
The Design of Protocols for

High Performance in a

Networked Computing Environment

by

Gary D. Law

Doctor of Philosophy

Department of Computer Science

University of Edinburgh

1989

Abstract

Technological advances in both local area networks and computer processor design

have led to multiple computer installations being composed of a much wider range

of network devices than previously possible. High bandwidth computer networks

may now interconnect large numbers of devices that have different processor ar-

chitectures and instruction sets, as well as various levels of performance. This

thesis is concerned with the merits of such networks and addresses the problem of

how the many different types of computers may be integrated to form a unified

system.

A review of a number of approaches towards the formation of multiple com-

puter .systems includes campus computer networks, configurations of mainframes

and examples of distributed computer systems. This study provides an insight

into the fundamental principles of this field. The key features of the systems con-

sidered in the study are grouped together in a description of a general network

structure. Subsequently, the network devices in this structure are classified into

three groups, according to their roles and communication requirements.

The three-way classification of devices leads to the development of a Triadic

Network Model to describe the interactions within and between the three groups.

The model's specification of network communication provides the basis for proto-

cols that are well suited to the needs of this computing environment. The thesis

covers the principles of the protocols and the details of their implementation in an

experimental system. The software tools developed to support the implementation

are also described.

Acknowledgements

The author acknowledges the financial support of the SERC for the period of

his research studentship at Manchester and Edinburgh universities. The author

gratefully recognises the assistance of Spider Systems Limited, in enabling him to

have time in which to complete the production of this thesis. The author wishes to

express his appreciation to his supervisor, Professor Roland Ibbett, for his support

and encouragement throughout the course of this work. Further gratitude is due to

Professor Ibbett, in his capacity as the Head of the Computer Science Department,

for permitting access to the resources needed to undertake this work.

The contact and discussions with colleagues at both Manchester and Edinburgh

universities have proven to be of great benefit. In particular, the help of Dr. Nigel

Topham and Tim Hopkins should be singled out in this respect. Without the

strength and support of family and friends, this thesis would never have been

completed. The author wishes to thank the 'crew' in Manchester, and Richard,

John and Kamran, for those memorable 'seshes'. Special thanks are due to Carl

and Andrew for their help and friendship throughout that painful transition, and

beyond

"you gave me something that I won't forget too soon".

The author's deepest gratitude is reserved for three very special people : his

wife Lesley, for her patience throughout the many long hours, and his parents, for

their never ending support. This work is dedicated to them, for

"there is a light that never goes out".

Preface

The author graduated with B.Sc. (hons.) in Computer Engineering at the Univer-

sity of Manchester in July 1984. In October 1984, he joined the MU6-V research

team in the Department of Computer Science at the University of Manchester.

In October 1985, he transferred to the University of Edinburgh, accompanying

his supervisor, Professor R.N.Ibbett. The major part of the research described in

this thesis has been undertaken in the Department of Computer Science at the

University of Edinburgh. Since January 1988, the author has been employed by

Spider Systems Limited, where he is currently engaged as a Project Leader in the

Network Management Business Centre.

Table of Contents

Introduction 	 1

	

1.1 	Research Overview1

1.1.1 	Outline of Thesis1

1.1.2 	Background2

1.1.3 	Direction of Research 5

	

1.2 	Case Study 7

1.2.1 	The MU6 System7

1.2.2 	MU6-V 10

1.2.3 Centrenet17

1.3 Summary27

Multiple Computer Systems 	 28

	

2.1 	Introduction28

2.1.1 Classification28

2.1.2 	System Models31

2.1.3 Objectives of Study 	 31

	

2.2 	Networked Computer Systems32

2.2.1 Interconnection of Large Computer Systems33

2.2.2 	Hierarchical Networking38

2.2.3 	Micro-Mainframe Links40

	

2.3 	Distributed Systems 46

2.3.1 The Cambridge Distributed Computing System46

2.3.2 	Network Transparency52

	

2.4 	Support for Distributed Systems64

2.4.1 	Communications Infrastructure64

2.4.2 	The WFS File System68

2.4.3 	Object Oriented Model 70

	

2.5 	Campus Computer Networks76

2.5.1 	Introduction 76

2.5.2 	Motivation 78

2.5.3 Andrew79

	

2.6 	An Integrated Distributed System93

2.6.1 	The Apollo DOMAIN93

2.6.2 The CRAY Station Software Service101

2.6.3 Merits105

2.7 Concluding Remarks 	 . 105

A Network Model
	

106

	

3.1 	Introduction106

3.1.1 	A General Network Structure110

3.1.2 	Classification of Devices115

	

3.2 	A Triadic Network Model121

3.2.1 	Characteristics of the Modules122

3.2.2 	Interactions of the Modules131

3.2.3 	Functional Aspects137

	

3.3 	Application of the Model 143

3.3.1 	Layered Network Transparency143

3.3.2 	Operation of the System148

3.3.3 Summary151

Protocol Set Principles 	 154

	

4.1 	Introduction154

4.1.1 Perspective155

4.1.2 	OSI 159

	

4.2 	Three-Party Mechanism164

4.2.1 	Operation of the Mechanism165

111

4.2.2 	Role of the Service Managers172

4.2.3 	Coordinator176

4.2.4 	Service Permits178

4.3 Communication Mechanisms183

4.3.1 	Common Mechanisms183

4.3.2 Fundamental Unit of Communication186

4.3.3 Identity188

4.3.4 	Type191

	

4.4 	Functional Division192

4.4.1 	Purpose of Division 193

4.4.2 	Protocol ROles 195

4.5 Summary198

5. Implementation 	 Ie

5.1 Configuration201

5.1.1 	Computers 201

5.1.2 	Unix202

	

5.2 	Modular Structure204

5.2.1 	Vertical Partitioning205

5.2.2 	Software Structure208

lv

5.2.3 Multiple Processes 	 . 215

	

5.3 	Protocol Set Details 219

5.3.1 	Basic Structure219

5.3.2 	Characteristics of Protocols223

5.3.3 	Error Analysis and Recovery226

	

5.4 	Example229

5.5 Summary238

6. Support for Development
	

239

6J Monitor240

6.1.1 	Features241

6.1.2 Control242

6.1.3 Monitoring245

6.1.4 Display248

6.1.5 Logging251

	

6.2 	Operational Analysis252

6.2.1 	Function of the Tools 253

6.2.2 	Operation259

	

6.3 	Command Shell260

6.3.1 Purpose261

V

6.3.2 Operation 	 . 261

6.3.3 Local and Remote Commands266

	

6.4 	Environment Management268

	

6.4.1 	Purpose of Development269

6.4.2 Principles269

6.4.3 Application276

7. Conclusion 	 278

	

7.1 	Review278

	

7.2 	Current State280

	

7.3 	Areas for Improvement282

	

7.3.1 	Heavyweight Processes282

	

7.3.2 	Transport Services283

7.3.3 Monitoring284

	

7.4 	Further Work286

	

7.4.1 	Higher Performance286

7.4.2 Specification, Verification and Validation287

	

7.4.3 	User Interface287

	

7.4.4 	Support for Objects288

	

7.4.5 	Network Management289

vi

7.4.6 N F S 	 . 290

7.5 Concluding Remarks 	 . 290

7.5.1 Summary292

Bibliography 	 293

A. The Inter-User Communication Protocol 	 306

	

A.1 	Table of Primitives307

A.2 Protocol Definition308

A.2.1 	Caller (Cr) 	. 	308

A.2.2 	Callee (Ce) 	. 	316

B. The Basic Service Provision Protocol
	

325

	

13.1 	Tables of Primitives 326

	

13.2 	Protocol Definition328

B.2.1 	Service Requester (S-R)328

13.2.2 Service Manager (S-M) 344

B.2.3 	Service Provider (5-P)357

C. The Special Service Provision Protocol
	

372

	

C.1 	Table of Primitives373

	

C.2 	Protocol Definition374

vii

C.2.1 Special Service Manager (SM*) 374

C.2.2 Special Service Provider (5 P*)379

D. Published Paper 	 384

List of Figures

1-1 The MU6 System 	 . 	7

1-2 MU6-V System Organization11

1-3 Machines Involved in Use of MU6-V14

1-4 Centrenet 	Packet 18

1-5 The Centrenet Hierarchical Structure19

1-6 Starpoint Bus Interface 20

1-7 The Burst Protocol25

2-1 UMRCC System Configuration (1984)35

2-2 Three Level Hierarchy of MISS39

2-3 An Example Ring47

2-4 Processor/Ring Interface50

2-5 Processing a System Call 	. 	54

2-6 The Open Protocol57

2-7 The Architecture of the Prototype Amoeba System72

ix

2-8 An Amoeba Capability74

2-9 The Kiewit Network84

2-10 VIRTUE and VICE85

2-11 Components of Andrew86

2-12 Topology of Andrew87

2-13 VIRTUE91

2-14 A Typical Configuration102

2-15 Structure of Station Software103

3-1 Front-end and Back-end Networks 108

3-2 A General Network Structure 111

3-3 Device Classification within a General Network Structure117

3-4 Examples of User Stations124

3-5 Examples of Back-End Processors125

3-6 Examples of Network Servers127

3-7 A Networked Computing Environment127

3-8 Triadic Network Model132

3-9 Examples of Network Devices137

3-10 Overcoming the Inter-BEM Communication Restrictions140

3-11 Layered Structure for Service Request Analysis146

x

3-12 Portability of Applications147

3-13 Interaction of Sun workstation and Meiko Computing Surface . . . 152

4-1 	"Bridging the Gap" 156

4-2 Protocol Set Interfaces158

4-3 ISO Model for Open Systems Interconnection159

4-4 3-Party Mechanism166

4-5 More Sophisticated Use of the 3-Party Mechanism169

4-6 Format of Record186

- 	4-7 Stages of Communication 189

5-1 Division into Modules 205

5-2 Subset Interworking 207

5-3 Software Structure for Implementation209

5-4 TCP/IP Protocol Stack212

5-5 Service Provision216

5-6 Service Redirection217

5-7 Breakdown of Record Structure220

5-8 Phases of Service Provision for Example230

5-9 Implementation of First Service Request of Example231

5-10 Transfers during First Service Request232

xi

5-11 Implementation of Second Service Request of Example233

5-12 Initiation of Provision of Second Service234

5-13 "Load-up" and Execution of Object Code236

5-14 Conclusion of Service Provision237

6-1 Position of the Monitor 240

6-2 Structure of the Monitor241

6-3 System Initiation243

6-4 Simple Service Request244

6-5 Reporting Record Transfers to the Monitor246

6-6 Monitor Display Format248

6-7 Example of Output from Analysis Tools256

6-8 Analysis of Simulation Results260

6-9 Relating Activities to Sessions274

A-i User protocol : Caller (Cr) 	. 308

A-2 User protocol 	Common309

A-3 User protocol : Callee (Ce) 	. 317

B-i Basic Protocol : Service Requester (S-R) - 'WAIT'328

B-2 Basic Protocol : Service Requester (S-R) - All States28

B-3 Basic Protocol : Service Requester (S-R) - CHECK' + 'NOTIFY' 329

xii

B-4 Basic Protocol Service Requester (S-R) - 'ENQUIRE'330

B-5 Basic Protocol : Service Manager (S-M) - 'ENQUIRE'345

B-6 Basic Protocol : Service Manager (S-M) - 'VERIFY'346

B-7 Basic Protocol Service Manager (S-M) - 'RETRY'346

B-8 Basic Protocol : Service Provider (S-P) - All States357

B-9 Basic Protocol : Service Provider (S-P) - 'WAIT'357

B-b Basic Protocol Service Provider (S-P) - 'THIRSTY'358

C-i Special protocol : Special Service Manager (SM*) 374

C-2 Special protocol Special Service Provider (5P*) 379

List of Tables

2-1 Remote Tasking System Calls . 	61

2-2 Comparison of Access and Processing Capabilitiies93

3-1 Possible communicating pairs133

4-1 Analysis of the Effects of Single Node Failure182

5-1 Functions of Software Modules210

5-2 Transactions made during Example238

6-1 Choice of Local or Remote Service267

xiv

Chapter 1

Introduction

1.1 Research Overview

This thesis is concerned with the integration of computers, with differing charac-

teristics, to form a single system. The level of cooperation that may be achieved

within multiple computer systems has been the source of significant research ef-

fort in recent years, and many distributed computing systems have been produced.

The work described here is not an attempt to design another distributed computer

system, although it is considered that this research could lead to the development

of such a system. Rather, this thesis investigates the possibilities afforded by the

interconnection of the wide variety of computers available today, and how best to

unify a system composed of a number of such machines.

1.1.1 Outline of Thesis

This chapter continues with an outline of the basis for the research described in

this thesis, and an example is given to illustrate the direction of this research. The

subsequent chapter reviews various approaches towards forming multiple computer

1

systems, including campus computer networks, configurations of mainframes and

distributed computing systems.

The following chapter opens with a description of a network structure consid-

ered to be representative of configurations that will he 	 prevalent in the

near future. The chapter proceeds with the definition of a triadic network model

to represent the roles of nodes in a distributed system and to determine the nature

of the communication that will exist in this environment. The concepts developed

in this model form the foundation for the work detailed in the succeeding chapters.

Chapter 4 explains the principles of a protocol set derived from the model for

use in a heterogeneous multiple computer system. The fifth chapter is concerned

with the practicalities of an implementation of the network protocols. Finally,

the concluding chapter indicates the current state of the work and presents some

pointers for future research that may be conducted using the results of this thesis.

1.1.2 Background

There is a significant amount of attention being paid towards distributed comput-

ing systems. Before outlining the direction of the research work in this thesis, it is

worth considering some of the changes that have influenced the focus of research

into distributed computing.

Decentralization

The trend towards decentralization of resources is apparent throughout the his-

tory of computing. The early computers were large machines dedicated to the

9

processing of batch jobs entered via punched cards and providing results on di-

rectly attached lineprinters. All tasks associated with the computational task

occurred at a single location - the execution of the program, mass storage of data,

input and output of information. The first stage of decentralization came with the

use of Remote Job Entry (RJE) stations, allowing input and output at sites dis-

tant from the central mainframe. These RJE stations were somewhat restricted in

their capabilities, but they did serve to offload much of the input/output-limited

processing associated with each job. However, most of the resources still had to

be situated close to the central computer.

The introduction of timesharing systems significantly broadened the accessi-

bility of the computer for the users, allowing the input and output of information

to be distributed to where it was neeeded. The initial effect was that existing

packages were made easier to use, but soon a wealth of new software appeared,

written to exploit the advantages of timeshared systems. The ability to allow a

number of users to share on-line access to large quantities of data opened the door

to many new applications.

Perhaps the next prominent step towards the distribution of processing came

with the arrival of multi-computer installations, where communication between

the machines was achieved through the use of special purpose, vendor dependent

interfaces. The fact that these interfaces were specific to the machines of individual

manufacturers is significant because it restricted the flexibility of interconnection

that could be achieved with each computer. The sharing of processing between

the different computers was, in general, effected by the user or application soft-

3

ware, and was limited to large programs with no interprocessor communication

requirements.

The advent of local area networks greatly expanded the range of configuration

strategies possible in multi-computer systems. This led to much greater distribu-

tion of processing and control in networked systems, but still tended to result in

the computers themselves being centrally sited. The development of personal com-

puters has now allowed processing to move from the traditional central computing

centre to the locations where the personnel need it most. This more localized ap-

proach has meant that it is now viable for the whole of a department's computing

resource to be distributed wherever it is needed.

Technological Influences

Continued developments in the design and production of very large scale inte-

grated (VLSI) devices has meant that much greater computing power is provided

by the processors of small computers. The functionality of VLSI devices has also

increased, enabling software that was formally restricted to minicomputers to be-

come accessible to personal computer users.

Advances in storage device technology mean that a much greater density of

data can be stored by these small machines. This has resulted in the porting

of "memory hungry" applications software from much larger machines, and has

allowed useful extensions to be made to existing packages for small computers.

The enhanced accessibility of powerful computing resources has been accompa-

nied by the development of both software and hardware to provide a more versatile

and amenable interface between human and computer. This has in turn resulted

4

in these personal computers being capable of supporting sophisticated applica-

tions, previously restricted to mainframe users, with greatly enhanced interaction

capabilities.

'Proliferation' of Workstations

As the facilities of small computers have continued to expand, so the costs of

hardware have fallen. The effect of this is that it is possible to purchase a desk-

top machine for less that £5000 with the processing power of a VAX 11/780.

These machines are being called personal workstations, which aptly describes their

combination of computing power and flexible user interface.

The amalgamation of personal workstations and high bandwidth local area

networks may be the first opportunity to satisfy the proponents of decentraliza-

tion. With the power of yesterday's room-sized mainframes in today's desk-top

microcomputers, it may appeal' that the need for centralized computing resources

has disappeared. However, the case for retaining certain forms of shareable pro-

cessing resource is still very strong. The merits arise from the fact that, with

technological advances and reduction in hardware costs, it has become practical

to develop special purpose processors, dedicated to forms of processing that are

only occasionally required by any one user, and to attach these machines to a

network to permit their use to be shared amongst the users of the system.

1.1.3 Direction of Research

The ultimate goal of this research is a multiple computer system composed of

greatly dissimilar machines, all interacting in a well organised manner to cooperate

5

in the provision of a powerful and versatile computing service to the users of the

system. It is anticipated that this target system will comprise both small scale

general purpose computers and specialised high performance processors, with all

nodes interconnected by a local area network. The smaller machines correspond

to personal workstations, with processing power suitable for most of the user's

needs. The more powerful computers supplement the workstations by providing

specific computational functions, using architectures tailored to those algorithms,

and thereby supplying high levels of efficiency for the appropriate functions.

The work that is the subject of this thesis is concerned with the design of

communication protocols to support directly the interactions that predominate in

the environment outlined above. The objective is to produce network protocols

oriented towards the target system for an optimum response.

The following section describes a computer system that serves to illustrate the

target system outlined here. The philosophy of the system is described and an

example of a special purpose processor is given. The requirements of a network

connection of this processor are considered, together with some of the detail of a

high bandwidth local area network that ideally satisfies many of the needs of a

distributed system.

1.2 Case Study

1.2.1 The MU6 System

Philosophy

The philosophy behind the MU6 system was formed at the end of the seventies by a

group of academics in the Computer Science department at Manchester University.

The overall structure of the system, illustrated in figure 1-1, was conceived as

having three ranks of computer, corresponding to the differing 1ve1s of processing

power and the contrasting roles of the machines involved.

Super-
MU6-S 	 MU6-S 	Computers

MU6-G General-Purpose
MU6G 	MU6-G 	Computers

Personal MU6P MU6P MU6P MU6P Computers

Figure 1-1: The MU6 System

The lowest of the ranks was occupied by a large nmbo-r of MU6-P machines.

These were to be the personal computers, with screen, keyboard and some de-

gree of local processing power to enable interactive editing, and functions with

7

similar requirements, to be provided. The MU6-P's would make use of MU6-G,

general-purpose, computers for any tasks requiring greater computing power. In

addition to flexible general-purpose time-shared processing capabilities, the MU6-

C machines would provide access to peripherals and mass storage, as well as acting

as front-end processors for the higher level machines.

The uppermost rank in this hierarchy of computers would be the MU6-S,

super computers. Unlike the MU6-P and MU6-G machines, MU6-S computers

would, most probably, have dissimilar architectures. Their role in the MU6 system

is to provide high levels of performance in those applications for which they were

designed.

Each rank in the MU6 system reflects the degree of common utilization, the

quanttty and cost of the computers at that level. So, the MU6-P machines would

be inexpensive, generally useful and very accessible because of their provision in

large quantities. In contrast, the MU6-S computers would be much more costly,

with limited areas of applicability and consequently would be present in small

numbers only.

The MU6 system, as described here, was never fully realised, but the following

section describes the developments that were made in the partial implementation

of the system.

Implementation

The first computer in the MU6 system to be designed and subsequently con-

structed was the MU6-G computer [29,71]. MU6-C had an architecture and order

code designed specifically to be appropriate to the compilation and execution

8

of high-level languages and operating systems. The 32-bit word size and 64-bit

floating-point arithmetic unit made it useful for scientific computations. It had a

performance of about 2 MIPS that was readily predictable due to the machine's

simple architecture. A three stage pipeline was used, but ECL 10k series technol-

ogy was required to produce the required throughput.

The prototype MU6-G was primarily constructed using AUGAT wirewrap

boards, mounted eight to a panel on a four sided column. It was air-cooled by

fans at the top of each side of the column. A PDP-11/34 acted as a front-end

processor for MU6-G to control access to peripherals [92].

Conventional terminal lines were the means of access to MU6-G by other com-

puters, including the MU6-P machines, MU6-V (q.v.) and VAXs that were used

for operating system development. The MU6-P machines were 68000 based micro-

computers with graphic capabilities and floppy discs for removable storage. They

ran the same operating system as MIJ6-G, namely the Manchester University

System Software (MUSS) [31,74,79].

The file system of MUSS incorporated the ability to open a directory that was

in fact resident on a remote machine. This provided the means by which files

could be transferred to and from MU6-G, and represented the limited degree of

cooperation that was achieved between MU6-Ps and MU6-G.

There were no MU6-S processors provided as a service in the MU6 system, but

a prototype vector processor was constructed and this communicated with MU6-

C via a terminal line for the downloading of programs and the return of results

- both operations being under the direct control of the operator. This machine,

MU6-V, is described in the following section.

9

1.2.2 MU6-V

MU6-V is a parallel vector processing system capable of achieving a high perfor-

mance by enabling a number of vector processors to cooperate in the solving of a

single problem {42,103,104].

Architecture

A primary objective of the MU6-V design was that the set of vector processors

should have a wide applicability to many different algorithms, rather than being

restricted to a much smaller range of functions due to its topology. For this reason,

the structure is formed from a linear array of processors capable of both scalar and

vector operations, each with local memory and all interconnected by a common

communication medium, figure 1-2. Communication between processors occurs

when the value of a global variable is to he updated, and is achieved through the

use of a global broadcast by the processor effecting the change. The processor

places a value/identifier pair on the common highway, and all other processors

holding a local copy of this variable accept this new value and update their copy.

Addressing Mechanism

The identifiers used for the variables are virtual addresses, with the name of a

vector being analogous to the segment number in a conventional virtual storage

system. So, within each processing unit there exists a virtual-to-real address

translation mechanism.

10

FILE STORE

Figure 1-2: MU6-V System Organization

The vector names are used to index into a table of descriptors, each containing

an origin address, size and type information. The latter describes the form of the

vector : dense or sparse, directly or indirectly accessed. Hence, the use of generic

instructions is possible since the hardware may determine the means of accessing

the vector from the type information.

11

Synchronization

To ensure an orderly flow of data between producers and consumers, a single

synchronization bit is provided for every word of vector memory to indicate the

validity of the vector element. Writing to an element will set the bit, whilst read-

ing the element may reset the synchronization bit, depending on the instruction.

When the bit is set, the local unit may read or write to that element, but other

vector units are unable to overwrite the data. If the hit is reset then the local unit

may not read data from the element, but all units are able to write data into the

element.

Dedicated Processor Units

From the system organisation of MIJ6-V, figure 1-2, it can he seen that, in addi-

tion to the maiy "slave" processor units, there are two special units : the master

processor and the input/output processor unit. The former performs initialisa-

tion before initiating parallel sub-processes and may act as the "harness" process

required by many programs. The master process might test for termination or

convergence of sub-processes and initiate further sub-processes.

The role of the input/output processor unit is of special interest because it

determines the manner in which MU6-V is used in a multiple computer system.

Role of MU6-V in the MU6 System

MTJ6-V was intended for use in the M1J6 system as one of the MU6-S super com-

puters. In this capacity, MU6-G would act as its front-end, performing scheduling

12

and similar organisational tasks on behalf of prospective MU6-V users, leaving

MU6-V to concentrate purely on vector calculations.

In the MU6 system, MU6-V may be considered as a special type of resource

providing a processing service to be shared amongst the users of the system. This

"MU6-V service" allows any user to perform vector calculations, with a high level

of performance, by supplying the necessary code and source data and receiving,

in return, the results of the computation. The provision of this "MU6-V service"

within the system brings a number of points to mind.

As has been stated already, MU6-V does not have an architecture that is

suitable for running a conventional operating system. Instead, MU6-V has an

input/output processor that communicates closely with another machine, its front-

end, &hich in turn is responsible for high level functions. Hence, potential users

of the MU6-V service are unable to interact directly with MU6-V, but must do so

via the front-end machine.

Use of the MU6-V service requires the transfer of large quantities of data,

but the question arises as to where this data should normally reside. The user's

machine will require access to the data for editing the program, producing the

source data and analysing the results. MU6-V needs the code and the source

data in order to execute the program, and has to then store the results. It is also

possible that either the source or the result data could be required by machines

other than those already mentioned.

The review of distributed systems in the next chapter will examine storage

considerations further, but for the present the configuration in figure 1-3 is suffi-

cient for a look at the input/output processor unit in the following section. This

13

diagram shows the user's machine, MU6-V and its front-end to be separate from

a shared fileserver. The fileserver may well be part of one of the other three ma-

chines, but referring to it as a separate machine more fully illustrates the function

of the input/output processor.

Front-I 	
I MUG-V end

NETWORK

User's 	 File
inachine 	 server

Figure 1-3: Machines Involved in Use of MU6-V

Requirements of the Network Connection

The architecture of MU6-V is unsuitable for the functions that are usually asso-

ciated with the operating system. So within the MU6 system, M136-V is treated

as a processing resource, with its primary operating system requirement being the

ability to communicate with its front-end. The communication between MU6-V

and its front-end would be concerned with the initiation, monitoring and control,

and termination of programs. All of this inter-machine communication would be

performed by the input/output processor of MU6-V.

14

The I/O-processor's responsibilities extend beyond the simple exchange of

short messages to govern the execution of programs by MU6-V. The processor

must also effect the transfer of large amounts of code and data between MU6-V

and the fileserver. The duties of the I/O-processor may be better explained by

considering its actions in the execution of a typical program.

The front-end sends a directive to instruct the I/O-processor that a job is

awaiting execution.

The front-end sends a job description that includes file identifiers for use in

accessing the program, source data and for storage of the results.

The 1/0-processor uses these file identifiers to request the code and data

needed from the fileserver for execution of the program.

The fileserver transfers first the code and then the data to MU6-V.

The I/O-processor loads each section of code into the corresponding proces-

sor unit, via the common communication medium, and then does likewise

with the source data. The relationship between the processor units of MU6-

V and the blocks of code and data may be determined from the initial job

description supplied by the front-end.

Once all of this code and data transfer is complete, the input/output pro-

cessor initiates the master process, which, in turn, will start up the sub-

processes.

15

As new values for variables are transmitted over the common highway by the

slave processor units, the I/O-processor accepts the values of those variables

it knows to be result vector elements. It forms these elements into whole

vectors and transfers them to the fileserver using the file identifier already

supplied.

On termination of the program, I/O-processor ensures that all result vectors

have been transferred to the results file and then informs the front-end of

the conclusion of the job.

- The input/output processor unit may also be required to assist the front-end

in the debugging of programs under development and analysis in the event of

abnormal termination due to an error condition.

It is apparent that the I/O processor plays an important role in the opera-

tion of MU6-V, but the requirements of the network connection should not be

overlooked. Since the main MU6-V processor units are dedicated to the applica-

tion software, the I/O processor has to satisfy the network protocols at all levels,

from the physical nature of the connection to the higher level application-oriented

conventions.

The next section describes a high bandwidth local area network that is ideally

suited to the needs of distributed systems. This is because of the relatively good

quality of service provided by its low level protocols and also due to the inherent

network intelligence present in the network.

16

1.2.3 Centrenet

The development of Centrenet [22,36,41], in the Department of Computer Science

at the University of Manchester, began at the start of the 1980s. Its design

objectives were

"to satisfy the requirements of both closely knit multi-computer sys-

tems and communities of users spread across large campus areas

who wish to transfer files between their own machines and the central

site, to gain access to a variety of systems and to share a variety of

hardware and software resources." [41]

To achieve these aims, Centrenet has a high bandwidth and possesses a form of

"network intelligence". This intelligence is provided by a collection of processors,

each of which is directly attached to a switching node.

Structure

Centrenet is formed from high speed switching nodes, designated Starpoints,

connected by links that carry packets from source to destination, according to

a 4-bit address. The address fields of a Centrenet packet, figure 1-4, have 16

bits, so the overall structure of the network is that of a four-level singly-linked

tree. Figure 1-5 shows the hierarchical nature of Centrenet and indicates how the

routing is acheived by decoding nibbles of the destination address field.

To understand the routing mechanism. consider a starpoint at level 3 in the

hierarchy, such as node '3a' in figure 1-5. If the upper 12 bits of the address match

17

IDESTINATION SOURCEI DATA CONTROL
ADDRESS ADDRESS

16 	 16 	 32 	 8

Figure 1-4: Centrenet Packet

those of the node, then the lower 4 bits indicate one of the ports on that starpoint.

However, if the uppermost portion of the address is different, then the packet is

directed through an uplink to the node at the higher level. At this point, bits 4

to 7 determine the downlink 1 to be used, assuming the upper byte of the address

corresponds to the node.

The simple nature of this routing mechanism means that the starpoints may

be implemented by high speed logic, rather than needing processors like in the

ARPA network [98]. On the other hand, Centrenet does not possess a means of

providing alternative routes, unlike the ARPA network.

A characteristic of the Centrenet topology is that the total available band-

width is distributed throughout the network. So, ports communicating across

one Starpoint will not detract from the bandwidth available for ports of another

Starpoint.

Starpoints

The relatively small size of a Centrenet packet (72 bits) makes it possible for

parallel interconnections between ports in a single Starpoint. The implementation

1A downlink appears to the Starpoint as an ordinary port.

18

Level 2

Level 3

Level 0

Level 1

15 12

Destination Address Field

Starpoint Interconnections 	 Packet Routing Bits

Figure 1-5: The Centrenet Hierarchical Structure

of the Starpoints is based on an LSTTL backplane interconnection bus that has

a throughput in excess of 160 \Ibps of user data. Each Starpoint has a capacity

for 16 Port Cards, which may connect to devices or downlinks, and one Uplink

19

Card2 . This results in a maximum capacity for the network of 65,536 devices.

The devices communicate via 72-bit input and output buffers that are selectively

polled by the Starpoint controller card, figure 1-6.

PORT

PACKET BUS 	
ADDRESS

D 	 ADDRESS
A 	RECOGNITION

72 BTTS

INPUT

Bus control Signals 	 T
A

OUTPUT
C BUFFER

CONTROL
LOGIC

Figure 1-6: Starpoint Bus Interface

To illustrate the mechanisms involved in the transfer of a packet from one port

to another on the same Starpoint. consider the following sequence

I. The source of the data loads the packet into the Output Buffer Register.

2. When the card is polled the packet is transmitted onto the Starpoint bus by

enabling the Output Register.

2The root does not have an uplink.

20

All other cards in the Starpoint inspect the new packet and check the des-

tination address against their own address. In the case of the port cards,

they will test for equivalence in the range of bits under consideration (see

section 1.2.3). However, an uplink card will look for a mis-match in the

upper portion of the address field. It does not inspect the 4 least significant

bits of the portion of the address under consideration.

The port which determines that the packet is directed towards it will latch

the incoming packet into its Input Buffer Register, ready for acceptance by

the attached device.

The receiver returns an acknowledgement to the transmitter to indicate that

the packet has been accepted.

If the transmitter were to receive no acknowledgement within the timeout

period, it would re-transmit the packet on each subsequent poll, up to the re-try

limit. This positive-only acknowledgement scheme allows a simplified protocol to

be used, but without unnecessary data loss. The re-try limit ensures that the

failure of a port does not cause the network to become blocked.

If a transmitter reaches its re-try limit, it notifies its attached device of the

problem and activates a fault report signal on the bus when it is next polled. This

signal will inform the local Network Intelligence Module of the fault.

Network Intelligence

Every Starpoint may contain one Network Intelligence Module (NIM) but,

where a NIM is not connected, a bus controller board will provide its low level

21

functions. These functions are fundamental to the operation of the Starpoint,

and include the provision of the polling and clock signals for the ports. Addi-

tionally, the NIM may collect statistics about the behaviour of the Starpoint and

could adapt the polling sequence to give certain ports a greater proportion of the

bandwidth available in the Starpoint.

Within each Starpoint, the NIM is responsible for initializing the ports and

attached devices on power-up, receiving fault reports and performing error recov-

ery when necessary. Initially it was considered that the NIM should have control

over terminal connections, but this power has been devolved to the Terminal

Multiplexer[82].

The NIM has an equally important role to play in the higher level operation of

the network. The NIM may perform virtual circuit connections and disconnections

on behalf of other nodes, and other high level functions, such as name serving.

Hence it would be possible for nodes to communicate using virtual addresses or

names rather than needing to know physical addresses.

Furthermore, the use of generic names would be possible, so that a node could

send to the NIM a request for a virtual circuit connection to a certain type of

device (such as, say, a printer) rather than specifying a particular physical address.

The NIM would then search its internal name tables for the specified service

and endeavour to establish a virtual circuit with a device providing that service.

Finally, the NIM would return an acknowledgement to the original node, indicating

the physical address to be used.

The full potential of the NIM has not been exploited because its original im-

plementation, based on a ZSO [36), had insufficient processing power. The recent

22

development of a 68000 based NIM [96] should enable an extensive investigation

of the versatility of the NIM and its support for distributed network services [35].

Links

The Starpoints are interconnected by single links that may be of a variety of types.

The current implementations use either 2 co-axial cables, one for bi-directional

data and the other for clocks, or 2 optical fibres, one for each direction. The

essentially asynchronous nature of Centrenet, together with the distributed band-

width, means that it is possible to use different technologies for the constituent

parts of the network. Hence, a collection of Starpoints, some connected by co-axial

cables, and others by optical fibres, may form a single network.

Taking things even further, it would be possible to produce a microwave link to

allow Starpoints, separated by kilometres, to interact. Also these Starpoints may

be implemented using different technologies. The versatility of Centrenet means

that it may be readily adapted to suit the needs of a particular installation, and

subsequently enhanced as the configuration expands.

Network Protocols

The Centrenet protocols have been designed to accommodate a variety of different

types of communication and achieve this, in part, by allowing a number of packet

types, distinguished by the bits in the control field. The packet types fall into two

categories

23

Structured Protocols : These provide end-to-end communication of words and

characters between computers, terminals or each other[106].

Raw Mode Protocols : These are for digitized sound [37] or vision [38], for

which the network latency and throughput are more important than the

quality of the connection; the occasional loss or re-ordering of packets is

much less critical for these applications than for computer data transfer.

There are currently two structured protocols

1. The Terminal Protocol, used by the Terminal Multiplexer [82], enables

the transmission of 8-bit data items across the network, with end-to-end

acknowledgement. It has two elements

the Connection Protocol for virtual circuit management

the Character Protocol for the data transmission.

2. The Burst Protocol allows a block of between 1 and 64K bytes to be

transferred across the network, with an acknowledgement returned at the

end of the transfer.

Of all these protocols, the Burst Protocol [24] is most appropriate to this

discussion because most of the inter-machine communication is likely to use this

for performance reasons. The form of the protocol is illustrated in figure 1-7.

The Burst Header is a single packet that gives the number of bytes in the

burst. This number excludes any padding bytes and the checksum. The Burst

Header Ack returns the accepted length for the data, which will usually be the

24

tuTie

SOURCE
	

DESTINATION

Figure 1-7: The Burst Protocol

same as that requested in the Burst Header but may be less if the receiver has

insufficient capacity for the entire burst. The data transmission proceeds in the

same manner, but no more than the accepted length is sent.

The Burst Data comprises the data to be transferred, together with any

zero-filled bytes necessary to bring the total number of bytes to 4n + 2. The

final packet contains the last two bytes and a 16-bit checksum. To conclude, the

receiver returns a Burst Ack to the transmitter.

25

Applications

The development of a gateway between Centrenet and Ethernet [34] was a nec-

essary step towards enabling the integration of a wide selection of resources into

a single network. Centrenet may now be used to bridge disparate Ethernets, and

enable Ethernet based devices to access resources connected directly to Centrenet.

The unification of the two networks permits the benefits of each to he ex-

ploited : there s a tremendous quantity of devices with Ethernet interfaces, and

Centrenet has a high bandwidth together with inherent "network intelligence" in

the form of the NIMs. Consequently, it would he possible for Ethernet based net-

works of workstations to utilize Centrenet for interconnection and access to high

performance devices providing specialized services.

On another path, the combination of digitized speech and images could allow

the development of

"an Integrated Information Presentation system, which could provide

generalized inter-personal and person-computer comiinications." [37]

These applications rely on the high distributed bandwidth provided by Cen-

trenet, and benefit from the NIM support for decentralized network services.

26

1.3 Summary

This chapter has concentrated on the aims of the work described in this thesis. The

case study presented here is an indication of the target system for this research and

will be used to illustrate the reasons for certain design decisions in later chapters.

However, the MU6 system itself is not a dominant factor 	 in

the direction of this work, but more of an inspiration to strive for even better.

It should become clear in chapter 3 that the computing environment that is the

motivation for this thesis has very different characteristicsjn that of the MU6

system.

Inthe following chapter, a study is made of different approaches towards form-

ing multiple computer systems. This study is in part retrospective, considering

some of the more notable systems of the recent past, takes an overview of con-

temporary distributed computing systems and suggests some paths that are being

followed in current research.

27

Chapter 2

Multiple Computer Systems

2.1 Introduction

This chapter considers a number of approaches to 	forming multiple computer

systems. The systems selected for inclusion in this study provide a varied view of

some of the interconnection strategies that are in common usage. These systems

share certain characteristics with others, but they also have striking disimilarities.

Whilst the systems described here do not represent an exhaustive collection of

all research efforts in this area, they do provide a useful insight into most of the

principles and techniques that are fundamental to the study of multiple computer

systems.

2.1.1 Classification

It would be useful to categorize the various systems mentioned in this chapter, in

order to clarify the differences and similarities between them. However, most of

the systems fall into more than one group, so impairing any such classification.

28

All of the systems are composed of more than one computer. Some are ho-

mogeneous, meaning all of the computers share the same architectural structure,

others are heterogeneous, in that the systems are composed of computers of more

than one type. All of the systems could be described as distributed, because the

processing does not all occur at the same place. However, the degree of distri-

bution of processing and control is very variable, and for some of these systems,

such as the IBM PC/VM Bond described in section 2.2.3, any claims to being a

"distributed processing system" are rather tenuous.

Philip Enslow Jr. considers the description of systems as "distributed data

processing system" in [28]. His list of claims made by some such systems is typical

of many of the systems in this chapter, but he goes on to give a "research and

development" definition of distributed data processing systems.

A multiplicity of general purpose resource components, but homogeneity is

not necessary.

A physical distribution of these components, interacting through a commu-

nications network.

A high level operating system to unify control of these components, although

individual processors may have different local operating systems.

System transparency, so that services may be requested by name rather than

location.

Cooperative autonomy" characterizing the operation and interaction of the

resources.

29

Transparency is a key requirement, and the LOCUS system described in sec-

tion 2.3.2 is a prime example of what can be achieved in this respect. Indeed,

for the LOCUS system, "network transparency" was the primary objective, with

"Unix compatibility" falling a close second. A number of other systems have been

based on, or incorporated, a Unix-like system; the Andrew system, section 2.5.3,

is another example.

A common approach towards providing a unifying high level operating system

is to require all nodes to execute the same system software. The Apollo DOMAIN,

section 2.6.1, has a collection of nodes that all possess the same standard set of

services. Other systems have adopted a service-based approach, where there are

nodes that are each dedicated to the provision of a specific task, such as the

Cambridge Distributed Computing System, section 2.3.1.

An alternative scheme involves the nodes in the system providing a minimal

framework on which a variety of different operating systems may function. The

distributed V Kernel. section 2.4.1, provides a "communications infrastructure" for

the modules of an operating system. The WFS fliesystem, section 2.4.2, supports

a rudimentary set of file operations, but may be used by a number of different

operating systems. Amoeba, section 2.4.3, constitutes on object oriented approach

to achieving similar objectives.

Most of the systems described here are based around a communications net-

work, variously involving Ethernet, the Cambridge Ring, token passing rings and

higher performance networks. However, the MISS network, section 2.2.2, uses

conventional terminal lines and the IBM PC/VM Bond uses a co-axial cable.

30

2.1.2 System Models

Andrew Tanenbaum describes three categories of system models into which, he

claims, most distributed systems fall. [99]

The minicomputer model is composed of a collection of identical mini-

computers. The user is connected to one of these machines and is able to

communicate with the others. The LOCUS system is implemented in this

fashion, and the mainframe networks discussed in section 2.2.1 are an ex-

tension of this model.

The workstation model involves cooperation between a number of work-

stations, each one associated with a single user. The Dartmouth College

Personal Computer Project, section 2.5.3, has these characteristics and the

implementation of the V kernel incorporated a number of SUN workstations.

The processor pool model is based on a collection of processors that are

temporarily allocated to users for computation. The Cambridge Distributed

System has a pool of processors that are allocated statically for the dura-

tion of a terminal session. Amoeba uses groups of dynamically allocated

processors for specific computational tasks.

2.1.3 Objectives of Study

A mammoth amount of research effort has been devoted to the investigation of

distributed systems and a wealth of literature exists to describe these efforts. Any

survey of work in this area is, by necessity, selective in content, and this study is

31

no exception. The primary objectives of this review are to provide a useful insight

into some of the most fundamental techniques and to highlight certain features

that are of particular interest with respect to the research work described in this

thesis.

The study commences with a look at networked computer systems that fail to

meet the criteria for classification as "distributed data processing systems", but

which nevertheless prove to be of interest in this area. Subsequently, two "classic"

distributed systems are described in some detail. These two systems have provided

the impetus for many other distributed systems.

Alternative approaches towards providing distributed systems are then consid-

ered. These systems introduce extra flexibility in the services supported because

they only provide a "streamlined" set of functions. The campus computer net-

works discussed in the next section form a stark contrast to the other systems

in this chapter because of their scale. Many of the decisions made during the

development of these systems are relevant in a wider context.

The final system to he included in this study is a well developed commercial

product. The incorporation of a supercomputer into this system provides addi-

tional interest.

2.2 Networked Computer Systems

This section looks at multiple computer systems that are not considered to be

"distributed data processing systems" because either their control is centralized

32

or the interconnection is achieved by means other than a general purpose commu-

nications network. First, the connection of mainframes in local area networks is

discussed, with particular regard being given to the UMRCC configuration, which

is based around a CDC LCN. This is followed by the MISS network, which devel-

oped an approach for sharing the processing capabilities of computers of different

processing power for support of laboratory environments. Finally, more recent

approaches towards interlinking microcomputers and mainframes are described.

2.2.1 Interconnection of Large Computer Systems

For many years now, large computer installations have moved away from the use

of a single large mainframe towards having multiple processors at a single site.

This is for a number of reasons

critical applications may require a fall-back system

the processing requirements may exceed the capacity of even the most pow-

erful mainframes

utilization of specialized equipment and computers may be desired, e.g. for

graphics, special computation needs or communications.

In the past, the interprocessor connections were implemented according to

demand, resulting in expensive and inflexible solutions. The advent of high band-

width local computer networks such as HYPERchannel [107] and Control Data's

Loosely Coupled Network (LCN) [18,47] permitted a more generalized inter-

connection strategy to be adopted.

33

There is a fair degree of similarity between the HYPERchannel and LCN. Both

systems are based on multiple common data highways (trunks), implemented us-

ing coaxial cable with data transmission rates of about 50 Mbit/sec. Processors

and other devices are attached to the trunks via microprocessor controlled in-

terfaces, called Network Adaptors in HYPERchannel and Network Access

Devices (NADs) in LCN. Each interface may be connected to up to 4 trunks,

and the number of such interfaces per trunk ranges from 32 for the LCN to 64 for

the HYPERchannel. Both systems have a range of many thousands of feet.

A Large Installation

To simplify this discussion, this section will concentrate on one of the systems, the

LCN, and in particular one installation, that of the University of Manchester's

Regional Computer Centre (UMRCC). In the period 1983-1984, the UMRCC saw

the departure of its ICL 1900 series mainframes, and the arrival of a CDC CYBER

205, CYBER 176, Amdahl 470/V7A and a MASSTOR M860 mass storage device.

From their introduction into service, these devices were capable of communicating

with each other, and the existing CDC CYBER 170-730 and 7600 joint system,

using the Control Data LCN. The configuration was approximately as shown in

figure 2-1.

Each of the mainframes runs a Control Data package called the Remote Host

Facility (RHF) in order to utilize the LCN and communicate with the other

mainframes. The CYBER 170-730 was primarily for local interactive use, but the

Amdahl 470/V7A performed the role of front-end for the more powerful back-end

mainframes (the two 7600s and the CYBER 205).

34

INTERACTIVE 	 INTERACTIVE
TERMINALS 	 TERMINALS

LCN DATA HIGHWAY

Figure 2-1: UMRCC System Configuration (1984)

Control Data provide implementations of the RHF software for different oper-

ating systems that use the ISO/OSI 7 layer reference model as the basis for the

LCN structure.

The lower 4 levels are provided by the LCN and the upper 3 levels have specific

implementations for each of the supported operating systems.

35

Level 5 - Host Driver Interface : this is the NAD interface, and where neces-

sary performs conversion to S-bit ASCII. I

Level 6 - Host-to-Host establishes connections between hosts.

Level 7 - Application-to-Application : allows block or file transfers to occur

between two applications. UMRCC uses the following applications

The Permanent File Transfer Facility (PT F) manages the trans-

fer of permanent files from one mainframe to another, using a single

command - MFLINK[40].

The Queue File Transfer Facility (QTF) enabls job files to be

transferred from the input queue of the local host to that of the remote

host, and for the output files to be re-directed back to the output queue

of the local host. The user does not explicitly communicate with the

QTF, but the first line of the job file will indicate a remote site identifier,

and the system will automatically re-route the job.

The network capability provided by the LCN and the RHF software is very

crude, and only really intended for large batch jobs and data sets. The role of

the application packages and the nature of the commands are very familiar to

mainframe users and they provide an effective means for transferring programs

and data to different mainframes when the need arises.

Consider the sequence of events when a job is submitted on the Amdahl 470

for processing on the CYBER. 205

18-bit ASCII is the format for all LCN transmissions.

36

As with normal batch jobs, a file is formed with the necessary commands to

control execution of the program.

When the job is submitted, the Amdahl 470 will perform preliminary

scheduling, and will eventually transfer the control file to the input queue of

the CYBER 205 using QTF.

The CYBER 205 performs further scheduling of its input queue and when the

job begins execution, authentication and accounting procedures are initiated.

If files on the Amdahl are needed, they are fetched using PTF.

On completion of the job, the output is re-routed to the output queue of the

Amdahl 470, and from there to the user's terminal or a lineprinter.

The CYBER 205 behaves like a conventional batch processing mainframe -

with the added bonus of the RHF networking software. Despite the fact that the

processor has a specialized architecture designed for computations involving large

vectors, the mainframe is required to perform accounting, scheduling and other

functions that seriously reduce its efficiency. The front-end acts as little more than

a Remote Job Entry (RJE) station, with the exception of providing mass storage

and performing initial job verification checks.

If this operational model were to be followed in an environment composed of

workstations and high performance processors, it is clear that these specialized

machines would be inefficiently used. A more appropriate model may be to shift

the majority of the housekeeping chores to the more general purpose machines

wherever possible.

37

2.2.2 Hierarchical Networking

The Minicomputer Interfacing Support System (MISS) [8] was a minicom-

puter network implemented by the Institute for Computer Research at the Uni-

versity of Chicago. The role of MISS was to provide support for the needs of

experimental laboratories using low power minicomputers for real time monitor-

ing and control. This was achieved by a hierarchical network of minicomputers

running applications that interfaced to remote centralized facilities.

MISS Hierarchy

The MISS hierarchy comprised three levels. The lowest level consisted of a variety

of minicomputers located at a number of application sites, under the control of

their users/owners. These minicomputers spent most of their time operating in a

standalone mode, and hence the interface to MISS was minimal.

The intermediary level was a computer dedicated to the support of the lower

level minicomputers by providing shared access to a number of services. The

facilities provided by this level included extended I/O services, mass storage, access

to specialised support services and connection to central computing facilities. The

uppermost level in the hierarchy was the campus Computation Centre, providing

general purpose batch and interactive computing.

Figure 2-2 illustrates the three level hierarchy of MISS. The lowest level mini-

computers, small PDP- lls and PDP-8s, are connected to the intermediate level by

9600 baud communication lines: the intermediate level, a PDP-11/45, is in turn

connected to the upper level, an IBM 370/168, by a 50 kbaud line.

38

Level 2

Level 1

Level 0

Figure 2-2: Three Level Hierarchy of MISS

Remarks

The key feature of the MISS network is the division of responsibility amongst the

three levels of machine. The lowest level is concerned with small scale computation

but needs to have a good responsiveness for real time monitoring and control. The

second level exists to support the operation of the small machines and as such is

quite heavily burdened. The uppermost level is the central computation resource,

and provides the main processing resources for the entire network.

Whilst the level 0 machines are capable of operating independently of the

remainder of the system, their processing power is severely limited, thus requiring

access to the level 1 machine for even the simplest tasks. The connections between

the machines have a low bandwidth and do not really form a general purpose

communications network: if the level 1 machine crashes then all of the level 0

39

machines are stranded. Furthermore, the topology of the network is extremely

evident to the user. Indeed, the user needs to be aware of the structure of the

system in order to make any use of the system.

In conclusion, it is clear that the MISS network is remote to the central theme

of this review. However, the layered division of responsibility within the system

is more generally applicable. In fact, there are features of the MISS network that

appear in the IBM PC/VM Bond, described in the next section.

2.2.3 Micro-Mainframe Links

The MISS system, described in the previous section, enabled the processing re-

quirements of a scientific community to be distributed to a large number of simple

minicomputers. These small computers were capable of satisfying the more local-

ized computational needs, such as real time monitoring and control of experiments,

but the more intensive processing was performed on the central mainframe. In

the commercial sector, the ever increasing presence of personal computer systems,

such as the IBM PC and its compatibles, has led to the adoption of some of the

facets of the MISS system.

Traditionally, the company's mainframe was responsible for holding and ma-

nipulating all of the corporate databases. The ever increasing requirements of

users meant that the mainframe was stretched to the limit of its capabilities. The

arrival of microcomputers would appear to provide the solution to this demand

for computing power, but there remain a few difficulties.

40

The greatest problem is the fact that the corporate databases are centralized

and unified, but a multitude of departments will be continually updating and

inspecting this information. Present microcomputers are incapable of storing data

of this volume, and the intricacies of maintaining a consistent database, spread

amongst a very large number of machines, are immense.

Probably a more important obstacle to the replacement of the company's main-

frame by personal computers is the company's own data processing department.

The accumulation, management and dissemination of the corporate data is con-

trolled by the DP department and it is unlikely to accept the devolution of its

power too readily [69]. More pertinently, the practices of data management are

well established, and so all changes must be undertaken gradually and with cau-

tion.

For these reasons, and others, companies are opting to retain the mainframe

for holding databases, but use the microcomputers to retrieve sections of this data

and analyse it off-line. However, there remains some opposition to the idea of

allowing the personal computers to update the databases.

There are four approaches to connecting microcomputers to mainframes [93]

The microcomputer can simply emulate a terminal, usually a DEC VT-100

or IBM 3101.

In addition to terminal emulation, the discs of the personal computer may

be used to capture the information from the mainframe and thereby enable

local analysis.

41

The mainframe may provide access to some of its files as if they were large

virtual discs, directly connected to the microcomputer. This allows the

normal operating environment of the small computer to be used, whilst

permitting access to the remote data.

Close cooperation between applications software on the mainframe and the

microcomputer can result in the personal computer user being able to access

and manipulate data on both machines in the same manner.

The first two techniques are in common use and are well understood, so they

are not considered further. This section will consider a particular implementation

of the third strategy, the IBM PC/VM Bond, and will briefly survey some new

attempts to provide the fourth solution.

PC/VM Bond

The PC/VM Bond [57] was developed jointly by the IBM Endicott Laboratory

and the Thomas J. Watson Research Centre. It is formed from two separate

software packages

PC Bond runs on a mainframe running the IBM Virtual Machine/System

Product (the VM operating system[261).

VM Bond is executed by an IBM Personal Computer (PC), with the 3278/79

Emulation Adaptor Card attached.

The two programs cooperate to allow the IBM PC user to

42

Use a virtual disc from PC DOS, that is in reality a CMS (Conversational

Monitor System) file on the mainframe. The virtual disc behaves as a fixed

disc on the microcomputer.

Send messages to users of PC/VM Bond or VM on the same mainframe, or

another VM host connected by a network.

Emulate a 3278 model 2 terminal, accessed by a hot-key sequence. Users are

able to assign 3278 function to keys on the IBM PC keyboard, according to

their personal preference.

Issue a subset of VM commands from the PC DOS and receive the results

back whilst in a program or at command level. It is possible for a user to

issue a command to VM, such as a compilation request, and work on PC

DOS while the VM system processes the request.

Write programs in the REXX/PC language on PC DOS, and thereby develop

applications that exploit both VM and PC DOS. The REXX/PC language

(REXX stands for Restructured Extended Executor) is a language that is

common to both systems and is intended as a form of job control interpreter.

The language has features that provide a means for a single REXX/PC

program to call routines on the VM host and process the results locally

under PC DOS.

In addition to these features, there are utilities provided that convert files

from CMS format to common microcomputer formats, such as Lotus, Dif and

Sylk. Curiously, one application of the PC/VM Bond has been to control and

43

monitor laboratory instruments, returning the data to a mainframe for detailed

analysis - just as with the MISS system, 10 years earlier.

Although the PC/VM Bond has satisifed the need for a means of enabling

cooperation between microcomputers and mainframes, there are still problems.

The file size is limited to 32 Mbytes, which is too small for many mainframe

applications. There is also a performance constraint in that the continued need

for a significant amount of processing by the mainframe will impair the response

time.

Further Integration

There are two paths towards achieving even greater levels of cooperation between

microcomputers and mainframes, permitting the merits of both types of system

to be exploited; mainframes can manage large quantities of data, whilst micro-

computers provide a better user interface. Both of these paths are under active

development.

The first approach lies in the production of applications packages that dis

tribute their functions between machines on the personal computer and on the

mainframe. Fundamental to this approach is the use of a suitable interface be-

tween the two halves of the application. The Structured Query Language

(SQL), developed by IBM, is one such interface that is emerging as a standard.

SQL allows random access to data, with a resolution to single fields of a record,

and there are a number of products that exploit its features.

The alternative approach involves much closer integration of the operating

systems of both the mainframe and the microcomputer. For some time now, DEC

44

have been able to claim some degree of success in achieving this objective. The

DEC family spans from the Microvax 2000 to the 8600 range of machines, all of

which run a version of the VMS operating system, and are capable of running the

same program.

The recent series of IBM product announcements are indicative of a strong

move in the same direction. The key to this IBM strategy would appear to be the

Systems Application Architecture (SAA). SAA is an assembly of standards,

encompassing communication protocols, user and application interfaces, of which

SQL is one element. Much of SAA has yet to he fully fleshed-out, but the definition

of SAA took a step further with the announcement of OS/2 [94], the operating

system for the Personal System/2 (PS/2) range of microcomputers.

Inaddition to the PS/2 microcomputers, other IBM machines that are ex-

pected to be covered by SAA are the System 3X minicomputers and the System

370 mainframes. So, although the concept of SAA is in its infancy, the closer

integration of IBM conputer systems looks inevitable.

45

2.3 Distributed Systems

This section concentrates on two well known implementations of distributed sys-

tems. The Cambridge system and LOCUS are described in some detail because

of the importance of the concepts that they introduced. Both systems acted as

test beds for new ideas that have since become fundamental to the subject of

distributed computing. Furthermore, these ideas and methods are of particular

relevance to the work described in subsequent chapters.

2.3.1 The Cambridge Distributed Computing System

The Cambridge Distributed Computing System was developed by the Com-

puting Laboratory at the University of Cambridge towards the end of the 1970's.

Research work on the system followed the development of the Cambridge Digital

Communication Ring and, although the present system uses the Ring, the choice

of local area network does not dominate the structure of the system. In figure 2-3

an example Ring with six stations is shown [11].

In [76] the motivation behind the Cambridge Distributed System is explained

"with the advent of inexpensive microcomputers and the ready avail-

ability of minicomputers we were stimulated to consider the use of

interconnected machines constituting a coherent system rather than

just a collection".

46

Host Minicomputer
;Time sharing system

Error Logger (Name Server

Print
Server

Monitor

Host

Terminal U Microcomputer
Concentrator
Server File Server

Figure 2-3: An Example Ring

In the Cambridge system, the central mainframe is replaced by a collection

of smaller computers that fall into two categories : the small servers and the

processor bank.

Small Servers

The small servers are dedicated machines, providing useful basic services [12] such

as a file service, name service and time service. These machines are fairly simple

in design, and thereby inexpensive and reliable. In the system described in [76]1

the small servers were implemented using ZSO-based microcomputers. constructed

on 	/2 inch square circuit boards using about 40 chips for a total cost of less than

£100.

For the small servers, the distribution of services is along functional lines.

with each server providing a single service. This has the benefit of providing a

47

much more predictable level of performance because of the independence between

services. This also results in greater resilience to system failures.

Although the small servers are assigned to specific tasks, their functional ded-

ication is not fixed at hardware level. Each server has a copy of a program called

SBOOT in RUM. When a small server is activated, the SBOOT program sends

a message across the Ring to a special server called the Boot Server. The Boot

Server uses a reverse look-up facility provided by the Name Server in order to

determine the identity of the new server, then arranges for the appropriate code

to be transferred to the server. The SBOOT program then initiates execution of

this code.

- The Boot Server introduces flexibility into the allocation of services to servers

and is therefore required to have an even greater degree of resilience to system or

Ring failures. In the Cambridge Distributed System, two approaches are taken to

ensure the robustness of this "remote bootstrapping" technique.

Since the Boot Server is a stand alone machine, if it becomes unable to access

other services, its internal tables may he manually manipulated.

If the Boot Server becomes inaccessible to the servers, the SBOOT pro-

gram enters a different mode in which any machine can instigate a loading

operation .2

'The SBOOT program alternates between its two modes, so if the Boot Server recov-
ers then the usual automatic mechanisms come into effect.

48

The Name server plays an important role in the operation of the Cambridge

Distributed system. To use any service, the client must first of all send the name

of the service to the Name Server in order to obtain the location of the server. The

Name Server matches all incoming names with its internal tables to determine the

relevant address.

Processor Bank

The small servers provide the administrative functions in the Cambridge Dis-

tributed System, reminiscent of the operating systems of traditional mainframes,

but the bulk of the computing power in the system resides in the Processor

Bank: The minicomputers that constitute the Processor Bank are not perma-

nently assigned to particular users, but are allocated for short periods of time to

individuals on demand. They may be considered to be processing servers, provid-

ing computing power for the users of the system.

Once allocated, a processing server will be loaded with the code specified by

the user and, for the duration of the session, the machine will act as if it were the

user's own personal computer. The user has complete freedom over the use of the

machine and may execute code that accesses network services.

The only means that the system has of exerting control over the use of the ser-

vice is through the Processor/Ring interface. The interface is concerned with the

loading of code, the initiation and termination of execution, debugging operations

and access to other network services. This is in common with the requirements of

the MUG-V I/O-processor's requirements, described in section 1.2.2.

49

To meet these needs, the Ring interface has to have some degree of intelligence

and be able to manipulate the data in an efficient manner. The interface described

in [76] is microprocessor controlled with a DMA capability for high speed data

transfer, figure 2-1. The design of the interface is such that it may he readily

adapted for use with different machines.

Figure 2-4: Processor/Ring Interface

File Storage

In the Cambridge Distributed System there is a central File Server and the

processing servers do not have local discs. This means that users may access

their files from whichever processing server they are allocated, and allows useful

programs and data to be shared by the users.

.50

There are a number of different operating systems used in the system, with

varying requirements of the filing system, and some of the servers require use of

permanent storage facilities, but without the overheads imposed by filing system

constraints. To satisfy these needs, a universal file server was designed that

provides standard functions and uses a basic linear naming system that may be

shaped by higher levels of software as needed.

Each file is uniquely identified by its PUID (Permanent Uncue Identifier) which

includes a random element that effectively makes access impossible without per-

mission from the higher level system software.

Access to the System

Every user of the system has a personal computer that is only capable of perform-

ing simple tasks, the most important of which is to connect to one of the servers

in the processing bank. The user's command to connect to a processing server in-

cludes details of the abilities required of the machine. On the basis of these needs,

and the availability of suitable processing servers, the Resource Manager will

allocate a server for the stated period, and then reconnect the user's terminal to

the newly assigned machine. Subsequently, the Resource Manager is only utilized

when the assigned period is concluded, the user presses BREAK at his terminal

or the processing server indicates that the session has finished.

Operation

Reviewing the operation of the Cambridge Distributed System, the authors of

[76] observed that the use of screen-based software imposed a substantial load

on the processing server. Their proposed solution to this involved increasing the

intelligence and processing power of both the user's personal computer and the

processor/Ring interface. Following this, use of a screen-based communication

protocol would be possible, with significant improvements in performance.

The system is in daily use by a substantial user community, and has expanded

to incorporate three rings with about 90 attached devices. There are now a number

of such configurations in use in universities throughout the country [11].

2.3.2 Network Transparency

The LOCUS operating system was developed at UCLA with the primary objective

Of providing a high level of network transparency [108] so that the network of

computers appeared to the users as a single machine. Consequently, services would

he accessible in the same manner regardless of whether they were provided locally

or remotely. This approach provides enormous benefits for both the user and

the programmer; the former is presented with a simpler interface to the system,

whilst the latter is rewarded by reductions in the time and cost of developing and

maintaining software.

The LOCUS maxims are "very extensive transparency" and "Unix compati-

bility", so that an application written for a. single Unix computer will run, un-

modified. on the LOCUS distributed system. This extends to a heterogeneous

LOCUS system, which means that if a user requests a service that only exists on

a machine of a different type then LOCUS ensures that the program executes on

an appropriate computer.

52

Supporting this broad transparency introduces the need for a high reliability

and availability. To answer this need, LOCUS uses a filesystem that provides

automatic replication with name transparency so that an object's name is in-

dependent of its location, and a full implementation of nested transactions.

Additionally, the partitioning and merging of subnets is supported.

The concepts that form the basis for the LOCUS operating system are funda-

mental in the field of distributed computing. Consequently, it is worth examining

these techniques to gain an insight into, what Gerald Popek calls, "the unpleasant

truth of distributed systems" [81], and more especially the approaches taken to

overcome these unpleasantries.

LOCUS Distributed Filesystern Overview

The most critical feature of the LOCUS system architecture is the filesystem,

particularly the distributed naming catalog, because it is utilized by most of the

system. The performance of an operating system is frequently dependent on the

efficiency of itsjL syem . This is especially true for Unix because file activity is

so predominant, and consequently the file system plays a critical role.

The LOCUS file system appears to both users and applications software as a

Unix-like single tree-structured naming hierarchy. The LOCUS tree structure en-

compasses the names of all directories and files of all the machines in the network,

but the names are location transparent so that data and programs can migrate to

different sites and yet still he accessed in the same manner.

As with Unix, LOCUS is procedure based. Hence, processes make use of

services supplied by the system through system calls which cause a trap to the

53

kernel. The process need not he aware of whether the service is locally or remotely

provided because the LOCUS kernel will determine the location of the service

and, if necessary, send a message to the appropriate remote site. This is a form of

remote procedure call [77] and the sequence of events is illustrated in figure 2-5.

Requesting Site 	 Serving Site

initial

system call 	
I

processing 	 time

local or remote' 	 I

message setup

message analysis
local 	

returnssage 	

send return message 	

mote service

processing

'system
call

completion 	 I

Figure 2-5: Processing a System Call

The LOCUS kernel detects, at an early stage. whether or not the system call

is to a foreign site, and consequently is able to optimize its operation for local

services. This optimization is successful in that the time to service a local call in

LOCUS is comparable to that of system calls in a single machine implementation

of Unix. This is considered further in section 2.3.2.

Remote Services

It is important to note the technique taken in LOCUS to support remote services,

since it supplements a shortcoming of the Unix system on which LOCUS is based.

54

The approach that has been taken traditionally is to pass the service call up to

an application level process. This incurs enormous overheads in operating system

processing because of requiring the following steps

message transfer to the application level process

scheduling of the process

implementing the appropriate kernel call

passing the results back to the process

returning a message to the requesting site.

Where an application process is to be executed, this approach is appropriate

because the mechanisms listed above are needed for the protection of the program.

However, in the case of a LOCUS system call, these overheads are needless and in

fact would dominate the implementation of the service.

An alternative would be to satisfy the service request entirely within the in-

terrupt routine that initially received the message. This should he discounted im-

mediately because interrupt processing should be reserved for time critical events;

processing of the service call would require an unsatisfactorily long period of time

to be spent at interrupt level. The LOCUS designers also point out the additional

safeguards needed for the integrity of data structures that the service may need

to access.

The technique introduced in LOCUS involves the creation of lightweight pro-

cesses, which are designated server processes. Their code and stack are resident

55

in the operating system nucleus, global variables are part of the nucleus reserved

storage area and they are able to call internal subroutines directly. Consequently

these server processes are compact and yet very efficient.

Although the LOCUS server processes are perhaps insufficiently generalized

to satisfy the advocates of lightweight processes, they were an ideal solution to

the requirements of the LOCUS designers, providing structural simplicity together

with enhanced performance.

Synchronization

LOCUS filesystem operations involve up to three logical functions, that are in

turn represented by three logical sites

Using site (US) : the site requesting file access, and the destination for

pages of the file.

Storage site (SS) the location of the requested file, and the site selected

to supply pages of the file to the using site.

Current Synchronization site (CSS) : this site enforces a global access

synchronization policy for the requested file's group and selects a suitable

storage site for each request.

These three independent roles mean that any individual site may operate in

one of eight different modes. The general case, where all the logical functions

are located on different physical sites, is illustrated in figure 2-6 which shows

the open protocol. The CSS plays an important part in this protocol. It enforces

56

Be
SS?
(2)

Figure 2-6: The Open Protocol

synchronization controls, determines the storage site for the operation and supplies

information about the latest file version for all prospective storage sites.

File Replication

In the LOCUS distributed system, replication of certain critical files is essential

in order that the system will continue to operate even when some machines are

inaccessible. There are, of course, additional benefits for the user

The presence of multiple instances of a file results in increased availability.

There may be performance improvements through using a nearby copy of a

file rather than one that is more distant.

In a tree structured naming system, the desirability of replication increases in

relation to the level of utilization, and correspondingly in accordance with the level

within the tree. This is especially true for directories, illustrated by the fact that

3'

the root and upper level directories experience a much greater degree of "look-up"

than the lowest level sub-directory.

The LOCUS filesystem operates file replication by distinguishing between log-

ical filegroups and physical containers. For every logical filegroup there will

be a number of physical containers at a multiplicity of sites. There is no require-

ment for every physical container to hold versions of all the files in a filegroup, so

any container will possess only a partial subset of files.3

Propagation of the latest copy of a file to all its storage sites occurs when a

file commit operation is performed. This technique of atomically committing

changes is commonplace within database systems, but is equally valuable in gen-

eral purpose applications. When a commit is issued, the current storage site will

replace old copies of a file's pages on the disc by amended versions and then notify

all of the file's other storage sites of the commit operation.

Context Dependent Files

There are certain instances when the implementation of a command needs to vary

according to the nature of the host processor issuing the command. This could

be for any of a number of "hardware heterogeneity problems", such as differing

number representations, byte ordering and hardware differences. In LOCUS, files

that are in some way "context sensitive" are treated specially through the use of

the following technique

3The exception to this is the primary physical container, which holds a copy of all
files in the corresponding filegroup.

58

The global name of the file is made to refer to a hidden directory, which in

turn holds the different versions of the file, named according to their context.

Whenever the special file is accessed, the context for the current process

determines which of the files in the hidden directory is to be used.

By appending an '©' to the name of a hidden directory it is possible to override

this mechanism, when necessary.

Interprocess Communication and Remote Tasking

A pipe is a Unix mechanism that enables one-way communication between pro-

cesses. The communicating processes use the pipe as if it were a normal file,

whereas it is implemented as a finite length buffer. Hence, the reading process

is suspended if it attempts to read when there is no data in the buffer, and the

writing process will be blocked if it fills the buffer. An attempt to write to a pipe

that has no reader, or read from an empty pipe with no writer, results in an error

condition that is notified to the process.

A pipe may be established in one of two ways

1. A process may issue the pipe system call, and then spawn child processes

which will share the same file descriptor table and thereby he able to access

the same pipe.4 This is called an unnamed pipe.

4The processes will be divided into those that close the pipe's read descriptor but
maintain the write descriptor and so act as writers, and those that do the opposite and
act as readers.

59

2. A named pipe has a name in the filesystem and is accessed in the same

way as a conventional file, i.e. using an open call. This allows unrelated

processes to communicate.

LOCUS supports the operation of both named and unnamed pipes. The mech-

anism to achieve this involves three sites : the current reading site, the current

writing site, and the storage site. The storage site uses tokens to synchronize

the operation of the reading and the writing sites.

The LOCUS implementation of pipes allows the network to remain totally

transparent to the user. Similarly, the Unix mechanisms for the creation of pro-

cesses have the same interface in the LOCUS system. Two system calls are involved

in the spawning of new processes

fork creates a new process, executing the same program as the calling pro-

gram at the point in the code where the fork occurred. The child process

inherits the same data as the parent and has a copy of the same file descriptor

table.

exec causes the code and data of the process to be replaced by those specified

by the parameters.

Frequently, a fork operation is followed immediately by an exec, so in LOCUS

the run system call is introduced to optimize this function. Also, the migrate

system call allows a process to move to another site for execution in the middle of

a program. Table 2-1 summarizes the effects and relationship of the four system

calls.

60

Old Image New Image

Move old process migrate exec

Create new child fork run

Table 2-1: Remote Tasking System Calls

Fork and migrate both require the existing memory image to he copied for the

new process, hence these system calls may only he used with machines of similar

architecture. Exec and run will also need to copy the process and data structures,

as well as the command line and environment, but execute 	new programs

so these system calls may be used with dissimilar machines.

Overcoming Difficulties

The benefits of file replication have already been explained, but it would be foolish

to disregard the many difficulties that may arise from its use. Primarily, the

existence of multiple copies of a file only creates problems when partitions appear

in the structure of the system and the possibility arises of the individual copies of

a file being updated separately.

When partitions are merged, the system needs to perform consistency checks on

all copies of files. Where one copy of a file has been altered but the other copies are

unchanged, the amended version is propagated through to the other storage sites.

However, when multiple copies of a file have been updated separately, attempting

to reconcile these versions will result in a merge conflict. Such a conflict might only

Th

be resolved through the intervention of higher level software, such as a database

manager, or direct manipulation by a user.

LOCUS incorporates consistency checking and has special purpose protocols

for dealing with partitions and mergers. Low level decisions of a trivial nature

are made by this software, but more difficult conflicts require the intervention of

a user, and simple tools are provided to assist the user in such endeavours.

There are protocols provided in LOCUS to enable dynamic reconfiguration

of the system to occur transparently to the user. These protocols use a high-

level synchronization strategy and are largely independent of the LOCUS system

architecture.

Performance

Performance measurements made using LOCUS indicated that local system calls

are on a par with those of a single site Unix, and that remote accesses are insuffi-

ciently distinct from the local case to warrant consideration by the user. The au-

thors of [108] admit to being surprised at this level of "performance transparency",

but make the following comment about network transparency in general

"experience with transparency has been very positive; giving it up,

once having had it, would be nearly unthinkable"

The LOCUS designers achieved their objective of providing a high level of

network transparency, but at what cost

. LOCUS is a third larger than Unix, and is significantly more complex

62

file replication poses great difficulties when recovery is needed

dynamic system reconfiguration introduces immense problems in the coop-

eration of processes executing in separate environments.

The use of application specific protocols is essential in the LOCUS system

in order that the performance degradation for remote system calls is minimized.

For similar reasons, the compatibility and structural benefits of the ISO 7 layer

reference model have to be foregone in the interests of efficiency.

In LOCUS, a single distributed operating system is provided for the users of

the network of machines. They are presented with a familiar interface to the

system because the LOCUS designers viewed Unix compatibility as an important

benefit. Indeed it is, because of the wealth of software that already exists for Unix.

The network transparency of LOCUS should mean that these applications are

usable without modification. Retaining Unix compatibility required the LOCUS

designers to rewrite the kernel completely, adding embellishments to support the

network mechanisms.

63

2.4 Support for Distributed Systems

The previous section concentrated on two notable systems that provide complete

operating systems; that is, it is relatively difficult to amend their basic form. This

section turns to three examples of a minimal approach to supporting a distributed

operating system. The V kernel and Amoeba systems comprise a concise kernel,

present on all machines in the system, that contains the fundamental communi-

cation mechanisms and little else. The WFS file system includes a small set of

file operations, but exerts no influence on the design of the higher level system

functions.

2.4.1 Communications Infrastructure

When compared to the LOCUS system discussed in the previous section, the Dis-

tributed V Kernel represents a strikingly different approach to providing a dis-

tributed operating system. The LOCUS system encompasses all of the features of

a single machine operating system, together with complex software to enable reli-

able distributed operation. In contrast, the V kernel only provides the mechanisms

for communication between the elements of an operating system. The higher level

functions are supported by servers outside of the kernel. These functions include

the file system, resource management and protection services.

The distributed V kernel was implemented in the Computer Systems Labora-

tory at Stanford University on a group of SUN workstations, interconnected by

3Mb or 10Mb Ethernet. The workstations have no local discs, but rely on network

64

file servers for all secondary storage. However, the V kernel does not possess spe-

cialized protocols for file access, like those of LOCUS, but uses a general purpose

set of communication primitives. These primitives do not incorporate provision for

streams, to deal with network latency, but rely on a synchronous request-response

model of message passing and data transfer.

These simple and general purpose primitives permit flexibility in the support

of different types of network communication, but would appear to result in a sig-

nificant performance degradation compared with the application specific protocols

of LOCUS. In [20] the performance of the V kernel is considered, and the claim is

made

- 	'the V message facility can be used to access network files at compa-

rable cost to any well-tuned specialized file access protocol."

V Kernel Communication Primitives

The basis of V kernel operation is a number of small processes communicating by

short, fixed-length (32 byte) messages. Each request message has a correspond-

ing response message, and there may be an associated data transfer operation

when larger quantities of data are involved. The basic communication sequence,

designated a message exchange, has the following form

I. The client process issues a Send(message,pid) to a server process and

then blocks, awaiting a reply. The pid is a 32 bit globally unique process

identifier.

65

The server process executes a Receive to accept the message, and may

perform a number of MoveTo or MoveFrom operations to transfer data.

Finally, the server process returns a Reply to the client.

It is possible to append segments to messages, and use the primitives Receive-

WithSegment and ReplyWith Segment, to improve page-level file access.

The V kernel communication primitives are basic but fast and may be imple-

mented efficiently because the buffers required by small, fixed sized messages may

he statically allocated, thereby reducing queuing and buffering problems. The

designers claim that the distinction between the exchange of small messages and

the transfer of large amounts of data complies with observed usage.

As with LOCUS, remote services are implemented within the kernel, rather

than through a process-level server, to avoid unnecessary overheads. Also, the LO-

CUS policy of not using layered protocols, because of the associated performance

penalty, is followed in the V kernel. The synchronous nature of the message ex-

change enables reliable communication to be achieved using unreliable datagrams,

without the need for explicit acknowledgements.

The implementation of pipes in the V kernel differs from the approach taken

in LOCUS, as described in section 2.3.2. The V kernel supports pipes through the

provision of a pipe server process [111] and uses the general purpose communi-

cation primitives. This contrasts with the kernel support and dedicated protocols

of LOCUS.

A pipe is created by executing a Send to the pipe server, specifying the pids

for the reader and writer processes, and setting the buffer size. The reader and

writer processes then have to execute Send messages to the pipe server in order to

complete the creation of the pipe. Throughout the operation of the pipe, all of the

processes involved communicate using the standard V kernel message exchange -

no special protocol is needed.

In analysing the behaviour of V kernel pipes in [111], Willy Zwaenepoel ob-

serves that performance falls by 50 percent when the processes (reader, writer and

pipe server) are on separate machines, compared to the case of the pipe server

being local to either the reader or writer. Willy Zwaenepoel deduces that it is

desirable for every machine to have a pipe server.

The use of a pipe server rather than dedicated kernel support is shown to reduce

performance by 8 percent for remote pipes and 25 percent for local pipes. For the

V kernel, where pipes are not a primary means of interprocessor communication,

this overhead is considered to be acceptable.

V Kernel Performance

The performance of the V kernel is discussed in some detail in [20], and the

authors emphasise that caution must be observed in drawing conclusions from

their results. These results indicate that the message sequence Send-Receive-

Reply takes three times longer in the remote case than for a local operation.

However, the difference between the two instances is only around 2 msec, which

frequently is insignificant when compared to the time needed to process the request

in the server.

The more interesting results are concerned with the performance in file access.

For page-level accesses, remote operations incur a delay of 4.2 msec, but for a disc

IM

latency of 20 msec the remote access is around 18 percent more than for a local

access. For sequential file access, with a disc latency of 15-20 msec, the V kernel

is within 15 percent of the disc latency and the time for each page read is on a

par with that of LOCUS.

The designers of the V kernel argue that streaming is unnecessary in a lo-

cal area network because of the low latency, and using synchronous interprocess

communication permits a large degree of concurrency, reducing the effects of net-

work latency. However, a file server that provides read-ahead and write-behind can

reduce the effective disc latency for sequential data, and this will increase the pro-

portion of the delay in accessing the disc that is attributable to network latency.

In these circumstances the benefits of streaming protocols outweigh any merits of

the V:kernel primitives.

The V kernel may be more desirable than, say, LOCUS in applications where

its small size and the generality of the communication mechanisms are more impor-

tant than the presence of higher level services, and their associated protection and

synchronization needs. Additionally, the V kernel permits a significant versatility

in the provision of services by the system for the user.

2.4.2 The WFS File System

In the previous section it was noted that the distributed V kernel provides the

infrastructure for communication between the elements of an operating system,

but does not impose any restrictions on the nature of those elements. With a

similar objective, the WFS file system [9] supports a wide variety of applications

by providing a concise set of commands for use in a distributed system. WFS

68

does not endeavour to provide a high level of functionality like that of LOCUS.

It is closer in strategy to that of the Cambridge file system, section 2.3.1, in that

it provides a set of rudimentary file operations and expects the client system to

enhance these functions to achieve the desired standard of service.

It is the client system's responsibility to implement stream I/O and the direc-

tory system. WFS operations are concerned with page-level requests, and hence

the behaviour of the file server is like that of a remote virtual disc. The commands

are atomic and WFS will only return an acknowledgement once an operation is

complete, minimising the risk of inconsistency at the file and page level and thereby

improving reliability.

If the client does not receive a response within a reasonable period, it should

re-transmit the request. WFS write operations are designed such that they may

be repeated and still have the same effect. However, there is no protection against

the re-ordering of requests. The client system may provide this by using sequence

numbers in the private fields stored with each page. This use of atomic commands

together with connectionless protocols obviates the need for WFS to maintain

transitory state information between requests.

Every file has a file identifier (FID), which is a 32 bit unsigned integer. There

is also a set of file properties for every FID, again with fields that are private

to the client. WFS uses fields to store information about the state of the file

(free, allocated, deleted, expunged), and sets a dirty bit on every operation that

changes a file. This allows a client system to back-up those files that have the

dirty bit set and then reset the bit.

The performance of WFS is restricted by its dependence on atomic page-level

69

operations. Where an application requires access to a contiguous set of pages, there

is no mechanism provided by WFS to allow this to be optimized by, for example,

streaming. The authors of [97] suggest that by spawning a process within WFS to

issue the appropriate sequence of commands, performance would he significantly

improved but the integrity of the virtual disc could be maintained.

WFS was developed to provide shared file access in the multiple workstation

environment of Woodstock, but a number of other applications have been im-

plemented.

2.4.3 Object Oriented Model

Amoeba is a capability-based, object-oriented distributed operating system [73,

99]. The system has been developed at Vrije Universiteit, Amsterdam, on a collec-

tion of Motorola 68010 Multibus computers interconnected by a 10 Mbps Pronet

token-passing ring. Amoeba is destined for use with, what is described in [73]

as, "a fifth-generation computer system architecture". This architectural model

is based on a single circuit board, comprising processor and memory, that is used

in varying quantities by a three-tier range of machines

Personal computers, with high quality displays and a small number of these

processor-memory modules.

Departmental computers containing hundreds of modules.

Large mainframes constructed from thousands of modules.

KII

The essence of this model is that the same program should be capable of

executing on any of these machines, exploiting the processing potential provided

in each case. The only difference between the machines is in the quantity of

processor-memory modules, not in the type of these modules. This model has

much in common with the objectives behind the development of the transputer.

Traditional process-based approaches towards distributed operating systems do

not map readily onto this architectural model because of their

"emphasis on processes, and by inference, processors". [73]

Hence, Amoeba is concerned with abstract objects, each with associated capa-

bilities which control access to those objects and determine the abstract operation

that may be performed on them. An object may be implemented on one processor-

memory module, but it is inherently location independent. Users execute functions

on objects by issuing a request to the system, specifying the identity of the object

and the operation to be performed, and in return receive a reply. The user has

no need to know the location of an object, giving the system the flexibility of

moving the object to different processors according to demand, and even varying

the number of processors involved in the implementation of the object.

The architecture of the Amoeba prototype, figure 2-7, has four components

workstations for interactive tasks

a pool of processors that may be allocated on demand

specialized servers, dedicated to specific functions

71

gateways to different sites.

The Amoeba processor pool differs from the Cambridge Procesor Bank, sec-

tion 2.3.1, in that the processors may be dynamically allocated in groups to per-

form particular operations, such as compilations, but are then returned to the

pool. Whereas the processors in the Cambridge Processor Bank are assigned,

individually, to users for the duration of the terminal session.

Processor

pool
	 Workstations

Gateway

WAN

Epec .l izea servers

If ile, cata base, et:)

Figure 2-7: The Architecture of the Prototype Amoeba System

All of the machines in the Amoeba system execute the same kernel. This

provides communication mechanisms but leaves the operating system functions to

be supplied by user-level processes, some of which run on the specialized servers.

As with the V kernel. section 2.4.1, users are able to replace system services

72

by their own, if desired. In turn, this makes development of new services very

straightforward.

Communication Protocols

Amoeba is based on a request-reply style of communication with a simplified lay-

ering structure, as opposed to the ISO OSI connection-oriented protocols. The

basic mode of operation is

the client executes trans to send a message of up to 32 kbytes and blocks,

awaiting the result.

the server uses get req and put rep to receive the request and return the results.

This communication sequence is similar to V kernel message exchange, except

that the size of the messages in Amoeba can be much larger. If a client does

not receive a reply within the timeout period, it should retry; there are multiple

instances of server processes and the network has a high reliability so a retry

should only be necessary when the system is heavily loaded.

The Amoeba communication protocol is blocking, but there is provision for the

transmission of out-of-band messages in the form of the exception message. An

exception message will be transmitted to the server if the user presses BREAK

on the terminal, and will cause the server process to terminate normally with a

status of request terminated.

73

Capabilities

In Amoeba, as in other object-based systems, every object has an associated ca-

pability, for which each position in the bit-field indicates an operation that the

holder of the capability may or may not perform. Every object is managed by

a user-level service that interprets the capabilities for its objects. An Amoeba

capability has four fields, figure 2-8.

Service Port : the address of the service that manages the object.

Object number : an identifier, internal to the service, that enables it to distin-

guish between its objects.

Rights field : a bit-field, where each '1' indicates a permitted operation.

Check field : a random number, used to authenticate the capability.

SERVICE 	OBJECT 	RIGHTS 	CHECK

Figure 2-8: An Amoeba Capability

When an object is created, the server selects an identifier and a new random

number, then encrypts the rights field (initially all 'l's) with this random number

and a known constant to form the last two fields of the capability. It is possible

for the holder of the capability to give it to another user with the same access

rights, but impossible to grant reduced or enhanced rights without returning the

capability to the server and obtaining a new one. The use of the random number

74

results in a limited degree of protection for the capability, but in [73] a more

elaborate scheme is described that involves one-way functions.

The Amoeba distributed operating system seems to exploit the potential of the

object-oriented model, and exhibits a significant degree of versatility. It would

appear that object-oriented systems may operate in a distributed environment

quite successfully. However, it remains to be seen whether or not they are much

better than process based systems when used in the "fifth-generation computer

system architecture" that is the target of the Amoeba system.

75

2.5 Campus Computer Networks

2.5.1 Introduction

An expanding number of universities are becoming involved in the construction

of campus-wide networks of computers. In such installations, the number of ma-

chines is very large, running into lOOs or 1000s, and the computers themselves are

supplied by a number of different manufacturers. It is clear that the development

of a campus computer network is an onerous task, for a number of reasons

The variety of types of computer may result in problems due to incompati-

bilities between these machines.

The wide area of a campus provides technical difficulties in the forming of a

single unifying network.

A primary objective of campus computer networks is to broaden the acces-

sibility of the machines and encourage a much more substantial user base

to exploit the potential of the system. However, this also means that the

software provided by the system needs to be expanded to satisfy the needs

of the new users.

The integration of computing resources from different departments into a

single system introduces additional organizational requirements. The up-

keep of the system is of special concern, particularly because of the various

76

computers having a multiplicity of owners, users and most especially main-

tenance contracts.

The efforts of research groups to overcome these obstacles are made more

worthwhile by the widely held regard that a campus computer network can greatly

improve the operation of a university through the enhanced communication and

information processing abilities that it provides.

The preceding sections of this chapter have been concerned with systems that

have been developed for operation within a single department. It could be argued

that both MISS and the Cambridge Distributed system incorporated a means of

gaining access to the campus central computing facility. However, these systems

did not provide for the distribution of the campus computing resources amongst

the participating departments.

In contrast to the strategy of enabling the user of a small computer to gain

access to a conventional mainframe for temporary large scale processing require-

ments, this section is concerned with a more decentralized approach to satisfying

users' computational needs. Primarily, this section will concentrate on the An-

drew distributed personal computing environment that has been developed at

Carnegie-Mellon University. The approaches taken by the SPICE project, Dart-

mouth College and Brown University will also be discussed in comparison with

the Andrew system.

77

2.5.2 Motivation

The possibilities afforded to universities by the formation of campus-wide com-

puter systems are tremendous. In [105], Doug Van Houweling describes the univer-

sity as the "quintessential information processing organization", but he observes

that "the demands of rapid expansion in knowledge are placing immense pres-

sures on student time". Van Houweling considers the potential for relieving this

pressure

"The advent of communications networks and networked computing

is on the verge of making audio and pictorial informatioti more eas-

ily manipulable ... information gathering (through access to library

resources and computer data banks), information processing (via text

editors and database editors), and communication (through electronic

mail and bulletin boards) can reduce the time spent in routine tasks."

[105]

Van Houweling's student-oriented perspective of campus computer networks

is similar to that taken by Brown University in their Scholar's Workstation

Project. Martin Michel describes the goal as being to

"help scholars in their daily knowledge work." [65]

This inclination is sympathetic to the practice at Brown University, where

the emphasis is on undergraduate teaching. Dartmouth College and Carnegie-

Mellon University envisage a broader purpose for campus computing, described

by William Arms as

78

"to improve the quality of academic teaching and research." [7]

In [70], the potential effects of Andrew on university education are described

as being concentrated in four main areas

Computer-aided instruction

Creation and use of new tools

Communication

Information access.

Whilst the introduction of campus computer networks can extend the facilities

provided in these four areas, the authors of [70] stress that there is an increase in

functionality rather than any replacement of existing methods. Taking communi-

cation as a clear example

"We do not expect computer mediated communication to supplant the

more traditional methods, but it will broaden and deepen the commu-

nity's ability to communicate." [70]

2.5.3 Andrew

Background

In October 1982, the Information Technology Centre (ITC) was established

in a collaborative effort by IBM and Carnegie-Mellon University. The task of

the ITC was the design and development of computing resources to satisfy the

anticipated requirements of the university. The resulting system, Andrew [6,70],

is an ideal example of what can be achieved in a campus computer network. This

is in part attributable to the considerable computing expertise that was involved

in the creation of Andrew, but is also the result of the experience gained from

other systems. Noteworthy systems that are acknowledged as being instrumental

in guiding the course of Andrew's development are the MIT Athena Project, the

Xerox Alto System and the SPICE Project.

The Xerox Alto System [101] demonstrated how technological advancements

in the design of personal computers could be exploited to imprOve drastically the

transfer of information between user and computer. Central to these developments

was the integration of a pixel-addressable display with a mouse. The combination

of these two elements allowed operations to be effected and represented by the

manipulation of graphical items (icons) using the mouse.

The ideas introduced by Xerox have been widely adopted, to the extent that

Window, Icon and Mouse Packages (WIMPs) are commonplace. IBM has

adopted a form of this interface in the operating system for its new personal

computers, the PS/2s, and thereby endorsed the acceptability of WIMPs for com-

mercial usage.

The ITC saw this form of human-computer interface as a means of achieving a

uniform application-level interface to a number of software packages. A high degree

of uniformity in the presentation of different software was considered essential in

order to encourage the large new user community to exercise unfamiliar tools. The

user interface of Andrew is considered further in section 2.5.3.

80

The Scientific Personal Integrated Computing Environment (SPICE)

project [9] was developed in the Computer Science Department of Carnegie-Mellon

University by researchers who later joined the ITC. It is therefore quite reasonable

to expect some of the ideas behind SPICE to have been incorporated in the Andrew

system.

Technical Features of the Personal Computers

Perhaps the most noticeable common feature between SPICE and Andrew was the

hardware specifications of the personal computers. For SPICE the requirements

were

A micro-programmable processor capable of

executing 1 million macro instructions per second (1 MIPS).

providing for the efficient execution of Pascal and LISP programs, with

sufficient control store memory for more than one resident instruction

set.

2. Virtual memory with

1 megabyte of real memory.

100 megabytes of local disc storage.

3. A powerful user interface, supported by

high-resolution bit-mapped display with a million pixels.

keyboard.

Si

pointing device.

provision for audio capabilities.

This hardware specification was drawn up in the belief that, by the mid-1980s,

such a system would cost about $10,000 and would subsequently be affordable to

students.

The SPICE project adopted the Three Rivers Corporation Perq for develop-

ment, but endeavoured to minimize hardware dependencies because the Perq did

not meet the price/ performance needs. For the Andrew project, the SUN work-

station was chosen for the development machine since it possssed most of the

more important requirements.

The choice of a personal computer that provides a flexible user interface with

a price/performance ratio appropriate for purchase by students is a characteristic

of campus computer networks. The computers selected by Brown University and

Dartmouth College differ from SPICE and Andrew because both these projects

predate the work at Carnegie-Mellon and they required a shorter period for intro-

duction of the new machines.

The Dartmouth Personal Computer Project specified a preferred personal com-

puter, to be supplied to faculty members and purchased by a large number of

students. The Student Package comprised an Apple Macintosh 128k computer,

with MacWrite, MacPaint, TrueBASIC and DarTerminal software supplied for

a total cost of $1,285. This is comparable to the average annual expenditure

by students on books. Brown University also chose the Apple Macintosh for their

Scholar's Workstation Project, but additionally IBM PC/RTs have been used.

82

Structure of System

At Dartmouth College, the personal computers were expected to be used in two

ways

1. As a computer for

word processing

graphics

programming in BASIC and Pascal

course materials

2. As a terminal : for

electronic mail and shared data

library catalogue

time shared computers.

The overall structure of the system was based on the Kiewit Network de-

signed by Stanley Dunten, figure 2-9. The baseband network was not fully devel-

oped because the emphasis remained on the provision of medium speed services

provided by time shared computers. There were no dedicated fileservers, but files

could be transferred between machines and the Apple Macintoshes have floppy

discs. The simplistic nature of the Dartmouth system is in stark contrast to the

more advanced nature of the Andrew system.

The Andrew system is based on a computing model that combines personal

computing with timesharing, figure 2-10. At the centre is VICE (the "Vast, Inte-

83

BASEBAND

Figure 2-9: The Kiewit Network

grated Communication Environment"), which forms the backbone of the system,

providing both communication and processing resources. VICE provides a uni-

form shared name space for files, so that users may access files in the same fashion,

independent of the location of the workstation.

The VIRTUE workstations connect to VICE to provide users with a powerful

human-computer interface and supply computational resources. VIRTUE stands

for "Virtue is reached through Unix and EMACS". Specifically, it is the Berkeley

version of Unix that forms the basis for the system. The main reason for this is

that in academic circles Unix 4.2 BSD has become a de facto standard. Conse-

quently, not only were most of the developers familiar with it, but also it has been

84

VIRTUE 	
Pnnter 	

Big computer
Workstation

	

ICE 	 networks
VIRTUE

workstation 	 file system

Archive
1.

VIRTUE
workstation

Pri ter

Other
workstation

Figure 2-10: VIRTUE and VICE

implemented on a multitude of machines. This allows software developed using

Unix 4;2 BSD to be readily portable to many other machines.

As noted by the authors of [70], the designers of Andrew 'distanced" them-

selves from the mainstream personal computing world", by opting for powerful

Unix-based workstations instead of IBM PCs and Apple Macintoshes, as chosen

by Brown University and Dartmouth College. The benefits of virtual memory and

a good programming environment were considered preferable to the advantages

of being able to use the commercial software available for IBM PCs and Apple

Macintoshes. However, the anticipated convergence of scientific workstations and

commercial personal computers should eventually result in the availability of com-

mercial software on Andrew.

The integration of the various components that collectively form Andrew is il-

lustrated in figure 2-11. The partitioning of VIRTUE and VICE allows new work-

stations to be added to the network with a minimum of effort to allow cooperation

85

with VICE, and also without disrupting the existing parts of the system. Addi-

tionallv,

ystem.Addi-

tionallv, the VIRTUE-VICE interface is the boundary of trustworthiness. No user

programs reside within VICE, and hence it forms a secure environment. However,

workstations are owned by individuals who are capable of modifying the hardware

or software at a whim.

VIRTUE
appcaons

support
VICE file
system

Berkeley UNIX

Network
communication

Workstation

Figure 2-11: Components of Andrew

Network Communication

The basc topology of Andrew, figure 2-12, shows how VICE is formed from a

collection of clusters, each with a local server, and all of which are interconnected

by a backbone network. The internet comprises token rings within buildings,

with fibre optic links to 2 central routers. The bridges act as routers and traffic

filters, interconnecting Ethernets and ProNet token rings, but assuming TCP/IP

protocols. The TCP/IP protocols were chosen partly because of the association

with the ARPA network, but mainly due to the existing implementations of these

protocols in Unix 4.2 BSD.

86

Backbone Ethernet

Cluster 0 	 Cluster 1 	 Cluster 2

Figure 2-12: Topology of Andrew

At a higher level, the VICE-VIRTUE interface is implemented using remote

procedure calls for data and control transfer. There are inbuilt authentication

capabilities and the option to use encryption for secure communication.

Dartmouth College concentrated on the provision of medium speed services,

with personal computers communicating via a local switching node. These nodes

can support up to 56 nodes, connected by AppleTalk, RS-232 or X.25. The pro-

tocols used over the network are

asynchronous ASCII PAD

TcFace for Dartmouth timesharing

X.25. levels 2 and 3

AppleTalk.

87

Brown University placed a greater emphasis on the development of a campus

wide broadband network to interconnect all of the personal computers. Addi-

tionally Syteck Localnet/20 was used for terminal-host connections, as well as

AppleTalk, IBM PC-net and 10 Mbps Ethernet.

File System

Application programs on VIRTUE workstations view the file name space as parti-

tioned into local and shared areas. However, the vast majority of files accessed by

users are in the shared area, thus providing the uniformity of access mentioned in

section 2.5.3. The shared name space is reached by 'mounting onto the node /cmu.

Subsequently, all accesses to files in this directory are referred to the appropriate

fileserver.

Commonly accessed systern files are translated to remote accesses through the

use of symbolic links. The choice of symbolic link may vary according to the

machine being used. For example, /usr/local/bin will be a symbolic link

on a SUN to /cmu/unix/sun/usr/Iocal/bin

on a VAX to /cmu/unix/vax/usr/local/bin

This reduces the local disc space needed, simplifies the release of new software

and provides support for heterogeneous workstations. This use of symbolic links

is similar in effect to the LOCUS hidden directories, section 2.3.2.

When an attempt is made to access a shared file, the request is passed to a

local process, Venus. that represents the file system and manages the temporary

88

storage of files and communication with remote file servers. If the file is not held

locally, a copy of the entire file is transferred from the file server and then held

in a local cache. When the file is subsequently closed, if it has been changed, a

copy is returned to the file server. In this way, write-through caching of files is

achieved.

Entire file caching results in improved performance, due to fewer interactions

with the file server, and simplifies the operation of Venus. However, this scheme

is only workable when the workstations have sufficient local disc storage to be

capable of caching all of the user's working set of files, and is undesirable when

workstations do not have local discs. Files of up to 5 megabytes have been used

in this way, but [70] claims that the majority of files are quite small, adding the

comment that large databases cannot be accommodated with the present system.

Workstations that have no local discs use a "PC-server", which is a process

running on another Unix Machine. The protocol used for communication between

a disc-less workstation and a server is called SNAP. Primarily, however, Andrew

is intended for use by workstations with local discs.

The hierarchical name space is partitioned into sub-trees, each of which is man-

aged by a single server, designated its custodian. The custodian for a sub-tree

is responsible for servicing all requests for files within it, but frequently accessed

sub-trees may have read-only replicas at other servers, created by system man-

agers using cloning. It is assumed that these read-only replicas and the custodian

for a sub-tree change very rarely.

89

User Interface

The ITC had two primary objectives when creating the workstation software

To provide tools that allow application developers to exploit the graphical

capabilities of the workstations.

To encourage consistent application-user interfaces, in order to reduce the

degree of application-specific knowledge needed by a user for extensive use

of the system.

The second of the ITC objectives is common to one of the important aspects

of IBM's Systems Application Architecture (SAA), section 2.2.3. The recent an-

nouncement of the availability of the OS/2 Presentation Manager is viewed as an

important element in developments of the personal computer in the immediate

future. It is understandable that the ITC placed so great an emphasis on the role

of the user interface of the workstation software.

The structure of the software on a VIRTUE workstation is illustrated in fig-

ure 2-13. It can be seen that the window manager has a very important function

in the operation of all applications. It manages the display by dividing it into in-

dependent rectangular areas, each of which is attached to a process. The window

manager receives input from the keyboard and the mouse, and directs this input

to the process associated with the window displaying the mouse cursor.

As illustrated in figure 2-13, above the window manager is the base editor

tool kit. The tool kit contains a collection of data types, each of which has a

90

Application

Tool Kit

Window Manager

Unix 4.2 BSD

Workstation

Figure 2-13: VIRTUE

programming interface and a well-defined user-interface. Use of the tool kit

by an application provides the following advantages

e it has a higher level interface, thereby reducing the complexity of controlling

the display

applications using the tool kit are more likely to have consistent user inter-

faces

the performance and behaviour of software may be enhanced more easily by

manipulating individual data types than by attempting to upgrade a number

of application programs.

91

Applications that have been developed using these facilities include a text

editor with dynamic formatting, drawing editors, mail and bulletin board browsing

programs and the Tutor programming language.

Experience

Carnegie-Mellon University have concluded that the introduction of small per-

sonal computers has been very successful. The user community is, in general,

happy with the system, but complains about the unreliability and low perfor-

mance. The authors of [70] consider these problems to be typical of prototype

systems and envisage improvements in the long term. There were noticeable dif-

ficulties in the integration of the new system with existing computing usage, but

the implementation of a "federal" network, involving 17 organizations, has been

very beneficial.

At Dartmouth College, a more extensive study was made of the effects of

the introduction of the campus computer network. The academic impact was

marginal

most of the course usage was by courses that had already used the existing

computing resources

lecture notes improved

the average length of papers increased by 50 per cent.

The use of the general purpose timesharing facility was drastically reduced, but

the load on the VAXs increased. This led to the conclusion that the Apple Mac-

92

intoshes were ideal for small tasks, but not for more computationally demanding

jobs.

2.6 An Integrated Distributed System

2.6.1 The Apollo DOMAIN

The designers of the Apollo DOMAIN regard it as "the third phase in the history

of computer architecture", with the previous two phases being batch processing

in the 1960s and timesharing in the 1970s. Their objective was to provide the

performance and responsiveness of dedicated minicomputers with the advantages

of resource and data sharing provided by traditional mainframes. This target was

to be reached by fully distributing both access and processing, table 2-2, using

an integrated network of powerful personal workstations and server computers.

The nature of the Apollo systems is reflected in their name - DOMAIN stands for

Distributed Operating Multi-Access Interactive Network.

ACCESS PROCESSING

Batch centralized centralized

Timesharing distributed centralized

Apollo DOMAIN distributed distributed

Table 2-2: Comparison of Access and Processing Capabilitiies

93

"A DOMAIN system is intended to provide a substrate on which to

build and execute complex professional, engineering and scientific ap-

plications." [60]

In [60], the elements of this substrate are listed

. A powerful processor with a large virtual memory to enable mainframe ap-

plications to be supported by each user's node.

A high resolution display which, in conjunction with the powerful processing

capabilities of the node, could provide a user interface to "maximize user

productivity"

A high bandwidth local area network for communication and resource shar-

ing.

These features of the Apollo DOMAIN system are common with the require-

ments of the SPICE and Andrew projects at Carnegie-Mellon, section 2.5.3. How-

ever, the Apollo system was intended for more sophisticated installations and its

price range reflects this fact; the price of Apollo DOMAIN workstations is beyond

that specified for the campus networks discussed in the previous section.

Architecture

Before concentrating on some of the more interesting features or the Apollo DO-

MAIN system, it is useful to consider the operational model that forms the basis

for the system architecture. The authors of [60] describe the DOMAIN as being

94

based on an "integrated model" as opposed to a "server model". The Cambridge

Distributed Computing System is taken as an example of the latter, where there

are nodes that are dedicated to the provision of specific services. In contrast, the

DOMAIN architecture is formed from nodes that each have a full complement

of standard software. This software may be configured such that the node then

behaves as a dedicated server. In the same manner, many of the nodes that are

directly accessed by users are capable of supplying all of the services that are

needed for the majority of tasks.

The DOMAIN nodes do not depend on the presence of the network for their

operation, but are capable of autonomous usage. Utilization of the network is en-

couraged by standard mechanisms that support cooperation and sharing between

the nodes. Fundamental to the integration of the nodes is a distributed Object

Storage System (OSS) and a network wide Single Level Store (SLS).

Object Storage System

The DOMAIN Object Storage System (OSS) provides a fiat namespace for

accessing and storing objects, which are containers for abstract data types, such as

text, mailboxes, directories and executable modules. Associated with every object

is its length, type, an access control list and attributes related to the storage of

the object. Objects are distinguished by unique identifiers (IJIDs), enabling

uniform access throughout the network because above OSS only UIDs may he

used to address an object5 .

5Both the type and the access control list for an object are denoted by UIDs that in
turn refer to other objects.

95

The OSS has two parts, one for controlling access to local objects and the other

for remotely located objects. The former is mostly concerned with a volume table

of contents (VTOC) system data structure that translates object references to

disc block addresses. The second layer of OSS allows all objects to be accessed in

a location-independent manner, using the local or remote accessing procedures, as

appropriate. For remote objects, the first stage is to locate the node on which the

object currently resides by means of a heuristic algorithm and a hint file.

Once the object's location has been determined, the node issues a request to

the remote paging server process of the node holding the object. Every node

has remote paging and file server processes that satisfy (UID; page number)

requests for objects on that node. Since all remote accesses are achieved in this

manner, only the holding node needs to be aware of the actual disc addresses

involved.

Single Level Store

The DOMAIN network wide Single Level Store (SLS) is comparable in purpose

to the one level stores of some existing centralized systems. The SLS enables a

uniform mechanism to be used for accessing objects, irrespective of whether the

objects are resident in local memory, on an attached disc or located on another

network node.

Objects are introduced to a process address space by presenting their UIDs.

Thereafter, the pages of objects are demand paged over the network as they

are required. Virtual memory is supported in the CPU by dynamic address

96

translation (DAT) hardware, that allows up to 128 processes to exist, each with

16 Mbytes of virtual memory.

The most important feature of SLS is the concurrency control mechanism,

which detects whenever an attempt is made to access different versions of a single

object, constituting a concurrency violation. In an environment where nodes are

sharing access to objects, with the possibility that many nodes will be holding

different portions of that object at any one time, some synchronization of these

caches is essential in order to retain consistency in the storage of objects.

The SLS achieves control over concurrency through the presence of a data-

time modified (DTM) attribute for each object. This is a time stamp based

version number, and is attached to every page of an object. Whenever an object's

page is requested, the node holding the object records the DTM of the version

issued to the requesting node. Any updates performed by the new node will he

accompanied by changes to the DTM. So, when this node tries to write back

the amended pages of the object, the home node can readily detect whether a

consistencey violation has occurred.

Network

The authors of [60] describe the Apollo DOMAIN local area network as the sys-

tem integration point", analogous to the common backplane bus in some systems.

The nature of the network remains the same in different implementations of the

DOMAIN, but flexibility in the construction of the nodes has allowed Apollo to

exploit new technology, as it became available.

The network requirements were

97

high transmission speed

decentralized control

fault tolerance

support for efficient fault locating.

A 12 Mbps baseband token passing ring was chosen, with extra reliability

achieved by incorporating a relay in each node's repeater that closes when a node

crashes or the power fails. This results in a "star-shaped ring" configuration and

"quick-disconnect" hardware is used for the node connection to facilitate simple

removal and replacement of nodes in the event of failures.

The network design includes features to improve the efficiency of data transfer

over the network. These include

There are 2 acknowledgement fields interpreted by the transmitter.

The ring hardware supports virtual memory demand paging, section 2.6.1,

by discriminating between the header and data portions of a packet, and

copying each into separate areas of memory using different DMA channels.

Every packet has a type field and the ring controllers have corresponding

type mask registers to filter the messages directed to the node.

The self-clocking biphase encoding used in the ring means that broken or faulty

links are easily detected. The node downstream to a broken link notifies all other

nodes on the ring. Combining the information from a network topology map,

98

produced by the DOMAIN, with the notification of link failures simplifies the

location and repair of faulty links.

Inter-Process Communication

The low level inter-process communication (IPC) mechanism is based on an

unreliable datagram service that uses Unix-like sockets. These sockets are iden-

tified by (node ID, socket ID) pairs, and appear to the processes as queues of

network packets. The sockets have the standard two types

Well-known statically assigned to system services, such as the file server. The

socket ID for well-known sockets is the same on all nodes.

Reply : dynamically allocated for the receipt of replies from network services.

The Apollo DOMAIN network protocols [78] follow the LOCUS example of

being problem oriented, such that the protocol used by each operation is tailored

to its needs. A generic classification may be made for these protocols with respect

to the level of reliability achieved.

Idempotent operations may be guaranteed through repeated retries until the

operation is successful. There need be no state information or connection.

Operations that have an associated state may he made idempotent by use

of a transaction identifier. Every new request has a new transaction ID, but

retries use the same ID so that they will only he performed if the previous

request was not satisfied.

99

Synchronized database updates are achieved using a request-reply-

acknowledge (RRA) type of protocol. However, the DOMAIN exploits the

hardware acknowledgements provided by the ring to obviate the need for an

explicit software acknowledgement.

The DOMAIN socket abstraction is cheap because of its simplicity and the

absence of guarantees about the quality of service. The service is made more

reliable by the end-to-end protocols used, and since these protocols are application

specific, the resulting communication system is very efficient.

A higher level IPC service is provided in the form of mailboxes (MBX). The

MBX object is a storage container for undelivered IPC messages and the service

provides a full-duplex virtual circuit service. Nodes form connections to a mailbox

simply by specifying its UID. The MBX remote protocol filters out duplicate or

mis-ordered packets as part of the service.

In [60], the authors compare the DOMAIN SLS and IPC facilities in terms of

the computational models to which they correspond

Moving the computation to the data, as with message passing systems such

as the IPC.

Moving the data to the computation by transparent data access of the form

of the SLS.

As will be apparent from the description of the DOMAIN given here, the

design emphasis has been on the SLS support for network paging. However, the

DOMAIN uses IPC for the name server for reasons of efficiency. Additionally,

100

IPC is viewed as preferable when the data needs to be protected or has a complex

internal structure. In other circumstances, the authors of [60] argue that the

advantages of SLS easily outweigh the merits of IPC because of the simplicity of

the model.

2.6.2 The CRAY Station Software Service

Cray Research have developed a system to allow the users of Apollo DOMAIN

workstations to gain access to the computational power of a Cray mainframe,

whilst still benefitting from the amenable environment of the workstation. This

system is the CRAY Station Software Service for Apollo DOMAIN [4,

5]. The service allows both interactive and batch access to a CRAY-1 or CRAY

X-MP mainframe, and provides for exploitation of the graphics capabilities of the

Apollo workstations.

Figure 2-14 shows a configuration incorporating a number of nodes on a DO-

MAIN network, a Cray system, an NSC HYPERchannel and the devices needed

to bridge between the two parts of the system. The A130 and A400 are HYPER-

channel adaptors, the DSP-SO is a DOMAIN node that acts as a communications

gateway.

Facilities

From the DOMAIN multiple process environment, it is possible to create a number

of simultaneous interactive sessions with COS, the Cray operating system, by

typing CINT at the workstation. Within an interactive session, use may be made

101

NSC HYPERchannel

Figure 2-14: A Typical Configuration

of a Cray program development environment. Additionally, the service is capable

of providing interactive graphical output from the CRAY.

A user may submit a batch job to the Cray system using the station command

CSUBMIT <pathname>. The job running on the CRAY is able to access and

create files on the DOMAIN network using further station services : FETCH,

ACQUIRE and DISPOSE.

The transfer of files between the Apollo DOMAIN and the Cray system is

designated dataset staging, and may be performed using the CSAVE station

command. For the system manager, a range of commands is provided to allow the

activation, deactivation and normal operation of the system to be controlled.

102

Software Structure

The components of the station software are modular and most are written in

FORTRAN, with some in Pascal. The components communicate via the DOMAIN

high level IPC facility, mailboxes, section 2.6.1. The structure formed by these

software components is illustrated in figure 2-15.

rayI 	Terrnna1
Lteractivd 	Master

Mail 	Mail
box 	 box

Synchronous 	Station
Conc9ttrator 	Master

hronous
En

Station
I centratorl Master

box

Station
Concentrator

Station
Concentratoi

CSAVJ

C BATC H
Stat ion

Cray
Batch

SUBM

A13OH
Cray
System

Interface
Driver

Figure 2-15: Structure of Station Software

The Station Concentrator calls the Interface Driver to transfer data to

and from the Cray system. The other processes communicate with the Station

103

Concentrator using an Apollo mailbox. The Synchronous Concentrator co-

ordinates all synchronous requests and replies.

The Cray Interactive Module (CINT) handles all interactive communica-

tion with the user and also supports the use of the Apollo workstation screen for

displaying graphical output. The Station Master manages the operation of the

station. The Cray Batch Module (CBATCH) runs on all nodes that access the

station. CBATCH communicates with CSAVE and CSUBMIT, via a mailbox,

to obtain parameters for dataset staging and job submission respectively.

Observations

The use of mailboxes for most of the communication between software modules

means that the CRAY Station Software Service integrates comfortably into the

Apollo DOMAIN. The submission of batch jobs is quite straightforward and file

transfers are performed very easily. The support for interactive operations is much

more restrictive, but this is understandable because of the wildly different natures

of the two systems. In addition, the ability to exploit the Apollo workstations'

graphical capabilities using programs executing on the CRAY is extremely useful.

Taking a different perspective, though, it could he argued that the full po-

tential of the workstations, and for that matter the CRAY, is underused. The

workstations would appear to be treated as super-intelligent terminals with an

RJE (remote job entry) capability. The CRAY is burdened by administrative

chores, such as accounting, scheduling and resource allocation. Furthermore, the

station forms a bottleneck because all communication between the DOMAIN net-

work and the HYPERchannel involves the one node.

104

2.6.3 Merits

The latest Apollo workstation, the DOMAIN Series Super 4000, looks set to be

adopted by companies requiring powerful CAD/CAM facilities. The integrated

nature of the DOMAIN network, together with the substantial range of software

and experience that is available, and combined with the possibility of exploiting

supercomputers for more intensive processing, must serve as a model for high

performance computer installations. It remains to be seen whether or not the

approach taken by Cray Research will he followed by other supercomputer and

superminicomputer manufacturers.

2.7 Concluding Remarks

This chapter has looked at a variety of multiple computer systems with a wide

range of features. Although none of these systems embodies all of the characteris-

tics of the target system, introduced in the first chapter, they contribute a number

of facets that are pertinent to this direction of research.

The next chapter opens with a description of a network structure that epito-

mizes many of the features of the systems described in this chapter. The chapter

goes on to concentrate on a subset of this structure and defines a triadic network

model to represent the essence of this subset.

105

Chapter 3

A Network Model

3.1 Introduction

The central element of this chapter is the definition of a Triadic Network Model

of communication and cooperation between network devices. The model describes

the interactions between three classes of device in a manner that integrates the

features of heterogeneous machines to form a unified system.

Background

The introductory chapter to this thesis presented a target system composed of

multifarious computers cooperating in the provision of a powerful and versatile

computing environment for the users of the system. In the following chapter, a

study was made of existing multiple computer systems in order to foster a deep

awareness of the policies and concepts that are predominant in this field. Many

of the topics contribute towards the development of the target system, and they

will be referenced in subsequent sections of this thesis.

106

However, whilst some of the systems discussed in chapter 2 have achieved good

standards of close participation between multiple computers, the machines in-

volved tended to he of similar power and ability. With the exception of the CRAY

Station Software Service for the Apollo DOMAIN, section 2.6.2, the inclusion of

powerful processors was usually achieved by providing a terminal emulation facil-

ity for access to the conventional time-shared operating system of the mainframe.

The IBM PC/VM Bond, section 2.2.3, possesses features that are characteristic

of these facilities.

The Apollo DOMAIN is a fine example of an integrated distributed system.

The CRAY Station Software Service is a fully participating member of this sys-

tem, thanks to its use of the DOMAIN high level IPC facility, the mailbox (MBX).

Ultimately, the involvement of the Cray system is limited by its own operating

system, COS. This is because COS is designed for use in an environment of com-

puters comprising the CRAY and a number of support machines. COS is not

readily amenable to the community spirit of the Apollo DOMAIN. Hence, the

achievement of the CRAY Station Service is commendable in that it enables ac-

cess to the CRAY for batch processing from within the DOMAIN environment.

Bringing Together Workstations and Mainframes

It would appear that a great leap is needed to achieve a larger involvement by

powerful processors in a network of computers with inferior processing power.

The disparity in the computational ability and architecture of workstations and

powerful processors is only part of the difficulty. Of greater significance is the

difference in the way in which the two types of computer have been used. Per-

107

sonal computers are owned and used by individuals, but can communicate over

networks and share access to peripherals and storage devices. Special purpose

super or superminicomputers were usually connected directly to general purpose

time-sharing computers, which acted as front-ends. More recently, mainframe

computer networks have been formed, as described in section 2.2.1.

The two types of network have been brought together to form a configuration

that is similar to that of figure 3-1. There is a distinction between the communica-

tions network used by the workstations and small computers, called the front-end

network, and the high speed interconnections between the mainframes and their

peripherals, the back-end network.

Back-End Network

General
	

General
Purpose 	 Purpose

Terminal
	Computer
	

Computer

Concentrator

Front-End
Network

Workstation 	Workstation
	Workstation

Figure 3-1: Front-end and Back-end Networks

The partitioning of the network into front and back portions is appropriate to

108

the needs of the corresponding network nodes. The workstations and general pur-

pose computers frequently number hundreds and are disparately sited. Their use

of the network is for small packets, and data rates of about 10 Mbps are adequate.

Indeed, many installations have found that only a small percentage of the net-

work capacity is exploited. In contrast, back-end networks have a small number

of nodes, but individual operations may require the transfer of large quantities of

data at I/O channel speeds, such as 50 Mbps.

In [48], the incremental cost of adding a new device to the network is used

to contrast the two types of network. The authors claim that, to be cost effec-

tive, the incremental cost should he in the order of one tenth that of the device

itself. For workstations, priced at a few thousand pounds, this ratio limits the

network interface to, say, a 10 Mbps Ethernet. This is quite appropriate to the

requirements of workstations, but mainframes require more specialized network

interfaces. The expense of large computers means that the high cost of networks

such as HYPERchannel and LCN, section 2.2.1, can be easily justified.

Higher Network Speeds

With the development of powerful engineer's workstations, higher data rates will

be demanded of the local area networks. Additionally, the introduction of telecon-

ferencing and the possibilities of transferring voice and video traffic will further

increase the required network bandwidth. These needs are satisifed by new high

speed networks, such as the Fibre Distributed Data Interface (FDDI) spec-

ified by the ANSI X3T9.5 local area networks sub-committee. The FDDI is a

100 Mbps token passing ring that uses fibre optic cables. Already there are a

109

number of companies that are developing VLSI chip sets to interface to the FDDI;

AMD is one such manufacturer [50,51].

Within two years it should be possible to produce an interface to the FDDI

for about the same price as an SSI/MSI Ethernet interface - just a few hundred

pounds. Already, there are LEDs, costing less than $10, that can drive an optical

fibre at 100 Mhz, but fibre optic cables are still expensive. However, reductions in

the cost of fibre optic cables are continuing because of increases in demand. This

is attributable to some of the obvious advantages of using optical fibres

Bandwidth : data rates of several hundred megabits per second are achievable.

Attenuation : little signal loss is experienced, so repeaters are not required to

the same extent.

Noise : they are immune to electromagnetic interference.

Security : fibre optic cables are difficult to tap.

As the distinction between the roles of front-end and back-end networks fades,

the advantages become apparent of using a single common network to interconnect

all of the devices in the system. The primary merit is that the sharing of data

between the different machines is more straightforward, and this in turn permits

closer participation by all types of computer in the operation of the system.

3.1.1 A General Network Structure

The network structure illustrated in figure 3-2 is considered to be representative

of configurations that may soon be in widespread existence. The network could

110

have any of a number of topologies and use many different types of media, with

the implementation adopted for a specific system being selected according to its

requirements.

Special Purpose Computers

Vector 	I 	 I Compiler
Processor I 	 Engine

Network

	

Management
	

Printer

	

Name
	 NETWORK

	

Server 	 I 	I Server

I 	 uenerai rurpose
Personal 	Multi-User

Terminal
	I Workstation 	Computer 	Computer

Figure 3-2: A General Network Structure

Common Network

The underlying feature of the structure is that all nodes are interconnected by a

common network. However, it is possible, if not desirable, for the implementation

of the sub-net to be tailored to the needs and usage of specific devices. Considering

the FDDI, introduced in the previous section, the ANSI standard defines two

classes of network station, in accordance with the FDDI being formed from two

fibre optic rings.

111

Class A stations are connected to both the primary and secondary rings, offering

a greater degree of reliability. Also, the network bandwidth available to these

stations is larger because the two rings function independently and counter-

rotationally. Hence, class A stations are appropriate for high performance

processors, such as the vector processor and compiler engine in figure 3-2.

Class B stations are only connected to the primary ring, which affords them

network access with a lower cost and complexity than that of the class A

stations. The class B stations are sufficient for the needs of the workstations

and smaller computers.

Taking an alternative example, Ethernet could he used by those machines

that do not need high data rates but require an inexpensive connection to the

network. Centrenet, section 1.2.3, could provide a high performance network for

the special purpose computers, and communicate with the Ethernet via a gateway.

Furthermore, the topology of Centrenet is such that different technologies may be

used for the Starpoints, in response to the requirements of the wide range of

devices.

The potential for using different sub-nets to satisfy the various cost and per-

formance requirements is not illustrated in figure 3-2. It is considered that the

presence of a unifying network is more significant in this context. Indeed, it would

be inappropriate to make apparent any variation in the nature of the network

because it is expected to provide a uniform communications substrate.

112

Network Devices

The wide variety of devices that may be connected to the network ranges from the

humble 'dumb' terminal up to powerful supercomputers. With such a broad array

of machines, their only common feature is that they are all attached to the same

network, and have the potential for communication with each other. Although,

as will be explained later, the desirability of permitting this degree of freedom is

questionable.

The terminals will have no inherent computational capabilities, and for most

networks this is adequate for network communication. Hence, it is most likely that

the terminals will operate in small groups, sharing access to a semi-intelligent net-

work adaptor. This adaptor will appear to the terminals as a conventional terminal

multiplexer or concentrator. However, rather than communicating with a single

host computer via a high speed I/O channel, the adaptor will assemble termi-

nal character sequences into packets suitable for transmission over the network.

On receipt of network packets, the adaptor will disassemble them and route the

information to the appropriate terminal lines.

The Packet Assemblers/Disassemblers (PADs) used for wide area network

communication over the Joint Academic Network (JANET) are typical of

network adaptors for terminals. For local area networks, the Centrenet Terminal

Multiplexer [82], section 1.2.3, represents the features that may be provided.

In addition to the unintelligent terminals, the users will also have direct access

to a number of other machines. These machines include personal computers and

workstations that have reasonable levels of processing ability together with the

facilities for providing a good user interface. Additionally, there are medium per-

113

formance multi-user computers, to which terminals may be connected directly or

via the network. The disparity between personal workstations and these multi-user

computers has diminished to the extent that they may comfortably communicate

with each other using standard networks, such as Ethernet.

Of the machines connected to the network that the user cannot directly access,

some are high performance special purpose processors that have been designed for

particular types of computation, such as vector processing or compiling. The

architectures and software structure of these machines are optimized for their

respective applications. Hence, they are not suitable for direct interaction with

the users of the system.

The remaining network devices provide services for use by all network nodes

in support of the general operation of the system. There are devices that are dedi-

cated to the provision of specific services and others that will also have other roles.

Examples of the former include file storage and nodes providing access to periph-

erals, such as printers and graph plotters. Additionally, there are machines that

are purely concerned with the management and control of the system, performing

functions such as scheduling and resource allocation.

Network nodes that provide a variety of services are best illustrated by net-

works of disc-less workstations using a shared filserver. The Edinburgh Univer-

sity Computer Science Department's network of Advanced Personal Machines

(APMs) [2,56] is a typical case. Here, the filestores not only provide storage for

files and directories, but they are also responsible for system authentication and

peripheral spooling.

Finally, there are gateways from this network to other networks. The network

114

devices that provide this service are primarily concerned with protocol conver-

sion. More sophisticated nodes will perform address filtering such that only those

packets that are intended for nodes on the other network are converted and re-

transmitted. Extra facilities, such as address translation, may also he supported.

Summary

To summarise, the network structure outlined here is composed of a wide range

of devices that share a common network. At this stage, there are no patterns or

operation of conventions to govern interactions between network nodes. So, the

structure does not have a rigid formation and benefits from a significant degree of

flexibility in its behaviour.

However, the objective of bringing together this wide range of machines, by

connecting them all to a single network, is to encourage close cooperation between

the machines. Before such as system may be realised, it is necessary to define a

set of conventions to govern the way in which the network nodes interact with

each other. A well structured set of conventions will enable the individual devices

to work together as a unified system; without any government at all the devices

operate disjointly, contesting for use of the network.

3.1.2 Classification of Devices

With such a broad variety of machine types, it may be considered appropriate to

develop a small and simplified communications protocol that is generally appli-

cable to all network nodes. This is because the level of design effort involved in

115

producing a protocol to cater for the needs of all machine types would be inordi-

nately complex. Furthermore, the quantity of code to be developed would be very

large and cumbersome.

The strategy of defining a simple common protocol has the advantage of requir-

ing only a small design time, with subsequent development for all network nodes

of a compact kernel that supports the full protocol. To accomodate the diverse

range of devices, higher level software would need extra code to compensate for

the simplicity of the lower level protocol.

An alternative approach is to combine the performance benefits of a protocol

tailored to the specific needs of devices with the low cost and high efficiency of

a simplified protocol. This is achieved by dividing the wide variety of network

devices into a limited number of classes. Then, it is possible to isolate the require-

ments of communication within and between these different classes. The ultimate

objective is to provide a set of protocols, each of which is oriented towards effi-

ciently satisfying specific needs.

In [60], the authors state their belief in the use of application oriented protocols

in order to achieve high levels of performance. In the Apollo DOMAIN, a number

of protocols exist, each of which is intended for use with a specific sort of service.

There is no need in the DOMAIN for account to be taken of differing machine types

because only personal workstations of similar power are used on the network'.

'The CRAY Station Software Service is the exception here, but is inappropriate to
this argument, as explained in section 3.1.

116

Back-End
Processors

In considering the general network structure of figure 3-2, three distinct classes

of device may be distinguished, as illustrated in figure 3-3. These classes identify

a level of polarization that is occurring in the development of devices for use on

a network. In future network environments, these classes may be expected to

correspond to the full range of devices on the network. Those devices that do

not fall neatly into these divisions are of diminishing importance in networked

computing environments.

Three Classes

Figure 3-3: Device Classification within a General Network Structure

The first of these classes is described in figures 3-3 as User Stations. Included

in this division are personal computers, such as the IBM Personal System/2, and

scientific/ engineering workstations like those of Apollo and SUN. These machines

117

fall naturally into this partition, but simple terminals and multi-user computers

are less well suited.

The case for maintaining specific allowance for the presence of 'dumb' terminals

is minimal because it is now more cost effective to purchase, say, an IBM PC with

the necessary interface cards and software. This fact is reflected in the strategies

of many companies. Furthermore, as explained in the previous section, terminals

are not sufficiently powerful for direct network connection, but require a more

intelligent network adaptor.

It was stated in section 3.1.1 that the difference, in terms of computational

speed, between multi-user minicomputers and personal workstations is rapidly

disappearing. Consequently, an increasing number of installations are opting for

a computing environment derived from a multiplicity of personal systems rather

than a single shared central machine. Although this trend will inevitably pro-

ceed further, the case for retaining the shared system remains, as explained in

section 2.2.3. However, communication between minicomputers and personal sys-

tems is achievable using standard networks and protocols. So, it is reasonable to

group these multi-user machines together with the personal systems.

The second class encompasses all those devices that are dedicated to the sup-

port and control of the operation of the network. These Network Servers include

most peripherals and file storage devices as well as the nodes that are reponsible

for the network management. The machines in this division are responsible for

activities that would normally be associated with the operating system of a con-

ventional machine. Consequently, another distinguishing feature of these devices

is that no user programs execute within them.

118

To give an indication of the type of device that could he found in this category,

consider the Centrenet Network Intelligence Module (NIM), section 1.2.3.

The NIM has duties concerned with the physical operation of the network, such

as polling sequences and clock signals. Additionally, the NIM may perform name-

serving and virtual circuit management as well as collecting statistics about the

behaviour of the network and performing error recovery. Hence, it is obvious

that the behaviour of the NIM is inexorably associated with the operation of the

network.

The machines that comprise the final division are the special purpose Back-

End Processors. Computers that satisfy this description include fast numerical

processors, such as MU6-V, section 1.2.2, as well as specialist mathematical pro-

cessors, compiler engines [12], simulators, image processors, language translators

and inference processors.

As mentioned earlier, a primary characteristic of these machines is that, by

virtue of their highly optimized nature, they are unsuitable for direct access by

the users. In this respect, MU6-V is a fine example of such a machine because its

architecture incorporates mechanisms for achieving a high performance in vector

calculations, but the machine possesses virtually no operating system software.

Also included in this category would be commercial supercomputers, such as

the Cray Research, CDC and Eta Systems machines. All of these computers

incorporate processing capability for supporting a substantial operating system

and hence it is possible (though unusual) for direct terminal connections. However,

it is regarded that the performance of these machines is impaired because of this

support. So, cheaper, more specialized systems, such as the latest Intel range

119

of Hypercube-based machines, have architectures and software that favour high

performance in particular types of calculation in preference to supporting a general

purpose operating system.

Review of Classification

The three classes of device that have been highlighted in the general network

structure provide a focus for further considerations of the way in which these

devices will require use of the network. However, this classification is inadequate

for the stated intention of 'isolating the requirements of communication within and

between these different classes". This is because the simple three'-way partitioning

requires any device attached to the network to fall into one, and only one, of

these ategories. Merely the degree of variation possible in the nature of personal

systems serves to illustrate the imprecise nature of this simple division.

The objective of classifying the network devices is to provide a framework in

which to develop a set of protocols. Hence, to strengthen this framework, the

model defined in the next section takes the three classes described earlier and

isolates those features that are of primary concern. The resulting categorization

is sufficiently rigorous for the subsequent definition of interaction requirements.

However, although this classification is more precise, it will be seen that the model

does not restrict the involvement of devices that do not conform to any individual

class of module.

120

3.2 A Triadic Network Model

The Triadic Network Model (TNM) is an idealised representation of a networked

computing environment such as that of the general network structure described

in section 3.1. Within the model three types of module are defined that represent

the three classes of device described in the previous section. The correspondence

between the devices and the modules is

User Station 	- Personal Workstation Module (PWM)

Network Server 	Network Service Module (NSM)

Back-End Processor 	Back-End Module (BEM)

The model defines the three types of module to be logical entities, and so it

is possible for an actual network device to be composed of a number of these

modules. In this way, it is possible to accomodate the significant differences in

the form of the machines that approximate to these modules, without having to

unduly relax the definitions of the modules.

The description of the characteristics of the three types of module is an es-

sential part of the model, but primarily the model exists to define the nature of

the interactions between these modules. This specification of inter-module com-

munication, together with guidelines on the intended operation of the system,

provides sufficient foundations for the development of protocols oriented towards

this environment.

121

3.2.1 Characteristics of the Modules

Before considering the interactions between the modules, the nature of the modules

should be explained.

Personal Workstation Modules (PWMs)

The Personal Workstation Modules are notionally general purpose single-user

workstations. Each PWM is considered to have good computational capabilities

and a fairly substantial amount of memory. They possess powerful input and

output facilities, possibly including colour graphics and sound for output, and

using a keyboard, mouse, digitiser or speech for input.

The PWMs are very much user oriented and contain a number of resources,

both hardware and software, that are specifically intended to support a good

interface between the user and the system, i.e. a good Human-Computer Interface.

These resources allow the development and use of Intelligent Front-Ends (IFEs)

within the PWMs themselves.

An intelligent front-end is a user-friendly interface to a software

package, which uses artificial intelligence techniques to enable the user

to interact with the computer using his or her own terminology rather

than that demanded by the package." [16]

In [16], Alan Bundy discusses the basic techniques required in an intelligent

front-end but concentrates on support for textual input/output. However, he

indicates that more sophisticated hardware features, to enhance the interchange

between the user and the computer, can provide a more versatile IFE.

122

As software packages become increasingly sophisticated, the need for more

intelligent front-ends grows. Additionally, to avoid the need for familiarity with a

large variety of user interfaces, it is desirable for as much commonality as possible

between the presentations of different software packages. The importance of this

is reflected in the efforts of the Andrew research team in the development of the

base editor tool kit, section 2.5.3.

Another move in this direction is visible in the Microsoft development of OS/2.

Here, the presentation functions of the operating system form a separate package

from the remainder of the kernel. This package, Windows, is available separately

from the rest of OS/2 to encourage its use on other systems. -

Together, a sophisticated presentation package and a general purpose IFE

would greatly improve the flow of information between the user and the com-

puter. The PWMs are ideally suited to this role; not only do they possess the

physical devices needed by a presentation package such as Windows, but they have

sufficient local processing power for a useful IFE.

The PWM provides a good starting point for the development of "user access

stations" that are, in effect, behaving as highly intelligent terminals. However,

it is unlikely that such a radical change in the operation of personal systems is

imminent, so the Triadic Network Model does not place such a requirement on

PWMs. Yet, a PWM is expected to place the user's needs at a very high priority.

Hence, operation as .an IFE and presentation device is not the sole purpose of

PWMs, but in fact they have sufficient processing power for many of the user's

computational requirements. With the presence of local disc storage, this allows

123

them to be used as stand-alone' computers, operating completely independently

of the rest of the system.

This last point raises the question as to whether or not PWMs should have

local disc storage, within the guidelines of the model. Workstations with and

without local discs are likely to be present on the network, and both must be

supported. As far as the remainder of the system is concerned, the distinction

between the two types of workstation only arises if direct access to the file storage

is to be granted to the system. In this event, an NSM must also be supported by

the workstation, figure 3-4. Otherwise, the local discs are considered to be private

to the PWM.

r -----------------

Personal Workstation
Module

Fileserver 	Printer 	Scheduler I
I 	(NSM) 	(NSM) 	(NSM) 	I
L - - - - - - - - - - - - - - - - j

User Station with shareable resources

1

I 	Personal Workstation 	I
Module 	I

L.. --------
simple User Station

Figure 3-4: Examples of User Stations

The connection of the PWMs to the system provides the advantages to the user

of allowing the use of shared network resources such as printers and file storage

devices, and access to specialised services supplied by high performance processors.

However, an important use of the network by the PWMs is for interaction with

each other, both individually and in groups. This interaction may take the form

of textual messages (passed by a mailbox utility or directly), sound or vision.

124

Back End Modules (BEMs)

The Back-End Modules are special purpose computers. They are designed

to achieve a high performance with great efficiency in particular applications.

Each BEM is intended for use in a specific type of application. Consequently the

BEMs bear little or no resemblance to one other and will probably have quite

strict requirements with regards to the form of their input and output. These

requirements may be quite complex and the users are unlikely to be able to comply

with them without significant effort. Similarly, because of their dissimilarity, the

BEMs may find great difficulty in direct communication with each other but inter-

BEM communication is not likely to he a frequent occurrence.

The BEMs may be considered to be individual resources, where each BEM cor-

responds to a single resource. The resource may only be suitable for utilization by

a single process at any one time, necessitating some quite sophisticated resource

management. It could be expected that the BEMs should perform these manage-

ment functions themselves, but this would be at the expense of their efficiency.

Hence, the model requires every BEM to have an associated manager, provided

by an NSM. T Liernanager.isrespon.si1le for controlling pLecess toitsBEM

I 	 Back-End 	 I I 	Back-End 	I
Module I 	Module 	I

I I 	Fileserver 	Stheduler 	I
simple Bad-End

I 	(NSM) 	 (NSM) Processor

-
Back-End Processor

with shareable resources

Figure 3-5: Examples of Back-End Processors

The comments about local disc storage on workstations may also be applied

125

to back-end processors. So, a BEM may incorporate local disc storage for private

usage, but if general access is to be given to the system then an NSM must be

provided, figure 3-5. Further discussion of this continues in section 3.2.3.

In the case of BEMs, a good deal of the code and data used in processing will

be shared with at least one other network device. Hence, it may be more efficient

for BEMs to make extensive use of shared network storage rather than private

local discs. This suggest two options for a back-end processor with local discs :-

Provide an NSM so that general network access is possible.

Use the discs for standard libraries of local code, and also for virtual memory

paging support.

Network Service Modules (NSMs)

The NSMs are dedicated network servers whose purpose is to assist in the gen-

eral operation of the distributed system. The services which they might provide

include file storage, data bases, peripheral access, virtual circuit establishment,

background resource management (e.g. compilation) and special purpose resource

management. An individual network server may he dedicated to the support of a

single service, in which case only one NSM is provided, or it may serve a number

of different needs, as illustrated in figure 3-6.

Collectively the NSMs provide a Network Operation Support Service

(NOSS) required for the implementation of a distributed system. Figure 3-7 shows

how the Network Service Modules may be viewed as providing an interface'

between the other two types of module.

126

r 	 - 	1

M Manager 	 I

- --
I 	Fileserver 	I

(NSM) 	
I

(NSM) 	1

/ 	\ 	I

I 7Fileserver II 	Scheduler 	I
Network Server
with single role

M) 	(NSM)
L ________ -- _I

Network Server with multiple rOles

Figure 3-6: Examples of Network Servers

UserJ 	 User
i Station tation

	

I I Personal 	 Personal I
I I Workstation 	 • 	 Workstation I

	

Module 	 Module

- .i_ r — — — — — — — — —

NOSS Accounting 	 Scheduling I 	I Peripherals 	 Name 	I
. 	I 	i 	I 	Server

Fileserver I 	I Coordinator 	 Resource 	 I Person 	 I 	 User/Server I

	

Allocation 	J 	Server 	 I 	I 	Profiles 	I

BEM 	I 	 I 	BEM 	II

	

Manager
	 I Managerj I

	

L ________

-1--I- 	

__J

	

Back-End 	 Back-EndI I
I [Module 	 Module 	I
I

	

	 . 	• 	. 	 I 	 I
Back-End
Processor

Figure 3-7: A Networked Computing Environment

The NSMs supply resources for use by both the PWMs and the BEMs. The

presence of the NSM domain is desirable from the viewpoint of both the PWM and

BEM domains since it permits economical sharing of frequently used resources,

such as large disc space, printers etc., and it enables the BEMs to operate at their

optimum efficiency, by removing all operating system concerns.

127

The NSMs allow even more advanced types of service to he provided than

the individual BEMs are capable of supplying. An advanced network service

may be created by utilising a number of BEMs and mapping all requests for this

new service onto a set of interactions with the group of BEMs. For example,

an individual image processor BEM may not he capable of operating at sufficient

speed to cope with real time data. So, by using a number of image processor BEMs,

a NSM may take 'live' video pictures and share the job of image enhancement

between the group of BEMs. The NSM can then combine the outputs and direct

them to the required destination.

Notice that an alternative approach would be for an NSM to multiplex a num-

ber of service requests from PWMs onto a single BEM. The resulting service would

be of a lower quality than the BEM could provide for a single process, but the

level of service desired by the PWMs may actually be quite low, in which case the

BEM is being used more effectively by the system through the use of this simple

mapping technique.

The organizational part of a distributed operating system comprises the func-

tions that it is inappropriate to locate on either PWMs or BEMs, and therefore

these functions are located on the NSMs. Consequently, the NSMs are involved in

accounting, scheduling, protection (e.g. store management), synchronization and

communication, and the allocation and management of resources. Most of these

functions are provided by those NSMs that are dedicated to the management of

the system, but some accounting may be performed by the individual resources

and many of the NSMs will be concerned with protection. Additionally, the pres-

128

ence of communication functions is obviously a prerequisite of all NSMs because

of their interconnection by the network.

The key position occupied by the NSM domain means that there are three

important requirements of the NSMs:-

reliability : since these devices are critical to the operation of the full system,

the domain should not be susceptible to total failure through the failure of

a single node.

security the NSMs control access to expensive resources and specialised ser-

vices, as well as managing communication between PWMs, so they must be

capable of protecting the other devices from illicit intrusion by unauthorised

users.

integrity : in the case of the use of a BEM service, the NSMs manage the entire

transaction so they are responsible for ensuring successful total completion

of each request.

Support for other Devices

The modules defined by the Triadic Network Model (TNM) correspond to the sort of

devices that are anticipated to be present in networked computing environments of

the near future. However, it was suggested in the discussion of the general network

structure, section 3.1.1, that other types of device must also be accomodated. So,

consideration of the provision for such devices within the model will be made here.

129

The prospects for the humble terminal have already been expounded upon in

earlier sections. The connection of 'dumb' terminals to networks using terminal

multiplexers is nevertheless likely to continue for some time. However, although

the terminal is more akin to PWMs than to either BEMs or NSMs, it does not

have the computational power to be capable of supporting the required standard

of user interface.

For a terminal user to partake in the networked computing environment based

on the model, figure 3-7, the terminal must be assisted by a more powerful network

device. So, the terminal user may initiate a connection to, say, a general purpose

multi-user computer and thereby to the remainder of the system: For the duration

of the session there is a process on the multi-user computer that is associated with

the terminal. Effectively, the remote process is emulating a PWM, but for a virtual

machine rather than an individual personal system.

The approach of providing PWMs on a general purpose machine, so that termi-

nal users can gain access to the system, should be viewed as a temporary measure.

Whilst it may appear to provide a more cost effective approach, with the dimin-

ishing margin between simple personal computers and conventional terminals, this

is not really the case. Furthermore, since the PWMs provided by the multi-user

machine must inevitably be of low power, this technique is likely to be much more

demanding of system resources without giving a particularly high standard of

service to the user.

Supporting simple terminals is only one potential role for multi-processing

minicomputers. An alternative would be for the machine to provide a number

of NSMs, dedicated to identical or dissimilar functions. This would result in a

130

similar configuration to that of a collection of Unix 4.2 BSD machines, connected

by a common network. Under this system, a number of daemon processes exist

on each machine. The processes are dedicated to specific services, but they are

normally dormant and only demand machine cycles when they are requested to

provide the service.

For services that are very simple or are infrequently used, this may be a more

appropriate solution than the provision of a multitude of elementary network pro-

cessing elements. However, more demanding services or popular functions will

need higher performance than this approach can provide.

It should be clear from this discussion that it is not necessary for an exact

correspondence to exist between a logical TNM module and a physical network

device More important is that the processes communicating over the network as

part of the system should comply with the requirements of the model.

3.2.2 Interactions of the Modules

The Triadic Network Model (TNM) describes the nature of interactions between

the three types of module defined in the previous section. The specification of

communication strategies derived from the model is used as the basis for a set of

protocols. The freedom of communication exhibited by the presence of a single

unifying network, section 3.1.1, is welcomed and exploited, but some restrictions

are needed to control communication between the nodes, and better utilize the

resources. The fundamental restrictions imposed by the model are

1. Back-End Modules never interact with each other.

131

2. Back-End Modules do not communicate directly with Personal Work-

station Modules.

Personal
Workstation
Modules

Back-End
Modules

Network Service Modules

Figure 3-8: Triadic Network Model

Figure 3-8 represents the model of communication : the domain of each type

of module is shown as a triangle and where the triangles touch it indicates that the

domains may interact. This diagram may also be used to illustrate the supportive

role played by the NSMs, and it shows how the NSMs provide an interface between

the other two domains. Table 3-1 indicates the extent of the model's restrictions

- an 'X' signifies that valid communication is possible.

132

TO

FROM

PWM NSM BEM

PWM X X

NSM X X X

BEM x

Table 3-1: Possible communicating pairs

The justification for the inter-BEM and PWM-BEM communication restric-

tions is explained in section 3.2.3, together with an indication of why these limi-

tations are beneficial rather than inconvenient.

Personal Workstation Module Intercommunication

A key feature of Personal Workstation Modules is the presence of facilities for

human interaction. In early discussions, these facilities were viewed as important

in the context of the users' interaction with the system. However, another role is

in allowing communication with other users of the system.

Where a computer configuration has a collection of terminals, there is usually

provided a facility for allowing text messages to be transmitted between terminals.

PWMs, though, may have audio and visual capabilities that allow more natural

communication to occur between users. A possible consequence of this is that

inter-user communication may form an even greater proportion of network traffic

than it does at present. Hence. in this section, communication between PWMs is

considered.

133

The communication between the PWMs may have the following forms:-

* interactive transfer of small amounts of text (c.f. VAX/VMS 'phone' utility)

digitized speech [37]

digitized pictures, whether 'live' video or computer generated graphics [38].

For efficiency, it is desirable that there is minimal involvement of NSMs in this

intercommunication. However, a more fundamental network requirement, that the

topology of the network and the physical locations of the network devices remain

invisible to individual nodes, seems to conflict with this aim. This is because only

the NOSS is considered to be aware of the actual state of the network. This is

partially for reasons of security, so that any individual node is only aware of those

devices to which it is allowed access. More important, though, is the flexibility

that this limited awareness brings to the system in its provision of services.

Before any two devices on the network may interact, they must first determine

their respective physical addresses by communication with the NOSS. Hence, the

role of the NSMs in this type of interaction should be restricted to that of 'name

server'. So, the PWM wishing to make contact with another PWM initially con-

tacts the NOSS Name Server module to determine the physical address of the

other node; the subsequent establishment, utilization and termination of the ac-

tual connection are controlled by the PWMs. An alternative situation, where

multiple PWM connections are required (for teleconferencing, for example) would

justify the use of an NSM to assist the chairman'. Similarly, PWM intercommu-

nication between users speaking in different languages may be assisted by the use

of a translator BEM. In this case the involvement of an NSM is essential.

134

Hence, the initial enquiry sent from the PWM to the NOSS should state the

type of intercommunication to be used. For basic communication the NOSS Name

Server module would just return the address of the destination PWM. If a more

advanced type of communication is required the NOSS returns an acknowledge-

ment to the source PWM and then endeavours to provide the desired service.

Use of Standard Network Services

The standard network services are those functions that the NSMs provide for use

by both the PWMs and the BEMs. Included in this category are the network

filestoie and peripheral access. Access to any of these services is initiated by

the sending of a request to the NOSS Coordinator module of figure 3-7. This

request is validated and then, possibly after having been queued temporarily, it is

forwarded to a suitable NSM. Any subsequent interactions between the customer

and the supplier pass directly without any involvement of the NOSS Coordinator

module. On completion of the service request, the NSM that has supplied the

service indicates its availability to the Coordinator and it may then be used by

another customer.

For most of the transaction, the nature of the interactions is largely as de

scribed by the Client-Server model. The differences lie in the initiation and

the termination procedures. Here, the protocols are of a three-party form, with

the NOSS Coordinator module acting as mediator in negotiations between the

requesting PWM and the supplier NSM.

135

Use of Special Network Services

"Special" network services are those functions that necessitate the involvement

of Back-End Modules. This may be because the NSMs are unable to provide

the service, or it could be that the NSMs can provide the service but not at the

standard of performance required by the requester. Also, of course, the fact that

NSMs are dedicated to specific tasks means that a user's own program must be

processed by a BEM.

As far as the PWMs are concerned, the mechanism for accessing specialized

network services is the same as that for use of the standard services. The PWM

sends the service request to the NOSS Coordinator module, as before. The Co-

ordinator treats the service request largely as for a standard service and, after

validation and scheduling, the request is passed to another NOSS module. This

module acts as the BEM's Manager and any subsequent interactions with the

customer PWM, needed for the effecting of the function, are made by the BEM's

Manager rather than by the BEM itself. So the PWM is never made aware of

which BEM is acting as the supplier.

Since the BEM's Manager is responsible for all high level interactions with

the PWM, the only network protocols that need to be implemented on the BEM

are of quite a basic nature. Additionally the BEM need only be concerned with

the sort of computation for which it was designed; there is no requirement for a

sophisticated user interface or for advanced operating system functions. Hence

the BEM may operate with a high degree of efficiency.

136

3.2.3 Functional Aspects

In the preceding sections, the nature of the communication between TNM mod-

ules has been considered and the characteristics of the modules themselves were

defined. However, certain restrictions were imposed on both the communication

and formation of the modules. In this section, these limitations are shown to be

appropriate to the target environment, and techniques are introduced to reduce

the inconvenience of these boundaries.

Relating Devices to Modules

The distinction between a module, as defined by the model, and a device to which

it is aclose approximation has already been emphasised. Figure 3-9 shows the

examples, given earlier, of network devices that present a much larger range of

resources to the system than those of a single module. Hence, it is evident that,

for example, a back-end processor is more than just a Back-End Module.

1

I 	 Back-End 1
Module J

Fileserver 	Scheduler

I 	(NSM) 	 (NSM)

Back-End Processor

r — — — — — — — — — —
I 	 Manager 	 I

I 	
(NSM) 	

I

I Fileserver 	Scheduler I

I 	(NSM) 	 (NSM) 	I
L - - - - - - - - - - J

Network Server

r — — — — — — — — — — — — — — — —
Personal Workstation 	 I

Module

Fileserver 	Priiite 	Scheduler I

I 	(NSM) 	 (NSM) 	 (NSM) 	I
L - - - - - - - - - - - - - - - -

User Station

Figure 3-9: Examples of Network Devices

137

Re-examining the networked computing environment of figure 3-7, it should he

observed that both the Personal Workstation Module and the Back-End Module

only form a part of the network device that supports them. This is true even in

those circumstances where the device provides no extra resources to the system.

Indeed, the aspects of a device that are not encapsulated in its corresponding

module may be said to be "outside the bounds of the model".

To clarify this distinction, it may be helpful to consider some practical examples

of network devices and identify corresponding network modules.

APM : The Edinburgh University Computer Science Department's Advanced

Personal Machine (APM) is an obvious example of a user workstation.

Most APMs will roughly correspond to the model's view of a Personal Work-

station Module, but strictly the basic APM does not provide particularly

good facilities for the user interface, as expected by the model. Also, there

are APMs with a local disc unit that may he considered as an NSM, dc-

pending on its use within the system.

APM Filestore : The APM filestores are network servers, but they do not form

single NSMs because of their multiple roles. For example, the APM filestores

are also responsible for maintaining a list of all active users, validation of

access permissions and permit access to peripherals such as the machine

halls printer. Each of these rOles may he implemented as a separate Network

Service Module.

MU6V This is a back-end processor and the Back-End Module is supported by

the I/O-processor.

138

Meiko Computing Surface : The processor corresponds closely to the model's

definition of a Back-End Module, although the actual module would be

implemented by the MicroVAX that 'front-ends' the machine because the

Meiko machine itself does not have any form of network interface adaptor.

CDC Cyber 205 Again, the processor meets the model's description of a

BEM, but the module itself may be resident on the HyperCHANNEL or

LCN interface. It may be worth noting that the machine's front-end (Am-

dahl 470/V7A, in the case of UMRCC) does not provide the BEM service,

but in fact acts as an NSM.

As is apparent from the examples given above, it is not always appropriate for

the TNM module to reside with the majority of the software for its machine. So, for

the Meiko Computing Surface, whilst the machine satisfies the model's definition

of a Back-End Module, the system requirements of the TNM BEM software are such

that it is more effective for this software to be implemented by the MicroVAX front-

end. The system does not view this front-end as being the BEM, but merely as the

interface to the BEM; it is not possible for the other nodes of the system to interact

directly with the Meiko machine, and hence the two devices are indistinguishable.

Communication Restrictions

The Triadic Network Model prohibits direct communication between Back-End

Modules. For many Back-End Processors this will he inevitable because of sig-

nificant differences in their representation and use of data. In some cases these

differences are less distinct and it may be desirable for the Back-End Processors to

139

transfer data directly to improve their efficiency. To allow high speed data transfer

between Back-End Processors, an intermediary NSM may be used, as illustrated

in figure 3-10.

not I Back End
Moduli 	

I F
	 Communication

possible I Module

r - - - - -

I Back-End I
I Module

NSM

Communicating
Back-End Modules

iJ
I-1

Back-End I
i Module
L_L__J

r-
I Back-End Li
I Module
L-J

Figure 3-10: Overcoming the Inter-BEM Communication Restrictions

The benefit of not requiring all BEMs to provide the facility for direct data

transfer is that incompatible Back-End Processors are not unnecessarily burdened

by having to implement extra (intricate) protocols. Those Back-End Processors

that are more compatible may provide an NSM for the purpose of establishing and

controlling the connection. Alternatively, a remote NSM may be used to translate

the data passing between the machines from one representation to the other, as

in the second stage of the example in figure 3-10.

The role of the intermediary NSM varies according to the needs of the connec-

tion it is supporting. So, where the supply rate is no greater than the consuming

rate (direct use of data), the NSM is only of use in the establishment and close

140

down of the circuit. However, where the supply rate is greater than the consuming

rate (delayed use of data), the NSM may provide a form of buffering facility. The

buffer may reside at the back-end processor or it may be located remotely at a

network filestore.

The main reason for prohibiting inter-BEM communication is because of the

differences in data representation, but additionally it should be stressed that direct

communication between BEMs conflicts with the normal operation of the system.

This is because each BEM is considered to be a valuable resource, for shared

access by the users of the system. Hence, the scheduling of requests, together with

resource allocataion and accounting, are of great importance in tlI communication

involving BEMs. To allow BEMs to communicate with each other, without the

involvement of NSMs, would introduce one of the following two uninviting options:

The BEMs would become responsible for management of accounting records

and scheduling of requests.

It would he possible to circumvent the normal system constraints by direct

communication between BEMs.

These considerations also apply to communication between PWMs and BEMs.

However, there are also much more important factors. Foremost amongst these

is the desirability of isolating the functions supported by the BEMs from the

corresponding devices. The immediate consequence of this is that system nodes

have to request use of system services by type rather than location. This gives

flexibility to the system in the choice of how to implement the service, and of

141

which devices to use. To illustrate this, consider the possible approaches towards

satisfying a request to compile a Pascal program

. A general purpose processing node may be used. It would have to load the

code for the compiler, as well as the source code for the program, and store

the object code on completion.

A special purpose compiler engine could probably provide an improved per-

formance because of its optimized architecture.

Distributing the compilation amongst a number of processors, either as a

multi-stage pipeline or by partitioning the task into a number of smaller

identical tasks for parallel processing, may well provide an even greater per-

formance.

The implementation adopted by the system will depend on the requested stan-

dard of service, the presence of system processing resources and the availability of

those resources. However, whatever approach is taken, the requester of the service

should not be required to he aware of the nature of the service provision.

These objectives are relevant to all nodes on the network and are appropriate

for all types of service. They are of special importance, though, for PWMs using

BEMs because of the extra disparity between the form of these modules. Fur-

thermore, it may be anticipated that the communications bandwidths for PWMs

and BEMs are likely to be of completely different orders. Where communication

between a user station and a back-end processor is required, the technique of using

an intermediary NSI\I should be adopted.

142

3.3 Application of the Model

The characteristics of three types of module, representing varieties of network de-

vice, have been defined as part of a Triadic Network Model (TNM). The nature

of the interactions between the modules has also been described. In this last sec-

tion of the chapter. the utilization of the model is considered. The notion of a

layered network transparency is used to reduce the complexity of implement-

ing protocols based on the model and finally a study is made of how the model

may be applied in practice.

3.3.1 Layered Network Transparency

It is generally agreed that it is desirable to make a heterogeneous multicomputer

system appear as if it were a single entity because this greatly simplifies the ap-

plications software and provides a more uniform view of the system to the users.

It is also considered preferable to make the protocols governing interaction be-

tween the different nodes on the system quite basic so that it is straightforward

to implement them on a wide range of devices.

The Triadic Network Model would appear to violate both of these aims be

cause of the widely differing levels of processing capability of the different network

devices, and the distinction between standard and special services. The idea of the

various parts of the system having different degrees of awareness of the nature of

the network is introduced in an attempt to overcome these difficulties. This use of

143

a layered interface to the network allows the sophisticated nature of the network

structure to he concealed from the user by relatively basic pieces of software.

User's View

From the uppermost layer, the user is aware of having access to a large and com-

prehensive range of services, which enable him to communicate with fellow users,

interrogate a large information base and perform extensive processing of informa-

tion. Access to these services is provided by the user's personal workstation, and

to the user it may appear that this machine is performing functions that are in

fact being executed elsewhere on the network. Similarly, the application software

is only aware of the functions that are available. The software communicates with

all of the processes supplying the functions in the same manner, regardless of

whether they are internal or external to the workstation.

Workstation's view

The workstation divides the global set of functions into two categories, local and

non-local. It may be possible for some functions to reside in both categories, if

different levels of service are recognized and the network is able to offer the same

functions but with a higher level of service.

For local functions, communication from the application software is passed di-

rectly to the appropriate internal process. For non-local functions, the workstation

will first send a service request to the network and then pass the information to the

network server. The workstation is only aware of the division between local and

144

non-local functions; it has no knowledge of the difference in the types of non-local

functions.

Network's view

The network distinguishes between standard and specialized services. For standard

services, the service request is passed to the corresponding NSM, but for specialized

services the request is passed to another NOSS module to manage the transaction.

When the NOSS is regarded as composed of a number of modules, it is evident

that the NOSS Coordinator module itself draws no distinction at all. The distinc-

tion arises out of the way in which the services are actually implemented: for a

standard service, the Coordinator passes the service request directly to the NOSS

module that will provide the service, whereas for a specialised service the destina-

tion NOSS module uses another machine, a BEM, to implement the service.

Effects and Benefits

The layered structure that results from considering service requests in this way

is illustrated in figure 3-11. It is apparent that, at each level, the decisions that

need to be taken are relatively easy to make. Furthermore, the nature of the

options available at each stage is appropriate to that level. Consequently, the

routing of a service request to a suitable provider may be achieved effectively with

uncomplicated software procedures.

In studying figure 3-11, it is clear that an extra level has been added between

the workstation's view and the network's view described earlier. This particular

145

ADplication Software

User Level
Interface

For remote services, 	 I 	 For local services,

messages passed 	 messages passed

to the network 	 directly

Network Level
Interface

If network node 	 I 	 If node can
cannot oblige, 	 provide, message
message is forwarded 	 interpreted

Service Level
Interface

For a 'special' 	 I 	 • For a 'basic' service,
service, a BEM 	 request immediately
is used 	 acted on

Figure 3-11: Layered Structure for Service Request Analysis

stage is present to allow a node that receives a service request to forward it to

another network server if it is aware that this second node is capable of providing

the service, whilst the original server cannot. This facility is of greatest use to the

NOSS Coordinator module, since, logically, this node is responsible for routing

all service requests to suitable servers. In practice, this facility has a much more

general applicability and the operation of this level will be explained in much

greater detail in the next chapter.

The stated objective, of making the uppermost interface to the system as

uniform as possible, is achieved through the use of this layered structure. By pro-

ducing a broad range of services for network operation, and constructing software

packages that are oriented towards the use of these network services, application

146

Relocatable
Application

System
Service
Requests

Environment-i

All requests
may be
satisfied
locally

Environment-2

Network
Server

Redirection 	 Network
Server

Figure 3-12: Portability of Applications

software may be readily ported between different network nodes. This is true not

only of similar nodes, such as two PWMs, but may also be the case for a PWM

Figure 3-12 illustrates the portability made possible as a result of this uniform

applications interface. The application software is shown at the top left of the

diagram, with the arrows denoting requests for system services. This application

may be used in environment 1, in which all service requests are locally supported

and no access to the network is required. Alternatively, environment 2 provides

only a small number of the required services, necessitating use of the network for

provision of the remainder. With environment 2 it can be seen that the application

147

needs no changes in order to make it operational, even in those cases where some

degree of redirection is necessary.

3.3.2 Operation of the System

The service-based operation of the system is best illustrated by considering a spe-

cific example. So, this section will concentrate on the potential integration into

the system of two contrasting varieties of node. Whilst these two devices are ex-

tremely dissimilar in nature and role, they provide support for similar forms of

computation and each will benefit from the involvement of the other.

Characteristics of the Nodes

The first of the devices to be considered here is the Sun workstation. A number

of different models exist in the Sun range of workstations, but they are all based

on powerful microprocessors, such as the Motorola 68020, and have an attractive

programming environment with the following features

The display supports high resolution interactive graphics, and the system

interface incorporates an easy to use window and mouse package.

An extensive amount of software is provided for use as the building blocks

for advanced applications, and assistance in the production of new appli-

cations is provided by development tools that are integrated to allow close

interaction with each other.

148

The large virtual memory and standard networking facilities allow the Sun

workstations to fully participate in multiple system configurations.

The networking capabilities of the Sun workstations are of special interest

because there are some models that do not have integral discs, and so rely on

the ability to demand page between local memory and a network fileserver. The

NFS protocol developed by Sun Microsystems has become a de facto standard

for multivendor Unix-based networks, and is now being implemented on the IBM

MVS mainframe operating system.

The second node to be considered here is the Meiko M40 Computing Sur-

face, based on 10 4-transputer processor boards and a display system, with a

MicroVAX acting as a front-end. The system installed at Edinburgh University

has been used in both single and multi-user modes, but the latter is now the more

common because of the demand for access to the Occam 2 development system.

The M40 system is providing valuable experience in advance of the installation

of the Edinburgh Concurrent Supercomputer, which will have over a thou-

sand transputers. For particular applications, this larger system will provide a

considerable performance advantage over existing computers.

The Meiko M40 allows up to 32 users to access the machine at any one time,

with each terminal having a transputer allocated to it. Whilst this mode of opera-

tion is ideal for enabling familiarisation with the Occam 2 development system, it

is not as suitable for the new system. This is because the Edinburgh Concurrent

Supercomputer is intended for use in applications that require a large number of

processing elements to cooperate in the computation. In these circumstances, it

may be argued that the machine should act as a shareable processing resource to

149

be allocated to tasks as required. When viewed in a networked computing en-

vironment, the Meiko Computing Surface is a good example of a TNM Back-End

Module.

Node Interactions

The potential for cooperation between the Sun and the Meiko is perhaps not

immediately obvious. Indeed, the design of the Meiko machine is such that is

inappropriate for the interactive programming environment offered by the Sun,

and the workstation is ineffective in compute bound applications. However, in

the event that more processing power is required than the Sun workstation can

provide, and the nature of the computation is such that it maps well onto the

architecture of the Computing Surface, the code and data could be transferred

to the Meiko for processing. Whilst such instances may be few in number, if

the workstation were to exploit the Meiko on these occasions then the quality of

service provided for the user would be enhanced.

In the R & D division of a company, a group of development engineers, each

with a Sun workstation, may share access to a Meiko node, as well as other facili-

ties, using a general purpose network. In this environment, both the workstations

and the Meiko Computing Surface are used effectively.

A succession of transputer add-on boards are appearing on the market now [61]

and it may be possible to include boards such as these in the Sun workstations.

The engineers may then develop code to execute on their local transputer boards

before using the Meiko Computing Surface for more demanding activities.

150

Use of the Model

For an application in which the Sun workstations and the Meiko interacted ex-

tensively with each other, but not at all with other network devices, it would he

appropriate to develop software on both machines to support this communication

efficiently. In the more general, and more typical, case where interactions with

a number of different network devices are to be anticipated, the adoption of a

framework, within which all of these devices may communicate, is desirable.

Figure 3-13 represents one possibility for a configuration of TNM modules in

volved in the provision of a Meiko service for the benefit of workstation users.

The NSMs used to mediate between the Sun and the Meiko, perform resource

allocation and scheduling tasks, to allow the Meiko Computing Surface node to

be shared amongst a number of clients. The network fileserver provides the most

suitable buffer for data to be tansferred between the workstation and the back-end

processor. The workstation may build up a set of data on the fileserver as a result

of interactions with the user. Once processing of this data is required, a request

is issued to the managerial NSMs which, in turn, direct the Meiko to perform the

computation. Since the results are returned to the same network fileserver as the

one holding source data, the user may readily access the output, exploiting the

powerful display features of the Sun workstation.

3.3.3 Summary

This chapter began by considering the bringing together of workstations and main-

frames. The approach of having two distinct networks, front-end and back-end,

151

PWM

nj

NSM 	

NSMSUN
H

_J

Initial 	COORDINATOR I
Request

NSM

Service 	
I

Provision L BEM MANAGER

r ---------1
FILESERVER

Data
Transfer

NSM

Data and
Code
Transfer

-,

BEM H
- - - - ME1Kd

Figure 3-13: Interaction of Sun workstation and Meiko Computing Surface

figure 3-1, should be compared with the MU6 philosophy, section 1.2.1. This divi-

sion of the networks is undesirable because it restricts the sharing of data between

the machines on the network, and ultimately it limits the level of cooperation that

may be achieved by these machines. The adoption of a single common network,

figure 3-2 in section 3.1.1, permits much greater freedom of communication.

Whilst the presence of a unifying network allows data to pass freely be-

tween workstations and mainframes, true cooperation between the machines is

not achieved because of their great dissimilarities. The classification of all network

devices into a small number of groups permits the communication requirements

within and between these divisions to be identified. Subsequently, protocols may

be devised that efficiently support these communication requirements.

The simple three-way device classification of section 3.1.2 is insufficient for

152

these purposes because of the degree of variation that occurs in each division.

The Triadic Network Model addresses this problem by making a more rigid classi-

fication, and allowing individual devices to be formed from a number of modules,

each of which complies with this definition. The versatility of this approach has

been illustrated by considering specific examples of network device. In studying

the role of the model in allowing interactions between a workstation and a spe-

cialized processor, it was apparent that the potential for cooperation could be

realised.

In the next chapter, the principles of a set of protocols, founded on the Tri-

adic Network Model, are described. These protocols are oriented towards the

interactions defined by the model, and incorporate the idea of a layered network

transparency.

153

Chapter 4

Protocol Set Principles

4.1 Introduction

This chapter explains the principles of the protocols that have been derived from

the Triadic Network Model. The concepts described here form the basis for a set

of protocols intended for use in a heterogeneous multiple computer system. The

application of these ideas, together with the details of the implementation, are

discussed in the next chapter.

Before delving into the intricacies of the principles behind the TNM protocols, it

is worthwhile to consider the context in which this work should be viewed. In this

respect, the relationship to other network protocols needs to be studied. There

are two aspects to this

The nature of the interfaces between the TNM protocols and other parts of

the system.

Where the TNM protocols lie in the world of protocol standardization.

154

4.1.1 Perspective

The first priority is to consider how the TNM protocol set is related to the ideas

described in the previous chapter. Thereafter, the nature of the interfaces to other

protocols and software layers will be more apparent.

Relationship

In section 3.1.1, a general network structure was presented as representative of

configurations that are becoming increasingly common. The most important char-

acteristic of this structure was that all nodes were interconnected by a common

ñetwo.rk. The network nodes comprised a wide variety of devices, ranging from

simple terminals to sophisticated processors, but the underlying structure did not

have a rigid formation and there were no constraints imposed on interactions be-

tween nodes.

The networked computing environment, illustrated in figure 3-7 of section 3 9

is strikingly dissimilar to the general network structure. The environment has a

well defined formation, derived from a multitude of modules that are dedicated

to the support of a particular function. This modular, service-based computing

environment may he readily exploited by users and application packages alike.

However, it is not immediately apparent how the networked computing environ-

ment may be provided by the general network structure.

As explained in the remainder of section 3.2, the Triadic Network Model exists

to 'bridge the gap 'between these contrasting formations (figure 4-1). In particular.

155

Networked Computing Environment

TNM Protocol Set

General Network Structure

Figure 4-1: "Bridging the Gap"

the protocol set, based on the model, forms an interface between the networked

computing environment and the general network structure.

Lower Interface

The 'model assumes that the underlying network communication substrate pro-

vides a reliable means of passing information from one node to another. Hence,

the TNM protocol set is intended for use above a transport service that guaran-

tees no duplication or mis-ordering of packets. However, there is no requirement

for the transport service to be connection-oriented. 1 In fact, as explained in

section 4.3, the TNM protocols may exploit the different merits of a number of

transport services.

The primary requirement is only for a reliable communication mechanism, and

not for a specific type of transport service. Hence, if the sub-net could provide a

high reliability without the need for extensive coding and error checking, it would

1A connection-oriented protocol requires a virtual circuit to be established between
the two communicating nodes, and that this circuit be maintained for the duration of
the communication period.

156

be acceptable to implement the TNM protocols directly above the network. This

would greatly increase the performance of the system by reducing the software

overheads associated with network communication.

Minimisation of protocol layering so as to achieve greater system performance

has the effect of removing the potential for interaction with other systems. How-

ever, in many distributed computing systems the emphasis tends to be on perfor-

mance at the expense of compatibility because the systems are much more likely

to remain closed. Where communication with other systems is desired, it is usual

to provide gateway nodes for this purpose.

The Apollo DOMAIN, section 2.6.1, and the Amoeba distributed system, sec-

tion 2.4.3, are examples of other systems that have opted for non-standard network

protocols that are oriented towards specific applications. In both of these cases,

the network protocol has had to accommodate some of the facets of the lower level

protocols that have been bypassed. In this respect, the TNM protocols are different

in that they assume the reliability that the lower level protocols normally provide.

So, to bypass these lower levels, a sub-net must be used that already possesses a

high reliability.

The Centrenet high performance network, described in section 1.2.3, together

with the Centrenet Burst Protocol, is capable of satisfying the communications

requirements of the TNM protocol set without the need for a sophisticated transport

service. So, in figure 4-2, the transport service and network layer serve only

to increase the connectibility of the system and, for a system based entirely on

Centrenet, they may be omitted in the interests of performance.

157

perating(0 perating\ 	(Operating
System 3 	System 3 	(System

#2I

TNM Protocol Set

Transport Service and
Network Layer

Centrenet
	

Ethernet
Burst
	

Data-Link
Protocol
	

Layer

Figure 4-2: Protocol Set Interfaces

In: the next chapter, it is explained how, in the definition of the operation of

the TNM protocols, the dependence on a specific transport service is avoided.

Upper Interface

From figure 4-2, it is apparent that the TNM protocol set may be used by a num-

ber of different operating systems, acting concurrently within a single networked

computing environment. This is to enable existing high level software to be used

wherever possible with the aim of increasing flexibility in the implementation.

To allow a large degree of independence in the use of TNM protocols, the upper

interface is simple, functional and oriented towards the needs of the networked

computing environment described earlier. Since the primary use of the protocol

set is for accessing network services, the upper interface allows a request to be

issued to the system and a reply to be received. This permits either a remote

158

procedure call [77] or a message passing [31,74] mechanism to he implemented, as

desired.

4.1.2 OSI

Background

In 1978, the International Organization for Standardization (ISO) began

work on developing a communications architecture that would help to remove the

difficulties involved in networking machines of different manufacturers together.

In 1980, a proposal was produced for a Reference Model for Open Systems

Interconnection, and in 1983 this proposal was accepted as an international

standard. Since then there has been a worldwide concentration of effort on imple-

menting networked systems that comply with this reference model.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

HIGHER
LEVEL
PROTOCOLS

LOWER
LEVEL
PROTOCOLS

Figure 4-3: ISO Model for Open Systems Interconnection

159

The ISO reference model for OSI is based on a seven layer communication

architecture that is similar in form to the network architectures of IBM's SNA

and DEC's DNA, as well as those of other manufacturers. Figure 4-3 shows the

seven layers of the ISO reference model. The seven layers may be considered in

two groups

The lower level protocols are concerned with ensuring that data is cor-

rectly transferred from one node to another.

The higher level protocols must ensure that the data is in a suitable form

for its proper use at the destination node.

The merit in dividing the activities of these two groups into a number of layers

is that it is then possible to isolate specific duties for each layer. The role of

each layer may be clearly defined, together with the interfaces to higher and lower

layers. In the case of ISO, since the OSI reference model became an international

standard in 1983, specifications have been produced for each of the layers of the

model in turn. A number of these specifications have subsequently been adopted

as international standards.

Merits of OSI

A great many manufacturers are endeavouring to provide network systems that

conform to the specifications for the layers of the ISO reference model. This

is particularly true of small and medium sized companies who do not have an

established and well-supported proprietary network on offer. For these companies,

OSI affords them access to a wide marketplace, interested not so much in the

160

identity of the individual manufacturers, but more concerned with the features

of the products on offer. In turn, customers that choose an OSI approach for

their networks have the benefit of a broad range of products and suppliers and

the flexibility of being able to spread their networking requirements amongst a

number of companies.

In the light of the significant advantages of open systems, it may seem surpris

ing that there remain a number of institutions that refrain from full commitment

to the ISO/OSI. However, there are several good reasons for this.

The family of protocols developed on the US Defence Department's

ARPAnet have been in existence for longer than the ISO/OSI. Furthermore,

the Berkeley 4.2 version of Unix, popular amongst universities, is supplied

with an implementation of these protocols. Hence, a wide community of

TCP/IP users has emerged, and the breadth of products supporting these

protocols is large enough to allow open systems to be constructed from them.

Large corporations, such as IBM, have their own well-established approaches

towards computer communication. For many customers, who are already

tied in to the product range of a particular manufacturer, the networking

solution of that manufacturer may be the only approach that it is viable to

consider.

Highly specialized applications can afford to rely on non-standard network

products when the emphasis is on efficiency rather than interconnectivity

with other systems.

161

4. For similar reasons to the previous point, distributed computing systems may

adopt a reduced layered communications architecture in order to provide a

suitable operational performance and behaviour of the composite system.

Protocols Based on the Triadic Network Model

The TNM protocols are more concerned with the management of data and job

control information being transferred over the network than with the issues of

reliable sequential transmission. Hence, they reside in the higher level protocol

division of the ISO reference model. Furthermore, from section 4.1.1, it ought

to be clear that, for most sub-nets, the TNM protocols reside at a level in the

ISO hierarchy above that of the Transport Layer. However, the range of services

provided by the TNM protocol set do not fall neatly into the defined roles of any

of the three highest layers of the ISO protocol stack.

Primarily, the functions of the TNM protocols mirror those of the ISO reference

model's session layer. These functions are oriented towards the control of dialogues

between different users of the session service. More exactly, a dialogue may be

initiated and terminated; it may be interrupted and then resumed later at the same

point. The different stages in the dialogue may be synchronized with respect to

each other so that an entire session need not be repeated in the event of failure,

but only the affected stages.

These dialogue control facilities are most appropriate for lengthy sessions, es-

pecially where long distances exist between the various users. The Triadic Network

Model is based on more localized communication of shorter duration, and so some

of the features of the ISO session layer are inappropriate.

162

The resource control and allocation considerations for the suspension and

continuation of the use of a service in the Triadic Network Model are too

intricate for protocol functions at this level. Hence, they are more appropri-

ately controlled by the operating system and need not he implemented by

the TNM protocols.

The partitioning and synchronization of different stages during the period

of communication is inefficient for short control messages, and unnecessary

in the transfer of compact, typed blocks of data. It is more appropriate for

the transfer of large quantities of data. So, the TNM protocols incorporate

a synchronization mechanism for traffic such as bulk data transfer, but this

mechanism is not used for the majority of messages.

In figure 4-2 and in section 4.1.1, it is indicated that the upper interface of the

TNM protocols is expected to be to the operating system or applications software.

However, it is anticipated that, for some environments, a thin application layer

may be needed above.

The ISO presentation layer is concerned with data format conversion to ac-

commodate the differences in data representation of unlike computers. Since all

data communicated in the Triadic Network Model is accompanied by its type,

as described in section 4.3.4, it is envisaged that dedicated servers will exist to

convert between different data representations. Consequently, the functionality of

the presentation layer may he provided in the hardware and firmware of a network

node.

163

As with many experimental distributed computing systems, the primary con-

cern here is for a high level of efficiency. Furthermore, in this instance a high

performance is also required. Therefore, compliance with the protocol layers of

the ISO/OSI is not of great importance. Yet, to enable the ready inclusion of

a number of different machines and existing software, it is desirable to interface

cleanly to the ISO protocol stack at some level. The most pertinent layer is the

Transport Layer, as indicated in section 4.1.1. However, for the implementation

described in the next chapter, the unavailability of ISO protocols on the develop-

ment machine meant that UDP/TCP/IP formed the lower layer interface.

4.2 Three-Party Mechanism

Fundamental to the operation of the entire TNM protocol set is the Three-Party

Mechanism. The role of the mechanism is to re-route systematically any single

request for use of a network service to a node capable of providing that service.

The implementation of this mechanism in the TNM protocol set allows a uniform

network interface to be provided to the applications software.

Relationship to the Model

In the previous chapter, the concept of a layered network transparency was intro-

duced as a means of reducing the complexity of implementing protocols based on

the Triadic Network Model. Figure 3-11 illustrated the various levels of two-way

decision making that could be identified

164

The User Level Interface determined whether the service request was to

be implemented locally or remotely.

The Network Level Interface was concerned with routing the service

request to a suitable node.

The Service Level Interface distinguished between services that could be

provided by a standard server and those needing access to specialized servers.

The Three-Party Mechanism is the realization of the Network Level Interface of

figure 3-11, and consequently holds together the entire protocol set. The operation

of the mechanism is quite straightforward and is detailed in the next section.

Subseuent sections discuss various aspects of the Three-Party Mechanism that

serve to enhance its functionality.

4.2.1 Operation of the Mechanism

The three parties involved in the operation of the mechanism are

Service Requester (S-R) 	initiator of the service request.

Service Provider (S-P) 	the node that actually satisfies the service request.

Service Manager (S-Al) 	if a service request has to be routed to another node,

then the node that performs the re-direction becomes the Service Manager

for the duration of the session.

165

In the implementation of a service, there may well he even more than three

nodes involved. This would be as a result of a number of re-directions. In this

instance, there would be several instances of the Service Provider and Service

Manager but only one Service Requester.

An example of this more complicated use of the Three-Party Mechanism will

be considered later. First, though, the principles of operation of the mechanism

should be explored.

Simple Case

REQUEST
 Issue request to network

 Re-direct request
DIRECT (P A)

I
S-P1

REDIRECT (P A)
 Indicate re-direction S-M I

 Re-submit request S-R. I

REQUEST (PA)

I
S-P1

 Satisfy service request
REPLY

 Confirm service provision
CONFIRM (PA)

I S-M I
S-P1

Figure 4-4: 3-Party Mechanism

Figure 4-4 illustrates the various stages involved, with the sequence being from top

to bottom. Every transfer of a protocol primitive is shown on a new line, with each

node involved in the transfer represented by a box containing the node's identity.

For clarity, each network node involved in the provision of the requested service is

always shown in the same column. An arrow indicates the direction of the transfer

and the mnemonic above the arrow is the name of the protocol primitive. Where

166

a character sequence appears in brackets after the protocol primitive's name, it

represents the presence of a service permit, section 4.2.4, and the sub-scripted

character identifies the permit. The conventions used in figure 4-4 are followed

for other illustrations of protocol transfer sequences.

The six stages that comprise a single instance of the Three-Party Mechanism

are

When a network-supplied service is required by an application, but cannot

be satisfied locally by the network node, a service request is made to the

system. The network node then becomes the Service Requester (S-R).

If the recipient of this request is capable of providing the service, it satisfies

the request and then sends a response back to the S-R. If it cannot provide

the required service then it will either return an indication of its failure to

the S-R or it may re-direct the request to a node which it believes to be

capable of supporting the desired service. If this node re-directs the original

request, it becomes the Service Manager (S-Al) for the duration of this

session.

To re-direct the request, the S-Al must send an indication to the intended

node that it should anticipate a service request. The S-Al must also supply

the intended node with a means of verifying the service request. It achieves

this by sending a Service Permit, section 4.2.4, with the indication of the

request re-direction. The node to which the service request is re-directed is

the Service Provider (S-P).

167

The S-M must also return an indication to the S-R that the service request

should be re-directed, and again the service permit should be provided.

If the S-I? receives, in reply to a service request, an indication that the

request is to be re-directed then it should re-submit the service request,

together with the corresponding service permit, to the substitute server,

S-P.

The S-P, upon receipt of the request, should first ensure that the service

permit is correct and then satisfy the request. The response should then be

returned to the S-I? and finally confirmation provided to the S-M that the

service request has been satisfied.

In figure 4-4, there would appear to be two instances of S-P, one of which has a

subscript of 1. This represents the fact that, at the initiation of the service request,

the node to which the REQUEST is sent is viewed as a prospective provider of the

service. It is only when this node decides to re-direct the request, and therefore

assume the role of S-M, that a new provider becomes apparent. This new provider

is suffixed by a 1 to distinguish it from the previous provider.

The fact that the un-subscripted S-P appears in the same column as the S-M

serves to illustrate the fact that they are both associated with the same network

node. Consideration of a slightly more complicated use of the mechanism may

help to clarify this point.

Complex Case

168

REQUEST
1 LII1 1iiI1

DIRECT

EKJ 	
(PA)

REDIRECT (PA)

REQUEST (P A)

I S-R I ____ lS-PiI
DIRECT (PB)

I III S-P2

REDIRECT (P B)
6 I S-R1. _ IsM1

REDIR-M (PA)

8 I S-R
REQUEST (P B)

Il-I S-P2

9 I S-R J-
REPLY

IS-P21

10
CONFIRM (F2)

_____ ________ -P

CONFIRM (PA)
11

Figure 4-5: More Sophisticated Use of the 3-Party Mechanism

In figure 4-5, the service request is re-directed twice before eventually being sat-

isfied by S-P2. This may occur when the first recipient of the REQUEST has a

limited awareness of suitable nodes that may provide the service, and so it refers

the request to a better informed node. The presence of four columns of boxes

indicates that four network nodes are involved in this service provision; there are

three instances of S-P and two of S-M.

Stage 7 of figure 4-5 involves the transfer of a primitive not encountered in

the simpler case of figure 4-4. S-P, has received an indication from S-M that a

service request should be expected with permit P 4 . However, when the request

is received, S-P, discovers that it does not support the required service. So, it

169

assumes the role of a service manager, sends an indication of an impending service

request to S-P2 and informs S-R of the re-direction. This much is common to

both examples. However, because S-M1 is the result of a re-directed request, it

must indicate to S-M that the request has been further re-routed. This ensures

that S-M is in a position to fulfil its rOle as service manager when required, as

explained in the next section.

170

Algorithms

The behaviour of the three parties may be expressed in an algorithmic form.

S-R: n — O
permit - STANDARD-PERMIT
satisfied - FALSE
repeat

issue request to S-P,, with permit
receive response
if response = REPLY

then
decode response
return response to user
satisfied 	TRUE

else
n*—n+1
permit - permit of response

end if
until satisfied

S-P : receive request
if can satisfy request

then
implement request
send response

else
become S-M for request

end if

171

S-M: select provider S-P
select permit
send DIRECT to S-P with permit
send REDIRECT to S-R with permit
concluded i- FALSE
repeat

receive response
if response = CONFIRM

then
concluded - TRUE

else
concluded - FALSE

end if
until concluded

These algorithms reflect the behaviour of the three parties when there are no

problems in the service provision. As such, the algorithms may form the basis for

implementations of the Three-Party Mechanism, and thereby for the TNM protocols

also, but additional measures are needed to cope with any error conditions that

may arise.

4.2.2 Role of the Service Managers

Of the threeparties involved in the provision of a service using the Three-Party

Mechanism, the Service Manager (S-AY) is of special significance. The actions

of the service requester and the service provider have much in common with the

standard client-server model, which forms the basis for most network commu-

nication protocols. The presence of a node that performs a supervisory role in the

interaction is more unusual.

172

There is some similarity between the role of the CSS node in the LOCUS Open

protocol, section 2.3.2, and that of the Service Manager. However, the CSS node

is particularly concerned with controlling file accesses, especially the problems of

synchronization of different copies of a file. In this respect the operation of the

CSS is very important in the Open protocol but the Service Manager has a less

critical function.

Recovery from Failure

In the general case, as described in the previous section, the manager's only pur-

pose is to route the initial request for use of a network service to another node that

is more capable of providing the service. This action of re-direction is short-lived,

and if this were the limit of the manager's ability it would be appropriate for the

S-Alto discontinue its involvement in the communication session. However, in the

event of a failure in the communication between S-R and S-P, the S-M is in a

position to assist in the recovery of the session.

A Service Manager is 'accountable' for the provision of a service until the

request for that service has been satisfied. This responsibility is of greatest im-

portance in the event of a failure in the provision of the service. In this case, the

S-R, the S-P, or both, will communicate with the S-Al to indicate the evidence

that a service failure has occurred. The recovery actions that may he taken by the

manager will be dependent on the degree of information available to the manager

and the nature of the failure. The use of Service Permits is of assistance in the

event of failures. as described further in section 4.2.4.

173

Multiple Service Managers

In the more complex example of the operation of the Three-Party Mechanism,

figure 4-5, it is apparent that there may be more than one service manager in

operation at any one time during the session. This situation arises as a result of a

number of re-directions being made to the service request. However, despite there

being a multiplicicty of S-Ms involved in the session, the S-B and S-P are only

concerned with the current S-M at any stage in the provision of the service.

In figure 4-5, if S-P2 failed during stage 8 of the communication session, the

S-B would select S-M1 as the first line of enquiry towards recovery of the service.

If S-11111 has also failed the S-R will then communicate with S-M. For S-F2 , if S-R

were to fail in stage 8, S-All is the only manager with which it may interact to

recover from the service failure.

This use of a chain of service managers serves to improve the robustness of the

system. So, if there is a breakdown in the process of re-directing a service request

to a small succession of network nodes until a suitable S-P is selected, the S-R is

in strong position to be able to work back up the chain of S-Ms until being further

re-directed to a healthier S-P.

Burden of Re-direction

It is important to dispel any undue concern that may have arisen over the po-

tentially large overheads that could be present in a system that relies heavily on

long sequences of re-direction. For a well-established system, most of the nodes

will have a high level of knowledge about ideal devices for particular services. In

174

such an environment, service request re-direction will he of greatest importance

for new members of the network and ill-informed network devices.

The Three-Party Mechanism may be used to improve the security of a system.

In requiring all devices to send requests to specific 'validation' nodes, which in turn

re-direct the requests to suitable service providers, access to valuable resources

may be restricted to privileged users only. The use of Service Permits and the

Coordinator, described in the following sections, serve to assist in this aim.

It is considered unlikely that the number of nodes involved in the provision

of a single service will extend beyond the more complex example of section 4.2.1,

illustrated in figure 4-5. The only exceptions to this rule would he for services

requiring use of Back-End Machines (BEMs).

BEM Managers

The manager of a BEM service will act, wherever possible, as if it is providing the

service itself. This is so as to receive all of the information from the S-R necessary

for the BEM manager to instruct one or more BEMs to provide the required

service. The limit of the BEM manager's 'boast' is that, where the transfer of

large amounts of data is involved, it would be inefficient to introduce an additional

delay by requiring this data to pass through itself.

So, after initiating the implementation of the required service by suitable

BEMs, the BEM manager may then re-direct the original service request to an

NSM to be used as a data buffer for the duration of the service. Hence, the BEM

manager assumes the role of S-Al, but with a higher level of responsibility for the

service than the S-Ms already considered.

175

In the event of a failure in the provision of the service, the BEM manager is

the most suitable node to he required to recover the service because of its detailed

knowledge of the means of implementing the service. With the BEM manager as

the current S-M it will be selected by the S-B as the first line of enquiry towards

failure recovery. If the nature of the failure is such that the BEM manager cannot

help S-R, the alternatives presented to S-B are to either abort the request or move

back up the chain of S-Ms in an attempt to re-route the request to a new BEM

manager.

This instance provides a good illustration of the merits of maintaining the

chain of service managers.

4.2.3- Coordinator

All of the nodes on the network need only be aware of a single logical node, known

as the Coordinator, to which all requests for use of network services may be

sent. In turn, the coordinator may use the Three-Party Mechanism to forward

any service requests to other network nodes capable of providing the required

service.

Multiple Coodinators

If this single logical node were to be implemented by a single physical node, the

coordinator would form an unacceptably vulnerable bottleneck in the system. So,

in reality, there should be a number of coordinator modules within the system to

spread out the load on this service. Additionally, this provides extra reliability

176

and redundancy in the system, reducing its susceptibility to total system failure

resulting from the failure of a single node.

The notion of a single coordinator serves to simplify the interface between

network services and the software on a user node. Furthermore, it helps to conceal

the heterogeneous nature of the multiple computer system. By implementing the

coordinator module using a number of nodes, the software controlling a node's

requests for network services must map all requests to the coordinator onto the

set of coordinator modules. Alternatively, where the network allows the use of

generic addressing, this provides a more efficient approach.

Centrenet

In Centrenet, the Network Intelligence Modules NIMs are ideally suited towards

use as coordinators. Every Starpoint of the network has the capacity for a NIM,

and the NIM is intended for mapping calls to virtual addresses onto real devices.

The Centrenet hardware, as it stands, requires that all NIMs be explicitly ad-

dressed. However, a straightforward modification to the interface logic of the NIMs

would allow other devices to address the nearest operational MM by presenting a

single generic address, eg 0000. The tree-like structure of Centrenet would ensure

that, at the very least, a request to the coordinator would be answered by the

SuperNIM at the root Starpoint.

177

Operation

It would prove to be unnecessarily burdensome for all network service requests

to have to pass through the coordinator. This is especially true of requests for

elementary services, for which the indirection introduced by the coordinator would

seriously deteriorate the performance.

The solution is to allow some 'caching 'of network addresses of certain services

so that service requests may he made directly to the provider without any need

to access the coordinator in the first instance. For this solution to operate, there

must also be some measures taken to ensure that the service permits continue to

be correctly validated and monitored. This is explained in the next section.

The coordinator is effectively just a specific instance of a service manager, but

is considered by the higher levels of software to be permanent rather than transient,

as is the case for most service managers. It is the only service manager visible

to the higher level software, in that the software may presume that any service

request sent to it will in turn he forwarded. However, no special consideration

need be taken of this fact since, as far as the TNM protocols are concerned, it

behaves just like any other NSM.

4.2.4 Service Permits

The use of Service Permits enables some necessary flexibility to he introduced

into the use of network services, whilst retaining security and control over re-

sources. A service permit is, in essence, a capability or token enabling a node to

1 7S

make use of a particular network resource, but the applicability of service permits

is much broader than this.

Currency and Security

Service permits are issued to customer nodes, that have requested use of a service,

by a service manager when it is incapable of satisfying the request, but is aware

of a more capable node, S-P. Prior to issuing the permit, the S-M must first issue

an indication to the S-P that it is to answer a re-directed service request. The

S-M then replies to the original service request, returning the service permit. The

presentation of a service permit by S-M to the S-I? implies that the request has

been authenticated and scheduled, if this was necessary. On receipt of the permit,

the S-I? re-submits the service request, including the permit, to S-P. Having re-

submitted the service request, with the permit, S-R has effectively presented the

permit to S-P and thereby relinquished it. On completion of the service, S-P

confirms completion of the service to S-M, and returns the used service permit.

Hence, the service permit can be viewed as a form of currency and the indica-

tion, as passed from S-ill to S-P, as a receipt for permits issued. The permit only

has a limited period of validity and the interval between the issuing and re-issue

of a permit is much greater than this validity period. This aids the security of the

system by making it difficult for brogue' nodes to break security keys embedded

within the service permit. For a system where security is not a major concern, it

is possible for 'block allocations' of service permits to be made, such that a given

node may make direct requests for use of a service without resort to obtaining a

179

permit from an S-M first. The node must also have formed a table of the network

addresses for the services corresponding to the service permits.

Service Requester in Control

Service permits, as used in the Three-Party Mechanism, allow the requester of a

service to retain control over its use of that service. This is because the node in

receipt of the service request must either implement the requested service, signal

its inability to do so or return a service permit to allow the S-R to re-issue the

request to another node. In the latter case, the new S-M can make arrangements

for the re-direction of the request, but it is not empowered to actually forward the

request to other nodes.

Hence, at every stage in the service session, the S-R is always aware of which

node is acting as S-P. 2 This allows the S-R to terminate the request at any time,

either as a result of an explicit instruction from the user or due to the expense

of the service exceeding a pre-defined limit. In most cases, the expense will be

measured in terms of the time taken to satisfy the request. In systems where

access to certain resources is limited, and accounting is therefore more important,

the ability of the customer of the service to decide on the level of re-direction that

it can afford is essential.

There are also practical considerations that reinforce the decision to have a

mechanism that requires the customer of the service to re-submit the request

2When an S-P has transformed to an S-M, the new S-P, is not recognized as such
until the S-R has received the re-direction information and re-issued the service request.

180

whenever re-routing is necessary. If the S-M were to be required to forward the

request to the S-P, and act as an intermediary on behalf of the S-R, an extra

delay would be introduced in the path between the source and destination of the

data transfer. Additionally, the S-Allwould need to be able to interpret the intitial

request in order to he able to forward it properly. This extra knowledge would

futher burden the S-M.

For the software implementing the network protocols on each node, the re-

quirement for service re-direction to he referred to the S-R ensures that the delays

between the issue of a request and the receipt of a response are reduced. This

means that reasonable limits may be used for timeouts.

Failure Analysis

The service permit may also be of help in the detection and analysis of service

provision failures. The receipt of an unknown permit, the delivery of an expired

permit and the expiry of a permit receipt are all signs of a failure in the service

provision. So, for example

S-R presents permit but 	-i 	S-P failure or expiry of
S-P refuses to accept it 	 permit validity period

S-P awaits permit that 	 S-R failure
is never presented

No confirmation received 	- 	S-P failure
by S-It'I

. 5-P returns confirmation 	- 	S-j1 or S-P failure
but rejected by S-M

181

Stage Nodes Detection Action
Find Fail

Issue S-R S-M S-R rejects reply S-M may report this to
service from S-M the network monitor
request S-M S-R S-R receives no if no reply to enquiry, or
to reply from S-M, S-M acknowledges failure,
network times-out and sends then S-R may notify the

enquiry to S-M network monitor
Redirect S-R S-M as for 1 as for 1 + S-M may
service terminate session
request S-M S-R S-R detects as S-R acts as for 1; the S-P,

+ S-P, for 1; notes notifies S-M of non-use
S-P i permit expiry of the service

S-P, S-R S-P, rejects S-R notifies S-M of
request from service failure; S-M
S-R may try to recover

Indicate S-R S-p, S-P, notes expiry S-P, notifies S-M that service
redirection of permit was not used; S-M may

notify the network monitor
S-M S-P, S-M rejects S-P, S-P, may notify the

confirmation network monitor
S-R as for 2 as for 2

Re-submit S-R S-P, S-R rejects reply S-P, notifies S-M of
request from S-P, service failure

S-M S-P, as for 2 as for 2
S-P, S-R S-R times-out S-R sends enquiry to S-M;

on reply S-M may try to recover
Satisfy S-NI S-P, as for 3 as for 3
service S-P, S-M S-M times-out S-M sends enquiry to S-P,
request on confirm and receives reject

Table 4-1: Analysis of the Effects of Single Node Failure

Further exchanges of information between the various nodes are needed to

determine the exact nature of the failure. Table 4-1 illustrates how single node

failures may be detected.

182

4.3 Communication Mechanisms

The mechanisms used to transfer information from one part of the system to an-

other may take many different forms. Each method of communication has advan-

tages over the others for particular applications. Where two or more approaches to

data transfer are equally suited to a specific need, the decision as to which is used

is dependent on the implementation of the system. It is rare for more than a small

number of different mechanisms to be supported in an individual implementation.

This section takes a brief look at some of the better knon communication

mechanisms, and discusses their relative merits. Subsequently, a fundamental unit

of contmunication is identified, and the other forms of communication are described

in terms of this basic unit. Two important facets of this unit of communication

are then considered, and the exploitation of these features by a TNM based system

is discussed.

4.3.1 Common Mechanisms

The following list of communication mechanisms is representative of those used in

the majority of networked computing systems.

Messages

The primary use of messages is for the transfer of control and status information

between network devices. Messages are characterized by having a small size with a

183

well-defined structure. This enables protocol modules on different network nodes

to exchange highly specific information in an efficient and compact form.

Pages

In contrast to messages, where their content is often for use by the operating

system or networking software, the information contained in pages is primarily for

use by applications software. In having a fixed, known size, pages lend themselves

naturally to efficient transfer of data between machines. This is because they may

be copied directly into preallocated areas of memory without further processing.

Paging mechanisms have been shown to operate very well over a local area net

work [60,97]. However, pages are an inefficient means of sequentially transferring

a large amount of data from one node to another. This is because of the overhead

of transferring an identification header with every page and the fact that every

received page needs to be explicitly acknowledged.

Bulk Data Transfer

A bulk data transfer mechanism involves the movement of a large quantity of

data, of known size, from one network node to another. It is usual for an error

correcting protocol to be used, together with the periodic exchange of synchro-

nization information. Wide area network connection-oriented protocols, such as

X.25 [64], are designed for this purpose.

184

Streams

Bulk data transfer mechanisms are inappropriate when the size of the data to be

transferred is not known in advance. In these circumstances a stream communica-

tion mechanism is better. Stream mechanisms have much stronger synchronization

procedures that effectively partition the data into more manageable sections. To

ensure that the transmission is as reliable as possible, special markers are inserted

into the data at regular intervals, together with error checking codes. Where data

is lost or corrupted, it is a simple matter to determine the last marker that was

successfully transmitted and to then retransmit all of the subsequent data.

Pipes

For transient data of an unknown size, a pipe must be used for movement of data

between network nodes. The pipe mechanism is best known for its implementation

in Unix, where it is used for single machine inter-process communication. In Unix,

the pipe is implemented as a circular buffer, of fixed size, with one process writing

to the buffer and another reading. When the buffer fills, the writing process is

suspended until the reading process has consumed more of the data in the pipe.

The provision of a pipe style data transfer mechanism over a network is quite

rare. This may be because some of the synchronization difficulties present in the

movement of data between discrete devices are further compounded for pipes.

Contrasting streams and pipes, the essential difference is that the data contents

of a stream may reside at the source node until confirmation of successful transfer

has been received. Whereas for pipes, much less buffering of data is used and the

majority of the data is considered to reside either at the source or the destination.

185

Only the most recently transferred portion will continue to be held at the source

awaiting confirmation of receipt by the destination node.

4.3.2 Fundamental Unit of Communication

The various forms of network data transfer mechanisms listed in the previous

section are well suited for particular needs of communication between applications.

Whilst it may be possible for an individual type of mechanism to satisfy a much

wider set of demands, it will be much less efficient than the use for which it was

designed.

For optimum performance in a wide range of applications, a different network

communication protocol could be developed for each of the various forms of data

transfer mechanism, but the expense, in terms of development and implementation

effort, would be prohibitive. So, for the Triadic Network Model based protocols,

all interactions between network nodes are based on a fundamental unit of com-

munication, designated a record.

IDENTITY 	TYPE 	 CONTENTS

Figure 4-6: Format of Record

Every transfer of information that occurs in the networked computing environ-

ment is formed from a record. All records have a basic structure, as illustrated in

figure 4-6.

186

In the next two sections, the use of the type and identity fields is discussed.

The remainder of this section is concerned with how the data transfer mechanisms

already described may be implemented in terms of records.

Messages

A message maps readily onto a record because each field of a message is syn-

onomous with a field of a record. The type of a message is effectively the name of

a protocol primitive.

The identity field may be used to ensure that every transfer is distinct and

thereby idempotent. Therefore, a transmitting node may re-send a message in

the knowledge that the action will not be repeated if the previous message was

successfully received. Hence, an unreliable but lightweight transport protocol may

he used because the identity field, together with retransmissions, enhances the

quality of service provided.

Pages

Every page is required to possess a unique identifier within the system so that it

may be safely located, transferred and stored by the page management system.

This identifier may occupy the identity field of the record. The type field would

correspond to the nature of the fixed size block of data within the contents field.

187

Bulk Data Transfer, Streams and Pipes

The transfer of large amounts of data is best transferred using a connection-

oriented protocol. So, for a record with a stream. as the type and a file identifier in

the identity field, the TNM protocol modules would include extra synchronization

information when transferring the data in the contents field. This additional con-

trol information is transparent to the application and is only used by the TNM pro-

tocol modules.

Where there are a variety of transport services available, the TNM protocols

may exploit the relative merits of the different services, as appropriate. So, for the

experimental implementation on a Unix system, UDP is used for messages and

TCP is used for pages and streams.

4.3.3 Identity

The identity field of the TNM record serves two main purposes

To allow all transfers of information to be uniquely identifiable, and thereby

remove the possibility of duplication or misordering of data.

For holding system-level object identifiers, where data is being transferred.

The identity field allows all units of communication on the network to be distin-

guished. This avoids confusion when a number of sessions are active concurrently

and removes the possibility of a receiver accepting duplicate information. Further-

more, recovery from failures is easier because interacting nodes have knowledge of

the stage of communication that was reached before the failure.

188

Stages of Communication

REQUEST

REQUEST

	

IS-RI 	 •1s-1

REPLY

	

S-RI 	 S-Fl

REQUEST

	

IS-RI 	 -IS- PU!

S

REPLY

Transfer of record

Transaction

Session

S

CONFIRM
JS-M01. 	 IS-Pd

Figure 4-7: Stages of Communication

Taking the record as the most fundamental unit of communication, the various

stages of an interaction are considered to be grouped as illustrated in figure 4-7.

The smallest stage is the transfer of a single record. A transfer may be 'stand-

alone' and not have any other transfers associated with it (eg. a status report)

or it may form one member of a transaction. A transaction is a group of record

transfers between two nodes, such as a Request-Reply pair for service provision.

A session is a collection of transactions that together implement the provision

of a single service-use. So, it is possible for a session to comprise a single transac-

189

tion or a multitude, depending on the complexity of the provision of the service

concerned.

Note that it is possible for a number of sessions to commence as the direct

result of a single session. The 'spawned' sessions may exist concurrently with the

original, but the end of the initial session occurs when the first service request has

been satisfied, not when the last of the created sessions has ended.

To allow a compact field to be used for the transfer identifier, some form of

date/time-stamp should he used. This means that a small range of session numbers

may be used with an added degree of confidence that the identifier value will not

recycle within quite a long period.

System Level Identifiers

Where system level information is being transferred using the TNM protocols, cor-

responding identifiers will always accompany the data. Although this relies on a

system-wide naming system being adopted by the operating system(s) in use, it

has the merit of allowing high level interactions between system processes whilst

using lightweight protocols.

The presence of identity and type fields are of prime importance in object-

oriented systems, but the additional presence of capability information is usually

required, as with the Amoeba system described in section 2.4.3. For the TNM pro-

tocols, the capability of an object should be included with the contents field and

managed by the higher level protocols.

190

4.3.4 Type

The type ensures that all of the fields are correctly interpreted, and allows a wide

variety of fields to he used, as appropriate to the information being transferred.

Additionally, the presence of the type field permits some degree of optimization

by the lower level software or the hardware.

It would be possible for the extent of the error-checking performed to vary

according to the nature of the data being transmitted. The responsibility for

the error-checking lies with the reliable communication mechanism provided by

the underlying network. Hence, the type field may be used to select the level of

service provided by this communication mechanism.

Optimization

The hardware of the network interface adaptors may improve the performance for

network communication by handling the different types of data in an appropriate

fashion. An example of the optimization that may be performed is given for

the MU6V I/O-processor, described in section 1.2.2. In this case, three different

classes of data were identified and the hardware would have treated each in the

most suitable manner

messages : copied into a small area of memory local to the I/O-processor.

pages : make use of a large formatted area of virtual memory.

streams : routed directly onto the MU6V communication highway, with each

element of the stream being copied into a single register.

191

Different Representations

By requiring that everything transferred over the network has a type associated

with it (and explicitly transferred as part of it), when data is transferred between

nodes that have different ways of representing the type concerned (eg. different

formats for real numbers), the type carried with the data allows the receiving node

to readily determine how to translate the data.

The definition, allocation and administration of type information is the re-

sponsibility of the operating system. However, it is considered that the emerging

ASN1/CCJTT X.409 standards are most suitable to the task of ensuring that all

communicating nodes can handle the accompanying information.

4.4 Functional Division

The Triadic Network Model benefits from the identification of three distinct types

of network node because of the clarity and simplicity that is introduced into con-

siderations of the inter-node communication requirements. The consequences for

a protocol set based on the model are that a smaller set of primitives is required

and the protocols themselves are more streamlined.

To utilize fully the advantages of the model's discrimination between classes of

network node, the TNM protocol set is partitioned into three. Each of these three

protocols is oriented towards the needs of a particular type of network communi-

cation, as described by the Triadic Network Model.

192

This section considers the reasons for the division of the TNM protocol into

three and the roles of each of the protocols. The relationship of the protocol set

division to the model is described later.

4.4.1 Purpose of Division

A key element in the discussion of the Triadic Network Model in chapter 3 was the

identification of three distinct types of network device. The objective behind this

was to allow the requirements of both inter-class and intra-class communication

to be identified. This would permit the development of communication protocols

that were optimized to these needs.

Reviewing the communication requirements and restrictions, as defined by the

model, it becomes apparent that three different protocols are needed

A protocol to support Personal Workstation Module communication.

A protocol to control the provision of conventional network services. This

should provide the three party mechanism, described earlier.

A more sophisticated protocol to allow the specialized resources of the back-

end modules to be exploited.

The three TNM protocols that are oriented to each of these needs are, respec-

tively

the Inter-User Communication (user) protocol.

193

the Basic Service Provision (basic) protocol, based on the three party

mechanism.

the Special Service Support (special) protocol.

The role of each of these protocols is considered in the next section, and their

operation is described in the next chapter.

The primary merit of the division of the TNM protocol set into three more

specialized protocols is that each module in the system need only support the

most appropriate protocol. The consequence of this is that minimal software

development is required for the inclusion of a new type of device into the system.

Furthermore, the network communications software may be simpler and more

efficient in terms of memory usage because a much smaller range of primitives

needs to be accommodated. This may lead to higher performance levels for the

network software.

The strategy of sub-dividing the communications software into smaller func-

tional units may be extended still further by discriminating between the different

parties involved in the interaction. This is most clearly illustrated by the obser-

vation that the requester, manager and provider of the service in the Three-Party

Mechanism, section 4.2, all play different rOles. It is conceivable that a requester

of services may be incapable of actually providing any services of its own. Hence,

it would only be required to support the requester part of the protocol.

This approach has been adopted in the experimental implementation of the

TNM protocols. Each party in a given protocol has a separate software module.

These may be combined or left isolated, as appropriate for each network device.

194

4.4.2 Protocol Roles

In this section, the role of each of the three TNM protocols will be considered in

turn.

Inter-User Communication

The TNM Inter-User Communication (user) protocol is only concerned with the

transfer of information directly between Personal Workstation Modules (PWMs).

As described in detail in section 3.2.2, this communication is between the users of

the system, as distinct from the user's programs, applications or operating system

modules. For maximum flexibility, the system needs to support visual and audio

transrhissions in addition to textual transfers. Hence, the key objective of this

protocol is the smooth but rapid establishment or termination of communication

sessions, and very efficient data transfer for the duration of those sessions.

The approach taken for the TNM user protocol is to rely on streamlined lower

level protocols for the control and transportation of the data. The higher level

protocol modules need only to be involved at the beginning and end of a com-

munication session, where the means of conducting the conversation needs to be

agreed.

As Trevor Hopkins explains in [37], the protocol overheads for this form of

communication can readily be minimised because the reliability of the connection

is of lower importance that the network latency. This statement may be illustrated

by the public telephone system : the clarity of the audio signal is often quite poor,

but it is possible for the users of the telephone to understand each other. However,

195

when a delay is introduced into the passage of the signal from one telephone to the

other, the users find greater difficulty in communicating. Even greater problems

would arise if the telephone communication network were to insist on making

retransmissions whenever some of part of the signal had been lost.

The model calls for quite sophisticated means of communication between users

to be supported. An example of this is teleconferencing, where a multitude of

users are all partaking in a 'single' conversation. The TNM user protocol allows a

mediator node to be used for such communication.

The principle of operation is that the TNM basic protocol, briefly described in

the next section, is used to request use of a 'mediation' service. The details of the

conference, such as the users' identifications, are all supplied at this stage. All of

the authenticated users may then 'call' the mediator just as if it were another user,

and all subsequent communication is broadcast to all other users in the conference.

Other, more involved, means of communication between users may be estab-

lished in this manner. The definition of the protocol is given in appendix A, but

no further discussion is made of the TNM user protocol.

Basic Service Provision

The TNM Basic Service Provision (basic) protocol is the most important of the

TNM protocol set and is likely to be used by the majority of the attached network

devices. The TNM basic protocol forms the basis for the operation of the system

because of the orientation of the model towards the use and provision of network

services. The TNM basic protocol governs the way in which any network node

196

requests, and obtains, the use of a particular service provided by another network

device.

Provision is made in the protocol for the re-direction of requests for services

to more suitable nodes. Additionally, there is support for failure recovery with

the assistance of the designated service manager for each service request. Hence,

in effect, the TNM basic protocol is a practical implementation of the Three-Party

Mechanism.

The principle of the Three-Party Mechanism was described in section 4.2. The

implementation of the protocol is discussed in greater depth in the next chapter,

and a more rigorous definition is given in appendix B. 	-

Special Service Support

The TNM Special Service Support (special) protocol allows the functionality

of the services provided by the system to he extended further. The protocol

enlarges on the role of the service manager, as used in the TNM basic protocol, to

allow the provision of more sophisticated services. These services may involve the

close cooperation of a number of network nodes in the implementation of a single

service. The service manager acts as if it were providing the special service, whilst

in reality making use of a number of other network devices. The consequence

is that the service manager is required to be much more closely involved in the

provision of the service.

The primary users of the TNM special protocol are the high performance com-

puters formed from back-end modules, as defined by the model. A characteristic

of these machines is that direct communication with other modules is complicated.

197

Hence, every back-end module has a corresponding service manager which controls

all access to the services provided by that module. Communication between the

back-end module and its manager is governed by the TNM special protocol.

Using the TNM special protocol, the service managers can initiate the provision

of intricate services by the back-end modules. In return, the managers receive

regular status reports to indicate the progression of the service provision. The

information provided in these status reports allows the service manager to provide

a good quality of service to the customer, whilst concealing the sophistication of

the details of the service provision.

The example session given in the next chapter provides a good illustration of

the function of the TNM special protocol

appendix C.

The definition of the protocol is given in

4.5 Summary

This chapter has concentrated on the principles behind a protocol set based on

the Triadic Network Model. A key feature of the TNM protocols is the Three

Party Mechanism. The mechanism provides a simple yet effective means to allow

requests for services and their provision to be supported. A means is provided for

rerouting servc requests to the most suitable node. The use of service managers

and service permits allows the security and fault tolerance of a TNM based system

to be enhanced.

198

The data transfer mechanisms centre on a fundamental unit of communication

- the record. The presence of identity and type fields within the record enable the

TNM protocols to provide a good quality of service.

The next chapter looks at how the principles described in this chapter have

been applied in an experimental implementation of a TNM based system.

Chapter 5

Implementation

The central theme of this chapter is the experimental implementation of a protocol

set based on the Triadic Network Model. The main principles of this protocol

set were considered the chapter 4. In particular, the operation of a three party

mechanism was described, together with the role of service managers and permits.

The benefits to the user's quality of service from identity and type fields, and the

reasons for the functional partitioning of the TNM protocols, were also covered.

This chapter continues the description of the TNM protocol set. However, the

emphasis is more on the practicalities of the implementation than on the theory

behind the design. In this respect, the development environment is discussed,

but the facilities produced to support the development of the implementation are

considered in the next chapter.

The details of the three TNM protocols are given later in this chapter, but

first the development environment is described, because this explains some of the

design decisions for the implementation. Second, attention is given to the way in

200

which the modularity of the model is exploited in the process and coding structure

of the implementation.

5.1 Configuration

5.1.1 Computers

The main system used for the development of the experimental implementation

was a High Level Hardware (HLH) Orion minicomputer. The Orion runs the

Berkeley 4.2 version of Unix, [27,84], with extensions to support the novel features

of the machines hardware. These features are oriented around the use of the AMD

(Advnced Microprocessor Devices) 2900 hit sliced family of devices, [1].

The Orion is constructed from a processor board based on the Am2900. The

processor board is programmable at microcode level, but the system and applica-

tion software use a macro instruction set that is implemented using the microcode.

HLH supply an instruction set [32] that is well tuned to the needs of the C pro-

gramming language [55] and Unix. However, the Orion's main asset is that the

user may also supply microcode for his own instruction set. This feature is of par-

ticular relevance to the development of an instruction set and compiler for EUSP

[33].

The ability to change the microcode of the Orion was not of great importance to

the development of the TNM protocol set. However, the intended use of the machine

as an emulator for the EUSP would have provided a means of experimenting

with a 'genuine' back-end processor. Furthermore, the processing requirements

201

for evaluation of the TNM protocols were such that having almost sole access to a

minicomputer was essential.

Some efforts were made to port the implementation onto a Gould mainframe

and a Sun workstation. Both systems ran variants of the 4.2 BSD Unix, which

simplified the task of porting. The porting of software onto the Gould provided a

means of verifying accesses to complicated structures in the code. This is because

the Gould had a completely different word size and byte sex from the Orion. Fur-

thermore, the compilers had different, and not entirely overlapping, error checking

procedures. The port to the Sun workstation proved to be more difficult because

of the networking software already present in the system. This is discussed further

in section 7.4.6.

5.1.2 Unix

The ability to port applications readily onto a wide range of machines was only

one of the merits in using Unix as the operating system for the implementation.

A more important asset was the networking software that is supplied with 4.2

BSD Unix. This implementation of TCP/IP is well documented and is structured

to allow network applications to be developed easily. Additionally, TCP running

over IP provides a reliable transport service for higher level protocols - this is a

requirement for the TNM protocol set, as explained in section 4.1.1.

The socket mechanism provides the interface to the network software, and,

more generally, is the 'basic building block' for interprocess communication in

4.2 BSD Unix [62,63]. Sockets were referred to in the discussion of the Apollo

DOMAIN in section 2.6.1. In fact the socket interface is of great significance in

202

many examples of communication systems - principally, those based on Unix 4.2

BSD, such as Sun NFS. The use of sockets by the TNM protocol set is considered

further in section 5.2.2.

Further benefits of basing the initial implementation on Unix include

The implementation of pipes as a means for data transfer between processes

may be extended for use between computers on a network. The TNM pro-

tocol set incorporates a stream communication mechanism, mentioned in

section 4.3, that is suitable for network pipes.

The structure of the networking software allows for the user to supplement

or replace the lower level communication protocols. Were a Centrenet con-

nection to be provided for the Orion, this flexibility would have permitted

a more efficient implementation of the TNM protocol set using a lightweight

transport service. This route was discussed in section 4.1.1.

The availability of a wide range of applications means that Unix is an ideal

vehicle for experimenting with a means of distributing these applications

over a range of machines.

Since Unix and the relevant networking software are all written in the C lan-

guage [55], it was natural for the implementation of the TNM protocol set to follow

suit. Furthermore, the development tools provided with Unix are all oriented

towards programs written in C.

The modular nature of the implementation meant that the make utility [30]

was invaluable. Make relies on the presence of makefiles that describe the depen-

203

dencies between the various object and executable modules of the target system

and the source and header files of the original code. So, when a particular source

file is updated, all dependent files (and only those files) are recompiled and linked

to form the new executable modules.

The modularity of the TNM protocol set also provided some problems for de-

velopment using C. Primarily, these problems were associated with differences in

variable and parameter usage between different modules. The C compiler does

not perform the kind of checks that would have highlighted these differences. For-

tunately, the lint utility [49], when used sparingly, made up for these restrictions.

Lint is solely concerned with checking for potential problems in C code that are

passed by the compiler because they have valid syntax. The difficulties present

in developing a modular implementation are more than offset by the advantages

however, as described in the next section.

5.2 Modular Structure

In section 4.4, the partitioning of the TNM protocol set into three was discussed.

The primary merit of this division is that each of the modules in the systein is

only required to support the protocol most appropriate to its role. This results in

networking software that may be simpler and more efficient because of the smaller

range of communication primitives that must he supported.

This section considers the modular structure possessed by the experimental

implementation of the TNM protocol set. The reasons behind the various levels of

subdivision are explained in relation to the Triadic Network Model.

204

5.2.1 Vertical Partitioning

USER

BASIC

SPECIAL

LCe

sP

Lp*

I
S-M

 1

Figure 5-1: Division into Modules

The subdivision of the communications software into smaller functional units

is extended beyond the simple partitioning of the TNM into three. For all of the

TNM protocols, each party in the communication is implemented by a separate

software module. Combinations of these software modules may be formed, as

appropriate to the needs of the specific network devices. Figure 5-1 shows the

software modules present for each of the three TNM protocols. The roles of these

modules are as follows :-

TNM user protocol : 	. caller (Cr) - the node that initiates the contact.

callee (Cc) - the target of the caller's attempt to make contact.

TNM basic protocol 	• requester (S-R) - the source of a request for a network

service.

205

provider (S-P) - the node that satisfies this request.

manager (S-M) - overseer for a service request that has been rerouted.

TNM special protocol : 	• manager (SM*) - the node that takes responsibility

for the provision of the service by mapping service requests onto one or

more providers.

provider (SP*) - one of the nodes used by the manager to satisy the

service request.

The asymmetric nature of the TNM protocols lends itself quite naturally to this

partitioning by role. A result of this is considerable flexibility in the way in which

the communication software is configured for each network device. Additionally,

new devices may be connected to the network with a minimum of software devel-

opment.

In the implementation, duplication of code development was avoided through

the provision of libraries of procedures for common functions, such as the formation

and separation of protocol headers. Where there was a much larger degree of

commonality between different parties, conditional compilation was used. This is

supported by the C language preprocessor, which includes or removes code from

the compilation according to directives embedded in the code. For example,

ifdef CONDITION

else / use this section of code if CONDITION is true */

/ otherwise use this section of code */
endif

206

BRIDGE#1

REQUEST
I 	basic
	

S P

I 	 I RUN-JOB I :E
special 1

BRIDGE#2

f Cr
j LE;c

C user e

REQUEST s-P
basic

Figure 5-2: Subset Interworking

This facility is of particular advantage for a certain group of nodes that act as

bridges between two different protocols. These bridge nodes will accept primitives

from one protocol and transmit those of another. Figure 5-2 illustrates the role

of these nodes.

In the first case, a node requires a service provided by a back-end machine.

The node acts as the service requester (S-R) in the TNM basic protocol but cannot

interact directly with the provider of the service (SP*), which uses the TNM special

protocol. So, the bridge node behaves as a normal service provider (S-P) to the

requesting node, and is the service manager (S-AP) for the actual provider of the

service.

In the second case, the bridge node allows a caller (Cr) to use a service provided

under the TNM basic protocol by (S-P). This can he of use where, for example,

207

communication between two users requires some form of translation, or where

security considerations necessitate encryption.

The communication barrier imposed by requiring an intermediary node in these

examples merely reflects implicit differences in the usual nature of communication

between nodes for the different protocols. Section 3.2.2 considered this disparity

in communication requirements in greater detail.

The experimental implementation uses a bit-field to specify the TNM protocol

for each primitive transferred. A mask is set by each node at initialisation to

indicate the corresponding protocol. A bridge node is formed simply by setting

more than one bit in this mask.

The software modules that implements the TNM protocols use lower level library

procedures to perform these tasks, thereby simplifying the code. The layering of

the software in the experimental implementation is described in the next section.

5.2.2 Software Structure

The structure of the software implementation of the TNM protocols is important

to the portability of the code and the simplicity of the software modules. This

section describes this structure and the role of each module. The purpose of the

configuration files is also explained.

Figure 5-3 illustrates the four layers into which the software is divided. The

function of each module shown here is listed in table 5-1. The dashed box in

figure 5-3 represents where the library of functions for the TNM special protocol

208

S-R 	S-P 	S-M 	S-P+ 	SP 	SM* I 	Protocol
Modules

	

I 	Protocol
BASLIB 	 I 	 I Specific

	

L - - - - - - - -I 	Libraries

	

PROLIB 	SERLIB 	NOLLIB 	 General
Libraries

SMAN 	
Low
Level

LOGREP MONREP MESSYS STREAMS
Functions

Figure 5-3: Software Structure for Implementation

modules would have been placed. However, for the experimental implementation

described here, there was no need for such a library.

Layers

The layering of the software modules bears no relationship to the multiple levels of

the ISO model for OSI, described in section 4.1.2, or similar communications ar-

chitectures. The various layers merely represent different levels of functionality of

the implementation. Whilst another implementation might structure the software

in a different manner, this example has certain merits that should be exploited.

S-R basic service requester
S-P basic service provider
S-M basic service manager
S-P+ bridge between basic and special
SP special service provider
SM* special service manager
BASLIB library of functions for basic
PROLIB library of general functions for protocols
SERLIB library of functions for service handling
NOLLIB library of functions for node list handling
LOGREP functions for making log file reports
MONREP functions for making reports to the monitor
MESMAN interface to communication system
MESSYS functions for message based communication
STREAMS functions for stream based communication

Table 5-1: Functions of Software Modules

Upper Layer : The highest layer in this structure is occupied by the modules

implementing the communication parties for each protocol. Each module

embodies the changes in state described by the diagrams and tables given

in appendices A,B and C.

Libraries : The libraries provide sets of functions that help to simplify the code

of the upper layer modules. Some of these functions are for the assembly,

decomposition and analysis of protocol primitives, e.g. baslib has functions

that are only useful for the TNM basic protocol. The general libraries provide

procedures that are used by modules for all of the TNM protocols, e.g. prolib

has functions for the formation of headers and the management of type and

identity information.

Low Level : The lowest level of modules in this structure provide functions that

have to be tailored to the specific implementation. For this implementation,

210

a great deal of status information is required for maintaining the behaviour

and performance of the system. So, logrep is used for making reports to a

log file for each node in the configuration, and monrep enables reports to

be made to the monitor node. This node is described in section 6.1.

The remaining modules at this level, mesman, messys and streams are

all concerned with the interprocess communications mechanisms provided by

the operating system. Hence, their functions provide the interface between

the TNM protocol set and the underlying communications system.

Communication System Interface

Section 4.3 described how the Triadic Network Model's fundamental unit of com-

munication, a record, may be used for the transfer of messages, pages and streams.

For the experimental implementation, the transfer of messages is supported by

messys and streams by the functions in streams. For the simple applications

used for testing the implementation there was no need for page transfers, so the

corresponding module was not developed.

For messages, messys provides the functions sendm() and recvm() for the

sending and receiving of messages respectively. Both functions return a count of

the number of bytes transferred and take two parameters : the network address

of the other node and a pointer to the record being transferred. An error value

is returned if the operation cannot be completed. Other functions are provided

by messys for the initialisation and close down of the communication system.

These functions. startms() and endmsO, are required for the correct use of state

information by some communications systems.

211

This set of four functions provides the interface between the TNM protocol

set implementation and the underlying communication system. The interface is

common to many systems and thereby simplifies the task of porting the imple-

mentation. Furthermore, since the modules that implement the TNM protocols are

written to use this interface, the implementation is independent of the underlying

communications system. Hence, the dependence on a particular transport service

is avoided.

TCPj 	IUDP

'P

Ethernet
Datalink

Figure 5-4: TCP/IP Protocol Stack

The streams module provides a similar set of functions to messys, but is tai-

bred to the needs of stream based communication. For this implementation, both

messys and streams used the Unix 4.2 BSD socket mechanism as the basis for

interprocess communication. However, messys opens sockets to use UDP (User

Datagram Protocol), and streams uses TCP (Transmission Control Protocol).

Both the UDP and TCP protocols are based on the DARPA Internet Protocol

(IP), as shown in figure 5-4. The UDP provides unreliable connectionless commu-

nication, whereas the TCP supports reliable ordered end-to-end communication.

212

The mesman module provides message management functions at a higher

level than those of messys. The protocol modules use the enhanced services of

mesman as the interface to the communications subsystem. The two primary

functions of mesman, sendmx() and recvmxl, correspond to the messys func-

tions sendms() and recvmsQ. Similarly, these functions have parameters for the

record to be transferred and the identity of the other node. However, the node that

is the destination or the source of the record is given as an integer that indexes

into the node list table.

The node list table is setup initially by the nollib module functions, described

in the next section, but is modified according to subsequent primitive exchanges.

So, the protocol modules need only refer to other nodes by an index into the node

list, rather than the full network addresses of the nodes.

The mesman recvmsO function has two additional parameters xsource in-

dexes into the node list to indicate the node from which the message is expected;

time is used to determine the time-out period to he used. There are a number of

checks performed by recvmx() for every invocation

If there is no response within the specified time-out interval, the procedure

returns RECVMX_TO to indicate a time-out. For a time of 0, recvmx()

will return immediately with a message, if one is waiting, or RECVMX_NO

if the input queue is empty. A value of 9 for time causes recvmx() to block

until a message is received.

If xsource is non-zero, the network address of the source of the required

message is compared with the specified entry in the node list. If there is a

213

mis-match, RECVMX_MJS is returned. A value of 0 for xsource indicates

that all incoming messages are to be accepted.

3. The protocol class for the incoming message is compared with that of the

node's. This uses the bit-field mask, described earlier in this section, so that

bridge nodes are possible. If the class match fails, RECVMX_CF is returned.

These checks illustrate the added functionality of the mesman functions. Two

of the other rnesman functions, initms() and finimsO, control the initialisation of

the node's environment configuration using the nollib and serlib modules.

Configuration Control

The gneral purpose libraries nollib and serlib provide functions that allow each

node in the system to determine its operating environment. The nollib module

allows for the set-up and manipulation of the list of node names and addresses

for use by each node. The serlib module is responsible for monitoring the list of

services provided by the node, and information about services provided by other

nodes.

Both nollib and serlib initialise the node's environment by reading configu-

ration files (suffixed .nol and .ser respectively). This means that an experimental

system can be formed by creating a number of node processes, each with a differ-

ent pair of configuration files. The behaviour of this experimental system is easily

changed by making modifications to the configuration files of the nodes.

The operation of this experimental system is described in section 6.1. The

manipulation of processes is explained in the next section.

214

5.2.3 Multiple Processes

The experimental implementation of the TNM protocol set is based on multiple

processes running on a single Unix minicomputer - the HLH Orion. However,

since the entire implementation is based on the 4.2 BSD socket mechanism, the

transfer of TNM protocol primitives is representative of what would occur if the

processes were resident on different machines. The main benefit of basing the

initial implementation on a single processor is that it was possible to achieve a

more complete monitoring of the behaviour of the system. The monitor process

is described in section 6.1, but the use of processes is considered here.

Configuration

The experimental system is initiated by the sirn module. This reads a configu-

ration file, config.nol, that lists the name and type of each TNM protocol daemon

to be created. For each entry in the configuration file, a daemon is created by

spawning a process to run an executable module for the specified TNM protocol

node. Once all of the required processes have been created, the sim module ter-

minates, but leaves its child processes running as background processes. Each

of these processes represents a node in the system. So, for example, three NSM

nodes are created by spawning processes running the TNM basic S-P module with

three different identities: server, d_serv and co-ord.

Each process assumes the appropriate operating environment by reading its

configuration files using functions in the nollib and serlib modules, as described

earlier. So, for server, the configuration files are server.nol and server.ser. These

files list, respectively, the nodes known to the node server and the services that

215

it provides or otherwise 'knows' about'. Once initialised, each process moves into

an IDLE state in accordance with the state definition for the protocol, and awaits

an incoming message.

For an NSM running the S-P module, the next change in state occurs when

a request is received from an S-R. An S-R process is created when the operating

system determines that a request for a network service has been received. The

provision of a simple shell to achieve this is described in section 6.3.

REPLY 	S =-P 	n process

2Q

for specified
service

Figure 5-5: Service Provision

For the example illustrated in figure 5-5, the S-R sends a REQUEST to the

S-P that can provide the required service. So, the S-P spawns a process to execute

the appropriate software to implement the service, and finally returns the result

to S-R in a REPLY. The process implementing the service dies on completion.

The second example, figure 5-6, shows the processes required when the S-P

receiving the initial request cannot supply the required service. The exchange

of primitives complies with the three-party mechanism, described in section 4.2,

that forms the basis for the TNM basic protocol. S-P0 spawns a separate process

'The .ser file also lists the services provided by nodes to which the node can redirect
requests.

216

REQUEST f
spawn process for

EDIRECT
	

temporary service

2 	management

REQUEST

DIRE CT\

REPLY 7

ONFIRM
8

6

asp:wn— p—roc-s
ce

for specified
service

Figure 5-6: Service Redirection

to provide the temporary role of S-M for this service. The S-M then handles all

subsequent exchanges of protocol primitives for this service - freeing S-P0 for other

requests.

Once CONFIRM is received by S-M, the process terminates normally. S-P0

receives a signal when a child process is terminated, and updates an internal table

that records the status of all its redirected requests. The creation and termination

of processes may be clearly observed using the monitor, described in section 6.1.

The two examples given here are appropriate for simple requests and replies.

However, where much larger amounts of data have to be transferred, the 2 nodes

would have opened a stream communication channel and used the functions pro-

vided by the stream module. A further two sockets must be created for a reliable

217

end-to-end transport service2. No additional processes are required to monitor

the stream based communication because the stream module functions will detect

any escape sequences present in the data transfer.

2When sockets are created, the type of service required must be specified. The result-
ing sockets will then offer that particular level of functionality for the duration of their
lifetime.

218

5.3 Protocol Set Details

This section takes a look at the characteristics of the TNM protocols in the experi-

mental implementation and describes their main primitives. The more specialized

primitives for the notification of error conditions and attempts at recovery are

discussed later in this section. First, though, the introduction in section 4.3.2 to

the TNM fundamental unit of communication is expanded here to describe how the

implementation uses each field of the TNM record structure.

5.3.1 Basic Structure

Insection 4.3.2, it was stated that every transfer of information in the net-

worked computing environment is formed from a record. The basic form of the

record was described as comprising a type, and identity and contents. The im-

plementation of the TNM record follows this basic form, and may be broken down

into the elements illustrated in figure 5-7.

Datestamp : This field is present to ensure that every record is unique. The use

of 8 bytes would be excessive in a real application, but in the experimental

implementation it allows for extra monitoring information.

Context : This provides sequence numbering in a format that corresponds to

the operation of the three-party mechanism.

Permit 	All records must have an associated permit, although it is possible for

the permit to be the standard permit for initial requests to the network.

219

HEADER 	 CONTENTS
24

IDENTITY 	 _____

TYPE 	DATESTAMP CONTEXTPERMIT
8 	 8 	4Z

[SESSION ITRANSACTIONI TRANSAcTION1
STAGE

2 	 1 	1

QUICK NULL CLASS IVARIETYI LENGTH

1 	 1 	2 	2 	2

Figure 5-7: Breakdown of Record Structure

Context

The various stages of an interaction were described in section 4.3.3 and illustrated

in figure 4-7. To recap, the smallest stage is the transfer of a record, a group of

record transfers between two nodes is a transaction and a session is a collection

of transactions that effectively implement the service. So, for every new service

request, the originating node provides a new session number and resets the other

two context fields to zero. Each transfer of a record has an incremented value in

the transaction stage field, and whenever another node has to be used in the

service provision the transaction field is incremented.

The node that initiates a new session is responsible for the selection of the new

220

session number in the context field. So, the requester of a network service will first

choose a new session number, s0, and then issue the REQUEST with a context

so:O.O. If the recipient of the request must redirect it to another node, it will issue

DIRECT with a new session number,'s1, and context s1:0.0. This is because the

second transaction is independent of the first, and the new initiating node has no

control over the original context sequence.

The sequence numbering resulting from the use of the context fields is illus-

trated further in section 6.2, where it explained how diagrams are produced auto-

matically by the analysis utilities ppl and pp2.

Type'-yp&

The The type fields are used in different ways by the software modules within the

implementation. The quick type is a bit-field that indicates the nature of the

communication mechanism - a page, part of a stream, a data object or a protocol

primitive. The value of this field determines which low level functions should be

used to handle the record in the experimental implementation. The quick type

field is the first octet in the TNM record so that dedicated hardware, such as a BEM

I/O-processor, could select an appropriate channel for the type of communication

which follows. For example,

protocol primitives could be handled directly by the I/O-processor, without

any involvement of the main processor.

221

pages should have the data copied directly into a page-aligned buffer in main

memory, and the fixed size header inspected by the I/O-processor for the

page identifier.

streams may be piped into main memory through a filter that monitors the

synchronisation and error correction sequences.

The size of the TNM record header is such that there would be enough time to

select an appropriate DMA channel for the remainder of the record. The DMA

channels would have to be initialised before the receipt of the start of the record.

The class type field indicates which of the TNM protocols is being used. As

described in section 5.2.1, this is a bit-field so that it may be matched with a mask

at the receiving node. The node will only accept records of the correct class. The

variety field is the primitive from the TNM protocol indicated by the class field.

The length is the length of the whole record and the null field pads the type

fields to a multiple of 32 bits.

Data

Where the record is not used to carry a protocol primitive, the remainder of the

header may be used to hold system level information about the data which follows.

For example, if the record holds a page, the header should indicate the type of

data in the page and the corresponding system level identifier. For paged data,

it is important that the header is of a known size so that the DMA channels will

copy only the data into the main memory buffers.

222

The transfer of data should be handled as much as possible by the lower level

protocols without any involvement of the higher level TNM protocols. This is the

reason for dropping most of the TNM record header information for the passage of

data. For the most part, it is the responsibility of the underlying transport service

to ensure the reliable communication of the data.

5.3.2 Characteristics of Protocols

The role of the TNM protocols was discussed in section 3.2.2, and examples of

interactions using the primitives have already been used. A concise look at the

more important primitives of each protocol is made here. This is supplemented

by a more detailed examination of the TNM protocols in appendices A, B and C.

User Protocol

The TNM user protocol is essentially a virtual circuit management protocol, with

the familiar three phases of operation

Negotiation

Information exchange

Conclusion.

For efficiency, the second phase is based on the underlying communication

system. Lower level protocols undertake the transfer of data between the parties

of the interaction with the smallest possible overheads. From section 4.3, it is

223

clear that the transfer of data may take a variety of forms, but the lower level

protocols treat all data transfers in the same manner.

The important primitives for the user protocol are associated with the first

and last phases of operation. The protocol governs the establishment and ter-

mination of the interaction and, as such, must pass on details of the required

form of the communication. The initiator of the session, the caller (Cr), issues

MAKE-CALL, supplying details of the service required. Figure 5-2 illustrated

how the recipient, the callee (Cc), might request further services to support the

desired form of the interaction. If the Ce is both willing and able to take part,

it responds with ANSWER-CALL, and returns the neccessary information about

the established connection. Normally, both parties then move on to the second

phase,- in which the user protocol plays little part. When the exchange of infor-

mation is complete, one of the parties will issue END-CALL and the other will

respond with CALL-COMPLETE.

The user protocol incorporates further primitives for some infrequently needed

actions

the communication can be suspended for brief intervals, and subseqently

resumed.

the caller can involve an intermediary party in the communication, e.g. for

translation.

the networked system, to which the caller and callee are attached, can enforce

a form of call charge.

224

the system may break into an established conversation to bring it to a pre-

mature end. This may be because the communication is too expensive or

because of resource contentions, for example.

Special Protocol

The TNM special protocol operates in conjunction with the basic protocol to cJbw

sophisticated devices to be supported in the networked system with minimal com-

munications overheads. This is achieved through a master-slave hierarchy. The

master, the service manager (S-M*), carries the heavier burden of the commu-

nications requirements by acting as the provider of the service, whilst using any

number of slaves, service providers (SP*), that concentrate on the real computa-

tional 'needs of the service.

When the SM* receives a request for a sophisticated service, it first determines

how the request may be satisfied using its associated back-end modules (BEMs). A

RUN-JOB primitive is then issued to a suitable BEM, specifying the computation

required. The level of detail supplied in this directive will depend on the nature

of the original service request and the capabilities of the BEM. A trivial instance

could merely require the BEM to execute a module from a locally held library

and return the result to the SA*. More complicated service requests, or a less

sophisticated BEM, may necessitate the transfer of object code from the SM*

and the establishment of communication channels for the return of the results.

On concluding the specified computation, the SP* returns JOB-COMPLETE

to the SM* with any appropriate accounting or status information. The SM* may

require an indication of the state of the SP* during the course of the execution of

225

the job. The S4i* could explicitly issue STATUS-REQUEST on such occasions,

or specify the need for these updates in the original RUN-JOB. The SP returns

status information during the computation with STATUS-REPORT.

The TNM special protocol has further primitives to allow the premature termi-

nation of the execution of the job and for the establishment of the bond between

BEMs and their managers.

Basic Protocol

The TNM basic protocol is derived from the three-party mechanism, described

in section 4.2. The main basic protocol primitives have been used in numerous

examples already, but there are further primitives that provide error analysis and

recovery capabilities. Since the basic protocol is of primary importance in the

TNM system, some consideration of these additional features is warranted.

5.3.3 Error Analysis and Recovery

For the greater part. all transactions using the TNM basic protocol will use the

REQUEST/REPLY primitive exchange. The flexibility afforded by the three-

party mechanism requires DIRECT/REDIRECT/CONFIRM exchanges, with the

possible need for REDIR_M. So long as the correct sequences are maintained,

and the transaction times are not exceeded, there is no need for additional basic

226

primitives. When, however, timeouts occur, or REJECT-VALIDITY is returned3,

additional primitives are used to

enquire about the nature of the problem or state of the service provision

notify affected parties of a failure in the service

try to ensure that complete serviceLdoes not occur

recover from a partial service failure

terminate prematurely the provision of the service.

A number of different timeout values are used according to the communica-

tion party and its state. This is supported by the time parameter of recvmxO,

described in section 5.2.2. Where the S-R times-out whilst waiting for the RE-

PLY from S-P, it initially tries to resolve the problem with the S-P by sending

ENQ_SUPPLY. If the S-R fails to receive a satisfactory response from the S-P, it

will escalate awareness of the problem and issue ENQ_SERVICE to the S-M. The

S-M may then send ENQPROVISION to S-Pin an attempt to continue with the

current provider of the service. Alternatively, S-M may opt to REDIRECT the

S-R to use a new S-P.

Where the S-P is only part-way through the provision of the service, it should

return EXTEND-TIME to an enquiry from the S-R. The S-R may then adopt a

3REJECT_VALIDITY is returned when a node receives a primitive that is invalid for
the current state, has an invalid permit or the wrong context (session, transaction or
stage values).

227

new timeout value for recvmxO. Where S-P receives an enquiry from the S-M, it

should return PROV_ACTIVE, giving details of the state of progress.

Where possible, the parties involved in the communication will attempt to

maintain the service provision until it is complete. However, when any node

determines that service failure has occurred, it should notify the other affected

parties. S-P may return SUPPLY-FAIL to an enquiry from S-R, or issue PRO-

VISION-FAIL to S-M, depending on the circumstances. S-R will issue SER-

VICE-FAIL to S-M in the hope that S-M can REDIRECT it to a new S-P.

Where there is a total failure in the provision of the service, S-M will return

NOTIFY_S_FAIL to S-R, which must then abandon the network service request.

The S-R can bring the service provision to an end by issuing

ABORT-REQUEST to the S-P. If the S-P has an associated S-M, it will re-

turn CONFIRM with an error code, indicating that S-R terminated the service

before normal completion. The S-M can also terminate the service by issuing

ABORT-PROVISION to the S-P. In this case, the S-P need not reply.

The error primitives of the TNM basic protocol help to make the support for

network service provision more robust. The intricacies of the exchange of prim-

itives to prevent service failure may he more apparent from the detail given in

appendix B.

The example given in the next section assumes that no difficulties are encoun-

tered in the provision of the service, because this would unduly complicate the

discussion.

228

5.4 Example

To illustrate the application of the TNM protocols, an example of the provision of a

complex service is given. The example is considered to be representative of some

of the more demanding requests that may be made to the system.

A user wishes to compile and then execute a program 'which will the

require use of two special purpose processors. The program is held

locally by the user's personal workstation and should be compiled using

a remote compiler engine. The object code produced by the compiler is

riot required after this request and so should only temporarily be stored

using a network fileserver. The object code will comprise a number of

object modules and each ''nodule should be directed to the appropriate

processor.

The initial data is resident on a network fileserver, and this should be

piped to the first processor. The intermediary results should be streamed

to the second processor and the final results returned to the user's per-

sonal workstation, using another pipeline, for further analysis.

This example is composed of two distinct requests

Compile a locally stored program using a remote compiler engine.

Execute the object code on two special purpose processors.

229

Since the user does not require the intermediary data produced by the first

processor or a copy of the object code processed by the high performance pro-

cessors, the two requests may be parcelled together and submitted as a single

service request to a service manager, which will then allocate the different tasks

to network devices as appropriate.

User submits
request 	

Submit service request

Compilation 	
source code

Compiler 	object code
Engine

Filestore

Object code for B/E#1
"Load-up"

- 	 estorJ 	
Object code for B/E#2 	

B/E#2

. Execution

source data
7 intermediary data 	

results
I]II

J
I,

I U/W

Figure 5-8: Phases of Service Provision for Example

Conceptually, the implementation of this service would comprise four phases,

as shown in figure 5-8. B/E#1 and B/E#2 represent the two special purpose

processors, U/W is the user's personal workstation and N/M is the network service

manager.

The following points should be noted

230

REQUEST
NSM I PW

NSM ana LMr

RUNI CONFIRM
JOB I JOB

COMPLETE

REQUEST (PA) 	Compiler I 	REQUEST (P.
Engine

REPLY 1 (BEM) 	 REPLY

1 (NSM

Figure 5-9: Implementation of First Service Request of Example

In phase 2, the source code is shown as being piped from the user's worksta-

tion to the compiler engine, and the object code as piped to the fileserver.

However, if the compilation consists of a number of passes then, in essence,

the files are merely transferred and not piped. Conceptually, though, the

compiler engine may be viewed as a filter.

In phase 3, the object code modules are simply transferred to their respective

B/Es. They cannot be truly piped because execution cannot begin until the

processors have loaded all of their code.

Figure 5-9 shows a diagramatic representation of how the first service request

of the example is implemented. The logical sequence of transfers, figure 5-10,

enables a clearer understanding of the use of the protocols.

The mnemonics used within the boxes, which represent nodes, are as indicated

in the accompanying textual description. The direction of transfer of protocol

primitives between pairs of network nodes is shown by the arrows. The numbers

given with the description of each transfer correspond to the transaction identifier.

231

i':Subrnit service request for entire
job, including permit PA

2':Send job description, with permit PA

31:Request transfer of source code
presenting permit PA

3R.-Stream source code

j':Request storage of object
modules, then stream code

:Acknowledge transfer

REQUEST + PA

IU/Wk-..l N/MI

I N/M(RUNJOB+PA

lu/wi. 	
REQUEST (PA) 	

I C/El

REPLY
lu/WI 	 / 	source code

/

REQUEST (P.)

IC/E
F/ 	

l
s#1j 	object code

IF/S#1I
REPLY C/E

2R:Acknowledge job complete 	 IN/M1
JOB COMPLETE

IC/El

Figure 5-10: Transfers during First Service Request

So, for example, 1' refers to the 'issue' transfer of the first transaction and 3R is

the 'return' transfer of the third transaction. The transactions involved in the

implementation of the service are given in table 5-2.

The user's personal workstation (U/W) initiates the session when the first

service request is issued to a network service manager (N/M), which may be the

Coordinator. The service manager determines from this request that a number

of nodes will he involved in the provision of this service. The network service

manager issues a job description, detailing the nature of the compilation required,

to the compiler engine (C/E). The service permit F 4, originally provided by the

user PWM, is included in the job description so that the compiler engine may

gain access to the source code file. The compiler engine issues a request for the

232

source code to the user workstation NSM, presenting the service permit P 4. The

workstation NSM responds by streaming the file back to the compiler engine.

Prior to producing compiled code, the compiler engine issues a service request

to a network filestore (F/S#1). The service request, for permission to transfer the

object code modules, is sent with a 'standard' service permit, allocated on some

previous occasion. The object code is streamed to the filestore as it is produced

and, on completion of the transfer, the filestore returns an acknowledgement to

the compiler engine. Finally, the compiler engine returns an acknowledgement to

the service manager to indicate the completion of the job.

r 	REDIRECT (PF) I-I

I IPWML1 	REPLY 	I]NSM I 	 I

t [
BEM 	I 	BEM 	

DIRECT (PD)

INSM I 	—L. Manager fl Manager P CONFIRM (PD)

DIRECT
RUN 	 (PB) 	 RUN JOB 	 CONFIRM JOB

DIRECT 	(PB)
(PC

OB

) - Filestore 	 Filestore
I#1 (NSM) 	 #2 (NSM)

J
C

B
M

CONFIRM 	 _____
(Pc) 	 REQUEST 	CONFIRM CONFIRM

(PB) 	 %PLETE

COMPLETE

REPREQUEST(C
L I H

(PF) 	

L_4.BE'41REY
REQUEST

L'I 	
REQUEST

L 	 REPLY

Figure 5-11: Implementation of Second Service Request of Example

Figure 5-11 illustrates the implementation of the second service request of the

example. As is obvious from this diagram, this implementation is fairly intricate.

233

To simplify the explanation, the transfers of primitives are considered in three

stages, znztiation, cxec?Ltzon and conclusion.

51 Send service directive.
specifying permit Pq

61:Sefld service directive.
specifying permit P

71:Send service directive.
Specifying permit PD

DIRECT (P 8)

F/S#1

DIRECT (Pc)

F/S#1

DIRECT (P D)

F/S#2

RUN JOB (P 8 + PD) + PE

8':Send job description

9I:Send job description 	 RUN JOB (P + PE) + Pp

'R :Jndicate re-direction 	REDIRECT (Pp)
supplying permit P

1O1:Re-ubm1't request 	 REQUEST (Ps)

Figure 5-12: Initiation of Provision of Second Service

The importance of the network service manager (N/M) is clear from its role

in the initiation of the provision of the second service. figure 5-12. The network

service manager sends directives to both the object code and source data filestores,

indicating to them that they are to satisfy service requests in the future. The

filestores will only provide a service to a node presenting a service permit matching

one of those issued. The filestore with the object code (F/S01) receives two such

directives, and correspondingly two permits (P8 and Pr). The reasons for this

will become apparent during the next stage.

The network service manager then issues job descriptions to both of the spe-

cial purpose processors (B/El and B/E#2). These descriptions contain the

234

information needed by the processors to initiate the execution of their respective

processes. Included with the job descriptions are the service permits that will be

needed for obtaining services from other network devices and also an indication

of a service permit that may be presented to that processor. So, for B/E#1 the

permits PB and PD enable it to retrieve the object code and source data, respec-

tively. The permit PE will be used by B/E#2 to gain access to the data produced

by processor B/E#1.

Finally, the network service manager replies to the original service request

issued by the user's workstation (U/W). The reply indicates that the service has

been re-directed and includes a permit (PF) that may be used in obtaining the

results of the computation. The workstation then re-submits the request to the

second high performance processor (B/E#2), together with the service permit,

and awaits the results of the operation.

It is during the "Load-up" and execution stage of the service provision that

the service permits are presented, figure 5-13.

Both special purpose processors issue requests for the transfer of the object

code modules to the network filestore used by the compiler engine (F/S#1). Each

request includes the appropriate service permit, verified by the filestore before

it returns the corresponding data. The need for two directives from the service

manager is now evident.

Once the object code has been loaded, the processors commence execution.

Before any computation may be performed, the processors request that the input

data be transferred using a pipe. This involves B/E#1 issuing a request to the

source data filestore (F/S#2), together with permit PD, and B/E#2 sending a

235

Ill.-Request object code module 	F/S#4. REQUEST (PB) IB/E#1

121 :Request object code module 	 REQUEST (Pc)

liRiPransfer object code module 	F/S#1I 	
REPLY 	

IB/E# ii

12RiI'ransfer object code module 	 REPLY

13' :Issue request for source REQUEST(PD)

data, presenting permit PD ______

1 1Jssue request for data, REQUEST(PE)

presenting permit PE

l3R:Stream source data

%data

REPLY
14R:Stream intermediary data

intermediary
diata
	

/E#

1OR:Stream results 	 REPLY 	
" 	

results

Figure 5-13: "Load-up" and Execution of Object Code

request to the B/E#1 NSM module, with permit PE. Both of these permits were

issued by the network service manager in the previous stage.

The source data is then streamed to the first processor from the network file-

store. As the first processor produces data, it sends it to the second processor,

which in turn returns the results of its computation to the user's workstation via

another pipe.

236

5R. Confirm service provision

returning permit PB

ÔR.Confirm service provision

returning permit P

7R.Con1xm service provision

returning permit PD

8R:Ackflowledge job complete

and confirm service provision,

returning permit PE

9R -Acknowledge job complete

and confirm service provision

returning permit PF

CONFIRM (Ps)

N/M ...__F/S#1I

CONFIRM (Pc)

I N/M..__F/S#1I

CONFIRM (PD) ______

IF/s #21

JOB COMPLETE (PE) 	
IB/E#1l

JOB COMPLETE (PF) 	
IB/E#

Figure 5-14: Conclusion of Service Provision

The concluding stage of the service provision, figure 5-14, proceeds without

any involvement of the user's workstation. Indeed, the workstation is unaware

of the transfers involved. Each filestore returns a confirmation to the network

service manager to indicate the successful provision of the re-directed service.

With each confirmation is included the associated service permit. Since the object

code filestore (F/S#1) was originally issued with two permits, it must return two

confirmations and permits.

Finally, the two special purpose processors each return an acknowledgement of

the completion of their jobs to the service manager. With each acknowledgement

is an accompanying service permit. These permits were the ones issued to allow

other devices to gain access to the output from the processors.

The entire operation requires 14 transactions, each with an issue and return

pair of transfers, as itemized in table 5-2. This is only one possible implementa-

237

T. No. I 	Issue Return
1 Submit service request Return re-direction for results
2 Job description for compile Acknowledge job completion
3 Request source program Stream source program
4 Request storage of object code Acknowledge completion of transfer
5 Service directive Confirm service provision
6 Service directive Confirm service provision
7 Service directive Confirm service provision
8 Job description Acknowledge job completion
9 Job description Acknowledge job completion

10 Request results Stream results
11 Request object code Transfer object code module
12 Request object code Transfer object code module
13 Request source data Stream source data
14 Request intermediary data Stream intermediary data

Table 5-2: Transactions made during Example

tion of the example and the sequence of transfers shown in the diagrams is only

approximate, since the exact order is non-deterministic.

5.5 Summary

This chapter has looked at some of the issues raised by the experimental imple-

mentation of the TNM protocol set. The benefits of a modular software structure

have been illustrated by a consideration of the roles of the modules that formed

this implementation. The fundamental software structures and primitives of the

TNM protocols have been explained, and the example showed how the TNM proto-

cols combine to provide a sophisticated network service.

The following chapter looks at the software tools that had to be developed to

allow the work described in this chapter to proceed. A common example is used

throughout the chapter to highlight the purpose of each software utility.

238

Chapter 6

Support for Development

The evolution of the experimental implementation of the TNM protocol set, as

described in the previous chapter, was only possible because of the presence of

additinal software facilities. This chapter covers the role and purpose of these

tools and utilities.

The most important tool is the monitor, used for observing the behaviour of

the various processes that are created as part of the TNM protocol set implementa-

tion. The monitor also produces a log file, recording the creation and termination

of processes, as well as certain key details about protocol primitive transfers be-

tween them. This log file is then processed by 2 utilities, ppl and pp2, to produce

a diagrammatic representation of the sequence of transfers.

A simple conunand shell was developed to allow some experimentation with

the user's interface to the TNM protocols. The construction of an Environment

Management Utility (EMU), in parallel with the work on the simple shell,

allowed some investigation of a more elaborate user interface. The simple shell

was useful in driving the TNM protocol set implementation to generate information

239

about its behaviour, and EMU aided movement between the various development

activities.

6.1 Monitor

The experimental implementation is based on a single machine - the HLH Orion

minicomputer, running 4.2 BSD Unix. This has meant that it has been possible

to obtain a much greater amount of information about the behaviour of the imple-

mentation than would have been practical with a multiple computer installation.

The primary means of extracting this information has been through the use of a

special process that both controls and monitors the operation of the experimental

system. This section concentrates on the key features of this special process and

how it functions. The relative position of the monitor is illustrated in figure 6-1.

client) 	co-ord) (server) (d-serv

co-on) 	I 	 J 	 rH SCREEN

	

COMMUNICATION SYSTEM 	J 	monitor

reports
1_- logfi1e to the

monitor

Figure 6-1: Position of the Monitor

240

6.1.1 Features

The monitor is an independent utility program that is used to

initialise the experimental system.

generate requests for network services, under the control of the user, to

stimulate interactions using the TNM protocols.

monitor the exchange of TNM protocol primitives, the creation and subse-

quent termination of processes and the operational states of the nodes in

the system.

record details of the behaviour of the system to facilitate later analysis by

other tools.

creation of L 	user control H user input ___________
temporary

processes

- process
control

H window _ - - display CREN

transfer
status andl

1 reports H inform ation
gathering logging H from other]

nodes logfile

Figure 6-2: Structure of the Monitor

The monitor's rich functionality is provided by the simple structure of figure 6-

2. The user maintains control of the monitor through a menu-driven windowing

241

interface, which is described further in section 6.1.4. The monitor presents the

current set of options to the user in a menu in the lower right-hand portion of the

screen. The user selects an option by entering its key number, and the monitor

control interprets this and sends an appropriate directive to the corresponding

functional unit.

The creation and premature termination of processes is handled by the process

control. This uses temporary processes to either initialise the system or issue a

new service request. Process operations are reported to the information gathering

sub-unit, which is the focus for all event reporting. The other nodes in the system

send messages to a well-known socket that is created by the monitor at its incep-

tion. These messages are decoded and then passed onto the display and logging

functions. The user has some control over what is displayed.

6.1.2 Control

System Initiation

The configuration of the system is defined by a file, config.nol, that lists the name

and type of every node. When the user elects to initialise the system, by selecting

the appropriate option on a monitor menu, the monitor uses the config.nol file

to determine how to proceed. First of all, the monitor spawns a separate task to

create the daemon processes that will represent each of the nodes in the system.

In the example in figure 6-3, three NSM nodes are created, with identities co-ord,

server and d-serv (a server dedicated to a single service). These nodes will he used

in further examples in the remainder of this chapter.

242

G tor
)

rI

G 	G ei 	

] E
ce

Figure 6-3: System Initiation

The process spawned by the monitor only exists until all of the nodes have been

created, whereupon it terminates. During its lifetime, the process scans through

the config.nol file, reading each entry in turn. The entries in the file give the names

of the nodes and their types, e.g. TNM basic S-P module. The temporary process

creates a new process running the corresponding program. The resulting process

uses the name listed in its entry in the config.nol file when communicating with

the monitor, and as the name of its own configuration and log files.

Service Request

As with the initialisation of the system, the monitor creates a temporary process

when the user opts to issue a new service request. This new process then adopts

the same procedure as would a command shell in issuing a request for a network

service : a process is spawned to run the TNM basic S-R module, with the details

of the required service passed as a parameter list. Also, channels are established

243

for the input and output of streams, where required. Figure 6-4 illustrates the

way in which the monitor makes a simple service request.

Figure 6-4: Simple Service Request

User Observation of Protocol Primitive Transfers

In its normal mode of operation, the monitor displays all of the node status and

record transfer reports on the screen, in the manner described in section 6.1.4.

However, it can be difficult to focus on the area of interest because of the extra

information on the screen, and the rate at which messages are written to the

screen. For this reason, the monitor provides some additional display controls for

the user.

First, it is possible to turn off the display of messages on the screen. This is

of greatest use when the system is being initialised and the user does not wish

to see the status reports for the service provider nodes. The monitor does not

provide a more sophisticated message filtering scheme since it was felt that this

244

was unnecessary - the simple on/off toggling is sufficient. Whilst the displaying of

messages is under the user's control, all incoming status and transfer reports are

logged to a file, regardless of the display mode.

For detailed monitoring of the effect of a sequence of protocol primitives, the

monitor supports a single-step mode of operation. When the user has opted to run

the monitor in this way, record transfers are only made when the user presses a key.

This enables the user to make closer observations of the response to a particular

protocol primitive. So, a rogue response may be introduced, at the user's request,

and the implementation's error handling capabilities can be monitored step by

step.

The user may select to run in single-step or at full speed at any time. The

remaining monitor operations proceed unaffected by the current mode. The single-

step capability is only possible because of the way in which the monitoring of events

is achieved, as described in the next section.

6.1.3 Monitoring

The monitor receives encoded messages from other nodes in the experimental

system whenever one of the following events occurs

the node changes state

a new node is created

an existing node terminates

a node issues a TNM Protocol piimit'e

245

5. a TNM protocol primitive is received.

The first 3 events are designated as status reports, the last 2 as transfer reports.

All of the messages include the name associated with the sending station and follow

the syntax rules of the monitor. hence, the messages are short and efficient; they

are formed quickly by the nodes, and readily interpreted by the monitor.

node

protocol
primitives

rnesrnan
indication

of
transfer

complete
record record

	

	
monrep I

monitor
report

messys I I stream

to/from 	 to monitor
other nodes

Figure 6-5: Reporting Record Transfers to the Monitor

Figure 6-5 indicates the roles of the software modules, described in sec-

tion 5.2.2, in the reporting of record transfers to the monitor. Status reports

are handled in a similar way, but there is no need for any messys routines be-

cause no TNM protocol primitives are actually being transferred. The node element

in the illustration refers to the higher level software modules that are responsible

for the actual TNM protocols.

246

As described in section 5.2.2, the higher level software uses the recvmx() and

sendmx() functions provided by mesman. In turn, these functions use recvm()

and sendmO, provided by messys, to handle the receipt and transmission of mes-

sages using the communication system. Where there is to be no notification of

protocol primitive exchanges to the monitor, this is all that is involved in the nor-

mal communication between nodes. This will be the case when the experimental

system has been initialised using the sim program, as opposed to being started

by the monitor.

When a node is created, it calls initmsO, provided by mesman, to establish its

initial operating environment using the nollib and serlib modules. Additionally,

an attempt is made to notify the monitor of the birth of the node, using the

status reporting mechanism of monrep. If the node cannot contact the monitor

at its well known socket, the node assumes that there is no monitor and sets an

internally monitored flag to indicate that no event messages are to be issued.

Where contact is made with the monitor, the node born' message is recorded

by the monitor, and results in a new entry being made in its internal list of

active nodes. All subsequent messages to the monitor, until after the node 'died'

message, are associated with the initial entry so that all of the corresponding

messages appear in the same window on the screen. The operation of the display

is described further in section 6.1.4.

If event reporting is enabled. when recvmx() or sendmx() are called, the

tf_report() function in rnonrep is used to report the transfer of the record to

the monitor. The tf_report() function forms a transfer report using the node's

247

name and the identity, type and permit for the original message. It then uses

sendsO, in the stream module, to pass the report onto the monitor.

Whilst it may seem more natural to use datagrarns for making reports to a

monitor, the stream function sendms() provides the benefit of using a handshak-

ing mechanism. This feature is useful here because it provides the user with some

control over the other nodes in the system. Whenever a report is sent to the

monitor, the node concerned will be forced into a wait state until an appropriate

reply is received from the monitor - on the same channel. Thus, by handing con-

trol to the user over when this reply is sent, the single-step mode of operation is

implemented. So, whenever the user presses a key, a reply is issued to the waiting

node and a new report is accepted.

6.1.4 Display

Status Windows

node
status

windows

transfer
reports

H H 1
MENU-

1 menu
Of

J options

Figure 6-6: Monitor Display Format

248

The layout of the monitor's windowing display is shown in figure 6-6. The

upper portion of the display may have up to six windows active at one time,

or none at all, according to the behaviour of the system. Each of these upper

windows, when present, is associated with a single node, whose name appears in

the upper edge of the window's frame. The windows indicate the changes in the

state of the corresponding nodes, with the oldest information scrolling up and out

of sight.

The node status windows are created when a node 'born' report is received by

the monitor. On receipt of this message, the monitor records the node's name in a

table of active nodes, and then allocates a window, if one is available. Thereafter,

all event reports issued by that mode are indicated by a new status message in the

corresponding window. The last message to he received from a node, a node 'died'

report, is written to the window and, after a brief pause, the window is cleared

and the node's entry in the table is deleted.

Common Window

Since there is a limit of six node status windows, the lower, larger window acts

as an overflow. If a new node fails to gain an associated status window, its event

reports default to this lower window - the common window. A node can only

open a status window with its initial 'born' message, so extra nodes will continue

to have their state changes recorded in the common window even when any of

the upper windows become available. This feature is exploited in the monitor's

record only mode of operation, described in section 6.1.2. To avoid having the

service provider nodes take over all of the status windows, the monitor can be put

249

into the record only mode during their creation, and then revert to the display all

mode. Subsequent nodes will be allocated status windows on their creation, but

the changes in the states of the service provider nodes will all be logged in the

common window.

The common window is used for all messages that are relevant to the oper

ation of the monitor itself, as opposed to being pertinent only to a single node.

These messages include confirmations of user directives, such as the issuing of

a service request. However, the primary role of the common window is for the

display of transfer reports. The status windows for the end nodes in a record

transfer will indicate the issue and receipt of a message, and the common window

gives the type of protocol primitive, the name of the source node, the identity

value and the permit for the record. Taken together, these event reports describe

the TNM protocol primitive exchange that has just occurred. Since the common

window scrolls in the same manner as the node status windows, the most recent

series of TNM protocol primitive exchanges is visible at any one time.

Menus

The lower right-hand portion of the display is reserved for a set of option menus.

The menus are context sensitive, and are redrawn according to the mode of op-

eration of the monitor and recent user directives. For example, if the monitor is

running normally and the user opts to issue a new service request, the menu dis-

played will give a list of available services. This is because the user input control

is incapable of allowing the direct entry of service requests. So, a predetermined

250

list of service request options is made available, and the user merely selects one of

these options.

All of the menus provide a list of options, with each entry preceded by a value

from 0 to 9 (or less if there are fewer options). The user is prompted for input only

when it is required, and must then select a value in the valid range. An invalid

entry usually has no effect. The exception to this is with the standard menu when

the single-step mode of operation is being used. In this case, certain special keys,

such as the space bar, are treated as an indication to the monitor to allow a step

to the next state.

Display Mechanism

All of the display operations are implemented by calls to the libraries of functions

provided by curses[3]. These functions support the windowing operations, text

drawing and blanking. Furthermore, the functions provided by curses are inde-

pendent of machine and output device, enabling the monitor to he ported quite

readily if necessary.

6.1.5 Logging

The dynamic nature of the monitor's display makes it suitable for the interactive

operation required by the user for observing the effect of particular events. Fur-

thermore, the display provides a good way in which to gain a clear overview of

how the implementation behaves. However, the display is not suitable for more

detailed study of, say, how a network service is implemented. Similarly, when

251

faults occur, it is frequently useful to be able to look over the recent history of

node message exchanges.

Every report received by the monitor is logged to a file. The information in

the file is partially decoded, and presented in a tabular form to assist inspection.

The logfile provides a chronological record of all of the events that occurred in

the session. Whilst the information given in each entry is brief, further details

may often be derived from the log files kept by the individual nodes. The extra

details contained in the node's local logfile is of greatest use in locating the source

of problems once the monitor's logfile has indicated a specific transaction. Indi-

vidually, the nodes' local log files do not provide a clear view of what occurred in

the session. This role is filled by the monitor's own logfile.

Although the monitor's logfile gives a useful overview of the behaviour of the

corresponding sessions, it is not the ideal form for such inspections. To provide

greater clarity, the analysis tools ppl and pp2 were developed. The next section

explains how these tools are used, how they function and the benefits they provide.

6.2 Operational Analysis

The primary function of the analysis tools is to provide a clearer format for the

inspection of the results of using the TNM protocols. In particular, checking for the

correct exchange of protocol primitives is a major concern, along with tracking

down the cause of faults. Additionally, the diagrams produced by the tools are

useful for documentation.

252

The two analysis tools ppl and pp2 derive their names from their role and the

sequence in which they must be applied. The pp stands for post-processor, because

both tools are applied once the processing for a particular group of sessions is

complete. Further, ppl must be used before pp2, since the former generates

output that the latter requires as input.

As mentioned in the preceding section, pp1 and pp2 take the logfile produced

by the monitor and convert the information that it holds into a diagrammatic

form. The result of executing these tools in their prescribed sequence is a file

containing directives for the LATEX typesetting package.

The function of translating the monitor's logfile entries into diagrams is divided

between two tools to permit some user interaction between the invocation of each

one. This gives the user control over the presentation of the information in the

resulting diagrams. The user may, of course, directly change the output from pp2,

but the output from pp is in a clearer and more manageable format. Furthermore,

pp2 accepts some user directives in its input file.

6.2.1 Function of the Tools

The two analysis tools have very different roles, but they are both primarily con-

cerned with sequences of record transfers. The division of responsibility between

the two tools is as follows :-

ppl : is concerned with extracting information from the monitor's logfile and

compacting it into a manageable form.

253

pp2 : uses the details produced by ppl in the generation of LATEX primitives for

diagrams.

PP1

The logfile produced by the monitor has an entry for every event that was notified

by the nodes in the system. A description of these events was given in section 6.1.3.

ppl works through the logfile, determining the nature of the event for each entry

and handling the data accordingly. The entries recording the 'birth' of new nodes

are collected to form a list of all the active nodes in the system. The logfile reports

for the 'death' of nodes, or the state of temporary monitor processes, are ignored.

The most important events are the state changes of the nodes and reports of

the transfer of TNM protocol primitives. The details in these entries are gathered by

ppl to create an ordered sequence of record transfers. Once this list is complete, as

determined by the end of the logfile, ppl moves into its second stage and produces

the intermediate file required by pp2. This file details the two lists formed by ppl

the list of active nodes and the sequence of TNM protocol primitive transfers.

The intermediate file produced by ppl contains entries of two types

control entries, with an asterisk as the first character on the line, to convey

information that pp2 will require to manage the generation of diagrams.

details of record transfers, with a hyphen as the leading character.

The control entries specify the number of active nodes, the number of record

transfers listed in the file and mark the end of the file. Also, the names of all

254

the nodes are given together with an associated identification number. These

identification numbers are used in place of the node names for each record transfer.

There is a pair of numbers for each record, giving the source and destination nodes.

Additionally, each entry indicates the record identity, the permit value and the

type of the primitive. All of this information is used by pp2 in the generation of

diagrams.

In addition to producing the intermediate file that pp2 will use in the produc-

tion of diagrams, ppl also records a log of how it treated the actual reports in the

original logfile and how it formed the set of record transfers. In the event of the

diagram containing faults, ppl's log may be the best place for the user to look

in the search for the cause of those faults. Since ppl uses a set of event reports

to produce a single transfer entry in the intermediate file, the log may indicate

any mistakes made in the derivation of the record transfer entries. Similarly, ppl

has expectations of how the monitor should present its event reports. So, any

inconsistencies in the monitor's recording of reports should be apparent from the

ppl log.

PP2

As well as the two types of entry in the intermediary file that have already been

identified, pp2 also recognises a third type. These entries are preceded by an

exclamation mark and give the user some extra control over how pp2 produces the

diagrams. They allow the user to specify a caption and a label for a diagram, and

also to mark where diagrams should begin and end. Additionally, these entries can

change the parameters that control the sizes of diagrams by fixing the maximum

255

number of transfers and nodes in a diagram. To appreciate how these values affect

the diagram production, it is necessary to consider the algorithm used by pp2.

Request (P = 7)

	

t/f 10252:0.0 	Iclientl 	+o-or
Direct (P = 7)

	

t/f 10253:0.0 	 co-oril 	Iserved

Redirect (P 	7)

	

t/f 10252:0.1 	IclientI 	 Ico-oriJ

	

t/f 10252:1.0 	c 	
Request (P = 123)

client 	
Request

	

t/f 10252:1.1 	clientJ 	
Reply (P = 123) 	

serveil
Confirm (P= 7)

	

t/f 10253:0.1 	 o-or 	Iserver

Figure 6-7: Example of Output from Analysis Tools

Figure 6-7 is an example of the diagrams produced by pp2. In the diagram,

each transfer appears on a new line that begins with its identity. The two boxes

represent the communicating nodes and the arrow indicates the direction of the

transfer. Above the arrow is the type of the TNM protocol primitive and the value

of the permit. A key feature of the diagram is the tabulation, such that each node

always appears in the same column. This helps to make the diagrams clearer to

read, and is an important consideration in the generation of diagrams by pp2.

The decision as to which nodes should be placed in each of the columns is

determined by the order in which the nodes are read in from the intermediary file

by pp2. Hence, the user can directly manage the positioning of nodes merely by

reordering the control entries that identify the nodes. So, for example, the control

entries in the intermediate file for figure 6-7 are as follows:

256

*NN 4

* ID 3 client

* ID 0 co-ord

* ID 4 co-on

* ID 1 server

The identification numbers are set by ppi and are used to associate the names

of the nodes with entries describing record transfers. This system enables the user

to change the names of the nodes for more meaningful mnemonics, if desired.

There are physical constraints on the production of diagrams with which pp2

must comply. The most notable are the size of the printed page and the type-

face for textual information. For pp2, these limits are immutable, but there are

other restrictions that are variable. These include the maximum number of record

transfers that may he detailed in a single diagram and the number of nodes that

may be involved. Both of these variables may be set by the user, using special

directives in the intermediary file, and both values affect pp2's decisions on where

to conclude one diagram and begin another.

For each diagram, pp2 reads successive record transfer entries from the inter-

mediary file. These transfers are added to an internal table until the total number

of transfers for that diagram has been read. At this stage, pp2 defines which node

should appear in which column and then writes the appropriate set of LATEX prim-

itives to produce the new diagram. This process continues until all of the record

transfers have been used.

257

The total number of record transfers for a single diagram is determined from

the following criteria

the limit on the number of nodes that may appear in a single diagram.

This limit may be set by the user, but must in any case be less than that

accommodated by the width of the page.

the limit on the number of transfers for a single diagram. Again, this limit

has an upper value that is fixed by the size of the page, but may have a

lower value as set by the user.

the presence of a user directive (!P) that forces the diagram to be drawn

before the next transfer is read.

the number of transfers in the intermediary file.

For every diagram, pp2 writes a start and end sequence of LATEX primitives

that includes a caption and label, and also defines the size of the diagram. Each

transfer in the diagram requires a set of 5 primitives to draw the following

the identity of the record

the source node

the destination node

an arrow, indicating the direction of the transfer

the type of the TNM protocol primitive, together with the value of the permit.

258

As with ppl, pp2 produces a separate log to record the decisions it made in

the production of a new set of diagrams. Where a resulting diagram is not clear,

the user may inspect this log to help discover what changes should he made to the

intermediate file in order to clarify the appropriate diagram.

6.2.2 Operation

Figure 6-8 illustrates the procedure for using ppl and pp2 to generate LATEX dia-

grams from the monitor's logfile. There are eight stages shown, and the mnemonics

in italics and preceded by dots indicate the types of the file that are passed between

each stage

.log : -the monitor's logfile

.int : the ppl-pp2 intermediate file

.tex : contains the LATEX primitives required for the drawing of the diagrams

.dvi : holds device independent information that describes the resulting diagram.

The user's control over the layout of the diagrams is represented by the third

stage, EDIT. The feedback loop from stage 7 is present for the user to change the

intermediate file in the light of how the resulting diagrams appear. The facility

that allows the user to inspect LATEX output on a display before making a hardcopy

of the output is listed as stage 6, PREVIEW. Where no changes are required, stage

8, LASER, is responsible for the final production of the diagrams.

259

I 	Run
Monitor

Li)

PP1

.int F-
8 /EDIT

.int j

PP2

.Lex I
5 	

LATEX

.dvi
6 	

REVIEW.

7

Results- 	Changes
OK 	I 	Needed

8 /LASER

Figure 6-8: Analysis of Simulation Results

6.3 Command Shell

The support tools described in the preceding sections of this chapter are concerned

with the inner workings of the TNM protocol set implementation. This aspect is

of interest to the designer and implementor of the TNM protocols, and, to a lesser

extent, to the manager of the system. In contrast, the remaining sections of this

260

chapter are concerned with how the implementation may he applied by the user

of the system.

First, a simple command shell is described. This shell provides a rudimentary

means of using network services in a similar way to local commands. In the next

section, the environment management utility (EMU) is discussed. Some of the

features of EMU have already been incorporated into the simple command shell,

and provide more sophisticated capabilities for the system's users.

6.3.1 Purpose

As described in section 6.1.2, the monitor provides a facility for the user to initiate

requests for network services. However, only a limited range of service requests is

available for selection from the menu. Furthermore, this mechanism is crude and

only really suitable for studying the intricacies of the implementation's behaviour.

The simple command shell was developed to provide a more useable means of

generating requests for network services. Additionally, this simple shell permitted

some investigation into how the user interface should be provided. To this end,

the concept of layered network transparency, described in section 3.3.1, is

used as the basis for the design of the simple shell.

6.3.2 Operation

The command shell allows the user to enter text in the same way as the C-shell

[53]. A sequence of commands and parameters, separated by special delimiting

characters, is entered at the keyboard, and the shell only acts on the input once

261

the return key has been pressed. So. the command shell is essentially formed from

three stages :-

a command line handler to read keys from the keyboard and form a

buffered line of text.

an interpreter that parses the current line and identifies the commands

that are to be executed.

a command executor which receives successive commands from the inter-

preter and spawns processes to execute each of the commands.

Command Line Handler

The command line handler maintains a cyclic buffer of the most recently entered

command lines. Currently, no advantage is derived from this cyclic buffer. How-

ever, it would he relatively straightforwa rd to expand the handler's functionality

to allow more sophisticated line editing. In this case, the cyclic buffer would be a

useful asset.

On a single line, the command and its parameters are normally separated by

spaces. However, the interpreter also supports the special characters that the

C-shell uses to separate a number of commands on a single line

a vertical line between two commands means that the output from the first

is to be piped into the second.

262

an ampersand between commands signifies that the second command should

be initiated immediately after the first, without waiting for its completion.

Hence the two commands may he executed concurrently.

a semicolon indicates that the preceding command should he complete before

the command that follows it is executed. Thus, the two commands must be

executed consecutively.

Interpreter

When the interpreter passes commands to the executor, the types of the delimit-

ing characters are supplied so that the appropriate communication channels are

established. Similarly, the executor creates processes for the various commands

according to whether their execution is to he sequential or in parallel.

The command interpreter also checks the commands themselves before deciding

whether they should be passed on to the executor. This is to detect the presence

of commands that are implemented internally by the shell. This includes functions

that alter shell variables (including cd, the change directory command) and allows

for special EMU operations. The latter may involve the expansion or substitution

of the commands' parameters before the command is passed to the executor.

Command Executor

Where the command is not internal to the shell, it is passed to the executor with

its parameters. It is the executor's responsibility to discern whether the command

is supported locally or by the network. This is achieved by following the directory

263

search path for local commands and, if the command is not in this path, executing

the S-R program to request the network service. The search path comprises a

list of directories in which commands are expected to reside. The order in which

directories appear in this list indicates their relative priority.

A conventional shell will expect all commands to exist in the search path,

and failure to locate the command will result in an error message. The simple

command shell effectively adds an extra check at the end of the search path to

allow for the provision of a suitable service on the network.

Algorithm

The basic operation of the simple command shell may be expressed in an algo-

rithmic form.

while TRUE do
read line from keyboard into buffer
find tokens in buffer
repeat

extract command from buffer
if EMU command

then
expand command parameters

if NOT internal command
then

execute command
until empty buffer

The step that concerns the search for tokens in the buffered line is to speed up

the operation of the inner repeat-until loop. At this point, a structure is formed

with a pointer into the line buffer for every element of the line, i.e. all of the

264

commands, parameters and delimiters. Subsequently, the extraction of commands,

and associated parameters, may he undertaken simply by progressing through the

list of tokens.

Example

The features of the simple command shell may be illustrated by an example.

ptime ; demo I wc -1 ; ptime

ptime is a network service that prints the current network time.

demo is a network service, printing a number of lines of text.

wc is --a standard Unix function that counts the number of characters, words and

lines in the specified file. The -1 option results in the line count being the

only one to be printed.

This command line will cause a service provider to send a stream of text to the

current station, which will count the number of lines transferred and also print

the network time at the start and the end of the textual transfer. First of all,

the executor of the simple shell will spawn an S-R process to request the ptime

service. Then it will spawn two processes one to request the demo service and

another to run the wc program with the -1 parameter. A pipe will be established

between the two processes before they run their respective programs. Finally,

the executor will spawn another S-R process to request the ptime service for

the second time. The resulting output will indicate the time taken to transfer a

number of lines of text, and the transfer rate may he calculated.

265

6.3.3 Local and Remote Commands

Response Time

The use of the directory search path was discussed in the previous section. The

command executor looks in each directory of the path until it finds the program

for the specified command. If the command cannot be reached through the path,

the simple command shell then attempts to access an appropriate network service.

Only if the network service request is unsuccessful does the command shell indicate

to the user that the command does not exist. If the user had made an error when

typing in the command, there may be an appreciable delay before he is given

a chance to correct the mistake. In fact, the response time in general may be

unacceptably long because of the need to search through the local directories in

the path before even requesting the network service.

An alternative approach would he to issue the network service request before

beginning the search through the local directories, and allow both operations to

proceed concurrently. The first successful result would then be accepted, and the

other option cancelled. This approach should mean that the response time for

network services is improved. However, the response for simple local commands

would be impaired by the extra processing overhead. Furthermore, the network

would he swamped with unnecessary service requests. Bearing in mind the fact

that most of the requested functions will be implemented locally, this solution is

not suitable for the general case.

A better approach would be to use a pre-formed hash look-up table for access-

ing the programs for commands. The most common network services would also

266

be included in this table, but with a special entry that causes the shell to make

a network service request. This solution would result in local and remote func-

tions having similar look-up overheads, but with the network services having the

additional loads of the S-H process, the TNM protocol overhead and the network's

latency.

Multiple Implementations

So far, the discussion of local and remote services access has assumed that the

requested command is only provided in one way. However, it is likely that a

number of functions will be supplied by both the network and the user's own

machine. In this case, the decision as to which instance of the service is to be used

should depend on the performance of each implementation.

Best Performance Choice Reason
local local ideal solution
equal local no network overheads
remote slightly better local network overhead can be unpredictable
remote much better remote performance improvement

Table 6-1: Choice of Local or Remote Service

Table 6-1 gives an indication of an approach for deciding whether to use the

local or remote implementation of a command. The assessment of 'how much

better' the performance may be for the remote service will depend on a number

of factors, such as the amount of input data, network load, service provider per-

formance, etc. The shell should be provided with enough information to be able

to make its decision. Ideally, this information should be reached through a table

associated with the command look-up table for ease of access.

267

The simple shell does not accommodate the situation in which a particular

function is implemented both locally and remotely. The question of how best to

overcome this problem, both within the simple shell and more generally, is beyond

the scope of this thesis.

6.4 Environment Management

The Environment Management Utility (EMU) is independent of the work

on the- Triadic Network Model and its related protocols. However, the creation

of the utility has assisted the development of the experimental implementation.

EMU is described here for this reason and also because there are features of the

utility that would be well suited for inclusion in a more sophisticated computing

environment using the TNM protocols.

EMU has been developed under the DEC VAX/VMS operating system, but

there is also a partial implementation for 4.2 BSD Unix. Some integration of

EMU functions in the simple command shell, described in section 6.3, has been

achieved. The decision to undertake the EMU development using the VMS control

language DCL (DEC Control Language) was based on the power and versatility

of the language. Additionally, at that time the greatest need for EMU facilities

existed on the VAX because the machine was being used for the early work on the

Triadic Network Model.

268

6.4.1 Purpose of Development

EMU was developed to permit investigation into four key areas :-

more extensive use of system default parameters.

the preservation of states at the end of a session, and the subsequent restora-

tion of those states on commencement of the next session.

the identification of different work activities underway in a single terminal

session.

the management of a multitude of computing environments, each suited

to a particular line of work.

Individually, each of these facilities contributed towards the sophisticated com-

puting environment that the TNM protocol set was designed to support. However,

when taken together, they would provide the user with a powerful, yet simple

to use, means of managing a multi-task work load. On reflection, the flexibility

afforded by EMU during the course of the work on the model and protocols has

demonstrated the advancement in task management that these ideas can provide.

6.4.2 Principles

System Default Parameters

The technique of providing default options for commands is widely accepted and

is used extensively by a number of operating systems. For example

269

MUSS : allows use of a current file that acts as the default argument when no

other is specified. So, invoking the editor or printer spooler without giving

the name of a file will cause the special file called '0' to be used. However,

if the contents of '0' are to he preserved, an explicit storing operation is

required.

Unix : The hierarchical tree structure can result in the full pathname for a file

being quite long. So, Unix maintains a shell variable cwd which is the

current working directory. All partial references to files are expanded

by the shell to be relative to this default directory.

VMS : also maintains a current working directory, established by using the SET

UEFAULT command. Additionally, a default filename extension may be

specified'. Subsequently, file parameters that are given without an extension

will automatically have the default extension added. Other commands will

require files to have a particular extension, and will add this instead. So,

to the user, file name extensions are beyond his concern and this allows the

system to manage files almost transparently.

It is apparent that these operating systems are only making limited use of the

default options. EMU extends the use of default parameters to further simplify

the user's file handling responsibilities.

1A filename comprises a primary name followed by a dot and an extension. Both
parts of the filename are formed from a sequence of alphanumeric characters, and the
extension is usually restricted to 3 characters.

270

EMU uses DCL system variables to maintain the following group of default

parameters

the name of the current file

the extension to the current file

the directory in which the current file resides

the active printer queue

the name of the active batch queue.

In addition to these, EMU forms a 3 deep stack of the most recent instances

of the current file name, its extension and directory. The current file acts as the

top of the stack. So, when a change is made to the current entry, the previous

entries are all shuffled down by one position, with the oldest entry being lost. It is

possible to extract one of the entries on the stack. This then becomes the current

file and the stack is partially shuffled.

For commands that are supported by the EMU system, omission of the file

name parameter implies that the current file should be used. The other entries

in the stack may be referred to simply by quoting the position within the stack,

i.e. 1, 2 or 3. The current file may also be referred to by giving its position in the

stack - 0. This is needed where a binary operation is requested. For example,

CF 0 temp.dat

271

will copy the contents of the current file to a new file called temp.dat, in the

same directory. This new file then becomes the current file and the previous file

is shuffled down the stack.

The name, extension and directory for the current file are usually defined by

being specified as the filename parameter for an EMU-supported command, as

in the previous example. Where any of these values are ommitted, the existing

default is maintained and used for that operation. So, in the previous example, the

directory was omitted and therefore EMU used the same directory as the current

file. If the extension .dat had not been specified, the current file's extension would

have been used as well.

There is a special EMU command NEW that explicitly defines a new current

set of defaults. The stack may be cleared by issuing the FL (or FLUSH) command,

and this may be combined with setting the new defaults by using NEWF. The

current defaults may be listed by requesting XX for the current file, or XS for the

entries on the stack.

Where the user's terminal is of a type supported by EMU's screen handling

routines, the current file and the stack will appear on status lines on the screen.

A lower intensity is used so that this information is not confusing; the current file

name, extension and directory are displayed at the top right-hand of the screen;

the file names and extensions for the three stack entries are given at the bottom of

the screen. Where any of these entries on the stack have different characteristics

to the current default, the entry is displayed in reverse video.

272

End of Session State Preservation

Frequently, work on a particular topic will take more than one terminal session

to complete. Normally, commencement of a new session involves an initialisation

period, during which the user re-establishes all of the defaults that were active at

the conclusion of the preceding session. The duration of this period may be quite

lengthy, especially if there is a large interval since the preceding session.

EMU is particularly concerned with reducing this inefficient period. This is

achieved by preserving the current defaults at the end of work on a topic, then

restoring these defaults when work recommences. The default parameters that

are stored are the same as those maintained by EMU to simplify the entry of

commands by the user. The file holding this information is designated a history

file, and has a name defined by the user with an extension .his.

Hence, EMU enables work to resume on the previous topic with a much lower

initial overhead, since the user is quickly placed in the same position as he was at

the end of the previous session. EMU provides a facility for recording reminder

messages to assist the user further in his recollection of his current stage of work

on that topic.

Activities

During any single terminal session, the user is likely to spend time on a number of

different areas of work. Similarly, it would he unusual for a collection of terminal

sessions to be concerned purely with a specific task, although this may well be the

case. Hence, EMU allows a distinction to be made between different areas of work

273

by treating each one as a separate activity. For each activity, a different history

file is recorded so that the user may change between activities quite readily. In

each case, the user can resume an area of work with the defaults restored to their

values at the time of the last instance of usage of that activity.

Terminal Sessions
1 	 - 	• 	2 	•

Activity A

Activity B

Activity C

Activity

Figure 6-9: Relating Activities to Sessions

An activity starts when a new line of work begins, and ends when that area

of work is complete. Figure 6-9 illustrates how the lifetime of an activity may be

smaller than that of the terminal session in which it is begun, or how it may he

composed of a number of sessions. In figure 6-9

Activity A : is started during terminal session 1. It is briefly suspended, perhaps

for work on a different, but related, activity (B). It is completed before the

end of session 1, so its lifetime is less than one session.

Activity B : begins during the interval between work on activity A. The activity

is completed without interruption.

274

Activity C : occupies more than one terminal session. It is started in session 1,

continued in session 2 and concluded in session 3.

Activity D : is continued indefinitely, and may he resumed in any number of

sessions after being created in session 2.

Environments

A group of activities may all be concerned with a similar line of work. For example,

the user may have a collection of activities involved with the production of reports,

papers and articles. All of the activities may be categorised as text processing,

and will all involve similar operations. Additional facilities may be provided for

distinct such areas of work. These extra facilities serve to enhance the user's

working environment, but only for activities in related areas of work.

Since the grouping of activities is a frequent occurrence, EMU associates every

activity with a corresponding environment. Where there are additional features

provided by that environment, they are made available for work on that activity.

For example, the report' environment is for text processing activities. Activities

associated with this environment inherit a small set of commands to simplify

the processing of text by LATEX. In particular, there is a function to spawn a

background task to run LATEX with appropriate files, where these are determined

from the current defaults. Further commands provide the user with control over

how the background task performs.

All activities must he associated with a named environment, and the user is

275

required to enter an environment before an activity may be started or resumed2 .

New environments may be created using a special EMU environment that also al-

lows the user to list, modify or delete existing environments. A distinction is made

between system and user environments to protect certain privileged environments

from accidental alterations.

It is recognised that some tasks will be short lived, and will therefore be over

burdened by the EMU mechanisms. EMU accommodates these tasks through the

use of the null environment and activity. A null activity will be provided with

the full use of EMU and the current environment's facilities, but there will be

no preservation of states at the end of that area of work. A null environment

provides no additional features to those of EMU, and may only have the null

activity underway.

6.4.3 Application

EMU and the Simple Shell

EMU has been designed to provide extra flexibility with assistance for a multi-

task workload. The simple shell provides access to the standard Unix command

set as well as network services, as supplied via the TNM protocols. Together, EMU

and the shell would enable users to enjoy the rich functionality of a networked

computing environment but with the structure of EMU to simplify access to these

resources. EMU's environments could he tailored to the needs of the users, so that

'Enter and resume are special EMU commands that cause the current environment
and activity to be replaced by those specified by the user.

276

procedures for accessing sophisticated network services would become as easy to

use as simple local commands. This would help to conceal the complexity of the

network from the users, whilst enabling full use of the wealth of services. This

would be as intended in the design of the Triadic Network Model.

277

Chapter 7

Conclusion

The final chapter of this thesis reviews the work described in the preceding chap-

ters, and puts it in the context of what has been achieved overall. The current

state M the research and the experimental implementation is given together with

some possible areas for improvement. The chapter goes on to consider directions

for any further work that may be undertaken as a result of this research. Finally,

a statement is made of the results and the achievements of the research embodied

in the thesis.

7.1 Review

The thesis began with a statement of the direction of the research, setting an ulti-

mate target of a multiple computer system, comprising a wide range of machines

with different architectures and instruction sets, yet all cooperating in the pro-

vision of a powerful computing service for the users. Whilst the implementation

of this target system is beyond the scope of this thesis, the communication re-

278

quirements of this environment are of primary concern. In this respect, the stated

objective of the thesis is the derivation of network protocols that are oriented

towards the needs of the target system.

The thesis continued with a study of existing multiple computer systems. The

review of these systems in chapter 2 concentrated on the key ideas and techniques

that are fundamental to work in this field. However, none of the systems selected

for inclusion in this study embodied all the characteristics of the target system.

Hence, chapter 3 began with a description of a network structure that combined

many of the features of the reviewed systems. The network devices in this general

network structure were then classified into 3 groups, according to their roles and

communication needs.

The three-way classification of network devices forms the basis of the Tri-

adic Network Model, which defines the interactions within and between the three

groups. The model's specification of network communication provides the foun-

dations for the development of protocols that are tailored to the needs of the

networked computing environment. The principles of the protocols based on the

model are described in chapter 4. The implementation of the protocol set is cov-

ered in chapter 5, with an explanation of the software tools developed to support

the implementation in chapter 6.

279

7.2 Current State

Chapters 5 and 6 concentrated on key aspects of the implementation, but it is

worthwhile to take a brief look at the present state of this work. The three

TNM protocols were described in chapters 4 and 5, and more comprehensive defini-

tions of the protocols are given in appendices A, B and C. Only a subset of these

protocols has been implemented on the HLH Orion minicomputer. The emphasis

in the implementation has been on the core primitives of the TNM basic protocol,

because of the use of the three-party mechanism, section 4.2.

The experimental implementation has allowed many of the aspects of the pro-

tocols to be tried out. In particular, interfacing to the 4.2 BSD Unix socket mecha-

nism illustrated the benefits of the modular structure of the implementation. The

socket mechanism is designed to provide network communication implementors

with a great deal of flexibility in their use of the Unix network services. However,

this is only possible by requiring the higher level software to have a high degree

of awareness of the service provided by the lower level networking software. For

the TNM protocols, the flexibility of the sockets interface provided unnecessary

complications.

The implementation uses a tightly defined interface to the communication sys-

tem. This is more restrictive than the socket mechanism, but satisifies the needs of

the software modules responsible for the handling of TNM protocol set primitives.

There is the further advantage that the implementation is more easily ported to

another system because only the interface functions need to be rewritten.

280

The experimental implementation has also enabled some consideration of the

problems associated with spawning sub-tasks in order to simplify the operation of

a single node. This investigation was aided by the support tools, which have also

undergone a degree of development.

The monitor process is constrained by the limits of the windowing interface

provided by the 4.2 BSD Unix curses functions[3], but was designed to cope with

a much larger number of nodes than can be displayed on the screen. The monitor

is supplemented by a much more streamlined control process, sim. Sim uses the

same configuration files as monitor, but terminates once all of the nodes have

been created. This means that sirn is applicable for use in the start-up sequence

of Unix systems.

The two analysis tools, ppl and pp2, were developed for a specific job, and as

such have no path for further enhancement. However, the automatic generation

of diagrams from the log files of the monitor has proven invaluable in a number of

respects :-

the diagnosis of faults is achieved more rapidly than using just the log files.

analysis of the effects of refinements in the operation of the protocols is

simplified.

documentation is assisted by the inclusion of these diagrams.

The remaining support tools, the simple command shell and the environment

management utility (EMU), both have clear paths for further development. Cur-

rently, EMU is only fully implemented under VAX/VMS, but there is a partial

281

implementation for 4.2 BSD Unix. Some integration of EMU functions into the

simple command shell has been achieved.

7.3 Areas for Improvement

To be of greatest benefit, the TNM protocol set should have a high performance

when used in the target networked computing environment. In the experimen-

tal implementation, the focus has been on trying out new ideas and obtaining

clear feedback on how they performed. Consequently, there is plenty of scope for

improvement in the operation of the TNM protocol set implementation.

7.3.1 Heavyweight Processes

One aspect of the implementation that particularly warrants some effort to reduce

its inefficiency is the spawning of sub-tasks and new processes. Under 4.2 BSD

Unix there is no means of differentiating between these two forms of child process,

but the implementation uses each in a different way.

Where a service provider is required, under the three-party mechanism, to act

as a service manager, a new process is spawned for the limited duration of the

need for this node, as explained in section 5.2.3. The 4.2 BSD Unix creates a new

application process for the service manager, with its own area of virtual memory.

The operating system performs a full security check on all procedure calls, and the

process is subject to the usual scheduling pattern. This is a significant overhead for

a node that is infrequently involved in TNM protocol operation. A more effective

282

approach would permit the sub-task to share the memory structures of the parent

process directly' and operate with a higher level of privilege than a normal user

process. Such tasks are often referred to as lightweight processes, as in the LOCUS

operating system, for example, as described in section 2.3.2.

The second way in which sub-processes are used by the TNM protocol set im

plementation is in the provision of the requested services. Since these services will

usually take the form of application programs, it is appropriate to treat them as

conventional user programs. However, there are services that are much closer to

the operating system kernel. These service have much in common with the Unix

server processes that are implemented by process dmons, i.e. the processes have

already been created, but are dormant, awaiting input. Frequently requested ser-

vices, such as the translation of names to network addresses, should be provided

in this way. This is because the overheads of normal process management would

become significant for such services.

7.3.2 Transport Services

As explained in section 5.2.2, for the experimental implementation, the TNM pro-

tocols use the transport service provided by TCP and UDP, as supported by the

Unix socket mechanism. TCP satisfies the TNM protocol set's requirement for a

reliable underlying communication system; UDP is less reliable, but its use per-

mitted some assessment of the advantages of using a number of transport services

'The experimental implementation already includes mechanisms to support shared
access to the appropriate structures.

283

- each according to its merits. However, the choice of TCP and UDP was forced on

the implementation by the limitations of the development environment, and both

protocols are a little cumbersome for a high performance networked computing

system.

The TNM protocols would be much more effective were they to be provided

above a streamlined transport service that had been designed for operation in a

high performance environment. For example, a transport layer running above the

Centrenet Burst Protocol, section 1.2.3, would be particularly suitable. The re-

working needed to transform the current implementation to use this more efficient

service would be minimal because of the communication system interface functions

provided by the messys module, section 5.2.2.

7.3.3 Monitoring

The monitor tool has proven to be extremely useful in observing the behaviour

of processes created during the operation of the TNM protocol set implementa-

tion. The most important information derived by the monitor is the sequence in

which TNM protocol primitives are exchanged, although the creation and subse-

quent termination of sub-processes are of secondary interest. For the experimental

implementation, all of the nodes in the system were present on a single processor

and the most straightforward method for obtaining the required information was

through the use of a separate monitor node. However, the overhead of having to

report every protocol primitive exchange to the monitor would be impractical for

a working implementation.

284

The conventional method for observing network conversations is to use a spe-

cial montoring node that listens to all of the traffic on the network. This method

only works where the transmission medium has a broadcast nature, for example

ethernet, and the monitor device can he made to filter out unwanted traffic. Some

of the network analyzers that are commercially available may be programmed to

decode proprietary or experimental network protocols. By collecting a sequence

of network transmissions, and interpreting them according to the TNM protocols,

analysis of protocol primitive exchanges is still possible with a network analyzer,

but with no overhead on the communicating nodes. This contrasts with the moni-

tor node that requires the communicating nodes to send event reporting messages

in addition to their normal interactions.

285

7.4 Further Work

During the course of the research described in this thesis, it has become apparent

that there are a number of related topics that could warrant further investigation.

Additionally, the work described here suggests a number of aspects that could be

developed, but would not justify research effort in their own right. There are also

new products and techniques that may have some bearing on this work and maybe

worthy of further investigation. This section takes an inexhaustive look at these

points, with some guidelines on how further work could proceed.

7.4.1 Higher Performance

The aspects of the experimental implementation that were highlighted in sec-

tion 7.3 could be reworked to provide some improvements in efficiency. However,

for the high level of performance appropriate to the target system, even greater

measures are necessary. In particular, the protocols would have to be "moved

closer to the hardware" on which they were being used. There are two aspects to

this

1. The TNM protocol set would need to he implemented in the firmware of a

dedicated network controller. This would relieve the host processor of the

burden of communication protocol management. Furthermore, the network

controller would he more effective because it would not have the same de-

mands as the host processor's operating system.

286

2. The hardware of the network controller should he designed to treat the

different forms of network communication in the most effective manner.

7.4.2 Specification, Verification and Validation

The TNM protocols are specified in terms of

the descriptions in the chapters of this thesis

the state diagrams and tables of appendices A, B and C.

It is difficult to validate experimental protocols when they are specified in this

form [95], and verification that an implementation is correct is unreliable. How-

ever, were the protocols to be specified in more formal terms, using a description

language such as LOTOS [89], both validation and verification of the TNM proto-

cols would he simplified.

7.4.3 User Interface

The simple command shell, described in section 6.3, has been enhanced to include

some of the basic operations of the environment management utility (EMU). Fur-

ther evaluation of the experimental implementation would benefit from continued

development of the EMU features in the shell. Additionally, there remains some

investigation that may he performed on the possibilities for expanding the service

routing capabilities of the shell.

The shell provides a subset of the facilities available in the simpler of the Unix

command interpreters. For commands that are implemented by user programs

287

that exist in the search path, the shell merely spawns a process to execute that

program, as with other shells. For network services, the shell uses TNM protocols

to access this service on a remote machine. However, where the service is available

both locally and remotely, the shell requires additional information in order that

it can select the most suitable option.

Further research is warranted into the problem of how service requests should

be mapped onto available providers in this environment. This problem exists both

in this line of research and generally in this field. For the Triadic Network Model,

there is an additional question of how the user communication facilities of the

TNM user protocol could he exploited in a more advanced shell.

7.4.4 Support for Objects

The expanding use of object oriented applications leads to the question of how

well the TNM protocols can support the manipulation of objects. The TNM pro-

tocol set can readily be used to transfer objects, as described in section 4.3.3, by

transporting the name and type of an enclosed object as explicit characteristics.

The object's capability is not carried explicitly by the TNM protocols, but could

be included as part of the contents of a record.

For an object oriented system, the distribution of the mechanisms of the system

over a number of machines may be of interest. In this case, some investigation of

how well these mechanisms map onto the TNM protocol set may be justified.

288

7.4.5 Network Management

Multiple computer installations are becoming increasingly complex. Not only

do such systems comprise a number of heterogeneous nodes, but they are often

composed of a number of sub-nets, which in turn may involve different media.

This requires a large number of network bridges and gateways, in addition to

those devices required for terminal and computer connections.

Networks of this complexity can have an unreliable performance because the

possibilities for failure or disruption are greatly increased. Furthermore, the detec-

tion and remedy of faults is made more difficult by this complexity; the downtime

for a single failure may be increased and the disruption magnified because of the

larger-.number of users involved.

In an attempt to monitor and control large networked systems, there are moves

to introduce international standards for network management protocols. CMIP

(Common Management Information Protocol), CMOT (CMIP over TCP) and

SNMP (Simple Network Management Protocol) are examples of recently intro-

duced protocols for network management. Each of these protocols has had a

limited degree of acceptance by the major computer manufacturers, but none of

them has been the subject of a universal commitment. This is primarily because

it is still unclear which protocol will have the greatest backing.

All of the network management protocols allow for monitoring and control

information to be passed to special nodes, with the data transfer being outwith

the normal communication system. The TNM protocols, although derived inde-

pendently, share these characteristics. In particular, the role of a BEM manager

289

is allied to that of a network management station. Further, the more general

purpose service manager (S-Al) node has a related function.

An investigation of the TNM protocol set's applicability for network manage-

ment should be investigated along with any work on the transfer of data objects.

This is because it it likely that the eventual standards for network management

will use ASN1 (Abstract Syntax Notation 1 - derived from the CCITT X.409[17]),

which is used for defining the types and characteristics of embedded data objects.

7.4.6 NFS

It was mentioned in section 5.1.1 that some difficulty was encountered in porting

the TNM protocol set implementation onto Sun workstations. This was chiefly

because of conflicts with the higher level networking software - the NFS (Network

File System). However, NFS is now supported by a large number of computer

suppliers. So, any attempts to expand the use of the TNM protocols would benefit

from some initial investigation into how aspects of the NFS implementation could

be exploited.

7.5 Concluding Remarks

The underlying theme, thoughout all of the chapters of this thesis, has been the

problem of how best to unify a set of computers, with different characteristics,

to form a single system. In particular, the target system for this work is a het-

erogeneous multiple computer system, incorporating machines with different ar-

290

chitectures, instruction sets and levels of performance. Whilst there has been a

considerable amount of research in the field of distributed computing, resulting in

both experimental and commercial solutions, it is apparent that the target system

still poses difficulties.

The Triadic Network Model is central to the research described in this thesis.

Although the model may appear cumbersome for simpler configurations, such as a

single network of intelligent homogeneous machines, it is well suited to the added

complexity of the target system. The model's three types of logical module may

be used to represent the elements of a distributed system, and the model can then

describe the interactions between these modules. Consequently, the protocols

derived from the model are well suited to 	supporting the operation of a

distributed system in the manner defined by the model

The experimental implementation of the TNM protocols provided a platform on

which ideas could be tried out. In particular, the problems of process spawning

and heavyweight transport services have become more apparent. Additionally, the

merits of transaction monitoring, with diagrammatic analysis, have been demon-

strated. The simple command shell permitted some investigation into how the

users of the target system may access the services of both the local and remote

computers. The environment management utility (EMU), proving invaluable dur-

ing the course of this work, provided some pointers as to how the users could

eliminate some of the difficulties associated with a sophisticated networked com-

puting system.

291

7.5.1 Summary

The Triadic Network Model, and its related protocols, provide a basis for the de-

velopment of a high performance networked computing system. This thesis has

defined both the model and the corresponding protocols, described an experimen-

tal implementation of the protocol set and presented a study of multiple computer

systems. The research has enabled a fuller understanding of the problems of mul-

tiple computer connections to he realised, and illustrated how a high performance

processor may be efficiently utilized on a general purpose network.

292

Bibliography

AM2900 Data Book, Advanced Micro Devices.

APM Working Documents, University of Edinburgh, May 1983.

Arnold, K.C.R.C., "Screen Updating and Cursor Movement Optimization

A Library Package", Dept. of Electrical Engineering and Computer Science,

University of California, Berkeley.

Apollo DOMAIN Station Reference Manual, Cray Computer Systems

technical note SN-0229, Cray Research, Inc., March 1985.

Apollo DOMAIN Station Internal Reference Manual, Cray Computer

Systems technical note SN-0230, Cray Research, Inc., March 1985.

Arms, W., "The Carnegie-Mellon Andrew Project", personal notes from Open

Lectures in Computing : Campus Networks, University of Kent at Can-

terbury, April 3-4, 1986.

Arms, W., "The Dartmouth Personal Computer Project", personal notes from

Open Lectures in Computing : Campus Networks, University of Kent

at Canterbury, April 3-4, 1986.

293

Ashenhurst, R.L. and Vonderohe, R.H., "A Hierarchical Network", Datama-

tion, vol. 21, no. 2, Feb. 1975, PP. 40-44.

Barbacci, M.R., "Personal Computing The SPICE Project", New Com-

puter Architectures, ed. J. Tiberghien, Academic Press, London, 1984,

pp. 208-220.

Beach, B., Pender, A. and Szabados, M., "A Multi-OS LAN", Computer

Systems, 5, 4, April 1985, PP. 51-55.

Binns, S.E., Dallas, I.N. and Spratt, E.B., "Further Developments on the

Cambridge Ring Network at the University of Kent", Proc. IFIP TC-6 Int.

Symp., Florence, Italy, 1982.

Bird, R.P., "A Compiler Server Node in a Local Area Network", Proc. Jut.

Comp. Symp. on Application Systems Development, BC Teubner, Stuttgart,

March 22-24, 1983, p. 182.

Brebner, C., "Some Thoughts on a Future Computing Environment", internal

notes, University of Edinburgh, October 1985.

Brebner, G., "Future Communications Research", internal notes, University

of Edinburgh, 13 January 1986.

Bochmann, C.V. (ed.), Architecture of Distributed Computer Sys-

terns, Lecture Notes in Computer Science, vol. 77, 1979.

Bundy, A., "Intelligent Front-Ends", Infotech State of the Art Report on Ex-

pert Systems, vol. 12:7, 1984, pp. 15-24.

294

CCITT, Message Handling Systems : Presentation Transfer and

Syntax, draft recommendation X.409.

Control Data Corporation, Loosely Coupled Network System Descrip-

tion, 6 Sept. 1980.

Champine, G.A., "Back-End Technology Trends", IEEE Computer, 13, 2,

Feb. 1980, pp. 50-58.

Cheriton, D.R. and Zwaenepool, W., "The Distributed V-Kernel and its Per-

formance for Diskless Workstations", Proc. Ninth ACM Symposium on Operat-

ing Systems Principles, 10-13 Oct. 1983; printed in Operating Systems Review,

17, 5, pp. 129-140.

Cheong, V.E. and Hirschheim, R.A, Local Area Networks: Issues, Prod-

ucts and Developments, John Wiley & Sons, Chichester, 1983.

Centrenet Manual, University of Edinburgh, internal document, 5 Sept.

1986.

Corley, C.J. and Statz, J.A., "LISP Workstation brings Al Power to a Users

Desk", Computer Design, 24, 1, Jan. 1985, pp. 155-162.

Daly, T., "Centrenet Burst Protocol Version 1.1", internal notes, University

of Manchester, 27 June 1985.

DCS, The Co-ordinated Programme of Research in Distributed

Computing Systems, 1977-1984, Final Report, produced by the Science

and Engineering Research Council, 1984.

295

Deitel, H.M., "VM : A Virtual Machine Operating System", An Introduc-

tion to Operating Systems, Addison-Wesley, London, 1984, pp. 601-630.

Dunsmuir, M.R.M. and Davies, G.J., Programming the UNIX System,

Macmillan Publishers Ltd., London, 1985.

Enslow, P.H., "What is a Distributed Data Processing System", IEEE Com-

puter, 11, 1, Jan. 1978.

Edwards, D.G.B., Knowles, A.E. and Woods, J.V., "MU6G - A New Design

to Achieve Mainframe Performance from a Mini-Sized Computer", Proc. 7th

Annual mt. Symp. Comp. Arch., 1978, pp. 161-167.

Feldman, S.I., "Make - A Program for Maintaining Computer Programs",

Bell Laboratories, August 1978.

Frank, G.R. and Theaker, C..J., "The Design of the MUSS Operating System",

Software - Practice and Experience, vol. 9, pp. 599-620, 1979.

ORION Microarchitecture Reference Manual, 3rd edition, High Level Hard-

ware Ltd., Oxford 1986.

Hopkins, T.M., "Provision of a Shareable Processing Resource for Sparse Vec-

tor Computation on a Local Area Network", proposal for research, University

of Edinburgh, 1985.

Hopkins, T.M., 'The Centrenet- EthernetGateway", internal report, Univer-

sity of Edinburgh, 1986.

296

Hopkins, T.P. and Wilson, I.R., "Distributed Network Services", internal

document, University of Manchester.

Hopkins, T.P., "The Design of a Local Area Network", Ph.D. thesis, Univer-

sity of Manchester, Sept. 1984.

Hopkins, T.P., "Centrenet Digital Speech System", internal document, Uni-

versity of Manchester, August 25, 1984.

Hopkins, T.P., "Image Transfer by Packet Switched Network", technical re-

port UMCS-85-9-2, University of Manchester, 1985.

Hutchison, D. and Walpole, J., "Eclipse A Distributed Software Develop-

ment Environment", internal report, University of Lancaster, August 1985.

Huxley. R.S., "Remote Host Facility, Permanent File Transfer - Introduction",

University of Manchester Regional Computer Centre, Internal Information, ref.

13 12 01 01, 16 August 1983.

Ibbett, R.N., Edwards, D.A., Hopkins, T.P., Cadogan, C.K. and Train, D.A.,

"Centrenet - A High Performance Local Area Network", Computer Journal,

vol. 28, no. 3, 1985, pp. 231-242.

Ibbett, R.N., Capon, P.C. and Topham, N.P., "MU6V: A Parallel Vector

Processing System", Proc. 12th mt. Symp. on Computer Architecture, June

17-19, 1985, pp. 136-144.

ISO, Connection Oriented Transport Protocol Specification, ISO/DIS

8073, 1983.

297

ISO, Transport Service Definition, ISO/DIS 8072, 1983.

ISO, Basic Connection Oriented Session Service Definition, ISO/DIS

8326, 1983.

ISO, Basic Connection Oriented Session Protocol Specification,

ISO/DIS 8327, September 1983.

Iverson, W.V., "CDC Couples CPU's in Fast Network", Electronics, 30 June

1981.

Iyer, V. and Joshi, S.P., "Hardware Considerations in LANs", Electronic

Product Design, October/November, 1983.

Johnson, S.C., "Lint - A C Program Checker", Bell Laboratories, December

1977.

Joshi, S. and Iyer, V., "New Standards for Local Networks push Upper Limits

for Lightwave Data", Data Communications, July 1984.

Joshi, S. and Iyer, V., "Protocols and Network-Control Chips : a Symbiotic

Relationship", Electronics, 12 January, 1984.

Joy, B., "Computer Workstation Architecture : 1982-1992", IFIP Congress

1986, Dublin, (H.-J. Kugler, ed.), pp. 1163-1168.

Joy, W., "An Introduction to the C shell", Dept. of Electrical Engineering

and Computer Science, University of California, Berkeley, Jan. 1986.

298

A Network Independent Job Transfer and Manipulation Protocol,

prepared by the JTP Working Party of the Data Communication Protocols

Unit, Sept. 1981.

Kernighan, B.W. and Ritchie, D.M., "The C Programming Language", Pren-

tice Hall Software Series, London, 1978.

King, F., Dewar, H., Hansen, I. and Thonnes, R., "The Edinburgh Advanced

Personal Machine or LEGO Bricks and Computing", internal document, Uni-

versity of Edinburgh.

Kravitz, J.K., Lieber, D., Robbins, F.H. and Palermo, J.M., "Workstations

and Mainframe Computers Working Together", IBM Systems Journal, vol. 25,

no. 1, 1986, pp. 116-128.

Kung, H.T., "Special Purpose Supercomputers", IFIP Congress 1986,

Dublin, (H.-J. Kugler, ed.), pp. 565-570.

Lampson, B.W., Paul, M. and Siegert, H.J. (ed.$), Distributed Systems

- Architecture and Implementation, Lecture Notes in Computer Science,

vol. 105, 1981.

Leach, P.J., Levine, P.H., Duros, B.P., Hamilton, J.A., Nelson, D.L. and

Stumpf, B.L., "The Architecture of an Integrated Local Network", IEEE

Trans. on Comm., Local Area Networks Special, Nov. 1983.

Lee, J. and Lee, T., "Microway Monoputer : Transputer Transplant", Prac-

tical Computing, vol. 10, issue 11, November 1987, pp. 65-66.

299

Leffler, Si., Fabry, R.S. and Joy, W.N., "4.2 BSD Networking Implementa-

tion Notes", Dept. of Electrical Engineering and Computer Science, University

of California, Berkeley, 1983.

Leffler, S.J., Joy, W.N. and Fabry, R.S., "4.2 BSD Networking Implementa-

tion Notes", Dept. of Electrical Engineering and Computer Science, University

of California, Berkeley, 1986.

Marsden, B.W., Communication Network Protocols, Chartwell-Bratt,

1985.

Michel, M., "The Scholar's Workstation Project", personal notes from Open

Lectures in Computing: Campus Networks, University of Kent at Can-

terbury, April 3-4, 1986.

McCarthy, J., "Recursive Functions of Symbolic Expressions and their Com-

putation by Machine, Part 1", CACM, 3, April 1960, pp. 184-195.

McCarthy, J., Abrahams, P.W., Edwards, D.J., Hart, T.P. and Levin, M.I.,

LISP 1.5 Programmer's Manual, MIT Press, Cambridge, Mass., 1962.

Metcalfe, R.M. and Boggs, D.R., "Ethernet: Distributed Packet Switching

for Local Computer Networks", CACIk[, vol. 19, no. 7, July 1976, pp. 395-404.

Moody, G., "The Mainframe Connection - Introduction", Practical Comput-

ing, vol. 10, issue 5, May 1987, pp. 87-88.

300

Morris, J.H., Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosenthal,

D.S.H. and Smith, F.D., "Andrew: A Distributed Personal Computing Envi-

ronment", CACM, vol. 29, no. 3, March 1986, pp. 184-201.

MU6-G Instruction Set Manual, University of Manchester Computer

Science Department, May 1982.

Mukherjee, A., Kramer, J. and Magee, J., "A Distributed File Server for Em-

bedded Applications", lEE Software Engineering Journal, vol. 3 no. 5, Septem-

ber 1988, pp. 142-148.

Mullender, S.J. and Tanenbaum, A.S., "The Design of a Capability-Based

Ditributed Operating System", Computer Journal, vol. 29, no. 4, 1986,

pp. 289-299.

MUSS User Manual (Version 12), University of Manchester Computer

Science Department, 1984.

Naffah, N., "Workstations in the Next 10 Years", IFIP Congress 1986, Dublin,

(H.-J. Kugler, ed.), pp. 1169-1170.

Needham, R.M. and Herbert, A.J., The Cambridge Distributed Oper-

ating System, Addison-Wesley, Reading, Mass., 1982.

Nelson, B.J., "Remote Procedure Call", Department of Computer Science,

Carnegie-Mellon University tech. report no. CMU-CS-91-119, May 1981.

301

Nelson, D., "Network Protocols for Apollo's DOMAIN System", Local Net-

works, Strategy and Systems, Proc. Localnet '83 (Europe), Online Publi-

cations Ltd., Northwood UK., 1983.

Perry, A., "Some Aspects of the Design of the MU6 Operating System", M.Sc.

thesis, University of Manchester, 1983.

Phillips, S., "Distributed Systems and their Protocols", Local Networks,

Distributed Office and Factory Systems, Proc. of Localnet '83, New York,

London Online Inc., 1983, pp. 357-369.

Popek, C.J. and Walker, B., The LOCUS Distributed System Archi-

tecture, the MIT press, Cambridge, Mass., 1985.

Price, E., "SLIM - Serial Line Multiplexer", internal notes, University of

Manchester, April 2, 1985.

Randell, B.(ed.), Network Protocols, proc. joint IBM and University of

Newcastle upon Tyne Seminar, 3-6 September 1985, University of Newcastle

upon Tyne Computing Laboratory.

Ritchie, D.M. and Thompson, K., "The UNIX Time-sharing System", CA CM,

vol. 17, no. 7, July 1974, pp. 365-375.

Robinson, D.C. and Sloman, M.S., "Domain-Based Access Control for Dis-

tributed Computing Systems", lEE Software Engineering Journal, vol. 3 no. 5,

September 1988, pp. 161-170.

302

Rushby, J.M. and Randell, B., "A Distributed Secure System", Newcastle-

upon-Tyne University, tech. report no. 182, May 1983.

Schwartz, M., Telecommunications Networks - Protocols, Modelling

and Analysis, Addison Wesley, Reading, Massachussetts, 1987.

Schragl, R. and Lauber, D., "A Protocol for the Communication between

Objects", EUUG Spring 1988, London, 13-15 April 1988.

Scollo, C., Vissers, C.A. and Di Stefano, A., "LOTOS in Practice", IFIP

Congress 1986, Dublin, (H.-J. Kugler, ed.), pp. 869-875.

Spector, A.Z., "Performing Remote Operations Efficiently on a Local Com-

puter Network", Computer Science Department, Stanford University, tech.

report no. STAN-CS-80-831, Dec. 1980.

Spector, A.Z. and Schwarz, P.M., "Transactions : A Construct for Reliable

Distributed Computing", Carnegie-Mellon University, tech. report no. CMU-

CS-82-143, 4 Jan. 1983.

Stevens, J.S., "Design of a Front-End Processor for MUG", M.Sc. Thesis,

University of Manchester, Oct. 1983.

Stobie, I., "The Software Link", Practical Computing, vol. 10, issue 5, May

1987, pp. 94-97.

Stobie, I., "How Bright is the Future", Practical Computing, vol. 10, issue 7,

July 1987, pp. 81-84.

303

Sunshine, C., "Formal Techniques for Protocol Specification and Verifica-

tion", IEEE Computer, 12, 9, September 1979.

Sun, C., internal report, University of Manchester, 1986.

Swinehart, D., McDaniel, C., Boggs, D., "WFS: A Simple Stored File System

for a Distributed Environment", XEROX Palo Alto Research Center, CSL-79-

13, Oct. 1979; printed in Operating Systems Review, 13, 5, Nov. 1979.

Tanenbaum, A. S., Computer Networks, Prentice/ Hall International Inc.,

London, 1981.

Tanenbaum, A.S. and Van Renesse, R., "Distributed Operating Systems",

Vrje Universiteit, Amsterdam.

Texas Instruments Explorer Technical Summary, Texas Instruments

Incorporated, 1984.

Thacker, C.P., McCreight, E.M., Lampson, B.W., Sproull, R.F. and Boggs,

D.R., "Alto : A Personal Computer", Computer Structures : Principles

and Examples", (Siewiorek, D.P., Bell, C.G. and Newell, A.), McGraw-Hill,

Tokyo, Japan, 1984, pp. 549-572.

Thornton, J.E., "Back-End Network Approaches", IEEE Computer, 13, 2,

Feb. 1980, pp. 10-17.

Topham, N.P., 'A Parallel Vector Processing System", Ph.D. thesis, Uni-

versity of Manchester, Sept. 1985.

304

Topham, NY., "Performance Analysis of a Data-Driven Multiple Vector Pro-

cessing System", Proc. IFIP Conference on Parallel Computers for Numerical

and Signal Processing, March 1986.

VanHoulweling, D., "Workstations for all at Carnegie-Mellon", Local Net-

works, Distributed Office and Factory Systems, Proc. of Localnet '83, New

York, London Online Inc., 1983, pp. 513-524.

Vaughn, T.C., "Protocols and Services for a High Speed Network", M.Sc.

thesis, University of Manchester, Sept. 1983.

Waldron, M., "The System Comes out of the Network", Computing, 11 Sept.

1980, pp. 24, 25.

Walker, B., Popek, G., English, R., Kline, C. and Thiel, C., "The LOCUS

Distributed Operating System", Proc. Ninth ACM Symposium on Operating

System Principles, 10-13 Oct. 1983; printed in Operating Systems Review, 17,

5, pp. 49-70.

Wecker, S., "DNA : The Digital Network Architecture", IEEE Trans. on

Comm., vol. COM-28, 4, April 1980, pp. 510-526.

Windsor II, W.A., "IEEE Floating Point Chips implement DSP Architec-

ture", Computer Design, Jan. 1985, vol. 24, no. 1, pp. 165-170.

Zwaenepoel, W., "Implementation and Performance of Pipes in the V-

System", IEEE Trans. on Computers, vol. C-34, no. 12, December 1985,

pp. 1174-1178.

305

Appendix A

The Inter-User Communication Protocol

306

A.1 Table of Primitives

Primitive From To Purpose

MAKE-CALL Cr Ce attempt to establish communica-

tion channel

ANSWER-CALL Ce Cr called node is willing and able to

accept call

END-CALL either either conclude interaction

CALL-COMPLETE either either confirm end of interaction

ABORT-CALL either either abandon call

SUP-PORT-CALL Cr Ce communication requires extra fea-

tures

ROUTE-CALL either Ce network address of called node is

unknown

CALL-FAILED Ce Cr called node is unable or unwilling to

accept call

SUSPEND-CALL either either temporary interruption of call

RESUME-CALL either either continue the call following the tem-

porary break

CALL-CHARGE Ce Cr accounting information

307

INIT(
BEGIN

'\INITEARCH

RECEIVECALL.FAILE

L"PT TD -SE Up
FAILED

ETUP

RECEIVE- 	RECEIVE..
ANSWER. 	ANSWER-
CALL-

NSWER.
CALL. 	CALL
WITH-
SUPPORT-
REQUIRED

ITH..
sUPPORT..
REQUIRED 	-

ECEIVE.CALL.FARED

SEARCH.

SEARCH
FAILED

RECEIVE 	RECEIVE-
ANSWER 	ANSWER.
CALL 	CALL..

WITH..

SUPPORT-

EXCHANGE

RECEIVE-CALL-CHARGE

END

Figure A—i: User protocol : Caller (Cr)

A.2 Protocol Definition

A.2.1 Caller (Cr)

Description of States

The Caller (Cr) has 8 possible states

BEGIN: Cr has not yet initiated a call.

SETUP: Cr attempts to establish a connection with a Cc.

308

RECEIVE-ABORT-CALL 	 ABORT-CALL-REQUIRED

Figure A-2: User protocol : Common

SEARCH: Cr is attempting to establish a call, but does not have the network

address for Ce.

EXCHANGE: Cr and Ce are actively communicating.

CLOSE: Cr concludes the call.

PAUSE#1: the call has been suspended at the request of Ce.

PAUSE#2: the call has been suspended at the request of Cr.

309

END: the call has been completed.

Description of Events

The Caller (Cr) identifies the following events

INIT_CALL: the Cr process has just been created, and the network address

of Cc is known.

INIT_SEARCII: the Crprocess has just been created, and the network address

of Cc is unknown.

RECEIVE-ANSWER-CALL: Cr receives ANSWER-CALL from Cc, and the

call requires no special facilities.

RECEIVE-ANSWER-CALL-WITH-SUPPORT-REQUIRED: Cr receives AN-

SWER-CALL from Cc, but the call has special needs.

RECEIVE-CALL-FAILED: Cr receives CALL-FAILED from Cc.

SETUP-FAILED: Cr fails to receive either ANSWER-CALL or

CALL-FAILED, when trying to establish a call with a Cc with a known

address, within the timeout period (Tuseri).

SEARCH-FAILED: 	Cr 	has 	received 	neither

ANSWER-CALL nor CALL-FAILED, when searching for a Cc with an

unknown network address, within the timeout period (T ser2).

310

RECEIVE-CALL-CHARGE: Cr receives CALL-CHARGE from Cc, to indi-

cate accounting information.

CALL-FAILURE: Cr fails to communicate with Cc within the timeout period

(Tuser3).

RECEIVE-END-CALL: Cr receives END-CALL from Cc, indicating that Cc

wishes to conclude the call.

CONCLUDE-CALL: Cr requires that the call be concluded normally.

ABORT-CALL-REQUIRED: Cr requires that the call he aborted.

RECEIVE-ABORT-CALL: Cr receives ABORT-CALL from Cc.

START-PAUSE: Cr requires that the call be suspended temporarily.

RECEIVE-SUSPEND-CALL: Cr receives SUSPEND-CALL from Cc, indi-

cating that Cc wishes to suspend the call temporarily.

RECEIVE-CALL-COMPLETE: Crreceives CALL-COMPLETE from Cc, in-

dicating that the call has been concluded normally.

TIM EOUTBEFORECALLCOMPLETE 	Cr 	fails 	to 	receive

CALL-COMPLETE within the timeout period (T,,,,,4)-

RECEIVE-RESUME-CALL: Cr receives RESUME-CALL from Cc, indicat-

ing that Cc wishes to continue the call.

311

TIM EOUTBEFOREENDPAUSE:

Cr fails to receive either RESUME-CALL or ABORT-CALL within the

timeout period (Tuser5).

STOP-PAUSE: Cr requires that the suspended call he resumed.

Description of Actions

The Caller (Cr) may initiate the following actions

ESTABLISH-CALL: Cr sends MAKE-CALL to the Cc.

LOOKFORCe: Cr sends ROUTE-CALL to a Cc that may know the net-

work address of the intended Cc.

BEGIN-EXCHANGE: Cr starts communication with Cc using lower level

primitives.

SEND-SUPPORT-INFO: Cr sends SUPPORT-CALL to the Cc, indicating

details of the extra facilities required for the call.

ABANDON-CALL: Cr discontinues communication with Cc, and the process

terminates.

REGISTER-CHARGE: Cr records the accounting information supplied by

Cc.

7. CONTINUE-EXCHANGE: Cr continues the communication with the Cc.

312

FINISH-CALL: Cr sends CALL-COMPLETE to the Cc.

COMPLETE-CALL-NORMALLY: Cr completes the call and the process ter-

minates.

REQUEST-CALL-COMPLETION: Cr sends END-CALL to the Cc, to initi-

ate normal completion of the call.

REQUEST-CALL-ABORT: Cr sends ABORT-CALL to the Cc, to terminate

the call abnormally.

REQUESTCALLSUSPENSION: Cr sends SUSPEND-CALL to the Cc, to

suspend communication with the Cc temporarily.

SUSPEND-EXCHANGE: Cr temporarily suspends the call.

REQUEST-CALL-RESUME: Cr sends RESUME-CALL to the Cc, to resume

the communication with the Cc.

313

State Transition Tables

This State Event Action Next State

BEGIN INITCALL ESTABLISH-CALL SETUP

INITSEARCH LOOKJOR..Ce SEARCH

SETUP RECEIVE-ANSWER- BEGIN-EXCHANGE EXCHANGE

CALL

RECEIVE-ANSWER- SEND-SUPPORT- EXCHANGE

CALLWITH... INFO;

SUPPORT BEGIN-EXCHANGE

REQUIRED

RECEIVE-CALL- ABANDON-CALL END

FAILED

SETUP-FAILED ABANDON-CALL END

SEARCH RECEIVE-ANSWER- BEGIN-EXCHANGE EXCHANGE

CALL

RECEIVE-ANSWER- SEND-SUPPORT- EXCHANGE

CALL-WITH- INFO;

SUPPORT BEGIN-EXCHANGE

REQUIRED

RECEIVE-CALL- ABANDON-CALL END

FAILED

SEARCH-FAILED ABANDON-CALL END

314

This State Event Action Next State

EXCHANGE RECEIVE-CALL- REGISTER-CHARGE; EXCHANGE

CHARGE CONTINUE-EXCHANGE

RECEIVE FINISH-CALL; END

END-CALL COMPLETE-CALL-

NORMALLY

CONCLUDE-CALL REQUEST-CALL- CLOSE

COMPLETION

ABORT-CALL- REQUEST END

REQUIRED CALL-ABORT;

ABANDON-CALL

RECEIVE-ABORT- ABANDON-CALL END

CALL

START-PAUSE REQUEST-CALL- PAUSE#2

SUSPENSION;

SUSPEND-EXCHANGE

RECEIVE SUSPEND-EXCHANGE PAUSE# 1

SUSPEND-CALL

CALL REQUEST. END

FAILURE CALL-ABORT;

ABANDON-CALL

315

This State Event Action Next State

CLOSE RECEIVE-CALL- COMPLETE-CALL- END

COMPLETE NORMALLY

TIMEOUTBEFORE ABANDON-CALL END

CALL-COMPLETE

PAUSE#1 RECEIVE CONTINUE EXCHANGE

RESUME-CALL EXCHANGE

RECEIVE ABANDON-CALL END

ABORT-CALL

TIMEOUTBEFORE. ABANDON-CALL END

END-PAUSE

PAUSE#2 STOP-PAUSE REQUEST-CALL- EXCHANGE

RESUME;

CONTINUE

EXCHANGE

ABORT-CALL- REQUEST-CALL-

REQUIRED ABORT;

ABANDON-CALL

A.2.2 Callee (Ce)

Description of States

The Callee (Cc) has 8 possible states

WAIT: Cc is inactive, waiting for a call to be initiated by a Cr.

SETUP: Cc is establishing a call with a Cr, but the call requires extra facil-

ities.

3. CLOSE: Cc concludes the call.

316

RECEIVE-ROUTE-CALL-
RECEIVE-MAKE-

ECEIVE.ROUTE CALL..
RECEIVE.MAKE 	WITHUNKNOWNADDRESS
CALL-WITH-
UNACCEPTABLE-
PARAMETERS

ALLWITIL
UNACCEPTABLR.
PARAMETERS

RECEIVEROUTE..CALL..
WITHNAMEOF..
AKNOWN.NODE

WA IT WA
TIMEoUT..
BEFORE

RECEIVEJVIAKE 	SUPPORT-
CALL-

WITH 	CALL
ROUTE SPECIAL

CALL-ALL
WITH.. LSETUP WITH-
THIS..
ADDRESS RECEIVE-MAKE 7RECEIVE- ,,7

CALLWITH..N0 	 ..
DIFFICULTIES

CHARGE..
REQUIRED

EXCHANGE

Figure A-3: User protocol : Callee (Ce)

EXCHANGE: Ce and the Cr are actively communicating.

PAUSE1: the call has been suspended at the request of Cr.

PAUSE#2: the call has been suspended at the request of Ce.

Description of Events

The Callee (Ce) identifies the following events

1. RECEIVE-MAKE-CALL-WITH-NO-DIFFICULTIES:

Ce receives MAKE-CALL from a Cr in order to establish the call. Ce

is willing and able to accept the call; the call requires no special features.

317

RECEIVE-ROUTE-CALL-WITH-THIS-ADDRESS: 	Cc 	re-

ceives ROUTE-CALL from a Cr, or an intermediary Cc, indicating that

a Cr wishes to establish a call but does not know the network address of the

Cc. The specified name is that of this Cc.

RECEIVE-MAKE-CALL-WITH-SPECIAL-NEEDS: 	Cc 	receives

MAKE-CALL from a Cr. Cc is willing to accept the call, but the call

requires special features.

Cc re-

ceives MAKE-CALL from a Cr, but is unwilling or unable to accept the

call.

RECEJVERQUTECALLWJTH NAME OFA KNOWN NODE: Cc receives

ROUTE-CALL from a Cr, or an intermediary Cc, and this Cc can route

the request towards the intended Cc.

RECEIVEROUTECALLWITHUNKN OWN-AD DRESS: 	Cc 	receives

ROUTE-CALL from a Cr, or an intermediary Cc, but cannot route the

request towards the intended Cc.

RECEIVE-SUPPORT-CALL: Cc receives SUPPORT-CALL from the Cr,

giving details of how the extra facilities required by the call may be accessed

or provided.

S. TIMEOUTBEFQRESUppQRTCALL: Cc fails to receive SUPPORT-CALL

from the Cr before the end of the timeout period (Tuser6).

318

CONCLUDE-CALL: Cc requires that the call be concluded normally.

RECEIVE-END-CALL: Cc receives END-CALL from the Cr, indicating that

Cr wishes to conclude the call.

ABORT-CALL-REQUIRED: Cc requires that the call be concluded abnor-

mally.

RECEIVE—ABORT—CALL: Cc receives ABORT—CALL from the Cr.

CAL LCHARGEREQUIRED: Cc requires that accounting information be

passed to the Cr.

CALL-FAILURE: Cc fails to communicate with Cr within the timeout period

(Tuser7).

START—PAUSE: Cc requires that the call be suspended temporarily.

RECEIVE—SUSPEND—CALL: Cc receives SUSPEND—CALL from Cr, indi-

cating that the Cr wishes to suspend the call temporarily.

RECEIVE-CALL-COMPLETE: Cc receives CALL-COMPLETE from the

Cr, indicating that the call as been concluded normally.

TIMEOUTBEFORECALLCOMPLETE: 	Cr 	fails 	to 	receive

CALL-COMPLETE within the timeout period (Tuser8).

RECEIVE-RESUME-CALL: Cc receives RESUME-CALL from the Cr, indi-

cating that Cr wishes to continue the call.

319

STOP-PAUSE: Cc requires that the suspended call be resumed.

TIM EOUTBEFOREENDPAUSE:

Cr fails to receive either RESUME-CALL or ABORT-CALL within the

timeout period (Tuser9).

Description of Actions

The Callee (Cc) identifies the following events

PREPARE-FOR-CALL: Cc sets up communication channels for the call from

Cr.

BEGIN-EXCHANGE: Cc starts communicating with Cr using lower level

primitives.

INDICATE-CALL-FAILURE: Cc sends CALL-FAILED to Cr, indicating that

it is unable or unwilling to satisfy the request.

ROUTE-CALL-TO-REQUIRED-NODE: Cc forwards ROUTE-CALL towards

the intended Cc.

ABANDON-CALL: Cc discontinues communication with the Cr, and the call

is abandoned.

REQUEST-CALL-COMPLETION: Cc sends END-CALL to the Cr, to initi-

ate normal completion of the call.

7. FINISH-CALL: Cc sends CALL-COMPLETE to the Cr.

320

COMPLETE-CALL-NORMALLY: Cc completes the call and closes down the

communication channels.

REQUEST-CALL-ABORT: Cc sends ABORT-CALL to the Cr, to abnor-

mally terminate the call.

MAKE-CALL-CHARGE: Cc sends CALL-CHARGE to the Cr, supplying

accounting information.

REQUEST-CALL-SUSPENSION: Cc sends SUSPENDCALL, to suspend

communication with the Cr temporarily.

SUSPEND-EXCHANGE: Cc temporarily suspends the call.

CONTINUE-EXCHANGE: Cc continues the communication with the Cr.

REQUEST-CALL-RESUME: Cc sends RESUME-CALL to the Cr, to resume

the communication with the Cr.

321

State Transition Tables

This State Event Action Next State

WAIT RECEIVE-MAKE-CALL- PREPARE-FOR-CALL; EXCHANGE

WITH-NO-DIFFICULTIES BEGIN-EXCHANGE

RECEIVE-ROUTE-CALL- PREPARE-FOR-CALL; EXCHANGE

WITH-THIS-ADDRESS BEGIN-EXCHANGE

RECEIVE-MAKE-CALL- PREPARE-FOR-CALL SETUP

WITH-SPECIAL-NEEDS

RECEIVE-MAKE-CALL- INDICATE-CALL- WAIT

WITH-UNACCEPTABLE- FAILURE

PARAMETERS

RECEIVE -ROUTE-CALL. ROUTE-CALL-TO- WAIT

WITH-NAME-OF- REQUIRED-NODE

AKNOWNNODE

RECEIVE -ROUTE-CALL. INDICATE-CALL- WAIT

WITH-UNKNOWN- FAILURE

ADDRESS

SETUP RECEIVE-SUPPORT- BEGIN-EXCHANGE EXCHANGE

CALL

TIM EOUTBEFORE ABANDON-CALL WAIT

SUPPORT-CALL

322

This State Event Action Next State

EXCHANGE CONCLUDE-CALL REQUEST-CALL- CLOSE

COMPLETION

RECEIVE FINISH-CALL; WAIT

END-CALL COMPLETE-CALL-

NORMALLY

ABORT-CALL- REQUEST-CALL- WAIT

REQUIRED ABORT;

ABANDON-CALL

RECEIVE. ABANDON-CALL WAIT

ABORT-CALL

CALL-CHARGE- MAKE-CALL- EXCHANGE

REQUIRED CHARGE

START-PAUSE REQUEST-CALL- PAUSE#2

SUSPENSION;

SUSPEND-EXCHANGE

RECEIVE. SUSPEND-EXCHANGE PAUSE# 1

SUSPEND-CALL

CALL REQUEST END

FAILURE CALLABORT;

ABANDON-CALL

323

This State Event Action Next State

CLOSE RECEIVE-CALL- COMPLETE-CALL- WAIT

COMPLETE NORMALLY

TIMEOUTBEFORE ABANDON-CALL END

CALL-COMPLETE

PAIJSE#1 RECEIVE-RESUME- CONTINUE-EXCHANGE EXCHANGE

CALL

RECEIVE ABANDON-CALL WAIT

ABORT CALL

TIMEOUTBEFORE ABANDON-CALL END

END-PAUSE

PAUSE#2 STOP-PAUSE REQUEST-CALL- EXCHANGE

RESUME;

CONTINUE-EXCHANGE

ABORT-CALL- REQUEST-CALL- WAIT

REQUIRED ABORT; ABANDON-CALL

324

Appendix B

The Basic Service Provision Protocol

325

B.1 Tables of Primitives

Primitive From To Purpose

REQUEST S-R S-P request network service

REPLY 	- S-P S-R response to network service request

REDIRECT S-M S-R re-route request to another node

DIRECT S-M S-P prepare for redirected request

CONFIRM S-P S-M redirected request completed

REDIR_M S-P S-M redirected service request has been

re-routed to another node

ENQ_PRO VISION S-M S-P poll for state of service provider; re-

quester not receiving response

ENQ_SERVICE S-.R S-M poll for state of service provision;

provider has not replied, and has

not responded to enquiry

ENQ_SUPPLY S-R S-P poll 	for 	state 	of 	service 	supply;

provider has not replied

PROVISION-FAIL S-P S-M service 	provision 	has

failed; provider failed in its provi-

sion of service

326

SERVICE-FAIL S-R S-M service 	provision 	has 	failed; 	re-

quester bids for recovery of service

SUPPLY-FAIL S-P S-R service 	provision 	has

failed; provider failed in its provi-

sion of service

NOTIFY_S_FAIL S-M S-R service provision has failed; no re-

covery possible

CONTINUE S-M S-R no apparent problem with S-P's

provision of the service

PROV_ACTIVE S-P S-M provider is active in its provision of

the service

EXTEND-TIME S-P S-R provider 	requires 	more 	time 	in

which to complete the service

REQ_MORE_DATA S-P S-R provider requires more data for the

service provision

GIVE-MORE-DATA S-R S-P requester supplies extra data for the

service

ABORT-REQUEST S-R S-P request for service rescinded

ABORT-PROVISION S-M S-P abandon provision of service

REJECT_VALIDITY any any received message has invalid con-

text or permit

327

B.2 Protocol Definition

B.2.1 Service Requester (S-R)

START 	
INITREQUEST

RECEIVE-SUPPLY-
FAIL-WITH-NO-
MANAGER

ECEIVE..SUPPLY.
FAILWITHNO.
MANAGER

WAIT

I
\. REDIRECT

RECEIVE-

RECEIVE-RECEIVE
VALID 	REQUEST
REPLY 	FOR-MORE-

DATA

I RECEIVE-SUPPLY-
FAIL-WITH-NO-

END

ECEIVR..SUPPLY.
FAILWITHNO.

END 	
MANAGER

CONSUME

SERVICE-RESPONSE-COMPLETE

Figure B—i: Basic Protocol : Service Requester (S-R) - 'WAIT'

RECEIVE-
INVALID-
MESSAGE

ECEIV&.
INVALID-
MESSAGE

Current State

RECEIVE-
REJECT-
VALIDITY-
WITH-NO-
MANAGER

ECEIVE.
REJECT
VA LID ITY
WITR-N0
MANAGER

RECEIVE-INDICATION-OF-SERVICE-
FAILURE

SERVICE-

7

ICE
ABORT

D
REQUIRED

END

UTEFOREH
SERVICE-COMPLETE

Figure B-2: Basic Protocol : Service Requester (S-R) - All States

328

TIMEOUT.BEFORE..REPLY..\ I RECEIVE..SUPPLYFAIL
FROMPROVIDER 	 WITH-MANAGER

WAIT 	
RECEIVE-REDIRECT

'RECEIVE. ___________________
REDIRECT RECEIVE- RECEIVE-

REJECT- 	INVALID- REPLY-VALIDITY-
	WITH-MANAGER J wITH..

MANAGER

ECEIVE
EXTEND-

-

TIME RECEIVE-SUPPLY-
FAIL-WITH

- CHECK MANAGER

NOTIFY

RECEIVE.. _____________________ I
SUPPLY.. 	I RECEIVEREJECT..VALIDITY.. ISUPPLY
FAIL.. 	I WITH-MANAGER FAIL..
WITH..N0.. WITH..
MANAGER MANAGER

"N0RESP0NSE..
I 	FROMMANAGER..

END 	_____ ___ ANDNO..MORE (CONSUME MANAGERS

RECEIVE-
REJECT-
VALIDITY-
WITH-
MANAGER

ECEIVE..
REJECT
VALIDITY..
WITH..
MANAGER

Figure B-3: Basic Protocol : Service Requester (S-R) - 'CHECK' + 'NOTIFY'

Description of States

The Service Requester (S-R) has 7 possible states

START: S-R is not enabled - the process has not been created.

WAIT: S-R has submitted a request for a service and is waiting for the reply.

CONSUME: the reply has begun, and the data is being received.

END: the service request is concluding, and the process terminates.

CHECK: S-R is checking the state of the S-P because no reply has been

received.

329

O UTBEFORE.
VIDEFL
0NSE

UIRY 	(CHECK NOTIFY

RECEIVE-REJECT-
VALIDITY-WITH-
MANAGERS

ECE1VEREJECT..
VALIDITYWITH
MANAGERS

NO-RESPONSE-
FROM-MANAGER-
AND-NO-MORE-
MANAGERS

ORESPONSE..
FROMMANAGER
ANDNO.M0RE.
MANAGERS

END

NO-RESPONSE-
FROM-MANAGER-
WITH-FURTHER-

MANAGERS

ORESPONSE
FROMMANAGER
WITHFURTHER

MANAGERS

-(_ ENQUIRE

I RECEIVE-
EXTEND-
TIME

ECEIVE
EXTEND
TIME

ECEIVE.
ALID
EPLY

~UM~E1

NO-RESPONSE-
FROM-MANAGER-
WITH-FURTHER-
MANAGERS

0RESP0NSE
FROMJvIANAGER
WITHFURTHER
MANAGERS

RECEIVE-
SUPPLY-
FAIL-WITH-
MANAGER

ECEIVE
SUPPLY..
FAILWITH.
MANAGER

RECEIVE-
REDIRECT

ECEIVE
REDIRECT

WAIT

RECEIVE-CONTINUE

Figure B-4: Basic Protocol : Service Requester (S-R) - 'ENQUIRE'

NOTIFY: S-P has indicated to S-R that its supply of the required service

has failed. So, S-R is notifying the S-M of the problem, with the objective

of being re-routed to a new S-P.

ENQUIRE: S-R is enquiring about the state of the service to S-ILl. The nature

of the problem is unknown, but the original request has not been satisfied.

Where the current S-M has failed to respond to a failure notification or

service enquiry, S-R has sent a further enquiry to an S-M higher in the

chain.

330

Description of Events

The Service Requester (S-R) identifies the following events

1. INIT_REQUEST: the S-R process has just been created.

RECEIVE-VALID-REPLY: S-R receives REPLY from the S-P with the cor-

rect permit and context.

RECEIVE-REDIRECT: 5-R receives REDIRECT from S-M because the S-P

is incapable of providing the required service, but is aware of another node

that is capable.

RECEIVEREQUESTFOlLMOREDATA: S-R receives REQMOREDATA

from S-P, indicating that insufficient information was provided in the original

request.

RECEIVE-SUPPLY-FAIL-WITH-NO-MANAGER: 	 5-

R receives SUPPLY-FAIL from S-P, indicating that the provision of the

service has failed, and there is no current S-M to recover the service.

SERVICE-RESPONSE-COMPLETE: S-P has returned all of the results in the

REPLY, and the provision of the service is complete.

TIMEOUTBEFORESERVICECOMPLETE: the provision of the service has

not been completed within the timeout period (Tbasjl).

331

RECEIVEREJ ECTVALIDITYWITHN O.MANAG ER: S-R receives RE-

JECT-VALIDITY in response to its last message, indicating that the per-

mit or context is wrong, but there is no current manager.

RECEIVE-INDICATION-OF-SERVICE-FAILURE: 	S-R 	receives

NOTIFY_S_FAIL from S-M, indicating that the service request hasd failed

and should be abandoned.

SERVICE-ABORT-REQUIRED: S-R is required to abort the request for the

service.

RECEIVE-INVALID-MESSAGE: S-R receives a message with an invalid per-

mit or incorrect context.

TIM EO UT.B EFO REREP LYFRO MP ROVIDER: S-P has failed to respond

to the initial service request within the timeout period (Tbasic2).

RECEIVE-INVALID-REPLY-WITH-MANAGER: S-R receives REPLY from

S-P, but the permit is invalid or the context is incorrect, and there is a

current manager.

RECEIVE-REJECT-VALIDITY-WITH-MANAGER: 	S-R 	receives

REJECT-VALIDITY in response to its last message, indicating that the

permit or context is wrong, and there is a current S-M.

RECEIVE-SUPPLY-FAIL-WITH-MANAGER: S-R receives SUPPLY-FAIL

from S-P, indicating that provision of the service has failed, and there is

a current S-M to recover the service.

332

RECEIVE-EXTEND-TIME: S-R receives EXTEND-TIME from S-F, indi-

cating that provision of the service is active, but extra time is required for

its completion.

NO-RESPONSE-FROM-MANAGER-AND-NO-MORE-MANAGERS: S-M has

failed to respond within the timeout period (Tbasjc3), and there are no more

managers higher in the chain.

TIM EOUTBEFOREPRQVIDEILRESPQNSETOENQUIRY: S-P has failed

to respond to the service supply enquiry within the timeout period (Tbasic4).

NO-RESPONSE-FROM-MANAGER-WITH-FURTHER-MANAGERS: S-Mhas

failed to respond within the timeout period (Tba3j3), but there are more

managers higher in the chain.

RECEIVE-CONTINUE: S-R receives CONTINUE from S-M, indicating that

it should proceed with the service request since the S-P appears to be active.

Description of Actions

The Service Requester (S-R) may initiate the following actions

REJECT-INVALID-MESSAGE: S-R returns REJECT-VALIDITY to the

node that sent the invalid message.

TERMINATE-REQUEST-ABNORMALLY: S-R sends ABORT-REQUEST

to S-P and the process terminates with an error code.

333

ABANDON-REQUEST: S-R process terminates with an error code.

MAKE-REQUEST: S-R sends REQUEST to the nominated S-F, recording

it as the 'current S-P

RECORD-REDIRECT: S-R makes the responding node the 'current S-M,

and updates the 'current S-F', changing the permit and context accordingly.

BEGIN-CONSUMING-DATA: S-R starts to pass the contents of the reply

through to the application.

PROVIDE-DATA: S-R sends GIVE-MORE-DATA to S-P to forward input

data from the application.

RECORD-PROVIDER-FAIL: S-R marks the current S-P as having failed in

its supply of the service.

NOTIFY-MANAGER-OF-SERVICE-FAILURE: S-R sends SERVICE-FAIL to

S-Ikt, with details of how the failure was determined.

CHECK-STATUS-OF-PROVIDER: S-R sends ENQSUPPLY to S-P.

CONCLUDE-REQUEST-NORMALLY: S-R completes the return of the out-

put data to the application and the process terminates.

ADJUST...TIMEOUT: S-R updates the timeout (Tbasjc2) to reflect the extra

processing time required by S-P.

MAKE-SERVICE-ENQUIRY-TO-MANAGER: S-R sends ENQSERVICE to

S- Al.

334

MARKCURRENTMANAGERASJNVALID: S-I? marks the 'current S-iVI as

having failed to recover the service.

REINSTATE-OLD-MANAGER: S-R takes the previous S-M andmakes it the

'current S-M'.

RESET_TIMEOUT: S-R resets the timeout (Tbasic2), as directed by S-M.

State Transition Tables

This State Event Action Next State

START RECEIVE-INVALID REJECTJN VALID START

MESSAGE MESSAGE

TIMEOUTBEFORE TERMINATE END

SERVICE-COMPLETE REQUEST

ABNORMALLY

RECEIVE-REJECT- ABANDON END

VALIDITY-WITH- REQUEST

NO-MANAGER

RECEIVE ABANDON END

INDICATION REQUEST

OF-SERVICE-

FAILURE

SERVICE-ABORT- TERMINATE END

REQUIRED REQUEST

ABNORMALLY

INJTREQUEST MAKE-REQUEST WAIT

335

This State Event Action Next State

WAIT RECEIVE-INVALID REJECT-INVALID WAIT

MESSAGE MESSAGE

TIMEOUTBEFORE TERMINATE END

SERVICE-COMPLETE REQUEST

ABNORMALLY

RECEIVE-REJECT- ABANDON END

VALIDITY-WITH- REQUEST

NO-MANAGER

RECEIVE- ABANDON END

INDICATION REQUEST

OF-SERVICE-

FAILURE

SERVICE-ABORT- TERMINATE. END

REQUIRED REQUEST

ABNORMALLY

RECEIVE-REDIRECT RECORD-REDIRECT; WAIT

MAKE-REQUEST

RECEIVE-VALID- BEGIN-CONSUMING- CONSUME

REPLY REPLY

RECEIVE-REQUEST- PROVIDE-DATA WAIT

FOR-MORE-DATA

RECEIVE-SUPPLY- ABANDON END

FAIL-WITH-NO- REQUEST

MANAGER

This State Event Action Next State

WAIT RECEIVE-SUPPLY RECORD-PROVIDER- NOTIFY

FAIL-WITH- FAIL; NOTIFY

MANAGER MANAGER-OF-ANAGEILOF

SERVICEFAILURE SERVICE-FAILURE

RECEIVE-REJECT RECORD-PROVIDER NOTIFY

VALIDITY-WITH- FAIL; NOTIFY

MANAGER MANAGER- OF-SERVICE-FAILURE

RECEIVE-INVALID- RECORD-PROVIDER- NOTIFY

REPLY-WITH- FAIL; NOTIFY

MANAGER MANAGER- OF-SERVICE-FAILURE

TIM EOUTBEFORE CHECK-STATUS- CHECK

REPLY-FROM- OF-PROVIDER

PROVIDER

337

This State Event Action Next State

CONSUME RECEIVE-INVALID REJECT-INVALID CONSUME

MESSAGE MESSAGE

TIMEOUTBEFORE TERMINATE END

SERVICE-COMPLETE REQUEST

ABNORMALLY

RECEIVE-REJECT- ABANDON END

VALIDITY-WITH- REQUEST

NO-MANAGER

RECEIVE ABANDON END

INDICATION REQUEST

OF-SERVICE-FSERVICE

FAILURE FAILURE

SERVICE-ABORT- TERMINATE END

REQUIRED REQUEST

ABNORMALLY

SERVICE-RESPONSE- CONCLUDE END

COMPLETE REQUEST

NORMALLY

RECEIVE-SUPPLY- ABANDON. END

FAIL-WITH-NO- REQUEST

MANAGER

RECEIVE-SUPPLY- RECORD-PROVIDER- NOTIFY

FAIL-WITH- FAIL; NOTIFY.

MANAGER MANAGER-OF-

SERVICE-FAILURE

338

This State Event Action Next State

CHECK RECEIVE-INVALID REJECT-INVALID CHECK

MESSAGE MESSAGE

TIMEOUTBEFORE TERMINATE END

SERVICE-COMPLETE REQUEST

ABNORMALLY

RECEIVE-REJECT- ABANDON END

VALIDITY-WITH- REQUEST

NO-MANAGER

RECEIVE. ABANDON END

INDICATION REQUEST

OF-SERVICE-E.SERVICE.

FAILURE FAILURE

SERVICE-ABORT- TERMINATE. END

REQUIRED REQUEST.

ABNORMALLY

RECEIVE. ADJUSTTIMEOUT WAIT

EXTEND-TIME

RECEIVE. RECORD-REDIRECT; WAIT

REDIRECT MAKE-REQUEST

TIMEOUL.BEFORE. MAKE-SERVICE- ENQUIRE

PROVIDER-RESPONSE- ENQUIRY-TO-

TO-ENQUIRY MANAGER

RECEIVE-REJECT RECORD-PROVIDER NOTIFY

VALIDITY-WITH- FAIL; NOTIFY

MANAGER MANAGER- OF-SERVICE-FAILURE

339

This State Event Action Next State

CHECK RECEIVE -SUPPLY RECORD -PROVIDER NOTIFY

FAIL-WITH- FAIL; NOTIFY-

MANAGER MANAGER- OF-SERVICE-

FAILURE

RECEIVE-SUPPLY- ABANDON-REQUEST END

FAIL- WITH-NO-

MANAGER

340

This State Event Action Next State

NOTIFY RECEIVE-INVALID REJECT-INVALID NOTIFY

MESSAGE MESSAGE

TIMEOUTBEFORE TERMINATE END

SERVICE-COMPLETE REQUEST

ABNORMALLY

RECEIVE-REJECT- ABANDON END

VALIDITY-WITH- REQUEST

NO-MANAGER

RECEIVE ABANDON END

INDICATION REQUEST

OF-SERVICE-

FAILURE

SERVICE-ABORT- TERMINATE END

REQUIRED REQUEST.

ABNORMALLY

RECEIVE—REJECT— MARK-CURRENT- NOTIFY

VALIDITY-WITH- MANAGER-AS-

MANAGER INVALID;

REINSTATE—

OLD-MANAGER; NOTIFY- OTIFY

MANAGEROF

SERVICEFAILURE

MANAGER-OF-

SERVICE-FAILURE

RECEIVE RECORD-REDIRECT; WAIT

REDIRECT MAKE-REQUEST

341

This State Event Action Next State

NOTIFY NO-RESPONSE- ABANDON END

FROM-MANAGER- REQUEST

AND—

NO-MORE-MANAGERS

NO-RESPONSE- MARK-CURRENT- ENQUIRE

FROM-MANAGER- MANAGER- AS—WITH—FURTHER

INVALID;

MANAGERS REINSTATEOLD

MANAGER; MAKE.

SERVICEENQUIRY

TO.MANAGER

342

This State Event Action Next State

ENQUIRE RECEIVE-INVALID REJECT-INVALID ENQUIRE

MESSAGE MESSAGE

TIMEOUTBEFORE TERMINATE END

SERVICE-COMPLETE REQUEST.

ABNORMALLY

RECEIVE-REJECT- ABANDON END

VALIDITY-WITH- REQUEST

NO-MANAGER

RECEIVE ABANDON END

INDICATION. REQUEST

OF-SERVICE-F-SERVICE

FAILURE FAILURE

SERVICE-ABORT- TERMINATE... END

REQUIRED REQUEST

ABNORMALLY

RECEIVE RECORD-REDIRECT; WAIT

REDIRECT MAKE-REQUEST

RECEIVE ADJUSL.TIMEOUT WAIT

EXTEND-TIME

RECEIVE-CONTINUE RESETTIMEO UT WAIT

RECEIVE BEGIN CONSUME

VALID-REPLY CONSUMING

REPLY

343

This State Event Action Next State

ENQUIRE NO-RESPONSE- ABANDON END

FROM-MANAGER- REQUEST

AND-NO-MORE- NDNOMORE

MANAGERS MANAGERS

RECEIVE-SUPPLY- RECORD ENQUIRE

FAIL-WITH- PROVIDER—FAIL

MANAGER

NO-RESPONSE- MARK-CURRENT- ENQUIRE

FROM-MANAGER- MANAGER— AS—WITH—FURTHER—

INVALID;

MANAGERS REINSTATEOLD

MANAGER; MAKE

SERVICEENQUIRY

TO.MANAGER

RECEIVE-REJECT- MARK-CURRENT- ENQUIRE

VALIDITY-WITH- MANAGER—

AS-MANAGER INVALID;

REINSTATEOLD

MANAGER; MAKE

SERVICEENQUIRY

TOMANAGER

B.2.2 Service Manager (S-M)

Description of States

The Service Manager (S-Al) has 6 possible states

1. BEGIN: S-ill process has not been created.

344

IT_S-M
G I IN RECEIVE- LBE ECEIVE..

REDIRECT..
RECEIVE

REDIRECT-
RECEIVE- INDICATION RECEIVE- REJECT-INVALID-

VALIDITY-FROM-
MESSAGE PROVIDER-AND- ROVDER.JLND

MOREPROVIDERS MORE-PROVIDERS

RECEIVE-
REJECT.. 	 WAIT
VALIDITY- UTBEFORE

ERESPONSE-FROM- FROM.. IVEECE..
REQUESTER TIMEOuT.. ICE ER..AND

BEFoRE.. NQUIRY PROVIDERS
CONFIRM..
FROM
PROVIDER RECEIVE..

RECEIVE.. PROVISION -
CONFIRM CONFIRM ACTIVE..

INDICATION

TEOUTBEFORE
RESPONSEFROM..

END
	PROVIDER-AND- I D ENQUIRE

NO-MORE-O.MORE
PROVIDERS PROVIDERS J U

L.JRECEIVE.. REDIRECT..
INDICATION

RECEIVE- REJECT-VALIDITY-FROM-PROVIDER-AND-
ECEIVE

NO.MOREPROVIDERS
RECEIVE-

NO-MORE-PROVIDERS INVALID-MESSAGE

Figure B-5: Basic Protocol : Service Manager (S-M) - 'ENQUIRE'

WAIT: S-M has redirected a service request to a new S-P and is waiting for

the confirmation of completion.

END: the role of S-M in the provision of the service is complete, and the

process is terminated.

ENQUIRE: S-Mis checking the state of the S-P because the provision of the

service appears to have failed.

VERIFY: S-Mis checking that S-P is aware of the failure of the service; S-R

has already notified the S-M that this is the case.

345

RECEIVE
REjECT..
VALIDITY..

TIMEOUT.. FROM
BEFORE. PROVIDER -
RESPONSE_ AND- MORE-FROM-

 PROVIDERS
PROVIDER- ROVIDER
AND..MORE
PROVIDERS
AND-MORE-
PROVIDERS

VERIFY

IIaYLIrnI!

PROVISION.. RECEIVE kECEIVE.. \
FAIL-AND- SERVICE- E'ROV..ACTIVE
MORE.. 	FAIL 	ND- MORE-
PROVIDERS 	 bniirsr'r

RECEIVE..PROVACTIVEAND
NOMOREPROVIDERS

END
TIMEOUTBEFORE
RESPONSE.FROM

RECEIVE PROVIDER-AND-NO ..
PROVISION.. MORE-PROVIDERS
FAIL- AIL
AND..NO.. AND-:NO-
MORE.. MORE- RECEIVE-REJECT-VALIDITY-
PROVIDERS

OM
FROMPROVIDER..AND
NO..MORE..PROVIDERS

Figure B-6: Basic Protocol: Service Manager (S-M) - 'VERIFY'

RECEIVE-SERVICE-
FAIL-WITH-MORE-
PROVIDERS

ECEIVE..SERVICE...
FAILWITH..MORE
PROVIDERS 	7

RECEIVE-
REJECT-
VALIDITY-
FROM-

END

ECEIvE..
REJECT..
VALIDITY..
FROM..

END 	 PROVIDER

RECEIVE
SERVICE..
ENQUIRY..WITH
NO..MORE..PROVIDERS

RECEIVE- SERVICE-FAIL-WITH-
NO-MORE-PROVIDERS

WAIT

ECEIVE.. RECEIVE..

	

ERVICE.. 	PROVISION
NQUIRY.. FAIL

[ORE..
ROVIDERS

RECEIVE-
INVALID-

RETRY

	

ECEIVE
INVALID..

RETRY 	
MESSAGE

TIMEOUT..BEFORE
MESSAGEFROM..
REQUESTER

Figure B-7: Basic Protocol : Service Manager (S-M) - 'RETRY'

6. RETRY: S-M waits for a message from S-R before attempting to redirect

the request to a new S-P. The previous S-P has indicated a failure in the

provision of the service. 	
346

Description of Events

The Service Manager (S-M) identifies the following events

1. INIT_S-M: the S-M process has just been created.

RECEIVE.CONFIRM: S-M receives CONFIRM from S-F, indicating that

S-P has completed its provision of the service.

RECEIVEREJECTVALIDITYFROMREQUESTER: S-M receives RE-

JECT-VALIDITY from S-R because the permit is invalid or the context is

incorrect.

RECEIVE-INVALID-MESSAGE: S-M receives a message with an invalid per-

mit or incorrect context.

RECEIVE-REDIRECT-INDICATION: S-M receives REDIR..M fromS-P, in-

dicating that the service request has been further redirected.

RECEIVE-SERVICE-ENQUIRY: S-M receives ENQSERVICE from S-R.

TIM EOUTBEFORECQNFJRMFRQMPRQVJDER: S-P has failed to con-

firm completion of the service within the timeout period (TbasjC5).

RECEIVE.PROVISION_ACTIVEJNDICATION: 	S-M 	receives

PROV_ACTIVE from S-F, indicating that S-P is actively providing the

service.

347

TIMEOUTBEFORERESPONSEFROM.YROVIDERANDMORE

PROVIDERS: S-P has failed to respond to the enquiry from S-M within

the timeout period (Tb 3C6), and there are more nodes capable of providing

the service.

TIMEOUTBEFORERESPONSEJROMPROVIDELANDNOMORE-

PROVIDERS: S-P has failed to respond to the enquiry from S-M within the

timeout period (Tbasj), but there are no more nodes capable of providing

the service.

REC El VEREJ ECTVALIDITYFRO MP RO VID ERAN DMORE-RE

PROVIDERS: PROVIDERS: S-M receives REJECT-VALIDITY from S-F, and there are

more nodes capable of providing the service.

RECEIVE-REJECT-VALIDITY-FROM-PROVIDER-AND-NO-MORE-ECEIVEREJECTVALIDITYFROMPROVIDERANDNOMORE

PROVIDERS: PROVIDERS: S-M receives REJECT-VALIDITY from S-P, but there are

no more nodes capable of providing the service.

RECEIVE-SERVICE-FAIL: S-M receives SERVICE-FAIL from S-R.

REC EIVEPRO VACTI VEAN DM 0 REPROVIDERS: 	S-M 	receives

PROV_ACTIVE from S-F, and there are more nodes capable of provid-

ing the service.

REC EIVEP RO V_CTI VEAN DN 00 REP RO VIDERS: S-M receives

PROV..ACTIVE from S-P, but there are no more nodes capable of pro-

viding the service.

348

RECEIVE-PROVISION-FAIL-AND-MORE-PROVIDERS: S-M receives PRO-

VISION-FAIL from S-P, and there are more nodes capable of providing the

service.

RECEIVE-PROVISION-FAIL-AND-NO-MORE-PROVIDERS: S-M receives

PROVISION-FAIL from S-F, but there are no more nodes capable of pro-

viding the service.

RECEIVE-PROVISION-FAIL: S-M receives PROVISION-FAIL from S-P.

RECEIVE-REJECT-VALIDITY-FROM-PROVIDER: 	S-M 	receives

REJECT-VALIDITY from S-P.

RECEIVES ERVIC EEN Q UIRYWITILM 0 REP RO VID ERS: S-M receives

ENQ_SERVICE from S-R, and there are more nodes capable of providing

the service.

RECEIVE-SERVICE-ENQUIRY-WITH-NO-MORE-PROVIDERS: 	S-M

receives ENQ_SERVICE from S-R, but there are no more nodes capable

of providing the service.

RECEIVE-SERVICE-FAIL-WITH-MORE-PROVIDERS: S-M receives SER-

VICE-FAIL from S-R, and there are more nodes capable of providing the

service.

RECEIVE-SERVICE-FAIL-WITH-NO-MORE-PROVIDERS: 	 S-M

receives SERVICE-FAIL from S-R, but there are no more nodes capable

of providing the service.

349

24. TIM EOUTBEFOREMESSAGEJROMREQUESTER: S-R fails to alert S-M

of a problem with the service within the timeout period (Tbas jc7).

Description of Actions

The Service Manager (S-M) may initiate the following actions

DETERMINE-NEW-PROVIDER: S-M records details of the selected S-P.

DIRECT-PROVIDER: S-Msends DIRECT to S-F, with details of the permit

and context.

REDIRECT-REQUESTER: S-M sends REDIRECT to S-R, with the new

permit.

CONCLUDE-SERVICE-NORMALLY: S-M returns an indication of success

and the process terminates.

ABORT-SERVICE-PROVISION: S-M sends ABORT-PROVISION to S-P.

ABANDON-SERVICE: S-M process terminates with an error code.

REJECT-INVALID-MESSAGE: 5-Msends REJECT-VALIDITY to the node

that sent the invalid message.

RECORD-DETAILS-OF-REDIRECTION: S-M records that the selected S-P

has further redirected the service request.

MAKE-SERVICE-PROVISION-ENQUIRY: S-M sends ENQPROVISION to

S-P.

350

RECORD-SERVICE-FAILURE: S-M records that S-R perceived a failure in

the service.

RECORD-PROVISION-FAILURE: S-M notesthat the selected S-P has failed.

INSTRUCT-REQUESTER—TO-CONTINUE: S-M sends CONTINUE to S-R.

NOTIFY-REQUESTER-OF-SERVICE-FAILURE: 	S-M 	sends

NOTIFY..S.FAIL to S-R.

351

State Transition Tables

This State Event Action Next State

BEGIN INITS- M DETERMINE-NEW- WAIT

PROVIDER;

DIRECT-PROVIDER;

REDIRECT- EDIRECT

REQUESTER REQUESTER

WAIT RECEIVE-CONFIRM CONCLUDE-SERVICE- END

NORMALLY

RECEIVE-REJECT ABORT-SERVICE- END

VALIDITY-FROM- PROVISION;

REQUESTER ABANDON-SERVICE

RECEIVE-INVALID- REJECT-INVALID- WAIT

MESSAGE MESSAGE

RECEIVE-REDIRECT- RECORD-DETAILS- WAIT

INDICATION OF-REDIRECTION

RECEIVE -SERVICE. MAKE -SERVICE ENQUIRE

ENQUIRY PROVISION-ENQUIRY

TIMEOUTBEFORE MAKE-SERVICE- ENQUIRE

CONFIRM-FROM- PROVISION-ENQUIRY

PROVIDER

RECEIVE RECORD-SERVICE- VERIFY

SERVICE-FAIL FAILURE

RECEIVE RECORD-PROVISION- RETRY

PROVISION-FAIL FAILURE

RECEIVE -REJECT RECORD-PROVISION- RETRY

VALIDITY-FROM- FAILURE

PROVIDER

352

This State Event Action Next State

ENQUIRE RECEIVE-PROVISION- INSTRUCT- WAIT

ACTIVE-INDICATION REQUESTER

TO-CONTINUE

TIM EOUT.BEFORE DETERMINE-NEW- WAIT

RESPONSE-FROM- PROVIDER;

PROVIDER-AND- DIRECT-PROVIDER;

MORE-PROVIDERS REDIRECT.

REQUESTER

RECEIVE -REJECT. DETERMINE-NEW- WAIT

VALIDITY-FROM- PROVIDER;

PROVIDER-AND- DIRECT-PROVIDER;

MORE-PROVIDERS REDIRECT- EDIRECT

REQUESTER REQUESTER

RECEIVE RECORD-DETAILS- ENQUIRE

REDIRECT OF-REDIRECTION;

INDICATION MAKE-SERVICE- AKESERVICE

PROVISIONENQUIRY PROVISION-ENQUIRY

RECEIVEJN VALID- REJECT-INVALID ENQUIRE

MESSAGE MESSAGE

RECEIVE-REJECT- NOTIFY END

VALIDITY-FROM- REQUESTER-

PROVIDER

-AND

OF- SERVICE-NO-MORE

FAILURE;

PROVIDERS ABANDON-SERVICE

TIMEOUTBEFORE NOTIFY END

RESPONSE-FROM- REQUESTER-

PROVIDER

-AND

OF- SERVICE-NO-MORE-

FAILURE;

PROVIDERS ABANDON-SERVICE

353

This State Event Action Next State

VERIFY RECEIVE RECORD-PROVISION- WAIT

PROVISION- FAILURE;

FAIL-AND- DETERMINE— NEW—MORE

PROVIDER;

PROVIDERS DIRECT-PROVIDER;

REDIRECT

REQUESTER

RECEIVEPROV. ABORT-SERVICE- WAIT

ACTIVE-AND- PROVISION;

MORE DETERMINE-NEW- ETERMINEN EW

PROVIDERS PROVIDERS PROVIDER;

DIRECT-PROVIDER;

REDIRECT- EDIRECT

REQUESTER REQUESTER

TIM EO UT...B EFO RE DETERMINE-NEW- WAIT

RESPONSE-FROM- PROVIDER;

PROVIDER- DIRECT-PROVIDER;

AND-MORE- REDIRECT- EDIRECT

PROVIDERS PROVIDERS REQUESTER

RECEIVE—REJECT RECORD-PROVISION- WAIT

VALIDITY-FROM- FAILURE;

PROVIDER. DETERMINE— NEW—AND—MORE.

PROVIDER;

PROVIDERS DIRECT-PROVIDER;

REDIRECT- EDIRECT

REQUESTER REQUESTER

354

This State

VERIFY

Next State

VERIFY

Event

RECEIVE-IN VALID-

MESSAGE

RECEIVE-

PROVISION-

FAIL-AND-

NO-MORE-

PROVIDERS

ECEIVE

PROVISION.

FAILANft.

NO MORE

PROVIDERS

RECEIVE-REJECT-

VALIDITY-FROM-

PROVIDER-AND-

NO-MORE-

PROVIDERS

ECEIVEREJECT

VALIDITYFROM

PROVIDERAND

N OMORE

PROVIDERS

TIMEOUTBEFORE.

RESPONSEFROM.

PROVIDERAND

NOMORE

RECEIVEPROV

ACTIVE..AN D

NO.MORE

PROVIDERS

Action

REJECT-

INVALID-MESSAGE

NOTIFYREQUESTER-

OF-SERVICE-

FAILURE;

STER.

OFSERVICE

FAILURE;

ABANDON-SERVICE

NOTIFYREQUESTER-

OF-SERVICE-

FAILURE;

STEIL

OFSERVICE

FAILURE;

ABANDON-SERVICE

NOTIFYREQUESTER-

OF-SERVICE-

FAILURE;

STER

OFSERVICE

FAILURE;

ABANDON-SERVICE

ABORT-

SERVICE-PROVISION;

NOTIFYREQUESTER-

OF-SERVICE-

FAILURE;

STER

OFSERVICE.

FAILURE;

ABANDON-SERVICE

END

END

19101111

END

355

This State Event Action Next State

RETRY RECEIVE-SERVICE- DETERMINE-NEW- WAIT

ENQUIRY-WITH- PROVIDER;

MORE DIRECT-PROVIDER;

PROVIDERS REDIRECT- EDIRECL.

REQUESTER REQUESTER

RECEIVE-SERVICE- DETERMINE-NEW WAIT

FAIL-WITH-MORE- PROVIDER;

PROVIDERS DIRECT-PROVIDER;

REDIRECT- EDIRECT

REQUESTER REQUESTER

RECEIVEJNVALID REJECT-INVALID RETRY

MESSAGE MESSAGE

RECEIVE-SERVICE- NOTIFY END

FAIL-WITH- REQUESTER-

NO

-MORE

OF-SERVICE- FSERVICE

PROVIDERS PROVIDERS FAILURE;

ABANDON-SERVICE

RECEIVE-SERVICE- NOTIFY. END

ENQUIRY-WITH- REQUESTER-

NO

-MORE

OF-SERVICE-

PROVIDERS FAILURE;

ABANDON-SERVICE

TIMEO UTBEFO RE. ABANDON-SERVICE END

MESSAGE-FROM- ESSAGEFROM

REQUESTER REQUESTER

356

B.2.3 Service Provider (S-P)

RECEIVE-INVALID-MESSAGE
RECEIVE..
REQUEST SPAWNED..
FOR. S-M..
KNOWN.. COMPLETED-
SERVICE- DIRECT..
WHILE.. SERVICE
BUSY

RECEIVE-REQUEST-FOR-
UNKNOWN-SERVICE-

WHILE-BUSY-BUT-
CAN-ROUTE

ECEIVE..REQUEST..FOR.
UNKNOWN.SERVICE

WHILEBUSY..BUT..
CAN..ROUTE

Current State
RECEIVE..
ABoRT..

PROVISION-
I 	RECEIVE-REQUEST SPAWNED.. 	VIsION.. ABORT)

S-M.. 	 RO 	
PROVISION

COMPLETED.. I FTER.REDIR

REDIRECTED.. RECEIVE-REQUEST-FOR-
UNKNOWN-SERVICE-

WHILE-BUSY-AND-

ECEIVE REQUEST..FOR. 	I
SERVICE 	

UNKNOWN..SERVICE.. (JY
WHILE..BUSY..AND.. 	ID LE

CANNOT-ROUTE

Figure B-8: Basic Protocol : Service Provider (S-P) - All States

RECEIVE-REQUEST- 	 I RECEIVE
RECEIVE..

CE

FOR-UNKNOWN-SERVICE- 	(- FORWNKNOWN..
REQUEST.. BUTCANR
FOR. CAN-ROUTE
UNKNOWN.. IDLE
SERVICE-AND-
CANNOT-ROUTE CANNOTROUTE - 	f RECEIVE-REQUEST- TIMEOUT.. J,J 	 I BEFORE- I BEFORE.. FOR-UNKNOWN-

MESSAGE.. MESSAGE-
SUPPLYOF 	 ROM - OUTE CANNOT -ROUTE

RECEIVE.. SERVICE.. 	 REQUESTER
COMPLETE

REQUEST..
AND..
CAN.. RECEIVE- '/
SUPPLY

DIRECT

(ACTIV)ECEIVEREQUEST IT
RECEWE AND-CAN-SUPPLY
ENQ.. 	

URECEIVENQROVISION SUPPLY

Figure B-9: Basic Protocol Service Provider (S-P) - 'WAIT'

357

IDLE
TIMEOUT

RECEIVE.ENQ.. RECEIVEENQ BEFORE-
SUPPLY-FOR- SUPPLY-FOR- MORE
DIRECT.. REDIRECTED DATA
SERVICE SERVICE

/ RECEIVE-MORE-DATA 	 I
ACTIVE 	rTHIRSTY

MORE 	t 	RECEIVE
DATA 	j 	ENQ..
REQUIRED } 	PROVISION

Figure B-10: Basic Protocol : Service Provider (S-F) - 'THIRSTY'

Description of States

The Service Provider (S-P) has 4 possible states

IDLE: S-P is not currently providing a service, and is awaiting a new request.

ACTIVE: S-P is actively providing a service.

WAIT: S-P has been directed to provide a redirected service, and is awaiting

the request.

THIRSTY: S-P has received a service request that provided insufficient data

for the service to be completed. S-P is waiting for more data to be supplied

by S-R.

Description of Events

The Service Provider (S-P) identifies the following events

358

RECEIVEJNVALID_MESSAGE: S-P receives a message with an invalid per-

mit or an incorrect context.

RECEIVE-ABORT-REQUEST: S-P receives ABORT-REQUEST from S-R.

RECEIVE-ABORT-PROVISION: S-P receives ABORT-PROVISION from

S-M.

SPAWN EDS-M..COMPLETED.DIRECT.SERVICE: a service request, redi-

rected by an S-M created by S-P, has been completed and the S-M process

has terminated.

SPAWN EDS-MCOMPLETEDREDIRECTEDSERVICE: a service request,

already redirected to S-P, has been further redirected by an S-M created by

S-P. The service has been completed and the S-M process has terminated.

RECEIVE-REQUEST-FOR-KNOWN-SERVICE-WHILE-BUSY: S-P receives

REQUEST from an S-R whilst it is already servicing a request from an-

other S-R. The S-P is able to provide the required service.

RECEIVE-REQUEST-FOR-UNKNOWN-SERVICE-WHILE-BUSY-BUT

-CAN-ROUTE: S-P receives REQUEST from an S-R for a service that it

cannot provide whilst it is already servicing a request from another S-R.

The S-P knows another S-P that is able to provide the required service.

RECEIVEREQ UESTFORUNKNOWNSERVICEWHILEBUSYAND

CANNOTROUTE: 5-P receives REQUEST from an S-R for a service that

it cannot provide whilst it is already servicing a request from another S-R.

359

The S-P does not know of another S-P that is able to provide the required

service.

RECEIVEREQUESTANDCANSUPPLY: S-P receives REQUEST from an

S-R and can supply the required service.

RECEIVE-DIRECT: S-P receives DIRECT from S-M, indicating that it is

to expect a redirected service request.

RECEIVE-REQUEST-FOR-UNKNOWN-SERVICE-BUT-CAN-ROUTE: S-P

receives REQUEST from S-R, is unable to supply the required service, but

knows another node that can.

RECEIVE-REQUEST-FOR-UNKNOWN-SERVICE-AND-CANNOT-ROUTE:

S-P receives REQUEST from S-R, is unable to supply the required service,

and does not know of another node that can.

RECEIVEENQPROVISIONAFTERREDIRM:

S-P receives ENQ_PROVISION from S-M for a service that has already

been redirected further by an S-M created by S-P.

SUPPLY-OF-SERVICE-COMPLETE: S-P has completed provision of the re-

quired service.

TIM EOUTBEFOREMESSAGEFROMREQUESTER: S-R has failed to send

a redirected REQUEST to S-P within the timeout period (Tôasic8).

16. REC EIVEEN QP HO VISION: 5-P receives ENQP ROVISION from S-M.

360

RECEIVEENQSUPPLY: S-P receives ENQSUPPLY from S-R.

MORE-DATA-REQUIRED: S-P requires more information from S-R before

the service may be provided.

RECEIVE-MORE-DATA: S-P receives GIVE-MORE-DATA from S-R, pro-

viding additional information that S-P requires for provision of the service.

TIMEOUTBEFORE.MOREDATA: S-R has failed to supply additional in-

formation to S-P within the timeout period (Tbasjc9).

RECEIVELENQSUPPLY.YORDIRECTSERVICE:

S-P receives ENQ_SUPPLY from S-R, where no previous DIRECT had

been sent from S-M.

RECEIVEENQSUPPLYFOILREDIRECTEDSERVICE: 	 S-P

receives ENQ_SUPPLY from S-R for a service that has been redirected

by S-M.

Description of Actions

The Service Provider (S-P) may initiate the following actions

REJECT-INVALID-MESSAGE: S-P sends REJECT-VALIDITY to the node

that sent the invalid message.

RECORD.S- MDEATH: S-P marks the redirected service as complete, and

removes the entry from the table of active spawned managers.

361

CONFIRMSERVICECOMPLETION: S-P sends CONFIRM to the S-Mthat

sent the DIRECT.

INFORM-MANAGER-OF-PROVISION-FAIL: S-P sends PROVISION-FAIL

to the S-M.

TERMINATE-SERVICE: S-P terminates the process executing the service

application.

N OTIFYMA NAG ER...O F...SERVIC E..REDIRECTIO N: S-P sends REDIR..M

to the S-M, indicating that it has further redirected the service.

INDICATE-SUPPLY-FAIL: S-P sends SUPPLY-FAIL to the S-R.

CREATENEWS-M: S-P spawns a process to redirect the service request.

RECORD-SERVICE-REDIRECTION: S-P updates the table of active

spawned managers and marks the service as being further redirected.

INITIATE-SERVICE-PROVISION: S-P spawns a process to run the service

application.

RECORD-SERVICE-DETAILS: S-P notes the expected source of the request,

the permit and the context.

RETURN-RESULTS-TO-REQUESTER: 5-P sends REPLY to the S-R, to-

gether with the output data and an indication of the success of the service.

362

INSTRUCT-REQUESTER-TO-EXTEND-TIME: S-P sends EXTEND-TIME

to S-R, indicating that extra time is required in which to complete the ser-

vice.

INDICATE-PROVISION-ACTIVE: S-P sends PROV..ACTIVE to S-M.

REQUEST-MORE-DATA: S-P sends REQ.MOREJJATA to S-R, with de-

tails of stream channels, if needed.

CONSUME-EXTRA-DATA: S-P passes the extra data to the service applica-

tion.

363

State Transition Tables

This State Event Action Next State

IDLE RECEIVE-INVALID REJECT-INVALID IDLE

MESSAGE MESSAGE

SPAWNEDS-M.. RECORDS-M. IDLE

COMPLETED DEATH

DIRECT-SERVICE

SPAWNEDS-M RECORDS-M. IDLE

COMPLETED. DEATH; CONFIRM -
REDIRECTED- SERVICE

SERVICE COMPLETION

RECEIVE INFORM IDLE

ABORT MANAGER

REQUEST OF- PROVISION-F

AIL;

TERMINATE

SERVICE

RECEIVE-ABORT- TERMINATE IDLE

PROVISION SERVICE

RECEIVE.ENQ NOTIFY. IDLE

PROVISION. MANAGER.

AFTER.REDIRM OF- SERVICE-

REDIRECTION

RECEIVE-REQUEST- INDICATE. IDLE

FOR-KNOWN- SUPPLY-

SERVICE

-WHILE

FAIL

BUSY

364

This State Event Action Next State

IDLE RECEIVE -REQUEST INDICATE IDLE

FOILUNKNOWN SUPPLY-

SERVICE

-WHILE

FAIL

BUSY-AND- USYAND..

CANNOT-ROUTE CANNOT-ROUTE

RECEIVE-REQUEST- CREATE -NEW IDLE

FOR-UNKNOWN- S-M; RECORD-

SERVICE

-WHILE

SERVICE-

BUSY

-BUT-CAN

REDIRECTION

ROUTE

RECEIVE-REQUEST- INITIATE ACTIVE

AND-CAN-SUPPLY SERVICE-ERVICE

PROVISION PROVISION

RECEIVE-DIRECT RECORD-SERVICE- WAIT

DETAILS

RECEIVE -REQUEST CREATE -NEW- IDLE

FOR-UNKNOWN- S-M; RECORD-

SERVICE

-BUT

SERVICE

CANROUTE REDIRECTION

RECEIVE-REQUEST- INDICATE IDLE

FOR-UNKNOWN- SUPPLY-FAIL

SERVICE-AND- ERVICEAND

CANNOTROUTE CANNOT-ROUTE

365

This State Event Action Next State

ACTIVE RECEIVE-INVALID REJECT-INVALID ACTIVE

MESSAGE MESSAGE

SPAWNEDS-M RECORDS-M ACTIVE

COMPLETED DEATH

DIRECT-SERVICE

SPAWNEDS-M RECORDS-M ACTIVE

COMPLETED DEATH; CONFIRM -

REDIRECTED- SERVICE.

SERVICE COMPLETION

RECEIVE INFORM IDLE

ABORT MANAGER

REQUEST OF- PROVISION-F

AIL;

TERMINATE

SERVICE

RECEIVE-ABORT- TERMINATE IDLE

PROVISION SERVICE

RECEIVEENQ. NOTIFY-MANAGER- ACTIVE

PROVISION- OFSERVICE

AFTER.REDIFLM REDIRECTION

RECEIVE-REQUEST- INDICATE- ACTIVE

FOR-KNOWN- SUPPLY-

SERVICE

-WHILE

FAIL

BUSY

This State Event Action Next State

ACTIVE RECEIVE-REQUEST- INDICATE- ACTIVE

FOR-UNKNOWN- SUPPLY-

SERVICE

-WHILE

FAIL

BUSY-AND- USY.AND

CANNOTROUTE CANNOT-ROUTE

RECEIVE-REQUEST- CREATE -NEW ACTIVE

FOR-UNKNOWN- S-M; RECORD-

SERVICE

-WHILE

SERVICE-

BUSY

-BUT-CAN

REDIRECTION

ROUTE

SUPPLY-OF- RETURN-RESULTS- IDLE

SERVICE TO-REQUESTER

COMPLETE

RECEIVE.ENQ INSTRUCT ACTIVE

SUPPLY REQUESTER- EQUESTEIL

TOEXTENft.

TIME

TO-EXTEND-

TIME

RECEIVE.ENQ INDICATE ACTIVE

PROVISION PROVISION-ROVISION

ACTIVE ACTIVE

MORE-DATA- REQUEST THIRSTY

REQUIRED MORE-DATA

This State Event Action Next State

WAIT RECEIVE-INVALID REJECT-INVALID WAIT

MESSAGE MESSAGE

SPAWNEDS-M RECORD.S-M. WAIT

COMPLETED DEATH

DIRECT-SERVICE

SPAWNEDS-M RECORDS-M WAIT

COMPLETED. DEATH; CONFIRM.

REDIRECTED SERVICE

SERVICE COMPLETION

RECEIVE INFORM IDLE

ABORT MANAGER

REQUEST OF- PROVISION-F

AIL;

TERMINATE- ERMINATE

SERVICE SERVICE

RECEIVE-ABORT- TERMINATE IDLE

PROVISION SERVICE

RECEIVEENQ NOTIFY-MANAGER- WAIT

PROVISION. OFSERVICE

AFTERREDIRM REDIRECTION

RECEIVE-REQUEST- INDICATE- WAIT

FOR-KNOWN- SUPPLY-

SERVICE

-WHILE

FAIL

BUSY

368

This State Event Action Next State

WAIT RECEIVE-REQUEST- INDICATE- WAIT

FOR-UNKNOWN- SUPPLY-

SERVICE

-WHILE

FAIL

BUSY-AND- US'LAND

CANNOT.ROUTE CANNOT-ROUTE

RECEIVE-REQUEST- CREATE-NEW WAIT

FOR-UNKNOWN- S-M; RECORD-

SERVICE

-WHILE.

SERVICE-

BUSY

-BUT-CAN

REDIRECTION

ROUTE

RECEIVE-REQUEST- INITIATE- ACTIVE

AND-CAN-SUPPLY SERVICE- ERVICE

PROVISION PROVISION

RECEIVEENQ INFORM IDLE

PROVISION MANAGER- ANAG ER

OFPROVISION

FAIL

OF-PROVISION-

FAIL

TIMEOUTBEFORE INFORM IDLE

MESSAGE-FROM- MANAGER

REQUESTER OF-PROVISION-

FAIL

RECEIVE-REQUEST- INDICATE-SUPPLY- IDLE

FOR-UNKNOWN- FAIL; INFORM-

SERVICE

-AND

MANAGER-OF-

CANNOT-ROUTE PROVISION-FAIL

RECEIVE-REQUEST- CREATENEWS-M; IDLE

FOR-UNKNOWN- RECORD-

SERVICE

-SERVICE-BUT

REDIRECTION;

CAN-ROUTE NOTIFY-MANAGER- OTIFYMANAGER

OFSERVICE

REDIRECTION

OF-SERVICE-

REDIRECTION

eff

This State Event Action Next State

THIRSTY RECEIVE-INVALID REJECT-INVALID THIRSTY

MESSAGE MESSAGE

SPAWNEDS-M. RECORD.S-M THIRSTY

COMPLETED DEATH

DIRECT-SERVICE

S PAWN EDS- M RECORDS-M THIRSTY

COMPLETED DEATH; CONFIRM-

REDIRECTED- SERVICE-

SERVICE COMPLETION

RECEIvE.. INFORM. IDLE

ABORT MANAGER -
REQUEST OF-PROVISION- F.YROvISION..

FAIL; FAIL;

TERMINATE

SERVICE

RECEIVE-ABORT- TERMINATE. IDLE

PROVISION SERVICE

RECEIVEENQ NOTIFY-MANAGER- THIRSTY

PROVISION OFSERVICE

AFTEILREDIRM REDIRECTION

RECEIVE-REQUEST- INDICATE- THIRSTY

FOR-KNOWN-SERVICE- SUPPLY

WHILEBUSY FAIL

370

This State Event Action Next State

THIRSTY RECEIVE—REQUEST— INDICATE- THIRSTY

FOR-UNKNOWN- SUPPLY-

SERVICE—WHILE FAIL

BUSY-AND-

CANNOT-ROUTE

RECEIVE—REQUEST CREATE-NEW- THIRSTY

FOR-UNKNOWN- S-M; RECORD-

SERVICE—WHILE SERVICE- BUSY—BUT—CAN—

REDIRECTION

ROUTE

RECEIVE CONSUME ACTIVE

MO REDATA EXTRA-DATA
RECEIVEENQ INDICATE THIRSTY

PROVISION PROVISION

ACTIVE

TIMEOUTBEFORE INFORM—MANAGER— IDLE

MORE-DATA OF— PROVI

SION-FAIL;

TERMINATE

SERVICE

RECEIVEENQ INDICATE IDLE

SUPPLY-FOR- SUPPLY-FAIL;

DIRECT-SERVICE TERMINATE

SERVICE

RECEIVEEN Q INDICATE-SUPPLY- IDLE

SUPPLY-FOR- FAIL; INFORM

REDIRECTED MANAGER-

OF-SERVICE PROVISION-FAIL;

TERMINATE-SERVICE

371

Appendix C

The Special Service Provision Protocol

372

C.1 Table of Primitives

Primitive From To Purpose

RUN-JOB SM* SP initiate 	provision 	of a specialised

service; transfers description of job

required

JOB-COMPLETE SP SM* indicate completion of the speci-

fied task; returns details of the be-

haviour of the job

STATUS-REQUEST SM* SP* poll for current state of BEM and

job

STATUS-REPORT SP* SM* details of the current state

KILLLJOB SM* SP* premature termination of service

provision

JOB-STOPPED SP* SM* notice/confirmation 	of premature

end

SEEK-MANAGER SP* SM* determine 	association 	between

BEM and its manager

BECOME-MANAGER SM* SP establish bond between BEM and

manager

373

—(BOOT

RECEIV EIVE
STATUS.. 	SEEK..
REPORT I MANAGER

INITSM*
(DOWN

SP*STATUS
UN KNOWN

RECEIVE
INITJOB 	 STATUS..

REPORT

WAIT
RECEiVE.. 	 STATUS -
JOB- 	 OF--S-P*-
STOPPED NEEDED

RECEIVE-
JOB- 	 RECEIVE..

PL

STATUS-

ET

TAT Us..
REPORT

COMPLETE

STOP-JOB)

IDLE
RECEIVE-
STATUS-
REPORT

ECEIVE
STATUS
REPORT

TIMEO UT
BEFORE.. 	RECEIVE..
ANYSP*. 	JOB..

RESPONSE STOPPED

NO-RESPONSE-TO-
STATUS-REQUEST

O RESP0NSE.T0..
STATUS..REQUEST

1N(U1tU 1)—

U
TIMEOUTBEFORE.
RESPONSE..TO..
STATUS..REQUEST

Figure C—i: Special protocol : Special Service Manager (S..M*)

C.2 Protocol Definition

C.2.1 Special Service Manager (SM*)

Description of States

The Special Service Manager (S..M*) has 6 possible states

DOWN: SM* is not enabled - the process has not been created.

BOOT: S..M* attempts to form a relationship with its S-P*

374

3. IDLE: SP* returns regular STATUS_REPORTs to SM*, but there is no

job active.

4. WAIT: S-P* is actively processing a job started by SM*. SP returns

STATUS_REPORTs to SM* in one of two forms:

periodic, unsolicited messages.

in response to a STATUS-REQUEST from SM*.

5. ENQUIRE: SM* waits for a STATUS-REPORT from SP*, having sent an

explicit STATUS-REQUEST.

6. STOP: The job is being terminated prematurely.

Description of Events

The Special Service Manager (SM*) identifies the following events

1. INIT_S-M: the SM* process has just been created.

RECEIVE-STATUS-REPORT: SM* receives STATUS-REPORT from the

S-P*

RECEIVE-SEEK-MANAGER: SM* receives SEEK-MANAGER from the

SP*; the SP* will have been created or enabled after the S-Mt

4. INIT_JOB: SM* is instructed to provide a special service.

375

SP*STATUSUNKNOWN: SP* has not sent a STATUS-REPORT within

the timeout period (Tspccjaii).

RECEIVE-JOB-COMPLETE: SP* has completed processing the job and has

sent JOB-COMPLETE to SM*.

RECEIVE-JOB-STOPPED: processing of the job failed to complete normally

and SP* has sent JOB-STOPPED to SM*.

STOP-JOB: SM* is instructed to terminate provision of the service, or a

constraint of the job processing has been violated.

STATUS_OF_SP*_NEEDED: SM* requires an update to the status of the

SP*. The SP* may have failed to provide a periodic message.

TIM EOUTBEFORERESPONSETOSTATUSREQUEST: SP* has failed to

provide a STATUS-REPORT within the timeout period (Tspecja12).

NO-RESPONSE-TO-STATUS-REQUEST: SP* has not sent a STA-

TUS-REPORT within the timeout period (Tspecja13).

TIMEOUTBEFOREANYSP*RESPONSE: SP* has not sent a valid mes-

sage within the timeout period (Tspecja14).

Description of Actions

The Special Service Manager (SM*) may initiate the following actions

1. LOOKFORSP*: SM* sends BECOME-MANAGER to the SP*

376

LOG_SP*.STATUS: SM* records the information provided in the STA-

TUS-REPORT from SP*.

RECORD_SP*.WETAILS: SM* records details about SP* from the

SEEK-MANAGER.

FORMBONDWITHNEWSP*: SM* sends BECOME-MANAGER to

the SP*.

SEND-JOB-DESCRIPTION: SM* sends RUN-JOB to the SP*

CONCLUDE-JOB-WITH-NORMAL-END: SM* returns the results of the job

with an indication of success.

CONCLUDE-JOB-WITH-ABNORMAL-END: SM* returns an indication of

failure with details.

8. TERMINATE-JOB: SM* sends KILL-JOB to the SP*

REQUESTSTATUSOFSP*: SM* sends STATUS-REQUEST to the S-

P*.

377

State Transition Tables

This State Event Action Next State

DOWN INITSM* LOOKFOILSP* BOOT

BOOT RECEIVE LOGSP* IDLE

STATUS-REPORT STATUS

RECEIVE-SEEK- RECORDSP* IDLE

MANAGER DETAILS; FORM

B ON D.WITH.

NEWSP*

IDLE INITJOB SEND-JOB- WAIT

DESCRIPTION

RECEIVE LOGSP* IDLE

STATUS-REPORT STATUS

SP*STATUS LOOKFORSP* BOOT

UNKNOWN

WAIT RECEIVE-JOB- CONCLUDE-JOB- IDLE

COMPLETE WITH-NORMAL- ITHNORMAL

END END

RECEIVE-JOB- CONCLUDE-JOB- IDLE

STOPPED WITH-ABNORMAL-

END

RECEIVE LOGSP* WAIT

STATUS-REPORT STATUS

STOP-JOB TERMINATE-JOB STOP

STATUSO FS-P REQUEST-STATUS ENQUIRE

NEEDED OFSP*

378

This State Event Action Next State

ENQUIRE RECEIVE LOG.SP* WAIT

STATUS-REPORT STATUS

TIM EOUTBEFORE REQUEST—STATUS— ENQUIRE

RESPONSE-TO- OFSP*

STATUS-REQUEST

NO-RESPONSE-TO- TERMINATE-JOB STOP

STATUS-REQUEST

STOP RECEIVE-JOB- CONCLUDE-JOB- IDLE

STOPPED WITH— ABNORMAL-END

TIMEOUTBEFORE LOOKJOILSP* BOOT
ANYSM*

RESPONSE

C.2.2 Special Service Provider (5P*)

n TIMEOUTBEFORE
SM*FOUND

BOOT
\) INITSP*

(DOWN
RECEIVE..
BECOME
MANAGER

JOB-FINISHED-NORMALLY
JOB-

RECEIVE-RUN 	

TERMINATED..
ABNORMALLY

	

WAIT 	I ACTIVE
BECOME

	

II 	 f 	(
STATUS-

MANAGER 	
RE_CEIV_I_LL_JOB 	 REQUEST

STATUS-NEEDED
	

STATUS-NEEDED

Figure C-2: Special protocol : Special Service Provider (S-P*)

379

Description of States

The Special Service Provider (SP*) has 4 possible states

DOWN: SP is not enabled or the process has not been created.

BOOT: SP* attempts to form a relationship with its SM*.

WAIT: there is no job processing active, but SP* will still send regular

STATUSREPORTs to the S..M*.

ACTIVE: S-P* is processing a job started by SM*. It may return STA-

TUS_REPORTs to SM* in one of two forms:

periodic, unsolicited messages.

in response to an explicit STATUS-REQUEST from SM*.

Description of Events

The Special Service Provider (SP*) identifies the following events

INIT_SP*: the SP* process has just been created.

RECEIVE-BECOME-MANAGER: SP* receives BECOME-MANAGER

from the SM*.

TIMEOUTBEFORESM*FQUND: 	SM* 	failed 	to 	send

BECOME-MANAGER within the timeout period (Tspecjai5).

380

RECEIVE-RUN-JOB: SP* receives RUN-JOB from SM*; this is the de-

scription of the job, and a directive to commence processing.

STATUS-NEEDED: the interval between the regular STATUS_REPORTs

(T specia16) has passed.

JOB-FINISH ED.NORMALLY: processing of the job has been completed suc-

cessfully.

RECEIVE-KILL-JOB: SP* receives KILL-JOB from SM*; this is a directive

to terminate processing of the job.

JOB-TERMINATED-ABNORMALLY: processing of the job has been termi-

nated because of an abnormal condition.

RECEIVESTATUSREQUEST: 	SP* 	receives 	an 	explicit

STATUS-REQUEST from SM* for a STATUS-REPORT.

Description of Actions

The Special Service Provider (SP*) may initiate the following actions

LOOKFORSM*: SP* sends SEEK-MANAGER to the S IVI*.

FORMBONDWITH_SM*: SP* records details about SM*, as supplied in

BECOME-MANAGER.

3. BEGIN-JOB: SP*begins processing the job, as described in the RUN-JOB.

381

SUPPLY-STATUS: SP* sends a STATUS-REPORT to S ill*.

CONCLUDE-JOB-NORMALLY: SP* records statistics and accounting infor-

mation for the completed job.

INDICATE-JOB-COMPLETION: SP* sends the results of the job to SM*

in JOB-COMPLETE.

TERMINATE-JOB-ABNORMALLY: S-P* stops processing of the job.

SUPPLY-DETAILS-OF-JOB-FAILURE: S-P returns information about the

final state of the terminated job in JOB-STOPPED to S IiI*.

382

State Transition Tables

This State Event Action Next State

DOWN INITSP* LOOKFOFLSM* BOOT

BOOT RECEIVE -BECOME FORM-BOND- WAIT

MANAGER WITHSM*

TIMEOUTBEFORE LOOKFOILSM* BOOT

SM*FOUND

WAIT RECEIVE-RUN-JOB BEGIN-JOB ACTIVE

STATUS-NEEDED SUPPLY-STATUS WAIT

RECEIVE -BECOME SUPPLY-STATUS WAIT

MANAGER

ACTIVE JOB-FINISHED- CONCLUDE-JOB- WAIT

NORMALLY NORMALLY;

INDICATE- JOB-C

OMPLETION

RECEIVE TERMINATE-JOB- WAIT

KILL-JOB ABNORMALLY;

SUPPLY- DETAILS-OF-JOB-F

AILURE

JOB-TERMINATED- SUPPLY-DETAILS WAIT

ABNORMALLY OF-JOB-FAILURE

STATUS-NEEDED SUPPLY-STATUS ACTIVE

RECEIVE-STATUS- SUPPLY-STATUS ACTIVE

REQUEST

383

Appendix D
	

Published Paper

A Model for the Design of High Performance Protocols
for a Networked Computing Environment

Gary D. Law
Spider Systems Limited, 65 Bonnington Road, Edinburgh EH6 5JQ, U.K.

Abstract
The advent of high bandwidth local area networks
means that it is now possible to interconnect large
numbers of devices with widely differing processing
capabilities in such a manner that the various devices
may closely interact. Before such a system may be
realised, it is necessary to define a set of conventions
to govern the way in which the network nodes interact

with each other.
The Triadic Network Model is introduced to de-

scribe the interactions between personal computers
and high performance computers over a general pur-
pose network by using a third classification of de-

vices,

e

vices, whose purpose is to support the operation of
the network as a distributed system. The model is
not restricted to any particular network or operat-
ing system, but may form the interface between the
two. Hence, the use of a protocol set based on this
model enables the provision of a uniform interface to
the applications software. Some of the principles of
a protocol set developed from the Triadic Network
Model are presented in the paper.

Introduction
High performance computers are extremely expen-
sive. Usually they provide specialized services that
are only occasionally required by individual users but
which may be considered desirable by a large num-

ber of users. Consequently installations housing such

high performance computers attempt to make these
machines accessible to as many users as possible. In
the past this has been achieved by attaching the high
performance computer as a 'back-end' to a general
purpose multi-user computer, which has the capabil-
ity to handle a large number of terminals or batch

jobs.
The advent of high bandwidth local area networks,

of which Centrenet j3J is one example, means that
it is now feasible to interconnect large numbers of
devices with widely differing processing capabilities
in such a manner that the various levels may closely

interact.

General Network Structure

To give some indication of the wide range of devices
that may be attached to a network to form a dis-
tributed system, consider the network structure il-
lustrated in figure 1. This structure is considered to
be representative of configurations that will soon be

in widespread existence.
The range of machines to which the users of the

system have direct access is wide and includes 'dumb'
terminals with no inherent computational capabili-
ties. There are personal computers with somewhat
basic facilities and personal workstations that have
fairly substantial resources. There are also medium
performance multi-user computers, to which termi-
nals may be connected directly or via the network.

Of the machines that are connected to the net-
work which the user cannot directly access, some
are high performance special purpose processors that
have been designed for particular types of compu-

tation, e.g. vector processing. The architectures of

these processors are optimized for their respective ap-
plications. Hence they are not suitable for direct in-
teraction with the users of the system.

Services are provided by dedicated servers for use
by all of the devices attached to the network. These

384

Special Purpose Computers

Vector 	 CmpIAer
Processor 	 • 	Engine

Network
Management K 	 / 	 Printer

NETWORK 	L_{TFile
Server I 	 I 	 I Server

/
General Purpose

Personal 	 Multi-User
Workstation 	 Computer 	 Computer

Terminal

4 41 41

Figure 1: A General Network Structure

services include file storage and access to peripherals
such. as printers and graph plotters. The remaining
devices are, purely concerned with the management
and control of the system. The facilities that they
may provide and the degree of control that they ex-
ert are determined by particular installations and no
generalisation is possible.

The network could have any one of a number of
topologies and use many different types of media; the
implementation adopted for a specific system will be
selected according to its requirements 16][81.

Before such a system may be realised, it is neces-
sary to define a set of conventions to govern the way
in which the network nodes interact with each other.
A well structured set of conventions will enable the in-
dividual devices to work as a unified system; without
any government at all the devices operate disjointly,
contesting for use of the network.

Triadic Classification of Network Devices

By dividing the wide variety of network devices of
figure 1 into a limited number of classes, it is pos-
sible to isolate the requirements of communication
within and between these differing classes, with the
ultimate objective of providing protocols oriented to-
wards efficiently satisfying these needs. Three classes
are distinguished that give an indication of areas of
current development, and which represent those ma-

chines that may be expected to exist in future net-
work environments.

User Workstations Suitable examples are the
Apollo (5], SUN and TORCH XXX workstations,
the IBM Personal System/2, and the Apple Mac-
intosh II.

Network Servers This includes most peripherals,
but the management functions of the network
operating system would have to be supplied by
additional types of node. The Centrenet NIM
(Network Intelligence Module) is an example of
this particular type of network server. Centrenet

31 is a packet-switched local area network with
a hierarchical tree structure. The network incor-
porates dedicated network devices (NIMs) that
perform name-serving and virtual circuit man-
agement functions.

Back-End Processors : The sort of computers
that would be classified as back-end proces-
sors include fast numerical processors such as
MU6V [4], specialist mathematical processors,
compiler engines (1], simulators, image proces-
sors, language translators and inference proces-
sors. MU6V is a good example of a Back-End
Processor. The processor incorporates me:ha-
nisms to achieve a high performance in vect':

385

calculations. It is designed to operate as a spe-
cial purpose processor attached to a local area
network and hence it has a minimum of operat-
ing system software.

These three classes of device provide a focus for
further considerations of the way in which the devices
will require use of the network. However, this simple
three-way classification is inadequate because of the
degree of variation that may occur in the nature of
individual members of one division. So, to strengthen
this framework, the model defined in the next section
takes these three classes of device and isolates those
features that are of primary concern.

A Triadic Network Model

The Triadic Network Model is an idealised repre-
sentation of a network structure, such as that shown
in figure 1. The model defines three types of mod-
ule that correspond to these classes of device: Per-
sonal Workstation Modules(PWMs), Back-End
modules (BEMs) and Network Service Modules
(NSMs). The model defines the form of the modules,
but primarily it exists to describe the nature of the
interactions between them, from which protocols may
be developed In figure 2, the domain of each type of
module is shdwn as a triangle and where the triangles
touch it indicates that the domains may interact.

Personal
Workstation

Modules 	 NETWORK 	Back-End
Modules

V"

Network Service Modules

Figure 2: Triadic Network Model

Personal Workstation Modules (PWMs)

The Personal Workstation Modules are notion-
ally general purpose single-user workstations. Each
PWM is considered to have good computational Ca-
pabilities and a fairly substantial amount of mem-
ory. They possess powerful input and output facil-
ities, possibly including colour graphics and sound
for output, and using a keyboard, mouse, digitiser or
speech for input.

The PWMs are very much user oriented and con-
tain a good deal of resources, both hardware and soft-
ware, that are specifically intended to support a good
interface between the user and the system, i.e. a good
"Human- Computer Interface'. These resources allow
the development and use of "Intelligent Front-End,'
[2] within the PWMs themselves, although this is not
their solitary purpose. The PWMs have sufficient
processing power for many of the user's computa-
tional requirements, allowing use as a 'stand-alone'
computer that acts completely independently of the
rest of the system.

The connection of the PWMs to the system pro-
vides the advantages to the user of allowing the use
of shared network resources such as printers and file
storage on discs, and access to specialised services
supplied by high performance processors [7]. How-
ever, the most important use of the network by the
PWMs is for interaction with each other, both indi-
vidually and in groups. This interaction may take the
form of textual messages (passed by a mailbox utility
or directly), sound or vision.

Back End Modules (BEMs)

The Back-End Modules are special purpose com-
puters. They are designed to achieve a high perfor-
mance with great efficiency in particular applications.
Each BEM is intended for use in a specific type of ap-
plication. Consequently the BEMs bear little or no
resemblance to one other and will probably have quite
strict requirements with regards to the form of their
input and output. These requirements may be quite
complex and the users are unlikely to be able to com-
ply with them without significant effort. Similarly,
because of their dissimilarity the BEMs may find
great difficulty in direct communication with each
other but BEM intercommunication is not likely to
be a frequent occurrence.

The BEMs may be considered to be individual re-
sources, where each BEM corresponds to a single re-
source. The resource may only be capable of utilisa-
tion by a single process at any one time. This requires
quite advanced resource management, which may be

386

provided by the BEMs, but only at the expense of
their efficiency. The BEMs make use of the resources
supplied by the network, such as the filestore, to ob-
viate unnecessary duplication of such facilities.

Network Service Modules (NSiVIs)

This is the third classification of devices used by the
model. As illustrated in figure 2, the Network Ser-
vice Modules serve as an 'fnterface' between the
other two domains and also supply resources for use
by the PWMs and BEMs. The presence of the NSM
domain is desirable from the viewpoint of both the
PWM and BEM domains since it permits economi-
cal sharing of frequently used resources, such as large
disc space, printers etc., and it enables the BEMs to
operate at their optimum efficiency, by removing all
operating system concerns.

The NSMs are dedicated network servers whose
purpose is to assist the general operation of the dis-
tributed system. The services which they might pro-
vide include file storage, data bases, peripheral ac-
cess, virtual circuit establishment, background re-
source management (e.g. compilation) and spe-
cial purpose resource management. Collectively the
NSMs provide a Network Operation Support
Service-(NQSS) required for the implementation of
a distributed system.

The NSMs allow even more advanced types of ser-
vice to be provided than the individual BEMs are
capable of supplying. An advanced network service
may be created by utilising a number of BEMs and
mapping all requests for this new service onto a set
of interactions with the group of BEMs. For exam-
ple, an individual image processor BEM may not be
capable of operating at sufficient speed to cope with
real time data. E'. by using a number of image pro-

cessor

ro
cessor BEMs. a YSM may take 'live' video pictures
and share the job of image enhancement between the
group of BEMs. The NSM can then combine the out-
puts and direct them to the required destination.

Notice that an alternative approach would be for
an NSM to multiplex a number of service requests
from PWMs onto a single BEM. The resulting ser-
vice would be of a lower quality than the BEM could
provide for a single process, but the level of service
desired by the PWMs may actually be quite low, in
which case the BEM is being used more effectively
by the system through the use of this simple map-
ping technique.

The organisational part of a distributed operat-
ing system comprises the functions that it is inap-
propriate to locate on either PWMs or BEMs, and
therefore these functions are located on the NSMs.

Consequently, the NSMs are involved in accounting,
scheduling, protection (e.g. store management), syn-
chronization and communication, and the allocation
and management of resources. Most of these func-
tions are provided by those NSMs that are dedicated
to the management of the system, but some account-
ing may be performed by the individual resources and
many of the NSMs will be concerned with protec-
tion. Additionally, the presence of communication
functions is obviously a prerequisite of all NSMs be-
cause of their interconnection by the network.

The key position occupied by the NSM domain
means that there are three important requirements
of the NSMs:-

reliability : since these devices are critical to the
operation of the full system, the domain should
not be susceptible to total failure through the
failure of a single node.

security the NSMs control access to expensive re-
sources and specialized services, as well as man-
aging intercommunication between PWMs, so
they must be capable of protecting the other de-
vices from illicit intrusion by unauthorized users.

integrity in the case of the use of a BEM service,
the NSMs manage the entire transaction so they
are responsible for ensuring successful total com-
pletion of each request.

Relating Devices to Modules

The model is an idealised representation of the com-
puter system. So, the PWM. NSM and BEM. as
defined by the Triadic Network Model, are merely
logical entities. As illustrated in figure 3, the individ-
ual machines that will approximate to these modules
are most likely to have capabilities in excess of those
defined by the model.

CDC Cyber 205 : The specification of fileserver
and scheduler services, resident with the proces-
sor, enables other nodes to exploit these func-
tions. This may permit network file transfer and
processor job scheduling to be achieved without
the involvement of other NSMs.

Meiko Computing Surface : The disc storage
units attached to the main processor are not
specified here, so they are only for the private use
of the processor. This is appropriate for holding
local code modules and providing virtual mem-
ory paging facilities.

387

-
I Back-End I

	

Module 	I
- - - -

Meiko Computing Surface

-
I
II

	

Back-En d
Module

	

rer 	S

	

hFilecev
	

eduler

	

(NSM) 	 NSM)

-- — —
CDC Cyber 205

r — — — — — — — — — —

	

Manager 	 I
(NSM)

I

EFi

	

lecerver 	Accounting
NSM) 	 (NSM) 	I

-- - -
General Purpose Network Server

r— — — — — — — — — — — — — — — —
Perional Workstation 	 I

	

Module 	 I

I Piieeeryer 	Printer 	Scheduler 	I
(NSM.) 	 (NSM) 	 (NSM) 	i

L- - - - - - - - - - - - - - - - -J

Sun Workstation

Figure 3: Examples of Network Devices

General purpose network server : A 	general
purpose minicomputer may be used to provide
a number of network services. In this manner,
the cost of implementing some of the standaru.
but infrequently used, network services may be
reduced. For services that will be in greater de-
mand, it is cost effective to provide a dedicated
server node.

Sun workstation : The workstation is shown as
having local storage and scheduling facilities that
may be accessed by other network nodes, as well
as having a printer directly attached.

Interactions in the Model

The fundamental restrictions on interactions imposed
by the model are

1. Back-End Modules never interact with each

other

2. Back-End Modules do not communicate di-
rectly with Personal Workstation Modules

Interactions within and between the domains of the
PWMs and NSMs are allowed, but interactions with
the BEMs are only allowed with the NSMs.

Workstation Intercommunication

The communication between the PWMs is of the fol-
lowing forms:-

interactive transfer of small amounts of text (c.f.
VAX/VMS 'phone' utility)

digitised speech

digitised pictures, whether 'live' video or com-
puter generated graphics.

For efficiency, it is desirable that there is mini-
mal involvement of NSMs in this intercommunication.
However, a more fundamental network requirement,
that the topology of the network and physical loca-
tions of the network devices remain invisible to indi-
vidual nodes, seems to conflict with this aim. This
is because only the NOSS is considered to be aware
of the actual state of the network. Therefore, before
any two devices on the network may interact directly
they must first determine their respective physical
addresses by communication with the NOSS.

Hence, the role of the NSMs in this type of inter-
action should be restricted to that of 'name server,
i.e. the PWM wishing to make contact with an-
other PWM initially interacts with the NOSS Name
Server module to determine the physical address of
the other node; the subsequent establishment, utili-
sation and termination of the actual connection are
controlled by the PWMs. An alternative situation.
where multiple PWM connections are required
teleconferencing, for example) would justify the u
of an NSM to assist the 'chairman'. Similarly,
intercommunication between users speaking in cLer-
ent languages may be assisted by the use of a cra:-
lator BEM. In this case the involvement of an NSM
is essential.

Hence, the initial enquiry sent from the P\VM to
the NOSS should state the type of intercommunica-
tion to be used. For basic communication the NOSS
Name Server module would just return the address
of the destination PWM. If a more advanced type
of communication is required the NOSS returns an
acknowledgement to the source PWM and then en-
deavours to provide the desired service.

388

User 	I 	 User 	I

	

Station 	I 	 I 	Station 	I

I Personal I 	 Personal 1
I Workstation I 	 Workstation I

I 	Module 	 I 	Module 	I

r — — — — — — — .1. -- — -- — - -

NOSS 	I Accounting I 	Scheduling 	 Peripherals I 	I 	Name 	I I
Server

EFileserver

	

icr/Serv
Coordi nator

Resource 	 I 	Person 	

1
	

Lproñies 	I I 	_H
i

Allocation 	 Ser II

I 	 BEM 	1 	 I 	BEM 	ii
I 	 Manager Manager

L - - - - - - - - - - -

 - - - - - - - - - - - - - - - - - - -
-

	

Back-End
	

Back-End

	

Module 	 Module

	

Back-End
	

Back-End

	

Processor
	

Processor

- 	 Figure 4: A Networked Computing Environment

	

Use of Standard Network Services 	 Use of Special Network Services

The standard network services are those functions
that the NSMs provide for use by both the PWMs
and the BEMs. Included in this category are the net-
work filestore and peripheral access. Access to any of
these services is initiated by the sending of a request
to the NOSS Coordinator module of figure 4. This
request is validated and then, possibly after having
been queued temporarily, it is forwarded to a suit-
able NSM. Any subsequent interactions between the
customer and the supplier pass directly without any
involvement of the NOSS Coordinator module. On
completion of the service request, the NSM that has
supplied the service indicates its availability to the
Coordinator and it may then be used by another cus-

tomer.
For most of the transaction, the nature of the inter-

actions is largely as described by the Client-Server
model- The differences lie in the initiation and the
termination procedures. Here, the protocols are of a
three-party form, with the NOSS Coordinator mod-
ule acting as mediator in negotiations between the
requesting PWM and the supplier NSM.

As far as the PWMs are concerned, the mechanism
for accessing specialised network services is the same
as that for use of the standard services. The PWM
sends the service request to the NOSS Coordinator
module, as before. The Coordinator treats the service
request largely as for a standard service and, after val-
idation and scheduling, the request is passed to an-
other NOSS module. This module acts as the BEM's
Manager and any subsequent interactions with the
customer PWM, needed for the effecting of the func-
tion, are made by the BEM's Manager rather than
by the BEM itself. So the PWM is never made aware
of which BEM is acting as the supplier.

Since the BEM's Manager is responsible for aJ high
level interactions with the PWM, the only network
protocols that need to be implemented on the BEM
are of quite a basic nature. Additionally the BEM
need only be concerned with the sort of computation
for which it was designed; there is no requirement for
a sophisticated user interface or for advanced operat-
ing system functions. Hence the BEM may operate
with a high degree of efficiency.

389

Layered Network interface 	local arii nun-locai functions; it has no knowledge of
the difference in the types of non-local functions.

It is generally agreed that it is desirable to make a
heterogeneous multicomputer system appear as if it
were a single entity because this greatly simplifies the
applications software and provides a more uniform
view of the system to the users. It is also considered
preferable to make the protocols governing interac-
tion between the different nodes on the system quite
basic so that it is straightforward to implement them
on a wide range of devices.

The Triadic Network Model would appear to
violate both of these aims because of the widely dif-
fering levels of processing capability of the different
network devices, and the distinction between stan-
dard and special services. The idea of the various
parts of the system having different degrees of aware-
ness of the nature of the network is introduced in an
attempt to overcome these difficulties. This use of a
layered interface to the network allows the sophisti-
cated nature of the network structure to be concealed
from the user by relatively basic pieces of software.

User's View

From the uppermost layer, the user is aware of having
access toa la.rge and comprehensive range of services,
which enablehim to communicate with fellow users,
interrogate a large information base and perform ex-
tensive processing of information. Access to these ser-
vices is provided by the user's personal workstation,
and to the user it may appear that this machine is
performing functions that are in fact being executed
elsewhere on the network. Similarly, the application
software is only aware of the functions that are avail-
able. The software communicates with all of the pro-
cesses supplying the functions in the same manner,
regardless of whether they are internal or external to
the workstation.

Workstation's view

The workstation divides the global set of functions
into two categories, local and non-local. It may be
possible for some functions to reside in both cate-
gories,

ate
gories, if different levels of service are recognised and
the network is able to offer the same functions but
with a higher level of service.

For local functions, communication from the appli-
cation software is passed directly to the appropriate
internal process. For non-local functions, the work-
station will first send a service request to the network
and then pass the information to the network server.
The workstation is only aware of the division between

Network's view

The network distinguishes between standard and spe-
cialised services. For standard services, the service
request is passed to the corresponding NSM, but for
specialized services the request is passed to another
NOSS module to manage the transaction.

When the NOSS is regarded as composed of a num-
ber of modules, it is evident that the NOSS Coordi-
nator module itself draws no distinction at all. The
distinction arises out of the way in which the services
are actually implemented: for a standard service, the
Coordinator passes the service request directly to the
NOSS module that will provide the service, whereas
for a specialized service the destination NOSS mod-
ule uses another machine, a BEM, to implement the
service.

Application of the Model
The objective of the work described in this document
is to enable a distributed operating system to be im-
plemented on a computer system composed of a mul-
tiplicity of different types of processors, all of which
communicate over a common network, which itself
may comprise a variety of sub-nets. The aim is to al-
low the operation of high-level applications software
executing on the processors that collectively form the
computing system, with all the software using well-
defined and uniform interfaces to the remainder of
the system.

The applications software may view the system is
a supplier of a broad range of services. Use of any ser-
vice is gained through the issuing of a request, with

the system, in turn, providing a response on com-

pletion of the service. The system is responsible for
implementing the required service by utilizing one or
more logical modules. Each module has a specific
purpose and exists locally or is available via the net-
work. Through the use of the same request-response
mechanism for all services, whether they are provided
locally or remotely, the details of the implementation
may be concealed from the user or application.

The principles of the Triadic Network Model (ThM)
may be applied in the design of a protocol set for a
heterogeneous multi-computer system. The following
sections descibe some of the principles of one such
protocol set.

390

Aspects of the Prczocci Set

The system towards which this work is directed aims
to achieve a high performance by moving each pro-
cess to the processor that has an architecture and
instruction set most suited to the computational re-
quirements of the process. However, if the mechanism
that effects this process migration is very inefficient,
then its usefulness is greatly diminished - possibly to
the extent that it becomes less efficient to move the
process than to run it locally in the initiating proces-

sor.
So, the process should not be moved between pro-

cessors

ro
cessors unless doing so will improve the overall perfor-
mance of the execution of the process, including the
overheads incurred by the transfer. With this objec-
tive in mind, the TNM protocols strive to minimise
these overheads as much as possible.

Three-Party Mechanism

To support the provision of a uniform interface to the
applications software, a mechanism is required that
enables any single request for use of a network service
to be re-routed through the system to a node capable
of providing the service. The Three-Party mech-
anism is fundamental to the correct operation of all
the sub-sets of the TNM protocol set. Its principles of

operation are:

When a network-supplied service is required by
an application, but cannot be satisfied locally by
the network node, a Service request is made to
the system. The network node then becomes the
3rvice Requester (S-R).

If the recipient of this request is capable of pro-

viding

ro
viding the service, it satisfies the request and
then sends a response back to the S-R. If it can-
not provide the required service then it will ei-
ther return an indication of its failure to the S-R
or it may re-direct the request to a node which, it
believes, to be capable of supporting the desired
service. If this node re-directs the original re-
quest,

e
quest, it becomes the Service Manager (S-M)
for the duration of this session.

To re-direct the request, the S-M must send an
indication to the intended node, together with
some means of identifying the session to ensure
that only the appropriate S-R is served. The
node to which the service request is re-directed
is the Service Provider (S-P), and a Service
Frmit is the means of identifying the session.

Zhe S-M must ai return an indication to the 3-
1? that the service request should be re-directed,
and again the service permit should be provided.

If the S-R receives, in reply to a service re-
quest, an indication that the request is to be
re-directed, then it should re-submit the service
request, together with the corresponding service
permit, to the substitute server, S-P.

The S-P upon receipt of the request, should first
ensure that the service permit is correct and then
satisfy the request. The response should then
be returned to the S-R and finally confirmation
provided to the S-Mthat the service request has
been satisfied.

So, to summarise, S-R is the node that issues the
original service request, S-P is the node that actu-
ally satisfies the service request and S-M is the node
that re-directs the request to S-P. The principle of
operation may be clearer from figure 5.

Service Permits

The use of Service Permits enables some necessary
flexibility to be introduced into the use of network
services, whilst retaining security and control over
resources. A service permit is, in essence, a 'capa-
bility' or 'token' enabling a process to make use of
particular resource. The permit only has a limited
period of validity and the interval between the issu-
ing and re-issue of a permit is much greater than this
validity period. This aids the security of the system
by making it difficult for 'rogue' nodes to break se-
curity keys embedded within the service permit. Fot
a system where security is not a major concern, it h
possible for 'block allocations' of service permits tc
be made, such that a given node may make direct re-
quests for use of a service without resort to obtaining
a permit from an S-Mfirst.

The use of the service permit mechanism means
that the requester of a service retains control over the
use of the service and may also help analysis of service
provision failures, as in table 1. Further exchanges o
information between the various nodes are needed tc
determine the exact nature of the failure.

Service Managers

The three-party mechanism only requires nodes tc
assume the role of Service Manager on a tempo-
rary basis: it is 'accountable' for the provision of the
service until the service request has been satisfied
although this responsibility is only really essential ii

391

REQUEST
1. ijai 	request to vetwo,* I S-RI s-p

DIRECT (P A)
P_ Re-dsrwt request

REPLY (PA)
Iridie ,f-rtion S-R S-MI

REQUEST (PA)
Re-iithrmt request S-R

REPLY
S. Si4 sermce request S-R

CONFIRM (PA)
Cafimrovi-aion service S-M 	4 I 	SP1 	

1

Figure 5: 3-Party Mechanism

Event 	 Error

S-R presents permit but

S-P refuses to accept it

S-P failure or

permit expiry

S-P awaits permit that

isnever.presented

S-R failure

S-M receives no confirm S-P failure

S-P returns confirmation

but S-M confused

S-M failure or

S-P failure

Table 1: Error Condition Determination

the event of failure of the service. However, there
are certain types of service manager that are more
permanent in nature. These include the Coordina-
tor(s), BEM managers and the managers of commu-
nication between PWMs. Despite being permanent,
as opposed to transient, these nodes may still obey
the same type of protocol, with service permits, but
may make rather more sophisticated use of the mech-
anism.

When a BEM manager receives a service request,
it may re-direct the service request to the BEM, if
appropriate, but as an alternative it may assume the
role of "front-end" to the BEM, such that all com-
munication from the service requester must pass to
the BEM via the manager. This should only be per-
formed for the transfer of essential job descriptions
to enable the BEM manager to determine how the
request should be satisfied. The transfer of code and
data should be performed directly for greater effi-

392

ciency.

Coordinator

All of the nodes on the network need only be aware
of a single logical node, known as the Coordinator,
to which all requests for use of network services are
sent. In turn, the coordinator should use the Three-
Party mechanism to forward any service requests to
other network nodes capable of providing the required
service.

The notion of a single coordinator serves to aid
the provision of a uniform interface to the applica-
tions software although in reality, there should be a
number of coordinator modules within the system to
reduce the system's susceptibility to total system fail-
ure resulting from single node failures. Additionally,
some "caching" of network addresses for services may
occur so that service requests may be made directly
to the provider without any need to access the coor-
dinator in the first instance.

The coordinator is effectively just a specific in-
stance of a service manager, but is considered by the
higher levels of software to be permanent rather than
transient, as is the case for most service managers. It
is the only service manager visible to the higher level
software, in that the software may presume that any
service request sent to it will in turn be forwarded.
However, no special consideration need be taken of
this fact since, as far as the protocols are concerned,
it behaves just like any other NSM.

Perspective

The protocols are oriented towards the management
of specific activities that involve accesses to network
services. This places the TNM protocols at the ses-
sion layer of the ISO Open Systems Interconnection
7-layer reference model. Indeed the present imple-
mentation is based above the TCP/IP transport ser-
vice. However, whilst is would be possible to develop
an application layer protocol above the TNM proto-
cols for use by higher level software, it is considered
that the existing implementation provides sufficient
functionality for direct use by the applications.

Minimization of the number of protocol layers used
can result in greater performance because the net-
work overheads are lower. Hence, the high level func-
tionality of the TNM protocols serves to improve the
performance of the system by eliminating the need
for extra protocol layers. Taking this approach fur-
ther, the TNM protocols could be implemented di-
rectly above the network layer if the network offered
a high reliability. The Centrenet Burst Protocol
[3] provides a reliable communications substrate on
which the TNM protocols may operate efficiently.

Future Directions

The Trialic Network Model describes the opera-
tion and interaction of three categories of device in an
idealised environment. A protocol set based on the
Triadic Network Model can provide a uniform inter-
face to the applications software and thereby remove
some of the difficulties involved in developing a dis-
tributed operating system.

The implementation of services by the protocol
set outlined in this paper is achieved by means of
a three-party mechanism, which involves the use
of service permits issued by a service manager.
These techniques may be used to enhance the security
and fault tolerance of the system.

The TNM protocol set has been implemented in the
Computer Science Department of Edinburgh Univer-
sity on a High Level Hardware ORION minicomputer
running UNIX 4.2 BSD. A multi-computer environ-
ment has been simulated using the ORION, and this
has been used to verify the correct operation of the
protocols. A fuller indication of the performance ben-
efits of the TNM protocol set will be obtained follow-
ing completion of the implementation of the protocols
on other machines and the provision of a streamlined
Transport Service to allow more effective use the Cen-
trenet Burst Protocol.

The eventual system will comprise workstations,

dedicatj network 5ezeN and high performance spe-
cial purpose processors. The network will be com-
posed of Ethernet and Centrenet, allowing full ex-
ploitation of the high bandwidth and inherent net-
work intelligence of the latter, whilst permitting a
wide range of devices to be connected to the system
with interfaces to the former.

Acknowledgements

The author wishes to express his gratitude to
Prof. R.N. Ibbett and Dr. N.P. Topham of Edinburgh
University Computer Science Department, and ac-
knowledges the financial support of the SERC.

References

R.P. Bird, "A Compiler Server Node in a Lo-
cal

o
cal Area Network", Proc. mt. Comp. Symp. on
Application Systems Development, BG Teubner,
Stuttgart, March 22-24, 1983, p. 182.

A. Bundy, "Intelligent Front-Ends", Infotech
State of the Art Report on Expert Systems, vol.
12:7, 1984, pp. 15-24.

R.N. Ibbett, D.A. Edwards, T.P. Hopkins, C.K.
Cadogan and D.A. Train, "Centrenet - A High
Performance Local Area Network", Computer
Journal,vol. 28, no. 3, 1985, pp. 231-242.

R.N. Ibbett, P.C. Capon and N.P. Topham,
"MU6V: A Parallel Vector Processing System",
Proc. 12th mt. Symp. on Computer Architecture,
June 17-19, 1985, pp. 136-144.

P.J. Leach, P.H. Levine, B.P. Duros, J.A. Hamil-
ton, D.L. Nelson and B.L. Stumpf, "The Archi-
tecture of an Integrated Local Network", IEEE
Trans. on Comm., Local Area Networks Special,
Nov. 1983.

R.M. Metcalfe and D.R. Bogs, "Ethernet: Dis-
tributed Packet Switching for Local Computer
Networks", cAGM, vol. 19. no. 7, July 1976.
pp. 395-404.

[1 J.H. Morris, M. Satyanarayanan, M.H. Conner,
J.H. Howard, D.S.H. Rosenthal and F.D. Smith,
"Andrew: A Distributed Personal Computing En-
vironment", CACM. vol. 29, no. 3, March 1986,
pp. 184-201.

[8] R.M. Needham and A.J. Herbert, "The Corn-
bridge Distributed Operating System", Addison-
Wesley, Reading, Mass., 1982.

393

