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Abstract 

Gene targeting is a technique for the manipulation of the genome through 

homologous recombination with exogenous DNA fragments (targeting vectors). In 

conjunction with embryonic stem (ES) cell technology, this technique has become one 

of the most powerful tools in molecular biology for the analysis of gene expression and 

regulation in mice. With the development of nuclear transfer from somatic cells in 

several species, gene targeting can now be utilised for the design of more accurate 

animal models for human diseases and the generation of genetically modified livestock. 

However, its use is limited by the low frequency of homologous recombination in 

somatic cells. Future applications of gene targeting, such as the development of human 

gene therapies, will also require dramatic improvements in the efficiency of homologous 

recombination. 

The aim of this work has been to devise strategies for the stimulation of gene 

targeting efficiency in ttrv. Using a very sensitive test system based on the directly 

selectable knockout of the HPRT gene in ES cells in ziit,v, a variety of experimental 

approaches were assessed for their ability to enhance effective targeting frequency 

measured as the ratio of homologous to total integrants. These can be grouped into 

three main subcategories: (1) Modifications of the targeting vector (nuclear localisation 

signals, dsRNA vectors); (2) Alteration of the target conditions (methylation status, 

chromatin configuration); and (3) Manipulation of the expression of recombination-

related genes (down-regulation of homologous recombination repressors and 

overexpression of recombinases). Loss of p53, Ku80 or DNA-PK function did not 

result in enhanced targeting efficiency in ES cells. In contrast, constitutive 

overexpression of the eukaryotic recombinase Rad5l yielded a 4-fold increase in 

effective targeting frequency compared to wild-type control cells. Significant increases 

were also observed in Dnmtl -/- and poly(ADP-ribosyl)polymerase (PARP) -defective 

cells, as well as in cells treated with chemical inhibitors of PARP activity. These results 

contribute to the knowledge of the mechanisms underlying homologous recombination 

in mammalian cells, and suggest possible avenues of research to overcome the practical 

limitations of gene targeting. 
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Chapter I. Introduction 

i.project overview 
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L project overview 

Gene targeting is a technique which allows the precise alteration of endogenous 

genes through homologous recombination with introduced DNA fragments. Following 

the isolation and characterisation of murine embryonic stem (ES) cells (Evans and 

Kaufman, 1981; Martin, 1981), it has been possible to introduce targeted ES cells into 

mouse blastocysts, where they can efficiently contribute to the germ line of the resultant 

chimaeras (Bradley et al., 1984). As a result of the application of this technology, several 

hundred mutants (Brandon et al., 1995) have been generated in the decade since gene 

targeting in ES cells was first reported (Thomas et al., 1986). Most of these targeting 

experiments have been designed to inactivate genes ('knockout'), thus enabling the study 

of their function and regulation. 

The most striking advantage of this strategy is that genes can be manipulated in 

their natural chromosomal environment, whereas conventional methods for introducing 

DNA sequences into the germ line (rev, by Jaenish, 1988) do not allow any control over 

the site of integration or the number of copies introduced. Although the random 

integration of a transgenic insertion may have mutational consequences, transgenic 

animals created by pronuclear injection of DNA are usually considered as 'dominant' 

systems, for this technology only allows the introduction of additional genetic 

information (Clark et al., 1992). In contrast, gene targeting has made it possible to 

precisely knockout defined genes, creating animal models for human genetic diseases 

(rev, by Clark and McWhir, 1996); to analyse the function of housekeeping and 

developmental genes (rev, by Melton, 1994; Shastry, 1998); to study gene regulation by 

targeting changes to control sequences (rev, by Porter, 1998); and to ensure both the 

repeatability and pattern of transgene expression by directing transgenes to chosen sites 

in the genome (Stacey et al., 1994; Kolb et al., 1999; Wallace et al., 2000). 

An even greater flexibility in gene modification has been achieved in recent years 

through conditional/ inducible gene silencing techniques (page 36). These approaches 

have been devised to overcome the problems associated with the study of genes that are 



essential for cell viability, such as those involved in cell cycle or body development. 

Constitutive inactivation of such genes by conventional gene targeting may be entirely 

uninformative, since targeted cells are not always capable of generating viable animals. 

Thus, the development of conditional gene silencing methods allowing the precise 

control of the expression of these genes has opened up key areas of cell and animal 

biology to genetic analysis (rev, by Porter, 1998). 

Basic research on gene function and regulation is not the only area in which gene 

targeting can be useful. The ability to correct mutant genes offers enormous possibilities 

in medical research as an alternative to current methods of gene therapy, which so far 

are exclusively based on the addition of genetic material. While gene targeting has been 

achieved in several human cell lines, its low efficiency has been a major limitation to its 

therapeutical potential. Gene therapy by in vivo gene targeting is therefore impractical 

without a dramatic enhancement in its overall efficiency. Ex vivo approaches might be 

more realistically considered, though improvements in gene targeting efficiency would 

also represent an advantage. 

Application of this technology in livestock species to increase output or produce 

therapeutic proteins (Clark et al., 1992; Wilmut and Whitelaw, 1994; Houdebine, 1994, 

1995) would undoubtedly be of commercial value. Until very recently, the use of gene 

targeting to create modified animals has been limited to the mouse, since this is the only 

species from which ES-like cells have shown the ability to contribute to the germ line. 

However, combined progress in enhancing targeting efficiency in somatic cells and the 

new nuclear transfer technologies (Campbell et al, 1996; Wilmut et al., 1997; Schnieke et 

al., 1997; Cibelli et al.,1998a, 1998b; Solter, 1998; Wakayama et al., 1998; Polejaeva et al., 

2000; Polejaeva and Campbell, 2000; Revel, 2000) have already led to the generation of 

targeted sheep (McCreath et al., 2000) and should allow targeting in other species in the 

short term. 

Practical applications of gene targeting are usually hindered by its low efficiency, 

which can be measured as absolute, effective and enriched frequencies. Absolute 

targeting frequency (A.T.F.) is the ratio between the number of homologous 

(targeted) recombinants and the total number of cells exposed to the transfection 
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procedure. In ex vivo systems, or where cell number is limiting in vitro, A.T.F. is critical. It 

depends on transfection efficiency and effective targeting frequency (E.T.F.), which 

can be defined as the ratio of homologous recombinants to the total number of 

integrants (homologous and non-homologous). Finally, enriched frequency is 

expressed as the ratio of homologous to total integrants observed after enrichment 

procedures, which reduce the background of random integrants in vitro. Several factors 

may affect effective frequency and account for an extensively documented locus-to-

locus variability. Non-homologous recombination has been consistently observed to be 

2 to 5 orders of magnitude more frequent than homologous recombination (Hanson 

and Sedivy, 1995). Although enrichment systems have been designed in order to 

eliminate clones derived from non-homologous recombination events (page 29), there 

has been a relative lack of success in significantly enhancing the absolute incidence of 

homologous recombination. 

As the majority of targeting experiments have been done in mouse ES cells, the 

conventional wisdom is that ES cells are more proficient at gene targeting than other cell 

lines. However, few studies have compared gene targeting frequencies in ES cells with 

those in other mouse cell lineages using the same targeting constructs. Some of such 

studies (Charron et al., 1990; Coil et al., 1995; Arbonés et al., 1994) demonstrate that 

several murine cell lines give an absolute targeting frequency comparable to that 

observed in ES cells. More interestingly, human cell lines can also undergo targeted 

modifications with enriched gene targeting frequencies between 1:40 and 1:6550, and 

absolute targeting frequencies (1.2 x 108 - 2.7 x iO') similar to those described for 

murine cells (Yáñez and Porter, 1998). Therefore, it appears that gene targeting can be 

performed with similar efficiencies in a variety of cell types from different species. 

Nevertheless, it is clear that future applications of gene targeting, such as the design of 

more accurate models for human diseases, the generation of targeted livestock or the 

efficient application of gene therapies in vivo, would greatly benefit from an improvement 

of effective targeting frequency in somatic cell lines derived from species other than the 

mouse. 

The aim of this Ph.D. project is to explore experimental approaches to 

manipulate effective targeting frequency in ES and somatic cells. A thorough 



understanding of the molecular mechanisms underlying gene targeting is essential to this 

purpose. This introduction reviews the current knowledge about molecular homologous 

recombination and gene targeting techniques. ES cell-based technologies are also briefly 

outlined in a two-fold context: the classic targeting approaches for the production of 

mice with defined genetic modifications and the in vitro study of homologous 

recombination. Finally, the most relevant strategies to enhance overall gene targeting 

efficiency are discussed, bearing in mind the benefits of such enhancement in the 

development of efficient gene therapy and other somatic targeting protocols. The 

general objectives of this project are examined within this framework. 



ii. homologous recombination 

a. introduction 
b.models of homologous recombination 

c.homologous recombination in E.coli 
d.homologous recombination in eukaryotes 

a.introduction 

Homologous recombination is one of the two known repair pathways for 

double-strand breaks (DSBs) in eukaryotes. It involves interaction of the damaged 

molecule with a homologous recombinant partner elsewhere in the genome (e.g., a 

homologous chromosome or a sister chromatid). Gene targeting occurs when artificially 

introduced DNA vectors are integrated in the genorne via the endogenous homologous 

recombination pathway. 

In contrast with yeast, where homologous recombination is the primary 

mechanism of DSB repair, mammalian cells favour an alternative route termed 

illegitimate recombination or non-homologous end-joining (NHEJ). This pathway joins 

the two ends of a DSB without regard to sequence homology. Although this process is 

more prone to error than homologous recombination, it might have evolved to prevent 

hyperrecombination in the mammalian genome, rich in DNA repeats. 

Gene targeting is inefficient in mammalian cells because targeting vectors are 

preferentially integrated in a non-homologous fashion. Understanding the 

interrelationship between homologous and non-homologous recombination is essential 

to experimentally manipulate it in a directed manner. This and the next chapter will 

review the molecular basis of these two processes, emphasising those aspects that may 

be relevant to the design of effective targeting strategies in higher organisms. 



b. models of homologous recombination 

In eukaryotic organisms, homologous recombination takes place during meiosis, 

mitotic cell growth and DNA repair. Although overlapping, each one of these processes 

may have different biochemical routes. Even in E. co/i, there are three recombination 

pathways, which may be related to diverse types of recombination in eukaryotes (see 

next section). 

The current models of homologous recombination have been developed from 

observations made in yeast and other fungi. All of them feature a sequence of reactions 

that can be divided into three phases: initiation, repair and resolution (Leach, 1996). 

Initiation involves alignment of homologous sequences, generation of cross-overs and 

branch migration. Repair happens after any change or loss of information occurred 

prior to or during initiation, and involves mismatch repair or DNA synthesis. Finally, 

resolution is the excision of the cross-overs and separation of the two recombinant 

molecules. 

In the Holliday model (Holliday, 1964), the phase of initiation starts when two 

aligned homologous chromosomes simultaneously acquire a single-strand nick (figure 1). 

Generation of cross-overs (Holiday junctions) are followed by branch migration and 

resolution in either of the two senses observed in nature: Cross-overs (splices) or 

patches (recombinant regions that have not exchanged flanking markers). A 

modification of Holiday's model (Meselson and Radding, 1975) suggests that only one 

of the two molecules initiates recombination. The initiator is nicked in one of the 

strands, thus generating a 3' end for DNA synthesis. This reaction displaces the 5' 

end, which then invades a homologue. This results in the formation of a Holiday 

junction that is resolved as in Holiday's model, to form splices or patches. 

The model of Szostak et at (1983) was proposed to account for the observation 

that in many organisms, DNA double-strand breaks (DSBs) enhance recombination 

locally. Earlier studies on plasmid-chromosome recombination in yeast (Orr-Weaver et 
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Splices 	 Patches 

Figure 1. Holiday model of homologous recombination (details in text). 

al., 1981, 1983) established the recombinogenic nature of DSBs and demonstrated the 

occurrence of gene conversion by double-strand-gap repair. 

According to this model, homologous recombination is initiated from a DSB in 

the 'receptor' molecule. 5'-3' exonucleases selectively digest one of the strands at both 

ends of the cut, generating a gap with 3' overhangs (see figure 2). One of these invades a 

homologue, creating a heteroduplex and displacing the complementary strand of the 

'donor' molecule. This generates a loop, which is subsequently expanded through DNA 

synthesis from the 3' end of the invading strand. Eventually, the loop will be large 

enough to base-pair with the 3' end of the receptor, which then could prime new DNA 

synthesis to reconstitute the missing strand from the donor template. Migration of the 

invading 3' end creates a molecule with two cross-overs, that can be resolved in either 

way (splices or patches). 

It now seems likely that, although admitting several variations, both models 

(initiation by single-strand or by double-strand breaks) are valid, and are associated with 

different pathways. Indeed, some mutants of Drosophila (Carpenter, 1982) and yeast 

(Engebrecht et al., 1990) show normal levels of meiotic gene conversion (the correction 



of one strand of a heteroduplex DNA to make it complementary with the other at 

mismatch positions) but reduced levels of crossing over, suggesting that not all gene 

conversion events are resolved as cross-overs. It is possible that homologous 

recombination mechanisms involve several overlapping pathways that cannot be 

explained by a single model. In any case, the details of the enzymology and the genes 

encoding recombination enzymes are better known in E. coli than in yeast and mammals. 

As in so many other cellular processes, a thorough knowledge of the molecular basis of 

homologous recombination in prokaryotes may help us to better understand the 

equivalent pathways in higher organisms. 

3' 	 - 
— 	 3' 

[1 

1 

Splices 	 Patches 

Figure 2. Szostak model of homologous recombination (details in text) 



c.homologous recombination in E. coil 

The RecA protein is required for the three pathways of recombination that have 

been demonstrated in B. co/i (RecBCD, RecE and RecF) (Smith, 1988; 1989). This 

enzyme coats single-stranded DNA in large clusters, promotes formation of joint DNA 

molecules with a homologous duplex and aids strand-exchange within the joint molecule 

(Radding, 1989; Eggleston and Kowalczykowski, 1991; Stasiak et a/., 1991). ATP 

enhances both protein-protein interactions and DNA binding (Radding, 1989), and its 

hydrolysis is an absolute requirement for the strand-exchange activity of the enzyme. 

The RecBCD pathway is the principal mechanism of recombination following 

conjugation and transduction. It has been named after the RecBCD enzyme, a 

heteromultimer with subunits encoded by the recB, C and D genes (Finch et aL,1986a; 

1986b; 1986c). Originally designated ExoV, the enzyme has two apparently 

contradictory functions. First, it is a powerful double-strand exonuclease, which binds to 

linear dsDNA ends and degrades the molecule to small oligonucleotides in an ATP -

dependent manner (Rosamond et a/., 1979; Telander-Muskavitch and Linn, 1981). This 

degradation is asymmetric, since the 3'-terminal strand at the entry site for the enzyme is 

degraded much more extensively than the 5'-terminal strand (Dixon and 

Kowalczykowski, 1993). Second, it is a helicase-recombinase that moves rapidly along 

the DNA, unwinding it and producing single-stranded loops (Taylor and Smith, 1980; 

1985). This unwinding is also asymmetric and generates loop-tail structures in the 

presence of single-stranded DNA-binding proteins (SSBs) (Braedt and Smith, 1989). 

RecBCD plays a central role in homologous recombination, recovery from DNA 

damage, maintenance of cell viability and destruction of damaged DNA (Telander-

Muskavitch and Linn, 1981). In vitro and in vivo studies have indicated that RecBCD-

mediated recombination acts preferentially in the presence of (chi) sites (Stahl et al, 

1975; Smith et al., 1981). The chi site (5'GCTGGTGG) stimulates recombination up to 

two orders of magnitude in its vicinity (Dabert and Smith, 1997; Friedman-Ohana et al., 

1998), and this stimulation is detectable up to 10 kb downstream of the chi site (Stahl et 

a/., 1980; Ennis et al., 1987; Cheng and Smith, 1989; Myers et al., 1995b; Eggleston and 

10 



West, 1997). RecBCD-mediated cutting of the DNA molecule occurs with a high 

frequency at chi sites (Ponticeffi et a/., 1985; Taylor et al., 1985), and it has been proposed 

that the combined chi- dependent DNA cutting and unwinding activities generate a 

ssDNA tail that is efficiently paired with homologous dsDNA by RecA and SSB 

proteins (Smith et al., 1984; Roman et al., 1991; Rosenberg and Hastings, 1991; Dixon 

and Kowalczykowski, 1991, 1993; Taylor and Smith, 1992; Anderson and 

Kowalcykowski, 1997). 

A model incorporating most of the known biochemical and genetic properties of 

the components participating in the RecBCD recombination pathway has been recently 

described by Kowalczykowski (Anderson and Kowalczykowski, 1997). According to this 

model, the enzyme begins unwinding dsDNA from a double strand break, generating a 

loop. Prior to its interaction with a chi site, RecBCD also displays a high asymmetric 

nuclease activity, resulting in extensive degradation of the 3' terminal strand (see figure 

3). The 5' terminal strand remains relatively intact, and can be preferentially bound by 

SSB proteins. Upon encountering a chi site, RecBCD pauses and cleaves the DNA 

molecule. This cleavage has been proposed to be a manifestation of the non-specific 

nuclease activity of RecBCD (Dixon and Kowalczykowski, 1993), as long as any pause 

results in an increased probability of a nucleolytic event at the site of pausing. 

Interaction with chi changes the conformation of the enzyme and reverses the polarity 

of the nuclease activity. Thus, when unwinding resumes, the 3' terminal strand is 

released intact, while the 5' terminal strand is degraded (even if at a lower rate). It has 

been proposed that this change of conformation follows the ejection of the recD 

subunit, apparently responsible for the 3'-5' exonuclease activity of the enzyme (Myers et 

al., 1995a). Although recent studies suggest that the alteration induced by chi is not 

simply the loss of the RecD subunit (Anderson et al., 1997), but a subtle displacement to 

the other strand (Yu et al., 1998), the fact is that RecBC mutant enzymes (i.e., in which 

the recD subunit is lost or not operative) are recombination-proficient and behave as 

constitutively chi-activated RecBCD proteins even in the absence of such recognition 

sequences (Myers et al., 1995a). This indicates that the 5'-3' exonuclease activity of RecD 

after chi-recognition is not as essential to recombination as its loss of 3'-5' exonuclease 

activity. 
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Figure 3. Model of Chi-mediated recombination in E. tv/i (based on Anderson and Kowalczykowski, 
1997) Details in text. 

The generation of a 3' terminal single strand upon activation of RecBCD by chi 

is consistent with the models proposed by Holiday and Szostak to explain homologous 

recombination in eukaryotes. This biochemical step is likely to represent the initial in iiz 

event needed by RecA to promote strand invasion. A recent study suggests that chi-

activated RecBCD acts as a nucleator to coordinate the preferential loading of RecA 
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onto this resultant single-stranded DNA molecule (Anderson and Kowalczykowski, 

1997). This nucleation begins at the 5' end of the loop created by the enzyme, displacing 

the resident SSB protein. Coated 3'-overhanging ssDNA molecules are subsequently 

able to invade a homologous DNA substrate, forming a joint molecule that is further 

processed into recombinant products. 

In the absence of RecBCD enzyme, there is a residual level of recombination 

through the RecE and RecF pathways (Smith, 1989). RecE, also called Exonuclease 

Vu, digests linear dsDNA in the 5'-3' direction, generating dsDNA with 3'- ssDNA 

tails. The RecF pathway (which also involves the products of several additional genes 

such as recJ, recN, recO, reQ and rwv) also promotes plasmici recombination in wild-type 

cells. Both routes overlap in the requirement of RecA, RecF, RecJ, RecO and RecQ gene 

products, and seem to be activated following mutations in the major pathway for 

conjugational recombination, RecBCD. None of them requires chi sites. 

Parallels have been drawn between the B. co/i pathways and different types of 

recombination in eukaryotes. The RecF pathway in B. co/i, mitotic recombination in 

eukaryotes and recombinational repair in all cell types seem to be initiated by single-

strand DNA breaks and respond to DNA damage. In contrast, the RecBCD pathway 

and meiotic recombination are postulated to start from double-strand breaks and are not 

inducible by DNA damage (Smith, 1989). Indeed, chi-like hotspots of homologous 

recombination have been found in eukaryotic cells, sometimes widespread throughout 

the genome (Rudiger et al., 1995). This suggests that higher organisms may have 

recombination routes functionally similar to the RecBCD pathway. 
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d.eukaryotic homologous recombination 

The majority of the studies about eukaryotic homologous recombination and 

DNA repair have been done in yeast. In S. cerezisiae, these processes seem to be mediated 

by the genes of the Rad52 epistasis group, including Rad5O-57, MRE1 1 and XRS2. 

Although mutants of these genes exhibit similarity in general phenotypes, they display 

different responses to ionising radiation and particular deficiencies in defined steps of 

recombination. Among these mutants, Rad5l, Rad52 and Rad54 have the most severe 

effects, which suggests that such genes play fundamental roles in recombination and 

DNA repair. Rad5l shares both sequence and functional homology with E.coli recA 

(Aboussekhra et al., 1992; Shinohara et al., 1992). Like its bacterial counterpart, human 

Rad5l shows in vitro ATP-dependent filament formation and strand exchange activity 

on DNA substrates (Ogawa et al., 1993; Sung, 1994; Baumann et al., 1996; Gupta et al., 

1997; Namsaraev et al., 1997; Benson et al., 1998). Both in yeast and humans, this 

reaction is enhanced by the addition of Rad52, Rad55, Rad57 and recombination protein 

A (RP-A) (New et al., 1998; Baumann and West, 1997; Shinohara and Ogawa, 1998; 

Benson et al., 1998). A physical association has been demonstrated between Rad5l and 

the recA/Rad5l family members XRCC2 and XRCC3 (Thacker, 1999) and the repressor 

ubiquitin-like protein UBL-1 (Li et al., 2000). In addition, Rad5l interacts with the 

products of the tumour suppressor genes p53 (Sturzbecher et al., 1996; Buchhop et al., 

1997), BRCAI (Scully et al., 1997) and BRCA2 (Mizuta et al., 1997). 

In contrast with recA, the preferred DNA substrate for Rad5l is not ssDNA 

but dsDNA with ssDNA tails. This allows Rad5l to promote DNA strand invasion of 

both 3'- and 5'- ends with similar efficiencies (Mazin et aL, 2000). In viva, vertebrate 

Rad5l is essential for DSB repair occuring during mitotic and meiotic recombination, or 

following treatment with DNA-damaging agents (Shinohara et al., 1992). Like recA, 

Rad5l expression is up-regulated after genotoxic treatment (Abboussekhra et al., 1992). 

Cell viability is also strongly dependent on RadSl, as shown in experiments where 

repression of an inducible Rd51 transgene in Rad5l -/- chicken DT40 cells leads to 

accumulation of chromosomal abnormalities and cell death (Sonoda et al, 1998). In 

addition, Rad5l is critical for mouse embryonic development and cell proliferation (Lim 

and Hasty, 1996; Tsuzuki et al., 1996), which clearly indicates a gain of function of the 
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mammalian protein compared to its yeast and bacterial homologues. Surprisingly, 

mutant Rad5l protein incapable of ATP hydrolysis still permits in vivo repair of 

radiation-induced DNA damage, as well as cell viability and growth (Baumann and West, 

1998; Morrison et al., 1999). This observation is consistent with in vitro studies showing 

that rates of ATP hydrolysis, homologous pairing and strand exchange are less than 

1/10 those of recA (Gupta et al, 1997). With the exception of meiosis, homologous 

recombination is usually tightly down-regulated in vertebrates in order to prevent 

uncontrolled recombination between the highly abundant genomic DNA repeats. In this 

context, it has been proposed that the reported decrease in Rad5l general activity 

compared to that of recA may reflect the avoidance of homologous recombination as 

preferred DNA-repair mechanism in higher organisms, in favour of non-homologous 

end-joining. 

Rad52 is proficient in promoting heteroduplex formation between homologous 

ssDNA molecules and strand transfer between homologous ss- and dsDNA substrates 

(Mortensen et al., 1996; Reddy et al., 1997). Several studies conducted in yeast show that 

Rad52 may not be required for the initiation of recombination, but is essential for an 

intermediate stage following the generation of DSBs (Shinohara et al., 1992). More 

recent evidence demonstrating physical association between Rad52 and Rad5l indicates 

that one of the functions of the former may be the modulation of recombinatorial/ 

DSBs repair processes by directly interacting with other factors (Shinohara et al., 1992; 

Milne and Weaver, 1993) and/or stimulating Rad5l binding to ssDNA (Benson et al., 

1998; Baumann and West, 1998). The role of Rad52 in mammalian cells still remains 

unclear. Homologous recombination, but not DNA repair, is reduced in Rad52-deficient 

chicken DT40 (Yamaguchi-Iwai et a/., 1998) and murine ES cells (Rijkers et al., 1998). In 

fact, Rad52 knockout mice are viable and fertile (Rijkers et al, 1998). This result 

contrasts with early work in yeast, where Rad52-defective mutants display high 

sensitivity to ionising radiation (Orr-Weaver et al., 1981), suggesting that there may have 

been an evolutionary loss of function of the mammalian protein in favour of other 

recombinases. 
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The Rad54 protein belongs to the SNF2/ SWI2 family of DNA-dependent 

ATPases (Eisen et al., 1995). Its members have been implicated in the remodelling of 

chromatin structure in the context of many aspects of DNA metabolism, such as 

transcription, recombination and repair (Kingston et al., 1996). As observed between 

Rad52 and Rad5l, genetic and physical interactions between the latter and Rad54 have 

been reported Uiang et al., 1996). In vitro, murine Rad54-knockout ES cells are 

hypersensitive to DSB-inducing agents, and exhibit reduced gene targeting frequencies 

compared with wild-type cells (Essers et al., 1997). Unlike Rad5l, however, Rad54 is not 

necessary for embryonic or neonatal development in the mouse, as shown by the 

viability of Rad54-deficient mice (Essers et al., 1997). The fact that these mice are fertile 

seems to demonstrate that Rad54 has no essential function in meiosis, although more 

subtle meiotic defects have yet to be analysed in more detail. 
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iii. non-homologous recombination 

a.introduction 
b.non-homologous recombination in eukaryotes 

a.introduction 

The hypothesis that non-homologous (NHR) and homologous recombination 

(HR) are catalysed through distinct routes has been confirmed by several studies in yeast 

and mammalian cells (Hooper, 1992). For instance, HR frequency peaks in early to mid-

S phase (Wong and Capecchi, 1987), whereas illegitimate recombination peaks in G 2/M 

phase (Yorifuji et al., 1989). Early gene targeting experiments also indicate that both 

pathways operate separately and in response to specific circumstances. Thus, addition of 

dideoxynucleotides at the 3' end of the input DNA decreases the proportion of NHR to 

HR by 6-fold (Chang and Wilson, 1987). Furthermore, analysis of cells co-

electroporated with a targeting construct and a non-homologous positive selectable 

marker (neo) showed that 75% of the cells which non-homologously integrated the 

targeting vector also integrated neo, but only 4% of the homologous integrants did so 

(Reid et al., 1991). This result strongly points to the existence of discrete enzymatic 

pathways for homologous and illegitimate recombination. The lack of a prokaryotic 

NHR model, due to the fact that this process is very uncommon in bacteria, has 

somewhat delayed its study in eukaryotes. Although our understanding of NHR (also 

called non-homologous end-joining, or NHEJ) has benefited from a number of 

advances in recent years, many aspects (such as the details of its regulation and relation 

with HR) still remain obscure and need further investigation. The next section reviews 

the current knowledge about this process in yeast and mammals. 
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b. non-homologous recombination (NHR) in 

e u ka ryotes 

DNA double-strand breaks (DSBs) result from a variety of DNA-damaging 

agents, both exogenous (ionising radiation or chemotherapeutic drugs) and endogenous, 

such as the metabolic release of free radicals. They are also produced as normal 

intermediates in V(D)J recombination, the process by which immunoglobulin genes are 

rearranged to produce the repertoire of antibodies and T-cell receptors during 

development (rev, by Roth and DeFranco, 1995; Jeggo et 31., 1995). DSBs are repaired 

either by homologous recombination (HR) or by non-homologous end-joining (NHEJ). 

This pathway, unlike HR, requires no homology with another strand of DNA, and very 

little homology, if any, between the two ends of a DSB. The principal components of 

this pathway are encoded by the genes XRCC4 (XRCC4 protein), XRCC5 (Ku80), 

XRCC6 (Ku70) and XRCC7 (DNA-Plc). XRCC4 protein associates with DNA ligase 

IV in mammals, and may stimulate its activity (Grawunder et al., 1994). Mutations of 

XRCC4 or ligase IV result in embryonic lethality in mice and may be the cause of 

predisposition to cancer and extreme radiosensitivity in humans (Featherstone and 

Jackson, 1999a). Ku70/80 heterodimers are known to bind to the ends of broken DNA 

(Mimori and Hardin, 1986) and recruit other proteins to the site of the break, amongst 

them the catalytic subunit of the DNA-protein kinase (DNA-PK). This large protein 

(—'465 kDa) becomes activated in the presence of Ku and DSBs. It phosphorylates other 

proteins around the lesion and seems to be involved in signal transduction (Weaver, 

1995). DNA-PK may also act as a molecular scaffold both to stabilise the break and to 

assemble the rest of the proteins of the repair complex (Featherstone and Jackson, 

1999b). Mutations of Ku and/or DNA-PK result in radiosensitivity and severe 

immunodeficiency (SOD) in mice, due to general NHEJ impairment and, particularly, 

V(D)J recombination defects. In addition, Ku knockout mice are much smaller than 

their heterozygous littermates (Nussenzweig et al., 1996), and cultured cells show 

premature senescence and loss of proliferation (Nussenzweig et al., 1996; Gu et al., 

1997). Two explanations have been proposed to account for these observations. First, 

that a deficient DSB repair mechanism diminishes the chances of the cell to resume 

progress through the cell cycle after DNA damage (Featherstone and Jackson, 1999b). 
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The small size of Ku-knockout mice would therefore be a direct consequence of a 

slower cell proliferation during development. A second possibility is that telomeres 

become unstable upon loss of Ku function: work in yeast (Gravel et al., 1998; Laroche et 

al., 1998; Polotnianka et al., 1998; Martin et al., 1999) and mammalian cells (Hsu et al., 

1999) demonstrate telomere instability associated with the absence of Ku, although the 

molecular mechanism remains unclear. 

Double strand breaks can be repaired either by homologous recombination or 

NHEJ. Both pathways operate in all eukaryotic cells, but whereas yeast normally choose 

the former, mammals prefer the latter. It has been suggested that the abundance of 

repetitive sequences in the mammalian genome would increase the incidence of 

recombination-related chromosomal abnormalities if HR events were frequent 

(Featherstone and Jackson, 1999a). Therefore, NHEJ may be considered the 'default' 

mechanism by which DNA damage is repaired in higher organisms. 

In this context, the activity of poly(ADP-ribose) polymerase (PARP) seems to 

be essential for the choice of the NHEJ pathway in response to DNA damage. PARP is 

a highly conserved nuclear enzyme thought to be involved in DNA repair and other 

cellular responses to DNA damage, including apoptosis and necrosis (reviewed by 

Boulikas, 1993; de Murcia et a!, 1994; Lindahl et al., 1995). The PARP protein has two 

distinct regions: The 46 Wa N-terminal domain contains two zinc fingers and a nuclear 

localisation signal. Footprinting experiments show that it binds preferentially to DNA 

double-strand breaks, stabilising a V-shaped DNA conformation (Gradwohl et al., 

1990). The C-terminal catalytic domain (54 Wa) is strongly activated upon binding of 

the protein to DNA breaks. Using NAD and ATP as substrates, it catalyses the 

poly(ADP-ribosyl)ation of several nuclear proteins, including bistones, topoisomerases, 

replication factors and PARP itself (Ueda and Hayaishi, 1985; Oliver, 1998). This 

reaction is sensitive to a variety of competitive inhibitors, such as theophylline 

(Schraufstatter et al., 1986) benzamide- (Ueda and Hayaishi, 1985) and isoquinoline-

derivatives (BanasiketaL, 1992). 

Automodification of PARP leads to the generation of very long poly (ADP-

ribose) (PAR) chains, which are negatively charged. Eventually, the electrostatic 
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repulsion between the DNA strands and the activated protein releases it from the DSB 

(Ferro and Olivera, 1982). Poly(ADP-ribose) glycohydrolase rapidly degrades PAR 

chains, enabling PARP to bind to DNA breaks again (Lindahi et al., 1995). 

It is generally believed that one of PARP's functions might be the preservation 

of genomic integrity by (a) favouring DNA repair, and (b) minimising unwanted 

recombination events at sites of DNA breaks (Lindahi et a/., 1995). Although PARP -I-
mice are viable, they show hypersensitivity to genotoxic agents, elevated rates of sister 

chromatid exchanges (SCE) and general genomic instability (de Murcia et al., 1997; 

Wang et al., 1997). PARP inhibition decreases the frequency of illegitimate 

recombination in vitro (Farzaneh et al., 1988; Waldman and Waldman, 1990; Semionov et 

al., 1999) and increases intrachromosomal homologous recombination (Waldman and 

Waldman, 1991). It has been proposed that DNA injury activates PARP, which 

catalyses the transfer of PAR to the enzyme itself and subsequently to other nuclear 

proteins, such as bistones (Ueda and Hayaishi, 1985; Carson et al., 1986). Although 

PARP does not appear to have a direct participation in DNA-repair, extreme 

poly(ADP-ribosyl)ation of histones may alter their charge and structural conformation, 

relaxing the nucleosome and allowing the access of other enzymes to the lesion. The 

negative charge around the DSB may also keep other DNA molecules away, preventing 

homologous recombination (Smulson et al, 1994; Chatterjee and Berger, 1994). 

However, extrachromosomal homologous recombination is also enhanced after PARP 

inhibition (Semionov et al., 1999). This and the fact that PARP is present in 

dinoflagellates and other primitive eukaryotes that do not have histones (Werner, 1984) 

demonstrate that PARP is able to function in a chromatin-free environment. 

It is unclear how PARP may help maintain genomic stability, but poly(ADP-

ribosyl)ation seems to be essential for its function. Overexpression of the DNA-binding 

domain results in inhibition of endogenous PARP and recreation of the PARP -I-
phenotype (Schreiber et a/., 1995). Enzymes involved in non-homologous end-joining, 

such as Ku70/80 and DNA-PK, are known to interact and compete with PARP for 

binding to DNA ends (Morrison et al., 1997). Perhaps the primary function of PARP is 

to prevent homologous recombination after a chromosomal break. Due to the 

abundance of DNA repeats in the mammalian genome, the use of homologous 
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recombination to repair DNA breaks must be kept to a minimum in order to avoid 

undesirable genomic rearrangements. PARP would help this by creating a negatively 

charged 'exclusion zone' around the lesion, hindering the access of other 

recombinogenic DNA molecules. The eventual separation of PARP from the break 

(forced by its increasingly higher negative charge) may create a transient window in 

which Ku70/80, DNA-PK and other NHEJ enzymes can attach to the break and repair 

it. 

The role of PARP in homologous recombination has been studied in depth only 

in recent years. Traditionally, PARP has been the object of scientific interest due to its 

involvement in apoptosis. Caspase-3-mediated cleavage of PARP in two 89- and 24 Wa 

fragments inactivates its catalytic activity, but does not affect its DNA-binding 

properties. This is generally considered one of the initial events in the activation of the 

apoptotic cascade after extensive DNA damage (Kaufmann et a/., 1993; Shah et al, 1995; 

Oliver et al., 1998; Boulares et al., 1999; Simbulan-Rosenthal et al., 1999). However, 

despite reports suggesting that PARP-mediated depletion of NAD and ATP 

compromises the energy-dependent process of apoptosis (Ha and Snyder, 1999), there is 

no conclusive proof that this cleavage is essential for its completion (Oliver et al., 1998; 

Herceg and Wang, 1999; Jones et al, 1999). The role of PARP in apoptosis remains a 

matter of controversy, but increasing evidence (Latour et al., 2000; U and 

Darzynkiewicz, 2000) suggests that PARP cleavage may be a downstream effect of 

apoptosis rather than a part of it. Alternatively, it has been proposed that the irreversible 

binding of cleaved PARP to DSB may indirectly contribute to apoptosis by blocking the 

access of DNA repair enzymes (Smulson et al., 1998). This would explain why 

expression of the 46 Wa DNA-binding domain of PARP (which leads to dominant 

inhibition of resident PARP) increases the apoptotic response after DNA damage in 

human cells (Schreiber et al., 1995; Kim et a/., 2000), but not why uncleavable PARP 

seems to enhance apoptosis (Boulares et al., 1999; Herzeg and Wang, 1999). 

Explanations for the latter observation are counter-intuitive, since PARP-cleavage is a 

naturally occurring event during apoptosis. Further work with engineered- (Oliver et al, 

1998) and naturally occurring- (Latour et al., 2000) uncleavable PARP show no effect on 

(or even retardation of) apoptosis. In this context, the frequent contradictions reported 

in the apoptotic response to manipulations of PARP activity, expression or resistance to 
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cleavage could be interpreted as a consequence of the variability among the different 

biological systems studied. 

A model reasonably consistent with most of the observations (figure 4) predicts 

that PARP's primary function is to ensure that DSBs are repaired by NHEJ and not by 

homologous recombination. If the damage is more severe (but not as much as to trigger 

apoptosis), PARP overstimulation may deplete the cell of NAD and ATP, leading to 

necrosis. Only extensive DNA damage activates the apoptotic programme, and PARP is 

cleaved in order to stop unnecesary DNA repair and save energy for the completion of 

cell 'suicide'. 
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Figure 4. Model for PARP cycling and DNA repair by non-homologous recombination (details in text) 
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iv. gene targeting 

a. introduction 
b.embryonic-stem cell technology 

cgene targeting techniques 

a.introduction 

Over the last fifteen years, the application of gene targeting techniques to 

embryonic stem (ES) cells has become a routine procedure to generate genetically 

modified mice. The availability of large populations of these immortal cells makes it 

feasible to target specific genes, despite the low frequency of homologous 

recombination in mammalian cells. Targeted clones can be easily selected in zitro and 

used to generate chimaeric mice by aggregation or injection into blastocysts. If the host 

blastocyst and the donor ES cells belong to different strains of mice, chimaerism can be 

visually assessed by the mixed coat colour of the resulting animals. Typically, up to 70 % 

of injected blastocysts are overtly chimaeric (Jim McWhir, personal communication). 

The degree of chimaerism varies widely from barely detectable to complete ES 

coloration. Since ES cells retain the potential to contribute to all embryonic lineages, 

some of them may partially colonise the germ line. Because of the fine-grained nature of 

ES cell chimaerism, the germ line is usually a mixed population of donor- and host-

derived cells. In order to obtain the highest possible number of ES-derived gametes, ES 

cells for blastocyst injection are of male genotype. The introduction of male ES cells 

into female host blastocysts normally results in the generation of fertile intersex animals, 

which only transmit the ES genotype (Evans et a/., 1985). This is a consequence of the 

expression of the Y chromosome-linked sy gene, which controls mammalian sex 

determination (rev, by Jiménez and Burgos, 1998). In these cases, backcrossing 

chimaeras with the strain from which the ES cells were originally derived renders 

animals with the original genetic background, with an ideal 50 % of the offspring 

carrying the modified allele (figure 5). A 25 O/  germ line  transmission (1 out of the first 
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4 male chimaeras tested) is not unusual, although this percentage varies from clone to 

clone. 

Until very recently, the generation of targeted animals by gene targeting has been 

limited to the mouse. Although ES-like cells can be isolated from other species, their 

ability to contribute to the germ line has not been demonstrated. This problem has been 

recently circumvented with the development of nuclear transfer techniques, which allow 

the creation of genetically modified animals in one step following gene targeting of 

somatic cells in iitro McCreath et al., 2000). However, since targeting of somatic cells is 

usually hindered by a number of technical difficulties, including premature senescence 

and low targeting frequencies, the quest for non-murine ES cells is still ongoing. This 

section reviews the state of the art in gene targeting techniques in the context of their 

application in ES cells to create targeted animals. 

b.embryonic-stem cell technology 

Most gene targeting work in mammals has been conducted in embryonic stern 

(ES) cell lines, because these cells offer a route to germline transgenesis. Pluripotential 

cells are present in the mouse embryo until at least early post-implantation, as shown by 

the ability of some cell lines derived from this stage to take part in the generation of 

chimaeric animals and to form teratocarcinomas (Stevens, 1970). Embryonal carcinoma 

(EC) cell lines, established from the malignant stem cells of teratocarcinomas, have been 

for a long time an important tool to study developmental processes of early embryonic 

cell commitment and differentiation. They have been widely used to create chimaeric 

mice by microinjection into the cavity of a host blastocysts or aggregation with morulae 

(rev, by Bradley, 1987). however, EC cells contribution to chimaeras is very variable 

and tends to be poor following long-term culture (Mintz, 1981). Development of 

teratocarcinomas and other tumours is a common side effect when groups of cells from 

some EC cell lines are used (Robertson, 1987; Hooper, 1992). In addition, germline 
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colonisation has been reported only once for a single EC cell line (Stewart and Mintz, 

1982). 

In order to overcome such deficiencies, many groups sought to obtain similar 

cell lines without going through a teratocarcinoma intermediate stage. This led to the 

isolation and establishment of embryonic stem (ES) cell lines from pen-implantation 

mouse blastocysts (Evans and Kaufman, 1981; Martin, 1981). The contribution of ES 

cells to chimaeras is usually extensive and much less variable than is the case with EC 

cells. Unlike the latter, ES cells tend to be karyotypically normal and tumours rarely 

develop in ES cell-derived chimaeras (Hardy et at, 1990). Most importantly, the 

confirmation of their capacity to colonise the germ-cell lineage of chimaeras (Bradley et 

al., 1984) raised the possibility of transferring a wide variety of genetic modifications 

into the germ line, as depicted in figure 5. 

Following fertilisation, the egg undergoes successive cleavages within the Z ona 

pelludda to produce the morula. At the 8- to 16- cell stage, the cells (blastomeres) 

become polarised, developing distinct apical and basal membrane and cytoplasmic 

domains. Cells on the outside of the embryo (derived from the apical domains of their 

polarised precursor cells) give rise to trophectoderm, while cells on the inside (derived 

from the basal domains) develop into the inner cell mass (1CM). The embryo becomes a 

blastocyst upon formation of a fluid-filled cavity (blastoc(d), separated from the outside 

by a monolayer of trophectoderm cells (rev, by Hooper, 1992). These pre-implantation 

blastocysts (day 3.5 post coitum) are the starting material of choice for the isolation of 

embryonic stem cells. Under standard conditions of culture (rev, by Robertson, 1987), 

explanted embryos normally acquire a suitable morphology after 5 days of culture. 1CM 

clumps are microsurgically removed, disaggregated with trypsin-EDTA and transferred 

into fresh feeder wells. Cultures are left for an initial 7-day period to allow the colonies 

to become established. Following identification of putative ES colonies, they are 

disaggregated and re-transferred to a new feeder well. After 4-5 days, cultures are 

passaged again. 

ES cells can be manipulated in titrv and still maintain their totipotency. They can 

be aggregated to morulae or microinjected into blastocysts (rev, by Bradley, 1987), 
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leading to the formation of chimaeras and efficiently contributing to the germ line. The 

generation of animals with precise genetic modifications via gene targeting is based 

upon these properties of ES cells and the application of cell engineering. 

Almost all ES cell lines currently utilised have been obtained from the mouse 

strains 129 and, less commonly, C57 BL/6. Some mouse strains are not permissive for 

ES cell isolation following the standard procedure described above. It has been 

suggested that genetic background strongly affects the efficiency of ES cell isolation, a 

hypothesis that could also account for the lack of success in isolating ES cell lines from 

other species. Two recent reports on the establishment of ES cell lines from non-

permissive CBA strains may offer a new insight into this affirmation. In a transgenic 

approach (McWhir et at, 1996), CBA mouse lines carrying a stable integration of the 

Oct-neo transgene (which is preferentially expressed on undifferentiated cells) allowed 

ES cell isolation following selective ablation of non-ES cell lineages in G418 selection of 

the explants. Similar results were reported in a microsurgical approach (Brook and 

Gardner, 1997) based on the unequivocal identification of ES progenitors in the mouse 

embryo, the epiblast or primitive ectoderm. Selective explantation of early epiblasts, 

instead of entire ICMs, yielded consistently high frequencies of isolation of ES cell lines 

even from non-permissive murine lines. These results suggest that the barrier to ES cell 

isolation in other animals may not be absolute, re-opening the possibility of applying 

conventional gene targeting techniques in ES cells to precisely alter the genome of larger 

mammals. 
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c.gene targeting techniques 

trans fection 

targeting vectors and enrichment strategies 

c.2.i.introduction 

c.2.ii.positive-negative selection 

c.2.iii.promoter-trap enrichment 

c.2.iv.polyadenylation-trap enrichment 

c.2.v.HPRT selection 

c.3. introduction of subtle mutations 

c.3.i.tag-and-exchange (double replacement) 

c.3.ii.plug and socket 

c.3.iii.hit and run (in & out) 

c. 4. conditional gene targeting 

c. 1.transfection 

Both transient and stable integration of DNA vectors into ES cells have 

been accomplished by a variety of techniques. Calcium phosphate/DNA 

precipitation was the first to be successfully used in mammalian cells. It is simple but 

very inefficient in several cell lines (10- 106).  Microinjection is very efficient (1  0-2_ 1) 

but is technically difficult, requires sophisticated apparatus and is labour intensive. 

Lipofection is based on the inclusion of the DNA in lipid vesicles which readily fuse to 

cell membranes, and has been employed to introduce DNA with a high efficiency in a 

wide variety of cells. Viral vectors (SV40, polyoma, bovine papillomavirus, retrovirus 

and adenovirus) usually offer the advantage of a 100 % efficiency in the delivery of the 

DNA to a cell population, but there are disadvantages associated with every particular 

type, among them the requirement of helper viruses, the limited size of the insert or the 

risk of recombination with wild-type viruses. Interestingly, 'retroadenoviral vectors' 

(Zheng et al., 2000) have been recently designed to combine the versatility of adenoviral 



vectors with the long-term expression and integration of retroviral vectors. Also, 

vectors based on adeno-associated viruses (AAV) have been reported to work at a high 

frequency to specifically target defmed loci in human cells (Rusell and Hirata, 1998), a 

result that could have immediate applications in therapeutic gene targeting. 

The most common technique for introduction of DNA into ES cells is 

electroporation. Although it is not particularly efficient (1O- 10- ) and requires some 

apparatus, the procedure is simple, fast and useful for most cell lines. The technique 

involves the exposure of cells to a pulsed electric field generated by an electroporator. 

This shock creates pores in the membrane of the cell, thus allowing  dissolved DNA to 

be uptaken. 

c. 2. targeting vectors and enrichment strategies 

c2i.introduction 

Targeting constructs carry a segment of DNA homologous to 

the target, including a selectable marker and, where desired, a genetic alteration to be 

introduced into the genome. Insertion vectors (0 type) are linearised within the region 

of homology. Homologous recombination between these vectors and the chromosomal 

target involve a single reciprocal exchange, resulting in the insertion of the entire 

construct into the target locus and duplication of the region of homology. 

In contrast, replacement vectors (0 type) are linearised outside the region of 

homology, and their homologous integration results in replacement of a stretch of the 

target with a corresponding stretch from the targeting construct. 

Positive selection markers are essential components of both types of targeting 

vectors, since they allow the isolation of rare transfected cells from a predominantly 
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untransfected population. A second level of selection in a targeting experiment involves 

the selection of targeted clones in preference to the more frequent random integrants. 

Several approaches have been considered to manipulate the ratio of homologous to 

illegitimate recombinants (effective targeting frequency) in order to increase the 

representation of targeted clones within a transfected population (see next section). In 

vitro enrichment methods allow a significant reduction of random integrants in 

targeting experiments, saving time and effort otherwise dedicated to exhaustively screen 

clones arising mostly from non-homologous recombination events. 

c.2.ii.positive-negative selection 

The original enrichment strategy was to place a positively 

selectable marker within the region of homology and a negatively selectable marker on 

the flank of the targeting vector (Thomas and Capecchi, 1987). The negative marker is 

lost upon recombination with the homologous target, whereas clones in which the 

vector has integrated elsewhere frequently incorporate it. Thus, while selection for the 

positive marker allows the survival of both random and homologous recombinants, 

selection against the negative marker specifically kills colonies derived from non-

homologous events, producing an overall enrichment in targeted clones (see figure 6). 

However, using a variety of targeting vectors featuring several positive (neo, hyg, 

his) and negative (pt, his) selectable markers, this positive-negative selection system has 

been reported to produce only modest enrichments, typically ranging from 2- to 10-fold 

(Hanson and Sedivy, 1995). Both the spontaneous loss of the negative marker (or loss 

of its activity due to modifications such as methylation) in non-targeted clones, and 

metabolic exchange between non targeted and targeted cells may account for these 

results. 
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Figure 6. Positive/ negative selection (see text for details) 

c.2.ii.promoter-trap enrichment 

The promoterless strategy uses vectors in which the positively 

selectable marker lacks its own promoter. Its expression is activated from the target 

gene promoter following homologous integration (see figure 7). Vectors of this type are 

therefore restricted to genes which are transcriptionally active in the target cells. The 

positively selectable cassette is usually cloned in frame with the endogenous translated 

product, creating a fusion gene. Alternatively, it can be positioned upstream the 

transcriptional initiation sequence of the target gene. Promoter trap selection yields 

average enrichments of about 100-fold, and works both in replacement and insertion 

vectors (Schwartzberg el al., 1990). A variation of this method is known as enhancer-

trapping, and is based on vectors whose selective markers have a weak position-

dependent promoter. Activation of this promoter occurs upon homologous integration 

of the construct in the vicinity of a transcriptional enhancer element. Internal Ribosomal 

Entry Sites (IRES) have also been utilised in promoterless vectors. The IRES is a 

sequence of around 500 bp which acts as a ribosome binding site and permits the 
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effective internal initiation of translation in mammalian cells. The advantage of 

incorporating IRES sites to these vectors is that when they are integrated into a 

transcriptionally active gene, production of the marker is expected to be independent of 

context in the fusion transcript. In this respect, it has been reported that IRES-mediated 

transcription is significantly more efficient than strategies reliant upon the production of 

an active fusion protein (Mountford et al., 1994). 

Promoteress positive 
marker 

Target 
gene  
promoter 	x 	x 

10 
Targeted integration 

I 

Positive marker resistant 

Figure 7. Promoter trap strategy (see text for details). 
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c.2.iii.polyadenylation-trap enrichment 

Polyadenviation trap targeting vectors are designed to use the 

transcription termination/ polyadenylation signals of the target gene to generate a stable 

hybrid transcript, consisting of elements from both the target gene and the positive 

selection cassette. Unlike the previous approach, this type of positive selection should 

work for most genes, irrespective of their level of expression in the transfected cells. 

Typical enrichment factors obtained with such vectors range between 5- and 50-fold 

(Donehower etal., 1992). 
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c.2.iv. HPRT selection 

Several studies in gene targeting are based on the manipulation of 

the HPRT locus. The product of this gene is the hypoxanthine-guanine phosphoribosyl 

transferase, an enzyme involved in the purine salvage pathway. I-IPRT catalyses the 

addition of purines to the sugar intermediate 5-phosphoribosyl-alpha-1-pyrophosphate 

(PRPP) in wild-type cells. Either in the absence of purines in the medium or when 

HPRT is not functional, the cells are forced to follow an alternative de now synthesis 

pathway. One of the components of the HAT medium (aminopterin) inhibits the 

enzyme dihydrofolate reductase, which is essential for de novo synthesis. Wild-type cells 

are able to use the salvage pathway, and are basically unaffected by the presence of 

aminopterin. However, HPRT-defective cells have both purine ribonucleotide 

biosynthesis routes blocked, and die. It is also possible to select against HPRT function 

in wild-type cells. The enzyme can efficiently catalyse the addition of 6-thioguanine (a 

toxic purine analogue) to PRPP, resulting in cell death. In contrast, cells deficient in 

FIPRT do not show any alteration in their metabolism in the presence of 6-TG. 

c.3. introduction of subtle mutations 

c.3.i.tag-and-exchange (double replacement) 

Comprehensive investigation of gene function sometimes 

requires the introduction of multiple, distinct and precise mutations into the locus of 

interest. One of the strategies devised for the introduction of subtle mutations into the 

mammalian genome is known as tag-and-exchange (Askew et aL, 1993) or double-

replacement (Wu et al., 1994). It is based on tag selection cassettes, such as HPRT, for 

which both positive and negative selection can be applied in cell cultures. Homologous 

integration of this cassette into the target locus is positively selected (tag step). In a 

second round of gene targeting (exchange step), a precise alteration is introduced into 
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the tagged locus, resulting in displacement of FORT. Selection for loss of HPRT results 

in the selective elimination of illegitimate recombinants. This technique has been 

successfully employed in replacing the murine 0-lactalbumin gene with its human 

counterpart (Stacey et al., 1994), and has raised the possibility of generating multiple 

gene replacements at a single locus. Unless enrichment strategies (such' as the use of 

promoterless }-IPRT) are used in the tag step, a problem of this strategy is the necessity 

to screen a large number of clones in the first round of gene targeting. In addition, the 

efficiency of the exchange step is often compromised by a high background of non-

targeted lines, which survive selection due to the spontaneous loss (or loss of activity, 

for instance due to methylation) of the tag cassette (Whyatt and Rathjen, 1997). Thus, 

although double-replacement targeting allows precise alterations of the genome, the low 

frequencies of homologous recombinants surviving secondary selection greatly hinders 

the repeated introduction of independent mutations. A modification of this strategy, 

which involves the incorporation of an additional positive selection marker for increased 

stability, has been recently reported to improve the efficiency of the exchange step by 4-

fold (Whyatt and Rathjen, 1997). A disadvantage of this approach is that the second 

marker would not be removed after the exchange step. 

c.3.ii.plug and socket 

An alternative two-step targeting system, termed plug and socket 

(Detloff et al., 1994) has also been proposed as a way to alter any mouse locus efficiently 

and repeatedly. Using conventional targeting for the first step, a functional neo and a 

partial HPRT minigene ('the socket') are targeted into the genome of HPRT-deficient 

ES cells, close to the locus of interest. G418 resistant clones are screened for the 

presence of the socket at the target locus. The second step involves the use of a 

targeting vector ('the plug) that supplies the remaining portion of the HPRT minigene 

and generates a functional cassette upon homologous recombination with the integrated 

socket. This event can be selected in the presence of HAT medium. At the same time, 

the plug provides DNA sequences that recombine homologously with sequences in the 

target locus and modifies them in the desired manner. Using this method, the murine 3- 
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globin gene was replaced by its human equivalent (Detloff et cii., 1994). As in double-

replacement, the plug and socket strategy seems to be complicated by a high 

background of incorrectly targeted lines. In addition (unlike tag-and-exchange), it has 

the added disadvantage of leaving the HPRT marker at the target locus once the second 

round of targeting has been completed. 

c.3.iv.hit and run (in & out) 

'Hit and run' ('in & out') vectors (Hasty et cii., 1991b; Valancius 

and Smithies, 1991) are modified insertion constructs containing the desired mutation in 

the homologous sequence and both positive and negative selection cassettes in the 

vector backbone (alternatively, a single cassette comprising both selectable markers in 

one gene, such as HPRT or gta can be used in HPRT-defective cell lines). Positively-

selected homologous recombination between this integration vector and the genome 

yields a duplication, in which one of the repeats carries both markers. Negatively-

selected intrachromosomaJ recombination between them leads to the correction of the 

target and the loss of one of the repeats, together with the negative marker, if the 

crossover occurs downstream of the modification in the vector-derived repeat (green 

crossover in figure 8). However, if the crossover occurs upstream of the modification 

(in red, figure 8), a high background of incorrectly targeted clones will be observed. 

This can be minimised by increasing the length of homology downstream of the 

or — — 	I 

Figure 8. 'I-lit and run' targeting strategy. Red line: negative marker. Green line: positive marker. See text 
for details. 
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desired mutation in the targeting vectors. As in other systems using negatively selectable 

genes, another limitation of this procedure is the background of non-targeted events 

due to the spontaneous loss (or loss of activity) of the negative marker. 

c.3.v.Cre-I6xP 

Site-specific DNA recombinases from bacteriophage and yeasts 

have been used in recent years for genome engineering both in prokaryotes and 

eukaryotes. The 38kDa Gre protein efficiently produces both inter- and intramolecular 

recombination between specific 34bp sites called loxP (rev, by Kuhn and Schwenk, 

1997). The general strategy involves two steps: First, a genetic modification including 

flanking bacteriophage loxP sites is introduced into the genome by homologous 

recombination. Second, transient expression of the Gre recombinase (which excises 

loxP-flanked DNA) generates the final structure of the target locus. Specifically, this 

technique has been used (a) to remove the selection marker after conventional gene 

targeting in order to avoid interference with the expression of the targeted gene (Wang 

et al., 1999; Delneri et al., 2000); and (b) to efficiently mediate transgene integration in 

specific sites of the genome (Kolb et al., 1999). This application involves two steps: 

First, a loxP site is integrated by homologous recombination next to the promoter region 

of a highly transcribed gene, replacing the translational initiation signal. Subsequently, 

co-transfection of a kxP-flanked transgene and a Gre-expression vector results in site-

directed recombination with the genomic 1xP sequence. The efficiency of this 

procedure can be increased by using incompatible loxP sites in the transgene. This 

would prevent the frequent excision of the transgene that is thought to occur through 

interaction between the flanking IoxP sites after integration (Araki et al., 1997; Lee and 

Saito, 1998). 

c. 4. conditional and inducible gene targeting 

Conditional gene targeting involves a gene modification restricted to 

certain cell types or developmental stages of the mouse. This temporal! spatial 
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specificity can be used to test the function of widely expressed genes in a particular cell 

lineage and to investigate postnatal gene function in those cases where conventional 

knockout leads to a severe or lethal phenotype during embryonic development. Also, it 

can be useful to analyse gene function in adults, because it allows gene modification 

after the normal establishment of adaptational responses of cellular systems. 

The most widely adopted conditional targeting approach is based on the 

cre/loxP system (rev, by Kuhn and Schwenk, 1997; Porter, 1998). This requires the 

generation of both a mouse strain in which the target gene is appropriately flanked by 

loxP sites, and a second strain expressing the Gre recombinase constitutively or upon 

induction in specific tissues. A conditional mutant is generated by crossing these two 

strains, so that the modification of the target gene is restricted to particular cell types 

and/ or ontogenic stages according to the pattern of Gre expression in the particular 

strain used. This system can also be used to activate transgenes in a tissue-specific 

manner, by removing loxP-flanked blocking fragments (Lewandoski et al., 1997). As an 

alternative to the cross with Gre-expressing mouse strains, this recombinase can also be 

delivered to somatic tisues via infection of mice with adenoviral Gre expression vectors 

(Rohlmann et al., 1996; Wang et al., 1996; Sato et al., 1998). 

Two characteristics of the Gre-based approach are its binary nature (the target 

gene is either active or inactive, with no intermediate stage) and its irreversibility (once 

inactivated, the target gene cannot be reactivated by reversing the switch). Inducible 

gene targeting techniques have been recently devised to overcome these limitations, 

allowing the study of gene-dosage effects and the consequences of temporary gene 

silencing. Typically, gene targeting is used to inactivate one copy of the target gene, 

while the other is placed under the control of a regulatory system such as Lac; Tet or 

ecdysone (rev, by Porter, 1998). 

A third approach is based on the use of gene targeting to disrupt both 

endogenous alleles. Viability depends on the ectopic expression of a minigene derived 

from the target gene, under the inducible control of exogenous transcriptional-

regulatory sequences. This method has been successfully used in avian (Wang et al., 

1996) and mammalian cells (Legname et al., 2000). 
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v. manipulation of gene targeting 
frequency 

a.introduction 
b.design of the targeting vector 

c.manipulation of cell/target conditions 
d.changing expression of recombination-related genes 

a.introduction 

Increasing absolute targeting frequency (number of targeted clones/ number of 

cells exposed to the transfection procedure) is an essential requirement for some future 

applications of this technology, like gene therapy in vivo (see Introduction). Such increase 

can be attained by improving both transfection efficiency and effective targeting 

frequency. This parameter has been defined here as the ratio between homologous 

recombinants and total (homologous- and non-homologous) integrants, and typically 

ranges from iO to 102  in most cell lines. Strategies aiming at enhancing effective 

targeting frequency can be grouped into three main categories: Design of the vector, control of 

the taet gene status and manipulation of the expression of recombination-related genes. This section 

reviews the most recent advances in each one of these approaches. 



b.design of the targeting vector 
b. I. introduction 

conventional targeting vectors 

b2i.vector types 

b.2.ii. length of homology 

b.2.IIi. isogenicity 

b.2.iv. modification of DNA ends 

b.2. v. nuclear localisation signals (NLSs) 

other vectors that target DNA 

b. . i. single stranded DNA vectors 

b. 3. ii.triple-heljx forming oligonucleotides (TFOs) 

b.4.iii.RNNDNP, oligonucleotides (RDOs) 

vectors that target RNA 

b.4. I. antisense oligonucleotides (ODNs) 
b.4. ii. ribozymes 

b.4. iii. protein-nucleic acids (PNAs) 

b.4.iv.double stranded RNA vectors 

b. I. introduction 

Gene targeting is usually defined as the directed alteration of 

endogenous genes through homologous recombination with transfected DNA 

fragments. In a broader sense, any technique or procedure allowing directed 

modification of an endogenous gene's sequence or pattern of expression should also be 

considered gene targeting even if it does not involve homologous recombination. This 

wider definition would include novel techniques such as ribozyme and antisense 

oligonucleotide downregulation, RNA interference (RNAi) and others. With the only 

exception of RNAi -a technology whose mechanism was unknown at the time we 
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started working on it-, this work is mainly focused on homologous recombination-based 

techniques, and any subsequent references to gene targeting in the experimental section 

must be understood in this context (see 'conventional targeting vectors'). 

b.2. conventional targeting vectors 

b2i.vector types 

The first step in undertaking a gene targeting experiment is to 

design a vector such that the desired mutation can be delivered to the target locus. The 

most widely used vectors are those involving replacement events. Their acceptance is 

based upon an early study (Thomas and Cappechi, 1987) reporting that recombination 

frequencies were similar to those obtained with insertion constructs, and that positive-

negative selection is applicable to this vector type. However, a later report (Hasty et 31., 

1991) suggested that insertion vectors target up to nine-fold more frequently than 

replacement vectors with the same length of homologous sequence. Two explanations 

were proposed to support these results: First, the fact that insertion vectors need only 

one cross-over to get integrated; second, the observation that double-strand breaks in 

the regions of homology —characteristic in the design of insertion vectors- seem to 

increase homologous recombination in several organisms (page 51). 

b2iiiength of homology 

The length of homology seems to be the most important factor 

affecting targeting frequency. It has been demonstrated that there is an exponential 

dependence of targeting efficiency on the extent of homology between the targeting 

vector and the target locus, up to 14 kb (Deng and Capecchi, 1992). In this study, based 

on the analysis of more than twenty targeting vectors, sequence replacement and 

sequence insertion vectors behaved equivalently with respect to the targeting efficiency. 

This result contradicts the observations reported by Hasty et 31. (1991) in a less 
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comprehensive study. This relationship between recombination frequency and length of 

homology seems to be biphasic, suggesting that different mechanisms predominate 

above and below a transition point in the range of 150-400 bp (Rubnitz and Subramani, 

1984; Ayares et al., 1986). 

b.2.iii.isogenicity 

The use of isogenic or non-isogenic constructs is another 

important determinant of gene targeting efficiency. An evenly dispersed 19% mismatch 

reduces the frequency of extrachromosomal recombination up to 15-fold (Waldman and 

Uskay, 1987). Base-pair mismatches have been shown to strongly affect the frequency 

of homologous recombination in bacteria (Rayssiguier et al., 1989), of intrachromosomal 

recombination in mammalian cells (Bollag et al., 1989) and of gene targeting in 

embryonic stem cells (te Riele et al., 1992). Recent work in yeast indicates, however, that 

mismatched sequences inhibit recombination between DNA fragments and the genome 

only when they are close to the edge of the fragment (Negritto et al., 1997), suggesting 

that the effect of mismatches sequences may not be an absolute determinant on the 

frequency of homologous recombination, but rather dependent on the context. 

b.2. iv. modification of DNA ends 

Modifying DNA ends in the transfected molecules might also be 

a way to reduce illegitimate recombination and even to improve homologous 

recombination. Free DNA ends are thought to stimulate targeted recombination by 

allowing exposure of single strands, which then can invade homologous chromosomal 

sequences (Szostak et al., 1983). Free DNA ends also appear to stimulate random 

integration by permitting direct joining of input DNA ends to genomic DNA, perhaps 

at transient chromosomal breaks. Analysis of randomly integrated DNA molecules 

suggests that the integration event requires very little, if any, nucleotide sequence 

homology (Kato et al, 1986). Thus, modification of the ends of targeting constructs to 

block end joining might have a twofold utility: First, to block the illegitimate joining of 

41 



input DNA to chromosomes, therefore decreasing the frequency of random integration 

directly. Second, to prevent the joining of input DNA molecules to one another. This 

would maintain the concentration of free ends at a maximum, which might promote an 

increase in the absolute frequency of homologous recombination. This hypothesis has 

been tested by adding dideoxynucleotides to the 3'-ends of a linear plasmid transfected 

into monkey COS-1 cells. This treatment increased the homologous/ non-homologous 

recombination ratio about five-fold (Chang and Wilson, 1987). Other reports state that 

ligation of linear targeting constructs to self-complementary oligonucleotides to seal 

DNA ends, enhances stability of the vectors and increases the frequency of gene 

targeting (rev, in Yáñez and Porter, 1998) despite the loss of 3' recombinogenic ends. 

Different modifications of the ends already assayed in antisense oligonucleotides, such 

as C5-propyne, may prove to be useful for this purpose. 

b.2.vi.nuclear localisation signals (NLSs) 

It is generally acknowledged that transport of DNA molecules 

across the nuclear barrier could be one of the most important limitations in gene 

delivery (Shen, 1997). The nuclear membrane of eukaryotic cells is freely permeable to 

particles of up to 9-10 nm (such as 40-60 lcD proteins), but larger molecules require 

energy-dependent active transport through the nuclear pore complex (NPC) (Goldberg 

and Allen, 1995; Aronsohn et al., 1997; Ludtke et al., 1999). NPCs are supramolecular 

aggregates that preferentially bind proteins carrying nuclear localisation signals (NLSs) in 

a process that also involves cytosolic factors (importins a and ) and the translocator 

protein GTPase-Ran (Adam and Gerace, 1991; Nigg, 1997; Ohno et al., 1998; Melchior 

and Gerace, 1998). In recent years, several groups have reported enhanced DNA 

transport to the nucleus by complexing NLSs (normally the SV40 large T antigen 

PKKKRKV sequence) to plasmids, either by electrostatic interaction (Kaneda et al., 

1989; Remy et al., 1995; Collas et al., 1996; Fritz et al., 1996; Collas and Alleström, 1997; 

Aronsohn and Hughes, 1997; Subramanian et al., 1999) or covalent irreversible binding 

(Zanta et al., 1999). Most interestingly, improved DNA transport through the nuclear 

membrane has been consistently associated to higher frequency of transgene expression, 

which indicates that NLS peptides may constitute a valuable tool to improve the 
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efficiency not only of gene targeting, but also of transgenesis (Collas and Alleström, 

1997). 

b.3. other vectors that target DNA 

b.3.i.single-stranded DNA vectors 

Small single-stranded fragments of DNA have been used to 

generate potent targeting constructs (Kunzelmann et al., 1996; Goncz et al., 1998). In 

these studies, a 491 bp PCR product derived from a functional CFTR gene was first 

denatured and then used to target and repair the 3 bp deletion (F508) of the CFTR 

gene in transformed lung epithelial cells from a patient with cystic fibrosis. A high 

absolute targeting frequency (10) was repeatedly observed, regardless of the method of 

transfection. Although an early study reported enhanced levels of homologous pairing 

following RecA coating of ssDNA molecules (Ferrin and Camerini-Otero, 1991) such 

treatment of the targeting fragments did not seem to produce detectable changes in the 

overall CFTR targeting frequency. The high concentration of targeting molecules/ 

exposed cell (10) and the absence of non-homologous sequences in the vectors were 

proposed to account for these unusually high levels of homologous recombination. 

b.3.ii.triple helix-forming oligonucleotides (TFOs) 

Triple helix-forming oligonucleotides (TFOs) can bind in the 

major groove of duplex DNA containing polypurine/polypyrimidine-rich regions in a 

sequence-specific manner (Moser and Dervan, 1987; Francois et al., 1988). Originally 

used to block mRNA synthesis by preventing the binding of transcription factors to 

promoter sites (Cooney et al., 1988; Blume et al., 1992; Duval-Valentin et cii., 1992), this 

powerful and versatile technology has also been successfully employed to: (1) activate 

transcription from a target gene by coupling promoter sequence-specific TFOs to the 

activation domain of protein VP16 (Kuznetsova et 31., 1999); (2) target DSB-inducing 
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mutagens to selected loci (Wang et al., 1995a, 1996; Faruqi et al., 1996); (3) induce gene 

conversion via nucleotide-excision repair between tandem repeats in episomal substrates 

(Faruqi et a/., 2000); and (4) increase gene targeting frequency by linking targeting 

vectors to 'priming' TFOs (figure 9) (Chan et al., 1999). 

A 

Targeting vector 	
Triple helix-forming domain 

TFO-primed homologous 
recombination 

Corrected genomic locus 
A 

Figure 9. TFO-primed gene targeting. A targeting vector is engineered to contain a triple helix-forming 
domain homologous to a region adjacent to the locus to be modified. Homologous recombination occurs 
upon triple helix formation, favoured by the proximity of the recombinant molecules (Chan et al., 1999) 

b.3.iii.RNNDNA oligonucleotides (RDOs) 

Strategies involving the use of RNA/DNA oligonucleoudes 

(RD Os or chimaeraplasts) have been devised over the past five years to specifically 

correct point mutations in bacteria and mammalian cells. The design of RDO vectors 

was inspired by in zhv studies of homologous recombination in U. mqydis, which 

revealed that RNA/DNA hybrids were more active in homologous pairing than 

corresponding DNA duplices (Kmiec et al., 1994). It has been suggested that 

homologous pairing is the rate-limiting step in homologous recombination (Wilson et al., 

1994), which led to the hypothesis that small synthetic RDOs would enhance this 



process by (a) facilitating the access of vector to the nucleus in stoichiometric excess 

over the target (which is difficult when using larger vectors); and (b) increasing the 

binding affinity of the vector to the target DNA (Yoon et a1., 1996). RDO vectors are 

single oligonucleotides (typically 68-mers for a 25 bp region of homology) designed to 

fold in such a way that one strand of the duplex comprises all DNA residues, and the 

complementary strand contains alternating blocks of DNA and 2'-O-methyl RNA 

residues. Mismatches are introduced in the central DNA block of the RNA/DNA 

strand. 2'-O-methylation renders the molecule resistant to RNAse H, whereas thymidine 

hairpin caps enhance resistance to DNA-nucleases and prevent end-to-end ligation 

(Cole-Strauss et al., 1996: Yoon et al., 1996; Kren et al., 1999). 

RDO vectors have been successfully employed to correct single point mutations 

both in episomal (Yoon et al., 1996) and genomic (Cole-Strauss et al., 1996; Alexeev and 

Yoon, 1998) targets, in a variety of prokaryotic (Kren et al., 1999), mammalian (Cole-

Strauss et al., 1996; Alexeev and Yoon, 1998) and plant (Zhu et al., 1999; Beetham et al., 

1999) cells, as well as in cell-free extracts (Cole-Strauss et al., 1999). Targeting 

efficiencies using RDOs are consistently higher than those obtained by conventional 

gene targeting, ranging from 0.01 % (Alexeev and Yoon, 1998) to 50% (Cole-Strauss, 

1996) depending on the biological system, the design of the vector and the nature of the 

target. MutS and its eukaryotic counterpart, Msh2 are essential for RDO-mediated gene 

targeting, as shown in studies conducted in bacteria (Kotani and Kmiec, 1994) and 

mammalian cell-free extracts (Cole-Strauss et al., 1999), respectively. This suggests that 

the mechanism of gene modification by RDOs involves gene conversion by mismatch 

repair rather than strand exchange. 

The advantage of RDO- over homologous recombination- mediated gene 

targeting is two-fold: (1) A higher targeting efficiency; and (2) The fact that RDOs are 

small synthetic molecules which can be manufactured like a drug. Therefore, this 

technology is a potentially powerful alternative to gene targeting for the therapeutic 

correction of point mutations in diseases such as sickle cell anemia, cystic fibrosis or 

hemophilia. However, due to the impossibility of engineering selectable markers into 

RDOs, selection of RDO-targeted clones in vit,v would be possible only if there is a 
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phenotype associated to the mutation (such as 6-TG resistance when inactivating 

HPRT). 

b. 4. vectors that target RNA 

b.4. i.antisense oligonucleotides (ODNs) 

Antisense oligodeoxynucleotides (ODNs) are designed to base-

pair to specific regions of target mRNA transcripts. This hybridisation results either in 

(a) inhibition of protein synthesis, or (b) RNAse H-directed destruction of the target 

mRNA. Despite its theoretical simplicity and both scientific and therapeutic potential, 

widespread application of antisense technology is hindered by a number of practical 

obstacles, such as: (1) the inherent instability of antisense molecules within the cellular 

environment; (2) the inefficient cellular uptake; (3) the frequent incidence of non-

antisense effects; and (4) the necessity of screening large numbers of candidate 

molecules for effective and specific in zilvo binding to the target (rev, by Stein and Cheng, 

1993; Branch et al., 1998). 

b.4.ii. ribozymes 

The ability of some RNA molecules to catalyse RNA cleavage 

and joining through consecutive transesterification reactions (rev, by Cech, 1987) has led 

to the development of a powerful technology for the selective down-regulation of gene 

expression. Ribozymes are catalytic RNA molecules intended to bind to and cleave 

target mRNA molecules. Upon cleavage, the transcript is destabilised and translation is 

suppressed. Ribozymes expressed from gene therapy vectors have been successfully 

used to specifically inhibit the expression of a variety of targets from oncogenes to 

growth factors, and ribozyme-based anti-HIV therapeutic protocols are currently 

moving into clinical trials in humans (rev, by Couture and Stinchcomb, 1996). Some 



taking advantage of the splicing ability of ribozymes to correct defective transcripts, 

rather than prevent gene expression. This strategy is based on the replacement of a 

mutated portion of RNA with a functional sequence by targeted trans-splicing 

(Sullenger and Cech, 1994; Hagen and Cech, 1999). 

Ribozyme technology clearly offers novel opportunities for basic studies of gene 

function and regulation, as well as therapeutic uses in humans. In theory, ribozymes can 

be engineered to target any RNA species in a site-specific manner. However, their 

practical applications often face many of the problems previously described for 

antisense oligonucleotides. 

b.4.iii.protein-nucleic acids (PNAs) 

Protein-nucleic acids (PNAs) are synthetic nucleic acid analogues 

in which the phosphate sugar polynucleotide backbone has been replaced by achiral and 

uncharged N- (2-aminoethyl)glycine polymers (Nielsen et al., 1991; Good and Nielsen, 

1998). These chimaeric molecules work by hybridising to complementary sequences of 

RNA and sterically blocking initiation of translation, rather than by targeting PNA-RNA 

complexes for RNAse degradation (Knudsen and Nielsen, 1996; Bonham et al., 1995). 

PNAs were originally devised as a way to overcome the limitations of conventional 

antisense technology: compared to ODNs, PNAs ensure superior hybridisation 

properties, increased resistance to enzymatic degradation and higher accessibility for 

chemical engineering (Good and Nielsen, 1998). Cellular and nuclear uptake is enhanced 

when PNAs are coupled to protein transporters (Pooga et al., 1998) and nuclear 

localisation signals (NLS) (Cutrona et al., 2000), respectively. Even more interestingly, 

PNA-NLS can be hybridised to plasmids for efficient nuclear transport following 

transfection, without noticeable alteration of their pattern of expression (Brandén et al., 

1999) Therefore, this approach is potentially useful in assays and therapies involving 

transient transfections, as well as for improving accessibility of targeting vectors to the 

nucleus. 
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b.4.iv.double-stranded RNA 

The recent discovery that microinjection of double-stranded 

RNA molecules can produce long-term, highly efficient in zivo inactivation of a variety 

of genes in C. elegans (Fire et 111., 1998) and other organisms (Kennerdell and Carthew, 

1998, 2000; Sánchez-Alvarado and Newmark, 1999; Lohmann et aL, 1999; Wargelius et 

al., 1999; Wianny and Zemicka-Goetz, 2000) has raised the possibility of using these 

molecules as knockout vectors. Although the fact that only a few molecules per cell can 

produce specific inhibition seemed to argue in favour of a DNA target (Wagner and 

Sun, 1998), several lines of evidence (Montgomery et al., 1998) discard this hypothesis: 

(1) dsRNA effects (also called RNA interference, or RNAi) are not generally heritable 

beyond the first generation in C. elegan.r, (2) Sequencing of dsRNA 'targeted' loci does 

not reveal any mutation; (3) RNAi is efective when the vectors have regions present in 

mature RNA transcripts, but not intronic or promoter sequences; (4) In situ 

hybridisation shows that RNAi dramatically decreases the levels of nascent transcripts in 

the nucleus, and virtually abrogates their cytoplasmic accumulation. Taking all these 

observations together, it was concluded that specific mRNA transcripts are the primary 

target of dsRNA vectors through a mechanism involving degradation of mRNA before 

translation takes place. 

Does RNAi have a biological role? C. elegans mutants resistant to RNAi (rde-1, 

ego-1, mut-7) are viable and healthy, indicating that this process is not essential under 

normal laboratory conditions (Tabara et al., 1999; Ketting et at, 1999; Hunter, 2000). 

Inactivation of some of these genes leads to transposon mobilisation, which suggests 

that one physiological role of RNAi might be the silencing of multicopy sequences such 

as viral and transposable pathogens (Lin and Avery, 1999). This hypothesis could also 

explain some cases of transgene silencing by co-suppression: repetitive sequences 

randomly integrated over the genome, as well as head-to-tail tandems, are likely to be 

transcribed from both strands by readthrough from external initiation sites. Base-pairing 

of the resulting transcripts would result in dsRNA formation and subsequent silencing 

(Montgomery and Fire, 1998; Ketting and Plasterk, 2000; Plasterk and Ketting, 2000). 
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One proposed model for the molecular mechanism of RNAi (Ketting et al., 

1999) involves recognition of dsRNA molecules by a protein complex that includes 

mut-7, a protein homologous to Werner Syndrome helicase and RNAse D. The 

complex thus activated then targets homologous mRNA transcripts for degradation in a 

catalytic process where the dsRNA is not affected. Consistent with this model is the 

observation that extracts of dsRNA-transfected drosophila cells contain a ribonuclease 

activity that specifically degrades exogenous transcripts homologous to the dsRNA 

vector (Hammond et al., 2000). 

Only two years after it was originally reported, RNAi has become a routine 

procedure in basic developmental studies in C. elegans and other species. The recent 

demonstration of the feasibility of this approach in the mouse embryo (Wianny and 

Zernicka-Goetz, 2000) offers new opportunities not only to study developmental 

phenotypes associated with the down-regulation of any single mammalian gene (or 

combination of genes), but also to design more effective gene therapy protocols to treat 

diseases such as cancer or virus/parasite infections. It remains to be seen, however, 

whether RNAi is effective in adult mammals and cells in culture. 



c.manipulation of the cell/target conditions 
transcription and homologous recombination 

introduction of double-strand breaks 

c.2.i.induction of DNA damage 

c.2. ii. use of rare-cutting enzymes 

c.3.cell cycle rates 

c. I. transcription and homologous recombination 

Locus-to-locus intrinsic variability has been extensively documented to 

have dramatic effects in the overall targeting frequency. The level of expression of the 

target gene may account for some of these observations. Early work in B. co/i showed 

that homologous recombination is highly enhanced by transcription (Ikeda and 

Matsumoto, 1979), an observation that led to the proposition that the strand displaced 

during transcription might invade a homologous duplex, promoting strand-exchange. 

These results have been reproduced in eukaryotes (Alt et a/., 1986; Blackwell et al., 1986; 

Thomas and Rothstein, 1989; Nickoloff and Reynolds, 1990; Nickoloff, 1992; Prado et 

al., 1997), suggesting either that the increased accessibility of the chromosome during 

transcription facilitates the activity of the recombination machinery (Blackwell et al., 

1986), or that there is an evolutionary link between the processes of transcription and 

recombination (Kassavetis and Geiduschek, 1993). In this respect, it has been proposed 

that methylation (which is a gene silencing mechanism) in higher organisms may 

contribute to stabilising their genomes by preventing homologous recombination 

between dispersed DNA repeats. This would provide biological significance to the fact 

that in many eukaryotes methylation occurs preferentially in repeated DNA sequences 

(Assaad and Signer, 1992; Rossignol and Faugeron, 1994). Experiments were conducted 

in cultured human fibrosarcoma cells to test whether these findings are applicable to 

gene targeting systems (Thyagarajan et al., 1995). It was found that gene targeting was 
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significantly enhanced (3-fold to >20-fold) in the presence of an agent that stimulated 

target site transcription. Taken together, these results raise the possibility of developing 

more efficient gene targeting protocols in those cases for which the level of 

transcription of the target locus can be manipulated. 

c.2. introduction of double-strand breaks 

c.2.i.induction of DNA damage 

Several types of DNA damage have a remarkable effect at 

increasing homologous recombination in eukaryotic cells. These include lesions caused 

by chemical carcinogens (Wang et al., 1988), UV irradiation (Tsujimura et a/., 1990), 

gamma irradiation (Mudgett and Taylor, 1990) and photoreactive molecules (Saffran et 

al., 1992). All these agents cause random DNA damage, thus activating the 

recombinatorial repair mechanisms of the cell (p53, Ku, PARP, Rad5l). Of course, such 

a non-specific outcome is not desirable in gene targeting procedures, particularly in 

those for therapeutic correction of mutated genes. Nevertheless, it has been recently 

demonstrated that triplex-forming oligonucleotides, either bound to photoreactive 

molecules (Faruqi et al., 1996) or by themselves (Faruqi et al., 2000) can cause sequence-

specific DNA damage around the target, thus stimulating the recombination machinery 

locally. This could be a way to direct homologous recombination enhancement to the 

desired DNA region in gene targeting experiments. 

c2 i. use of rare-cutting enzymes 

The use of rare cutting enzymes to generate double-strand 

breaks (DSBs) in the chromosome has also been reported to improve intrachromosomal 

recombination (Brenneman et al., 1995) and gene targeting frequencies (Choulika et al., 

1995; Smih et al., 1995; Donoho et al., 1998) in a variety of organisms. Studies in 

( 
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mammalian cells show that repair of DSBs involves both homologous recombination 

and non-homologous DNA-end joining mechanisms (Roth and Wilson, 1988; Rouet et 

31., 1994), results that are consistent with the prevailing models of recombination (pages 

7-16). Introduction of 1-Scel sites (whose long recognition sequence makes them very 

rare in genomic DNA) into defined loci and subsequent cleavage of the target by 

expression of or electroporation with 1-Scel has been shown to increase gene targeting 

50- to 104-fold in several mouse cell lines. However, practical applications of this 

strategy are hindered by the necessity of 'targeting the target' beforehand. The use of 

triplex-forming oligonucleotides linked to DSB-inducing agents has been proposed to 

overcome this limitation, by inducing cleavage of specific sequences in the target locus 

in one step (page 43). 

c.3.ceII cycle rates 

Finally, it has been recently demonstrated that cell cycle rates may have a 

drastic effect on targeting efficiency. Targeting frequencies in mouse ES cells seem to 

keep an inverse linear correlation with the time of cell doubling, a parameter that 

depends both on the intrinsic characteristics of each cell line and the growth conditions 

(LJdy et al., 1997). The latter factor appears to be particularly important, since it was 

found that even a non-isogenic line, given optimised conditions for cell growth (i.e, high 

serum concentration), can support homologous recombination events up to 21-fold 

more frequently than an isogenic line grown in sub-optimal conditions. These results 

provide an explanation for variations in gene targeting frequencies detected between 

experiments. It is clear that maintaining ES cells under optimal growth conditions is 

essential to ensure reliably efficient gene targeting. Deviations from these conditions 

(resulting from factors such as rate of passage, cell density at passage or electroporation, 

time from last passage, cell overgrowth or variations in media or serum composition) 

can strongly affect its frequency. 
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d. expression of recombination genes 

d. 1.rad genes 

mismatch-repair genes 

onco genes 

d.3.i.p53 

d.3.ii.BRCAI and BRCA2 

d.3.iii.BLM 

d.4.genes involved in illegitimate recombination 

d. 1.rad genes 

Recombination is enhanced following overexpression of genes directly 

involved in this process. In a recent report, a 2-3-fold overexpression of Rad5l in CHO 

cells was found both to stimulate homologous recombination between integrated genes 

(20-fold) and to increase resistance to ionising radiation (Vispé et al., 1998). Gene 

targeting frequency was also increased 2-fold in human cells with an extra copy of 

Rad5l (Yáflez and Porter, 1999) and 10-fold in mouse F9 teratocarcinoma cells 

transfected with its bacterial counterpart, recA (Shcherbakova, 2000). Comparable 

results were obtained in monkey cells when overexpressing Rad52, another component 

of the RAD52 epistasis group participating in DSB repair (Park, 1995). 'the use of this 

strategy to test the recombinagenic activity of other candidate proteins, such as 

RecBC/RecBCD could be useful not only to understand the molecular mechanisms 

underlying homologous recombination, but also to develop more efficient targeting 

protocols. 

d. 2. mismatch-repair genes 

Down-regulation of genes not directly involved in recombination may 

also prove to be most informative. For instance, the mismatch repair (NM)-related 
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genes Msh2, Mihi, Pmsl and Pms2 represent a considerable barrier to homologous 

recombination in many organisms (Bailis and Rothstein, 1990; Mezard et al., 1992; Selva 

et at, 1995). Several groups have observed that defects in the mismatch repair machinery 

both in prokaryotes and eukaryotes greatly reduce the inhibitory effect of mismatches. It 

has been proposed that non-identical sequences are prevented from recombining due to 

the recognition of the mismatches by the MMR enzymes, after which the forming 

heteroduplex DNAs are unwound (Dana et al., 1996). Alternatively, MMR may inhibit 

the formation of mismatched heteroduplices, as suggested by studies in the bacterial 

equivalent mutSL pathway (Worth et al., 1994). In any case, the effect of the 

mismatches in inhibiting non-isogenic pairing seems to be position-dependent, since the 

presence of mismatched sequences away from the ends of a recombining partner does 

not prevent heteroduplex formation (Negritto et al., 1997). This observation confirms 

that initiation is the critical, rate-limiting step of homologous recombination. 

Inactivation of the MMR Msh2 gene in murine cells results in a 

hyperrecombinatorial phenotype, according to a report by de Wind et al. (1995). Further 

research in S. cerevisiae has demonstrated that mutations in this gene stimulate the 

frequency of recombination between mismatched sequences over 1000-fold relative to 

wild-type cells (Negritto et al., 1997). Indeed, Msh2-defective cells supported isogenic 

recombination 40-fold more frequently than wild-type cells transfected with the same 

constructs, unexpectedly suggesting that Msh2 represses not only mismatched but also 

isogenic recombination through a mechanism yet to be elucidated. A strategy based on 

the transient down regulation of this gene by antisense oligonucleotides could be useful 

to improve gene targeting efficiency. 

d. 3. onco genes 

d.3.i.p53 

The tumour suppressor p53 gene has also been directly related 

to DNA recombination. Its inactivation is an almost universal step in the development 
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cancer, and loss of its wild-type function is associated with hyperrecombination and 

karyotypic abnormalities such as amplifications, deletions, inversions and translocations 

(Nelson and Kastan, 1994). p53  is a potent transcriptional activator with the ability of 

sequence-specifically binding to DNA (Lane 1992). It is thought to function in the 

maintenance of genomic stability by modulating transcription and interacting with 

cellular proteins to influence the cell cycle, DNA repair and apoptosis. Following DNA 

damage, wild-type p53 upregulates the expression of the p21 Waf1  protein to effect a cell 

cycle arrest in order to prevent the replication of damaged DNA (Hartwell, 1992. If 

both cell cycle arrest and DNA repair functions fail to restore the integrity of the 

genome following DNA damage, p53 may also trigger the elimination of the abnormal 

cell via apoptosis (Yonish-Rouach et al., 1991; Hermeking and Eick, 1994). 

Even though it has been very recently reported that the frequency of meiotic 

recombination is normal in p53-deficient mice (Gersten and Kemp, 1997), several 

studies suggest that p53 directly affects the rate of somatic homologous recombination. 

Some of the chromosomal lesions arising from the loss of p53 function are based on 

molecular processes that involve recombinatorial events. Biochemical data show that 

p53 exhibits both exonuclease (Mummenbrauer et al., 1996) and strand transfer activities 

(Oberosler et al., 1993). Gene amplification, which may also require recombination, is 

significantly increased in p53-deficient cell lines (Livingstone et al., 1992). Functional p53 

tightly binds to Holliday junctions and facilitates cross-over resolution (Lee et al., 1997). 

The rate of spontaneous intrachromosomal homologous recombination is increased up 

to 100-fold in a variety ofp53-deficient cell types (Bertrand et al., 1997; Meyn et al., 1994; 

Mekeel et al., 1997; Willers et al., 2000a). Finally, it has been unequivocally demonstrated 

that p53 is directly linked to homologous recombination processes via Rad51/RecA 

protein interaction (Stürzbecher et al., 1996; Buchhop et al., 1997) and specifically 

recognising mismatches in heteroduplex intermediates (Dudenhöffer et al., 1998). 

d.3.ii.BRCAI and BRCA2 

Although BRCAI and BRCA2 have been specifically associated 

with breast and ovarian tumourigenesis (Miki et al., 1994; Wooster ci' al., 1995), they are 
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ubiquitously expressed (Miki et al., 1994) and appear to be essential in more widespread 

processes, such as embryonic proliferation (J-Iakem et al., 1996; Suzuki et al., 1997), 

regulation of transcription (Chapman and Verma, 1996; Milner et al., 1997; Anderson et 

al., 1998) and maintenance of genomic integrity through homologous recombination 

and DSB repair (reviewed by Welcsh et al., 2000). Despite the lack of a convincing 

model to explain the role of these proteins in homologous recombination, their 

involvement in this process has been suggested by the interaction of BRCAI and 

BRCA2 with Rad50 (Zhong et al., 1999) and Rad5l (Scully et al., 1997; Chen et al., 1998), 

as well as the ATM-mediated phosphorylation of BRCAI following DNA damage. 

BRCAI-deficient ES cells show decreased homologous recombination and increased 

non-homologous recombination frequencies compared to that of wild-type cells 

(Snouwaert et al., 1999). This observation suggests that overexpression of BRCA genes 

may enhance gene targeting frequency, provided that strategies to overcome the 

consistently low levels of expression observed from BRCAI transgenes are devised. 

d.3.iii.BLM 

Mutations in BLM cause Bloom's syndrome (BS), a recessive 

human genetic disorder characterised by dwarfism, immunodeficiency and cancer 

predisposition, among other abnormalities (rev, by German et al., 1997). Stage-specific 

apoptosis, developmental delay and, ultimately, embryonic lethality are observed in BLM 

knockout mice (Chester et aL, 1998). BLJt'I belongs to the RecQ subfamily of DNA 

helicases (Ellis et aL, 1995), which also includes S. cereziisiae Sgslp and the human Werner 

syndrome gene LVRN (Yu et al., 1996; Stewart et aL, 1997). The products of these three 

genes are active helicases with 3'-5' DNA unwinding activity. Like in W7RN knockouts, 

BLM -I- cells display a number of chromosomal aberrations in culture (Tsuji et al., 

1988), although the highly increased rate of sister chromatid exchange and error-prone 

homologous recombination are unique to BS cells. Immunofluorescence shows that 

BLM colocalises with Rad5l in meiotic recombinational hotspots, which suggests a role 

of this protein in meiotic homologous recombination (Moens et al., 2000). 
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d.4.genes involved in illegitimate recombination 

ATM is a member of the phosphatidylinositol 3-kinase family, which 

also includes the catalytic subunit of the DNA-PKcs (page 18). The ATM protein is 

involved in DSB recognition and subsequent p53 phosphorylation. Phosphorylated p53 

then initiates either apoptosis or cell cycle arrest (see above). Ataxia telangiectasia (AT) 

patients have inactivating mutations in both copies of the ATM gene, which results in 

chromosomal instability and high propensity to cancer, among many other severe 

symptoms including dilated blood vessels, premature ageing and cerebellar degeneration 

(rev, by Rotman and Shiloh, 1998). Using a mouse model that facilitates in vivo detection 

of recombination events between a genomic tandem duplication, it has been recently 

reported that ATM deficiency increases the rate of intrachromosomal homologous 

recombination (Bishop et al, 2000). 

Although NHEJ (page 17) seems to be the default DNA-repair 

mechanism in vertebrates (in contrast with yeast), there is one biological stage where 

HR predominates in mammalian germ cells. A series of experiments conducted in both 

mitotic and meiotic murine cells (Goedecke et al., 1999) show that meiotic 

recombination is essentially independent of NHEJ. Remarkably, Ku70/80 levels are 

undetectable from preleptotene to zygotene, phases normally associated with the 

generation and processing of DSB. This observation led to the hypothesis that Ku 

relative abundance may determine the choice of one or another route. If this is the case, 

controlled down-regulation of Ku and other enzymes involved in NHEJ (such as DNA-

PKcs or PARP) could be used to shift the balance between NHEJ and HR towards the 

latter pathway in order to increase gene targeting frequency. 
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vi. objectives 

The general aim of this Ph.D. project is to explore different experimental 

approaches to manipulate effective targeting frequency in ES and somatic cells. The 

specific objectives are summarised as follows: 

a) To develop a sensitive ES cell-based test ystem to monitor response in effective 

targeting frequency (E.T.F.) to several treatments (Chapter III). 

a) To manipulate E.T.F. by 

i.changing the design of the vector (Chapter IV). 

ii.altering the expression of recombination-related genes (Chapter V). 

iii.modifying ce1I/ta,et conditions (Chapter VI). 



Chapter II. Materials and Methods 
i.manipulation and analysis of DNA 
ii.manipulation and analysis of RNA 

iii. manipulation and analysis of proteins 
iv.plasmids 

v.cell culture 
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i. manipulation and analysis of DNA 

a.DNA extraction and quantitation 
b.DNA analysis 

c.plasmid construction 

a.DNA extraction and quantitation 

extraction of mammalian genomic DNA 

extraction of plasmid DNA from bacteria 

a.2.i.minipreps 

a.2.ii.maxipreps and gigapreps 

DNA purification 

a.3.i phenol-chloroform extraction 

a.3.ii.ethanol precipitation 

DNA quantitation 

a. I. extraction of mammalian genomic DNA 

The following procedure for mammalian DNA isolation has been 

adapted from Laird et al.(1991). Lysis buffer was prepared by mixing 100 mM Tris HC1 

pH 8.5 (50 ml from 1M Tris pH 8.5 stock), 5 mM EDTA pH 8.4 (5 ml from 0.5 M 

EDTA stock) and 200 mM NaC1 (33.3 ml from 3M NaC1 stock), for a total volume of 

490 ml in distilled water. This solution was autoclaved and then supplemented with 10 

ml of 10 % SDS (final concentration 0.2 %) and proteinase K (100 j.tg/ml) just before 

use. Cell cultures were rinsed onced with PBS before addition of lysis buffer (3 ml for 25 

cm' flasks, 10 ml for 75 cm 2  flasks). Following overnight incubation at 37 °C with gentle 

shaking, one volume of isopropanol was added to the lysate. Samples were mixed or 

Ell 



swirled for several hours until a white DNA precipitate was visible. Using a Pasteur 

pipette, the DNA was lifted and placed in an eppendorf. Excess liquid was eliminated 

and the DNA was dissolved in 500 0 of Tris HC1 buffer pH 8.5. Vials were incubated at 

70 °C for several hours. 

a. 2. extraction of plasmid DNA from bacteria 

a .2. i . mini preps 

For routine plasmid DNA extraction from bacteria, individually 

picked colonies were incubated overnight at 37 °C in Falcon 15 ml tubes containing 5-7 

ml of LB medium (10 g tryptone, 5 g yeast extract, 5 g NaCl, I litre of distilled water, pH 

7.5; autoclaved) supplemented with 100 ig/ml of ampidilhin. Following centrifugation of 

1,5 ml cultures (5 minutes; 10,000 rpm) supernatants were discarded and pellets 

resuspended in 250 pi of solution 1 (50 mM Tris-HC1 pH 8.0, 10 nM EDTA, 100 g/ml 

RNase A). Lysis buffer (250 .d of 200 mM NaOH, 1 % SDS) was subsequently added to 

this solution, which was gently mixed and incubated for 5 minutes at room temperature. 

The lysis reaction was stopped by adding 350 tl of neutralising solution (3.0 M 

potassium acetate pH 5.5). Immediately after centrifugation (10 minutes at 13,000 rpm) 

supernatant was recovered and taken to a fresh tube, where it was mixed with an equal 

volume of isopropanol and centrifuged again (10 minutes at 13,000 rpm). Pellets were 

air-dried for 5 minutes and then resuspended in a suitable volume of Tris-HCI buffer 

pH 8.5. 

For those applications requiring high purity DNA (such as subcloning), the 

Qiagen miniprep kit was used. 
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a2i.maxipreps and gigapreps 

Purification of large amounts of plasmid DNA for 

electroporation was done using the Qiagen Maxiprep and Gigaprep kits. These 

procedures yield an average of 500-1000 jig of DNA from 500 ml cultures (Maxiprep) 

and 5-10 mg from 2,5 1 cultures (Gigaprep). Large plasmids (i.e. >10 kb) are less 

efficiently purified. 

a. 3. DNA purification 

Phenol/chloroform is used to extract and purify nucleic acids from a 

variety of sources (Sambrook et al., 1989). An equal volume of 1:1 phenol: chloroform 

(Life Technologies) added to an aqueous DNA solution causes the denaturation and 

dissociation of proteins from DNA. After inverting several times the tube containing the 

mixture, centrifugation (13,000 rpm, 20 minutes) yields two distinct phases: a lower 

organic phenol: chloroform phase contaning the protein (mostly in the white, flocculent 

interphase) and the lighter aqueous phase with the DNA. 

DNA was recovered from the aqueous solution by adding 1/10 volume of 3M 

sodium acetate pH 5.5 and 2 volumes of 100 % ethanol (alternatively, I volume of 

isopropanol can be used). The tube was mixed and then chilled for at least 30 minutes at 

—80 °C or 2 hours at —20 °C. This ensures a 75 % recovery for volumes <Imi containing 

at least 10 tg  of DNA. For very low DNA concentrations, 2 pl of seeDNA (Amersham) 

were added to each tube, regardless of the volume. This pink-coloured reagent co-

precipitates with the DNA and makes identification of the pellet easier. The tube was 

subsequently centrifuged for 30 minutes (13,000 rpm, 4 °C), supernatant removed, and 

the pellet rinsed once with 500 p.1 70 % ethanol. This step is essential for getting rid of 

the excess salt, and for very sensitive applications (such as blunt-end ligation) it was 

done twice. The tube was centrifuged as before for 5 minutes, and the pellet allowed to 

air-dry for 5 minutes after removal of excess ethanol. DNA was resuspended in an 
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appropriate volume of distilled water or TE buffer (10 mM Tris-HC1, 1 mM EDTA, pH 

8.5). 

a. 4. DNA quantitation 

Quantitation of diluted DNA (typically 1:100 in distilled water) was 

performed in an UNICAM 5625 UV/WS spectrophotometer at a X = 260 nm. Since an 

OD of I corresponds approximately to 50 4g/ml of double-stranded DNA, DNA 

concentration can be calculated in the following manner: 

jtg DNA/j.d = O.D. x dilution factor x 50 

When there was not sufficient DNA for spectrophotometric assay, fluorescent 

yields of 1 jd aliquots were compared to a series of standards of the same size in 

ethidium bromide-supplemented agarose gels. 
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b.DNA analysis 
restriction analysis 

southern blotting 

b.3.polymerase chain reaction (PCR) 

b. I. restriction analysis 

Genomic and plasmid DNA was digested using restriction enzymes and 

buffers (Roche) according to manufacturer's instructions. For DNA analysis, a 10-fold 

excess of enzyme was normally used. The following examples describe the typical 

proportions of reagents in a standard linearisation of plasmid DNA for electroporation 

(1) and restriction analysis (2), respectively. 

Plasmid DNA 	200 p.g (200 p1) 

Buffer H 	 50pi 

Xho I 	 30 tl (300 units; I unit digests I tg of DNA in 1 hour) 

Distilled water 	220 p1 

Total volume: 	500 p1 

Incubation: 	2-4 hours at 37 °C 

Plasmid DNA 
	

1 .tg (1 p1) 

Buffer A 
	

2 p1 

Smal 
	

1 .tl (10 units) 

Distilled water 
	

16 p1 

Total volume 
	

20 p1 

Incubation: 
	

1-5 hours at 25 °C 
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After digestion, and following addition of 6X loading buffer, samples were 

loaded in 0.8 % agárose gels: 2 g  SeaKem agarose molecular biology grade; 250 ml TAE 

buffer and 3 il of a 10mM ethidium bromide solution. Agarose gels were run in TAE 

buffer either for 2h (100-120 V) or overnight (25-30 V). A UV transiiiuminator was used 

to photograph the gels. 

b. 2. southern blotting 

Southern blotting (Southern, 1975) allows DNA fragments 

corresponding to a particular probe to be identified directly from a restiction digest of 

genomic DNA. Since DNA fragments cannot be handled directly in an agarose gel, it is 

necessary to transfer them to membrane (nitrocellulose or nylon) which provides a 

suitable support. After immobilisation, the DNA can be subjected to hybridisation 

analysis, enabling bands with sequence similarity to a labelled probe to be identified. The 

following protocol was adapted from Sambrook et al. (1989). 

Genomic DNA digests (10 jtg/sample) were loaded in a 0.8 % agarose 

gel and run overnight at 30-40 V. A UV photograph was taken before proceeding to 

denaturation, an essential step for subsequent hybridisation of ssDNA probes. 

Denaturing buffers were prepared by dissolving 87.66 g of NaCl (1.5 M final 

concentration) and 20 g of NaOH (0.5 M f.c.) in 1 litre of distilled water (solution A); 

and 87.66g of NaCl (1.5 M f.c.), 500 ml of 1 M Tris HC1 pH 7.5 (0.5 M f.c.) and 2 ml of 

0.5 M EDTA pH (1 mM f.c.) in one litre of distilled water (solution B). DNA was 

denatured washing the gel 2 X 15 minutes in solution A and 2 X 15 minutes in solution 

B. The blotting apparatus was assembled as follows: a glass plate was placed on top of a 

large baking dish filled with 20X SSC buffer (175.3 g  NaCl and 88.2 g  ni-sodium citrate 

in I litre of distilled water), which is drawn from the reservoir by capillary transfer 

through four 3MM Whatman papers (two in direct contact with the buffer and two gel-

sized papers on top). The gel was laid over the papers in an inverted position, avoiding 

the formation of bubbles. A nitrocellulose filter cut to the size of the gel (Hybond) was 
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carefully rinsed in distilled water and then immersed in 20x SSC for 5 minutes before 

placing it over the gel, smoothing out bubbles with a pipette. The apparatus was 

completed by successively laying two pieces of 3MM paper (same size of the gel) soaked 

in 2x SSC, a stack of paper towels and a 500g- 1kg weight. Filters were recovered the 

next day, rinsed and wrapped in Saran paper. DNA was fixed to the membrane by UV -

crosslinking. After this treatment, filters were stored at room temperature. 

Prehybridisation solution was prepared with 50 ml of 1 M sodium phosphate 

(0.5 M final concentration), 35 ml of 20 % SDS (7% f.c.), 200 41 of 0.5 M EDTA (1 MM 

f.c.) and 15 ml of distilled water, for a total volume of 100 ml. Filters were incubated for 

1-2 hours at 65 °C in a hybridisation tube. DNA probes for hybridisation (25 ng) were 

dissolved in a total volume of 11 d, and then boiled for ten minutes and cooled down in 

ice. 4 41 of High Prime solution (Roche) were added for random priming. This reaction 

mixture contains random oligonucleotides, Klenow polymerase, CIATP, dGTP and 

dTTP. Denatured DNA was radioactively labelled upon addition of 5 j.d of 32P-dCTP 

(incubation for 10-20 minutes at 37 °C). Addition of 12 .tl of 2M NaOH stops the 

reaction and denatures the DNA. Incorporation of 32P-dCTP was measured using a 

scintillation counter. 

The probe was added to the tube containing the filter in prehybridisation 

solution, and then incubated at 65 °C overnight. The following day the filter was 

removed and washed at 65 °C 2X 15 minutes in solution 1 (2X SSC, 0.1 % SDS) and 2x 

15 minutes in solution 2 (0.2X SSC, 0.1 % SDS). Without drying it out, the membrane 

was then carefully wrapped in Saran paper for exposure to X-ray film (1 week, -80 °C). 

The film was developed in an autoradiograph. 

b.3.polymerase chain reaction (PCR) 

Polymerase chain reaction was performed using the Expand High Fidelity PCR 

system (Roche). This kit contains an enzyme mix of thermostable Taq DNA and two 
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Pwo DNA polymerases for proof-reading activity (Barnes, 1994), ensuring high fidelity 

amplification of genomic DNA. Although PCR conditions had to be adjusted for every 

individual experiment, a normal setting for DNA amplification of fragments of up to 10 

kb can be summarised as follows: 

Master mix A: 10 mM CINTP mix (Roche) I pd (0.2 mM final concentration) 

Downstream primer 0.1 tg/.tl (Genosys) 	10 (300 nM 	" 	) 

Upstream primer 0.1 g/tl (Genosys) 	10 (300 nM 	cc
) 

Template genomic DNA 
	

10 (100-350 ng) 

Up to 25 d in autoclaved, distilled water 

Master mix B: lOx Expand HF buffer 	 5d 

(with 15 mM MgCl2) 

Expand High Fidelity PCR enzyme mix 	0.75 .d (2.6 units) 

Up to 25 d in autoclaved, distilled water 

The preparation of two separate master mixes helps preventing degradation of 

primers and/or template by interaction with the polymerases in the absence of dNTPs. 

25 l of each tube were mixed together in a thin-walled PCR eppendorf, and the 

solution was covered with two drops of mineral oil to avoid evaporation during 

amplification. Samples were placed in a Hybaid Omnigene Thermocycler, which was 

typically set in the following manner: 

lx denaturing step 	94 °C for 4 minutes 

lOX cycle I 	Denaturation, 94 °C for 15 seconds; annealing, 45-65 °C 

for 30 seconds; elongation, 68 °C for 5 minutes 

25x cycle 2 	Denaturation, 94 °C for 15 seconds; annealing, 45-65 °C 

for 30 seconds; elongation, 68 °C for 5 minutes (+20 

seconds extra/cycle to ensure proper elongation as the 

concentration of amplified DNA grows higher). 
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The above settings were used for long range PCR. For fragments <1 kb, 35X 

cycle I was sufficient to get efficient amplification. The annealing temperature was 

usually set 5 °C below that of the melting point of the primers, but it was increased in 

some cases to avoid amplification of unspecific products. A simple way to roughly 

estimate the melting point of the oligonucleotides is adding up 4 °C for every G+C and 

2 °C for every A+T base pair. 

For the PCR analysis described in page 141 of this work, 2 p.l of each PCR 

reaction (50 jtl) were taken after 5 cycles and digested as indicated in a total volume of 

20 .d (restriction mix). Restriction enzymes were inactivated by heating at 70 °C for 15 

minutes. A new PCR reaction was prepared, using 2 tl of the inactivated restriction mix 

as template in master mix A (see also page 74 for RT-PCR experimental details). 
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c.plasmid construction 

c. I. extraction of DNA bands from agarose gels 

ligation 

transformation 

c. 1. extraction of DNA bands from agarose gels 

Small sized DNA bands can be easily extracted from from low melting 

point 0.6-0.8% agarose gels following protocols based on retention of the fragment in 

positively charged silica-gel minicolumns. The QlAquick Gel Extraction kit (Qiagen) 

was normally used for small bands with excellent results. However, it was repeatedly 

observed that the quality of DNA bands >10 kb isolated with this procedure was not as 

good, particularly for subcloning purposes. For the isolation of large DNA bands, 10 cm 

strips of dialysis tubing were boiled in distilled water for 5 minutes, rinsed in distilled 

water and secured at one end with a plastic clip. DNA bands were cut from gel and 

carefully put into the tubing, which was then filled with 500 jti of TAE buffer 

supplemented with 1 j.tl of 10 mM ethidium bromide. After sealing the other end with 

another clip, the device was placed on a gel tank and run at 100 V for 2 hours. Current 

was then reversed for 1 minute in order to detach DNA from the tubing. Liquid was 

gently removed from tubing into an eppendorff and DNA was phenol/chloroform 

extracted (optional) and ethanol precipitated. 

C. 2. ligation 

Ligation of DNA fragments was usually performed using the Rapid 

DNA Ligation kit (Roche). This system enables sticky-end or blunt-end ligations in 5-10 

minutes at room temperature. Ligation reactions contained no more than 200 ng of total 

DNA (insert + vector) in a total volume of 210. The molar ratio of vector to insert was 

normally 1: 4, although 1: 5 and 1: 6 ratios were also ocassionally employed. Prior to 



ligation, vectors were incubated (1 hour, 37 °C) with shrimp alkaline phosphatase (SAP) 

(Amersham) in order to de-phosphorylate the ends and prevent self-ligation. SAP was 

inactivated by heating the sample at 65 °C for 15 minutes. 

Where required, blunt ends were generated by adding 1-5 units of the Kienow 

enzyme and ij.ii of 1mM each dNTP to the restriction digest mixture (1/2  hour at room 

temperature). The Kienow fragment consists of the C-terminal domain of B. co/i DNA 

polymerase I, which lacks the 5'-3' exonuclease activity while retaining the DNA 

polymerase and 3'-5' exonuclease activities (Joyce and Grindley, 1983). Repair of 5' 

overhanging ends is carried out by 3'-5' polymerase activity, whereas repair of 3' 

extensions is carried out by 3'-5' exonuclease activity. This latter process is not as 

effective using this enzyme, and that is why T4 DNA polymerase is recommended to 

repair overhanging 3' ends. 

Subcloning of some DNA fragments may also require the introduction of 

specific restriction endonuclease recognition sequences. Linkers are short, self-

complementary oligonucleotides which form blunt end duplexes containing the desired 

sites. For ligations involving phosphorylated linkers (annealed by heating at 95 °C for 5 

minutes and overnight cooling down), a 100- to 1000- fold molar excess of linker 

(normally 0.1 g) improved substantially the efficiency of the reaction. 

The following example describes a typical ligation reaction with a 1:4 vector to 

insert ratio: 100 ng of DNA vector (10 kb) and 40 ng of DNA insert (1 kb) were 

dissolved with 2 d of 5X DNA Rapid Ligation buffer (Roche) in a total volume of 10 tl 

(distilled water added as needed). After thorough mixing, 10 tl of 2x DNA Rapid 

Ligation buffer (Roche) were pipetted into the vial. The solution was mixed again before 

the final addition of 5 units (1 d) of T4 DNA ligase (Roche). This ligation mixture was 

incubated for 5-10 minutes at room temperature. 
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c. 3. transformation 

For routine circular plasmid transformation, Subcloning Efficiency 

DH5(x competent cells (Life Technologies) were used. Cells (50 0) were thawed on ice 

and incubated with 50-500 ng of plasmid DNA for 30 minutes. After a 20 second heat-

shock at 37 °C, vials were placed on ice for two minutes. Following 1 hour of incubation 

in 900 d of LB medium (220 rpm, 37 °C), cultures were diluted as necessary, plated in 9 

cm agar dishes and incubated overnight at 37 °C. For ligations of large DNA fragments 

and blunt-end ligations, Maximum Efficiency DH5a supercompetent cells (Life 

Technologies) and Gold Ultracompetent cells (Stratagene) were used, following 

manufacturer's transformation protocols. 
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fl. manipulation and analysis of 
RNA 

a.mammalian RNA extraction and quantitation 
b.RNA analysis 

a.RNA extraction and quantitation 

RNA was extracted from mammalian cell cultures using the TRizol reagent (Life 

Technologies), according to manufacturer's instructions. This product is a mono-phasic 

solution of phenol and guanidine isothiocyanate which maintains the integrity of total 

RNA while lysing and dissolving cell components. Addition of chloroform and 

centrifugation separates the solution into an organic organic phase (bottom) and an 

aqueous phase (top), from which RNA can be isolated by isopropanol precipitation. 

Quantitation was performed as described for DNA (page 63). 1 OD at 260 nm 

corresponds to —40 pg/mi of single-stranded RNA. 
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bURNA analysis 

northern blotting 

RT-PCR 

b. 1. northern blotting 

The rationale behind this technique is very similar to that previously 

described for DNA blotting (page 65). Fractionated RNA is transferred from an agarose 

gel to a suitable support for subsequent hybridisation analysis with DNA or RNA 

probes. The main difference with Southern blotting is that RNA has to be maintained at 

denaturing conditions at all times in order to avoid the formation of secondary 

structures by intramolecular base pairing. This was achieved by treating agarose gels with 

formaldehyde. In order to prevent degradation of the samples, RNase free solutions and 

glassware were used. Autoclaved water was treated with diethyl pyrocarbonate (DEPC, 

0.1 %) and working surfaces were throughly cleaned with RNaseZAP (Sigma). The 

following protocol has been adapted from that of Sambrook et al (1989): lOx running 

buffer (RB) was prepared by dissolving 4.I8g of MOPS (200 mM), 0.372g of EDTA (10 

mM) and 0.410g of sodium acetate (50 mM) in 100 ml of DEPC-treated distilled water. 

pH was adjusted to 7.0 with 5M NaOH. Formaldehyde agarose gels (0.8-1.2 %) were 

prepared by melting the appropriate amount of agarose in 10 ml RB (lx), 72.1 ml 

DEPC-water and 17.9 ml of 38 % formaldehyde. Gels were poured and set inside a 

fume hood. RNA samples (max. 40 j.tg) were dissolved in a total volume of 20 tl of 

sample buffer (200 j.tl of lOX RB, I ml of deionised formamide and 356 pi of 38 % 

formaldehyde) and then heated to 65 °C for 5 minutes. 8 d of dye solution (7.5 % Ficoll 

400 and bromophenol blue) were added to each sample before loading. After overnight 

running in lx RB (20 mA), gels were stained in IX RB containing 5-10 mg of ethidium 

bromide and photographed under UV transillumination. The absence of RNA 

degradation was verified and gels were destained again (IX RB, 30 minutes). A corner of 

the gel was cut off in order to determine the orientation. The transfer apparatus was 
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assembled as for Southern blot (page 65). Transfer of RNA to the nitrocellulose 

membrane was allowed to proceed overnight. Next day, the filter was recovered and 

rinsed briefly in 6x SSC to remove traces of agarose. Cross-linking and hybridisation 

were also done as before. 

b. 2. RT-PCR 

RT-PCR was performed using the SUPERSCRIPT preamplification kit 

(Gibco BRL - Life technologies). This system is designed to synthesise first strand 

cDNA from purified total RNA, making use of oligo (dl) primers for hybridisation with 

the 3' poly-A tails found in eukaryotic mRNAs. The first strand cDNA synthesis 

reaction is catalysed by the enzyme M-MLV RNase H -  reverse transcriptase (WI), which 

retains the DNA polymerase activity of RNase H while lacking the capacity to degrade 

RNA. PCR amplification of single stranded-cDNAs obtained by mRNA 

retrotranscription was done as described (page 66). The reaction mix would contain: 

lOX PCR buffer 5 iJ 

25 MM MgCl2 3 il 

lOmMdNTPmix ld 

Forward primer (10 MM) 1 	tl 

Reverse primer (10 pM) 10 

Taq DNA polymerase (5 units) 1 il 

cDNA template from first strand reaction 20 

(as obtained using the standard conditions 
described by the manufacturer) 

Up to 50 pJ 

To determine the effect of PCR amplification of contaminant genomic DNA in 

the RNA samples, it is recommended to set a control PCR reaction from the RNA 

extracts untreated with RT (not done in this work). For details about the experiment 

described in figure 39, see page 68. 
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iii. manipulation and analysis of 
proteins 

a.protein extraction and quantitation 
d.protein analysis 

a.protein extraction and quantitation 

Cells in culture were washed twice with ice-cold PBS buffer and then incubated 

on ice for 30 minutes with 1 ml of ice-cold lysis buffer (LB). LB was freshly prepared 

every time by mixing 250 j.d of I M Tris HCI pH7.5 (final concentration 25 MM), 300 .d 

of 5 M NaC1 (f.c., 150 mM), I ml of 10 % Nonidet P40 (f.c., I %), 20 pd of 0.5 M 

EDTA (f.c., 1 mM), 40 jd of 0.5 M EGTA (f.c., 2 mM), 100 .tl of 0.1 M dithiothreitol 

(DTI) (f.c., 1 mM), 10 .d of 50 mM phenylmethylsulfonyl fluoride (PMSF) (f.c., 50 jtM) 

and 8,28 ml of distilled water for a total volume of 10 ml. After incubation, cell lysate 

was scraped and transferred into a 1.5 ml eppendorf tube. Following centrifugation at 

13,000 rpm (4 °C, 5 minutes), supernatant was aliquoted in 0.5 ml eppendorf tubes (100 

tl each) for long-term storage at —70 °C. Protein extracts were not be refrozen once 

thawed. 

Samples were taken to measure protein concentration with the BCA Protein 

Assay Kit (Pierce). This assay is based on the colourimetric detection of Cu" cations 

resulting from reduction of Cu" by protein in alkaline medium (the biuret reaction), in 

the presence of bicinchonic acid (BCA). The purple reaction product is formed by the 

chelation of of two molecules of BCA with one cuprous ion. Absorbance of this 

product at 562 nm is in linear correlation with increasing protein concentrations. For 

every quantitation, diluted bovine serum albumin (BSA) standards were prepared (25 

jig/ml - 2000 g/ml) and used to determine response curves after incubation at 37 °C 

(30 minutes). Samples were incubated similarly and 562 nm O.D. values compared 
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against the standard curve. BCA reagents were dispensed as indicated by manufacturer's 

protocols. 
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b.protein analysis 

western blotting 

immunostaining 

b. 1. western blotting 

Western blotting allows the immunological detection of specific proteins 

transferred to a membrane after electrophoresis of a cell protein extract. Samples (15-30 

were thawed on ice, mixed in a 1:1 proportion with 2x loading buffer (4 % SDS, 20 

% Glycerol, 0.2 % bromophenol blue, 100 mM Tris HC1 pH 6.8 and 2 % 

mercaptoethanol to be added freshly every time) and boiled for 5 minutes just 

immediately before loading. Polyacrylamide gels were prepared by pouring 10 % 

resolving gel [30 ml of 30 % 37:5:1 acrylamide/bisacrylamide (Gibco), 36.6 ml of 

autoclaved distilled water, 22.5 ml of 1.5 M Tris HC1 pH 8.8, 450 d of 20 % SDS, 450 .d 

of 10 % SDS and 45 d of TEMED, added in this order] onto a BioRad Protean II xi lx 

20 cm glass plate sandwich (3/4  of its total volume capacity). The interphase was gently 

covered with distilled water to avoid delayed polymerisation induced by air contact. 1-2 

hours later, the water was removed, the cones placed between the plates and 4% 

stacking gel (3.25 ml of 30 % 37:5:1 acrylamide/bisacrylamide (Gibco), 15.25 ml of 

autoclaved distilled water, 6.25 ml of 0.5 M Tris HC1 pH 6.8, 250 0 of 20 % SDS, 250 d 

of 10 % SDS and 55 d of TEMED) poured onto the resolving gel. Polymerisation was 

allowed to proceed for 30 minutes - 1 hour. The gel was assembled to the Protean II xi 

electrophoresis cell core, and the apparatus loaded with running buffer (25 mM Tris 

HC1, 0.2 M glycine and 0.1 % SDS in a total volume of 5 litres, pH 8.3). Samples were 

loaded alongside a protein size marker (Rainbow, Amersham), using sequencing tips. 

After overnight running (W = 03; V = 050; mA = 25), the gel was carefully extracted 

and placed on a glass plate. The semi-dry transfer apparatus was prepared placing, from 

bottom (anode) to top (cathode), the following: 2x 3MM Whatman paper sheets soaked 

in anode I buffer (0.3 M Tris HG! and 20 % methanol in distilled water, pH 10.4); lx 

3MM Whatman paper sheet soaked in anode II buffer (25 mM Tris HCI, 20 % 
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methanol, pH 10.4); lx nitrocellulose filter (Hybond- ECL, Amersham) soaked in 

distilled water; the polyacrylamide gel; and 2x 3MM Whatman paper sheets soaked in 

cathode buffer (25 mM Tris HC1, 20 % methanol and 40 mM of hexanoic acid in 

distilled water, pH 9.4). Transfer was performed at 200-300 mA (V < 22 V) for 1 hour. 

The membrane was taken out and blocked in TBS-T buffer (50 ml of I M Tris HCl pH 

7.5, 50 ml of 3 M NaCl and I ml of Tween 20 and distilled water up to 1 litre) 

containing 2 % bovine serum albumin (BSA). Two hours later, this solution was 

replaced by TBS-T containing 1 % BSA and the primary antibody (concentration 

adjusted to manufacturer's indications). Incubation was allowed to proceed for 2 hours 

at room temperature. The membrane was washed 6X 5 minutes in TBS-T before 

applying the secondary antibody diluted in TBS-T (1 % BSA). After incubation (1 hour, 

room temperature), the membrane was washed as above. Secondary antibodies used in 

this work are conjugated to horse radish peroxidase (HRP), which catalyses the 

oxidation of luminol in the ECL reaction mix (Amersham). This results in emission of 

light and detection after quick exposures of X-ray films. 

b. 2. immunostaining 

For immunostaining, medium was removed and cultures were rinsed 

three times with PBS. Cells were fixed first with 3.7 %, paraformaldehyde (in PBS) for 10 

minutes at room temperature and then with methanol/4'6-diamindino-2-phenylindole 

(DAPI, 1ig/ml; Sigma) for 6 minutes at —20 °C. DAPI binds to DNA and is routinely 

used as a nuclear counter-staining. Following three washes with PBS, microchamber 

slides were incubated with 35 jil of primary antibody in a humidified atmosphere (1 

hour, 37 °C). Cells were rinsed again as above (10 minutes) and then incubated with the 

secondary antibody (1 hour, 37 °C). Slides were washed three times with PBS, briefly 

rinsed in distilled water and then mounted using DBS mounting solution. Cover slips 

were sealed with clear nail polish. 
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iv. plasmids 

a.plasmid material 
b.plasmid construction 

aplasmid material 

The following commercial plasmids were used in this project: pcDNA3 

(Invitrogen); pP UR (Clontech); p UCSV-BSD (Funakoshi); p IREShyg (Clontech); 

pCMV/Zeo (Invitrogen); pEM7/Zeo (Invitrogen); pTracer (Invitrogen); pVP22-mjic-His 

(Invitrogen); pCR II (Invitrogen); pGEM-T (Promega); pBlueScript II SK 

(Stratagene). 

The plasmids listed below were obtained from non-commercial sources: pM44 

(given by Andrew Smith, Centre for Genome Research, Edinburgh, UK) (figure 10); 

p2016 and p2017 (given by Hellen Wallace, CGR, Edinburgh); pSVZeo/Rad5l (Vispé et 

aL, 1998); pI-Iis-dMTase (Battacharya et al., 1999); pBS-PG K-neo (given by E. Gallagher, 

Roslin Institute, Edinburgh); pOct-Neol (McWhir et al., 1996). 

ME 

-1.  
Xhol 	 Sail, No/I, Smat 	 Hincilll No/i 

Figure 10. pM44 (given by A. Smith, CGR, Edinburgh, UK) is a vector designed to target the HPRT 
region encompassing intron 5 to exon 9. The total length of homology (isogenic with the 129 line, blue 
line and boxes) is 9 kb. Coloured boxes (from left to right): exons 6, 7, 8 and 9. Red lines, backbone 
vector (pBluescnpt). A multicloning site (Sail, Notl and Smar) has been engineered into the region 
corresponding to exon 6 for subsequent insertion of selectable markers. XhoI was normally used for 
line ans ation. 

79 



b.plasmid construction 

b. 1.p129-zIHPRT 

b. 2. p1 29-Zeo 

b. 3.p129/Oct-Zeo 

b. 4.pCBA-Zeo and /Oct-Zeo 

b. 5. p1 29-Neo 

b. 6.p129-Hyg 

b. 7.p2000 (PSBLA) 

b. 8.p2000/Rad5l 

b.9. pVP22/Rad5l 

b. 1.p129-zIHPRT 

p129-AHPRT was constructed in collaboration with E. Gallagher. A 

4 kb fragment (exon 6 - exon 7) of the HPRT locus (Melton et al., 1984) was 

amplified by PCR (primer sequences: 5'ACGCGTCGACGCTTTCCCTG 

GTTAAGCAGTACAG and 5'ACGG G G T A C C C T G T A T C C A A 

C A C T T C G A G A G G T C) from murine strain 129-derived genomic 

DNA, and cloned into the 3'-T overhangs at the PCR insertion site of 

the plasmid pGEM-T (Promega). The region from exon 2 to exon 3 of the HPRT 

locus was similarly obtained (primer sequences: 5'-T A T G C G G C C G C G C G A 

TGATGAACCAGGTTATGACC3'and5'TATGCG G C C G C C T 

CCCATCTCCTTCATGACATCTC-3') and clonedintopGEMTA3kb 

NotI fragment of the latter plasmid containing the above genomic region was subcloned 

in the proper orientation into a NotI site of the former, to give p129-AHPRT. The Sail 

site located immediately upstream exon 2 was then removed by partial digestion of 

p129-M-fl)RT with Sail, electroelution of the resultant 10 kb band, filling-in recessed 

ends with DNA polymerase 1-Kienow fragment (Boehringer) and blunt religation. This 



plasmid, termed p129_AHPRT*  (figure 11), has a unique SatE site between the two 

regions of homology to HPRT, which was used in subsequent subcloning steps. 

3 k 	>< 
	

4 k 

1' 	T I 
	

I  
Sail 
	

Kpnl 	XmnI 

Figure 11. p129HPRT*. Coloured boxes (from left to right): HPRT exons 2, 3, 6 and 7. Blue lines 
represent regions of homology (7 kb in total). Red lines, backbone vector (pGEM-T). The Sal! site 
upstream exon 2 (red, dotted line) was eliminated as described in text. 

b. 2.p 129-Zeo 

A 1.2 kb XhoI/SatE fragment of the plasmid pCMV/Zeo (Invitrogen) 

comprising the resistance factor to the antibiotic zeocin and the cytomegalovirus (CMV) 

promoter, was subsequently inserted into the Sail site of p129-AHPRT*  in both 

orientations. 

b. 3.p I 29/Oct-Zeo 

A Sail fragment containing 1.9 kb of the Oct3/4 promoter was purified 

from pOct/Neol (McWhir et al., 1996) and subcloned into the XhoI site of pEM7/Zeo 

(Invitrogen), to give pOct/Zeo. This plasmid was digested with SaiI/BgiII and a 2.4 kb 

fragment inserted into a SaiE/BamHI-digested pPolyIII shuttle vector, in order to place a 

suitable 5' XhoI site upstream the Oct/Zeo cassette. A 2.4 kb XhoI/Sail fragment of the 
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resultant plasmid (pPolyIII/Oct-Zeo) was then subcloned into the Sall-linearised p129-

AHPRT* targeting vector, also in both orientations. 

b. 4.pCBA-Zeo and /Oct-Zeo 

The CBA - derived constructs pCBA-Zeo and pCBA/Oct-Zeo feature 

the same regions of homology to the HPRT locus as their previously described 129-

derived counterparts. Using the two sets of primers detailed above, two DNA fragments 

of 3 kb (exons 2-3) and 4 kb (exons 6-7) were PCR-amplified from CBA genoniic DNA 

extracts and inserted into the PCR cloning sites of pGEM-T (Promega) and pCRTI 

(Invitrogen), respectively. The HPRT region comprising exons 2-3 was then removed 

from pGEM-T as a 3 kb NotI fragment, and subcloned into a NotI site of the pCRTI 

plasmid carrying exons 6-7. The digestion of this plasmid (pCRII-ACBA) with I'tnI and 

Sail gave a 4 kb fragment (exons 6-7) which was then purified and ligated to a 4n1/SaiI 

digest of pBlueScript II SK +/- (Stratagene). Following linearisation with Nod, the 

resultant plasmid was ligated to a 3 kb (exons 2-3) Nod fragment obtained from pCRTI-

ACBA, to yield pCBA-AHPRT (figure 12). pCBA-Zeo was made by inserting a 1.2 kb 

BgilI/BamHI fragment from pCMV/Zeo into the unique BamHI site of pCBA-

AHPRT, between the two HPRT regions. Similarly, a 2.4 kb SaIE/BgIfI insert from pOct-

Zeo was directionally ligated to a 10 kb fragment resulting from the digestion of pCBA-

LHPRT with Sail and BamHI, to yield pCBA/Oct-Zeo. 

b. 5.p I 29-Neo 

p129-Neo was made by subcloning a 2 kb XhoI PGK-neo cassette (from 

pBS-PGK-neo, which contains a neo expression cassette under the control of the PGK 

promoter) into SaLE-linearised p1 29_AHPRT*. 
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>I  
Notl 	 XbaI, SpeI, BamHI, Sail 	KpnI 	Xmnl 

Figure 12. pCBA-HPRT. Coloured boxes (from left to right): HPRT exons 2, 3, 6 and 7. Blue lines 
represent regions of homology (7 kb in total). Red lines, backbone vector (pBS-II SK +1-). 

b. 6.p129-Hyg 

p129-Hyg was generated by subcloning a 2.1 kb AccI-XhoI fragment of 

pIREShyg (Clontech) comprising a CMV-driven hygromycin resistance gene into AccJ-

XhoI-linearised pBS-TI (Stratagene). This intermediate step provides a Sail site upstream 

the insert for subsequent subcloning of a SaII-XhoI fragment into Sall-linearised 

pl 29—A HPRT*. 

b. 7.p2000 

p2000 was made by inserting a blasticidin cassette into pM44. A 1.6 kb 

BamHI fragment from pUCSV-BSD (Funakoshi) comprising the SV40 promoter, the 

BSD gene and SV40 polyadenylation sequence was blunted with DNA polymerase I-

Kienow fragment (Boehringer) and then subcloned into pM44 linearised with SmaT. 

b. 8.p2017151 

This vector was derived from p2017 (pM44 with a CMV puromycin 

selectable marker) by inserting a Rad5l expression cassette outside the region of HPRT 

homology. A 1.9 kb Ea gI restriction fragment from pSVZeo/Rad5l (given by M. 
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Defais) encompassing the SV40 promoter, the hamster Rad5l ORF and SV40 

polyadenylation tail was subcloned into p2017 linearised with NotI (figure 13). The total 

size of this vector is 16.5 kb. 

iI• 

—1 
I 

XhoI 
BamHI 	 z 	 Pac 

Barn H I 

— I— I 
Rad5l  

Figure 13. p2017/Rad5l (-16 kb) was derived from p2017  after insertion of a Rad5l expression cassette 
in the backbone vector. Coloured boxes (from left to right): exons 6, 7, 8 and 9. Red lines, backbone 
vector (pBluescript). Pac, puromycin expression cassette. Rad5l, RadSl expression cassette. 

b.9. pVP221Rad5l 

SiyI digestion of pSV-Zeo/RadSl (kindly given by M. Defais) yielded a I 

kb fragment comprising the CgRad5l ORF from codons 1 to 340. This fragment was 

blunted, digested with KpnI and subcloned into a InI/EcoRV pVP22/His-mjc 

HinalII 	 KpnI 	 No/I, XbaI, BstBl 

Figure 14. p\T22/Rad5l was made by fusing the hamster rad5l ORF in frame with the viral protein 
VP22. From left to right, CMV promoter (light blue); VP22 (yellow); RadSl (green); #ic epitope (red); 
6xHis epitope (pink); BGH polyadenylation sequence (blue); Neomycin cassette (violet) and Ampicillin 
resistance gene (brown). 
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(Inritrogen) digest, in frame with VP22 (figure 14). Codon 341 was restored using a 

AatII linker in the ligation mixture. Using Invitrogen pVP221His-mj'c specific primers, 

automated sequencing of the VP22-Rad51 3' and 5' junctions confirmed that both 

protein domains were in frame (data not shown). 



v. cell culture 

a.routine culture conditions 
b.transfection 

c.analysis 
d.cell lines 

a.routine culture conditions 

a. 1.ES cells 

a.1 .i.culture in LIF-supplemented medium 

a.1.ii.culture in feeder layers 

fibroblasts 

trypsinisation 

a.4.freezing down cells 

a. 1. ES cells 

a.1.i.culture in LIF-supplemented medium 

Cells were grown at 37 °C (5 % CO 2) on 0.1 % gelatin-treated 

flasks (Iwaki) and fed daily with Glasgow modified Eagle's medium (GMEM, 

GIBCO/BRL-Life Technologies) supplemented with 0.1 mM MEM non-essential 

amino acids (GIBCO/BRL-Life Technologies), sodium pyruvate, 5 % (v/v) new-born 

bovine serum, 5 % (v/v) foetal calf serum, 400-1000 U/mi recombinant murine 

Leukaemia Inhibitory Factor (ESGRO-LIF, GIBCO/BRL-Life Technologies), 0.1 mlvi 



2-mercaptoethanol, penicillin (100 U/ml)/streptomycin (100 j.tg/ml) and L-glutamine 

(250 tM) (GIBCO/BRL-Life Technologies). 

a.1 .ii.culture in feeder layers 

STO fibroblasts were mitotically inactivated using mitomycin C 

(MMC, Sigma). 50 X MMC stocks (500 p.g/ml) were prepared in PBS and stored in the 

dark at 4 °C for no longer than 30 days. Cells were incubated at 37 °C in freshly made 

MMC medium (IX) for 3-4 hours, and then washed three times with PBS, trypsinised 

(page 87), aliquoted and frozen down (page 88). A confluent flask provided enough 

feeder cells to cover 5x the confluent area. ES cells were subsequently plated out on 

feeder cell cultures. 

fibroblasts 

Fibroblasts were grown at 37 °C (5 % GO2) on tissue culture plastic 

flasks (Iwaki) and fed daily with Dulbecco's modified Eagle's medium (DMEM, 

GIBCO/BRL-Life Technologies) supplemented with 0.1 mM MEM non-essential 

amino acids (GIBCO/BRL-Life Technologies), 5 % (v/v) new-born bovine serum, 5 % 

(v/v) foetal calf serum, penicillin (100 U/ml)/streptomycin (100 4g/ml) and L-

glutamine (250 (GIBCO/BRL-Life Technologies). 

trypsinisation 

To trypsinise cells, medium was removed and cells washed once with 

PBS. Cultures were then incubated with 1-3 ml of TEG (NaCl, 3.15 g;  Na2HP041  0.06 g; 

KH2PO4, 0.108 g;  KC1, 0.166 g;  D-Glucose, 0.45 g;  Tris, 1.35 g;  Phenol Red I %, 0.45 

ml; add up to 400 ml in distilled water; 50 ml of 10 X trypsin 2.5 %; EGTA, 0.2 g;  PVA, 

0.05 g;  adjust pH up to 7.6 and add distilled water up to 1000 ml) at 37 °C for 2-3 



minutes. After incubation, flasks were shaken vigorously to detach the cells from the 

surface. 5 ml of medium were added and pipetted up and down several times until a 

single-cell suspension was obtained. Cells were then transferred to 15 ml falcon tubes 

and centrifuged at 1000 rpm for 5 minutes. Supernatant was discarded and pellets 

resuspended in fresh medium and plated out as required. 

a.4.freezing down cells 

2x freezing mix was made by mixing 15 ml of ES cell culture medium, 5 

ml dimethyl sulfoxide (DM50, Sigma) and 5 ml of foetal calf serum. This solution was 

filtered and stored at —20 °C. Cells to be frozen down were trypsinised, resuspended in 

an appropriate amount of medium and placed on ice. One volume of ice-cold freezing 

mix was added and the suspension was gently mixed and aliquoted into pre-cooled 

freezing vials. Vials were stored at —80 °C for two or three days and then into liquid 

nitrogen. Cells were thawed by introducing the vials in lukewarm water. 5 ml of 

complete medium were added to the contents of a vial in a 15 ml Falcon tube, and then 

centrifuged at 1000 rpm for 5 minutes. Supernatant was discarded and pellets 

resuspended in medium for plating out. 
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b.transfection 
electroporation 

lipofection 

electroporation 

Exponentially growing cells were fed two hours before electroporation. 

Cells were trypsinised and counted using a Neubauer Improved hemocytometer (Weber 

England). 107  to 3 x iO cells were resuspended in 700 .d of HBS buffer (20 mM 

HEPES pH 7.05, 137 mM NaG!, 5 mM Kcl, 0.7 mM Na2HPO4, 6 mM D-glucose) for 

each electroporation. Linearised plasmid DNA (25-500 g) was also diluted in HBS (170 

.tl) and mixed with the cells in a 0.4 cm electrode Gene Pulser Cuvette (BioRad). A 

BioRad electroporator was used to give a single pulse of 800 V (3.0 p.F). Cells were 

plated 20 minutes after electroporation at different densities on gelatin-treated 90 mm 

or 150 mm dishes (Iwaki). 

lipofection 

Lipofection was performed using the Effectene kit (Giagen). For 

transfection of 40-80 % confluent cell cultures in 60 mm dishes, best results were 

observed using the following proportion of reaction components: 2 tg of DNA in up to 

150 pi of EC buffer; 16 d of Enhancer solution and 20 jd of Effectene. 



c.analysis 

Giemsa staining 

mitotic spreads 

c. 1. Giemsa staining 

Colonies to be counted were washed with PBS, fixed for 10 minutes in 

methanol and stained for 10-15 minutes in a 10% Giemsa R-66 solution. After staining, 

plates were gently washed with water and air-dried. 

c.2. mitotic spreads 

50 % confluent cultures were trypsinised and gently resuspended first in 

1 ml of hypotonic solution (0.56 % w/v KC1) and then up to 5 ml. Tubes were 

incubated at room temperature for 10 minutes, and then centrifuged at 1000 rpm for 5 

minutes. Supernatant was discarded and tubes flicked to ensure cell disruption. Cells 

were resuspended in I ml of ice-cold fixative (18 ml methanol, 6 ml glacial acetic acid) 

and then up to 6 ml. After 5 minutes at room temperature, tubes were centrifuged at 

500 rpm for 5 minutes. Supernatant was removed and cells were washed with fixative 

twice more as above. Pellets were then resuspended in 1 ml of fixative. Using a Pasteur 

pipette, single drops of this suspension were released from approximately 30 cm above 

70 % ethanol-treated slides. After evaporation of the fixative, slides were stained in 3 % 

Giemsa R-66 for 10-15 minutes for chromosome counting. 
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d.cell lines 

All ES cell lines used in this work (see list below), with the exception of 

the CBAs, have a 129 genetic background. The background of MEF Ku80 and p53 

knockouts is undefined. 

#2-35-2 (ES) DNA-.PK -/- Gao et aL, 1998 

#2 DNA-PK +/- Gao et at, 1998 

HG-287 (ES) p53 -/- Prost et at, 1998 

R72 (ES) p53  +1- Prost etaL, 1998 

210 (ES) PARP -/- M. Matsutani, National Cancer Centre Research Institute (Japan) 

226 (ES) PARP +/- M. Matsutani, National Cancer Centre Research Institute (Japan) 

B (ES) Dnmtl -I- Chen et at, 1998 

Ku80 (MEF) +1±1 +1-, -I- Nussenzweig et at, 1997 

p53 -1-  (MEF) p53 -/- U. W. Melton, ICMB, Edinburgh University (UK) 

ST-0 HPRT nullizygous Jim Mc Whir, Roslin Institute (UK) 
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Chapter III. Development of a test 
system sensitive to isogenicity 

i.description of the system 
ii.selectable markers 

iii.targeting vectors 



i.description of the system 

The priority of this project was originally to develop an ES cell-based test 

system sensitive to changes in targeting frequencies, both in isogenic and non-isogenic 

conditions. The HPRT locus was chosen as a target gene for several reasons: The 

structure of the gene is well characterised (Melton et al., 1984); it is hemizygous in male 

cells; and cells in culture can be selected either for (FIAT medium) or against (6-TG) its 

activity. 

Replacement targeting vectors were used to inactivate the HPRT locus, either by 

creating a deletion between exons 3 and 6 or by inserting a selectable marker in exon 6. 

The presence of a positive selectable marker between the two regions of homology 

allows selection of both homologous and non homologous integrants. However, only 

targeted clones, in which the HPRT locus has been inactivated, survive further selection 

on 6-TG. 

This chapter describes the assessment of selectable markers and targeting 

vectors subsequently used in different experimental conditions (chapters TV-V1). 

All 



ii.selectable markers 
a. introduction 

b.zeocin 
c.neomycin I G418 

d. hygromycin 
e.puromycin 

f.blasticidin 

a.introduction 

Many mutant cell lines used in this work were generated by disrupting 

endogenous genes with selectable markers, amongst them neomycin, puromycin and 

hygromycin. Hence, the same selective agent cannot be applied when using vectors that 

carry markers already present in the cells. For this reason, different versions of the 

targeting vectors were engineered to contain a variety of selectable markers, to be used 

where appropriate. When assessing a candidate selectable marker, it is necessary to 

determine the minimum concentration of the drug that kills all cells in a reasonable 

period of time (normally ten days). This 'kill curve' has to be done for every individual 

cell line, since different genetic backgrounds may have variable drug requirements to 

achieve the same effect. In this work, two kill curves were calculated for every cell line. 

One of them was done by applying increasing concentrations of the relevant drug in 

untransfected cells. The second was done in cells transfected with a marker that confers 

resistance to the drug. The minimum dose that kills all the cells in the untransfected 

control within ten days and yields colonies in the transfected culture was thus 

determined for each marker. A more precise way to determine the effect of each drug on 

every individual cell line would have been the calculation of survival curves. Survival 

curves are represented as the percentage of surviving cells after exposure to several 

concentrations of the drug for a given period of time, compared to untreated cells. In 

contrast with the kill curves described in this work (where the number of resistant 

colonies may reflect not only the intrinsic resistance to the drug, but also factors such as 
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line-specific plating efficiency or colony formation efficiency), survival curves would 

specifically measure the response of every cell line to the selective agent. However, since 

we aimed at determining the proportion of targeted to total integrants (effective targeting 

frequency), rather than transfection efficiency, kill curves were found to serve to this 

purpose. 

b.zeocin 

Zeocin shows strong toxicity against bacteria, fungi, plants and mammalian cells. 

It belongs to a family of structurally related bleomycin/phleomycin-type antibiotics 

isolated from Stptomjices. Although it is produced as an inactive copper/glycopeptide 

complex, the copper cation is reduced and removed by cytoplasmic sulfhydryl 

compounds upon entering the cell. This activates the molecule, which binds to and 

cleaves DNA, causing cell death (Berdy, 1980). The zeocin resistance factor is a 13 lcD 

protein encoded by the gene Sb Ble (Streptoalloteichus hindustanus bleomycin gene). This 

protein binds zeocin, inhibiting its DNA strand cleavage activity (Drocourt et al., 1990). 

Expression of this protein in eukaryotic and prokaryotic hosts confers resistance to 

zeocin. In order to use this selectable marker in ES cells, a kill curve was calculated using 

untransfected E14 cells as control. The results are shown in table 1 and figure 15. 

Cell 	Number
I  

ol cells! 	Plasmid 	Number of colunies recovered! Zucincoccntration 

line 	plating density 	DNA! jig 	 (jig/mi) 

0 	5 	7 	10 [i 	20 25 40 50 70 100 

Eli 1071.5 x 10 cells! 	NO DNA - - 	it) j () 	() 	0 	0 	I) 	0 	() 

cm2  

E14 107/1,5x10cells/ 	pCMVZeo 	* 	* 	* 30 0 	0 	0 	0 	0 	0 	0 

cm2 	 /100 

Table 1. Zeocm kill curve. M Selection level too low to allow colony selection (confluencv'). 

The difficulties associated with the use of this antibiotic in ES cells are discussed in 

detail in page 102. From the data presented above, it can be concluded that the 

window of zeocin selection is very narrow. 10 jig/ml of the antibiotic seem to be 



effective at selecting zeo-resistant clones, but a significant number of clones turn out to 

be false positives using this level of selection. Slightly higher zeocin concentrations kill 

transfected and untransfected cells alike. For these reasons, although zeocin selection 

Zoozin Nil oure 

45 

40 

35 

30 

25 

20 

15 

10 

5 

0 
1 	 2 	 3 	 4 	 5 	 5 	 7 	 5 

Zeozin concentration 

Figure. 15 Zeocin kill curve. 
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(10 jig/ml) was eventually utilised to isolate Rad5l transgenic clones (page 133), its 

routine use in targeting experiments was discarded. 

c.neomycin I G418 

G418 is an aminoglycosidic antibiotic commonly used for selection in 

eukaryotic cells transfected with the neo gene. Unlike related antibiotics such as 

gentamycin or kanamycin, G418 blocks protein translation by interfering with the 80S 

ribosome subunit (Daniels et al., 1973). The product of the neomycin-resistance gene 

allows selection in G418 by phosphorylating the antibiotic, thus blocking its action 

(Southern and Berg, 1982). Neo-resistant ES cells are selected at 300 jig/ml, although in 



specific applications it can be raised up to 1000jig/mi. Because of its routine use in this 

laboratory, no kill curves were required. 

d.hygromycin 

Hygromycin B is used as a selective agent in eukaryotic transfection 

experiments. Produced by Streptomjces hj'groscopicus, this aminoglycoside antibiotic is 

highly effective at killing bacteria, fungi and higher eukaryotic cells. It interferes with 

protein synthesis by hindering translocation and causing mistranslation. Resistance to 

hygromycin is conferred by the gene hpb. 

A kill curve (table 2 and figure 16) shows that hygromycin resistant colonies can 

be selected at 50-55 }tg/rnl. However, this selection was not routinely used due to the 

delayed response of ES cells to the antibiotic at normal working concentrations 

(differences between transfected and untransfected plates were not evident until the 

second week of selection). Although the use of hygromycin in targeting experiments has 

been extensively reported, our test system required a faster primary selection in order to 

avoid the problem of metabolite exchange. 

Cell Number of cells/ Plasmid Number of colonies recovered! Hygromycin 

line plating density DNA/ pg concentration (pg/mi) 

0 10 20 30 40 50 60 70 80 90 100 

129/ 107/1,5x10cells/ NO DNA * * * * * 5 3 0 0 0 0 

5.4 1  cm2 

129/ 10/1,5 x 104  cells! IRES- * * * * * 100 23 2 3 0 0 

5.4 cm2  I 	Hyg/100 1  1  l 
Table 2. Hygromycin B kill curve. (*) Selection level too low to allow colony selection. 
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Hygromycin kill curve 
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Figure 16. Hygromycm kill curve 

e. puromycin 

Puromycin is an aminonucleoside antibiotic produced by Strept&iyces alboniger, 

which specifically inhibits peptidyl transfer on both prokaryotic and eukaryotic 

ribosomes. Expression of the gene pac (puromycin N-acetyl-tranferase) confers 

resistance to the antibiotic in mamma1in cells. A kill curve with pac-transfected (p2017) 

and untransfected control ES cells shows efficient selection at concentrations as low as 

I g/ml (table 3 and figure 17) and 3 j.tg/ml for mouse embryonic fibroblasts (data not 

shown). 

This antibiotic kills non-transfected cells very quickly, yielding clean cultures 

and healthy resistant colonies in a matter of days. For this reason, puromycin has been 

the antibiotic of choice in most of the targeting experiments discussed in this work. 
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87.5 % CBA ES cell lines (McWhir et al., 1996) can also be selected in 

puromycin, although resistant colonies are usually highly differentiated. This is a 

particular feature of CBA ES cells in low plating density cultures, which cannot be 

attributed to puromycin selection. 

Cell I 	Number of cells! Plasmid Number of colonies recovered/ puromycin 
line plating density DNA/ jg concentration (pg/mi) 

0,5 i i 
RI 1()'/ 1,5 x 104  cells/ NO DNA I) () () 0 1) 0 0 

cm2  

RI IO7/l,5x10cells/ p20I7— 64 34 25 7 11 10 5 0 0 
cm2  70g 

RI l07/1,5x 10 cells! p2017_ * * 101 53 48 25 17 9 8 0 0 
cm2  300i.ig 

CBA 1071,5 x 104  cells! NO DNA 0 0 0 0 0 0 0 0 0 
cm2  

CBA 1071,5 x 104  cells! p2017 - * 60 60 46 35 24 2 1 0 0 
cm2  1 00P 

 

Table 3. Puromycin kill curve. () Selection level too low to enable colon y  selection. p2017 is an HPRT 
targeting vector containing a pac expression cassette. Although CBA-derived colonies are very 
differentiated (see text), genuine puromvc n-resistance was demonstrated by the absence of surviving cells 
in pac-untransfècted CBA cells. 
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Figure 17. Puromycin kill curve. 



f.blasticidin 

Blasticidin S HC1 is a nucleoside antibiotic that 'interferes with protein synthesis 

in prokaryotic and eukaryotic cells (Yamaguchi ci a/., 1965). Expression of the 

blasticidin S deaminase gene BSD from Aspei1Ius terreus confers resistance by 

converting the antibiotic to an inactive deaminohydroxy derivative compound (Izumi ci 

al., 1991). A kill curve was determined  for blasticidin selection in ES cells. As shown in 

table 4 and figure 18, any concentration between 4 and 11 tg/ml yields a similar 

number of resistant clones in pBSD-transfected ES cells, while completely killing 

untransfected controls. Thus, it was decided to use 5 .&g/ml of the antibiotic in 

subsequent targeting experiments. 

Cell Number of cells! Plasinid Number of colonies recovered! Blasticidin 

line plating density DNA/ ig concentration (sg/ml) 

0 1 2 3 4 5 7 9 ii 13 15 

210 1U/1,5 x 104 cells! NO DN.\ U U 0 0 U U U 

cm 2  

210 1()7/  1,5 x 10 	cells/ pBSD/100 * 29 27 32 21 12 23 11 4 

clii :  

Table 4. Blasticidin kill curve. () Selection level too low to allow colony selection. 
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Figure 18. Blasticidin kill curve. 
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iii.targeting vectors 

a.p129-zIHPRT and pCBA-AHPRT 
b. p 129- and pCBA- zeocin variants 

c.p 129-Hyg 
d.p 129-Neo 

e.p2016 
f.p2017 

g. other targeting vectors 
h. experimental design 

i. DNA concentration 

a.p129-AHPRT and pCBA-AHPRT 

The targeting replacement vectors p129-iHPRT and pCBA-AHPRT (see page 

80) were originally designed to inactivate the X-linked HPRT gene in ES cells obtained 

from the mouse strains 129 and CBA, respectively. Successful targeting produces a 

deletion between exons 3 and 6 (figure 19). As a first step to developing a reliable 

system for comparing E.T.F. 's under different experimental conditions, it was 

decided to assess the ability of the above constructs to knockout the HPRT locus in 

129/5.4 and CBA ES cell lines. Once tested in isogenic conditions, both CBA- and 

129-derived non- isogenic vectors would be respectively assayed in 129 and CBA cell 

—I— -f 	I- 
 Targeting vector 

Genomic locus 

i7S!) 1 

Figure 19. Schematic representation of the targeting event induced by p129-M-ITPRT and pCBA-HPRT 
vectors. Coloured boxes in the aligned regions, from left to right: HPRT exon 2 (blue), 3 (yellow), (I (light 
green) and 7 (dark green). Homologous recombination yields a deletion of the region between exons 3 
and 6, comprising exons 4 (red) and 5 (violet). Distances are not to scale. 

101 



lines, in order to examine the effect of mismatches in gene targeting frequency. 

We were unable to recover 6-TG resistant clones in pilot experiments using 

these vectors. It was initially thought that the reason for this negative result could be a 

poor optimisation of the conditions for the recovery of targeted clones. First, it is 

necessary to maintain the plates for up to 6 days in non-selective conditions, to allow 

degradation of previously synthesised HPRT protein in targeted cells. This causes 

overconfluence and extensive differentiation in 129/5.4 and, above all, CBA cell lines. 

Second, the proximity of non-targeted cells to targeted ones favours the exchange of 

different metabolites, amongst them PRPP/6-TG. Only a few imported molecules of 

this compound may kill targeted cells. This is one of the reasons why most of the 

studies on HPRT targeting have been done to correct a defective locus rather than to 

inactivate it (Thompson et al., 1989). 

b. p129- and pCBA- zeocin variants 

In order to eliminate metabolic cooperation, a CM\Tzeocin cassette was added 

to p129-AHPRT and pCBA-AHPRT between the two HPRT regions of homology in 

both possible orientations, as described in page 81. A primary selection during the first 

six days after transfection would ensure that targeted and non-targeted colonies are 

separated and that translocation of PRPP/6-TG does not take place. Two versions of 

both targeting constructs (in which the zeocin resistance gene is driven by the Oct3/4 

promoter) were also made. The gene Oct3/4 is preferentially expressed in non-

differentiated cells, and its promoter has been successfully used to drive neomycin 

expression in CBA cell lines (McWhir et al., 1996). Homologous recombination of any 

of these vectors with the genomic HPRT locus must yield HPRT-defective/ zeocin 

resistant cells, given a proper level of expression of the zeocin cassette. Targeted clones 

are selectable in medium supplemented with 6-TG and zeocin, while clones arising 

from illegitimate recombination events can be selected in the presence of zeocin, but 

are not 6-TG-resistant. 
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Pilot experiments with these vectors (p129-zeo and p129-octlzeo) are 

summarised in table 5. These results confirmed the previous observation that this 

antibiotic is unsuited for the development of a testing system. First, zeocin sensitivity 

seems to be strongly affected by plating density. The higher the cell concentration, the 

less efficient the selection. It was observed that particularly high cell densities (i.e., 3 x 

104  cells/cm) remain virtually unaffected by zeocin, even at high concentration 

(lOOj.tg/ml). Also, when cells are not evenly distributed across the plate, local 

agglutination of arising colonies generate false resistants. This observation may account 

for the experiment in which a dozen colonies were recovered after 14 days of zeocin 

selection at 50 jig/ml after transfection with p129/oct-zeo. However, Southern blots 

with two different zeocin probes did not reveal any band in any of the genomic extracts 

(data not shown). 

Cell Number of cells! Plasmid Number of colonies recovered! Zeocin cocentration 

line plating density DNA! jig (pg/mi) 

0 5 7 10 12 20 25 40 50 70 100 

E14 10/3 x 10 cells! p129- * * * * * * * * * * * 

cm2  zeo,'lOO 

E14 1073 x 104  cells! NO DNA * * * * * * * * * * * 

cm2  

E14 10!1.5 x 104  cells! p129!oct- 12 0 0 

cm2  zeo,'300 

HG- 107 ,'3xlO4 cells/ p129 * * * * 0 

287 cm2  zeoi'lOO 

R72- 107 ,'3xlO4 cells/ p129 * * * * 0 

1 cm2  zeo'100 

Table 5. Zeocin kill curve using zeo-targeting vectors. (*) No colony formation. 

Second, zeocin selection may be affected by growth rate. Both HG-287 and 

R72-1 cell lines carry mutations in the p53 gene, and they have been observed to have 

abnormally faster cell division times. This may lead to undesirable local increases in cell 

density during the 24 hour period following electroporation, in which cells are not yet 

under selection. 
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Although zeocin selection has been used by other groups in ES cells, the 

sensitivity of a system intended to accurately measure gene targeting frequency would 

be hindered by the high incidence of false positives and narrow window of selection 

that we have observed. Due to these disadvantages it was decided not to proceed with 

zeocin-based vectors in subsequent targeting experiments. 

c.pl 29-Hyg 

A hygromycin positively selectable marker was subcloned into p129-HPRT as 

an alternative to zeocin (page 83). A kill curve (table 2 and figure 16) shows that a 

concentration of 55 pg/mI is enough to select colonies from a population of 129/5.4 

ES cells after transfection with a /yg cassette. No colonies are recovered at such 

concentration when using untransfected ES cells as a control, although it was necessary 

to maintain selection for up to 16 days. Since the differences between control and 

transfected plates were not evident until the second week of selection the vector was 

not further utilised. 

d.pl 29-Neo 

A nec cassette was engineered into p129-i\HPRT in both orientations (page 82). 

As ES cells transfected with neo can be easily selected when the medium is 

supplemented with the drug G418 (normally at 300-500 jig/ml), the use of these vectors 

would unequivocally determine whether the defect of p129-AHPRT lay in the selection 

system or rather in the vector itself. Four experiments were conducted using p129-neo 

(7) to electroporate a variety of wild-type ES cell lines. 
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Cell line / Construct [DNA]! N. cells G418R G418R + 6TGR E.T.F. 

passage n. lineaxisation electrop. colonies colonies (%) 

129/5.4/13 p129-neo 300 j.tg/ 4n1 107 70 0 0 

(*—) 

PJ/25 p129-neo 200 jig/ InI 107 65 0 0 

(—*) 

R1/25 p129-neo 200 p.g/ Içtrnl 107 89 0 0 

(—) 

E14-27/33 p129-neo 250 g/ lçtnl 107 815* 0 0 

(—*) 

Table 6. Targeting experiments with p129-neo. The arrow in brackets indicates the orientation of the neo 
cassette. Cells were plated in ten 90 nun dishes in experiments 1-3. (*) Two 15 cm plates were used in 
experiment 4. A.T.F., absolute targeting frequency; E.T.F., effective targeting frequency. 

The results summarised in tables 6 and 7 indicate that: (a) Plating efficiency 

seems to correlate to plating density (table 7). (b) The vector p129 is intrinsically 

ineffective to target HPRT, irrespective of the selection system used. Further 

experiments carried out in our laboratory suggest that the construct may work, although 

at an absolute targeting frequency (A.T.F.) <10-7  . This order of magnitude is very close 

to the estimated rate of spontaneous mutation of HPRT, and clearly insufficient for our 

purposes. 

Number of cells plated Dishes Plating density Total number of colonies in 

G418 

10 (experiments 1-3) 10 of 90 mm 1,5 x 104  cells! cm2  390 (mean) 

10 (experiment 4) 2 of 150 mm 1 	2.8 x 104  cells! cm2  815 

Table 7 . Effect of plating density on G418 selection 

105 



e.p201 6 

Despite the time and effort employed in the p129-derived constructs, it was 

decided to use a targeting vector of well-proven efficacy, such as the pM44-derived 

p2016 (page 79), in subsequent experiments. This replacement vector has been designed 

to disrupt the HPRT locus by inserting a neo cassette into exon 6 (figure 20). 

neo 

Xhol 

Targefing vector 

Genomic HPRT locus 

Figure 20. p2016 gene targeting event (see text for details). Coloured boxes, from left to right: exon 6 
(light blue), 7 (dark green), 8 (light green) and 9 (pink). XhoI, linearisation site. Distances are approximate, 
and exon sizes are not to scale. 

In a series of pilot experiments, 107  cells were electroporated (800 V, 3 F) with 

variable amounts of XhoI-hneansed DNA and plated in two 150 mm dishes at a density 

of 5 x 10' cells/plate (2,8 x iO cells/ cm). G418 selection (300 ig/ml) was applied 24 

h after electroporation. One of the two plates was further supplemented with 6-TG 

after 6 days of G418 selection. These experiments are outlined in table 8. 

From these initial results it can be concluded that: (a) p2016 is proficient at 

targeting the HPRT locus in wild-type ES cells. Effective targeting frequency oscillates 

between 4 and 8 0/•  (b) There is a linear correlation between E.T.F. and the amount of 

DNA used/ electroporation up to 300 .Lg. This observation has been verified using a 

p2016 derivative, p2017  (page 110). 



Cell line Construct [DNA] / N. cells G418R cot G418' + E.T.F. 

/ passage linearisation electrop. (Plate 1) 6TGR cot (%) 

E14- p2016 75 jig/ XboI 107 467 19 4.06 

27/33 

E14- p2016 150 t.tg/XboI 107 632 38 6.01 

27/33 

E14- p2016 300 jig/ XhoI 107 729 59 8.09 

27/33 

E14- p2016 300 .tg/ XhoI 107 685 54 7.88 

27/33 

E14- p2016 300 p.g/XboI 107 648 48 7.40 

27/33 

E14- p2016 300 jig/ XhoI 107 509 39 7.66 

27/33 

E14- p2016 300 jig/ XhoI 107 518 42 8.10 

27/33 

E14- p2016 300 tg/ XhoI 107 607 47 7.74 

27/33 

E14- p2016 300 jig/ XhoI 107 603 42 6.96 

27/33 

Table 8. Pilot targeting experiments with p2016. 

f.p201 7 

Another version of the previous construct, p2017 (provided by H. Wallace, page 

79), features a puromycin positively selectable cassette in place of neo. Due to the speed 

of puromycin selection even at very low concentrations (page 99) p2017 was used in 

most subsequent experiments, regardless of the presence of neo in the target cells. 
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g.p2000 

The targeting vector p2000 (page 83) is another derivative of pM44, with a 

blasticidin selectable cassette in exon 6. It was used for the determination of gene 

targeting frequency in PARP -I- ES cells, which already have neo and pac cassettes. 

h.experimental design 

Unless otherwise stated, p2017 was used in all subsequent targeting 

experiments, with the following standard conditions: Upon transfection (800 V, 

3 1F, 300 tg of targeting vector), cells were split in two 15 cm dishes (5 x lO 

cells / plate, 2.8 x 10 4  cells / cm). Puromycin selection was applied 24 hours 

later, and maintained for 5 days. The sixth day after transfection, one plate (A) 

I 	H-- 

4 
Puromycin 	 I 	 Puromycin + 6-TG 
selection 	

' 

	
selection 

Homologous + 
	

Homologous 
Illegitimate recombinants 

	
recombinants only 

Figure 21. Experimental strategy (see text for details). Effective Targeting Frequency (E.T.F.) was 
calculated as the ratio of homologous (puromycin + 6-TG resistant colonies) to total Integrants 
(puromycin resistant colonies) 

was fixed and stained for colony counting (homologous and non-homologous 

recombinants) and the other (B) further supplemented with 6-TG. 4-5 days after 6-TG 
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BamHI 

A 	x 
- I 	II- 

Probe 

->11 	- 
kb 

selection, plate B was also fixed and stained. Effective targeting frequency (E.T.F.) was 

calculated as the ratio of homologous recombinants (number of colonies in B) to total 

integrants (number of colonies in A) (figure 21). Southern analysis of colonies randomly 

picked from plate B before staining shows that 100 % of clones in this sample were 

successfully targeted (figure 22). 

A 	
___ 7 k 

BamHI 

I 	>12 kb 

- 	___ 	- 	
1 7 kb 

1 	2 	3 	4 	5 	6 	7 	8 

Figure 22. targeting event induced by p201 7  (A) and Southern blot of randomly picked 6-TG-resistant 
colonies (B). Genomic DNA was digested with BamHI and probed with a 500 bp SphI/Bgi1l fragment 
located within intron 5 of the targeting vector. Successfully targeted clones display a 7 kb band, and 
wild-type cells show a band >12 kb (heavier than the larger band of the DNA size marker used). Lane 
1: untransfected control. Lanes 2-8: 6-TG resistant clones. 



jUDNA concentration 

In the course of previous experiments it was observed that the amount of 

targeting vector/electroporation seemed to influence the number of colonies recovered, 

both after positive (G418) and negative (6-TG) selection (page 106). In order to study 

this effect in depth, five groups of E14 ES cells (passage 35) were transfected with 

increasingly higher concentrations of p2017. The results of these experiments are 

summarised in table 9 and figure 23. 

DNA amount! 

electroporation 

Puromycin' colonies 6-TG't colonies E.T.F (%) 

50 	A 500 18 3.6 

100 j.tg 694 30 4.33 

200 tg 776 57 7.35 

300 jig 1176 113 9.6 

500pg 1350 161 11.93 

Table 9. Effect of DNA concentration on gene targeting frequency. 

E.T.F. I [DNA] 

14 

12 

10 

0 	 100 	 200 	 300 	 400 	 500 	 600 

[DNA) conc 

Figure 23. Effect of DNA concentration on E.T.F. 
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It was found that there is a linear correlation between DNA concentration and 

the number of colonies recovered after both positive and negative selections. However, 

the arithmetic progression of 6-TG resistant colonies! [DNA] is much steeper than that 

of puromycin resistant clones! [DNA]. This means that higher concentrations of 

DNA/electxoporation result in correspondingly enhanced effective targeting 

frequencies (E.T.R), at least within the interval examined in this work. 

It was also observed that experimental variation of E.T.F. was slightly higher 

when using <200 j.tg DNA/experiment. Since the use of 300 .tg DNA gave more 

consistent and repeatable E.T.F. values under the same electroporation conditions, it 

was decided to use this amount of targeting vector in subsequent experiments (unless 

otherwise indicated). 
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Chapter IV. modifications of the 
vector 

i.introduction 
ii.incubation with NLS 

iii.dsRNA vectors 
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i.introduction 

Conventional targeting vectors are based on double-stranded DNA fragments 

homologous to the target locus. The introduction of the desired modification occurs 

upon homologous recombination, through the general mechanism described in pages 6-

16. In recent years, vectors have been modified in a number of ways in order to increase 

targeting efficiency. These include, among others, the protection of the ends to avoid 

intracellular degradation (Chang and Wilson, 1987) and coating with nuclear localisation 

signals (Collas and Alleström, 1996). Alternative vectors, such as PNAs, TFOs and 

RDOs, have also been developed with the same purpose in mind (pages 43-46). In these 

cases, gene targeting occurs through mechanisms less studied than homologous 

recombination, but frequently more efficient. 

This chapter will describe two strategies aimed at increasing gene targeting 

frequency based on the modification of the targeting vector. The first approach takes 

advantage of the properties of the SV40 nuclear localisation signal (page 42). The 

second is based on the use of double-stranded RNA vectors, which in C. e1egans and 

other species is responsible for the effect known as RNA interference (RNAi). Although 

there is now compelling evidence that RNAi is effected at the mRNA level, the 

inclusion of this strategy in the present work is justified by the fact that the target of 

dsRNA molecules was unknown at the time we started working on it. Based on th 

original observation that RNAi effects were evident even in Fl (Fire et al., 1998), the 

possibility of a DNA target could not be ruled out (Wagner and Sun, 1998). 
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ii.nuclear localisation signals 
a.introduction 

b. objective 
c. results 

d.discussion 

a.introduction 

Since the efficiency of homologous recombination depends on the length of 

homology between the two recombinant partners (Deng and Capecchi, 1987), targeting 

vectors tend to be large (>10 kb) to ensure reasonably high targeting frequencies. 

However, size is likely a critical factor affecting nuclear entry of DNA. Whereas small 

oligonucleotides can diffuse freely into the nucleus, larger DNA molecules are 

transported less efficiently (Ludtke et al., 1999). The use of nuclear localisation signals 

(NLSs) as a means to improve import of DNA molecules into the nucleus has already 

been discussed in page 42. NLSs can be chemically or electrostatically attached to DNA 

molecules in order to facilitate active transport through the nuclear pore complex (NPC) 

(rev, by Collas and Alëstrom, 1996). Enhancement of nuclear transport has also been 

shown to result in higher frequency of transgene expression (measured as transfection 

efficiency) in cultured cells (Zanta et al., 1999; Ludtke et al., 1999). 

Based on this evidence, it was reasoned that transfection of targeting vectors 

pre-incubated with a NLS might increase the concentration of recombinogenic DNA 

molecules within the nucleus. This enhanced accumulation may have an effect on 

targeting efficiency, by increasing homologous recombination, non-homologous end-

joining, or both. This section examines the influence of incubating targeting vectors 

with the NLS of the 5V40 T antigen on E.T.E 
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b.objective 

To determine the effect of pre-treatment of targeting vectors with the SV40 T 

antigen NLS on effective targeting frequency. 

c.results 

In order to assess whether NLS binding would improve nuclear transport in ES 

cells, 2 jig of a fluorescein-12 dUTP-labelled, PCR-amplified 3 kb fragment from the 

targeting vector p129-AJ-IPRT, were incubated for 10 minutes with 0.72 tg of the 

nuclear localisation oligopeptide of the 5V40 T antigen (PKKKRKV) (kindly given by 

P. Collas), in a total volume of 6 j.tl of distilled water (0.3 .tg DNA/41). This ratio 

DNA:NLS (1: 0.33) has been found to result in efficient electrostatic NLS binding to 

DNA. Treated samples display a band shift compared to untreated DNA when run in a 

0.6 % agarose gel. Although NLS dissociate in EDTA-containing buffers (P. Collas, 

personal communication), band shift is not altered upon formation of DNA-liposome 

complex. This complex was lipofected (Lipofectamine) into exponentially growing ES 

cells, and nuclear uptake examined by fluorescence microscopy. The observations were 

not conclusive, since the volumetric ratio nucleus/ cytoplasm is very high in ES cells and 

it was difficult to distinguish fluorescent nuclei from the cellular fluorescent background 

(data not shown). Differences between cells transfected with NLS-treated and non-

treated DNA were not evident. Since one proposed measurement of the efficiency of 

NLS-mediated DNA nuclear transport is transfection efficiency (Arohnson and Hughes, 

1998; Zanta et al., 1999), it was decided to proceed directly with targeting experiments. 2 

jig of XhoI-linearised targeting vector p2017 (page 79) were incubated as above with the 

SV40 NLS. Treated and non-treated plasmids were lipofected (Effectene, Qiagen) into 

ES cells and colonies were counted after puromycin (for total integrants) and puromycin 

+ 6-TG (for homologous recombinants) selection. The results are shown in table 10 

and figure 24. 

115 



Puromyci&t 

colonies 

6.TGR colonies E.T.F (%) Group E.T.F. 

mean +1- S.E. 

NLS-treated 1 812 17 2.09 2.79 	/- 0.376 

2 915 31 3.38 

3 896 26 2.9 

Control 1 798 17 2.13 1.69 /- 0.451 

2 876 19 2.16 

-s--  751 6 0.79 

Table 10. Effect of treatment of DNA with SV40 NLS on E.T.F. Control: untreated DNA. Cells were 
lipofected with 2 p.g of p2017. S.E.: standard error for each group. Every entry represents an independent 
experiment. 

Effect of NLS-incubation on E.T.F. 

NLS-treated 	 Control 

Figure 24. Effect of NLS-incubation on E.T.F. 

A one-way ANOVA analysis of these data (F 14  = 3.47; 	= 7.70; P = 0.135> 

0.05), shows that the null hypothesis (group E.T.F. means are equal) cannot be rejected. 

A similar conclusion can be drawn from the ANOVA analysis of transfection efficiency, 

measured as number of puromvcm resistant colonies (F 14  = 1.86; = 7.70; P = 0.243 

> 0.05). Therefore we conclude that differences between E.T.E means and between 

transfection efficiency means are not statistically significant. 

35 

3 

25 

U. 

1.5 

0.5 

0 
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d.discussion 

The above data demonstrate that neither transfection efficiency nor gene 

targeting frequency are significantly improved upon pre-incubation of our targeting 

vectors with the nuclear localisation signal of the SV40 T antigen. Based on experiments 

described in page 110, it was hypothesised that an increased amount of targeting vector 

molecules in the nucleus may lead to higher targeting frequencies. Two explanations can 

be proposed to account for this observation. First, although there is convincing 

evidence that this NLS actively facilitates nuclear transport of DNA in a variety of cells, 

both by inicroinjection (Collas et al., 1996; Collas and Aleström, 1997) and lipofection 

(Aronsohn and Hughes, 1998; Zanta et al., 1999), the use of this strategy in ES cells has 

not been reported thus far. We have not been able to unequivocally show enhanced 

nuclear uptake of DNA following transfection with fluorescein-dUTP-labelled 

fragments of DNA pre-incubated with NLS. Thus, the possibility that ES cells are not 

as proficient as other cell types for NLS-mediated nuclear transport of DNA cannot be 

ruled out. Second, to our knowledge this approach has not been used for DNA 

molecules larger than —'3.6 kb (Collas et al., 1996). Indeed, it has been reported that the 

overall level of NLS-mediated nuclear DNA uptake was considerably reduced for 

fragments > 1.5 kb (Ludtke et al., 1999). The size of the targeting vector used in this 

work (12.5 kb) may represent an obstacle for efficient translocation. Many NLS 

distributed along the DNA (as it occurs when NLS and DNA are electrostatically 

coupled) may inhibit nuclear transport if the molecule is longer than the distance 

between adjacent pores (figure 25). 

If vector size proved to be the reason behind the apparent lack of effect of 

NLS-preincubation on targeting efficiency, it would be difficult to optimise this strategy 

using conventional targeting vectors. Improvements in nuclear transport using smaller 

vectors would possibly be compensated by a decrease in gene targeting frequency 

associated with reductions in the length of homology. This problem could be overcome 

by chemically linking one single NLS to the end of a gene (Zanta et al., 1999), which 

would facilitate entry of the DNA molecule through a single pore. However, this 

approach has the disadvantage that cytoplasmic DNA degradation may result in the loss 
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of the signal before nuclear translocation takes place (Ludtke et al, 1999). Alternatively, 

the use of NLS-based strategies to improve nuclear uptake could be used in conjunction 

with TFO (Zanta et al., 1999) or PNA (Cutrona et al., 2000) targeting vectors, whose 

small size makes them specially suited for this purpose. 

B 

NLS 

 

NLS 
NLS • 

Nuclear membrane 

Figure 25. Hypothetical effect of NLS-bmdrng on DNA entry into the nucleus. A single signal favours 
translocation through the nuclear pore complex (A), but the presence of several NLS in long DNA 
molecules (B) may actually prevent efficient transport (adapted from Zanta ci al., 1999). 
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... uiu.dsRNA vectors 
a.introduction 

b.objective 
c.results 

d .discussion 

a. introduction 

There are a number of features of RNA interference (RNAi) technology that led 

us to seek its application in mammalian cell culture: (1) Long-term down-regulation of 

the target gene (up to bOX more potent than that of either sense or antisense RNA) is 

achieved without permanent modification at the genetic level. (2) Work in C elegans 

shows that there is an active, non-induced transport of dsRNA molecules across cellular 

boundaries (Fire et al., 1998). Feeding worms with dsRNA-expres sing bacteria, or 

soaking them in dsRNA solutions, is sufficient to reproduce the levels of RNAi 

observed by microinjection (Timmons and Fire, 1998; Tabara et al., 1999). This active 

transport could greatly facilitate transfection in cell culture systems. (3) The possibility 

of using dsRNA to target several genes at once with a very high efficiency (Kennerdell 

and Carthew, 1998) makes RNAi one of the most powerful tools available for the 

analysis of gene function in developmental studies in vivo. In wtiv, it could also be used to 

strongly and simultaneously down-regulate more than one gene, particularly when the 

nature of the biological culture (e.g., limited lifespan in tt?v) prevents the completion of 

several rounds of gene targeting before senescence occurs. 

However, the use of RNAi in mammalian cells faces a well-documented 

dsRNA-triggered 'panic' response. One of the better characterised components of this 

response is the dsRNA-activated protein kinase (PKR). This protein has been implicated 

in the regulation of cellular growth and differentiation, as well as interferon-mediated 

antiviral defense (rev, by Proud, 1995). Activation of PKR by exogenous dsRNA leads 
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to phosphorylation of the translation initiation factor eIF-2, which blocks its activity. As 

a result, translation is globally suppressed and the cell initiates apoptosis (Lee and 

Esteban, 1994). 

Since the minimum dsRNA length required for PKR activation is 33 bp (Proud, 

1995), we sought to overcome the apoptotic response by designing shorter dsRNA 

oligonucleotides for in vitro iransfection of ES cells. ITIPRT was chosen as target gene, 

for direct selection of HPRT-deficient clones in 6-TG after dsRNA-mediated down-

regulation. 

b.objective 

To prove I-WRY down-regulation by RNAi in ES cells in vitro. 

C. results 

A 30 bp-long dsRNA vector designed against exon 1 of the HPRT gene was 

made by annealing the following sense and antisense oligoribonucleotides (MGW): 

5' GTAC GTAC GTAC GTAC GTAC GTAC GTAC GTAC GTAC GTAC GTAC3' 

5' GTAC GTAC GTAC GTAC GTAC GTAC GTAC GTAC GTAC GTAC GTAC3' 

Formation of dsRNA was confirmed by migration on 3 % agarose and 15 % 

polyacrylamide gels (figure 26). 

A first set of experiments was aimed at determining whether simple incubation 

of ES cells with medium containing dsRNA in solution is sufficient for effective 

transfection. In order to assess the stability of dsRNA in ES cell medium (where serum 

may contain traces of ribonucleases), I pg of dsRNA was preincubated for two hours at 
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37 °C in 500 ptl of (a) GMEM ES cell culture medium; and (b) Sterile PBS. As shown in 

Figure 26 c, no apparent degradation was observed in either case. 

S as ds s as ds 

S as as 	1 	2 

Figure 1. (a) Migration of sense (s), antiscnsc (as) and double stranded RNA (cis) in a 15 
polyacrilamyde gel. Lanes 1, 2, 3, after annealing in 1mM Iris HCl, 1 mM iDTj\ buffer; li mes 4, 5, 6, 
annealing in Tris I LU l() mM, NaCI 20 mM pI 1 7.6 buffer. (b)Migration pattern of s, as arid dsRNA in a 
2.5 (y0 

agarosc gel. (c) dsRNi after incubation in PBS (1) and GM1M (2), 2 hours at 37 °C. 

6-well platc/70 % confluent lS cell cultures (E14 p39) were incubated for 24 

hours with 2 ml GMEM containing 0.25; 0.5; 1; 2; 3; and 5 .'g of anti-IIPRT dsRNA. 

The following day, the cells were trypsinised and separately plated at low density (106 

cells/ 90 mm dish). 6-TG selection was applied 6 days after incubation, but no colonies 

were recovered. 

In a second series of experiments, 1, 1.5 and 2 1L1g of dsRNA were lipofected 

(Eflectcnc, Qiagen) into 6-well plate/SO % confluent ES cell cultures (E14 p139). Cells 

were trypsinised 24 hours after incubation and selected as above, but no 6-TG resistant 

colonies could be obtained after 7 days of selection. 
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ddiscussion 

Several assumptions were made when designing these experiments: (1) Cultured 

cells can be directly transfected by dsRNA vectors dissolved in the medium; (2) PKR 

needs to be down-regulated, or dsRNA vectors have to be designed to avoid PKR 

activation, in order to produce gene-specific RNAi; and (3) Short dsRNA 

oligonucleotides are able to interfere with the expression of target genes as efficiently as 

the bigger (-0.5-1 kb) vectors described thus far in the literature. 

With the only possible exception of the first, the remaining suppositions proved 

to be wrong, according to data published by other groups in the course of these 

experiments. First, a recent report on the induction of RNAi in mouse embryos 

(Wianny and Zemicka-Goetz, 2000) demonstrated that concerns about PKR activation 

in response to dsRNA treatment had been raised prematurely (unless PKR is not 

expressed yet in early mouse embryonic development, in which case there may still be 

difficulties in using dsRNA at later stages). Second, studies in drosophila S2 cells 

(Hammond et al., 2000) and syncytial blastoderm cell-free extracts (Tuschl et al., 1999) 

indicated that RNAi requires a minimum length of dsRNA estimated in --100 bp, well 

above the 30 bp of our dsRNA vector. In addition, the selection system utilised (loss of 

HPRT function) would require an almost complete downregulation of the target gene, 

since leakiness may lead to residual HPRT activity which would kill the cell in the 

presence of 6-TG. Thus, although the results of this work do not rule out the possibility 

that dsRNA fragments can produce RNAi in mammalian cell cultures, longer dsRNA 

vectors and a more appropriate selectable system (such as GFP downregulation in GFP -

expressing cell lines) would be necessary to establish proof of principle. 
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Chapter V. manipulating the 
expression of homologous 

recombination-related genes 

i.down-regulation of p53 
ii.up-regulation of Rad5l 

iii.down-regulation of NHEJ enzymes 
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i.down-regulation of p53 
a.introduction 

b.objective 
c.results 

d .discussion 

a.introduction 

The role of p53 in regulating homologous recombination-based DNA repair has 

been examined by many groups over the last few years (page 54). A mechanistic 

explanation of the phenomenon by which cells devoid of p53 regulation exhibit 

hyperrecombination phenotypes was suggested by the discovery of the direct physical 

interaction of p53 with Rad5l and recA in ziitro (Stürzbecher et al., 1996; Buchhop et al., 

1997). According to this model, p53 activity would be critical to repress RadSl post-

translationally, thus minimising the risks associated with homologous recombination in 

the absence of DNA damage. The present work aims at establishing proof of principle 

that gene targeting frequency is also enhanced in p53-defective ES cells. While 

permanent inactivation of p53 cannot be considered as a practical approach to improve 

targeting efficiency, strategies could be envisioned for the transient down-regulation of 

p53, either transcriptionally or by inhibiting the protein activity. This would create a 

time window during which homologous recombination processes —and therefore gene 

targeting- would be highly facilitated. 

b.objective 

To test the hypothesis that p53-defective ES cells show an enhanced frequency 

of gene targeting compared to wild-type ES cell lines. 
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c.results 

F.'I.F. was calculated for three murine FS cell lines following electroporation 

with p2017. R72.1 (p53 7-) was generated from E14.27 (p53 /+) by targeting a neo 

cassette into one copy of the p53 gene. HG-287 (p53 /) was derived from R72.1 by 

culture in high G418 concentration. Inactivation of p53 in HG-287 was confirmed both 

by Southern blot (work carried out by Dr A. Clarke at the Department of Pathology, 

University of Edinburgh) and loss of detectable protein in a Western blot after y-

irradiation (figure 27). 

Five independent experiments were performed for each genotype. All cell lines 

were karyotypically normal (N. Sphyris, Department of Pathology, University of 

Edinburgh, personal communication). 107  cells and 300 jig of XhoI-linearised DNA 

were used in each electroporation (800 V, 3 jiF) and cells were plated in two 150 mm 

dishes (5 x 106  cells! dish). Puromycin selection (1 ag/ml) was applied 24 h after 

electroporation. One of the two plates was further supplemented with 6-TG after 6 days 

of Puromycin selection. A sample of PuroR/6TGR  colonies was picked on each 

experiment for amplification and Southern blot confirmation of the targeting event 

(figure 28). Both Puro and Puro + 6-TG plates were stained (Giemsa) and resistant 

colonies were counted (table 11 and figure 29). 

1 	2 	3 	4 

Figure 27. p53  protein expression was determined by Western Blot after y-ray induction (5 Gy). Primary 
(NCL-p53-CM5) and secondary antibodies were obtained from Novo Castra. Lane 1: wild type; lane 2: 

p53  +1-; lane 3: p53 -/-; lane 4: human positive control (Oncogene). Loading (20 [tg/lane) was 
controlled by Coomasie blue staining of the polyacrylamide gels prior to blotting (data not shown). 
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. 	c 	.. 	 -. 	4 7 kb 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 

Figure 28. Southern blot of randomly picked colonies from each genotype. Genomic DNA was digested 
with BamHI and probed with a 500 bp SJbI/Bg11I fragment located within intron 5 of the targeting vector 
(figure 22). Successfully targeted clones display a 7 kb band. Lanes 1-4: wild type; lanes 5-7: p53 +1-; lanes 
8-11: p53 -I-. 

PuromcinR 

colonies 

6TGR colonies E.T.F (o) Group E.T.F. 

mean /- S.E. 
53:4./1H::H:H j 1581 158 9.943 8.72 	/- 0.349 

2 1707 136 7.967 

3 1679 140 8.338 

4 1617 135 8.348 

5 1318 119 9.028 

1 1713 168 8.782 

2 1590 149 9.371 

3 1789 155 8.664 

4 1638 152 9.279 

5 1668 151 9.052 

p53 / 1 1606 136 8.468 89  

2 1754 152 8.665 

3 1553 128 8.242 

4 1626 167 10.27 

5 1210 106 8.76 

Table 11. Effect of p53 genotype on gene targeting frequency. Every entry represents and independent 
experiment. E.T.F., Effective Targeting Frequency. S.E.: standard error for each group. 
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Effect of p63 genotype on E.T.F. 

10 

 1 

8 

7- 

I 

 

p53 ./+ 	 pSI .1- 	 p53  .4- 

Figure 29. Effect of p53 genotype on E.T.F. using 300 jig of DNA/electroporation. Y bars: standard 
error for each group. 

A one-way ANOVA analysis (Excel) shows that neither E.T.F. (1 7212  =0.25; 

= 3.88; P = 0.78) nor A.T.F. (F 2,11  = 1.88; Fc6t  = 3.88; P = 0.19 > 0.05) means differ 

significantly. 

In order to discard the possibility that saturating DNA concentrations might 

mask any possible effect of p53 inactivation on gene targeting frequency, these 

experiments were repeated for wild-type and double knockout genotypes using 150 VLg 

of plasmid DNA/ electroporation. The results are shown in table 12 and figure 30. 

PuromycinR 

colonies 

6-TGR colonies E.T.F (%) Group E.T.F. 

mean 	S.E. 

E14 p53 +1+ 1 919 33 576 5.34 /- 0328 

2 879 42 4.77 

3 782 49 6.26 

HG287 p53 -I- 1 763 48 6.29 5.59 	/- 0.437 

2 699 37 5.29 

3 718 45 6.26 

Table 12. Effective targeting frequency in I IG-287 and E14 (control) cells after electroporation with 150 
pg of p2017. S.E.: standard error for each group. 
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Effect of p53 genotype on E.T.F. (low DNA concentration) 

P63 /+ 	 p53 -f 

Figure 30. Effect of p53 genotype on E.T.F. using 150 tAg of DNA/electroporation. Y bars: standard 
error for each group. 

Again, there is no significant effect of the p53-defective genotype on E.T.F. when 

using lower concentrations of targeting vector (ANOVA F 14  = 0.408; FC6t  = 7.708; P = 

0.557 > 0.05). 

To determine whether or not the absence of p53 function may affect gene 

targeting frequency in other cell types, E.T.F. was calculated in p53-deficient, 

spontaneously immortahsed mouse embryonic fibroblasts (MEFs) (kindly given by DW 

Melton). Although it was not possible to obtain a valid immortalised control for this 

experiment, E.T. F. was also calculated in a MEF line immortalised with the SV40 large 

T antigen (given by G. Li), which also inactivates p53.  3 ig/ml of puromycin were used 

to select total integrants after electroporation with 150 pg of p2017. 6-TG selection was 

applied 6 days after electroporation. As shown in table 13, E.T.F. could not he 
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calculated in either case due to the absence of 6-TG resistant colonies after 10 days of 

selection. 

.9flYC 6_TGR co!ônies  ETF(%) GEou;ETF 

:1;;;colonies: 

MEF p.5.3 +1+ 1 870 0 n/a n/a 

2 985 0 n/a 

MEFp53 / 1 154 0 n/a n/a 

2 125 0 n/a 

Table 13. Effect of MEF's p53 genotype on E.T.F. Every entry represents an independent experiment. 
S.R: standard error for each group. 

d.discussion 

The fact that p53 down-regulation is associated with higher levels of 

homologous intrachromosomal recombination in different biological systems has been 

well established (page 54). It was therefore predicted that targeting efficiency would be 

enhanced in p53-defective cells. However, this study demonstrates that the down-

regulation of p53 in ES cells has no effect on E.T.F. One possible explanation to 

account for these results is that the cellular mechanisms behind gene targeting may be 

different from those mediating intrachromosomal recombination JCR). There is 

evidence that ICR and extrachromosomal recombination (ECR) differ in many 

properties, such as the requirement of homology (Puchta et al., 1992). Whereas 

mismatches reduce the efficiency of ICR drastically, they have only a minor effect on 

ECR (Waldman and Liskay, 1987). Interestingly, it has been reported that p53 has a role 

in controlling the rate of homologous recombination by specific mismatch recognition 

(Dudenhöffer et al., 1998). The small effect of mismatches on ECR could be explained if 

p53 is not directly involved in this pathway. The data presented in this study support the 

hypothesis that p53 controls homologous recombination only at the chromosomal level, 

but not when one (gene targeting) or both (ECR) recombinant substrates are 

extrachromosomal. 
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An alternative explanation is that p53 may be naturally inactive in ES cells. It has 

been observed that some ES and EC cells show absence of p53-dependent cell cycle 

regulation, which has led to the hypothesis that inactivation of p53 is a necessary event 

in the immortalisation of embryonic stem cells (Prost et al., 1998; Schmidt-Kastner et al., 

1998). However, we have observed that p53-null ES cells grow faster than their wild-

type counterparts (page 103). In addition, they contain numerous genomic abnormalities 

(DW Melton, personal communication), which is inconsistent with the hypothesis that 

p53 is naturally inactive in ES cells. In any case, there is increasing evidence that GuS 

cell cycle checkpoint control and regulation of homologous recombination are separate 

and independent functions of p53 (Saintigny et al., 1999; Willers et al., 2000b). Thus, 

even if p53 is not involved in the control of the cell cycle, it could still repress 

homologous recombination in wild-type ES cells. The observations described in the 

present chapter suggest that p53-dependent control of homologous recombination is 

disabled in ES cells. This would not be the case in somatic cells, where the involvement 

of p53 in the control of homologous recombination is well documented. In order to test 

this hypothesis, we aimed at determining whether E.T.F. is increased in p53-defective 

somatic cells. Targeting experiments were conducted using p53-nullizygous MEFs, 

which were immortalised as a result of spontaneous downstream effects of p53 

inactivation. E.T.F. was also calculated in wild type cells immortalised with the SV40 

large T antigen, which also inactivates p53. Since no immortalised cells with a wild-type 

p53 phenotype were available, this experiment did not have a proper control. The two 

cell lines used in this study have dissimilar morphologies (data not shown) and exhibit 

significantly different transfection efficiencies (table 13). A very low targeting efficiency 

associated with the different genetic backgrounds of the target mice and the 129 strain 

used in the construction of the targeting vector can be proposed to explain the absence 

of 6-TG-resistant colonies in either case. Ideally, this experiment should be repeated 

using primary somatic cells isolated from wild-type and p53-null embryos. This would 

have required material not available at the time of this study, as well as a thorough 

optimisation of gene targeting in primary fibroblasts. 
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ii.0 p-regulation of Rad5l 
a.introduction 

b.objective 
c.resu!ts 

d.discussion 

a. introduction 

The essential role of Rad5l in promoting the early stages of homologous 

recombination-mediated DNA repair has already been discussed in page 14 of this 

work. The present section will focus on the development of strategies to increase gene 

targeting frequency based on the recombinogenic properties of this protein. 

It is thought that, under normal conditions, Rad5l is transcriptionally 

downregulated to avoid uncontrolled recombination between the widespread DNA 

repeats across the genome (pages 17-22). Since homologous pairing requires 

stoichiometric amounts of Rad5l relative to ssDNA, subsaturating concentrations of 

the protein are unable to catalyse strand exchange (Baumann and West, 1998). Only 

under exceptional circumstances, where the benefits of 'unleashing' the protein exceed 

the risks of hyperrecombination, Rad5l is de-repressed. This occurs mainly during 

meiosis (Shinohara et al., 1992) and following extensive DNA damage (Shinohara et al., 

1992; Abbousekhra et al., 1992; Basile et a/., 1992). While little is known about the 

molecular mechanisms that keep Rad5l under control, a few groups have been able to 

overcome them by overexpressing the enzyme. Thus, a 2-3 fold overexpression of 

Rad5l in CHO cells was found to stimulate homologous recombination between 

integrated genes (20-fold) and increase resistance to ionising radiation (Vispé et al., 

1998). Enhanced homologous recombination was also observed when mammalian 

(Shcherbakova et al., 2000) and plant (Reiss et al., 1996) cells were transfected with the 

Rad5l bacterial counterpart gene, recA, fused to a nuclear localisation signal. 
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Given that gene targeting is a form of homologous recombination, it was 

reasoned that enhancement of the rate of this process by overexpressing its key enzyme 

would also result in a higher targeting efficiency. This work demonstrates that murine 

ES cells stably transfected with a Rad5l transgene under the control of a constitutive 

promoter exhibit increased gene targeting frequencies. We next sought to reproduce 

these results by transiently inducing high Rad5l concentrations at the time of gene 

targeting, by (a) co-transfecting the targeting vector with a Rad5l expression cassette; 

(b) incorporating a RadSl cassette in the targeting vector; (c) co-culturing ES cells with 

feeder layers stably transfected with the fusion protein VP22-Rad5l; and (d) transiently 

pre-transfecting cells with a VP22/Rad5l expression vector prior to gene targeting. Like 

other proteins such as HIV-1 Tat (Ensoli et al., 1993), interleukin 1 (Rubartelli et al., 

1990) and fibroblast growth factors (FGFs) (Jackson et al., 1992), the herpes simplex 

virus tegument protein VP22 is secreted by a Golgi-independent mechanism from the 

cells where it is synthesised (Elliot and O'Hare, 1997). What makes VP22 unique is its 

unusual ability to 'transfect' adjacent cells via a yet unknown non-endocytotic pathway. 

In addition, despite the lack of any recognisable nuclear localisation signal, VP22 is 

directly transported to the nucleus, where it binds to chromatin and seggregates upon 

cell division. Remarkably, chimaeric proteins made by fusing VP22 to other peptides 

retain the ability to spread between cells (Elliot and O'Hare, 1997), which has been 

exploited in recent years to develop non-transgenic protocols for the delivery of markers 

(Elliot and O'Hare, 1999), prodrugs (Dilber et al., 1999) and therapeutic proteins (Phelan 

et al., 1998). 

b.objective 

To examine the effect of constitutive and transient overexpression of Rad5l on 

E.T.F. 
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c.results 

c. 1.Rad5l-transgenic ES cell lines 

c. 2. Rad5 1-trans genic/p53 null cells 

c.3.co-electroporation with a Rad5l cassette 

c.4.integration of a Rad5l cassette into p2017 

c.5. VP22-Rad5l approaches 

c.1.Rad5l-transgenic ES cell lines 

The construct pSV-Zeo/Rad5l (given by M. Defais) was used to stably 

transfect E14 ES cells (100 .tg of I<nI-linearised vector, IO cells). This plasmid contains 

the hamster Rad5l (hsRad5l) cDNA cloned downstream from the SV40 constitutive 

promoter, as well as a eo selectable marker for selection in zeocin (10 jig/nil). Ten 

zeocin-resistant clon.ies (Ri-b) were picked and grown for hsRad5l expression analysis. 

Integration of the transgene was confirmed by Southern blotting, which revealed 

random insertion of at least 1-2 copies/genome in all cases (figure 31). 

QM 
4M 

P1 	P2 	P3 	P4 	P5 	R6 P7 R8 	R9 PlO 

Figure 31. Southern blot analysis of clones Ri-RIO. A pSV-Zeo/Rad5l 589 bp RcdI/SacI fragment 
corresponding to the zeocin cassette was used as a probe to confirm successful integration of the vector. 
Genomic DNA was digested with EoRV, which does not cut within the sequence of the transgene. 
Therefore, every band represents an independent integration event. Sizes vary between 5 and 12 kb. 
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Transgcne transcription was demonstrated by Ri'-PCR, using primers that non-

selectively amplify both cndogenous and transgenic Rad5l. As shown in figure 32, 

digestion of the rctrotranscribcd cDNAs with J\,Tsil (whose recognition sequence is 

present in the endogenous gene, but not in the transgene) reveals the existence of two 

different Rad5l mRNA populations in the cell extracts. The possibility that the uncut I 

kb fragment represented only incomplete digestion of the endogenous transcript was 

eliminated by digestion with Xhol (which gave two extra 0.5 kb bands corresponding to 

the transgenic transcript) and Northern blotting, which specifically showed expression 

of HsRad5l. Under stringent conditions, a HsRad5I-derived probe specifically 

hybridises with the transgenic transcript, as confirmed by the absence of signal in non-

transgenic controls (figure 33). 

in 

Nsil 

A 	 mRad5l 
0.7 kb 	 ____ 	__ 

0.3 kb 	
_ 

 

0.5 kb 	>Xhol 
V 

HsRcid5l 

B 

5,  

UC Ri 	R2 	P3 	R4 P5 R6 R7 R8 R9 RIO UC M 

Figure 32. (A) Schematic depiction of the two mRNA populations, mouse (m-) and hamster (I is-)Rad5l, 
amplified by RT-PCR using the primers 57 G C A G A T A C .1.. ..C A G T G G A A G3' (forward, 
green) and 5'A G A C A G G G A G A G T C A T A G A3' (reverse, red). Relative position of the Ni-il 
and Xhol recognition sequences in mRad5l and FlsRad5l are indicated. (B) NO ovcrdigtstion (5 hours) 
of the —1kb Rad5I band RT-PCR-amphficd from rransgcnic RNA extracts (IJC) yields three bands in all 
clones examined (RI-RIO). The two lighter bands (-700 and 300 bp, in blue) correspond to endogenous 
Rad5I transcripts. The heaviest band (-1 kb, in red) may represent transgenic hsRad51 transcripts, which 
lack the NciI recognition sequence. 
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Using human Rad5l antibodies (no commercial anti-lIsRad5l is available), 

Rad5l signals could not he detected by Western blot (figure 34). Thus, clonal variability 

in transgcnc expression was assessed by Northern analysis. 

411601 4. 
­ 

RI 	P2 	R3 	R4 
	

R5 	P6 	R7 	R8 	R9 	RiO 	C 

Figure 33. Northern analysis of clones RI-b. Membranes were probed with a 0.38 kb Xhol-.Sspl 
I IsRadSi-denved cDNA probe. Using stringent hybridisation conditions, this probe does not hybridise to 
endogenous rnRad5 I transcnpts (C, control). Loading (15 ig/lane) was similar in all lanes, as determined 
by cthidiurn-bromide staining of the gel prior to blotting. An actin control would have been necessary to 
unequivocally demonstrate RadSl overexpression. 

Ri 	R2 	R3 	R4 	P5 	R6 	R7 	P8 	R9 	RIO 

Figure 34. Western analysis of clones Ri -10. MOUSC monoclonal anti- human RadSI iIfltil)OdieS 
((;ene'lcx) were used in conjunction with anti-actin (Sigma) antibodies as loading control. The two 
primary antibodies were added in different combinations, both sequentially and simultaneously. The 
observed bands represent the ubiquitous 42 kI) actin protein. R05 I bands (38 kD) could not be detected 
(loading 20 g/liuie). 

In order to study the effect of RadSl ovcrexprcssion on gene targeting, I !PR7' 

effective targeting frequency (I ..T.F.) was calculated for two clones with strong 

rransgene expression (R7 and R9). Following the experimental design described in page 

108, l.I.F. was found to be up to 4-fold that observed in wild-type parental F.14 IS 

cells (table 14 and figure 35). This increase is statistically significant within experiments 

1220.17; = 5.317; P = 4.93 x 10 10 < 0.05) and reflects a net increase in the 

absolute number of IIPR'I-targctcd (6-T(; resistant) clones rather than a decrease in the 

rate of illegitimate recombination. 
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Puromycin' 

colonies 

6TGR colonies E.T.F (%) Group E.T.F. 

mean /- S.E. 

Clone R7 1 1732 567 32.73 32.61-/- 0.552 

2 1584 518 32. 

3 1607 496 30.86 

4 1677 576 34.34 

5 1554 504 32.43 

Clone R8 1 1119 200 17.87 15.26 V.0.834 

2 1256 204 16.24 

3 1472 223 15.15 

4 1312 175 13.33 

5 1524 209 13.71 

E14 (control) 1 1628 136 8.35 8.42 -1- 0.417 

2 1500 107 7.13 

3 1227 99 8.06 

4 1198 115 9.59 

5 1325 119 8.98 

Table 14. E.T.F. in Rad5l-transgenic clones R7 and R8. 300 i.g of p2017 were used per experiment. 
Every entry represents an independent experiment. S.E., standard error. 

Effect of Rad5l overexpression on E.T.F. 

Ri 	 RB 	 E14ctrOI 

Figure 35. Effect of constitutive Rad5l overexpression on E.T.F. Y bars: Standard error for each group. 
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c.2.E.T.F. in Rad5l-transgenic/p53 null cells 

Although it has already been proven that p53 inactivation per se has no 

effect on gene targeting frequency in ES cells (pages 124-130), it was thought that 

overexpression of Rad5l protein in cells devoid of this mechanism of control may result 

in even higher rates of homologous recombination.  In order to test this hypothesis, p53-

nullizygous/Rad5 I -overexpressing ES cell lines were generated by stably transfecting 

HG-287 cells (given by A. Clarke) with pSV-Zeo/Rad5l. Ten zeocin-resistant clones 

were selected and analysed for Rad5l expression as previously described (figure 36). 

A 	 Actin - 

(control) 
"s Rad5l 

B 	1 	2 	3 	4 	5 6 	7 	8 	9 	10 

A 

control 

C 

UC 	1 	2 	3 	5 	6 	7 	8 	10 

1.0 kb 

0.7 kb 

0.3 kb 

Figure 36.(A) Western analysis of Rad5l expression in p53-/- cells transfected with pSVZeo/Rad5l. As 
previously explained, the lack of Rad5l signal might be due to the low affinity of the human antibody 
utilised (loading, 20 ig/lane). (B) Northern analysis shows HsRad51 expression in transgenic p53 -/-
clones (loading, 15 ig/1ane) (C) RT-PCR analysis of clones 1-3, 5-8 and 10 shows the presence of 
HsRad5l and endogenous mRad51 in the amplified transcript (see figure 4 for more details). 
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E.T.F. was calculated as above for clones 53/6 and 53/10, which showed strong 

levels of Rad5l expression. HG-287 ES cells were used as controls. As summarised in 

table 15 and figure 37, E.T.F. is consistently higher in both transgenic clones than in 

HG-287 (F2,6=  50.764; 5.143; P = 0.00017 < 0.05). A two-fold increase in E.T.F., 

comparable to that observed in R8, was observed in 53/10 cells. 

Puromyc ink 

colonies 

6-TG5  colonies E.T.F (%) Group E.T.F. 

mean /- S.E. 

Clone 53/6 1 1815 232 12.78 12.74/-0.765 

2 1718 196 11.40 

3 1800 253 14.05 

Clone 53/10 1 1379 222 16.09 17.52 '7-0.724 

2 1652 298 18.03 

3 1702 314 18.44 

HG 287 control 1 1567 142 9.06 8.39 /- 0.347 

2 1698 134 7.89 

3 1761 145 8.23 

Table 15. Effect of constitutive Rad5l overexpression on E.T.F. Every entry represents an 
independent experiment. SE.: standard error for each group. 

E.T.F. In p63-deficlent!Rad61 overexpresslng ES cells 
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Figure 37. Effect of constitutive Rad5l overexpression in p53-deficient cells on E.T.F. Y bars: Standard 
error for each group. 
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c.3 co-electroporation approach 

Having demonstrated that constitutive overexpression of Rad5l results 

in higher targeting frequencies, we next decided to investigate whether this could also be 

achieved by transient up-regulation of RadSl. One possible strategy would be the 

simultaneous transfection of the targeting vector and a Rad5l supercoiled expression 

plasmid. This idea is based on the well-known fact that circular DNAs tend to remain 

episomal and maintain their expression for a few days before getting degraded. A molar 

excess of the Rad5l construct over the targeting vector would ensure that most of the 

cells transfected with the latter also incorporate the former. Finally, critical for the 

success of this strategy was the assumption that there is enough time for Rad5l to 

accumulate upon transfection before targeted integration takes place. 

To investigate this possibility, E14 ES cells were electroporated with two 

different DNA mixtures. A first group of cells (test group) received circular 

pSVZeo/Rad5l (230 rig) and XhoI-1inerised p2017 (200 pg). This represents a 3:1 

molar ratio of the Rad5l expression plasmid over the targeting vector. As a control, a 

second group of cells was co-electroporated with p2017 and pTracer (Invitrogen), an 

empty expression vector with a structure similar to that of pSVZeo/Rad5l and roughly 

the same size. While keeping the amount of p2017 unchanged (200 .tg), 238 p.g of 

pTracer were added to maintain the same proportion between the two DNA species. 

HPRT effective targeting frequency was calculated for the two groups of cells. As 

shown in table 16 and figure 38, there is an statistically significant 4.5-fold stimulation of 

gene targeting in cells co-transfected with pSVZeo/Rad5l compared to the control 

group (ANOVA F1 ,,8  = 233.55; = 5.317; P = 3.37 X 10 <0.05). Compared with a 

second control (cells electroporated with targeting vector only), Rad5l-cotransfection 

results in a 1.7-fold E.T.F. increase (ANOVA F 18  = 58.47; F,,it  = 5.317; P = 6.03 X iO 

<0.05). 

139 



Puromycin5  

colonies 

6-TGR colonies E.T.F (%) Group E.T.F. 

mean /- S.E. 

T.V. + Rad5l 1 1264 209 16.53 15.502 	/- 0.77 

2 1243 196 15.76 

3 1150 184 16 

4 1345 225 16.72 

5 1400 176 12.5 

T.V. alone 1 1156 105 9.08 9.104 1- 0.326 

2 1201 97 8.07 

3 1261 116 9.19 

4 1056 107 10.13 

5 1358 123 9.05 

T.V. + pTracer 1 3148 119 3.78 3.548 /- 0.102 

2 3408 117 3.43 

3 3075 105 3.41 

4 2980 118 3.96 

5 3014 100 3.31 

Table 16. Effect of co-electroporation of the targeting vector (p2017. T.V.) with pSVZeo/Rad5l (Rad5l) 
or pTracer (Invitrogen). A 3:1 molar ratio circular plasmid (230 : T.V. (200 !.tg) was used in both cases. 
Targeting vector alone (T.V., 200 4 was used as control. 

Effect of Rad5l co.eIectroporaon on E.T.F. 
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Figure 38. Effect of RadSl co-electroporation on E.T.F. Y bars: Standard error for each group. 
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c.4.p201 7/51 

The observation that co-electroporatK)n with p'l'racer results in a marked 

decrease in l.'1'.l. suggests that there may be side effects associated with the entry of a 

high number of DNA molecules into the cell (see Discussion). It was thought that this 

problem could be overcome by engineering the Rad5l expression cassette into the 

targeting vector. This would ensure the simultaneous presence of both elements in all 

translected cells without increasing the molar amount of DNA. To this purpose, a 1.9 

kb hagl fragment of pSVZeo/Rad5 1 encompassing the I !sRad5l ORF, the SV40 

immediate-early promoter and the SV4() poly-adenylation tail, was subcloned outside the 

region of I IPR1 homology in p2017 (sec Materials and Methods). In order to determine 

whether or not Rad5l is expressed from this vector (p2017/51),  RNA was recovered 

from transiently transfected cells and WI'-PCR- amplified using RadSi primers. As 

previously discussed in page 134, these primers amplify both endogenous and transgenic 

transcripts. After five cycles of PCR, DNA was overdigested with XhoI, which 

selectively Cuts mouse RadSi cDNA but leaves intact the transgenic llsRad5l cI)NA 

(see Materials and Methods). PCR was allowed to proceed For 30 cycles more and 

samples were run in a I % agarose gel. A 1 kb band corresponding to the endogenous 

transcript is observed in XhoI digests. Samples digested with Nc/I show a weaker signal 

that may correspond to the transgenic transcript, but not those digested with both NsiI 

and Xhol (which cuts the transgenc) (figure 39). 

1 kb 

1 	2 	3 

Figure 39. RT-P(;R-amplified Rad5l transcripts (mRad5l and HsRad51) from p2017/51-transiently 
trans fected cells were selectively digested (5 hours) with Xbol (which cuts I IsRad5l) and/or N371 (which 
cuts mRad5l) after 5 PCR cycles. Following digestion, PCR was allowed to proceed for 30  cycles. Lane 
1: double XhoI/NsiI digestion (no band); Lane 2: XhoI digestion; Lane 3: Nszi digestion. These 
experiments were not controlled for contaminating genomic DNA amplification (discussion in page 
150). 
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p2017/51 was subsequently linearised (Noll) and used to conduct targeting 

experiments in E14 wild-type cells (200 4g/e1ectroporation). 150 jig of p2017 (molar 

ratio 1:1) were used to transfect control cells. 

Puromycin 

colonies 

6TGR colonies E.T.F (%) Group E.T.F. 

mean /- S.E. 

p2017'51 1 442 31 7.013 7.622/-0.755 

2 526 48 9.125 

3 431 29 6.728 

p2017 1 631 49 7.765 7.438 	/- 0.217 

2 598 45 7.525 

3 612 43 7.026 

Table 17. Effect of p2017/51 on E.T.F. Every entry represents an independent experiment. SE.: 
standard error for each group. 
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Figure 40. Effect of p2017/51  on E.T.F. Y bars: standard error for each group. 

A one-way ANOVA analysis of the data shown in table 17 and figure 40 

indicates that the differences between the E.T.F. means obtained with p2017 and 

p2017/Rad5l are not statistically significant (F 14  = 0.054; = 7.708; P = 0.827 > 

0.05). 
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c.5.VP22-Rad5l 

It has already been proven that an excess of Rad5l results in enhanced 

rates of homologous recombination. Ideally, we would like to transiently provide this 

extra amount of enzyme at the time of transfection via a non-transgenic approach. The 

properties of the viral protein VP22 (discussed in Introduction) seemed to be specially 

suited for this purpose. Using a VP22-Rad5l fusion transgene (page 84), two 

approaches were designed to transport the chimaeric protein into target cells: (1) Go-

culturing ES cells in the presence of \TP22-Rad5l-stably transfected STO feeder 

fibroblasts; and (2) Sequential electroporation with the VP22/Rad51 transgene (day 1) 

and the targeting vector (day 2). 

\TP22Rad51-transgenic feeder cells were created by electroporating STO's with 

100 jig of linearised pVP22/Rad5l. Seven G418 resistant clones were amplified and 

screened by Southern blot for the presence of the transgene (data not shown). VP22-

Rad5 1 expression was determined by Western blot in five positive clones, as shown in 

figure 41. 

68410 
4" ~& 4M 40 40 

1 	2 	 3 	4 	5 	6 

Figure 41. Western blot of VP22-Rad5l-transgenic STO feeder cell lines. Primary antibody: rabbit anti-

iiyc tag (NBL). Secondary antibody: mouse anti IgG-HRP (Sigma). Lanes 1-5, stable \ ,T22-Rad5l 
transfectants (as determined by Southern blot). Lane 6: Control (untransfected cells). Coomasie-blue 
staining of a replica polyacrylamide gel was used as loading control. The size of the protein is in the 
region corresponding to the 75 kD rainbow marker (Amersham). This is approximately the predicted size 
of the fusion protein (38kD Rad5l + 32 kD \T22 + 6 kD 6xHis and my tags). Loading 15 .Lg/lane. 
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In order to establish the translocation properties of VP22-Rad51, clone 4 (which 

showed strong expression of the protein in the Western blot) was co-cultured with 

wild-type STO fibroblasts in a 1:50 ratio. Slides were fixed after 48 hours and then 

immunostained with an antibody raised against the óxHis tag of the fusion protein 

(figure 42) 

A 	 B 

Figure 42. Staining resembling the pattern expected of \T22-Rad5l trasnslocation was observed by 
fluorescein-immunostainmg of VP22-Rad5l STO cells co-cultured with normal STOs (1:50 ratio) for 48 
hours (A). Primary antibody: mouse anti-6xHis (Invitrogen); secondary antibody: goat anti-IgG-
fluorescein conjugate (Calbiochem). White arrows show cytoplasmic staining (fluorescein, green) of 
\TP22Rad51 -expressing cells. Orange arrows indicate VP22-Rad5l -stained nuclei. Blue is nuclear 
counter-staining (DAPI). However, the frequency of this observation was low. VP22-Rad5l -expressing 
cells were normally surrounded by non-stained cells, as shown in (B). Therefore, the possibility of a 
staining artifact cannot be ruled out. 

Although it was not possible to unequivocally prove widespread occurrence of 

this phenomenon, staining resembling that expected of VP22 translocation (cytoplasmic 

staining in VP22-Rad5l transgenic cells and nuclear staining of neighbouring cells) was 

occasionally observed. Despite its low frequency, it was decided to proceed with 

targeting experiments. 

In a first set of experiments, wild-type ES cells were cultured for 48 hours in the 

presence of (a) VP22/Rad5l STO clone 4 feeder layers, or (b) normal STO feeder 

layers. E.T.F. was calculated following transfecuon with 150 1.tg  of p2017. A one-way 

ANOVA analysis of the results presented in table 18 and figure 43 indicates that the 

hypothesis that the means of the two groups analysed are the same cannot be rejected 

(F 4  =7.033; = 7.708; P = 0.056 > 0.05). 
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Lu 4  

: 

VP22-Rad5l STOs 	 Control STOs 

Puromycin 

colonies 

6TGR 

colonies 

E.T.F (%) Group E.T.F. 

mean '/- S.E. 

VP22-Rad51 STOs 1 536 44 8.208 7.444 	/- 0.420 

2 638 47 7.366 

3 577 39 6.759 

Normal STOs 1 576 36 6.25 6.229 	0.182 

2 525 31 5.904 

3 612 40 6 . 535 

Table 18. Effect of incubation with VP22/Rad5l STO's on E.T.F. Every entry represents an 
independent experiment. SE.: standard error for each group. 

Effect of co-culture with VP22-Rad5l STOs on E.T.F. 

Figure 43. Effect of incubation with VP22/Rad5l STO's on E.T.F. Y bars: standard error for each 
group. 

In the second experimental approach, lO ES cells were lipofected (Effectene, 

Qiagen) with I .ig of circular pVP22/Rad5 1. Three controls were done by transfecting 

similar ES cell populations with equimolar amounts of pVP22 (Invitrogen), pTracer 
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Puromycin' 

colonies 

6TGR colonies E.T.F (%) Group E.T.F. 

mean /- S.E. 

pVP22-Rad51 1 108 5 4.62 4.256 	/- 0.197 

2 95 4 4.21 

76 3 3.94 

pVP22 1 84 3 3.57 3.163 	0.267 

2 92 3 3.26 

3 75 2 2.66 

pTracer 1 64 2 3.12 2.480 	/- 0.430 

2 75 2 2.66 

3 60 1 1.66 

pSVZeo/RadSl 1 91 2 2.19 2.976 /-0.425 

2 82 3 3.65 

3 97 3 3.09 

Table 19. Effect of transient pre-lipofection (1 .tg) with pVP22/Rad5l, pVP22, pTracer or 
pSVZeo/RadSl (day 1) on E.T.F. (calculated after transfection with 1 tg of p2017 on day 2). Every entry 
represents an independent experiment. S.E.: standard error for each group. 

Effect of pre-transfection with VP22irad6l on E.T.F. 

Figure 44. Effect of transient pre-lipofection (1 .tg) with pVP22/Rad5l, pVP22, pTracer or 
pSVZeo/Rad5l (day 1) on E.T.F. (calculated after transfection with I jig of p2017 on day 2). Y bars: 
standard error for each group. 
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(Invitrogen) and pSVZeo/Rad5l. 24 hours later medium was removed and all four 

plates lipofected again with I pg of p2017. Puromycin selection and 6-TG selections 

were applied as usual. The results are summarised in table 19 and figure 44. In this case, 

an ANOVA analysis of the four groups shows that the difference between E.T.F. means 

are statistically significant (F 8  = 4.709; F= 4.066; P = 0.035 < 0.05). 

d. discussion 

The Northern blots described in pages 135 and 137 (using a probe that 

specifically hybridises with the transgenic transcript) suggest that hamster RadSl may be 

overexpressed in transgenic ES cell clones. Untransfected controls show no signal. 

Although a proper loading control (i.e. actin) would have been desirable, RNA was 

carefully quantitated and absence of RNA degradation in all lanes was confirmed by 

ethidium bromide staining prior to blotting. The level of Rad5l overexpression could 

not be calculated by Western blot, because the human RadSl antibodies used in this 

work do not hybridise with the hamster protein. RT-PCR experiments show a band that 

may correspond to the transgenic transcript. The weakness of this band compared to 

that corresponding to the endogenous transcript might reflect the preferential 

amplification of the latter over the transgenic mRNA, rather than their relative 

expression levels. Sequencing of the DNA regions used to design the primers would be 

necessary to confirm that there are no point mutations in the transgene that could 

impair RT-PCR amplification. 

This study demonstrates for the first time that targeting efficiency can be 

enhanced in ES cells following stable transfection with a Rad5l cassette. Similar results 

have been independently reported in human cells by Yñez and Porter (1999), which 

proves the validity of this approach in other testing systems. These findings are in 

agreement with the idea that Rad5l levels are rate-limiting in homologous 

recombination (Baumann and West, 1998), and raise interesting possibilities for the 

design of novel strategies to enhance targeting frequency. 
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The physical interaction of p53 with Rad5l in vivo (Sturzbecher et al., 1996) has 

been interpreted as a manifestation of the critical role of p53 in controlling genomic 

stability. In this context, it has been proposed that hyperrecombination phenotypes in 

p53-deficient cells are the direct consequence of the loss of p53 control over the process 

of homologous recombination (Buchhop et al., 1997). Direct evidence to support this 

model comes from the observation that specific biochemical activities of the Rad5l 

bacterial homologue recA, such as DNA strand exchange, are inhibited by p53 in iiitro 

(Sturzbecher et al., 1996). We show here that overexpression of Rad5l in p53-deficient 

ES cells results in increased (up to 2-fold) targeting frequencies compared to non-

transgenic controls, but not higher than those observed in p53 +/+/RadSl-

overexpressing clones. This result confirms that p53 is not directly involved in the 

regulation of homologous recombination in ES cells (pages 124-130) 

Although these experiments unequivocally establish the principle that 

constitutive expression of Rad5l enhances the rate of homologous recombination, 

generation of stable Rad5l transfectants is impractical as a general scheme to improve 

gene targeting frequency. Homologous recombination-based gene therapy protocols, for 

instance, cannot rely on the previous introduction of a transgene in the target cells. 

Besides, it can be reasoned that permanent up-regulation of the recombination 

machinery may destabilise the genome and ultimately lead to cell death. 

In contrast, transient overexpression of Rad5l could be the basis of 

experimental approaches aimed at creating a temporary window of time during which 

the process of homologous recombination would be highly favoured. This would 

minimise the risk of uncontrolled genomic rearrangements in the long term. To this 

purpose, three novel strategies have been examined, namely: (1) co-transfection of the 

targeting vector with a Rad5l-expression cassette; (2) engineering of a Rad5l expression 

cassette within the targeting vector; and (3) non-transgenic delivery of a VP22-Rad5l 

fusion protein. 

We report here a —4.5-fold enhancement in E.T.F. when the targeting vector 

(p2017) is co-electroporated with a Rad5l-expression cassette (pSVZeo-Rad5l), 

compared to controls where the co-transfected plasmid does not contain any RadSl 
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sequence (pTracer). However, unlike previous observations in experiments conducted in 

Rad51-transgenic lines, this result is mainly a consequence of an average-2.5-fold 

enhancement of illegitimate recombination in cells co-transfected with p2017 and 

pTracer compared to those receiving p2017 and pSVZeo-Rad5l (puromycin resistant 

colonies mean = 3125 and 1280, respectively) (table 16). 

In contrast, there are no-significant differences between the groups transfected 

with p2017 + pSVZeo-Rad5l and p2017 alone in the average number of colonies 

recovered after puromycin selection (puromycin resistant colonies mean = 1280 and 

1206, respectively). The average number of 6-TG resistant colonies observed in the 

p2017 + pSVZeoRad51 group (198) is —1.8-fold higher than in the other two groups 

(112 and 109 for p2017 + pTracer and p2017 alone, respectively). 

Since none of the circular plasmids (pSVZeo-Rad5l and pTracer) is selectable in 

puromycin, these results suggest that there may be a specific hyperactivation of the 

illegitimate recombination pathway associated with the entrance of a relatively high 

number of non-homologous DNA molecules into the cell. This would affect the 

integration pattern of both the targeting and the expression vectors, although the 

selection used (puromycin) only allows measurement of the integration level of the 

former. Up-regulation of the illegitimate integration pathway would therefore result in a 

higher number of puromycin resistant colonies and a proportional decrease in E.T.F. (as 

observed in the p2017 + pTracer group). 

However, when the molecule in excess contains a RadSl expression cassette 

(pSVZeo/Rad5l), the frequency of non-homologous integration of p2017 is not 

enhanced. This could be explained if transient Rad5l overexpression down-regulates 

illegitimate integration in favour of the homologous integration pathway. The notion 

that high RadSl levels may result not only in enhanced homologous recombination 

levels (as observed in cells co-transfected with p2017 and pSVZeo-Rad5l), but also in 

down-regulation of the NHEJ pathway, is introduced to account for the observation 

that the total number of integrants in this group is approximately the same as in cells 

electroporated with the targeting vector alone. The fact that NHEJ is not significantly 

decreased in Rad5l stable transfectants (table 14) suggests that this hypothetical Rad51- 
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mediated down-regulation of NHEJ may be an specific response to the overactivation 

of this pathway resulting from the cellular uptake of a high number of DNA molecules. 

A speculative model is proposed in figure 45 to explain these observations. 

In order to circumvent the side effects associated with the co-electroporation 

approach, it was decided to engineer a Rad5l expression cassette directly into the 

targeting vector. By placing this cassette outside the region of HPRT homology, 

homologous recombination events result in its loss. Based on the results of the co-

transfection experiments, it was thought that there may be a time window sufficient for 

the expression and accumulation of RadSl prior to integration. However, targeting 

experiments using p2017/51 and p2017 as a control show no difference in E.T.F. This 

can be explained by several reasons. First, RT-PCR data about Rad5l expression from 

p2017/51 (page 141) are not conclusive, since Nsil-uncut mouse Rad5l cDNA may 

theoretically account for the band observed in lane 3 of figure 39. Expression of RadSi 

from a linear targeting vector may be less efficient than from the supercoiled Rad5l 

plasmid. In addition, the RT-PCR results cannot rule out the possibility of point 

mutations in the RadSl ORF, which would result in the synthesis of a defective protein. 

Finally, even if the protein is functional and expressed normally, the overall size of the 

vector (over 16 kb) may decrease the efficiency of nuclear uptake. 

As an alternative to strategies based on the overexpression of Rad5l from a 

transgene, it was thought to transiently provide the target cells with a supplement of the 

protein itself. Since large peptides do not spontaneously penetrate the cellular 

membrane, Rad5l was fused in frame with the \TP22  carrier protein, which translocates 

between adjacent cells and accumulates in the nucleus of recipient cells. The moderate 

E.T.F. increase observed after co-culturing target ES cells with VP22-Rad5l-transgenic 

STO feeder layers is not statistically significant. There is a significant enhancement of 

E.T.F. when cells are pre-electroporated with pVP22/Rad51, but the low number of 6-

TG resistant colonies recovered per experiment (1-5) makes it difficult to unequivocally 

determine whether this enhancement is due to VP22-Rad5l import. Optimisation of 

this experimental design would serve to draw more consistent conclusions. It is clear 

from the immunostaining analysis that, even if VP22-Rad5l translocation takes place, its 

extent may be lower than expected. This can be one of the reasons for the lack of a 
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more dramatic enhancement of E.T.F. As previously discussed, the presence of 

undetected point mutations in key regions of VP22 and/or Rad5l may also severely 

impair the properties of the fusion protein. Lastly, the possibility that VP22 may alter 

the recombinogenic properties of RadSl cannot be discarded. Further studies about the 

biochemical properties of VP22/Rad5l in vit,v would be necessary to clarify this point. 

A 	 B 	 C 

pTrac pTrac 

A 2017 

	 000  

NHEJ flft 	 HR NHEJ 	
NHEJ 

D 	 E 	 F 

EJ 

3 
NHEJ fffl1 HR NHEJ 	 Rad5l 

Figure 45. Hypothetical model to explain the effect of the electroporation of pSVZeo/RadSl or pTracer 
with p2017 on E.T.F. Top (A, B, C), pTracer co-electroporation; bottom (D, E, F), pSVZeo/Rad5l co-
electroporation. When any two plasmid species are co-transfected, three basic situations can be 
considered: in (A) and (D) only the circular, non-homologous plasmid enters the cell. We propose that 
this event may up-regulate NHEJ, but is undetectable due to the selection used (puromycin). In (B) and 
(E), only p2017 enters the cell. This may result in either homologous (HR) or illegitimate (NI-IEJ) 
recombination. In (C), both p2017 and pTracer enter the cell. This improves the frequency of non-
homologous integration of p2017, which results in a very low E.T.F. However, when pSVZeo/Rad5l is 
co-electroporated (F), the plasmid number-mediated up-regulation of NHEJ is compensated by the 
repression of this process by Rad5l (red dots), and the overall rate of illegitimate recombination remains 
unaffected. The effects of plasmid number and Rad5l cancel each other out, as indicated by a red cross. 
Rad5l also has a positive effect on homologous recombination and therefore targeting frequency is 
enhanced. 
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iii.down-regulation of PARP and 
NHEJ enzymes 

a.introduction 
b.objective 

c.results 
d.discussion 

a.introduction 

Illegitimate recombination or non-homologous end-joining (NHEJ) is a major 

pathway for the repair of chromosomal DSBs in the DNA of somatic cells, as well as 

the specific process of V(D)J recombination in the immune system. In contrast with 

yeast, homologous recombination seems to play only a complementary role in 

mammalian cells. The only exception of this general rule is meiosis. Over the past few 

years, inactivation of genes involved in these two pathways has been used to gain a 

clearer understanding of their interaction and regulation. The fact that knockouts of 

some key NHEJ enzymes (such as Ku70, Ku80 or DNA-PK) are viable suggests that 

other mechanisms may take over the general process of DNA repair when the NHEJ 

mechanism is impaired. This is consistent with the observation that Ku proteins are 

strongly downregulated during meiosis, which has led to the hypothesis that Ku levels 

may determine the choice between homologous and non-homologous recombination 

pathways (Goedecke et al., 1999). 

In this context, the aim of this chapter is to assess whether down-regulation of 

NHEJ results in up-regulation of homologous recombination, measurable in terms of 

gene targeting frequency. To this purpose, we have examined effective targeting 

frequency in DNA-PK, and Ku80 nullizygous cells, as well as following PARP down-

regulation. Although PARP is not directly involved in NHEJ, it has been proposed that 

its activation may act as a switch between the two main DNA-repair processes. 
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According to the model described in page 22, DSB-induced poly(ADP-

ribosyl)ation of this enzyme facilitates NI-IEJ by preventing the access of the HR 

machinery to the DNA break. Numerous studies show that inactivation of PARP results 

in lower NHEJ and higher homologous recombination rates (Farzaneh et al., 1988; 

Waldman and Waldman, 1990; Semionov et al., 1999; Waldman and Waldman, 1991). 

Thus, it was hypothesised that gene targeting frequency would be increased in PARP 

knockouts and/or following PARP chemical inhibition. 

b.objective 

To determine the effect of Ku80, DNA-PK, and PARP down-regulation on 

E.T.F. 

c.results 

c. 1. DNA -PK 5  -I- ES cells 

c.2.Ku80 -I- mouse embryonic fibroblasts 

c.3.PARP -I- ES cells 

C. 4. chemical inhibition of PARP 

C.1.DNA-PKc -I- ES cells 

E.T.F was calculated in #2-35-2 (DNA-PK,, -/-), #2  (+1-) and parental 

TC-1 (+/+) ES cell lines (kindly given by Y. Gao), following electroporation with the 

targeting vector p2017  (250 pg').  Puromycin and 6-TG selections were applied as 

previously described (page 108). 
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6TGR colonies E.T.F (%) Group E.T.F. 

mean /- S.E. 

DNA-PK 8 +/+ 1 1120 130 11.6 10.76 	/-0.7O2 

2 1259 118 9.37 

3 1314 149 11.33 

DNA-PK +1- 1 698 48 6.87 734 /- 0.417 

2 456 36 7.89 

3 607 54 8.89 

DNA-PK-/- 1 120 7 5.83 6.80V-0.490 

2 97 7 7.21 

3 149 11 7.38 

Table 20. Effect of DNA-PKCS genotype on E.T.F. 250 .tg of p2017 were used per experiment. S.E. = 
Standard error for each group. 

Transfection efficiency In DNA-PK null ES cells 

Figure 46. Effect of DNA-PK genotype on transfection efficiency (measured as the number of 
puromycin resistant colonies following transfection with p2017).  Error bars: Standard error for each 
group. 
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Figure 47. Effect of DNA-PK genotype (+/+, +1-, -/-) on E.T.F. Y bats: Standard error. 

A one-way ANOVA analysis of the data presented in table 20 and figures 46 and 

47 shows that the differences observed both between transfection efficiency means (F 26  

= 108.96; F n, = 5.143, P = 1.92 X 10 < 0.05) and between E.T.F. 'S (F =11.70; Fcj,= 

5.143, P = 0.008 < 0.05) of the three groups studied, are statistically significant. 

c.2.Ku80 -I- mouse embryonic fibroblasts 

Using the same targeting vector (250 4, E.T.F. was subsequently 

determined in Ku80 -/- mouse embryonic fibroblasts (kindly given by G. U), 

immortalised with the large T antigen of SV40 (Nussenzweig et al., 1996) A 

concentration of 2.5 .tg of puromycin/mi was found to kill non-transfected cells and 

yield resistant colonies in p2017-transfected cells after 10 days of antibiotic selection. 
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Puromyc ink 

colonies 

6TGR colonies E.T.F (%) Group E.T.F. 

mean +1- S.E. 

Ku80 +1+ 1 207 0 n/a n/a 

2 326 0 n/a 

3 239 0 n/a 

Ku80 1 62 0 n/a n/a 

2 51 0 n/a 

3 32 0 n/a 

Table 21. Effect of Ku80 genotype on E.T.F. 250 ig of p2017 were used per experiment. S.E. = 
Standard error for each group. N/A, non applicable. 

Effect of Ku80 genotype on transI.ction efficiency 

Figure 48. Effect of Ku80 genotype on transfection efficiency (measured as the number of puromycin 
resistant colonies following p2017 transfection). Y bars, standard error for each group. 

As shown in table 21 and figure 48 , there is an statistically significant decrease 

in transfecuon efficiency associated with the loss of Ku80 function (F 14  = 32.57; = 

7.70; P = 0.0046 < 0.05). E.T.F. cannot be calculated because no colonies were 

recovered after 6-TG selection. 
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c.3.PARP -I- ES cells 

E.T.E was calculated for the ES cell lines 210 (PARP -7-), 226  (+1-) and 

parental wild type JI (kindly given by M. Matsutani). 300 pg of the targeting vector 

p2000 were used per electroporation. This vector (which contains a blasticidin selectable 

marker) was utilised instead of p2016 and p2017, due to the presence of neomycin and 

puromycin cassettes in the double knockouts. An antibiotic concentration of 5 pg/mi 

was found to effectively select blasticidin-resistant clones in six days (page 100). The 

results of the targeting experiments are shown in table 22 and figure 49. 

A one-way ANOVA analysis of these data shows that the 3.3-fold increase in 

E.T.F. observed in PARP -7- cells compared with wild-type controls is statistically 

significant (F14  = 279.68; F 1  = 7.708; P = 7.49 X 10 < 0.05). In contrast, the null 

hypothesis that PARP +/- and PARP +7+ means are the same cannot be rejected (F 14  = 
0.916; = 7.708; P = 0.39> 0.05). 

BlasticidinR 6-TG" colonies L.T.F e u) Group L.T.F. 

colonies mean /- S.E. 

PARP +1+ 1 745 101 13.55 12.89 	/- 0.755 

2 693 79 11.3 

3 	j 618 85 13.75 

PA.RP +1- 1 599 92 15.35 t/0799 

2 625 87 13.92 

3 588 89 12.58 

PARP 1 600 278 46.3 4304/.-1.66. 

2 683 285 41.7 

3 615 253 41.13 

Table 22 . Effect of PARP genotype on gene targeting frequency. E.T.F., Effective Targeting Frequency. 
S.E., Standard Error. 
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Effect of PARP genotype on E.T.F. 

+1+ 	 +1- 	 4- 

Figure 49. Effect of PARP genotype on E.T.F. Y bars: standard error for each group. 

c.4.chemical inhibition of PARP 

As shown in the previous section, effective targeting frequency is 

enhanced in PARP-deficient ES cells. The aim of the following experiments was to 

reproduce this effect by transiently down-regulating PARP activity in wild-type cells. 

Among the many inhibitors of poly (ADP-ribosyl)ation, 3-aminobenzamide (3-AB) is 

commercially available and has proved to be effective in a variety of cell types (Ueda and 

I Iayaishi, 1985; Lindahl el at., 1995; Guo el at., 1998; Latour et at., 2000). 

j  ES cells were incubated in different concentrations of 3-AB (Sigma) for 24 

hours before electroporation with p2017 (250 pig). Puromycin and 6-TG selections were 

applied as described (page 108). The results are shown in table 23 and figure 50. 
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PuromycmR 

colonies 

6TGR colonies E.T.F (%) Group E.T.F. 

mean /- S.E. 

1mM3-AB 1 1672 142 8.49 8.38/-0.274 

2 1422 125 8.79 

3 1780 140 7.86 

5 	m 3-A13 1 1578 179 11.34 11.15 	/- 0.120 

2 1705 191 11.2 

3 1372 150 10.93 

10 mM 3-AB 1 516 21 4.06 3.71 	/- 0.173 

2 509 18 3.53 

3 619 22 3.55 

Control 1 1455 130 8.93 8.81 4/  0.188 

2 1444 122 8.44 

3 1567 142 9.06 

Table 23. Effect of 3-AB-mediated downregulauon of PARP activity on gene targeting frequency. 
E.T.F., Effective Targeting Frequency. S.E., Standard Error. 

Effect of 3-AS Incubation on E.T.F. 

12 

10 

u 6 

ui 

 

Control 	 1mM 	 5 mM 	 10 MM 

Figure 50. Effect of PARP down-regulation by 3-AB on E.T.F. Y bars: Standard error for each group. 
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A one-way ANOVA analysis of the above data demonstrates that E.T.F. is 

significantly enhanced ('-30 %) in ES cells treated with 5 mM of 3-AB (F 14  = 109.89; 

Fcrit  = 7.708; P = 0.000468 < 0.05) and decreased (2.4 - fold) after treatment with 10 

mM of 3-M13 (F,,4 = 395.30; F,, it  = 7.708; P = 3.78 X 10 < 0.05) when compared with 

untreated control cells. Treatment with 1 mM of 3-AB has no effect on E.T.F. (F 14  = 
1.669 ; Fcit  = 7.708; P = 0.265> 0.05). 

d.discussion 

Inactivation of Ku80 has been shown to result in severe impairment of the 

NHEJ DNA-repair pathway in mammalian cells (Nussenzweig et al., 1996). Both Ku70 

and Ku80 knockout mice are viable but immunocompromised due to defects in V(D)J 

recombination (Featherstone and Jackson, 1999b). These animals are usually much 

smaller than their heterozygous littermates, and somatic cells isolated from them often 

fail to proliferate and show premature senescence in zitro (Nussenzweig et al., 1996; Gu et 

al., 1997). It has been suggested that this phenotype is a consequence of a slower rate of 

cell division, given the inability of Ku-deficient cells to efficiently repair DNA damage 

after checkpoint arrest (Featherstone and Jackson, I 999a,b). Disruption of Ku70 and 

Ku80 results in very similar phenotypes, and it has been observed that the loss of one 

subunit destabilises the other (Smider et al., 1994; Taccioli et al., 1994; Errami et al., 

1996). Unlike Ku80, however, a small level of lymphocyte development has been 

reported in Ku70 null mice (Gu et al., 1997). Homodimerisation of Ku80 in the absence 

of Ku70 has been proposed to account for this residual NHEJ activity (Featherstone 

and Jackson, 1999a). For this reason Ku80 was chosen over Ku70 as the subject of this 

study. Based on observations by Goedecke et al. (1999) and Parsons et al. (2000), our 

working hypothesis was that down-regulation of the non-homologous recombination 

pathway may result in homologous recombination taking over the process of genomic 

integration of exogenous DNA, and therefore in enhanced targeting efficiency. 
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Ku80 -I- mouse embryonic fibroblasts (MEF's) were used instead of null ES 

cells, which were not available at the time this work was started. Immortalisation of 

these cells with the large T antigen of SV40 (G. Li, personal communication) was 

essential to maintain them in culture. Targeting experiments using wild-type 

immortalised MEF's as a control show that transfection efficiency is decreased -5-fold 

in Ku80-deficient cells. This result is consistent with the prevailing idea that integration 

of exogenous DNA occurs preferentially through illegitimate recombination. No 6-TG 

resistant colonies could be recovered, which would be the case if the frequency of 

homologous recombination is too low to be detected in this system. This can be 

explained either by (a) the different genetic backgrounds of the nullizygous mice and the 

129 strain from which the targeting vector was developed or (b) the observation that 

Ku80-deficient cells exhibit excess degradation of extrachromosomal DNA (Liang and 

Jasin, 1996). In any case, the fact that none of the puromycin resistant colonies obtained 

from null MEF's were homologous recombinants (page 156) shows that illegitimate 

integration takes place in the absence of functional Ku80 protein. This result also rules 

out the hypothesis that the choice of NHEJ or homologous recombination to integrate 

exogenous vectors depends on the level of Ku protein. As previously proposed to 

explain V(D)J NHEJ residual activity in Ku70 -I- mice, homodimerisation of the 

remaining Ku70 protein can be responsible for a small number of non-homologous 

integrants. Alternatively, other enzymes of the NHEJ pathway may account for the 

random integration of the targeting vector in the absence of Ku. One of such enzymes 

is DNA-PK( . In most systems studied, this protein is recruited by Ku70/80 to DSBs, 

where it has been proposed to play structural and signal transduction roles in NHEJ-

mediated DNA repair (Gary el al, 1997). DNA-PK, knockout mice have a phenotype 

very similar to that observed in Ku70-null animals, including impaired V(D)J 

recombination and severe immunodeficiency (Bogue et al., 1998). Unlike Ku knockouts, 

however, DNA-PK,-deficient mice have a normal size (Gao et a/., 1998) and cultured 

cells do not show slow proliferation or early onset of senescence (Featherstone and 

Jackson, 1999a). This, together with the identification of DNA-Plc-independent 

functions for Ku in V(D)J recombination (Gao et al., 1998) has led to the hypothesis 

that although both enzymes function in the same DNA repair pathway, DNA-Plc is 

only necessary to repair a subset of lesions. 
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To determine whether DNA-PK is responsible for the phenotypic leakiness 

observed in Ku80-deficient cells, it would be necessary to conduct the same targeting 

experiments in Ku80-null, DNA-PK-null cells. Such a double knockout has not been 

reported thus far. However, since DNA-P}ç-defective cells were available, it was 

decided to use them to confirm that down-regulation of the NHEJ pathway does not 

result in a higher incidence of homologous recombination. The involvement of DNA-

PK in illegitimate integration was confirmed by the observation that transfection 

efficiency was decreased 10-fold in the double knockouts and 2-fold in the hemizygous 

cells. Although the efficiency of DNA uptake was not controlled in these experiments, it 

is very unlikely that this factor may be affected by the knockout of a gene known to 

function at the nuclear level. As in the Ku80-null experiments, this decrease in the 

overall frequency of integrants corroborates that homologous recombination does not 

compensate for the loss of NHEJ capacity. More surprising is the fact that homologous 

recombination also decreases almost proportionally to the number of puromycin-

resistant colonies in the three genotypes analysed. If homologous and illegitimate 

recombination were completely separate pathways, the number of 6-TG-resistant 

colonies would have remained basically unaffected in the hemizygous and nullizygous 

cell lines. Although this would not have changed absolute targeting frequency, E.T.F. 

would have been significantly increased. 

Although neither DNA uptake nor plating efficiency were controlled, these 

results raise the possibility that there is a more intimate biochemical link between NHEJ 

and homologous recombination than expected. Thus far, the fact that both mechanisms 

can be independently manipulated in vitro (Waldman and Waldman, 1990; Sonoda et al., 

1999; Semionov et al., 1999; and page 17) has been interpreted as a reflection of their 

functional separation. However, several enzymes such as Mrel 1, Rad50 and Xrs2 have 

been associated with both routes Ueggo, 1998; Haber, 1998; Goedecke et al., 1999). As 

an initial hypothesis for further studies, this work suggests that DNA-PK, may be 

involved in homologous recombination as well as in NHEJ. This enzyme may stabilise 

DSBs or act as a signal transductor for the up-regulation of both NHEJ and 

homologous recombination pathways. If this is the case, then the 'switch' between both 

mechanisms would be downstream DNA-PK, activation. As previously discussed in 

pages 18-22, one candidate for such a switch is PARP. Although many aspects of PARP 



biology, function and regulation remain to be elucidated, the most commonly accepted 

models indicate that the binding of this protein to DSBs serves as a catalyst for efficient 

NHEJ, while down-regulating homologous recombination (Lindahi et al., 1995). This 

hypothesis has been tested byPark et aL (1983), Farzaneh et al. (1988), Waldman and 

Waldman (1991), Morrison et al. (1997) and Semionov et al. (1999), who proved that 

selective down-regulation of PARP not only results in a marked decrease of NI-IEJ, but 

also in enhanced sister chromatid exchange, intra- and extra-chromosomal 

recombination. In this work we aimed at determining whether PARP down-regulation 

also leads to higher targeting frequencies. In order to establish proof of principle, 

targeting frequencies were calculated in PARP -/-, +/- and -/- cells. As shown in pages 

157-158, E.T.F. is enhanced up to 3.3-fold in PARP-deficient ES cells (with a maximum 

E.T.F. value of up to 46 %). It was next sought to reproduce this effect by transiently 

down-regulating PARP by incubating wild-type cells in the presence of chemical 

inhibitors of poly(ADP-rybosyl)ation. Moderate increases in E.T.F. of up to 30% were 

observed when treating cells with 5 mM of 3-AB, a common PARP inhibitor. Lower 

concentrations of the inhibitor proved to be ineffective, whereas a higher concentration 

(15 mM) resulted in increased cell death and decreased targeting efficiency. The latter 

observation can be explained by the unspecific side effects of 3-AB, which include 

nicotinamide N-methyltransferase inhibition and impaired de novo synthesis of DNA 

(Ueda and Hayaishi, 1985). Increases of up to 4.6-fold in the frequency of 

extrachromosomal recombination have been reported following PARP down-regulation 

in mouse Ltk-fibroblasts by a much more specific inhibitor, 1,5-isoquinolinediol 

(Semionov et al., 1999). Although comparisons cannot be drawn between gene targeting 

and extrachromosomal recombination frequencies in two different biological systems, it 

is likely that 1,5 isoquinolinediol (which was not commercially available at the time of 

this work) would also result in higher E.T.F.'s in ES cells, without the deleterious effects 

of 3-AB. 

In summary, this study demonstrates that (1) targeting efficiency is not enhanced 

by partially inactivating the NHEJ-mediated DNA repair route in mammalian cells; (2) a 

residual level of exogenous DNA integration is observed in DNA-Plc and Ku80 

knockouts, which is not associated with homologous recombination; (3) DNA-Plc may 

be involved in both homologous and non-homologous recombination pathways; (4) 
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E.T.F. is significantly enhanced in PARP-deficient cells; and (5) strategies can be 

developed to increase targeting efficiency by transiently down-regulating PARP using 

specific inhibitors. In this respect, it would be interesting to determine whether these 

approaches are more successful in somatic than in ES cells. 
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Chapter VI. modifications of the 
target 

i.alteration of gene expression 
ii.alteration of cell conditions 

IUMI 



i.alteration of gene expression 

a.introduction 
b.methylation 

c.chromatin remodelling 

a.introduction 

The control of gene expression cannot be fully explained by simplistic models 

based on stage- or tissue- specific activity of transcription factors: most of them are 

ubiquitously expressed, which suggests that there may be other equally important 

mechanisms for regulating transcription. Two of such mechanisms are DNA 

methylation and histone acetylation. 

It is generally acknowledged that DNA methylation is involved in the regulation 

of developmental gene expression (rev, by Bird, 1992; Jones, 1999). Mammalian DNA is 

heavily methylated at cytosine residues within the dinucleotide sequence CpG. It has 

been hypothesised that increases in methylation at CpG islands or critical CpG sites in 

promoter/enhancer regions lead to transcriptional downregulation and gene silencing 

(Boyes and Bird, 1991; Eden and Cedar, 1994). Several studies have established that 

methylation of the 5'-end of many genes is incompatible with their expression, both in 

vitro and in vivo (Razin and Riggs, 1980; Yisraei et al., 1988; Boyes and Bird, 1991; Qu 

and Ehrlich, 1999; Siegfried et al., 1999). At a global scale, changes in the pattern of 

methylation are associated with specific developmental stages (Razin and Shemer, 1995), 

imprinting (rev, by Reik and Walter, 1998), X chromosome inactivation (Latham, 1996) 

and carcinogenesis (Counts and Goodman, 1995). 

Two basic models have been proposed to explain the silencing effects of 

methylation on transcription. A 'passive' model (cit. by Boyes and Bird, 1991) postulates 

that essential transcription factors cannot attach to their DNA binding sequences when 

these are methylated. The 'active' model, in contrast, suggests that methylated sites are 

recognised by positive or negative trans-acting proteins, which modulate gene 
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expression accordingly (Zhang et al., 1989, 1993; Nan et al., 1998). Many of these factors 

work by sequestering genes in inactive, highly condensed chromatin structures (Meehan 

et al., 1989). The repeated observation that actively transcribed genes are typically in an 

open configuration confirms that regulation of chromatin structure plays a major role in 

the utilisation of genomic information (Gross et al., 1988). 

Chromatin structure is the result of a delicate balance between the activities of 

histone acetyltransferases (HATs) and deacetylases (HDACs). HATs contribute to 

relaxing chromatin by weakening the association of the core histones with DNA 

(Norton et al., 1989), which facilitates the access of transcription factors in vitro (Lee et al., 

1993). Similarly, inhibition of HDACs normally results in upregulation of gene 

expression (Dion et al., 1997). Recent studies indicate that histone deacetylation and 

DNA methylation may operate along a common biochemical pathway to repress 

transcription (Nan et al., 1998; Jones et al., 1998; Zhang et al., 1999; Fuk et al., 2000). 

Consistent with this hypothesis is the discovery that the enzyme Dnmtl, which is 

responsible for 'maintenance' CpG methylation in mammals, has a transcriptional 

repression domain that binds histone deacetylase I (HDAC 1) in vivo (Fuks et al., 2000). 

The observation that homologous recombination and gene expression rates are 

directly correlated is well documented, as discussed in page 50 of this work. Although 

the possibility that these two processes are biochemically ]inked cannot be ruled out 

(Kassavettis and Geidushek, 1993), the widespread consensus is that this relationship 

simply reflects the increased accessibility of the chromosome to recombinases and 

homologous DNA substrates during transcription. In this context, enhanced levels of 

homologous recombination would be only a downstream and indirect effect of 

transcriptional up-regulation. 

The aim of this study was to determine whether controlled modulation of gene 

expression can be used to increase gene targeting frequency in vitro. Two experimental 

approaches have been explored to this purpose: (1) Changing the overall methylation 

pattern of recombinant substrates and (2) Relaxing chromatin structure. 
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b.methylation 

introduction 

objective 

results 

b.3.i.targeting frequency in Dnmtl -I- cells 

b.3.ii.targeting frequency in DMTase cells 

discussion 

b.1 .introduction 

It has been proposed that methylation alters chromatin structure and 

regulates the ability of recombination enzymes to catalyse strand exchange (Thomas and 

Rothstein, 1989). In plants with large genomes, such as maize, recombination seems to 

be restricted to hypomethylated regions (Whitkus et al., 1992). Also, experiments in 

Ascobolus show that DNA methylation suppresses crossing-over (Maloisel and 

Rossignol, 1998). The influence of methylation in mammalian recombination is less 

clear. Although CpG methylation has no effect on extrachromosomal recombination 

(Liang and Jasin, 1995), different recombination rates at identical chromosomal regions 

between male and female cells indicate that the pattern of methylation may have a key 

role in this process (Paldi et al., 1995). 

The DNA methyltransferase Dnmtl is responsible for cytosine methylation in 

mammalian cells, and its involvement in gene silencing has been unequivocally 

established (Tate and Bird, 1993). One mechanism by which Dnmtl-mediated 

repression is exerted might be the indirect recruitment of histone deacetylase activity, as 

discussed in the previous section. It has been recently reported that murine ES Dnmtl 

nuffizygous cells display global DNA hypomethylation, which results in elevated 

mutation rates and chromosomal abnormalities normally associated with 

hyperrecombination (Chen et al., 1998). The first priority in this study is to examine 

whether the Dnmtl -I- genotype also has an effect on the frequency of gene targeting. A 
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complementary line of research focuses on the properties of the recently identified 

DNA demethylase (Bhattacharya et a/., 1999), an enzyme that specifically removes 

methyl groups from cytosines in CpG islands. 

b2objective 

To assess the influence of methylation on gene targeting frequency. 

b.1results 

b. 3. i. targeting frequency in Dnmtl-/- cells 

Effective HPRT targeting frequency (E.T.F.) was calculated 

for Dnmtl-/- and parental +1+ ES cells (kindly given by A. Bird) following the 

transfection protocol described in page 108. As shown in figure 51 and table 24, E.T.F. 

is —50 % higher in Dnmtl-/- than in wild-type controls (ANOVA F 1 ,8  = 111.52; F,, it  = 
5.317; P = 5.64 X 10 < 0.05). 

In order to determine whether the methylation status of the vector also affects 

the efficiency of homologous recombination due to steric hindrance between the 

recombinant substrates, a parallel set of experiments was conducted using plasmid 

DNA isolated from the DM-1 E.coli strain, which is defective in the two major 

prokaryotic DNA methyltransferases (dam and dcm). Hypomethylation of the targeting 

vector was confirmed by restriction analysis using methylation-sensitive enzymes. As 

summarised in table 25 and figures 52 and 53, differences in E.T.F. between cells 

transfected with 'normal' and hypomethylated plasmid are not statistically significant, 

regardless of their genotype (ANOVA F 18  = 2.555; Fc6t  = 5.317; P = 0.148 > 0.05 for 

wild-type cells; F 14  = 0.535; 7.708; P = 0.504 > 0.05 for DnmIl -/- cells). 



PuroR 

colonies 

6-TG' colonies E.T.F (%) Group E.T.F. 

mean /- S.E. 

J1(Dnmtl+/+) 1 13'2 90 6.55 8.29 	/-0.505 

2 1304 105 8.05 

3 1200 109 9.08 

1150 109 9.47 

5 1166 97 8.31 

B (Dn.mrl-/-) 1 1107 193 17.43 15.62 	/- 0.476 

2 1238 185 14.94 

3 1129 167 14.79 

4 1367 209 15.28 

5 1324 208 15.7 

Table 24. Effect of Dnmil genotype on E.T.F. B (Dnmti-/-) andJl (wild-type) cells on E.T.F. Cells were 
transfected with 300 xg of p2017. Every entry corresponds to an independent experiment. SE.: standard 
error. 

Effect of Dnmtl genotype on E.T.F. 
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Figure 51. Effect of Dnmtl genotype on E.T.F. Y bars: standard error for each group. 
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NeoR colonies 6TGR colonies E.T.F (%) Group E.T.F. 

mean /- S.E. 

Ji (1) p2016 1 632 42 6.64 7.46 1- 0.433 

2 748 45 6.01 

3 783 56 7.15 

4 712 47 6.61 

5 624 40 6.41 

J1 (+/+)p2016* 1 615 51 8.29 6.56 	/-0.184 

2 697 45 6.45 

3 728 43 5.91 

4 656 54 8.23 

5 603 51 8.45 

PuroR colonies 

B(-/-) p2017 1234 181 14.6 1426 +1- 0.712 

1193 183 15.3 

ffl 
1384 179 12.9 

B (-I-) p20l7 1134 165 14.55 15.13 	/- 0.940 

2 1052 146 13.87 

3 960 163 16.97 

Table 25. Effect of vector methylation on E.I'.F. Host cell lines: JI (wild type, figure 52) and B (Dnmt1', 
figure 53). p2016 and p2017: normally methylated targeting vectors (see Materials and Methods); p2016* 
and p2017: hypomcthylated vectors. p2017 was used in B cells because they already have an integrated 

neo cassette. Average E.T.F.'s obtained with different targeting vectors cannot be compared, because 
p2016 targets the HPRT locus less efficiently than p2017. 300 jAg of DNA were used per electroporation. 

SE., standard error. 

Effect of methylation status of the vector on E.T.F (JI cells, p2016). 

Methylated 	 Hypofnethytated 

Figure 52. Effect of p2016 methylation on E.T.F. in wild-type JI cells. Y bars: standard error for each 

group. 
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Effect of vector methylatlon on E.T.F. (Dnmt 4. cells, p2017) 
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Figure 53. Effect of p2017 methylation on E.T.F. in B (Dnrnll -/-) cells. Y bars: standard error for each 
group. 

b. 3./i. DMTase-transgenic cells 

Although Dnmtl mutations lead to general 

hypomethylation, the activity of other methyltransferases may account for a basal level 

of methylation in Dnmtl-/- ES cells. An active induction of demethylation may still be 

necessary to overcome this activity and achieve more dramatic increases in gene 

targeting frequency. The recent characterisation of a putative mammalian DNA 

demethylase (DMTase) (Bhattacharya et al., 1999) was therefore seen as an opportunity 

to assess this hypothesis. A vector containing DMTase cDNA under the control of the 

CMV constitutive promoter and a neo selectable marker (kindly provided by M. Szyf) 

was used to generate stable ES cell transgenic clones overexpressing DMTase. One 

clone with high transgene expression (D3) was chosen for subsequent targeting 

experiments (figure 54). As shown in table 26 and figure 55, DMTase-transfected 
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Figure 54. Northern blot of DMTase-overexpressing clones. The entire DMTase ORF (-1 kb) cDNA 
was used as a probe. Lanes 1-10: DNffase-transfected clones; C: untransfected control. 15 iig of RNA 

were loaded! lane. The ethidium bromide-stained gel was used as a loading control. 

PuroR 

colonies 

6TGR colonies E.T.F (%) Group E.T.F. 

mean 	/- S.E. 

J1(Dnrnrl±/+) 1 1418 99 6.981 7.363 	/ 0.285 

2 1401 111 7.922 

3 1266 91 7.187 

J1-DMTase 1 1524 116 7.611 7.802 '/- 0.926 

2 1222 77 6.301 

3 1464 139 9.494 

Table 26. Effect of DMTase constitutive expression on E.T.F. Ji (wild-type) cells and D3 (DMtase-
transgenic) on E.T.F. Cells were transfected with 300 jig of p2017. Every entry corresponds to an 
independent experiment. S.E.: standard error. 

Effect of constitutive DMTase overexpression on E.T.F. 
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Figure 55. Effect of DMTase constitutive overexpression on E.T.F. Y bars: standard error for each 
group. 
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ES cells do not exhibit any significant enhancement in effective targeting frequency 

compared to untransfected controls. We next attempted the generation of Dnmtl 

null/DMTase-overexpressing clones. If constitutive expression of DMTase resulted in 

even lower methylation levels of the cell, then the additive effects of both genetic 

modifications may result in higher targeting frequencies. Since a neo gene is already 

present in Dnmtl-/- cell lines (Chen et al., 1998), DMTase-transfected clones were 

selected in blasticidin (5 jig/ml) or puromycin (1 j..g/ml) upon co-lipofection of the 

transgene with a bsd orpac resistance cassette (1:4 molar ratio), respectively. No colonies 

were recovered in either case. 

b.4.discussion 

This work demonstrates that decreasing the level of methylation can be 

used as a strategy to enhance gene targeting frequency. The molecular mechanism 

behind this effect, however, remains unclear. One possible explanation for the influence 

of methylation on homologous recombination is that methyl groups introduce steric 

hindrance preventing the correct alignment of the recombinant substrates during 

heteroduplex formation. Alternatively, it has been proposed that methylation may 

restrain homologous recombination by impairing the stability of recombination 

intermediates, rather than by preventing their formation (Maloisel and Rossignol, 1998). 

We report here that hypomethylated vectors are not more proficient at targeting the 

HPRT locus than their normally methylated counterparts, both in wild-type and Dnmtl 

nullizygous cells. Although this observation seems to argue against the above 

possibilities, an exhaustive analysis of the methylation status of the recombinant 

partners would be necessary to rule them out. 

A more likely explanation, however, involves the proven ability of methylation 

to influence chromatin structure (Kass et al., 1997; Nan et al., 1998; Jones et al., 1998; 

Zhang et al., 1999; Fuks et al., 2000). According to this model, increased targeting 

frequencies observed in Dnmtl-/- cells may be a consequence of a more open 
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chromatin configuration at the target locus, which would facilitate the access of the 

targeting vector and recombination enzymes. The inability of hypomethylated vectors to 

promote more efficient recombination seems to confirm that methylation determines 

genomic accessibility rather than heteroduplex formation. 

In this context, it was hypothesised that transient induction of hypomethylation 

levels could lead to improved targeting frequencies. We aimed at establishing proof of 

principle by constitutively expressing a recently identified mammalian demethylase 

(Bhattacharya et al, 1999) in ES cells. However, as shown in the previous section, E.T.F. 

is not significantly enhanced in DMTase-transgenic cells. One possible explanation is 

that demethylase activity may not be restricted to one single enzyme. The demethylase 

activity of the enzyme itself has proved controversial. For instance, Ng et al. (1999) 

have been unable to reproduce in HeLa cells the demethylase activity of the protein 

identified by Bhattacharya et al. (1999), suggesting that this protein is actually a 

transcriptional repressor. 

Alternatively, it can be reasoned that active genomic demethylation may 

simultaneously need Dnmtl repression and DMTase upregulation. Thus, we attempted 

to create Dnmtl-defective/DMTase-overexpressing lines. The fact that no transgenic 

colonies could be recovered was interpreted as a consequence of inducing 

hypomethylation levels incompatible with cell viability. This hypothesis could be tested 

by transfecting Damtl-defective cells with an inducible DMTase cassette and examining 

overall methylation levels and other phenotypic consequences following gradual 

activation of the demethylase. 
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c.chromatin remodelling 

c. I. introduction 

C. 2. objective 

results 

c.3. I .TSA treatment 

c.3.ii.PHA treatment 

discussion 

c.1 .introduction 

The fact that DNA condensation in chromatin functions not only to 

constrain the genome within the nucleus, but also to silence gene expression in a general 

manner, has been well established over the past decade (rev, by Lu et al., 1994; Farkas et 

al., 2000). Chromatin structure has consistently been associated with transcriptional 

regulation, and more indirectly, with the rate of homologous recombination. It has been 

proposed that relaxation of chromatin conformation is essential for facilitating the 

access of not only transcriptional, but also recombinogenic enzymes (Thomas and 

Rothstein, 1989; Adams and Workman, 1993; Kornberg and Lorch, 1995; Krude and 

Elgin, 1996; Farkas et al., 2000). The involvement of methylation in chromatin 

remodelling and the prospects for improving gene targeting frequency by manipulating 

the overall methylation level of the cell have already been discussed in the previous 

section. Here we focus on histone acetylation, the other major mechanism known to be 

involved in chromatin conformation. It has been shown that acetylation reduces the net 

positive charge of histones and therefore results in weaker histone-DNA interactions 

(Norton et al., 1989). Hyperacetylation of histones is observed in 

open genomic regions, and is commonly associated with highly expressed 

genes. In contrast, hypoacetylation normally correlates with heterochromatin and 

transcriptionally silent genes (rev, by Loidl, 1994). Acetylation levels are 

regulated by the relative activities of histone acetyltransferases (J-[ATs) and 
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(FIATs) and deacetylases (HDACs), in a balance known to be affected by the 

methyltransferase Dnmtl (Euks et al., 2000). 

Specific inhibitors of histone deacetylation have become common tools for the 

study of chromatin configuration and the regulation of gene expression. Amongst these, 

n-butyrate and trichostatin A (TSA) have proved to be effective at reducing histone 

deacetylase activity, increasing the overall level of nucleosomal acetylation and changing 

the pattern of expression of several genes (Yoshida et al., 1990; Takahashi et al., 1996; 

Dion et al., 1997; Xu et al., 1997; Garcia Villalba et al., 1997; Ruh et al., 1999; Niki et al., 

1999; Garrison et al., 2000). It was hypothesised that TSA-mediated deacetylase 

inhibition in ES cells could lead to a global relaxation of chromatin structure, which may 

have a positive effect on targeting efficiency. The effect of phytohemagglutinin (PHA) 

on E.T.F. is also examined in this context. This compound has been shown to increase 

up to 10-fold the level of expression of the HPRT gene in lymphocytes (Steen et al., 

1990; 1991). Higher levels of transcription may be a consequence of a more relaxed 

chromatin configuration at the HPRT locus. Since transcription and homologous 

recombination rates are directly related in a variety of test systems (page 50), it was 

thought that a similar enhancement of HPRT transcription in ES cells may result in 

higher E.T.R's. 

c2objective 

To study the effect of TSA- and PHA-pretreatment of ES cells on E.T.F. 

c.1results 

c.3.i. TSA 

J1 ES cells were incubated for 48 hours prior to 

electroporation with GMEM complete medium supplemented with TSA (Sigma) at 
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concentrations ranging from 10 to 300 nmol/1. However, growth arrest followed by 

extensive cell death was observed very quickly after TSA addition to the medium, even 

at the lowest concentration examined. In contrast, control cells supplemented with 

equivalent volumes of the TSA solvent (PMSO) showed no changes in growth or death 

rate (table 27) 

TSA concentration Observations 

0 nmol/l Normal growth 

10 nmol/l Growth arrest. Changes in cell morphology and cell death observed 24 hours 
after TSA addition. 

50 nmol/l Growth arrest. Changes in cell morphology and cell death observed 24 hours 
after TSA addition. 

100 nmol/l Growth arrest. Changes in cell morphology and cell death observed 8 hours 
after TSA addition. 

200 nmol/l Growth arrest. Changes in cell morphology and cell death observed 8 hours 
after TSA addition. 

300 nmol/l Growth arrest. Changes in cell morphology and cell death observed 8 hours 
after TSA addition. 

Table 27. Effect of TSA treatment on ES cells. 

Given the toxic effect of long exposures to TSA, it was subsequently decided to 

conduct targeting experiments in ES cells incubated with a relatively high TSA 

concentration (100 nmol/l) for a short period (2 hours) immediately before 

electroporation (p2017. 300 . Control cells were similarly treated with DMSO only. 

The results of these experiments are summarised in table 28 and figure 56. 

Puro' 

colonies 

6TGR colonies E.T.F (%) Group E.T.F. 

mean 4/  S.E. 

Ji control 1 1777 168 9.454 8.908 f/  0.287 

2 1571 138 8.790 

3 1686 143 8.481 

Ji TSA-treated 1 1598 119 7.446 8.331 /- 0.533 

2 1429 118 8.257 

3 1367 127 9.290 

Table 28. Effect of TSA preincubation (2 hours) of ES cells on E.T.F. Cells were transfected with 300 jig 
of p2017. Every entry corresponds to an independent experiment. S.E.: standard error. 
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Figure 56. Effect ofTSA-preincubation on E.T.F. Y bars: standard error for each group. 

A one-way ANOVA analysis of the data presented above demonstrates that 

E.T.F. is not significantly affected by a 2 hour TSA exposure (100 mmol/1) prior to 

electroporation (F 14  = 0.907; = 7.708; P = 0.394> 0.05). 

c. 3. ii. PHA 

E.T.F. was calculated in wild-type ES cells following 

preincubation (24 hours) with different concentrations of PHA. As shown in table 29 

and figure 57, differences in E.T.F. means observed after P1-IA treatment (any 

concentration) are not statistically significant (ANOVA F 18  = 0.419; = 4.066; P = 

0.743> 0.05). 
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Puro' 

colonies 

6-TG't colonies E.T.F (%) Group E.T.F. 

mean /- S.E. 

No PHA 1 1200 98 8.166 8.074V-0.420 

2 1451 127 8.752 

3 1369 100 7.304 

PHA 10 sg/m1 1 1325 107 8.075 8.406 	0.166 

2 1616 138 8.539 

3 1348 116 8.605 

PHA 30 pg/mi 1 1109 79 7.123 7.629 f/  0.555 

2 1224 86 7.026 

3 1316 115 8.738 

PHA 60 pg/mi 1 1274 119 9.34 8.019 /- 0.674 

2 1207 86 7.125 

3 1304 99 7.592 

Table 29. Effect of P1-IA preincubauon (48 hours) of ES cells on E.T.F. Cells were transfected with 300 
pg of p2017. Every entry corresponds to an independent experiment. SE.: standard error. 

Effect of PHA on E.T.F. 
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Figure 57. Effect of P1-IA on E.T.F. Y bars: standard error for each group. 
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c.4.discussion 

The use of TSA to down-regulate bistone deacetylation has been 

extensively documented in a variety of somatic cell types (pages 176-177). We have 

found that ES cells die when this chemical is present in the medium, even at 

concentrations 10 times lower than those usually reported for other cell types (Takahashi 

et al., 1996; Dion et al., 1997; Xu et al., 1997; Garcia Villalba et a/., 1997; Ruh et al., 1999; 

Niki et al., 1999; Garrison et al., 2000). Unlike n-butyrate, which has been shown to 

interfere with other cellular processes (Tang and Taylor, 1990; Charollais et al., 1990; 

Nudelman et al., 1992), TSA has not been related to actions other than HDAC 

inhibition. This suggests that TSA-induced changes in gene expression in ES cells may 

be sufficient to result in growth arrest and cell death. Our observation that cells are 

viable after a shorter exposure to TSA indicates either that (1) this hypothetical change 

in the pattern of gene expression has to be maintained in order to kill the cell; or (2) 

TSA has no measurable effect on histone acetylation during the first two hours of 

incubation. The latter hypothesis is consistent with results reported by Dion et al. (1997) 

who showed a time-dependent response of HeLa cells to TSA. This would also explain 

why E.T.F. was not affected following a short pre-incubation with TSA. As for what 

possible changes in gene expression induced by inhibition of histone deacetylation may 

be responsible for cell death in ES cells, any conclusion drawn from the available data 

would be a matter of speculation. However, since the aim of this work is to explore the 

possibility of using HDAC inhibition as a strategy to increase targeting efficiency, it 

would be interesting to repeat these experiments in somatic cells known to be sensitive 

to TSA. 

As is the case with many other 'housekeeping' genes, HPRT is expressed at a 

very low level in most cells examined, both primary and immortalised (Steen et al., 1990). 

It has been shown that PHA administration increases HPRT expression up to 10-fold in 

lymphocytes (Steen et al., 1990; 1991), which led us to think that ES cells may also 

upregulate expression of this gene. Since higher levels of gene expression are usually 

associated with enhanced homologous recombination rates (page 50), ES cell incubation 

with PHA-containing medium may therefore result in improved targeting efficiencies. 

However, we report here that E.T.F. is not affected by P1-IA at concentrations known to 
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have mitogenic effects on lymphocytes. This result can be explained if the 

transcriptional up-regulation observed in lymphocytes is simply a reflection of their 

activation. Lymphocytes are usually non-proliferative and need P1-IA stimulation. Since 

ES cells are immortal, they are already, in a sense, 'activated' and insensitive to P1-LA. 

Further studies along this line would require the precise determination of HPRT levels 

of expression before and after addition of PHA. 



ii. modification of cell conditions 

a.introduction 
b.passage number 

c.oxygen partial pressure 

a.introduction 

The fact that cell culture conditions may affect targeting efficiency has attracted 

little attention thus far. However, the variability between targeting experiments is 

probably a reflection of changes in factors such as passage number, cell density, medium 

composition or growth rate. Another source of variability could be the relative 

proportion of cells in any given phase of the cell cycle. The relevance of this factor is 

highlighted by the observation that homologous recombination occurs preferentially in 

early to mid S-phase (Wong and Capecchi, 1987), whereas illegitimate recombination 

peaks at G2/M phase. Work by Udy et al. (1997) suggests that some of these factors 

(particularly cell cycle rate) may have an effect on targeting frequency even more 

dramatic than those derived from the, use of isogenic/ non isogenic vectors. This section 

focuses on two possible sources of variability associated with the optimisation of culture 

conditions, namely oxygen partial pressure and cell passage number. The influence on 

E.T.F. of the controlled modification of these factors is examined. 
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b.passage number 

The study of the influence of age (measured as passage number) on E.T.F. 

would be of particular interest in somatic cells, since they show an age-related loss of 

proliferative activity in culture (Start et a/., 1991; Chang-Liu et al., 1997; Rubin, 1997; 

Ruiz-Torres et al., 1999). In contrast, the growth rate of ES cells (as well as other 

immortalised cell lines) does not appear to be affected by age. However, it has been 

observed that prolonged culture of ES and ES-like cells results in a decrease of their 

capacity to contribute to chimaeras, and particularly to colonise the germ line (Mitalipov 

et al., 1994). To explain this observation, it has been suggested that the prolonged in vrt,v 

culture of rapidly dividing ES cells may lead to accumulated changes and chromosomal 

abnormalities (Brown et al., 1992). The possibility that age-related physiological 

alterations in ES cells may also have consequences in the rate of homologous 

recombination (and therefore gene targeting) cannot be ruled out. 

In this section, we aimed at determining whether E.T.F. is affected by passage 

number in ES cells. To this purpose, targeting experiments were conducted in the cell 

line E14 at passages 19, 45 and 73. The results are outlined in table 30 and figure 58. 

Puromycin' 

colonies 

6TGR colonies E.T.F (%) Group E.T.F. 

mean /- S.E. 

E14 —p19 1 1566 142 9.067 8.699 /- 0.524 

2 1161 89 7.665 

3 1324 124 9.365 

E14 
- p45 1 1600 134 8.375 7.936 f/  0.366 

2 1228 101 8.224 

3 1387 100 7.209 

E14 
- p73 1 1225 96 7.836 8.287 f/  0.237 

2 1111 96 8.640 

3 1395 117 8.387 

Table 30. Effect of passage number on E.T.F. Five independent experiments were conducted in each 
group (300 jig p2017). Passage number (19,45 and 73) is indicated. S.E.: standard error. 
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Effect of passage number on E.T.F. 
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Figure 58. Effect of passage number on E.T.F. Y bars: standard error for each group. 

A one-way iNOVA analysis of the data presented above (F = 0.940; F 1  = 
5.143; P = 0.44> 0.05) indicates that the null hypothesis that all E.T.F. means are the 

same cannot be rejected. 

Although it can be reasoned that changes in targeting frequency may be 

noticeable at even higher passage numbers, the examined interval greatly exceeds the 

usual age we may expect of ES cells in routine targeting experiments. Therefore we 

conclude that passage number has no practical influence  on E.T.F., at least with this cell 

line up to passage 73. 
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c. oxygen partial pressure 

Optimising the conditions for colony survival after electroporation is essential 

when designing protocols for enhanced targeting frequency. In this context, oxygen 

partial pressure has been suggested as a limiting factor for clone viability. The 

environmental oxygen concentration of 20 % normally used in cell cultures is certainly 

higher than that of cells in which may lead to oxidative stress and changes in growth 

rate and lifespan. Several studies have demonstrated that lowering ambient oxygen 

concentrations stimulates proliferation of human cells (Balin et al., 1984; Falanga and 

Kirsner, 1993) and extends their lifespan in vitro (Packer and Fuehr, 1977). 

The effect of high oxygen concentrations on gene targeting frequency has 

remained unexplored thus far. On one hand, it can be reasoned that hyperoxia may be 

inhibitory for growth and survival of clones after the stress of electroporation. On the 

other, homologous recombination might be enhanced due to the higher incidence of 

DNA damage in oxidative conditions. To gain a better understanding of the influence 

of oxygen partial pressure on targeting efficiency, a number of targeting experiments 

were conducted after culturing E14 ES cells either on high (20 %) or low (2%) oxygen 

concentrations for one week. 

Puromycin 

colonies 

6TG1t colonies E.T.F (%) Group E.T.F. 

mean /- S.E. 

E14-20%02 1 1376 120 8.2 9.81/-O.47 

2 1385 146 10.54 

3 1324 143 10.8 

4 1280 110 8.59 

5 1335 139 10.4 

£14— 2 % 02 1 1229 118 9.6 9.48 /- 0.41 

2 1103 121 10.97 

3 1200 109 9.08 

4 1218 103 8.45 

5 
1197 112 9.3 

Table 31. Effect of oxygen partial pressure on E.T.F. Five independent experiments were conducted in 
each group (300 jig p2017). SE., standard error. 
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Effect of oxygen partial pressure on E.T.F. 

I_: 
Ld 

12 

10 

8 

4 

C 

Low oxygen 	 high oxygen 

Figure 59. Effect of oxygen partial pressure on E.T.F. in ES cells. Y bars: standard error for each group. 

A one-way ANOVA statistical analysis of the data presented on table 31 and 

figure 59 demonstrates that there is no significant difference between the mean E.T.F.'s 

of the two groups examined. Thus, it can be concluded that lowering oxygen partial 

pressure is irrelevant for gene targeting purposes, at least in ES cells and in the 

conditions described above. This precision is important, because unlike other cell types, 

ES cells are already immortal and might be less sensitive to the effects of variable 

oxygen concentrations in the environment. Therefore, these results cannot rule out the 

possibility that this factor has a measurable influence on clone survival and targeting 

frequency in somatic cells. 
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Chapter VII. Concluding remarks 
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Despite the great success achieved over the past fifteen years in the generation 

of targeted animals, the use of gene targeting for therapeutic purposes still remains a 

distant possibility. The major limitation has been the very low efficiency of this 

technology, as the absolute incidence of homologous integration in mammalian cells is 

consistently lower than that of illegitimate recombination. However, it is likely that this 

observation does not accurately reflect the relative contribution of each process in 

maintaining genomic stability. In fact, whereas mutations of several key enzymes of the 

NHEJ pathway (such as Ku70, Ku80 or DNA-PKJ do not compromise the viability of 

knockout animals, RadSl mutations are invariably lethal. The extraordinary sensitivity to 

DNA damage observed in mutants of other genes involved in homologous 

recombination confirms the essential physiological role of this process, specially during 

the S phase of the cell cycle (Thompson and Schild, 1999). 

These findings have somehow challenged the notion that targeted gene therapy 

is impractical in mammalian cells. In recent years, several groups have directed their 

efforts towards enhancing targeting efficiency by 'tricking' the cell into making full use 

of the homologous recombination pathway. In this context, our primary goal has been 

to identify those lines of research with most promising perspectives, rather than 

focusing exclusively in any given strategy. Thus, starting from a comprehensive review 

of the latest trends in molecular biology aimed at improving effective targeting 

frequency, this work explores novel avenues that could be the basis of more effective 

targeting protocols. 

Amongst the examined approaches, overexpression of the mammalian 

recombinase Rad5l and down-regulation of poly(ADP-rybosyl) polymerase (PARP) 

were the most successful at enhancing gene targeting frequency (4- and 3.3-fold, 

respectively). These results confirm that Rad5l levels are rate-limiting in homologous 

recombination (Baumann and West, 1998) and suggest that PARP might act as a switch 

between the default process of NHEJ and homologous recombination in mammalian 

cells (pages 19-22). However, constitutive up- or down-regulation of these genes prior 

to gene targeting would be impractical as a general strategy to stimulate the rate of 

homologous recombination. For this reason, we have also devised approaches for the 

transient reproduction of these effects at the time of transfection with the targeting 
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vector. Thus, we have been able to obtain a 2-fold increase in E.T.F. by co-

electroporating the targeting vector with a Rad5l expression cassette. Although there 

are side effects associated with the entry of a high number of circular DNA molecules 

into the cell, this result proves that RadSl protein transiently expressed from a plasmid 

can be sufficiently accumulated as to have an effect on the mode of integration of a 

simultaneoulsy introduced targeting vector. This encouraging observation may be the 

basis for novel strategies aimed at temporarily increasing the concentration of Rad5l 

(and perhaps other recombinases, such as Rad52 and Rad54) at the time of gene 

targeting. Two of such schemes (engineering a Rad5l expression cassette into the 

targeting vector and creating a VP22-Rad5l fusion protein) have been outlined in 

chapter V. As discussed in pages 149-151, further research along these lines would 

require confirmation of the absence of point mutations both in p2017/5I and 

pVP22/Rad51, as well as a precise determination of the biochemical properties of the 

fusion protein in ttm. 

We have also demonstrated that E.T.F. can be moderately enhanced by 

inhibiting PARP activity with 3-AB. Other inhibitors of poly(ADP-rybosyl)ation (such 

as 1,5 isoquinolinediol) remain to be tested for their ability to improve the rate of 

homologous recombination without negatively affecting cell viability. 

Significant increases in E.T.F. were also observed in Dnmtl-defective cells when 

compared to wild-type controls. Future work would require a more detailed knowledge 

of the molecular mechanisms linking homologous recombination to the processes of 

DNA methylation and histone acetylation. 

Although other strategies examined in this work have proven ineffective at 

enhancing gene targeting frequency, they have served to gain a better understanding of 

homologous recombination and its regulation. For instance, the observation that the 

absolute frequency of homologous recombinants in DNA-PK, is considerably lower 

than in wild-type cells (page 153) suggests that this enzyme may be involved in the early 

stages of both illegitimate and homologous recombination. Experiments with Ku80-

deficient cells also show that down-regulation of the NHEJ pathway does not result in 

homologous recombination taking over the process of genomic integration of targeting 
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vectors, as proposed by Goedecke et al. (1999) in yeast. Finally, our results suggest that 

the mechanism of control of homologous recombination by p53 (which is well 

documented in a variety of somatic cells, as discussed in pages 129-130) may be inactive 

in ES cells. In this respect, due to the unique biological properties of these cells, it 

would be most informative to repeat many of the experiments described in this work in 

other biological systems. 

Other negative results, such as the pre-incubation of the targeting vector with 

SV40 NLS or the use of dsRNA vectors, do not rule out the possibility that these 

strategies may work in different experimental conditions. For instance, the use of NLS 

in shorter targeting vectors (pages 117-118) may still result in a higher concentration of 

recombinogenic molecules in the nucleus. Similarly, longer dsRNA molecules remain to 

be tested for RNAi in cell cultures (page 122). 

In summary, this work presents evidence, obtained from a variety of 

experimental strategies, that the frequency of gene targeting can be manipulated in mtv. 

These results also contribute to a better understanding of the molecular mechanisms 

underlying homologous recombination in mammalian cells. Although there is still a long 

way to achieve a 100 % targeting efficiency (which would be the ultimate goal in order 

to design in vivo gene targeting-based therapeutic protocols), the basic principle that gene 

targeting frequency can be enhanced has been established. More interestingly, we 

demonstrate that this objective can be successfully approached from diverse 

perspectives. This raises the possibility that the combination of some of the research 

lines described here (for instance the simultaneous transient up-regulation of Rad5l and 

chemical down-regulation of PARP) may result in even higher targeting frequencies. 
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