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SUMMARY 

A theoretical study has been made of the interplay between natural 

selection and artificial selection for a quantitative character. The 

implications of two models of stabilizing natural selection in which an 

intermediate metric phenotype is more fit than extreme phenotypes, have 

been examined in this context. 

The homeostatic model, in which extreme metric phenotypes are less 

fit because they are more homozygous, has been described in terms of the 

strength of hoineostatic natural selection, S. Under this model each 

locus can be considered independently and natural selection does not 

necessarily act at all loci. For any particular locus, an understanding 

has been obtained of the strength of natural selection necessary to 

produce a selection plateau prior to complete fixation, and of the time at 

which such a plateau will fst appear. It has been round that the total 

advance in the metric mean at a pleteau due to opposing natural selection 

is never greater than 2N(1-2S) 2  times the change in metric mean in the 

first generation of artificial selection, where N is the effective popu-

lation size. It should be possible to break through any such plateau 

by increasing the strength of artificial selection if sufficient reprod-

uctive excess still exists in the population. 

The optimum model of natural selection, in which extreme metric 

phenotypes.are less fit solely because they have extreme phenotypes, has 

also been considered. Quantitative predictions of limits to artificial 

selection due to opposing ptimurn 	natural selection may not have very 

much value when derived from single locus selective values, as the equil-

ibria they represent are transient. The problem is that under this model, 

epistais is of vital importance. Thus all loci that contribute to the 

metric character are subject to natural selection, the effect of which at 

I . 
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any one locus varies from generation to generation, being determined 

by gene frequencies and gene effects at all other bet. The problem 

of epi stasis can be avoided by considering an extreme situation in wht4h 

thereis no crossing over between the bc1. 	In this particular case, 

if the initial distribution of chromosome effects is approximately 

normal, then the predictions of Latter (1960) and James (1962) provide 

a realistic description of the results of the interaction between arti-

ficial and optimum natural selection. 

In general, the implications of each model of 8tabilizing natural' 

selection in the context of artificial selection appear to be very similar. 

The effect of t' generations of reverse selection after t generations 

of forward selection has been described in terms of the ratio of the 

change in metric mean resulting from reverse selection (R) to the change 

in metric mean due to the previous forward selection (x). In the ab-

sence of natural selection, and for equal periods of revrse and previous 

forward selection (t'-t), . equals 1-F where F is the inbreeding 

coefficient for a neutral locus at generation t, being estimated as 

(1 - (1.)] where N is the effective population size for both forward 

and reverse selection. And for a single generation of reverse selection 

in which response in metric mean was R following t generations of forward 

selection, - equals 	The presence of natural selection opposing 

forward artificial selection increases the observed values of the ratios 

above those expectations. 

In a separate study, the effect of directional and heterotic 

selection on the standardized variance of gene frequency (f) has been 

examined. 	It has been found that heterotic selection always results in 

f values lower than those expected due to drift alone. Additive 

selection usually results in similarly low f values, but f values larger 
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than those expected due to drift will be observed under additive 

selection with low initial gene frequency, or when the populations have 

been separated for a relatively long period of time in which case f 

expected due to drift is quite high (around 0.7 or greater). The effect 

of selection on f is unlikely to be detected if the observed value of f 

is less than 0.1. 

Included as an appendix is the following paper which has been 

submitted for publication under joint authorship, with Dr W.G. Hill: 

"Estimation of herttability by both regression of offspring on parent 

and intra-class correlation of sibs in one experiment". 
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THE THEORY AND PRACTICE OP ARTIFICIAL SELECTION 

In his attempts to increase the production of food and other 

products from domestic animals, man has been for many years selecting 

only certain animals to act as parents for the next generation. To 

the extent that the various selection criteria adopted by man have 

not been directly related to an animal's ability to contribute to the 

next generation if left to fend for itself in the "wild", it can be 

said that man has been carrying out artificial selection, as distinct 

from natural selection. The latter type of selection can be thought 

of as the natural processes which result in some individuals contri-

buting more progeny to the next generation than others. 

Man has complete control over the first but not the second 

type of selection, so that some artificial selection prograimnes are 

bound to involve the often unwelcome action of natural selection as 

well. 

A large majority of characteristics of importance in artificial 

selection over the centuries have been continuouslvvarying (quantitative 

or metric) characters, but it was not until the advent of the sciences 

of genetics and statistics during the early years of this century that 

man was able to objectively describe and analyse the process of 

artificial selection for such characters. 

The early theory of artificial selection for a quantitative 

character, as summarised by Lush (1945), provided a simple prediction 

of the gain to be expected from artificial selection. Thus the 

change in metric mean AG in the next generation as a result of 

selecting individuals whose mean phenotype is AP metric units above 
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the population mean is given by AC h 2AP, where h2  is the heritability 

of the metric character. This prediction has been demonstrated to be 

quite useful during the early generations of selection in a variety of 

different species including Drosophila (Clayton, Morris and Robertson, 

1957), Tribolium (summarised by Bell, 1969), mice (Falconer, 1953), 

poultry (Lamer, 1950), pigs (Hetzer and Harvey, 1967) and sheep 

(Turner and Young, 1969, chapter 11). 

Even the early workers in this field, however, recognised the 

limitations or inherent assumptions of the simple prediction equation 

especially in the context of longer term selection. Lush (1945) 

was fully aware that factors such as epietasis, linkage and over-

dominance for the metric character were not included in the simple 

prediction, and the potential importance of natural selection opposing 

artificial selection was soon emphasised by Lemner (1950). In addi-

tion it has become apparent more recently that the inherent assumption 

of a large number of loci, each making a small and equal contribution 

to genetic variance, may not be realistic in all situations. Finally, 

the relatively small numbers of parents used in most selection pro-

grammes certainly violates the implicit assumption of a large 

population size. Thus it was not surprising to find that the simple 

equation was of little use in predicting the long term outcome of a 

selection programme (see, for example, Clayton and Robertson, 1957, 

and Jones, Prankham and Barker, 1968). 

Since the inception of the use of the simple equation therefore, 

a major aspect of the theoretical study of artificial selection has 

been the extension of the validity of prediction through the gradual 

incorporation of the extraneous factors into the prediction itself. 
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A brief review will now be made of some of the more important 

theoretical studies, looking not so much at actual results but more 

at the methods of approach that have been utilized. 

A number of algebraic studies have been conducted with re-

latively simple models. Dominance, epiatasis, linkage, genes of 

large effect and finite population size have been incorporated into 

a variety of predictions, either singly or in various combinations. 

In general, however, the algebraic description of more realistic 

models incorporating several of the above items has not been possible. 

The increasing number of parameters required to define such a model, 

and the associated increase in complexity of parameter interactions 

have so far defied any attempt to achieve a purely algebraic pre- 

diction. 

The need for increasingly complex models coincided with the 

development of Monte Carlo simulation techniques that could be carried 

out at high speed by automatic computers. Monte Carlo methods, which 

involve computer simulation of "the random aspects of inheritance 

and computing the history of a number of replicate populations" 

(Fraser and Burnell, 1970), were first applied to artificial selection 

of a quantitative character by Fraser (1957, et seq.), Martin and 

Cockerham (1960) and Gill (1965, et seq.). Making use of the binary 

nature of arithmetic computation in a digital computer, these 

workers started with relatively complex models involving many loci, 

linkage, intra- and inter-locus interactions and finite population 

size. With so many parameters interacting and with only a few values 

of each parameter specified, conclusions tended to be descriptive 

rather than predictive. Broad generalisations sometimes emerged, but 
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few of these had inmediate predictive value. Fraser and Burnell 

(1970) have recently reviewed the various simulation studies which 

made use of this approach. 

Latter (1965, 1966a, 1966b) used computer simulation to study 

a simpler two-locus model in greater detail, searching for conclusions 

of greater predictive value. A literal simulation of the binary 

nature of the problem was not tsed. Rather, an algebraic (and hence 

deterministic) description of the selection process, supplemented by 

the use of random numbers to simulate gamete sampling and recombination, 

was employed. Such an approach is more abstract than that of Fraser 

but is more efficient in use of computer time, and facilitates the 

finding of generalised predictions. Hill and Robertson (1966),using 

an even more abstract method of simulation, studied a more general 

form of Latter's model. With the aid of some preliminary algebra it 

was shown that the whole selection process could be specified by three 

parameter combinations and three other single parameters. Since each 

of the parameter combinations contained N, useful conclusions and 

predictions could be drawn from all computer runs at only one population 

size. 

More recently, Robertson (1970) has reported the results of a 

simulation study of the effect of linkage with many loci on the lirnits 

to artificial selection. Some of the seven parameters needed to de-

fine the initial population were "reparameterised" into combinations 

of two or more, thus reducing the number of variables to a more 

manageable level. As with the earlier studies of Robertson (1960) 

and Hill and Robertson (1966), such a reparameterisatfon offered a 

guideline as to which parameter values mould be relevant, and enabled 
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more uaeful conclusions and predictions to be obtained. The pre-

dictions arising from the latest study have already been subjected to 

an experimental test with reasonable success, by McPhee and Robertson 

(1970). 

Robertson's approach was similar to that of Latter and Novitski 

(1969) who also used some algebra to provide guidelines for their sub-

sequent simulation of directional selection in a finite population 

using a single locus model with many alleles. They were also able to 

make successful use of reparameterisation. In addition they obtained 

several empirically derived relationships and predictions just as 

Robertson did, as a result of certain patterns appearing in the 

simulation results. 

Algebraic studies, therefore, when judiciously combined with 

computer simulation have incorporated several of the more important 

original limitations into the theory of artificial selection for a 

quantitative character. 

However, one important assumption has still been made in each 

of the theoretical studies described above. In particular, each of 

those studies has neglected the potential effect of natural selection. 

The interplay of natural selection and artificial selection 

has been observed during the course of many artificial selection ex-

periments, Mather andRarrison (1949) reported a large and negative 

correlated response in reproductive fitness when selecting for ab-

dominal bristle number of Drosophila, while Lerner and Dempater (1951) 

were able to attribute the cessation of response to selection for in-

creased shank length in poultry, at least in part to adverse natural 

selection, in the form of a negative correlation between shank length 
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and hatchability in dams. 

More recent selection experiments in several species have pro-

vided further evidence of 'a resultant decrease in reproductive fitness. 

Such observations were reported by Latter and Robertson (1962) in 

Drosophila; ICress, Enfield and Braskerud (1971) and Orosco (1972) in 

Tribol'iuiu; Eisen, Hanrahan and Legates (1973) in mice, and Verghese 

and Nordskog (1968) in poultry. On the other hand, not all artificial 

selection has led to a decrease in reproductive fitneøs, lletser and 

Miller (1970) for example, found no consistent changes in fitness 

during 13 generations of selection for backfat thickness in pigs. 

In any discussion of the interplay between natural and artificial 

selection, care must be taken to differentiate between those aspects of 

natural selection associated directly with artificial selection for a 

particular character, and the more general effects of finite population 

size on reproductive fitness. The remainder of this review will con-

centrate only on the former, and will thus assume that the inbreeding 

effects of artificial selection with reference to the whole genome 

(as discussed by Robertson, 1961) have negligible effects on re-

productive fitness. 

The proper analysis and explanation of the above selection re-

suits requires a far greater understanding of the basic processes 

involved in the interaction of artificial and natural selection. As 

an initial step in the study of these processes, the relationship 

between natural selection and quantitative characters must be considered. 
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Natural selection and quantitative characters 

Robertson (1955) and !4ather (1966) have both described the 

range of relationships between a quantitative character and natural 

selection as extending from those characters very closely associated 

with fitness to those with only an unimportant, peripheral relation-

ship. Such a scale corresponds to increasing additive genetic 

variance for the quantitative character as might be expected in the 

light of Fisher's (1930) fundamental theorem of natural selection. 

It has been argued that only fitness itself is subjected to 

directional natural selection alone, and that all other quantitative 

characters including components of fitness, must be subjected to a 

degree at least of. stabilizing selection in which an intermediate 

metric phenotype is more fit than extreme phenotypes. Indeed such 

an opinion now seems to have acquired the status of text-book dogma 

(see, for example, Falconer,, 1960; Crow and Kimura, 1970; and 

Cavalli-Sforza and Bodmer, 1971). The strength of such stabilizing 

selection is proportional to the degree of relationship between the 

character and fitness, with characters of peripheral importance to 

fitness being subjected to negligible strengths of stabilizing 

selection. 

The concept of stabilizing natural selection thus seems to be 

of major importance in any discussion of natural selection and, 

quantitative, characters. 

Models of stablizing selection 

Essentially two main models have been proposed for the action 

of stabilizing selection on a quantitative character. 	In their 
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simplest forms, both of them involve the assumption of additive gene 

action for the metric character. 

The homeostatic model, in which extreme metric deviants are 

less fit because they are more homozygous, was first proposed by 

Lerner (1950, 1954). 	It has since been shown (Robertson, 1956) that 

fitness in this model will be a maximum at the mean phenotypic value 

of heterozygotes, and will decline as the square of the phenotypic 

deviation from that mean. This observation, however, is not an 

integral component of the model. It is simply a consequence of f it-

ness decreasing with increasing homozygosity. In the same study, 

Robertson made much use of a parameter which he called the homeo-

static strength of a character (S for a single locus, 9 for many loci 
where 3 is the average of all S values, weighted according to the 

proportion of additive genetic variance contributed by each locus). 

Having zero value for characters unascociated with fitness, the mag-

nitude of S increases with increasing strength of natural selection. 

Its main virtue lies in the fact that the value of S for a particular 

metric character can be estimated from an artificial selection experi-

merit, as will be shown later. 

The optimum model, in direct contrast to the homeostatic model, 

relates reproductive fitness directly to the phenotype for the quant-

itative character, irrespective of the underlying genotype. 	Its 

most popular version, the "quadratic deviation" optimum model, was 

first described by Fisher (1930, page 105) and Wright (1935). 	In 

this model fitness declines as the square of the deviation of the 

metric phenotype from either the population mean which may be variable 

(Fi8her) or from some fixed optimum phenotype (Wright). 
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Gale and Kearsey (1968) and Kearsey and Gale (1968) have 

studied a simpler "linear" optimum model in which fitness declines 

linearly from a fixed intermediate optimum. Another version 

(Robertson, 1956; Curnow, 1964; and Van Valen, 1965) is the "double 

truncation" optimum model in which there are two vertical cut-off 

points, one on either side of the population mean or some optimum 

phenotype. All individuals between the two truncation points (and 

hence near the mean or optimum) are selected, while all those having 

metric phenotypes outside the cut-off points are rejected. Such a 

model is more relevant to artificial than to natural selection, in 

the sense that natural selection is rarely as absolute in its effect 

as this model requires. 

Yet another version that has received considerable attention 

is the "nor-optimal" model (Cava1li-Sforza and Bodmer, 1971) which 

was originally introduced by Raldane (1954). The decline of fitness 

from the mean or optimum phenotype in this version follows the shape 

of the normal distribution. A notable contribution to the study of 

the nor-optimal model was that of Latter (1970) who introduced a 

parameter called the coefficIent of centripetal selection, C. which 

has the logical and convenient property of ranging from zero (for 

no selection) to unity (for absolute selection of the optimum pheno-

type only). Latter was able to show that C also had the valuable 

property of being estimable from an artificial selection experiment, 

analogous to the situation already described (Robertson, 1956) for 

the strength of homeostatic natural selection, S. In addition, C 

was shown to be simply related to Haldane's (1954) intensity of nor-

optimal natural selection, I. 
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Of all the versions of the optimum model, those which have been 

moot thoroughly studied are the quadratic deviation and the noroptinal. 

It is important to note that for metric characters that are normally 

distributed and for the relatively weak natural selection usually en 

countered, both versions aiount to essentially the same thing (uimer, 

1972; 0)ona1d, 1970 9  1973). 	From now on therefore, any reference 

to the optimum model will be in terms of one or other, or both of these 

versions. 

It has already been seen that both the homeostatic and optimum 

models give rise to exactly the same relationship at the observational 

level, namely that indiViduals with intermediate phenotypes for a 

particular quantitative character have the highest fitness. 

The validity of such a relationship has been questioned by 

Robertson (1963, 1966 9  1967) who has suggested that we say nothing 

about the way in which natural selection acts if we simply observe the 

relationship between fitness and a single character considered dt one 

point in time and in complete isolation from the totality of characters 

which go to make up an individual's overall or 'global' phenotype. 

Uatural selection, claims Robertson, surely does not partition the 

global phenotype into the arbitrary component characters which we have 

defined for our own purposes. 

Despite these valid objections 9  the concept of stabilizing 

natural selection has received considerable attention from many workers, 

including those atternptin to explain the results of artificial 

selection experiments in t-hich fitness has declined and/or selection 

plateaux have been observed (see for example, Vergheae and 1Tordskog, 

1968; and Orozco, 1972). 	Indeed, Eisen, Ranrahan and Legates (1973) 
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have recently attempted to use their artificial selection results to 

differentiate. between the two models of stabilizing natural selection. 

However, despite a thorough and careful analysis of fitness changes 

in their lines, these authors were unjustified in concluding that 

their results favour the optimum model; they have failed to realise 

that exactly the same results in this case could have occurred under 

the homeostatic model. Analyses of this type are potentially useful, 

but a far greater understanding of the ramifications of each model 

is needed before a valid conclusion can be reached from such selection 

data. 

One wy to obtain more knowledge of the implications of the 

homeostatic and optimum models would be to use these two models as the 

basis for a theoretical study of the interplay between artificial and 

natural selection especially now that we have, in S and C, biologically 

meaningful and measureable parameters for each of the models. In 

order to provide a frawork for such a study it is first necessary to 

determine whether or not each model is a valid description of natural 

selection in natural populations. 

The homeostatic model is relatively straightforward, having the 

maintenance of genetic variability as one of its basic premises. 

This model could therefore be used to describe the way in which 

natural selection maintains the genetic variability which is observed 

in quantitative characters in natural popul8tions, and which is sub-

sequently subjected to artificial selection. 	The ability of the 

optimum model to maintain genetic variability, on the other hand, has 

been the subiectpf considerable study, and controversy. 	In parti- 

cular, each new publication on the topic seems to alter the conditions 

under which the various versions of the optimum model may or may not 
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maintain significant genetic variation. Despite numerous papers 

from a wide variety of workers, the exact implications of the optimum. 

model still remain to be clarified beyond dispute. 

The most recent study of the nor-optimal model has been reported 

in a series of papers by Bulmer. All of these papers were based on 

an initial, more general, study of stabilizing and disruptive selection 

(Bulmer, 1971a) from which it was concluded that stabilizing selection 

never results in stable equilibria in a single population, unless gene 

action for the metric character is overdominant at all loci. However, 

nor-optimal selection for different optimum phenotypes in two (Buliner, 

1971b) or more than two (Bulmer, 1971c) partially isolated populations 

was shown to be a mechanism capable of maintaining genetic variability. 

It was also concluded that some variability could be maintained in a 

single population of finite size under the nor-optimal model with the 

adjtLan of recurrent mutation ('Buimer.,: 1972) (and/oi independent 

selection in favour of heterozygotes (Bulmer, 1973). For the pur-

pose of this study it will be assumed that the optimum model is capable 

of maintaining a reasonable amount of genetic variation and is thus 

sufficiently valid to act as a comparison for the homeostatic model, 

which has the maintenance of genetic variability as one of its basic 

premises. 

Differences of opinion also exist as to the relationship between 

particular metric characters and fitness. Robertson (1955, 1966) and 

Latter (1962, 1963), for example, have examined this relationship 

theoretically and experimentally for several Drosophila characters. 

Their conclusion for abdominal and sternopleural bristle number, as an 

example, was that such characters were of peripheral importance to 



13. 

fitness, and are therefore subjected to only very weak natural 

selection. On the other hand, O'Donald (1970, 1971) has produced 

evidence suggesting intense :stabiiizing natural selection for sterno-

pleural bristle number in adult Drosophila (but only in males) under 

crowded conditions. Barnes (1963), Kearsey and Barnes (1970) and 

Linney, Barnes and Kearsey (1971) have also reported experimental re-

sults indicating that relatively intense natural selection acts on 

genes that determine bristle number, in some cases producing an ob-

servable effect which accords well with the optimum rather than the 

homeostatic model. These same authors have expressed further doubts 

about the validity of the homeostatic model because of what they claim 

to be the general paucity of evidence of single locus overdominance 

for fitness. However, a recent investigation in pigeons (Frelinger, 

1972), seemed to indicate that single locus overdominance for fitness 

is a feasible proposition. 

More importantly, in his initial detailed proposal of the homeo-

static model, Lerner (1954) emphasised that single locus overdominance 

for fitness was not an integral requirement of the model. Rather, 

he was very careful to point out that it was "fitness as a whole" 

which exhibited overdominance. 

The design of a definitive experiment that will enable a final 

decision to be made in favour of one of the two models has still to 

be determined. Indeed such an experiment may never be conceived if, 

as is quite likely, the real situation in nature lies somewhere in 

between. The current position is that both models continue to be 

discussed whenever natural selection appears to have counteracted the 

effect of artificial selection. A brief review will now be made of 
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the theory which is currently available to assist in such discussions. 

Interaction of artificial and natural selection 

The result of artificial selection for a metric character in 

the presence of natural selection has been considered by superimposing 

artificial directional selection for the metric character onto each of 

the two models of stabilizing natural selection. 

The homeostatic model was shown by Robertson (1956) to lead to 

certain predictions about the consequences of artificial selection 

when applied to agenetic system which could be described by the 

following single locus model: 

Genotype 	 A 
1  A  1 
	A1A2 	A 2  A  2 

Relative frequency 	(1-q) 2 	2q(1-q) 	q2  

Metric mean as deviation 	 S  
from heterozygote 	-a 	 0 	 +4a 

Relative fitness 	
1-81 	 1 	 1s2 

In particular, it was demonstrated that the relative fitness of 
- 	2 

the population declines by S(Ax) as a result of a change in the 
2h. 

population mean of Ax, where 

Ek1  S 

- weighted average of the Si , 

l2 	
in which case 1-S. is the 

given that 	 I average fitnees f the equilibrium population 
12 

/ 

relative to that of the heterozygote, at the 

i h tlocus, 
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2 
and k1 f q(l-q) - genetic variance contributed by the 1th 

 locus.. 

It was the parameter 9 that Robertson called the homeostatic strength 
of a metric character. 

In addition 

2 
Z k 1a 
i 

- phenotypic variance prior to selection, and 

2 
2 	a 

UP 

h ---f. 

In comparison, the decline in fitness expected of individual 

deviants with a phenotype of x metric units in the original unselected 
- 2 2 	- 	2 - 2 2 

population was given as Sb 	Since S(Ax) , Sb 	
as long as hen- 

2b i, 	2a2 
tability is less than unity, it was concluded that the decline in 

fitness as a result of artificial selection to a new phenotypic mean 

x, would be greater than that of individual deviants having phenotype 

x in the original population. Finally, it was predicted that upon 

relaxation of artificial selection, the return to the mean in the 

first generation would be equva1ent to SEx, or a proportion S of the 

total phenotyp&c gain achieved by the previous artificial selection. 

Thus it was possible to estimate the value of , the homeostatic 

strength for a particular metric character, after a few generations of 

artificiêl selection. 

Despite its apparent potential usefulness, the homeostatic model 

has received little subsequent theoretical attention in the context of 

artificial selection. In particular, there has been no attempt to 

investigate the interaction between homeostatic natural selection and 

artificial selection in a finite population. Predictions of the 

Is 
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limit to artificial selection, especially where genetic variance 

still remains, would be useful in providing a greater understanding 

of the implications of this type of natural selection. 

The optimum model of natural selection has received more 

attention than the homeostatic model in the context of artificial 

selection. Expressions analogous to those of Robertson (1956) were 

first derived for the nor—optimal model by Latter (1960). The de- 
, 

dine in fitness with artificial selection was predicted to be 

2 	2 	2 	2 	 2a 
where a - a + a and a f  is a constant whose value is inversely 

proportional to the strength of natural selection. In terms of 

Latter's l970) coefficient of centripetal selection, which is defined

OP  as C 	 'A -- , the decline in fitness would be C ' X,' 2 	Robertson's 
a 	 - 	2 	 2a 

; equivalent prediction was S .  (Ax 	 P- 	. 	 The return to the 
h 

mean during the first generation of relaxation was shown to be a 
2 2 

proportion h 06 or h C of the total gain previously achieved, in 

comparison with a proportion S for the homeostatic model. Both S 

and C can therefore be estimated for any metric character after a few 

generations of artificial selection, with the product Ch corresponding 

operationally to 9 (Latter, 1970). 

In two other papers Latter (1962, 1963) further examined the 

bheoretical implications of the two models in the context of artificial 

selection, using as his examples data published by Llitter and 

Robertson (1962) on the Kaduna population of Drosophila, and further 

data collected from artificial selection in the Canberra population. 

He was able to show, for example, that the total intensity of natural 

selection, I, as defined by Haldane (1954) could be expressed as 

2 	log w 
1 	 (1) 

9 
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log; 

' 	 2 1 	 (2) 
h 	g 

for the homeostatic and nor-optimal models respectively, where w is 

the mean fitness of selected lines, relative to controls after arti-

ficial selection has altered the mean of the metric character by g 

additive  genetic 8tandard deviations. 
-log; 

Having previously obtained values of 	e of 0.022- 
+ 
0.005 

+ 	 g 
and 0.021-0.002 at generations 5 and 10 respectively of artificial 

selection for abdominal bristle number in the Kaduna population (in 

2 
which h - 402), Latter estimated the heterozygote superiority for 

fitness to be 0.4 x 0.022 0.5% at the relevant loci, assuming the 

homeostatic model to be appropriate. Similar calculations can be 

performed on data supplied by Verghese and Nordakog (1968, p.233), to 

provide equivalent estimates in the range 0.5% to 1.5% approximately. 

Estimates such as these may be useful as guidelines to further theo-

retical studies, although several rather important assumptions are 

impticit in their use. Verghese and Nordakog pointed out that their 

own data are not in good agreement with the rather basic assumption 

that the decline in fitness with response to selection can be repre- 
-log e  w sented simply as 	• Latter and Robertson (1962) also observed 

g 
significant alterations in this quantity between generations 5 and 10 

of selection for body size in Drosophila. As a first approximation, 

however, the above estimates may be of some value. 

The interplay between directional artificial selection and 

natural selection for a phenotypic intermediate optimum was further 

investigated by James (1962) who developed expressions based on a 

17. 
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single locus additive model, to describe the effect of opposing nor-

optimal natural selection on the limits to artificial selection. 

The shortcomings of the model were considerable, as James pointed out, 

but the conclusions may be useful in that they indicate possible ways 

in which the measure of intensity of natural selection might interact 

with the other parameters commonly used to describe artificial 

selection in finite populations. The mean z, after t generations of 

artificial selection in this system was shown to be 

	

(1- (1_21h2)t} 	, 	 (3) 
- 

where i is the standardised selection differential, and I is Haldane's 

intensity of natural selection in a population with mean at the 

optimum. 

The corresponding half-life of the selection process was pre-

dicted to be 

0.35 H. 	2 	 (4) 
Ih 

Both these expression8 are essentially relevant only to infinite 
expression  

populations. It was shown that the analogous/for u in a Popul
-
ation 

of finitesize N could be represented as 

ia 
11- exp{ _4NIh2(l_(l.4)t)}J 	 (5) 

and an estimate of the asymptotic limit would then be 

2 

p - 2N 	(l-2NIh2 ) 
11  
- 	 2 (a 

which reduces to Robertson's (1960) prediction of 2N 	or 2N times 
P 

the response in the first generation, when natural selection is absent. 

(6) 
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Very little experimental evaluation of these predictions has been re-

ported, although James (1965) did use equation (4) to estimate half-life 

in several previously reported selection experiments. Agreement bet-

ween observed half-lives and those expected by James was not particularly 

evident, with predictions being much greater than those observed, but 

then Robertson's (1960) half-life prediction of 1.4W generations (for 

additive loci) was likewise a considerable over-estimate. 	Such a 

result, however, may simply indicate that artificial selection has 

successfully achieved fixation of most of the desired alleles, as 

Robertson has pointed out. 

James' study was useful in that it was the first attempt to 

analyse the effect of the interaction between natural and artificial 

selection on the limit to artificial selection. 	In dealing with the 

optimum model of natural selection, however, the study did not 

emphasise that interactions between loci are a vital component. 

James' selective values took this into account, but his derivation 

of expressions for the metric mean at any time t, and at the limit 	 J 

tended to play down the importance of these interactions, with the 

result that the expression obtained do not necessarily apply to the 

type of limit most likely to be reached with the optimum model. A 

more detailed discussion of this problem is given later. 

It would seem then, that both the homeostatic and optimum models 

of stabilizing.natural selection need to be more fully explored in 

the context of artificial selection, before a proper understanding 

of the interplay between artificial and natural selection can be 

achieved. 
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LIMITS TO ARTIFICIAL SELECTION 

IN THE PRESENCE OF NATURAL SELECTION 

Introduction 

One of the more important gaps in current artificial selection 

theory is the lack of a proper understanding of what happens during 

the intermediate generations of artificial selection in the presence 

of natural selection, before total fixation has occurred. In parti-

cular, it would be useful to be able to predict in a population of 

finite size the occurrence of selection plateaux at which genetic 

variance still remains due to opposing natural selection. 

Using the available algebra as a basis, it should be worthwhile 

to explore more fully both the optimum and homeostatic models of 

natural selection in the context of artificial selection, studying in 

some detail the implications of each with respect to the nature of 

response to artificial selection. Such a study has therefore been 

conducted, with the aim of determining the consequences of the inter-

play between these two selective forces. 

First to be examined will be the homeostatic model of natural 

selection, with its implications for artificial selection in very 

large and in small populations being investigated in turn. The 

algebraic predictions so obtained for the latter situation will then 

be expanded with the aid of computer operation of a suitable transition 

probability matrix, to obtain a greater insight into the intermediate 

generations of selection. In all cases the aim of the matrix study 

will be to look for general patterns rather than specific results from 

a particular set of parameter values. An attempt will be made to ex-

press conclusions and predictions in terms of population parameters, 
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or combinations of parameters, which are relevant to the overall 

concept of artificial selection. 

The optimum model of natural selection will then be considered 

with the aim of obtaining a greater understanding of its implications 

in the light of theory which has already been developed by other 

workers in this field. 

Finally, the results of reverse and relaxed selection 

following forward selection will be examined. Predictions initially 

obtained for an additive model of artificial selection in the absence 

of natural selection will be compared with transition probability 

matrix results including the effect of natural selection. 
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I. THE HOMEOSTATIC MODEL OF NATURAL SELECTION 

Consider two alleles at a single locus in a large population 

undergoing artificial selection for a metric character, and in which 

natural selection is acting in a manner described by the homeostatic 

model of Lerner (1950, 1954). 

At the time of conception in generation t, the relative fre-

quencies of zygotes will be (l-q) , 2q(l-q) and q 2,far  genotypes 

A2A2 , A1A2  and A 
1  A  1  respectively, where q is the frequency of allele 

A1  in the group of individuals selected as parents at the time of 

mating in generation t-l. Natural selection may occur at any time 

within the diploid phase of a generation, i.e. at any time between 

conception of zygotes and mating of individuals resulting from those 

zygotes. In addition, artificial selection occurs at some specified 

time within that generation. 

For a single locus the total effect of natural selec'tion:can 

be represented by relative fitnesses of 192, 1 and 18
1  for genotypes 

A2A29  A1A2  and A1A 1  respectively. Assuming additive gene action for 

the metric character at this locus, the effect of artificial selection 

can be expressed (following Haldane, 1931) in terms of the selection 

coefficient ia, where i is the standardized selection differential, 

and a is the difference (a) between the metric means of the two home-

zygotes, divided by the phenotypic standard deviation (cr y). As 

usual, this relationship is only valid when a is small relative to 

For such a model, the metric mean and overall selective value 

of each genotype can be represented as 
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Mean metric value relative 
to the heterozygote 

Selective value relative 
to the heterozygote 

A 2  A  2 
	 A1A2 

—a 
0 

)(ls2) : 	1 

AjAi 

+a 
2 

: 	(1 + 

1. ALGEBRAIC APPROXIMATIONS 

Change in gene frequency 

The end result of a single generation of such artificial and 

natural selection will be a change in frequency of allele A 1  given by 
ic 6q in 2 q(l—q) 

+ (s1+s2)q(l—q) (—q) 

ia 
T (81+82)q(l—q){q+(1-2q)} (1) 

where i is the equilibrium frequency of allele A, with natural 

¶2 selection alone in a large population, and is given by q •in 
12 

the usual manner. The three terms of equation (1) correspond to 

artificial selection, natural selection and the interaction between 

these two forces, in that order. 

The conditions necessary for the attainment of a selection 

plateau, which is in effect an equilibrium between artificial and 

natural selection, could obviously be obtained by setting Aq - 0 in 

equation (1). A far easier, and more enlightening approach is to 

consider the relative selective values of the three genotypes as a 

result of the combined forces of artificial and natural selection. 

In a large population the necessary and sufficient condition for an 

equilibrium is that the overall selective values should exhibit over-

dominance. This will occur when (1 + 	- 	c 1 which gives 
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immediately the condition for equilibrium between artificial and natural

ic  selection as 81>2 	. Such a conclusion makes sense when it is con- 

sidered that the direction of artificial selection in this model is 

in favour of the homozygote A1A1 . Natural selection can only produce 

an equilibrium, or selection plateau, vhn it transfers maximum over-

all fitness in the presence of artificial selection from that homozygote 

to the heterosygote. It is to be expected then, that the only para-

meters of importance in determining whether or not a selection plateau 

will result, would be the strength of artificial selection and the 

natural fitness of the homoygote iost favoured by artificial selection. 

This indeed turns out to be the case. Such an equilibrium is bound 

to be stable in a large population, since it arises out of a simple 

overdominance situation. The frequency of allele A1  at the plateau 

can be written as 

A 	 (2-i) + Ia 
ci- 	(2+iu(l-2)] 

which can have a value anywhere between q and 1, depending on the re-

lative strengths of natural and artificial selection. If 4 does 

equal unity then there is no longer a plateau due to opposing natural 

selection but rather a plateau due to fixation of the favourable 

allele and hence exhaustion of genetic variance. Conversely, an 

equilibrium gene frequency less than unity corresponds to what might 

be called a pre-fixation plateau at which segregation still occurs and 

hence genetic variance still remains. Because the value of 4 depends 

solely on the relative strengths of natural and artificial selectIon, 

it follows that it should be possible to break through any such pre-

fixation plateau by increasing the strength of artificial selection. 
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This could be most easily achieved by increasing the value of I, 

the intensity of artificial selection, if reproductive excess is 

suff Ic lent. 

Change in the mean of the metric character 

The metric mean of the population is . (2q - 1) when the geno-

types are in Hardy-Weinberg equilibrium. A change in gene frequency. 

of Aq will therefore result in a corresponding change in the mean of 

the metric character given by 

- 	12(q+q) - 11[2q-1) 

aq 

providing that the measurement of phenotype is carried out prior to 

any action of natural selectIon. If some of the natural selection 

has already occurred prior to measurement, the genotypes will no 

longer be in Hardy-Weinberg equilibrium and the above relationship 

between change in gene frequency and change in metric mean will no 

longer hold. Therefore, when discussing change in the metric mean 

as a result of artificial selectIon in the presence of natural 

selection consideration must be limited for the time being to natural 

selection which occurs between measurement of an individual and con-

ception of its progeny. 

Relaxation of artificial selection 

Robertson (1956) introduced the parameter which he called 

the homeost9tic strength of a character and which he defined as 

E k. 
i i  

where 	818 
S - 

1 
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and 

k.1  - 	a. 1  2q(l_q.) 

1- Si  is then. the average fitness of the equilibrium population relative 

to that of the heterozygote at the 1th 
 locus, and the homeostatic 

strength is simply the mean of the Si , weighted according to the pro-

portion of additive genetic variance contributed by each locus. In 

the same paper, Robertson was able to show that 3 could be estimated 

by observing the change in metric mean resulting from one generation 

of relaxation in a large population after artificial selection has 

altered the mean by an amount 8x. For a single locus, the change in 

metric mean resulting from a single generation of relaxation at 

generation t will be 

- a(s 1+s2 ) 

where q is the frequency of allele A1  after t generations of arti-

ficial Selection. 	But 

l 2 S- 	- (l-) 

which gives 

Ri - a S 
(l-) 

and therefore 
R- 

s - J. q(l-  
tx 

This expression can be simplified by making the likely assumption 

that the population was at equilibrium with natural selection before 

artificial selection was coninenced. 

gives 
- 	

R1 (1) 
- a•; 

In this case Aq -(q - q) which 

(3) 

(2) 
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and 	Is I 	
' R
-  AX (4) 

providing artificial selection has not altered gene frequency too far 

from the original equi1ibrum value. Equation (4) was first derived 

by Robertson (1956) using a different approach: the conditions under 

which it is likely to be useful are now quantified in equation (2). 
R 

In particular, Ax  will be a reasonable estimate of S only if rélaxa-

tion is carried out in one of the early generations of artificial 

selection, before q (l-) has altered very much from (l-). Even 

if this condition is met, a number of replicate selection/relaxation 

lines would be necessary in practice to obtain a useful estimate of 

S, because of the large sampling variances inevitably associated 

with single estimates of Ax and R 1 . 

It was noted above that the only important parameter of homeo-

static natural selection in the context of artificial selection is sip 

the natural selection coefficient of the hotnozygote most favoured by 

artificial selection. Since s - S/q, the same purpose can be 

achieved by using the parameter S to describe the strength of natural 

selection, so long as the associated equilibrium gene frequency , is 

also mentioned. 

Chance of fixation 

It is well known that the change in gene frequency distribution 

with time in a finite population of size N under a continuous model 

can be described approximately by the Kolmogorov forward equation 

	

a2 q(1-q 	a - - ] - - IlMA J at 	
8q2 I 
	4W 	aq (5) 

a 

where 4 (q,t) represents the distribution of gene frequency at time to 
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given an initial frequency q 0 . In the current model, Aq is the 

change in gene frequency resulting from artificial selection in the 

presence of natural selection. By following Kiinura (1957) and 

solving the associated Kolmogorov backward equation for t - , it is 

possible to obtain 
- 00  

u(q0) 	
o' 	j) dy 

where 

, (6) 

' expl-2wiay + 2N(s 1+8 2)(y4) 2+ N(s1+s 2)ia{2y+y2 (1-2)}],J 

and where u(q 0) is the chance of fixation of allele A1 . For the 

present model u(q0) is beat thought of as the proportion of loci ex-

pected to be fixed for the favoured allele within one line, or the 

proportion of lines expected to be fixed for allele A 1  in a replicated 

selection prograe. Equation (6) reduces to the relevant equations 

of Robertson (1960) and Robertson (1962) for artificial selection 

alone, and natural Belection alone, respectively. For Nicscl and 

N(s 1+a 2)cl, an expansion of equation (6) gives 

i 	
8+S 

u(q) - q0  + 2Nq0 (1-q0)4 + 2Nq0(l-q) 13 2(3-l-q0) 

1 2 - 2Nq0(1-q) 	3  . 
	(l+q+q0 (l-2)]+,.. 	. 	(7) 

Consideration of this expression and indeed the whole topic of this 

model can be simplified by assuming as was done in the previous 

section that the population was at equilibrium with natural selection 

before artificial selection was coimnenced. Thus it is now being 

assumed that hoineostatic natural selection was acting in a large 

population maintaining the large-poputation equilibrium frequency of 

q. At the commencement of artificial selection, a finite sample of 

individuals was withdrawn at random from the large population, giving 
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E [q0J - q. Unless otherwise stated therefore, during the rest of 

this study it will be assumed that q 0-q. 

By neglecting the interaction term, which will be considerably 

smaller than either of the other two terms in N, and by substituting 

S ( 81+s2)(l_), the expression for chance of fixation now becomes 

u() - + 2N(l-) ! + N S (2-1) 	 . (8) 

The term representing artificial selection is always positive thereby 

indicating that any form of artificial selection will tend to increase 

the chance of fixation above the equilibrium and initial gene frequency 

of q, as would be expected. 

On the 'cther hand, the term for natural selection can be positive 

or negative, depending on whether is greater or less than 0.5. 	It 

can be seen from equation (8) that heterozygote superiority for fitness 

in a small population will decrease the limit to artificial selection 

only if c0.5. Conversely, if the allele most favoured by artificial 

selection is at an initial and equilibrium frequency of greater than 

0.5 9  then heterozygote superiority for fitness in a small population 

will increase the chance of fixation above that expected from artificial 

selection alone. 

This conclusion follows directly from Robertson's (1962) study 

in which it was shown that heterozygote superiority alone in small 

populations exerts essentially a twofold effect. The first and ob-

vious effect is to decrease the rate of loss of heterozygosity 

(although it even fails to do this for equilibrium frequencies outside 

the range of approximately 0.2 to' 0.8). Equally important, however, 

is what could be called a directional effect imposed on gene frequency 
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by heterozygote superiority in which the least frequent allele de-

creases in frequency over generations, ultimately having a lower chance 

of fixation than that expected with drift alone. In other words, 

heterozygote 8uperiority alone in small populations results in the 

preferential fixation of the allele which forms the fitter of the 

two homozygotes. This directional effect is absent for q - 0.5 be-

cause in this case both homozygotes are equally fit. Graphs èhowing 

the way in which heterozygote supetiority decreases the frequency of 

the least frequent allele during the intermediate generations of 

selection have been presented and explained by Hill and Robertson 

(1968). 

It would appear then, that if j >0.5 natural selection will a!-

ways be aiding and never hindering the ultimate results of artificial 

selection, in which case a plateau due to conflict between artificial 

and natural selection could never be expected. This conclusion be-

comes more apparent by considering that artificial selection is 

attempting to establish homozygosity for the favoured (with respect 

to artificial selection) allele. 	If >0.5 ;  then this favoured 

homozygote will also be fitter (with respect to natural selection) 

than the other homozygote, and artificial selection will simply be 

accelerating and exaggerating a process which was inevitable in a 

small population under homeostatic natural selection anyway, namely 

the preferential fixation of the allele which forms the fitter of the 

two homozygotes. 

The curves in figure 1, obtained from equation (6), illustrate 

the effect of heterozygote superiority for fitness on the chance of 

fixation due to artificial selection. The effect of natural 
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selection is expressed in terms of S which, as we have noted earlier, 

is a biologically meaningful parameter which can be estimated re-

latively early in a selection prograe. 

A word of explanation must be given on the use of S alone as 

the parameter of natural selection. Substitution of equation (1) 

for tq into the diffusion equation (5) and multiplying throughout by 

N would lead to the conclusion that the change in the gene frequency 

distribution could be described in terms of Nia and N(s 1+s 2) ifthe 

time scale were to be measured in units of t/N. Since 

S - 	 and 	(l-j) is a constant, theabove statement is 

equivalent to saying that the whole process can be described in terms 

of Nia and NS. The big disadvantage however, of using NS in the 

present context is that it completely obscures the fact that S has 

very definite and, as it so happens, very convenient maximum values 

depending on i. 

Consider for example, q - l-q - 0.5 which gives S - !.., since 

for q - 0.59 
s I 	 2 - a. S will obviously be maximum when both 

homozygotes have zero fitness (s-I), giving maximum S - 0.5 - q - i4. 
For q other than 0.5 the maximum value of S must reflect the situation 

in which the least fit of the two homozygotea has zero fitness. By 

expressing S in terms of the equilibrium frequency i  and the selection 

coefficient of the least fit hoinozygote, S can be written as 	and 

(1)a2 for q(0.5 and q> 0.5 respectively. 	Setting s - 1 and s - 1 

in turn, to give the relevant homozygote zero fitness, it can be seen 

that the maximum value of S is q for 40.5 0  and l- for 0.5. Of 

particular interest in the context of artificial selection is the case 

in which q0.5 and $ - q because this describes a situation reported 
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several times in the literature, where artificial selection favours an 

allele which is lethal or sterile when homozygous (see for example, 

Clayton and Robertson, 1957 and Hollingdale, 1971). Another advantage 

of the use of S alone will be brought out below in the discussion of the 

matrix results, where it will be shown that a description in terms of S 

rather than MS enables more fruitful predictions to be obtained. Finally, 

it can be shown by a simple analysis of variance (see Appendix I) that 

over three population sizes (5, 10 and 20) and with four strengths of 

natural selection combined in all possible ways with four strengths of 

artificial selection, more than 852 of the variation in response can be 

accounted for by describing the selection process in terms of Nia and S. 

Returning now to figure 1, it should be noted that the three curves 

representing no natural selection (S-0%) correspond exactly to the rele-

vant curves in figure 1 of Robertson (1960). Md as long as artificial 

selection is carried out prior to any natural selection, then the value 

of the metric mean at the limit could be represented on the same scale as 

chance of fixation, because only additive gene action for the metric 

character is being considered. Included in figure 1 is an example of the 

way in which homeostatic natural selection actively favours the effect of 

artificial selection at the limit for alleles with equilibrium frequencies 

greater than one half, in this case 0.7. The curves for qO  • - 0.5 

illustrate that artificial selection will be ppposed by natural 

selection if both homozygotes have the same natural fitness. The 

reason for this again derives directly from Robertson (1962), who 

showed that although the directional effect on gene frequency is absent 

for q - 0.5 9  retardation of fixation for either allele is at a 
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maximum for this equilibrium frequency. Natural selection in this 

situation is acting therefore by favouring heterozygosity and would 

be expected to oppose artificial selection. The situation for jc0.5 

(in this case 0.1) brings out another point which can also be deter-

mined from equation (8), namely that it is conceivable that natural 

selection may exert a stronger influence than artificial selection in 

which case the chance of fixation will be less than the initial and 

equilibrium frequency, if q<0.5. While such a result is unlikely to 

be achieved in practice for a number of loci, it does emphasise that 

the end result of the interaction of artificial and natural selection 

is quite simply a function of the relative strengths of each force. 

It can be concluded from the graphs that natural selection 

will not seriously fect the ultimate results of artificial selection 

unless S is of the order of 0.05, or even greater for genes with inter-

mediate initial frequencies. 

Total advance in the mean at the limit 

The effect of natural selection on the limit to artificial 

selection can be further analysed by considering the total change in 

gene frequency (u(q0)-q] which corresponds to a total change in metric 

mean of'a(u(q)-qJ, This can be written as L, for the expected 

advance of the metric mean at the limit under the combined effects of 

Artificial selection and the Homeostatic model of natural selection. 

Equation (7) can be rewritten as 

u(q)-q 	Niaq(l-q)(]-ty) 

2 where, for q0  - q, 	W - 	- ______[, (2-l)-l) 	, 	(9) 
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which gives 	L - 2N8G (l-W) 	 (10) 

where AC is the change in metric mean in the first generation of 

artificial selection alone, being estimated as a 1 q(l-q). 

Under assumptions éimllar to those used here, Robertson (1960) 

predicted that the total advance at the limit due to artificial 

selection alone will be 2N times the change in the first generation. 

Equation (10) shows that this prediction will be altered by a factor 

1-W in the presence of homeostatic natural selection. From equation 

(9) it can be seen that initial and equilibrium gene frequencies of 

0.5 will give W - 2S, while relatively low frequencies will produce 

values of W well in excess of 2S. It is reasonable therefore to 

take 

' 2NAG (1-2S) 	 (11) 

as a maximum estimate of the advance at the limit to artificial 

selection in the presence of honteostatic natural selection. 

This equation however, is limited in usefulness by the 

assumptions inherent in its derivation, some of which have been des-

cribed above. More importantly, it applies only to advance at the 

limit when total fixation has been achieved. On the other hand, it 

is obvious that the -homeostatic model of natural selection may produce 

a plateau in the relatively early generations of selection, long before 

genetic variation has been exhausted. It will be shown later that- 

the metric mean at such a pre-fixation plateau may not be exactly the 

same as the mean represented by L, at total fixation. It remains 

to be seen therefore whether or not equation (11) is a useful prediction 

of advance in the mean at a prefixation plateau. 
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Intermediate generations 

Expansion of the relevant transition probability matrix as in 

Robertson (1952) and more thoroughly in Narain> and Robertson (1969) 

will provide relatively simple algebraic expressions which are adequate 

over a limited range of parameter values. For small Nia and N(s 1+s2 ) 

it is possible to obtain from equation (1) 

- ía 
I q0(l-q){.!.+ (s1+s2)(q_....1.)}(1_4.)t 

t+l 
 

+ q0 (1-q )(s 1+s 2)(-q ){1 + 

whIch forq0 	gives 

E[AqJ i. 
,ia 
- (l.-) + 2 

 

+ S(-)(l + 

where Aq 	 is the change in gene frequency between generations t and 

t+l. Equation (12) reduces to 

• ía 
2 E(qt4' = - 0 0 +N)  

for artificial selection alone as in Robertson (1960), and to 

1 •t t+l(s1+s2)q(1-q){(-) 	
2N 	

+ (_q0)(1._.)t} 

for natural selection alone. 

From equation (12) expectations can be derived for the frequency 

of allele A 1  at time t [qJ and at the 1imit1c,1. The former turns out 

tobe 

E1qJ " q + 2N + (s1+s2)(__..) 	
- 	2W 

(14) 
+ 2Nq0(1-q) 	(-q0){1 + !.(l.2)1ri_(i_)tl 

9 
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While the expression for E [q] is exactly the same as that for u(q 0 ) 

in equation (7) as would be expected. 	Equation (14) could be used 

to follow the course of gene frequency change from generation to 

generation during the whole period of selection. However, being de- 

rived from equation (12), it too is limited in usefulness to situations 

in which Nicz<l and N(s 1+s2 ).cl. 	A more fruitful method of predicting 

changes in gene frequency over time involves the use of a transition 

probability matrix which will be described in the next section. 

Half-life 

Equation (14) can be used to obtain an expression for the 

half-life of the selection process. Following Narain and Robertson 

(1969) the half-life (th) can be estimated by solving for t in the 

equation 
u(q0)-q 

E[qt] - q  
0 	2 

Substitution of the expressions already obtained for 	and u(q0 ) 

eventually results in 

Ax 3  +Bx + C - 0 

where x - e t'2  

A -3 (-q) + 

	

icz 	 - 	ia B -2 + (
8
1

+8
2)(q-) - 	

1'2 

and 	C - _4! + 8l52(3q_l) + !(s1+s2 )(2qq......l)J 

Knowing that x M j is one possible solution, and utilizing the Newton-

Raphston method to obtain a better estimate, results in 

x - x Ax 3  + Bx + C 
-  

	

0 	
3Ax2+B 



which gives 

e -t/2N 	2A-8 
3A+4 

Solvingfor t  results in 

thN . . 4 + 2A+ 8B+ 16CJ 

In 1.4N + N(s 1+s 2 ){2q-l+ia[q(i-2 	+ 

This expression for half-life is only strictly valid for Niacl and 

N(a1+s2)<l. Within these limits it can be seen that the absence of 

natural selection results in a half-life of 1.4N generations, as was 

first predicted by Robertson (1960). With initial and equilibrium 

gene frequencies less than one half, t will be less than l.4N, this 

being a reflection of the decreased limit to artificial selection 

resulting from such natural selection. Conversely, with q>0.5, it 

has already been shown that the chance of fixation will be increased 

above that expected from artificial selection alone, in which case it 

will take longer than l.4N generations to achieve half this response. 

Change in fitness with selection 

The tendency for artificial selection to produce homozygosity 

for favourable alleles at loci associated with the character under 

selection would be expected under the hoineostatic model to produce a 

decrease in fitness over and above that which could be attributed to 

the average inbreedi\ng at all loci in the genome, the latter resulting 

simply from the effects of finite population size. 	It has not been 

possible to obtain a simple expression describing the way in which 

fitness will alter with artificial selection in a small population. A 

minim mTstimate.of the change in fitness can, however, be obtained by 

deriving an expression for the change in fitness due to the effect of 

37. 
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small population size alone in the absence of selection. 

The mean fitness •tw of a population under homeostatic natural 

selection can be represented as 

E(w0] al - S 

at generation zero, for q 0  W  q, and 

E(w] 	1 - S - E 

at generation t. Both of these expressions have been derived in the 

usual manner directly from the single locus heterozygote superiority 

model, in the absence of artificial selection. Following the method 

used to derive equation (14) it is possible to obtain 

E1w ] • 1 - S12 - (1 l ) tJ 

- 1 - S(l+F) 

where F is the coefficient of inbreeding which, with random mating in 

the absence of selection, is simply a function of population size and 

generation number. The mean fitness at complete fixation (P.4) is 

then rather obviously Ewa 3 	1-2S. A useful way in which to express 

the change in fitness as a result of inbreeding and/or selection is to 

talk in terms of the ratio 	which is that proportion of the original 

fitness remaining at time t. 	It can now be seen that this ratio has 

an expectation of 1-S(1+P)for inbreeding alone (which arises solely 

from small population size) in the absence of artificial selection. 

Loci at which alleles had been subjected to artificial selection in a 

small population would be expected to be more homozygous than any esti- 

mate of F for that population would indicate. It can therefore be con- 

l-S(l+F) eluded that 	 will be a maximum estimate of the proportion of 

original fitness still remaining at a particular generation of értificial 



39. 

selection in a small population. Furthermore, the best estimate 

available of the proportion of original fitness remaining at complete 

fixation will be 	This too will be a, naxirium estimate because 

artificial selection may have resulted in the fixation of a larger 

proportion of alleles which produce relatively unfit homozygotes than 

would have occurred simply due to chance with inbreeding alone. 

Summary 

Only two parameters are of importance in determining whether 

or not Lerner's model of homeostatic natural selection will result in 

cessation of response to artificial selection. These are the natural 

fitness of the homozygote most favoured by artificial selection 1-

and the strength of artificial selection (ía). 

In a large population, a selection plateau will result whenever 

ía 

2+ia 

The nature of the equilibrium between the two selective forces 

is such that it should be possible to break through any such 'prefixation' 

plateau by increasing the strength of artificial selection. 

The strength of homeostatic natural selection (S) can be esti 

mated as the ratio of response in the metric mean following a single 

generation of relaxation in a large population (R1),to the response in 

the metric mean to all previous forward selection (*), but only if 

such relaxation is carried out quite early in the selection programme 

before gene frequencies have been altered substantially. 

Since the natural selection coefficient s can be written ass[q, 
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the effect of natural selection can be described in terms of S and the 

large population equilibrium gene frequency (i). 

For a single locus, S has a potential maximum value of q for 

qc0.5 and l-q for q>0.5, and such maxima Correspond to the least fit 

homozygote having zero fitness. The case in which q 0  - qc0.5 and 

S-q describes the situation where artificial selection favours an 

allele which is sterile or lethal when homozygous. 

At a single locus, and assuming that artificial selection in 

a small populntion is commenced by random sampling from a very large 

population with equilibrium frequency q such that E [qJ - q, heter-

ozygote superiority for fitness in the subsequent small population 

will decrease the chance of fixation due to artificial selection alone 

only for alleles with initialfrequencjeg. less than one half. Under 

such circumstances, the advance in the metric mean at the limit for 

alleles with initial frequencies less than but close to one half will 

have been reduced by a factor 1-2S from its usual expectation of 2N 

times the change in the first generation. The reduction will be 

greater for alleles which are initially less frequent. 

The half-life of the selection process will be greater than 

1.4N generations for alleles which are initially coon (q0  - >0.5) 

and will be less for less frequent alleles (q - qc0.5). 

The proportion of original fitness remaining at the limit *111 

never be greater than 
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2. THE USE OF A TRANSITION PROBABILITY MATRIX 

Most of the consideration so far has been of the effect of homeo-

static natural selection on the ultimate results of artificial selection. 

We have seen the ways in which such natural selection can alter the ex-

pected metric mean at the limit, when total fixation has occurred. But 

one of the more important aspects of homeostatic natural selection in 

the context of artificial selection is that it provides a possible 

reason for the cessation of response - a plateau - long before complete 

fixation has been achieved. Indeed, such an explanation has often been 

invoked to explain the observed lack of response to artificial selection 

in the continuing presence of additive genetic variance e.g., Lerner 

(1950, 1954), Clayton and Robertson (1957), Roberts (1966b), Verghese 

and Nordskog (1968). Under what conditions is such a model likely to 

be valid? 

Our previous considerations would suggest that initial and equil-

ibrium gene frequency will be important factors, but we have no idea as 

to what actual combinations of artificial and natural selection are 

likely to result in a pre-fixation plateau in.a small population. It 

would appear that some indication could be obtained by setting q-O 

and solving equation (12) for t, which would then be the generation at 

which cessation of response first appeared. However, being an approx-  - 

imation, and being relevant only for small Nia and N(e 1+s 2), equation 

(12) represents an ever increasing function in which case Aq will never 

be zero. Unfortunately, therefore, a plateau prior to fixation could 

never be predicted from such an algebraic approximation. 

The problem can be tackled with the aid of/transition probability 
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matrix, with which it is possible to obtain the expected value of gene 

frequency, genetic variance, and other parameters over subsequent 

generations under any relevant combination of artificial and natural 

selection. The most suitable form of transition probability matrix 

for the present model is the one used by Hill and Robertson (1968) who 

provided a full description of its derivation. The general theory 

involved in the use of such matrices has recently been developed in the 

context of artificial selection alone by Narain and Robertson (1969). 

Derivation of the matrix 

From the model described previously, it can be seen that for a 

given gene frequency qj/2N, the proportion 
g 
 of each genotype in the 

population of parents at the time of their mating will be 

gj22 •' 	(1_q) 2 (1_82 )(1.4.) 

1 
8j12 - 2q(1-q) 

r 

- ! q2(1_s1)(l4) 

r 

where is the proportion of the zygotes which remain to be included as 

parents, and is given by 

- (l_q) 2 (1_s2)(l_4)f2q(l_q) + q 2 (l_s 1)(l4) 
The probability of obtaining exactly x A2A2 , y A1A2  and z A1A1  genotypes 

(x + y + z - N) in a population of N survivors, given that there were j A1  

alleles in the population of zygotes in thej same generation can be 

expressed as 

x 	y 	z f(xYz) 	Lj22 8jl2 8J1l 



and can easily be evaluated on a computer for all j-'O,l,...,2N. 	It 

then follows that the probability of obtaining k A1  alleles in 

a population of N zygotes at generation t+l, given that there were j A1  

alleles in the N zygotes of generation t, will be 

p. - 	E f(x,y,z) 
	

j pk - 
2z+y •' 

which is an element of the transition probability matrix U. If all 

lines are considered, both fixed and unfixed, then U is square of di- 
2N 

mansion 2N+1, and within each row Z p3k  - 1. DeletiOn-of the first 
k-O 

and last row and column, and adjustment of all remaining 
P3k  to obtain 2N-1 

E 'k1 for each row, will result in a square matrix W of dimension 
k-1 
2N-1, which will be relevant to segregating populations only. 

Changes in various population parameters 

Both matrices are independent of generation because the selective 

values used to calculate them are assumed to be independent of generation. 

At any generation t therefore, post-multiplication of U or W by a suit-

able column vector v will result in a column vector 	expressing 

the results of that one generation of selection. For the parameters 

metric mean (x) and additive genetic variance (G 
2

A ), the values of the 

vector at any generation will depend among other things, on wtther 

natural selection occurs before or after artificial selection. 

Consider for example the metric mean. For the present model it 

can be written most generally as.. [f 11-f22] where f11  and f22  are the 

frequencies of genotypes A1A1  and A 2  A  2  respectively at the time when 

metric phenotypes are actually observed, and f 11+2f12+f22.4 	If arti- 

ficial selection is carried out prior to the occurrence of natural 

43. 
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selection, then the genotypes will be in Hardy-Weinberg equilibrium at 

the time of observation, in which case f11-q 2  and f22-(l-q) 2 , giving 

x4(2q-lJ as noted previously. On the other hand, if natural selection 

has acted prior to artificial selection, then the genotypes will no 

longer have Hardy-Weinberg frequencies. 

model of natural selection will give 

Instead, the hoineostatic 

 

- 

f - q
2 
 (l-s 1 )/w 

 

(1) 

2f12  • 2q(l-q)/ 

and 

- (l-q) 2 (l-a2)/ 22 

where 

- 	2 v - 1-e 1q - s2(l-q) 2  

- 1 - S - (s 1+s 2)(q—) 2  

which is the natural fitness of a population with gene frequency q. The 

metric mean after natural selection will then be 

a- 
T 

- .!(2q-1 + 5{(q) - 
2w 	 l-q 	q 

the 
which is equal to [2q-11 only if S0 or qq. Thus/value of the metric 

mean at the time of artificial selection will depend on whether or not 

natural selection has already occurred, except at generation zero for 

which it has already been assumed that q-q. It is possible to compare 

the two extreme cases of all natural selection prior to artificial 

selectinn, and artificial selection before any natural selection by a 

suitable choice of initial values for the column vector v • For the 

t3 

(3) 
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latter situation, the changes in metric mean can be followed by setting 

v (. - 2 o3) 	"2N - j - 0, .... 2N for U 
0 

j • 1,...,2N-1 for W 

Alternatively, the metric mean after naturl selection and at the time 

of artificial selection can be followed by commencing with 

V 	 f 	-f 
o(j) 	11(j) 22(j) 

where 

f11(j) - 	 (4) 

f22() - 
	 (5) 

and 	w 1.) - I 	S - 	 (6) 

It should be noted that for the case of artificial selection prior to 

natural selection, the metric mean is a simple linear function of the 

frequency of allele A 1  before any selection has occurred. Changes in 

the metric mean in this situation will therefore indicate changes in 

the frequency of allele A 1  at the time of conception in any generation. 

Turning now to additive genetic variance, it is convenient to 

follow Crow and Kimura (1970, section 5.6) and start by expressing the 

metric means (and frequencies) of the genotypes A 2A2 , A 1  A  2 and A 1  A  1  as 

ii + p22' (f22), ' + y120  (2f12), 	+ 	(f11) respectively, where 

again, f22  + 2f 2 + 	- 1. For the present additive model, y - -aq, 1 	 and• is the bveraii population 	an. 
12 - - a(q-) and 	- - a(q-l. It can then be shown (for example, 

Crow and Kimura used the method of least squares) that the additive 

genetic variance is given by 

- 2q a1  a1  + 2(1-q) a2  a2 	 (7) 
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where 	a 	q 	+ (l-q) 12 

- (1-q) 8 
 

a1  - If 11;11  + f12  ;12 J/q 

( lq) 2 	
q 

[2 	+ 2(-q) 
12 

q(1-q) 1  

a2  - q 12 + ( 1-q) 22 

a 
p 

and 	a2 	[f12 y 2  + f22 y22 ]/(l-q) 

-q . (2 (q- D 	+ 2.2!.] 
2 	q(1-q) 	1-q 

The above relationships indicate that a1  and a2  are the average effects 

(Falconer, 1960), while Crow and Kimura (1970) have called a 1  and a2  the 

average excesses, of alleles A1  and A2  respectively. If the population 

is observed when the genotypes are in Hardy-Weinberg proportions, then 
2 L,andf 12 	q(i-) 

fj1r/gIvin 41 	tr example, in which case 

2 	2 	 2 2qa 1  + 2(1-q)a 2  

q(l-q) 	 (8) 

as expected. In the context of the present model, hoever, if natural 

selection has occurred prior to artificial selection then the additive 

variance actually observed at the time of artifiial selection will be, 

from (7) 

2 a2 	 f 
- -. q(l-q) (2(1-q)-2! + 4(-q)2 	

12 + 
2q.22 ] 	 (9) q(l-qJ 
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where f11 , f12  and f22  are given by expressions (1),(2) and (3). The two 

extreme situations can once again be represented by a suitable choice 

of initial values for the column vector v. When artificial selection 

is carried out prior to the occurrence of any natural selection, it can 

be seen from (8) that changes in additive genetic variance observed at 

the time of artificial selection can be followed from generation to 

generation by setting 

V 	- 0)j 	2N"2N 

On the other hand, if all natural selection has occurred before artificial 

selection, then the additive genetic variance actually observed at the 

time of artificial selection in any generation can be determined by 

rettig q 	j/2Nand commencing w i t h 

Vo(j) - q(l-q) 	 110) 
 +2 

+ 2q 

(i) 
where f11( . ) . f22(J)  and W(j)  are given by expressions (4), (5) and (6). 

It must be emphasised that the end result of the itteraction of 

artificial selection and homeostatic natural selection within any one 

generation is the same irrespective of when each type of selection occurs. 

Reference to the generalised derivation of selection coefficients for 

artificial selection in appendix II shows that these coefficIents depend 

only on the deviation of the phenotypic mean of each ;honozygote' from 

that of the heterozygote, the intensity of artificial selection (i) and 

the phenotypic standard deviation (ci). They do not depend on relative 

frequencies of genotypes, nor do they depend on the amount of additive 

genetic variance present. If we assume therefore, that homeostatic 

natural selection will cause negligible alteration to the phenotypic 



variance within a generation, then the selection coefficients due to 

artificial selection will be the same irrespective of the stage or 

stages of the generation at which natural selection occurs. 

Consider for example, selection occurring in the following 

manner:- 

viability from conception 
to maturity 

artificial selection 

adult viability, mating 
ability and fertility 

A 2  A  2 
	A1A2 	A 

1  A 
 1 

: 	1 	: 

1 	: 

: 	1 	: 

For any values of the proportions p and r, the overall selective values 

of the three genotypes after all selection will be 

(ls'2)(l) 	•: 	1 	: 	(lsl)(1+!) 

as has been assumed throughout this study. 

The reason for looking at the two extreme situations is that all 

conceivable intermediate situations involving some natural selection 

prior to, and further natural selection following artificial selection, 

must lie somewhere in between the results predicted for the two extreme 

cases. 

Another parameter of interest in the present model is naturil 

fitness, and it is possible to predict the absolute fitness of the pop-

ulation at any generation by starting with 

V o(j) - 1 - S - (8l"82u'2Nl) 

48. 
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Changes in the distribution of gene frequencies 

Pre-multiplication of the matrix U by a row vector v 	of order 

2N+l with all elements zero except the jth which is unity, will produce 

a row vector IL 1  describing the distribution of gene frequencies at 

generation 1, including the probabilities of fixation and loss, given 

an initial gene frequency of j/2N. Continual pre-multiplication of U 

by u. will provide the gene frequency distribution at all subsequent 

generations. 

3. THE PATTERN OF RESPONSE TO SELECTION 

The matrix operations described above have been carried out with 

an effective population size of NalO for t-8N generations with various 

combinations of artificial and natural selection. This has enabled 

curves to be drawn showlng the way in which various population para-

meters alter during the selection process. The final generation was 

chosen as t8N simply because it represents a convenient multiple of N, 

and corresponds to almostall (in this case 98.2%) of the inbreeding 

process for a locus with neutral alleles. In addition, it represents 

a period of selection longer than most experiments reported in the 

literature, and thus should include all periods of relevance to practical 

selection prograes. 

An effective population size of N-lO was chosen because it re-

presents a realistic value of N when compared with most of the artificial 

selection experiments reported in the literature, and also because of its 

arithmetic convenience. Several analogous runs were carried out at N5 

and N-20, in order to check the generality of conclusions drawn from the 
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Figure 2. 	The change in frequency distribution of allele A 1  during the course of artificial selection 

in favour of that allele, with no natural selection (S = 0%) and with natural selection corresponding 

to S values of 8.4% and 16.8%. 	Curves are drawn for various generations, expressed in terms of 

effective population size, N. 	In this example q 	q = 0.3 and Nia = 8. 
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majority of runs at N-b. Differences in detail were of course observed, 

but the general trends and overall predictions observed and obtained 

from N.bO were still evident in the other runs. An analysis of the 

correspondence between analogous runs at different population sizes can 

be seen in Appendix I. 

Changes in gene frequency die tribütion 

An initial understanding of the interaction between artificial 

and natural selection can best be achieved by considering the changes 

of the gene frequency diettibution during the selection process.. An 

example of the way in which various strengths of natural selection 

can alter the effect of artificial selection is given in figure 2, 

which shove for one strength of artificial selection and three strengths 

of natural selection, the shape of the frequency distribution of allele 

A1  at various generations during the selection prograne. 

With no natural selection (S-OX) the distribution moves quickly 

towards fixation of the favoured allele which is completely achieved 

soon after generation 3N. An intermediate strength (5-8.4%) of natural 

selection slows down the progression of the distribution, postponing the 

attainment of total homozygosity until much later, around generation 6N. 

Still stronger natural selection (5-16.8%) produces a distinctly non-

lineat steady-state representing an equilibrium between natural and 

artificial selection which is reached as early as generation N. Fixa-

tion and loss occur at a much reduced rate from such a steady state. 

More A1  alleles will be fixed than lost simply because the mode of the 

steady state distribution is at a point greater than 0.5. The mean 

gene frequency will therefore continue to increase slowly, in spite of 
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a stable equilibrium between natural and artificial selection. This, 

then, is a stable equilibrium which does not appear as a selection 

plateau. On reflection, such a result would be expected for any 

situation in which a stable equilibrium is reached at a gene frequency 

above one half providing that the steady state distribution is reason-

ably symmetrical. Similarly, if a stable equilibrf;um steady state is 

reached at a gene frequency of less than 0.5 0  the mean gene frequency 

and hence metric mean may actually decrease, because now the mode of 

the steady state distribution is closer to loss of the favoured allele 

than to fixation. 

The one exception to this conclusion will be associated with very 

strong natural selection, of the order of q for equilibrium frequencies 

less than one half an'd , l-i for those greater than 0.5. Natural 

selection of this strength confers effectively zero fitness on 'the 

homozygote of the most favoured allele, and the least favoured allele 

respectively, in which case fixation of the relevant allele is effect-

ively prevented. 	Since artificial selection has as its aim the 

fixation of the favouredallele, the latter situation of S ;4_wi for 
>O.5 will be assisting rather than hindering artificial section. 

It is therefore only in the case of very strong natural selection on 

alleles with initial and equilibrium frequencies less than one half 

that a stable equilibrium with a stable gene frequency could be expected. 

Even this type of equilibrium would eventually produce a decrease in 

gene frequency and metric mean because fixation, whièh is inevitable in 

a small population, will essentially be of only the homozygote with 

the lower matric mean.. The generations at which sucha decrease in 

mean is likely to be observed however (for example, some time after 

11b, 
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Figure 3. .q = q = 0.1. 	Expected response in. metric mean and change 

in additive genetic variance resulting from artificial selection in 

a population of effective size N, during 8N,generations, with natural 

selection occurring before (dotted lines) or after (solid lines) 

artificial selection. 	Curves are drawn for various strengths (S) of 

natural selection, with relatively weak (Nice = 1) and relatively 

strong (NicC = 8) artificial selection. 	The scale for metric mean x 

is drawn as .-. + I  so as to also represent gene frequency for the 

solid lines. 	Similarly additive variance 
a? 

 is shown on a scale 
2aA 
------ so as to also represent heterozygosity for the solid lines. 
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generation iON) are hardly likely to be the concern of a person carrying 

out an artificial selection prograimne in large animals. 

Changes in metric mean and genetic variance 

The effect of the interaction between artificial and natural 

selection on the metric mean is illustrated in figures 3a, 4a, 5a and 6a, 

while the corresponding changes in additive genetic variance are shown 

in figures 3b, 4b, 5b and 6b. For the case of artificial selection 

prior to natural selection (solid lines), the graphs for metric mean 

also indicate frequency of allele A 1  at conception. Similarly, the 

solid lines in figures 3b to 6b indicate heterozygosity at conception 

as well as additive genetic variance. In either case, the graphs for 

additive genetic variance also indicate total genetic variance because 

of the additive model being considered here. 

It must be emphasised that the, graphs in figures 3a to 6a cor-

respond exactly to the curves so often used in the reporting of results 

of artificial selection progranmes, namely selection response against 

time in generationi. Furthermore, because the transition probability 

matrix is always expressed in terms of expected values, there is no 

sampling variance around the response curves obtained from it. Only 

one run of the computer for each combination of artificial selection 

and natural selection is needed, as there is no stochastic element at 

all in the actual computer manipulations. The. response curves re-

present therefore the result which would be expected for the mean of a 

large number of replicate selection lines for one locus, or the mean 

response to selection for a quantitative character determined- by a-

large number of independent equivalent loci within one line. It is 
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Figure 4. 	q. = q =0.3. 	Expected response in metric mean and change 

in additive genetic variance resulting from 1artificial 

-selection in a population of effective size N, during 8N 

generations, with natural selection occurring before 

(dotted lines) or after (solid lines) artificial selection. 

Curves are drawn for various strengths (S) of natural 

selection, with artificial selection of Nici=8. 	The scale 

for metric mean x -is drawn as 	so as to also represent 

gene fr,equency for the solid lines. 	Similarly, additive 

variance cYA is shown on a scale of a 
	so as to also 

represent heterozygosity for the solid lines. 
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important to note that unless otherwise stated, the values of population 

parameters so obtained refer to the average over all lines, or all loci, 

including both those that have already reached fixation and those that 

are still segregating, at any particular generation. Allan and 

Robertson (1964), being the first to make use of transition probability 

matrix multiplication on a computer in the study of artificial selection 

in small populations, have discussed the implications of this method in 

more detail. 

In general, it can be seen that the changes in metric mean and 

genetic variance follow the same trends irrespective of what stage of 

the generation natural selection occurs. The effect of any natural 

selection prior to artificial selection is most commonly to reduce the 

metric mean as observed at the time of measurement by a relatively 

small and fairly constant proportion. The same conclusion applies 

in general to additive genetic variance, at least for relatively weak 

natural selection. However, reductions of over one half in the variance 

actually observed can be seen for very strong natural selection prior 

to the time of observation, especially at intermediate initial gene 

frequencies. 

Of particular interest are the dotted lines for S-1O2 and 30% 

in figures 3a and 4arespectively, as these represent the situation in 

which the allele most favoured by artificial selection is lethal when 

homozygous. The progress of such alleles is seen to be similar to 

that followed at loci where the favoured allele is sterile when hoino-

zygous (solid lines fof S-lO% and 30%). In either case, the metric 

mean is prevented from being moved away very far from its original 

value and may even decrease due to chance fixation of the alternative 

allele. 
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Because of the overall similarity in trends for natural selection 

occurring before and after artificial selection, the following dis- 

cussion will be mostly in general terms, not necessarily distinguishing 

between the different possible stages of occurrence of natural selection. 

Looking now more closely at the curves for q 0  - q - 0.1 and re- 

latively strong artificial selection (Nia-8) it can be seen that, in 

the absence of natural selection (S-OX), a plateau is reached fairly 

early in the selection programme, at around generation 3N. Reference 

to figure 3b shows that this plateau is due to exhaustion of genetic 

variance, because of complete homozygosity. The fact that the final 

gene frequency is around 0.9 indicates that approximately 102 of lines, 

or loci, were fixed for the wrong allele because of small population 

size. Even higher values of Niu would therefore have been needed to 

achieve complete fixation for the favourable allele alone, in which 

case the frequency of the favourable allele at the limit would have 

been unity. It can be seen from the curve for Ni-8 and S-OX that it 

is quite possible to run out of genetie variance and thus reach a 

fixation plateau relatively early in a selection programme. The curve 

for Nia=8 and S-2% indicates that weak natural selection decreases 

the rate of selection advance and hence postpones but does not prevent 

the attainment of a fixation plateau. The ultimate limit is not re-

duced. Stronger natural selection (S.5Z) causes a further decrease 

in the rate of selection advance and also decreases the ultimate limit, 

while the maximum possible strength of natural selection (5-10%) pro-

duces a prefixation plateau at which much genetic variance remains as 

early as generation N. 

The continual advance in the metric mean and gene frequency for 
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generations, with natural selection occurring before 

(dotted lines) or after (solid lines) artificial selection. 

Curves are drawn for various strengths (S) of natural 

selection with artificiil selection of Nia = 8. The scale 

for the metric mean x is drawn as 	+ 	so as to also 

represent gene frequency for the solid lines. Similarly 
2 

additive varianceis shown on a scale of 	so as 

to also represent heterozygosity for the solid lines. 
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S-5% is due solely to continual fixation of the more frequent allele. 

Indeed it has been found that in this case the gene frequency in se-

gregating lines has actually reached an equilibrium value of 0.614 

corresponding to a steady state frequency distribution at about 

generation 2.5N. This then is an example of an equilibrium between 

artificial and natural selection which does not appear as a selection 

plateau. Likewise the eventual decrease in mean with S-lOX is due 

to the inevitable fixation of allele A2 , since the hoinozygote A 
1  A  1 

now has zero fitness. Again it has been found that the frequency 

of allele A1  in those lines still segregating has remained constant 

ever since the plateau first appeared.. 

The associated changes in genetic variance illustrate the same 

conclusions in a different manner. With intense artificial selection 

(Nicz-8) and no natural selection (S-OX), genetic variance increases as 

gene frequency increases until with gene frequency above 0.5 and with 

fixation proceeding quite rapidly, genetic variance quickly decreases - 

to effectively zero at a time (t-3N) corresponding to the time when a 

plateau was observed in the pmpulation mean. Weak natural selection 

(Scu22) simply maintains variance for a sliglti.y longer period prior 

to a similar decrease to a somewhat later exhaustion of genetic variance. 

In both cases a plateau does not occur until total fixation has been 

achieved. Stronger natural selection (S-5% and 10%) maintains variaiwe 

at a relatively high level for a much longer period, during which time 

a plateau has been observed in the population mean. Considerable 

heterozygosity and genetic variance will thus be associated with these 

plateaux. For less 'intense artificial selection (Nicial) increasing 

strength of natur1 selection tends to detrease heterozygosity at least 
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during the first half of the selection process, but this is only be-

cause heterozygote superiority tends to maintain the mode of the 

distribution of gene frequency closer to its original position of 

q-0.1 and hence to increase the chances of loss of allele A 1  due to 

sampling. 

The curves for q 0-a0.3 and 0.5 illustrate that a similar pattern 

of selection response and plateau formation results from the whole 

range of initial and equilibrium gene frequencies equal to or below 0.5. 

It has previously been stated that heterozygote superiority for 

fitness will increase the chance of fixation of an allele undergoing 

artificial selection, for initial and equilibrium frequencies 

greater than O.S. But alleles commencing at such relatively high 

frequencies have a high chance of fixation anyway due to artificial 

selection alone. What will be the effect of homeostatic natural 

selection on the pattern of selection response of an allele which was 

bound to be fixed [u(q0)-lJ due to artificial selection alone? The 

curves for qusq0.7 in figure 6a show that natural selection will retard 

the selection advance at such loci, but will not alter the ultimate 

result of complete fixation for the favoured allele. Natural selection 

in such circumstances would therefore be expected to increase the half-

life of the selection process, in agreement with the earlier algebraic 

prediction. 	If the strength of artificial selection is not sufficient 

to produce inevitable fixation of allele A1  however, (Niaul), then 

relatively weak natural selection is seen to increase the mean at the 

limit, as predicted. Relatively strong natural selection (S-30%) is 

now still sufficient to establish an equilibrium between the two 

forces of selection, and the change in mean which is actually observed 
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here is solely due to chance fixation of allele A 1  in a relatively 

high proportion of lines. The corresponding graphs for genetic 

variance illustrate the range of possible effects of natural selection 

(S 0% to the maximum of 302) on the changes in these parameters 

brought about by artificial selection. Natural selection is seen 

to maintain heterozygosity for a longer period of the selection pro-

cess. 

4. PREDICTION OF A PLATEAU 

From a practical point of view, it would be Uaeful to be able 

to predict approximately the generation at which a plateau will first 

occur (i), the advance in the mean at the plateau (L) and the pro-

portion of heterozygosity or genetic variance remaining at that time. 

An indication of the relative fitness of the population at the plateau 

would also be of use. Algebraic expressions which are relevant to 

some of these predictions have already been obtained. They can now 

be tested against the much more general results obtained from the 

transition probability matzix. 

a) Time to reach a plateau 

The &fficulty in pinpointing the generation at which a plateau 

first appears, or indeed whether or not a plateau actually exists in 

any curve in figures 3 to 6 is very similar to the difficulty met by 

those (for example, Roberts, 1966a) who have tried in practice to 

identify a plateau in an actual selection line. At what point does 

a decreased 'rate of selection advance correspond to a plateau? 

Realizing that any decision, in theory or in practice, is bound to be 
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an arbitrary one, it has been decided here to define a plateau as 
or metric mean 

that which begins to exist when the mean gene frequency4 rounded to 

the second decimal point, has not aitered for three consecutive 

generations. If such a definition is too conservative, then it will 

serve to lessen the apparent effect of natural selection. As it 

turns out, the general conclusions obtained from this analysis are 

quite robust against alterations in the definition of a plateau. 

The effect of natural selection on the time to reach a plateau 

is illustrated in figure 7. For ease of presentation of the curves, 

: -t/2N time has been expres8ed in a scale of 1-e. 	The x-axis has been 

expressed in units of S/q, from 0 to 1, to enable all initial and 

equilibrium gene frequencies to be represented in the one figure. 

With q0  - - 0.1 for example, the scale represents all possible values 

of S from OX to 10% 9  and for q0  - q - 0.3 9  the corresponding S values 

range from 0% to 30%. The same scale also applies to initial and 

equilibrium frequencies greater than one half, but the maximum value 

of S then corresponds to a value of S/ which is less than unity. 

With q0- q 0.7 for example, the maximum value of S (302) corresponds 

to S/ - 0.43. The disadvantage of the scale S/q is that it contains 

a parameter i which can not be directly estimated from the population. 

It should be remembered, however, that S/i - 81 which is the coefficient 

of natural selection for the homozygote most favoured by artificial 

selection. It has already been concluded that in large populations 

the effect of natural selection on artificial selection can be des-

cribed solely in terms of s. It would seem then that the parameter 

8 1 (-S/i) is the main factor determining the effect of the interaction 

between the two selective forces in both large and small populations, 

and this is what might have been expected. Since artificial 



59. 

selection is attempting to achieve complete fixation of allele Al . 

it comes as no surprise to see that the relative fitness of this 

homozygote is of crucial importance. 
a 

It has been found that the shapes of the curves of t against 

are not exactly the same for all initial and equilibrium fre-

quencies. Even:  at S - 0% for example, t varies slightly with q 0 , 

with t decreasing as q0  increases, this being a result predicted by 

Robertson (1960). The results have been summarised in one figure, 

however, in the interests of obtaining a generalised understanding 

and prediction. The differences between curves for different 

initial and equilibrium frequencies have been found to be differences 

in detail only; the tmportant general trend is represented in 

figure 7, the curves in which happen to have been obtained from 

- q - 0.3. 

For any initial and equilibrium gene frequency the 0  figure 7 

shows the effect of natural selection on the time to reach a plateau. 

It can be seen that even:  in the absence of natural selection (S - 0 
A 

and hence S/ - 0), t occurs relatively early with strong artificial 

selection (Niu - 8). This is because high values of Nics lead to 

complete fixation at a time well before that of t - expected for a 

locus with neutral alleles. Such a plateau would be due to exhaustion 

of genetic variance. Increasing strength of natural selection at 

first increases £, because heterozygote superiority for fitness tends 

to increase the time required to achieve complete fixation. A stage 

is reached, however, at around S/q - 0.3, when such natural selection 

is sufficiently strong to prolong complete fixatiàn until effectively 
a 	 a 

t C' . Any stronger natural selection then reduces t, but now be" 

cause fixation has been prevented and thus a plateau has been reached 
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due to an equilibrium between natural and artificial selection. In-

creasing strength of natural selection now simply produces an equili-

brium and hence a plateau increasingly early in the selection pro-

grae. Genetic variance will still now exist at such equilibrium 

plateaux. 

With less intense irtificial selection (Nia - 1) complete 

fixation is never reached prior to t 	even with no natural selection. 

With increasing strength of natural selection a point is reached, at 

about S/q - 0.2, after which complete fixation is prevented. Stronger 

natUral selection then produces an equilibrium plateau at ever earlier 

generations. It has been found that the results for intermediate 

strengths of artificial selection all fall within the two curves 

shown in figure 7, which can thus be taken to represent the majority 

of sttuations likely to exist in a selection prograe. 

It has also been found that natural selection prior to arti-

ficial selection slightly reduces t for any stróngth of natural 

selection. This reduction is sufficiently small however, to enable 

the curves in figure 7 to be taken as representative of the effect of 

natural selection at any stage of the generation. 

b) Advance in the mean at the plateau 

For an additive model in the absence of natural selection, and 

for Niacl, Robertson (1960) predicted that the advance in the metric 

mean at the limit would be 2N times the change in the first generation. 

The ratio 2Nc  is thus expected to be unity under the above conditions. 

Figure 8 illustrates the way in which homeostatic natural selection 

affects the value of this ratio. Natural selection has been cx-

pressed on the same scale as in the previous figure, again to enable 
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generalised conclusions to be drawn for all gene frequencies from the 

one figure. 	(The actual data represented in figure 8ha'7'been  ob- 

tamed from q0  - q - 0.3). 

For relatively weak artificial selection (Nia • 1) the ratio 
y 

declines rapidly from unit/as S/q increases until, at around S/q - 0.2 

it has a value of about 0.2. It will be recalled that this was the 

minimum strength of natural selection required to produce a pre-

fixation plateau. If a plateau due to opposing natural selection 

is observed for relatively weak artificial selection, then the ratio 

2NaG 	expected to be less than 0.2, corresponding to points on the 

curve for Nia - 1 to the right of S/ - 0.2. 

Relatively strong artificial selection, represented here by 

Ni - 8, can be seen to produce a relatively low value of the ratio 

even in the absence of natural selection, the reason for this being 

that such artificial selection is sufficient to achieve complete 

fixatton of the favoured allele and hence the maximum value of L, 

relatively early in the 8election progranine. Thus L is "prevented" 

from attaining that value which the relatively large tO would have 

inferred. As natural selection increases in strength, the ratio 

also increases gradually in value until around S/ - 0.3, the point 

at which pre-fixation plateaux first appear. For.S/ <0.3 therefore, 

L has remained constant at its maximum value, while AG has gradually 

decreased due to increasing strength of natural selection. Pre-

fixation plateaux occur at ever earlier generations as S/q increases 

thus resulting in a decreasing L beyond S/q • 0.3. The value of the 

rationtherefore declines toward a relatively low value around 0.1 

very similar to that observed for Nia - 1. 

In very general terms it appears that the ratio 2Nc will always 
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be less than unity in the presence of natural selection and will pro-

bably be less than one half at a pre-fixation plateau. It has been 

found that an approximate and simple algebraic prediction to this 

effect can be obtained by setting 2NAG - (l-2S) 2 . This result was 

achieved empirically from graphical examination of the results, but 

obviously with the algebraic prediction of equation (11) in mind. 

The relationship L - 2NC(1-2S) 2  is drawn in figure 8, in this case 

for i - 0.3. Its position on the graph will obviously alter with 

different j, but it has been found that the relationship provides 

quite a useful prediction of the upper limit of the value of 2NG 

in the presence of homeostatic natural selection. 

As in the previous figure, it has been found that the stage of 

the generation at which natural selection acts has very little effect 

on the shape or position of the curves. Thus the total advance in 

the metric mean at a pre-fixation plateau will usually not be greater 

than 2NG(1-28) 2  irrespeètive of when natural selection occurs. 

c) Genetic variance remaining at the plateau 

Selection plateaux at which pome genetic variance still remains 

have been conznoaly observed in practice, and opposing natural selec-  

tion has often been invoked as the cause. The changes in additive 

genetic variance as a result of artificial selection in the presence 

of homeostatic natural selection have already been presented in 

figures 3b to 6b, and some idea as to the time, t, at which selection 

plateaux occur has been obtained from figure 7. It should now be 

possible to combine both these sources of information by expressing 

2  the additive genetic variance at time t, CA  as a proportion of the 

original additive genetic variance, 0A2 ' This ratio has been chosen 
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V because of its practical relevance, in that an estimate of r can be 
obtained in principle from any selection experiment. 

Lerner and Deinpster (1951, table 2), for example, estimated 

heritability from intra-class correlation of siba.. for every generation 

of their shank length selection experiment. Associated estimates of 

pheotypic variance then enabled them to estimate a 2
from each 

generation. 	
a 2 

Figure 9 shows the ratio -. 	plotted against strength of 
cIA 

natural selection, expressed as SIq as before. Again, although the 

curves actually shown have been obtained from just one initial and 

equilibrium gene frequency, namely 0.3, they represent the general 

pattern obtained for all initial and equilibrium gene frequencies. 

The main point to note from figure 9 is that, in general, a 

selection plateau will have either very little or almost all of the 

original genetic variance remaining. It has already been determined 

from figure 7, that values of S/j at least around 0.2 are necessary 

to prevent complete fixation, even for relatively weak artificial 

selection. The curve for N.:2 . 1 in figure 9 supports this 

conclusion, by showing that 	if S/q falls much below 0.2. 

Values of S/q around 0.3 or greater, on the other hand, are sufficient 

to result in almost all of the original variance remaining at the 

plateau. The same trend is evident for relatively strong artificial 

selection (Nia-8), for which it has already been seen that an 

value of around 0.3 is necessary to prevent complete fixation. 

The results for S- indicate that essentially all of the genetic 

variance contributed by a locus at which the favoured allele is sterile 

will remain at a plateau, irrespective of the strength of artificial 

selection. 
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Finally, it has been found that the general trends outlined above 

apply to natural selection occurring at any stage during the generation, 

either before or after artificial selection. Thus selection plateaux 

due to opposing homeostatic natural selection will in general be 

characterised by the continuing presence of a large proportion, if not 

all, of the original genetic variance. It will be seen below (in 

section III) that this continuing presence of most of the original 

genetic variance at such plateaux will be reflected in relatively large 

responses to subsequent reverse selection. 

d) Relative fitness at the plateau 

Changes in absolute fitness during the whole process of artificial 

selection have been obtained from the matrix results for all relevant 

combinations of initial gene frequency, Nia and S. Rather than pre-

senting these as a series of graphs showing fitness against time, an 

attempt has been made to aununariae all the important features in one 

figure. Consideration will thus be given to the ratio of 	where 

is the fitness at the limit to artificial selection, and 	is the
io 

original fitness. The ratiow is plotted against strength of. natural 
V0 

selection in figure 10. 

It can be seen that stronger artificial selection tends to decrease 

fitness for any strength of natural selection, as might be expected. 

Of greater interest is the observation that 	is at a minimum when 	S/ 
V0  

is just sufficient to prevent complete. fixation, i.e. is just sufficient 

to result in a pre—fixation plateau. The decrease in 	up to this 
V0  

value of S/i is easy enough to explain. Fitness at any generation in 

the homeostatic model is a function of the strength of natural selection 

in this case), the equilibrium gene frequency () and the actual 



65. 

gene frequency 	such that 	- (s 1+a2)(q_) 2 . If t-t then 

will be the same for all values of S/q less than that required to 

produce a prefixation plateau: the total change in gene frequency 

will have been the same in all cases. This conclusion follows from, 

say, figure 4a, in which it' can be seen that for 910! (8/0.33), the 

only effect of natural selection is to retard the rate of advance. 

The final gene frequency is the same in all cases. Thus for S/j less 

than around 0.3, the value of will depend only on the strength of 

natural selection, expressed in this case as 8 1+82 , and will obviously 

decrease as 81+82 increases. Hence the value of w decreases until S/q 

is about 0.3. 

The subsequent increase in 	as S/q increases beyond this point 

(and as pre-fixation plateaux begin to form) is. due to a gradual de-

crease in 	at the limit, as natural selection becomes increasingly 

able to decrease the total change in gene frequency. Exactly the same 

trend is shown for the two relatively extreme values of Nia, so that 

the same trend would be observed at all intermediate strengths of 

artificial selection. 

Is it possible to relate the earlier prediction of . - 1-28, to 
V0  1S 

these more realistic results? The curve of 	is given in figure 

10, in this case assuming that - 0.3. It is indeed an accurate 

estimate for small Nia and small S, but completely fails to take into 

account the relatively high values of w at pre-fixation plateaux. In 
V0  

general then, for small Nia it appears that 	is an overestimate 

:rather than an underestimate of . as was initially concluded from the 

algebraic derivation. But at higher values of NiO it turns out to be 

an underestimate- 

It has been found that a far more accurate prediction of w  I. 
V0 
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given by l-S/g  at least for values of S/ less than that required to 

achieve a pre-fixation plateau. The curve of 1-S/g is also shown in 

figure 10, where it can be seen that this empirically derived curve 

follows the curve for Nici - 8 obtained from the computer matrix opera-

tions, almost exactly until S/ is approximately 0.3. However, it is 

hopelessly inaccurate as a predictor of v  at pre-fixation plateaux. 

One final conclusion can be drawn from figure 10, and this is to 

do with loci at which S-i.  It can be seen that such loci, at which 

the favoured allele is sterile or lethal, do not really contribute to 

a decrease in fitness at the limit. This must be mainly because gene 

frequency at such loci alters relatively little from what it was ori-

ginally. 

It must be emphasised that the whole of the above discussion has 

been concerned with loci at which artificial selection is attempting 

to achieve homozygosity. Changes in fitness associated with overall 

inbreeding depression have not been considered. To the extent that 

inbreeding depression of fitness might occur if effective population 

size is relatively small, the predictions obtained above would tend to 

be overestimates: any general inbreeding depression of fitness will 

tend to lower the curve of against S/ for any particular strength 

of artificial selection. 

5. DISCUSSION 

The ramifications of the homeostatic model of natural selection 

in the context of artificial selection have been explored in some de-

tail. How well do the implications of the homeostatic model accord 

with results obeerved in artificial selection experiments where natural 

selection has been thought to have played a significant role? 
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A logical starting point seems to be a reconsideration of the 

selection experiment of Lamer and Deinpater (1951) from which the 

homeostatic model of natural selection first arose. In an earlier 

reanalysis of this experiment, James (1962) estimated L as 1.33, tC 

as 0.19 and N as 12 approximately. Thus the ratio ófj is roughly 

0.3, which is considerably less than the value of unity expected for 

genes of small effect and/or small population size under an additive 

model in the absence of natural selection. Furthermore, from page 78 

of Lerner and Dempster (1951) it can be determined that to  • 8 - 0.67N 

generations, and',,-2. - 1 approximately. Finally, from their table 3, 

V 	2. 47 it can be concluded that - - ., - 0.66. 
0 

How well do these results tie in with the implications of the 

homeostatic model described above? Firstly, it must be remembered 

that this study of the homeostatic model has been in terms of single 

loci whereas results of -artificial selection experiments must be inter-

preted in terms of at least several loci. The effective value of S 

at any particular locus (or unit of segregation) will lie somewhere 

between zero and i (or l-). Furthermore, this value may alter during 

the course of artificial selection as a result of mutation and/or me-

combination. Witness, for example, the appearance after many generations 

of artificial selection in Drosophila,, of lethal or sterile genes that 

were apparently absent from the base population (Hollingdale, 1971). 

In drawing conclusions about the homeostatic model in terms of 

single loci, we are describing what happens to particular components 

of the actual response observed during an artificial selection progranrne. 

To the extent that these components operate independently of each 

other, any observed selection response is probably the combination of 

the response curves of several loci where natural selection does not 
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with intermediate values of S, together 

act (S-0), and other locimith one or two loci with maximum values of 

S. And the latter type of locus may only have commenced its contri-

bution to selection response after many generations of selection. 

Considering Lerner and Dempster's results in this light, the 

value of the ratio 
2NG  of 0.3 is certainly compatible with a model 

of homeostatic natural selection opposing artificial selection. 

Similarly, the t value of 0.67N generations, and ..--. 1 are also to 
02. 

be expected with relatively strong hotneostatic natural selection opposing 

artificial selection. With respect to fitness, it must be noted that 

the curves in figure 10 only give a direct prediction of the overall 

population fitness for a single locus, and as such provide only an 

upper limit of the actual value of relative population fitness tobe 

expected where several loci are contributing to the metric character. 

Thus the value of vr - 0.66 observed by Lerner and Dempater is not un-wo  

expected with the homeostatic model. 

All the data therefore are compatible with an hypothesis that the 

observed plateau was caused by the opposition to directional selection 

of homeostatic natural selection. 

It remains now to mention two implications of the homeostatic 

model which follow from the predictions obtained in this study. Firstly, 

it has been seen how the formation of a pre-fixation plateau is simply 

the reault of an equilibrium between two op'posing selective forces, 

and consequently that the plateau can be broken through by increasing 

the strength of artificial selection. But if the stronger artificial 

selection is still not sufficiently strong to achieve complete fixation, 

then a new pre-fixation plateau, at a sl4htly higher level of metric 

mean will be expected to result. Even stronger artificial selection 

will be required to break through this plateau, and so on. 	It has 
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already been mentioned that the easiest way to increase the strength 

of artificial selection is to increase the value of 1, which invoi.ves 

decreasing the proportion selected, p. And if the effective population 

size is to remain con8tant, a decrease in p requires a larger number of 

offspring scored, which may not be possible if the overall population 

fitness has declined. Thus in practice it may be imposib1e to break 

through a pre-fixation plateau because of an insufficient number of 

offspring. 

Secondly, it was seen in figure 10 that the relative fitnessat 

the plateau was at a minimum at the value of S/q which corresponded to 

a strength of natural selection just sufficient to prevent compiete 

ftxation. It follows that some of the loci uhich contribute most to 

a decline in fitness may not contribute at all to the maintenance of 

genetic variance at the limit. It would not therefore be surprising 

to find a line undergoing artificial selection for a metric character 

of apparent peripheral importance to fitness, in which fitness had de-

clined considerably but in which there was no sign of the formation of 

a pre-fixation plateau. Indeed it ±s quite conceivable that fitness 

in such a line could decline, to an extent that the line was in danger 

of extinction, whereas had the opposing natural selection been stronger 

then a pre-fixation plateau at which relative fitness was still quite 

high could have resulted. 

Thus a significant decrease of population fitness as a result of 

artificial selection need not necessarily imply that the metric 

character concerned is aii nportant adaptive character with respect to 

natural selection. 
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6 SUNMARY 

1 	A study has been made of the effect of homeostati.c natural 

selection on the limits to artificial selection for a metric character. 

The treatment has been in terms of two alleles at a single locus and 

the conclusions apply to natural selection occurring at any diploid 

stage of the generation. 

The effect of homeostatic natural selection can be described in 

terms of the strength of natural selection, S. and the large population 

equilibrium gene frequency, q. 	S can be estimated as the ratio of 

response in the metric mean following a single generation of relaxation 

in a large population, R1 , to the response in the metric mean to all 

previous forward selection, tax, but only if such relaxation is carried 

out quite early in the selection programme before gene frequencies have 

been altered substantially. 	It is reasonable to assume that the gene 

frequency at the start of artificial selection is equal to q. 

For any particular locus at which initial gene frequency does 

equal j, a cessation of selection response due to opposing natural 

selection (a 'pre-fixation' plateau) in a population of finite size 

generally occurs only for genes with equilibrium frequencies equal to or 

less than one half, and then only if the value of S/ is around 0.2 or 

greater. Values of S/ less than this are not sufficient to prevent 

complete fixation and hence exhaustion of genetic variance. 

The generation at which a pre-fixation plateau first appears, t, 

is determined by the relative strengths of artificial and natural 

selection such that t is increased by stronger artificial and/or 

weaker natural selection. 
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The total advance in the metric mean at a pre-fixation plateau 

is never greater than 2N(l-2S) 2  times the change in metric mean in the 

first generation of artificial selection, where N is the effective 

population size. 

The time taken to achieve half this predicted response is less 

than 1.4N generations. 

A large püpiion, if not all of the original genetic variance 

remains at a pre-fixation plateau. 

A significant decrease in population fitness as a result of 

artificial selection does not necessarily imply that the metric character 

concerned is an important adaptive character. 

For the particular case of a locus at whIch the favoured allele 

is 8terile or lethal (S'.) a pre-fixation plateau always results. For 

that particular locus, the plateau first occurs sometime during the 

first N generations of artificial selection and corresponds to a total 

advance in the metric mean of less than T times the change in the first 

generation. At such a pre-fixation plateau, the population retains all 

its original genetic variance, and the locus does not contribute to a 

decrease in overall population fitness from the fitness that existed when 

selection commenced at that locus. 

It should be possible to break through any pre-fixation plateau 

due to opposing homeostatic natural selection by increasing the strength 

of artificial selection if sufficient reproductive excess still exists in 

the population. The single exception to this is the situation in which 

the favoured allele is sterile or lethal and where artificial selection 

is already sufficiently strong so that none of the fertile or viable 

homozygotes are selected. 



II. THE OPTIMUM MODEL OF NATURAL SELECTION 

A normally distributed quantitative character with population 

mean p and phenotype variance ,2  can be represented by the normal 

probability density function 

1 
f(x)- 	exp 

where x is an observation of the metric phenotype on a single member 

of the population. 

Consider natural selection to be acting on such a quantitative 

character in the manner described by the nor-optimal model of Haldane 

(1954), in which the decline in fitness from some optimum phenotype 

0 follows the shape of the normal distribution. Thue the fitness of 

an individual with phenotype x is 

0(x) - exp (-K(x-e) 2 ) 
	

Iff 

where K is a scale constant directly proportional to the strength of 

natural selection. Of the different notations which have been used 

in the various studies of this model, by far the most useful appears 

to be that of Latter (1970) who introduced a parameter which he called 

the coefficient of centripetal selection, C. It has the logical and 

convenient property of ranging from zero for no natural selection, to 

unity for absolute selectIon of the optimal phenotype only. Latter 

has shown that C is simply related to Haldane's (1954) intensity of 

natural selection (I) by the expression 

72. 

I - - log (1-C) 	 when 0 = i, 

whIch at low strengths of natural selection can be approximated by C.21. 
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In terms of Latter's notation, the scale constant K in equation (1) 

is equivalent to 	2 (1-C) 2a 

To facilitate comparisons with other papers it should be noted 

that a 2  of Haldane (1954) is equal to a, 2  while his u2  equals 

a 2 (l-C). Futhermore, P 	
2 	2

lop 

- a,:af  - 

in the notation of Latter (1960) and James (1962) where a f  is a scale 

constant which is inversely propo99ena1 to the strength of natural 

selection, and a2 - cY 2+af2 . 	In O'Donald's (1970) notation, C- 1  

where V is the phenotypic variance and K is a scale constant equivalent 

to 1 2' Bulmer (1971 b, 1971 c, 1972 and 1973) made occasional use 
2af  

of a parameter 19 which, as he noted in his 1972 and 1973 papers, is 

exactly the same as Latter's coefficient of centripetal selection. 

However, most of Bulmer's work was carried out in terms of a scale 

constant c which is equivalent to O'Donald's K. 	(The K used in 

equation (1) above is identical with O'Donald's K and Bulnier's c). 

Finally, Cavalli-Sforze and Bodmer (1971) standardized the distribution 

2 of phenotypes so as to have mean zero and variance unity (a - 1) 9  

and then chose a scale constant a 2 such that 
c 1+a 

A sample of individuals with phenotypic mean x has a mean fitness 

given by 
Go 

O(x) f(x) dx 

which becomes, after completing the square (O'Donald, 1970; Bummer, 1972) 

- 11::?: exp 	
(;.4)2 	

, 	 (2) 
20 



For a single locus with two alleles the total population can be 

divided into three samples corresponding to the genotypes A 2A2 , A1A2  

and A1A1 , which are assumed to be additive for the metric character 

and to be in Hardy-Weinberg frequencies at conception: 

7L... 

Relative frequencies 

Mean metric phenotype re-
lative to the heterozygote 

A2A2 	A1A2 	AA 

(l-q) 	2q (l-q) 	q 

-a 	 +a 

The metric means of the genotypes at generation t are 

and ia-a(ql) respectively, where p is the overall popu-

lation mean at generation t 	Thus at generation zero for example, 

the relative fitnesses of the three genotypes can be expressed as 

A2A2 	 A 1  A  2 
	 A1A1  

-c 
0 

aq0-9}2 	 -c 	 ____ expl 	2 - 	I : expi 	2 (u0-a(q0--e}2 j : expi C2t;j_a(q_l)_e}2I 
2ci 	 2ci1, 	

20p 

which for low values of C can be written approximately as 

1- C  (0}2 	: 1- C  {ua(q 2  : 1- C{i_a(q_l)_9}2 p aq  
2ci 	 2a 	 2c1 

The relative fitnesees in (4) correspond to the quadratic deviation version 

of the optimum model in which fitness declines as the square of the de-

viation of the metric phenotype from the optimum phenotype, 9. This is 

an illustration of the well known fact that the nor-optimal and quadratic 

deviation versions of the optimum model are effectively the same for re-

latively low strengths of natural selection. The finer points of 

difference between the two versions have been debated recently by Manly 



(1973) and O'Donald <1973). 

Returning to the nor-optimal version, the relative fitnesses 

(selective values) in (3) can be expressed more simply as 

A2A2 
	 A 

1  A  2 
	 A1A1 

-Ca -Ca , exp( 	2(a(q-)+e-p)] : 	1 	: expi 	2 a(-q)+p-e}J 
2a 

1 • THE NATURE OF THE SELECTIVE VALUES 

The majority of recent studies of the nor-optimal mddel have con-

sidered only the case where the optimum phenotype is a certain constant 

value, this appearing to be a more realistic model than the alternative 

one involving a variable optimum. This study will therefore concen-

trate on the case of a constant optimum phenotype, and only a brief 

comparison with the model of a variable optimum will be made towards 

the end. 

Thee important thing to note about the relative selective values 

which result from the nor-optimal model is that for a single locus 

model they will remain constant over time, if the optimum phenotype 9 

remains constant. Given a particular strength of natural selection 

C and phenotypic variance ci 2 , the relative selective values are deter-

mined solely by the extent to which the phenotypic mean of each geno-

type deviates from the fixed optimum phenotype 9. For a single locus 

model any change in population mean resulting from a change in gene 

frequency is simply a reflection of an alteration in the relative 

frequencies of the three genotypes: the actual phenotypic mean of 

each genotype does not alter. A cons tant fixed optimum phenotype 

and a constant mean phenotype for each genotype will therefore result 
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(5) 



in a constant selective value for each genotype, irrespective of 

changes in gene frequency and associated alteration of the overall 

population mean at that single locus. 

The fixed optimum is often taken to be the population mean at 

time zero in which case 9 - U for the present study. 

An examination of the relative selective values in (5) for 9 - u 

indicates that they will be heterotic for all initial frequencies of 

either allele between I and 1. This is becaude over that. range of 

gene frequencies the population mean and hence the optimum is closer 

to the mean of the heterozygote than to that of either homozygote. 

It should be possible to compare these heterotic selective values with 

those considered previously in the homeostatic model. The relative 

fitness of genotype A 2  A  2  can be expressed as 

2 
- l-s2 -exp( Ca2 (q0-D] 

which gives 

- Ca2  

2o, 

for small C. 	Similarly, 

2 -Ca 
l-8 1 -exp( 	2(-q)] 

and 

(6) 

Ca2  
2 (I-ct0) 

2ci 

for genotype A1A1 . It then follows that 

+ 	Ca 2 
l 	2 	2 40P  

In addition 

- 

q - _____ 

76. 
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Figure 1. 	The relationship between strength of nor-optimal natural selection, C, and strength of homeo- 

static natural selection (S/q = s 1 ). 	The three different initial gene frequencies were chosai 

so as to represent almost -thewhole range of iiitial gene frequencies for which selective values 

are heterotic with e = 
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2(q,-) 
	

(7) 

and 

S - 	 (l-) 

.,Ca2 	 3 
2 

1q0-q0) - 

Equation (7) was previously derived for the nor-optimal model by Wright 

(1935 a) and Robertson (1956), who discussed its consequences. Briefly, 

these are that for a single locus undergoing such selection against a 

constant genetic background in a large population, a stable non-zero 

equilibrium will eventually be reached providing the initial gene fre-

quency lies midway between the equilibrium frequency and 0.5. In terms 

of the metric character, the fixed optimum phenotypewhich is the over-

all population mean at time zero, will lie halfway between the population 

mean at equilibrium and the mean of the heterozygotes. Initial gene 

frequencies between I and I therefore account for equilibrium fre-

quencies covering the whole possible range from zero to unity. 

It has already been shown that the only important parameter of 

heterozygote superiority for fitness in the coutszt c artificial 

selection is the natural selective coefficient of the bomozygote most 

favoured by artificial selection. For the homeostatic model this 

parameter is 
s,  which equals Slj with values ranging from zero to 

unity. What values of this parameter will result from the nor-optimal 

model of natural selection? The values of 9 
l 
 corresponding to various 

values of C have been obtained from equation (6) and are shown in 

figure 1. The graphs have been drawn for 	- 1 so as to show some 
P 

of the largest possible s l values for a given C. Smaller, more real- 

is tIc values of ..- would depress each of the curves thereby indicating 

9 . 
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even smaller s values for a particular C. 

For situations in which the nor-optimal model results in heterotic 

selective values it can therefore be concluded, for 9 - u0 , that even 

the strongest conceivable strengths of nor-optimal natural selection 

at the most favourable initial frequencies will only be equivalent to 

relatively weak homeostatic natural selection. A similar conclusion 

can be inferred from James (1962). More precisely, nor-optimal 

natural selection will never produce an 
s1  value of greater than around 

0.25 if the optimum phenotype is equal to the population mean at 

generation zero. This result is not surprising when it is considered 

that nor-optimal selection is acting indirectly (on phenotypes), 

whereas homeostatic selection acts on genotypes directly. 

Finally for 9 -0  it must be noted that initial gene frequencies 

outside the range of I to I give rise to directional selective values 

in favour of the homozygote of the allele with initial frequency greater 

than j, eventually producing fixation of that allele. This is a simple 

consequence of the population mean and hence optimum lying closer to one 

or other homozygote than to the heterozygote for gene frequencies out- 

side the range I to 1. 

These directional selective values will never be very strong. With 

- 1 again as an extreme example, the relative fitness of the three 
P 
genotypes is approximately, from (5) 

A 
2  A  2 	 A1A2 	 A1A1  

1 - .(q0- ) 	 1 	 1 - 

which, for a gene frequency outside the range I to 1, say 0.1, and for 

a relatively large C of 202, reduce to 1.015 : 1 : 0.935 in favour of 
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the homozygote A2A2 . More realistic values of and C will obviously 

result in even smaller differences in fitness between the three geno-

types. 

What if the constant optimum phenotype is different from the 

population mean at generation zero? Since the relative selective 

values are a function of the deviation of themean of each genotype 

from the fixed optimum, then the selective values will be directional 

rather than heterotic whenever the fixed optimum is closer to the mean 

of either homozygote than to that of the heterozygote. An optimum 

phenotype less than that of the homozygote A 
2  A  2  for example, would 

thus give rise to directional natural selectIon in favour of that homo-

zygote. In such a situation it is more useful to express all the 

selective values relative to that of genotype A2A2 , in which case they 

can be written as 

A2A2 	 A 
1  A  2 
	 A1A1 

Ca I 	: 	exp E; 2{a(q0 ) + e 	: exp [ca{fl(q..4) + 9 - 

If, for example, the optimum phenotype is the metric mean of geno- 

	

type A 
2  A  2 at generation zero, then 9 - 	- aq0 , and the relative 

selective values become approximately 

1 	• 	 iCe2 
	

1 Ca 2  

UP  

which are directional but not additive. The selective values are 

approximately additive only if the optimum is quite some distance from 

the population mean. The best way to represent this, situation is to 

follow Latter (1960) and James (1962) by setting 0 - 0 and u0>>a in 
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which case the relative fitnesees are given approximately as 

i  
Cap ° 
	 Cap 

1_  1 72 
op 	 op 

which are additive. 

It can be concluded therefore that relatively weak heterotic 

selective values will result if the constant optimum phenotype is closer 

to the mean of the heterozygote than to that of either hoinozygote. 

Otherwise, the selective values will be directional in favour of that 

homozygote whose metric mean is closest to the fixed optimum. These 

directional selective values will be additive only if the fixed optimum 

is several multiples of a away from the population mean at generation 

zero. 

The above results can be extended to any generation by considering 

the more realistic situation of several loci contributing to the metric 

character. At any generation t, the relative selective values at any 

one of the kci can be written as 

A 
2  A  2 
	 A1A2 	 A 1  A  1 

expi C2{p...aq_9}2J : exp( 2{ua(q4)_
9}2

] : expi _C2{p_a(q_l)_e}2J 

2c1p 	 2c, 	
20p 

where q is the frequency of allele A1  at generation t at that locus. 

The selective values are no longer constant but vary from generation to 

generation, because V (the overall population mean) is altered by 

changes in gene frquency at the other loci. 

Making direct use of the previous results it can now be concluded 

more generally that heterotic selective values will result at a given 

locus only if the cons taut optimum phenotype is closer to the mean of 



the heerozygote than to that of either hoinozygote. For this to be 

so at any generation t, 9 must in fact be equal to or not very differ-

exit from p, because p  always lies somewhere between the means of the 

two homozygotes if gene action is additive. Otherwise the selective 

values at any particular locus will be directional in favour of that 

homozygote whose metric mean is closest to the fixed optimum. These 

directional selective values will only be additive if 9 is several 

multiples of a away from 

The remainder of this study will concentrate on the case of 

several loci contributing to the metric character. Thus, although 

natural selective values will be expressed for only one locus, they 

will be considered to have arisen as a result of selection at all loci 

contributing to the metric character, in which case the natural selective 

values for any one locus at generation t will be a function of the gene 

frequency at that particular locus q t , and the overall population mean 

Pt .  

2, ARTIFICIAL SELECTION VERSUS NOR-OPTI!,IAL NATURAL SELECTION 

The effect of artificial selection can now be superimposed on this 

model of natural selection. Before doing so, however, it must firstly 

bemted that the nor-optimal model results in an alteration of the 

phenotypic mean and variance within every cycle of selection (see James, 

1962; Latter, 1970; O'Donald, 1970 and Bulmer, 1971çb, 1972, 1973). 

It is possible to determine from each of these papers that this alter-

ation amounts to a decrease of a proportion C of the phenotypic variance. 

The phenotypic mean, on the other hand, may be increased or decreased 

according to whether the àptimum phenotype is greater than or less than 

81. 
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the sample mean. The magnitude and sign of this alteration are given 

by C(9-x) where x is the phenotpic mean before ae1ecton. In other 

words, the phenotypic variance after aeiection is (1-C)a 2 , and the 

phenotypic mean is IC(O-). 

The simplicity of these statements illustrates another advantage 

of the parameter C over all the other different parameters described 

previously. A description of the same change in mean and variance in 

terms of any other parameters involves more complex expressions which 

are more difficult to interpret biologically. 

For the present model, there seems to be no reason for believing 

that this non-genetic effect of nor-optimal natural selection alters 

the phenotypic variance between generations: it is merely an effect 

that is observed within each generation. Therefore the assumption of 

a constant ci,2  between generations, which is implicit in all the 

selective values discussed above, is still valid. 	Indeed, it appears 

that all the various studies in which expression for, say, Aq have 

been derived have involved this assumption. For an effectively in-

finite number of loci, it has recently been,'shown (Bulmer, 1971d) 

that a change in phenotypic variance in the parental generation of 

-cap2  (using Latter's (1970) notation) under the nor-optimal model does 

result in a decrease of phenotyplc variance in the offspring generation 

of 1h4Ca 2  compared with up  in the parental generation before selection. 

However,' with heritabilities usually less than 0.5, and values of C 

less than say 0.2, it would seem that the expected change in phenotypic 

variance between generations can be safely assumed to be negligible in 

the present context. 

If natural selection occurs prior to artificial selection, then 

the phenotypic means of the three sub-populations representing the 

0 
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genotypes A2A2 , A1A2  and A 1  A  1 
 will be altered relative to one another 

as a result of the non-genetic effect of nor-optimal selection. The 

selective values of the three genotypes with respect to subsequent 

artificial selection within the same generation will consequently be 

different to what they would have been in the absence of natural 

selection, even though the genotypic means have not altered. As this 

effect of nor-optimal natural selection within a generation is pheno-

typic and not genetic, it is of no relevance if natural selection 

occurs after artificial selection. 

Two separate sttuations must therefore be considered when artificial 

selection is superimposed on nor-optimal natural selection. 

a) Artificial selection prior to natural selection 

When artificial selection occurs before the phenotypic means have 

been altered by natural selection, the relative selective values at 

generation t after both artificial and natural selection can be re-

presented as 

	

A 
2  A  2 	 A 

1  A  2 	
A 
1  A 

 1 

_____ 	 -Ca , 
4i, 

	-Ca 	 _____ expE 	2{a(q_)+e_ii}J : 1: (l9-.) expE 

	

20i, 	 2o, 

The resultant change in gene frequency is 

a 	iCL 
 q - -q(l-q) 

+ 4:2 
q(1_q){q_4( 

	

: 	
9_))  

22 (l_q){4q(i_q).i 4(e_u)(l_2q)} 	, 



where q is specifically q. 

The condition necessary to achieve a selection plateau is that the re-

lative fitness of A1A1be less than unity in which case 

(l+) 	 .c 1 

and this condition reduces approximately to 

C> I? 
	 2a2 

2+ia 	a{a(-q) + i t - ei 	 • 
t  

The expression on the right hand side is composed of two parts, the 

first being the same as that which appeared in the condition for 

equilibrium of the homeostatic model. The terin enclosed by square 

brackets. represents the part played by the other parameters used in 

the optimum model. It shows that the strength of nor-optimal natural 

selection necessary to produce a pre-fixation plateau increases with 

phenotypic variance but is reduced by larger values of the effect of 

the gene,a, and the deviation of the optimum phenotype from the 

population mean. It also shows that If e - Ut  an equilibrium can 

only be achieved if 	thus reinforcing the earlier conclusion that 

frequencies above this leve!result in directional selective values, 

in this case in the same direction as grtittc'Ial selection. And even 

if 	for 6 - U, the term enclosed by square brackets will have a 

value much larger than two for all values of V less than unity. With 
P 

qt - 0.5 and 	- 0.5 for example, a strength of nor-optimal natural 
P 	 Ia 

selection in excess of 3 	will be needed to achieve an equilibrium. 

It can therefore be concluded that all but the weakest strengths of 

artificial selection will be sufficient to override the effect of nor- 

84. 



optimal natural selection if the optimum phenotype is equal to the 

population mean. 

If, however, artificial selection eventually produces an overall 

mean v much greater than a fixed 0 (which may have equalled u) then 

Ut -  0 becomes relatively large in which case expression (9) indicates 

that a selection plateau is quite likely. 

b) Artificial selection after natural selection 

It has already been noted that a single cycle of nor-optimal 

natural selection alters the phenotypic variance to (1-C)a 2  and the 

phenotypic mean to x + C(9 - ). How will such alterations affect 

the relative selective values of the three genotypes with respect to 

aöequent artlLLclal selection withtn the same generat,on? Fi.rstly, 

by expressing the altered mean of each genotype as a devi*tion from 

the heterozygote mean, it is shown in appendix II that the genotype 

means after natural selection can be represented as 

	

A 2  A  2 	 A 
1  A  2 
	 A1A1 

- (l-C) 	 0 	 (l-C) 

in which case the relative selective values of each genotype with rea-

pect to artificial selection turn out to be 

.2./1-C 

The effect of nor-optimal natural selection prior to artificial 

selection is therefore to reduce the strength of artificial selection 

	

by a factor 	The combined action of the two selective forces can 

be expressed as 

[ex [a2(a(qi )+e-}J](l_4.v'i) : 1 : [ex 

85. 
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which will re8ult in expressions for Aq etc. exactly the same as be- 

fore, except with ia/i-C instead of ica. 

is now given by

ia  
in ..Jig(l-q) 

+ Ca2  
4 2 

Thus by again reading q as 

(10) 

- 	Ca2 q(l-q){4q(l-q) _ 4(e_ii)a2q 
4ci 

which reduces to the various expressions for Aq obtained by James (1962), 

who assumed throughout that e - 0. It should be noted from the 

second lines of equations (8) and(lO) that the contribution of nor-

optimal natural selection per se to the change in gene frequency is 

exactly the same whether natural selection occurs prior to or after 

artificial selection. 

The condition for a selection plateau in a large population if 

natural selection occurs first now becomes 

ia1i 
2 

C> 2+iu1I C a{a(-q) + 't - 

which is slightly less stringent than the analogous condition (9) when 

artificial selection is carried out prior to natural selection. 

As well as altering the phenotypic mean of each genotype, nor-

optimal natural selection also alters the relative frequencies of the 

three genotypes so that they are no longer in Hardy-Weinberg equilibrium. 

The overall metric mean and genetic variance actually observed at the 

time of artificial selection are thus not the same as the simple pre- 
2. 

dictions of$(2q-l) and . 	(l-) if any nor-optimal natural selection 

occurs prior to artificial selection. This is the same effect as was 
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investigated earlier with the homeostatic model, for which it was 

shown that the result of natural selection prior to artificial selection 

is generally to reduce the metric mean and genetic variance actually 

observed. 

3. THE PROBLEM OF FU1THER PREDICTION 

It would be a relatively straight forward matter now to proceed 

along lines similar to those used with the homeostatic model of natural 

selection. Thus expressions could be derived for chance of fixation, 

advance in the metric mean at the limit, half-life and fitness in a 

finite population. 	Indeed James (1962) has already obtained an ex- 

pression for advance in the metric mean at the limit in a finite 

population, using a somewhat different approach. 

But how useful are such predictions, derived as they are from the 

above selective values? It has already been noted that in reality, 

selection acts at a number of loci in which case the background geno-

type of any one locus will be continually altering. If, for example, 

artificial selection is increasing the frequency of favoured alleles 

at several loci, then the metric mean of any one genotype considered 

alone will be continually increasing. The difference between the 

optimum phenotype and the metric mean of any genotype at generation t 

thus increases as selection proceeda,if the optimum is constant, with 

the result that the natural selective values of various genotypes alter 

over time. These selective values thus become more and more additively 

directional in opposition to artificial selection, and increase in in-

tensity as veil. Consequently, artificial selection is increasingly 

opposed as it moves the population mean further and further from the 

optimum. 
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One way partly around this problem is to utilize the alternative 

type of optimum model, namely that in which the optimum phenotype is 

no longer constant, but rather always equals the population mean what-

ever that may be at any given generation. Several factors tend to 

decrease the attractiveness of this hypothesis not the least of which 

is that It is hard to imagine nature acting in this way. Furthermore, 

it has already been shown above that nor-optimal natural selection will 

never cause significant opposition to artificial selection when 9 - p t o 

and will certainly never result in a pre-fixation plateau. 

Hence an optimum model with a fixed optimum appears to be.much 

more realistic and potentially fruitful. But the problem of continually 

altering selective values still remains. For a fixed optimum, it has 

not been possible to represent the gradual alteration in natural eelecth!i 

values algebraically, but the end result (with the population mean much 

greater than the fixed optimum) can be depLcted as already shown, by 

following Latter (1960) and James (1962) and setting 9 - 0 and 

,here U is now the change in overall population mean resulting from t 

generations of changes in gene frequency at all relevant loci. It has 

already been shown that the natural selective values resulting from 

such a situation are essentially additive. 

At a single locus therefore, additive artificial selection will 

be opposed by additive natural selection. At generation t, this con-

flict of selection forces can be represented approximately as 

A 
2  A  2 
	 A1A2 	 A 

1  A  1 

CSU 	 Cap 
1 	 (1+4) exp-' 	} 	 (l+ioi) exp{- 2t} 
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where the natural fitnesses are variable over time. Having obtained 

an analogous set of selective values for natural selection occurring 

prior to artificial seleceion, James (1962) then proceeded to derive 

expressions for the resultant change in gene frequency and for the 

asymptotic limit of response in metric mean in large and finite popu-

lations. An asymptotic limit in metric mean is certainly to be ex-

pected with the above type of selective values, because as u continues 

to increa8e a stage is reached at which the two opposing selection 

forces are balanced. At this time the relative fitness of each geno-

type is unity, in 	b:asejf ta Issma1]. 

Solving this expression for u gives the metric mean at the limit as 
- - 	-.-- -------------------- 	 --- 	

__7 
ia 

which is slightly greater than James t large 	 - 

population result of ...,2 Ii for the case ot natural selection occur-
C 

ring prior to artificial selection. 

However, not all loci will reach this point of balance at the 

same time unless all loci have alleles of the same effect which started 

at the same frequency and have not been subjected to chance deviations 

from the change in frequency expected as a result of selection. Con-

aequently for any one locus, U must continue to increase above the 

level which produced the balance at that locus, in which case the over-

all combined selective values of the three genotypes at any one locus 

will, sooner or later alter in direction from that which favours arti-

ficial selection to that which opposes it: the situation in which the 
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three genotypes have equal fitness, for any one locus will only last 

for a single generation. The single locus equilibrium is therefore 

not stable, and the limit to response in metric mean considered by 

James will thus not be permanent. 

Considering all the loci contributing to the metric character, 
and stronger 

continued artificial selection will generate stronger/natural selection 

until, conceivably, an equilibrium will result at which the 'negative' 

overall selective values at some loci just balance the 'positive'over-

all selective valuea at all the other loci. 	And such an equilibrium 

could exist without any single locus having equal selective values. 

Here then is a model of natural selection which certainly appears able 

to produce a plateau in artificial selection response, but its mechanism 

is very different from anything that has so far proved amenable to 

algebraic analysis. 

The importance of interections between alleles at different loci 

in the optimum model is evident from the above discussion: the relative 

selective values of the three genotypes at any one locus are determined 

by the gene frequencies at all other loci which contribute to the ex-

pression of the metric character. This interaction between loci seems 

to preclude any simple algebraic", prediction of a plateau in artificial 

selection due to opposing nor-optimal natural selection. 

4. SELECT ION IN THE ABSENCE OP CROSSING OVER 

The single exception to this impasse is the extreme case in which 

there is no crossing-over between the loci which contribute to genetic 

variance in the metric character, because in this case the changes in 

frequency'of alleles at all loci on a particular chromosome will all 
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be the same, irrespective of their effects on the metric character, 

and will all be equal to the change in frequency of that particular 

chromosome. Thus changes in the population metric mean can be pre- 

dicted at any generation: the problem of interaction between loci does 

not exist. For this situation it is possible to utilize the theory 

of selection with multiple alleles already developed by Latter and 

Novitski (1969) and Latter (1970). This can be done by making the 

reasonable assumption that for a chromosome within which there is no 

crossing-over between loci which contribute to the metric character, 

the initial distribution of chromosomal effects tends to be normal. 

Thus, as Latter and Novitskf. (1969) pointed out, the single locus 

model with a potentially infinite number of alleles whose effects are 

initially normally distributed, is analogous to a model of a potentially 

infInIte number of different chromosomes whose metric values are 

initially normally distributed. 

Combining the relevant expressions of Latter and Novitski (1969) 

and Latter (1970), it can be shown that the change in frequency of 

chromosome j resulting from a single generation of artificial selection 

followed by nor-optimal natural selection is 

+ 2a2 J 
	 - aj 2  I 
	

(11) 

vhore: - frequency of chromosomej prior to that generation of 

selection, 

a. the metric effect of chromosome j, scaled such that 
.1 	

3 

and a *..  square root of the genetic variance contributed by all loci 

in the chromosome at time zero. 



The first term on the right hand side of equation (11) represents 

the effect of artificial selection and the second that of natural 

selection. Interaction terms have been neglected in this case, for 

simplicity. 

The total change in the population metric mean resulting from 

the single generation of selection is 

Ax 2 E a. Ap 
3 3 

which reduces to 

Ax - ih*aG*  + (e-u) C h*2 	, 	 (12) 

where h* - 	as 
P 	

in Robertson (1970). 	Thus the genetic variance 

2 contributed by all loci in the chromosome isa proportion h* of the 

total phenotypic variance. It can be seen that the effect of nor-

optimal natural selection increases in importance as the population 

metric mean (i) moves further from the optimum, with the result that 

artificial selection is increasingly opposed by natural selection. 

With the problem of interaction between loci removed by considering 

only complete linkage between all relevant loci, equation (12) is a 

realistic prediction of the change in metric mean at any generation. 

But equation (12) is exactly analogous to the expression for Ax ob-

tained by James (1962, p.492) from a single loctmodel with two alleles, 

in which he assumed 0 - 0 and in which i was multiplied by the factor 

because natural selection occurred prior to artificial selection. 

This result is simply an indication of the fact that James effectively 

assumed that the changes in allelic frequency at all loci were the same. 

It seems, therefore, that all the predictIons analogous to those of 

James can be realistically applied in the case of no crossing-over bet- 

,ween loci. 
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Thus a selection plateau due to opposing natural selection will 

be observed when Ax 0 in which case the metric mean at the plateau 

is 
• 

. 

If the original population metric mean was equal to the optimum pheno- 

type 9, then the total advance at the plateau will be 
ia 

(13) 

which is analogous to the prediction obtained above for a two allele, 

single locus model in which the changes in allelic frequency at all 

loci were assumed to be the same, following the approach of James (1962). 

Furthermore, the response to a single generation of relaxation from 

this plateau will be, from (12), 

R - (9 - M) Ch* 2  

- ih*2a 

which gives the ratio of the first generation of relaxation response (R1) 

to previous forward selection response (x p - @) as 

I R 

1-AI - h*2C 	 (14) 

which is effectively the same as the prediction obtained by Latter (1960) 

for a model of two alleles at a single locus. 

The mean fitness at the plateau will be, from (2) 

- 	exp( 	C ( _ ) 2 ]  

20p 
i2  - Il-C expt - 

But at generation zero, w - I1E if p-9. Therefore, the fitness of 
the plateaued population relative to that of the original population is 

approximately, for low values of C, 
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Once again, this is analogous to the prediction obtained by James 

(1962, p.491). 

Finally, by making direct use of James' predictions, the value 

of the metric mean at any time t is 

- 	[l.(l_Ch*2)t] 

in large populations, and 

	

2 	1 - - 	- exp( -2NCh* 

approximately, for populations of effective size N. From this last 

expression James obtained an approximation for the total advance in the 

metric mean due to Artificial selection in the presence of the Optimum 

model of natural selection which can be written as 

LAO - 2NtC (1-NCh*2 ) 

where AG is the change in metric mean during the first generation of 

selection. 

5. DISCUSSION 

There Is little point in describing the detailed ramifications of 

the predictions given above for the case of no crossing-over, because 

Latter (1960) and James (1962) have already discussed the implications 

of analogous expressions. The only value in restating these predictions 

in the above forms is to emphasise that they can be most safely thought 

of in the context of completely linked loci, where assumptions of equal 

gene frequencies and equal gene effects are no longer necessary. 
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Furthermore,if all loci contributing to the metric character are 

completely linked, then the predictions for selection in a finite 

population 	are much more realistic. This can be most clearly 

understood by considering the other possibility of incomplete linkage 

or even independence. Any deviation due to sampling from the deter-

ministic prediction of change in gene frequency at any such locus will 

result in a population metric mean in the next generation different 

from its deterministic prediction. Hence the selective values 

(which are a function of the population metric mean) at all other 

loci will be different from the deterministic prediction, and it thus 

becomes impossible to predict accurately the result of even a few 

generations of selection. 

This is in direct contrast with the hoineostatic model of natural 

selection in a finite population where the deviations from deterministic 

prediction at one locus have no effect on the selective values at other 

loci. 

Returning to the optimum model, it must be noted that the pre-

dictIons arising from the case of no cross ing-over(do not necessarily 

indicate the lowest possible advance in the metric mean, as they do 

for artificial selection in the absence of natural selection (Robertson, 

1970). With several unlinked loci, for example, the initial response 

to artificial selection in the presence of natural selection could in-

deed be greater than that predicted with no crossing-over. But as a 

direct consequence of this relatively rapid response, it seems quite 

possible to achieve a plateau of the type in whichLthe 'negative' over-  
- 

all selective values at some loci are balanced against the 'positive' 

overall selective values at all the other lcd. And such a plateau 



could conceivably occur before the total advance in the mean had 

reached the plateau level predicted for no crossing-over. 

What is needed in order to obtain a greater understanding of 

this situation is a multi-locus computer simulation of artificial 

selection in the presence of nor-optimal natural selection. While 

such a study would not be simple it does appear to be the only way 

by which to gain a better understanding of the optimum model of natural 

selection in the context of artificial selection, 

6. SWARY 

The nor-optimal model of natural selection, in which the fitness 

decline from some optimum metric phenotype follows the shape of the 

normal disttlbution, has been considered. 

The whole model can be best described in terms of the optimum 

phenotype 9, the overall population metric mean p, the phenotypic 

variance a 2  and Latter's (1970) coefficient of centripetal selection C. 

If 0 equals p at a given generation, the resultant selective values 

at any particular locus are either heterotic if gene frequency at that 

locus lies between I and 1. or weakly directional for gene frequencies 
outside this range. 	If the selective values are heterotic, then even 

the strongest conceivable strengths of nor-optimal selection at the 

most favourable frequencies are only equivalent to relatively weak homeo- 

static selection. 

A model in which 9 is variable, being always equal to the overall 

population mean at any time, will thus never cause significant opposition 
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to artificial selection, and will certainly never result in a pre-

fixation plateau. The alternative model, in which e is a fixed con- 

stant phenotype, will likewise never produce serious oppoaition to 
is 

artificial selection in the early generations, if, as/commonly assumed, 

e equals p at generation zero. 

If e is not equal to ii, then the selective values at any parti- 

cular locus are directional rather than heterotic whenever the optimum 

is closer to the mean of either homozygote than to that of the hetero-

zygote. The directional selective values are additive only if the 

optimum is several multiples of a (the metric difference between the 

two homozygotes) away from the population mean. 

With a fixed optimum phenotype for which 9 - p, continued artifi-

cial selection produces an ever increasing difference between 9 and Pt 

in which case the natural selective values become increasingly additive 

and increasingly opposed to artificialselection as the selection pro-

gramme proceeds. A selection plateau is quite likely to result from 

such a situation, but a realistic algebraic method of describing this 

process has yet to be discovered. 

A single cycle of nor-optimal natural selection alters the 

phenotypic metric mean from x to x+C (94) and alters the phenotypic 

variance from a 2 	 2 
to (l-C)a within each generation, but this 

selection has no effect on genotypic means and variances within 

generations, and can be assumed to result in a negligible alteration 

of a 2  between generations. If such selection occurs prior to artifi-

cial selection, then the effect is to reduce the artificial selection 

coefficient from iz to iav'i. Nor-optimal natural selection prior 
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to artificial selection thus acts by reducing the strength of artificial 

selection, as well as contributing per se to a change in gene frequency. 

Nor-optimal natural selection therefore produces greater opposition if 

it occurs before the time of artificial selection. 

Quantitative predictions of limits to artificial selection due to 

opposing nor-optimal natural selection may not have very much value 

when derived from single locus selective values, as the equilibria they 

represent are transient. 

It is possible to consider one extreme multi-locus case, namely 

that in which there is no crossing-over between the loci contributing 

to the metric character. If the initial distribution of chromosome 

effects is approximately normal, then the predictions of Latter (1960) 

and James (1962) provide a realistic description of the results Of the 

interaction between artificial and natural selection. 

For all other cases except no crossing-over, a proper understanding 

of the implications of the nor-optimal model in the context of artificial 

selection will only be achieved if interactions between loci are taken 

into account. A multi-locus computer simulation thus appears to be the 

only way in which more useful predictions can be obtained. 



III REVERSE AND RELAXED SELECTION 

Introduction 

Reverse and relaxed selection have been used quite commonly 

in laboratory selection experiments as diagnostic tools, especially 

in situations where selection response seems to have plateaued. The 

results of such selection have usually been interpreted in the light 

of common sense arguments which say that any alteration in the metric 

mean after relaxation must be an indication of opposing natural 

selection, and that response to reverse selection indicates the re-

maining presence of at least some additive genetic variance. 

What is lacking at present is a quantitative prediction as to 

what the results of reverse and relaxed selection at a particular 

stage of the selection programme might be, for specific models of 

artificial selection. One method by whiéh some understanding of the 

problem can be obtained for various single locus models involves the 

use of a suitable transition probability matrix. Such an approach 

has already been used by Allan and Robertson (1964), but they were 

concerned specifically with the effects of initial 1 erse::selection 

on the ultimate result of subsequent forward selection to the limit. 

In the present context, this amounts to a study of the total change 

in gene frequency or metric mean resulting from a given period of for-

ward selection followed by reverse selection to the limit. In the 

present study, the methods and results of Allan And Robertson are 

extended to cover any number of generations of both forward and re-

verse selection for several single locus models of artificial 

selection. 
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Operations with a transition probability matrix 

It has already been seen how repeated multiplication of a 

suitable matrix by a relevant vector enables the course of artificial 

selection in the absence or presence of natural selection to be 

followed over generations. For example, the method of setting up a 

suitable transition probability matrix for forward selection, and 

pre—multiplying this matrix by a row vector of the gene frequency 

distribution at generation t (given a particular initial gene frequency) 

to obtain the gene frequency distribution in the next generation, has 

already been described. Subsequent multiplication of the row vector 

of gene frequency distribution at generation t+l by a column vector 

of all possible initial gene frequencies then produces a scalar whose 

value is the frequency of allele A 1  at generation t+1, given the 

particular initial frequency. 

More specifically, the initial step is to set up a transition 

probability matrix U for forward selection as described previously. 

Having then established a row vector tic,  of order 2N+l with all elements 

zero except the jth which is unity, the gene frequency distribution at 

genevation t-1 for an initial gene frequency of j/2N is obtained as 

- 	 : 

	

1 
	

. 

For subsequent generations, 

	

'2 
	uU 

uU 
—0 - 

and 	
- t—1 
	

(1) 

- U Ut 	 (2) 
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Expression (2) indicates more clearly the principle of the 

use of a transition probability matrix, in that the element p3kof 

represents the probability of obtaining k A 1  alleles at generation 

t given there were j A1  alleles at generation 0. The Jth  row of 

therefore represents the gene frequency distribution at generation t 

for an initial gene frequency of j/2N. 

In practice, however, it is less expensive to follow Allan 

and Robertson (1964) and actually use operations of the form given by 

(1), involving only the repeated multiplication of the matrix by a 

vector rather than the matrix by the matrix, as is needed in (2). 

The expected frequency of allele A 1  at generation t is then 

obtained as 

E[q'q - j/2N] 	• ...o 
u v 

_. u Ut v  
.0 	_O 

where V0  is a column vector of all possible n1tif 5  gene frequencies 

with elements vo (.j .) - j/2N. 

Reverse selection 

The counnencenient of reverse selection involves recalculation 

of the transition probability matrix, with -i substituted for i in 

the selective values of the three genotypes. All subsequent pre-

multiplications of the row' vector u of gene frequency distribution 

are then cariecf; out onto the recalculated matrix D for as many 

generations of reverse selection as required. Thus the results of 

the first generation of reverse selection are obtained as 



Table 1 

Changes in gene frequency distribution and in mean gene frequency during'lO 
generations of forward selection followed by 40'generations of reverse 
selection in a population of effective size N10. 	All probabilities are ex- 
pressed x 1000. Only every second possible class is shown so that the 
probabilities do. not sum to 1000 except at t=0. In this example q=.3 and Nia8. 

ceneration1 Frequency  distribution of allele A1 
R 1 t 	t 0 	.1 	. 	2 	.3 .4 	.5 	.6 .7 	.8 .9 1 E(q) 

.0 1'000 0.300 
1 3 33 125 184 118 34 4 0.400 
2 4 21 57 103 127 107 59 19 3 0.499 
3 1 4 12 30 59 90 108100 66 26 4 0.591 
4 1 3 8 17 3 59 86 104 100 68 24 0.672 
S ' 2 2 5 10 21 38 62 90.110 105 75 0.740 

.6 2 1 3 .6 13 24 44 71 103 126 157 . 	0.797 
7 2 1 2 4 8 '16 30 54 90 130 259 0.842 
8 2 1 1. 2 . 	5 10 21 40 74 123 370 0.878 
9 2 '1 2 3 7 14 . 30 59 109 473 0.906 

10 3 1 1 	' 2 4 10, 22 46 93 576 0.923 
10 + 1 3 1 2 ' 	3 6 12 20 '33 48 62. 602 0.902 0.04 
10 + 2 " 	3 2 4 ..8. 14 20. 23 34 38 36 614 . 	0.872 0.09 
10 + 3 : 	5 5 10 16 21 25 28 '29 27 22 621 0.840 0.14 
10 + 4 9 11 18 22 25 26 25 '22 .18 13 625 . 0.809 0.19. 
10 + 5 . 	18 19 24 26 25 23 19 .15 12 8 628 0.780 0.24 
10 + 6 33 28 29 27 23 19 14 11 .8' 5 629. 0.74 0.28 
10 + 7 55 .34 31 . 	25 19 14 10 7. 5 3 630 .0.731 0.31 
10 + 8 83 33 30 22 15 11 .7 5 3 2 630 0.711 0.35 
10 + 9 . 	115 39 28 18 12 8 5 3. 2 1 631' 0.694 0.37 
10 + 10 149 33 24 15 9 . 	5 : 	3 2 . 	1 1 631 0.6810.39 
10 + 11 182 35 21 12 7 : '2 1 1 . 631 0.670 0.41 
10 + 12 .214 31 '17 9 5. 3 1 1 1 631 . 0.661 0.43 
10 + 13 ' 242 27 14 7 . 	3 2 ' 	1 	' i . 631 0.654 0.44 
10 + 14 '266 22 11 5 3 . 	1 '1 . 	•. . 631 0.649 0.44 
10 + 15 237 13 ' 	9 4 . 	2 .. 	1 . . ' 631 0.644 0.45 
10 + 16 304 15 7. 3. 1 1 .. . 	' 631 0.641 0.46 
10 + 17 313 12 5 ' 	2' 1 '. . 631 0.639 0.46 
10 + 18 329 .9 4 2 . 	1 " .' . 631 0.637 0.46 
10 + 19 338 7 3 1 . . . 631 0.636 0.47 
10 + 20 345 6 2 1 ' . . 631 .0.634 0.47 
10 + 21 351 4 2 '1 •. .. 631 0.634 0.47 
10 + 22 355 3 1 ' . 631 0.633 0.47 
10 + 23 359 3 1. ' . " •,. 631 0.633 0.47 
1G + 24 	, 361 2 1 ' . .' 631 0.632 0.47 
10 + 25 363 , 1 1 ' , . 631 0.632 0.47 
10 + 26 364 1 . . . 631 0.632 0.47 
10 + 27 366 1 ' . . 631 . 	0.632 0.47. 
10 + 23 . 	366 1' . ' 631 0.632 0.47 
10 + 29 367 , . . . ' 631 0.631 0.47 
10 + 30 367 . 631 0.631 0.47 
'10 + 31 368 . 631 0.631 0.47 
10 + 32 368 631 0.631 0.47 
10 + 33 368 631 0.631 0.47 
10 + 34 368 . 631 .0.631 0.47 
10 + 35 368 631 0.631 0.47 
10 + 36 369 631 0.631 0.47 
10 + 37 369 631 0.631 0.47 
10 + 38 369 ' . 631 0.631 0.47 
10 + 39 369 ' 631 0.631 0.47 
10 + 40 369 . . 631 0.631 0.47 
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u D u .t+l 	.t 

-u U tD 
.0 • - 

and, in general, 

u 	u 	D 
•t+t$ 	 .• 

U t D  t' -u  
no . 

Finally, the expected value of gene frequency after t' generations 

of reverse selection is given by 

a 
j/2N3 - +' : 

U 
t D t' -u 	v 

.0 _ 	.0 

Table 1 illustrates the way in which the course of artificial 

selection cáflbe followed, in this case with forward selection for N 

generations followed by reverse selection for 4N generations, starting 

with an initial frequency of 0.3, with Niu - 8 in a population of 

size N - 10. Natural selection is assumed to be absent. It can be 

seen how the gene frequency distribution is quickly moved to the 

right by strong forward selection, towards fixation of the allele 

favoured by artificial selection (A1 ). By generation t-N, the pro-

bability of fixation of that allele is 0.576 in contrast to the very 

low probability of loss (0.003). The mode' of the frequency distri-

bution is now at q - 0.9, and the frequency of the favoured allele 

over all populations or loci, both segregating and fixed, is already 

0.93. 

Reverse selection of equivalent strength (ia —0.8) exerts an 

immediate and marked effect. The frequency distribution is moved 
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quickly to the left towards fixation of the allele which is now 

favoured (A2), until, at generation t' - 0.7W, the mode is down at 

q a  0.1. The irobability of fixation of allele A 2  increases, but its 

upper limit has already been determined by the proportion of lines or 

loci previously fixed for the other allele,A1 . 	In fact, this latter 

proportion continues to increase until t' - 0.9W simply because the 

upper tail of the frequency distribution is still continuous with 

the fixation class of allele A1  during the early generations of re-

verse selection. It is not until ' a 1.1W that a discontinuity 

develops in the distribution. However, as soon as the separation 

occurs, the ultimate frequency of each allele at the limit of reverse 

selection is decided. For allele A1 , it is obviously the proportion 

of lines or loci already fixed for that allele (0.631), and for 

allele A2  it is the remainder (0.369): all those lines or loci still 

segregating after the discontinuity appears must eventually become 

fixed for allele A2  if reverse selection is continued. 	In this 

particular example, complete fixation is achieved around generation 

2.9W but it would have taken far longer with weaker artificial 

selection. 

The overall frequency of allele A 1  decreases quite rapidly 

during the first few generations of reverse selection, because of the 

associated shift áf the frequency distribution to the left. Although 

the lower limit of frequency of allele A1  is set at 0.631 as soon as 

the discontinuity in the distribution develops, it can be - seen that 

this actual value is not and can not be achieved until complete f ix-

ation: 80 long as any part of the distribution remains in the 

segregating classes, the final possible frequency of allele A 1  as a 
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result of reverse selection can not be obtained. 

This then is an example of the way in which the course of 

artifIcial selection, both forward and reverse, can be followed, 

generation by generation through the selection process. 

Relaxation 

In laboratory selection prOgrammes, relaxation of artificial 

salection involving the random choice of individuals to become parents 

of the next generation, is most commonly conducted in relatively 

large populations. Under such conditions the simple prediction is 

that no subsequent change in metric mean will occur unless natural 

selection is interacting lith artificial selection. For the homeo-

static model of natural selection, the change in metric mean as a 

result of t' generations of relaxation in a large 'population is 
t v 

R, - a E Aq1 	where Aqi 	(s1+s2)q 1 (l-q 1)(-q1), this being the 
i-1 

usual equation for change in gene frequency due to heterozygote 

superiority. The metric mean thus continues to alter until the gene 

frequency returns to its large population equilibrium value of 

It is possible, however, that relaxation may be carried out by 

the random sampling of only the same number of individuals as have 

previously been selected for high expression of the metric character, 

in which case the effective population size remains unaltered. As 

before it might be expected that natural selection will reéult in a 

change in metric mean following relaxation, but the manner of this 

change will almost certainly be different from that which would be 

expected in a large population. 

The effect of relaxation of artificial selection in finite 
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populations can be studied in a manner analogous to that already 

described for reverse selection, the only difference being that for 

relaxation, zero is substituted for I in the recalculation of the 

transition probability matrix after t generations of forward 

selection. 

In order to provide a framework in which to discuss the re-

suits obtained from the transition probability matrix approach, some 

consideration will now be given to several theoretical predictions 

which can be obtained from a simple algebraic model. 

1. THE ADDITIVE MODEL 

For small Nia, the frequency of allele A 1  after t generations 

of forward selection with an addiUve model in the absence of natural 

selection is 

-t/2N E[q]iI g + Nia q0 (i-q0) ( l -e 	) 	 (3) 

where q is the initial gene frequency (Robertson, 1960). 	It is 

usually assumed that during this time the effect of finite population 

size is to reduce q0 (l-q0) by a fraction 112N per generation, in which 

case it will have the value q 0 (l-q0)e -t/2N after t generatona of for-

ward selection. It is then possible to express the expected 

frequency of allele A 1  after t' subsequent generations of reverse 

selection (i<o) in a form analogous to that given above:- 

' E[q] + N(_ia)(q0(l_q0)etI2N1(1_et'2N) 	(4) 

- q 
0 	0 	0 	

+e + Niaq (l-q )(l_2et12tl _(t+t')/2N) 

The difference between the initial frequency q 0  and the ultimate 

frequency after t+t' generations is then 
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-q 	 q0)(l 2 -t/2N _(t+t')/2N )  
0 
' Niq 0 (1- 	- a 

when t' - , implying reverse selection to the limit, this expression 

reduces to 

E[qJ 	q0 - Niaq0(l_q0)(1_2eta'2N) 	 (5) 

which is analogous to the result obtained by Allan and Robertson (1964) 

who were studying the effect of t generations of initial reverse 

selection on the ultimate re8ult of subsequent forward selection to 

the limit. 

A prediction for small Nia 

A general description of the effects of reverse selection 

following forward selection can be achieved by considering the change 

in metric mean due to reverse selection (R) in terms of the change in 

metric mean resulting from the previous forward selection (ix). 

From equations (3) and (4), it can be seen for an additiytrnode1 that 

Ax - a{E(q] - q0 } 

a Nicig(l-q)(l-e-t/2N  ) 

and 

R - a{E(q,3 - 

- - a Niaq 0 (l-q0)e-t/2N  (1-e-t'/2N  ) 

which gives 

1L1 et/2N(l_et'h1215 	 . 	 (6) 

The ratio of reverse selection response to previous forward selection 

response is thus the same for all initial gene frequencies and is 
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Figure 1. The relationship between lengthof forward selection, t, 

and the ratio f- aftervaiEious lengths of subsequent reverse 

selection, t', corresponding tot, t, 2t and 4t generaEiôns, 

with t and t'being expressed in terms of effective population 

size N. 	Curves have been obtained from equation 

r 
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independent of the size of the gene effect (.-- a), and the intensity 

of artificial selection (1), so long as Nia is small. 

An even more simple prediction is obtained if reverse selection 

is carried out for the same number of generations as the previous for-

ward selection, in which case t' t, and equation (6) reduces to 

Ax 
-1-F 

where F is the inbreeding coefficient at a neutral locus after t 

generations of random mating in a population of effective size N. 

Thus, if forward selection is followed by an equal number of generations 

of reverse selection, the response to reverse selection is never as 

great as the previous forward selection response. Furthermore, the 

effectiveness of reverse selection decreases as the period of previous 

forward selection is lengthened, as might be expected. 	It must be 

emphasised that these conclusions apply only to a model of additive 

gene actioü in the absence of natural selection. 

The general relationship between 	and the length of forward 

and reverse selection is shown in figure 1, having been obtained from 

equation (6). The first point to note is that the time scale on the 

x-axis corresponds exactly to the time scale used earlier in the 

presentation of expected selection response curves. Thus all possible 

periods of initial forward selection are included, from t0 to t8N. 

Each curve in the figure represents the value of R  to be expected 

from a particular length of subsequent reverse selection. The curve 

for equal numbers of generations of forward and reverse selection 

(t'-t) is simply the plot of 1-F for a neutral locus against time in 

units of N. It shows, for example, that an equal number of generations 
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of reverse selection after forward selection of length equivalent 

to the half-life of the overall selection process (1.4N generations), 

results in the metric mean returning half way to its original level. 

The asterisk in the figure represents the 'point of no return', 

a concept introduced by Allan and Robertson (1964) and which in the 

present context can be defined as the number of generations of forward 

selection beyond which it is impossible for even an infinite number of 

generations of reverse selection to return the metric mean to its 

original level. For genes of small effect, Allan and Robertson 

found that the point of no return was 1.4N generations and indeed 

this conclusion derives directly from equation (5) by setting 

- 0. 	The curve for t' - would thus pass through the point of no 

return, and would then approach asymptotically a value of L - as 
x. 

t + 0. All other curves for all finite values of t' will be situated 

to the kft of this curve and will therefore always paés to the left of 

the point of no return. If tc1.4N, the number of generations of re-

verse selection necessary to return the metric ieanto its original 

value,(that is, to obtain 	1) decreases as t decreases. Beyond 

t-1.4N, on the other hand, even reverse selection to the limit 

(complete fixation) will not return the metric mean to its original 

value. 

Finally, it can be seen that the magnitude of 	approaches 

a limit of t'/t as the number of generations of forward selection dé-

creases. Forward selection for t0.2N generations, for example, 

followed by t'-O.lN generations of reverse selection results in an 

value approaching 0.5, in this case 0.47. 
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It is possible to obtain one more simple prediction from equation 

(6), in this case for a single generation of reverse selection (t"l) 

following t generations of forward selection. 	If response to the first 

generation of reverse selection is denoted by R1 , then equation (6) 

reduces to 

R1  

NR1  
or - - 

a 	
e'2N 

'-t/2N 
l-e 

1-F 

Thus the results of a single generation of reverse selection following 

any period of forward selection can be described in terms of the parameter 
HR1  

combination ---. 	It follows from the above expression that beyond t-1.4N, 
HR1 	 X 

-- is less than 1-F, while if the single generation of reverse selection 

is carried out before the point of no return, then 	is greater than 1-F. 
Ax 

All the conclusions so far reached refer to a specific model of 

additive gene action with no natural selection and Nia.cl, inferring 

genes of small effect and/or small population size. How will the con-

clusions be altered if the model is extended to include larger values of 

Nia? 

Stronger artificial selection 

Since larger Nicz values tend to decrease genetic variance more 

quickly thus leaving relatively less genetic variance for subsequent 

reverse selection, it could be expected that the value of tx will be in-

creased by a greater proportion than the value of R by larger values of 

Nia, for any particular t and t'. Thus with equal periods of forward 

R. and reverse selection, the ratio 	is expected to be less than the 1-F 
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Figure 2. 	The re1ationshipbetween length of forward selection, t, 

and the ratio 	after as many generations of reverse 

selection as previóüs forward selection (t'=t). Transition, 

probability matrix results (solid lines) for relatively weak 

- 	 (Nia=l) and relatively strong (Nia=8) artificial selection 

with q=O.5 are compared with the prediction of 	1.-F 

(dotted line) from equation (6). 
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predicted for NiaCl. For t"t' and q 0  - 0.5, figure 2 shows this to 

be true. 

The values of L. have been obtained from continued multiplication 
Ax 

of the rOw, vector of gene frequency distribution onto the appropriate 

transition probability matrix, and the subsequent determination of gene 

frequency, as described previously. Firstly, it can be seen that the 

points for Nia - 1 correspond very closely to the expectation of e—t/2N  

for small Nia. Increasing the strength of artificial selection reduces 

R 
the value of 	for any particular t, until with say Nicz - 8, forward

Ax  

selection for as little as 2N generations is sufficient to effectively 

prohibit any response to subsequent reverse selection. 

Similar conclusions in general have been obtained for all possible 

initial gene frequencies, with the exception that for t'-t the value of 

may be slightly greater than et'2N  if reverse selection is commenced Ax 

after only a few generations of forward selection and if initial gene 

frequency is less than one half. The reason for this is simply that 

any forward selection favouring alleles with an initial frequency less 

than one half initially increases the genetic variance at that locus 

(until qt  - 0.5) thus enhancing the prospects of response to any reverse 

selection which occurs before q has reached 0.5. More generally, it 

R has been found• that the value of 	observed from the matrix operations 

for any initial gene frequency and for any value of t' and t corresponds 

very closely to the value predicted from equation (i), if Ni°l, so that 

the matrix results for NO 1 could have been used to draw figure 1. 

Once again, the observed value of 	for any t' and any t kends to de- 

crease below that predicted from equation (6) as NO increases, for all 

initial gene frequencies. 
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Relaxation 

It is quite evident that no change in metric mean as a result of 

relaxation of selection is expected to occur with an additive model in 

the absence of natural selection. Matrix results have confirmed this 

expectation, and have shown that the only result of relaxation is a 

gradual widening and flattening of the gene frequency distribution, 

with fixation and loss occurring in the ratio of a /(l-)  where q is 

the frequency of the allele favoured by artificial selection at the 

final generation of forward selection. 

2 SUMfrIARY 

The effect of t' generations of reverse selection after t genera-

tione of forward selection can be described by expressing the change in 

the metric mean resulting from reverse selection (R) in terms of the 

change in the metrIc mean due to the previous forward selection (x). 

An additive model of artificial selection iü a population of 

effective size N with no natural selection has been considered, 

If reverse selection is continued for as many generations as the 

previous forward eelectton (t 	
1k 

t), then the ratio - equals I-F where Ax 

F is the inbreeding coefficient for a neutral loàus at generation t and 

is estimated as 11 - (1..3__)t1 	This prediction is expected to hold for 

genes of small effect and/or small population size such that Niul. 

Stronger artificial selection (Nia>l) tends to decrease the ob- 

1k 	 1k served value of - below 1-F. On no occasion will - be greater than Ax 	 Ax 

1-F, for t-t'. 

5. For any period of reverse selection following any period of forward 
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selection, the value of L never exceeds .E, and tends to decrease 
Mt 	 t 

exponentially from this value as t increases, and as the strength of 

artificial selection (Nia) increases. 

6. The result of a single generation of reverse selection (t'-l) 

following t generations of forward selection can be described in terms 
NR 

of the ratio - where R1  is the response to the first generation of 

reverse selection. With genes of small effect and/or small population 
NR 	 1 

size for which Nial, the value of 1  is expected to be 

0 
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3. THE HOMEOSTATIC MODEL OF NATURAL SELECTION 

It would be convenient if the simple algebraic prediction of the re-

suits of reverse selection already obtained for the additive model could 

be extended to include the effect of homeostatic natural selection. Suit-

able expressions for R and 8x have already been obtained in the earlier 

consideration of the homeostatic model, but the resultant ratio R  has so 

far defied all attempts at simplification. 

What has been done therefore, is to go straight to the transition 

probability matrix results, and to use as a basis for comparison the re-

sults already obtained for an additive model in the absence of natural 

selection. Thus the question being asked is how does homeostatic natural 

selection alter the results of reverse selection from those expected under 

a simple additive model in the absence of natural selection? 

Inline with the earlier study of the homeostatic model, the 

assumption made here is that the base population for artificial selection 

is obtained by randomly sampling a finite number of individuals from a 

conceptually infinite population which is in equilibrium with natural 

selection, such that E(q) in the base population equals a. Forward and 

reverse selection are then carried out in exactly the same manner as des-

cribed in the previous section, with the transition probability matrices 

being calculated from overall selective values (1.4!.) (l-s2 J.) 
1-i for forward selection, and (l+ .)(l_s2): 1 :(l_! )(l_s l) for reverse 

selection for genotypes A2A2 , A1A2  and A1A1  respectively. •For-rhe 

time being it will be assumed 	that natural selection occurs after 

artificial selection, i.e., that the genotypes are in Hardy-Weinberg 

frequencies at the time of artificial selection. The effect of relaxing 

this assumption will be considered in a subsequent section. 
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Figure 3. 	The relationship between length of forward selection, t, 

and the ratio f after as many generations of reverse 
selection as previous forward selection(t'=t). Transition 

probability matrix results (solid lines) for no natural 

selection (S=O%) and relatively weak natural selection (S=5%) 

with q 	q= 0.7 are compared with the prediction of 	= 
Ax 

1-F (dotted line) for no natural selection from eauaEiort (6). 
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The importance of equilibrium gene frequency 

It has been found that the results of reverse selection under the 

present model are dependent to a large extent on initial and equilibrium 

gene frequency q. In other words the value of R  is dependent on the 
AX 

relative natural fitnesses of the two homozygotes. 

For q>0.5, the homozygote favoured by artificial selection (A 1A1) 

has a higher natural fitness than the other homozygote, with the result 

that natural selecdon and artificial forward selection in small popula-

tions are both tending to work towards the same end, namely fixation of 

allele A1 . More importantly, if >0.5, it follows that natural selection 

will oppose reverse selection because the hontozygote most favoured by 

artificial reverse selection (A2A2)iø the least fit of all the genotypes. 

An example of this effect is given in figure 3 where it can be seen for 

- 0.7 and t' - t, that even relatively weak natural selection 

(5-52) Is sufficient to reduce f-well below that expected under the 

additive model alone. Stronger natural selection reduces seven further. 

The same trends have been found with any value jqf t and t' for any >0.5. 

On the other hand, with q equal to or less than 0.5natural selection 

opposes forward artificial selection and consequently enhances the result 

of reverse selection. The expected results of reverse selection with 

qc0.5 will now be examined with the aim of obtaining an understanding 

of the extent of this enhancement. 

A single generation of reverse selection
NRl  

It has previously been shown that thJ value of .
-

after a single 

generation of reverse selection is expected to be in the absence of 

natural selection. What effect will homeostatic natural selection have 

on this prediction? For t' 1, figure 4 illustrates the effect of 
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a 

Figure 4. 	The effect of strength of homeostatic naura1 selection (S/s 1 ) 

- 	on the relationship between length of'forward selection, , and • 	
NR 

• the ratio 	after one generation of reverse selection. 	Curvs Ax 

• 	 are. drawn - for relatively weak (Ni=l) and relatively strong (Ni=8) 

artificial selection from matrix results (solid lines). 	The tlyo 
.NR1 	

iF dotted lines represent the prediction of 	= 	for no natural 

selection from equation (6). 	 - 
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NR 
honieostatic natural selection on the ratio 	for relatively weak (IIiAx  

-I) and relatively strong (Nicz -8) artifIcial selection. 

It can be seen that the effect of natural selection is to increase 
NR 

With Nia-1 the result is that even weak natural selection /I-x 	 (5 
NR 

0.1) increases 	above the prediction of 1 with no natural selection. 

Stronger natural selectlon(g/cp0.2) is needed to achieve the same result 

for Nia-8, because for stronger artificial selection with no natural 

selection r for any t' is very much less than the simple prediction, as 
has already been seen in the previous section. A general conclusion can 

be drawn from this figure by recalling that homeostatic natural selection 

does not produce a pre-fixation plateau unless S/q is at least around 0.2 

for Niu-1, and 0.3 for Niam8. The curves In figure 4 infer that a value 
NR 

of S/q)0.3 results in - being greater than 3j., even for relatively 
strong artificial selection of N!m8. It can therefore by concluded 

that if a pre-fixation plateau occurs as a result of homeostatic natural 

selection, then for a single generation of reverse selection from that 
NR 

plateau, -. is most likely to be greater than .j, for any strength of 

artificial selection. 

The results In figure 4, although obtained specifically from the 

case of q0-q=0.5, arerepresentative of results expected for all q0 0.5, 

except for relatively strong natural selection of say S/q>0.7 in which 
NR 

case the exact values of 	tend to vary with q. However, it baa been 

found that the values of :2 for large S/ with any q essentially fall 

within the range of 10 to 15 so these values can be taken as the expected 
NR 

upper limit of 
Ax 

 

In general, therefore, a single generation.ofreverse selection 
NR 

from a pre-fixation plateau is expected to result in a value of -. some-
Ax 

1-F 
where between -p and 15, with values greater than 10 indicating very 
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Figure 5. The effect of strength of homeostatic natural selection 

s 1 ) on the relationship between length of forward 
as 

selection, t, and the ratio 	after/many generations Ax 

of reverse selection as previous forward selection (t' = t). 

Curves are drawn for relatively weak (Nia = 1) and rela-

tively strong (Nia = 8) artificial selection from matrix 

results (solid lines) with q; = q = 0.5. The two dotted 

lines represent the prediction of R  = 1 - F for no Ax 

natural selection from equation (6). 
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strong opposing natural selection as a reason for the plateau. 

Equal periods of forward and reverse selection 

Figure 5 is anaLogous to the previous figure in that it shows the 

effect of homeostatic natural selection on the ratio R  for two values 
AN 

of Nicz. 

As before, the effect of increasing strength of natural selection 

is to increase the value offor a given tat'. This time it can be 
Ax 

concluded in general that reverse selection from a pre-fixation plateau 

for a number of generations equal to the prevoue forward selection is 

expected to result in a value of 	greater than 1-F, for any strength 
AN 

of artificial selection. 

How much greater than 1-F is 	likely to be? It can be seen from 
AN 

figure 5- that the value of R  increases to a maximum of two as the strength 
AN 

of natural selection increases. This particular limit of R  is peculiar 
AN 

to q 	'0.5 and arises simply because in this case both homoygotes have 

the same natural fitness. 	If, having started with q 0'=0.5, a selection 

plateau is reached at say q0.7, then reverse selection from this plateau 

will decrease q until a new plateau (this time to reverse selection) is 

established at a point as far below 0.5 as the initial plateau was above, 

in this case at q0.3. Thus the equal fitnesses of homoygotes result, 

in "symmetrical" equilibria between artificial and natural selection, from 

which it simply follows that R will be no more than twice Ax. Any fixa-

tion of allele A1  during forward selection will tend to decrease the 

ability of subsequent reverse selection to return q to its symmetrical 

equilibrium value. Hence intermediate strengths of natural selection, 

which are not sufficiently strong to prevent some fixation, will result 

in values of L less than two. 
AN 
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Figure 6. 	The effect of strength of homeostatic natural selection. (S/ 	s.1 ) on the ratio zx  
after as many generations of reverse selection as previois forward selectioi (t't). 

Curves are,, drawn for relatively weak (Nia = 1, dotted lines) and relatively strong 

(Nia = 8, solid lines) artificial selection, with t'=t=N, 2N and 4N generations where 

N is effective population size. 
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The effect of natural selection on the results of reverse selection 

can also be viewed in a manner analogous to that which was used earlier 

to study its effect on forward selection. Thus figure 6 shows the effect 

of increasing strength of homeostatic natural selection (expressed in 

terms of S/ as before) on the ratio . Although the curves actually 

shown are for q0-q-O.5, the nature of the scale on the x-axis enables 

figure"6 to illustrate the general trends for any q 0 q0.5. Once again 

it can be seen that 	increases as the strength of natural selection in- 

creases. Recalling that selection plateaux only occur if S/q is greater 

than about 0.2 or 0.3, it can be seen that reverse selection from a pre- 

fixation plateau, for t"t, will result in 	values at least equal to 

unity if previous forward selection has been carried out for anything 

less than N generations. * Indeed, 	soon becomes greater than unity for 

all t'-t as S/q increases. 

An interesting aspect of figure 6 is its resemblance to figure 9 

in section I which shows thielative proportion of additive genetic 

variance remaining at a selection plateau, as a function of S/q. Comp-

arison of these two figures indicates that there is a high correlation 

between the amount of additive genetic variance remaining at the plateau, 

and the response to subsequent reverse selection from the plateau. 

One aspect of figure 6 which is not representative of all q 0.'q0.5 

is the position of the curves for very strong natural selection, say be-

yond S/4u'0.6. It has been previously noted with -0.5 that the value 

of 	for very strong natural selection is largely an artifact of the 

relative fitness of the two homozygotea. The end result of this in 

very general terms has been found to be that 	for very strong natural 

selection may vary between 1 and 4 approximately depending on initial 
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Figure 7. The effect of strength of homeostatic natural selection '(S/q = s 1 ) on the relationship 

between length of forward selection,, t, and the ratio 	after various lengths of 

su1sequent reverse selection, t', corresponding to -, t and 2t generations. 	Solid 

lines are matrix results for N'Ia = 1 and q = q= 0.5. •Dotte I lines are the prediction 

of L = 1-F for no 'natural selection from equation (6). 
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and equilibrium frequency. 

Any period of forward and reverse selection 

Finally an example of the effect of homeostatic natural selection 

on reverse selection for any t and any t' is shown in figure 7. In the 

previous section it was concluded that the matrix results for Nia-1 in 

the absence of natural selection correspond very closely to the prediction 

Re 	. -t/2N, 1_e-t'I2N - 	/ . Thus the matrix results in figure 7a, for which 77 	l-e ' 
S02, show the value of 	which would be predicted from the above expres- 

sion for any period of forward selection from t4 - to t-4N, and for periods 

of reverse selection equivalent to 4, t and 2t generations. The effect 

of natural selection is shown in figures Th and 7t. The general way in 

which 	increases with increasing strength of natural selection for any 

t and any t' can be plainly seen. 

Relaxation of selection 

Only the most conunon situation, namely that of relaxation in a large 

population, will be considered here. 

For a single generation of relaxation, it has already been seen how 
R 

Robertson (1956) predicted that 	is expected to equal S. but that this 

prediction is only expected to be valid if the previous forward selection 

has not altered gene frequency substantially. Figure 8 illustrates the 

results of one generation of relaxation following any period of forward 

selection from t4 to t-4N generations, in this case for q 0-q-O.5 with 

weak (Nial) and strong (NiU8) artificial selection. 	It can be seen 
R 

that 2. is iüdeed a good estimate of S for Nial, because such relatively 

weak artificial selection does not alter the gene frequency very much at 

any stage. Stronger artificial selectIon, however, results in values of 
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Figure 8. The effect of length of forward selection, t, on the ratio 	after a single generation of Ax 

relaxation in a large population with various strengths of homeostatic natural selection (S). 

Curves are drawn for relatively weak (Nia = 1) and relatively rong (Nia = 8) artificial 

selection with q = q = 0.5. Ex was calculated from matrix results while R was calculated 

as (s 1  + s 2) q(l - q) 	- q). 
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- much less than S if relaxation is carried out after even just a few Ax 

generations of forward selection, because such strong artificial 

selection does alter gene frequency substantially. The resi4ts of one 

generation of relaxation for other equilibrium gene frequencies are very 

siniilar to those shown in figure 8, except of course that the maximum 

possible value of S is q, which means that one generation of relaxation 
R 

at a locus with for example -o.i is never expected to result in an 
ft 

value greater than 0.1. 

The results in figure 8 thus confirm - the earlier conclusion 
R 

that 	is expected to equal S if the single generation of relaxation 

is carried out relatively early in the selection progranme. 

For a longer period of relaxation, the simple expectation under the 

homeostatic model of natural selection is that the metric mean will con-

tinue to decrease until the large population equilibrium gene frequency 

q is reached. If q", as has been asated throughout this study, the 

above statement amounts to a prediction that the maximum value of N- for 

relaxation in a large population will be 1, for any q0sq..  Figure 9 

shows the value of 	expected as a result of relaxation after various 

periods of forward selection from taa to t-4N, in this case with t st 

and q0-jaQd. The value of 	is seen to increase as the strength of 

natural selection increases, and, except at very low values of S/q, also 

increases with t. The reason for this latter trend is that in a large 

population, where chance fixation is unlikelYto occur, the value of 

for any t is largely a function of t , the number of generations of AX 

relaxation carried out. Obviously as t' continues to increase, a value 

of 	will eventually be reached. Figure 9 is of the same form as 

figure 6, in that it represents the general relationship between . and 

the strength of natural selection for all q0-0.5. It can therefore 
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Figure 9. 	The effect of strength of homeostaic natural selection (S/q = s 1 ) on the ratio 

Ax after as many generations of relaxation in alarge population as previous 

forward selection (t'=t) corresponding to E, N, 2N and 4N generations, where N 

is effective population size during forward selection. 	Curves are drawn from 

matrix results with Nia = 8 and q = q = 0.5. 
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be concluded that the result of relaxation of selection with the homeo- 

static model in a large population will be an 	value between zero and Ax 

unity, with larger strengths of natural selection and longer periods of 

relaxation tending to give value8 of 	approaching 	unity. Ax 

Natural selection prior to artificial selection 

It was stated at the beginning of this section that the results ob-

tamed from the above matrix operations are only valid if the genotypes 

are in Hardy-Weinberg equilibrium at the time of observation, or in other 

words, all natural selection occurs after artificial selection. Is it 

possible to extend these results to cover the action of natural selection 

at any stage of the life cycle? The matrix operation in which E[q  I is 

calculated from the gene frequency distribution is no longer useful be-

cause alterations in q do not directly reflect alterations in the metric 

mean if the genotypes are not in Hardy-Weinberg equilibrium. In the 

initial discussion of this situation, it was noted that the metric mean 

can be expressed as 

x - ..[f -f] 

if f11+2f12+f22=l, where f is the frequency of genotype i 
i  A at theij 

time when the metric phenotypes are actually observed. Thus if borneo-

static natural selection occurs prior to artificial selection, 

2 	- 
a q (1-9 1 )/w 

2f12  - Zq(l-q)/ 

and 

f22  - (1-0 2 (1-s2)/ 

where 

- l-S-(s1+s2)(q-)2 
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The course of artificial selection in the presence of natural selection 

was then followed by post-multiplication of the matrix U with a column 

vector v having elements -o 

V ( i ) 	f11(J)  - f22(J)  

where 

f 11(J) 	(J/2N) 2 (F_s 1 )/ ( . )  

f22() 	(l3/2N) 2 (1-82)/ (j)  

W ( i )  - 1-S(s 1+82)(j/2N-q) 2  

Thus the results of forward selection were obtained as 

Uv 

2 rl 

U2v 	 - • _0 
and in general 

v 	Uv _t 	...t 

t tJv 	 S - .0 

How can the course of subsequent reverse selection be followed? 

In principle what is wanted is a final restiji which can be written as 

tt 
UD v 	 (7) v  . - .0 

but it would be much more economical if continual multiplications of 

matrix by matrix could be avoided. Examination of expression (7) indi-

cates that one way to achieve such economy is to do the reverse selection 

before the forward selection. 	Indeed in their initial use of a transition 

probability matrix in the study of artificial selection, A1lanand 

Robertson (1964) used this very technique, but did not report it explicit. 
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Figure. 10. 	The relationship between length of forward selection, 

t, and the ratio 	at a locus where the favoured allele Ax 

is sterile (solid lines) or lethal (dotted lines), after 

two periods of reverse selection, t', corresponding to 

and t generations. 	Curves are drawn from matrix results 

with qi 	0.1 and Nic=8. 
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Thus matrix operations have been carried out in the manner of expressions 

(8) and (9) below: 

v , - Dv 
_l 	__o 

- 

2' -D v 
- 

and 

!to- 	t'-1 	 (8) 

-D v 

- Uv 

v 	=Uv 
•2+t' •_1+t' 

2 

- u2Dt v 
a a S O 

V 	- _t+t' 	t-1+t' 	 (9) 

• Utv , 

U t  D to - 	v 
a S •O 

An example of the results so obtained is given in figure 10, which 

illustrates that any natural selection prior to artificial selection 

(brvken lineg) tends to increase the observed value of L- above that which 
Ax 

would have been expected if artificial selection had been carried out prior 

to natural selection (solid lines). 	It has been found that the difference 

between the two situations decreases as the strength of natural selection 

decreases, so the curves in figure 10 represent an extreme example. The 

value of S/q was chosen as unity in this case so as to illustrate speci- 

Then 

and 
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fically the results of reverse selection at a locus where the allele 

favoured by forward artificial selection is lethal (broken lines) or 

sterile (solid lines). The value of R  is of the same order in both Ax 

cases, and for t"t is relatively constant for any value of t. The 

actual values of 	in figure 10, however, are very much a reflection Ax 

of the initial and equilibrium frequency, in this case q0"uuO.l, but 

the general trenda and the relationship between the results for lethal 

and sterile alleles represent results which can be generalised. 

Discussion 

In very general terms, the re8ults of reverse selection and relax-

ation of selection under the homeostatic model of natural selection have 

been found to be in agreement with current expectations of results of 

reverse selection and relaxation in the presence of natural selection. 

Thus a decrease of the metric mean occurs following relaxation, and re-

verse selection results in a greater change in the mean than that produced 

by relaxation. 

To a certain extent it has been possible to quantify these expect-

tion but, as in section I, only in terms of single loci. The actual 

result of reverse selection or relaxation for any metric character deter -

mined by a nunther of different loci will represent a completely unpred-

ictable combination of the various results discussed above. The pred-

ictions obtained in this study can therefore only be used in a very 

general sense, to provide a feeling of the order of magnitude of the 

results which might be expected. They also shoOd be of some use in 

the interpretation of results already obtained. 

One aspect of the importance of equilibrium gene frequency which 

has not been mei*tfoned above Is the difficulty associated with lo%Y values 
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of Nicz,,and qq<0.5. The directional effect of heterosygote 8uperiority 

in small populations for q00.5 has already been mentioned, and it has been 

seen that this effect may be stronger than artificiaL selection with low 

Nia, in which case the metric mean decreases under the action of forward 

artificial selection for <0.5. Measures of R  for subsequent reverse Ax 

selection in such situations cease to have imich relevance. What can be 

concluded quite generally is that the homeostatic model may give rise to 

quite a strong natural selection force in favour of actively decreasing 

the metric mean for genes with initial and equilibrium frequencies less 

than one half. 	It remains to be seen whether other models of natural 

selection also have the same implications. 

Finally, it must be noted that certain different models involving 

no natural selection at all can give rise to results of the type which 

have been shown above to arise from the homeostatic model of natural 

selection. For example, forward and reverse selection under a model of 

non-additive gene action could conceivably produce trends of the same 

type as those discussed above. A study of the formation of pre-fixation 

plateaux, and the effects of subsequent reverse selection and relaxation 

for non-additive gene action would be helpful in this regard. 

4. SUMMARY 

1. The implications of the homeostatic model of natural selection for 

reverse selection and relaxation have been considered. It has been 

assumed in all cases that q 0 q at the commencement of forward artificial 

selection. The reswlts of reverse selection or relaxation have been 

described in terms of the ratio of reverse selection or relaxation res-

ponse (R) to previous forward selection response (x), where t generations 

of forward selection are followed by t' generations of reverse selection 
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or relaxation. If t'-1 then the response to reverse selection or 

relaxation is denoted by R1 . Consideration has been given to forward 

and reverse selection in a finite population of size N, and to relaxation 

in a very large population. 

2a For alleles initially coimon In the base population (q">O.5) 

the value of 	for reverse selection is expected to be much less than Ax 

that predicted in the absence of natural selection, for any t and any t'. 

Conversely, natural selection is expected to enhance the effect of reverse 

selection at loci where q<0.5. and hence at bet where selection 

plateaux due to opposing natural selection are likely to form. 

There is a high correlation between the proportion of original 

additive genetic variance remaining at a selection plateauS,. and the mag-

titude of response to reverse selection from that plateau. 

A single generation of reverse selection from a pre-fixation 
MR 

plateau is expected to result in a elue of 	greater than ..!pbut  less 

than 15, where F is the inbreeding coefficient for a neutral locus at 
MR 

generation t. Values of 	around 10 or greater indicate very strongAx  

opposing natural selection as a reason for the plateau. 

For reverse selection from a pre'fixation plateau equal in length 

to the previous forward selection, 	is expected to have a value greater Ax 

than 1-F but less than 4. 

A 9ng1e generation of relaxation in a large population is expected 

to result in an r- value of S providing that the single generation of 
relaxation is carried out relatively early in the selection programme. 

Relaxation of selection for any t' in a large population results in 
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R 	 R 
values between zero and unity, with -. tending toward the latter value

Ax  

with increases in t' and increases in the strength of natural selection, 

Any natural selection which occurs prior to the time of artificial 

selection tends to increase the value of R  actually observed. 
Ax 

Reverse selection from plateaux due to alleles which are sterile 

or lethal when homozygous generally results in 	values greater than 
Ax 

unity. 
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LIMITS TO ARTIFICIAL SELECTION 

IN THE PRESENCE OF NATURAL SELECTION 

Discussion 

The implications of the honieotatic and optimum models of stabi1iing 

natural selection for forward artificial selection have been investigated 

in turn. It was possible to obtain a reasonable insight into the homeo-

static model but the optimum model proved to be much more intractable. 

The reason for this lies in the essential difference between the two 

models: the one iü which each locus can be considered independently and 

in which natural selection does not necessarily act at all loci, and the 

other in which epistasis is of critical importance. Thus under the 

optimum model, all loci which contribute to the metric character are 

subject to natural selection, the effect of which at any one locus varies 

from generation to generation, being determined by gene frequencies and 

gene effects at all other loci. 

Are we any closer to being able to interpret the results of artificial 

selection experiments where natural selection has been implicated, in 

terms of one rather than the other model? All present indications are 

that we are not. For example, it has been concluded in section I that 

the results of Lamer and Dempater's (1951) selection experiment are 

compatible with the homeostatic model, as indeed they should be. But 

James (1962) was able to conclude that the same data could be explained 

with an hypothesis of directional selection opposed by nor—optimal natural 

selection. And the consideration given to the nor—optimum model in 

section II supports this conclusion. In fact, there seems to be no 

aspect of the observable response to artificial selection which would 

enable one to distinguish between the two models of natural selection. 
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An example of the way in which one can not differentiate between 

the two models is the recent analysis of an artificial selection experi-

ment for body weight in mice reported by Eisen, Hanrahan and Legates 

(1973). The authors concluded that their data favoured the optimum 

model rather than the homeostatic model, because artificial selection 

had been seen to move the population mean for body weight and percent 

body fat away from an optimum, in lines of relatively large effective 

population size. However, the relatively large responses to selection 

observed in these large populations would be expected to have resulted 

in a greater degree of fixation of favourable alleles specifically at 

loci contributing to the genetic variance in body weight than in the 

smaller lines where response was not as great. And, under the homeo-

static model, a greater degree of fixation of favourable alleles is 

associated with a larger decrease in fitness. Thus the observed f it- 

ness decline at the large effective population size is equally compatible 

with the homeostatic or the optimum model of natural selection. It 

appears therefore, that the detailed analysis of such artificial 

selection experiments is unlikely to provide evidence in favour of one 

or other model of natural selection, at least in the light of 	I present 

knowledge. 

The nor-optimal model remains to be explored in more detail in the 

context of both forward and reverse artificial selection, and such a 

study may then point out differences in the ramifications of the two 

models. 

For the present at least, it remains apparently impossible to dif-

ferentiate between the two models by analysi8 of artificial selection 

data. What are the type of experiments which would enable a useful 

comparison to be made? The difficulty in answering this question is 
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probably an indication that the real situation in nature lies somewhere 

in between the extreme situations described by the two models. What 

would be useful is a new conceptual approach to the whole question of 

the inter-relationship between a metric character and fitness; an 

approach in which the genetic consequences of natural selection on the 

whole 'global' phenotype can be described; an approach that does not 

involve confusion between cause and effect. 

What then has been the use of considering the two models in this 

study? The main reason is that the two models in thpresent state 

represent essentially two extreme (and, incidently, the only) des-

criptions of the way in which natural selection acts with respect to 

metric characters. And it is these two models which are always dis-

cussed during the analysis of any artificial selection prograne in 

which natural selection seems to have been of importance. To the ex-

tent that the implications of each model of natural selection are 

similar in the context of artificial selection, then knowledge obtained 

from either one can be utilized in discussing the effects of natural 

selection in artificial selection progranes. 

Thus for any particular locus under the homeostatic model, natural 

selection is expected to be the cause of a pre-fixation plateau in a 

population of finite ié only for genes with initial and equilibrium 

frequencies equal to or less than one half, and then only if the value 

of S/ is around 0.2 or greater. The total advance in the metric 

mean at a pre-fixation plateau is never greater than 2N(1-2S) 2  times 

the change in metric mean in the first generation of artificial 

selection, and a large proportion if not all of the original genetic 

variance remains at such a plateau. An indication of the amount of 

genetic variance remaining is given by the magnitude of response to 
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reverse selection from the plateau. And finally, a significant de-

crease in population fitness as a result of artificial selection does 

not necessarily imply that the metric character concerned is an 

important adaptive character with respect to natural selection. 

With the optimum model, it has not been possible to obtain 

quantitative predictions with the same generality as those above, but 

it has been seen that the implications of the mode1 are essentially 

the same. Thus a pro-fixation plateau will result if natural selection 

is sufficiently strong, the total advance in the metric mean will pro-

bably be something less than 2N times the change in metric mean in 

the first generation of artificial selection, and the natural fitness 

of the population will have declined at the plateau from what it was 

originally. 

The results of this study may also be of use in the analysis of 

artificial selection lines in which fItness has declined and/or a 

selection plateau has resulted. 	If, for example, the investigation 

of the nature of a selection plateau involves reverse selection, then 

certain predictions are now available of the results expected from re-

verse selection with and without natural selection. In its most 

general form the value of the ratio of the change in metric mean re-

sulting from t' generations of reverse selection (R) to the change in 

metric mean due to t generations of previous forward selection (tax) is 
-t/2N 1  -t' 1/2N 

expected to be 	
-t'2N 	/ in the absence of natural selection. l-e 

Values of the ratio larger than this prediction are expected if natural 

selection has been opposing the previous forward selection. 

Further work is needed on other possible causes of selection 

plateaux such as non-additive gene action (especially overdominance) 

for the metric character. It would be particularly helpful to be able 
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to distinguish the effect of natural selection from the effect of non-

additive gene action on the response to reverse selection. 

Finally, it is evident that many relevant aspects of response to 

forward and reverse selection and relaxation have not been treated in 

detail here. However, it should be quite possible to use the matrix 

operations described in this study, especially for reverse selection, 

to simulate a particular practical situation and consequently study 

it in more detail. 



PART B 



THE EFFECT OF SELECTION ON THE STANDARDIZEI) 

VARIANCE OF GENE FREQUENCY 

Introduction 

The relative importance of selection and random drift in deter-

mining the observed pattern of evolution is still a major topic of 

debate in population genetics. For loci at which gene frequency can 

be determined, one of the lines of study currently being followed is 

based on an idea apparently first suggested by Cavalli—Sfora (1966), 

in which the standardized variance of gene frequency f1-_-_)  is 

estimated for various loci over several populations. Thus f is 

estimated from the mean gene frequency at a particular locus over 

several populations (q), and the variance of the gene frequency die-

ttibution (aq2) over the same populations, at a particular point in 

time. Since all loci in a given group of populations have been sub-

jected to exactly the same breeding structure, f values obtained from 

any number of such loci will be homogeneous unless selection has been 

acting at some of the loci. Lewontin and Krakauer (1973) have 

recently developed varLous statistical tests for the homogeneity of f 

values, and the use of these tests has, for example, led Nevo (1973) 

to conclude that selection is acting at various loci in the iöcket 

gopher Thymomys talpoides. Lewontin and Krakauer (1973) reached a 

similar conclusion from their analysis of some of Cavalli—Sforza's 

(1966) data on human populations. 

Each of these papers has also drawn some conclusions as to the 

type of seLection which is acting. Thus it has been argued that f 

values lower than those expected due to drift alone could be due to 

some form of stabilizing selection (e.g. heterozygote superiority), 

132. 
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and relatively large f values may be indicative of different strengths 

of directional selection At the same locus in different populations. 

But these generalisations are the only knowledge currently available: 

what is lacking is a proper understanding of the way in which various 

models of selection affect the standardized variance of gene frequency. 

It.is not only natural populations which are being subjected to 

this type of study. The advent of suitable electrophoretic techniques 

has recently led. to studies of the effect of selection on gene frequency 

and the varIance of gene frequency in laboratory populations of, for 

example, Drosophila (Dolan, 1974) and mice (carnett, 1973). The 

latter study was concerned solely with the effect of artificial 

selection for a metric character on gene frequency and variance of 

gene frequency at various 'electrophoretic' and coat colour loçi. A 

better knowledge of the way in which selection affects the standard-

ized variance of gene frequency would assist in the interpretation of 

such artificial selection experiments. 

In attempting to trace the history of human evolution, Cavalli-

Sforza (1969) developed an algebraic relationship between f and the 

time (t) since separation of two populations, for amodel of constant 

but different directional selective values in different populations 

at the same locus ana compared it to the relationship f 
1_t2T 

 ex-

pected in the absence of selection. These two relationships were 

then used to obtain lower and upper limits respectively of t, the time 

since divergence. But other models of selection could give completely 

different relationships between f and t and hence completely different 

estimates of time since divergence. 

Once again, therefore, a greater understanding of the effect of 

selection on f would be useful. 
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For human populations. Cavalli-Sforza and-;'Zei (1967) and Bodmer , 

and ava1li-Sforza (1968) have obtained the expected value of f for 

more complex but more realistic models using the Monte-Carlo and 

migration matrix methods respectively, on a computer. Expected 

values of f so obtained for 8ituatiOns where sufficient migration and 

general demographic data are available have been compared with ob-

served f values. But it is difficult to use these methods to deter-

mine the effect of selection on f in general terms, as so many para-

meters of migration and/or demography are required to obtain any 

specific answer. The cost in computer time is also quite substantial. 

it is possible, however, to obtain a general impression of the 

effect of selection on f by firstly considering an algebraic model of 

additive directional selection. A further understanding can then be 

acquired by the use of a transition probability matrix with which it 

is possible to calculate the expected value of aq 2  and q and hence f 

at any time under various models of selection. 

The aim of this study is to obtain a greater insight into the 

behaviour of the standardized variance of gene frequency under simple 

models of selection. 

The additive model 

Consider a single locus with two alleles A 1  and A2 , and assume 

the relative fitnesses of the three genotypes A 2A2 , A1A2  and A1A1  are 

1 - 	1 and 1 i . respectively. If the genotypes are in Hardy- 

Weinberg equilibrium at the time of conception, then the change in 

frequency of allele A1  as a result of one generation of selection in 

a large population is 
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ó q(l—q) 	 (1) 

where q is the frequency of allele A 1  at the time of conception. 

For a locus at which such selection is acting, the value of f 

actually observed at any time is an expression of the end result of 

a combination of selection and random genetic drift. Is it possible 

to disentangle the effects ofthese two components, in order to see 

more clearly how the observed f is achieved? The change in f due to 

one generation of random drift alone is well known as , where N is 

the effective population size. But what is the equivaleni expression 

for selection alone? And is the observed f simply the sum of these 

two components? 

Some understanding of the effect of selection alone on f can be 

obtained by considering selection acting in a similar manner at a 

single locus in a number of populations. 	Each of these populations 

must be sufficiently large to justify the assumption that random 

sampling is not going to alter the result of selection in any one 

population from that predicted by equation (I). 

Assume that the gene frequency at a particular time (t-O) in 

the i th  population is q0(j).  If the q 	 are all the same, thenOM  

2 - 0 and f - 0. Alternatively, if at least some of the q ,. are 
0 	 2 	 oi) 

different, then 	0 and f0 - 	 where q0  is the'mean gene 

frequency at t0. Bow will the value of f be altered after t 

generations of selection in each-of these populations? 

Following Haldane (1924), equation (1) can be expressed as a 

differential equation - 

dq ' .. q(l-q) 	 (2) 



provided that dq is small. The solution of this equation is 

• (14)t q0 
1-q 

0 

In order to obtain 	we firstly need 	which can be obtained
qt  

by noting that for any q, 

Var (—JIa 	
Var 

	

i 	
tqj 

q 

Thus 

	

-2 	 2 

4 - 
(14) 2t 

	

(l- ) 	 (1-q0 ) 

The term in s can be removed by dividing equation (4) by the square 

of equation (3), to give 
2 

a; 
q 0  

	

22 	2 	2 

	

(l - ) 	q (l-q0) 

	

f 	 f 
or 	t 	- 	0, 

q0 (l-q0) 

Recalling that f0  and q0  are particular and constant values describing 

the state of the populations at t0, equation (5) can be written as 

k q (l-) 
	

(6) 

where k is constant for any particular set of initial conditions. If 

all popilations have the some initial gene frequency, then f and hence 

k are both zero, and f is zero as expected : in the absence of drift 

there can be no variance in gene frequency at any stage if all 

populations start with the same gene frequency. On the other hand, 

if there is some variation in initial gene frequency, then f is 
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directly proportional to 	 in which case it is expected to in- 

crease until q'O.5. Once the mean gene frequency of all the populations 

passes beyond 	then f decreases. 

Another way to look at this is to consider the change in f with 

change in q which can be written, from (6),as 
df 

is k(1-2q) 	. 	 (7) 

Thus the change in f is positive if q is less than 0.5, and negative 

for all values of q above one half. 

It remains now to obtain a more useful expression for change in f. 

For a single generation, equation (7) can be written as 

- f(l-2q) 	 (8) 	
—

AqAf 
q 	

. 
(l-q) 

And for drift alone in the absence of selection, change in f can be 

written as 

Af(l-f) 	 Cc?) 

where the last term ensures that Af is zero when f = 1. 

 now 	 ibfiodescribe the change in fd 	 iài 

a finite population by simply combining the two expressions for Af? The 

simplest way to do this is to add the two terms to.gether so that 

+ l-2g) Aq 
2N 	q(l-q) 

When f has reached its maximum value of unity, complete fixation has 

occurred so that changes in gene frequency are no longer possible. In 

general therefore, 

Aq is q(l-q)(l-f) 

where the last term is simply a reflection of heterozygosity declining 

by a proportion 	every generation in a finite population. 
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The way in which f alters with changes in mean gene frequency due to 

selection is then given by 

- 	+ f(1-2q) 	
(10) 

dq 	q(l-q) 

which can be solved to give 

f 	(2q-1 + 2q(l-q) log+ Kq(1-q) 	 (11) 
Ns 	 *1  

where K is a constant whose value for a particular initial gene frequency 

q and value of Ns can be determined by setting f-0 in equation (11). 

In other words, equation (11) gives the value of -  f expected at any 

particular time when the mean gene frequencyis q 1 given that all lines 

or populations were derived from a single population in which the 

initial gene frequency was q 0  at the time of separation. Thus EIq0 J 

in all lines is q, and the expected value of f at the time of 8eparation 

is zero. 

The usefulness of expression (11) as a prediction will be checked 

below by comparing its prediction to the exact results which have been 

obtained by the use of a transition probability matrix. 

The matrix operations 

The derivation and subsequent use of a suitable matrix have been 

described in full, for example, by Hill and Robertson (1968). Only a 

brief description, therefore, of the matrix operations will be given 

here. 

Consider a population of N diploid individuals mating at random 

(including self ing). At a particular single locus with two alleles 

A1  and A2 , the genotypes A2A2 , A1A2  and A 1  A  1 
 are assumed to have Hardy- 
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Weinberg frequencies of (1-q) 2 0  2q(1-q) and q 2  respectively at conception, 

where q is the frequency of allele A 1  at conception. The relative fit-

neeses of these three genotppes are aseud to be 9 226  1 and S 11  

respectively. 

For a given gene frequency i/2N, the proportion g 1  of each geno-

type in the population of parents at the time of their mating is 

g122  - 	(l-q)2 22 
V 

g112 	2q(1-q) 
V 

12 
gj11 - 	S 

	

V 	

11 

where q-i/2N and w is the proportion of zygotes which remain to be in-

cluded as parents, and is given by 

- (1-q) 2S22+2q(l-q) + q 2S11 	. 

The probability of obtaining exactly x A2A2 ,:A1A2  and z A1A1  

genotypes (x+y+z.N) in a population of N survivors, given that there were 

i A alleles in the population of zygotes in the same Igeneration can 

be expressed as 

fi(x,y'z) a  ( 
x 	y 	z 

' g 22  g112  g111  

and can easily be evaluated on a coiputer for all i-0,1,.,.,2N. 	It 

then follows that the probability p ij  of obtaining 3 A1  alleles in a 

population of N zygotes at generation t+l, given that there were i A1  

alleles in the N zygotes at generation t is 

p.. a  Z f. 
'
(x,y,z) 	 i,j -O,l,...,2N, 

' 	2z+y  
-j 

which is an element of the transition probability matrix . The matrix 
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2N 
is square of dimension 2N+1, and within each row E p..

1) 
- 1. 

The expected value of q and 0q2  can then be obtained by post 

multiplication of P by column vectors representing the first and second 

moments about zero of the distribution of gene frequency. Thus the 

selection process is commenced by setting up a column vector u with 

elements uusi/2N and a second vector V with elements vii/2N  ji/2N. 

Then the matrix operations 

U -Pu .1 _.o 

and 

V - P V .1 
	

.o 

result in vectors u 1  and v1  representing the first and second moments 

after one generation of selection. The results for subsequent gener-

ations are then obtained as 

u -Pu 
.2 	..,l 

2 
- 	U 

• .0 

and 

u 	u P .t 	•.tl 
t -P U 

- .0 

and similarly for V. While operations of the form of (h) indicate more 

clearly the principle of the use of a transition probability matrix, it 

is operations of the type shown in (a)  which are actually carried Out, 

because they involve only the repeated multiplication of the matrix by 

a vector, rather than the matrix by the matrix as is needed in (b). 

At any generation t, the 
1tb 

 element of u represents E[qq0c1i/2 J, 

and the 1th  element of v is equivalent to E(q 2 j 0 iI2 J. Thus 

2 aq I 	- Vt(i) - (Ut(i)J 

() 

(b) 



and 	 2 

•EL! cIO2Nl 	
Vt(•) - tt(i)1 

Ut(i) '(i) 

Matrix operations of the type shown above have been carried Out 

with a diploid population size of Nab, for a total of t-8N generations, 

with various strengths of selection under two simple models, additive 

and heterotic. The final generation was chosen as 8N simply because 

it represents a convenient multiple of N, and corresponds to almost 

all (in this case 98.2%) of the inbreeding process for a locus with 

neutral alleles. Extrapolation from t.8N to t- for the parameter f 

is a relatively easy matter, as E [f] at t- is 1. 

An effective population size of N-10 was chosen because it re-

presents a convenient value for matrix operations. It is now commonly 

realised (see for example, Crow and Kimura, 1970) that generalisations 

to a wide range of population sizes can be made by expressing the re-

sults obtained from one value of N as Na for the additive model, and 

as N(s 1+a 2) for the heterotic model, where a is the selection coefficient 

for additive selection, and 
s1  and s 2  are the selection coefficients 

for heterotic selection. Thus the two models can be represented as 

A 2  A  2 	A 1  A  2 
	A1A1 

Relative ) 	l-s 	: 	1 	: 	1+4s. 	additive model 
fitness- ) 

ll 	: 	1 	: 	1S2 	heterotic model 

It follows that the transition probability matrix 1 1  can be set up by 

taking S 22a1-s and S11 l+a for the additive model, and S 22-l-s 2  and 

for the heterotic model. 

141. 



	

U, 	U 	U.3 	0.1 	O. 	0.1 	0.3 	0.5 	0.7 	0.9 
9,t 

	

Figure 1. 	The effect of various strengths of additive selection 

on the relationship between-gend frequncy at time t, 

and the corresponding standardized variance of gene 

frequency, for initial gene frequencies of q = 0.1 9  

0.3, 0.5 and 0.7. Curvesare drawn from transition 

probability matrix results (solid lines) and from the 

prediction of equation (11). (dotted lines). 



The effect of selection on f 

An example of the behaviour of f under additive selection in 

a finite population is given in figure 1, in which f is shown as a 

function of mean gene frequency at time t, for the four initial gene 

frequencies of q 0 0.1, 0.3, 0.5 and 0.7. 	Thus a conceptually infinite 

population has been subdivided randnly at time t-O into several sub-

populations each of effective size N. The value of q 0  is the same 

in all aubpopulations, giving f 0 0. Additive directional selection 

then occurs with exactly the same coefficient of selection in all sub-

populations : the variance of a is zero. The exact matrix results 

(solid lines) represent the mean value of f which would be observed 

if the whole process of subdivision followed by selection within sub-

populations were repeated a large number of times. The broken lines 

represent the prediction of equation (11). 

It can be seen that equation (il) provides an accurate prediction 

of f for Nsl and values of f up to about 0.5. 	(Only one line is 

shown for q0-O.3 and Nsl because observation and prediction coincide 

exactly in this case, for all values of f). As f approaches its 

ultimate value of unity, the prediction generally tends to become less 

accurate. For larger values of Na, equation (11) tends to overestimate 

for q0 cO.5 and underestiniate for q0.5. 	However, at intermediate. 

initial frequencies (0.3cq 0 0.7) the prediction is quite useful for f 

values up to 0.1 even for large Na. 

The discrepancy between observation and prediction at higher 

values of f is most likely an indication that some type of interaction 

term has been omitted from.equation (10). An exact description of the 

whole process is not therefore possible by the simple addition of tf 
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Figure 2. 	The effect of various strengthsof additive directional 

selection (solid lines) and heterotic selection (dotted 

lines) onthe standardized variance of gene frequency,f, 

during the whole inbreeding process from generation zero, 

to generationinfjni.ty. 	Time scale is expressed as 
.-t/2N l-e 	so aP.to  prpvide a linear relationship with f 

for no selectionz 	In this example matrix results are 

-given for additive seletion with q= 0.1, and for 

heterotic selection with q 	q = 0.1. 
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due to drift and Af due to selection. However, to the extent that 

some useful prediction is indicated in figure 1, at least for Ns1 

and/or low f values, it can be concluded that equation (10) is a valid 

first approximation to a proper description of the effect of selection 

on f in finite populations. 

Another illustration of the way in which f behaves under differ-

ent strengths of selection for the additive model is given in figure 2. 

The results for the heterotic model are also included. The time scale 

on the x-axis is expressed as i_et"2N so as to provide a straight 

line relationship between f and t in the absence of•selection. All 

the curves in figure 2 have been obtained for the same initial frequency 

of allele A1 , namely qO.l: results for other initial gene frequencies 

will be discussed below. In addition, for the betero.tic model, it has 

been assumed that q q, where q is the large population equilibrium 

gene frequency, and is given by s 	 • This assumption is pronbly 

quite a valid description of the situation in real life, because t-O 

in the context of this study represents the time of divergence or 

separation of one relatively large population into two or more relatively 

smaller ones. If selection were favouring the heterozygote at a part-

icular locus, then it would not be surprising to find q- in the large 

population, and hence for any newly formed subpopulation the assumption 

that E1q0] -q would seem to be quite realistic. 

It can be seen from figure 2 that at any time t, additive 

selection results in f values larger than that expected due to drift 

alone, and that heterotic selection has the opposite effect. The 

difference between f under selection and f under drift alone at any 

time t increases as the values of Na or N( 1+s2) increase. More 
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Figure 3.. Theeffect of various strengths of additive, directional selectionon.the standardized variance 

of gene frequency, f, during the whole inbreeding process from generation zero to.generation 

infinity. 	Time scale is expressed as 1et/2N so as to provide a linear relationship with f 

for no selection. 	In this example matrix results are given 'for additive selection with 

q=O.3andq=o.5. 	•'' 	. 
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generally, it has been found that the shape and position of the curves 

for heterotic selection are very similar for all initial gene fré-

quencies, if q0". The effect8 of heterozygote advantage are thus 

well in accord with the verbal predictions of Cavalli-Sforza (1966, 1969) 

and Lewontin and'Krakauer (1973). 

The effect of additive selection, however, is not so easily 

generalised. For higher initial gene frequencies, in this cage 0.3 

and 0.5, figure 3 shows the effect of various values of Ne on f. It 

can be seen that f under selection is almost the same as or less than 

f with drift alone for the majority of the selection process. In fact 

with q0 0.5 the curves for additive selection now resemble the curves 

for heterotic selection, except for relatively high values of f, of 

the order of 0.8 or more. 

An explanation of the difference between the curves for additive 

selection at various initial frequencies can be obtained by considering 

the way in which c,q2  and q alter during the selection  process. For 

initial frequencies less than one half, 0q2  is always greater than it 

would be in the absence of selection at least until q reaches 0.5. 

Thus the numerator of f is larger with additive selection than it 

would have been in the absence of selection. However, as q increases 

from a low initial value towards 0.5 6  the value of q(l-q), which is the 

denominator of f, also increases up to a maximum of 0.25. Thus the 

denominator is tending to decrease f over this range. The observation 

that f continues to increase in the early stages of selection is then 

simply an indication that the increase in iq 2  is more than sufficient 

to offset the increase in q(l-q). 

As q continues to increase above 0.5, the rate of increase in 
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0q2  begins to decline. Relatively large Ns values even result in an 

athd.ute decline in the value of 0q2 • But this relative or absolute 

decline in 0q2  will be associated with a decline in q(l-q), as q pro-

ceeds beyond 0.5, which will tend to increase f. The observed fact 

that f continues to increase throughout the selection process merely 

indicates that the decline in the value of q(l-q) is relatively greater 

than any decline in 1q2  which may occur. 

The curve for Nsu2 with q0 0.3 indicates that during the re-

latively early stages of selection, the decline in q(l-q) may not be 

sufficient to completely offset the decline in 
72,  so that although 

the value of f continues to increase, it falls below that expected due 

to drift alone. It is only when q(1-q) has become much smaller, to-

wards the later stages of selection, that f becomes larger than that 

expected with drift. The aame trends are evident to a greater extent 

with q0 0.5. In this case, and indeed for all q0.5, the value of 
Ce 

clq2  is never as great as that which would be observed with drift alone, 

and can be much smaller for relatively large Ns values. It therefore 

takes somewhat longer for the decreasing value of q(l-q) to c3mpensate 

for the relatively low øq2 0  with the result that f with selection is 

always less than f with drift alone, unless the value of f with drift 

alone is quite high. 

It can be concluded that heterotic selection always results in 

f values lover than those expected with drift in the absence of selection. 

Additive directional selection will produce similarly low values of f 

unless initial gene frequency is low, or unless observations are made 

relatively late in the selection process, when f values expected due 

to drift alone are of the order of 0.7 or greater. In these two 
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Figure 4. The effect of selection and initial gene frequency on the 

value of t that would be inferred from an observed f value 

of 0.25 for relatively weak additive [Ns = 1] and heterotic 

[N(s 1  + s 2) = 11 selection, and for relatively strong 

additive [Ns = 81 and heterotjc [N(s 1  += 81 selection. 

All curves are drawn from matrix results. The straight 

line for no selection (drift only) is also included. The 

t/2N time scale is expressed in the modified form of 1 	e_. 



situations f with 8election is greater than f with drift alone. 

Another general point can be obtained from the curves in 

figures 2 and 3. It is very evident that even with quite large values 

of Na or N(s 1+s 2), the effect of selection on f will never be detected 

if the observed value of f is less than say 0.1. The effect of 

selection on f becomes most apparent as f due to drift approaches 

intermediate values. 

It remains now to consider the effect of selection on the results 

of two different methods of analysis currently used for observations 

on the standardized variance of gene frequency. 

Standardized variance between populations averaged over loci 

This is the type of analysis conducted by Cavalli-Sforza (1966, 

1969) who used the mean f values so obtained to estimate times since 

separatioá or divergence of the populations cencerned. Thus a 

particular value of f is observed, and a value of t is inferred from 

the observed f. Figure 4 illustrates the way in which the value of t 

so inferred from a particular value of f is influenced by initial gene 

frequency, for the two models of selection considered above. 

Firstly, it can be seen that for low values of Na or 

the estimate of t is very similar to that which would have been obtained 

with an hypothesis of no selection (drift only), as expected, and this 

result holds for all initial gene frequencies. Larger Na or N(s 1+a 2 ) 

values, however, result in much larger estimates of t, except for re-

latively low initial gene frequencies. The effect of selection 
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therefore, is generally to provide much higher estimates of t than 

would have been inferred under an hypothesis of drift alone. Estimates 
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of time since divergence based on an assumption of no selection may 

thus be considerable underestimates of the true value if additive or 

heterotic selection has occurred. 

But what if the forces of selection vary between loci or between 

populations? If, for example, alleles at someloci are effectively 

neutral, while alleles at other loci are subject to either type of 

selection considered here, then the individual f values from which the 

mean f is calculated will simply be drawn from different conceptual 

populations of f values, with the population mean of f for any parti-

cular value of Na or N(s 1+s2) being sittLated at the relevant position 

shown in figures 2 and 3. Thus exactly the same conclusions apply as 

before.. 

The situation considered specifically by Cavalli-Sforza (1966, 

1969) and Lewontin and Krakauer (1973) involved variable selection 

coefficieüts in space for a particular locus. Any such variation in 

a or ( 8 1+82) would surely increase the value of f at any given time 

over that which exists for the smallest value of s or. (81+82)  on its 

own. Thus the effect of variation in setection coefficients with 

space will be to increase the expected value of f above those predicted 

from the models of constant a and 8 1+82 considered here. However, to 

the extent that the f values expected under either heterotic or addi-

tive selection are generally well below those expected due to drift 

alone, it would seem to be quite possible that variation in a or 81+82 

may not be sufficient to give an f value greater than that due to drift 

alone. 
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Figure 5. 	The effect of selection and initial gene frequency on the 

value of f that would be observed at a time t=N generations 

after all populations first diverged from one another. 

Curves are drawn from matrix results for relatively weak 

additive [N=l] and heterotic. [N(s 1+s 2 )=l] selection, and 

for relatively strong additive [N,s=8] and heterotic 

[N(s1+s 2 )=8] selection 	The straight line for no selection 

(drift only) is also included. 
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Standardized variance between populations within joel 

Lewoutin and Krakauer (1973) have considered two possible types 

of analysis in this category. The first of these, as utilized by 

Nevo (1973), involves observation of gene frequency at as many bci 

in as many different populations as possible, at a particular point 

in time. A value of f is then estimated for each locus, and signi' 

ficant heterogeneity between f values is taken as evidence of selection 

at least at some boci. Figures 5 and 6 show the way in which 

selection determines the value of f actually observed at two particular 

poi%tts in time, namely tN and 4N generations, for all possible initial 

gene. frequenciea. In this context, initial gene frequency refers to 

the gene frequency at time zero, the time at which all observed popu-

lations are assumed to have diverged from each other. 

For t-N, which is fairly soon after separation, it can be seen 

that selection in general, either additive or heterotic, results in 

relatively low f values compared to those expected due to drift alone. 

Later on, when the populations have been separated for much longer 

(t4N), f due to drift alone is quite high, in this case around 0.86. 

Once again, heterotic selection results in lower f values, but the 

situation for additive selection is now somewhat different, in that f 

values resulting from this type of selection are larger than those ex-

pected due to drift alone, except for loci at which the most favoured 

allele was quite comnon at the time of separation. 

The second type of analysis considered by Lewontin and Krakauer, 

and actually used by Krimbas and Tsakas (1971), involves observing the 

variation of gene frequency over time, rather than over space as above. 

This was done in the case of Krimbas and Tsakas by calculating f for 
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Figure 6. 	The effect of selection and initial gene frequency on the 

value of f that would be observed at a time t = 4N generations 

after all populations first diverged from one another. Curves 

are drawn from matrix results for relatively weak additive 

[Nf= 11 and heterotic {N(s 1 +s 2 ) = 11 selection, and for 

relatively strong additive [Ns:= 81 and heterotic [N(s 1+s)=8] 

selection. 	The straightline for no selection (drift only) 

is also included. 	 - 
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each of two loci between adjacent years of sampling in a natural 

population of the olive fruit fly Dacus oleae. It is interesting to 

note that in their discussion of the sensitivity of such an analysis, 

Lewontin and Krakauer assumed that the effect of additive selection 

would be to increase the value of f over and above that expected due 

to drift alone. it would appear, however, from the results obtained 

above, that the effect of additive selection is generally to result in 

f values lower than tho8e expected due to drift except when initial gene 

frequency is low, or when f due to drift is high. 

Discussjon: 

The results of this study are in broad agreement with verbal 

predictions already available, of the effect of selection on the 

standardized variance of gene frequency. What has become evident 1  

however, is the way in which two simple models of selection are suff I-

cient to provide expected values of f which cover almost the entire 

possible range of f values. Furthermore, the possible range of f 

values at any particular time t can be substantially extended when con-

sideration (not described here) is given to directional selection for 

a recessive, and for a dominant gene. It must therefore be concluded 

that while heterogeneous f values certainly can be taken as evidence 

of selection, any subsequent inference as to the type of selection 

operating is bound to be of very limited validity in the absence of 

knowledge of initial gene frequencies. 

It is interesting to note that if the mean initial gene frequency 

were known, and if it were around 0.5, then equation (11) can be used 

to estimate the value of Ns for that particular situation, because KO 

for any Na if q 0-O.5. Thus the estimate of Na is, from (11) 
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Ns - 	[2q-1 + 2q(1-q) log .2—) 	 (12) 

where q is the mean gene frec,uency and f the corresponding standardized 

variance of gene frequency actually observed at time t. This type of 

calculation would be especially valid in the case of, say, artificial 

directional selection in several lines where each line was initiated 

from the same base population which in turn was the F2  resulting from 

the crossing of two distinct inbred lines. The advantage of applying 

the results of this study to artificial selection is that the assumption 

of a constant selection coefficient at a given locus is more likely to 

be valid than in the context of natural selection. With the continuing 

developments in electrophoretic techniques, investigations are nw being 

made into the way in which artificial directional selection affects gene 

frequency at various loci, providing estimates of q, 	and 

Equations (11) and (12) can then be used to obtain an approximate 

estimate of s due to artificial selection at each available locus, if 

a suitable estimate of effective population size is available. 

Summary 

The effect of directional and heterotic selection on the 

standardized variance of gene frequency (f) has been studied. 

For the additive model of directional selection, the change in 

f per generation due to selection in a finite population of effective 

size N can be described iuite simply in terms of an effect due to drift 

alone and an effect due to selection alone, such that 

Af  - 	+ f(l2q) q  

where Aq is the change in gene frequency due to selection in a finite 

population, and q is the frequency of the allele favoured by selection. 
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A prediction of the relationship between f and q at any gener-

ation has been found to be quite accurate for Nsl or for relatively 

low values of f. 

The use of a transition probability matrix has shown that heter-

ode selection alueys results in f values lower than those expected 

due to drift alone. 

Additive selection usually results in similarly low f values. 

But f values larger than those expected due to drift will be observed 

under additive selection with low initial gene frequency (around 0.1 

or less), or when the popuations have been separated for a relatively 

long period of time, in which case f expected due to drift is quite 

high (around 0.7 or greater). 

The effect of selection on f is unlikely to be detected if the 

observed value of f is less than 0.1. The.effect of selection becomes 

most apparent as f due to drift approaches intermediate values. 

Estimates of the type consideted by Cavalli—Sforza (1969) of 

time since divergence or separation of two or more populations, when 

based on an hypothesis of no selection, may be considerable under 

estimates of the true value if additive or heterotic selection has 

occurred. 

Not withstanding the above generalisations, any inferences as to 

the type of selection which has produced a particular set of hetero-

geneous f values are bound to be of limited validity, because the 



possible range of f values expected at any given time under any 

particular model overlaps considerably with those expected from other 

models. 
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APPENDIX I 

Analysis of variance of selection response 

A simple nested analysis of variance was conducted to deter-

mine what propordon.  of the total variation of response could be 

accounted for by variation in Nia and S. The model used was 

Xijk - i + S1  + Nia1 + Nijk 	I - 
3 - 
k • l,...,3 , 

where XiJk  is the observed frequency of allele A 1  in the kth  popul-

ation size (3, 10 or 20) under a selection regime specified by the 

3th value of NIa (1, 2, 4 or 8) and the i value of S (0 0  0.1, 0.2 

or 0.3). Three separate analyses were performed on the observed 

gene frequency at generations N, 3W and 6W. Initial gene frequency 

was 0.3 in all cases. 

The following results were obtained:- 

M.S. 	 E(M.S.J 

	

d.f. 	gen N gen 3W gen 6W 

Between S 	3 	0.195 0.460 0.567 	+ 3aNi.  + 
l2a2 

Between Nis 	12 	0.081 0.111 0.135 clN2 + NI2  
within S 

Between N 	32 	0.004 0.009 0.013 
within N1G 

TOTAL 	47 

The proportion of total variation in response whih can 

; attributeTh to variation in Ni and S s then given by ::2 : :: 

+ aN2  
which has values of 902, 87% and 86% for response 

at generations N, 3N and 6N respectively. 
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APPENDIX II 

Derivation of selective values of genotypes 

A large proportion of what follows is not original. Derivations 

arriving at the same end result for additive gene action have been 

given for exanle by Griffing (1960) and Latter (1968a), following 

on'froin the initial idea of Haldane (1931). 

The derivation presented here is different in that it obtains 

selective values which are explicitly functions of the metric deviation 

of each hoinozygote from the heterozygote. It is then possible to use 

the selective values expressed in this manner, to obtain a simple ex-

pression for selective values under a particular model of interest in 

section II. The selective values for this particular model have al-

ready been given without derivation by James (1962), but in a less 

evident form and in terms of parameters which are more difficult to 

interpret biologically. 

For the genotype AjAk.  the distribution of a metric phenotype 

prior to artificial selection can be represented as 

1 
f(x) = 

PJ 

1(xi k
21 

expi 20 

where Xjk  is the mean metric phenotype of genotype A j  A 
 k"and  a is 

the phenotypic variance of the metric character at the time of 

artificial selection. 

Assume that the effect of artificial selection is to select all 

individuals whose metric phenotype is equal to or greater than a 

particular truncation value x 
C 
	The probability of an individual 

being selected is then 



Prob (x?x ] = 1  
C 	

c_x_Jk2] 
dx 

20 
x 

C 

00 

- 1/e 1_t2 

- 0.jr 	
- 	XP 

 l 2a,,..\ 	
dt. 

xx 
cjk 

If we let 

Co 

I ,- 
•,_ 

f(x1 
	

'-2c 

t'_I 
expi 	2j cit 

C  

x C 

then 

Prob (x)/x 
0 	 C 

] = f(c +h) 

where h = _Xjk for genotype AJAk.  Expressing f(x+h) as a7 Taytor-'s 

expansion results in 

f(x+h)=f(x )+hf'(x )+ • • • 
0 	 C 	 C 

Thus it should be possible to evaluate Prob [xx] in terms of f(x) 

and f'(x). Firstly it is evident that 

f(x) = p 

where p is the proportion of the population selected. Also 

f'(x)= 	ex[  "2 3 
-z 

C 

OP 

where a is the height of the ordinate of the normal curve at the 

standardised cut-off point c/op. For the genotype AjAk  it then 

follows that 

Prob (x)x] -_ p + (_;k)sI;?)l : l + 'tjk  up 

11.2 
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where i is the 8tandardised selection differential, equal to z,. 

The relative selective values of the three genotypes can then be expressed 

as 
A 2  A  2 	

A1A2 

i 	 -i 
l+x22 - 	: 

or 	1 +(x22..x 2 ) : 	1 

A1A1  

l +   
11 •• 

: 1 + 11  (c11 c12 ) 
op 

The well known selective values for additive gene action in the 

absence of natural selection are obtained directly by noting that 

- - 	-s 	- - 	a 
X X 	 andx -x -- 2212 	2 	11 12 2 

Of greater interest in the present study is a somewhat different 

model, involving nor-optimal natural. selection prior to artificial 

selection with additive gene action. 

In their most general form, the mebric means of the genotypes can 

be expressed as 

X22 = -aq 

*12 = - a(q-42) 

and. 

It has already been noted in section II that the effect of nor-

optimal natural selection is to alter any metric mean to 

and to alter CP  to o 2 (1C). Thus, using primes to indicate metric 

means after natural selection, 

= - aq + c[Q - + aq] - 	- a(q-) + c[Q - + 

= - (i-C) 

irrespective of the value of 0 and . Similarly 
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_, 	_, 	a 
* 	X 

2 	(l-C) 	 • 
11 

The relative selective values of the three genotypes with respect 

to artificial selection, if nor-optil natural selection has already 

taken place, will then be 

1 + [ l-C)I1 	: 1 : 1 + 	
12

'1-a-C)] 

which reduce to 

1 - 	1-C 	 : 1 : 1 + 	1-C 
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1.. INTRODUCTION 

In laboratory or field experiments data are sometimavailob1e 

on the performance of bot,  the parents and several of their progeny. 

It is then possible to estimate heritability in two ways, either from 

the regression of progeny on parent performance or from the intra-class 

correlation of sibs in the progeny generation [e.g. Palconer (1960)], 

In the regression method, no use is made of the variance between mem-

bers of the same family, nor, directly, of the variance between family 

means. In the intra-class correlation method, no use is made of 

parental performance. When all the information is available herit-

ability is customarily estimated by both methods from the same data, 

but no attempt is made to find the correlation between the estimates, 

or to pool them to obtain a single, best estimate. Alternative est-

imates of heritability from the same data have been obtained by 

Sheridan, Jones, Frankham, Rathie and Barker [1968], who commented on 

the poor agreement obtained between the offspring-parent and sib co-

variance estimates, but thought this due to oampling. Clayton, Morris 

and Robertson t1957 I obtained the different kinds of estimates, but 

each from a different set of data. Alternatively all the information 

could be utilised to form a maximum likelihood (ML) estimate, which is 

not commonly done in practice, but has been suggested in this context 

by Dr J. Felsenstein [personal communication ]. 

In this paper we derive formulae for the expected values of 

the sampling correlation between regression and intra-class correlation 

heritability estimates, of the variance of pooled estimates derived 

from these, and of ML estimates. Thus we envisage, in concept, a 
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lrge number of separate experiments, of identical design, in each of 

which a heritability is estimated by offspring-parent regression and 

by the covariance of sibs. The sampling correlation we compute is 

that between the pairs of estimates obtained in each experiment taken 

over the population of replicated experiments. 

In Section 2 we discuss the concepts and derive in some detail 

the formulae for a very simple situation, full sib families from pair 

matings. In Section 3 we give without details of derivation equi-

valent formulae for the more involved, but more itnpprtant hierarchical 

design in which males are each mated to several females, to give both 

full-sib and half-sib family groups. In Section 4 we compare the ef-

ficiency of alternative estimators and in Section 5 we discuss the 

optimum designs for estimating heritability using all the available 

information by ML 

We assume that random mating is practised. For simplicity, 

balanced designs are considered which, though rarely encountered in 

field data, illustrate the principles more clearly. 

2. FULL SIB STRUCTURE 

If the correlation of full sibs is to be an unbiased estimator 

of heritability we need to assume that gene action is additive and 

that there is no covariance among sibs produced by conmion environmental 

(maternal) effects; and for the regression of offspring on parent to 

be an unbiased estimator, there must be no environmental covariance of 

maternal and progeny performance. We make all these assumptions here, 

but relax some of them in the half sib analysis discussed subsequently. 

Let us assume that s pair matings are made, and that n progeny 

a 
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are reared from each mating. Although some information is contained 

in the variance between individual parents, we shall ignore this, and 

utilise only the parental. means, X 1 , 1 1,... ,s. Let Z i  be the 

score of the jth individual in the ith family, with 	1,...,. We 

assume that the X and Z are niultivariate normally distributed, each 

with mean , and that individual observations have variance a 2  p. 	 . 	The 

typical variance-covarince structure, based on formulae given by 

Falconer 119601, is shown below: 

xi 	2 ii  .. 	2iJ , 
	X, 	zitj

X i 	I 	JH 	JH. 	0 	o\ 
1 	H 	0 	oJ 	2 

a 	(1) 

Zip 	\n 	i 	o 

where # !', j #j', and H is the heritability (h2). 

Regression and intra-class correlation 

In the usual offspring-parent and sib covariance analyses the 

following mean squares or products are computed: 

	

Mxx E (x. 1 - 
	 1)0 	Nxz 	(x1 - 	 •' - 1), 

MBZ 	E( 1  - 	)2/( - 1), Mwz 	EE(Zjj - 1,)21s(n 
'I ij 

and the following estimators of heritability may be used: 

regression of offspring on mid-parent: "
bf 
 - 

twice the intra-class correlation of full sibs: 
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2(MBZ - MT )/$ + (n - l)Mwz]s 

While H is an unbiased estimator of H. H is not, for it is the
bf 

ratio of two random variables, for which only the ratio of their ex-

pectations is B. We have 

V( 1 . j) - [H(l-B) + ( 1- H)InI1a2  

and since E(X1-1) 2/(a2/2) is distributed as chi-square with s-i d.f., 
i 

E[1IE(XiX)2J - 2/1(e-3)a2J 

which can be shown directly, or inferred from Kendall and Stuart [1973, 

p.305]0 Hence 

2 + (n-i)H - 
V(Hbf) 	(s-3)n 

(Latter and Robertson[l960)). Here and elsewhere we shall assume 

that a is sufficiently large that terms of order s can be ignored re-

lative to 1, giving 

V(Hbf) - [2 + (n-1)H - nH2J/sn 
	

(2) 

By taking logarithms and expanding, or using Taylor's series, we ob-

tam 

(2 - H)212 + (n-l)R]2(sn 
V(Htf) - 	 2 

2s(s - l)n (n - 1) 

which reduces to Fisher's 4925, sect. 393 formula 

(2 - H) 2 [2 + (ii- 1)1112 
V(Htf) 

2an(n - 1) 

approximately, if a is large. 



III. 5 

We find coy (H, H
tf 

 by the same expansion method. For 

four random variables w 19 060 9  w4  with means 21,.,•, j4  and small co- 

	

efficients of variation such that terms of order 	- u)3/uj3 and 

higher can be ignored, then 

/w w3\ - u 1 j 3  cpv(w10v3) - cov(w1,w4) cov(w2 ,w3) 
- 

\W2 	P2114 	1J103 	 V1V4  

cov(w2  ,w4) 

+ 	1J2u4 	
(4) 

In our case we have 

- V1 - 	V1 - RG 	"2 	xX' '2 	
2 

V3 - 2 (NBZ Mwz)p 113 nRa2  ; V4 Mz + (n - l)M, U4  

(1959] 
Tallic /gives a general formula for variances and covariances of 

mean squares and products of normal deviates. For some m qr st 
, m which 

are unbiased estimators of population moments with f d.f., 

cov(mq, m5) - [cov(q,$)cov(r,t) + cov(q,t)cov(r,$)JIf 

where cov() etc. are the appropriate covariances. We have 

cov(M, M 7 ) - 2n cov2(Xi,j )/(s-l) - nR2a4/(s-l) 

cov(M, M.,iz) - COV (Mn, Mwz) - 

cov(M, M) - 2n cow (Xj,)V(1)/(sl) - H(nB+2-II)ø4/(sl). 

Substituting the above into (4), rearranging, and assuming s is large 

we obtain 

H(2-H) (2+(n-l)R-nH2 3 
cov(Hbf, Rtf) - 	an 

(5) 

which is, of course, approximate since high order terms are ignored in 

(4). 
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Figure 1. 	Correlation, r, between estimates of heritability from 

the covariance of full sibs (Htf) and the regression of 

offspring on mid parent (Hbf) with full sib families of 

specified size. 
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From (2) and (51 we find that, asymptotically for large a, 

the regression of Htf  on .H f  is given by R(2-'H),. and from (2), (3) 

and (5) that the correlation between 11tf  and H is 

r - H{2(n-1) (2+(n-l)H-n112 ] 0 
- 2 + (n-DR 

(6) 

which does not depend on the number of families. With large family 

sizes (n+ 	and 11>0, equation (6) reduces to r - ,12H(l-H). 	In 

Figure 1 the correlation is shown for some values of n and H. 

Some verbal but non-rigorous explanation of the positive co-

variance and hence correlation of the two estimators can be given. 

If, for example, the genetic variance among the sample of parental 

pairs taken exceeds its expectation (Ha), then the variance between 

progeny means and the covariance of progeny and parental scores will 

both exceed their appropriate expectation, so that both 11tf  and Hbf 

will tend to exceed H. However, both 11tf 
 and LDf will generally be 

less than H if there is reduced genetic variance among parental pairs, 

so there is a positive covariance between H and H,. 

It is clear from Figure 1 that the correlation between esti-

mates of heritability from off spring on mid parent regression and 

from the covariance of full sibs is not trivially small unless the 

true herftability (H) is close to zero or, only if family sizes are 

very large, close to unity. Thus, in a single experiment in which 

heritability is estimated by both methods, we should expect to find 

a better agreement between the two estimates than if they were ob-

tained independently. 
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Maximum likelihood estimation 

The available information on heritability in the experittent can 

be utilised by ML. We are concerned here primarily with the effi-

ciency of such estimators, relative to using the simple regression or 

sib correlation estimators, rather than with the ilL estimation pro-

cedure. 

Let 31 of dimension a(n+l) be the variance-covariance matrix 

of the observations, which, for simplicity in the later analysis, we 

take as the transformed vector: 

X1 , Z, Z11  - Z10 Z12  - Z1 	 ;...; X56  Z 5 , Z81-Z8 , 

...,z 	- 	), 
a,n-1 Be 

Since families are distributed independently, V is block diagonal, 

with the block V of &imens ion n + 1 specifying the variance-covariance 

structure of a single .family. We can write V I * V 1ci2 , where * 

denotes direct product (Searle (1966)3. From the model (1) 

0 	\ 

where I (the identity matrix) and S (with all elements unity) are of 

dimension n-l; and T of dimension 2is given by 

I 	H 

T- 

411 	 In + ( 1-411)/n 

	

Noting that E(X.) - E( 1 	and E(Z1  - 	) - 0, the log 

	

S 	 - 	J 	S  
likelihood becomes 
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S 	 S .  

LogL -s(n+l) (log 2r + log a 2) - Is log 	+ Is log n - Is(n-l) 

2-1 	
Xl 	 (7) 

xlog (l-IH) - (1/2a ) Z [(y.-il)'T (y. -iil) + E (Z.  

where y.' 	(X,.Z.), 1' 	(1, 1). 	Explicit solutions for the ML 

estimators of p, a 2 and H have not been found, but with any set of 

data estimates can be obtained numerically. For example Felsenstein 

\[personal communication] 1has written a computer program for this 

specific problem. However, large sample variances can be obtained in 

the usual way from the inverse of the matrix of expected second partial 

derivatives of the likelihood with respect to the parameters. 

Let 81 = i, .0 = a 2  and .83  = H, and the information matrix N 

have elements 	/ 

mjj  = -E(21og 	 = 

In differentiating (7) and taking expectations. we: utilise some results 

given by Searle [1970]. 	Inour context these are 

E {[ (y1-il)'(a 2T)'(y111l)]} = -trET' 	=-log 1-T/aH, 

wheretr denotes the trace; and

DT 2.. 	 .. 	 2 	.T 
E{1- ((y.-iil)'(a2T)1(y.111)] = -trET 11-i--2T 1 	r 1  -] 

aH2 	
• 	H 	H' 	.H 

2 
. 	2 	 a.T 

1.. - -i  log li I + tr[T
- 

. 

DH 	 9H 

= _2 2  log E1 

since 32T/ 	0.. We obtain from (7) 

- 26(n+2-(n+l)H] 	.. 	S(n+1) 
m11 	2 	

2' m22- 
a [2+(n-1)H - nH 	 2a 
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Figure 2. 	Sampling variance per observation (v) of alternative heritability 

estimators with full sib families of tao different sizes: Htf from 

sib covariance, Hbf from regression on mid-parent, H f  a pooled 

estimate of H 
tf 	bf 

and H , 	
mf and H from maximum likelihood. 
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m12  - m21  a13  m3 	0 

S 
a23  - a32 	

(fl1 - 2nB 	n-i 

2a 2+(n-l)H-n112 - 

n133 	
{2n[2+(n-1)H-flH]+(n4-2n11) 	+ 	

2 
2(2+(n-l)H-n112 ] 2 	 2(2-H) 

The estimates of i and H are uncorrelated, since they are the mean 

and a function of the variance, respectively, in a mixed model 

(Searle (19701). Let V(Hmf)  denote the sampling variance of the ML 

estimator of heritability, which is given by the (3,3) element of 

i.e. 

-1 
V(H f)m22 (m22m33  - a23 2 ) 

Relative efficiency of estimators 

The variance of Haf  is compared with that of the simple 

estimators Hbf  and Htf  in Figure 2. The total number of observations 

made for the estimates is T - s(n+2), so to enable comparisons bet-

ween estimates obtained for different values of n, variances are ex-

pressed as T.V(H) - v, for example. Thus for any experiment with 

T* individuals, the variance is v/T*. The computed sampling variance 

of the ML estimator is proportional to s, and wehave seen that those 

of Htf  and  HDf  are inversely proportional to a - 1 and a - 3, res-

pectively, and approximately to a if the number of sires is large. 

We therefore assume that many sires are used, and the results of 

Figure 2 do not depend on a. 

It is also possible to obtain a pooled heritability estimate, 

B , as a linear weighted function of H. and H • We take 
Pf 
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Hf - allbf + (la)Rf 	 (8) 

in which a is chosen so as to minimise V(H f). This value of a is 

a - (V(Htf) - cov(Hbf,Htf) 1 /EV(Hbf) + V(Htf) - 2 coy 

(Rbf,Rtf)l, 	 (9) 

giving 

V(Rf) - [V(Hbf)A(Hf)_cov2 (Hbf , Htf)J/(V(1 f) + V(Rtf) - 

2 coy bf'tf1• 
 

In practice only estimates of V(Hbf), V(Htf) and  cov(Hbf,Htf)  are 

available to insert into (9), since they depend on the parameter H. 

An iterative procedure has to be used in which a value, I is guessed, 

	

used to estimate 	from (8), and subsequently V(Hbf)  etc. These 

values are substituted into (9), & is estimated again and the process 

repeated. 

Valuesof T.V(H f) are also shown in Figure 2. Since the best 

weighting factor, Q. is not known, the variances given in the figure 

may be biased downwards. While no exact formula for this bias has been 

obtained, a simple argument shows that it becomes proportionately smaller 

as s increases, and thus is negligible in large samples. Rewriting (8) 

as 

H -H + U (n.Df _utf) 
pf 	tf 

we see that the contribution of error of estimation of a  to V(H f) is 

2  roughly proportional to E(H,f - H f)V(a). Now E(LDf - Htf) and the 

variance of all of the terms on the right hand side of (9), and thus 

V(s), are proportional to 1/1, so the product E(Hbf_Hf)2V(a)  is pro-

portional to i,t2  and in large samples becomes a trivial part of 
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V(H f). 	(The same arguments can be applied to the ML estimators, 

which are themselves weighted estimates, with the weights inaccurately 

determined in small samples). 

It appears (Figure 2) that except at high heritabilities the 

pooled estimator, H, is almost as efficient as the ML estimator. 

Since parental observations are not required to enable estimation of 

intra-class correlation, the appropriate value of T in an experiment 

designed only to obtain Htf  and in which parents are not recorded for 

regression estimates is sn. The value of T.V(Rtf)  in Figure 2 could 

then be reduced by the factor n/(n+2). 

The loss of efficiency in ML estimation from excluding the in-

formation on the individual parents can be obtained using the methods 

descrIbed in section 3, but omitting the environmental covariance of 

sibs term W. For heritabilities near zero there is no loss in ef-

ficiency. 	Taking values of H of 0.1, 0.2,...,0.9, the greatest 

losses obtained were 6.5% and 7.5% for n - 16 and 8 respectively, both 

at H - 0.7, and 9.5%, 12.2% and 11.9% for n - 4, 2 and 1 respectively, 

all at H - 0.9. 

3. ESTIMATORS IN A HIERARCHICAL STRUCTURE 

An important assumption in our analysis of the full sib family 

model is that the only covariance between family members is that from 

additive genetic variance (i.e. JHO). Usually there is some addi-

tional covariance, 	of full sibs from two sources; maternal or 

other environment effects coon to full sibs and non-additive genetic 

effects, especially dominance (Falconer (19601). Therefore intra-

class correlation estimates of heritability are normally made from 
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the covariance of half elba. Regressions of progeny on parental 

perfàrinance do not include dominance effects, but there could be some 

maternal environmental covariance between progeny and darn. However, 

this covariance is unlikely to be of the same, magnitude as the en-

vironmental covariance of elba and we shall assume in the following 

analysis that it can be ignored. Thus the only major change from 

the simple full sib model described previously is that a termis 

added to the covariance of full elba. We again assume there is no 

epistatic variance. 

Let' a:sires each be meted to d dams with n progeny reared from 

each mating and we shall asume throughout thati is sufficiently 

large that terms in e can be ignored relative to 1. This simplifies 

the formulae and makes them more directly comparable with each other. 

Let X be the measurement on sire i, 	that on the Ith  dam mated to 

sire i, and Zjjk  the measurement on her kth progeny. The observations 

are assumed to be multivariate normally distributed with mean V. 

There are no covariances between members of different sire families, 

and typical variances and covariancee for a single family are shown 

below: 
X YijI Zij.k 

1 0 IH 1H. 0 IH 

0 1 IR IH 0 0 

Zjjk JH 1H 1. H+K 0 1/414 

ZiJks IH IH H+1( 1 0 1/414 

Yjj  0 0 0 0 1 4H 

Zjj  314 0 1/414 1/414 1 	 (11) 

where 3 0 j'  k t k'. Within this structure we shall also include 
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the case of sex limited traits, where if no measurement is made on 

males, no X. are available, or if none on females, there are no Y e.. 

There are clearly many other relevant models which we do not consider: 

for example where males and females have different'f means and variances, 

or where the mean performance differs between the two generations. 

With this kind of data estimators of heritability can be ob-

tained in several ways: 

i) 	Intra-class correlation between half elba. 	(The correlation 

between full elba is biased.) 

ii) 	Regression of offspring on parent performance: 

Progeny on darn within sires. 

Progeny on sire. 

Progeny on sire plus dam average. 

Progeny on mid-parent. 

Various pooled regression estimators. 

iii) Pooled estimators from intra-class correlation and regression. 

iv) 	Maximum likelihood. 

We 8hall compare the variances of the alternative estimators, 

together with the sampling correlations between estimates obtained 

from the same data, using the methods described in section 2. 

i) 	Intra-clasa correlation between haif-sibs (He) 

The intra-clasa correlation between half sibs, R, is too well 

known to require definition here. The approximate sampling variance, 

modified from Osborne and Patterson 119521 or Robertson 119591, is 
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V(R 8 ) 
1 	(4-H) 2  (4-2H-4K + n(H + 4K) + ndHJ 2  

8sd2 2  n 

+ 14 + (d-l) H] 2 (4 - 2H - 4K + n(H + 4K)3 2/(d1) 

+ 4d(n-l) H2 (2 - H - 2K) 2  } 	 (12) 

where the variances deriving from the mean squares for sires, dams 

and individuals are shown in order. The method can, of course, be 

used for sex limited traits. 

ii) 	Regression of offspring on parent performance 

Each of the following regression estimators, not necessarily 

an exhaustive list, can be shown to be unbiased,for H. 

a) 	Progeny on dam within aires(Hbd 	
The estimator, 

- 	 2 
Rbd - 2EE (Yi -  j 	.1 )(Zj. -Z. )IEE (Y-) 	 (13) 

• 	1.. 
,] :i 

makes no fuse Of differences between sires, and is the typical daughter-

darn regression technique used for traits expressed only in females, 

such as milk yield in cattle where there is often only one daughter 

for each darn (it - 1). From regression theory, 

4-2H+nB(1-R) + 4(n-1)K 
V(Hbd) - 	ad-l)n 

(14) 

and we can show that 

2s(-1)n f4+(d-l)RJ (4-2H+nH(l-H) +4(n-l)KJ. cov(Hbd ,Hta )  

The regression of H on Hbd 
 is simply -H(4+(d-l)HJ/2d

9  but the cor-

relation of the two estimates has a lengthy formula. The correlation 

is negative if IDO, in contrast to that between the estimates from co- 

variance of full sibs and offspring, on mid-parent regression described 
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earlier. Presumably a sample of dams with a genetic variance above 

expectation induces a regression above average and a sire variance 

component, estimated from the difference between sire and darn mean 

squares, below average. Since V(Bbd), V(ll9) and cov(Hbd,Rtg) are 

all inversely proportional to a, (under our assumptions), the cot-

relation does not depend on a. Also, if d and a are large, n • I 

and 11>0, it can be shown that the correlation between Hbd  and 

approaches -u/v'!T 

Progeny on sire (H.). The estimator, 

2E( 

	

	 2  ) _X)(Zi - Z ... )/ 1 (XX. ) 

can be used for traits expressed only in males, since it makes no 

use of information on the dams. We can show that 

4-211 + nil + ndil(l-H) + 4(n-l)K 
V(Hbs) - 	 sdn 

(15) 

and 

11(4-H) t4-2HjnH+ndH(1-H)+4(n1)K1. cov(Hb S ,HtS) 	2sdn 

Thus the regression of H on H is H(4-H)and, like the correlation,ta  

does not decrease to zero as the size of the experiment increases. 

Progeny on sire plus darn average 11Ôa' 
 The information. 

available on the mean performance of dams mated to each sire is ex-

cluded from the regressions 11bd  and H.,,. It can be incorporated by 

regressing the mean performance of progeny in a sire family on the 

sire plus average dam performance. Thus 

11ba - 2E(Xj+!i -i - ) (L - 	)/Z(Xi+i 	
)2 

. 	 . 	 .. 	 1.0 	... 	i . 	 . 	 .. 
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and 

4-2H+n(d+l)H(1-R)+4 (n-1)K 
V(Hb) - 	s(d+l)n 

(16) 

which is slightly 1e88 than V(R.05). Also 

C0v(Hba ,Hts) - cov(Hbs,Hts) - H3 (4-R)/2sd 

Progeny on mid-parent (H). If the hierarchical structure 

is disregarded, a straightforward regression of offspring on mid-parent 

can be computed in which the sire performance is included with each of 

his mates. It is a simple method of utilising all the observations on 

the parents for traits expressed in both sexes, and 

2 
H. Dm - 2EZ(X.+Y1--Y•)(Z1•-Z 	)/EZ(Xi+Yi.- - ) • 1 

ij 	 .. 	 .1 	. 

The error structure of this estimator is thore complicated since the 

errors about regression of dam families in the same sire family are 

correlated, but when a is large the variance reduces to 

	

412-H+nH(1-H)+2(n-1)KJ+(d-1)nH(1-H) 	 (17) V(Hb) - 	 4nsd 

The covariance between Hbmand H5  is not required in our subsequent 

analysis, 

Pooled regression estimators (s). It can be shown that  Hbd 

(from within sire familIes) is' uncorrelated with both H. and H.0  

(from between sire families). For a trait which is expressed in both 

sexes, it seems reasonable to assume that Hbd and  Hba contain all the 

information which can be obtained by regression. From these a pooled 

estimator, 	, can be obtained by substituting into (8), (9) and (10), 

but they simplify such that 
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+ V(E.)] 

and 
-1 

V(Hbp) - (l/V(Hbd) + l/V(Hb)J 

since HtOd  and H.4, are uncorrelated. 

In limiting cases of family size, several of these regression 

estimators are the same. 	If d - 1 (i.e. one dam per sire), then 

H.
D 	 D 

H. S H. f 
 (the latter refers to full sib families, see aection 2) 

DC  

and since there is no information onH. , it follows that H. 9H. also. 

Our formulae arc not precise if o - 1 (only one sire family), but it 

follows that there is no information on either H ba  or H
b.  and Hbdbm 

EHbp . 

iii) Pooled estimators from covariance of half sibs and regreaaion 

Estimators can also be obtained by pooling those from the cc-

variance of half sibs and from one or more regression estimators. The 

appropriate method will depend on whether or not the trait is sex limited. 

For traits expressed only in males we define H , which is a linear
PS  

function of R (from the covariance of half sibs) and H (from thets 

regression of progeny on sire). The optimal weighting and V()are 

based on (8), (9) and (10). For traits expressed only in females, we 

definewhich is a linear function of R and Hbd  (from the re-

gression of progeny on dam), obtained by the same weighting procedure. 

If a trait is expressed in both sexes, we have suggested that all in-

formation from regression is included in H.Dd  and  Hba  and these can be 

combined with R to form a pooled estimate H 
pa t given  byts 

HH. + 	H. + 	H pa 	1 Dd 	2 oa 	3ts 

wth Ee1  - 1 and the ai  chosen to minimise V(H ). The solution can pa 
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be shown to be as follows. Let c . be the covariance between 

estimates i and j, and let. A - C12  -C13  -c23  + C33 , B - C11  -2c13  

+ C33  and C - c22  - 2c23  + C33, Then 

- [(c33-c23) A - (c33-c13)C]/[A2-BCJ 

02 - (c33-c13-a1B)/A, 03  

Of course, only estimates of the c are available, 80 exact veightings
ij  

are not possible. 

The sampling variances of these estimators are compared with 

those expected from ML methods in section 4. 

iv) 	Maximum likelihood (Hm) 

Consider the model in which observations are available on both 

sexes, so that a total of s+sd+sdn measurements are made with the var 

iance-covariance structure given by (11). However, as in the full sib 

case, it is useful to transform the observations into the following 

order for each sire family, say sire : 

X1, 	
•. 

L
1.. ; YjlYi., Z 1•  -Z 

1.. 

Zi1iZi1 s psssZii ,n_1Zi1 i  Z12li2. , e 0 0
,Zjd, fl_lZjd. 

Let this set of observations have variance-covariance matrix 	of 

dimension l+d+dn. Since W is the same for all 1, and sire families 

are uncorrelated, the overall variance-covariance matrix 1 of dimension 

s+sd+sdn .is given by 

- I * 

We have 
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(1 	

0 

o 	(14J) 	S 

	

- ..d 	 - 

0 

0 

n. 

where, in the (2,2) block of W 1 , (I — J) is of dimension d — 1, and 

in the (3,3) block, I is of dimension d and (I — 3) of dimension n-i. 

Also 

	

(1 	0 

	

0 	1 	H 

	

I H 	H 	H H 	K 1-11-K 
nd 

1 
3H+IC+(1-R-K)/n 

From the properties of direct products e.g.(Searle, (1966)) and 

utilising the special form of these "I + 3" matrices (Searle (1970)) 

we obtain 

- i * 

1- 
51-1 	 0 	 0 

	

0 	(I + J) * S2 	 0 

	

0 	 0 	I * (I+J)/(l-H-K) 

and E<l_H_K)h1]5d 
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Hence, the log likelihood can be shown to be 

Log L - constant terms - 4(9+id+sdn)logci2  - slog 	- s(d-l)log 

S 

-ad(n-l)1og(1-H-K) - a[ i: (x-pl)' S 1 (x-ul) 
1-1 - 

B d 
S + 	•E E W.. .2_I 
	ij 

ii 

+ 	E 
Sd 

E 
U 

E (Zjjk - 	1 )2/(l-H-K)) 
1-1 j-1 k-1 

where x' - (X1 ,Y1  ,Z1  )', i t  

L. 
13. 	i.. 

- (1,1,1) and W' 1) 
. 	

1 - (. 3 
- 

.  

Differentiation of the likelihood and obtaining expectations of 

the second partial derivatives are straightforward, and the results can 

be evaluated on a computer. The matrix P, Of dimension, 4 x 4, has 

elements P 	E(a2logL/9j89 	vhre we take 

- U
,  0 . M a2 , 03  - H and 04  K. The inverse of P gives the sampling 

variances and covariances of the IlL estimators. 

If information is available only on females a total of s(d + nd) 

obseryations is available. The sampling variances of the ML estimators 

are found in the same way, but the first row and column of S 1  together 

with the relevant terms in the observations which relate to information 

on sire performance, are deleted. Similarly, if there is no inform-

ation available on females, there are s(l + nd) observations and the 

second row and column of$ 1 , the first row and column of 52  and the 

appropriate observations are deleted. 
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When no parental data are available, deletion of the first and 

second rows and columns of S and the first row and column of S is 

required. In such a balanced design the estimates of variance compo-

nents by the analysis of variance are minimum-variance quadratic un-

biased (Graybill and Hultquist 119611) and equal to the ML estimators 

after correction for bias with normally distributed observations 

(Graybill [1954]). Thus the large sample variances of heritability 

estimates by ML(Hm)  and intra-class correlation (Ha) are the same 

when only progeny data are available. 

Pooling of Sheridan et al's results 

An example of the use of the theory developed in this section 

can be given by considering thealternative heritability estimates of 

Sheridan et al [1968]. From the same data they obtained estimates of 

R, H. and H.,for total abdominal and sternopleural bristle number 

in both male and female Drosophila melanogaster with a balanced hier-

archical design of s 62, d 3 and n - 10. Using the method out-

lined in section 3(111) we can otain a singlà pooled estimate of 

heritability for each character in each sex. 	[In the absence of the 

original data it has not been possible to pool the male and female 

estimates, nor has it been possible to obtain an ML estimate], We do 

this by firstly guessing a value for the pooled heritability which is 

then substituted as H into the equations for V(Hbd), V(Hb s ), V(H 9 ), 

cov(Hbd,_Ht9). cov(HbS,HS) and cov(Hbd,jlbs). The values thus 

obtained are àubstituted into the equations fora 2  and a3  to pro-

vide estimates of these three weights which are then used to obtain 

a second estimate of pooled heritability as 
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HPallbd2flb8 
+a H 3 ts 

The cycle is repeated until the estimate of H. stabilises. 
- 

TABLE 1. Results of analysis of data of Sheridan et al on abdominal 

and sternopleural bristle numbers in D. melanogaster, 

Total Abdominal Sternopleural 

Males Females Males Females 

Heritabilities 	Hbd(l)  0.28 	0.09 0.21 t 0.08 0.18 	0008 0.26 ± 0.08 
& standiid. 	- + 
errors 	 H.D (2) 0.22 	0.10 ± 0.40 	0.15 0.16±  0 109 0.18 	0.13 
calculated by 	-i + + + + 
Sheridan et al 	H(3)  ts 0.29 - 0.13 0.67 - 0.18 0.17 - 0.08 029 - 0.10 

Pooled H 0.26 ± .062 0.35 ± .065 0.17 	.046 0.25 t .050 

Expected 	 (1) 0.093 0.094 0.072 0.074 

Standard 	 (2) 0.097 0.102 0.078 0.085 

Errors 	 (3) 0.123 0.139 0.076 0.092 

Expected 	(1,2) 0.00 0.00 0.00 0.00 

Sampling 	(1,3) -0.15 0.19 -0.12 -0.15 

Correlations 	(2,3) +0.39 +0.47 +0.34 +0.43 
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This final estimate of H is then used to obtain final esti-

mates of the expected sampling variances and covariances, and hence 

the relevant sampling correlation coefficients. The results of these 

calculations, together with the estimates and standard errors of 

Sheridan et al, are presented in Table 1. 

Each of the pooled estimates is seen to be weighted in favour 

of the separate estimates with lowest variance, and the standard error 

of each of the pooled estimates is lower than any of those of the 

separate estimates, as we would expect. The standard errors ex-

pected for each separate estimate are in reasonable agreement with 

those observed. It can also be seen that the expected sampling cor-

relation between H
bs and H is never greater than 0.47, and thatts  

the correlations between Hbdand Hha, and  Hbd  and  Ht  are expected to 

be zero and slightly negative respectively. In view of these rel-

atively low correlations, we should not necessarily expect good agree-

inent among the estimates. 

4 • RELATIVE EFFICIENCY OF ESTIMATORS IN A HIERARCHICAL STRUCTURE 

The relative magnitudes of the sampling variances of different 

heritability estimates from the same set of data depend, of course, 

on the design parameters, ii, d and s, and also the underlying parameters 

H arid K. Thus we can only compare the estimators for a few examples. 

All but one of the designs have been chosen such that for an inter- 
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Figure 3. 	Sampling variance per observation (v) of alternative heritability estimators with half and full 

sib families of specified size on traits measured in both sexes: from half sib covariance 

from regression on sire performance (Hb),  on sire and mean dam performance .(Hba)  on dam 

performance (Hbd)  onmid parent (Hb),  using a pooled regression estimator (Rb),  a pooled 

estimator from regression and sib covariance (H)  and maximum likelihood (H pa 	 m)• 
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mediate H value (0.2), they are the optimum for ML estimation, given 

a fixed total number scored, T. The single exception is the design 

used for the comparison of estimators in Figure 3a. This design, 

which is far from optimum, has been chosen to illustrate that the 

conclusions drawn from comparisons are quite robust over different 

designs. 

The results are given in Figures 3, 4 and 5 for traits in which 

both sexes are scored, only females are scored and only males are 

scored, respectively. In each case variances are expressed on a 

single observation basis, i.e. they are the inverses of the Fisherian 

information per observation. A large number of sires is assumed to 

be used, so that the variance of each estimator is inversely propor-

tional to the number of sires. This assumption is less satisfactory 

for estimators such as the regression of progeny on sire (H) or 
bs 

the half sib intra-class correlation 
11tg  for with on1y one sire 

available H and H cannot be estimated. Then the only unbiased
bs  

information on.heritability comes from the regression of: progeny on 

dam 0bd' so the ML estimator (H) must then have the same efficiency. 

In Figure 3 and in other examples we have investigated in 

which theestimators can be compared, it is seen that 	has a 

considerably lover variance than the other single parent regression 

estimator H. Also Hbap  the regression on sire and dam average, 

has a variance intermediate between the single parent regression 

estimators over most heritability values. The regression on mid 

parent B4O , is more efficient than H. The only intra-clase cor-

relation estimator which is unbiased, Htsf  may be more efficient 

than any regression estimator at low heritabilities, but becomes 
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very much worse at high heritabilities. This was shown for some of 

the estimators by Robertson (1959). The variance of the maximum 

likelihood estimator, H, is mush smaller than that of the best 

commonly used estimator, but the pooled estimators, 	based only 

on regression estimators and H based on all estimators, are not muchpa  

less efficient than H • At low heritabilities B and H have almost 
- 

the same sampling variance. A few assumptions need to be emphasised, 

however: the exact weightings for the pooled estimates could not be 

achieved exactly, the designs have been chosen to be near optimal 

for ML estimation without regard to their efficiency for other eeti-

mators, and the variances are expressed in terms of all observations 

in the experiment, a + ad + sdn. However H is based on adn ob-

servations, H on a + sdn and Hbd  on ad +sdn. Thus, if the parentsbs  

are not measured the values for H in Figure 3 could be reduced by
ts 

the factor dn/(l + d+ dn). 

For sex limited traits scored only, in females (Figure 4), the 

pooled estimator
d  is considerably more efficient than the simple 

regression estimator Hbd  and is as efficient as ML at low heritabilities. 

At higher heritabilities, H is little better than H and somewhatpd  

poorer than H. When the trait is scored only in males (Figure 5) 

similar conclusions hold for the regression estimator B. rather than 

B. , and the pooled estimator H rather than H 
- 

In Figures 3, 4 and 5 examples are also given for designs in 

which only half-sib data is available (i.e. n - I). 	In these it is 

assumed that K - 0, since there are no full sib families from which 

it can be estimated. The general patterns are seen to be very similar 

to those of the relevant full hierarchical structure shown in the same 
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figure. 

As well as  providing comparisons of efficiency of various hen-

tability estimators, Figures 3, 4 and 5 also provide information of 

potential use in the planning of experiments to estimate heritability. 

Given an optimum sire family design, Figures 3, 4 and 5 can then be 

used to provide a direct indication of the total number of observations 

required to achieve an estimate of heritability with a particular 

variance. Suppose, for example, that we wished to obtain an estimate 

of Hb  with a standard error of 0.1 for a character in which we expect 

both the heritability and K to be around 042. Using Table 2, the 

optiniumvalues of d and ii are 8 and 2 respectively, and from Figure 3b, 

we see that v 5 for H.0  at H - 02 with this design. Since v-

T.V(i4.) and T - sCi + d(n + 1)1- 25s in this case, we have V(Hb m) - 

	

51 	 But we want V(Lam ) - 0.01 which therefore requiress - 5 x 
- 

	

T 	20 sire families or a total of 500 observations over the two 
0.01 
generations. More generally, a similar type of conclusion can be ob- 

tamed by the use of the relevant equation in section 3, for any 

commonly used heritability estimator and for any particular combination 

of H, K, d and n. Again it should be noted that such a conclusion 

will often be quite robust for a range of values of the parameters H 

and K. In Figure 3b for example, it can be seen that our conclusion 

for H • 0.2 would equally apply to all values of !j between 0.2 and 0.6. 

Some indication of the probable value of K may be available 

from previous analyses, as is often the case with heritability. In 
1 

terms of the model of section 3, we have K - T VD + VEc , using the 
VP  

notation of Falconer [1960). An indication of its probable value can 



111.27 

A Htd - 11ta therefore be obtained as K 	 , where Htd  is the half-sib 

heritability estimate based on the dam component of variance. Such 

an estimate must of couTse be interpreted with considerable caution, 

because of sampling errors involved in estimating 
11td 

 and 

The optimum values of d and 11 for use in calculations such 

as those just outlined have been determined by Robertson (19591 for 

Intra-class correlation estimates and by Latter and Robertson (1960] 

for regression estimates. Now that we have an expression for V(H), 

we can examine the relative efficiencies of different experimental de-

signs for ML estimation of heritability, and, compare these optimum 

values of d and n with those relevant to the regression and intra-

class correlation estimates. 

5. , OPTIMUM DESICNS FOR HERITABILITY ESTIMATION 

We now find optimum designs for ML estimation using both parent 

and progeny, data, making the same assumptions as Robertson 119593 and 

Latter and Robertson (1960] of random mating among unselected parents. 

It has not proved possible to find the optimum designs for ML analyt-

ically so our results have been obtained by trial and error numerical 

evaluation of V(H) on a computer. In all cases we define the optimum 

design as that giving the most information, i.e. V(H), per observa-

tion on either parent or progeny. Since the large sample variance of 

that we have to use is inversely proportional to s (the number of 

sires) the optimum design depends only on d and n. 
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TABLE 2. Optimum family structure .() for maximum likelihood 

estimation of heritability in a hierarchical design with 

parents and progeny scored. 

H 
Sexes 

K 0605 	0.10 	.0.20 	. 0.40 	0.60 Scored 

11,8 8,5 5,4 3,3 3,2 cr & 9 

0.00 36,2 16,2 6,2 2,2 2 0 2 d' 

11,9 10,5 8,4 7,3 9,2 

22,4 13 1,3 6,3 3,2 3,2 cf & 9 

0.05 38,2 16,2 . 6,2 2,2 2,2, 

25,4 23,2 13,2 	. 9,2 9,2 9 

44,2 20,2 8,2 4,2 3,2 d' & 9 

0.20 43,2 18,2 6 9 2 2,2 2,2 

50,2 27,2 15,2 11,2 10,2 9 

For the heirarchical structure analysed in Rection 3, the op-

timum designs for M. estimation are given in Table 2 for a range of 

values of H and K, and for characters measured either in both sexes or 

in males or females alone. The optimum values of d increase if there 

is a decrease in H or an increase in K. A similar trend is observed 

in n at low K. but as the covariance between full sibs becomes in-

creasingly inflated by maternal environment or non-additive genetic 

effects, the optimum value of n soon reduces to 2, which is the lowest 

value of n for which K can be estimated. For characters scored only 

in males, the optimum design does not depend greatly on K, and at 

higher H values is close to the optimum design for traits measurable 
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in both sexes. Only at high heritabilities does the optimum design 

for traits measured just in females differ greatly from that appro-

priate for both sexes. Thus it should be possible to select a design 

which provides a high degree of efficiency for the simultaneous esti-

mation of heritability of several sex-limited and non sex-limited 

traits. Table 2 shows, however, that it is more difficult to find 

a suitable compromise for traits of widely differing heritability or 

maternal environment correlation. It can be seen in Table 2 that, 

for constant H, the optimum value of iid does not depend greatly on K. 

With both sexes scored, these optima are roughly 88, 40 0  18, 7 and 6 

for U - 0.05, 0.1, 0.2 0  0.4 and 0.6 respectively. As a good approxi-

mation, the value of nd at the optimum is 4/H, giving nd a  80, 40, 20 9  

10 and 7 respectively. 	If only males are scored, the optinrzm for nd 

is 3/H approximately, and if only females are scored it becomes 5/B 

approximately. 

These results do not differ greatly from those derived by 

Robertson (1959] for heritability estimation from the covariance of 

half sibs. He found that a •  dam family sIze (n) of one with d 4/B, 

approximately, to be the optimum. If both sire and dam intra-class 

correlations are to be estimated Robertson showed that the optimum 

value of n was 2/H, with d - 3 or 4. These values of n are slightly 

larger and d slightly smaller than those given in Table 2 for ML 

estimation using both parental and progeny data. As we have noted 

previously, the half-sib intra-class correlation estimator and the ML 

estimator are essentially the same when only progeny data are avail-

able, and so therefore are their respective optimum designs. 

The optimum designs have also been found by computation for 
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cases in which both parents and progeny are measured, but where only 

half sib families (i.e. a - 1) are available in the progeny generation. 

A value of K 0 has been assumed since it can not be estimated. The 

results are shown in Table 3, and it is seen that the optimum value of 

d (and hence ad) is generally somewhat smaller than the optimum value 

of ad when both full and half sibs are available (Table 2). If only 

full sib families are available the optimum design if K is to be esti-

mated is close to that given by Latter and Robertson (1959], presumably 

since all information on fi comes from regression of offspring on parent. 

TABLE 3. Optimum half-sib familyaize (d) for maximum likelihood 

estimation of heritability where observations are avail-

able on parents and half-sib progeny only. 

Sexes 
0.05 0.10 0.20 0.40 0.60 Scored 

71 31 12 5 4 

70 30 10 4 4 

82 43 24 15 14 9 

Many of the optimum designs shown in Tables 2 or 3 may be 

impracticable, especially those requiring large values of d. However, 

apparently large departures from the optimum design often involve 

only a small reductinn in the amount of information per observation. 

Some examples to illustrate this are given in.Figure 6; similar re- 

suits have been found for other combinations. We see that for a trait 
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scored only in females with a low H and high K, a reduction in d 

from the optimum of 31 down to 16 increases the variance per ob-

servation by only 6% if n remains at. 2. 

Although tables 2 and 3 give the optimum desians when there 

is prior knowledge of H and K. there is also need to specify designs 

likely to be efficient over a wide range of parameter values when 

this prior knowledge is absent. We find that a satisfactory design 

has a dam family size (n) of 2, and 6 dams per sire (d) for characters 

scored in both sexes or in males alone and 12 dams per sire for 

characters scored only in females. If only parental and half sib 

information is available (n 1), then the optimum number of dame 

per sire is around 12 and 24 respectively. When only parental and 

full sib data are available (d 1), a full sib family size of 3 is 

efficient over a wide range of parameters. 

6. DISCUSSION 

Let us first review our more important assumptions and con-

sider their implicattons. The omission of a term for dominance or 

common environment (K) in the full sib model was made primarily to 

enable simpler demonstration of the principles; it can not be de-

fended too strongly in practice. We also ignored any environmental 

covariance of dam and offspring in the hierarchical case. Such co-

variances certainly exist, for example in litter size in mice 

(Falconer [19551). 	It would not be difficult to include such a term 

in the model; then all the unbiased information on heritability would 

come from the regression of progeny on sire (only for traits expressed 
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in males) and the covariance of half sibs, whose properties have been 

analysed in section 3. The assumptions of equality of means and 

variances in the two generations and sexes are likely to have biased 

the sampling varianCe8 downwards, but few degrees of freedom would 

be lost in their estimation. Experiments from which heritability 

estimates are obtained are rarely balanced, except perhaps in 

Drosophila. Removal of this assumption should introduce no con-

ceptual difficulties in ML estimation, but would make the form of the 

variance—covariance structure of the alternative regression and sib 

covariance estimators rather involved. The mechanics of the ML 

estimation procedure have not been considered, but a specific program 

for this sort of data has been written (Felsenstein, personal commu-

nication) and there are many general programs for finding maxima. 

Throughout we have assumed that there is no selection or 

assortative mating of the parents, yet both can give much reduced 

sampling variances of regression estimators in a properly designed 

experiment (Hill [19701). Two examples are given for sex—linked 

traits in Figures 4(a) and 5(b), with the optimum designs appropriate 

for selection of parents with H a  0.2, the same value used to choose 

the design for ML estimation. It Figure 4(a) we have used n - 14 

and a proportion of 5.5% of potential female parents selected (from 

Hill [19701). 	The estimator of regression of progeny on selected 

parents, Hd,  has a variance approximately half of the ML estimator, 

HmI per individual scored, except at very low heritabilities. 

Similarly, in figure 5(b), selection of males gives an estimator, RCS  

with substantially lower sampling variance than H, particularly at 

intermediate heritabilities. Thus where selection can be practised, 
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we advocate that it be done. Even then there will be some informa-

tion available from the variance between families. Maximum likeli-

hood methods which could deal with such data have been developed by 

Thompson [1973]. 

There are several situations where selection or assortative 

mating of the parents may not be desirable, however. One such case 

is a control population being maintained for several generations 

alongside selected populations to establish whether trends are genetic 

or environmental. Usually no selection is practised in these, but 

if selection or assortative mating were practised in a control it 

would be to reduce rather than inflate the variance between parents 

(Hill 119721), and would reduce the efficiency of heritability esti-

mators. The other main case where neither selection nor assortative 

mating is desirable is where heritabilities and genetic correlations 

are to be estimated simultaneously on several traits. 

We make two essential recoimnendatione. Firstly, people ob-

taining estimates of heritability by several methods from essentially 

the same set of data should take notof the correlation structure among 

their estimates before concluding that agreement between them is good 

or bad. Secondly, all available data should be used to obtain a 

single estimate; we have considered Just pairs of generations, but 

in a control population several generations might be combined. 

SUMMARY: 

The analysis and design of experiments to estimate heritability 

when data are available on both parents and offspring are discussed. 

It is shown that there is a substantial positive sampling correlation 
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between the regression of offspring on mid-parent and the covariance 

of full sibs estimated from the same data, and that in a hierarchical 

structure the covariance of half sibs has a negative correlation with 

the regression of offspring on darn and a positive correlation with 

the regression of offspring on sire. 

The efficiency of alternative estimators of heritability by 

regression and sib covariance, pooled estimators based on these and 

maximum likelihood (ML) are compared. The ML estimator does not re-

duce the variance substantially below that from the pooled estimators, 

but both are often much better than either regression or sib covariance 

estimators alone. 

The optimum designs of experiments for ML estimation are ob-

tained. It is found that these do not differ very much from those 

appropriate for either offspring on parent regression or half sib co-

variance estimators, and that optimum designs are fairly robust against 

changes in parameter assumptions. 
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