peter Schachte, Simon Taylor, Chris Speirs, Tyson Dowd,

and Ralph Becket. The Mercury Language Reference Man-

ual. http://www.cs.mu.oz.au/research/mercury/information/

documentation.html [12 December 2004].

[HG91] Manuel V. Hermenegildo and K. J. Greene. The &-Prolog system:

Exploiting independent and-parallelism.New Generation Computing,

9(3,4):233–257, 1991.

[HGC95] Manuel V. Hermenegildo, Daniel Cabeza Gras, and Manuel Carro. Us-

ing attributed variables in the implementation of concurrent and parallel

logic programming systems. InInternational Conference on Logic Pro-

gramming, pages 631–645, 1995.

[Hoa85] Tony Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

[HS02] Fergus Henderson and Zoltan Somogyi. Compiling mercury to high-

level C code. InComputational Complexity, pages 197–212, 2002.

[HWTK98] Joshua S. Hodas, K. M. Watkins, Naoyuki Tamura, and Kyoung-Sun

Kang. Efficient implementation of a Linear Logic Programming lan-

guage. InIJCSLP, pages 145–159, 1998.

[Jin] Jinni home page.http://www.binnetcorp.com/Jinni/ [12 Decem-

ber 2004].

[jPr] jProlog home page. http://www.cs.kuleuven.ac.be/∼bmd/

PrologInJava/ [12 December 2004].

[Jyt] Jython home page.http://www.jython.org/ [12 December 2004].

http://www.csse.monash.edu.au/~mbanda/hal/
http://www.csse.monash.edu.au/~mbanda/hal/
http://www.cs.mu.oz.au/research/mercury/information/documentation.html
http://www.cs.mu.oz.au/research/mercury/information/documentation.html
http://www.binnetcorp.com/Jinni/
http://www.cs.kuleuven.ac.be/~bmd/PrologInJava/
http://www.cs.kuleuven.ac.be/~bmd/PrologInJava/
http://www.jython.org/

168 Bibliography

[Kaw] Kawa Scheme home page.http://www.gnu.org/software/kawa/

[12 December 2004].

[Ken96] Andrew Kennedy. Drawing trees.Journal of Functional Programming,

6(3):527–534, 1996.

[KN90] Andreas Krall and Ulrich Neumerkel. The Vienna Abstract Machine. In

Proceedings of PLILP 1990, 1990.

[Knu74] Donald E. Knuth. Structured programming with go to statements.Com-

puting Surveys, 6(4):261–301, 1974.

[Lan] .NET languages.http://www.gotdotnet.com/team/lang/ [12 De-

cember 2004].

[LBD+88] Ewing Lusk, Ralph Butler, Terence Disz, Robert Olson, Ross Over-

beek, Rick Stevens, D.H.D Warren, Alan Calderwood, Peter Szerdi, Seif

Haridi, Per Brand, Mats Carlsson, Andrzej Ciepielewski, and Bogumil

Hausman. The Aurora or-parallel Prolog system. InProceedings of the

3rd International Conference on Fifth Generation Computer Systems,

pages 819–830. Addison-Wesley, 1988.

[Li96] Xining Li. Program sharing: A new implementation approach for Pro-

log. In Proceedings of the 8th International Symposium, PLILP ’96,

LNCS 1140, pages 259–273, 1996.

[Lib01] Jesse Liberty.Programming C#. O’Reilly, 2001.

[LY99] Tim Lindholm and Frank Yellin.The Java Virtual Machine Specifica-

tion. Addison Wesley Longman Inc., 2nd edition, 1999.

[Mer] The Mercury home page. http://www.cs.mu.oz.au/research/

mercury/ [12 December 2004].

[Mie84] Colin Mierowsky. Design and implementation of Flat Concurrent Pro-

log. Technical Report TR CS84-21, Weizmann Institute, 1984.

http://www.gnu.org/software/kawa/
http://www.gotdotnet.com/team/lang/
http://www.cs.mu.oz.au/research/mercury/
http://www.cs.mu.oz.au/research/mercury/

Bibliography 169

[MIN] MINERVA home page.http://www.ifcomputer.com/MINERVA/ [12

December 2004].

[MLj] MLj home page. http://www.lfcs.ed.ac.uk/mlj [12 December

2004].

[MM] Erik Meijer and Jim Miller. Technical overview of the common lan-

guage runtime (or why the JVM is not my favorite execution environ-

ment). http://docs.msdnaa.net/ark/Webfiles/WhitePapers/

CLR.pdf [12 December 2004].

[Mon] Mondrian home page.http://www.mondrian-script.org/ [12 De-

cember 2004].

[MTHM97] Robin Milner, Mads Tofte, Robert W. Harper, and David MacQueen.

The Definition of Standard ML. MIT Press, 1997.

[NET] The Microsoft developer .NET home page.http://msdn.microsoft.

com/net [12 December 2004].

[OCRZ03] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger.

A nominal theory of objects with dependent types. InProceedings of

ECOOP 2003, 2003.

[Oct] Octopus .NET translator home page.http://www.remotesoft.com/

octopus/ [12 December 2004].

[P#] P# manual. http://www.lfcs.ed.ac.uk/psharp [12 December

2004].

[PC] Prolog Caf́e home page.http://kaminari.scitec.kobe-u.ac.jp/

PrologCafe/ [12 December 2004].

[Pla02] David S. Platt.Introducing Microsoft .NET. Microsoft Press, 2nd edi-

tion, 2002.

[PN84] Luis Moniz Pereira and Roger Nasr. Delta-Prolog: A distributed logic

http://www.ifcomputer.com/MINERVA/
http://www.lfcs.ed.ac.uk/mlj
http://docs.msdnaa.net/ark/Webfiles/WhitePapers/CLR.pdf
http://docs.msdnaa.net/ark/Webfiles/WhitePapers/CLR.pdf
http://www.mondrian-script.org/
http://msdn.microsoft.com/net
http://msdn.microsoft.com/net
http://www.remotesoft.com/octopus/
http://www.remotesoft.com/octopus/
http://www.lfcs.ed.ac.uk/psharp
http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/
http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/

170 Bibliography

programming language. InProceedings of the International Conference

on Fifth Generation Computer Languages, pages 283–291, 1984.

[Pop97] Alan Pope.The CORBA Reference Guide: Understanding the Common

Object Request Broker Architecture. Addison Wesley, 1997.

[PTB+97] Todd A. Proebsting, Gregg Townsend, Patrick Bridges, John H. Hart-

man, Tim Newsham, and Scott A. Watterson. Toba: Java for

applications—a way ahead of time (WAT) compiler. Technical report,

Dept. of Computer Science, University of Arizona, Tucson., 1997.

[Pus96] Cornelia Pusch. Verification of compiler correctness for the WAM. In

J. Wright, J. Grundy, and J. Harrison, editors,Proceedings of the 9th

International Conference on Theorem Proving in Higher Order Logics

(TPHOL’96), Turku, Finland, 1996. Springer-Verlag LNCS 1125.

[Qui] Quintus Prolog home page.http://www.sics.se/quintus [12 De-

cember 2004].

[Rep99] John H. Reppy.Concurrent Programming in ML. Cambridge University

Press, 1999.

[ROS99] Peter Ross, David Overton, and Zoltan Somogyi. Making mercury pro-

grams tail recursive. InLogic Program Synthesis and Transformation,

pages 196–215, 1999.

[Sce01] David Sceppa.Microsoft ADO.NET. Microsoft Press International,

2001.

[Sha87] Ehud Shapiro.Concurrent Prolog—Collected Papers. MIT Press, 1987.

[SIC] SICStus Prolog home page.http://www.sics.se/sicstus/ [12 De-

cember 2004].

[SML] SML.NET home page.http://www.cl.cam.ac.uk/Research/TSG/

SMLNET/ [12 December 2004].

http://www.sics.se/quintus
http://www.sics.se/sicstus/
http://www.cl.cam.ac.uk/Research/TSG/SMLNET/
http://www.cl.cam.ac.uk/Research/TSG/SMLNET/

Bibliography 171

[Str00] Bjarne Stroustrup.The C++ Programming Language. Addison Wesley,

2000.

[TB90] Paul Tarau and Michel Boyer. Elementary logic programs. In

P. Deransart and J. Maluszyński, editors,Proceedings of Programming

Language Implementation and Logic Programming, pages 159–173.

Springer, LNCS 456, 1990.

[Tic95] Evan Tick. The deevolution of concurrent logic programming lan-

guages.Journal of Logic Programming, 23(2):89–123, 1995.

[TK96] Naoyuki Tamura and Yukio Kaneda. Extension of WAM for a Linear

Logic Programming language. InProceedings of the Second Fuji Inter-

national Workshop on Functional and Logic Programming, 1996.

[TK97] Naoyuki Tamura and Yukio Kaneda. A compiler system of a Linear

Logic Programming language. InProceedings of the IASTED Interna-

tional Conference on Artificial Intelligence and Soft Computing, Banff,

Canada, pages 180–183, 1997.

[TL01] Thuan Thai and Hoang Q. Lam..NET Framework Essentials. O’Reilly,

2001.

[TLA92] David Tarditi, Peter Lee, and Anurag Acharya. No assembly required:

Compiling standard ML to C.ACM Letters on Programming Languages

and Systems, 1(2):161–177, June 1992.

[TV00] Andrey A. Terekhov and Chris Verhoef. The realities of language con-

versions.IEEE Software, 17(6):111–124, 2000.

[War83] David H. D. Warren. An abstract Prolog instruction set. Technical Re-

port 309, SRI International, Menlo Park, CA., 1983.

[War88] David H. D. Warren. Implementation of Prolog, 1988. Tutorial No. 3,

5th International Conference and Symposium on Logic Programming,

Seattle, WA.

[XPGC94] Tang Dong Xing, Enrico Pontelli, Gopal Gupta, and Manuel Carro. Last

172 Bibliography

parallel call optimization and fast backtracking in and-parallel logic pro-

gramming systems. InICLP Workshop: Parallel and Data Parallel Ex-

ecution of Logic Programs, pages 93–106, 1994.

	Introduction
	Contributions of this Thesis
	Source-to-Source Language Translation
	Logic Programming Languages
	Prolog
	Linear Logic Variants

	The Java and .NET Platforms
	The Java Platform
	The .NET Platform
	The .NET Common Intermediate Language (CIL)
	C#

	Other Forms of Language Interoperation
	Foreign Language Interfaces for Prolog

	P#: A Concurrent Prolog for the .NET Platform

	Existing Technology
	Logic Languages and Functional Logic Languages
	The Warren Abstract Machine
	Translating Prolog to C: GNU Prolog
	Translating Prolog to Java: Prolog Café
	Jinni
	Mercury
	HAL

	Functional Languages
	Translating ML into C
	MLj
	SML.NET
	A Haskell COM Server

	Other Implementations
	Translating Java to C
	Translating Java to C#

	Translating Prolog to C#
	Porting Prolog Café
	Bootstrapping the Translator
	The Run-time System
	Architecture

	Use of C# Features
	Example Code Generated by P#
	Example Web Application: Noughts and Crosses

	Concurrency
	Design of Concurrent P#
	Design Before the Addition of Concurrency
	P# Concurrency Features
	Existing Concurrent Prologs
	Justification and Comparison with Existing Work

	Examples
	Communication between Threads
	Queuing of Multiple Solutions
	The Global Database

	Implementation
	Making P# Thread Safe
	Forking Threads and the Global Database
	The -waitfor/1- Predicate
	Monitors
	Interoperation with C#

	Semantics
	Comparison with Semantics of C#
	Semantics of Message Passing

	Case Studies and Performance Measurement
	A Disconnected Shared Database
	An Object-Oriented Assistant
	A Class Hierarchy Viewer
	Performance Measurement Before Optimization
	Comparison with Other Tools
	Speed of Concurrent Operations
	Effect of the Number of Threads on Efficiency

	Optimizing P#
	Optimizations in Prolog Café
	Other Optimizations in Existing Tools
	Further Optimization of P#
	Idiomatic Compilation
	Generating Naïve Idiomatic Code
	Coalescing Adjacent if Statements
	Tail-Recursion Converted to Iteration
	Rewriting Blocks as a while Loop
	Liveness Analysis
	Compiling Disjunctive Constructs and the not Construct
	Multiply Moded Idiomatic Predicates
	Type Consistency

	Example Code---The Eight Queens Problem
	Comparison with Mercury
	Performance Measurement After Optimization

	Conclusions
	Translating Prolog to C# Source Code
	Security
	Interoperation with Other APIs

	Concurrency
	Idiomatic Compilation
	Idiomatic Translation of Database Primitives
	Idiomatic Translation of Concurrent Code
	Idiomatic Translation of Failure Driven Loops
	Support for More Modes
	Other Extensions to the Idiomatic Compiler

	Closing Remarks

	Example Source Code: Object-Oriented Assistant
	Prolog Code
	Interoperating C# Code

	Bibliography

