R AN T BT s
Saluwiswe o nr l, 100 A,‘f;?
BRI PN AN

STUDIES ON ARTIFICIAL AND NATURAL SELECTION

F. W. Nicholas

Ph.D.
University of Edinburgh

1974




pde

SUMMARY

PART A

Literature review: The theory and practice of artificial
selection 1

LIMITS TO ARTIFICIAL SELECTION 1IN “THE
PRESENCE OF NATURAL SELECTION

Introduction 20
I. THE HOMEOSTATIC MODEL OF NATURAL SELECTION : 22
1. Algebraic approximations . 23
2, The use of a transition probability matrix 41
3. The pattern of response to selection ’ 49
4. Prediction of a plateau . 57
S. Discussioh C ‘ - 66
6. Summary' 70
11, THE OPTIMUM MODEL OF NATURAL SELECTION 72

1. The nature of the selective values ' 75

2. Artificial selection versus mor-optimal natural

selection 81

3. The problem of further predictions v 87

4. Selection in the absence of crossing-over 90

5. Discussion 94

6. Summary ' _ 96
III. REVERSE AND RELAXED SELECTION 99
l. The additive model 105

2. Summary | 11

3. The homeostatic model of natural selection , 113

4, Summary 124



Discussion 127

PART B
THE EFFECT OF SELECTION ON THE
STANDARDIZED VARIANCE OF GENE FREQUENCY
1, Introduction 132
2. The additive model 134
3. The matrix operations 138
4. The effect of selection on £ 142
5, Discussion 149
6. Summary 150
ACKNOWLEDGEMENTS . 153
REFERENCES 154
APPENDICES

I.. Analysis of variance of selection response
ITI Derivation of selective values of genotypes

IIT Estimation of heritability by both regression of offspring
on parent and intra-class correlatior of sibs in ome
experiment
(by W.G. Hill and F.YW. Nicholas)



SuARY

A theéretical study has been made of the interplay between natural
selection and artificial selection for a quantitative character. The
implications of two models of stabilizing natural selection in which an
intermediate metric phenotype is more fit than extreme phenotypes, have
been examined in this context, |

The homeostatic_model, in which extreme metric phenotypes are less
fit because they are more homozygous, has been described in terms of the
strengﬁh of homeostatic natural selection, S, Under this model each
locus can be considered independently and natural selection does not
necessarily act at all loci. For any particular locus, an understanding
has_been obtained of the strength of natural selection necessary to

produce a selection plateau prior to complete fixation, and of the time at

which such a plateau@éilll@iééy‘qéééég: :;Eﬁjgééggﬁengféﬁnd that the total
aannce in the metric mean at a pli;;au‘due to opposing natural seleétiop
is never greater than 2N(1--28)2 times the change in metric mean in the
first generation of artificial selection, where N is the effectiveApopu-
lation size. It should be possible to break through any such plateau

- by increasing the strength of artificial selection if sufficient reprod-
uctive excess still exists in the population.

The optimum model of natural selection, in which extreme metric
phenotypes are less fit solely because they have extreme phenotypes, has
also been considered. Quantitative predictions of limits to artificial
selection due to opposing%fbptiﬁuﬁ>iianatural selection may not have very
much value when derived from single locus selective values, as the equil-
ibria they represent are transient. The problem is that under this model,

epistasis is of vital importance. Thus all loci that contribute to the

metric character are subject to natural selection, the effect of which at
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any one locus varies from generation to generation, being determined

by gene frequencies and gene effects at all other loei, The problem

of epistasis can be avoided by considering an extreme situation in whiéh
thereis no crossing over between the loci. 1In this particular case,

if the initial distribution of chromosome effects is approximately
normal, then the predictions of Latter (1960) and James (1962) provide

a realistic description of the results of the interaction between arti-
ficial and optimum natural selection,

In general, the implications of each model of stabilizing natural’
selection in the context of artificial selection appear to be very similar,

The effect of t' generations of reverse selection after t generations
of forward selection has been described in terms of the ratio of the
change in metric mean resulting from reverse selection (R) to the change
in metric mean due to the previous forward selection (Ax). In the ab-
sence of natural sélection, and for equal periods of reverse and previous
forward selection (t'=t), §§5equals 1-F vhere F is the inbreeding
coefficient for a neutral locus at generation t, being estimated as
{1 - (1-%ﬁ0t] where N is the effective population size for both forward
and reverse selection, And for a single generation of reverse selection
in which response in metric mean was Rl following t generations of forward
selection, E;%-equale l%%‘ The presence of natural selection opposing
forward artificial selection increases the observed values of the ratios
above those expectations,

In a separate study, the effect of directional and heterotic
selection on the standardized variance of gene frequency (f) has been
examined. It has been found that heterotic selection always results in
f values lower than those expected due to drift alone, Additive

selection usually results in similarly low f values, but f values larger



than those expected due to drift will be observed under additive
selection with low initial gene frequency, or when the populations have
been separated for a relatively long period of time in which case f
expected due to drift is quite high (arcund 0.7 or greéter). The effect
of selection on f is unlikely to be detected if the observed value of f
is less than 0,1,

Included as an appendix is the following paper which has been
submitted for publication under joint authorship, with Dr W.G, Hill:
"Estimation of herftability by both regression of offspring on parent

and intra-class correlation of sibs in one experiment”,
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THE THEORY AND PRACTICE OF ARTIFICIAL SELECTION

In his attempts to increase the production of food and other
produccs‘from domestic animals, man has been for many years selecting
only certain animals to act as parents for the next generation. To
the extent that the various selection criteria adopted by man have
not been directly related to an animal's ability to contribute to the
next generation if left to fend for itself in the "wild", it can be
said that man has been carrying out artificial selection, as distinct
from natural selection. The latter type of selection can be thought
of as the natural processes which result in some individuals contri-
buting more progeny to the next generation than others.

Man has complete control over the first but not the second -
type of selection, ;; that some artificial selection programmes are
bound to involve the often unwelcome action of natural selection as
well,

A large majority of characteristics of importance in artificial
selection over the centuries have been continuously varying (quantitative
or metric) characters, but it was not until the advent of the sciences
of genetics and statistics during the early years of this century that
man was able to objectively describe and analyse the procesg of
artificial selection for such characters.

The early theory of artificial selection for a quantitative
character, as summarised by Lush (1945), provided a simple predictioﬁ
of the gain to be expected from artificial sélection. Thus the
change in metric mean AG in the next generation as a result of

selecting individuals whose mean phenotype is AP metric units above
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the population mean is given by AG = hZAP, vhere h2 is the heritability
of the metric character. This prediction has been demonstrated to be
quite useful during the early generations of selection in a variety of
different species including Drosophila (Clayton, Morris and Robertson,
1§S7), Tribolium (summarised by Bell, 1969), mice (Falconer, 1953),
poultry (Lerner, 1950), pigs (Hetzer and Harvey, 1967) and sheep
(Turner and Young, 1969, chapter 11),

Even the early workers in this field, however, recognised the
limitations or inherens assumptions of the simple prediction equation
especially in the context of longer term selection. Lush (1945)
was fully aware that factors such as epistasis, linkag? and over-
dominance for the metric character were not included in the simple
prediction, and tﬁe potential importance of natural selection opposing
artificial selection was soon emphasised by Lerner (1950). In addi-
tion it has become apparent more recently that the inherent assumption
of a large number of loci, each making a small and equal contribution
to genetic variance, may not be realistic in all situations. Finally,
the relatively small numbers of parents used in most selection pro-
grammes certainly violates the implicit assumption of a large
population size. Thus it was not surprising to find that the simple
equation was of little use in predictiné‘the long term outcome of a
selection programme (see, for example, Clayton and Robertson, 1957,
and jones. Frankham and Barker, 1968).

Since the inception of the use of the simple equation therefore,
a major aspect of the theoretical study of artificial selection has
been the extension of the validity of prediction through the gradual

incorporation of the extraneous factors into the prediction itself.
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A brief review will now be made of some of the more important
theoretical studies, looking not so much at actual results but more
at the methods of approach that have been utilized.

A number of algebraic studies have been conducted with re-
latively simple models. Dominance, epistasis, linkage, genes of
large effect and finite population size have been inzorporated into
a variety of predictions, either singly or in various combinations.

In general, however, the algebraic description of more realistic
models incorporating several of the above items has not been possible.
The increasing number of parameters required to define such a model,
and the associated increase in complexity of parameter interactions
have so far defied any attempt to achieve a purely algebraic pre-
diction.

The need for increasingly complex models coincided with the
development of Monte Carlo simulation techniques that could be carried
out at high speed by automatic computers. Monte Carlo methods, which
involve computer simulation of "the random aspects of inheritance
and computing the history of a number of replicate populations"
(Fraser and Burnell, 1970), were first applied to artificial selection
of a quantitative character by Praser (1957, et seq.), Martin and
Cockerham (1960) and Gill (1965, et seq.). Making use of the binary
nature of arithmetic computation in a digital computer, these
workers started with relaiively complex mddels involving many loci,
linkage, intra- and inter-locus interactions and finite population
size. With so many parameters interacting and with only a few values
of each parameter specified, conclusions tended to be descriptive

rather than predictive. Broad generalisations sometimes emerged, but



few of these had immediate predictive value. Fraser and Burnell
(1970) have recently reviewed the various simulation studies which
made use of this approach.

Latter (1965, 1966a, 1966b) used computer simulation to study
a simpler two-locus model in greater detail, searching for conélusions
of greater predictive value. A literal simulation of the binary
nature of the problem was not used. Rather, an algebraic (and hence
deterministic) description of the selection process, supplemented by
the use of random numbers to simulate gamete sampling and tecombinatiop,
was employed. Such an approach is more abstract than that of Praser
but is more efficient in use of computer time, and facilitates the
finding of genéralised predictions, Hill and Robertsén (1966), using
an even more abstract method of simulation, studied a more general
form of Latter's model. With the aid of some preliminary algebra it
was shown that the whole selection process could be specified by three
parameter'coﬁbinations and three other single parameters. Since each
of the paraﬁeter combinations'contained N, useful conclusions and
predictions could be drawn from all computer runs at only ome population
size.

More recently, Robertson (1970) has repotted_the results of a
simulation study of the effect of linkage with many loci on the limits -
to artificial selection. Some of the seven parameters needed to de-
fine the initial population were "reparameterised” into combinations
bf two or more, thus reducing the number of variables to a more
manageable level. As with the earlier studies of Robertson (1960)
and Hill and Robertson (1966), such a reparameterisation offered a

guideline as to which parameter values would be relevant, and enabled
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more useful conclusions and predictions to be obtained. The pre-
dictions arising from the latest study have already been subjected to
an experimental test with reasonable success, by McPhee and Robertson
(1970).

Robertson's approach was similar to that of Latter and Novitski
(1969) who also used some algebra to provide guidelines for their sub-
sequent simulation of directional selection in a finite population
using a single locus model with many alleles. They were also able to
make successful use of reparameterisation. In addition they obtained
several empirically derived relationships and predictions just as
Robertson did, as a result of certain patterns appeari#g in the
simulation results.

Algebraic studies, therefore, when judiciously combined with
computer simulation have incorporéted several of the more important
original limitations into the theory of artificial selection for a
quantitative character.

However, one important assumption has still been made in each
of the theoretical studies described above. In particular, each of
thosé studies has neglected the potential effect of natural selection.

The interplay of natural selection and artificial selection
has been observed during the course of many artificial selection ex-—
periments, Ma;her and Harrison (1949) repornted a large and negative
correlated response in reproductive fitness when selecting for ab-
dominal bristle number of Drosophila, while Lerner and Dempster (1951)
were able to attribute the cessation of response to selection for in-
creased shank length in poultry, at least in part to adverse natural

selection, in the form of a negative correlation between shank length



and hatchability in dams.

More recent selection experiments in several species have pro-
vided further evidence of a resultant decrease in reproductive fitness.
Such observations were reported by Latter and Robertson (1962) in
Drosophila;  Kress, Enfield and Braskerud (1971) and Orozeco (1972) in
Triboi&nm; Eisen, Hanrahan and Legates (1973) in mice, and Verghese
and Nordskog (1968) in poultry. On the other hand, not all artificial
selection has led to a decrease in reproductive fitness. Hetzer and
Miller (1970) for example, found no consistent changes in fitneas
during 13 generations of selection for backfat thickness in pigs.

In any discu;sidn'of’the interplay between natural and artificial
selection, care must be taken to differentiate between those aspects of
natural selection associated directly with artificial selection for a

Vparticular character, and the more general effects of finite population
size on reproductive fitness. The remainder of this review will con~-
centrate only on the former, and will thus assume that the inbreeding
effects of artificial aelecéion with reference to the whole genome
(as discussed by Robertson, 1961) have negligible effects on re-
productive fitness,

The proper analysis and explanation of the above selection re-
sults requires a far greater understanding of the basic processes
involved in the interaction of artificial and natural selection. As
an initial step in the study of these processes, the relationship

between natural selection and quantitative characters must be considered.



7+

Natural selection and quantitative characters

Robertson (1955) and Mather (1966) have both described the
range of relationships between a quantitative character and natural
selection as extending from those characters very closely associated
with fitness to those with only an unimportant, peripheral relation-
ship. Such a scale corresponds to increasing additive genetic
variance for the quantitative character as might be expected in the
light of Fisher's (1930) fundamental theorem of natural selection.

It has been argued that only fitness itself is subjected to
directional natural selection'alone, and that all other quantitative
characters including components of fitness, must be subjected to a
degree at least of stabilizing selection in which an intermediate
metric phenotype is more fit than extreme phemotypes. Indeed such
an opinion now seems to have acguired the status of text-book dogma
(see, for example, Falconer, 1960¢ Crow and Kimura, 1970; and
| Cavalli-Sforza and Bodmer, 1971). The strength of such stabilizing
selection is proportional to the degree of relationship between the
character and fitness, with chargcters of peripheral importance to
fitness being subjected to negligible strengths of stabilizing
selection,

The concept of stabilizing natural selection thus seems to be
of major importance in any discussion of natural selection and

quantitative characters.

Models of stablizing selection

Essentially two main models have been proposed for the action

of stabilizing selection on a quantitative character. 1In their



simplest forms, both of them involve the assumption of additive genme
action for the metric character.

The homeostatic model, in which extreme metric deviants are
less fit because they are more homozygous, was first proposed by
Lernmer (1950, 1954). It has since been shown (Robertson, 1956) that
fitness in this model will be a maximum at the mean phenotypic value
of heterozygotes, and will decline as the square of the phenotypic
deviation from that mean. This observation, however, is not an .
integral component of the model. It is simply a consequence of fit-
ness decreasing with increasing homozygosity. 1In the same study,
Robertson made much usé of a parameter which he called the homeo-
static strength of a character (S for a single locus, S for many loci
where S is the average of all S values, weighted according to the
proportion of additive genetic variance contributed by each locﬁs).
Having zero value for characters unassociated with fitness, the mag-
nitude of S increases with increasing strength of natural selection.
Its main virtue lies in the fact that the value of S for a particular
metric character can be estimated from an artificial selection experi-
ment, as will be shown later. |

The optimum model, in direct contrast to the homeostatic model,
relates reproductive fitness directly to the phenotype for the quant-
itative character, irrespective of the underlying genotype. Its
most popular version, the "quadratic deviation" optimum model, was
first described by Fisher (1930, page 105) and Wright (1935). In
this model fitness declines as the square of the deviation of the
metric phenotype from either the population mean which may be variable

(Fisher) or from some fixed optimum phenotype (Wright).



Gale and Kearsey (1968) and Kearsey and Gale (1968) have
studied a simpler "linear" optimum model in which fitness declines
linearly from a fixed intermediate optimum,  Another version
(Robertson, 1956; Curnow, 1964; and Van Valen, 1965) is the "double
truncation" optimnm.model in which there are two vertical cut-off
points, one on either side of'the population mean or some optimum
phenotype. All individuals between the two truncation points (and
hence near the mean or optimum) are selected, while all those having
metric phenotypes outside the cut-off points are rejected. Such a
model is more relevant to artificial than to natural selection, in
the sense that natural selection is rarely as absolute in its effect
as this model requires.

Yet another version that has rec;ived considerable attention
is the '"nor-optimal" model (Cavalli ~Sforza and Bodmer, 1971) which
was originally introduced by Haldane (1954). The decline of fitn;ss
from the maan or optimum phenotype in this version follows the shape
of the normal distribution. A notable contribution to the study of
the nor-cptimal medel was that of Latter {(1970) who introduced a
parameter called the coefficient of centripetal selection, C, which
has the logical and convenient property of ranging from zero (for
no selection) to unity (for absolute selection of the optimum pheno-
type only). Latter was able to show that C also had the valuable
property of being estimable from an artificial selection experiment,
analogous to the situation already described (Robertson, 1956) for
the strength of homeostatic natural selection! S, In additiem, C

was ghown to be simply related to Haldane's (1954) intensity of nor-

optimal natural selection, I.
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0f all the versions of the optimum model, those which have been
mogt thoroughly studied are the quadratic deviation and the nor-optimal.,
It is important to note that for metric characters that are normally
distributed and for the relatively weak natural selection usually en=
counterced, both versions amount to essentially the same thing (Bulmer,
1972; 0"3onald, 1970, 1973). From now on therefore, any reference
to the optirum model vwill be in terms of one or other, or both of these
versions.,

It has alrecady been seen that both the homeostatic and optirum
uodels give rise to exactly the same relationship at the observational
level, namely that individuals with intermediate phenotypes for a
particular quantitative character have the highest {itness,

The validity of such a relationship.has been questioned by
Robertson (1963, 1966, 1967) who has suggested that we say nothing
about the way in which natural selection acts if we simply observe the
relationship between fitness and a single character considered &t one
point in time and in complete isolation from the totalitv of characters
vhich go to make up an individual®’s overall or ‘plobal’ phenotype.
Natural selection, claims Robertson, surelv does not partition the
global phenotype into the arbitrary component characters which we have
defined for our own purposes,

Despite these valid objections, the concept of stabilizing
natural selection has received considerable attention from many workers,
including those attempting to explain the results of artificial
selection experinents in which fitness has declined and/or selection
plateaux have been observed (see for example, Verghese and Nordskog,

1968; and Orozco, 1972), Indeed, Eisen, Hanrahan and Legates (1973)
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have recently attempted to use their artificial selection results to
differentiate. between the two models of stabilizing natural selection.
However, despite a thorough and careful analysis of fitness changes

in their lines, these authors were unjustified in concluding that
their results favour the optimum model; they have failed to realise
that exactly the same results in this case could have occurred under
the homeostatic model. Analyses of this tppe are potentially useful,
but a far greater understanding of the ramifications of each model

is needed before a valid conclusion can be reached from such selection
data.

One wgy to obtain more knowledge of the implications of the
homeostatic and optimum models would be to use these two models as the
basis for a theoretical study of the interplay between artificial and
natural selection especially now that we have, in S and C, biologically
meaningful and measureable parameters for each of the models, In
order to provide a framework for such a study it is first necessary to
determine whether or not each model is a valid description of natural
selection in natural populations.

The homeostatic model is relatively straightforward, having the
maintenance of genetic variability as one of its basic premises,

This model could therefore be used to describe the way in which
natural selection maintains the genetic variability which is observed
in quantitative characters in natural populations, and which is sub-
sequently subjected to artificial selection, The ability of the
optimum model to maintain genetic variability, on the other hand, has
been Ehé\éﬂbﬁécﬁféf~bonsiderab1e study, and controversy., In parti=-
cular, each new publication on the topic seems to alter the conditions

under vhich the various versions of the optimum model may or may not
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maintain significant genetic variation. Despite numerous papers
from a wide variety of workers, the exact implications of the optimum.
model still remain to be clarified beyond dispute.

The most recent study of the nor-optimal model has been reported
in a series of papers by Bulmer. All of these papers were based on
an initial, more general, study of stabilizing and disruptive selection
(Bulmer, 1971a) from which it was concluded that stabilizing selection
never results in stable equilibria in a single population, unless gene
action for the metric character is overdominant at all loci. However,
nor-optimal selection for different optimum phenotypes in two (Bulmer,
1971b) or more than two (Bulmer, 1971c) partially isolated populations
was ghown to be a mechanism capable of maintaining genetic variability.
It was also concluded that some variability could be maintained in a
single population of finite size under the nor-optimal model with the
aq.itinn of recurrent mutation (Buiﬁéf;i1972){jéhd/of5independent
séi;ction in favour of heterozygotes (Bulmer, 1973). For the pur-
pose of this study it will be assumed that the optimum model is capable
of maintain{ng & reasonable amount of genetic variation and is thus
sufficiently valid to act as a comparison for the homeostatic model,
which has the maintenance of genetic variability as one of its basic.
premisges,

Differences of opinion also exist as to the relationship between
particular ﬁetric characters and fitness. Robertson (1955, 1966) and
Latter (1962, 1963), for example, have examined this relationship
theoretically and experimentally for several Drosophila Eharacters.
Their conclusion for abdominal and sternopleural bristle number, as an

example, was that such characters were of peripheral importance to
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fitness, and are therefore subjected to only very weak natural
selection. On the other hand, 0'Donald (1970, 1971) has produced
evidence suggesting intense;gpabii};igg natural selection for sterno-
pleural bristle number in adult Drosophila (but only in males) under
crowded conditions, Barnes (1968), Kearsey and Barnes (1970) and
Linney, Barnes and Kearsey (1971) have also reported experimental re-~
sults indicating that relatively intense natural selection acts on
genes that determine bristle number, in some cases producing an ob-
servable effect which accords well with the optimum rather than the
homeostatic model. These same authors have'expressed further doubts
about the validity of the homeostatic model because of what they claim
to be the general paucity of evidence of single locus overdominance
for fitness. However, a recent investigation in pigepns (Frelinger,
1972), seemed to indicate that single locus overdominance for fitness
is a feasible proposition.

More importantly, in his initial detailed proposal of the homeo-
static mﬁdel, Lerner (1954) emphasised that single locus overdominance
for fitness was not an integral requirement of the model. Rather,
he was very careful to point out that it was "fitness as a whole"
which exhibited overdominance.

The design of a definitive experiment that will enable a final
decifion to be made in favour of one of the two models has still to
be determined. Indeed such an experiment may never be conceived if,
as is quite likely, the real situation in nature lies somewhere in
between. The current position is that both models contknue to be
discussed whenever natural selection appears to have counteracted the

effect of artificial selection. A brief review will now be made of
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the theory which is currently available to assist in such discussions.

Interaction of artificial and natural selection

The result of artificial selection for a metric character in
the presence of natural selection has been considered by superimposing
artificial directional selection for the metric character onto each of
~ the two models of stabilizing natural selection,

The homeostatic model was shown by Robertson (1956) to lead to
certain predictions about the consequences of artificial selection
when applied to a’'genetic system which could be described by the

following single locus model:

Genotype A1A1 ‘ AIAZ A2A2

Relative frequency (l-q)2 2q(1-q) q

Metric mean as deviation
from heterozygote -}a 0 +ia

Relative fitness 1--s1 , 1 1-32

In particular, it was demonstrated that the relative fitness of

- 2
the population declines by~§£§52§- as a result of a change in the
2h"o
population mean of Ax, where e
) )Jkisi |
Se ’;ki . = weighted average of the Si,
1
815, in which case l—Si is the
given that S; = T / average fitness of the equilibrium population
172

relative to that of the heterozygote, at the

lth
i~ locus,
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2
and Ky o= 2—»q(1-q) = genetic variance contributed by the ith locus..

2
It was the parameter S that Robertson called the homeostatic strength
of a metric character.

In addition

. 2
Lk, = ¢ ’
i i G
'apz = phenotypic variance pfior to selection, and

¢

In comparison, the decline in fitness expected of individual

deviants with a phenotype of x metric units in the original unselected
=22 - 2 =22

Sh ; . S(gx) > Sh ; as long as heri~-
20 2h“o 20"

tability is less than unitg, it was concluded that the decline in

population was given as Since

fitness as & result of artificial selection to a new phenotypic mean
X, would be greater than tﬁat of individual deviants having phenotypé
x in the origipal population. Finally, it was predicted that upon
relaxation of artificial selection, the return to the mean in the
first generation would be equivalent to §Ax, or a proportion S of the
total phenotypic gain achieved by the previous artificial selection.
Thus it was possible to eﬁtimate the value of S, the homeostatic
strength for a particular metfic character, after a few generations of
artificial selectionm. -

Despite its apparent potential usefulness, the homeostatic model
has received little subsequent theoretical attention in the context of
artificial selection. In particular, there has been no attempt to
investigate the interaction between homeostatic natural selection and

. artificial selection in a finite population. Predictions of the
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limit to artificial selection, especially where genetic variance
still remains, would be useful in providing a greater understanding
of the implications of this type of natural selection.

The optimum model of natural selection has received more
attention than the homeostatic model in the context of artificial
selection. Expressions analogous to those of Robertson (1956) were

first derived for the nor-optimal model by Latter (1960). The de-
2
(8x)

20
and ofz is a constant whose value is inversely

cline in fitness with artificial selection was predicted to be

where 02 - opz + ofz

proportional to the strength of natural selection. In terms of

Latter's {1970) coefficient of centripetal selection, which is defined

c 2
as C = - » the decline in fitness would be C ££5%- . Robertson's
02 - 2 20
equivalent prediction was~§§ (Ax . P The return to the
h" 20

mean during the first generatiog of relaxation was shown to be a
proportion Efgﬁi or hzc of the total gain previously achieved, in
comparison wgth a proportion S for the homeostatic model. Both S

and C cén therefore be estimated for any metric character after a few
génetatioas of artificial selection, with the product Ch2 corresponding
operationally to S (Latter, 1970).

In two other papers Latter (1962, 1963) further examined the
kheoretical implications of the two models in the context of artificial
selection, using as his examples data published by Latter and
Robertson (1962) on the Kaduna population of Drosophila, and further
data collected from artificial selection in the Canberra population.

He was able to show, for example, that the total intensity of natural

selection, I, as defined by Haldane (1954) could be expressed as
log v

I=b%[ g | (1)
8
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or

1 =
I '?["’ 3 ] (2)

for the homeostatic and nor—optimal models respectively, where w is
the mean fitness of selected lines, relative to controls after arti-
ficial selection has altered the mean of the metric character by g
additive ' genetic standard deviations. _
-logew .
Having previously obtained values of —~—5— of 0.022-0,005
g

and 0.02120.002 at generations 5 and 10 respectively of artificial
selection for abdominal bristle number in the Kaduna population (in

which h?

= 40%), Latter estimated the heterozygote superiority for
fitness to be 0.4 x 0,022 = 0,57 at the relevant loci, assuming the
homeostatic model to be appropriate. Similar calculations can be
performed on data supplied by Verghese and Nordskog (1968, p.233), to
provide equivalent estimates in the range 0.5% to 1.5% approximately.
Estimates such as these may be useful as guidelines to further theo-
retical studies, although several rather important assumptions are
implicit in their use. Verghese and Nordskog pointed ocut that their
own data are not in good agreement with the rather basic assumption
that the decline in fitness with response to selection can be repre~

-log w
sented simply as ze . Latter and Robertson (1962) also observed

sigrificant: alterations in this quantity between generations 5 and 10
of selection for body size in Drosophila. As a first approximation,
however, the above estimates may be of some value. |
The interplay between directional artificial selection and
natural selection for a phenotypic intermediate optimum was further

investigated by James (1962) who developed expressions based on a
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single locus additive model, to describe the effect of opposing nor-
optimal natural selection on the limits to artificial selection.
The shortcomings of the model were considerable, as James pointed out,
but the conclusions may be useful in that they indicate possible ways
in which the measure of intensity of natural selection might interact
with the other parameters commonly used to describe artificial
selection in finite populations. The mean u, after t generations of
artificial selection in this system was shown to be

by = ;;2 1- a-2m%Ht (3)
where i is the standardised selection differential, and I ié‘Haldane's
intensity of natural selection in a population with mean at the
“optimum.

The corresponqing half-life of the selectioﬁ process was pre-

dicted to be

K.‘—'- . (l’)

Both these expressions are essentially relevant only to infinite

expression e
populations, It was shown that the analogous/for v, in a population
sof finite size N could be repfésenpéd as

N io
ﬂt - ETE-II- exp{ -4NIh2(1-(1-%ﬁQt)}] T (5)

and an estimate of the asymptotic limit would then be

ioG2
u, - 2N 5
P

(1-2N1h2) (6)
2

io

which reduces to Robertson's (1960) prediction of 2N ~— or 2N times
P
the response in the first generation, when natural selection is absent.
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Very little experimental evaluation of these predictions has been re-
ported, although James (1965) did use equation (4) to estimate half-1ife
in several previously reported selection experiments. Agreement bet-
ween observed half-lives and those expected by James was not particularly
evident, with predictions being much greater than those observed, but
then Robertson's (1960) half-life prediction of 1.4N generations (for
additive loci) was likewise a considerable over-estimate. Such a
result, however, may simply indicate that artificial selection has
successfully achieved fixation of most of the desired #lleles, as
Robertson has pointed out.

James' study was useful in that it was the first attempt to
analyse the effect of the interaction between natural and artificial
selection on the limit to artificial selection. In dealing with the
optimum model of natural selection, however, the study did not
emphasise that interactions between loci are & vital component.

James' selective values took this into account, but his derivation
of expressions for the metric mean at any time t, and at the limit
tended to play down the importance of these interactions, with the
result that the expression obtained do not necessarily apply to the
type of limit most likely to be reached with the optimum model. A
more detailed discussion of this problem is given later.

It would seem then, that both the homeostatic and optimum models
of stabilizing.natural selection need to be more fully explored in
the context of artificial selection, before a proper understanding
of the interplay between artificial and natural selection can be

achieved,
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LIMITS TO ARTIFICIAL SELECTION
IN THE PRESENCE OF NATURAL SELECTION

Introduction

One of the more important gaps in current artificial selection
theory is the lack of a proper understanding of what happens during
the intermediate generations of artificial selection in the presence
of natural selection, before total fization has occurred. In parti-
cular, it would be usefﬁl to be able to predict in a population of
finite size the occurrence of selection plateaux at which genetic
variance still remains due to opposing natural selection.

Using the available algebra as a basis, it should be worthwhile

. to explore more fully both the optimum and homeostatic models of
natural selection in the context of artificial selection, studying in
some detail the implications of each with respect to the nature of
response to artificial selection. Such a study has therefore been
conducted, with the aim of determining the consequences of the inter-
play between these two selective forces.

First to be examined will be the homeostatic model of natural
selection, with its implications for artificial selection in very
large and in small poﬁulations being investigated in turn. The
algebraic predictions so obtained for the latter situation will then
be expanded with the aid of computer operation of a suitable transition
probability matrix, to obtain a greater insight into the intermediate
generations of selection. 1In all cases the aim of the matrix study
will be to look for general patterns rather than specific results from
a particular set of parameter values. An attempt will be made to ex-

press conclusions and predictions in terms of population parameters,
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or combinations of parameters, which are relevant fo the overall
concept of artificial selection.

The optimuin model of nafural selection will then be considered
with the aim of obtaining a greater understanding of its implications
in the light of theory which has aiready been developed by other
workers in this field.

Finally, the results of reverse and relaxed selection
following forward selection will be examined. Predictions initially
obtained for an additive model of artificial selection in the absence
of natural selection will be compared with transition probability

matrix results including the effect of natural selection.
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I. THE HOMEOSTATIC MODEL OF NATURAL SELECTION

Consider two alleles at a single locus in a large population
undergoing artificial selection for a metric character, and in which
natural selection is acting in a manner described by the homeostatic
model of Lerner (1950, 1954),

At the time of conception in generation t, the relative fre-
quencies of zygotes will be (1-q)2,12q(1-q) and quth genotypes
A2A2, A1A2 and AIAI respectively, where q is the fréquenéy of allele
A1 in the group of individuals selected as parents at the time of
mating in generation t-1. Natural selection may occur at any time
within the égploid phase of a generation, i.e. at any tiﬁe between
conception of zygotes and mating of individuals resulting from those
zygotes. In addition, artificiai éelection occurs at some specified
time within that genération..

For a single locus the total effect of natural selection can
be represented by relative fitneéseé of 1-92, 1 and l-s1 for genotypes
A4, , AIAZ and A‘lﬁA1 respectively. Assuming additive gene action for
the metric character at this locus, theueffecc of artificial selection
can be expressed (following Haldane, 1931) in terms of the selection
coefficient ia, where i is the standardized selection differential,
and a is the difference (a) between the metric means of the two homo~
zygotes, divided by the phenotypic standard deviation (aP). As
usual, this relationship is only valid when a is small relative to Ope

For such a model, the metric mean and overall selective value’

of each genotype can be represénted as
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) A4, A4

Mean metric value relative %2' 0 :g

to the heterozygote

Selective value relative (- iﬁ Y(1-8,) : 1 : 1+ iu)(l-s ).
2 2 2 1
to the heterozygote ;

1. ALGEBRAIC APPROXIMATIONS

Change ingggne frequency

The end result of a single generation of such artificial and
natural selection will be a change in frequency of allele A1 given by
8q + 2q(1-q)
+ (s,+8,)q(1~q) (q=q)

- 33 (8,48,)q(1-0) {q+3(1-29)} 1)
where q is the equilibrium frequency of allele A1 vith natural
8,
selection alone in & large population, and is given by q = T in
172

the usual manner. The three terms of equation (1) correspond to
artificial selection, natural seiection;and the interaction between
these two forces, in that order.

The conditions necessary for the attainment of a selection
plateau, which is in effect an equilibrium between artificial and
natural selection, could obviously be obtained by setting AqQ = 0 in
equation (1). A far easier, and more enlightening approaéh is to
consider the relative selective values of the three genotypes as a
result of the combined forces of artificial and natural selection.
In a large population the necessary and sufficient condition for an
equilibrium is that the overall selective values should exhibit over-

dominance. This will occur when (1 + i;)(l - sl) < 1 which gives
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irmediately the condition for equilibrium between artificial and natural
selection as 8, 2ia + Such a conclusion makes sense when it is con-
sidered that the direction of artificial selection in this model is

in favour of the homozygote AIAI' Natural selection can only produce
an equilibrium, or selection plateau, when it transfers maximum over—
all fitness in the presence of artificial selection from that homozygote
to the heterozygote. It is to be expected then, that the only para-
meters of importance in determining whether or not a selection plateau
will result, would be the strength of artificial selection and the
natural fitness of the homozygote most favoured by artificial selection,
This indeed turns out to be the case. Such an equilibrium is bound

to be stable in a large population, since it arises out of a simﬁle
overdominance situation. The frequency of allele A1 at the plateau}

can be written as

-~ (8 +92) q (2~ia) + ia
Gl+82) [2+1a(1-27) ]

which can have a value anywhere between q and 1, depending on the re-
lative strengths of natural and artificial selection. If 4 does
equal unity then there is no longer a plateau due to opposing natural
selection but rather a plateau due to fixation of the favourable
allele and hence exhaustion of genetic variance. Conversely, an
equilibrium gene frequency less than unity correspoeda to what might
be called a bre—fixation plateau at which segregation still occurs and
hence genetic variance still remains. Because the value of 4 depends
solely on the relative strengths of natural and artificial selection,
it follows that it should be possible to break through any such pre-

fixation plateau by increasing the strength of artificial selection.



2 S-’o

This could be most easily achieved by increasing the value of i,
the intensity of artificial selection, if reproductive excess is

sufficient.

Change in the mean of the metric character

The metric mean of thé population is %»(Zq = 1) when the geno-
types are in Hardy-Weinberg equilibriuﬁ. A change in gene frequency.
of Aq will therefore resul€ in a corresponding change in-the mean of
the metric character given by .

bx = 3 [2(q+8q) = 1] = (2q-1]

= alq |
providing that ;he measurement of ph;notype‘ié carried out prior to
any action of natural selection. If some of the natural selection
has already occurred prior to measurement, the genotypes will no
longer'be in Hardy—Wainberg‘equilibrium and.the above relationship
between change in gene fraquency and change in metric mean will no
longer hold. Therefore, when discussing change in the metric mean
as a result of artificiai selec:ioﬁ in the presence of natural
selection qonsideration must be.limited for the time‘being to natural

selection which occurs between measurement of an individual and con-

ception of its progeny.

Relaxation of artificial selection

Robertson (1956) introduced the parameter S which he called

the homebstg;ic strength of a character and which he defined as

- 17171
§ = TR,
i
where . . 3132
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and

k, = | a.zq.(l-q.) .

i i i
1-Si is then. the average fitness of the equilibrium population relative

to that of the heterozygote at the ith locus, and the homeostatic
strength is simply the mean of the Si, weighted according to the pro-
portion of additive genetic variance contributed by each locus. In
the same paper, Robertson was able to aﬁow that S could be estimated
by observing the change in metric mean resulting from one generation
of relaxation in a large population after artificial selection has
altered the mean by an amount Ax. For a single locus, the change in
metric mean resulting from a single generation of relaxation at
generation t will be

Ry = a(s;+s,) q (1-q) (E;qt)
where q, is the frequency of allele Al after t generations of arti-

ficial selection. But

1%, - =
S = ;;:;;' - (81*82) q(1-q)

vwhich gives

R, =a = q, (1-q,) (E-qt) ’

a(1-q)
and therefore
R -
1 q(1~) . _8q
® — 2
§ Ax qt(l-qt) (!—qt) ' . @

This expression can be simplified by making the likely assumption

that the population was at equilibrium with natural selection before
artificial selection was commenced. . In this case Aq -(qt - q) which
gives

R a-9)

% T m e ) (3)
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R
and |s|-|-E| (&)

proyiding artificial selectiﬁn has not altered gene frequency too far
from the original equilibrium value. Equation (4) was firet derived
by Robertson (1956) using a different approach: the conditions under
which it is likely to be useful are now quantified in equation (2).

R
In ‘particular, -l-vill be a reasonable estimate of S only if reélaxa-

Ax

tion is carried out in one of the early generations of artificial
selection, before qt(l-qt) has altered very much from E(l-a). Even
if this condition is met, a number of replicate selection/relaxation
lines would be necessary in practice to obtain a useful estimate of
S, because of the large sampling variances inevitably associated
with single estimates of Ax and Rl'

It was noted above that the onlylimportant parameter of homeo=~
static natural selection in the context of artificial selection is 8y
the natural selection coefficient of the homozygote most favoured by
artificial selection. Since 8, = S/q, the same purpose can be
aphieved by using the parameter S to describe the strength of natural

selection, so long as the associated equilibrium gene frequency q is

also mentioned.

Chance of fixation

It is well known that the change in gene frequency distribution
with time in a finite population of size N under a continuous model

can be described approximately by the Kolmogorov forward equation

2 q (1-q )¢
) ) o ; ]
- Py T T} [¢*aq) (5)

where ¢ (q,t) represents the distribution of gene freqnency at time t,
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given an initial frequency q, In the current model, Aq is the
change in gene frequency resulting from artificial selection in the
presence of natural selection. By following Kimura (1957) and
solving the associated Kolmogorov b;ckward equation for t = o, it is

possible to obtain
o!% f(d)dy
ofl £¢) ay

ulgy) =  (6)

where

£() = exp[=2Niay + ZN(sl*sz)(y-a)2+ N(sl+92)ia{2y& +‘y2(1-

T 0 T

29) 11 ,J

and where “(qo) is the chance of fixation of allele A For the

1°
present model u(qo) is best thought of as the proportion of loci ex~
pected to be fixed for the favoured allele within one line, or the
proportion of lines expected to be'fixed for allele A1 in a replicated
selection programme. Equation‘(6) reduces to the relevant equations
of Robertson (1960) and Robertson (1962) for artificial selection
alone, and natural selection alone, respectively. For Nia<l and

N(sl+32)<1, an expangion of equation (6) gives
S ia 8,%8,
\/qud) = 9, * 2Nq (1-q )= + 2Nq_(1-q ) —5—=(3q-1-q )

g.+8
- W (1mq) 252 12 1eGeq_ =214, . (D)

Consideration éf this expression and indeed the whole topic of this
model can be simplified by assuming as was done in ﬁhe previous
section that the population was at equilibrium with natural selection
before artificial selection was commenced. Thus it is now being -
assumed that homeostatic natural selection was acting #n a large
population maintaining the large-poputation equilibrium frequency of
4. At the commencement of artificial selection, a finite sample of

individuals was withdrawn at random from the large population, giving
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E [qol - a. Unless otherwise stated therefore, during the rest of
this study it will be assumed that qo-a.

| By neglecting the inteiaﬁtioq term, which will be considerably
smaller than either of the other two terms in N, and by substituting

S = (81+32)a(1—3), the expression for chance of fixation now becomes
u@ = 3+ 230-9 2+ 2n s (25-1) ®
7273 :

The term representing artificial selection is always positive thereby
indicating that any form of artificial selection will tend to increase
the chance of fixation above the equilibrium and initial gene frequency
of H, as would be expected.

On the ther hand, the term for natural selection can be positive
or negative, depending on whether q is greater or less than 0.5, It
can be seen from equation (8) that heterozygote superiority for fitness
in a small population will decrease the limit to ‘artificial selection
only if‘a<0.5. Conversely, if the allele most favoured by artificial
selection is at an initial and equilibrium frequency of greater than
0.5, then heterozygote superiority for fitness in a small population
will increase the chance of fixation above that expeéééd fc&m artificial
selection alone.

This conclusion follows directly from Robertson's (1962) study
in which it was shown that heterozygote superiority alone in small
populations exerts essentially a twofold effect. The first and ob~-
vious effect is to decrease the rate of loss of heterozygosity
(although it even fails to do this for equilibrium frequencies outside
the range of approximately 0.2 o 0.8). Equally important, however,

is what could be called a directional effect imposed on gene frequency
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by heterozygote superiority in which the least frequent allele de~
creases in frequency over generations, gltimately having a lower chance
of fixation than that expected with drift alone. In other words,
heterozygote superiority alone in aﬁall populations results in the
preferential fixation of the allele which forms the fitter of the

two homozygotes. This directional effect is absent for q = 0,5 be-
cause in this case both homozygotes are equally fit. Graphs showing
the way in which heterozygote supefiority decreases the frequency of
the least frequent allele during the intermediate generations of
selection have been presented and explained by Hill and Robertson
(1968).

It would appear then, that if q >0.5 natural selection will al-
ways be aiding and never hindering the ultimate results of argificial.
selection, in which case a plateau due to conflict between artificial
and natural selection could never be expected. .This conclusion be-
comes more apparent by considering that artificial selection is
attempting to establish homozygosity for the favoured (with respect
to artificial selection) allele. If q 0.5, then this favoured
homozygote will also be fitter (with respect to natural selection)
than the other homozygote, and artificial selection will simply be
accelerating and exaggerating a process which was inevitable in a
small population under homeostatic natural selection anyway, namely
the preferential fixation of the allele which forms the fitter of the
two homozygotes.

The curves in figure 1, obtained from equation (6), illustrate
the effect of heterozygote quperiori;y for fitness on the chance of

fixation due to artificial selection. The effect of natural
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selection is expressed in terms of S which, as we have noted earlier,
is a biologically meaningful parameter which can be estimated re-
latively early in a selection programme.

A word of explanation must be given on the use of S alone as
the parameter of natural selection. Substitution of equation (1)
for Aq into the diffusion equation (5) and multiplying throughout by
N would lead to the conclusion that the change in the gene frequency
distribution could be described in terms of Nia and N(sl+sz) if the
time scale were to be measured in units of t/N. Since
S= (sl+sz)a(1-a), and q (1-q) is a constant, the‘above statement is
equivalent to saying that the whole process can be described in terms
of Nia and NS. The big disadvantage however, of using NS in the
present context is that it completely obscures the fact that S has
very definite and, as it so happens, very convenient maximum values
depending on H.

Consider for example; q = 1-q = 0,5 which gives S = Z§3 since
for q = 0.5, 8, =8, =8, S will obviously be maximum when both
homozygotes have zero fitness (s=1), giving maximum S = 0,5 = q = 1-q,
For q other than 0,5 the maximum value of § must reflect the gituation
in which the least fit of the two homozygotes has zero fitness, By
expressing S in terms of the equilibrium frequency q and the selection
coefficient of the least fit homozygote, S can be written as qsl, and
(l-q)s for q <0 5 and q‘>0 5 respectively, Setting 8 = 1 and 5, = 1
in turnm, to give the relevant homozygote zero fitness, it can be seen
that the maximum value of S is q for q<0.5, and 1-q for ¢>0.5. Of
particular interest in the context of artificial selection is the case

in which q<0.5 and § = q because this describes a situation repbtted
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several times in the literature, where artificial selection favours an
allele which is lethal or sterile when homozygous (see for example,
Clayton and Robertson, 1957, and Hollingdale, 1971)., Another advantage
of the use of S alone will be brought out below in the discussion of the
matrix results, where it will be shown that a description in terms of S
rather than N5 enables more fruitful predictions to be obtained. Finally,
it can be shown by a simple anﬁlysis of variance (see Appendix I) that
over three population sizes (5, 10 and 20) and with four strengths of
natural selection combined in all possible ways with four strengths of
artificial selection, more than 85% of the variation in response can be
accounted for by describing the selection process in terms of Nia and S.

Returning now to figure 1, it should be noted that the three curves
representing ne natural selection (S?OZ) correspond exactly to the rele-
vant curves in figure 1 of Robgrtson (1960). A%id ;; long as artificial
selection is carried out prior to any natural selection, then the value
of the metric mean at the 1limit could be represented on the same scale as
chance of fixation, because only additive gene action for the metric
character is being considered., Included in figure 1 is an example of the
way in which homeostatic natural selection actively favours the effect of
artificial selection at the limit for alleles with equilibrium frequencies
greater tham one half, in this case 0.7; The curves for q, = E = 0,5
illustrate that artificial selection will be ppposed by natural
selection if both homozygotes have the same natural fitness. The
reason for this again derives directly from Robertson (1962), who
showed that although the directional effect on gene frequency is absent

for q = 0.5, retardation of fixation for either allele is at a



maximum for this equilibrium frequency. Natural selection in this
situation is acting therefore by favouring heterozygosity and would
be expected to oppose artificial selection. The situation for €<O.S
(in this case 0.1) brings out another point which can also be deter-
mined from equation (8), namely that it is conceivable that natural
selection may exert a stronger influence than artificial selection in
which case the chance of fixation will be less than the initial and
equilibrium frequency, if g<0.5. While such a result is unlikely to
be achieved in practice for a number of loci, it does emphasise that
the end result of the interaction of artificial and natural selection
is quite simply a function of the relative stiengths of each force.

It can be concluded from ;he graphs that natural selection’
will not seriously -f£fect the ultimate results of artificial selection
unless S is of the order of 0.05, or even greater for genes with inter-

mediate initial frequencies.

Total advance in the mean at the limit

The effect of natural selection on the limit to artificial
selection can be further analysed by considering the total change in
gene frequency [u(qo)-qol vhich corresponds to a total change.in metric
mean of£fa[u(qo)-q°]; This can be written as LAH’ for the expected
advance of the metric mean at the limit under the combined effects of
Artificial selection and the Epmeostatié'model of natural selection,
Eqﬁation (7) can be rewritten as

ulq)=q, = Niaq (1-q_)(1-W)

8,+8
—2 & (23-1)-1) : 9)

where, for 9, = a, W= %S -



34,

which gives & 2NAG (1-W) (10)

Lan
where AG is the change in metric mean in the first generation of

artificial selection alone, being estimated as a i%-qo(l-qo).

Under assumptions Qimiigr to those used here, Robertson (1960)
predicted that the total advance at the limit due to artificial
selection alone will be 2N times the change in the first genmerationm.
Equation (10) shows that this prediction will be altered by a factor
1-W in the presence of homeostatic natural selection. From equation
(9) it can be seen that initial and equilibrium gene frequencies of
0.5 will give W = 25, while relatively low frequencies will produce
values of W well in excess of 2S, It is reasonable therefore to
take

L,y = 294G (1-25) (11)
as a maximum estimate of the advance at the limit to artificial
selection in the presence of homeostatic natural selection.

This equation however, is limited in usefulness by the
assumptions inherent in its derivation, some of which have been des-
cribed above. More importantly, it applies only to advance at the
limit when total fixation has been achieved. On the other hand, it
is obvious that the homeostatic model of natural selection may produce
a plateau in the relatively early generations of selection, long before
genetic variation has been exhausted. It will be shown later that
the metric mean at such a pre-fixation plateau may not be exactly the
same as the mean represented by LAH’ at total fixation. It remains

to be seen therefore whether or not equation (11) is a useful prediction

of advance in the mean at a prefixation plateau.
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Intermediate generations

Expansion of the relevant transition probability matrix as in
Robertson (1952) and more thoroughly in Warain. and Robertson (1969)
will provide relatively simple algebraic expressions which are adequate
over a limited range of parameter values. For small Nia and N(sl+82)

it is posaible to obtain from equation (1)

E189,,,1 & 9 (1=q) 625 + (3,4,) (@-4-1D) 1 (1Lt

(12)
+ q,(1-q ) (s,+8,) (B=a ) 11 + 2201-29)) -2t
which for 9, = q gives
Bldq,,,) ¢ (33 319 + sG-S ra-40"
(13)

+ SU-D + a2 raSo*

where Aqt¢1 is the change in gene frequency between generations t and

t+l., Equation (12) reduces to

. ia 1.t
ElAq. 4] = =5 q,(1-q ) (1~55)

for artificial selection alone as in Robertson (1960), and to

. - 1t 3.t
E[Aqt*ll & (81""82)*10(1"(10){(!!'5)(1-—2-ﬁ-) + (Q-qo)(l-ﬁ) }
for natural selection alone.

From equation (12) expectations can be derived for the frequency

of allele A1 at time t [qt] and at the limitlq_l1. The former turns out
to be
) -q (i A TR 1Y Y SYRPRUR SR 3
Elg,} = q, + 2Nq_(1-q ) {55 + (8,+s,)(q I~ M-~

3.+, (14)

+ Ma, (1mq ) —2(4- )11 + LZacogih-a-dnt
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while the expression for E [q_ ] is exactly the same as that for u(qo)
in equation (7) as would_be expected. Equation (14) could be used

to follow the course of gene frequency change from generation to
generation during the whole period of selection. However, being de-
rived from equation (12), it too is limited in usefulness to situations
in which Nia<l and N(s1+sz)<1. A more fruitful method of predicting
changes in gene frequency over time involves the use of a transition

probability matrix which will be described in the next section.

Half-life

Equation (14) can be used to obtain an expression for the
half-life of the selection process. Following Narain and Robertson
(1969) the half-life (t,) can be estimated by solving for t in the
equation

u(qo)—qo
Elq,]1 - q, = —5 .

Substitution of the expressions already obtained for E[qt] and u(qo)
eventually results in

AX3 + B* + C=0

where X = e"':.yZN ’
81"‘s ia -
A= —==(~q) + —5(81*8,) 4=q_-a+2qq ) ,
B = 1—; + (81+82)(§-§) - 1—: (s,+s,) >
. 81*82 - . - -
and C= -4[-1—‘23 + —3—0Gqg-q 1) + -1-%(81+32)(2q°q-q°-q-1)1 .

Knowing that X, = { is one possible solution, and utilizing the Newton-

Raphston method to obtain a better estimate, results in

_ Ax3 4+ Bx + C

° 3ax% + B
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which gives

-t/2N - 2A-8
¢ - iy .

Solving for t results in

Eh & N[L.4 + 2A + 8B + 16C)

& 1.4N + N(sl+sz){2q°-1+ia[qo(}i%§£‘* a‘ﬁl} | . (15)
This expression for half-life is only strictly valid for Nia<l and
N(sl#sz)<1. Within these limits it can be seen that the absence of
natural selection results in a half-life of 1.4N generations, as was
first predicted by Robertson (1960). With initial and equilibrium
gene frequencies less than one half, th will be less than 1.4N, this
being a reflection of the decreased limit to artificial selection
resulting from such natural selection. Conversely, with ¢>0.5, it
has already been shown that the chance of fixation will be increased
above that expected from artificial selection alone, in which case it

will take longer than 1.4N generations to achieve half this response.

Change in fitness with selection

The tendency for artificial selection to produce homozygosity
for favourable alleles at loci associated with the character under
selection would be expected under the homeostatic model to produce a
decrease in fitness over and above that which could be attributed to
the average inbreeding at all loeci in the genome, the latter resulting
s?mply from the effects of finite population size. It has not been
possible to obtain a simple expression describing the way in which
fitness will alter with artificial selection in a small population. A
minimum €stimate.of the change in fitness can, however, be obtained by

deriving an expression for the change in fitness due to the effect of
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small population size alone in the absence of selection.

The mean fitness 1t w of a population under homeostatic natural
selection can be represented as

E[Hb] =1-~8
at generation zero, for q, = Z, and

Ef@,] =1-5-E [(s;+,)(a,-D7]

at generation t. Both of these expressions have been derived in the
usual manner directly from the single locus heterozygote superiority
model, in the absence of artificial selection. following the method
used to derive equation (14) it is possible to obtain

E 1 a1-sl2-alyt
Bw, ] =1-sl2- 59"

=1 -5 (1+F)
vhere F is the coefficient of inbreeding which, with random’mating in
the absence of selection, is simply a function of population size and
generation number. The mean fitness at complete fixation (F=1) is
then rather obviously Elwe) = 1-25. & useful way in which to express

the change in fitness as a result of inbreeding and/or selection is to
%
talk in terms of the ratio :E- which is that proportion of the original
w
°
fitness remaining at time t. It can now be seen that this ratio has
"1-S(1+F)
1-8

from small population size) in the absence of artificial selection.

an expectation of for inbreeding alone (which arises solely

Loci at which alleles had been subjected to artificial selection in a

small population would be expected to be more homozygous than any esti-

mate of F for that population would indicate. It can therefore be con~

1-S(1+F)
1-§

original fitness still remaining at a particular generation of artificial

cluded that vill be a maximum estimate of the proportion of
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selection in a small population. Furthermore, the best estimate

available of the proportion of original fitness remaining at complete

1-2S
1-8 °*

artificial selection may have resulted in the fixation of a larger

fixation will be This too will be a maximum estimate because
proportion of alleles which produce relatively unfit homozygotes than

would have occurred simply due to chance with inbreeding alone.

Summagz

1. Only two parameters are of importance in determining whether
or not Lerner's model of homeostatic natural selection will result in
cessation of response to artificial selection. These are the patural
fitness of the homozygote most favoured by artificial selection (1-31),

and the strength of artificial selection (ia).

2. In a large population, a selection plateau will result whenever
ia

g
*ia

3. The naturc of the equilibrium between the two selective forces

is such that it should be possible to break through any such 'prefixation'

plateau by increasing the strength of artificial selection.

4. The strength of homeostatic natural selection (S) can be esti-
mated as the ratio of response in the metric mean following a single
generation of relaxation in a large population (Rl)..to the response in
the metric mean to all previous forward selection (&), but only if
such relaxation is carried out quite early in the selection programme

before gene frequencies have been altered substantially.

5. Since the natural selection coefficient s, can be vritten as S/q,
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the effect of natural selection can be described in terms of S and the

large population equilibrium gene frequency (q).

6. For a single locus, S has a potential maximum value of q for
a<0.5 and 1-3 for a>0.5, and such maxima ¢correspond to the least fit
homozygote having zero fitness. The case in which q, = q<0.5 and
S=q describes the situation where artificial selection favours an

allele which is sterile or lethal when homozygous.

7. At a single locus, and assuming that artificial selection in

a small population is commenced by random sampling from a very large
populetion with equilibrium frequency q such that E [qol = g, heter-
ozygote superiority for fitness in the subsequent small population
will decrease the chance of fixation due to artificial selection alone
only for alleles with initial frequencies. less than one half. Under
such circumstances, the advance in the metric mean at the 1imit for
alleles with initial frequencies less than but close to one half will
have been reduced by a factor 1-2S from its usual expectation of 2N
times the change in the first generation. The reduction will be

greater for alleles which are initially less frequent.

8. The half-life of the selection process will be greater than
1.4N generations for alleles which are initially common (qo = ¢>0.5)

and will be less for less frequent ‘alleles (qo - E<0.S).

9. The proportion of original fitness remaining at the limit weill

1-28
1-§ °

never be greater than
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2., THE USE OF A TRANSITION PROBABILITY MATRIX

Most of the consideration so far has been of the effect of homeo-
static natural selection on the ultimate results of artificial selection,
We have seen the ways in which such natural selection can alter the ex—
pected metric mean at the limit, when total fixation has occurred. But
one of the more important aspects of homeostatic natural selection in
the context of artificial selection is that it provides a possible
reason for the cessation of response -~ a plateau - long before complete
fixation has been achieved. Ind‘ed, such an explanation has often been
invoked to explain the observed lack of response to artificial selection
in the continuing presence of additive genetic variance e.g., Lerner
(1950, 1954), Clayton and Robertson (1957), Roberts (1966b), Verghese
and Nordskog (1968). Under what conditions is such a model likely to
be valid?

Our previous considerations would suggest that initial and equil-~
ibrium gene frequency will be important factors, but we have no idea as
to what actual combinations of artificial and nétural selection are
likely to result in a pre~fixation plateau igia small population. It
would appear that some indication could be obtained by setting Aq=0
and solving equation (12) for t, which would then be the generation at
vhich cessation of response first appeared., However, being an approx-
imation, and being relevant only for small Nia and N(sl+32), equation
(12) represents an ever increasing function in which case Aq will never
be zero. Unfortunately, therefore, a plateau prior to fixation could
never be predicted from such an algebraic approxim%fion.

The problem can be tackled with the aid of/transition probability

#
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matrix, with which it is possible to obtain the expected value of gene
frequency, genetic variance, and other parameters over subsequent
generations under any relevant combination of artificial and natural
selection, The most suitable form of transition probability matrix
for the present model is the one used by Hill and Robertson (1968) who
provided a full description of its derivation. The general theory
involved in the use of such matrices has recently been developed in the

context of artificial selectinn alone by Narain and Robertson (1969).

Derivation of the matrix

From the model described previously, it can be seen that for a
given gene frequency q=j/2N, the proportion gj of each genotype in the

population of parents at the time of their mating will be

8522 = = (1= (1-8,) (1)

r
= -]:- 2q(1~q)
8512 - «q q ‘ o
r
1 2 fo.
8511 * =4 (1=8,) (1+5~)

where r is the proportion of the gygotes which remain to be included as

parents, and is given by
re- (l-q)z(l-sz)(1-%-2)}2“1-:1) + q?(l-sl)(léﬁ) .

The probability of obtaining exactly x A2A2, y A1A2 and z AIAI genotypes

A e e A — e -

(x + y + z =N) in a population of N survivors, glven that there were j A

1

alleles in the population of zygotes in che# same generation can be

expressed as

- N X y 2
fj (x,¥,2) L‘yzxgjzz gj12 gjll ’
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and can easily be evaluated on a computer for all j=0,1,...,2N. It
then follows that the probability“fﬂpjk of obtaining k A, alleles in
a population of N zygotes at generation t+l, given that there were j A1
alleles in the N zygotes of generation t, will be

- z fj(XDYOz) jok = 0,1,...,2N,

2z+y
nk

ij

which is an element of the transition probability matrix U. TIf all

lines are considered, both fixed and unfixed, then U is square of di-

2N = ;
mension 2N+1, and within each row I pjk =1, Fﬁ;letiOn-df the first
k=0 e .

and last row and column, and adjuatmenf of all remaining pjk to obtain
28-1

z p.k-l for each row, will result in a square matrix W of dimension
k=l -

2N-1, which will be relevant to segregating populations only.

Changes in various population parameters

Both matrices are independent of generation because the selective
values used to calculate them are assumed to be independent of generation.
At any generation t therefore, post-multiplication of U or W by a suit-

able column vector v, will result in a column vector v

t expreseing

t+l
the results of that one generation of selection. For the parameters
metric mean (x) and additive genetic variance (aAz). the values of the
vector at any generation will depend among other things, on whéther
natural selection occurs before or after artificial selection.

Consider for example the metric mean, For the present model it
can be w;itten most generally as ;-[fll-fzzl where fll and f22 are the
frequencies of genotypes A1A1 and AZAZ respectively at the time when

metric phenotypes are actually observed, and f11+2f12+f22-1. If arti-

ficial selection is carried out prior to the occurrence of natural
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selection, then the genotypes will be in Hardy-Weinberg equilibrium at
the time of observation, in which case fn-q2 and fzz-(l-q)z, giving
x-§[2q-1] as noted previously. On the other ha@d, if natural selection
has acted prior to artificial selection, then the genotypes will no
longer have Hardy-Weinberg frequencies. 1Instead, the homeostatic

model of natural selection will give

£y, = a2 (=8 /% (1)

2£., = 2q(1-q) /w (2)
and

£, = (1~)2(1-5,) /5 (3)
where

- 2 2
wel 8,4 sz(l Q)
=1-5- (s,4s,)(q=q)°
172
which is the natural fitness of a population with gene frequency q. The
metric mean after natural selection will then be
5 (£

£,,]

11 22

‘ 2 2
- 2 p2g-1+ 55 _ay
2w 1-q q
, a - the

which is equal to i{Zq—l] only if S=0 or q=q., Thus/value of the metric
mean at the time of artificial selection will depend on whether or not
natural selection has already occurred, except at generation zero for
which it has already been assumed that q-a. It is possible to compare
the two extreme cases of all natural selection prior to artificial

selectinn, and artificial selection before any natural selection by a

suitable choice of initial values for the column vector v Por the
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latter situation, the changes in metric mean can be followed by setting

vo(j) - 2(J/2N) -1 ] = 0.0CO.ZN for E

j - 1.....2“"1 fot 1 .

Alternatively, the metric mean after nature} selection and at the time

of artificial selection can be followed by commencing with

Vo(i) = F11(5)"f22(3)

vhere
f1105y = G/ A8 fi s . )
£22¢5) = =3/ =80 i 5 | (5)
and T m1=8 = (s98) (D) . (6)

It should be noted that for the case of artificial selection prior to
natural selection, the metric mean is a simple linear function of the
frequency of allele A1 before anﬁ selection has occurred. Changes in
the metric mean in this situation will therefore indicate changes in
the frequency of allele A1 at the time of conception in any generation.
Turning now to additive genetic variance, it is convenient to
follow Crow and Kimura (1970, section 5.6) and start by expressing the

metric means (and frequencies) of the genotypes A2A AIA and A A, as

2° 2 171
u o+ 3@2, (f22). u +‘5&2f (2f12). u o+ 3&1, (fil) respectively, where

again, £,, + 2f., + f11 = 1. For the present additive model, y,, = =-aq,

) 22 12 and is the overall population an,
Fp == a(q~-4) and;}il - - a(q-l)ﬂ It can then be shown (for example,

Crow and Kimura used the method of least squares) that the additive

genetic variance is given by

2
o, = 2q a a, + 2(1~q) a, a, (N
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where @ = q‘&ll + (l—q)‘yiz
- (I'Q)g' 9 v
a) = [f09; * £, yppl/a
f f
11
(lq)2[2—+2(§qq1_ql ’
az =q Yiz + (1-q) ’YZZ
a
B3 w=» ?2 ®
and a, = [f 2 + f22y22]/(1 q)
f f
a 12 22
[ TN - 2 - g .
q ; [2(q~4) IO I 1

The above relationships indicate that @, and a, are the average effects
(Falconer, 1960), wvhile Crow and Kimura (1970) have called a, and a, the
average excesses, of alleles Al and Az respectively., If the population
is observed when the genotypes are in Hardy-Weinberg proportimns, then

Land £, = q(i- ¥yl ¢
12 - 4 q
11°?K/g1v1ng al = ml or example, in which case

g 2 = 2qa

2 2
o, + 2(1—q)a2

1
2 .

= %5 a(1-q) (8)

as expected. In the context of the present model, however, if natural

selection has occurred prior to artificial selection then the additive

variance actually observed at the time of artifi¢ial selection will be,

from (7)
2 f £ £
2 a 11 2 12 22 ;
o, ==z a(l-q)[2(1 q)—-q + 4(4=q) =y ¢ 29r5g) (9)



where fll’ f12 and f22 are given by expressions (1), (2) éﬂdr(B): _fhé two
extreme situations can once again be represented by a suitable choice

of initial values for the colummn vector Vo When artificial selection
is carried out prior to the occurrence of any natural selection, it can
be seen from (8) that changes in additive genetic variance observed at

the time of artificial selection can be followed from generation to
generation by setting

Yo(5) = 3 9 (1=3/ ) .
On the other hand, if all natural selection has occurred before artificial
selection, then the additive genetic variance actually observed at the
time of artificial selection in any generation can be.determined by

\s/elzglngiq =" Vj)/ENl‘/and commenciAng with

f 2 f
- q(-9) (212200, 2l 5 224,
Y(3) |
where fll(j)' f22(j) and ;(j) are given by expressions (4), (5) and (6).

Yo(§)

It must be emphasised that the end result of the interaction of
artificial selection and homeostatic natural selection within any one
generation is the same irrespective of when each type of selection occurs.
Reference to the generalised derivation of selection coefficients for
artificial selection in appendix II shows that these coefficients depend
only on the deviation of the phenotypic mean of each _homozygote™ from
that of the heterozygote, the intensity of artificial selection (i) and
the phenotypic standard deviation (qp). They do not depend on relative
frequencies of genotypes, nor do the;/depend on the amount of additive

genetic variance present. If we assume therefore, that homeostatic

natural selection will cause negligible alteration to the phenotypic
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variance within a generation, then the selection coefficients due to
artificial selection will be the same irrespective of the stage or
stages of the generation at which natural selection occurs.

Consider for example, selection occurring in the following

manner -
Axhy A4, A4
viability from conception r
to maturity (1—92)p : 1 : (l-sl)
- artificial selection l—i% : 1 : rfl*l%
adult viability, mating 1- 1-r
ability and fertility (1-52) P, 1 : (l-sl)

For any values of the proportions p and r, the dberali selective values

of the three genotypes after all selection will be

spadpH 2 1 amspasdy
a8 has been assumed throughout this study,

The reason for looking at the two extreme situations is that all
conceivable intermediate situations involving some natural selection
prior to, and further natural selection following artificial selection,
must lie somewhere in between the results predicted for the two extreme
cases,

Another parameter of interest in the present model is natural
fitness, and it is possible to predict the absolute fitness of the pop~

ulation at any generation by starting with

Yoy = 17 S = (8;48,) (i) :
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Changes in the distribution of gene frequencies

Pre-multiplication of the matrix H by a row vector % of order
2N+1 with all elements zero except the jth which is unity, wiil produce
1 describing the distribution of gene frequencies at
generation 1, inﬁluding the probabilities of fixation and loss, given’

a row vector w-
- .

an initial gene frequency of j/2N. Continual pre-multiplication of U

by w will provide the gene frequency distribution at all .subsequent

generations,

3. THE PATTERN OF RESfONSE TO SELECTION

The matrix aperations described above have been carried out with
an effective population size of N=10 for t=8N generations with various
combinations of artificial and natural selection. This has enabled
curves to be dtawn'showing the way in which various population para-
meters alter during the selection process. The final generatién was
chosen as t=8N simply because it represents a convenient multiple of N,
and corresponds to almost all (in this case 98.2%) of the inbreeding
process for a locus with neutral alleles. In addition, it represents
a period of selection longér than most expefiménts reported in the
literature, and thus should include all periods of relevance to practical
selec;ion programnes.

An effective population size of N=10 was chosen because it re-
presents a realistic value of N when compared with most of the artificial
selection experiments reported in the literature, and also because of its
arithmetic convenience. Several analogous runs‘were carried out at N-S‘

and N=20, in order to check the gemerality of conclusions drawn from the
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Figure 2, The change in freQﬁency distribution of allele Al_during~the course of artificial selection
in favour of that allele, with no natural selection (S = 07) and with natural selection corresponding
to S values of 8,47 and 16.8Z. Curves are drawn for various generations, expressed in terms of

effective population size, N, In this example q, = g = 0.3 and Nig = 8.
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majority of runs at N=10. Differences in detail were of course observed,
but the general trends and overall predictions observed and obtained

from N=10 were still evident in the other runs. An analysis of the
corresponQence between analogous runs at different population sizescan

be seen in Appendix I.

Changes in gene frequency distribution

An initial understanding-of the interaction between artificial
and natural‘selection cén best be achieved by considering the changes
of the gene frequency distribution during the selection process. An
example of the way in which various strengths of natural selection
can alter the effect of artificial selection is given in figure 2,
which shows for one strength of artificial selection and three strengths
of natural selection, the shape of the frequencypdistribution of allele
Al at various generations during the selection programme,

With no natural selection (S=02) the distribution moves quickly
towards fixation of the favoured allele which is completely achieved
soon after generation 3N. An intermediate strength (S=8.4%) of natural
selection slows down the progression of ;he distribution, postponing the
attainment of total homozygosity until much later, around generation 6N,
Still stronger natural selection (S=16.87) produces a distinctly non-
linear steady-state representing an equilibrium between natural and
artificial selection which is reached as early as generation N. Fixa-
tion and loss occur at a much reduced rate from such a steady state,
More Al alleles will be fixed than lost simply because the mode of the
steady state distribution is at a point greater than 0.5. The mean

gene frequency will therefore continue to increase slowly, in spite of
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a stable equilibrium between natural and artificial selection. This,
then, is a stable equilibrium which does not appear as a selection
plateau. On reflection, such a result would be expected for any
situation in which a stable equilibrium is reached at a gene frequency
above one half providing that the steady state distribution is reason-
ably symmetrical, Simila;}y, if a stable equilibrfum steady state is
reached at a gene frequency of less than 0.5, the mean gene frequenej
and hence metric mean may actually decrea;e, because now the mode of
the steady state distribution is closer to loss of the faYééﬁgd'511eié
than to fixation.

The one exception to this conclusion will be associated with very
strong natural selection, of the order of q for equilibriﬁm frequencies
less than one half anafl-a for those greater thaﬁ 0.5. Natural
selection of this strength confers effectively zero fitness on the
homozygote of the most favoured allele, and the least favoured allele
respectively, in which ;ase fixation of the relevant aliele is effect-
ively prevented. Since artificial selection has as its aim the
fixation of the favoured-allele, the latter‘situation of S<1-q for .
9>0.5 will be assisting rather than hindering grtificial se@ﬂction.

It is therefore only in the case of very strong natural selection on
alleles with initial and equilibrium frequencies less thﬁn one half

that a stable equilibrium with a stable;geng frequency could be expected.
Even this type of equilibrium would eventually produce a decrease in
gene frequency and metric mean because fixation, which is inevitable in
a small population, will essentially be‘of only the homozygote with

the lower metric mean. The generations at which such a decrease'in

mean is likely to be observed however (for example, some time after




METRIC MEAN

ADDITIVE VARIANCE

0.7

o
o

0-31

011

(o}

Figure 3, q_ = a = 0.1, Expected response in -metric mean and change

in additive genetip variance resulting frgmvartificial sélection in

a population of effective size N, during Sﬁlgenerations, with natural
selection océurring before (dotted lines) of éfter (solid lines)
artificial selection. ' Curves are drawn for various strengths (S) of
ﬁatural selection, with relatively weak (Nio = 1) and relatively
strong (Nia = 8) artificial.selection. The scale for metric mean x
is drawn as z3-‘+ ! so as to also represent gene -frequency for the
solid lines, . Similarly additive variance o
20 Az

—=T §0 as to also represent heterozygosity for the solid lines.

2 .
K’ is shown on a scale
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generation 10N) are hardly likely to be the concern of a person carrying

out an artificial selection programme in large animals.

Chagges:in metric mean and genetic variance

The effect of the interaction between artificial and natural
selection on the metric mean is illustrated in figufes 3a, 4a, 5a and 6a,
while the correséonding changes in addifive genetic variance are shown
in figures 3b, 4b, 5b and 6b. For the ca;e,of artificial selection:
prior to natural selection (solid lines), tﬁe graphs for metric mean
also indicate frequency of allele A1 at conception, Similarly, the
solid lines in figures 3b to 6b indicate heterozygosity at conception
as well as additive genetic variance. In either case, the graphs for
additive genetic variance also indicate total genet1c variance because
of the addxtive model being considered here.

It must be emphasised that ‘the graphs in figures 3a to 6a cor-
respond exactly to the curves 80 often used in the reporcinq of results
of artificial selection programmes, namely selection response against
time in generations. Fﬁ:thermo:e; because the transition probability
mgtrix is always expressed in terms of expected values, there is no
saméling variance around the response cu¥ves obtained from it, Oély'
one run of the computer for each combination of artificial selection
and natural selection is néeded, as there is no stochastic element at
all in the actual computer manipulations. The. response curves re-

' present theééfore the result which would be expected for the mean of a
large number of replicate selection lines for one locus, or the mean
reéponse to selection for a quantitative character determined by a

large number of independent equivalent loci within one line. It is
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Figure 4. a4 =q =,O..3. Expected response‘bin metric mean and change
in additive génetic 'V&ria’nce resulting from ~,\artificia1
.v-se'lect‘:ion in a pdpulation. of effective size N, during 8N
generations, with natural selection occurring before
(dotted lines) or after (solid lines) _art.if'i:—é:ial selecjtfion.

Curves .are drawn for various strengths (S) of natural

selection, with artificial selection of Ni'a_=8. ‘The scale

. . X :
for metric mean x is drawn as E/‘F } so as to also represent
gene frequency for the solid lines. Similarly, additive

. . A
variance 0, 1s shown on a scale of,—z‘g— so0 .as to also

represent heterozygosity for the solid lines.
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important to note that unless otherwise stated, the values of population
parameters so obtained refer to the average over all lines, or all loci,
including both those that have already reached fixation and those that
are still segregating, at any particular generation. Allan and
Robertson (1964), being the first to make use of transition probability
matrix multiplication on a computer in the study of artificial selection
in small populations, have discussed the implications of this method in
more detail,

In general, it can be seen that the changes in metric mean and
genetic variance follow the same trends irrespective of what stage of
the generation natural selection occurs, The effect of any natural
selection prior to artificial selection is most commonly to reduce the
metric mean as obgserved at the time of measurement by a relatively
small and fairly constant proportion., The same conclusion applies
in general to additive genetic variaﬁce, at least for relatively weak
natural selection. Howevér, reductions of over one half in the variance
actually observed can be seen for very-;trong natural selection prior
to the time of observation, especially at intermediate initial gene

frequencies, I by

—

Of particular interest are the dotted lines for S-fai‘and 307
in figures 3a and 4a respectively, as these represent the situation in
which the allele most favourea by artificial selection is lethal when
homozygous. The progress of such alleles is seen to be similar to
that followed at loci where the favoured allele is sterile when homo-
zygous (solid lines for S=10% and:BOZ). In either case, the metric
mean is prevented from being moved away very‘far from its ériginal
value and may even decrease due to chance fixation of the alternative

allele.
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Because of the overall similarity in trends for natural selection
occurring before and after artificial selection, the following dis-
cussion will be mostly in general terms, not necessarily distinguishing
between the different possible stages of occurrence of natural selection.

Looking now more closely at the curves for q, - a‘- 0.1 and re-
latively strong artificial selection (Nia-B) it can be seen that, in -
‘the abserice of natural selection (S=0%), a plateau is reached féirly D
early in the selection programme, at around generation 3N, Reference
to figure 3b shows that this plateau is due to exhaustion of genetic
variance, because of complete homozygosity. The ‘fact that the final
gene frequency is around 0.9 indicates that approximately 10Z of lines,
or loci, were fixed for the wrong allele because of small population
size. Even higher values of Nia would therefore have been needed to
achieve complete fixation for the favourable allele alone, in which
case the frequency of the favourable allele at the limit would have
been unity. It can bé seen from the curve for Nia=8 and S=0% that it
is quite possible to run out of genetiy variance and thus reach a |
fixation plateau relatively early in a selection programme., The curve
for Nia=8 and S=24% indicates that weak natural selection decreases
the rate of selection advance and hence postpones but does not prevent
the attainment of a fixation plateau._ The ultimate limit is not re-
duced, Stronger natural selection (S=5%) causes a further decrease
in the rate of selection advance and also decreases the ultimete limit,
vhile the maximum possible strength of natural selection (S=10%) pro-
duces a prefixation plateau at which much genetic variance remains as
early as generation N,

The continual advance in the metric mean and gene frequency for
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Figure 5.

q, =‘a-= 0.5. Expected response in metric mean and change

in additive genetic variance resulting from artificial
éelection in a population of effective size N, during 8N
generations, withﬂnatural’selection occurring before
(dotted lines) or after (solid lines) artificial selection.
Curves are drawn for varigus strengths (S) of natural
selection with arfificiil selection of Nia = 8. The scale

e X
for the metric mean x is drawn as 7 + % so as to also

2 0
represent gene frequency for the solid lines. Similarly
. 5 62
additive variance © is shown on a scale of 2 A SO as
A =

to also represent heterozygosity for the solid lines.
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S=5% is due solely to continual fixation of the more frequent allele.
Indeed it has been found that in this case the gene frequency in se~
gregating lines has actually reached an equilibrium value of 0.614
corresponding to a steady state frequency distribution at about
generation 2,5N. This then is an example of an equilibrium between
artificial and natural selection which does not appear as a selection
plateau. Likewise the eventual decrease in mean with S=10% is due
to the inevitable fixation of allele Az, since the homozygote A1A1
now has zero fitness. Again it has been found that the frequency
of allele Al in those lines still segregating has remained comstant
ever since the plateau first appeared..

The associated changes in genetic variance illustrate the same
conclusions in a different manner. With intense artificial selection
(Nia=8) and no natural selectiom (S=0%), genetic variance increases as
gene frequency increaseq until with gene frequency above 0.5 and with
fixation proceeding quite rapidly, genetic variance quickly decreases
to effectively zero at a time (t=3N) corresponding to the time when a
plateau was observed in the g§pulation mean. Weak natural selection
(5=2{2) simply maintains variance for a slighj3rlonger period prior
to a gimilar decrease to a somewhat later exhaustion of genetic variance,
in both cases a plateau does not occur until total fixation has been
achieved. Stronger natural selection (S=5% and 10%) maintains variance
at a relatively high level for a much longer period, during which time
a plateau has been observed in the population mean. Considerable
heterozygosity and genetic variance will thus be associated with these
plateaux. ‘ For less intense artificial selection (Nia=1) increasing

strength of natursl selection tends to detrease heterozygosity at least
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Figure 6.

a, = a = 0.7. Expected response in metric mean and change
in additive genetic variance resulting from artificial
selection in é population 6f effective sizeﬂsN, during 8N
generations, with natural selection bccurring before
(dotted lines) or after (solid lines) artificial selection.
Curves are drawn for various strengths (S) of natural
selection, with relatively weak (Nia = 1) and relatively

strong (Nia = 8) artificial selection. The scale for

- - X
metric mean x is drawn as = + 1 so0 as to also represent

a
gene frequency for the solid lines. Similarly additive
2 02
variance OA is shown on a scale of ; A so as to also
£y
a

represent heterozygosity for the solid lines.



56.

during the first half of the selection process, but this is only be-
cause heterozygote superiority tends to maintain the mode of the
distribution of gene frequency closer to its original position of
q=0.1 and hgnce to increase the chances of loss of allele Al due to
sampling,

The curves for qo-3=0.3 and 0.5 illustrate that a similar pattern
of selection response and plateau formation results from the whole
range of initial and equilibrium gene frequencies equal to or below 0.5.

It has previously been stated that heterozygote superiority for
fitness will increase the chance of fixation of an allele undergoing
artificial selection, for initial and équilibtium frequencies
greater than 0.5. But alleles commencing at such relatively high
frequencies have a high chance of fixation anyway due to artificial
selection alone., What will be the effect of homeostatic natural
selection on the pattern of selection response of an allele vwhich was
bound to be fixed [u(qo)-ll due to artificial selection alone? The
curves for q;ﬁ=0.7 in figure 6a show that natural selection will retard
the selection advance at such loci, but will not alter the ultimate
result of complete fixation for the favoured allele. Natural selection
in such circumstances would therefore be expected to increase the half-
life of the selection process, in agreement with the earlier algebraic
prediction. If the strength of artificial selection is not sufficient
to produce inevitable fixation of allele A1 however, (Niaw=l), then
relatively weak natural selection is seen to increase the mean at the
limit, as predicted. Relatively strong natural selection (S=307%) is
now still sufficient to establish an equilibrium between the two

forces of selection, and the change in mean which is actually observed
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here is solely due to chance fixation of allele Al in a relatively
high pr;portion of lines. The corresponding graphs for genetic
variance illustrate the range of possible effects of natural selection
(S = 0% to the maximum of 30%) én the chaﬂges in these parameters
brought about by artificial selection. Natural selection is seen

to maintain heterozygosity for a longer period of the selection pro-

cess,

4. PREDICTION OF A PLATEAU

From a practical point of view, it would be tmeful to be able
to predict approximately the generation at which a plateau will first
occur (£), the advance in the mean at the plateau (L) and the pro-
portion of heterozygosity or genetic variance remaining at that time.
An indication of the relative fitness of the population at the plateau
would also be of use. Algebraic expressions which are relevant to
some of thesepredictions have already been obtained. They can now
be tested against the much more general resﬁlts obtained from the

transition probability matfix.

a) Time to reach a plateau

The difficulty in pinpointing the generation at vhich a plateau
first appears, or indeed whether or not a plateau actually exists in
any éurve in figures 3 to 6 is very similar to the difficulty met by
those (for example, Roberts, 1966a) who have tried in practice to
identify a plateau in an actual selection line. At vhat point does
8 decreased ‘rate of selection advance correspond to a plateau?

Realizing that any decision, in theory or in practice, is bound to be
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Figure 7. The effect.of strength of homeostatic natural selectidn
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in terms of effective population size N.~>;Curves are drawn for
relatively weak (Nia = 1) and relatively strong (Nia = 85
értificial selection, The . time scale is expressed in the

-t/ZN'whiéh has a -linear relationship witﬁ

modified form of 1-e
the inbreeding coefficient for neutral loci, It is used here

to provide a better presentation of the trends.
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an arbitrary one, it has been decided here to define a platgau as

or metric mean
that which begins to exist when the mean gene frequencyj rounded to
the second decimal point, has not altered for three consecutive
generations. If such a definition is too conservative, them it will
serve to lessen the apparent effect of natural selection. As it
turns out, the general conclusions obtained from this analysis are
quite robust against alterations in the definition of a plateau.

The effect of natural selection on the time to reach a piateau
is illustrated in figure 7. For ease of presentation of the curves,
time has been expressed in a scale ofiléeft/zﬁ; The x-axis has been
expressed in units of S/E, from O to 1, to enable all initial and
equilibripm gene frequencies to be represented in the oﬂe figure.

With q, = E = 0.1 for example, the scale represents all possible values
of S from 02 to 10%, and for q, = a = 0.3, the corresponding S valueg
range from O% to 30Z. The same scale also applies to initial and
equilibrium frequencies greater than one half, but the maximum value
of S then corresponds to a value of S/q which is less than unity.

With 9, a = 0,7 for example, the maximum value of S (302)'corresponds
to S/E = 0,43, The disadvantage of the scale S/E is that it contains
a parameter q which can not be directly estimated from the population.
It whould be remembered, however, that S/E =8, which is the coefficient
of natural selection for the homozygote most favoured by artificial
selection., It has already been concluded that in large populations
the effect of natural selection on artificial selection can be des~-
cribed solely in terms of 8y It would seem then that the parameter
Sy (=S/q) is the main factor determining the effect of the interaction

between the two selective forces in both large and small populations,

and this is what might have been expected. Since artificial
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selection is attempting to achieve complete fixation of allele Al’
it comes as no surprise to see that the relative fitness of this
homozygote is of crucial importance.

It has been found that the shapes of the curves of ; against
S/q are not exactly the same for all initial and equilibrium fre-
quencies. Even. at S = 0 for example, ; varies slightly with 9,
with ; decreasing as q, increases, this being a result predicted by
Robertson (1960). The results have been summarised in one figure,
however, in the interests of obtaining a generalised understanding
and prediction. The differences between curves for different .
initial and equilibrium frequencies have been found to be differences
in detail only; the {mportant gemeral trend is represented in
figure 7, the curves in which happen to have been obtained from q,
=q=0.3.
| For any initial and equilibrium gene frequency thquffigure 7
shows the effect of natural selection on the time to reach a plateau.
It can be seen that even.in the absence of natural selection (S = O
and hgncg S/q = 0), ; occurs relatively early with strong artificial
selection (Ni® = 8). This is because high values of Nia lead to
complgte.fixationvat a time well before that of ; = * expected for a
locus with neutral alleles. Such a plateau would be due to exhaustion
of genetic variance. Increasing strength of natural selection at
first increases é. because heterozygote superiority for fitness tends
to increase the time required tqlachieve complete fixation. A stage
is reached, hqwgver, at around S/a = 0.3, vhen such natural selection
is sufficiently strong to prolong complete fixation until effectively

t = ®, Any stronger natural selection then reduces t, but now be~

cause fixation has been prevented and thus a plateau has been reached
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due to an equilibrium between natural and artificial selection. In-
creasing strength of natural selection now simply produces an equili-
brium and hence a plateau increasingly early in the selection pro-
gramme. Genetic variance will still now exist at such eduilibrium
plateaux.

With less intense artificial selection (Nia = 1) complete
fixation is never reached prior to : = even with no natural selection.
With increasing strength of natural selection a point is reached, at
about S/a = 0.2, after which complete fixation is prevented. Stronger
natiral selection then produces an equilibrium plateau at ever earlier
generations. It has been found that the results for intermediate
strengths of artificial selection all fall within the two curves
shown in figure 7, which can thus be taken to represent the majority
of sgﬁnations likely to exist in a selection programme.

It has also been found that natural selection prior to arti-
ficial selection sligh:lQ reduces : for any strength of natural
selection. This reduction is sufficiently small however, to enable
the curves in figure 7 to be taken as representative of the effect of

natural selection at any stage of the generation,

b) Advance in the mean at the plateau

For an additive model in the absence of natural selection, and
for Nia<l, Robertson (1960) predicted that the advance in the metric
mean at the limit would be 2N times the change in the first generation,
The ratio 5%25 is thus expected to be unity under the above conditions,
Figure 8 illustrates the way in which homeostatic natural selection
affects the value of this ratio. Natural selection has been ex-

pressed on the same scale as in the previous figure, again to enable
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Figure 8. The effect of strength of homeostatic natural selection
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been drawn for qo = a = 0.3.
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generalised conclusions to be drawn for all gene frequencies from the
;one figure. (The actual data represented in figure SIuN¢§been ob-
tained from q, = q = 0.3).

For relatively weak artificial selection (Nia = 1) the ratio
declines rapidly from uniégas S/q increases until, at around S/q = 0.2
it has a value of about 0.2, It will be recalled that this was the
minidamm strength of natural selection required to produce a pre-
fixation plateau. If a plateau due to opposing natural selection
is observed for relatively weak artificial selection, then the ratio
E%Ké.ia expected to be less than 0.2, corresponding to points on the
curve for Nia = 1 to the right of S/q = 0.2,

Relatively strong artificial selection, represented here by
Nia = 8, can be seen to produce a relatively low value of the ratio
even in the absence of natural selection, the reason for this being
that such artificial selection is sufficient to achieve complete
rfikééiﬁd,bf the favoured allele and hence the maximum value of L,
relatively early in the selection programme, Thus L is "prevented"
from attainiﬂg that value which the reiatively large AG would have
inferred. As naturalvselectinn increases in strength, the ratio
also increases gradually in value until around S/q = 0.3, the point
at which pre-fixation plateaux first appear. For -S/q <0.3 therefore,
L has remained constant at its maximum value; while AG has gradually
decreased due to increasing strength of natural sélection. Pre-~
fixation plateaux occur at ever earlier generations as S/q increases,
thus resulting in a decreasing L beyond S/q = 0.3. The value of the
rationtherefore declines toward a relatively low value around 0.1
very similar to that observed for Nia = 1,

In very general terms it appears that the ratio i%KE'Will always
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be less than unity in the presence of natural selection and will pro-
bably be less than one half at a pre-fixation plateau. It has been
found that an approximate.and simple algebraic prediction to this
effect can be obtained by setting 3§35 - (1-2S)2. This result was
achieved empirically from graphical examination of the results, but
obviously with the algebraic prediction of equation (11) in mind,
The relationship L = ZNAG(I-ZS)2 is drawn in figure 8, in this case
for q = 0.3. 1Its position on the graph will obviously alter with
different q, but it has been found that the relationship provides
quite a useful prediction of the upper limit of the value of 5%36
in the presence of homeostatic natural selection,

As in the previous figure, it has been found that the stage of
the generation at which natural selection acts has very little effect
on the shape or position of the curves. Thus the total advance in
the metric mean at a pre-fixation plateau will usually not be greater

than 2NAG(1-2$)2 irrespeétive of when natural selection occurs,

c) Genetic variance remaining at the plateau

Selection plateaux at which some genetic variance still remains
have been commonly observed in practice. and opposing natural selec-
tion has often been invoked as the cause. The changes in additive
genetic variance as a result of artificial selection in the presence
of homeostatic natural selection have already been presented in
figures 3b to 6b, and some idea as to the time, ;, at whiéh selection :
plateaux occur has been obtained from figure 7. It should now be
possible to combine both these sources of infofmation by expressing
the additive genetic variance at time :, GAZ, as a proportion of the

original additive genetic variance, 0A2‘ This ratio has been chosen



VY 0.75 1.0
0.0 0.25 0.5 . .
’ S/g
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(Nig = 8) artificial selection, -
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5 2
because of its practical relevance, in that an estimate of -étfcan be

o
obtained in principle from any selection experiment. A

Lerner and Dempster (1951, table 2), for example, estimated
heritability from intra-class correlation of sibs. for every generation
of their shank length selection experiment. Associated estimates of
phenrotypic variance then enabled them to estimate oAz from each
generation, , .2

Figure 9 shows the ratio Séf plotted against strength of
natural selection, expressed asAS/E as before., Again, although the
curves actually shown have been obtained from just ome initial and
equilibrium gene frequency, namely 0.3, they represent the general
pattern obtained for all initial and equilibrium gene frequencies.

The main point to note from figure 9 is that, in general, a
selection plateau will have either very little or almost all of the
original genetic variance remaining. It has already been determined
from figure 7, that valués of S/q at least around 0.2 are neceasary
to prevent complete fixation, even for relatively weak artificial
selection, = The curve for Ngaz- 1 in figure 9 supports this

o

conclusion, by showing that géi-ﬁfo if S/q falls much below 0.2.
o

Values of S/a around 0,3 or géeater, on the other hand, are sufficient
to tgsult in almost all of the original variance remaining at the
plateau. The same trend is evident for relatively strong artificial
selection (Nia=8), for which it has already been seen that an S/q
value of around 0.3 is necessary to prevent complete fixation,

The results for S=q indicate that essentially all of the genetic
variance contributed by a locus at vhich the favoured allele is sterile
will remain at a plateau, irrespective of the strength of artificial

selection.
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Finally, it has been founq that the general trends outlined above
apply to natural selection occurring at ad§~stage during the generation,
either before or after artificial selection, Thus selection plateaux
due to opposing homeostatic natural selection will in generai be
characterised by the coniiﬂuing presence of a large proportion, if not
all, of the original genetic variance. It will be seen below (in
section III) that this continuiﬁg presence of most of the original
genetic variance at such plateaux will be reflected in relatively large

responses to subsequent reverse selection,

d) Belative fitness at the plateau

Changes in absolute fitness during the whole process of artificial
selection have been obtained from the matrix results for all relevant
combinations of initial gene frequency, Nia and S. Rather than pre-
senting these as a segies of graphs showing fitness against time, an

attempt has been made to summarise all the important features in one

figure. Consideration will thus be given to the ratio of gl where w
W
o

is the fitness at the limit to artificial selection, and ;b is the

original fitness. The racio% is plotted against strength of natural
(3 ,

selection in figure 10, .
It can be seen that stronger artificial selection tends to decrease
fitness for any strength of natural selection, as might be expected.
»

Of greater interest is the observation that z- is at a minimum when S/q
W

o - * i 4 i d o o ) [ ]
1s just sufficient to prevent complete fixation, i.e. is just sufficient

to result in a pre~fixation plateau. The decrease in'ﬂu-up to this
W
- o
valpe of S/q i3 easy enough to explain. Fitness at any generation in
the homeostatic model i3 a function of the strength of natural selection

(81+82 in this case), the equilibrium gene frequency (q) and the actual
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gene frequency (qt), such that w -;b - (31+82)(qt‘6)2. If t=t then

t
qt-; will be the same for all values of Sla less than that required to
produce a prefixation plateau: the total change in gene frequency

will have been the same in all cases. This conclusion follows from,
say, figure 4a, in which it can be seen that for Sg10% (S/q<0.33), the
only effect of natural selection is to retard the rate of advance.

The final gene frequency is thf same in all cases, Thus for S/q less
than around 0,3, thé value of w will depend only on the strength of
natural selection, expressed in tﬁis case as ’1+32: and will obviously
decrease as s #32 increases, Hence the value of w decreases until S/a

1
is about 0.3, .

The subsequent increase in g; as S/q increases beyond this point
(and as pre-fixation plateaux begin to form) is due to a gréduﬁl de-~
crease in qt-a at the limit, as natural selection becomes incte#singly
able to decrease the total change in gene frequency, Exactly the same
trend is shown for the two relatively extreme values of Nia; so that
the same trend would be observed at all intermediate strengths of
artificial selection.

Is it possible to relate the earlier prediction of %; - %Eégfto
these more realistic results? The curve of %Eég is given in figure
10, in this case assuming that q = 0.3, It is indeed an accurate
estimate for small Nia and small S, buE completely fails to take into

account the relatively high values of §- at pre-fixation plateaux., In

general then, for small Ni« it appears that {::S is an overestimate
;jﬁtﬁqrthan an underestimate of ;»'éa was initially concluded from the

o
algebraic derivation. But at higher values of Ni® it turns out to be

an ‘underestimate.

It has been found that a far more accurate prediction of 5- is
o
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S/q

given by l%:ga, at least for values of S/q less than that required to
1-S/q
-S

achieve a pre~fixation plateau. The curve of is also shown in

figure 10, where it can be seen that this empirically derived curve
follows the curve for Nia = 8 obtained from the computer matrix opera=-

tions, almost exactly untii S/q is approximately 0,3, However, it is
2

¥
wC)

One final conclusion can be drawn from figure 10, and this is to

hopelessly inaccurate as a predictor of at pre~fixation plateaux,
do with loci at which S=q. It can be seen that such loci, at which
the favoured allele is sterile or lethal, do not really contribute to
a decrease in fitness at the limit. This must be mainly because gene
frequency at such loci alters relatively little from what it was ori-
ginally,

It must be emphasised that the whole of the‘above discussion has
been concerned with loci at which artificial selection is attempting
to achieve homozygosity. Changes in fitness associated with overall
inbreeding depression have not been considered. To the extent that
inbreeding depression of fitness might occur if effective population
size is relatively small, the predictions obtained above would tend to
be overestimates: any genezal inbreeding depression of fitness will
tend to lower the curve of ;b against S/E for any particular strength

of artificial selection.

5. DISCUSSION

The remifications of the homeostatic model of natural selection
in the context of artificial selection have been explored in some de-
tail, How well do the implications of the homeostatic model accord
vith results observed in artificial selection experiments where natural

selection has been thought to have played a significant role?
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A logical starting point seems to be a reconsideration of the
selection experiment of Lerner and Dempster (1951) from which the
homeostatic model of natural selection first arose. In an earlier
reanalysis of this experiment, James (1962) estimated L as 1.33, AG
as 0.19 and N as 12 approximately. Thus the ratio 6:‘5%35‘18 rouéhly
0.3, which is considerably less than the value of unity expected for
genes of small effect and/or small population size under an additive

model in the absence of natural seldction. Furthermore, from page 78

[
of Lerner and Demps%er (1951) it can be determined that t = 8 = 0,67N

generations, and?;ﬁz « 1 approximately. Finally, from their table 3,
SA -
it can be concluded that -g- - -§—'-I.;-5.Z)- = 0,66.
° ®

'How well do these results tie in with the implications of the
homeostatic model described above? Firstly, it must be remembered
that this study of the homeostatic model has been in terms of single
loci whereas results of ‘artificial selection experiments must be inter-
preted in terms of at least several loci. The effective value of S
at any particular locus (or unit of segregation) will lie somewhere
between zero and q (or 1-q). Furthermore, this value may alter during
the course of artificial selection as a result of mutation and/or re-
combination. Witness, for example, the appearance after many generations
of artificial selection 'in brosoghilg,.of lethal or sterile genes that
were apparently absent from the base population (Hollingdale, 1971).

In drawing conclusions about the homeostatic model in terms of

single loci, we are describing what happens to pariicular components
of the actual response observed during an artificial selection programme,
To the extent that these components operate independently of each
other, any observed selection response is probably the combination of

the response curves of several loci where natural selection does not
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with intermediate values of S, together -

act (S=0), and other loci mith one or two loci with maximum values of
S. And the latter type of locus may only have commenced its contri-
bution to selection response after many generations of selection.
Considering Lerner and Dempster's results in this light, the
value of the ratio 3%35 of 0.3 is certainly compatible with a model
of homeostatic natural selection opposing artificia% selection.,
Similarly, the ; value of 0.67N generations, and :éf.' 1 are also to
be expected with relatively strong homeostatic natgiél selection opposing
artificial selection. With respect to fitness, it must.be noted that
the curves in figure 10 only give a direct prediction of the overall
population fitness for a single locus, and as such provide only an

upper limit of the actual value of relative population fitness to be

expected where several loci are contributing to the metric character.

»
-

Thus the value of g; = 0.66 observed by Lerner and Dempster is not un-
expected with the homeostatic model.

All the data therefore are compatible with an hypothesis that the
observed plateau was caused by the opposition to directional selection
of homeostatic natural selection.

It remains now to mention two implications of the homeostatic
model which follow from the predictions obtained in this study. Firstly,
it has been seen how the formation of a pre-fixation plateau is simply
the result of an equilibrium between two oﬁbosing selective forces,
and consequently that the plateau can be broken through by increasing
the strength of artificial selection. But if the stronger artificiaIA
selection is still not sufficiently strong to achieve complete fixation,
then a new pre-fiiation plateau, at a slightly higher level of metric
mean vill be expected to result. Even stronger artificial selection

will be required to break through this plateau, and so on. It has
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already been mentioned that the easiest way to increase the strength

of artificial selection is to increase the value of i, which invoilves
decreasing the proportion selected, p. And if the effective population
size is to remain constant, a decrease in p requires a larger number of
of fspring scored, which may not be possible if the overall population
fitness has declined. Thus in practice it may be impossible to break
through a pre-fixation plateau because of an insufficient number of
offspring,

Secondly, it was seen in figure 10 that the relative fitnesaétpi
the plateau was at a minimum at the value of S/q which corresponded to
a strength of natural selection just sufficient to prevent complete
,£§#ﬁﬁion. It follows that some of the loeci which contribute most to
a decline in fitness may not contribute at all to the maintenance of
genetic variance at the limit, It would not therefore be surprising
to find a line undergoing artificial selection for a metric character
of apparent peripheral importance to fitness, in which fitness had de-
- clindd considerably but in which there was no sign of the formation of
a pre-fixation plateau, Indeed it #8 quite conceivable that fitness
in such a line could decline to an extent that the line was in danger
of extinction, whereas had the opposing natural selection been stronger
then a pre-fixation plateau at vhich relative fitness was still quite
high could have resulted.

Thus a significant decrease of population fitness as a fesult of
artificial selection need not necessarily imply that the metric

character concerned is.gﬁffﬁpofﬁant_éaabtive character with respect to

natural selection, a
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6. SUMMARY

1. A study has been made of the effect of homeostatic natural
selection on the limits to artificial selection for a metric character,
The treatment has been in terms of two alleles at a single locus and
the conclusions apply to natural selection occurring at any diploid

stage of the generation,

2. The effect of homeostatic natural selection can be described in
terms of the strength of natural selection, S, and the large population
equilibrium gene frequency, q. S can be estimated as the ratio of
response in the metric mean following a single generation of relaxation
in a large population, Rl’ to the response in the metric mean to all
previous forward selection, Ax, but only if such relaxation is carried
out quite early in the selection programme before gene frequencies have
been altered substantially. It is reasonable to assume that thg gene

frequency at the start of artificial selection is equal to q.

3. For any particular locus at which initial gene frequency does
equal g, a cessation of selection response due to opposing natural
selection (a 'pre-fixation' plateau) in a population of finite size
generally occurs only for genes with equilibrium frequencies equal to or
less than one half, and then only if the value of S/a is around 0,2 or
greater, Values of S/q less than this are not sufficient to prevent

complete fixation and hence exhaustion of genetic variance.

~

4, The generation at which a pre~fixation plateau first appears, t,
is determined by the relative strengths of artificial and natural

a
selection such that t is increased by stronger artificial and/or

weaker natural selection.
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5. The total advance in the metric mean at a pre-fixation plateau
is never greater than 2&(1-28)2 times the change in metric mean in the
first generation of artificial selection, where N is the effective

population size.

6. The time taken to achieve half this predicted response is less

than 1.4N generations,

7. A large'pgﬁgggiion, if not all of the original genetic variance

remains at a pre-fixation plateau.

8. A significant decrease in population fitnese as a result of
artificial selection does not necessarily imply that the metric character

concerned is an important adaptive character.

9, For the particular case of a locus at which the favoured allele

is sterile or lethal (S-E) a pre-fixation’plate;u always results, PFor
that particular locus, the plateau first occurs sometime during the
first N generations of artificial selection and corresponds to a total
advance in the metric mean of less than %-times-the change in the first
generation, At such a pre-fixation plateau, the population retains all
its original genetic variance, and the locus does not contribute to a

decrease in overall population fitness from the fitness that existed when

selection commenced at that locus.

10. It should be possible to break through any pre~-fixation plateau

due to opposing homeostatic natural selection by increasing the strength
of artificial selection if sufficient reproductive excess still exists in
the population. The single exception to this is the situation in which
the favoured allele is sterile or lethal and where artificial selecfion
is already sufficiently strong so ;hac nona of the fertile or viable

homozygotes are gelected,
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II. THE OPTIMUM MODEL OF NATURAL SELECTION

A normally distributed quantitative character with population

mean u and phenotype variance o 2 can be represented by the normal

P
‘probability density function

£(x) » —Le exp [~ --2-(""‘)21
apii;’ 20p

where x is an observation of the metric phenotype on a single member
of the population.,

Consider natural selection to be acting on such a guantitative
character in the manner described by the nor-optimal model of Haldane
(1954), in which the decline in fitness from some optimum phenotype
© follows the shape of the normal distribution. Thus the fitness of

an individual with phenotype x is

P(x) = exp [-K(x=0)) (1

where K is a scale constant directly proportional to the strength of
natural selection., Of the different notations which have been used
in the various studies of this model, by far the most useful appears
to be that of Latter (1970) who_introduced a parameter which he called
the coefficient of centripetal selection, C. It has the logical and
convenient property of ranging from zeroAfor no natural selection, to
unity for absolute selection of the optimal phenotype only., Latter
has shown that C is simply related to Haldane's (1954) intensity of

natural selection (I) by the expression

I ==} log (1=C) when 6 = yu, |

]

e —— " = - — -

which at low strengths of natural selection can be approximated by C=2I,
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In terms of Latter's notation, the scale constant K in equation (1)
C
is equivalent to —
(1-0)20P
To facilitate comparisons with other papers it should be noted

that 012 of Haldane (1954) is equal to oP2 while his azz equals

opz(l-c). Puthermore, -

o 2 6. 2

P I .
OP'O'Of o

in the notation of Latter (1960) and James (1962) where o 2 is a scale

f
constant which is inversely propozg%@gal to the strength of natural
. 2,_ .22 , \ 2KV
selection, and o % +af . In 0'Donald’s (1970) notation, C-T:EEV

vhere V is the phenotypic variance and K is a scale constant equivalent
to zi-zu Bulmer (1971jb, 197lﬁc, 1972 and 19(3) made occasional use
of a garama:er K which, as he noted in his 1972 and 1973 papers, is
exactly the same as Latter's coefficient of centripetal selection.
However, most of Bulmer's work was carried out in terms of a scale
constant ¢ which is equivalent ﬁo 0'Donald's K. (The K used in
equation (1) above'ia identical with 0'Donald's K and Bulmer's c¢).

Finally, Cavalli-Sforza and Bodmer (1971) standardized the distribution

of phenotypes so as to have mean zero and variance unity (OP2 = 1),
and then chose a scale constant 02 such that C = -l-!-.
1

A sample of individuals with phenotypic mean x has a mean fitness
given by
[--]
Y e 5 P(x) £(x) dx
-ty
which becores, after completing the square (0'Donald, 1970; Bulmer, 1972)

-2
% = /IC exp t-cS’z‘—‘%—l . | (2)
g
: P
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For a single locus with two alleles the total population can be
divided into three samples corresponding to the genotypes AzAz, AlAz

and A Al' which are assumed to be additive for the metric character

1
and to be in Hardy—-Weinberg frequencies at conception:

242 M4, !

Relative frequencies (l-q)2 2q (1=q) q2
Mean metric phenotype re- -a +a
lative to the heterozygote -5 (o) -5

The metric means of the genotypes at generation t are u,=aq,,
ut-a(qt-l) and ut-a(qt-l) respectively, where M, is the overall popu-
lation mean at generation t. Thus at generation zero for example,

the relative fitnesses of the three genotypes can be expressed as

AAy Ay A

exp(-z—.(-:f[;lo-aqo‘e}zl : exp[;:%{uo-a(qo-l)-e}zl :expl;-%-{uo-a(qo-l)-e)zl C
o [+ ’ a.

which for low values of C can be written approximately as

1= Soplu maq 0¥ 1 1= Sty caa-0)-0Y 1 1- Sl ca(e-1-0) . G
20P ZoP ZOP ‘

The relative fitnesses in (4) correspond to the quadratic deviation version
of the optimum model in which fitness declines as the square of the de=-
viation of the metric phenotype from the optimum phenotype, €., This is

an illustration of the well known fact that the nor-optimal and quadratic
deviation versions of the optimum model are effectively the same for re-
latively low strengths of natural selection. The finer points of

difference between the two versions have been debated recently by Manly
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(1973) and 0'Donald (1973).
Returning to the nor-optimal version, the relative fitnesses

(selective values) in (3) can be expressed more simply as

A, AA, AN

exp[igﬁi{a(qo~£)+e-uoij T 1 e exp[issi{a(l-qo)*uo'e}l . (5)
) g
P )

1., THE NATURE OF THE SELECTIVE VALUES

The majority of recent studies of the nor-optimal médel have con-

sidered only the case where the optimum pﬁenotype is a certain constant
value, this appearing to be a more realistic model than the alternative
Aone involving a variable optimum. This study will therefore concen-
trate on the case of a constant.optimum phenotype, and only a brief
comparison with the model of a variable optimum will be made towards
the end,

Theiimportant thing to note about the relative selective values
which result from the nor-optimal mﬁdel is that for a single locus
model they will remain constant over time, if the optimum phenotype ©
remains constant. Given a particular strength of natural selection
C and phenotypic variance opz, the relative selective values are deter-
mined solely by the extent to which the phenotypic mean of each geno~
type deviates from the fixed optimum phenotype 6. For a single locuél
model any change in population mean resulting from a change.{n gene
frequency is simply a reflection of an alteration in the relative
frequencies of the three genotypes: the actual phenotypic mean of
each genotype does not alter. A constant fixed optimum phenotype

and a constant mean phenotype for each genotype will therefore result
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in a constant selective value for each genotype, irrespective of
changes in gene frequency and associated alteration of the overall
population mean at that single locus,

The fixed optimum is often taken to be the population mean at
time zero in which case 6 = ¥, for the present study.

An examination of the relative selective values in (5) for 6 = U
indicates that they will be heterotic for all initial frequencies of
either allele between } and {. This is becaude over that. range of
gene frequencies the population mean and hence the optimum is closer
to ﬁhe mean of the heterozygote than to that of either homozygote.

It should be possible to compare these heterotic selective values with
those considered previously in the homeostatic model. The relative

fitness of genotype A2A2 can be expressed as

-Ca2
1 -8, =exp [—5(q ~})]
20P
vhich gives
Ca2
~ -
9 . (q -1
%

for small C. Similarly,

2 _
1=-s8, =exp [;fgf(!-qo)l ' (6)

- and
| 2
~ Ca -
i Sy AP
%

for genotype AIAI' It then follows that

-~ Ca2

2 2
40P

8, + 8

1

In addition
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Figure 1.

The relationship between strength of nor-optimal natural selection, C, and strength of homeo-

static natural selection (S/a = sl). . The three different initial gene frequencies were chos e

SO as to represent almost -the whole range of initial gene frequencies for which selective values

are heterotic with o = Uge
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- 2(q°-§) . (7N
and
S = (5,48,) q (1-q)

Ca2 3
-o-f-lqo (l'Qo) - 1
P

Equation (7) was previously derived for the nor-optimal model by Wright
(1935;8) and Robertson (1956), who discussed its consequences, Briefly,
these are that for a single locus undergoing such selection against a
constant genetic background in a large population, a stable non-zero
equilibrium will eventually be reached providing the initial gene fre-
quency lies midway between the equilibrium’frequency and 0,5, In terms
of the metric character, the fixed optimum phenotype which is the over-
all population mean at time zero, will lie halfway between the population
‘mean at équilibrium and the mean of the heterozygotes. Initial gene
frequencies between }{ and §{ therefore account for equiiibrium fre-
quencies covering.the whole possible range from zero to unity.

It has already been shown that the only important parameter of

S e

heterozygote superiority for fitness in thef§§2§§§g:éf:értificial
selection is the natural selective coefficient of the homozygote most
.favoured by artificial selecfion. For the homeostatic model this
parameter is 81» which equals S/q with values ranging from zero to
unity. What values of this parameter will result from the nor-optimal
modei of natural selection? The values of 8y cofrespoﬁding to various
values of C have been obtained from equation (6) and are shown in
figﬁre l. - The graphs have been drawn for s;-- 1 so as to show some

of the largest possible 8y values for a given C. Smaller, more real-

istic values of %—-would depress each of the curves thereby indicating
P .
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even smaller 8 values for a particular C,

For situations in which the npr-optimal model results in heterotic
selective values it can therefore be concluded, for @ = U, that even
the strongest conceivable strengths of nor-optimal natural selection
at the most favourable initial frequencies will only be equivalent to
relatively weak homeostatic natural selection. A similar conclusion
can be inferred from James (1962). More precisely, nor-optimal

natural selection will never produce an s, value of greater than around

1
0.25 if the optimm phenotype is equal to the population mean at
generhtion zero. This result is not surprising when it is considered
that nor-optimal selection is acting indirectly (on phenétypes),
whereas homeostatic selection acts on genotypes directly.

Finally for 6 = M it must be noted that initial gene frequencies
outside the range of } to { give ;ise to directional selective values
in favour of the homozygote of the allele with initiai frequency greater
thanbi, eventually producing fixation of that allele. This is a simplé
consequence of the population mean and hence optimum lying closer to one
or other homozygote than to the heterozygote for gene frequencies out-
side the range } to 1.

These directional selective values will never be very strong. With
%; = 1 again as an extreme example, the relative fitness of the three
genotypes is approximately, from (5)

A2A2 . A1A2 A1A1

1-3@-bH 1 t 1= 5(-q)

which, for a gene frequency outside the range } to i, say,. 0.1, and for

a relatively large C of 20%, reduce to 1.015 : 1 : 0,935 in favour of
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the homozygote A2A2. More realistic values of E;and C will obviously
result in even smaller differences in fitness between the three geno-
types.

What if the constant optimum phenotype is different from the
population mean at generation zero? Since the relative selective
values are a function of the deviation of the mean of each genotype
from the fixed optimum, then the selective values will be directional
rather than heterotic whenever the fixed optimum is closer to the mean
of either homozygote than to that of the heterozygote. An optimum

phenotype less than that of the homozygote AZA2 for example, would

thus give rise to directional natural selecginn in favour of that homo=-
zygote. 1In such a situation it is more useful to express all the
selective values relative to that of genotype A2A2, in which case they
can be written as

Aty Ahy Ad

20

1 : exp g%?,zga(qo-l) +0 -uo}] : exp [:Eﬁf{a(qo-i) +0 - uo}] .
- #dp “Op

1f, for example, the optimum phenotype is the metric mean of geno-
type A2A2 at generation zero, then € = ¥, - aq, and the relative

selective values become approximately

2 2
. -1 Ca . - 1Ca

1 H 1 F -""-o 2 . 1 T_'E
3 %

which are directional but not additive. - The selective values are
approximately additive only if the optimum is quite some distance from
the population mean. The best way to represent this situation is to

follow Latter (1960) and James (1962) by setting 6 = 0 and u035a in
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which case the relative fitnesses are given approximately as

. ] 1_'1_08"0 i . -Cauo
- 777 - -7
P . P

which are additive,

It can be concluded therefore that relatively weak heterotic
selective values will result if the constant optimum phenotype is closer
to the mean of the heterozygote than to that of either hom§zygote.
Otherwise, the selective values will be directional in favour of that
homozygote whose metric mean is closest to the fixed optimum. | These
directional selective values will be additive only if the fixed optimum |
is several multiples of a away from the population mean at generacioﬁ

zero,

The above results can be extended to any generation by considering
the more realistic situation of several loci contributing to the metric
character. At any generation t, the relative selective vglues at any

one of the bei can be written as

AA, AAy ' AA

20

- C_ -
exp{__cz{ut-aqt-e}zj : en(ﬁut-a(qt-i)ﬁ}Z] : exptz_gi(“g'a(qt"l)-elzl
c. o

P _

where q, is the frequency of allele A1 at generation t at ﬁhat locus.
The selective values are no longer constant but vary from generation to
generation, because v, (the overall population mean) is altered by
changes in gene freguéncy at the other loci.

Making direct use of the previous results it can now be concluded
more generally that heterotic selective values will result at a given

locus only if the constant optimum phenotype is closer to the mean of
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the heterozygote than to that of either homozygote. For this to be
so at any generation t, © must in fact be equal to or not very differ-
ent from Mes because M, always lies somewhere between the means of the
two homozygotes if gene action is additive. Otherwise the selective
values at any particular locus will be directional in.favour of that
homozygote whose metric mean is closest to the fixed optimum. These
directional selective values will only be additive if © is several
multiples of a away from Mo

The;ﬁéméigder of this study will éoncentrate on the case of
several loci contributing to the metric character. Thus, although
natural selective values will be expressed for only one locus, they
will be considered to have arisen as a result of selection at all loci
contributing to the metric character, in which case the natural selective
values for any one locus at generation t will be a function of the gene
freqnency’at that éarticular locus P and the overall population mean
Ut.
2, ARTIFICIAL SELECTION VERSUS NOR-OPTIMAL NATURAL SELFCTION

The effect of artificial selection can now be superimposed on this
model of natural selection. Before doing so, however, it must firstly
be mted that the nor-optimal model results in an alteration of the
phenotypic mean and variance wi;bin every cycle of selection (see James,
1962; Latter, 1970; O0'Donald, 1970 and Bulmef, 1971{b, 1972, 1973).
It is possible to determine from each of these papers that this alter-
ation amounts to a decrease of a proportion C of the phenotypic variance,
The phenotypic mean, on the other hand, may be increased or decreased

according to whether the optimum phenotype is greater than or less than
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the sample mean., The magnitude and sign of this alteration are given
by C(@-x) where x is the phenotypic mean before selection. In other
words, the phenotypic variance after selection is (l-C)aPZ, and the
phenotypic mean is x+C(8~%).

The simplicit& of these statements illustrates another advantage
of the parameter C over all the other different parameters described
previously. A description of the same change in mean and variance in
terms of any other parameters invdlves more complex expressions which
are more difficult to interpret biologically.

For the present model, there seems to be no ;eé%on for believing
that this non-genetic effect of nor-optimal natural selection alters.
the phenotypic variance between generations: it is merely an effect
that is observed within éach generation, Therefore the assumption of
a constant °P2 between generations, which is implicit in all the
selective values discussed above, is s£111 valid., 1Indeed, it appears
thgt all the various studies in which expression for, say, Aq have
been derived have involved this assumption. Por an effectively in~
finite number of loci, it has recently been shown (Bulmer, 1971,d)
that a change in phenotypic variance in the parental generation'of
--COP2 (using Latter's (1970) notation) under the nor-optimal model does
result in a decrease of phenotypxc variance in the offspring generatlon

of ih Co 2 compared with % 2 in the parental generation before selection,

P
waeversv; with heritabilit1es usually less than 0.5, and values of C
less than say 0.2, it would seem that the expected change in phenotypic
variance between generations can be safely assumed to be negligible in
the present context,

If natural selection occurs prior to artificial selection, then

the phenotypic means of the three sub~populations representing the
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genotypes A2A2, A1A2 and A1A1 will be altered relative to one another
as a result of the non-genetic effect of nor-optimal selection, The
selective values of the three genotypes with respect to subsequent
artificial selection within the same generation will consequently be
different to what fhey would have been in the absence of natural
gselection, even though the genotypic means have not altered. As this
effect of nor-optimal natural selection within a generation is pheno-
tyﬁic and not genetic, it is of no relevance if natural selection
occurs after artificial selection.

Two separate sktuations must therefore be considered when artificial

selection is superimposed on nor-optimal natural selection,

~ a) Artificial selection prior to natural selection

When artificial selection occurs before the phenotypic means have
been altered by natural selection, the relative selective values at
generation t after both artificial and natural selection can be re-
presented as

_AZAZ A1A2 AIAI

A~5% 2() expt—c-“-z-(a(q -hrew l 11t i expt;—:‘,%ta(!-qt)wt-en :

The resultant change in gene frequenéy is

20
8q & -;—-q(l-q)

2, :
+ L2 q(1-q) lg-fed(e-n ) ! : )
4%, '
O

Z i ca? é}(x-q){aq(l-q) é*—(e—u )(1-29)} ,
40



84,

where q is specifically 9.
The condition necessary to achieve a selection plateau is that the re-

lative fitness of AlAlbe less than unity in which case
ia '//’-c.a' -
(1+=5) exp[;:ﬁa(i q )44 -1 < 1

and this condition reduces approximately to

2
ia 20?

7470 | a{a(i-qt) tu e} ] *

c> (9)

The expression on the right hand side is composed of two parts, the
first being the same as that which appeared in the condition for
equilibrium of the homeostatic model. The termi?éncloaed by square
bracketsf}represents the part played by the other parameters used in
the optimum model. It shows that the strength of nor-optimal natural
selection necessary to produce a pre—fi#ation plateau increases with
phenotypic variance but is reduced by larger values of the effect of
the gene,a, and the deviation of the optimum phenotype from the
population mean. It also abows that if 6 = “t gnjequilibrium éan
only be achieved if qt<!, :huq reinforcing the earlier coﬁclusion that
frequencies above this leveij)result in directional selective values,
in this case in the same direction as %g;&;;gial selection. And even
if qt<! for 6 = "t. the term enclosed by square brackets will have a
value much larger than two for all values of ug-leaa than unity, With

P
9. = 0.5 and vﬁ. = 0.5 for example, a strength of nor-optimal natural

P
. . ia o > o *
selection in excess of 32§:;u-will be needed to achieve an equilibrium,
It can therefore be concluded that all but the weakest strengths of

artificial selection will be sufficient to override the effect of nor-
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optimal natural selection if the optimum phenotype is equal to the
population mean.

1f, however, artificial selection eventually produces an overall
mean u much éreater than a fixed 6 (which may have equalled u;ii then
ue = © becomes relatively large in which case expression (9) indicates

that a selection plateau is quite likely,

b) Artificial selection afcér naturpl gselection

It has already been noted that a single cyclé of nor-optimal
Qatural selection alters the phen;typic variance to (l-C)oP2 and the
phenotypic mean to x + c(e - §). How will such alterations affect
the relative selective values of the'three genotypes with respect to

Sgquent artificial selection within the same generation? Firstly,

by expressing the altered mean of each genotype as a deviation from
the heterozygote mean, it is shown in appendix II that the genotype
means after natural selection can be represented as

AA, A AjA

- 30-0) 0 Fa-0

in which case the relétive selective values of each genotype with res—
pect to artificial selection turn out to be
1 -'%QJT:Ef- : 1 : sts A
The effect of nor-optimal natural selection prior to artificial
selection is therefore to reduce the strengfh of artificial selection
by a factor /i:E: The combined action of the two selective forces can
be expressed as |

-Ca - ) ia -Ca ia
exp [~==={a(q 4—,})+e-u'f}]](1 Vi-C) : 1 :[ I (3=q )+ —e}]] 14g=v/1=C
[ 20,7 (1= exp ;;z'fa 1=q, )41 =0} (14+5=/1-C)
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which will result in expressions for Aq etc. exactly the same as be-
fore, except with ia/1-C instead of ia. Thus by again reading q as
Qs Aq is now given by

pq = $2/7C q(1-)

ca? 2
5 a(1-q) {q=4+=(8-u )} (10)

daP

+

i 032 2
- 3%535 5 q(1-q){4q(1~-q) -Q*Z(Q-ut)(l'ZQ)} ’
40P

which reduces to the various expressions for Aq obtained by James (1962),

who assumed throughout that € = O, It should be noted from the
second lines of equations (8) and(10) that the contribution of nor=-
optimal natural selection per se to the change in gene frequency is
exactly the same whether natural selection occurs prior to or'after
ar:ificial seleétion.

The condition for a selection plateau in a large population if

natural selection occurs first now becomes

2
ia?1=C 20P

® B | ) v, -0

]

vhich is slightly less stringent than the analogous condition (9) when
artificial selection is carried out prior to natural selection,

As well as altering the phenotypic mean of each genotype, nor-
oétimal natural selection also alters the relative frequencies of the
three genotypes so that they are no longer in Hardy-Weinberg equilibrium,
The overall metric mean and genetic variance actually observed at the
time of artificial selection are thus not the same as the simple pre-
dictions ofy§(2qt-1) and §3q6i1~qt) if any nor-optimal natural selection

occurs prior to artificial selection. This is the same effect as was
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investigated earlier with the homeostatic model, for which it was
shown that the result of natural selection prior to artificial selection
is generally to reduce the metric mean and genefic variance actually

obgerved.

3. THE PROBLEM OF FURTHER PREDICTION

It would be a relatively straight forward matter now to proceed
along lines similar to those.used with the homeostatic model of natural
aeléccion. Thus expressions could be derived for chance of fixation,i
advance in the.metric mean at the limit, half-life and fitness in a
finite population. Indeed James (1962) has already obtainedAan ex-
pression for advance in the metric mean at the limit in a finite
population, using a somewhat different approach.

But how useful are such predictions, derived as they are from the
above selective values? It has already been noted that in reality,
selection acts at a number of loci in which case the background geno-
type of any one locus will be continually altering, If, for example,
artificial sglection is increasing the frequency of favoured alleles
at several loci, then the metric meén of any one genotype considered
alone will be continually increasing., The difference between the
optimum phenotype and the metric mean of any genotype at generation t
thus increases as selection proceeds,if the optimum is constant, with
the result that the natural selective values of various genotypes alter
over time, These gselective values thus become more and more additively
directional in opposition to artificial selection, and increase in in-
tensity as well, Consequently, artificial selection is increasingly
opposed as it moves the population mean further and further from the

optimum,



88.

One way partly around this problem is to utilize the alternative
type of optimum model, namely that in which the optimum phenotype is
no longer constant, but rather always equals the population mean what-
ever that may be at any given generation. Several factors tend to
decrease the attractiveness of this hypothesis not the least of which
is that it is hard to imagine nature acting in this way, PFurthermore,
it has already been shown above that nor-optimal natural selection will
never cause significant opposition to artificial selection when € = oo
and will certainly never result in a pre-fixzation plateau,

Hence an optimum model with a fixed optimum appears to be much
more realistic and potentially fruitful, But the problem of continually
altering selective}values still remains. For a fixed optimum, it has
values algebraically, but the end result (with the population mean much
greater than the fixed optimum) can be depicted as already shown, by
following Latter (1960) and James (1962) and setting © = 0 and ut>>a,
vhere ¥, is now the change in overall population mean resulting from t
generations of changes in gene frequency at all relevant loci. It has
already been shown that the nétural selective values resulting from
such a situétion are essentially additive.

At a single locus therefore, additive artificial selection will

be opposed by additive natural selection, At generation t, this con-

i Tt s,
flict of selection forces can be represented approx1mate1y as 'J

A, Ady A1“1

Cau. . '*Cau
1 : 4—7) exp{--—-3 (1+ie) exP{‘—T} ’
‘,::Z?P %

L2 ]
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vhere the natural fitnesses are variable over time. Having obtained
an analogous set of selective values for natural selection occurring
prior to artificial selecetion, James (1962) then proceeded to derive
expressions for the resultant change in gene frequency and for the
asymptotic limit of response in metric mean in large and finite popu-
lations., An asymptotic limit in metric mean is certainly to be ex
pected with the above type of selective values, because as M, continues
to increase a stage is reached at which the two opposing selection

forces are balanced. At this time the relative fitness of each geno-

type is unlty, in whlch,case 1f io is small

|
ja == 9_8._12-1_ !

(4]
P

l___ S .
Solving this expression for u gives the metric mean at the limit as

|
|

[ -t T T T e —E_"““_P

! o !

which is sllghtly greater than James‘ large '

population result of = /T:- for the case of natural selection occur=-
ring prior to artificiag selection,

However, not all loci will reach this point of balance at the
same time unless all loci have alleles of the same effect whicﬁ started
at the same frequency and have not been subjected to chance deviations
from the change in froﬁuency expected as a result of selection, Con~-
sequently for any one locus, u, must continue to increase above the
level which produced the balance at that locus, in which case the over-
all combined selective values of the three genotypes at any one locus

wii1¢ gsooner or later alter in direction from that which favours arti-

ficial selection to that which opposes it: the situation in which the
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three genotypes have equal fitness for any one locus will only last
for a single generation. The single locus equilibrium is therefore
not stable, and the limit to response in metric mean considered by
James will thus not be permaneat,

Considering all the loci contributing to the metric character,

' and stronger
continued artificial selection will generate stronger/natural selection
until, conceivably, an equilibrium will result at which the 'negative’
overall selective values at some loci just balance the 'positive'over-
all selective values at all the other loci. And such an equilibrium
could exist without any single locus having equal selective values,
Here then is a model of natural selection which certainly appears able
to produce a plateau in artificial selection response, but its mechanism
is very different from anything that has so far proved amenable to
algebraic analysis,

The importance of.intergctions between alleles at different loci
in the oﬁtimum model is evident from the above discussion: the relative
selective values of the three genotypes at any one locus are determined
by the gene frequencies at all other loci which contribute to the ex-
pression of the metric character. This interaction between loci seems
to preclude any simple algebraic’. prediction of a plateau in artificial

selection due to opposing nor-optimal natural selection.

4. SELECTION IN THE ABSENCE OF CROSSING OVER

The single exception to this impasse is the extreme case in which
there is no crossing-over between the loci which contribute to genetic
variance in the metric character, because in this case the changes in

frequency of alleles at all loci on a particular chromosome will all
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be the same, irrespective of their effects on the metric character,
and will all be equal to the change in frequency of that particular
chromosome, Thus changes in the population metric mean can bé pre-
dicted at any generation: the problem of interaction between loci does
not exist. For this situation it is possible to utilize the theory
of selection with multiple alleles already developed by Latter and
Novitski (1969) and Latter (1970). This can be done by making the
reasonable assumption that for a chromosome within which there is no
crossing-over between loci which contribute to the metric character,
the initial distribution of chromosomal effects tends to be normal.,
Thus, as Latter and Novitski (1969) pointed out, the single locus
model with a potentially infinite number of alleles whose effects ;re
initially normally distributed, is analogous to a model of a potentially
infiéi;e number of'different chronosomes whose metric values are
initially normally distributed.

Combining the relevant expressions of Latter and Novitski (1969)
and Latter (1970), it can be shown that the change in frequency of
chromosome j resulting from a single generation of artificial selection

followed by nor-optimal natural selection is

Hog-2G-0)a, - a,%) (1)

A -‘B.“ -ao + [3
Py oy Pi% * 5T P
P
/v

wherg]pj = frequency of chromosomej prior to that generation 6@ 
' selection,

aj = the metric effect of chromosome j, scaled such that ijaj-o,
j

and oG*- square root of the genetic variance contributed dy all loci

in the chromosome at time gzero.
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The first term on the right hand side of equation (11) represents
the effect of artificial selection and the second that of natural
selection. . Interaction terms have been neglected in this case, for
simplicity.

The total change in the population metric mean resulting from
the single generation of selection is

Ax = 2 £ a, A
. 85 °Py
h|
which reduces to

bx = ih#g ® + (8-u) C ha? ' (12)
oG* .
where h* = 5 as in Robertson (1970). Thus the genetic variance
P

contributed by all loci in the chromosome is a proportion h“f2 of the
total phenotypic variance. It can be seen that the effect of nor-
optimal natural selection increases in importance as the population
metric mean (u) moves further from the optimum, with the result that
artificial selection is increasingly opposed by natural selection.

With the problem of interaction between loci removed by considering
only complete linkage between all relevant loci, equation (12) is a
realistic prediction of the change in metric mean at any generation.
But equation (12) is exactly mnalogous to the expreséion for Ax ob-
taineﬁ by James (1962, p.492) from a single locus model with: two alleles,
in which he assumed € = 0 and in which i was multiplied by the factor
vG:E because natural selection occurred prior to artificial selection,
This result is simply an indication of the fact that James effectivély
assumed that the changes in allelic frequency at all loci were the same.
It seems, therefore, that all the predictions analogous to those of
James can be realistically applied in the case of no crossing-over bet-

, ween loci,
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Thus a selection plateau due to opposing natural selection will

be observed when Ax = O in vhich case the metric mean at the plateau

18

- io
ume s '

If the original population metric mean was equal to the optimum pheno-
type 8, then the total advance at the plateau will be

- iop
l-"”e"""(':" ’ . (13)

which is analogous to the prediction obtained above for a two allele,
single locus model in which the changes in'allelic frequency at all
loci were assumed to be the same, follqwing the approach of James (1962),
Furthermore, the response to a single generation of relaxation from
this plateau will be, from (12),
R = (8 - ) Chw?

2
.- e *
ih % ,

PR
¥ AL

which gives the ratio of the first generation of relaxation response (R1)"

to previous forward selection response (Ax = p - 6) as

¢ R~ 2

anei]| m Q% P

,A;H h*7C ‘ (14)
wvhich is effectively the same as the prediction obtained by Latter (1960)

for a model of two alleles at a single locus.

The mean fitness at the plateau will be, from (2)

F-] - [
w = ¥1=-C exp| —-Ei(u.- 9)21
20

P
— i
= /1-C expl eTd

But at generation gzero, 50 = /1-C if uO-e. Therefore, the fitness of
the plateaued population relative to that of the original population is

approximately, for low values of C,
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Once ;gain, this is analogous to the prediction obtained by James
(1962, p.491).

Finally, by making direct use of James' predictions, the value
of the metric mean at any time t is

io
P .. 2.t
- [ o *
ut -] g [1=(1-Ch*“) ]

in large populations, and
io [~ : - ,Aﬂ
P| . 200 o0 1 toa
Ld W cmman - " - * - Y ) )
u, = @ =1 exp{ -2NCh*“[1-{1 T 1}
approximately, for populations of effective size N, Prom this last
expression James obtained an approximation for the total advance in the
metric mean due to Aptificial‘selection in the presence of the Optimum
model of natural selection which can be written as
) .
- - *®
LAO 2NAG (1=-NCh*“)
where AG is the change in metric mean during the first generation of

selection.

5+ DISCUSSTON

;gé;éiis‘little point in describing the detailed ramifications of
the predictions given above for the case of no crossing-over, because
Latter (1960) and James (1962) have already discussed the implications
of analogous expressions. The only value in restating these predictions
in the above forms is to emphasise that they can be most safely thought
of in the context of completely linked loci, where assumptions of edual

gene frequencies and equal gene effects are no longer necessary.
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Furthermore, if alllléci contributing to the metric character are
completely linked, then the predictions for selection in a finite
population : ‘:fare much more realistic, This can be most clearly
understood by considering the other possibility of incomplete linkage
or even independence. Any deviation due to sampling from the deter-
ministic prediction of change in gene frequency at any such locus will
result in a population metric mean in the next generation different
from'its deterministic prediction. Hence the selective values
(wvhich are a function of the population metric mean) at all other
loci will be different from the deterministic prediction, and it thus
becomes impossible to predict accurately the result of even a few
generations of selection.

This is in direct contrast with the homeostatic model of natu:alv
selection in a finité éopulation vhere the deviations from deterministic
prediction at one locus have no effect on the selective values at other
loci.

Returning to the optimum model, it must be noted that the pre-
dictions arising from the case of no crossing-over<§o not-necesaarily
ipdicate the lowest possible advance in the metric mean, as they do
for artificial selection in the absence of natural selection (Robertson,
1970). With several unlinked loci, for example, the initial response
to artificial selection in the presence of natural selection could in-
deed be greater than that predicted with no crossing-over. But as a
direci consequence of this relatively rapid response, it gseems quite
possible to achieve a plateau of the type in which/ the "negative' over-
all selective values at some loci are balanced against the 'positive'

overall selective values at all the other loci. And such a plateau
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could conceivably occur before the total advance in the mean had
reached the plateau level predicted for no crossing-over,

What is needed in order to obtain a greater understanding of
this situation is a multi-locus computer simulation of artificial
selection in the presence of nor-optimal natural selection. While
such a study would not be simple it does appear to be the only way
by which to gain a better understanding of the optimum model of natural

selection in the context of artificial selection,

6, SUMMARY
NI
1. The nor-optimal model of natural selection, in which the fitness
decline from some optimum metric phenotype follows the shape of the

‘normal distfibution, has been considered.

2, The whole model can be best described in terms of the optimum

-~

g’

phenotype 8, the overall population metric mean y, the phenotyp1c(;4’§

variance o 2 and Latter's (1970) coefficient of centripetal selection C,

P

3. If @ equals ' at a given generation, the resultant selective values
at any particular locus are either heterotic if gene frequency at that
locus lies between } and 1, or weakly directional for gene frequencies
outside this range, If the seléctive values are heterotic, then even
the strongest conceivable strengths of nor-optimal selection at the

most févourable frequencies are only equivalent to relatively weak homeo=-

static selection,

4. A model in which @ is variable, being alvays equal to the overall

Population mean at any time, will thus never cause significant opposition
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to artificial selection, and will certainly never result in a pre-
fixation plateau, The alternative model, in which @ is a fixed con-
stant phenotype, will likewige never produce serious 9ppoaition to
artificigl selection in the early generations, if, as}iommonly assumed,

€ equals u at generation zero.

5. If 6 is not equal to p, then the selective values at any parti-
cular locus are directional rather than heterotic whenever the optimum
is closer to the mean of either homozygote than to that of the hetero-
zygote. The directional selective values are additive only i€ the
optimum is several multiples of a (the metric difference between the

two homozygotes) away from the population mean.

6. With a fixed optimum phenotype for yhich 6 = M continued artifi-
cial selection produces an ever increasing difference between © and v,
in which case the natural selective values become increasingly additive
and increasingly opposed to artificial selection as the selection pro~-
gramme proceeds. A selection plateau is quite likely to result from
such a situation, but a realistic algebraic method of describing this

process has yet to be discovered,

7. A single cycle of nor-optimal natural selection alters the

phenotypic metric mean from x to x+C (8-x) and alters the phenotypic

variance from opz to ll-C)oP2 within each generation, but this
fééiééﬁiéﬁ:?has no effect on genotypic means and variances within

generations, and can be assumed to result in a negligible alteration

of o 2 between generations. If such selection occurs prior to artifi-

P .
cial selection, then the effect is to reduce the artificial selection

coefficient from ia to iavl1-C. Nor-optimal natural selection prior
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to artificial selection thus acts by reducing the strength of artificial
selection, as well as contributing per se to a change in gene frequency.
Nor-optimal natural selection therefore produces greater opposition if

it occurs before the time of artificial selection.

8. Quantitative predictions of limits to artificial selection due to
opposing nor-optimal natural selection may not have very much value
when derived from single locus selective values, as the equilibria they

represent are transient.

9, It is possible to consider one extreme multi-locus case, namely
that in which there is no crossing-over between the loci contributing
to the metric character. If the initial distribution of chromosome
effects is approximately normal, then the predictions of Latter (1960)‘
and James (1962) provide a realistic descfiption of the results of the

interaction between artificial and natural selection.

10, For all other cases except no crossing-over, a broper understanding
of the implications of the nor-optimal model in the context of artificial
selection will only be achieved if interactions between loci are taken

into account.. A multi-locus computer simulation thus appears to be the

only way in which more useful predictions can be obtained.
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IITI - REVERSE AND RELAXED SELECTION

Introduction

Reverse and relaxed selection have been used quite commonly
in laboratory selection experiments as diagnostic tools, especially
in situations where selection response seems to have plateaued. The
results of such selection have usually been interpreted in the light
of common sense arguments which say that any alteration in the metric
mean after relaxation must be an indication of opposing natural
selection, and that response to reverse selection indicates the re-
maining presence of at least some additive genetic variance.

What is lacking at present is a quantitative prediction as to
what the results of revérse and relaxed selection at a particular
stage of the selection programme might be, for specific models of
artificial selection. One method by which some understanding of the
problem can be obtained for various single locus models involves the
use of & suitable transition probability matrix. Such an approach
has already beén used by Allap and Robertsonl(1964)..but they were
concerned specifically with cﬁe effects of initialEf;Véf§éﬁsg1ection
on the ultimate fesult of subsequent forward selection to the limit.
In the present context, this amounts to a study of the total change
in gene frequency or metric mean resulting from a given period of for-
ward selection followed by reverse selection to the limit. 1In the
present study, the methods and results of Allan‘éhd Robertson are
extended to cover any number of generations of both forward and re-
verse selection for several éingle locus models of artificial

selection,
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Operations with a transition probability matrix

It has already been seen how repeated multiplication of a
suitable matrix by a relevant vector enables the course of artificial
selection in the absence or presence of natural selection to be
followed over generations., For example, the method of setting up a
suitable transition probability matrix for forward selection, and
pre-multiplying this matrix by a row vector of the gene frequency
distribution at generation t (given a particular initial gene frequency)
to obtain the gene frequency distribution in the next generation, has
already been described. Subsequent multiplication of the row vector
of gene frequency distribution at gemeration t+l by a column vector
of all possibie initial gene frequencies then produces a scalar whose
value is the frequency of allele A1 at generation t+l, given the
particular initial frequency.

More specifically, the initial step is to set up a transition
probability matrix U for forward selection as described previously.
Having then established a row vector g; of order 2N+1 with all elements
zero except the jth which is unity, the gene frequency distribution at
genepation t=1 for An initial gene frequency of j/2N is obtained as

H o= oe U .

For subsequent generations,

Yy = w u

. 2
- v, g
= u yt (2)
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Expression (2) indicates more clearly the principle of the
use of a tramsition probability matrix, in that the element pjk of
Ut represents the probability of obtaining k A1 alleles at generation

.th

t given there were j A1 alleles at generation O, The j  row of vt

therefore represents the gene frequency distribution at generation t
for an initial gene frequency of j/2N.

In practice, however, it is less expensive to follow Allan
and Robertson (1964) and actually use operations of the form given by
(1), involving only the repeated multiplication of the matrix by a
vector rather than the matrix by the matrix, as is needed in (2).,

The expected frequency of allele A1 at generation t is then

obtained as

Elq,|q, = j/28] = u

where Vo is a column vector of all possible initial’ gene frequencies

with elements vo(j) = j/2N.

Reverse selection

The commencement of revefse selection invo}ves recalculation
of the tramsition probability matrix, with -i substituted for i in
the selective values of the three genotypes. All subsequent pre~
multiplications of the row vector u of gene frequency distribution
are then ca}?éé@;out onto the recalculated matrix D for as many

generations of reverse selection as required. Thus the results of

the first generation of reverse selection are obtained as



Table 1 .

Changes in gene frequency distribution and in mean gene frequency during 10

.generations of forward selection followed by 40 generations of reverse
selection in a population of effective size N=10.
pressed x 1000, ,
prqbabilities do; not sum to 1000 except at t=0, In this example q°=.3 and Nia=8.

All probabilities are ex- .

Only every second possible class is shown so that the

Generations

Frequency distribution of allele A

'R

t -t o .1 .,2 .3 4 .5 .6 7 ,8 .9 1| Elal  Bx
0 1000 0. 300

1 3 33 125 184 118 34 4 0. 400

2 "4 21 57 103 127 107 59 19 3 . 0. 499

3 1 4 12 30 59 90 108 100 66 26 4 0.591

4 1 3 8 17 34 59 86 104 100 68 24 0.672

5 2 2 S 10 21 38 62 90-110 105 75  0.740

.6 2 1 3 - 6 13 24 44 71 103 126 157 0.797

7 2 1 2 4 8 16 30 54 90130 259 0.842

8 2 1 1. 2 S 10 21 40 74 123 370 0.878

9 2 S 2 3 7 14 30 59 109 4738 0.906

10 3 1 1 2 4 10. 22 46 93 576 0.928

10 + 1 3 1 2 3 6 12 20 33 48 62 602 0.902 0.04
10 + 2 3 2 4 .8, l4a- 20 28 34 38 36 614 . 0.872 0.09
10 + 3 -5 5 10 16 21 2% 28 29 27 22 621 0.840 0«14
10 + 4 9 11 18 22 25 26 25 22 .18 13 625 0.809 0.19
10 + 5 18 19 24 26 25 23 19 15 12 8 628 0.780 0.24
10 + 6 33 28 29 27 23 19 4 11 .8 5 629. 0.754 0.28
10 + 7 55 34 31 25 19 14 10 7. 5 3 630 -0.731 0.31
10+ 8 83 38 3022 15 11 7 5 3 2630 0.711 0.35
10+ 9 - 115 39 28 18 12 8 5 3. 2 1 631" 0.694 0.37
10 + 10 149 38 24 15 9. 5 .3 2 .1 1 631 0.631-0.39
10 + 11 182 35 21 "12 7 .4 2 11 631 0.670 0.4l
10 + 12 214 31 17 9 57 3 R 1 631 0.661 0.43
10 + 13 242 27 14 7 3 2 1 - - - 631 0.654 0.44
10 + 14 266 22 11 5 3.1 1 ’ . 631 0.649 0.44
10 + 15 237 18 - 9 4 2 -1 631 0.644 0.45 .
10 + 16 304 15 7. 3. 1 1 631 0.641 0.46
10 + 17 318 12 5 -2 1 631 0.639 0.46
10 + 18 329 .9 4 2 1 631 0.637 0.46
10 + 19 338 7 3 1 S 631 0.636 0.47
10 + 20 345 6 2 1 631 0.634 0.47
10 + 21 351 4 2 1 631 0.634 Q.47
10 + 22 355 3 1 ' 631 0.633 0.47
10 + 23 359 3 1 631 0.633 0.47
10 + 24 _ 361 2 1 , 631 0.632 0.47
10 + 25 363 1 1 631 0.632 0.47
10 + 26 364 1 631 0.632 Q.47
10 + 27 366 1 631 . 0.632 0.47.
10 + 28 366 1 631 0.632 0.47
10 + 29 367 631 0.631 0.47
10 + 30 367 631 0.631 Q.47
10 + 31 363 631 0.631 0.47
10 + 32 368 631 0.631 0.47
10 + 33 3638 631 0.631 0.47
10 + 34 368 631 0.631 0.47
10 + 35 368 631 0.631 0.47
10 + 36 369 631 0.631 0.47
10 + 37 369 631 0.631 0.47
10 + 38 369 631 0.631 0.47
10 + 39 369 R 631 0.631 0.47
10 + 40 369 631

0.631

0.47
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= u Ut D
o0 o =

and, in general,

u ~=u - D
“tet? Ttee'-l

'
=u_ utpt
-o. L]
Finally, the expected value of gene frequency after t' generations

of reverse selection is given by

n . =
E[qt*t'. 9, = J/ZN] Urae? YO

=u Ut Dt v
"%

- - .o L]

Tab;e 1 i}lusirates the way in which the course of artificial
selection cdq;beffollﬁwed,?in'this case with forward selection for N
“generationsff;ilowed'sy reQerse-selection for 4N generations, starting

with an initial frequency of Q;h, with Nia = 8 in a popﬁlation of
size N = 10, Natural selection is assumed to be absent. It can be
seen how the gene frequency distribution is quickly moved to the
right by strong forward selection, towards fixation of the allele
favoured by artificial selection (A1)° By generation tsN, the pro-
bability of fixation of that allele is 0.576 in contrast to the very
low probability of loss (0.003)., The mode of the frequency distri-
bution is now at q = 0.9, and the frequency of the favoured allele
over all populations or loci, both segregating and fixed, is already
0.93,

Reverse selection of equivalent strength (ia =-0.8) exerts an

-immediéte and marked effect. The frequency distribution 18 moved
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quickly to the left towards fixation of the allele which is now
favoured (Az), until, at generation t' = 0,7N, the mode is down at

q = 0.1, The wobability of fixation of allele A2 increases, but its
upper limit has already been determined by the proportion of lines or
loci previausly fixed for the other allele,Al. In fact, this latter
proportion continues to increase until t' = 0,9N simpiy because the
upper tail of the frequency distribution is still continuous with

the fixation class of allele A1 during the early generations of re-
verse selection, It is not until t' = 1,1N that a discontinuity
develops in the distribution. However, as soon as the separation
occurs, the ultimate frequency of each allele at the limit of reverse
selection is decided. For allele Al, it is obviously the proportion
of lines or loci already fixed for that allele (0.631), and for
allele A2 it is the remainder (0.369): all those lines or loci still
segregating after the discontinuity appears must eventually become
fixed for allele A2 if reverse selection is continued. In this
particular éxample, complete fixation is achieved around'generation
t' = 2,9¥ but it would have taken far longer with weaker artificial
selection,

The overall frequency of allele Alvdegreases quite rapidly
during the first few generations of reverse selection, because of the
associated shift'ﬁf the fréquency distribution to the left. Although
the lower limit of freduency of gllele A1 is set at 0,631 as soon as
the discontinuity in the distribution develops, it can be ‘seen that
this actual value is not and can not be achieved until complete fix-
ation: so lqég as any part of the distribution remains in the

segregating classes, the final possible frequency of allele Al as a
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result of reverse selection can not be obtained.,
This then is an example of the way in which the course of
artificial selection, both forward and reverse, can be followed,

generation by generation through the selection process.

Relaxation

In laboratory selection programmes, relaxation of artificial
selection in§olving the random choice of individuals to become parents
of the next generation, is most cﬁmmonly conducted in relatively
large populations. Under such conditions the simple prediction is
that no subsequent change in metric mean will occur unless natural
selection is interacting with artificial selection. Por the homeo~
static model of natural selection, the change in megric mean as a
result of't' generations of relaxation in a large population is
Rt' = g :Elbqi where Aqi = (31+32)qi(1-qi)(a‘qi), this being the
usual equation for change in gene frequency due to heterozygote
superiority. The metric mean thus continues to alter until the gene
frequency returns to its large population equilibrium value of»i,

- It is possible, however, that relaxation may be carried out by
the random sampling of only the same number of individuals as have
previously been selected for high expreas}on of the metric character,
~in which case the effective population size remains unaltered. As
before it might be expected that natural selection will result in a
change in metric mean following relaxation, but the mdnner of this
change will almost certainly be different from that which would be

expected in a large population.

The effect of relaxation of artificial selection in finite
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populations can be studied in a manner analogous to that already
described for reverse selection, the only difference being that for
relaxation, zero is substituted for i in the recalculation of the
transition probability matrix after t generations of forward
selection,

In order to provide a framework in which to discuss the re-
sults obtained from the transition probability matrix approach, some
consideration will now be given to several fheoretical predictions

which can be obtained from a simple algebraic model.

1. THE ADDITIVE MODEL

For small Nia, the frequency of allele Al after t generations
of forward selection with an additive model in the absence of natural
selection is

-t/2N

Elqtli q, + Nia qo(l*qo)(l-e' ) : (3)

where 9, is the initial gene frequency (Robertson, 1960). It is
usually assumed that during this time the effect of finite population
size is to reduce qo(l-qo) by a fraction 1/2N per generation, in which

/2N

case it will have the value qo(l-qm)e“t after t generations of for-
- ward selection, It is then possible to express the expected
frequency of allele Al after t' subsequent generations of reverse
selection (i<o) in a form analogous to that given ‘above:-

-t/ZNl _eft'IZN

E[q,,,+] * Elq.] + N(-ia)[q_(1-q )e a ) (%)

-tIZN*e-(t+t')/2N

=q, + Nxaqo(l-qo)(1-2e ) .

The difference between the initial frequency q, and the ultimate

frequency after t+t' generations is then
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-t/2N¢e-(:+t')/2N

E[q“t.] "'qo . Nidqo(l-qo) (1-2e ) .

When t' = «, implying 'reverse selection to the limit, this expression
reduces to

-t/2N

Elq,,; ) = q, = Niaq_(1-q ) (1-2e ) (5)

which is analogous to the result obtained by Allan and Robertson (1964)
who were studying the effect of t generations of initial reversge
selection on the ultimate result of subsequent forward selection to

the limit.

A prediction for small Nia

A general description of the effects of reverse selection
follﬁwing forward selection can be achieved by considering the change
in metric mean due to reverse selection (R) in Ce¥ms of the change in
metric mean resulting from the previous forward selection (AX).

From equations (3) and (4), it can be seen for an additive model that

Ax = a{E[qcl - qo}

* a Niaqo(l-qo)(1~e-t/2N)
and '
R = a{Elq,,. ] = E[qti3
“«~-a Niaqo(l-qo)e~t/2N(l-e-t'/ZN)
which gives
- -t?
th‘ e t/2N (1-et /ZN) . 6)
A% 1-e t/2N

The ratio of reverse selection response to previous forward selection

response is thus the same for all initial gene frequencies and is
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Figure 1, The relationship between length of forward selection, t,

. R . - : & ] '
and the ratio " aftervarious lengths of subsequent reverse

selection, t', corresponding to it, t, 2t and 4t generations,
with t and t' being expressed in terms of effective population

size N, Curves have been obtained from equation (6).
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independent of the size of the gene effect (§7 - a), and the‘intensity
of artificial selection (i), so long as Nia isPémall.

An even more simple prediction is obtained if reverse selection
is carried out for the same number of generations as the previous for-

ward selection, in which case t' = t, and equation (6) reduces to

R . st/

Ax

@1 ~-F
where F is the inbreeding coefficient at a neutral locus after t
generations of random mating in a population of effective size N.
Thus, if forward selection i; followed by an equal number of generations
of reverse.selection, the response to reverse selection is never as
great as the previous forward selection response. Furthermore, the
effectiveness of reverse selection decreases as the period of previous
forward selection is lengthened, as might be expected. It must be
emphasised that these conclusions apply only to a model of additive
gene action in the absence of natural selection.

The general relationship between«§§p and the length of forward
and reverse selection is shown in figure 1, having been obtained from
equation (6). . The first point to note is that the time scale on the
x—-axis corfesponds exactly to the time scale used earlier in the
presentation of expected selection response curves. Thus all possible
periods of initial forward selection are included, from t=0 to t=8N,
Each curve in the figure represents the value of1§§ t§ be expected
from a particular length of subsequent reverse selection. The curve
for equal numbers of generations of forward and reverse selection

(t'=t) is simply the plot of 1~F for a neutral locus against time in

units of N. It shows, for example, that an equal number of generations
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of reverse selection after forﬁard selection of length equivalent
to the half-life of the overall selection précess (1.4N generations),
results in the metric mean returning half way to its original level.

| The asterisk in the figure represents the 'point of no return',
a concept introduced by Allan and Robertson (1964) and which in the
present context can be defined as the number of generations of forward
selection beyond which it is impossible for even an infinite number of
generations of reverse selection to return the metric mean to its
original level. For genes of small effect, Allan and Robertson
found that the point of no return was 1.4N generations and indeed

this conclusion derives directly from equation (5) by setting E[qt+éd]-qo
= 0, The curve for t' == would thus pass through the point of no
return, and would then approach asymptotically a value of«5~ = = ag
t + 0. All other curves for all finite vaiues of t' willAgé situated
to the left of this curve and will therefore always pass to the‘lefg of
the point of no return. If t<1.4N, the number of generations of re-
verse seleétion necessary to return the metric mean to its original
value, (that is, to obtain %;.- 1) decreases as t decreases. Beyond
t=1.4N, on the other hand, ;VQn reverse selection to the limit
(complete fixation) will not return the metric mean to its original
value.

Finally, it can be seen that the magpitude of %;'gpproaches
a limit of t'/t as the number of generations of forward selection de-
creases, Forward selection for t=0.2N generations, for example,
followed by t'=0,1N generations of reverse selectién resiults in an ix
value approaching 0.5, in thias case 0.47.

- - - . . IR, - .. _ PR e T
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It is possible to obtain one more simple prediction from equation
(6), in this case for a single generation of reverse selection (t's=l)
following t generations of forward selection. If response to the first
generation of reverse selection is denoted by Rl' then equation (6)

reduces to
i S
Bx ~ N __-t/N
Ax 2F ¢
Thus the results of a single generation of reverse selection following
any period of forward selection can be described in terms of the parameter
NR .
combination.—z;. It follows from the above expression that beyond t=1,4N,
NR

i is less than 1-F, while if the single generation of reverse selection
NR

is carried out before the point of no return, then = is greater than 1-F,
All the conclusions so far reached refer to a specific model of

additive gene action with no natural selection and Nia<l, inferring

genes of small effect and/or small population size. How will the con-

clusions be altered if the model is extended to include larger values of

Nia?

Stronger artificial selection

Since larger Nia values tend to decrease genetic variance more
quickly thus leaving relatively less genetic variance for subsequent
reverse selection, it could be expected that the value of Ax will be in-
creased by a greater proportion than the value bf R by larger values of
Nia, for any particular t and t'. Thus with equal periods of forward

and reverse selection, the ratio %; is expected to be less than the 1-F
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Figure 2, .

The relationship-between length of forward selection, t,

. R ,
and the ratio % after as many generations of reverse
selection as previous forward selection (t'=t). Transition
probability matrix results (solid 1lines) for relatively weak
(Nia=1) and relatively strong (Nia=8) artifidial selection
with q0=0.5 are compared with the prediction .of %; = 1-F

(dottéd~1ine) from equation (6).
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predicted for Nia<l, For t=t' and q, = 0.5, figure 2 shows this to
be true.

The values of %;»have been obtained from continued multiplication

of the row vector of gene frequency distribution onto the appropriate
trangsition probability matrix, and the subsequent determination of gene -

frequency, as described previously. Firstly, it can be seen that the

points for Nia = 1 correspond very closely to the expectation of e-t/2N

for small Nia., Increasing the strength 6f artificial selection reduces
the value of'%;-for any particular t, until with say Nia = 8, forward
selection for as little as 2N generations is sufficient to effectively
prohibit any response to subsequent reverse seiection.

Similar conclusions in general have been obtained for all possible

initial gene frequencies, with the exception that for t'=t the value of

%;rmay be slightly greatef than e—t/2N

after only a few generations of forward selection and if initial gene

if reverse selection is commenced

frequency is less than one half, The reason for this is simplé‘that
- any forward selection favouring alleles with an initial frequency less
than one half initially increases the genetic varignce at that locus
(until q, = 0.5) thus enhancing the prospects of response to any reverse
selection which océurs before q, has reached 0.5.. More generally, it_
has been fouﬁd'that the value of'§; observed from the matrix operations
for any initial gene frequency and for any value of t' and t corresponds
very closely to the value predicted from equation (6), if Niﬂél, so that
the matrix results for Ni® = 1 could have been used to draw figure 1.
Once again, the observed value of~§; for any t' and any t fends to de-
crease below that predicted from equation (6) as Ni® increases, for all

initial gene frequencies.
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Relaxation

It is quite evident that no change in metric mean &s a result of
relaxation of selection is expected to occur with an additive model in
the absence of natural selection, Matrix results have confirmed this
expectation, and have shown that the only result of relaxation is a
gradual widening and flattening of the gene frequency distribution,
with fixation and logs occurring in the ratio of qt/(l-qt) where q, is
the frequency of the allele favoured by argificial gelection at the
final generation of forward selection.
2 SUMMARY:
i;/‘4¥;; effect of t' generations of reverse selection after t genera-
tions of forward selection can be described by expressing the change in
the metric mean resulting from reverse selection (R) in terms of the

change in the metric mean due to the previous forward selection (Ax).

2. An additive model of artificial selectioncin a population of

effective size N with no natural selection has been considered.

3. If reverse selection is continued for as many generations as the
previous forward selection (t' = t), then the ratio %;-equals 1-F where
F is the inbreeding coefficient for a neutral locus at generation t and

is estimated as [1 - (1-%E9t]. This prediction is expected to hold for

genes of small effect and/or small population size such that Niagl.

4. Stronger artificial selection (Nia>1l) tends to decrease the ob-
R

in be greater than

served value of %;-below 1-F, On no occasion will

1-F, for t=t',

5. Por any period of reverse selection following any period of forward
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. R t
selection, the value of %5 nhever exceeds T and tends to decrease

exponentially from this value as t increases, and as the strength of

artificial selection (Nia) increases.

6. The result of a single generation of reverse selection (t'=l)

following t generations of forward selection can be described ian terms
NR
of the ratio -X;-where R1 is the response to the first generation of
reverse selection. With genes of small effect and/or small population
NR
1-F

[ o [ ] 1 L d .
size for which Niagl, the value of i 18 expected to bé 57
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3. THE HOMEOSTATIC MODEL OF NATURAL SELECTION

It would be convenient if the simple algebraic prediction of the re-
sults of reverse selection already obtained for the additive model could
be extended to include the effect of homeostatic natural selection. Suit-
able expressions for R and Ax have already been obtained in the earlier
consideration of the homeostatic model, but the resultant ratio %;'has so
far defied all attempts at simplification.

What has been done therefore, is to go straight to the transition
probability matrix results, and to use as a basis for comparison the re-
sults already obtained for an additive model in the absence of natural
selection, Thus the question being asked is how does homeostatic natural
selection alter the results of reverse selection from those expected under
a simple additive model in the absence of natural selection?

In.~  line with the earlier study of the homeostatic model, the
assumption made here is that the base population for artificial selection
is obtained by randomly sampling a finite number of individuals from a
conceptually infinite population which is in equilibrium with natural
selection, such that E[q) in the base population equals g. Forward and
reverse selection are then carried out in exactly the same manner as des-
cribed in the preQious section, with the transition pgobability matriges
being calculated from ove;;ll selective values (1-%251(1‘82)81:(1*1%)
(l-sl) for forward selection, and (141;)(1-92);1:(1-150(1-31) for reverse
se}ection for genotypes AZAZ, AIAZ and AIAI respectively, For_the

ctime being it VillAbéiéééqméd<'v';that natural selection occurs after
artificial selection, i.e., that the genotypes are in Hardy-Weinberg
frequencies at the time of artificial selection. The effect of relaxing

this assumption will be considered in a subsequent section,
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The relationship between length of forward selection, t

and the ratio %; after as many generafions of reverse
seiection as preﬁious forward selection (t'=t), Transition
probability métrix results (solid lines) for no nafural
selection (S=0%) and relatively weak natural selection (8=5%)

with q, = qi= 0,7 are compared with the prediction of-%; =

.1-F (dotted line)3 for no natural selection from equation (6).
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The importance of equilibrium gene frequenéy

It has been found that the results of reverse selection under the
present model are dependent to a large extent on initial and equilibrium
gene frequency E. In other words the value of %;-is dependent on- the
relative natural fitmnesses of tﬁe two homozygotes.,

For a>0.5, the homozygote favoured by artificial selection (AIAI)
has a higher natural fitness than the other homozygote, with the result
that natural selecégon and artificial forward selection in small popula-
tions are both tending to work towards the same end, namely fixation of
allele Al’ More importantly, if ¢»0.5, it follows that natural selection
will oppose reverse selection because the homogygote most favoured by
artificialftéié@?% selection (A2A2)is the least fit of all the genotypes,
An example of this effect is given in figure 3 where it can be seen for
q = E = 0,7 and t' = t, that even relatively weak natural selection

o

(S=52) is sufficient to reduce %;-well below that expected under the

“additive model alone. Stronger natural selection reduces %;-even further,

' The same trends have been found with any value of t and t' for any §>0.5.
On the other hand,.with E equal to or less than 0,5 natural selection
opposeé forward artificial selection and consequently enhances the result
of reverse selection. The expected results of reverse selection with
q<0.5 will now be examined with the aim of obtaining an understanding

of the extent of this enhancement,

A siqg}e‘generation'of reverse selection

NR

It has previously been shown that ths.:value of —Ké after a single
generation of reverse selection is expected to be l%;-in the absence of

natural selection. What effect will homeostatic natural selection have

on this prediction? For t' = 1, figure 4 illustrates the effect of
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-Ihe effect of strength of homeoétatie natural selection (S/aﬁs )

.on -the relatlonshlp between 1ength of- forward selectwon, t, and'

NR, . : .
the ratio % after one generatlon of reverse selection. Curves

are. drawn for relatlvely weak (Nla 1) and relatlvelv strong (Nl& 8)

artificial selection from matrlx results (solid lines). The two
e
dotted lines represent the predlctlon of % - OF for no natural

selection from equation (6). ’ ) -
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NR

homeostatic natural selection on the ratio 'X%‘f°' relatively weak (Nia

=1) and relatively strong (Nia =8) artifi.cial selection,

It can be seen that the effect of natural selection is to inctease
-;N:%. With Niu;; the result is that even weak natural selection (qu_
0.1) increases ~xx above the prediction of 12? with no natural selection.
Stronger natural selection($/3>0.2) is needed to achieve the same result
for Nia=8, because for stronger artificial selection with no natural
selection %i for any t' is very much less than the simple prediction, as
has already been seen in the previous section. A general conclusion can
be dravn from this figure by reéalling that homeostatic natural selection
does not produ'ce a pre-fixation plateau unless S/q is at least around 0.2
for Nia=1, and 0.3 for Nia=8, The curves in figure 4 infer that a value
of S/q>0 3 results in & being greater than 121;, even for relatively
strong artificial selection of Nfa=8. It can therefore by concluded
that if a pre-fixation plateau occurs as a result of homeostatic natural
selection, then for a single generation of reverse selection from that
plateau, 31% is most likely to be greater than -1%, for any strength of
artificial selection.

The results in figure 4, although obtained specifically from the
case of qo-a'co,s. ara'represéntative of results expected for all qO-EQO.S,‘
except for relatively strong‘natural selection of say S/q>0.7 in which
case the exact values of % tend to vary with a. Hovwever, it has been
found that the values of -Z;lr- for large S/a with any a essentially fall
within the range of 10 to 15 so these values can be taken as. the expected
upper limit of E-R&.

In general, therefore, a single generation of ‘reverse selection

NR

from a pfe—fixation plateau is expected to result in a value of % some=

vhere between Lz? and 15, with values greatér_than 10 i{ndicating very
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The effect of strength of homeostatic natural selection

(S/a = sl) on the relationship between length of forward
o R as
selection, t, and the ratio — after/many generations

Ax
of reverse selection as previous forward selection (t' = t).
Curves are drawn for relativel§ weak (Nia = 1) and rela-
tively strong (Nia = 8) artificial éelec@ion from matrix
results (solid lines) with q& = q =0.5. The twbudotted
lines represent the prediction of f% =1 - F for no

natural selection from equation (6).
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strong opposing natural selection as a reason for the plateau.

Equal periods of forward and reverse selection

Figure 5 is analagous to the previous figure in that it shows the
effect of homeostatic natural selection on the ratio %;-fot two values
of Nia,

As before, the effect of increasing strength of natural selection

is to increase the value of = for a given t=t'., This time it can be

A
concluded in general that reverse selection from a pre-fixation plateau

for a number of generations equal to the previous forward selection is
expected to result in a value of greater than 1-F, for any strength

of artificial selection.

How much greater than 1-F is likely to be? It can be seen from
figure 5. that the value of = increases to a maximum of two as the strength
of natural selection increases, This particular limit of is peculiar
to qonano.s and arises simply because in this case both homozygotes have
the same natural fitness. If, having started with qo-6=0.5, a gelection
plateau is reached at say q=0,7, then reverse seléction from this plateap
will decrease q until a ﬁew plateau (this time to reverse selection) is
established at a point as far below 0.5 as the initial plateau was above,
in this case at ¢=0.3. Thus the equal fitnesses of homozygotes result

"symmetrical” equilibria between artificial and natural selection, from

in
which it simply follows that R will be no more than twice Ax., Any fiza-
tion of allele Al during forward selection will tend to decrease the
ability of subsequent reverse selection to return q to its symmetrical
equilibrium value.. Hence intermediate stremgths of natural selection,

wvhich are not sufficiently strong to prevent some fixation, will result

in values of %;-less than two.
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The effect of strength of homeostatic natural selecgion»(gfa = Sl) on the ratio %;
after as many generations of reverse selection as previous forward selectfoﬁ (t'=t).
Curves are drawn for relatively weak (Nia = 1, dotted lines) and relatively strong

-(Nia = 8, solid lines) artificial selection, with t'=t=N, 2N and 4N generations where

N is effective population size.
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The effect of natural selection on the results of reverse selection
can also be viewed in a manner analogous to that which was used earlier
to study its effect on forward selection. Thus figure 6 shows the effect.
of increasing strength of homeostatic natural selection (expressed in
terms of S/q as before) oﬁ the ratio %;a Although the curves actually °
shown are for qo-a-O.S, the nature of the scale on the x-axis enables
figuré§6 to illustrate the general trends for any qonaso.s. Once again
it can ﬁe seen that %;-increases as the strength of natural selection in-
creases. Recalling that selection plateaux only occur if S/q is greater
than about 0.2 or 0.3, it can be seen that reverse selection from a pre~
fixation plateau, for t'st, will result in %;-values at least equal to
unity if previous forward selection has been carried out for anything
less than N generations, ‘Indééd, %;-soon becomes greater than umity for
all t'=t as S/q increases.

An interesting aspect of figure 6 is its resemblance to figure 9
in section I which shows thélgelative proportion of additive genetic
variance remaining at a selection plateau, as a function of S/q. Comp-
arison of these two figures indicates that there is a high correlation
between the amount of additive genetic variance remaining at the plateau,
iand the response to subsequent reverse selection from the plateaﬁ.

One aspect of figure 6 which is not representative of all qo-HSO.S
is the position of ché curves for very strong natural selection, say be-
yond 5/3-0.6. It has been previously noted with q=0.5 that the value
of‘§; for very strong natural selection is largely an artifact of the
relative fitness of the two homozygotes. The end result of this in

very general terms has been found to be that %;-for very strong natural

selection may vary between 1 and 4 approximately depending on initial
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- The effect of strength of homeostatic natural selegtion“(S/a =

Sl) on the relationship
between length of forward seledtion,At, and the ratio %; after various léngths of

subsequent reverse selection, t', corresponding to %,'t and 2t generations, Solid

lines are matrix results for Ni® = 1 and q, = a—= 0.5. . Dotted lines are the prediction.

of R

7% = 1°F for no natural selection from equation (6).
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and equilibrium frequency.

Any period of forward and reverse selection

Finally an example of the effect of homeostatic natural selection
on reverse selection for any t and any t' is shown in figure 7. In the
previous section it was concluded that the matrix results for Nia=l in

the absence of natural selection correspond very closely to the prediction

Rt/ (1-e"t '/ 28,
i 1-e-f7ik e« Thus the matrix results in figure 7a, for which

S=0Z, show the value of %;-which would be predicted from the above expres-

sion for any period of forward selection from tngw:o t=4N, and for periods

of reverse selectioh equivalent to %5 t and 2t generations., The effect

of natural selection is shown in figures 7b and 7¢. The general way in
R
Ax
t and any t' can be plainly seen.

which increases with increasing strength of natural selection for any

Relaxation of selection

Only the most common situation, namely that of relaxation in a large
population, will be considered here.

For a single generation of relaxation, it has already been seen hoﬁ
Robertson (1956) predicted that ;% is expected to equal S, but that this
predicﬁion is only expected to be valid if the previous forward selection
has not altered gene frequency substantially, Figure 8 illustrates the
results of one generation of relaxation following any period of forward
selection from t-%-to t=4N generations, in this case for qo-E-O.S with

weak (Nio=1) and strong (Nia=8) artificial selectionm, It can be seen

R
that Ké»is indeed a good estimate of S for Ni®=sl, because such relatively
weak artificial selection does not alter the gene frequency very much at

any stage, Stronger artificial selection, however, results in values of
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Figure 8. The effect of length of forward selection, t, on the ratio e after a singlg‘generation of
relaxation in a large population with various strengths of homeostatic natural selection (S).
Curves are drawn for relatively weak (Nia = 1) and relatively strong (Nia = 8) artificial -
selection with q = q = 0.5. bx was calculated from mafrix results while 'Rl was calculated
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K;»much less than S if relaxation is carried out after even just a few
generations of forward selection, because such strong artificial
selection does alter gene frequency substantially. The regé;ta of one
generation of relaxation for other equilibrium gene frequencies are very
similar to those shown in figure 8, except of course that the ﬁaximum
posgible value of § is E, which means that one generation of relaxation

R
at a locus with for example q=0,1 is never expected to result in an_l

Ax
value greater than O.1l.
The results in figure 8 thus confirm;;ii,rche earlier conclusion

R
that —l-is expected to equal S if the single generation of relaxation

Ax
is carried out relatively early in the selection programme,

For a longer period of relaxation, the simple.expectation under the
homeostatic model of natural selection is that the metric mean will con-
tinue to decrease until the largé population equilibrium gene frequeancy
E iéureached. If qo-a, as has been asiﬁﬁ;d throughout this studyl‘the
above statement amounts to a prediction that the maximum value oflg:-for
teiaxation in a large population will be 1, for any qo-a.~ Figure 9

shows the value of %;-expected as a result of relaxation after various

periods of forward selection from tng:to t=4N, in this case with t'st
R
Ax

natural selection increases, and, except at very low values of S/q, also

and qo'E;Q15§ The galue of is seen to increase as the strength of
increases with t. The reason for this latter trend is that in a large
population, where chance fixation is unlikel¥ ' to occur, the value of
%;»for any t is largely a function of t', the number .of generations of
relaxation carried out. Obviously as t' continues to increase, a value
of g;-l will eventually be reached. Figure 9 is of the same form as

figure 6, in that it represents the general relationship between.§;-and

the strength of natural selection for all qo-aSO.S. It can therefore
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Figure 9. The effect of strength of homeostégic natural selection (S/q = sl) on the ratio
%; after as many generations of relaxation in'a'large population as previous
forward selection (t'=t) corresponding to %, N, 2N and 4N generations, where N

is effective population size during forward selection. Curves are drawn from

matrix results with Nio = 8 and qo'= a = 0.5.3
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be concluded that the result of relaxation of selection with the homeo~-
static model in a large population will be an %;-value between zero and
unity, with larger strengths of natural selection and longer periods of

relazation tending to give values of %;-approaching . unity,

Natural selection prior to artificial selection

It was stated at the beginning of this section that the results ob-
tained from the above matrix operations are only valid if the genotypes
are in Hardy-Weinberg equilibrium at the time of observation, or in other
words, all natural selection occurs after artificial selection., 1Is it
possible to extend these results to cover the action of natural selection
at any stage of the life cycle? The matrix operation in which E[qt] is
calculated fromwthe gene frequency distribution is no longer useful be-
cause alterations in q do not directly reflect alterations in the metric
mean if the genotypes are not in Hardy-Weinberg equilibrium, 1In the

initial discussion of this situation, it was noted that the metric mean

can be expressed as

a
x = 3lf),=f5,)

11 "7"12 "22

time wvhen the metric phenotypes are actually observed, Thus if homeo~-

if £ +2f_ _+f, =1, wheré fij is the frequency of genotype giAj at the

static natural selection occurs prior to artificial selection,

£, = 9 (=8 /o

2, = 2a(1-q) /v
and

)
"

a9 = -0)%(1-s)) /%

where

{1
]

1-5=(8,43,) (a-0) .
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The course of artificial selection in the presence of natural selection

was then followed by post-multiplication of the matrix U with a columm

vector v having elements

Vo) ~ F11(i) T fa2¢h)
where

. 2 -
fll(j) =2 (J/ZN) (1-51)/W(j)

‘ \ 2 -
£r2¢5) = (mi/20)7(A=s)) fu 5y
and

Sy = IS rs) /D

Thus the results of forward selection were obtained as

v, = Uv »

.1 L2 J
Y2 0

= Uy
- =0

and in general

Ve = W
-Utv o

How can the course of subsequent reverse selection be followed?

In principle what is wanted is a final reséii vhich can be written as
¥ .
v, . =0ty €))

but it would be much more economical if continual multiplications of

matrix by matrix could be avoided. Examination of expression (7) indi?
cates that one way to achieve such economy is to do the reverse selection
before the forvard selection. Indeed in their initial use of a tramsition
probability matrix in the study of artificial sélection,_Allanfand

Robertson (1964) used this very technique, but did not report it expliéigﬁ@i
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Thus matrix operations have been carried out in the manner of expressions
(8) and (9) below:

Vir Bzo

Zz! - 931'
]
- D2 v
L] -o
and
Ver =DV (8)
t'
'].) Yo *
Then
Viee' © Evt'
Vost' = Wiee!
- Uzvt,
[ ]
= U2pt v
and
Veat' ™ Wemtae 9)
- Utvt,
1]
= UtDt v .
- - Oo

An example of the results so obtained is given in figure 10, which
illustrates that any natural selection prior to artificial selection
(broken lineg) tends to increase the observed value of %;-above that which
would have been expected if artificial selection had been carried out prior
to natural selection (solid lines). It has been found that the difference
between the two situations decreases as the strength of natural selection
decreases, so the curves in figure 10 represent an extreme example., The

value of S/q was chosen as unity in this case so as to illustrate speci-
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fically the results of reverse selection at a locus vhere the allele
favoured by forward artificial selection is lethal (broken lines) or
sterile (solid lines). The value of %;-is of the same order in both
cases, and for t'=t ig relatively constant for any value of t, The
actual values of %;»in figure 10, however, are very much a reflection
of the initial and equilibrium frequency, in this case qo-a-o.l, but
the general trends and the relationship between the results for lethal

and sterile alleles represent results which can be generalised,

Discussion

In very general terms, the results of reverse selection and relax-
ation of selection under the homeostatic model of natural selection have
been found to be in agreement with current expectations of results of
reverse selection and relaxation in the presence of natural selection.
Thus a decrease of the metric mean occurs following relaxation, and re-
verse selection results in a greater change in the mean than that produced
by relaxatién.

To a certain extent it has been possible to quantify these expect-
,&tigns‘but, as in section I, only in terms of single loci., The actual
result of reverse selection or rélaxation for any metric character deter-
mined by a number of different loci will represent a completely unﬁred-
ictable combination of the various results discussed above. The pred-
ictions obtained in this study can therefore only be used in a very
general sense, to provide a feeling of the order of magnitude of the
results which might be expected. They also should be of some use in
the interpretation of results already obtained,

One aspect of the importance of equilibrium gene frequency which

has not been meationed above is the difficulty associated with low values
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of Nia and qs-a<0.5. Tﬁe directional effect of heterozygote superiority
in small populations for q#0.5 has already been mentioned, and it has been
seen that this effect may be stronger than artificiatf@j}gction with low
Nia, in which case the metric mean decreases under the action of forward
artificial selection for gq<0.5. Measures of %;‘for subgsequent reverse
selection in such situations cease to have much relevance. What can be
concluded quite generally is that the homeostatic model may give rise to
quite a strong natural selection force in favour of actively decreasing
the metric mean for genes with initial and equilibrium frequencies less
than one half. It remains to be seen whether other models of natural
selection also have the same implicationms.

Finally, it must be noted that certain different models involving
no natural selection at all can give rise to results of the type which
have been shown above to arise from the homeostatic model of natural
selection. For example, forward and reverse selection under a model of
non-additive gene action could conceivably produce trends of the same
type as those discussed above. A study of the formation of pre~-fixation
plateaux, and the effects of subsequent reverse selection and relaxation

for non-additive gene action would be helpful in this regard.

4, SUMMARY

1l The implications of the homeostatic model of natural ;election for
reverse selection and relaxation have been considered. It has been
assumed in all cases that qo-a at the commencement of forward artificial
selection. The results of reverse selection or relaxation have been
described in terms of the ratio of reverse seléction or relaxation res=-
ponse (R) to previous forward selection response (Ax), where t genérations

of forward selection are followed by t' generations of reverse selection
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or relaxation. If t'=1 then the response to reverse selection or

relaxation is denoted by R Consideration has been given to forward

1.
and reverse selection In a finite population of size N, and to relaxation

in a very large population.

2, PFor alleles initially common in the base population (qo-6>0.5)

the value of %;»fot raeverse selection is expected to be much less than

that predicted in the absencc of natural selection, for ahy t and any t'.
Conversely, natural selection is expected to enhance the effect of reverse
selection at loei where q°e§<0.5. and hence at loci where seiection

plateaux due to opposing natural selection are likely to form.

3. There is a high correlation between the proportion of original
additive genetic variance remaining at a selection plateau; and the mag- ‘

nitude of response to reverse selection from that plateau,

4. A single generation of reverse selection from a pre-fixation
NR
plateau is expected to result in a.palue of —iy Breater than l§%>but less

than 15, where F is the inbreeding coefficient for a neutral locus at
NR
generation t, Values of =--7_\%».»:1'0111-‘@ 10 or greater indicate very strong

opposing natural selection as a reason for the plateau.

5. For reverse selection from a pre-fixation plateau equal £n length
to the previous forward selection, %; is expected to have a value greater

than 1-F but less than 4,

6. A single generation of relaxation in a large population ie expected
to result in an z;-value of S providing that the single generation of

relaxation is carried out relatively early in the selection programme,

7. Relaxation of selection for any t' in a large population results in
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%; values between zero and unity, with z_x tending toward the latter value

with increases in t' and increases in the strength of natural selection.

8. Any natural selection which occurs prior to the time of artificial

. . R
gselection tends to increase the value of = actually observed,

9. Reverse selection from plateaux due to alleles which are sterile

or lethal when homozygous generally results in % values greater than

unity.
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LIMITS TO ARTIFICIAL SELECTION

IN THE PRESENCE OF NATURAL SELECTION

Discussion

The implications of the homeostatic and optimum models of stabilizing
natural selection for forward artificial selection have been investigated
in turn. It was possible o obtain a reasonable insight into the homeo~
static model but the optimum model proved to be much more intractable,
fhe reason for this lies in the essential difference between the two
models: the one ‘#n which each locus can be considered independently and
in which natural selection does not necessarily act at all loci, and the
other in which epistasis is of critical importance. Thus ander the
optimum model, all loci which éontribute to the metric character are
‘subject to natural selection, the effect of which at any one locus varies
from generation to generation, being determined by gene frequencies and
gene effects at all other loci.

Are we any closef to being able to interpret the results of artificial
selection experiments where natural selection has been implicated, in
terms of one rather than the other model? All present indicationa are
that we are not, For example, it has been concluded in section I that
the results of Lerner and Dempster's (1951) solection experiment are
compatible with the homeostatic model, as indeed they should be, But
James (1962) was able to conclude that the same data could be explained
with an hypothesis of directional selection opposed by nor-optimal natural
selection, And the consideration given to the nor-optimum model in
section II supports this conelusion. 1In fact, there seems to be no
aspect of the observable response to artificial selection which would

enable one to distinguish between the two models of natural selection.
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An example of the way in which one can not differentiate between
the two models is the recent analysis of an artificial selection experi-
ment for body weight in mice reported by Eisen, Hanrahan and Legates
(1973). The authors concluded that their data favoured the optimum
model rather than the homeostatic model, because artificial selection
had been seen to move the population mean for body weight and percent
body fat away from an optimum, in lines of relatively large effective
population size. However, the relatively large responses to selection
observed in these large populations would be expected to have resulted
in a greater degree of fixation of favourable alleles sbecifically at
loci contributing to the genetic variance in body weight than in the
smaller lines where response was not as great, And, under the homeo~
static model, a greater degrée of fixation of favourable alleles is
associated with a larger decrease in fitness. Thus the obsetvéd fie-
ness decline at the large effective population size is equally compatible
with the homeostatic or the optimum model of natural selection. It
appears therefore, that the detailed analysis of such artificial
selection experiments is unlikely to provide evidence in favour of one
or other model of natural selectioﬁ, at least in the light ofiﬂif5present
knowledge.

The nor-optimal model remains to be explored in more detail in the
context of both forward and reverse artificial selection, and such a
study may then point out differences in the ramifications of the two
models,

For the present at least, it remains apparently impossible to dif-
ferentiate between the two models by analysis of artificial selection
data. What are the type of experiments which would enable a useful

comparison to be made? The difficulty in answering this question is



129,

probably an indication that the real situation in nature lies somevhere
in between the extreme situations described by the two models. What
would be useful is a new conceptual approach to the whole question of
the inter-relationship between a metric character and fitness; an
approach in which the genetic consequences of natural selection on the
whole 'global"phenotype can be described; an approach that does not
involve confusion between cause and effect.

What then has been the use of considering the two models in this
study? The main reason is that the two models in thé&éresent state
represent essentially two extreme (and, incidently, th; only) des-
criptions of the way in which natural selection acts with respect to
metric characters. And it is these two models which are always dis~-
cussed during the analysis of any artificial sélection programme in
which natural selection seems to have been of importance. To the ex~
tent thaﬁ_the implications of each model of natural selection are
similar in the context of artificial selection, then knowledge obtained
from either one can be utilized in discussing the effects’of natural
selection in artificial selection programmes,

Thus for any-particular locus under the homeostatic model, natural
selection is expected to be the cause of a pre—fixatioh plateau in a
population of'finite5;§§§ only for genes with initial and equilibrium
frequencies equal to or less than one half, and then only if the value
of S/a_ib around 0.2 or greater. The total advance in the metric
ﬁean at a pre-fixation plateau is never greater than ZN(I-ZS)2 times
the change in metric mean in the first generation of artificial
selection, and a large proportion if not all of the original genetic
variance remains at such a plateau. An indication of the amount of

genetic variance remaining is given by the magnitude of response to
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reverse selection from the plateau. And finally, a significant de-
crease in population fitness as a result of artificial selection does
not necessarily imply that the metric character concerned is an
important adaptive character with respect to natural selection.

With the optimum model, it has not been possible to obtain
quantitative predictions with the same generality as those above, but
it has been seen that the implications of the mode@:gié essentially
the same., Thus a pre-fixation plateau will result if natural selection
is sufficiently strong, the total advance in the metric mean will pro-
bably be something less than 2N times the change in metric mean in
the first generation of artificial selection; and the natural fitness
of the population will have declined at the plateau from what it was
originally.

The results of this study may also be of use in the anélysis of
artificial selection lines in which fitness has declined and/or a
selection plateau has resulted. 1f, for example, the investigation
of the nature of a selection plateau involves reverse selection, then
certain predictions are now available‘@f the results éxpected from re-
verse selection with and without natural selection. 1In its most
general form the ﬁalue of ﬁhe ratio of the change in metric mean re-
sulting from t' generatfons of reverse selection (R) to the change in
metric mean due to t genera{}ons of previous forward selection (Ax) is
expected to be e-t/if:3:7;;//2N)

Values of the ratio larger than this prediction are expected if natural

in the absence of natural selection.

selection has been opposing the previous forward selection.
Fuﬁ?her work is needed on other possible causes of seléction
plateaux such as non-additive gene action (especially overdominance)

for the metric character, It would be particularly helpful to be able
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to distinguish the effect of natural selection from the effecf of non-
additive gene action on the response to reverse selection,

Finally, it is evident that many relevant aspects of response to
forward and reverse selection and relaxation have not been treated in
detail here. However, it should be quite possible to use the matrix
operations described in this study, especially for reverse selection,
to simulate a particular practical situation and consequently study

it in more detail.
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THE EFFECT OF SELECTION ON THE STANDARDIZED
VARIANCE OF GENE FREQUENCY

Introduction

The relative importance of selection and random drift in deter-
mining the observed pattern of evolution is still a major topic of
debate in population genetics. For loci at which gene frequency can
be determined, one of the lines of study currently being followed is
based on an idea apparently first suggested by Cavalli-Sforia (1966),

o
in which the standardized variance of gene frequency f <. is

q(1-q
estimated for various loci over several populations. Thus f is
estimated from the mean gene frequency at a particular locus over
several populations (q), and the variance of the gene frequency dis~
tribution (aqz) over the same populations, at a particular point in
time. Since all loci in a given group of populations have been sub-
jected to exactly the same breeding structure, f values obtained from
aﬁy number of such loci will be homogeneous unless selection has been
acting at some of the loci. Lewontin and Rrakauer (1973) have
recently developed various statistical tests for the homogeneity of f
values, and the use of these tests has, for example, led Nevo (1973)

to conclude that selection is acting at various loci in the:ﬁéékéﬁ;?

gopher Thymomys talpoides., Lewontin and Krakauer (1973) reached a

similar conclusion from their analysis of some of Cavalli-Sforza's
(1966) data on human populations.

Each of these papers has also drawn some conclusions as to the
type of selection which is acting., Thus it has been argued that f
values lower than those expected due to drift alone could be due to

some form of stabilizing selection (e.g. heterozygote superiority),



133,

and relatively large £ values may be indicative of different strengths
of directional selection it the same locus in different populations.
But these generalisations are the only knowledge currently available:
what is lacking ia a p;oper uﬁderstanding of the way in which various
models of selection affect the standardized variance of gene frequency.

It.is not only natural populations which are being subjected to
this type of study. The advent of suitable electrophoretic techniques
has recently led. to studies of the effect of selection on gene frequency
and the v@iiﬁnce of gene frequency in laboratory populations of, for
example, Drosophila (Dolan, 1974) and mice (Garnett, 1973). The
latter study was concerned solely with .the effect o% artificial
selection for a metric character on gene frequency and variance of
gene frequency ét various 'electrophoretic®' and coat colour loci. A
better knowledge of the way in which selection affects the standard-
ized variance of gene frequency would assist in the interpretation of
such artificial selection experiments. .

In attempting to trace the histotj of human erlution, Cavalli-
Sforza (1969) developed an algebraic relationship between f and the
time (t) since seﬁaration of two populations, for a model of constant
but different directional éelective values in different populations

at the same locus amdcompared it to the relatiomship f = 1~e-t/2N e

-
pected in the absence of selection. These two relationships were

then used to obtain lower and upper limits respectiveiy of t, the time
since divergence. But other models of selection could give completely
different relationships between f and t and hence completely different
estimates of time since divergence.

.Once again, therefore, a greater underatanding of the effect of

selection on £ would be useful.
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For human populations, Cavalli-Sforza and.Zei (1967) and Bodmer
and Tavalli-Sforza (1968) have obtained the expected value of f for
more complex but more realistic models using the Monte~Carlo and
migration matrix methods respectively, on a computer. Expected
values of f so obtained for situations where sufficient migration and °
general demographic data are gvailable have been compared with ob-
served £ values, -But it is difficult to use these methods to deter-
mine the effect of selection on f in general terms, as so many para-
meters of migration and/or demography are required to obtain any
specific answer. The cost in computer time is also quite substantial,

It is possible, however, to obtain a general impression of the
effect of selection on f by firstly considering an algebraic model of
additive directional selection. A further understanding can then be
acquired by the use of a transition probability matrix with which it
is possible to calculatg the expected value of oqz and q and hence f
at any time under various models of selection,

The aim of this study is to obtain a greater insight into the
behaviour of\;ﬁe standardized variance of gene frequency under simple

models of selection.

The additive model

Consider a single locus with two alleles Al and A2, and assume
the relative fitnesses of the threé genotypes AZAZ’ A1A2 and AIAI are
1 - %3 1 and l,ivg-reepectively.' If the genotypes are in Hardy-
Weinberg equilibfium at the time of conception, then the change in

frequency of allele A1 as a result of one generation of selection in

a large population is
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aq © %-q(l-q) (1)

where q is the frequency of allele A1 at the time of conception.

For a locus at which such selection is acting, the value of £
actually observed at any time is an expression of the end result of
a combination of selection and random genetic drift., Is it possible
to disentangle the effecfa of these two components, in order to see
more clearly how the observed f is achieved? The change in f due to

one generation of random drift alomne is well known as L where N is

'i‘ﬁo
the effective population size. But what is the equivaleni expression
for selection alone? And is the observed f simply the sum of these
two components?

Some understanding of the effect of selection alone on f can be
obtained by considering selection acting in a similar manner at a
single locus in a number of populations, Each of these populations
must be sufficiently large to justify the assumption that random
sanmpling is not going to alter the result of selection in any one
population from that predicted by equation (1).

Assume that the gene frequency at a particular time (t=0) in

h

lt L] &
the i population is qo(i)' If the qo(i) are all the same, then

cqz = 0 and fo = 0, Alternatively, if at least some of the qo(i) are
o 2
] N a /oy
different, then oqfa 0 and f° = Ei?f:;;). where q, is the 'mean gene
frequency at t=0., How will the value of f be altered after t
generations of selection in each. of these populations?
Following Haldane (1924), equation (1) can be expressed as a

differential eqﬁéiién .

2 35 q0-9 2
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provided that dq is small. The solution of this equation is

q q
t . 8.t ]

= ° (14) g . (3)
t o .

In order to obtain ft’ ve firstly need oé;z, which can he obtained

by noting that for any q,

Var bigaié ;EELE#% ’ o

(1-q)
Thus
-2 2
7 'gq/ ;oq -:/‘
LN L L = : )
(1-q) " (1-q.)

The term in s can be removed by dividing equation (4) by the square

of eqﬁétion (3), to give

. 2
PER O o] o
N s 3o
2 2 2 2
q, (1-q,) q, (1=q.)
f £
q,(1-q,) q (1=q )

Recalling that fo and q, are particular and constant values describing

the state of the populations at te0, equation (5) can be written as

£, =k q. (1-q) (6)
where k is constant for any particular set of initial conditions. If
all pogglatiops have the same initial gene frequency, then fo and hence
k are both zero, and ft is zero as expected : in the absence of drift
there can be no variancg in gene frequency at any stage if all
populations start with the same gehe frequency. On the other hand,

if there is some variation in initial gene frequency, then ft is



137,

directly proportional to q:(l-qt)' in which case it is expected to in-
crease until qt-O.S. Once the mean gene frequency of all the populations
passes beyond qt-O.S, then ft decreases,

Another way to look at this is to consider the change in £ with

change in q which can be written, from (6),as
df
t .
-a-a: k(1 th) . (7
Thus the change in f is positive if q, is less than 0.5, and negative

for all values of a, above one half,
It remains now to obtain a more useful expression for change in f.

For a single generation, equation (7) can be written as
af &« £(1720) , . - (8)

q(1-q)

And for drift alonme in the absence of seléction, change in f can be

written as
::->_]:__ -— )
Af = 5w (1-6) ()

where the last term ensures that Af is zero when f = 1.

""”’iﬁvfﬁ“ﬁﬁw‘EBEEibIE“E6_déscribéﬁfﬁé change in f due to selection in
a finite population by simply combining the two expressions;f;§'bf? The

simplest way to do this is to add the two terms together so that

L 1-£ , £(1-2q)
2N q(l-q)

When f has reached its maximum value of unity, complete fixation has

Af

Aq

occurred so that changes in gene frequency are no longer possible. In

general. therefore,

8q * 3a(1-q) (1-f)
where the last term is simply a reflection of heterozygosity declining

by a proportion %ﬁ-every generation in a finite population.
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The way in which f alters with changes in mean gene frequency due to

selection is then given by

2

P
a W 02 | (10)

da q(1-q)

which can be solved to give

£45= (2071 + 23(1=Q) log 731 + Ka(1-q) (1)

where K is a constant whose value for a particular initial gene frequency
q, and Qalue of Ns can be determined by setting f=0 in equation (11).
In other words, equation (11) gives the value of f expected at any
,partﬁcular time when the mean gene frequency is q;given that all lines
or.populations were derived from a single population in which the
initial gene frequency was q, at the tipe of separation., Thus E[qol )
in all lines is 9, and the expecte§ value of f at the time of separation
is zero.

The usefulness of expression (11) as a prediction will be checked
below by comparing its prediction to the exact results which have been

obtained by the use of a transition probability matrix.

The matrix operations

The derivation and subsequent use of a suitable matrix have beeﬁ
described in full, for example, by Hill and Robertson (1968). Only a
brief description, therefore, of the matrix operations will be given
here. |

Consider a population of N diploid individuals mating at random
({uacluding selfing). At a particular stngle locus with two alleles

A1 and Az. the genotypes A2A2, AIAZ and AIAI are assumed to have Hardy-
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Weinberg frequencies of (l-q)z, 2q(1-q) and q2 respectively at conception,
vhere q is the frequency of allele A1 at conception., The relative fit-
nesses of these three genotypes are assumed to be 822, 1 and S11
respectively.

For a given gene frequency i/2N, the proportion g4 of each geno-

type in the population of parents at the time of their mating is

1 2
Big2 = = (17a)" 8y,

w

- -1-2q(1-q)

812 =

w

1 2
811 = =95

w

where qwi/2N and w is the proportion of zygotes which remain to be in-

cluded as parents, and is given by
w = (1-q)2s..+2q(1=q) + ¢S
1) Sgp74atima 1

172 11

The probability of obtaining exactly x AjA,,y AjA, and z AA

genotypes (x+y+z=N) in a population 6f N éur@ivors; éiQ;ﬁWEHQt there were }

i Al alleles in the population of zygotes in the samé_ :generation can
. . !

be expressed as

- N b4 y 2
£,0702) = (5 2) 8122 8112 Bin ’
and can easily be evaluated on a cemputer for all i=0,1,...,2N, It

then follows that the probability Pij of obtaining j A1 alleles in a

population of N zygotes at generation t+l, given that there were i Al

alleles in the N gzygotes at generation t is.

pij - zi-oyfi(x.y’Z) i,j - 0,1,...,2N,
=j

which is an element of the transition probability matrix P. The matrix

- - -
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2N
is square of dimension 2N+1, and within each row I »p
j=0

s = 1.
ij

The expected value of q and uqz can then be ﬁbtained by post
multiplication of 2 by column vectors representing the first and second
moments about zero of the distribution of gene frequency. Thus the
selection process is commenced by setting up a column vector u, with
elements ui-i/ZN and a second vector v with elements vi-i/ZN;gﬁi/ZN.
Then the matrix operations

u= i

and

L

result in vectors u, and v representing the first and second moments

«0

after one generation of selection. The results for subsequent gener-
ations are then obtained as

uy = Pu

[

and

U =P Uy ' (2)
t ,
- ()

and similarly for Ve While operations of the form of (b) indicate more
clearly the principle of the use of a transition probability matrix, it
is operations of the type shown in (a) which are actually carried out;
because they involve only the repeated mﬁltiplication of the matrix by

a vector, rather than the matrix by the matrix as is needed in (b).

represents Elq, qoci/

ZN]

At any generation t, the ith element of u,

and the ith element of v, is equivalent to E[qtz{qoni/ Thus

oyl

o ey ey . -
SR T 9T T Veqny T Weqhy!
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and

. 2
EUE ] a55) vtfi) - Meay!
o ' Lié(i) {liut(i)}
Matrix operations of the type shown abové have been carried out
with a diploid population size of N=10, for a total of t=8N generations,
with various strengths of selection under two simple models, additive
and heterotic. The final generation was chosen as 8N simply because
it represents a convenient multiple of N, and corresponds to almost
all (in this case 98.2%7) of the inbreeding process for a locus with
neutral alleles. Extrapolation from t=8N to t=» for the parameter f
is a relatively easy matter, as E [f] at t=wo is 1,

An effective ﬁopulation size of N=10 was chosen because it re-
presents & convenient value for matrix operations.. It is now commonly
realised (see for example, Crow and Kimura,.1970) that generalisations
to a wide range of population sizes can be made by expressing the re-
sults obtained from one value of N as Ns for the additive model, and
as N(s1+82)vfor the heterotic model, where s is the selection coefficient
for additive selection, and 8y and s, are the selection coefficients

for heterotic selection. Thus the two models can be represented as

AA AA ALA

272 172 11
Relative ) 1-4s 1 :  l+ls additive model-
fitoness- )

-5, 2 1 2 1-s, heterotic model

It follows that the transition probability matrix P can be set up by

taking Szz-l-is and 811-1+§s for the additive model, and 822-1-32 and

Su-l-s1 for the heterotic model.



Figure 1, The effect of various streng;hs of additive selection-:
on the relatidqship between.gene frequency .at time f,
and the corresponding standaraized_variancg of gene
frequency, for initial gene ffeqﬁencies'of'qo = 0.1,
0;3, O.SIand 0.7. Curves.are drawn from transition
probability matrix resqlts (splidAlings) and from the

pre&iction of'eQUation (11). (dotted lines).



142,

The effect of selection on f

An example of the behaviour of f under additive selection in
a finite population is given in figure 1, in which f is shown as a
function of mean geme frequency at time t, for the four initial gene
frequencies of qoto.l, 0.3, 0.5 and 0.7. Thus a conceptually infinite
population has been subdivided randamly at time t=0 into several sub-
populations each of effective size N. The value of q, is the same
in all subpopulations, giving fo-O. Additive directional selection
then occurs with exactly the same coefficient of selection in all sub-
populations : the variance of 8 is zero. The exact matrix results
(soldid lines) represent the mean Qalue of f wvhich would be observed
if the whole process of subdivision followed by selection within sub-
populations were repeated a large number of times.' The broken lines
represent the prediction of equation (11).

It can be seen that equation (11) provides an accurate prediction
of f for Ns<l and values of f up to about 0.5. (Only one line is
shown for q°-0.3 and N?=1 because observation and prediction coincide
exactly in this case, for all values of f). As f approaches its
ultimate value of unity, the prediction generally tends to become less
accurate. For larger values of Ns, equation (11) ten&s to overe;timate
for q,<0.5 and underestimate for q_»0.5. However, at intermediate.
initial frequencies (O.3§q050.7) the prediction is quite useful for f
values up to 0.1 even for large Ns.

The discrepancy between observation and prediction at higher
values of f is most likely an indication that some type of interaction
term has been omitted from equation (19).- An exact description of the

whole process is not therefore possiﬁle by the simple addition of Af
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selection (solid lines) ~and heterotic selection (dotted

lines) on the standardized variance of gene frequency,. f,

during  the whole inbreeding process from generation zero, .

to g'eneration'i,nf;ini‘ty. Time scale is expressed as
. _t/2N . . - . . e

1-e - §0 as.to provide a linear relationship with f

for no selection; In this example matrix results are

given for additive selection with q, = 0.1, and for

- heterotic selection with q, =q = 0.1.
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due to drift and Af due to selection. However, to the extent that
some useful prediction is indicated in figure 1, at least for Ns<l
and/or low f values, it can be concluded that equation (IQ)is a valid
éirst approximation to a proper description of the effect of selection
on f in finite populations.

Another illustration of the way in which f behaves under differ-
ent strengths of selection for the additive model is given in figure 2,
The results for the heterotic model are also included. The time scale

on the x~axis is expressed as l-e-t/2N

80 as to provide a straight

line relationship between f and t in thg absence of gelection. All

the curves in figure 2 have been obtained for the same initial frequency
of allele Al’ namely q=0.1: results for other initial gene frequencies

will be discussed below. In addition, for the heterotic model, it has

been assumed that qo-a, vhere q is the large population equilibrium
S i .
2

+S
172
quite a valid description of the situation in real life, because t=0

gene frequency;land is given by

= . This assumption is protably

in the context of this study represents the time of divergence or
separation of one relatively large population into two or more relatively
smaller ones., If seléction wvere favouring the heterozygote at a part-
icular locus, then it would not be surprising to find q=q in the large
population, and hence for any newly formed subpopulation the assumption
that E[qol -\a would seem to be quite realistic,

It can be séen from figure 2 that at any time t, additive
selection resulté in f values larger than that expected due to drift
alone, and that h;terotic selection has the opposite effect. The
difference between f under selection and f under drift alone at any

time t increases as the values of Ns or N(sl+sz) increase. More
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generally, it has been found that the shape and position of the curves
for heterotic selection are very similar for all fnitial gene fre-
quencies, if qo-a. The effects of heterozygote advantage are thus

well in accord with the verbal predictions of Cavalli-Sforza (1966, 1969)
and Lewontin and' Krakauer (1973).

The effect of additive selectién. however, is not so easily
generalised, For higher initial gene frequencies, in this c;ee 0.3
and 0.5, figure 3 shows the effect of various values of Ns on f. It
can be seen that f under selection is almost the same as or less than
f with d}ift alone for the majority of the selection process.’ In fact
with q°=0.5 the curves for additive selection now resemble the curves
for heterotic selection,  except for relatively high values of'f, of
the order of 0.8 or more.

An explanation of the difference between the curves for additive
selection at various initial frequencies can be-obtained by considering
the way in which aq2 and q alter during the selection process. For
initial frequencies less than one half, aq2 is always greater than it
would be in the absence of selection at least until q reaches 0.5,

Thus the numerator of £ is larger with additive selection than it
would have been in the absence of selection. However, as q increases
from a low initial value towards 0.5, the value of q(1-q), which is the
denominator of f, also increases up to a maximum of 0.25., Thus the
denominator is tending to decrease f over this range. The observation
that f continues to increase in the early stages of selection is then
simply en indication that the increase in cqz is more than sufficient
to offset the increase in q(1-q).

As q continues to increase above 0.5, the rate of increase in



145,

aqz begins to decline. Relatively large Ns values even result in anl
alsdute decline in the value of oqz. But this relative or absolute
decline in oqz wi}l be associated with a decline in q(1-q), as q pro-
ceeds beyond 0.5, which.will tend to increase f. The observed fact
that f continues to increase throughout the selection process merely
indicates that the decline in the value of q(1-q) is relatively greater
than any degline in aq2 which may occur.

The curve for Ns=8 with q,=0.3 indicates that during the re-~
latively early stagesvof selection, the decliﬁe in q(1-q) may n&t be
sufficient to completely offset the decline in aqz, so that although
the value of f continues to increase, it falls below that expected due
to drift alone. It is only when q(1-q) has become much smaller, to-
wards the later stages of selection, that £ becomes larger than that
expected'with drift, The same trends are evident to a greater extent
with qo-O.S. In thié case, and indeed for all qo;O.S. the value of
oqz is never as great as that which would be observed with drift alone,
and can be much smaller for relatively large Ns values. It therefore
takes somewhat longer for the decreasing value of q(l-q) to compensate
for the relatively low oqz, with the tesulé thét f with selection is
always less than f with drift alone, unless the value of f with drift
alone is quite high,

It can be concluded that heterotic selection always results in
f values lowét than thése expected with drift in the absence of selection.
Addiéive directional selection will produce similarly low values 6f f
unless initial gene frequency is low, or unless observations are made
relatively late in the selection process, when f values expected due

to drift alone are of the order of 0.7 or greater, In these two
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additive [N%: = 8] and heterotic [N(sl + %Q) = 8] selection.

All curves are drawn from matrix results. The straight

line for no selection (drift only) is also included. The

. . s -t/2
time scale is expressed in the modified form of 1 = e t/ N.
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situations f with selection is greater than f with drift alone.

Another general point can be obtained from the curves in
figures 2 and 3. It is very evident that even with quite large values
of Ns or N(sl+82), the effect of selection on f will never be detected
if the observed value of f is less than say 0.1. The effect of
selection on f becomes most apparent as f due to drift approaches
intermediate values.

It remains now to consider the effect of selection on the résults
of two different methods of analysis currently used for observations

on the standardized variance of gene frequency.

Standardized variance betwean populations averaged over loci

This is the type of analysis conducted by Ca§a11i-$forza (1966,
1969) who used the mean f values so obtained to estimate times since
separation or divergence of the populations cencerﬁed. Thus a
particular value of £ is observed, and a value of t is inferred from
the observed f, Figure 4 illustrates the way in which the value of t .
so inferred from a particular value of f is influencéd by initial gene
frequency, for the two models of gselection considered above.

Firstly, it can be seen that for low values of Ns or N(sl+32),
the estimate of t is very similar to that which would have been obtained
with an hybothesis of no selection (drift only), as expected, and this
result holds for all initial gene frequencies. Larger Ns or N(81+92)
values, however, result in much larger estimates of t, except for re-
latively low initial gene frequencies. The effect of selection
therefore,>is generally to provide much higher estimates of t than

would have been inferred under an hypothesis of drift alone. Estimates
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of time since divergence based on an assumption of no selection may
thus be considerable underestimates of the true value if additive or
heterotic selection has occurred.

But what if the forces of selection vary between loci or between
populations? If, for example, alleles at some.loci are effectively
neutral, while alleles at other loci are subject to either type of
selection considered here, then the individual f values from which the
mean f is calculated will simply be drawn from different conceptual
populations of f values, with the population mean of f for any parti~-
cular value of Ns or N(sl+sz) being situated at the relevant position
shown in figures 2 and 3. Thus exactly the same conclusions apply as
baefore,,

The sitvation considered specifically by Cavalli-Sforza (1966,'
1969) and Lewontin and Krakauer (1973) invélved variable selection
coefficients in space for a particular locus. Any such variation in
s or (sl+sz) would surely increase the value of £ at any given time
over that which exists for the smallest value of s br.(siﬂsz) on its
own., Thus the effect of variation in seléction coefficients with
space will be to increase the expected value of f above those predicted
from the models of constant s and sl+sz considered here. However, to
the extent that the f values expected under either heterotic or addi-
tive selection are generally well below those expected due to drift

alone, it would seem to be quite possible that variation in s or s.+s

172
may not be sufficient to give an f value greater than that due to drift

alone.
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Figure 5.. The effect of selection and initial gene frequency on the
‘\vdlue of £ that would be observed at é time t=N généyations
after all popuiations first diverged from.one another.
Curves are drawn from matrix results for relatlvelv weak
addltlve [NS“—I] and heterotic. [N(s +s ) 1] -selection, and
fqr relatlvely strong additive [N§3=8] and heterotic

[N(si+sz)=8];se1éctidn. The straight line for no selection

(drift only) is also included.
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Standardized variance between populations within loci

Lewontin and Krakauer (1973) have considered two possible types
of analysis in this category. The first of these, as utilized by
Nevo (1973), involves observation of gene frequency at as many loci
in as many different populations as possible, at a particular point
in time. A value of f is then estimated for each locus, and signi=:
ficant heterogeneity between f values is'taken as evidence of selection
at least at some loci. Figures 5 and 6 show the way in which
selection determines the value of f actually observed at two particular
poimts in time, namely t=N and 4N genera;ions. for all possibie initial
geneffrequenciea. In this context, initial gene ftequenéy refers to
the gene frequency at time zero, the time at which all observed popu-
latiéns Qre aésumed to have diverged from each other.

For t=N, which is fairly soon after separation, it can be seen
that selection in general, either #dditive or heterotic, results in
relativeiy low f values compared to those expected due to drift alone.
Later on, when the populations have been separated for much longer
(t=4N), f due to drift alone is quite high, in this case around 0.86.
Once again, heterotic selection results in lower f values, but the
situation for additive selectiqn is now somewhat different, in that f
values resu}ting from this type of selection are larger than those ex-
pected due to drift alone, except for loci at which the mogt favoured
allele was quite common at the time of separation.

The second type of analysis considered by Lewontin and Krakauer,
and actually used by Krimbas and Tsakas (1971), invélves observing the
variation of gene frequency over time, rather than over space as above,

This was done in the case of Krimbas and Tsakas by calculating f for
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relatively .strong addifive [N§3= 81 and heterotic [N(sl+sé)=8]
selection, .

The straight line for no selection (drift ° only)

is also included. -
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each of two loci between adjacent years of sampling in a natural
population of the olive fruit fly Dacus oleae., It is interesting to
note that in their discussion: of the sensitivity of such an analysis,
Lewontin and Krakauer assumed that the effect of additive selection
would be to increase the value of f over and above that expected due
to drift alone, It would appear, however, from the results'obtained
above, that the effect of additive s;Iection is generally to result in

f values lower than those expected due to drift eXcePt yhen initial gene

freguency is low, or when f due to drift is high.

TDiSCussigéf
The results of this study are in broad agreement with verbal
predictions already available, of the effect of selection on the
standardized variance of gene frequency. What has become evident,
however; is fhe wvay in which two simple models of selection are suffi-
cient to provide expected values of f which cover almost the entire
possible range of f values. Furthermore, the possible range of f
values at any parficular time t c#n be substantially extended when con=
sideration (not described here) is given to directional selection for
a recessive, and for a dominant gene. It must therefore be concluded
.that while heterogeneous f values certainly can be taken as evidence
of selection, any subsequent inference as to the type of selection
operating is bound to be of very limited validity in the absence of
knowledge of initial gene frequencies,
It is interesting to note that if the mean initial géne frequency
were known, and if it were around 0.5, then equation (11) can be used
to estimate the value of Ns for that éarticular situation, because K=0

for any Ns if q°-0.5; Thus the estimate of Ns is, from (11)
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Ns - } 12071 + 2q(1-q) 1log = (12)

where q is the mean gene freauency and f the corresponding standardized
variance of gene frequency actually observed at time t, This type of
_calculation would be especially valid in the case of, say, artificial
directional selection in several lines where each line was initiated
from the same base population which in turn was the FZ resulting from
the crossing of two distinct inbred lines. The advantage of applying
the results of this study to artificial selection is that the assumption
of a constant selection coefficient at a given locus is more likely to
be valid than in the context of natural selection, With the continuing
developments in electrophoretic téchniques, investigations are now being
made into the way in which artificial directional selection affects gene
frequency at vgrious loci, providing estimates of Ue 9, and ft'
Equations (11) and (12) can then be used to obtain an approximate
estimate of s due to artificial selection at each available locus, if

a suitable estimate of effective population size is available,

Summazz

1. The effect of diréctional and heterotic selection on the

standardized variance of gene frequency (f) has been studied.

2. For the additive model of directional selection, the change in
f per generation due to selection in a finite population of effective
size N can be described quite simply in terms of an effect due to drift

alone and an effect due to selection alone, such that
o 1-f = £(1-2q)

N q(1-q) 1

where Aq is the change in gene frequency due to selection in a finite

Af

population, and q is the frequency of the allele favoured by selection.
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3. A prediction of the relationship between f and q at any gener-
ation has been found to be quite accurate for Nsgl or for relatively

low values of £.

4, The use of a trangition probability matrix has shown that heter—
otic selection alvays results in f values lower than those expected

due to drift alone.

5. Additive selection usually results in similarly low f values,
But f values larger than those expected due to drift will be observed
under additive selection with low initial gene frequency (around 0.1
or less), or when the popultations have been separated for a relatively
long period of time, in which case f expected due to drift is quite

high (around 0.7 or greater).

6. The effect of selection on f is unlikely to be detected if the
observed value of £ is less than 0.1, The effect of selection becomes

most apparent as f£f due to drift approaches intermediate values.

7. Estimates of the type considefed by Cavalli-Sforza (1969) of
time since divergence or separation of two or more populations, when
based on an hypothesis of no selection, may be considerable under
estimates of the true value if additive or heterotic selection has

occurred,

8. Not withstanding the above generalisations, any inferences as to
the type of selection which has produced a particular set of hetero-

geneous f values are bound to be of limited validity, because the
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possible range of f values expected at any given time under any
particular model overlaps considerably with those expected from other

models.
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APPENDIX I

Analysis of variance of selection response

A simple nested analysis of variance was conducted to deter-
mine what{§r0b0%§ioﬁ.of the total variation of response could be
accounted for by variation in Nia and S. The model used was

X " M + 85, + Nicij + Nijk im1,.0.54
J=1,00.,48
kel,.00,3,

where *ijk is the observed frequency of allele A1 in the kth popul~
ation size (5, 10 or 20) under a selection regime specified by the
58 value of Nia (1, 2, & or 8) and the i*! value of S (0, 0.1, 0.2,
or 0.3)., Three separate analyses were performed on the observed
gene frequency at generations N, 3N and 6N. 1Initial gene frequenmcy
was 0.3 in all cases.

The following results were obtained:-

| M.S. E(M.S.]

d.£. gen N gen 3N gen 6N

2 2 2
Between S 3 0.195 0,460 0.567 OE: f 3°Niﬁ + 120S
Between Nia 12 0.081 0,111 0.135 sz + 3°Ni:
within S '
Between N 32 0,004 0.009 0,013 -oNZ
within Nia
TOTAL 47

The proportion of total variation in response whiEh can b§
o, + 0

e T eI Nia
& attributed’ to variation in Nia and S s then given by

which has wlues of 90%, 87% and 86% for response .

at generations N, 3N and 6N respectively.
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APPENDIX IT :

Derivation of selective values of genotvpes

A large proportion of what follows is not original, Derivations
arriving at the same end result for additive gene action have been
given for example by Griffing (1960) and Latter (1968a), following
on from the initial idea of Haldéne (1931).

The derivation presented here is different in that it obtains
selective values which are explicitly functions of the metric deviation
of each homozygote from the heterozygote. It is then possible to use
the selective values expressed in this manner, to obtain a simple ex-
pression for selective values under a particular model of interest in
section 1I. The selective values for this particular model have ale~
ready been given without deriéatian by Jamee (1962), but in a less
evident form and in terms of parameters which are more difficult to
interpret biologically.

For the genotype A » the distribution of a metric phenotype

1k

prior to artificial selection can be represented as

£(x) =

g, /27

- (x=X )2]
exp[__i-_%v k
2

where ;Jk is the mean metric phenotype of genotype AJAk’ and o " is
the phenotypic variance of the metric character at the time of
artificial selection.

Assume that the effect of artificial selection is to select all
individuals whose metric phenotype is equal to or greater than a
particular truncation value X,* The probability of an individual

being selected is then



°p

’ (-] - - 2
-(x=x _)
Prob [x>x_] 1 ﬁxp [___gl‘_] dx
[2¢ 20,
X
C

(v -1
= 1 /exp [ -tz } dat
= 5 .
o ’2(1
P x __; 20?
. c Jk -
If we let
(« o}
N 1 V/// t2
£(x ) = exp | — ‘} dt
c % [27 {20 2
P
x
c
then

Prob [x7x ] = £(x +h)
[+ C

where h = -xJ for genotype AJAk' Expressing r(xc+h)'as a Tdylor's

k
expansion results in

f(x+h)=t(’()+h1'(x)+ooo .

c c c

Thus it should be possible to evaluate Prob [x?xc] in terms of f(xc)
and f'(xc). Firstly it is evident that

4 (xc) =p
where p 18 the proportion of the population selected. Also

-X
...1 c

£'%(x ) = exp[ :’
c op:izﬂ 20 2

P

where zc is the height of the ordinate of the normal curve at the
standardised cut-off point xc/op. For the genotype A JAk‘ it then

follows that

- .
- [e] i . - x
Prod [x}xc] ~ P + (-xdk’[ OP A \'p {1 + xjk o-p‘g ,
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where 1 i8 the standardised selection differential, equal to ZC/b'

The relative selective values of the three genotypee can then be expresced

as
AA, AR, ARy
- i - 1 - i
1l +x —— H 1 + x_ = 5 l +x o
22 Gp l?ﬂp ' 11 OP
or 14+ (% %) 3 1 s 1+ (xx) .
o 22712 o, 11712

P
The well known selective values for additive gene action in the

absence of natural selection are obtained directly by noting that

X, X . ="Bandx -x =2
22 712 - 2 oM X7 T 3 .

Of greater interest in the present study is a somewhat different
model, involving nor-optimel natural. selection prior to artificial
selection with additive gene action.

In their most general form, the metric means of the genotypes can

be expressed as

X220 T B -84

£ =y - s

X1p = bt = 8la5
and

It has already been noted in section Il that the effect of nor-
optimal natural selection is to alter any metric mean x to x+C(6-x),

2
and to alter op to opz(l-c). Thus, using primes to indicate metric

means efter natural selection,

-“ 3‘,\ '..‘.‘: - - - - - -.1- - 1\ 1
xzz}: X1 = B aq + C[0 - p + aq] {p alg 2) +Cle-pu+ 8(Q~§0]_

a
-3 (1-C)

irrespective of the value of © and p. S8imilarly
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-t - ¥
oo = X =§(1-C) .

11 12
The relative selective values of the three genotypes with respect
to artificial selection, if nor-optiml natural selection has already

taken place, will then be

1 -8 i a
1+ [—-(I-C) :t 1 : 14+ STiE [—(I-C)}
oP[IR.' 2 ] vpj - 2.
which reduce to
ix ia

1-‘5‘ 1-C 1+"5' 1-C .

L1
(-
0
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1. INTRODUCTION

In laboratory or field experiments data are sometimes available
on the performance of FBEEBChe parents and several of their‘progeny;
It is then possible to estimate.heritability in two ways, either from
the regression of progeny on parent performance or from the intra-class
correlation of sibs in the progeny generation fe;g; Falconer (1960)1,
In the regression method, no use is made of the variance between mem—
bers of the same family, nor, directly, of the variance between family
means. In the intra-cless correlation method, no use is made of
parental performance. When all the information is available herit-
ability is customarily estimated by both methods from the same data,
but no attempt is made to find the correlation between the estimates,
or to pool them to obtain a single, best estimate., Alternative est-
imates of heritability from the same data have been obtained by
Sheridan, Jones, Frankham, Rathie and Barker [ 1968 ], who commented on
the poor agreement obtaiﬁed between the - offspring-parent and sib co-
variance estimates, but thought this due to sampling. Clayton, Morris
and Robertson {1957 ] obtained the different kinds of estimates, but
each from a different set of data. Alternatively all the information
could be utilised to form a maximum likelihood (ML) estimate, which is
not commonly done in practice, but has beg; suggested in this context
by Dr J. Felsenstein [ personal communication 1.

In this paper we derive formulae for the expected values of
the sampling correlation between regression and intra-class correlation
heritability estimates, of the variance of pooled estimates derived

from these, and of ML estimates. Thus we envisage, in concept, a
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large number of separate experiments, of identical design, in each of
which a heritability is estimated by offspring—parent regression and
by the covariance of sibs. The sampling correlation we compute is
that between the pairs of estimates obtained in each experiment tak;n
over the population of replicated experiments.

In Section 2 we discuss the concepts and derive in some detail
the formulae for a very simple situation, full sibafamilies from pair
matings. In Section 3 we give without details of derivation equi-
valent formulae for the more involved, but more impprtant hierarchical
design in which males are each mated to several females, to give both
full-sib and half-sib family groups. In Section 4 we compare the ef-
ficiency of alternative estimators and in Section 5 we discuss the
optimum designs for estimating heritability using.all the available
information by ML,

We assume that random mating is practised., For simplicity,
balanced designs are considered which, théugh rarely encountered in

field data, illustrate the principles more clearly.

2, FULL SIB STRUCTURE

If the correlation of full sibs is to be an unbiased estimator
of heritability we need to assume that gene action is additive and
that there is no covariance among sibs producgd by common environmental
(maternél) effects; and for the regression of offspring on parent to
be an unbiased estimator, there must be no environmental covariance of
maternal and progeny performance. We make all these assumptions here,
but relax some of them in the half sib aﬁalysis discussed subsequently,

Let us assume that s pair matings are made, and that n progeny
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are reared from each mating. Although gome information is contained
ia the variance between individual parents, we shall ignore this, and
utilise only the parental.means, Xi. iel,..0o8. Let Eii.be the

score of the jth individual in th:ith family, with j = 1,...,n. We
assume that the Ei-and Eii are multivariate normally distributed, each
vith mean yu, and that individual observations have variance g?. The

typical variance-covariance structure, based on formulae given by

Falconer [1960], is shown below:

X %y Z3g0 Xy Ziv;
X } i \H. O 0
23 w1 in 0 0 o (1

Z.., in in 1 0 0

where i # i', j ¥ i', and H is the heritability (ﬁ).

Regression and intra-class correlation

In the usual offspring-parent and sib covariance analyses the

following mean squares or products are computed:

g = T %y -6 -1, My =& -E)EL - /6 - D,

= = |2 s (2
Mpz = BT, zZ ) /(= 1), My = §§(zi5 =23 /st = 1)
and the following estimators of heritability may be used:
regression of offspring on mid-parent: Hbf - MXZIHXX’

twice the intra-class correlation of full sibs:
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B = 2(0Mp, = M)/ 0, + (0 - 1M, .

While H . is an unbiased estimator of H, Héf is not, for it is the
ratio of two random variables, for which onl&ﬁthé ratio of their ex-

pectations is H. We have
V(Ei; |xi) - [g_n(l-n) + (1-511)/n]o2 ’

and since i(xi-l.l)z/(az/Z),} is distributed as chi-square with s-1 d.f.,

B[_l/l_i(xi-l-t)zj - 2/{(s-3)0%]
1 .

which can be shown directly, or inferred from Kendall and Stuart [1973,
p.305]. Hence

2 + (n-1)H - nAZ

v(ubf) - (s=3)n

(Latter and Robertson L1960]). Here and elsewhere we shall assume
that s is sufficiently large that terms of order _s_-l can be ignored re~
lative to i, giving

V(Bbf) = (2 ¢+« (n=1)H - nHz,] /sn (2)

By taking logarithms and expanding, or using Taylor's series, we ob-
tain
Q2 - u)2[2 + (n-llﬂ]z(sn - 1)

28(s - n (n - 1)

V(B ¢) =

which reduces to Fisher's [1925, sect. 39] formula

(2 - %2 + (o-- 1)n]2
2sn(n - 1)

V(g ) = ©)

approximately, if s is large.

Y
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We find cov (B'bf’ Htf) by the same expansion method. For

four random variables Wiseser ¥, with means Uyseces ¥, and small co-

efficients of variation such that terms of order (vi - ui)3/u i3 and

higher can be ignored, then

L

- v(:l.. 2 ) TR {cgv_(y/l.w:;) ) cov(wy,v,) ) cov(wz,w3)
V2 Y4 Ha¥y ¥1¥3 91 1]

cov(w,,w,)
Yaky

In our case we have

2 ) 2
vy = My uy = HHOT 5wy = Mo,y = o

vy = 2(Mp, = M) Hg = ko’ 3 v, = Mgy * (0= DMy, u, = ao”.

{1959 .
Tallis /gives a general formula for variances and covariances of

mean squares and products of normal deviates. For some mﬁ. m. which

are unbiased estimators of population moments with f d.f.,

t:ov(mq N mu) = [cov(q,8)cov(r,t) + cov(q,t)cov(r,s))/f

*
where cov(q,s) etc. are the appropriate covariances. We have

cov(Mxx. an) = 2n covz(xi,ii.)/(s-l) - !nﬂzcbl(s-l)

cov(Mxx, MHZ) = cov (sz, sz) =0 .

cov(My,, My,) = 2n cov (xi.ii.)v(z'i.)/(s-l) - ;a(nm-z-n)a"/(a-l).
Substituting the above into (4), rearranging, and assuming s is large
we obtain

' 2
cov(h, ¢y H.) = H(Z-H)liz(n 1)H=nH") -

which is, of course, approximate since high order terms are ignored in

%).
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Figure 1, Correlation, r, bétween estimates of heritability from
the covariance of full sibs (Htf) and the regression of
offspring on mid parent-(Hbf) with full sib families of

specified size.
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From (2) and (3) we find that, asymptotically for large 8,
the regression of B':f on Hbf is given by H(2-H), .and from (2), (3)

and (5) that the correlation between Btf and Hbf is

2,4
H{2(n-1) [2+(n-1)B-nH ]}
r= 2 + (o-1)H (6

which does not depend on the number of families. With large family

sizes (E’:’)‘ and H>O0, equation (6) reduces to r = J2r(1-8). In

Figure 1 the correlation is shown for some values of n and H.

Some verbal but non-tigoroué explanation of the positive co-
variance and hence correlation of the two estimators can be given,
1f, for example, the'genetic variance among the sample of parental
pairs taken exceeds its expectation (!223), then the §ariance between
progeny means and the covariance of progeny and parental scores will
both exceed their appropriate expectation, so that both Btf and Hbf
will tend to exceed H, However, both gtf and nbf will‘;;;;tali;-;;
less than H if there is reduced genetié-;;;iin;:-:;ong parental pairs,

:

so there is a positive covariance between Htf and H e

It is clear from Figure 1 that the correlation between esti-
mates of heritability from offspring on mid parent Fegtession and
from the covariance of full sibs is not trivially small unless the
true herftability (H) is close to zero or, only if family sizes are
very large, close to unity. Thus, in a single experiment in which
heritability is estimated by both methods, we should expect to find
a better agreement between the two estimates than if they were ob-

tained independently.
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Maximum likelihood estimation

The available information on heritability in the experiment can
be utilised by ML. We are concerned here primarily with the effi-
ciency of such estimators, relative to using the simple regression or
sib correlation estimators, rather than with the ML estimation pro-
cedure.

Let ¥ of dimension s(n+l) be the variance-covariance matrix
of the observations, which, for simplicity in the later analysis, we

take as the transformed vector:

(Xyo 2y 0 290 = 29 0 29 = 2y seeesZy 7By deeed Ko 2o 0 201724 0

. - )
""za.n-l Zs.) .

Since families are distributed independently, V is block diagonal,
with the block Ve of dimension n + 1 specifying the variance-covariance

structure of a single .family, We can write V= I *# Vioz, where *

denotes direct product [Searle (1966)]. Frém the model (1)

Vi- '£ 9 .1;1’000,2
0 AP a5

where I (the identity matrix) and J (with all elemeﬁts unity) are of

dimension n~1; and T of dimension 2'is given by

b o

In  H+ Q-i)/n

Noting thatLE§§i) - E(ii.) - r.and E(Zij - ii.) = 0, the log

likelihood becomes



.\
\

\l
\
\

3 R - .. 1IL.8
r\ . . -t ' o \

.Log'ﬁ = =}s(n+l) (log am + log o?) - }s logr| + s log n -'is(n-l)
8 / (7) -

xlOg (1‘53) - (1/20 ) L [(y -u1)'T (Y -ul) +
. i=1" j

/

(] oI~/

L= 2
. (zij Z\i.) / (1-4H))
where yi = (X., 2 ), 1' = (1, 1). Explicit solutions for the ML
2

i’

estimators of u, o and H have not been found, but w1th any set-of
data estimates can be obtained numerically. For example Felsenstein

\ [personal communlcatlon]\has written a computer program for th1s
i ! \

speclflc problem, However, large sample variances can be obta1ned in
the usual way from the inverse of the matrix of; expected second partial
derivatives of ;he likelihood with respect to the parameters, .

Let 91 = 92 2vand.6j = H, and the information matrix M
have&elements ’ i !

]
[N
!

- i
m,. = -E(a log L/ae.ae ),i,i = 1,2, 3.~ :

1]
: 1
In differentlat1ng (7) and taklng expectations. we utilise ‘some results
. . ' c . : .. . ) /
given by Searle [1970]. In~our context these are’ -

21 aT

{-%{ (y;uD)'@ 2y” (yi-ul)']} = —trlT ! 24" = =d1og |t l/2m,
. ~ w T~ ~ TN ~ ﬂ{_ ’ ~
\\
where tr denotes the trace; and

BN 2 - 2. LT 2T
Aot B (gD @2 D] = —erlT 13T o7l % 71 2
‘”. 3 2 ~1 ~ ~ ~1. ~ e OH ~ oH ~ BH

H .
2 B?T
=-'-2-a—2 lo'g"l“-i-tr[’l‘]f-—;]
9H tad ® 3H

=202 10g' Ir | /982,
since 2?T/3H2 = 0,. We obtain from (7)

25[n+2 - (n+1)H] . - 8(n+l) -
o [2+(n-1)H - nH ] 20

™y ©



Figure 2,

02 04 06 08 10

Sampling variance per observation (v) of alternative heritability
estimators with full sib families of tivo different sizes: Htf from

sib covariance, Hbf from regression on mid-parent, H__. a pooled

pf

estimate of Htf and.Hbf, and Hmf from maximum likelihood.
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My =My = Myy=my, =0

8 n~-1 - 2nH n-1

23 32 26¢° 2+(n-1)H-nH 2-H
2 2
2n[2+(n=-1)H=-nH" ] +(n=1-2nH) n-1
myy = 8 { 2.2 * ~7}
» 2{2+(n~1)H-nH"] 2(2-8)

The estimates of y and H are uncorrelated, since they are the mean
and a function of the variance, respectively, in a mixed model

(Searle [1970]). Let V(Hmf) denote the sampling variance of the ML

estimator of heritability, which is given by the (3,3) element of

M.l. i.e.

2
V(H )=m,, (M myy = my5") e

Relative efficiency of estimators

The variance of Hmf is compared with that of the simple
estimators Hbf and Htf in Figure 2, The total number of observations
made for the estimates is T = s(n+2), so to enable comparisons bet-

ween estimates obtained for different values of n, variances are ex-

pressed as T.V(Hmf) = v, for example. Thus for any experiment with

I indiQiduals, the variance is v/T*. The computed sampling variance
of the ML estimator is proportional to s, and we‘have seen that those
of Htf

pectively, and approximately to s if the number of sires is large,

and Hbf are inversely proportional to 8=1and 8 - 3, res-

We therefore assume that many sires are used, and the results of
Figure 2 do not depend on s.
It is also possible to obtain a pooled heritability estimate,

H o a8 a linear weighted function °f.abf and Hogo We take
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pr - aﬂbf + (I-G)Htf (8)

in which a is chosen B0 as to minimise V(H ). This value of a is
- gf -

a= [V(Htf) - cov(Hbf,Htf)]/[V(Hbf) + V(H:f) - 2 cov

(Bbf’ntf)] ’ ®
giving

V(R ) = 1V, I, I=cov” (B ¢ B )1/ [V(E, ) + V(R ) -
2 cov (B B )], “ "40)

In practice only estimates of V(Hbf), V(Htf) and cov(Hbf.Htf) are

available to insert into (9), since they depend on the parameter H,
An iterative procedure has to be used in which a value, g.ia guessed,

used to estimate H £ from (8), and subsequently V(Hbf) etc. These

values are substituted into (9), é.xs estimated again and the process
- repeated,

Valuesof T.V(H f) are also shown in Figure 2., Since the best
weighting factor, %, is not known, the variances given in the figure
may be biased downwards. WhileX no exact formula for this bias has been
obtained, a simple argument shows that it becomes proportionately smaller
as 8 increases, and thus is negligible in large samples. Rewriting (8)
as

Boe = Heg + (B - Byp)

we see that the contribution of error of estimation of 2_:0 V(H f) is

- 2,4 _ 2
roughly proportional to E(Bbf Htf) v(®). Now B(Hbf Htf) and the

variance of all of the terms on the right hand side of (9), and thus

V(“z; are proportional to 1/s, so the product E(Hbf-ﬂtf)ZV(a) is pro-

portional to 1[2? and in large samples becomes a trivial part of
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V(H f), (The same arguments can be applied to the ML estimators,
which are themselves weighted estimates, with vthe weights inaccurately
determined in small samples).

It appears (Figure 2) that except at high heritabilities the
pooled estimator, EBS? is almost as efficient as the ML ?stimator.
Since parental observations are not required to enable estimation of
intra-class correlation, the appropriate value of T in an experiment
designed only to obtain Hcf and in which parents are sﬁ recorded for

regression estimates is sn. The value of T.V(Btf) in Figure 2 could

then be reduced by the factor n/(n+2).

The loss of efficiency in ML estimation from excluding the in-
formation on the individual parents can be obtained using the methods
desc§ibed in section 3, but omitting the environmental covariance of
sibs term (K). For heritabilities near zero there is no loss in ef-
ficiency., Taking values of H of 0.1, 0.2,...,0.9, the greatest
losses obtained were 6.5% and 7.5% for n = 16 and 8 respectively, both
at H = 0,7, and 9.5%, 12,27 and 11.9% for n =4, 2 and 1 respectively,

all at H = 0.9.

3, ESTIMATORS IN A HIERARCHICAL STRUCTURE

An important assumption in our analysis of the full sib family
model is that the only covariance between family members is that from
additive génetic variance (i.e. iggz). Usually there is some addi-
tional covariance, 523, of full sibs from two sources; méternal of
other environment effects common to full sibs and non-additive genetic
. effects, especially dominance (Falconer [1960)). Therefore intra-

class correlation estimates of heritability are normally made from
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the covariance of half sibs. Regressions of progeny on parental
perf&mance do not include dominance effects, but t_here could be some
maternal environmental covariance between progeny and dam, However,
this covariance~‘ is unlikely to be of the same magnitude as the en-
vironmental covariance of sibs and we shall assume in the following
analysis that it can be ignofé‘d. Thus tize only major change from
the simple full sib model described previously is that a term ‘l_(_g_z_ is
added to the covariance of full sibs. We again assume there is no
epistatic variance.

Letj-;'j_‘s_;)sires each be mated to d dems with n progeny reared from
each mating and we shall aszume throughout tha;\jg is sufficientiy
large that terms in 3-1 cen be ignored relative to 1. This simplifies
the formulae and makes them more diteétly comparable with each other,
Let i’; be the‘ measurement on sire’ i:_iil that. on the jth dam mated to |
sire _i.., gnd Eﬁi the measurement op' her _‘k_th' ?}'og;eny. The observations
are assumed to be multivariate normally distribdbuted with mean Y.

There are no covariances between members of different sire families,

+ .

and typical variances and covariances for a single family are shown .

" below: - ° )
‘ S Ny T Fagee Yape Zg
X, 1 o ) 11 o in
Yy ] 1 )l )| 0 )
245k ) ) 1. jEeR o 1/4H ' of
z, ik 1 iR fHek 1 0 1/48
Tege 0 0 ) o 1 in
zij.k {8 o 1/48 1/4H 4B 1 (;1)

where j # §', k # k', Within this structure we shall slso include
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the case of sex limited traits, where if no measurement is made on
males, no Xi are available, or if none on females, there are no Yij'
There are :;;arly many other relevant models which we do nctcon;;;:;:
for example where males and females have different' means and variances,
or where the mean performance differs between the two generationms,
With this kind of data estimators of heritability can be ob-

tained in several ways: |
i) Intra=-class correlation between half sibs, (The correlation
between full sibs is biased.)
ii) Regression of offspring on parent performance:

a) Progeny on dam within sires. |

b) Progeny on sire.

c¢) Progeny on sire plus dam average.

d) Progeny on mid-parent.

‘e) Various pooled regression estimators.
iii) Pooled estimafors from intra-class correlation and regression.
iv) Maximum likelihood.

We shall compare the variances of the alternative estimators,

together with the sampling correlations between estimates obtained
from!;he same data, using the methods described in section 2,

i) Intra-class correlation between half-gibs (Hts)

The intra-class correlation between half sibs, Hts’ is too well

known to require definition here. The approximate sampling variance,

modified from Osbornme and Patterson [1952] or Robertson [1959), is
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1V(Hts)'- -17—5 { (4;3)2[4-2n-ax + n(H + QK) + ndH]2

8sd™n

+ [4 + (d-1) mz[a - 2H - 4K + n(H + ax)lzl(d-l)
+ 4d(n-1) B2(2 - H - 2K) % } (12)

where the variances deriving from the mean squares for sires, dams
and individuals are shown in order. The method can, of course, be

used for sex limited traits,

ii) Regression of offspring on parent performance
Each of the following regression estimators, not necessarily
an exhaustive list, can be shown to be unbiased,for H.

a) Progeny on dam within sires (Hbd). The estimator, '
SRR

By = 2:;;: (Vg57Y3 .0 @45,72%

2 (13)

MED (¥45F; )
1]
makes'noffg;?bf differences between sires, and is the typical daughter-
dam regression technique used for traits expressed only in femAles,'
such as milk yield in cattle where there is often only one daughter

for each dam (n = 1). From regression theory,

4=2B+uH(1-H) + 4(o=1)K

and we can show that

- H e
cov(ﬂbd,ﬂts) = TICOAH {4+ (d=1)H] [4~2H+nH(1-H) '\"4(!! 1)K},

The regression of Ets on H , is simply -H[A+(d-1)ﬂ]/2d.ﬂbut the cor-
relation of the two estimates has a lengthy formula. The correlation
is negative if B>0, in contrast to that between the estimates from co-

variance of full sibs and offepring on mid-parent regression described
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earlier. Presumably a sample of dams with a genetic variance above
expectation induces a regression sbove average and a sire variance
component, estimated from the difference between sire and dam mean

squares, below a;?etage. Since V(Kbd), V(Bte) and cov(ﬂbd,ﬂts) are

all inversely proportional to s, (under our assumptions), the cor—
relation does not depend on 8. Also, if d and s are large, n = 1
and B>0, it can be shown that the correlation between Hbd and Hts
approaches -H_L_/'Z'd-__. T T

b) Progeny on sire (Hbs)' The estimator,
. -

=N 3 = .2

Bbs B zg(\")&-xo)(zio--zovo)/g(xi-xo)
can be used for traits expressed only in males, since it makes no
use of information on the dams. We can show that

o 4-2H + nH + ndd(1-H) + 4(n-1)K :
v(ﬂbs) sdn = (1%)

and

¢:ov(!1bs ’Hts) - E%;%)- {4=2H+aH+ndH(1-H) +4 (n=1)K]}.

Thus the regression of Hts on Hbs is QH(A-H)and, like the correlation,

does not decrease to zero as the size of the experiment increases,

c) Progeny on sire plus dam average (H'Ba)' The information.
y

available on the mean performance of dams mated to each sire is ex-
cludeq from the regressions Bb d and H‘b g* It can be incorporated by
regressing the mean performance of progeny in a sire family on the
sire plus average dam performance. Thus

s = = .2
.0 ) /§ (xi‘Yi .-XQ-Y. 0)

By ® 2?"‘1“*’1."‘."{..) (z;,.72
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and
o 4-2H+n(d+1)H(1-B) +4(n-1)K :
V() = = 3@Dn a6

which is slightly less than V(Hbs)' Also

cov(ﬂba’ﬂts) - cov(ﬂbs.ﬂts) - H3(d-ﬁ)/2ad

d) Progeny on mid-parent (Hbm)- If the hierarchical structure
AR

is disregarded, a straightforward regression of offspring on mid-parent

can be computed in which the sire performance is included with each of
his mates, It is a simple method of utilising all the observations on
the parents for traits expressed in both sexes, and

By zig(xi’éij-i.;§..)(iij.-2..;)I§§(xi+yij'§.-§..)2‘
The error structure of this estimator is ‘more;complicated since the ‘
errors about regression of dam families in the same sire family are

correlated, but when 8 is large the variance reduces to

_ 4[2-Benl(1-H)+2(n=1)K]+ (d=1)nH (1-H)
v(ﬂbm) 4nsd an

The covariance between Hbm and Hta is not required in our subsequent

analysis,

e) Pooled regression estimators (H, ). Tt can be shown that
| bp Hpa

(from within sire families) is uncorrelated with both Ebs and‘Hba
(from between sire families). For a trait which is expressed in both
sexes, it seems reasonable to assume that Hbd and Eba contain all the
information which can be obtained by regression. From these a pooled
estimator, H s can be obtained by substituting into (8), (9) and (10),

but they simplify such that
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o e V(H, )/ (V(E,) + V(E )]

and
V(R ) = (/T + 1/VE T,
since H 4 and H . ere uncorrelated.
| -;; limizgzéféases of family size, several of these regression -

estimators ara the sare, If S,' 1 (i.e. one dam per sire), then

B Exabas B . (the latter refers to full sib famiiies, see section 2)

and since there is no information on Hbd' it follows that Hb E'Bbm also.
Our formulae arc not precise if 8 = 1 (only ome sire family), but it

follows that thetg is no information on either Hbs,or Hba and Hbdgﬁbm

2

iii) Pooled estimators from covariance of half sibs and regression
Estimatoré can also be obtained by pooling those from the co-
variance of half sibs and from one or more regression estimators, The
. appropriate method will depend on whether or not the trait is sex limited.
For traits expressed only in males we define 322: which is a linear
function of Hts (from the covariance of half sibs) and Hbs (from thg
regression ;;-;;ogeny on gire). The optimal weightiné-;:é VSEEE?'are
based on (8), (9) and (10). For traits expressed only in females, we
define :12‘1’ which is a linear function of E.t.i and 52.‘.1. (from the re-
gression of progeny on dam), obtained by the same weighting procedure.
If a trait is expresscd iz both sexes, we have suggested that all in-

formation from regression is included in Hbd and Hba and these can be

combined with Hts to form a pooled estimate H a? given by

?pa =% Hbd * e Hba * %3 gts

witth Zmi = 1 and the a chosen to minimise V(H ). The solution can
{ - R -
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be shown to be as follows. Let ci. be the covariance Between

estimates i and j, andylet.A = €19 =Cy3 "Cp3 * C33» B=cy, -2c13

+ Cqq and C » Cyg ~ 2c23 + Cqqs Then

) A~ )01/[A2-3c1

@) = [(eg57cy, (e337¢q5

a, = (c33-c13-a13)/A. a, = l-al-az

0f course, only estimates of the 44 are available, 8o exact weightings:
are not possible. o

The sampling variances of these estimators are compared with
those expected from ML methods in section 4.

iv) Maximum likelihood (Bm)
R

Consider the model in which observations are available on both
sexes, so that a total of s+sd+sdn measurements are made with the var-
iance-covariance structure given by (11)., However, as in the full sib
case, it is useful to transform the observations into the following
order for each sire family, say sire i:

Koo Yy 0 25 3 Yy=¥g 0 2y, "Zg, eeeen Y5 a7V 025 g, .72

‘9 ioo

Zi117Z51. 00000240 0172410 23217242, 000 0244, 0-1" 244, .

a2

Let this set of observationa have variance-covariance matrix W.°", of

dimension l1+d+dn. Since ¥y is the same for all i, and sire families

are uncorrelated, the overall variance-covariance matrix W of dimension
s+sd+sdn is given by
g=1ry%

We have
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$1 0 0
W, = 0 (I-kp ws 0
o1 gl e 22
0 0 1 * (1-‘11\1) (1-4R=K)

where, in the (2,2) block of Wi, (1 - 'clid) is of dimension d - 1, and

in the (3.3) block, I is of dimension d and (£ -‘l;.l) of dimension P_-:;:’l.

Also
1 0 5
59 * 0 3 s
o B T - (4m
Sy = i ) %H+K+(1-{H-K)/n

From the properties of direct products e.g.[Searle, (1966)) and
utilising the special form of these "I + J" matrices [Searle (1970))

we obtain

-1 -1
Vo o=y

-1 .
v.! - 0 T+ *s,"} 0
§ : 2
0 0 I# (I+3)/(1-4H=K)

and tl‘ - Ll ‘ s (?‘sz" 41,8 [',l;(l“lﬂf'x)n.ll“
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Hence, the log likelihood can be shown to be
Log L = constant terms - l(s*bd+sdn)logoz - islog Bil - }s(d-1)1log bzl

8
~}sd(n-1)log(1-{H-K) -~ }ozt £ (x-ul)’' Sl-l(xi-ul)

fwl = = =
s d , -1
MPRARRARLY I B LY
s d un - 2
+ ifl jfl kfl (zijk - zij.) /(1-48-K)]

vhere x', = (xi.ii.,ii..)'. 1' = (1,1,1) and Y'ij - (?ij -3,

1..0°

pifferentiation of the likelihood and obtaining expectations of
the second partial derivatives are straightforward, and the results can
be evaluated on a computer. The matrix P, of dimension, 4 x 4, has

oy ‘
elements Pi’ = ~E(3 1ogL/aeiaej3, where we take

2

'91 =y, eé- o7, 63 = H and 94 = K, The inverse of P gives the sampling

variances and covariances of the ML estimators.

If information is availéble only on females a total of s(d + nd)
observations is available. The sampling variances of the ML estimators
are found in the same way, but the first row and column of §1 together
with the relevant terms-in the cbeervations which relate to information
on sire performance, are deleted, Similarly, if there is no inform—
ation available on females, there are s(l + nd) observations and the
second rdw and column 0f431. the first row and columm of 52 and the

appropriate observations are deleted.
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When no parental data are available, deletion of the first and
second rows and columns of §1 and the first row and columm of §2 is
required. In such a balanced design the estimates of variance compo-
nents by the analysis of variance are minimum-variance quadratic un-
biased (Graybill and Hultquist [1961]) and equal to the ML estimators
after correction for bias with normally distributed observations
(Graybill [1954]). Thus the large sample variances of heritability
estimates by Ml(Hm) and iptté-class'correlation (Hts) are the same

when only progeny data are available.

‘Pooling of Sheridan et al's results

An example of the use of the theory developed in this section
can be given by considering the alternative heritability estimates of .
Sheridan et al [1968]. From the same data they obtained estimates of.

Hts’ Bbd and Hbs.for total abdominal and sternopleural bristle number

in both male and female Drosophila melanogaster with a balanced hier-

archical design of s » 62, d = 3'and n = 16. ' Using the method out-
lined in séctionfggiii) we can obtain a single pooled estimate of
heritability for each character in each sex. = [In the absence of the
original data it has not been posgible to pool the male and female
estimates, nor has it been pos%ible to obtain'ag ML estimate). We do
this by firstly guessing a value for the pooled heritability thch is

then substituted as H into the equafions for V(Rbd), V(Hbs), V(Hts)'

Eov(ﬂbd. Hts)’ cov(Hbs,HtB) and cov(ﬂbd’~ﬂbs)° The values thus

obtained are substituted into the equations for Ao @, and a, to pro-

vide estimates of these three weights which are then used to obtain

a second estimate of pooled heritability as
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The cycle is repeated until the estimate of Eéistabilises.

TABLE 1. Results of analysis of data of Sheridan et al on abdominal
and -sternopleural bristle numbers in D. melanogaster,
Total Abdominal Sternopleural
Maleé Females Males Females
120z + + ENE +
Heritabilities Hbd(l) 0.28 - 0,09} 0.21 - 0,08 0,18 - 0,08 | 0.26 -~ 0.08
& standard —— . + L+ +
errors Hbs(Z) 0.22 - 0,10} 0.40 - 0.15] 0.16 - 0,09 0.18 - 0.13
calculated by — + E . : + ‘ +
Sheridan et el Hts(3) 0.29 - 0.13| 0.67 - 0.18| 0.17 - 0,08 | 0.29 - 0.10
Pooled H 0.26 = ,062| 0.35 2 .065| 0.17 = .046 | 0.25 = .050
Expected 1) 0.093 0.094 0.072 0.074
Standard (2) 0.097 * 0.102 - 0.078 0.085
Errors 3] o0.123 0.139 0.076 0.092
Expected (1,2) 0.00 0.00 0.00 0.00
Sampling (1,3) -0.15 7=0.19 -0,12 -0.15
Correlations (2,3) +0.39 +0.47 40,34 +0.43
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This final estimate of 22 is then used to obtain final esti-
mates of the expected sampling variances and covariances, and hence
the relevant sampling correlation coefficients. The results of ﬁhese
calculations, together with the estimates and standard errors of
Sheridaﬁ 32_21, are presented in Table 1.

Each of the pooled estimates is seen to bé weighted in éavour
of the separate estimates with lowest variance, and the standard error
of each of the pooled estimates is lower than any of those of the
separate estimates, as we would expect. The standard errors ex-—
pected for each separate estimate are in reasonable agreement with
those observed., It can also be seen that the expected sampling cor-
relation between Hbs and Hts is never greater than 0,47, and that
the correlations ;:;ween -51 and .Hi‘.’ and ib_c_l_ and P.E.s. are expected to
be zero and slightly negative respectively. In view of these rel-

atively low correlations, we should not necessarily expect good agree-

ment among the estimates.

4. RELATIVE EFFICIENCY OF ESTIMATORS IN A HIERARCHICAL STRUCTURE

The relative magnitudes of the sampling variances of different
heritability estimates from the same set of data depend, of course,
on the design parameters, n, d and s, and also the underlying parameters
g‘aﬁd K. " Thus we can only compare the‘estimators for a few examples.

All but one of the designs have been chosen such that for an inter-
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Sampling variance per observation (v) of alternative heritébility.estimators with half and full

sib families of specified $ize on traits measured in both sexes: .from half sib covariance (Htég’

from regression on sire performance (H k), on sire and mean’'dam performance (H '), on .dam
performance (Hb ) on . mid parent (H ), using a pooled regression estimator (H ), a pooled

estimator from regression -and sib covariance (Hp ) and maximum likelihood (H )
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mediate H value (0.2), they are the optimum for ML estimation, given
a fixed total number scored, T. The single exception is the design
used for the comparison of estimators in Figure 3a. This design,
which is far from optimum, has been chosen to illustrate that the
conclusions drawn from comparisons are quite robust over different
designs,

The results are given in Figures 3, 4 and 5 for traits in which
both sexes are scored, only females are scored and only males are
scored, respectively. - In each case variances are expressed on a
single observation basis, i.e. they are the inverses of the Fisherian
information per observation. A large number of sires is assumed to
be used, so that the variance of cach estimator is inversely propor-
tional to the number of sires. This assumption is less satigfaccoty
for estimators such aé the regression of progeny on sire (HSS) or

the half sib intra-class correlation (Bts)’ for with only one sire

available Hbs and Hts cannot be estimated. ‘ Then the only unbiased
infotmati;;-;;,heézzzkility comes from the regression of progeny on
dam (Hbd), so the ML estimator (Hm) must then have the same efficiency.
-_}n Figure 3 and in othe;_;;amples.we have investigated in
which the estimators can be compared, it is seen that Hbd has a
considerably lower variance than the other single paré;:-;egression
estimator Hbs' Also Hba’ the regression on sire and'dam average,
has a varizzzélintermézzzke between the single parent regression
estimators over most heritability values. The regression on mid
parent Hbm’ ie more efficient than ubd‘ The only intra-class cor-

apa——

relation estimator which is unbiased, Hts’ may be more efficient

than any regression estimator at low heritabilities, but becomes
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only on females, together with H*bd’
estimated from regression on selected

- parents,
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As Figure 3, but for traits recorded
only on males, together with Hgs,
estimated from regression on selected

parents, -
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very much worse at high heritabilities. This was shown for some of
the estimators by Robertson (1959). The variance of the maximm
likelihood estimator, Hm’ is much smaller than that of the best
commonly used estimat;::'but the pooled estimators, EBE. based only

on regression estimators and Ezg.based on all estimators, are not much
less efficient than EE: At loy heritabilities 322 and EE'have almost
the same sampling variance. A few assumptions need to be emphasised,
however: the exact weightings for the pooled estimates could not be
achieved exactly, the designs.have been chosen to be near optimal

for ML estimation without regard to their efficiency for other esti-

mators, and the variances are expressed in terms of all observations

in the experiment, s + sd + sdn. However Hts is based on sdn ab-

servations, Hbs on 8 + sdn and Hbd on 8d +sdn. Thus, if the parents

are not measured the values for Hta in FPigure 3 could be reduced by

the factor dn/(1 + d+ dn).

For sex limited traits scored only in females (Figure 4), the
pooled estimator H d is considerably more efficient than the simple
regression estimator Kbd and is as efficient as ML at low heritabilities.
At higher heritabilities, H ! is little better than H , and somewhat
poorer than Hﬁ. When the trait is scored only in males (Figure 5)

similar conclusions hold for the regression estimator Hbs rather than

Hbd’ and the pooled estimator H _ rather than H _,
—2d A -Bs 2d

In Figures 3, 4 and 5 examples are also given for designs in
which only half-sib data is available (i.g.‘g - 1), In these it is
assumed that K = 0, since there are no full sib families from which

it can be'estimated. The general patterns are seen to be very similar

to those of the relevant full hierarchical structure shown in the same



IT1.56

figure,

As well asproviding comparisons of efficiency of various heri-
tability estimators, Figures 3, 4 and 5 also provide information of
potential use in the planning of experiments to estimate heritability.
Givenv at; optim@ sire family design, Figures 3, 4 and 5 can then be
used to provide a dire;t indication of the total number of observations
required to achieve an estimate of heritability with a particular
variance. Suppose, for example, that we wished' to obtain an estimate
of Hbm with a standard error of 0.1 for a character in which we expect
bot;_thé heritability and K to be around 0.2, Using Table 24, thé
optimum values of d and n are 8 and 2 respectively, and from Figure 3b,
we see that i" 5 for B, at H = 0.2 with this &esign. Since X..'.

T.V(’Hbﬁ) and T = s[1 + d(n + 1)]= 258 in this case, we have V(Hbm) =

OB But we want V(Hbm) = 0,01 which therefore requires s=5 x
258 25

T = 20 sire families or a total of 500 observations over the two
0.01
generations, More generally, a similar type of conclusion can be ob=-

tained by the use of the relévant equation in section 3, for any
commonly used heritability estimator and for any particular combination
of H, K, d and n. Again it should be not.e_d that such a conclusion
will often be quite robust for a range of values of the parameters H
and K. In Figure 3b for example, it can be seen that our conclusion
for H = 0,2 would equally apply to all values of H between 0.2 and 0.6.
Some indication of the probable value of K may be available

from previous analyses, as is often the case with heritability, 1In

1
terms of the model of section 3, we have K = § vD * VEc , using the

p

notation of Falconer [1960). An indication of its probable value can
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. a Heg =By
therefore be obtained as K = ——s where B 4 is the half-sib

heritability estimate based on the dam component of variance. Such
an estimate must of course be interpreted with considerable caution,
because of sampling errors involved in estimating H td and Hts‘

The optimum values of d and n for use in calculations such
as those just outlined have been determined by Robertson [1959] for
intra-class correlation estimates and by Latter and Robertson [1960}

for regression estimates, Now that we have an expression for V(Hm),

we can examine the relagive efficiencies of different experimental de-
signs for ML estimation of heritability, and compare these optimum
values of d and n with those relevant to the regression and intra-

class correlation estimates,

5. , OPTIMUM DESIGNS FOR HERITABILITY ESTIMATION

We now find optimum designs for ML estimation using both parent
‘a.nd ﬁrogeny, data, making the same agsumptions as Robertson [1959] and
Latter and Robertson [1960] of random mating among unselected parents.
It has not proved possible to find the optimum designs for ML analyt-
ically so our results have been obtained by trial and error numerical

evaluation of 'V(Hm) on a computer, In all cases we define the optimum

design as that giving the most information, i.e. V(Hm)-l, per observa-

tion on either parent or progeny. Since the large sample variance of

Hm that we have to use is inversely proportional to 8 (the number of

sires) the optimum design depends only on d and n,
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TABLE 2. Optimum family structure .(d!n) for maximum 1likelihood

estimation of heritability in a hierarchical design with

parents and progeny scored.

IR

0.00

0.05

0.20

H

' ‘ Sexes
0.05 0.10  .0.20 . 0.40 0.60 Scored
11,8 8,5 5,4 3,3 3,2 F&Q
36,2 16,2 6,2 2,2 2,2
11,9 10,5 - 8,4 7,3 9,2 9
22,4 13,3 | 6,3 3,2 3,2 P
38,2 16,2 .| 6,2 2,2 2,2 )
25,4 23,2 | 13,2 9,2 9,2 9
46,2 20,2 8,2 4,2 3,2 PR
43,2 18,2 | 6,2 | 2,2 2,2
50,2 27,2 15,2 11,2 10,2 Q

" Por the heirarchical structure analysed in section 3, the op-

timum designs for ML estimation are given in Table 2 for a range'of

values of ):4 and K, and for characters measured either in both sexes ‘or

in males or females alone.

The optimum values of d increase if there

is a decrease in H or an increase in K.

A gimilar trend is observed

in n at low K, but as the covariance between full sibs becomes in-

creasingly inflated by maternal environment or non—additive genetic

effects, the optimum value of n soon reduces to 2, which is the lowest

value of n for which K can be estimated.

' Por characters scored only .

in males, the optimum design does not depend greatly on K, and at

higher H values is ¢

Y

lose to the optimum design for traits measurable
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in both sexes. Only at high heritabilities does the optimum design
for traits measured just in females differ greatly from that appro-
priate for both sexes. Thus it should be poésible to select a design
which provides a high degree of efficiency for the simulteneous esti-
mation of heritability of several sex-limited and non sex—1limited
traité. Table 2vshdws, howevér, that it is more difficult to find

a suitable compromise for traits of widely differing heritability or
maternal enviromment correlation. It can be seen in Table 2 that,
for constant H, the optimum value of nd does not depend greatly om K.
With both sexes scoredl, these optiﬁa are roughly 88, 40, 18, 7 and 6
for H = 0,05, O.i., 0.2, 0.4 and 0.6 respectively. As a good approxi-
mation, the value of nd at the optimum is 4/H, giving nd = 80, 4(;, 20,
10 and 7 respectively. If only males are scored, the optimum for nd
is 3/H approximately, and if only females are scored it becomes 5/H
approximately,

These results do not differ greatly froml. those derived by
Robertson [1959] for heritability estimation from the covariance of
half sibs. He found that a dam family size (m) of omne with 4 &./g,
approximately, to be the optimum, If both sire and dam intra-class
correlations are to be estimated Robertson showed that the optimum
value of n was 2/H, with d = 3 or 4. . These values of n are slightly
larger and d slightly smaller than those given in Table 2 for ML
estimation using both parental and progeny data. As we have noted
previously, the half-sib intra-class correlation estimator and the ML
estimator are essentially the same when only progeny data are avail-
able, and so therefore are their respective optimum designs.

The optimum designs have also been found by computation for
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cases in which both parents and progeny are measured, but where only
half sib families (i.e. n = 1) are available in the progeny generation.
A value of K = O has been assumed since it can not be estimated., The
results are shown in Table 3, and it is seen that the optimum value of
d (and hence nd) is generally somewhat smaller than the optimum value
of nd when both full and half sibs are available (Table 2). If only
full sib families are available the optimum design if K is to be esti~-
mated is close to that given by Latter and Robertson [1959], presumably

since 2all information on H comes from regression of offspring on parent.

TABLE 3. Optimum half-sib family‘size (d) for maximum likelihood
estimation of heritability where observations are avail-

able on parents and half-sib progeny only.

i : Sexes
0,05 0.10 0.20 0.40 0.60 ‘Scored
71 31 12 X
70 30 10 P
82 43 24 15 14 K

Many of the optimum designs shown in Tables 2 or 3 may be
impracticable, especially those requiring large values of d. However,
apparently large departures from the optimum deéign often involve
only a small reduction in the amount of information per observation,

Some examples to illustrate this are given in.Figure 6; similar re-

sults have been found for other combinations. We see that for a trait



n

Figure 6. Sampling variance per observation (v) of an ML
estimator of heritability for different family
sizes, records on both sexes (a), only females

(b), or only males (c).
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scored only in females with a low H and high K, a reduction in d
from the optimum of 31 down to 16 increases the variance per ob-
servation by only 6% if n remains at: 2.

Although tables 2 and 3 give the optimum designs when there
is prior knowledge of H and K, there is also need to specify designs
likely to be efficient‘over a wide range of parameter values when
this prior knowledge is absent. We find that a satisfactory design
has ‘a dam family size (n) of 2, and 6 dams per sire (d) for characters
scored in both sexes or in males alone and 12 dams per Sire for
characters scored only in females. If only parental and half sib
information is available (n = 1), then the optimum number of dams
per sire is around 12 and 24 respectively. When only parental and
full sib data are-available = 1),.a full sib family sige of 3 is

efficient over a wide range of parameters.

6. DISCUSSION

Let us first review our more important assumptions and con-
sider their implications. The omission of a term for dominance or
common environment (5).in the full sib model was made primarily to
enable simplerfdémonéiyéfiim)of the principles; it can not be de=- '
fended too strongly iq practice. We also ignored any environmental
covariance of dam and offspring in the hierarchical case. Such co-
variances certainly exist, for example in litter size in mice
(Falconer [1955]). It would not be difficult to include such a term
in the model; then all the unbiépgd information on beri;ability would

come from the regression of progeny on sire (only for traits expressed
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in males) and the covariance of half sibs, whose properties have been
analysed in gection 3. The assumptions of equalityvof means and
variances in the two generations and sexes are likely to have biased
the sampling variances downwards, but few degrees of freedom would
be lost in their estimation. Experiments from which heritability
estimates are'obtainéd are rarely balanced, except perhaps in
- Drosophila. Removal of this assumption should introduce no con-
ceptual difficulties in ML estimation, but would make the form of the
variance~covariance structure of the alternative regression and sib
covariance estimators rather involved. The mechanics of the ML
estimation procedure have not been considered, but a specific program
for this sort of data has been written (Felsenstein, personal commu-
nication] and there are many general programs for finding maximaf
Throughout we have assumed that there is no selection or
assortative mating of the parents, yet both can give much reduced
sampling variances of regression estimétors in a properly designed
e;petiment (Hill [1970]). Two examples are given for sex-linked
- traits in Pigures 4(a) and 5(b), with the optimum designs appropriate
for selection of parents with H = 0.2, the same value used to choose
the design for ML estimation. In Figure 4(a) we have used n = 14
and a proportion of 5.5% of potential female parents selected (from
Hill [1970)). v;‘?ﬁe;estimator of regression of progeny on selected
parents, Hgd, has a variance gpproximately half of the ML estimator,

Hm' per individual scored, except at veryrlow-heritabilities.

‘Similarly, in figure 5(b), selectinn of males gives an estimator, Hgs,

with substantially lower sampling variance than Hm' particularly at

intermediate heritaebilities., Thus where selection can be practised,
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we advocate that it be done. Even then there will be some informa-
tion available from the variance between families. Maximum likeli-
hood methods which could deal with such data have been developed by
Thompeon {19731,

There are several situations where selection or assortative
mating of the parents may not be desirable, however. One such case
is a control population being maintained for several generations
alongside selected populations to establish whether trends are genetic
or environmental., Usually no selection is practised in these, but
if selection or assortative mating were practised in a control it
would be to reduce rather than inflate the variance between parents
(Hill [1972)), and would reduce the efficiency of heritability esti-
mators. The other main case where neither selection nor assortative
'ma£ing is desirable is where heritabilities and genetic correlations
are to be estimated simultaneously on several traits,

We make two essential recommendations., Firstly, people ob-
taining estimates of heritability by several methods from essentially
the same set of data should take not-of the correlation structure among
their estimates before concluding that agreement between them is good
. or bad. Secondly, all available data should be used to obtain a
single estimate; we have considered just pairs of generations, but

in a control population several generations might be combined.

SUMMARY :
The analysis and design of experiments to estimate heritability
wvhen data are available on both parents and offspring are discussed.

It is shown that there is a substantial positive sampling correlation
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between the regression of offspring on mid-parent and the covariance
of full sibs estimated from the same data, and that in a hierarchical
structure the covariance of half sibs has a negative correlation with
the regressioﬁ qf offspring on dam and a positive correlation with
the regression of offspring on sire,

The efficiency of alternative estimators of‘heritability by
regression and sib covariance, pooled estimators based on these and
maximum likelihood (ML) are compared. The ML estimator does not re-
duce the variancg substantially below that from the pooled estimators,
but both are often much better than either regression or sib coveriance
estimators alone.

The optimum designs of experiments for ML estimation are ob-
tained. It is found ﬁhat these do not differ very much from those
appropriate for either offspring on parent regression or half sib co-
variance estimators, and that optimum designs are fairly robust against

changes in parameter assumptions.
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