

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Customising Compilers for Customisable Processors

Alastair Colin Murray
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2011

Abstract

The automatic generation of instruction set extensions to provide application-specific acceler-

ation for embedded processors has been a productive area of research in recent years. There

have been incremental improvements in the quality of the algorithms that discover and select

which instructions to add to a processor. The use of automatic algorithms, however, result in

instructions which are radically different from those found in conventional, human-designed,

RISC or CISC ISAs. This has resulted in a gap between the hardware’s capabilities and the

compiler’s ability to exploit them.

This thesis proposes and investigates the use of a high-level compiler pass that uses graph-

subgraph isomorphism checking to exploit these complex instructions. Operating in a separate

pass permits techniques to be applied that are uniquely suited for mapping complex instruc-

tions, but unsuitable for conventional instruction selection. The existing, mature, compiler

back-end can then handle the remainder of the compilation. With this method, the high-level

pass was able to use 1965 different automatically produced instructions to obtain an initial av-

erage speed-up of 1.11x over 179 benchmarks evaluated on a hardware-verified cycle-accurate

simulator.

This result was improved following an investigation of how the produced instructions were

being used by the compiler. It was established that the models the automatic tools were using to

develop instructions did not take account of how well the compiler could realistically use them.

Adding additional parameters to the search heuristic to account for compiler issues increased

the speed-up from 1.11x to 1.24x. An alternative approach using a re-designed hardware inter-

face was also investigated and this achieved a speed-up of 1.26x while reducing hardware and

compiler complexity.

A complementary, high-level, method of exploiting dual memory banks was created to in-

crease memory bandwidth to accommodate the increased data-processing bandwidth provided

by extension instructions. Finally, the compiler was considered for use in a non-conventional

role where rather than generating code it is used to apply source-level transformations prior to

the generation of extension instructions and thus affect the shape of the instructions that are

generated.

iii

Acknowledgements

I would like to thank my supervisor, Björn, for his help with guiding the direction of the
research that eventually resulted in this thesis.

I would like to thank Nigel for helping to get me involved in the PASTA project.
Everyone involved in the PASTA project deserves a mention, but those who were involved

with ArcSim especially – my research wouldn’t have been possible without it.
Within PASTA Richard deserves a special mention, for all the parts of the pie-g toolchain

he created, especially ISEGen– another tool that my research wouldn’t have been possible
without.

Finally, I would like thank my proof readers: Claire and Colin.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except as specified. Some of the material

used in this thesis has been published in the following papers:

• Richard V. Bennett, Alastair C. Murray, Björn Franke, and Nigel Topham. Combining
source-to-source transformations and processor instruction set extensions for the auto-
mated design-space exploration of embedded systems. In Proceedings of the ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES ’07), pages 83–92, June 2007.

• Alastair Murray and Björn Franke. Fast source-level data assignment to dual memory
banks. In Proceedings of the 11th International Workshop on Software and Compilers
for Embedded Systems (SCOPES ’08), pages 43–52, March 2008.

• Alastair C. Murray, Richard V. Bennett, Björn Franke, and Nigel Topham. Code trans-
formation and instruction set extension. ACM Transactions on Embedded Computing
Systems (ACM TECS), 8(4):1–31, 2009.

• Oscar Almer, Richard Bennett, Igor Böhm, Alastair Murray, Xinhao Qu, Marcela Zulu-
aga, Björn Franke, and Nigel Topham. An end-to-end design flow for automated instruc-
tion set extension and complex instruction selection based on GCC. In Proceedings of
the First International Workshop on GCC Research Opportunities (GROW ’09), pages
49–60, January 2009.

• Alastair Murray and Björn Franke. Using genetic programming for source-level data
assignment to dual memory banks. In Proceedings of the 3rd Workshop on Statistical and
Machine Learning Approaches to Architectures and Compilation (SMART ’09), pages
75–89, January 2009.

• Alastair Murray and Björn Franke. Compiling for automatically generated instruction
set extensions. In Proceedings of the International Symposium on Code Generation and
Optimization (CGO ’12), April 2012b.

• Alastair Murray and Björn Franke. Adaptive source-level data assignment to dual mem-
ory banks. ACM Transactions on Embedded Computing Systems (ACM TECS), 11S(1),
June 2012a.

(Alastair Colin Murray)

vii

For Claire.

viii

Table of Contents

Preamble i

Abstract . iii

Acknowledgements . v

Declaration . vii

Table of Contents . ix

1 Introduction 1

1.1 Specialised Processors . 2

1.2 The Problem . 4

1.3 Contributions . 6

1.4 Structure . 7

1.5 Summary . 8

2 Background and Infrastructure 9

2.1 Embedded Processors . 9

2.1.1 Embedded Processor Families . 10

2.1.2 Application Specific Instruction-set Processors 10

2.2 Infrastructure . 13

2.2.1 EnCore . 14

2.2.2 EnCore Extension Interface . 14

2.2.3 ISEGen and uArchGen . 17

2.3 Automated Instruction Set Extension . 17

2.3.1 Atasu AISE Algorithm . 17

2.3.2 HW/SW Codesign . 19

2.4 Design-Space Exploration . 19

2.4.1 Automated Instruction Set Extension 21

2.5 Dual Memory Banks . 22

2.5.1 DSP-C and Embedded C . 23

2.6 Genetic Programming in Compilers . 23

ix

2.7 Graph Theory . 24

2.7.1 The Basics . 24

2.7.2 Specific Problems . 25

2.8 Benchmarks . 25

3 Related Work 27

3.1 Complex Instruction Mapping . 27

3.2 Compilation for Dual Memory Banks . 30

3.3 Transformations Affecting AISE . 33

3.3.1 Source-to-Source Transformations for Embedded Systems 33

4 Code Generation for Complex Instructions 35

4.1 Motivation . 36

4.2 Mapping by Graph-Subgraph Isomorphism Checking 36

4.2.1 Overview . 36

4.2.2 Integration into GCC . 38

4.2.3 Construction of Graphical Intermediate Representation 39

4.2.4 Matching Subgraphs . 40

4.2.5 Determining if Two Nodes are Equivalent 42

4.2.6 Exploiting Matches . 44

4.3 Allocation of Vector-Registers . 44

4.4 Permutation of Vector-Register Elements . 45

4.5 Eliminating Poor Mappings . 46

4.6 Evaluation Methodology . 46

4.6.1 Presentation of Results . 47

4.6.2 Consideration of Floating Point Hardware 47

4.7 Results . 49

4.7.1 Default Mapping . 49

4.7.2 Timings . 51

4.7.3 Eliminating Poor Mappings . 52

4.7.4 Register Allocation Variations . 54

4.7.5 Commutativity Variations . 56

4.8 Results - Retargeting Extension Instructions 56

4.8.1 Compiler Differences . 59

4.8.2 Modifying Programs . 59

4.8.3 Using Different Implementations . 59

4.8.4 Combining Programs . 60

4.9 Critical Evaluation . 61

x

4.9.1 ISEGen Issues . 62

4.9.2 Effect of Aliasing Differences on Performance 66

4.9.3 Matching Issues . 68

4.9.4 Register Allocation Issues . 68

4.10 Summary and Conclusions . 70

4.10.1 Future Work . 70

4.10.2 Summary . 72

5 Instruction Set Extension and Code Generation 73

5.1 Reducing Register Pressure . 73

5.1.1 Reducing the Number of I/O Ports . 74

5.1.2 Hard-Wiring Constant Values . 74

5.1.3 Modifying the ISEGEN Heuristic Parameters 74

5.2 Wide Memory Bus for Wide Registers . 74

5.2.1 Evaluation Methodology . 75

5.3 Replacing Wide Registers with Wide Instructions 76

5.3.1 Avoiding Extremely Wide Instructions 77

5.3.2 Evaluation Methodology . 78

5.4 Results - Reducing Register Pressure . 79

5.4.1 Reducing the Number of I/O Ports . 79

5.4.2 Hard-Wiring Constant Values . 79

5.4.3 Modifying the ISEGEN Heuristic Parameters 80

5.4.4 Combining Techniques . 81

5.4.5 MapISE Timing . 85

5.5 Results - Wide Memory Bus . 85

5.6 Results - Wide Instructions . 86

5.7 Results - Retargeting Extension Instructions 89

5.8 Critical Evaluation . 90

5.8.1 Reevaluation of ISEGEN Issues . 90

5.9 Summary and Conclusions . 92

5.9.1 Future Work . 92

5.9.2 Summary . 92

6 Increasing Memory Bandwidth: Dual Memory Banks 93

6.1 Feasibility Study . 94

6.2 The Problem . 95

6.2.1 Difficulty of the Problem . 95

6.3 Methodology . 96

xi

6.3.1 Group Forming . 98

6.3.2 Interference Model . 99

6.3.3 Partial Pre-assignments . 100

6.4 ILP Colouring . 101

6.4.1 Single Solution . 101

6.4.2 Multiple Solutions . 102

6.5 Soft Colouring . 104

6.5.1 Single Solution . 104

6.5.2 Changes To Interference Graph . 106

6.5.3 Multiple Solutions . 106

6.6 Genetic Program Colouring . 106

6.6.1 Single Solution . 106

6.6.2 Multiple Solutions . 110

6.7 Evaluation Methodology . 110

6.7.1 Platform and Benchmarks . 110

6.7.2 Evaluating Genetic Programming . 111

6.8 Results . 112

6.8.1 Scalability . 116

6.9 Summary and Conclusions . 117

6.9.1 Critical Evaluation . 117

6.9.2 Future Work . 118

6.9.3 Summary . 118

7 Code Transformation and Instruction Set Extension 121

7.1 Limitations of Methodology . 122

7.2 Motivating Example . 122

7.2.1 Combined Design-Space . 124

7.3 Experiment Methodology . 126

7.3.1 Selection of Transformations . 127

7.3.2 Extension Instruction Identification 127

7.3.3 Performance Evaluation . 128

7.4 Evaluation Methodology . 129

7.5 Results . 130

7.5.1 Performance and Code Size Results 130

7.5.2 Application-Oriented Evaluation . 133

7.5.3 Transformation-Oriented Evaluation 136

7.6 Summary and Conclusions . 141

7.6.1 Critical Evaluation . 141

xii

7.6.2 Future Work . 141

7.6.3 Summary . 141

8 Conclusion 143

8.1 Contributions . 143

8.1.1 Compiling for AISE . 143

8.1.2 AISE for Compiling . 143

8.1.3 Exploiting Dual Memory Banks . 144

8.1.4 Transformation-Based DSE and AISE 144

8.2 Critical Evaluation . 144

8.2.1 Integration . 144

8.2.2 Limits of AISE . 145

8.3 Insights . 146

8.4 Future Work . 147

A SUIF Transformation List 149

A.1 Most Important Transformations . 149

A.2 Additional Transformations . 151

B Full Results 155

C Retargeting Extension Instructions 243

C.1 Reducing the Number of I/O Ports . 243

C.2 Hard-Wiring Constant Values . 249

C.3 Wide Instructions . 254

Bibliography 257

Index 265

xiii

Chapter 1

Introduction

“I have no data yet. It is a capital mistake to theorise before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories to suit facts.”
— Sherlock Holmes, fictional character created by Sir Arthur Conan Doyle, 1859–1930.

The designers of embedded computer systems are under pressure to produce high qual-

ity products which meet multiple conflicting constraints: low cost, low power, short time-to-

market but still high performance. For embedded computing systems the performance require-

ment, at a high-level, is usually a fixed target (e.g. a Blu-ray player must be able to decode

H.264 video streams and an accompanying audio stream at a specified peak bit-rate). The

selection of processors, however, that may be designed, licensed or purchased to meet this per-

formance requirement is huge, and there is frequently an existing processor that will perform

sufficiently. For example, a top-of-the-line multi-core Intel processor would be able to perform

the tasks of virtually any embedded processor from a performance perspective, but financial

cost and power requirements make this uneconomical for an embedded system. Thus, design-

ing an embedded computing system is about meeting the performance requirements for the

lowest cost and power requirements, and to do this before your competitors release a similar

product.

The advantages of developing a low cost product with a short time-to-market in the highly

competitive embedded computing system market are obvious; if you are the first to meet a given

performance/power requirement you can capture the market, and once multiple manufacturers

have products the lowest-priced item will sell the most. The primary requirement for low power

is that portable battery-operated devices must be able to function for significant periods without

recharging; a smart-phone with only a few hours of battery life is of little use to anyone. The

secondary low power requirement is the need for minimal heat output, a hand-held device must

never be more than warm to the touch, must be cooled passively and is frequently sealed in a

plastic enclosure. Static embedded systems must also have low heat output (and thus be low

power, even when they are connected to mains electricity) as passive cooling is still highly

1

2 Chapter 1. Introduction

desirable, e.g. a wireless router is expected to operate silently, noise from fans is undesirable.

Consequently, to meet these conflicting requirements the system designers either take standard

components and combine them into a Multi-Processor System-on-Chip (MPSoC) and/or design

custom pieces of hardware – in both cases they are creating a system specialised for a specific

domain or application.

1.1 Specialised Processors

Specialising processors for a particular domain is an effective way of increasing the perfor-

mance achievable for a given level of power consumption. The most obvious examples of this

are the different processor families for different domain areas. Digital Signal Processors (DSPs)

are based on VLIW or static superscalar designs (effective on highly data-parallel tasks), with

scratchpad memories (effective on streaming data where standard caches are not) and spe-

cialised instructions (e.g. a multiply-accumulate, MAC, which are common in DSP tasks). To-

gether these features allow effective digital signal processing (DSP) where highly data-parallel

streaming data is processed. Other processor families include Network Processors, or general

purpose embedded processors ranging from microcontrollers, used in everything from hard-

disk drives to cars to washing machines, up to high performance processors used in portable

media players, smartphones, netbooks, etc.

Within most families of embedded processors there are many more design-time configu-

ration options that allow a processor to be tuned to a specific task. As an example, the ARM

processor family [ARM, 2011] may be configured with: an optional scratchpad memory; dif-

ferent cache sizes; an optional Memory Management Unit (MMU); different bus interfaces;

optional mixed 16/32-bit mode instructions; optional additional DSP instructions; optional

floating-point calculation hardware; optional Single-Instruction Multiple-Data (SIMD) units;

different process geometries (e.g. 90nm2 or 65nm2); different clock frequencies; and other

more esoteric options. These options can either be thought of as additions to a baseline to

improve performance, or as removing unnecessary components from a complete processor to

reduce die-area and static power draw. In either case the engineer is tuning the processor to a

specific task.

While selecting the correct processor from the correct family and then configuring it ap-

propriately results in a processor well-matched to a task, designing custom hardware can dra-

matically reduce the power required for the targeted task [Ienne and Leupers, 2007]. Taking

this idea to its full extent results in Application Specific Integrated Circuits (ASICs), which are

very high performance and low power, but take time and effort to develop so they are neither

low cost nor have a short time-to-market. Additionally, once they have been deployed their

functionality is set, new features may not be implemented and bugs cannot be fixed. An in-

1.1. Specialised Processors 3

 Low Medium High

ASIC

ASIP

FPGA

GP
Reusability
Low Cost
Low Power
High Performance

Figure 1.1: A comparison of the merits of general purpose processors and different

types of customisable embedded processors. Each type has some advantages, but

ASIP is the only type that scores well in every criteria.

creasingly popular compromise between ASICs and general purpose embedded processors are

Application Specific Instruction-set Processors (ASIPs). These processors take a pre-verified

baseline processor as a core and add extension instructions, thus standard tasks can use the

baseline processor but critical kernels can be programmed to use the extension hardware. This

strikes a balance between performance and time-to-market, and the pre-verified baseline avoids

much of the risk involved in developing new hardware. See figure 1.1 for a visual comparison

of the merits of ASICs, ASIPs and also general purpose processors and field programmable

gate arrays (FPGAs).

Manually designed ASIPs can out-perform general purpose embedded processors, use less

power and are quicker and cheaper to design than ASICs [Keutzer et al., 2002]. Using auto-

mated instruction set extension (AISE) to automatically design ASIPs, however, improves on

this yet again. Manually designing an ASIP requires an engineer to spend a significant period

of time analysing the target application, designing instructions and then implementing them

in hardware. A set of automated tools, however, can do this by profiling the application to

find “hot-spots” and analysing the data-flow at these spots to produce instruction definitions.

These definitions can then be used to automatically create the hardware based on the data-flow

graphs. This task would likely take an experienced engineer weeks or months to complete, but

the automated tools can do the same thing in minutes or hours [Biswas et al., 2006a]. This

approach reduces the cost of designing an ASIP and significantly reduces the time-to-market.

There are many processors now on the market that allow the addition of customised extension

instructions, allowing them to be used as the core of an ASIP. Examples of these baseline pro-

cessors are the ARC 600 and 700 series, the Tensilica Xtensa, the ARM OptimoDE and the

4 Chapter 1. Introduction54 Chapter 3 � Customizing Processors: Lofty Ambitions, Stark Realities

Technology
Trigger

Peak of Inflated
Expectations

Trough of
Disillusionment

Slope of
Enlightenment

Plateau of
Productivity

Maturity

Technology
Trigger

Peak of Inflated
Expectations

Trough of
Disillusionment

Slope of
Enlightenment

Plateau of
Productivity

Maturity

Visibility

Research on custom ISAs,
and automated architecture
exploration (early ‘90s)

Early adopters of
successful products:
Lx/ST200, Tensilica,
ARC cores (97-02)

Reality sinks in: customizability
features are not getting used as
widely as expected (02-05)

Customizable processors
today (05). Will we find a
way to climb the hill?

� FIGURE 3.4

Our view of Gartner’s “Hype Cycle” for customizable processors. From the early successes of the late
1990s, we believe we are now quickly approaching the “trough of disillusionment” of the technology,
where many nontechnical barriers prevent benefits from being realized. Now that the major feasibility
questions have been answered, the big challenge for researchers and developers in the years to come
will be to address these other barriers.

we have shown where we think some of the barriers to customizations
are. It is important to observe that only some of these barriers can be
addressed through technical progress. Other barriers are deeply rooted
in the nature of the development cycle of embedded products and as
such may be much harder to overcome. While we arrived at these con-
clusions in the context of customizable VLIW cores, we believe they
apply much more widely and that many of them apply to all customiz-
able hardware. We would advise anyone working in the field to be mind-
ful of these real-world effects.

We, like the other authors of this book, remain enthusiastic about the
elegant, efficient, and powerful technical solutions for scalability and
customizability. Our reservations are with the transfer from research
into products: in the financial, time-to-market, product lifecycle, and
marketing issues with customizable processors. The best research will
not only be technically sweet, it will also be practically engaged.
If we use Gartner’s “Hype Cycle” [24] to illustrate the maturity of a

Figure 1.2: Fisher, Faraboschi and Young’s view of Gartner’s “Hype Cycle” [Ienne

and Leupers, 2007, Figure 3.4].

MIPS Pro series.

1.2 The Problem

Fisher, Faraboschi and Young take an extremely cautious view on the future of customisable

processors [Ienne and Leupers, 2007, Chapter 3]. Their reasons are related to customisable

processors in general rather than focusing on extension instructions, but much of what they say

also relates to AISE extended processors. Specifically, they present a view of Gartner’s “Hype

Cycle” [Linden and Fenn] which is shown here in figure 1.2. They state that in the 1990’s there

was a lot of hype regarding the potential of customised hardware. By 2005, however, it had

been realised how hard it would be to bring customisability to anything like its full potential

and the hype fell into a “Trough of Disillusionment”. It is now 2011 and it does not seem as

though the field has left the “trough” yet. It is the premise of this thesis that effective compiler

technology is key to progressing to the “Slope of Enlightenment”.

Others have already shown that using AISE to design ASIPs is an effective way to design

hardware [Galuzzi and Bertels, 2008]. The problem, however, is that as with almost every

hardware advance in the history of computing, the capabilities of compilers lag behind the

features of the hardware. This thesis, therefore, investigates how the compiler can effectively

1.2. The Problem 5

use an AISE produced processor.

The current standard methodology for using extension instructions within programs is for

the AISE tool to note where it finds each extension. Generally, the tool will then modify the

input code to eliminate the covered operations and replace them with either inline assembly

code or compiler known functions. This is acceptable in the situation where a single program is

being accelerated, but it creates an issue if the program needs to be changed after the processor

has been fabricated. Re-running the AISE tool may generate different instructions requiring an

engineer to manually map the old extensions to the new code, which is both time-consuming

and error-prone [Ienne and Leupers, 2007, Section 6.5]. It would be more appropriate for the

compiler to automatically perform the mapping for the engineer.

This, however, turns out to be a difficult task. The instruction set extensions (ISEs) pro-

duced by AISE are often far too complicated for conventional tree-based instruction selection

(indeed, the instructions are often directed acyclic graphs, not trees), and they are often far too

large for peephole-based instruction selection. Some form of graph-based instruction mapping

is required instead; this has been investigated previously, but for much smaller instructions

than those produced by AISE. Systems based on Architecture Description Languages (ADLs),

for example, generally just produce compilers with standard tree-based back-ends. These are

sometimes able to combine trees during matching to exploit small (e.g. two-node) instructions,

but are unable to exploit larger instructions.

Not all extension instructions are automatically generated; many instruction set architec-

tures (ISAs) have had additional instructions added that interact with the core processor via

some extension interface. For example, the x86 ISA has the MMX and SSE extensions. These

are used in the standard instruction stream, but interact with the baseline x86 instructions

through additional vector registers. These instructions are designed to be used with highly

regular, data-parallel code, such as that commonly found in multimedia applications. Success-

fully enabling a compiler to use them, however, is difficult. Techniques exist that “vectorise”

loops to use these instructions [Allen and Kennedy, 2001], but they frequently fail to produce

efficient code. In fact, code that can heavily exploit MMX and SSE instructions is one of the

few areas in the x86 world where hand-written assembly is still considered worthwhile. For ex-

ample, in the FFmpeg [Various, 2011a] and x264 [Various, 2011b] video codecs every critical

kernel is hand-written in MMX or SSE assembly. MMX and SSE instructions are graph-shaped

but repeat a very small, regular pattern two or four times, e.g. grouping four multiplies together.

Extension instructions produced by AISE are also graph-shaped, but are not guaranteed to be

regular. Thus, these instructions are a superset of the regular extension instructions and com-

piling for them will be at least as difficult, if not more so. This thesis, therefore, investigates

how effectively the compiler can use these AISE produced extension instructions.

6 Chapter 1. Introduction

1.3 Contributions

The contributions of this thesis are many, as the research was undertaken using an iterative

approach where each step directed the next, leading to some interesting results.

The first major contribution is a method for mapping arbitrary graph-shaped instructions

(both disjoint and not) to arbitrary programs. The novel aspects of the mapper are that it

performs instruction mapping in the middle-end instead of the back-end. This allows it to

focus only on extension instructions, which the back-end cannot exploit. The mature and tuned

back-end performs effective instruction selection for the code which is not mapped to extension

instructions. Additionally, the instruction mapper is able to target a new extension interface

based on vector instructions complete with vector permutation units [Almer et al., 2009].

An extensive evaluation is performed using 179 benchmarks from seven benchmark suites

obtained from five sources. Results are generated using a hardware-verified cycle-accurate

simulator. Additionally, the instruction mapper is evaluated using extension instructions gener-

ated for programs which are similar (but not identical to) the programs which they are mapped

to. Changes include dropping profiling data, modifying programs or using completely different

implementations of an algorithm.

The instruction mapper was able to find 84.5% as many extension instruction mappings as

the AISE tools predicted. The more interesting results at this stage, however, are the negative

results – as they lead to interesting conclusions about the role the compiler should play in an

AISE based framework. The instruction mapper only uses 60% of the extension instructions

that the AISE tool generates and only achieves an average speed-up of 1.11x. Additionally, 110

of 179 benchmarks actually run more slowly when using extension instructions. This is found

to be due to the costs of mismatch between regular vectors and irregular extension instructions.

These results lead to modifications that arguable represent the most important contributions

of this thesis. Several changes are made, but they are evaluated independently from each other.

The first change allows the compiler to ignore extension instructions where the irregular-regular

mismatch cost is likely to outweigh the instructions benefits. This increases the average speed-

up to 1.20x and only 66 of 179 benchmarks slow-down. Hard-wiring some constants into

extension instructions also increases the average speed-up to 1.20x. Using smaller extension

instructions can increase the average speed-up up to 1.13x. Adding an additional parameter

to the AISE model to represent the irregular-regular mismatch cost can increase the average

speed-up to 1.24x with only 52 benchmarks slowing-down. The most effective change is to

abandon the vector registers completely and thus discard all issues regarding irregular-regular

data mismatches. Evaluated using the same terms as the rest of this paragraph this results in an

average speed-up of 1.28x and zero benchmarks slowing down (though six do not experience a

speed-up). This would have some unrealistic hardware requirements though, but reducing the

hardware demands only lowers the speed-up to 1.26x (while still resulting in zero slow-downs).

1.4. Structure 7

Vector loads and stores are also found to be likely to provide a small benefit (increases

average speed-up to 1.14), but to increase bandwidth in a system without vector registers dual

memory banks are evaluated. A source-level memory partitioning scheme based on genetic

programming was able to produce better results in far less time than an “optimal” integer linear

programming based approach when operating at the source-level. The source-level approach

itself is also a novel contribution which required the development of a C-to-DSP-C source-to-

source compiler.

Finally, the compiler is used to modify the shape of programs before the AISE tool pro-

cesses them. 59 transformations are used to create a large transformation space. An extensive

random sample of this space is taken and is used to produce a reduced space which covers short

sequences of the most important transformations. This reduced space is then exhaustively enu-

merated. This approach found that the combined speed-up of transformations followed by

AISE could be greater than the product of the two separately. Additionally key transformations

for AISE are identified.

1.4 Structure

The rest of the thesis is structured as follows.

Chapter 2 provides background information to aid in the understanding of the thesis. It

primarily presents tools and techniques that later chapters use but do not improve upon.

Chapter 3 examines prior work attempting to solve the problems directly related to the

issues explored by this thesis. The specific areas of previous work considered are: classical

instruction selection, complex instruction mapping, compilation for dual memory banks and

compiler transformations, as they apply to instruction set extension.

Chapters 4–7 present and evaluate the techniques developed for this thesis. Chapter 4

specifically examines how to map extension instructions onto programs by use of a graph-

subgraph isomorphism checker and how to perform register allocation for the vector registers

used by the extension interface. These techniques are evaluated, both directly and by re-using

extension instructions in programs similar, but not identical, to the programs for which they

were generated. While this shows that the tool is effective at exploiting extension instructions,

the results are sometimes marginal or introduce a reduction in performance.

Chapter 5, therefore, investigates various ways of increasing the effectiveness of extension

instructions. Firstly, by changing the heuristic parameters for extensions generation. Secondly,

two independent hardware modifications to ease the use of extension instructions are proposed;

one using vector loads and stores with the vector registers and the other eliminating vector

registers entirely.

Chapter 6 takes the two hardware modifications proposed in chapter 5 and unifies the

8 Chapter 1. Introduction

idea of increasing memory bandwidth (through vector loads and stores) with the clear benefits

of eliminating the use of vector registers. This is achieved by proposing another hardware

extension: dual on-chip scratchpad memories. Multiple techniques to split data between the

two memory banks are proposed and evaluated.

The previous chapters presented techniques to enable the compiler to use extension in-

structions. Chapter 7 uses the compiler to enhance extension generation. Source-to-source

transformations are used to modified programs before they are presented to the AISE tool and

certain key transformations were found to improve the quality of the extension instructions

produced.

Chapter 8 concludes the thesis by summarising the results and contributions presented in

earlier chapters and by providing a high-level critical evaluation that considers broad issues

that were not specifically related to any single chapter.

Finally, appendix A contains a list of the source-to-source transformations used in chap-

ter 7 and appendix B has the complete versions of the charts shown in previous chapters.

1.5 Summary

This chapter has introduced the thesis by motivating the use of ASIPs in embedded computer

systems but also outlining the compiler issues that they introduce. The contributions of this

thesis were summarised and the structure of the thesis was described by means of a brief walk-

through which showed how each chapter is motivated by the results of previous chapters.

Chapter 2

Background and Infrastructure

“It would appear that we have reached the limits of what it is possible to achieve with computer
technology, although one should be careful with such statements, as they tend to sound pretty
silly in five years.”
— John Von Neumann, mathematician, 1903–1957. Quote from circa 1949.

This chapter provides a short overview of the technologies and techniques relevant to the

work of this thesis and is organised as follows: section 2.1 introduces embedded processors and

highlights the various design options offered by these devices; section 2.2 covers the toolchain

used in this thesis; section 2.3 outlines an automated instruction set exploration (AISE) algo-

rithm; section 2.4 explains the concept of Design Space Exploration and section 2.5 describes

Dual Memory Banks. Section 2.6 summarises Genetic programming relating to the work of this

thesis, section 2.7 introduces Graph Theory, and finally and section 2.8 sets out the benchmark

suites used for evaluation.

2.1 Embedded Processors

A complete description of embedded processors would be too large for this thesis. Therefore, a

short summary is provided here, more complete descriptions have been written by Fisher et al.

[2005, Chapter 1] or Ienne and Leupers [2007].

As described in chapter 1, embedded processors are required to be low cost, low power and

small:

• Low cost: embedded processors must be cheap to produce. Despite the importance of

the processor they usually only account for a small portion of the overall design budget.

• Low power: hand-held devices are battery operated and even in static devices low heat

output is essential.

• Small: hand-held devices have limited space for electronics, the smaller the size of the

packaged processor the better. This is helped by increasing transistor density, which

9

10 Chapter 2. Background and Infrastructure

allows multiple processors to be included on a single die, i.e. System-on-Chip.

2.1.1 Embedded Processor Families

There are several different families of embedded processors:

• General Purpose Embedded Processors are designed to be usable in a wide-range of

scenarios. Many started as scaled down versions of general purpose workstation proces-

sors. They can be used as stand-alone processors, but are often licensed as an IP-block

for use within a system- on-chip.

• Microcontrollers are contained in most industrial electronics, from washing machines

to cars. They operate as stand-alone processors controlling mechanical processes. Their

design is often descended from older 8-bit and 16-bit architectures.

• VLIW and DSP are specialised for digital signal processing and multimedia functional-

ity, they are effective for highly data-parallel processing. Their specialised design means

they sometimes have to be paired with a general purpose processor.

• Reconfigurable Processors are processors that allow partial run-time reconfiguration.

This is achieved with a microcode programmable micro-architecture, an FPGA is the

full realisation of this. This fabric is not power efficient so reconfigurable processors

rely on coarse-grain specialisation to exploit the reconfigurable fabric and save power.

• Application Specific Integrated Circuits (ASICs) are fully custom-designed pieces of

hardware that can perform one task extremely efficiently. They have a very high design

cost which unlike general purpose processors cannot be amortised across applications.

• Application Specific Instruction-set Processors (ASIPs) are normally general purpose

embedded processors with additional application specific instructions, though any kind

of processor can be used as a baseline. The use of a standard baseline means that their

design-cost is much lower than that of an ASIC.

2.1.2 Application Specific Instruction-set Processors

Designers of embedded processors are increasingly using techniques that were previously only

used in general purpose processors to trade-off processor size for performance. As proces-

sor fabrication capabilities improve embedded processors designers are able to use the extra

die-space to design more complicated processors with deep pipelining and superscalar pro-

cessing. For example, the ARM Cortex-A8 processor has a 13-stage pipeline and is dual-issue

superscalar [ARM Ltd., 2010a]. Additionally, the ARM Cortex-A9 uses out-of-order execu-

tion [ARM Ltd., 2010b].

2.1. Embedded Processors 11

Figure 2.1: A simplified system-level view of ARC700 family architecture, demon-

strating the pre-verified baseline core and its connection to an instruction set exten-

sion through custom registers and arithmetic units.

These general-purpose modifications will improve performance for almost every kind of

program, either by allowing higher frequencies (deep pipelining), or by increasing the number

of operations completed per-cycle (superscalar and out-of-order execution). Their generality,

however, means they are power-hungry. In the situation were a specific set of applications

are being targeted it is possible to use the information this provides to produce a specialised

processor that is more power-efficient.

Historically the standard way of exploiting application specialism was to build an ASIC.

As the tasks required of embedded computers have been increasing in complexity however, the

cost and time required to design an ASIC has grown [Keutzer et al., 2002]. For most situations

it is now preferable to build an application specific instruction-set processor (ASIP). These are

cheaper and quicker to design because they are centred around a general-purpose baseline core

which can be extended in an application-specific manner.

Extensible processors are based on the premise that processor speed, die area, and power

consumption can be improved if the architecture of the processor is extended to include some

features that are application-specific. This approach requires an ability to extend the architec-

ture and its implementation, as well as the compiler and associated binary utilities, to support

the application-specific extensions. It may seem counter-intuitive that adding to a processor

will save die area, but application-specific extensions are more efficient than general purpose

enhancements.

Processors may be extended statically or dynamically. A processor can be extended stat-

ically by augmenting the Verilog description of the processor prior to synthesis. Once the

extensions have been incorporated, and the design has been fabricated, the extensions cannot

be modified or further extended. A dynamically-extensible processor must be implemented,

12 Chapter 2. Background and Infrastructure

either wholly or partly, in some form of field programmable logic fabric [Stretch Inc., 2007].

The simplest forms of extension, which are perhaps more properly considered to be forms

of configuration, are the micro-architectural modifications that can be made to caches and their

associated bus structures. Most embedded microprocessor cores provide the capability to adjust

level-1 cache size, associativity and sometimes also block size and memory bus width. These

all have a significant impact on performance, die area and power consumption. They are also

relatively easy to exploit, as they require no changes to the instruction set architecture.

True architecture extensions begin with the capability to add custom instructions to a base-

line instruction set. In their simplest form these may be predefined packs of add-on instructions,

such as the ARM DSP-enhanced extensions included in the ARM9E [Francis, 2001], the var-

ious flavours of MIPS Application Specific Extensions [MIPS Technologies, 2007], or ARC’s

floating-point extensions to the ARCompact instruction set [ARC International, 2007].

These are domain-specific extensions, they can be used across many related tasks. Appli-

cation-specific instruction set extensions are not predefined by the processor vendor but are

instead identified by the system integrator through analysis of the application. To allow such

instructions to be incorporated into a pre-existing processor pipeline, there must be a well-

defined extension interface. From a high-level architecture perspective this interface will allow

the extension to operate as a “black-box” functional unit at the execute (EX) stage of a standard

RISC pipeline. This is an over simplification though, standard RISC instructions are two-

input and one-output. Effective extension instructions require this constraint to be relaxed as

extensions exploit the parallelism available in large instructions. This, therefore, generally

requires an extended or additional register file, hence the need for an extension interface.

Practical extensible processors for the embedded computing market, such as those from

ARC and Tensilica, normally have single-issue in-order pipelines of 5–7 stages. This permits

operating frequencies in the range 400MHz to 700MHz at the 90nm technology node. Exten-

sion instructions may be constrained to fit within a single clock cycle, or may be pipelined to

operate across multiple cycles. Current dynamically-extensible cores that use FPGA fabrics to

implement the extension instructions cannot operate at these speeds. For example, extension

instructions in the Stretch S5000 [Stretch Inc., 2007] operate at one-third of the clock rate of

the processor.

The representation of instruction set extensions varies from one vendor to another, but

essentially describes the encoding and semantics of each extension instruction in ways that can

be understood by both a processor generator tool and all of the software tools (e.g. compilers,

assemblers and simulators). There follows a process of translating the abstract representation

of the extension instructions to structural form using a Hardware Description Language (HDL)

such as Verilog or VHDL. This is then incorporated into the overall HDL definition of the

processor, which is then synthesised to the target silicon technology or perhaps to an FPGA.

2.2. Infrastructure 13

Profiling
Data

Extension
Instruction
Generator
(ISEGen)

Application

Baseline
Processor
(EnCore)

+ Extended
Processor

Extension
Unit

Extension
Instruction
Definitions

Simulator

Assembler

Compiler
(MapISE)

Application

Profiling
Data

(Optional)

Accelerated
Application

Figure 2.2: How the different tools in PASTA interact.

2.2 Infrastructure

The research presented in this thesis was undertaken within the PASTA project: Processor Au-

tomated Synthesis by iTerative Analysis. This was a large, multi-person project that aimed

to automatically produce application specific processors and their associated tools. An appli-

cation which is to be accelerated is provided and the PASTA toolchain produces a processor

designed to accelerate that application as well as a compiler and a simulator that support the

accelerated processor.

Figure 2.2 shows how the key components of the PASTA project interact. The target appli-

cation and associated profiling data is passed to the extension instruction generator (ISEGen).

This produces an XML specification of the generated extension instructions and a Verilog im-

plementation of the extension unit. This Verilog extension unit can then be integrated with the

EnCore baseline processor to produce an extended processor. The XML extension instruction

specification is used to produce a new assembler and a simulator that supports the newly speci-

fied processor. Finally, this same XML specification is provided to the MapISE compiler along

with an application (potentially the original target) and profiling data so as it can produce an

accelerated application which will run on the extended processor.

Disclaimer. Of the components described in figure 2.2 only the compiler (MapISE) is

presented as a contribution of this thesis. Specifically ISEGen, the simulator and EnCore were

not developed by the author of this thesis but by other members of the PASTA project.

14 Chapter 2. Background and Infrastructure

Figure 2.3: A specific instantiation of an EnCore processor with an extension unit.

2.2.1 EnCore

The extensible processor used in this thesis is the EnCore. This processor is an implementation

of the ARCompact ISA. The ARCompact ISA is a 32-bit RISC ISA with 16/32-bit mixed mode

instructions and optional extensions for digital signal processing, floating point operations and

dual memory banks. The EnCore implementation is both low power and high performance:

using a generic 130nm process it operates at a frequency of up to 375MHz, or up to 600MHz

using a 90nm process. In terms of customisability: EnCore has configurable caches, it may be

specified with 16, 32 or 64 general purpose registers and it has an extensive extension interface.

Figure 2.3 shows the layout of a 90nm EnCore processor with a five stage pipeline, two 32Kb

caches, 64 general purpose registers and additional extension instructions.

2.2.2 EnCore Extension Interface

EnCore’s extension interface is an addition which is not present in the original ARCompact

ISA. It supports up to 255 extension instructions which read and write data via vector registers

(four elements each). Extension instructions are used via a vextNNN mnemonic, e.g. vext001,

vext002 etc. Each use of a vext instruction may use up to three input vectors and two output

vectors, e.g.

vext001 vr04,vr05 = vr01,vr02,vr03

This means that an extension instruction may have up to twelve input values and eight

output values. For instructions which do not require every vector the register vr00 is used in

2.2. Infrastructure 15

Vector Scalar Registers

vr01 r35 r34 r33 r32

vr02 r39 r38 r37 r36

vr03 r43 r42 r41 r40

vr04 r47 r46 r45 r44

vr05 r51 r50 r49 r48

vr06 r55 r54 r53 r52

vr07 r59 r58 r57 r56

Table 2.1: The mapping of scalar registers to vector registers on EnCore.

the mnemonic as this is a read-only register that is hard-wired to all zeroes, writing to it has

no effect. If an instruction does not need to read or write an entire vector then elements may

be ignored by unsetting a bit in the read or write mask that is hard-coded into the instruction’s

hardware implementation. This is especially important when writing to vectors as otherwise

register contents will be unnecessarily “clobbered” (i.e. live-ranges are interrupted and the

compiler will need to spill any live values stored in those registers). There is also a special vmov

instruction (or vext000) which is the vector register equivalent of a RISC mov instruction.

The extension unit interface in EnCore is only connected to the vector registers, extension

instructions are not capable of accessing individual scalar registers. EnCore has seven physical

vector registers, each of which contains four 32-bit elements. Each of these 28 elements are

mapped to the upper-half of the general purpose register file, as shown in table 2.1. In the

ARCompact ISA registers r00–r31 are already used for standard compilation and r60–r63

are used for specific purposes. This leaves registers r32–r59 for mapping to the vector register

file. When these are arranged into four element vectors the limit of seven physical vector

registers is created.

The baseline EnCore processor, however, can access any register r00–r63 including the

registers r32–r59 which are mapped to vector registers. The baseline processor cannot access

an entire vector at once, it can only access individual elements. Figure 2.4 shows the two

separate register interfaces that are used to make this work. The baseline processor uses 32-bit

ports to access single scalar registers and is connected to the entire register file with two read

and two write ports. The extension interface uses 128-bit ports to access entire vectors at once

and is connected to the extension register file with three read and two write ports. The reduced

wiring complexity due to only having seven vector registers makes the third read port viable.

Figure 2.4 also shows that two of the vector register read ports have “permutation units”.

These allow the extension instructions to access the elements of vector registers in a different

order than in which they are stored. Due to limited space in the instruction encoding only

16 Chapter 2. Background and Infrastructure

r31
.
.
.
.
.
.

r0

Baseline Processor
(EnCore)

Extension Unit

r56 r57 r58 r59

r32 r33 r34 r35

r63
 .

r60

32-Bit

128-Bit
Permutation

Units

Figure 2.4: Extension instructions interface with EnCore via vector registers.

Vector Permutation Scalar Registers

vr01 Identity r35 r34 r33 r32

vr08 Swap Central 2 r35 r33 r34 r32

vr09 Swap 2 Ends r32 r34 r33 r35

vr10 Swap Pairs r34 r35 r32 r33

vr11 Swap Left Pair r34 r35 r33 r32

vr12 Reverse r32 r33 r34 r35

vr13 Rotate Left r34 r33 r32 r35

vr14 Rotate Right r32 r35 r34 r33

vr15 Rotate by 2 r33 r32 r35 r34

Table 2.2: The permutations available for vr01 on EnCore. vr16–vr63 provide

equivalent permutations for vr02–vr07.

9 of the possible 24 permutations are available, these are shown in table 2.2. These nine

permutations were chosen such that the other permutations are accessible by combining two

permutations. This is done by using a vmov instruction to apply the first permutation and apply

the second permutation via the vext instruction. The intention of the permutation units is to

make it easier to use the output of one extension instruction as the input to another, especially

in the context of loops.

2.3. Automated Instruction Set Extension 17

2.2.3 ISEGen and uArchGen

The ISEGen tool generates a specification for a set of extension instructions to accelerate a

provided target application by means of the ISEGEN algorithm [Biswas et al., 2006a]. The

generation of the Verilog implementation of the extension unit is actually done by a second

tightly coupled program called uArchGen.

uArchGen can optionally use resource sharing when creating the extension unit. This means

that if two instruction implement the same operator the can share the same hardware (e.g. they

both contain a multiply then the same hardware multiplier could be used for both). This can

reduce performance, however, as the extension instructions are implemented over three of En-

Core’s five pipeline stages so as to avoid large instructions decreasing the maximum achievable

clock frequency. This means that if two instructions want to access a shared resource at the

same time a pipeline bubble will occur. uArchGen can also fit the extension unit into a target

die area, but it does that by excluding some of the instructions that ISEGen finds. As this thesis

is evaluating the compiler and not the hardware implementation, uArchGen is used in its default

mode of not using resourcing sharing and allowing unlimited die size.

ISEGen, however, has many heuristic parameters. The core ISEGEN algorithm uses seven

heuristic weights that affect the search process. These are all left at their default values for this

thesis as small changes can drastically slow down the algorithm. Other parameters are safer to

use, such as changing the maximum number of input and outputs that an instruction may have

or changing the expected costs of implementing certain operations in hardware.

2.3 Automated Instruction Set Extension

An AISE algorithm used in this thesis is described below, but many others exist, Galuzzi and

Bertels [2011] provide an overview of the topic with references to many other algorithms.

There are actually two AISE algorithms implemented by the tools used in this thesis. The sim-

pler algorithm is described below while also outlining AISE methodology. The more advanced

algorithm is described by Biswas et al. [2006a].

2.3.1 Atasu AISE Algorithm

Atasu et al. [2005a] implemented an integer linear programming based automated instruction

set extension tool to find optimal extensions. Each basic block was defined as an integer linear

program, along with the input and output dependencies of the block. Additional constraints

were then added to the model such as the maximum number of inputs or outputs an instruction

may have and enforcing the convexity constraint. The convexity constraint states that if a

custom instruction provides an input to some node, and uses the output of the same node then

that node must be contained within the custom instruction or the instruction is invalid. Without

18 Chapter 2. Background and Infrastructure

this the node may need to be scheduled both before and after the custom instruction, which

is clearly impossible. Every node in the basic block implements some simple operation, in

the model there are hardware and software costs for each operation. The hardware cost is the

fraction of a cycle (maybe greater than 1 cycle) that it takes to perform the operation. The

software cost is the number of cycles the standard instruction that performs this operation takes

to complete. The integer linear program is then used to find the single instruction which results

in the greatest reduction in schedule length from implementing that set of nodes in hardware.

Once an instruction is found, all the nodes implemented by that instruction are collapsed into

a single node and the algorithm is re-run to find another instruction (the collapsed node may

not be included in another instruction). This means given the already picked instructions the

next instruction picked will be genuinely optimal – however the overall set of instructions isn’t

necessarily optimal.

The ILP AISE algorithm generates data-flow-graph templates through the conversion of

basic blocks to a set of constraints in an Integer Linear Program (ILP) and solution of that

program. For the implementation used in chapter 7 a tool built into a CoSy compiler uses

the lp_solve library [Berkelaar, 2008] to solve such problems and generate a set of candidate

templates for an entire program. Constraints are declared for each basic block to generate a

template such that:

1. The template is convex (i.e. there is no dataflow path between two operations in the

template that includes an operation that isn’t in the template), so that it may be scheduled.

2. Input and output port constraints are met (i.e. the number of register input and output

ports are sufficient), so that it may be implemented.

In addition to the constraints, a goal function is also expressed. For this algorithm, the goal

is the estimated serial time of execution in cycles of the instructions covered by the template,

minus the estimated critical path of the template. The former is denoted the “software” execu-

tion time, and is indicative of the time the instruction would take to execute on the unextended

architecture. The latter is denoted the “hardware” execution time, and is a real-valued factor of

the cycle time taken to execute the template as a single instruction. A cycle time for each soft-

ware and hardware operation is specified to the tool a-priori to ILP construction, to allow for

the constraints to be generated. The per-template difference between software and hardware

execution time is the per-execution gain in cycles to an architecture implementing that tem-

plate. Following the generation of templates from basic blocks, the templates are checked for

isomorphism with one another using the NAUTY [McKay, 2008] graph isomorphism library,

then ranked using the product of their estimated usage and per-execution gain. The top four

of these instructions are then recorded alongside their performance estimates for inclusion in

results.

2.4. Design-Space Exploration 19

2.3.2 HW/SW Codesign

HW/SW Codesign was an active research area in the 1990’s and has inspired subsequent work

on Electronic System Level Design, e.g. [Keutzer et al., 2000; Balarin et al., 2003]. A compre-

hensive summary of research directions, approaches and tools has been written by Rozenblit

and Buchenrieder [1995]. This work covers a broad scope of issues, typically ranging from the

analysis of constraints and requirements down to system evaluation and design verification. In

contrast, this thesis focuses on a more specific, individual problem, namely that of HW/SW

partitioning in the context of extensible application-specific processors. The primary feature

that distinguishes HW/SW Codesign from AISE HW/SW Partitioning is software synthesis. In

HW/SW Codesign a problem definition is used to synthesise both hardware and software, in

AISE HW/SW Partitioning portions of the software are implemented in hardware.

2.4 Design-Space Exploration

Design-space exploration is an optimisation process in the design flow of a System-on-Chip.

Typically, the search has multiple constraints (performance, power, cost etc.), and targeting

an often multi-dimensional and highly non-linear optimisation space. Multiple dependent lev-

els (algorithm, SW, and HW design space exploration) of interaction make it difficult to em-

ploy isolated local search approaches, but require a combined effort crossing the traditional

boundaries between design domains, providing feedback paths and integrating tools into larger

frameworks.

Configurable and extensible processor cores such as the ARC 600 and 700 have a number of

capabilities to allow their instruction set and micro-architecture to be optimised for a particular

application. Design concerns guiding the exploration are often reduced to metrics such as

execution speed, power usage, and die area; each of these metrics has an accompanying relevant

design space in the configuration and extension domain.

Meeting the main execution speed requirement means that no further increase in speed is

generally useful, other than to provide an overhead for development. Application deadlines

will be met and the system built around the core will be able to communicate and process data

without stalling due to system-level deadlines missed by the core.

Once execution speed requirements have been met the focus of designers may be switched

to secondary axes of design concern, such as power usage. Efforts in addressing one axis of

design concern may make use of excesses in other axes. For example if performance exceeds

requirements the clock speed of the ASIP may be reduced, reducing the power consumption.

These secondary concerns have additional design spaces of the configurable core available to

be explored for satisfactory areas; for example clock gating, dynamic voltage scaling, and unit

pruning. These are, however, outside the scope of instruction set extension and are not covered

20 Chapter 2. Background and Infrastructure

here.

Unfortunately the “second order” effects of core extension are not always beneficial and are

often hard to predict with any accuracy. Adding more logic to a core can increase the critical

path and force a reduction in the overall clock speed. A complicated web of non-orthogonal

trade-offs forms a space which can only be explored efficiently with iterative, automated help.

Instruction set extensions affect all three of the aforementioned axes of design concern.

The guiding metric in deriving extensions is often still application execution speed; design-

ers will add instructions that “cover” the hottest (most frequently executed) sections of their

application code. The intention is that by partitioning the application code into areas covered

by extension instructions, subsections of micro-architecture can be dedicated to the servicing

of these new instructions. In this highly application-specific design space, several sources of

micro-architectural optimisation are currently brought to bear on the hardware performance of

the new instruction:

1. Operation-level/Spatial parallelism; Parallel instances of arithmetic hardware in order

to perform multiple operations at-once, as allowed by dependencies.

2. Reduced register-transfer overhead, due to the increased locality of communication

within the functional unit used to represent the new instruction.

3. Aggregation of clock period surplus present in most arithmetic functions. In par-

ticular, bit-wise functions have a hardware latency far below the clock period in most

cases.

This growing catalogue of optimisation aims to ensure that the “hot-spot” represented by

the new instruction achieves the maximum speed possible, by trading off die area for an in-

crease in execution speed, a decrease in power usage, and a decrease in code-size. Often these

extensions correlate to very frequently executed sections of code, and so the benefits for a rel-

atively small increase in die-size can be very tempting to designers. The problem remains to

find a way to accurately model both the existing architecture and the full range of potential

extensions in such a way as to efficiently automate exploration.

It has been shown [Bonzini and Pozzi, 2006] that new search methods and heuristics can

be developed to control the application of transformations, with respect to the new set of goals

inherent in AISE as compared to code generation. Transformations once targeted at the back-

end would attempt to limit increasing basic block size due to register pressure, e.g. [Gupta and

Bodik, 2004]. Now in instruction set extension the drive is towards the largest possible basic

block size for analysis.

2.4. Design-Space Exploration 21

Figure 2.5: The Compiler-in-loop methodology for ASIP design space exploration.

2.4.1 Automated Instruction Set Extension

Automated instruction set exploration (AISE) has been actively studied in recent years, lead-

ing to a number of algorithms [Peymandoust et al., 2003; Biswas et al., 2006a; Atasu et al.,

2005b; Pozzi et al., 2006] which derive the partitioning of hardware and software under micro-

architectural constraints. Work is still underway in defining the full space of exploration even

in purely arithmetic instruction set design [Verma and Ienne, 2006]. Work to include better

models in tools has allowed for better decisions about the performance and feasibility of exten-

sions [Pozzi and Ienne, 2005].

The current exploration approach of using a range of tools operating on a canonical system-

level ADL, is described as “Compiler-in-Loop Design-Space Exploration” [Hohenauer et al.,

2004]. It was originally motivated [Glökler et al., 2003] through the discovery that iterative

and methodical exploration of ASIP design is very beneficial in decreasing time-to-market.

The CoSy [ACE Associated Compiler Experts, 2011] and Processor Designer [CoWare, 2007]

tools feature in many such frameworks; figure 2.5 illustrates such a combination. The com-

piler, binary utilities such as assembler and linker, profiler, and simulator are generated from a

single “Golden Model” written in LISA 2.0. This toolchain may then be used to evaluate the

performance of the architecture described by the model. The application for which the model

is intended is compiled, assembled, linked, simulated and profiled for run-time and other statis-

tics. The Automated Instruction Set Extension tool is run over the application to determine a

set of effective instructions to add to the model. The designer selects a subset of these instruc-

tions to add, and is able to use the generation facilities of the compiler-in-loop framework to

generate a new toolchain for further performance analysis of the program. The designer is then

free to modify the constraints imposed on the AISE tool (such as register file input / output)

and repeat the loop to further explore the design space of the application specific processor

22 Chapter 2. Background and Infrastructure

MEM

YMEM

MEM

XMEM

 X

 Address

Registers

 Address

 Unit

 Y

 Address

 Unit

 Y

 Address

Registers

 Address

Registers

 General

 Purpose

Registers

 X

Accumulate

 Multiply

Figure 2.6: Example DSP processor architecture with dual-input memory data path

and MAC unit.

described by the Golden Model. In this way, the designer is freed from many drawbacks inher-

ent in design space exploration without such a framework. They may directly test the impact

of a design decision without the need to manually re-implement a simulation and compilation

toolchain. This top-down automated approach to design exploration and evaluation has been

proven successful in case studies such as those cited in Hohenauer et al. [2004].

2.5 Dual Memory Banks

Digital signal processors are often required to process “infinite streams”, e.g. decoding an

incoming television signal or encoding a mobile telephone call. For these tasks the input data

will keep on arriving for an unknown period of time, so the processor must be able to process

the stream constantly in real-time.

A key performance bottleneck when doing this is memory bandwidth. To address this

most digital signal processors have dual memory banks. For example, the TigerSHARC DSP

platform that is used in chapter 6 is a hybrid VLIW/superscalar processor — this means it can

issue multiple instructions per cycle. It also has dual memory banks (called “X/Y Memory”),

this means it can issue two loads or two stores each cycle as long as the accesses are not to

the same memory bank (i.e. it can access bank X once a cycle and bank Y once a cycle). This

requires the compiler to split the program’s data between the two banks in a way that maximises

the possibilities for parallel accesses.

Figure 2.6 shows a generic DSP architecture with dual memory banks X and Y. These two

banks are accessed via the X and Y addressing units, which may support DSP specific post-

increment addressing modes. TigerSHARC’s memory architecture fits this generic design.

2.6. Genetic Programming in Compilers 23

2.5.1 DSP-C and Embedded C

Programmers can use dual memory banks directly with DSP-C [ACE Associated Compiler

Experts, 1998], or its later extension Embedded C [JTC1 et al., 2004; Beemster et al., 2005].

These are sets of language extensions to the ISO C programming language that allow applica-

tion programmers to describe the key features of DSPs that enable efficient source code compi-

lation. As such, DSP-C includes C-level support for fixed point data types, circular arrays and

pointers, and, in particular, divided or multiple memory spaces.

DSP-C uses address qualifiers to identify specific memory spaces in variable declarations.

For example, a variable declaration like

int X a[32];

defines an integer array of size 32, which is located in the X memory. In a similar way, the

address qualifier concept applies to pointers, but now up to two address qualifiers can be pro-

vided to specify where the pointer and the data it points to is stored. For example, the following

pointer declaration

int X * Y p;

describes a pointer p that is stored in Y memory and points to integer data that is located in X

memory. For unqualified variables a default rule will be applied (e.g. to place this data in X

memory).

2.6 Genetic Programming in Compilers

There is a growing research field which makes use of machine learning in compilers. For ex-

ample: early work was undertaken by Agakov et al. [2006], Wang and O’Boyle [2010] use

machine learning for automatic parallelisation and Fursin et al. [2008] produced a complete

machine learning compiler. For the purposes of this thesis, only one technique will be consid-

ered: genetic programming (GP) which is used in chapter 6.

Genetic programming is based on the same evolutionary principles as genetic algorithms.

Instead of mutating and breeding strings, however, trees are used to represent functions [Cramer,

1985; Koza, 1992]. Trees are mutated and are allowed to survive by their “fitness”, the higher

their “fitness” the higher the probability that they will make it into the next generation. To

breed two trees, one of each of their sub-trees are swapped and to mutate a tree, a sub-tree is

replaced with a randomly generated sub-tree.

The algorithm is initialised with a population of entirely random trees. Each member of the

population is then assigned a fitness by a provided fitness function. The next generation will

be the same size as the current generation, X% of its members will be produced by breeding

and 100− X% will be produced by mutation – 90 is a typical figure for X . Members are

selected for breeding or mutation based on their fitness, there are many ways of doing this but

24 Chapter 2. Background and Infrastructure

the experiments in this chapter use tournament selection. A set of size N is picked entirely at

random with no bias towards fitter candidates, then the fittest of the N is selected. This means

that the N−1 least fit candidates will never be chosen and the larger N is the stronger the bias

towards fitter candidates becomes. Once the new generation has been formed the old one is

discarded and the process starts-over with the new generation until some generational limit is

reached, then the fittest candidate in the current generation is returned.

Stephenson et al. [2003b] used genetic programming in a compiler. They use genetic pro-

gramming to generate heuristics for priority functions related to hyperblock formation, register

allocation and data prefetching. Although many of the results they report are due to evaluating

the heuristics on their own training data they also present results for separate test benchmarks.

They were able to improve on the existing heuristic in a mature compiler by 9% on average for

hyperblock formation across many SPEC benchmarks, demonstrating that genetic program-

ming has potential within compilers.

Leather et al. [2009] take a different approach and use genetic programming to search a

feature space as defined by a grammar. The work of Stephenson et al. [2003b] (and the work in

chapter 6) both use GP to generate compiler heuristics, Leather et al. [2009] generate “features”

which are then used by heuristics. This technique outperformed both the default GCC heuristic

and a support vector machine (SVM) approach.

2.7 Graph Theory

Compiler writers have been using graphs extensively for a many years [Joshi et al., 2002]. They

can be used to represent information, e.g. to represent control-flow. They can also be used to

solve problems, e.g. finite automata to represent regular expressions during lexical analysis, or

colouring graphs to perform register-allocation. Some of the techniques developed in this thesis

are based on graphs: instruction mapping in chapters 4 and 5 and memory bank allocation in

chapter 6. This section therefore summarises graph theory knowledge, leaving a more complete

introductions to others [West, 2000; Diestel, 2010].

2.7.1 The Basics

A graph G = (V,E) consists of a set of vertices V and a set of edges E. Each edge e ∈ E joins

two vertices v1,v2 ∈V . This type of graph can be considered undirected, edges represent some

form of association, but there is no direction of flow between vertices. In a directed graph each

edge has a flow from v1→ v2. If there are no loops (∀vx ∈ V, @ a path vx→ vx) in a directed

graph then it is said to be a directed acyclic graph, or a DAG.

2.8. Benchmarks 25

2.7.2 Specific Problems

Chapter 4 uses a graph-subgraph isomorphism checker. Graph-subgraph isomorphism is where

the subgraph can be mapped onto some part of the larger graph. So each node from the sub-

graph is mapped onto some node in the graph such that there are identical edges between the

nodes on the graph as there are on the sub-graph. Every node and edge in the subgraph must

be mapped to the graph, but nodes and edges in the graph do not need to be mapped to the

subgraph. This thesis uses the VF2 algorithm for performing graph-subgraph isomorphism

checking [Cordella et al., 2004].

Chapter 6 represents a problem as a soft-colouring problem. Hard-colouring is common

in computing. In hard-colouring no two connected nodes may be the same colour, in soft-

colouring it is merely desirable that this is so. A colouring should be found where the minimal

number of neighbours are the same colour. This thesis uses an algorithm by Fitzpatrick and

Meertens [2001] for soft colouring.

2.8 Benchmarks

This thesis has been evaluated using four benchmark suites that provide a representative over-

view of the domain of embedded applications. The EEMBC suite contains benchmarks for

common tasks in the automotive, consumer (multimedia devices), networking, office machin-

ery (e.g. fax-machines and printers) and telecommunication areas. The UTDSP [Lee, 1998]

suite adds further digital signal processing applications and kernels. Each program is sup-

plied in four versions, a version using pointer arithmetic, a version using arrays and software

pipelined versions of each of these. There is a small amount of overlap with the EEMBC suite,

specifically several of the kernels perform the same type of calculations as small parts of the ap-

plications that make up the telecommunication and consumer areas of the EEMBC suite. This

overlap is actually an aid to evaluation and is directly used in chapters 4 and 5. The third suite

used is another digital signal processing suite: DSPstone [Zivojnović et al., 1994], a collection

of very small kernels. Finally, the SNURT [Seoul National University - Real-Time Research

Group, 2008] suite is used, this is a set of embedded benchmarks representing common tasks in

the real-time domain. Some of these are more digital signal processing kernels, but other tasks

such as sorting and check-sum calculation are included. Additionally some more benchmarks

are taken from an in-house collection of cryptographic implementations as these are commonly

used for evaluating extension instruction generation techniques due to their high levels of data

parallelism.

All the benchmarks used for evaluation are implemented in C, as this is the de facto standard

in the embedded world, and none of them have been tuned for extension instruction generation

or exploitation.

Chapter 3

Related Work

“O wad some Power the giftie gie us
To see oursels as ithers see us!
It wad frae monie a blunder free us,
An’ foolish notion:
What airs in dress an’ gait wad lea’e us,
An’ ev’n devotion!”
— Robert Burns, Scottish national poet, 1759–1796. Final verse from “To a Louse” (approx. 1785).

This chapter examines prior work that is directly related to this thesis. Section 3.1 is directly

related to chapter 4 and 5 and covers work that looks beyond the existing classical techniques

to explore and exploit complex instructions. Section 3.2 is related to chapter 6 and considers

existing solutions to the dual memory bank assignment problem. Finally, section 3.3 describes

the early exploratory work that has been undertaken on the effect of compiler transformations

on processor customisation.

3.1 Complex Instruction Mapping

An early piece of work in the area of complex instruction selection was undertaken by Leupers

and Marwedel [1996]. The complex instructions targeted by this technique are instructions

that may be represented as disjoint data-flow trees, i.e. their operations occur in parallel. For

example: instead of targeting deep multiply accumulate instructions, they target wide multiply

accumulates where the accumulation occurs via an architecturally visible temporary register

and the result of the previous multiply is accumulated. The problem is encoded as the set of

register transfer paths possible on the processor, and the set of transfers that each instruction

implements. Standard optimal tree covering is performed on these register transfers and then

an integer linear program is used to find instructions which may cover multiple register trans-

fers. The type of hardware that this technique targets is less common now and small parallel

instructions have mostly been replaced with short tree equivalents, reducing the usefulness

of the technique since it was developed. The work was later revisited though [Leupers and

27

28 Chapter 3. Related Work

Bashford, 2000] to target a form of instruction that still consists entirely of parallel operations:

SIMD, specifically sub-word SIMD. Sub-word SIMD tries to pack small operations into stan-

dard arithmetic instructions, e.g. packing four 8-bit additions into a 32-bit addition. As this

vastly increases the space of possible instruction selections the standard optimal tree covering

technique is extended so that instead of finding a single optimal covering it finds all optimal

coverings. An integer linear program is then used to find a set of SIMD instructions which

is capable of working within the register constraints that sub-word SIMD introduces. This is

an interesting extension but is not equivalent to the instruction mapping requirements of this

thesis: sub-word SIMD instructions are far simpler than AISE generated extension instructions.

Arnold and Corporaal [2001] extended the standard optimal dynamic tree programming

algorithm to be able to handle instructions with multiple outputs. In principle, the cost function

of the standard dynamic algorithm is modified so that when an output of the multiple-output

instruction is used as an input to a node the cost is divided by the number of outputs. This is

one of the few papers that specifically address mapping instructions generated by AISE, but as

the paper concentrates on AISE itself the proposed mapping algorithm is not evaluated. This is

an unfortunate short-coming as the changes to the dynamic tree covering algorithm breaks its

ability to find an optimal covering. Without analysis it is difficult to establish the quality of the

discovered mappings as optimally combining trees is a hard problem (Leupers and Bashford

[2000] use an integer linear program to solve this part of the problem).

Scharwaechter et al. [2007] continues the development of complex instruction mappers by

extending the idea of a code-generator generator to be able to handle parallel instructions. The

described generator, Cburg, in principle operates like previous generators such as Iburg [Fraser

et al., 1992] or Olive [Tjiang, 1993]. It extends the input grammar and replaces the matching

algorithm, therefore both the code and the instructions can be represented as directed acyclic

graphs (DAGs). Though unlike Iburg or Olive, Cburg is not guaranteed to find optimal results

as it uses several heuristics to help reduce a worst-case exponential run-time down to an average

case linear run-time. Evaluation was undertaken by integrating a Cburg produced back-end into

the LCC compiler [Fraser and Hanson, 1991] for the MIPS ISA. As LCC uses Iburg produced

back-ends this allows for simple integration of their Cburg produced back-end. LCC, however,

has the disadvantage of not performing many middle-end optimisations. More complete com-

pilers expend significant effort eliminating redundant or dead operations. As redundant code

can generally be executed in parallel, and thus be ideal for execution by complex instructions,

this paper could potentially be overstating its results. Local common sub-expression elimina-

tion and constant expression elimination are performed though, and these alone should elim-

inate some of the redundancy. The evaluation of the technique only describes the speed-ups

provided by single instructions and some groups, presumably using Cburg as a baseline. The

reader has to assume that the original Iburg produced back-end would have produced the same

3.1. Complex Instruction Mapping 29

baseline results. The back-end is evaluated on four benchmarks: two encryption benchmarks;

an IPv6 stack; and an ADPCM application. The IPv6 stack’s run-time, however, is dominated

by an encryption layer, therefore the technique was evaluated on three encryption dominated

benchmarks and one signal processing benchmark. Significant speed-ups were found for the

encryption benchmarks but only a small speed-up was obtained for the ADPCM benchmark.

This was entirely provided by parallel loads where there is already a significant amount of ded-

icated compiler work (see sections 2.5 and 3.2). Thus, the techniques presented have only been

proved useful for encryption benchmarks, which are highly parallel and thus commonly pro-

vide excellent speed-ups in ASIP-related papers. Finally, the set of instructions evaluated were

the fusion of only two unconnected simple operations. These are far smaller than the extension

instructions considered in this thesis and could potentially mean this technique is inappropriate

for AISE generated extension instructions.

Ebner et al. [2008] produced a technique for matching graph-based instructions based on

a SSA representation. Interestingly, this technique operates on whole functions, not just basic

blocks – though it can only match acyclic instructions. Instruction are specified via semantic

rules, and a topological ordering amongst the rule dependencies must exist so that the convexity

of matches is guaranteed (i.e. an instruction should never have to read its own output as it

would then have to be scheduled before itself, which is clearly impossible). The algorithm

then finds every possible (overlapping) place to use each instruction. This has a worst-case

complexity of O(
(n

k

)
) where n is the number of nodes in a basic block and k in the number of

nodes in an instruction, however, in practice the worst-case is rarely reached. Each assignment

then becomes a variable in a partitioned binary quadratic problem, and is either mapped to

an integer linear program for solving optimally or is solved heuristically. The heuristics are

able to find the optimal solution 99.83% of the time. This technique was evaluated on an

ARM back-end in the LLVM [Lattner and Adve, 2004] compiler. It was consistently able to

outperform the existing LLVM ARM back-end, but was not always able to outperform GCC.

Consequently, the improvements found may have been opportunistically trivial due to poor

optimisation choices earlier in LLVM. Finally, the ARM ISA does not contain any particularly

complex instructions, therefore this technique is not shown to work with complex extension

instructions. The worst-case complexity of O(
(n

k

)
) makes it very likely the technique will

not scale for large instructions, as when the number of nodes in an instruction (k) grows the

complexity explodes.

Kobayashi et al. [2001] propose a method for automatically generating a compiler for an

ASIP processor from a hardware architecture description. Their PEAS-III system allows a

hardware designer to construct an ASIP by picking instructions from a provided database. This

database then provides information on each instruction’s functionality for code-generation pur-

poses. Scheduling information is generated from an analysis of available resources on the

30 Chapter 3. Related Work

processor. This information is then used to produce a CoSy [ACE Associated Compiler Ex-

perts, 2011] back-end description. No evaluation is performed but as this is just a standard

CoSy back-end there is little that is novel to evaluate. The CoSy back-end generator uses an

optimal tree-based instruction selector which can also combine trees to achieve very limited

support for complex instructions. This is the standard approach for compiler production in

ADL systems [Brandner et al., 2007; Ceng et al., 2005; Hohenauer et al., 2004], thus although

they can target customised processors they have very limited support for extension instructions.

An issue that is orthogonal to complex instruction mapping was considered by Yianna-

couras et al. [2006]. They considered how processors may be specialised through elimination

of hardware from the baseline processor, which may be used simultaneously with the addition

of custom instructions. Initially, they investigated how much area could be saved by eliminat-

ing hardware support for instructions that are unused by specific applications, and found that

area reductions of 25-60% were achievable. More interestingly, however, the same authors

later considered how the compiler could be used to provide support for eliminating hardware

features that are used by the target application [Labrecque et al., 2006]. The hardware changes

made were the replacement of variable shifters with a small number of fixed shifters, the re-

placement of a 64-bit hi/lo multiplier with a 3-operand multiplier (requiring separate instruc-

tions for obtaining the hi and lo results, if they are both required), the elimination of load-delay

and branch-delay slots, and finally a reduction in forwarding logic. The paper describes some

other possibilities but does not fully evaluate them. This specific paper [Labrecque et al., 2006]

is evaluated in the context of soft-processors designed for deployment to FPGAs. The same

techniques, however, could be used with synthesised ASIPs to produce a smaller processor

which may use less power, depending on the execution time cost of the changes. In the context

of a soft-processor running on an FPGA the authors were able to obtain a 32% increase in

efficiency by combining the techniques from both papers, where efficiency is described as the

ratio of MIPS to the number of logic elements. The techniques described are only evaluated on

a selection of kernel-sized benchmarks, therefore if the workload required of the processor is

more complex then it is likely that the efficiency improvements seen will be reduced. This is

because the techniques rely on eliminating features that have a small impact on a particular ap-

plication, therefore the more complex an application the more likely it is to use each hardware

feature.

3.2 Compilation for Dual Memory Banks

An early attempt to solve the dual memory bank assignment problem was undertaken by Saghir

et al. [1996]. They produced a low-level solution that performs a greedy minimum-cost par-

titioning of the variables using the loop-nest depth of each interference as a priority heuristic.

3.2. Compilation for Dual Memory Banks 31

The problem was formulated as an interference graph, where two nodes interfere if they repre-

sent a potentially parallel access in a basic block. The algorithm is overly simplistic, however

the representation of the problem is very intuitive and has been used in many other solutions

since.

Hiser and Davidson [2004] developed a highly portable memory bank assignment tool,

EMBARC, that allows specification of a wide range of memory systems. A partition descrip-

tion language is used to specify cache hierarchies, the presence of scratchpad memories, and

memory latencies and bandwidths. The assignment of variables to partitions is again handled

in a greedy fashion. The most frequently accessed variables are considered first. The cost of as-

signing the current variable to each partition is considered and the variable is placed according

to the lowest cost. The cost is calculated by considering the product of the estimated average

access time to this partition and the number of references to this variable, and then factoring in

expected conflicts with variables already assigned to this partition.

Gréwal et al. [2003] used a highly-directed genetic algorithm to provide a solution to dual

memory bank assignment. They used a constraint satisfaction problem as a model, with hard

constraints such as not being able to exceed memory capacity, and soft constraints such as not

wanting interfering variables in the same memory. The genetic algorithm is then used to find

the optimal result in terms of this model. This use of machine learning does not actually learn

trends regarding the problem, but is more akin to solving the constraint satisfaction problem

by brute force as it is re-run for every instance of the problem. Additionally, due to technical

limitations this method was only evaluated on randomly generated synthetic benchmarks.

Fröhlich and Wess [2001] considered dual memory bank assignment within a genetic algo-

rithm as part of a larger piece of work. The overall work looked at using a genetic algorithm to

aid integrated code generation for a heterogeneous-register architecture with multiple memory

banks (a Motorola DSP56k). The genetic algorithm is used to decide whether the result of each

expression tree is stored in a register or memory, and if in memory then which bank. It is not

possible to fully evaluate the effectiveness of the dual memory bank assignment used in this

paper due to the highly integrated approach of the solution. Also, there is no explicit consider-

ation of arrays or memory blocks, which are key to effective dual memory bank assignment.

Gréwal et al. [2006a] later revised their previous genetic algorithm [Gréwal et al., 2003]

with a not-so-highly directed GA and a model that is more appropriate for solving by GAs.

The technique was evaluated using the DSPstone benchmark suite [Zivojnović et al., 1994]

where it was able to find the optimal solutions for all benchmarks in the suite. These are small

benchmarks and therefore the large number of partitionings that a genetic algorithm would

check means that for most of the benchmarks the compiler exhaustively checked every possible

assignment. Thus, given the high computational cost of running a genetic algorithm it seems

undesirable to include this approach into the run-time of the compiler. If exhaustive checking

32 Chapter 3. Related Work

is acceptable, for small benchmarks at least, there are more effective ways of achieving this.

Several authors have proposed integer linear programming solutions. Initially Leupers and

Kotte [2001] described a method that modelled the interference graph between variables as an

integer linear program and tries to minimise total interferences. This approach worked on the

compiler IR after the back-end has been run once, allowing it access to very low-level schedul-

ing and memory access information. Another approach by Ko and Bhattacharyya [2003] uses

synchronous data flow specifications and the simple conflict graphs that accompany such pro-

grams. They used an integer linear program to find an assignment to memories, but for all

benchmarks that the techniques were evaluated against there exists a two-colouring, so the

technique is not demonstrated to work on hard problems. More recently Gréwal et al. [2006b]

described a more accurate integer linear programming model for DSP memory assignment.

The model described here is considerably more complex than the one previously presented by

Leupers and Kotte [2001], but provides greater improvements. This model considers the size

of arrays, whether operations are commutative and allows duplication (i.e. an array may be

placed on both memory banks). The addition of these features means that this model is able to

find the optimal solutions for the DSPstone benchmark suite.

Sipkovà [2003] describes a technique that operates at a higher-level than the previously

described methods. It performs memory assignment on the high-level intermediate represen-

tation, thus allowing the assignment method to be used with each of the back-ends within the

compiler. The problem is modelled as an independence graph and the weights between vari-

ables take account of both execution frequency and how close the two accesses are in the code.

Several different solutions, based on a max-cut formulation, were proposed. Unfortunately, this

paper does not address any of the issues created by assigning data to memories at a high-level.

Therefore it is not clear that the technique is as portable as is claimed, nor that it is taking full

advantage of the dual-memory capability.

The construction of compiler heuristics for dual memory bank assignment based on ge-

netic algorithms is an application of well-known machine learning techniques in the field of

computer systems. In recent years, various machine learning techniques have been studied in

the context of compiler optimisation. This research has inspired novel optimisation approaches

such as adaptive compilation [Cooper and Waterman, 2003] and iterative compilation [Fursin

et al., 2002] where the focus is on deriving better phase orderings and tuning parameters for

previously unseen programs. Cavazos and O’Boyle [2005] have investigated the use of a ge-

netic algorithm for the generation of inlining heuristics for a Java just-in-time compiler.

Scratchpad allocation is a more general form of the dual memory bank assignment problem

where the goal is to partition and assign data to small, fast, on-chip memory or larger, slower,

off-chip memory. The body of work related to this problem is large but Verma and Marwedel

[2007] provide a good overview of the problem and existing solutions. Panda et al. [2000]

3.3. Transformations Affecting AISE 33

also represents influential early work on the problem. Source-level approaches, similar to the

work presented in chapter 6, have also been developed, e.g. in Falk and Verma [2004]. The

two problems differ, however, as the “unpredictability” of back-end compiler optimisations is

less critical for scratchpad allocation, e.g. temporary variables introduced by the compiler and

register constraints do not interfere with the source-level data assignment. For the dual memory

bank assignment problem considered in chapter 6 any such interference may be critical for the

success or failure of the exploitation of simultaneous memory accesses.

3.3 Transformations Affecting AISE

Early efforts [Verma and Ienne, 2004] to combine code transformation and AISE have been

targeted at Control Data-Flow Graph (CDFG) transformation to produce efficient arithmetic

structures. This operates post-AISE, therefore does not directly contribute to the design space

search, it just improves upon the result. This was the first paper to consider that extension

instructions do not have to be used solely as the AISE intended – this idea was part of the

motivation for the work in chapters 4 and 5 of this thesis.

The only prior work directly examining the effect of transformations on instruction set

extension was written by Bonzini and Pozzi [2006]. They show that an exploration of the

if-conversion and loop-unrolling transformations is successful in enabling better performing

AISE. This provides good motivation for the more complete investigation undertaken in chap-

ter 7 as it demonstrates the effectiveness of extension instruction targeted heuristics in transfor-

mation. Both the transformations considered increase basic block size which gives the AISE

tool more options for extension instruction generation. The technique works by using a set of

heuristics to decide where to use if-conversion and what loop-unrolling factor to apply. AISE

is then used to generate instructions and several surround points in the transformation space are

evaluated using these extensions instructions. This evaluation of a small transformation space

is crucial for making a good choice of transformation, but it would be very difficult to extending

the technique to include additional transformations. The work presented in chapter 7, however,

considers a much larger transformation space (including loop-unrolling).

3.3.1 Source-to-Source Transformations for Embedded Systems

Due to their inherent portability and large scope, source-level transformations have been widely

applied within embedded systems in areas such as code optimisations targeting I/O perfor-

mance [Wang and Kaeli, 2003], energy efficiency [Chung et al., 2000; Kulkarni et al., 1998],

formal verification [Winters and Hu, 2000], and, most notably, for single and multi-core perfor-

mance optimisation of computationally intensive embedded applications (e.g. [Falk and Mar-

wedel, 2004; Franke and O’Boyle, 2003a; Luz and Kandemir, 2004] and [Franke and O’Boyle,

34 Chapter 3. Related Work

2003b], respectively).

ROSE [Schordan and Quinlan, 2003] and Transformers [Borghi et al., 2006] are tools for

building source-to-source transformation tools for the optimisation of C and C++ programs.

They have been used for tasks such as serial loop optimisations and parallel message pass-

ing optimisations [Brown et al., 1999]. SUIF [Wilson et al., 1994] is a complete (source-to-

assembly) compiler, but it is also capable of source-to-source transformation with a large suite

of classical program optimisations available.

An empirical study of source-level transformations for digital signal processing applica-

tions is the subject of Franke and O’Boyle [2003a]. This work has also been extended [Franke

et al., 2005; Agakov et al., 2006] to undertake more comprehensive studies in the context of

machine-learning based adaptive compilation. The evaluation and development model used

in these papers influenced the experiments in chapter 7, relating to investigating the effects of

source-to-source compiler transformations. E.g. the model used by Franke et al. [2005] consid-

ers a large set of transformations on multiple target architectures and measures the probability

that each transformation will be beneficial across all architectures and benchmarks.

Chapter 4

Code Generation for

Complex Instructions

“There are two ways of constructing a software design: One way is to make it so simple that
there are obviously no deficiencies, and the other way is to make it so complicated that there
are no obvious deficiencies. The first method is far more difficult.”
— C.A.R. Hoare, computer scientist, ACM Turing Award winner, 1934–.

This chapter describes and evaluates a complex instruction mapper, MapISE, that has been

implemented in GCC. This chapter treats the hardware as a fixed target based on the default

processors that are generated by the AISE tools for each benchmark. Chapter 5, however, will

take what has been learnt in this chapter and will use it improve the usefulness of the generated

hardware.

This approach is necessary because most of the results in this chapter have significant draw-

backs. For example, the gains presented may not be high enough to justify the hardware cost,

the results may be too inconsistent to justify the effort of an industrial implementation or the

steps taken to improve performance suggest there is a fundamental problem in the underly-

ing system that should be addressed rather than avoided. This chapter, therefore, is used to

motivate the changes presented in chapter 5.

There are a significant number of experiments presented within this chapter – this is be-

cause MapISE was extended with many different modes to aid in the investigation of its effec-

tiveness. Some of these experiments show that certain modes of operation provide little change

from the default mode, or make things worse. They are still presented, however, because it is

appropriate to show that there are problems involved in mapping that are not simple to solve,

hence the need for the changes presented in chapter 5.

Section 4.1 summarises why the techniques presented in this chapter are required, and sec-

tions 4.2–4.4 explain the implementation of the instruction mapper. Section 4.5 describes a

method that the instruction mapper can use to avoid performance issues with the extended pro-

cessor and this is evaluated in Section 4.6. Section 4.7 shows the results of a direct evaluation of

35

36 Chapter 4. Code Generation for Complex Instructions

the instruction mapper, whereas section 4.8 evaluates the performance of the instruction map-

per when presented with a processor already specialised for a different benchmark. Section 4.9

critically evaluates the instruction mapper performance and presents possible future work that

is not described by later chapters.

4.1 Motivation

Most existing techniques for complex instruction mapping are designed for finding good,

i.e. near optimal, solutions when using small graph-shaped instructions (see section 3.1). They

do not, however, generally scale well to very large instructions – most papers perform evalu-

ations using instructions with only two operations in them. E.g. the approach taken by Ebner

et al. [2008] finds every possible overlapping use of each instruction before selecting which

ones it wants to use. This only works for small instructions, e.g. to map a single instruction (of

two, three or eight nodes) in a single basic block of one hundred nodes has a worst-case com-

plexity of
(100

2

)
= 4950, or

(100
3

)
= 161,700 but

(100
8

)
= 186,087,894,300. Although in reality

it is unlikely that the worst case will occur, large instructions are still clearly not practical with

this class of technique.

It is apparent that any instruction selector supporting very large instructions will encounter

significant problems. The tool described and evaluated in this chapter, MapISE, therefore fo-

cuses solely on the part that full instruction selectors cannot handle: large instructions. MapISE

operates at a high-level and identifies places to use extension instructions. The existing back-

end then takes care of code-generation for all parts of the program that are not covered by

extension instructions.

4.2 Mapping by Graph-Subgraph Isomorphism Checking

4.2.1 Overview

To map extension instructions to a given input program the problem is defined in terms of

graph-subgraph isomorphism checking such that each basic block is a graph and each extension

instruction is a subgraph. If a subgraph is isomorphic with a graph then the corresponding

extension instruction may be used in the corresponding basic block.

The graphs for the basic blocks are produced from the compiler IR and the graphs for

the extension instructions are produced from a provided XML specification. The operations

performed (e.g. an addition, or a bitwise XOR) are represented as vertices and the dataflow

between operations as edges. As an example, the simple C expression “a += b * c” would

result in the graph shown in figure 4.1. The variable names are not directly preserved but

implicitly exist as dataflow dependencies.

4.2. Mapping by Graph-Subgraph Isomorphism Checking 37

Add

Multiply

Figure 4.1: The expression “a += b * c” represented as a dataflow graph.

For each basic block every extension instruction is tested to determine whether it may be

mapped or not. The extension instructions with the largest expected benefit are tested first to

try and maximise the overall benefit, but as this a greedy approach the mappings found might

be sub-optimal. The test determines that an instruction may be mapped to a basic block if the

instruction’s subgraph is isomorphic with the basic block’s graph.

A subgraph is isomorphic with a graph if both the vertex types and the shape of the sub-

graph may be mapped to the graph. A vertex in a subgraph can be mapped to a vertex in a graph

if they implement the same functionality, e.g. they both implement an integer addition function.

The shape of the graph is determined by the edges between vertices. Traditionally edge order

does not matter in graph-subgraph isomorphism checking, but the order of inputs to arithmetic

and logical operations does matter (except for commutative operations). Therefore an addi-

tional check is added to ensure that edge order is preserved for inputs to non-commutative

operations.

Once all mappings have been found a simple register allocation pass assigns the input and

output vectors of each extension instruction to specific vector registers. Whereas the graph-

subgraph isomorphism checking operated on a per-basic block level, this pass operates on a

per-function level. This allocation pass attempts to minimise the amount of data movement

required, primarily by minimising the frequency of live-range interruptions. Finally, each vec-

tor register access is assigned a permutation to load the register with. The permutation which

minimises the amount of data movement is picked (this may be the identity permutation).

At this point there will remain many basic block operations that have not been mapped to

an extension instruction. This is the intended behaviour as there is no guarantee that a complete

mapping of basic block operations to extension instructions will even exist. Once the above

pass, MapISE, has completed the existing compiler back-end is used to map all remaining

basic block operations to standard RISC instructions on the baseline core. The back-end also

performs register allocation around the existing vector register allocations and schedules both

38 Chapter 4. Code Generation for Complex Instructions

GCC MAPISE

Front-End Back-End
Build

Graphical
IR

Graph
Matching

Modify
GIMPLE

Source Code BinaryMiddle-End

Extension
Instructions

Source Code

GENERIC GIMPLE CDFG RTL

Figure 4.2: The structure of passes within GCC and MapISE.

the extension and baseline RISC instructions.

4.2.2 Integration into GCC

MapISE is implemented in GCC 4.2. The primary reason for this is that the EnCore processor

that is used as the baseline processor in the AISE framework, implements the ARCompact

ISA. The most complete compiler which supports ARCompact is the ARC version of GCC

4.2. Unfortunately it has not been ported to newer versions of GCC.

GCC operates in four main stages: a front-end, a high-level middle-end, a low-level middle-

end and a back-end. The pass presented in this chapter, MapISE, runs at the end of the high-

level middle-end while the IR is still in SSA form, as shown in figure 4.2.

GCC uses several IRs. The front-ends translate the input source code into GENERIC, a

high-level IR. This is then lowered into GIMPLE, a medium-level IR used by the high-level

middle-end. GIMPLE can be used in both an SSA and a non-SSA form, but most high-level

optimisation passes operate on the SSA form, including MapISE. The GIMPLE form is then

lowered again into a low-level IR: RTL (register transfer language). Low-level optimisation and

target specific passes operate on RTL. Finally the back-end performs instruction selection on

the RTL form ensuring all operations have a one-to-one mapping with assembly. These opera-

tions are also annotated with register and scheduling constraints which are used by the register

allocator and the scheduler respectively before the RTL is finally converted into assembly.

The instruction mapper presented in this chapter, MapISE, exploits GCC’s support for ex-

tended inline assembly. This is required to work around a lack of support for several specific

features that an extension instruction mapping pass requires. The most unusual requirement

is the need to support an arbitrary number of extension units with a single compiler binary.

If any changes are made to a GCC back-end then GCC must be recompiled. This only takes

about a minute for the second recompile onward (i.e. make only recompiles what has changed),

and therefore is acceptable for the purposes of running the experiments in this thesis. If this

technique is to be usable in a real-world context, however, then expecting the compiler to be

4.2. Mapping by Graph-Subgraph Isomorphism Checking 39

recompiled not acceptable. A processor designer or application developer may be evaluating

several hundred extension configurations as a design space exploration exercise. Even if the

process is automated this would likely still hinder productivity. The implementation described

in this chapter avoids this by taking a description of the extension unit as part of its input. This

way, the requirement of deploying a single compiler install can be satisfied, while still support-

ing an arbitrary number of extension units. The second unusual requirement is the need to fit

irregular data into vector registers, and then exploit permutation units attached to them.

Both of these requirements can be satisfied by inserting ASM statement operations into the

IR. These are usually generated by the front-end when a program contains inline assembly. No

other passes in GCC insert ASM operands into the IR but the alternative approaches would

require GCC to be recompiled with each change. The use of ASM nodes also allows vector

registers and permutation units to be used, with only a minimal amount of information about

them encoded in the back-end. The seven vector registers mentioned in section 2.2 are mapped

to the scalar registers r32 through to r59. The EnCore back-end in GCC has been modified

to have 28 additional singleton register classes a32 through to a59. Each input and output to

an ASM operand must be assigned to a specific register class. Usually this would mean “the

class of all general-purpose registers” or similar, but MapISE takes advantage of the singleton

classes to force GCC to place data in specific registers. This then allows the inserted assembly

string (inside the ASM operand) to operate on vector registers complete with permutation units,

even though the back-end does not know they exist.

If MapISE mapped any extension instructions onto a function, then once the mapping pass

is complete the pass manager is configured to re-run loop-invariant code-motion as the mapping

pass introduces various temporaries which may benefit from being hoisted.

MapISE contains approximately 12,000 lines of C code, or 11,000 lines without assertions

and other debug code. This suggests a level of complexity similar to the auto-vectoriser in

GCC 4.2, which has approximately 9000 lines of code. The code which builds the graphical

IR (CDFG) from GIMPLE, and then produces an XML file for ISEGen to process, is a further

2500 lines.

4.2.3 Construction of Graphical Intermediate Representation

As MapISE is based on graph-subgraph isomorphism checking, it must operate on a graphical

IR. For this purpose an IR called CDFG (Control Data-Flow Graph) was specified by the author

of ISEGen. As this IR was not going to be used for compilation it did not need to be complete.

For a given program the CDFG representation is a list of basic blocks with no control-flow

information describing how they link together. This is ideal for the purposes of AISE tools since

they only look for dataflow graphs within basic blocks, control flow information is extraneous.

The ’C’ in the name CDFG is there because support for control flow was intended to be added,

40 Chapter 4. Code Generation for Complex Instructions

but ended up being unnecessary.

Each basic block is a list of nodes and edges and each possible node-type has a one-to-one

mapping to some type of GIMPLE node. The converse is not true, however, GIMPLE has

many types of nodes not supported by CDFG.

For the purposes of AISE, a pass was created in GCC that iterates over the GIMPLE rep-

resentation of a program and produces a CDFG representation. The representation is then

serialised into XML and the resultant information transferred to the AISE tools.

MapISE also needs to operate on CDFG because the extension instruction definition is

provided to it in XML CDFG format. MapISE therefore processes GIMPLE to create a list of

CDFG basic blocks and parses the provided XML to create a list of CDFG instructions. The

manner in which these two tasks occur is completely mechanical and therefore not discussed

here. At this stage however MapISE has to do some additional post-processing of the CDFG.

Firstly, cast nodes need to be removed as the XML CDFG provided will have already had

this done on the basis that the hardware implementation of the extension instructions operate

on 32-bit arithmetic. Secondly, pointer aliasing information is used to add virtual dependencies

between CDFG nodes if GCC’s virtual use and defines state that two nodes are dependent. This

means that if operation X writes to memory, and operation Y reads from what may be the same

memory location then Y has a virtual dependence on X . This means that Y must occur after X .

See section 4.9.1 for a discussion on the effects of ISEGen missing this information.

Finally, the VFlib implementation of the VF2 algorithm [Cordella et al., 2004] that is used

to perform graph-subgraph isomorphism checking requires graphs to be in its own format, so

for every basic block and every extension instruction definition an additional representation is

built.

4.2.4 Matching Subgraphs

To find where extension instructions may be mapped, a greedy search strategy is used. The

extension instructions are sorted by their expected gains. Then, for each basic block every

instruction is iterated over. The basic blocks are simply iterated over from start to end, the

instructions, however, are ordered according to their expected benefit – the best instructions

are considered first. Each basic block and extension instruction pair is passed to VFlib and if

the instruction is a sub-graph of the basic block then a match is recorded. Every CDFG node

that was just mapped to an extension instruction gets marked as such to avoid a node being

mapped to multiple instructions. The same pattern that was just mapped is retried, in case the

same pattern may be reused. This process repeats until every extension instruction has been

checked.

When VFlib finds a place to map an extension instruction, it is necessary to check the map-

ping is viable prior to its application. As a consequence of MapISE supporting disjoint exten-

4.2. Mapping by Graph-Subgraph Isomorphism Checking 41

������������	

��
���������
	

�

�

�

�

�

�

�

�

�

�

���� �� ��

��

�

��

�

��

�

��

�

��

Figure 4.3: A small extension instruction mapped to DSPstone matrix2.

sion instructions it is possible for VFlib to find mappings which violate convexity constraints.

If convexity constraints are violated then the key offending node is marked as unusable and the

extension instruction is tried again. This is allowed to occur a maximum of 10,000 times per

basic block/extension instruction pair. Convexity constraints are quite common: across the set

of 179 benchmarks it was observed that matching was re-run 279,851 times due to convexity

violations and the 10,000 iteration limit was reached 97 times. Convexity violation can occur

when one of the two (or more) disjoint parts of an instruction become indirectly dependent on

the other part of the instruction. The result is that the extension instruction must be scheduled

both before and after the intermediary node(s): a clear impossibility.

42 Chapter 4. Code Generation for Complex Instructions

������������	 �����������
	

����
��������	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� ���� �� ���� ����

� �

�

�

�

��

�

��

�

��

�

��

�

Figure 4.4: A medium-sized extension instruction mapped to SNURT jfdctint.

4.2.5 Determining if Two Nodes are Equivalent

A function is provided to VFlib which when given one node from the graph (basic block) and

one node from the subgraph (extension instruction definition) it determines whether or not

they are equivalent. As this function is performance critical (it accounts for 58% of MapISE’s

run-time, see table 4.1) it attempts to establish non-equivalence as quickly as possible.

If the nodes do not perform the same operation, have different data types or the basic block

node takes a 64-bit value as input, then the nodes are not equivalent. If these nodes are constants

then they must have the same value, or they are not equivalent.

If multiple extension instruction nodes read from a single input register, such as rA in

figure 4.3, then an additional node must be inserted into the extension instruction definition to

merge the two edges. Without this the four-input instruction in figure 4.3 may attempt to fit

five values into four slots.

If the basic block node has already been mapped to another extension instruction then it

cannot be mapped to this one. If the SSA name that the basic block node writes to is used

outside of the current basic block then the extension instruction node must write its value to a

vector register or they are not equivalent.

The two nodes must have the same number of inputs and the same number of outputs. If a

node has two inputs then the predecessors of both nodes must be similar (same operator type,

same data type). This is necessary because the VF2 algorithm does not consider edge order,

it would consider A−B to be equivalent to B−A. If the current node is commutative and the

predecessors do not match then they may be swapped and rechecked.

4.2. Mapping by Graph-Subgraph Isomorphism Checking 43

������������	�����
����
�	 �����������
	

�������������	������
�����
	

����������
�	 �����
������	

������������
	 ������
������	

������������	 �����
����
�	

�������������	

������������	�����
������	 �����������
	

�������������	

������������	

�������������	

������������	

�������������	

������������	

������������
	

������������	

�������������	

�

�

��

�

�� �

�

�� �

�

� � �

�

��

� �

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

��

���� ����

��

����

��

��

��

��

��

� �

��

�� ��

��

��

�

�

��

��

����� � �

�� ��������

�

�

�!

�

�"

�

�#

�

�$

�

�%

�

�&

�

�'

�� � � �� ��

�� ��

��

�

�

�!

�

�"

�

�#

�

�$

�

�%

�

�&

�

�'

�

� � � �

������

�

�

�!

�

�"

�

�#

�

����

�� ��

�

�

�

�

�

�

� �� �

��

�

��

�

��

�

����

�

����

�

��

�

��

�

��

�

�

�

�!

�

�"

�

�#

�

��

�

��

�

�

�

�!

�

�"�#

��

�

� ��

�

�

�

�

�� � ���

�

� ��

��

��

��

�� ����

����

��

�

��

�

�

�

�!

�

�"�#

� �

�

�

�!

�

�"�#

��

�

��

�

�

�

�!

�

�"�#

Figure 4.5: Multiple extension instructions mapped to Crypto aes.

44 Chapter 4. Code Generation for Complex Instructions

4.2.6 Exploiting Matches

CDFG is an incomplete IR and therefore it is not possible to convert it back into GIMPLE.

Since every CDFG node is linked with a GIMPLE node, the mappings annotated on the CDFG

can be used to determine which parts of the GIMPLE to remove instead.

The vector register assignment and the chosen permutation is then used to determine which

scalar registers the compiler must place the inputs in, and which scalar registers the outputs

will be found in. Although the assembly will handle this via vector registers, GCC must use

the scalar registers to interact with the extension unit. The inline assembly that is being inserted

will describe the mapping between SSA names and registers.

A side-effect of performing mapping on a graphical form, and then inserting the extension

instruction into the linear IR is that after the inline ASM has been inserted the IR may no longer

be in a valid schedule. It is, however, guaranteed that a schedule exists, therefore a simple

scheduling pass is used to reorder the GIMPLE into a valid schedule. This is not associated

with the instruction scheduling performed by the back-end since there is no concept of latency

in GIMPLE.

4.3 Allocation of Vector-Registers

The use of vector registers on EnCore is defined in section 2.2.2.

Whereas instruction mapping operates per-basic-block in MapISE, vector register alloca-

tion is performed per-function.

Vector register allocation is done in a greedy manner in two phases. In the first phase all

input vectors are assigned a register, and in the second phase output vectors are assigned.

For each phase a list of every unassigned vector is kept. A score is calculated for assigning

every vector to each of the seven vector registers. The assignment with the highest score is

chosen, that vector is removed from the unassigned list and the process is repeated until the list

is empty.

To calculate the score several features are combined. Firstly, the profiling execution count

is used to strongly bias the score to performing assignments to vectors in “hot” code first. If

profiling data is unavailable this has no effect. This feature only varies per-vector, the as-

signment being tested has no effect (i.e. the execution count is identical for all seven tested

assignments). If this is the output vector phase and the current vector’s data is read by other

extension instructions, which are allocated to the vector register assignment currently being

tested, then provide a score boost. If the other vector is within the same basic block this is

a large boost, if it is in a different basic block or the same basic block but for the next loop

iteration then this is a small boost.

Finally a load-balancing cost is introduced, each time an input vector is assigned, for each

4.4. Permutation of Vector-Register Elements 45

constant or scalar input it reads, a penalty is stored next to that vector assignment. Every time

that vector assignment is assessed that penalty is subtracted from its score. If that assignment

is picked anyway, the penalty is increased according to how many constants or scalar inputs

the new assignment reads. This eliminates the algorithm’s bias towards over-using the lower

registers and also helps to avoid having loop-invariant hoisted variables being overwritten on

every iteration of the loop.

4.4 Permutation of Vector-Register Elements

While vector register assignment uses a greedy approach, permutation choice is handled ex-

haustively as there are only 24 ways to permute four elements. The EnCore hardware only

actually provides 9 permutations (including the identity permutation). The remaining 15 per-

mutations are handled in a two-step process since they can each be reached by performing two

permutations in sequence: once on a vector move, and then the second on the extension in-

struction. This tool would be able to trivially target all 24 permutations directly if they were

accessible.

Applying a permutation on a vector move does, however, introduce a complication. When

a permutation is applied to the input of an extension instruction the reordering is not saved.

The results of the vector move, however, are written to the register file. This would mean

that SSA variables are now in different registers than before the extension instruction was run.

This effect can be expressed in the extended ASM operand, but doing so causes GCC to insert

scalar move instructions to move all the data back after the extension instruction has run. This

is necessary because register assignments cannot rotate through loop iterations, the assembly

code executed is the same for every iteration, so the data needs to be in the same registers.

To work around this vr06 and vr07 become dedicated scratch registers, if two-step per-

mutations are enabled. The vector move instruction writes to vr06 or vr07 and the extension

instruction then reads from that register instead of the vector move’s source. The extended

ASM operand states that the registers r51 through r59 (the scalar mapping or vr06 and vr07)

get overwritten (or “clobbered” in GCC parlance) – this stops GCC from using these registers.

The unfortunate effect of this is that there are only five vector registers remaining, which is

enough for a three-input two-output extension instruction, but leaves little room for the register

allocator. Because of the default register allocator only uses one-step permutations.

Permutations are chosen based on which one will take fewest cycles. The source of each

of the vector’s four input variables is traced. If any of the sources are a use of the same vector

register then its “channel” is noted (i.e. which of the four lanes in the vector it is writing to).

Writes to other vector registers are not considered, as a move would be required regardless of

the permutation. Scalar registers or constants are not considered because the compiler can place

46 Chapter 4. Code Generation for Complex Instructions

them in the correct register directly. If two “channels” do not link then a scalar move instruction

(mov) will need to be inserted The aim is to minimise the number of moves necessary, so each of

the eight permutations are considered. If two-step permutations are enabled then the remaining

sixteen permutation possibilities are also considered, with a one-cycle penalty to represent the

vector move. The permutation that takes the fewest cycles to load the input data is chosen.

4.5 Eliminating Poor Mappings

A simple heuristic is optionally added to MapISE. When the list of extension instructions is

provided each instruction has two additional pieces of data: the number of cycles it takes to

execute the instruction on the extension unit, and the number of cycles that ISEGen estimated it

would take to run the equivalent code using baseline processor instructions. These are referred

to as the “hardware cost” and the “software cost” respectively. Subtracting the hardware cost

from the software cost provides the predicted benefit of each extension instruction. The ISEGen

model, however, does not consider register allocation overhead.

This heuristic assumes each input variable will take, on average, 0.5 cycles to configure,

and each output variable will on average result in 0.25 cycles of work. Additionally, if the

extension instruction provides the result of a comparison as an output, then an additional cycle

is required to compare that value against zero before it can affect control-flow. This additional

cost is subtracted from the instructions predicted benefit and if the result is zero or less the

instruction is discarded.

4.6 Evaluation Methodology

MapISE is evaluated using the toolchain described in section 2.2. Each of the 179 benchmarks

had cycle counter annotations added to them so as I/O or book-keeping code could be excluded

from the performance evaluation. Each benchmark was compiled with vanilla GCC and with

MapISE. The speed-ups presented are the performance of the MapISE produced code relative

to the GCC code.

Profiling information is used by MapISE, but mostly only for the purpose of skipping basic

blocks or functions which are never executed. It is also used as part of the register allocators

priority heuristic (see section 4.3). The primary purpose of including profiling information is

because ISEGen requires this information. This has two effects, firstly ISEGen only processes

basic blocks which are executed, so if MapISE does not do the same then MapISE mapping

statistics will be needlessly inflated even though it would offer no additional speed-up. Sec-

ondly, both tools are influenced by GCC’s optimisation decisions. When profiling data is avail-

able GCC will treat hot and cold blocks differently, applying different compiler transforms. If

4.6. Evaluation Methodology 47

MapISE is to see the same view of the code that ISEGen does then it must allow GCC to use

profiling data (even if it were to not use it itself).

The experiments were run on a Linux system with two dual-core 3.0GHz Intel Xeon pro-

cessors and 4GB of memory. For experiments where run-times are reported only a single core

was used to ensure timing consistency.

4.6.1 Presentation of Results

Many of the charts presented in this section are subsets of more complete charts found in

appendix B. The subset included in the smaller versions is consistent throughout the thesis and

was chosen such that in figure 5.9 the average speed-up of the subset and the average speed-up

of the complete set are similar. This property does not hold for every chart, however. Each

chart which is a subset has this stated in the caption. When average speed-ups are discussed in

the text the average for all 179 benchmarks will be used, which is called “FULL AVERAGE” in

the charts. The charts also include the average for the subset (“AVERAGE”) because in many

charts the “AVERAGE” and the “FULL AVERAGE” are different. Some charts also include

the geometric-mean to provide a second perspective.

The arithmetic mean is referred to as “AVERAGE” in charts, and the geometric mean is

referred to as “GEO-MEAN”. If a chart does not contain a “GEO-MEAN” entry then that

indicates that the data-set contains the value zero. For example, in this chapter “Speed-Up”

graphs are displaying ratios and thus are never zero, graphs counting the number of extension

instruction mappings, however, may contain zero values and thus geometric means are not

displayed for those graphs.

4.6.2 Consideration of Floating Point Hardware

All results presented in this chapter (with the exception of figure 4.6) and chapter 5 will assume

the presence of a hardware floating point unit in both the baseline and the extended processor.

Although the hardware described in section 2.2 does not contain a hardware floating point unit

it is necessary to assume one exists to allow accurate evaluation. Figure 4.6 is used to justify

this.

Figure 4.6 shows the speed-up obtainable from either adding a hardware floating point unit

or extension instructions (which may or may not contain floating point operations). Although

the hardware floating point unit has no effect on integer benchmarks, it can have a significant

effect on floating point benchmarks (e.g. SNURT qurt or UTDSP compress). Extension in-

structions can also obtain large speed-ups for many floating point benchmarks, e.g. SNURT

qurt performs better with instruction extensions than with a floating point unit. Although these

are genuine speed-ups that may be obtained by automatically extending the baseline processor,

it is difficult to use these results to evaluate the usefulness of extension instructions.

48 Chapter 4. Code Generation for Complex Instructions

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
pe

ed
-u

p

Hardware Floating Point Unit
Extension Instructions

5.6

Figure 4.6: A comparison of a hardware floating point unit with extension instruc-

tions. In this chart the baseline processor, that speed-ups are calculated from, has

no floating point hardware. The left bar of each benchmark is the speed-up ob-

tained by adding a floating point unit to the baseline processor, the right bars are

the speed-ups obtained by adding extension instructions. Note: the full version of

this chart is figure B.1 on page 156.

For example: UTDSP compress_ptrs is improved by a factor of 3.44x, which may seem like

an excellent result, but the majority of the speed-up comes from implementing floating point

operations in hardware (as shown by the floating point unit providing a similar speed-up of

3.48x). The fact that implementing floating point in hardware provides large speed-ups is well

understood and although automatically providing a customised unit of hardware is somewhat

novel this does not outweigh the evaluation problems that are introduced.

There are three problems, the first has just been mentioned: the benefits and costs of im-

plementing floating point in hardware are already fully understood.

The second problem is all floating point benchmarks are highly amenable for acceleration

by extension instructions when compared against integer benchmarks, so their importance in

the presented results would be inflated compared to their real-world significance.

The third problem is that a standard hardware floating point unit actually outperforms ex-

tension instructions. This can be seen in figure 4.6 where the average speed-up from adding a

floating point unit exceeds that obtained by adding extension instructions (average speed-ups

of 2.44x and 1.92x respectively). This is because it is always faster to map floating point op-

erations to hardware and with a floating point unit all such operations can be mapped. The

instruction set extension generator, however, will only construct complex instructions which

combine several operations. This means that many floating point operations will not be mapped

4.7. Results 49

to extension instructions (e.g. a single floating point operation in a small basic block). These

floating point operations will therefore need to emulated in software (i.e. a long sequence of

integer operations), which is significantly slower than hardware.

In addition to these evaluation issues a hand-designed floating point unit is likely to take

less processor die space than floating point extensions and will be highly reusable in the event

of changes to the target applications. Thus, for floating applications a floating point unit is

usually a better choice than extension instructions alone, though combining the two may be

desirable.

For evaluation purposes all experiments in this chapter, chapter 5 and section 6.1 there-

fore assume the presence of a floating point unit and add extension instructions based on this

premise. Although the EnCore processor that is used as a baseline does not actually have a

floating point unit, the ARC ISA that it implements does contain floating point instructions.

These are fully supported by the cycle-accurate simulator, therefore the existence of a float-

ing point unit is a reasonable assumption to make. It is worth noting that ISEGen makes the

same assumption for similar reasons, therefore the instructions it generates will not be biased

towards floating point operations.

4.7 Results

4.7.1 Default Mapping

Figure 4.7 shows the default performance of MapISE. An overall average speed-up of 1.11x

is obtained and an average of 28.01 extension instructions are used per benchmark or 10.98

unique extension instructions used on average.

Figure 4.7(a) shows the speed-ups obtained for each benchmark. The most striking feature

of the chart is that more benchmarks slow-down (have a speed-up below 1.0) than speed-up.

The reasons for this are covered in section 4.9.4. Attempts to rectify this issue are covered in

section 4.7.3 and chapter 5.

Figure 4.7(b) compares the quantity of extension instructions that MapISE was able to use

against the number that ISEGen and uArchGen produced. ISEGen finds instructions, uArchGen

eliminates duplicate instructions within the set that ISEGen found – so the uArchGen results are

the number of unique extension instructions, the ISEGen numbers are the total number of ex-

tension instruction sites found. ISEGen finds, on average, 18.30 unique extension instructions

per-benchmark that may be used at 33.12 sites. MapISE uses 10.98 unique extension instruc-

tions per-benchmark at 28.01 sites. The reasons for MapISE not using 40% of the extension

instructions that ISEGen produces are covered in sections 4.9.1 and 4.9.3.

50 Chapter 4. Code Generation for Complex Instructions

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Extension Instructions

(a) The speed-ups provided by adding extension instructions specialised to each benchmark. Note that unlike

figure 4.6 the baseline processor used to calculate speed-up from in this (and subsequent) graphs does have a

floating point unit. Note: the full version of this chart is figure B.2 on page 158.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

uArchgen ISEs
ISEGen ISEs
Unique ISEs Used
Matches

(b) Number of extension instructions found and used. Note that this chart has a logarithmic scale. The stacked

bars on the left are the number of extension instructions found by the AISE tools. The lower bar is the number of

unique extension instructions, the upper bar is the number of non-unique extension instructions found. The stacked

bars on the right describe the equivalent for MapISE. The lower bar is the number of unique extension instructions

exploited, the upper bar is the total number of sites where extension instructions were used. Note: the full version

of this chart is figure B.3 on page 160.

Figure 4.7: The performance of MapISE with default settings. Each benchmark is

using its own extension unit specialised for it by the AISE tools.

4.7. Results 51

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

0.01

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

Compile time without ISEs
Compile time with ISEs

(a) The time taken to compile each benchmark with the standard compiler (left-hand bar) or with MapISE (right-

hand bar). Note: the full version of this chart is figure B.4 on page 162.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

0.01

0.1

1

10

100

1000

10000

100000

Ti
m

e
(S

ec
on

ds
)

Instruction generation runtime
Instruction mapper runtime

(b) The left bar for each benchmark is the time taken to generate extension instructions (the run time of ISEGen,

time to construct the hardware of extension unit is not included). The right bars are the length of time that MapISE

adds to the compile time (over GCC alone). Note: the full version of this chart is figure B.5 on page 164.

Figure 4.8: Run-time of MapISE compared to other tools. Note that both charts

have a logarithmic scale.

4.7.2 Timings

Figure 4.8 provides information about how long MapISE takes to run on each benchmark,

compared against vanilla GCC and ISEGen. On average MapISE (GCC plus the mapping pass)

takes 25.1 seconds to run per-benchmark, whereas GCC alone has an average run-time of 0.78

seconds. MapISE’s run-time varies from a fraction of a second up to 1040 seconds (about

17 minutes). GCC runs slowest on the largest benchmarks but MapISE runs slowest on the

52 Chapter 4. Code Generation for Complex Instructions

benchmarks with the largest basic blocks, e.g. GCC compiles Crypto aes quickly, but it is one

of the hardest benchmarks for MapISE to compile.

Figure 4.8(b) compares the time it takes ISEGen to identify instructions for a benchmark

against the time it takes the mapping pass inside MapISE to exploit them. The run-time for

the mapping pass is roughly equivalent to: RunTime(MapISE)−RunTime(GCC). It can be seen

that MapISE is over an order of magnitude faster than ISEGen with average run-times of 24.32

seconds and 1565 seconds respectively. ISEGen has a maximum run-time of 98,244 seconds

on Crypto des (approximately 27 hours), thus clearly MapISE has a reasonable worst-case

run-time for the complexity of the problem.

Task Time (s) Time % Sub-Task Time (s) Time %

Build IRs 114.43 0.8% Parse XML ISEs 96.92 0.7%

Build CDFG 5.71 0.1%

Build VF2 graphs 3.74 0.0%

Mapping 13,733 97.5% VF2 5307.3 37.6%

Node Comparison 8164.0 58.0%

Viability Checking 244.83 1.7%

Register Allocation 27.50 0.2%

GIMPLE Modification 208.84 1.5% Scheduling 208.04 1.5%

Table 4.1: The total time spent in each sub-pass of MapISE. The timings are from

the summation of all 179 benchmarks.

Table 4.1 breaks-down where the mapping pass within MapISE spends its time. The num-

bers presented are for all 179 benchmarks summed, which took 14,083 seconds (approximately

4 hours). It can be seen that the vast majority (97.5%) of the passes run-time is spent on graph-

subgraph isomorphism (“mapping”). Within the “mapping” sub-pass 38.6% of the run-time is

spent in the VF2 library [Cordella et al., 2004] and 59.5% of the run-time is spent in the node

comparison function that MapISE provides to VF2. The remaining 1.9% of the time is spent

ensuring that the mappings that VF2 finds are viable instruction candidates.

4.7.3 Eliminating Poor Mappings

Figure 4.9 shows the results of implementing the technique described in section 4.5: eliminate

extension instructions that are likely to slow the code down. This works as was hypothesised:

fewer instructions are used, but a greater speed-up is achieved. The number of extension in-

structions used falls dramatically, from an average of 28.02 per-benchmark with the default

settings to 10.79 when eliminating ineffectual extension instructions. The speed-ups achieved,

4.7. Results 53

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Speed-Up from all ISEs
Speed-Up after eliminating some ISEs

(a) Speed-up obtainable with default mapping (left-hand bar) or when eliminating poor mappings (right-hand

bar). Note: the full version of this chart is figure B.6 on page 166.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Matches from all ISEs
Matches after eliminating some ISEs

(b) The number of sites where extension instructions are found for default mapping (left-hand bar) or when

eliminating poor mappings (right-hand bar). Note: the full version of this chart is figure B.7 on page 168.

Figure 4.9: An evaluation of eliminating poor mappings in MapISE.

however, rise from an average of 1.11x to an average of 1.20x; clearly this is an effective

technique.

The future work section of this chapter suggests a way of potentially improving this fur-

ther. This is quite a dissatisfying result though, MapISE achieves better results by occasionally

opting out from taking any action. AISE should to produce instructions which provide accel-

eration, therefore in section 5.1.3 the cost function described in section 4.5 is added to ISEGen

to ensure it will provide extension instructions that MapISE can always use.

54 Chapter 4. Code Generation for Complex Instructions

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Full register allocation
No register allocation

(a) The speed-ups obtained when using the default register allocation settings (left-hand bar) and when a single

static allocation is used for every extension instruction (right-hand bar). Note: the full version of this chart is

figure B.8 on page 170.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Full register allocation
Register allocation without permutations
Full register allocation + 2-step permutations

(b) This chart compares the speed-ups possible when using the permutation units. The default setting is to

use one-step permutations (left bar), this is compared with never using the permutation unit (middle bar) or using

two-step permutations (right-hand bar). Note: the full version of this chart is figure B.9 on page 172.

Figure 4.10: A comparison of different register allocation modes.

4.7.4 Register Allocation Variations

Section 4.3 did not describe a “No register allocation” technique because this is not an actual

technique. Registers still have to be allocated to registers, but in this mode there is no decision

process involved. For each and every extension instruction that is mapped the first input vector

is assigned to vr05, the second input (if it is used) to vr04, the third input (if it is used) to vr03,

the first output is assigned to vr01 and the second output (if it is used) is assigned to vr02. This

4.7. Results 55

also means that the permutation units are never used (they are mapped to vr08–vr63).

The results shown in figure 4.10(a) are surprising. They show that the “No register alloca-

tion” mode performs almost as well as the default mode. The default register allocator results

in an average speed-up of 1.110x, the “No register allocator” results in an average speed-up of

1.105x. The does not mean that the default register allocator is bad, but rather than there is no

such thing as a “good” register allocation when targeting the EnCore vector registers. There is,

however, such a thing as a “bad” register allocation though, see section 4.9.4.1. The static as-

signment of the “No register allocator” happens to avoid one of the biggest performance killers

with EnCore vector registers: outputs over-writing inputs.

Class Type Count Total%

Local Scalar Scalar to Vector 4860 19.6%

External Scalar External Scalar to Vector 4352 17.5%

Constant to Vector 8681 35.0%

Local Vector Vector to Vector 2160 8.72%

External Vector External Vector to Vector 1311 5.29%

Last-loop Vector to Vector 3405 13.7%

Table 4.2: The different sources of inputs to extension instructions summed across

all 179 benchmarks.

The EnCore vector register were designed based on the idea that the output of one instruc-

tion would feed into the next. This was the purpose of the permutation units, to rearrange the

order of a vector to cover cases where the output order of one instruction did not match the

input of the next. In reality, however, vector-to-vector dataflow is relatively rare. In table 4.2

there are 24,769 inputs recorded and only 27.8% of them come from vector registers. The main

problem is the “External Scalars”. If a given basic block with an extension instruction is inside

a loop and that extension instruction takes some “external scalars“ as input via vr01 then these

values generally stay constant for every iteration of the loop. They are loop-hoisted invariants.

Thus if vr01 gets overwritten the “external scalars” will need to be copied back into vr01 in

every loop iteration. As “external scalars” account for 52.6% of all vector input variables and

each vector contains up to four variables this problem is extremely common. Thus the static as-

signment approach taken by “No register allocator” performs just as well as an allocator which

frequently ends up picking a similar scheme.

Figure 4.10(b) shows the performance of the default register allocator with one-step per-

mutations, no permutations and two-step permutations. Not using permutations results in a

significant drop in performance, the average speed-up falls from 1.11x to 0.99x. This is actu-

ally worse than “No register allocation” even though it does not use permutations either. This

56 Chapter 4. Code Generation for Complex Instructions

is because the heuristics in the default mapper rely on permutations to try and avoid overwrit-

ing values. The performance drop from one-step to two-step permutations is not as significant,

1.11x to 1.10x, thus two-step permutations do not quite provide enough of a benefit to make up

for only have five vector registers available.

4.7.5 Commutativity Variations

Figure 4.11 shows the results of trying to exploit commutativity in the graph-subgraph isomor-

phism module of MapISE. It shows full commutativity (floating point and integer) versus no

commutativity. The IEEE754 floating point standard guarantees that switching the arguments

to naturally commutative operators does not affect the result.

It can be seen in figure 4.11(a) that commutativity makes no significant difference to the

speed-ups obtained. Figure 4.11(b) shows that commutativity does allow a few additional

extension instructions to be mapped. The average number of mappings per benchmark go from

27.77 to 28.02 for no commutativity to full commutativity. The additional mappings actually

fractionally slow-down the code, speed-ups go from 1.112x to 1.110x. This is indistinguishable

from noise.

Note that the flat results are not due to commutativity checking being broken. During the

development of the PASTA project ISEGen had a key bug where, under certain circumstance,

it would swap a nodes edges in the extension instruction. At this point commutativity support

was essential for using key extension instructions. Once the bug was discovered and fixed,

however, little benefit remained.

The fact that no commutativity is almost identical to have full commutativity is actually

a useful result. In the MapISE there are approximately 500-600 lines of code spread through

several sections of the code to support commutativity. Requiring code in several separate key

areas meant that during development of MapISE, bugs related to commutativity took a signifi-

cant amount of the overall debug time (passed only by issues related to GCC’s virtual uses and

definitions for representation pointer aliases and ISEGen’s or issues related to ISEGen stripping

casts from extension instructions). Therefore, the interesting result is that implementing com-

mutativity checking in a graph-subgraph isomorphism based instruction mapper is not worth

the effort.

4.8 Results - Retargeting Extension Instructions

This section evaluates MapISE’s ability to take extension instructions generated for one bench-

mark and map them to a related benchmark.

4.8. Results - Retargeting Extension Instructions 57

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

Commutativity
No commutativity

(a) This chart shows the speed-ups obtained when exploiting commutativity in MapISE. The left bar allows com-

mutativity in both integer and floating point nodes for every arithmetic operation that is naturally commutative.

The right bar does not consider commutativity at all. Note: the full version of this chart is figure B.10 on page 174.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Commutativity - Unique ISEs used
Commutativity - Matches
No commutativity - Unique ISEs used
No commutativity - Matches

(b) This chart is similar to figure 4.7(b) except that every stacked bar relates to the number of extension instructions

that MapISE can use. The lower bars are the number of unique extension instructions used, the upper bars are the

total number of sites that extension instructions could be used. Note: the full version of this chart is figure B.11 on

page 176.

Figure 4.11: A comparison of different commutativity options.

58 Chapter 4. Code Generation for Complex Instructions

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

With profiling
Without profiling

(a) Speed-ups obtained from the default (left-hand bar) and the alternative modes (right-hand bar). Note: the full

version of this chart is figure B.12 on page 178.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

With profiling - Unique ISEs used
With profiling - Matches
Without profiling - Unique ISEs used
Without profiling - Matches

4485.0

(b) Mapping quality information for default (left-hand bar) and alternative modes (right-hand bar). Note: the full

version of this chart is figure B.13 on page 180.

Figure 4.12: An evaluation of MapISE when the compiler mode changes between

extension instruction generation and exploitation. Withholding profiling data affects

the decisions made by GCC’s optimiser.

4.8. Results - Retargeting Extension Instructions 59

4.8.1 Compiler Differences

Figure 4.12 generates instructions using a profile driven ISEGen, but then attempts to use them

on the same benchmarks without profiling data. This is not necessarily a common problem,

but as GCC’s optimisation choices change significantly when the profiling data is withheld this

simulates using a different version of the same compiler. After a major upgrade a compiler

could make different optimisation decisions, so it is necessary to check that MapISE would

remain usable.

Figure 4.12(a) shows the speed-ups retained. The results are quite encouraging, there is a

small drop in performance, from an average speed-up of 1.11x to 1.08x, but most of the perfor-

mance is retained. Figure 4.12(b) shows that more instructions are mapped without profiling

data. This occurs because if a large instruction can no longer be mapped, perhaps a hot loop

is no longer unrolled, then two smaller matches may be mapped instead. This can mean more

instructions are mapped but results in lower speed-up overall.

4.8.2 Modifying Programs

It is also necessary to check that when a program is changed, will the new version still be able

to use the extension instructions generated for the old version. To simulate going from “v1.0”

to “v1.1” of various programs, the UTDSP suite will be used as it has several versions of each

benchmark. Figure 4.13 shows results for extension instructions generated for pointer versions

of each benchmark and then mapped them to the arrays versions. Figure 4.14 does the reverse.

Figure 4.15 generates extension instructions for the arrays version of each benchmark, and

then tries to map them to a version where the loops have been software pipelined.

Counter-intuitively the results in figure 4.13(a) are actually faster when using extension

instructions designed for a different benchmark, than when using ones designed for them di-

rectly. The speed-up increases from 0.98x to 1.09x. The results in figures 4.14(a) and 4.15(a)

only small see improvements, 1.099x to 1.100x and 1.01x to 1.02x respectively, but for these

experiments a small improvement is an excellent result: it indicates that MapISE is able to

handle programs being updated.

4.8.3 Using Different Implementations

The experiment used to generate figure 4.16 is a more complex than the other retargeting ex-

periments. Extension instructions are generated for one benchmark and then used with other

related benchmarks, see table 4.3.

These results in figure 4.16(a) show that large changes in the program between generation

and exploitations (e.g. MPEG-2 to MPEG-4, or using a different FFT implementation) is rarely

very effective. Although the average speed-up only drops little, from 1.02x to 0.99x, this is

60 Chapter 4. Code Generation for Complex Instructions

UTDSP
ad

pc
m

ar
ray

s

UTDSP
co

mpr
es

s ar
ray

s

UTDSP
ed

ge
de

tec
t a

rra
ys

UTDSP
fft

10
24

ar
ray

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
his

tog
ram

ar
ray

s

UTDSP
iir

1 1 ar
ray

s

UTDSP
iir

4 64
ar

ray
s

UTDSP
lat

nr
m

32
64

ar
ray

s

UTDSP
lat

nr
m

8 1 ar
ray

s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

UTDSP
lpc

ar
ray

s

UTDSP
mult

10
10

ar
ray

s

UTDSP
mult

4 4 ar
ray

s

UTDSP
sp

ec
tra

l a
rra

ys

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Speed-ups.

UTDSP
ad

pc
m

ar
ray

s

UTDSP
co

mpr
es

s ar
ray

s

UTDSP
ed

ge
de

tec
t a

rra
ys

UTDSP
fft

10
24

ar
ray

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
his

tog
ram

ar
ray

s

UTDSP
iir

1 1 ar
ray

s

UTDSP
iir

4 64
ar

ray
s

UTDSP
lat

nr
m

32
64

ar
ray

s

UTDSP
lat

nr
m

8 1 ar
ray

s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

UTDSP
lpc

ar
ray

s

UTDSP
mult

10
10

ar
ray

s

UTDSP
mult

4 4 ar
ray

s

UTDSP
sp

ec
tra

l a
rra

ys

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure 4.13: Extension instructions are generated for ptrs benchmarks and then

exploited on arrays benchmarks.

mostly because every benchmark moved closer to a 1.0x speed-up, in some cases that was

an improvement, in other it was not. Figure 4.16(b) shows that far fewer unique extension

instructions are used.

4.8.4 Combining Programs

Figure 4.17 shows the results of a small domain-based AISE experiment. Extension instruc-

tions were generated for five telecommunications benchmarks. The extension instructions for

each were then merged into a single extension unit which was then used to accelerate the same

five benchmarks. This had very little effect of performance, the average speed-up increases

4.9. Critical Evaluation 61

UTDSP
ad

pc
m

ptr
s

UTDSP
co

mpr
es

s ptr
s

UTDSP
ed

ge
de

tec
t p

trs

UTDSP
fft

10
24

ptr
s

UTDSP
fir

25
6 64

ptr
s

UTDSP
fir

32
1 ptr

s

UTDSP
his

tog
ram

ptr
s

UTDSP
iir

1 1 ptr
s

UTDSP
iir

4 64
ptr

s

UTDSP
lat

nr
m

32
64

ptr
s

UTDSP
lat

nr
m

8 1 ptr
s

UTDSP
lm

sfi
r 32

64
ptr

s

UTDSP
lm

sfi
r 8 1 ptr

s

UTDSP
lpc

ptr
s

UTDSP
mult

10
10

ptr
s

UTDSP
mult

4 4 ptr
s

UTDSP
sp

ec
tra

l p
trs

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

2.0

(a) Speed-ups.

UTDSP
ad

pc
m

ptr
s

UTDSP
co

mpr
es

s ptr
s

UTDSP
ed

ge
de

tec
t p

trs

UTDSP
fft

10
24

ptr
s

UTDSP
fir

25
6 64

ptr
s

UTDSP
fir

32
1 ptr

s

UTDSP
his

tog
ram

ptr
s

UTDSP
iir

1 1 ptr
s

UTDSP
iir

4 64
ptr

s

UTDSP
lat

nr
m

32
64

ptr
s

UTDSP
lat

nr
m

8 1 ptr
s

UTDSP
lm

sfi
r 32

64
ptr

s

UTDSP
lm

sfi
r 8 1 ptr

s

UTDSP
lpc

ptr
s

UTDSP
mult

10
10

ptr
s

UTDSP
mult

4 4 ptr
s

UTDSP
sp

ec
tra

l p
trs

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure 4.14: Extension instructions are generated for arrays benchmarks and then

exploited on ptrs benchmarks.

from 0.72x to 0.75x. For the other cases of retargeting extension instructions, small slow-

downs are acceptable. As this experiment is purely additive, each benchmark has access to its

own extension instructions and more, a larger increase in speed-up may have been expected.

4.9 Critical Evaluation

There are a number of distinct areas that need to be critically evaluated to explain the above

results. This is undertaken here, along with some additional experiments to help demonstrate

key points.

62 Chapter 4. Code Generation for Complex Instructions

UTDSP
ad

pc
m

ar
ray

s SW
P

UTDSP
ad

pc
m

ptr
s SW

P

UTDSP
co

mpr
es

s ar
ray

s SW
P

UTDSP
co

mpr
es

s ptr
s SW

P

UTDSP
ed

ge
de

tec
t a

rra
ys

SW
P

UTDSP
ed

ge
de

tec
t p

trs
SW

P

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fir

25
6 64

ar
ray

s SW
P

UTDSP
fir

25
6 64

ptr
s SW

P

UTDSP
fir

32
1 ar

ray
s SW

P

UTDSP
fir

32
1 ptr

s SW
P

UTDSP
his

tog
ram

ar
ray

s SW
P

UTDSP
his

tog
ram

ptr
s SW

P

UTDSP
iir

1 1 ar
ray

s SW
P

UTDSP
iir

1 1 ptr
s SW

P

UTDSP
iir

4 64
ar

ray
s SW

P

UTDSP
iir

4 64
ptr

s SW
P

UTDSP
lat

nr
m

32
64

ar
ray

s SW
P

UTDSP
lat

nr
m

32
64

ptr
s SW

P

UTDSP
lat

nr
m

8 1 ar
ray

s SW
P

UTDSP
lat

nr
m

8 1 ptr
s SW

P

UTDSP
lm

sfi
r 32

64
ar

ray
s SW

P

UTDSP
lm

sfi
r 32

64
ptr

s SW
P

UTDSP
lm

sfi
r 8 1 ar

ray
s SW

P

UTDSP
lm

sfi
r 8 1 ptr

s SW
P

UTDSP
lpc

ar
ray

s SW
P

UTDSP
lpc

ptr
s SW

P

UTDSP
mult

10
10

ar
ray

s SW
P

UTDSP
mult

10
10

ptr
s SW

P

UTDSP
mult

4 4 ar
ray

s SW
P

UTDSP
mult

4 4 ptr
s SW

P

UTDSP
sp

ec
tra

l a
rra

ys
SW

P

UTDSP
sp

ec
tra

l p
trs

SW
P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Speed-ups.

UTDSP
ad

pc
m

ar
ray

s SW
P

UTDSP
ad

pc
m

ptr
s SW

P

UTDSP
co

mpr
es

s ar
ray

s SW
P

UTDSP
co

mpr
es

s ptr
s SW

P

UTDSP
ed

ge
de

tec
t a

rra
ys

SW
P

UTDSP
ed

ge
de

tec
t p

trs
SW

P

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fir

25
6 64

ar
ray

s SW
P

UTDSP
fir

25
6 64

ptr
s SW

P

UTDSP
fir

32
1 ar

ray
s SW

P

UTDSP
fir

32
1 ptr

s SW
P

UTDSP
his

tog
ram

ar
ray

s SW
P

UTDSP
his

tog
ram

ptr
s SW

P

UTDSP
iir

1 1 ar
ray

s SW
P

UTDSP
iir

1 1 ptr
s SW

P

UTDSP
iir

4 64
ar

ray
s SW

P

UTDSP
iir

4 64
ptr

s SW
P

UTDSP
lat

nr
m

32
64

ar
ray

s SW
P

UTDSP
lat

nr
m

32
64

ptr
s SW

P

UTDSP
lat

nr
m

8 1 ar
ray

s SW
P

UTDSP
lat

nr
m

8 1 ptr
s SW

P

UTDSP
lm

sfi
r 32

64
ar

ray
s SW

P

UTDSP
lm

sfi
r 32

64
ptr

s SW
P

UTDSP
lm

sfi
r 8 1 ar

ray
s SW

P

UTDSP
lm

sfi
r 8 1 ptr

s SW
P

UTDSP
lpc

ar
ray

s SW
P

UTDSP
lpc

ptr
s SW

P

UTDSP
mult

10
10

ar
ray

s SW
P

UTDSP
mult

10
10

ptr
s SW

P

UTDSP
mult

4 4 ar
ray

s SW
P

UTDSP
mult

4 4 ptr
s SW

P

UTDSP
sp

ec
tra

l a
rra

ys
SW

P

UTDSP
sp

ec
tra

l p
trs

SW
P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure 4.15: Extension instructions are generated for arrays benchmarks and then

exploited on arrays-SWP benchmarks.

4.9.1 ISEGen Issues

Figure 4.18 compares ISEGen’s predicted performance with what MapISE was able to achieve.

It can be seen that MapISE falls far beneath ISEGen’s expectations, ISEGen estimated a speed-

up of 1.54x, MapISE achieved 1.11x.

The reason for this are three-fold: firstly, ISEGen over-estimates the benefits of its exten-

sion instructions. Secondly, many of the extension instructions produced are actually not usable

with the code they were generated for. Thirdly, MapISE uses a greedy algorithm for exploiting

multiple extensions per basic block which is certainly sub-optimal (see section 4.9.3).

The most obvious issue with ISEGen’s performance estimates are the way it calculates the

4.9. Critical Evaluation 63

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 co
ns

um
er

djp
eg

ee
mbc

2 co
ns

um
er

ae
s

ee
mbc

2 co
ns

um
er

mp4
de

co
de

SNURT
fft1

k

SNURT
fir

UTDSP
fft

10
24

ar
ray

s

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fft

10
24

ptr
s

UTDSP
fft

25
6 ar

ray
s

UTDSP
fft

25
6 ptr

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Speed-ups.

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 co
ns

um
er

djp
eg

ee
mbc

2 co
ns

um
er

ae
s

ee
mbc

2 co
ns

um
er

mp4
de

co
de

SNURT
fft1

k

SNURT
fir

UTDSP
fft

10
24

ar
ray

s

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fft

10
24

ptr
s

UTDSP
fft

25
6 ar

ray
s

UTDSP
fft

25
6 ptr

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure 4.16: Extension instructions are generated for one benchmark (see ta-

ble 4.3) and then exploited on one or more related benchmarks.

baseline number of cycles that it is apparently accelerating – it massively under-estimates how

long programs will take to run. It is normally off by at-least a factor of 2x: e.g. for SNURT

jfdctint it estimates 3485 cycles when the actual number of inside the performance counters is

7667; for UTDSP histogram it estimates 288,769 cycles when the actual number is 1,161,801.

Mostly this is because it does not account for library code, the number of cycles that a function

call takes, nor that dependent code and branches can result in pipeline bubbles – it purely

considers the summed cycles of the dataflow graphs for every basic block. The inaccuracies of

these numbers do not affect the results presented in this thesis at all. ISEGen picks extension

instructions based on their benefit in dataflow graphs, the fact that is inflating the importance

64 Chapter 4. Code Generation for Complex Instructions

Generating Benchmark Exploiting Benchmark(s)

EEMBC2 mpeg2dec EEMBC2 mp4decode

Crypto aes EEMBC2 aes

EEMBC1 cjpeg EEMBC1 djpeg

SNURT jfdctint EEMBC1 cjpeg

DSPstone fir float SNURT fir, UTDSP fir 32-1 arrays,

UTDSP fir 256-64 arrays, UTDSP lmsfir 32-64 arrays,

UTDSP lmsfir 8-1 arrays

SNURT fft1 SNURT fft1k, UTDSP fft 1024 arrays,

UTDSP fft 1024 arrays SWP, UTDSP fft 1024 ptrs,

UTDSP fft 256 arrays, UTDSP fft 256 ptrs

Table 4.3: The benchmarks used to generate and exploit extension instructions in

figure 4.16.

ee
mbc

1 tel
ec

om
au

tco
r0

0

ee
mbc

1 tel
ec

om
co

nv
en

00

ee
mbc

1 tel
ec

om
fbi

tal
00

ee
mbc

1 tel
ec

om
fft0

0

ee
mbc

1 tel
ec

om
vit

er
b0

0

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Speed-ups.

ee
mbc

1 tel
ec

om
au

tco
r0

0

ee
mbc

1 tel
ec

om
co

nv
en

00

ee
mbc

1 tel
ec

om
fbi

tal
00

ee
mbc

1 tel
ec

om
fft0

0

ee
mbc

1 tel
ec

om
vit

er
b0

0

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure 4.17: Extension instructions are generated for each benchmark and then

combined to create a large set of instructions, MapISE then maps instructions from

the entire set to each benchmark.

4.9. Critical Evaluation 65

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

ISEGen estimated speed-up
Actual speed-up obtained

Figure 4.18: A comparison of ISEGen’s estimated benefit from extension instruc-

tions and the benefit actually achieved by MapISE. Note: the full version of this chart

is figure B.14 on page 182.

of those graphs does not change the instructions that are generated. It is just hard to compete

with ISEGen’s “estimated” speed-up because if it halves the number of cycles in the program

it doubles the benefit from extension instructions and thus doubles the speed-up it estimates.

ISEGen’s estimates for the number of cycles that each instruction extension will save are not

nearly as inaccurate as they are based on a single dataflow graph each, so of the above issues

only pipelining inaccuracies apply.

Further regarding ISEGen’s performance estimation model: it fails to take account of the

compiler in several ways. The most significant are register allocation issues, these are discussed

in section 4.9.4. The other major flaw in ISEGen is that it assumes that the back-end will have

little effect on the produced code. The GCC back-end performs further strength reduction over

that performed in the middle-end. This means that ISEGen thinks that it is implementing an

expensive operation (e.g. divide) in parallel with other operations and that the extension in-

struction will provide a large benefit. In reality, however, the divide may be strength reduced to

a shift, or a short sequence of custom arithmetic and the true savings provided by the extension

instruction are negligible.

A more subtle back-end issue is that ISEGen assumes that every operation implemented in

an extension instruction means that the time it would have taken to run that operation on the

baseline core has now been saved. In reality that operation may have simply been sitting in a

gap in the schedule, and now that the extension instruction is implementing it there is just a

pipeline bubble instead. No cycle(s) have been saved. This is an extremely difficult problem

for the AISE tool to deal with, it may just not be possible for a high-level tool like ISEGen.

66 Chapter 4. Code Generation for Complex Instructions

It is an important issue though, because extension instructions absorb a large amount of data-

parallelism the scheduler may have little left to work with. So in a basic block an extension

instruction performs most of the arithmetic at the start, but then a series of dependent operations

have to execute – so the total time to execute the block is only a little lower than before, despite

the “savings”.

It should be noted that although these issues are being presented in terms of the ISEGen

tool, any implementation of the ISEGEN algorithm would likely experience the same problems.

In fact, any implementation of any AISE algorithm may be susceptible.

If figure 4.7(b) is reconsidered it can be seen that MapISE only manages to use 60% of

the unique extension instructions that ISEGen produces. Partially this will be due to MapISE’s

greedy approach, but a significant portion is due to ISEGen not using virtual dependencies

(section 4.9.2 unsuccessfully attempts find out what portion). This means that ISEGen often

thinks sections of code are independent when they are, in fact, dependent. This causes it

to create an extension instruction which implements two sections of dependent dataflow in

parallel, and MapISE is unable to use the instruction. The XML CDFG format used by ISEGen

does not have any way of describing virtual dependencies. For MapISE, the CDFG format was

extended to represent virtual dependencies. This could also be added to the XML as well, but

it is not clear if the ISEGEN algorithm could be extended to support virtual dependencies. The

ISEGEN paper [Biswas et al., 2006a] does not mention this issue, so it may not be trivial to

implement a solution.

4.9.2 Effect of Aliasing Differences on Performance

This section tries to determine how large an affect ISEGen’s lack of support for virtual depen-

dencies has on MapISE. By considering figure 4.7(b) it is clear that the upper bound on the

effect is 40% of the unique extension instructions that ISEGen produces (MapISE can use the

other 60%). The lower bound is, of course, 0%. To attempt to find the true bounds GCC is

encouraged to discard aliasing information.

This is achieved by using the GCC-fargument-noalias-anything command switch.

This switch is not meant to be used directly as it is unsafe, the front-end developer should set

this if it is appropriate for the language that the front-end accepts. Setting this switch specifies

that for each pointer argument given to a function no other pointer in that function points to the

same storage location, i.e. no other pointer argument or global variable points to the same block.

This does not mean, however, that no aliasing information is produced, it is still calculated for

local variables within a function and for the use of global variables unrelated to the function

arguments. Despite this the switch is still unsafe as it does not conform to the expected C

semantics. It used here purely for evaluation purposes, it is not proposed as a solution to any

problem. Only one benchmark was miscompiled due the use of the switch: EEMBC coremark,

4.9. Critical Evaluation 67

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Standard aliasing rules
Lax aliasing rules

(a) Speed-ups obtained with standard C aliasing rules (left-hand bars) or less strict rules (right-hand bars). Note:

the full version of this chart is figure B.15 on page 184.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Standard aliasing - Unique ISEs used
Standard aliasing - Matches
Lax aliasing - Unique ISEs used
Lax aliasing - Matches

(b) Mapping quality information. Note: the full version of this chart is figure B.16 on page 186.

Figure 4.19: An investigation of the effect of weakening the aliasing rules in GCC

with regards to MapISE.

the results from the standard run for that benchmark were inserted into the data-set to avoid

affecting the geometric mean or the average.

The reason that only one benchmark was miscompiled was likely that only a small amount

of the total aliasing information is discarded as a result of using this switch. This can be

seen indirectly in figure 4.19(b). On average standard aliasing rules allow 10.98 extension

instructions to be used per benchmark, this only increases to an average of 11.01 extension

instructions per benchmark with the -fargument-noalias-anything switch. This is also

counter balanced by the total number of extension instruction sites, which is identical for the

68 Chapter 4. Code Generation for Complex Instructions

two options. For benchmarks where lax aliasing rules allow more extension instructions to

be used the affect on performance is mixed, e.g. Crypto aes slows down but UTDSP mult-

4_4_ptrs speeds up. Overall the average speed-up decreases from 1.110x to 1.107x, another

case showing that more extension instructions can sometimes hinder performance.

This either means that ISEGen’s lack of support for virtual dependencies has no effect on

MapISE, or GCC is unable to discard enough aliasing information to be helpful. Manual veri-

fication showed that ISEGen definitely produced extension instructions in shapes that MapISE

would never be able to use, and that GCC still retained many virtual dependencies when ap-

parently using reduced aliasing information. Manual verification, however, is unable to give an

idea of how much of the 40% of unused instructions relate to this issue.

It is not possible to just ignore aliasing information in the MapISE alone. This was at-

tempted by generating CDFG without virtual dependency annotations. The produced code was

invalid and GCC’s SSA verification passes would not accept the code (it was impossible to

schedule it, extension instruction had to be place both before and after certain points). This

issue of virtual dependencies is a good demonstration, however, of how MapISE is always “re-

targeting” extension instructions. The good side-effect of this is that ISEGen bug do not cause

wrong-code, the bad side-effect is that ISEGen bugs can be hidden from view.

4.9.3 Matching Issues

There is a large deficiency in MapISE’s approach to mapping multiple extension instruction in a

block. It uses a greedy approach which will take an instruction which saves five cycles, even if

that blocks two places where four cycles could be saved. In the area of tree-tiling this is a solved

problem, but as matching tree-shaped instructions in DAGs is NP-COMPLETE [Proebsting,

1998], and graph-subgraph isomorphism is NP-COMPLETE [of Theorem-Proving Procedures,

1971] combining the two, even heuristically, is likely to have a huge effect on run-time.

4.9.4 Register Allocation Issues

4.9.4.1 Aggressive Register Allocation

Figure 4.20 shows the performance of the default register allocator without the load-balancing

cost described in section 4.3. This was once the default mode of operation, the aim was to

allow as many vector-to-vector moves as possible and to fully exploit the permutation units.

As has already been discussed in section 4.7.4 this causes other problems. Focusing on vector-

to-vector moves is wasted effort when scalar-to-vector moves dominate, doing so dropped the

average speed-up from 1.11x to 0.96x. Figure 4.21 confirms that this holds for alternative

permutation configurations as well.

4.9. Critical Evaluation 69

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

No register allocation
Standard register allocation
Bad register allocation

Figure 4.20: The speed-ups obtained when using deliberately bad register alloca-

tion heuristics. Note: the full version of this chart is figure B.17 on page 188.

4.9.4.2 Caller or Callee Saved Extension Registers

Figure 4.22 compares caller-saved extension registers (the default) with callee-saved registers.

Using callee-saved registers causes performance to fall from an average speed-up of 1.11x to

0.91x. The experiments are included here because it seems surprising that it would have such

a large effect on performance (both options were evaluated before picking caller-saved as the

default), and because the EnCore hardware engineers believe that callee-saved should be the

default.

4.9.4.3 Summary of Register Allocation Issues

Section 4.7.3 demonstrated that eliminating extension instructions with high register overhead

improved performance. Section 4.7.4 described how care should be taken to avoid registers

colliding and that permutations are key when collisions do happen. This section demonstrated

that trying to aggressively use the vector registers and permutations units actually hinders per-

formance.

The trend is that vector registers can destroy performance, but never help it. Chapter 5

looks at how to better manage vector registers and proposes an alternative register scheme.

70 Chapter 4. Code Generation for Complex Instructions

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

No register allocation
Standard register allocation
Bad register allocation

(a) No permutations used. Note: the full version of this chart is figure B.18 on page 190.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

No register allocation
Standard register allocation
Bad register allocation

(b) Two-step permutations used. Note: the full version of this chart is figure B.19 on page 192.

Figure 4.21: The speed-ups obtained when using deliberately bad register alloca-

tion heuristics with permutation variations.

4.10 Summary and Conclusions

4.10.1 Future Work

Firstly, much of what could be considered future work is covered in chapter 5. The work in

that chapter regards modifications to the AISE heuristics or modifications to hardware. The

only MapISE changes in chapter 5 are those required to match hardware changes. Thus, any

enhancements to MapISE that have not already been proposed are considered the future work

of this chapter.

There exists graph-subgraph isomorphism checkers that can run in polynomial time [Jiang

4.10. Summary and Conclusions 71

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Caller save
Callee save

(a) Default register allocator. Note: the full version of this chart is figure B.20 on page 194.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Caller save
Callee save

(b) No register allocator. Note: the full version of this chart is figure B.21 on page 196.

Figure 4.22: An evaluation of callee-saved registers against caller-save.

and Bunke, 1998] by constraining the problem slightly: edges must be ordered. MapISE ac-

tually needs to do its own edge-order checking so this would not be a large issue. The only

limitation is that if MapISE is not doing its own edge-order it cannot handle commutativity.

As section 4.7.5 found, however, commutativity provides no benefits, so losing the ability to

support it is completely acceptable.

Partial mapping of instructions could be performed by using arithmetic identities. Parts

of instructions which are not required could be transformed into null operators by applying

arithmetic identities to them. For example an addition node could be nullified by mapping it

to X + 0, or a multiple to X ∗ 1, both nodes would be passing the value X onto the rest of the

instruction. This may improve the usability of extension instructions as if a match was off by

72 Chapter 4. Code Generation for Complex Instructions

only one or two nodes then they could be disabled, thus allowing the instruction to be used.

The technique described in section 4.5, which skips extension instructions which will likely

slow-down performance, currently works statically at the beginning of MapISE. If it was dy-

namic and operated after the vector register allocator it could make accurate decisions, instead

of estimates. As has already been mentioned, however, this whole technique is a work-around

for a bigger problem, so this may not be worth pursuing.

4.10.2 Summary

This chapter has described a tool for mapping the complex instructions generated by AISE. An

extensive evaluation was performed that demonstrated that the tool could achieve an average

speed-up of 1.11x across 179 benchmarks. A significant understanding of underlying perfor-

mance issues was also obtained which was used to design the set of experiments found in the

next chapter.

Chapter 5

Instruction Set Extension and Code

Generation

“Nothing in progression can rest on its original plan. We may as well think of rocking a grown
man in the cradle of an infant.”
— Edmund Burke, member of the House of Commons for Wendover, 1729–1797.

This chapter investigates methods by which AISE can generate extension instructions that

the compiler is better able to exploit. Modification of ISEGen’s parameters and heuristics is

investigated, and then hardware changes are proposed and assessed.

Once it became clear that changes to the hardware were necessary it also became clear

that many different changes had the potential to create extension instructions better suited for

compilation. In fact, every variation tried provided some benefit. This meant, however, that

design space exploration was happening, but without the benefit of full automation.

Section 5.1 describes several ways that ISEGen could create extension instructions which

do not such put a high strain on MapISE’s register allocator. Next, in an attempt to increase

memory bandwidth and to take advantage of the existing vector hardware, section 5.2 proposes

adding vector loads and stores. Section 5.3 proposes eliminating the vector registers. Sec-

tions 5.4–5.6 evaluate the proposals and finally section 5.8 critically evaluates the work of the

chapter.

5.1 Reducing Register Pressure

A number of changes were made to ISEGen’s parameters and one new value was introduced to

its heuristic vector.

73

74 Chapter 5. Instruction Set Extension and Code Generation

5.1.1 Reducing the Number of I/O Ports

The first change that was made was a simple one. As EnCore only has seven vector registers

and a single extension instruction may use up to five vector registers at once there is not much

that the register allocator can do to avoid collisions. It is hypothesised that if each extension

instruction is limited in the number of vectors it uses then performance may improve due to

better register allocation.

5.1.2 Hard-Wiring Constant Values

The second change requires changing the ISEGen mode of operation slightly. Table 4.2 on

page 55 shows that 35% of the inputs to extension registers are constants. It is not only MapISE

that can tell this, these nodes are marked as being constants in the XML CDFG that ISEGen

receives. ISEGen was therefore modified so as to not consider these constants as general inputs

but to instead hard-wire them inside the extension instructions.

This required a minor update to MapISE so that it only maps constants in instructions to

constant nodes with the same value, but other than that a constant node is just a node like any

other.

5.1.3 Modifying the ISEGEN Heuristic Parameters

The most significant change made to ISEGen was the addition of a new parameter. In its

default mode of operation ISEGen assumes that there are no costs associated with loading an

input value. Other operations have a cost, e.g. an addition might have a cost of one cycle.

Therefore, the performance model was updated to assign a cost to each input. This is provided

as a parameter and maybe any value, including fractions. The rest of the performance model

builds costs based on cycles, so values should be picked accordingly (i.e. quite small).

The expected effect of this new addition to the performance model is smaller extension

instructions. ISEGen should only include additional operations in an extension instruction if it

will save enough cycles to offset the cost of loading the value. This heuristic is very similar

to the “Eliminating Poor Mappings” method described in section 4.5. Where that method

avoided using extension instructions with an expected register load cost that was higher than

their benefit, this method avoids creating them.

5.2 Wide Memory Bus for Wide Registers

The three changes proposed above all work by reducing the amount of data that is sent to

extension instructions (and thus easing the task of register allocation). This section takes an

alternative approach which may make it easier to send data to extension instructions.

5.2. Wide Memory Bus for Wide Registers 75

The extended EnCore processor already has vector registers, so adding vector loads and

stores is a good conceptual fit. As a certain amount of the data passed to extension registers is

loaded from memory, being able to load an entire vector at once may reduce the number of cy-

cles required to initialise an extension instruction’s inputs. This is actually an orthogonal issue

to extension instructions (any architecture could benefit from this extension), but with vector

registers already implemented and extension instructions requiring significant data bandwidth

it is a good match for AISE extended processors.

5.2.1 Evaluation Methodology

This idea was evaluated without actually changing the hardware, the simulator or the compiler.

Instead information from the simulator was used to provide a dynamic estimate.

The simulator is run in “trace mode”, in this mode it prints exact information about what

every instruction that is processed is doing. Information regarding memory access is extracted

from this output, specifically the complete list of addresses read from and a separate list of

all addresses written to. These lists were split into segments based on when the “program

counter” changed by a value other than four (i.e. the programs execution jumped or branched

to a different basic block). The resulting lists of memory accesses only relate to data accesses

(via a ld* or st* instruction), the implicit loading of the next instruction for execution was not

included.

Each segment in each of these lists was then searched for potential places to use vector

loads or stores. This was achieved by looking for accesses to consecutive addresses in each

segment. The order of access in each segment was assumed to be flexible. Every sequence

of adjacent accesses was marked as being loaded (or stored) by a vector. Up to four words

can be loaded/stored by one vector instruction but double and triple loads/stores were also

considered. For every operation marked as being handled by a vector load or store, two cycles

were removed from the total number of cycles executed. For every vector load or store added

two cycles were added to the number of cycles executed. This means each vector load or store

has a 2–6 cycle benefit.

This evaluation method assumes the compiler is able to statically determine when memory

accesses are to consecutive addresses. As most accesses are to the stack or arrays this is not an

unreasonable assumption. The cases where it is not possible to determine this statically but it

does occur dynamically should be rare. E.g., two adjacent arrays may result in adjacent address

dynamically but not statically – but this will only occur for the two addresses where they are

adjacent. The dynamic case will also miss cases which may be statically exploitable, e.g. a

compiler may be able to vectorise accesses from a loop, but this evaluation technique will not

identify those as each loop iteration would trigger a new segment.

The limitations of this estimation method means that vector loads and stores are proposed

76 Chapter 5. Instruction Set Extension and Code Generation

for the entire register file (i.e. r0–r63) even though currently only r31–r59 are mapped to

vectors. This is necessary because GCC rarely loads data directly to the upper half of the

register file. If an actual hardware implementation were to be created it would possibly only

be able to load to, or store from, the upper half of the register file. If compiler support for

vector loads and stores was implemented then an appropriate register class could be added to

the register allocator to specify that vector loads and stores could only access r32–r59. The

benefits of vector loads and stores would mean these registers would be used.

For vector loads and stores to be able to operate on the entire register file in the current

EnCore would require two changes. Firstly, the register file would need to be modified to

allow this – the 128-bit path is currently only connected to the upper-half of the register file.

Secondly, the instruction encoding would need to be modified to allow for the 8 additional

vector registers that would be addressable. This could be avoided by not allowing extension

instructions (other than vector loads and stores) access to the lower half of the register file.

5.3 Replacing Wide Registers with Wide Instructions

Another, more radical, hardware change would be to eliminate vector registers completely.

This is considered because section 4.9.4 put forward a case that vector registers were harming

the performance of extension instructions. The alternative proposed here is to eliminate the

vector registers and the extended register file and just have the extension operations operate on

the baseline register file. Extension instructions would specify registers individually rather than

by vectors. This would require an instruction larger than the current 32-bits, however, hence

the name “wide instructions”.

This is expected to increase performance because there will be no register movement over-

head associated with this type of extension instruction, other than any overheads which would

also affect baseline instructions. There would be no need to move data to specific registers as

the extension instruction could always use the registers where the data is already residing.

The changes to the EnCore processor that are required to support this are minimal. The 128-

bit vector register interface would be removed as well as the permutation units associated with

it. The extended register file (r32–r59) could also be removed. Keeping it could potentially

still provide a benefit by simply providing more scalar registers, but experience with the EnCore

back-end in GCC has shown that it rarely manages to use more than 32 registers.

Additions to the processor are also required. The baseline EnCore processor register file

currently has two read-ports and two write-ports (the extended register file has three-read ports

and two write-ports). As data is no longer being accessed by vectors a larger number of ports

would probably be required. Current EnCore extension instructions can have three input vec-

tors and two output vectors, or twelve inputs and eight outputs. It would not be possible to have

5.3. Replacing Wide Registers with Wide Instructions 77

this many ports to the register file.

Pozzi and Ienne [2005] have shown that pipelining extension instructions, so as they read

and write results over multiple cycles, can reduce port requirements without harming perfor-

mance. They do not give results for a 2/2 input/output port constraint, but with pipelining 2/1

extensions always perform as well as 4/1 extensions without pipelining, and in some cases as

well as 3/2 or 4/2. If the number of ports are increased then 3/2 pipelined instructions can

perform as well as 8/2 non-pipelined instructions. Unfortunately the technique was not very

effective at reducing the number of output ports required. Pipelining of extension instructions

is not implemented in this thesis and is therefore not evaluated, but the possibility is considered

when evaluating this technique.

5.3.1 Avoiding Extremely Wide Instructions

The above section shows that register file port constraints mean that extension instructions

which access scalar registers must use fewer inputs and outputs than vector-based extension

instructions. An additional restraint is that every individual register must be addressed and this

will take up space in the instruction encoding.

In Out Addressable Address-Bits Instr-Bits

12 8 64 120 144

12 8 32 100 128

12 8 16 80 96

6 2 64 48 64

5 3 64 48 64

4 4 64 48 64

Table 5.1: Possible register configurations and the number of bits required in the

instruction word to address them.

Table 5.1 shows several possible register configurations based on the number of inputs and

outputs, and the number of registers each of those may address. The fourth column in the

table is the number of bits required to address the registers in that configuration, and the fifth

column is the minimum instruction word-size that could contain that many addressing bits.

The instruction word size is calculated by adding 14 (the number of bits ARCompact uses for

modes, op-codes, sub-op-codes and flags) and then rounding up to the nearest multiple of 16

(EnCore’s minimum alignable size).

Three 12-input, 8-output configurations are shown. The first allows all 20 addresses to

access any register, which results in a 144-bit instruction. The next two configurations keep the

78 Chapter 5. Instruction Set Extension and Code Generation

20 addresses but reduce the number of registers that they may address. Lowering the number

of addressable registers would have a small effect even if the extended register file has been

removed: registers r59–r63 have special purposes in ARCompact. Scalar instructions could

still address them however, and as they are only used for control-flow tasks or specifying long

immediates then extension instructions should only occasionally need to address these and mov

instructions could be used copy data as necessary. For addressing 16 registers the ARCompact

ISA already specifies a subset of the full 64 registers that are used by its 16-bit instructions. So

either this could be used or the set of 32 registers could be partitioned into two groups of 16

– though that would eliminates some of the regularity that using scalar registers offers. Also,

having 20 addresses and only 16 addressable registers is worse than having 5 vector addresses

and 7 addressable vectors.

All three 12-input, 8-output configurations require a large instruction word and a large

number of register file ports. As current ARCompact instructions are either 16 or 32-bits

the next logical step is 64-bits. These leaves room for 8 addresses in the instruction, three

configurations are evaluated: 6/2, 5/3 and 4/4. These would not need many more register

file ports than the 2/2 that EnCore already provides. According to the work of Pozzi and Ienne

[2005], described above, extension instructions with 6/2 operands should work with the existing

2/2 ports. 5/3 operands may require one additional write port, 4/4 operands may require two

additional write ports (it would definitely require at least one). Extending the register file to

have 2/3 or 2/4 register file ports is quite feasible.

The EnCore processor is already able to support varying instruction widths – the 7-stage

version of EnCore has an align stage, the 5-stage version performs alignment as part of other

stages. Modifying EnCore to support a 64-bit instruction and 8 register operands would not be

a trivial task, but it would be possible.

5.3.2 Evaluation Methodology

As with the evaluation of vector register based extension instructions two binaries are compiled,

one without extension instructions and one with. These are actually identical to the previously

produced binaries as neither MapISE nor binutils have been updated to support 64-bit instruc-

tions. An accurate estimate has been calculated instead.

The simulator plug-in which executes the extension instructions on the simulator’s behalf

(i.e. the one generated by ToolGen for each new extension unit) was extended with performance

counters. The plug-in counts the number of times each extension instruction is executed while

the cycle counters are being used (so as not to count extension instructions which happen to

get mapped to I/O code). Once the program is completed, the number of times each extension

was executed is multiplied by the number of cycles it was expected to save, the benefit of

all extension instructions is the summed to find the total benefit. Finally, this total benefit

5.4. Results - Reducing Register Pressure 79

is subtracted from the number of cycles the vanilla binary took to execute, resulting in an

estimate of the number of cycles a binary using scalar register extension instructions would

take to execute.

This estimate may sound similar to ISEGen’s estimate, but it has two key differences:

firstly, a real simulated run is used as a baseline; secondly, only extension instructions which

the compiler could use are counted. The issues related to not considering the compiler back-

end apply (described in section 4.9.1), but the issues concerning register allocation do not, as

the register overhead has been eliminated.

5.4 Results - Reducing Register Pressure

Several experiments which are intended to reduce register pressure were proposed, they are

evaluated below.

5.4.1 Reducing the Number of I/O Ports

Figure 5.1 considers MapISE’s effectiveness when dealing with extension instructions that have

fewer inputs and outputs. Figure 5.1(a) shows the speed-ups that were obtained. The optimal

number of inputs/outputs is 8/8. The default 12/8 resulted in an average speed-up of 1.11x, 8/8

instructions increased this to 1.14x. 8/4 operand instructions achieved a slightly lower average

speed-up of 1.13x but 4/4 operand instructions resulted in the lowest average speed-up of all:

1.08x. From the perspective of ISEGen smaller extension instructions should result in slower

code, though from the perspective of MapISE small instructions are easier to manage. The

intersection of these two opposing views seems to be at 8/8 inputs/outputs.

In terms of the number of instructions that ISEGen produces and MapISE maps the search

are more predictable: both increase as instruction size shrink (see figure 5.2 for ISEGen, and

figure 5.1(b) for MapISE).

5.4.2 Hard-Wiring Constant Values

Hard-wiring constants into instructions was expected to increase performance by requiring less

data to be passed via vector registers. Figure 5.3(a) confirms that hard-wire constants result in a

significant speed-up. The default speed-up of 1.11x is increased to 1.20x. Very few benchmarks

experience a slow-down because of hard-wired constants, none in figure 5.3(a), but there are a

few benchmarks in the full data-set that do (see figure B.25).

The average number of extension instructions mapped, however, was reduced from an

average of 28.01 instructions per benchmark to 23.24 instructions per-benchmark (see fig-

ure 5.3(b)). This is to be expected as hard-wiring constants into extension instructions makes

them more application specific and thus reduces their applicability.

80 Chapter 5. Instruction Set Extension and Code Generation

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

12 in + 8 out
8 in + 8 out
8 in + 4 out
4 in + 4 out

(a) Speed-ups. Note: the full version of this chart is figure B.22 on page 198.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

12 in + 8 out - Unique ISEs Used
8 in + 8 out - Unique ISEs Used
8 in + 4 out - Unique ISEs Used
4 in + 4 out - Unique ISEs Used

12 in + 8 out - Matches
8 in + 8 out - Matches
8 in + 4 out - Matches
4 in + 4 out - Matches

(b) Mapping quality information. Note: the full version of this chart is figure B.23 on page 200.

Figure 5.1: A comparison of different register port constraints.

5.4.3 Modifying the ISEGEN Heuristic Parameters

This section evaluates the register load cost ISEGen heuristic proposed in section 5.4.3. The

“Eliminating Poor Mappings” described in section 4.5 provided the motivation for the heuristic.

It worked by preventing some extension instructions from being used in mapping. Equivalently

it is expected that this register load cost heuristic will prevent some extension instructions

from being evaluated. This is considered first using figure 5.4. Figure 5.4(a) displays how

many extension instructions are generated for several different values of the register load cost

heuristic parameter. This chart shows a strong and consistent trend towards fewer extension

instructions as the register cost heuristic parameter increases. The results decrease from 18.30

unique and 33.12 total for a parameter value of 0.00 (i.e. the default) to 3.25 unique and 4.75

5.4. Results - Reducing Register Pressure 81

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

12 in + 8 out - uArchgen ISEs
8 in + 8 out - uArchgen ISEs
8 in + 4 out - uArchgen ISEs
4 in + 4 out - uArchgen ISEs

12 in + 8 out - ISEGen ISEs
8 in + 8 out - ISEGen ISEs
8 in + 4 out - ISEGen ISEs
4 in + 4 out - ISEGen ISEs

Figure 5.2: The effect that different register port constraints have on the number

of extension instructions that ISEGen and uArchGen will produce. Note: the full

version of this chart is figure B.24 on page 202.

total for a parameter value of 1.25.

Figure 5.4(b) displays how many extension instructions MapISE is able to map with pre-

sented with instructions generated using different load cost heuristic parameters. The results

decrease from 10.98 unique and 28.02 total for a parameter value of 0.00 (i.e. the default) to

2.27 unique and 4.07 total for a parameter value of 1.25.

Figure 5.5 shows the actual speed-ups found when using the extension instructions gener-

ated with the different load cost heuristic parameters. It was expected that this parameter would

increase speed-up, but surprisingly the parameter which resulted in the highest speed-up was

1.25. This value causes 82% of the unique extension instructions to be discarded. A parameter

value of 0.00 results in an average speed-up of 1.11x, a parameters value of 1.25 produces

an average speed-up of 1.24x. Parameters of 0.50 and 1.00 have speed-ups of 1.17x and 1.22

respectively, going higher than 1.25, up to 1.50 slightly reduced the average speed-up to 1.23x

(as can be seen in figure B.31 on page 216).

Focusing on such a small-number of key extension instructions which are able to produce

high speed-ups, despite vector register related overhead can clearly provide good results. It also

validates the hypothesis that most of MapISE’s lost performance is due to the vector register

extension interface.

5.4.4 Combining Techniques

As hard-wiring constant values in extension instructions provides a speed-up of 1.20x, and a

register load cost heuristic parameter of 1.25 results in a speed-up of 1.24x, it was considered

82 Chapter 5. Instruction Set Extension and Code Generation

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

No Constants
With Constants

2.4

(a) Speed-ups. Note: the full version of this chart is figure B.25 on page 204.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

No Constants - Unique ISEs Used
No Constants - Matches
With Constants - Unique ISEs Used
With Constants - Matches

(b) Mapping quality information. Note: the full version of this chart is figure B.26 on page 206.

Figure 5.3: The effect that introducing hard-wired constant values into extension

instructions has on the end results and MapISE’s ability to use

possible that the two combined would be better than either performed alone. Figure 5.6 shows

that the result is a higher average speed-up: 1.26x. This increase, however is marginal. A

possible reason for this is that they may have both been benefiting from eliminating the same

flaws in the default extension instructions.

No other techniques are considered for combination, as the resulting design space would

be too large for consideration in this chapter.

5.4. Results - Reducing Register Pressure 83

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

1

5

25

125

625

3125
N

um
be

ro
fI

S
E

s
0.00 Cycles - uArchgen ISEs
0.50 Cycles - uArchgen ISEs
1.00 Cycles - uArchgen ISEs
1.25 Cycles - uArchgen ISEs

0.00 Cycles - ISEGen ISEs
0.50 Cycles - ISEGen ISEs
1.00 Cycles - ISEGen ISEs
1.25 Cycles - ISEGen ISEs

(a) The effect that the register load cost parameter has on the number of extension instructions that ISEGen finds.

Note: the full version of this chart is figure B.27 on page 208.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

0.00 Cycles - Unique ISEs Used
0.50 Cycles - Unique ISEs Used
1.00 Cycles - Unique ISEs Used
1.25 Cycles - Unique ISEs Used

0.00 Cycles - Matches
0.50 Cycles - Matches
1.00 Cycles - Matches
1.25 Cycles - Matches

(b) MapISE’s ability to use the instructions found with different register load cost parameter values. Note: the

full version of this chart is figure B.28 on page 210.

Figure 5.4: A comparison of different register cost values to provide to ISEGen’s

heuristics. Note: Figures B.35 and B.29 on pages 224 and 212 cover additional

parameter values (0.00, 0.25, 0.75 and 1.50 cycles).

84 Chapter 5. Instruction Set Extension and Code Generation

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

0.00 Cycles
0.50 Cycles
1.00 Cycles
1.25 Cycles

2.1

Figure 5.5: The speed-ups obtainable for extension instructions produced with dif-

ferent register cost parameter values. Note: Figure B.31 on page 216 is the equiv-

alent of this chart but with different parameter values (0.00, 0.25, 0.75 and 1.50

cycles). Note: the full version of this chart is figure B.30 on page 214.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

S
pe

ed
-u

p

Constants
1.25 Cycles Load Cost
1.25 Cycles Load Cost + Constants

Figure 5.6: A comparison of hard-wired constants alone, a register load cost of

1.25 cycles alone, and the two combined as single run. Note: the full version of this

chart is figure B.32 on page 218.

5.5. Results - Wide Memory Bus 85

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

0.01

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

Default ISEs
4/4 Input/Output ISEs
1.25 Cycle Load Cost ISEs

Figure 5.7: A run-time comparison for MapISE when presented with default ex-

tension instructions, instructions with a 4/4 input/output constraint, and instructions

generated with a 1.25 cycle load cost. Note: the full version of this chart is fig-

ure B.33 on page 220.

5.4.5 MapISE Timing

Figure 5.7 evaluates whether simple extension instructions makes MapISE faster. The average

time to run MapISE on one benchmark with the default extension instructions is 25.1 seconds,

for 4/4 input/output extension instructions this falls to 4.6 second, setting a register load cost

of 1.25 does almost as well, taking 6.0 seconds on average. This also shows that a large

number of small extension instructions (4/4 input/output) are easier to compile with than a

small number of large extension instructions (1.25 register load cost). This is because graph

sub-graph isomorphism checking is an NP-Complete problem, so the run-time grows much

more quickly with larger graphs than the linear increase of checking a long list of extension

instructions. The worst-case run-time (Crypto aes) is also dramatically improved, it is 1040

seconds with default extension instructions, 48.29 seconds with 4/4 input/output instructions

and 1.46 seconds with 1.25 register load cost.

5.5 Results - Wide Memory Bus

Figure 5.8 shows the speed-ups obtainable by adding vector loads and stores. It shows that the

technique is able to provide some benefit for about two out of three benchmarks. The average

speed-up increases from 1.11x to 1.14x. Not nearly as large a gain as some other results, but as

it is orthogonal is extension instructions this gain could be added to any of the vector register

experiments.

86 Chapter 5. Instruction Set Extension and Code Generation

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p
Scalar Loads/Stores
Vector Loads/Stores

Figure 5.8: A comparison of a system with no vector loads or stores (the default)

with one that does have them. Note: the full version of this chart is figure B.34 on

page 222.

The loop-unrolled versions of UTDSP seem to benefit significantly from vector loads and

stores, see figure B.34 on page 222. This makes sense, unrolling means larger basic blocks,

which means more opportunity for parallel memory accesses. The whole UTDSP suite seems

to benefit from this addition, this is likely because it is a DSP suite, which maps well to vector

hardware.

5.6 Results - Wide Instructions

Figure 5.9 compares the new scalar register scheme to the old vector register scheme. This is

based on 12-input and 8-output registers, although this has already been described as unrealistic

it is the best choice for a direct comparison; instructions with fewer registers are evaluated

below. Overall the new scheme is very successful, the average speed-up increases from 1.11x

to 1.28x.

Additionally a different trend, compared to previous results, can be noted for the geometric

mean. For vector registers the geometric mean is noticeably lower than the average (geometric

mean: 0.97, average: 1.11), for scalar registers there is less of a difference (geometric mean:

1.23, average: 1.28). What this means is that the performance of scalar registers is more

consistent than that of vector registers. If every benchmark experienced exactly the same speed-

up then the geometric mean and the average would be identical, the larger the variance in the

results the larger the difference between the two. The scalar register results may be more

consistent because of the way they are evaluated. When calculating an estimated benefit, no

5.6. Results - Wide Instructions 87

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

Vector Registers
Scalar Registers

Figure 5.9: The speed-ups provided by using extension instructions with vector

registers (left-hand bar) or scalar registers (right-hand bar). Note: the full version of

this chart is figure B.36 on page 226.

benchmark will ever experience a slow-down, at worst their speed-up will be 1.0x. This is

quite accurate though, extension instructions based on scalar registers should rarely introduce

slow-downs.

Individual benchmarks experience some large movements in either direction, though this

is to be expected with a fundamental change like this. For example, EEMBC dither01 moves

from a speed-up of 0.66x to 2.46x, a factor of 3.73x change. Alternatively UTDSP mult 4-4

ptrs loses almost all of its acceleration when using scalar registers, going from a speed-up of

1.87x to 1.08x. In fact, for UTDSP benchmarks all the ptrs variations generally seem to prefer

vector registers, whereas the arrays variations seem to prefer scalar registers. This is possibly

due to a knock-on effect where vector registers are able handle data movement effectively in

the ptrs variation, but not in the arrays set.

Figure 5.10 compares the scalar register results from figure 5.9 with more realistic scalar

register configurations. Although a 12/8 inputs/outputs configuration resulted in the highest

speed-up very little performance is sacrificed by using extension instructions with fewer input-

s/outputs. Going from 12/8 to 4/4 changes the average speed-up from 1.281x to 1.256x. 4/4 is

actually the fastest of the realistic configurations, 6/2 and 5/3 both have an average speed-up of

approximately 1.23x, 5/3 is very slightly lower than 6/2. EEMBC dither01, which benefited so

much from scalar registers, critically requires 6 input registers to achieve good performance,

6/2 inputs/outputs achieves the same performance as 12/8, but 5/4 or 4/4 both sacrifice almost

of the application’s acceleration.

That 4/4 instructions provide a better result than 6/2 or 5/3 is interesting. As most arith-

88 Chapter 5. Instruction Set Extension and Code Generation

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

12 in + 8 out
6 in + 2 out
5 in + 3 out
4 in + 4 out

(a) Speed-up. Note: the full version of this chart is figure B.37 on page 228.

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

12 in + 8 out - Unique ISEs Used
6 in + 2 out - Unique ISEs Used
5 in + 3 out - Unique ISEs Used
4 in + 4 out - Unique ISEs Used

12 in + 8 out - Matches
6 in + 2 out - Matches
5 in + 3 out - Matches
4 in + 4 out - Matches

(b) Mapping quality information. Note: the full version of this chart is figure B.38 on page 230.

Figure 5.10: An evaluation of different input and output constraints for scalar register

based extension instructions.

metic operations take two inputs and produce one output it is generally assumed that extension

instructions should have more inputs than outputs. In a similar experiment with vector regis-

ters 4/4 was found to be the slowest of the set evaluated, see figure 5.1(a). As the result is an

average over 179 benchmarks it seems unlikely that this is an anomaly. To investigate whether

this is likely due to MapISE using 4/4 instructions more effectively than others, or whether 4/4

instructions performed better acceleration ISEGen’s estimated speed-ups can be viewed in fig-

ure 5.11. That chart shows the extension instructions generated for 6/2 operands are markedly

worse than those for 5/3 or 4/4. Instructions with 5/3 and 4/4 operands have similar predicted

performance to each other, an average speed-up of 1.40x for 5/3 operands and 1.39x for 4/4. So

5.7. Results - Retargeting Extension Instructions 89

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

12 in + 8 out
6 in + 2 out
5 in + 3 out
4 in + 4 out

Figure 5.11: ISEGen’s predicted speed-ups for various register constraints which

are realistic for scalar register based extension instructions, the default 12-input,

8-input mode is also included for comparison. Note: the full version of this chart is

figure B.39 on page 232.

extension instructions with 4/4 operands are predicted to be good by ISEGen, though it predicts

5/3 operands as the best but MapISE determined that they were the worst. The reason for 4/4

operands being the best is most likely a combination of those being good extension instructions

(as shown by ISEGen’s estimated speed-ups in figure 5.11) and that MapISE can map more 4/4

operand instructions than 5/3 (see figure 5.10(b)). So, in summary, it is quite possible that the

changes proposed in this chapter will both improve performance and reduce hardware size.

5.7 Results - Retargeting Extension Instructions

The retargeting of extension results is considered in appendix C. In that appendix the exper-

iments performed in section 4.8 are repeated for three of the changes proposed above: “4/4

Input/Output Registers”, “Hard-Wiring Constant Values” and “Wide Instructions”. The results

are not summarised as they do not demonstrate anything that was not already shown in sec-

tion 4.8 – they are just included in an appendix so as that may be verified. The only difference

in the results is that “Wide Instructions” seem to be slightly worse for retargeting than vector

register based extension instructions. This seems surprising and may just be an artifact of the

evaluation model.

90 Chapter 5. Instruction Set Extension and Code Generation

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

ISEGen estimated speed-up
Actual speed-up obtained

Figure 5.12: A re-evaluation of the comparison of MapISE’s performance with

ISEGen’s, but now MapISE is using scalar register based extension instructions

(or “wide instruction”). Note: the full version of this chart is figure B.40 on page 234.

5.8 Critical Evaluation

Most of MapISE was critically evaluated in section 4.9. MapISE’s relation to ISEGen can be

re-evaluated, however.

The limitations of the estimation model for “wide instructions” have already been ad-

dressed in section 5.3.2.

5.8.1 Reevaluation of ISEGEN Issues

Figure 5.12 re-evaluates how MapISE with “Wide Instructions” (using 12-inputs and 8-outputs

for comparative purposes) performs compared to ISEGen. It finds that MapISE still falls short

with an average speed-up of 1.28x compared to ISEGen’s estimate of 1.54x. This is because

the same performance estimate issues described in section 4.9.1 still apply.

The figure does show that an interesting subset has arisen. Now that slow-downs have been

eliminated a set of benchmarks has emerged that experience very little speed-up, in spite of

ISEGen’s estimates.

This chapter has proposed multiple hardware changes to the processor without any thor-

ough analysis of how much more die-space would be required and what effect the additional

complexity would have on EnCore’s maximum clock frequency. Notes on the general effects

of hardware changes where provided, and most changes to ISEGen’s parameters and heuris-

tics should result in smaller extension instructions providing lee-way for other changes. Fig-

ure 5.13 provides a brief overview of some potential hardware savings due to different ISEGen

5.8. Critical Evaluation 91

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

AVERAGE

FULL
AVERAGE

0.2
0.5

1

2

4

8

16

32

E
xt

en
si

on
H

ar
dw

ar
e

S
iz

e
(m

m
2)

12 in + 8 out ISEs
1.25 Cycle input cost ISEs
4 in + 4 out ISEs

Figure 5.13: Extension unit on-die hardware size per-benchmark for different hard-

ware configurations, based on a 130nm process. Note: the full version of this chart

is figure B.41 on page 236.

parameters. The figures presented are uArchGen’s estimated size of the extension unit required

for each benchmark implemented using a 130nm process. Some benchmarks have no data as

uArchGen was unable to estimate a size for the extension unit. To provide some meaning to the

scale and very small EnCore processor with an 8KB of direct-mapped instruction cache and

data cache was 1mm2 on a 130nm process. A larger EnCore processor with 32KB of 4-way

associate instruction cache and data cache and a set of 4-input, 4-output extension instructions

was 2.25mm2 on a 90nm process, which would approximately scale up to 6.76mm2 on a 130nm

process. The trends in figure 5.13 are that setting a high register load cost dramatically reduces

hardware size by selecting far fewer instructions (cross-reference with figure 5.4(a) to see this).

Setting a 4-input, 4-output constraint also resulted in a reduced hardware size, though not by

as much, this time more instructions were found but they were much smaller (cross-reference

with figure 5.2 to see this).

There is one issue with the changes that have been made to ISEGen that potentially affects

two experiments in this chapter. ISEGen considers constants as inputs (e.g. it would be one

of the 12 inputs for default extension instructions). This affected the “Hard-Wiring Constant

Values” experiment because it should have been able to have a larger number of inputs available

(e.g. 12-inputs plus 5-constants). Though keeping the input constraints at 12 may have ensured

that the size of the generated hardware and ISEGen’s run-time stayed under control.

This issue also affected the experiment that combined “Hard-Wiring Constant Values” with

the register load cost heuristic parameter. As each constant was considered an input they each

had a cost of 1.25 cycles associated with them. There should not have been any cost, which

92 Chapter 5. Instruction Set Extension and Code Generation

would have likely encouraged ISEGen to create extension instructions with many constant

inputs.

5.9 Summary and Conclusions

5.9.1 Future Work

Two changes which could be made to ISEGen to enhance the experiments in this chapter are to

accurately allow constants to be mixed with other heuristics and to make ISEGen vector load

aware. This would require ISEGen to be aware how data is laid out in memory and access it in

blocks of four.

Obvious future work would be to implement any of the estimation models presented in this

chapter, first in the simulator/compiler/binutils as required, and then in hardware.

5.9.2 Summary

This chapter has presented multiple techniques for improving the usefulness of AISE. Every

technique presented resulted in some level of improvement, and the general trend was that these

techniques produced faster code, that took less time to compile and the resulting hardware was

smaller.

The two best techniques were the addition of a register load cost to ISEGen’s heuristic

model and and new “Wide Instruction” format which allowed scalar registers to be addressed

individually. The resulted in speed-ups of 1.24x and 1.26x respectively.

Chapter 6

Increasing Memory Bandwidth: Dual

Memory Banks

“The question of whether a computer can think is no more interesting than the question of
whether a submarine can swim.”
— Edsger Dijkstra, computer scientist, ACM Turing Award winner, 1930–2002.

This chapter describes different methods of exploiting dual memory banks at a source-

level. It reconciles the idea of increasing memory bandwidth with vector loads and store (see

section 5.2) with the discover that vector registers hinder extension instruction performance

(see section 5.3). Memory bandwidth is increased by using dual on-chip scratchpad memo-

ries which may be simultaneously, but independently, accessed. This allows up to double the

memory bandwidth. Due to lack of hardware or simulator support within the PASTA platform,

however, the techniques are evaluated on the TigerSHARC DSP platform using the UTDSP

benchmark suite.

The previous two chapters presented methods of exploiting extension instructions in ap-

plications within the PASTA framework. Some other AISE-based extension methodologies,

however, make use of scratchpad memories [Biswas et al., 2006b]. The PASTA framework

avoided the use of these within extension instructions to keep separate concerns orthogonal. It

is still possible, however, to add scratchpad memories into the framework while staying true

to this design principle. This could be done by adding conventional scratchpad memories that

are not directly integrated with the extension instructions but are connected to the baseline

processor, as shown in figure 2.6 on page 22. An additional advantage of keeping scratchpad

memories orthogonal to extension instructions is that it is not necessary to worry about the state

of extension instructions on a context switch as they are stateless.

93

94 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

cry
pto

ae
s

ds
ps

ton
e do

t p
ro

du
ct

fix
ed

ds
ps

ton
e matr

ix1
flo

at

ee
mbc

1 au
tom

oti
ve

a2
tim

e0
1

ee
mbc

1 au
tom

oti
ve

iirfl
t01

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 ne
tw

or
kin

g pk
tflo

w

ee
mbc

1 offi
ce

dit
he

r0
1

ee
mbc

1 tel
ec

om
vit

er
b0

0

ee
mbc

2 co
ns

um
er

mp4
de

co
de

ee
mbc

2 co
ns

um
er

mpe
g2

de
c

ee
mbc

2 ne
tw

or
kin

g tcp

ee
mbc

co
re

mar
k

SNURT
qu

rt

UTDSP
co

mpr
es

s ptr
s

UTDSP
mult

4 4 ptr
s

GEO-M
EAN

AVERAGE

FULL
GEO-M

EAN

FULL
AVERAGE

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
pe

ed
-u

p

Without Scatchpad
With Scratchpad

Figure 6.1: These results are speculative estimates (see text) and are not as reliable

as related results in chapters 4 and 5. The left bar for each benchmark is the

speed-up achieved by adding extension instructions with vector registers and vector

load/stores to the baseline processor, as described in section 5.2. The right bars

add a scratchpad memory to this. Note: the full version of this chart is figure B.42

on page 238.

6.1 Feasibility Study

Figure 6.1 shows the estimated benefit of extending the vector load/store model described in

section 5.2 so that all of the projected vector load/stores load from and store to a scratchpad

that is guaranteed to already contain the required data. For small benchmarks this is quite

feasible, for larger benchmarks it would require that the scratchpad is managed by preemptive

DMA operations. The results in figure 6.1 assume the compiler has inserted these operations

and treat all vector loads and stores as cache-hits, which they effectively would be if the data

was on a scratchpad memory. Thus these results are speculative but are a useful indicator as to

what the actual effect of a scratchpad memory would be. The results estimate that the overall

average speed-up will increase by an additional 6 percent over baseline, from 1.135x to 1.196x,

when using a scratchpad memory. Many benchmarks already perform well with just a cache

and thus see very little speed-up from the scratchpad (e.g. EEMBC viterb00). Data intensive

benchmarks, however, see large speed-ups (e.g. EEMBC mp4decode).

The EnCore processor (used in chapters 4 and 5) implements the ARCompact ISA which

supports dual memory banks through an extension called XY Memory [ARC International,

2010]. The EnCore processor, however, does not implement this extension. The processor

could be extended to support the XY memory instructions and the simulator and its memory

model modified accordingly. Though as extension instructions in the PASTA framework are

6.2. The Problem 95

orthogonal to the memory model the two can be evaluated separately. Thus the evaluation

performed in this chapter uses a TigerSHARC DSP processor which has dual memory banks.

Any increases in memory bandwidth that are found may be applied to extension instructions

results, much like the estimates in figure 6.1.

6.2 The Problem

Section 2.5 described dual memory banks, but did not discuss the problem of deciding how to

partition data between memory banks. The primary requirement when performing this parti-

tioning is that variables should be assigned in a way that allows both memory banks to be read

simultaneously. This is a difficult problem, as will be discussed in section 6.2.1. Section 3.2

evaluated previous approaches to solving this problem. The rest of this chapter will describe

some new approaches based on a C-to-DSP-C source-to-source compiler.

Operating at the source-level has two advantages. The first is that every technique in this

chapter can be instantly targeted to any dual memory architecture that has a DSP-C compiler.

The second advantage is that source-level partial pre-assignments are possible, so a library can

ensure that certain data gets placed on a specific bank, or the programmer can manually assign

performance critical variables if the compiler does a poor job.

6.2.1 Difficulty of the Problem

Efficient assignments of variables to memory banks can have a significant performance impact,

but are difficult to determine. For instance, consider the example in figure 6.2. It shows the

lmsfir function from the UTDSP lmsfir-8_1 benchmark. This function has five parameters

that can be allocated to two different banks. Local variables are stack allocated and outside

the scope of explicit memory bank assignment. On the lower half of figure 6.2 four of the

possible legal assignments are shown. In the first case, as illustrated in figure 6.2(a), all data

is placed in the X memory bank. This is the default case for many compilers when no explicit

memory bank assignment is specified. Clearly, no advantage of dual memory banks can be

taken and this assignment results in an execution time of 100 cycles for the Analog Devices

TigerSHARC TS-101 platform. The best possible assignment is shown in figure 6.2(b), where

input and gain are placed in X memory and output, expected, and coefficient in Y

memory. Simultaneous accesses to the input and coefficient arrays have been enabled

and, consequently, this assignment reduces the execution time to 96 cycles. Interestingly, an

“equivalent” assignment scheme, as shown in figure 6.2(c), that simply swaps the assignment

between the two memory banks does not perform as well. In fact, the “inverted” scheme

derived from the best assignment results in an execution time of 104 cycles, a 4% slowdown

over the baseline. The worst possible assignment scheme is shown in figure 6.2(d). Still, input

96 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

and coefficient are placed in different banks enabling parallel loads, but this scheme takes

110 cycles to execute, a 10% slowdown over the baseline.

At first, the significant performance impact resulting from the inverted assignment scheme

appears non-intuitive. Analysis of the generated assembly code found that the performance

gap does not result from the code for the two for-loops in the lmsfir function, but is due to

differences in the code generated for the statements between the two loops. For the assignment

shown in figure 6.2(b), expected[0] and sum can be accessed simultaneously (the compiler

has decided to not keep sum in a register). At the same time the subtraction of expected[0]

and sum takes place, gain is fetched from memory. The inverse assignment scheme depicted in

figure 6.2(c) results in sequential memory accesses for expected[0] and sum, because, under

this scheme both of the data objects are stored in memory bank X. Also, the access to gain

is scheduled in the next slot and, thus, adds an extra instruction. While the overall impact is

relatively small for this particular example, greater performance differences can be observed if

the code inside a loop body is affected.

This example demonstrates how difficult it is to find the best source-level memory bank

assignment. Source-level approaches cannot analyse code generation effects that only occur

later in the compile chain, but must operate on a model generic enough to cover most of these.

In this chapter a refined variable interference graph construction is proposed together with a

fast and scalable soft colouring algorithm capable of handling complex DSP applications and

allowing for partial pre-assignments where required.

6.3 Methodology

The memory bank assignment schemes comprise of the following the stages:

1. Group Forming. In this stage groups of variables are formed that must be allocated to

the same memory bank due to pointer aliasing.

2. Interference Graph Construction. An edge-labelled graph representing potential si-

multaneous accesses between variables is constructed during this stage.

3. Colouring of the Interference Graph. Finally, the nodes of the interference graph

are coloured with two colours (representing the two memory banks) with the aim to

maximise the benefit from simultaneous memory accesses.

Of these three stages only stage one is critical for correctness, whereas approximations are

acceptable for stages two and three, i.e. an inaccurate interference graph or a non-optimal

colouring still result in correct code that, however, may or may not perform optimally.

6.3. Methodology 97

void l m s f i r (f l o a t i n p u t [] , f l o a t o u t p u t [] ,

f l o a t e x p e c t e d [] , f l o a t c o e f f i c i e n t [] ,

f l o a t g a i n)

{

/∗ V a r i a b l e d e c l a r a t i o n s o m i t t e d . ∗ /

sum = 0 . 0 ;

f o r (i = 0 ; i < NTAPS ; ++ i) {

sum += i n p u t [i] ∗ c o e f f i c i e n t [i] ;

}

o u t p u t [0] = sum ;

e r r o r = (e x p e c t e d [0] − sum) ∗ g a i n ;

f o r (i = 0 ; i < NTAPS−1; ++ i) {

c o e f f i c i e n t [i] += i n p u t [i] ∗ e r r o r ;

}

c o e f f i c i e n t [NTAPS−1] = c o e f f i c i e n t [NTAPS−2]

+ (i n p u t [NTAPS−1] ∗ e r r o r) ;

}

Figure 6.2: lmsfir function with four memory bank assignments resulting in differ-

ent execution times.

98 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

X Y

p

c

d

(a) Incompatible pointer assignments.

X Y

p x

y

z

q

(b) Pointer induced variable grouping.

Figure 6.3: Incompatible pointer assignments and pointer induced grouping.

6.3.1 Group Forming

Group forming is the first stage in the memory bank assignment scheme. It is based on pointer

analysis and summarises those variables in a single group that arise through the points-to sets

of one or more pointers. All variables in a group must be allocated to the same bank to ensure

type correctness of the memory qualifiers resulting from memory bank assignment.

Figure 6.3 illustrates this concept. In figure 6.3(a) the pointer p may point to c or d, which

are stored in memory banks X and Y, respectively. This eventually causes a conflict for p be-

cause both the memory bank where p is stored and the bank where p points to must be statically

specified. Thus, p must only point to variables located in a single bank. A legal assignment

would place c and d in the same bank as a result of previous grouping. This grouping is shown

in figure 6.3(b) for two pointers p and q. In this example, p may point to variables x and z at

various points in the execution of a program and, similarly, q is assumed to point to x and y.

Grouping now ensures that x and z are always stored in the same bank (due to p), and also x and

y (due to q). By transitivity, x, y and z have to be placed in the same memory bank. Note that p

and q themselves can be stored in different memory banks, only their targets must be grouped

and located in a single memory bank.

In algorithm 1 a working list algorithm for group forming is presented. It is assumed that

points-to sets for all pointer variables are available, e.g. through prior pointer analysis of the

program [Rugina and Rinard, 1999]. The algorithm operates on the set of variables V to group.

Initially, the algorithm places each variable vk in a singleton group gk, these are then merged

into larger groups. For each pointer p in the set of variables V the points-to set is calculated and

the groups of the corresponding variables merged. This process is repeated until all pointers

6.3. Methodology 99

Algorithm 1 Group Forming(Variables V)

Require: Points-to for all pointers

Ensure: Type-safe variable grouping

1: for all vk ∈V do

2: Form singleton group gk containing vk

3: end for

4: L←{p|p is a pointer∧ p ∈V}
5: while L 6= /0 do

6: Select p ∈ L

7: Merge groups(points-to(p))

8: end while

have been visited. The algorithm can be efficiently implemented and the main costs usually

arise from the required pointer analysis phase.

“Aliasing” of different actual parameters from multiple call sites to a single set of formal

function parameters are handled analogously.

6.3.2 Interference Model

To be able to effectively assign groups of variables to memory banks it is necessary to build

an interference graph that represents the memory accesses in the program. This is done stat-

ically by taking the dataflow dependence graph for each expression and marking each pair of

memory or variable accesses with no dependence between them as potentially interfering. This

is demonstrated in figure 6.4, where figure 6.4(b) is constructed from figure 6.4(a). Nodes B

and C interfere in figure 6.4(b) because there is no dependence between them in figure 6.4(a).

Nodes A and E do not interfere because they are indirectly dependent, E must be executed be-

fore A, thus they can never be scheduled in the same cycle. When two nodes interfere (i.e. they

are connected in 6.4(b)) it means that it is possible to schedule them in the same cycle, so it

desirable that they access opposite memory banks.

Each of these potential interferences is given a weight that is equal to the estimated num-

ber of times that the expression will be executed. This estimate is determined by calculating

each loop’s iteration count (or using a value of 100 if the exact count cannot be statically deter-

mined), and assuming all branches are taken with 50% probability. The estimated call count for

each function is also calculated this way by calculating how many times each call site is exe-

cuted. The approximate information these static estimates provide is sufficient for determining

which groups of variables are the most important, but using profiling information instead is

listed as future work in section 6.9.2.

100 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

A

B C

D E

(a) Expression dependence tree

A

B C

D E

(b) Expression interference graph

B C

D E

A

(c) Coloured interference

B C

D E

A

(d) Alternate colouring

Figure 6.4: Mapping dependencies to potential interferences.

This variable interference graph is then reduced to a group interference graph using the

assignments described in section 6.3.1. Every variable is a member of exactly one group,

for every group all variables belonging to that group are collapsed down to a single node.

Interference edges are merged and weights are summed. The result is a graph where each node

represents all the interferences for a single group of variables.

This model is optionally extended to be able to handle variables that must be assigned to

a fixed memory bank, e.g. automatic variables which must be placed on the stack or variables

which the programmer has already assigned to a specific memory bank. The model is extended

with a single additional node per fixed group of variables, if this group is the set of automatic

variables it is named the automatic node. It is not possible to assign these nodes to a memory

bank, they are always placed on a fixed one, but it is possible to interfere with them. It may,

therefore, be possible to use these additional interferences to more accurately determine the

assignments of other groups.

6.3.3 Partial Pre-assignments

This technique is fully compatible with manual pre-assignments, although no evaluation is

performed using them. There are a few observations to make regarding how these fit in with

6.4. ILP Colouring 101

the rest of tools. The techniques in this chapter assign groups of variables to a memory bank

whereas a programmer would assign individual variables. One way to avoid this mismatch

is to perform the group forming described here, then have the programmer perform a partial

pre-assignment of groups to memory banks before using the automatic assignment techniques

described below. This would be safe, but is not compatible with library headers which may

force function parameters to specific memory banks. It also means that the programmer can

only perform assignment on an intermediate source-form.

A more practical approach is to support the pre-assignment of individual variables. This

is easily handled by placing any group that contains a pre-assigned variable on the memory

bank where the variable was assigned. This should work without issue, unless the programmer

is able to make more accurate deductions about which variables must be placed on the same

memory bank. The compiler is limited by the quality of the aliasing information and must

make conservative choices, the programmer can be more imaginative.

If the programmer tries to place two variables from one group on different memory banks

the compiler can no longer guarantee that the program will execute correctly. The potential

for problems is entirely self-contained within this group though. The compiler can assign the

rest of the groups and will not introduce any new errors, it just cannot guarantee that the pro-

grammer has not introduced an error. The automatic assignment may be sub-optimal though,

the assignment algorithms all assume that a group can only be placed on one bank and use

interference on a per-group basis rather than a per-variable basis.

6.4 ILP Colouring

6.4.1 Single Solution

A reference Integer Linear Programming (ILP) colouring approach that is approximately equiv-

alent to the model by Leupers and Kotte [2001] is implemented. An ILP model is constructed

from the interference graph, I = (G,E) where G is the set of groups of variables (vertices in

the graph) and E is the weighted interferences between them.

∀gi ∈ G : Xi,Yi =

{
1, if gi is placed in bank X /Y

0, otherwise

Xi +Yi = 1

This ensures that each group gi is placed in exactly one memory bank as if it was placed on

neither or both then Xi +Yi would not equal 1.

102 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

∀gi,g j ∈ G : Ui j =

{
1, if Xi = Yj or Yi = X j

0, otherwise

Ui j ≤ 2−Xi−X j

Ui j ≤ 2−Yi−Yj

Ui j ≥ Xi−X j

Ui j ≥ Yi−Yj

The above constraints ensure that Ui j is set to 1 if and only if groups gi and g j are placed

in different memory banks. The first two constraints ensure that Ui j ≤ 1 if gi and g j are in

different banks or 0 otherwise. The next two constraints set Ui j ≥ 1 if gi and g j are on different

banks or 0 otherwise. When combined these ensure that Ui j is always set correctly.

The linear program solver then optimises the following objective function while obeying

the above constraints. As the values of the Ui j variables are set by the values of the Xi and

Yi variables it is only these latter variables that the solver may set to attempt to optimise the

objective function. Thus it is effectively assigning variables to memory banks and attempting

to maximise the available parallelism.

max

(
i

∑
0

j

∑
0

Ui j ·Wi j

)
where Wi j ∈ E

Here Wi j is the interference weight associated with each edge (gi,g j) ∈ E calculated as

described in section 6.3.2. If there is no edge between gi and g j in E then a weight of 0 is

used. By maximising the above equation the linear programming solver is finding a set of

assignments for the variables in G that favours placing variables with a high interference on

different memory banks. This means that it should be possible to perform the most critical

memory operations in parallel.

This set of assignments is not necessarily truly optimal though, it is only an optimal so-

lution in terms of the interference graph. This ILP model is based on the model described by

Leupers and Kotte [2001]. Their model used an interference graph built after the back-end

of the compiler had run so it was a reasonably accurate model of the potential parallelism in

the program. For this technique, however, the interference model is based on the program’s

source-code, the entire target compiler still has to be run on the program after variables have

been assigned to memory banks. Thus this technique is re-evaluated in section 6.7 to ensure

that it is still a valid colouring model at the high-level.

6.4.2 Multiple Solutions

Building the interference graph at a high-level also means that the problem is less constrained

suggesting that there may be many optimal solutions to the ILP model above. For example, if

6.4. ILP Colouring 103

a node is completely disconnected in the interference graph then the score to be maximised by

the linear solver will be the same whichever memory bank that group of variables is assigned

to.

Integer linear program solvers generally work by first reducing as much of the program to a

non-integer linear problem as possible, that can be solved quickly, and then using a branch-and-

bound technique to solve what remains. If there are multiple optimal solutions then they may

only be found during the branch-and-bound stage, where it is possible to continue searching

even after an optimal solution has been found. In the process of reducing the integer problem

to a non-integer one, however, many of the alternate optimal solutions may be lost and there

will be fewer solutions for the branch-and-bound technique to find.

For the above memory bank assignment ILP model the branch-and-bound technique always

only found a single optimal solution, as the problem reduced to a non-integer problem very

well. This reduction is a crucial part of the ILP optimisation process and omitting it would

make all but the most trivial problems intractable. Therefore, a different method is used to find

multiple optimal solutions.

The alternative approach finds sets of nodes that may be inverted, where each node is a

variable group. All the variable groups in a set are connected to at least one other node in the

set (equation 6.1 below) and every node that is connected to a node in the set belongs to the set

(equation 6.2. below).

∀gi ∈ S⊆ G : ∃g j ∈ S s.t. (gi,g j) ∈ E (6.1)

∀gi /∈ S,∀g j ∈ S : @(gi,g j) ∈ E (6.2)

These sets have now been defined such that if an optimal solution to the ILP program is

taken then the memory assignment of every node within a set may be flipped simultaneously to

give a new solution that will still be optimal in terms of the ILP model. The exception to this

is that any set that contains a node which is fixed to a specific memory bank is not invertible,

e.g. if the automatic node belongs to the set. If |S| is the number of sets in G that may be

inverted then there are at least 2|S| different possible optimal memory assignments for G.

As an example, consider the interference graph in figure 6.4(b). This would be split into two

sets: {A} and {B,C,D,E}. Assuming that all the edges have equal weight then figure 6.4(c)

contains one possible optimal set of memory assignments. Some potential parallelism between

accesses to D and E has been blocked due to them being assigned to the same memory bank,

but as this graph is not two-colourable this is inevitable. There are three additional optimal

assignments that can be found by inverting groups, assuming that none of the nodes are fixed

to a specific memory. The first additional assignment can be found by flipping the assignment

of {A}, the second by flipping the assignments of {B,C,D,E} and the third by flipping both.

104 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

Figure 6.4(d) shows the assignment after flipping both sets.

This simple example also shows that the set of optimal solutions found by inverting sets

is not necessarily the full set of optimal solutions. A representative subset of the optimal

solutions may be simply and efficiently computed. In figure 6.4(b) there are six optimal ways

of colouring {B,D,E}, C will always be the opposite of B meaning there are six optimal ways

of colouring {B,C,D,E}. Combine this with the two ways of colouring {A} and you have

twelve different optimal solutions instead of the 22 = 4 found by inverting sets. Though as the

aim is not to find every possible optimal solution to the ILP program but only a representative

set for evaluation this approximation is sufficient. In fact, not all 2|S| colourings are taken

as there would be too many possibilities for many benchmarks, instead just |S|+ 1 are used.

Specifically, the colouring found by inverting all sets and then the colourings found by inverting

each set individually.

6.5 Soft Colouring

As the previously described ILP assignment solution finds an optimal solution to an NP-hard

problem it has exponential run-time. For small and simple problems the ILP solver is generally

able to reduce most of the integer problem to a linear problem, this part can then by solved in

polynomial time. For larger and more complex problems (or interference graphs) the reduc-

tion is less effective. This means that small changes to the interference graph can change its

reducibility, resulting in a large increase in the time it takes to solve the model. Both the expo-

nential run-time and the unpredictability of the solving time make the ILP assignment solution

undesirable in many cases. A solution which finds good colourings quickly and with more

predictable solving time would seem advantageous.

6.5.1 Single Solution

Graph colouring is well established within compilers, primarily for register allocation. Graph

colouring for memory bank assignment is slightly different from graph colouring for register

allocation. In register allocation the colouring is done under the ‘hard’ constraint that two

interfering virtual registers must not be placed in the same physical register. Memory bank

assignment operates under the ‘soft’ constraint such that it is preferred that two interfering

variables to not be placed in the same memory bank. This maps directly the concept of “soft

colouring” described in section 2.7.2.

Therefore conventional graph colouring approaches are unlikely to be adequate. Instead

an algorithm designed for a distributed environment is used. Within this environment colour-

ing problems frequently operate under soft constraints. Thus the distributed stochastic soft-

colourer described by Fitzpatrick and Meertens [2001] was serialised for use in memory bank

6.5. Soft Colouring 105

assignment in algorithm 2.

Algorithm 2 Soft Colouring(Variable Groups G)

Require: An interference graph

Ensure: Locally-optimal memory assignment

1: for all gi ∈ G do

2: Ci← rand({0,1})
3: while G is still not a local optimum do

4: Determine Copt
i

5: Inform central controller whether Ci =Copt
i

6: With probability P: Ci←Copt
i

7: end while

8: end for

Here, Ci is the current colouring of gi and Copt
i is the current locally optimal colouring of gi.

The results of step 5 for all nodes allows the central controller to make a decision for step 3. If

every node is already at an optimal colour then the algorithm terminates, as the colouring will

no longer change. If any node still is not an optimal colour then it may change, which would

then cause other nodes to change colour in the next iteration, so the loop continues to execute.

It is also worth noting that in step 6 Ci may already be equal to Copt
i . The implementation of this

algorithm is limited to 10,000 iterations to ensure termination, but this limit was never reached

for any of the benchmarks evaluated against.

Step 4 can be calculated using the equation below, where Xi, Yi and Wi j are defined as for

ILP in section 6.4.1 and gi refers to the current node as in the above algorithm.

∀e =(gi,g j) ∈ E :

costX = ∑X j ·Wi j

costY = ∑Yj ·Wi j

cost =min(costX ,costY)

Essentially this calculates the weighted value of how many of the neighbours of gi are

on memory banks X and Y and then picks the colour with the lowest value, i.e. the one with

the fewest conflicts. Although this method of minimising conflicts is different from the ILP

optimisation metric, where the potential parallelism is maximised, they are actually equivalent.

106 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

6.5.2 Changes To Interference Graph

In addition to using a different algorithm from ILP some changes to the interference graph

I = (G,E) are also required for soft colouring. The set of vertices G stays the same, but some

additions are made to the set of weighted interferences E. Specifically, the graph is made to be

fully and weakly connected by connecting every unconnected pairs of nodes in G with an edge

with a very low weight. This weight is set low enough that it will always be lower than any

weight relating to an actual detected interference.

This low weight means that these extra nodes never change a colouring decision between

two interfering nodes. What it does do is provide a balancing metric for all unconnected nodes

(such as {A} in figure 6.4(b)) so that they will be roughly equally distributed between the X

and Y memories.

6.5.3 Multiple Solutions

As there are stochastic elements in the soft colouring algorithm it is possible to get a range

of colourings by repeated execution of the technique. Every set of assignments returned will

be some local optimum. Note that to achieve different results for each run the pseudo-random

number generator is provided with a different seed each time. In a production compiler, how-

ever, a constant seed could be used to ensure that multiple runs always produce identical bina-

ries, otherwise debugging programs would be problematic.

6.6 Genetic Program Colouring

This section introduces a genetic programming approach to generating adaptive, yet highly ef-

fective colouring heuristics for the dual memory bank assignment problem. In a training phase

a heuristic is constructed from a number of benchmark programs executed and profiled on real

hardware. The generated light-weight heuristic is subsequently used to drive the graph colour-

ing process, thus eliminating the need for potentially exponential ILP solvers in a production

compiler. Genetic programming is described in general terms in section 2.6.

6.6.1 Single Solution

The full set of features used are described in table 6.1, this set of features is replicated for each

of the X, Y and unassigned nodes. The full set of mathematical and logical operators available

are described in table 6.2. The genetic programming library produces trees consisting of these

nodes and it ensures that all nodes have the correct number of children. The only data-type is

a floating point number. Because every function produced by the genetic programming library

6.6. Genetic Program Colouring 107

Feature Description

Parallel Interference The no. of interferences at an immediate parallel level.

Para. Interfere. Accuracy The estimated accuracy of the parallel interferences.

Expression Interference The no. of interferences at an expression level.

Expr. Interfere. Accuracy The estimated accuracy of the expression level.

Symbols: Aggregate No. of aggregate symbols (e.g. structs) in group.

Symbols: Arrays No. of array symbols in group.

Symbols: Pointers No. of pointer symbols in group.

Symbols: Scalar No. of scalar symbols in group.

Type: Integer No. of integer symbols in group (e.g. an array of ints).

Type: Float No. of floating point symbols in group.

Type: Complex No. of non-numerical symbols in group (e.g. a void pointer).

Size Total no. of bytes occupied by all variables in this group.

Size Accuracy The estimated accuracy of the size of this group.

Table 6.1: Program features available to a genetic program.

is guaranteed to be valid, and every colour assignment possible is valid it is assured that every

function produced will be accurately evaluated.

6.6.1.1 Training

Genetic programming is used off-line to create a heuristic that can be inserted into a compiler.

It is required that the genetic programming library produces a function that will colour every

node in an interference graph. It is unrealistic to expect genetic programming to produce a

function that will return a complete graph colouring, so instead the graph is coloured one node

at a time. A view of the graph is given from the perspective of the current node from the

interference graph, as described in section 6.3.2. The three neighbour nodes are constructed

(assigned to X, assigned to Y, not yet assigned). Then the function produced by the genetic

programming library (which will be an entirely random tree initially) is run twice for each

node, once saying if this node is assigned to X then what score would you give it, and the same

for Y. This is done by mapping the X and Y nodes to the Same Colour and Different Colour

nodes – and vice versa for testing a Y assignment. The node is assigned the colour with the

higher score. For each function this process is repeated on every benchmark in the training

data.

Once all the nodes on all the benchmarks have been assigned a colour the function can be

assigned a fitness. A table of previously generated exhaustive results is used to look up the

108 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

Function No. Inputs Description

Add 2 A+B

Sub 2 A−B

Mul 2 A∗B

Div 2 A÷B

Sqrt 1
√

A (returns 0.0 for negative inputs)

Abs 1 |A|
Min 2 minA,B

Max 2 maxA,B

EQ 4 if (A == B) { C } else { D }

GE 4 if (A >= B) { C } else { D }

GT 4 if (A > B) { C } else { D }

LE 4 if (A <= B) { C } else { D }

LT 4 if (A < B) { C } else { D }

Const 0 random (0≤ X < 1000)

Table 6.2: Functions available to a genetic program.

performance of this colouring, this is possible because the training happens off-line. If it is

equivalent to the best possible colouring, the function is given a fitness of 0.0 (best possible).

If it is equivalent to the worst colouring, it is given a fitness of 1.0 and results in-between are

assigned a fitness proportionally. The overall fitness of a function is its average fitness across

all benchmarks in the training data. Functions with a better fitness have a higher chance of

being used in breeding and surviving into the next generation.

6.6.1.2 Deployment

The result of the training stage will be a single heuristic that can be used inside a compiler

without any additional libraries. It will be a tree consisting purely of the features and functions

described in tables 6.1 and 6.2 that operates on a graph view as described in the previous

section. This means that the produced heuristic has an extremely low run-time overhead.

Figure 6.5 is a graphical representation of a heuristic produced by genetic programming.

It can clearly be seen that is complete different from what a programmer might write. It was

trained on all benchmarks but fir-256_64 with extremely high parsimony, to keep the function

small for readability, the results presented in section 6.8 use larger functions than this. Clearly

this heuristic is trivial to evaluate at run-time, it only contains two if-statements but it is able

to find the optimal solution for fir-256_64. It seems to “work” because if there are a large

6.6. Genetic Program Colouring 109

No Colour Yet
#Scalar Symbols

IF_LT

Then

Else

Other Colour
#Array Symbols

Other Colour
#Agg. Symbols

IF_EQ

Then

Else

No Colour Yet
#Same Col. Interferes.

Same Colour
#Same Col. Interferes.

Same Colour
Parallel Interferes.

Accuracy

Same Colour
#Scalar Symbols

Figure 6.5: An example heuristic generated by genetic programming (trained on all

benchmarks but fir-256_64 with extremely high parsimony). The white boxes are

input values, the circles are operations and the dark gray boxes are values that may

be returned.

number of interferences for uncoloured nodes it prioritises based on the number of uncoloured

symbols. Otherwise if there are already a large number of symbols of “this” colour it prioritises

for the opposite colour. This is an example of a heuristic that is logical but it is unlikely that a

programmer would ever choose to write it this way.

6.6.1.3 Variations

To try and improve the performance of the functions produced by genetic programming, three

modifications were attempted. The modifications are described here, their effects are described

in section 6.7.

Firstly, the way the evolved program was changed to consider the order in which the nodes

are coloured, two variations were attempted. In the first variation the nodes were sorted ac-

cording to the sum of their interferences, so the most critical nodes are coloured first. In the

second variation, instead of just running the generated function on one node it was run on

every uncoloured node in the graph. The node with the highest score overall score was as-

signed a colour, effectively letting the generated function pick the order in which to colour the

nodes. This affects the time it takes to perform the colouring, for a graph with n nodes it takes

O(n) time to produce a graph view for a given node. With pre-ordered nodes O(n) nodes are

evaluated resulting in a colouring time of O(n2). For a self-ordering method O(n2) nodes are

evaluated resulting in a colouring time of O(n3).

Secondly, the way that the evolved program was evaluated was changed to penalise larger

110 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

programs by using a selection method that encourages parsimony, specifically Ratio Bucket

Tournament Selection, described by Luke and Panait [2002]. The aim was to stop huge func-

tions highly specialised to the training data from being generated.

Thirdly, the amount of potentially extraneous information available to the evolved program

was reduced by attempting to perform the assignment without using the unassigned node. The

idea behind this was that nodes that are not yet assigned to a memory bank do not affect

immediate assignment decisions – it was not clear if the functions would be able to use the

information to “plan ahead” or if it was just noise.

6.6.2 Multiple Solutions

This technique does not produce multiple solutions, as the heuristics produced are simple trees

with deterministic behaviour. Although a heuristic may assign the same score to multiple

choices, this is resolved in a deterministic manner that was implicitly included in the heuristic

during training.

6.7 Evaluation Methodology

All the speed-ups presented in section 6.8 use the compilers default assignment as a baseline

(i.e. a 1.0x speed-up). This default assignment is to place all data on a single memory bank. The

speed-ups are calculated using the target processors internal cycle counters. For all benchmarks

in this chapter all I/O happens at the beginning and end of the program so the cycle counts are

simply recorded after the initial data is loaded and just before the results are saved.

6.7.1 Platform and Benchmarks

The source-level C to DSP-C compiler was implemented using the SUIF compiler frame-

work [Wilson et al., 1994]. The C program is converted into the SUIF intermediate format

which is then annotated with aliasing information using the SPAN tool [Rugina and Rinard,

1999]. This information is used to form groups of variables as described in section 6.3.1 and

output DSP-C with group identifiers in place of memory qualifiers. The C preprocessor may

be used to assign a group of variables to a specific memory bank according to the generated

group to memory bank mapping.

Both the ILP colourer and the GP colourer are implemented in Java. The ILP colourer

makes use of the lp_solve [LPS, 2010] library, which is implemented as a native binary, with

the default pre-solve and optimisation settings. The GP colourer uses the ECJ [ECJ, 2008]

package to evolve and execute genetic programs. The evolutionary settings used were ECJ’s

default Koza [1992] parameters (90% chance of breeding, 10% chance of mutation, tournament

6.8. Results 111

ad
pc

m
fft

25
6

fir
32

1

fir
25

6 64
iir

1 1

iir
4 64

lat
nr

m
8 1

lat
nr

m
32

64

lm
sfi

r 8 1 lpc

mult
4 4

mult
10

10

sp
ec

tra
l

GEO-M
EAN

AVERAGE
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
pe

ed
-u

p

ILP Worst
ILP Average
ILP Best
Exhaustive Best

Figure 6.6: A comparison of the range of ILP solutions against the true optimum.

size of 7), with a population of 1024 and 50 generations. Additionally a small amount of elitism

is used, the best 2 functions from each generation always survive into the next.

The colourings were done on a Linux system with two dual-core 3.0GHz Intel Xeon pro-

cessors and 4GB of memory. The experiments were run on an Analog Devices TigerSHARC

TS-101 DSP operating with a clock of 300MHz and the DSP-C programs were compiled using

the Analog Devices VisualDSP++ compiler. The technique was evaluated using the UTDSP

benchmark suite [Lee, 1998] (the arrays versions of each benchmark, as described in sec-

tion 2.8). Each colouring was only run once as the TigerSHARC’s static pipeline and lack of

cache result in deterministic hardware.

6.7.2 Evaluating Genetic Programming

The benchmarks were evaluated using leave-one-out cross-validation, a standard statistical

technique. For each of the 13 benchmarks used for evaluation the GP colourer was trained

on the other 12 benchmarks and then tested against the 13th. This ensures the results are rep-

resentative of how the colourer will perform on an unseen program.

This is essential for performing useful evaluation of any machine learning technique in a

compiler. If the technique is evaluated using the same benchmarks as those used for training

purposes, it will generally perform well, but no claims can be made about how it perform

on future programs. This is because during the training phase thousands of variations will

have been evaluated and if these are reused for evaluation the results will represent a brute-

force search. Leave-one-out-cross-validation allows every benchmark to be used for evaluation

while never tainting the results with training data.

112 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

6.8 Results

Initially, the effectiveness of the colourings provided by ILP were evaluated against an exhaus-

tive set of results. These exhaustive results were obtained by running every possible colouring

for each benchmark. The ‘ILP Best’ and ‘ILP Worst’ bars in figure 6.6 correspond to the high-

est and lowest speed-ups, relative to the performance of ISO C, in the set of equivalent ILP

solutions found per benchmark, as described in section 6.4.2. The ‘ILP Average’ bars repre-

sent the average speed-up of these sets. It can be seen that most of the benchmarks cover a

significant range of results, and lmsfir-8_1, lpc and spectral see performance improvements for

some ILP colourings but degradations for others. Another observation is that for all bench-

marks, except adpcm, the ILP colourer was able to find the optimal solution. On average the

range of speed-ups due to ILP was between 3.0% and 10.3% with an overall average of 6.2%,

compared to 10.4% for the best of the exhaustive results.

It can be noted that the true optimum results seen in figure 6.6 are nowhere near the 2.0

speed-up that you might expect from doubling memory bandwidth in a signal processing ap-

plication. In earlier work on low-level techniques, (such as the work by Saghir et al. [1996],

Gréwal et al. [2003], Leupers and Kotte [2001], Ko and Bhattacharyya [2003] or Gréwal et al.

[2006b]), speed-up figures are reported for individual compute loops or kernels only. In these

papers, asymptotic speed-ups approach the theoretical limit of 2 for loops with large iteration

counts, very small loop bodies and parallelisable data accesses. In this chapter, however, the

evaluation is performed using whole applications that include sequential sections that do not

benefit from simultaneous data accesses. According to Amdahl’s law this leads to smaller,

but more realistic, overall speed-up figures. For the same small loops from the same bench-

marks, though, the source-level approach described here matches the reported performance of

the low-level techniques very accurately, while providing a portable approach and avoiding

modifications to the back-end compiler.

After this, the soft colouring technique was compared against the baseline ILP colourer.

The results of this are shown in figure 6.7(a), where the ranges of both the ILP and the soft

colouring results are shown. Here it can be seen that despite not being guaranteed to solve

the colouring model optimally, soft colouring does just as well as the ILP colourer, finding

almost exactly the same range of results. The range is still quite wide, however, therefore to

attempt to constrain the assignments an additional automatic node, described in section 6.3.2,

was added. The effects of this are shown in the ILP and soft colouring columns of figure 6.7(b).

The automatic node does shorten the range of solutions for both ILP and soft colouring, but

not in the same way. For ILP colouring mostly good results are eliminated (going from 3.0%-

10.3% to 3.2%-9.6% on average), for soft colouring mostly bad results are eliminated (going

from 3.1%-10.3% to 3.9%-10.1% on average). Also, the automatic node allows soft colouring

to always find the truly optimal solution for fir-256_64 and to find better solutions than the

6.8. Results 113

ad
pc

m
fft

25
6

fir
32

1

fir
25

6 64
iir

1 1

iir
4 64

lat
nr

m
8 1

lat
nr

m
32

64

lm
sfi

r 8 1 lpc

mult
4 4

mult
10

10

sp
ec

tra
l

GEO-M
EAN

AVERAGE
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
pe

ed
-u

p

ILP Worst
ILP Best
Soft Average

ILP Average
Soft Worst
Soft Best

(a) A comparison of the range of ILP solutions against the range of soft colouring solutions without an automatic

node. The left bar of each benchmark is the ILP result and the right is soft colouring.

ad
pc

m
fft

25
6

fir
32

1

fir
25

6 64
iir

1 1

iir
4 64

lat
nr

m
8 1

lat
nr

m
32

64

lm
sfi

r 8 1 lpc

mult
4 4

mult
10

10

sp
ec

tra
l

GEO-M
EAN

AVERAGE
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
pe

ed
-u

p

ILP Worst
ILP Best
Soft Average
GP

ILP Average
Soft Worst
Soft Best

(b) Figure 6.7(a) with an additional automatic node and genetic programming results from the best genetic pro-

gramming mode at the far right of each benchmark.

Figure 6.7: A comparison of different techniques. The maximum available perfor-

mance for each benchmark is the same as the “Exhaustive Best” in figure 6.6.

ILP colourer for lpc and spectral. These result in the average performance of the soft colourer

being slightly higher than that of the ILP colourer.

The GP colourer was then compared against both the ILP and soft colourers. Figure 6.7(b)

shows the speed-up achieved by the best GP colourer (nodes may be coloured in any order,

constrained size of genetic function and has access to information on uncoloured nodes) against

the range of ILP and soft colouring results. All results in figure 6.7(b) make use of an automatic

node. The average speed-up achieved by the GP colourer is 8.7%, which although not as good

as the upper range of the ILP colourer’s potential, it is much higher than the lower end. The

GP colourer achieves 78.3% or 85.9% of the performance available in ILP’s range of potential

performance for without and with an automatic node respectively. Equivalently it achieves

77.7% or 77.4% of the potential performance compared to soft colouring. This is significant

114 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

0.9
28

4+

0.9
32

3+

0.9
36

3+

0.9
40

2+

0.9
44

2+

0.9
48

1+

0.9
52

0+

0.9
56

0+

0.9
59

9+

0.9
63

9+

0.9
67

8+

0.9
71

7+

0.9
75

7+

0.9
79

6+

0.9
83

6+

0.9
87

5+

0.9
91

5+

0.9
95

4+

0.9
99

3+

1.0
03

3+
0

100

200

300

400

500

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP adpcm (2048 data points)

Count

(a) Island distribution

0.9
90

3+

0.9
91

5+

0.9
92

6+

0.9
93

8+

0.9
95

0+

0.9
96

2+

0.9
97

4+

0.9
98

5+

0.9
99

7+

1.0
00

9+

1.0
02

1+

1.0
03

3+

1.0
04

4+

1.0
05

6+

1.0
06

8+

1.0
08

0+

1.0
09

2+

1.0
10

3+

1.0
11

5+

1.0
12

7+
0

500

1000

1500

2000

2500

3000

3500

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP lpc (32768 data points)

Count

(b) Normal distribution

Figure 6.8: Distributions of speed-ups. Note: the charts for the rest of the bench-

marks are in figure B.43 on page 240.

because it means that given the generally uniform distribution of ILP performance across its

range of potential results (see below), the GP colourer will out-perform the ILP method without

an automatic node 78.3% of the time. This can be confirmed by noting that the average GP

performance in figure 6.7(b) is significantly higher than the average ILP and soft-colouring

result. Other points of note are that the GP colourer only results in a slow-down for two

benchmarks (lpc and spectral), whereas the ILP colourer may result in slow-downs for five

benchmarks.

It is assumed above that the spread of ILP performance is generally uniform between the

worst and best ILP results. This general trend is demonstrated by the average speed-up across

a set of ILP solutions generally being equidistant between the best and worst solutions. Fig-

ure 6.8 (a subset of figure B.43 on page 240) shows that the details are somewhat more compli-

cated. The charts in figure B.43 show the distribution of speed-ups for each benchmark. Most

of the benchmarks exist in small islands of results which achieve similar results with large gaps

to the neighbouring island (see figure 6.8(a)). The only absolute exception to this is UTDSP

lpc (see figure 6.8(b)) for which the speed-up distribution looks like a “normal distribution”.

The assumption of uniform distribution is not unreasonable when viewed across the entire set

of benchmarks.

In the process of developing the GP colourer, different methods were evaluated. Here

the three variations described in section 6.6 are compared to the method that was found to be

best. Firstly, self-ordered vs pre-ordered nodes results are presented in figures 6.9(a) and 6.9(b)

respectively. The general trend is that letting the GP colour the nodes in any order is almost

always better than arranging the order beforehand. If keeping the other variants fixed then

average speed-ups of 8.7% and 4.5% are achieved respectively, but if parsimony is abandoned

6.8. Results 115

ad
pc

m
fft

25
6

fir
32

1

fir
25

6 64
iir

1 1

iir
4 64

lat
nr

m
8 1

lat
nr

m
32

64

lm
sfi

r 8 1 lpc

mult
4 4

mult
10

10

sp
ec

tra
l

GEO-M
EAN

AVERAGE
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
pe

ed
-u

p

Size Constraints and Coloured Node
No Size Contraints
No Uncoloured Node

(a) Self-ordering GP.

ad
pc

m
fft

25
6

fir
32

1

fir
25

6 64
iir

1 1

iir
4 64

lat
nr

m
8 1

lat
nr

m
32

64

lm
sfi

r 8 1 lpc

mult
4 4

mult
10

10

sp
ec

tra
l

GEO-M
EAN

AVERAGE
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
pe

ed
-u

p

Size Constraints and Coloured Node
No Size Contraints
No Uncoloured Node

(b) Pre-ordered GP.

Figure 6.9: A comparison of the different modes of operation for the GP.

then the trend reverses with 5.5% and 6.2% speed-ups respectively. This is possibly due to

the additional complexity of self-ordered nodes making the problem susceptible to over-fitting,

i.e. the heuristic becomes too specialised to the training benchmarks and does not work as well

on the test benchmark.

Secondly, the fitness of larger functions were penalised. It was found that this penalty

significantly improved performance with self-ordered nodes, the effects of eliminating it may

be seen in the first and second columns of each benchmark in figures 6.9(a) and 6.9(b).

Thirdly, the uncoloured node was eliminated from the reduced interference graph (see sec-

tion 6.6.1.1). The effects of this may be seen by comparing the first and third columns of each

benchmark in figures 6.9(a) and 6.9(b). In most cases this made little difference. A few bench-

marks, however, suffered without this node so eliminating it slightly reduces the performance

of the colourer on average.

116 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

ad
pc

m lpc

sp
ec

tra
l

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

ILP
Soft
Glob+ILP
Glob+Soft

(a) Time taken to perform memory assignment.

ad
pc

m lpc

sp
ec

tra
l

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

ILP
GP
Glob+Soft

Soft
Glob+ILP
Glob+GP

(b) Timings with an additional automatic node.

Figure 6.10: Timings for each technique on the largest benchmarks. The Genetic

Programming technique always uses the additional automatic node so is only in-

cluded in figure (b). Note: the full versions of these charts are figures B.44 and B.45

on page 242.

6.8.1 Scalability

The final consideration is how long it takes to execute each of the colouring algorithms. Fig-

ure 6.10(a) shows the time taken by both the ILP and soft colourers for the largest of the UTDSP

benchmarks. The remaining benchmarks all had total colouring times of under a second. The

GP colourer is not included in this graph as this graph is for results without an automatic node.

The time reported is the time taken to perform alias analysis and then to execute the colouring

algorithm. The alias analysis takes a notable amount of time for these benchmarks, up to 7

seconds for adpcm. The Glob timings are the time it takes to perform colouring if as many au-

tomatic variables as possible are made global (any declared in non-recursive functions). This is

an artificial change that always results in slower code, however it allows results to be obtained

for larger interference graphs. It is difficult to run larger programs on the target architecture

as it has limited program memory available. Globalisation roughly doubles or quadruples the

number of nodes in the interference graph. The larger interference graph due to globalisation

exposes the dangers of the ILP solvers optimisation strategies and exponential run-time. Al-

though for the non-globalised code ILP and soft colouring take roughly the same time, for the

globalised code the soft colourer is several orders of magnitude faster. Most notably for the

globalised adpcm the soft colourer takes 7.2 seconds, but the ILP colourer takes over one and

half hours (5873 seconds). Figure 6.10(b) shows the effect of adding the additional automatic

node to the interference graph has on the time it takes to do the colouring. It also includes the

colouring time for the GP colourer. There is little change for soft colouring, but it has a dra-

matic affect on the ILP colourer for globalised code, adpcm is now coloured in under a minute

6.9. Summary and Conclusions 117

(57 seconds). This possibly means that this single extra node allowed a larger part of the in-

teger problem to be reduced to a linear problem, demonstrating the fragility of ILP colouring.

Additionally, it can be seen that the GP colourer is just as fast as the soft-colourer.

6.9 Summary and Conclusions

6.9.1 Critical Evaluation

The most effective colouring technique in this chapter was the genetic programming colourer.

Due to the training approach, however, it needs exhaustive data on the performance of extra

possible colouring of its training benchmarks. This limits it to being trained on small bench-

marks, the biggest in this chapter had 15 variable groupings results in 32,768 different colour-

ings. This mode of operation is quite common with machine learning techniques though, train-

ing on small programs should still be effective for operating on larger programs. This claim is

not verified however, that is left as future work since running larger benchmarks is not currently

possible.

The primary limitation of this technique is that it assumes that all data will fit into the

scratchpad memories. There exist mature techniques for allowing large programs to success-

fully exploit small scratchpad memories [Verma and Marwedel, 2007] and the use of these

techniques should be orthogonal to what is presented in this chapter. None of the related work

evaluated in section 3.2 discusses integration with techniques for managing scratchpad memo-

ries either. They also all use small benchmarks for evaluation, the DSPstone suite is the most

popular. Some of the related work use synthetic benchmarks for evaluating scalability. These

are randomly produced “large” programs that will still fit in small memories. The work in this

chapter improves on this by producing semi-synthetic benchmarks but artificially modifying

genuine programs.

Finally, one key technology that has not been considered in this chapter is dual-port mem-

ories (as opposed to dual memory banks that are the topic of this chapter). Dual memory banks

have two memory banks which handle one access each, dual-port memories have one memory

bank which can handle two accesses simultaneously. This completely eliminates the need for

partitioning data while still providing the same speed-ups. This does not reduce the useful-

ness of the work in this chapter, however, as dual-port memories are about twice the size of

dual memory banks for the same amount of memory space. Thus for a fixed hardware budget

dual-port memories halves the amount of scratchpad memory that is available. Thus, if com-

piler support allows dual memory banks to behave like a dual-port memory most of the time it

seems unlikely that dual-port memory would be the best choice for a system designer.

118 Chapter 6. Increasing Memory Bandwidth: Dual Memory Banks

6.9.2 Future Work

There are two obvious areas of that the work in this chapter may be extended. The first has

already been mentioned in section 6.3.2: the static estimates currently used to assign weights

to the interference graph could be replaced with profiling data. The increased accuracy would

result in the interference model more closely matching reality, which should improve the qual-

ity of the assignment decisions. None of the related work in section 3.2 uses profiling data,

however, and there may be a reason for that. Using the exhaustive results it can be seen that the

upper range of ILP and soft-colouring results are already extremely close to the true optimum.

Thus it is not clear if a more refined profile would actually improve these results.

The second step would be to try and replace the genetic programming colourer with a

similar one based around a support vector machine (SVM). The form of the problem as it is

presented to the genetic program would also be suitable for presentation to an SVM. SVMs

are a more recent development in machine learning than genetic programming and the current

literature suggests they are far better at classification. In this regard they are slightly different to

GPs in their purpose, GPs assign a score, SVMs classify. Therefore, the GP colourer described

above can “choose” what order to assign variable groups to memory banks, and increase the

speed-up achieved by doing so. An SVM-based colourer, however, would have to be provided

an ordering as it could only classify a variable group as requiring placement on bank X or Y.

As there is no scoring there is no way to order variable groups for assignment.

Finally, section 8.4 mentions that if EnCore has support for XY memory implemented the

techniques described here could be applied. This would allow a direct evaluation of combined

extension instructions and dual memory banks.

6.9.3 Summary

This chapter described a method for performing dual memory bank assignment at the source-

level, using a C to DSP-C compiler. The technique was evaluated on the UTDSP benchmark

suite where a 10.3% speed-up was achieved on average, which is extremely close to the true

optimum, so these techniques should be competitive with hand-colouring. This and the fact

that this scheme accepts and completes partial manual pre-assignments makes it seem likely

that this technique would be effective in an industrial scenario.

It has been demonstrated that with the addition of an automatic node results in slightly

better average speed-ups with the soft colourer (6.9%) than the “optimal” ILP colourer (6.5%)

and the genetic programming colourer was able to do significantly better (8.7%).

The described technique may be easily introduced to an existing DSP toolchain due to

operating at the source-level. The soft colouring technique is fast enough to be used with large

programs while still producing excellent results. Alternatively, the ability to train the genetic

6.9. Summary and Conclusions 119

programming technique offline means that a large suite of benchmarks could be used to train

the tool. This results in performance that out-performs the “optimal” ILP colourer 78.3% of

the time with an extremely low execution cost.

Chapter 7

Code Transformation and Instruction

Set Extension

“A worker may be the hammer’s master, but the hammer still prevails. A tool knows exactly
how it is meant to be handled, while the user of the tool can only have an approximate idea.”
— Milan Kundera, writer, 1929–.

Chapters 4 and 5 looked at different ways of enabling the compiler to use extension in-

structions and improving their effectiveness. This chapter investigates how the compiler can

be used to improve the quality of the extension instructions that are generated. This is done by

applying source-to-source transformations to the target application before automated instruc-

tion set extension (AISE) is performed. A large set of transformation sequences are used on

a benchmark suite to perform design space exploration over this area. It is demonstrated that

the selection of “good” instruction templates is strongly dependent on the shape of the C code

presented to the AISE tool. A methodology is proposed that combines the exploration of high

and mid-level program transformations and low-level instruction templates.

There are three additional points worth noting concerning the scope of this chapter. Firstly,

while compiler-based transformations could also be used to improve the effectiveness of an

extension instruction mapper this is not considered, except as future work. Secondly, although

the AISE performed in chapters 4 and 5 does not consider compiler transformations as a design

space, a static set of transformations are performed by the compiler before both AISE and ex-

tension instruction mapping. The set of transformations used in those chapters is the entirety of

the GCC “middle-end” at the -O2 setting. The primary benefit of these from the perspective of

the PASTA toolchain is to normalise code and eliminate redundancy. Thirdly, this chapter con-

siders the code-size benefits of both applying transformations and performing AISE. Previous

chapters did not discuss the code-size benefits of AISE at all because without transformations

they are not very significant, sometimes a program will shrink by 1-2%, sometimes register

allocation overhead will cause it to grow by 1-2%.

121

122 Chapter 7. Code Transformation and Instruction Set Extension

Disclaimer. This chapter is based on experiments already described in a paper [Murray

et al., 2009], which was in turn an extension of another paper [Bennett, Murray, Franke, and

Topham, 2007]. The author of this thesis was the lead author of the paper describing the

experiments presented in this chapter [Murray et al., 2009], but there was also an additional

non-supervisory author: Richard Bennett. His role, however, primarily focused on the AISE

tools. The experiments described in this chapter were designed by the thesis author, but used

some tools developed by others, as with previous chapters.

7.1 Limitations of Methodology

Although this chapter is placed at the end at the thesis it actually describes work which was

undertaken before any of the work in chapters 4–6. Therefore the tools used in this chapter are

actually the predecessors of the ones used in the previous chapters. This means that they are

not as capable, as they were built by a small number of people in a short amount of time. The

full toolchain used in previous chapters was developed by a team of people over several years.

This does not mean that the results in this chapter are unusable, they still lead to interesting

conclusions. This section, therefore, will discuss the limitations of the tools and techniques

used in this chapter so as the rest of the chapter can focus purely on methodology and results.

The critical evaluation (section 7.6.1) will evaluate the experiments, not the tools. The future

work section (section 7.6.2) will describe several ways that these experiments can be enhanced

using the full PASTA toolchain, but will not merely state that these experiments should be

re-run as the results already obtained are still valid.

Chapter 5 found that ISEGen was probably off in its acceleration estimates by a factor of

2x, the AISE tool in this chapter uses a similar performance model, so it could also be off.

The AISE tool used in this chapter is not nearly as advanced as the one used in chapters 4

and 5. Previously, it had only been evaluated on the SNURT suite, using UTDSP was already

requiring the tool to process larger programs than it had ever dealt with before. It is based

around an integer linear program solver which does not scale as well as ISEGen.

7.2 Motivating Example

As an example consider the code excerpt in figure 7.2. The function fft is the core kernel

of the UTDSP fft benchmark and implements a fast fourier transform. The key features of

this code are that it has loops nested three levels deep and a significant amount of the code

is spent on performing complex address calculations. Presented with this baseline code, the

Atasu AISE tool (see section 2.3.1) generates extension instructions which result in a 7.1%

performance improvement.

7.2. Motivating Example 123

(a) Instruction 1 (b) Instruction 2

Figure 7.1: Complex instruction templates generated for the transformed FFT code

in figure 7.3.

In figure 7.3 the main differences due to source-level transformation of the code in fig-

ure 7.2 are shown. While the code is functionally equivalent, it outperforms the code in fig-

ure 7.2 by a factor of 1.31x. The transformed code has had loop-invariant hoisting applied

followed by common sub-expression elimination. Most of the code in an FFT is related to

address calculation, and the expressions that get hoisted and eliminated are all array index

calculations. Having moved these array index calculations to a common place the AISE algo-

rithm was then able to generate complex address calculation instructions, such as those shown

in figure 7.1. Commercial digital signal processors hand-designed by engineers often con-

tain specialised addressing modes for FFT calculations, so it is interesting to note that AISE

constructs specialised FFT address calculation instructions.

Running the AISE tool on the transformed code in figure 7.3 results in a further 31% im-

provement (over the transformed code), or a total combined speed-up of 1.51x over the base-

line. Only a certain part of the performance gain can be directly attributed to code transforma-

tions, the rest is due to the enabling effect of the source-level transformations on AISE. So it

can be seen that by transforming the code it is not only possible to get improved performance

on a baseline processor, but the gains that extension instructions provide can be increased as

well – from 7.1% to 31% in this case.

This short example demonstrates the interaction between the two techniques that makes it

difficult to predict the best source-level transformation sequence for a given application when

instruction set extension will be performed. Combined exploration of both the software and

124 Chapter 7. Code Transformation and Instruction Set Extension

void f f t (f l o a t ∗ d a t a _ r e a l , f l o a t ∗ data_ imag , f l o a t ∗ c o e f _ r e a l , f l o a t ∗ coef_ imag) {

/∗ V a r i a b l e d e c l a r a t i o n s . ∗ /

g r o u p s P e r S t a g e = 1 ; b u t t e r s P e r G r p = 512 ;

f o r (i = 0 ; i < 1 0 ; i ++) {

f o r (j = 0 ; j < g r o u p s P e r S t a g e ; j ++) {

Wr = c o e f _ r e a l [(1 << (unsigned i n t) i) − 1 + j] ;

Wi = coef_ imag [(1 << (unsigned i n t) i) − 1 + j] ;

f o r (k = 0 ; k < b u t t e r s P e r G r p ; k ++) {

t e m p _ r e a l = Wr∗ d a t a _ r e a l [2∗ j ∗ b u t t e r s P e r G r p + b u t t e r s P e r G r p +k]

− Wi∗ da t a_ imag [2∗ j ∗ b u t t e r s P e r G r p + b u t t e r s P e r G r p +k] ;

temp_imag = Wi∗ d a t a _ r e a l [2∗ j ∗ b u t t e r s P e r G r p + b u t t e r s P e r G r p +k]

+ Wr∗ da t a_ imag [2∗ j ∗ b u t t e r s P e r G r p + b u t t e r s P e r G r p +k] ;

d a t a _ r e a l [2∗ j ∗ b u t t e r s P e r G r p + b u t t e r s P e r G r p +k] =

d a t a _ r e a l [2∗ j ∗ b u t t e r s P e r G r p +k] − t e m p _ r e a l ;

tmp = &d a t a _ r e a l [2∗ j ∗ b u t t e r s P e r G r p + k] ;

∗ tmp = ∗ tmp + t e m p _ r e a l ;

da t a_ imag [2∗ j ∗ b u t t e r s P e r G r p + b u t t e r s P e r G r p +k] =

da t a_ imag [2∗ j ∗ b u t t e r s P e r G r p +k] − temp_imag ;

tmp2 = &da ta_ imag [2∗ j ∗ b u t t e r s P e r G r p +k] ;

∗ tmp2 = ∗ tmp2 + temp_imag ;

}

}

g r o u p s P e r S t a g e = g r o u p s P e r S t a g e <<1u ; b u t t e r s P e r G r p = b u t t e r s P e r G r p >>1u ;

}

re turn ;

}

Figure 7.2: Original UTDSP fft implementation

hardware design spaces generates a significantly better solution than isolated optimisation ap-

proaches could produce. This chapter contains an empirical evaluation of this hardware/soft-

ware design space interaction and shows that significant performance improvements can be

achieved by exploring the combined optimisation space.

7.2.1 Combined Design-Space

The combined design space in question here is that of transformation and AISE, with the in-

tention of demonstrating that there is promise for automated techniques to manage the design

in such a large space. It is also important that the results of a cooperative automated framework

can outweigh the sum of their separated components.

The hope is, as with compilers, that the actual efforts of the search of the combined space

can remain a phased searching of each space individually. The most important factors in this

scenario are the accuracy and detail of the modelling employed in any decision making. This

work attempts to contribute to the understanding of which transformations will need to be made

7.2. Motivating Example 125

void f f t (f l o a t ∗ d a t a _ r e a l , f l o a t ∗ data_ imag , f l o a t ∗ c o e f _ r e a l , f l o a t ∗ coef_ imag) {

/∗ V a r i a b l e d e c l a r a t i o n s . ∗ /

g r o u p s P e r S t a g e = 1 ; b u t t e r s P e r G r p = 512 ;

f o r (i = 0 ; i < 1 0 ; i ++) { /∗ Loop runs a t l e a s t once ∗ /

i f (0 < g r o u p s P e r S t a g e) { /∗ <−−− i n v a r i a n t h o i s t i n g . ∗ /

tmp = (f l o a t (∗) []) c o e f _ r e a l ; /∗ Loop i n v a r i a n t h o i s t e d ∗ /

tmp0 = (1 << (unsigned i n t) i) − 1 ; /∗ v a r i a b l e s . ∗ /

tmp1 = (f l o a t (∗) []) coe f_ imag ; /∗ ∗ /

f o r (j = 0 ; j < g r o u p s P e r S t a g e ; j ++) {

Wr = ((f l o a t ∗) tmp) [tmp0 + j] ; Wi = ((f l o a t ∗) tmp1) [tmp0 + j] ;

i f (0 < b u t t e r s P e r G r p) { /∗ As w i t h p r e v i o u s loop guard . ∗ /

tmp3 = (f l o a t (∗) []) d a t a _ r e a l ;

tmp4 = 2 ∗ j ∗ b u t t e r s P e r G r p ; /∗ Common sub−e x p r e s s i o n ∗ /

tmp5 = tmp4 + b u t t e r s P e r G r p ; /∗ e l i m i n a t i o n t e m p o r a r i e s . ∗ /

tmp6 = (f l o a t (∗) []) da t a_ imag ;

f o r (k = 0 ; k < b u t t e r s P e r G r p ; k ++) {

t e m p _ r e a l = Wr∗ ((f l o a t ∗) tmp3) [tmp5+k]

− Wi ∗ ((f l o a t ∗) tmp6) [tmp5+k] ;

temp_imag= Wi ∗ ((f l o a t ∗) tmp3) [tmp5+k]

+ Wr∗ ((f l o a t ∗) tmp6) [tmp5+k] ;

((f l o a t ∗) tmp3) [tmp5+k] = ((f l o a t ∗) tmp3) [tmp4+k]− t e m p _ r e a l ;

tmp = &((f l o a t ∗) tmp3) [tmp4+k] ;

∗ tmp = ∗ tmp + t e m p _ r e a l ;

((f l o a t ∗) tmp6) [tmp5+k] = ((f l o a t ∗) tmp6) [tmp4+k]− temp_imag ;

tmp2 = &((f l o a t ∗) tmp6) [tmp4+k] ;

∗ tmp2 = ∗ tmp2 + temp_imag ;

}}}}

g r o u p s P e r S t a g e = g r o u p s P e r S t a g e <<1u ; b u t t e r s P e r G r p = b u t t e r s P e r G r p >>1u ;

}

re turn ;

}

Figure 7.3: UTDSP fft implementation after application of the source-level transfor-

mations that resulted in the best combined performance.

extension-aware, and which are beneficial under extension.

The use of compiler transformations when developing automated design space exploration

must be very carefully considered, so as not to disturb the context in which design-space deci-

sions are made. Transformations which are run prior to an AISE tool must be re-applied with

the same parameters to the areas in which the tool identified mappings. Otherwise, the AISE

will not find the same mapping in code-generation without having the areas explicitly defined

by manual means.

126 Chapter 7. Code Transformation and Instruction Set Extension

7.3 Experiment Methodology

The primary concern of these experiments was to determine which transformations or com-

binations thereof infer the greatest execution speed improvement from AISE. Secondly, the

experiments were to find limits of performance gain and loss from the combined design space

defined by transformation and AISE over a baseline design employing neither.

To create the transformation design space in these experiments, a source-to-source trans-

formation tool built upon the SUIF1 [Wilson et al., 1994] compiler framework is used. It is

worth noting that this tool operates as a transformation tool rather than an optimiser, so when

a transformation is used it is applied everywhere that it is legal to do so, without any analysis

of whether it is likely to be beneficial. The tool generates large volumes of transformed source

code samples rapidly from a definition of:

1. The source code, in C. A variety of single-function benchmarks are tested, as well as a

few larger applications.

2. The Transformation Space Definition. A list of transformations to use and the mini-

mum and maximum transformation sequence length permitted. The tool supports a wide

array of source-to-source transformations to be used in the exploration (see appendix A).

Some of the transformations can be considered high-level transformations (e.g. loop un-

rolling), others are commonly classified as generic platform-independent transformations

(e.g. common sub-expression elimination).

3. The number of samples to take from the transformation space, and hence the number

of transformed source codes to produce. This can be set to either a fixed limit or be

unbounded, for example, to exhaustively enumerate the entire transformation space (up

to a given sequence length).

This framework was used to conduct two experiments. The first experiment investigated

the scope of improvements available by combining source-level transformations and instruction

set extensions. Samples were taken with uniform probability at random points across the entire

space of potential transformations. A sample in this sense represents a single point in the

transformation space, and results in the ordered set of transformations selected at that sample

point to be applied to the code. In the second experiment, all transformation sequences of a

reduced set of transformations up to length three were exhaustively enumerated. Here the 15

most relevant transformations have been selected based on an analysis of the first round of

experiments, thus keeping this experiment within practical limits.

The benchmarks used in this experiment were taken from the UTDSP [Lee, 1998] and

SNURT [Seoul National University - Real-Time Research Group, 2008] suites. These two

suites were chosen because most of the benchmarks contained are small in size. This was

7.3. Experiment Methodology 127

desirable, in part, because of the limitations described in section 7.1, but also because it allows

for easier evaluation of which transformations are most effective. If large benchmarks are used,

many transformations will be beneficial for one part and detrimental for another. With smaller

benchmarks this is less of a problem.

7.3.1 Selection of Transformations

The algorithm controlling the source-level transformation of the input program for the first ex-

periment is a simple probabilistic algorithm. It generates transformation sequences of a random

length (up to a given maximum) and selects a transformation for inclusion in the sequence with

a uniform probability.

For the second experiment all permutations without repetitions are generated. Skipping

sequences with repeated transformations may result in beneficial sequences being missed but

removing them allows for clearer analysis of what effect each transformation has individually.

Duplicates due to “non-effective” transformations are filtered out by checking to see if the form

of the intermediate representation (IR) has changed after each application. Once this reduced

set has been generated, the program is compiled and run on an x86 platform and has its outputs

compared to the original reference. If it does not match then the sequence is discarded. In

the case of floating-point benchmarks a total of 1% of bits are allowed to be flipped while still

considering the output identical to allow for small variations in results due to moving code

around. The output must be checked to make sure the code has not been accidentally damaged

by an incorrect SUIF transformation pass. Many of the sequences considered are unusual in

conventional terms and using them uncovers latent compiler bugs. Of the theoretical 97,548

permutations (across 33 benchmarks with 15 transformations in sequences of up to length three

with no repeated applications within a sequence), 20,730 remained after removing duplicate

sequences, and 20,394 remained after discarding sequences that resulted in incorrect code.

This was reduced to 20,348 after AISE as the tool failed to process some of them.

7.3.2 Extension Instruction Identification

The experiments in this chapter use a tool based on the AISE algorithm originally described

by Atasu et al. [2005a]. The algorithm is described in section 2.3.1. The tool operates in three

phases:

1. Instrumentation; wherein the AISE tool augments the intermediate representation of

the application with counters for profiling. The CoSy-based tool emits the i686 assembly

for this profiling executable which is then assembled and run using the standard GNU

tool chain.

128 Chapter 7. Code Transformation and Instruction Set Extension

2. Execution; running the instrumented binary records per-basic-block execution frequen-

cies, which are stored in a file for use by the extension phase.

3. Extension; The IR is augmented with profiling statistics, which are then used to se-

lect the top four instructions using the Atasu ILP AISE algorithm [Atasu et al., 2005b],

which is briefly described in section 2.3.1. The AISE tool’s profiler combined with a

latency table for the given target architecture produces run-time and code-size perfor-

mance metrics for the original transform-space sample. These metrics and the generated

instructions are stored alongside the transformed code and transform-point definition.

7.3.3 Performance Evaluation

Run-time performance statistics are estimated for the whole program using the same profiling

information that is used to rank the instruction templates by their run-time potential. The pro-

filing provides per-basic-block execution frequencies representing the number of times a basic

block will be executed in a single execution of the whole program. Each of these frequencies

are multiplied by the latency of their basic block as software, and all the resulting values are

summed; this provides the baseline number of cycles that the program will take to execute. In

the absence of performing a full cycle-accurate simulation, this forms a reasonable prediction

of performance. The hardware accelerated performance is obtained by multiplying each basic

block frequency with the cycle-savings made for the templates in that basic block, and sum-

ming these values to get the total saving in cycles made. This saving is then subtracted from

the software run-time in cycles to produce the cycle count for the hardware accelerated appli-

cation. The relative reduction in cycles of hardware versus software is taken as the speed-up. If

there are any inaccuracies in the models predicted cycle-count for each basic block then it will

affect both the software and the hardware accelerated numbers. So even if the speed-up ratio is

slightly inaccurate the trends between different runs will remain the same, so for the purposes

of evaluating transformations this model is sufficient. See the critical evaluation, section 7.6.1,

for a consideration of how effective this evaluation methodology is compared to those used

chapters 4 and 5. This is similar to the wide instruction format specified in section 5.3 but here

perfect use of extension instruction is assumed.

The improvement in code size is estimated in a similar fashion to run-time performance,

although any code which is linked without analysis, such as system libraries, is not considered.

The size of each instruction is assumed to be identical, which can be achieved through implicit

operands for instructions with large numbers of operands, although this complicates register

mapping. Where a complex instruction has been used, the number of original instructions that

this covered is summed and subtracted by one to get the code size improvement in instructions.

The total number of instructions in the program is summed, and then each of the calculated

7.4. Evaluation Methodology 129

code size improvements are subtracted from this value to form the code size improvement for

the entire application.

7.4 Evaluation Methodology

For the purposes of this experiment, the instructions latencies were configured to those of an In-

tel XScale PXA270 processor [Intel, 2007], a high-performance embedded micro-architecture

based upon the ARM7 instruction set. An input/output port constraint of 8/8 is set, to allow a

wide range of potential extension instructions and avoid limitations due to the synthetic micro-

architectural constraints set in the AISE algorithm. It has been shown [Pozzi and Ienne, 2005]

that pipelining of extension instructions is possible to reduce per-cycle register file I/O to suit

actual requirements.

Therefore, for each benchmark, for each of up to 10,000 transformation-space sample

points there are:

1. Source code after transformation.

2. Instruction Set Extensions defined as data-flow templates.

3. A record of performance in cycles (run-time) and instructions (code-size) before and

after the transformations are applied to the benchmark.

4. A record of the improvement to each of the performance metrics for each of the instruc-

tions generated by AISE for the transformed source.

5. Aggregation of the results of the top four of these instructions to calculate the overall

benefit to the transformed code.

So that there is a control point for reference, there is always a baseline in the transforma-

tion space that utilises no transformations. The number of extension instructions used in these

experiments is arbitrarily limited to four in order to only include the largest and best perform-

ing extensions, such as those that are expected to be revealed through transformation. Some

commercial approaches such as the Tensilica XPRES [Tensilica Inc., 2005] tend to use large

numbers of small instructions to preserve generality.

This entire experiment was run on a quad-core machine, over the course of several days

in order to allow for the large-scale sampling. The tools are “pipelined” in their operation to

speed up results generation.

130 Chapter 7. Code Transformation and Instruction Set Extension

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t e

xa
m

SNURT
qu

rt

SNURT
se

lec
t

GEO-M
EAN

AVERAGE

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

S
pe

ed
-u

p

Transformations
AISE
Combined

(a) Speed-ups achieved on the SNURT benchmarks.

UTDSP
ed

ge
de

tec
t

UTDSP
fft

10
24

UTDSP
fft

25
6

UTDSP
fir

25
6 64

UTDSP
fir

32
1

UTDSP
his

tog
ram

UTDSP
iir

4 64

UTDSP
lat

nr
m

32
64

UTDSP
lat

nr
m

8 1

UTDSP
lm

sfi
r 32

64

UTDSP
lm

sfi
r 8 1

UTDSP
mult

10
10

UTDSP
mult

4 4

GEO-M
EAN

AVERAGE
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
pe

ed
-u

p

Transformations
AISE
Combined

(b) Speed-ups achieved on the UTDSP benchmarks.

Figure 7.4: Maximum speed-ups on experiment one (random sampling) with trans-

formations alone, AISE alone, and combined transformations and AISE.

7.5 Results

In this section results are presented and discussed, initially concentrating on performance and

code size improvements due to combined source-level transformation and AISE. The data col-

lected from the exhaustive enumeration of the transformation space is then analysed. The focus

of the analysis is the detailed interaction between the transformations and extension instructions

for each benchmark. Finally, the individual contributions of each transformation is examined.

7.5.1 Performance and Code Size Results

Figures 7.4 and 7.5 show the speed-ups achieved on a selection of benchmarks from the SNURT

and UTDSP suites and summarise the random and exhaustive enumeration experiments respec-

tively. For each benchmark the first three bars represent the best improvement seen in the search

7.5. Results 131

SNURT
ad

pc
m

SNURT
bs

SNURT
crc

SNURT
fft1

SNURT
fft1

k

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t e

xa
m

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

GEO-M
EAN

AVERAGE

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

S
pe

ed
-u

p

Transformations
AISE
Combined
On Best Code-Size

(a) Speed-ups achieved on the SNURT benchmarks.

UTDSP
ad

pc
m

UTDSP
co

mpr
es

s

UTDSP
ed

ge
de

tec
t

UTDSP
fft

10
24

UTDSP
fft

25
6

UTDSP
fir

25
6 64

UTDSP
fir

32
1

UTDSP
his

tog
ram

UTDSP
iir

1 1

UTDSP
iir

4 64

UTDSP
lat

nr
m

32
64

UTDSP
lat

nr
m

8 1

UTDSP
lm

sfi
r 32

64

UTDSP
lm

sfi
r 8 1

UTDSP
lpc

UTDSP
mult

10
10

UTDSP
mult

4 4

UTDSP
sp

ec
tra

l

GEO-M
EAN

AVERAGE
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
pe

ed
-u

p

Transformations
AISE
Combined
On Best Code-Size

(b) Speed-ups achieved on the UTDSP benchmarks.

Figure 7.5: Maximum speed-ups on experiment two (exhaustive enumeration) with

transformations alone, AISE alone, and combined transformations and AISE.

space for each technique: transformations alone, AISE alone, and the combination of the two.

Peak speed-ups by a factor of 2.70x (SNURT ludcmp), 1.46x and 2.85x (both SNURT fft) are

seen, respectively. The average speed-ups across both benchmark suites for experiment one are

1.35x, 1.09x and 1.43x respectively. It can also be seen that of the 25 benchmarks considered

by experiment one, five of them see a combined transformation and AISE speed-up of over 2.0x

and only seven see an improvement of less than 1.15x. The average speed-ups for experiment

two are 1.20x, 1.08x and 1.32x respectively.

The fourth bar per-benchmark included in figure 7.5 is the combined run-time speed-up

achieved with the transformation sequence that resulted in the smallest combined code-size,

i.e. the run-time speed-up associated with the results in figure 7.6. As one would expect it

can be seen that in general the smallest code is not the fastest, most notably so on the UTDSP

132 Chapter 7. Code Transformation and Instruction Set Extension

SNURT
ad

pc
m

SNURT
bs

SNURT
crc

SNURT
fft1

SNURT
fft1

k

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t e

xa
m

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

GEO-M
EAN

AVERAGE

1.0

1.2

1.4

1.6

1.8

2.0

S
pe

ed
-u

p

Transformations
AISE
Combined

(a) Code-size improvements achieved on the SNURT benchmarks.

UTDSP
ad

pc
m

UTDSP
co

mpr
es

s

UTDSP
ed

ge
de

tec
t

UTDSP
fft

10
24

UTDSP
fft

25
6

UTDSP
fir

25
6 64

UTDSP
fir

32
1

UTDSP
his

tog
ram

UTDSP
iir

1 1

UTDSP
iir

4 64

UTDSP
lat

nr
m

32
64

UTDSP
lat

nr
m

8 1

UTDSP
lm

sfi
r 32

64

UTDSP
lm

sfi
r 8 1

UTDSP
lpc

UTDSP
mult

10
10

UTDSP
mult

4 4

UTDSP
sp

ec
tra

l

GEO-M
EAN

AVERAGE
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

S
pe

ed
-u

p

Transformations
AISE
Combined

(b) Code-size improvements achieved on the UTDSP benchmarks.

Figure 7.6: Maximum code size improvements over both experiments (random and

exhaustive enumeration) with transformations alone, AISE alone, and combined

transformations and AISE.

benchmark suite. The overall average speed-up for this property is 1.16x, which is much lower

than the 1.32x speed-up achieved by the fastest sequences.

The reason for the dip in performance with SNURT between experiments one and two is

a combination of fewer transformations being applied per-sample in experiment two and the

addition of I/O code to SNURT between the two experiments. The time spent actually doing

I/O or in the standard library is not included in the performance measurements, It is just exists

to allow additional verification, but the time spent in I/O related code within the benchmark

itself is included. This I/O code is difficult to improve on but accounts for a non-negligible

proportion of the run-time and thus the improvements to the core kernel of the benchmark are

impacted. This issue was later corrected for the experiments in chapters 4 and 5 by using cycle-

7.5. Results 133

counters in the simulator. This option, however, was not available when the experiments in this

chapter were performed.

Figures 7.6(a) and 7.6(b) show the code-size improvements achieved on the same bench-

marks but presents a combined summary of experiments one and two. These graphs are not

based on the same sample points that speed-up figures are, but separate transformation se-

quences that were found to be effective at reducing code-size. Peak code-size improvements of

factors of 1.18x (SNURT minver), 1.46x and 1.95x (both SNURT crc) are seen, for transforma-

tions alone, AISE alone and the combination of the two, respectively. The average code-size

improvements across both benchmark suites are 1.20x, 1.08x and 1.30x respectively.

It can be seen that in figures 7.4, 7.5 and 7.6 that on average the results for the SNURT

benchmarks are noticeably higher than for UTDSP. The primary reason for this is that the

SNURT benchmarks are smaller, so the potential selection space is reduced and thus better

suited to uniform sampling. Although only a tiny fraction of the overall search space is ex-

plored (small number of combinations of transformations for the “random” experiment and

short sequences of a reduced set of transformations for the exhaustively enumerated space)

good results were still obtained. It seems likely, however, that exploring a larger portion of the

search space will yield further improved results, especially for larger programs. Larger pro-

grams are also likely to benefit from a more directed search technique that can quickly focus

on the promising areas on the search space, such as the ones described in Franke et al. [2005]

and Chow and Wu [1999].

This shows that in many cases simply choosing transformations that allow effective use of

an extension instruction will not give good overall performance. Strong examples of this are

the UTDSP fir-256_64 and fir-32_1 benchmarks, where the optimal combined performance is

given by a set of transformations that did not allow any speed-up through AISE at all. Examples

where combined performance is significantly better than either transformations or AISE alone

are SNURT crc and the SNURT fft benchmark.

7.5.2 Application-Oriented Evaluation

Initially, some examples are used to demonstrate how many iterations of the “random” algo-

rithm are required before a significant performance improvement can be achieved. Then each

benchmark is examined in turn to identify the best transformation sequences resulting from the

exhaustive enumeration experiment. This is undertaken with the aim of finding commonalities

between benchmarks and how the best transformation sequence changes under the influence of

AISE.

Figure 7.7 shows the performance of the best transformation sequence found so far as each

point in the “random” sample space is evaluated. Figure 7.7(a) shows an example (for the

SNURT jfdctint benchmark) that has the kind of characteristics that led to evaluating such a

134 Chapter 7. Code Transformation and Instruction Set Extension

(a) SNURT jfdctint (b) UTDSP fir-256_64

Figure 7.7: Performance improvement (y-axis) in relation to the number of evaluated

sample points/program versions generated by the source-level transformation tool

(x-axis).

high number of samples in the transformation space. It contains several steps in the perfor-

mance of the best sequence found so far, with the very best not being found until after several

thousand samples were evaluated. This was not typical of most benchmarks, figure 7.7(b) is

an example (for UTDSP fir-256_64) that shows the typical behaviour. It also has steps in the

performance of the best sequence found so far, but they are much closer together and the very

best is found in about five hundred runs, with none of the remaining sequences evaluated doing

better. This suggests that considering a smaller number of samples can be sufficient to produce

acceptable results for some applications if, for example, a single transformation is responsible

for the majority of the performance gain. Considering a larger number of samples may find

more steps leading to even greater performance, though.

In table 7.1 the best transformation sequences as per the exhaustive enumeration experi-

ment are shown for all UTDSP and SNURT benchmarks. The most striking observation is the

clear dominance of transformations T49 (loop unrolling), T59 (forward propagation), and T12

(dead code elimination) in the UTDSP applications. Notable exceptions to this rule are the

adpcm, compress, fft and lpc benchmarks. An inspection of the source codes reveals that the

applications that benefit most from T49, T59 and T12 contain one or more nested computational

loops performing linear array traversals. Benchmarks containing loops and non-linear array

traversals, such as FFT, still benefit from loop unrolling, but require additional transformations

such as common sub-expression elimination and loop invariant hoisting to develop their full

performance. This is in line with the observations that for this benchmark (a) a significant

number of operations are dedicated towards address computation, (b) large amounts of redun-

dancy can be exploited by moving parts of the address computations out of the inner loop, and

7.5. Results 135

Suite Benchmark Transformation

Sequence

UTDSP

adpcm T51, T59, T12

compress T49, T44, T51

edge-detect T49, T44, T51

fft-1024 T47, T8, T49

fft-256 T47, T8, T49

fir-256_64 T49, T59, T12

fir-32_1 T49, T59, T12

histogram T49, T59, T12

iir-1_1 T37, T59, T12

iir-4_64 T49, T51, T59

latnrm-32_64 T49, T59, T12

latnrm-8_1 T49, T59, T12

lmsfir-32_64 T49, T59, T12

lmsfir-8_1 T59, T49, T12

lpc T49, T47, T51

mult-10_10 T49, T59, T12

mult-4_4 T49, T59, T12

Suite Benchmark Transformation

Sequence

SNURT

adpcm-test T12, T40, T59

bs T59, T12, T8

crc T51, T59, T12

fft1 T51, T59, T47

fft1k T37, T59, T12

fir T46, T59, T12

jfdctint T49

lms T49, T12

ludcmp T37, T59, T12

matmul T40, T12, T47

minver T49, T59, T12

qsort-exam T40, T59, T12

qurt T49, T59, T12

select T37, T12, T59

sqrt T49, T59, T12

Table 7.1: Overall best transformation sequences for the exhaustive enumeration

experiment.

(c) the remaining address calculations can be made more efficient by implementing them in

extension instructions. The adpcm program is more control-flow intensive than the other codes

and, hence, benefits most from control-flow optimisations. It is also noteworthy to mention

that same transformation sequence generates optimal results for benchmarks differing only in

the size of their data sets, e.g. fft, fir, and latnrm, but not iir.

Transformations T49, T59 and T12 also play an important role for the SNURT benchmarks,

but the situation is less obvious than with UTDSP. Still, the loop and array based codes benefit

in the same way from these transformations as before. As can be seen from the fft example,

variations in the coding style of what is otherwise the same algorithm can lead to different

optimal transformation sequences. Analogous to UTDSP, the more control-flow or bit-level

manipulation oriented codes such as adpcm, bs or crc react to a different set of transformations

than the loop-oriented codes.

The distinct correlation between certain code characteristics (“code features”) and trans-

formations enabling a performance gain suggests it may be possible to exploit this relationship

136 Chapter 7. Code Transformation and Instruction Set Extension

and, for example, employ machine learning techniques to predict a “good” transformation se-

quence without the need for a costly exploration of the optimisation space. This, however, is

outside the scope of this chapter.

7.5.3 Transformation-Oriented Evaluation

The graphs in figure 7.8 show the performance for each individual technique and the combina-

tion of the two for every sample point in the search space, for a small selection of benchmarks.

The samples are sorted by the performance of combining transformations and AISE. This al-

lows the ratio of transformation to AISE performance to be seen and also shows where there

are correlations between the performance of the two individual techniques. These correlations

are seen where either the performance of both individual techniques improve at the same point

or where one gets better but the other gets worse.

An example of this correlation can be seen on the left side of figure 7.8(c) which shows the

separated performance for sets of transformations which allow good AISE performance but per-

form poorly overall due to the performance decrease seen with transformations alone. A more

useful example of the correlation between transformations and AISE is shown in the motivat-

ing example, UTDSP fft-1024, with the common sub-expression elimination and loop invariant

hoisting transformations. Sequences that make use of these transformations are marked as short

vertical bars in figure 7.8(a). It can be seen that all the best performing sequences make use

of both of these transformations, performance improves greatly when either of them are turned

on, and more so when they both are.

Figure 7.8(b) shows an almost ideal set of results (for SNURT fft1k), where the best set of

transformation sequences when considered alone also allows the most gain from AISE. When

the optimal sequences overlap in this way the combined performance is very high (e.g. going

from peaks of 1.11x and 1.14x with individual techniques to a peak of 1.28x with combined

techniques for SNURT fft1k). Figure 7.8(d) shows the results from a benchmark where almost

none of the overall improvement comes from transformations but almost entirely from AISE

(UTDSP latnrm-8_1). The graph still shows, however, that poor code shape can limit AISE.

The second, exhaustive, set of results allows for each transformation to be evaluated indi-

vidually as each gets applied a fixed number of times and the shorter sequences means there is

less ‘piggy-backing’ along-side good transformations.

For each transformation in the exhaustive results, figure 7.9 enumerates the ‘good’ and

‘bad’ outcomes achieved, where ‘good’ means the performance is better than the baseline.

Speed-ups are shown in figures 7.9(a) and 7.9(b), code-size improvements are shown in fig-

ures 7.9(c) and 7.9(d). As with the earlier graphs code-size is presented in terms of improve-

ment, therefore being greater than the baseline means the code indicates that smaller. Fig-

ures 7.9(a) and 7.9(c) are the improvements seen for pure transformation without AISE relative

7.5. Results 137

(a) UTDSP fft-1024 (based on exhaustive results) (b) SNURT fft1k (based on 4892 runs)

(c) UTDSP edge-detect (based on 1470 runs) (d) UTDSP latnrm-8_1 (based on 8882 runs)

Figure 7.8: Speed-ups achieved for every transformation sequence in the search

space for a selection of benchmarks. For each version of the program (x-axis) three

speed-up values are shown: speed-up after AISE only (raw AISE performance),

speed-up after source-level transformation only (raw transformation performance),

and speed-up after combined AISE and source-level transformation (combined per-

formance). The baseline points are the performance of each technique on unmod-

ified code. The code versions are ordered by increasing combined performance

along the x-axis. Figure (a) also has two horizontal bars to indicate which se-

quences used two key transformations: common sub-expression elimination and

loop-invariant hoisting.

138 Chapter 7. Code Transformation and Instruction Set Extension

T3 T8 T9
T59 T12 T37 T40 T41 T42 T44 T46 T47 T49 T51 T58

0

1000

2000

3000

4000

5000

6000

7000

8000

N
o.

of
S

eq
s.

U
si

ng
Tr

an
s.

≤ 1.0
> 1.0

(a) Pure transformation run-time.

T3 T8 T9
T59 T12 T37 T40 T41 T42 T44 T46 T47 T49 T51 T58

0

1000

2000

3000

4000

5000

6000

7000

8000

N
o.

of
S

eq
s.

U
si

ng
Tr

an
s.

≤ Base AISE
> Base AISE

(b) Combined results run-time.

T3 T8 T9
T59 T12 T37 T40 T41 T42 T44 T46 T47 T49 T51 T58

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
o.

of
S

eq
s.

U
si

ng
Tr

an
s.

≤ 1.0
> 1.0

(c) Pure transformation code-size.

T3 T8 T9
T59 T12 T37 T40 T41 T42 T44 T46 T47 T49 T51 T58

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
o.

of
S

eq
s.

U
si

ng
Tr

an
s.

≤ Base AISE
> Base AISE

(d) Combined results code-size.

Figure 7.9: Distribution of ‘good’ and ‘bad’ sequences containing each transforma-

tion. The greater-than columns are ‘good’ and the less-than-or-equal-to columns

are ‘bad’.

to the baseline (1.0). Figures 7.9(b) and 7.9(d) are the improvements seen for combined trans-

formations and AISE relative to the performance of AISE on the identity code. The code-size

distributions contain more ‘bad’ sequences than the run-time distributions because most of the

transformations used are oriented towards performance rather code-size.

The per-transformation results are presented in tables 7.2 and 7.3 for speed-ups and code-

size improvements respectively. The full name and description of each transformation ID may

be found in appendix A. The ‘usage’ column refers to the number of times the transformation

appeared in non-duplicate and valid sequences. The ‘within 5% of best’ column is the percent-

age of the sequences containing the given transformation that resulted in performance at least

95% as good as the very best sequence (which may or may not contain the given transforma-

tion). This percentage can be seen as a description of the risk factor of the given transformation,

7.5. Results 139

Per Transformation Run-time Improvements

Trans. Usage Within 5% of Best Trans. Perf. Combined Perf. Expected Perf.

All 20,348 – 1.20x 1.32x 1.30x

T3 177 7% 1.09x 1.10x 1.18x

T8 5363 13% 1.12x 1.22x 1.21x

T9 79 1% 1.00x 1.07x 1.09x

T59 6828 48% 1.19x 1.31x 1.29x

T12 6828 37% 1.19x 1.31x 1.29x

T37 5983 9% 1.13x 1.24x 1.23x

T40 5795 24% 1.15x 1.26x 1.25x

T41 764 16% 1.15x 1.28x 1.25x

T42 66 0% 1.01x 1.09x 1.09x

T44 2697 8% 1.09x 1.18x 1.19x

T46 5508 23% 1.15x 1.26x 1.24x

T47 6224 25% 1.14x 1.25x 1.24x

T49[4] 5174 62% 1.21x 1.33x 1.31x

T51 5036 24% 1.16x 1.27x 1.26x

T58 5050 21% 1.15x 1.26x 1.25x

Table 7.2: Speed-up information for each transformation used in the exhaustive

experiments.

the higher the percentage the lower the risk that a sequence containing the transformation will

perform poorly. The ‘trans. perf.’ column lists the best improvement achieved using only

transformations while the ‘combined perf.’ column lists the best improvement achieved by ap-

plying transformations followed by AISE. These two numbers do not necessarily relate to the

same transformation sequence. Finally, the ‘expected perf.’ column is an estimate of what the

combined performance should be based on taking the product of the best pure transformation

improvement and the performance of AISE on the identity code. The difference between this

and the combined performance shows the average enabling or disabling effect of the transfor-

mations on AISE over all the sequences containing this transform. The very first row of each

table shows the performance across all sequences without regard to which transformations they

contain.

A number of observations are noted for these results. The combined performance is very

slightly higher than expected on average for both run-time and code-size improvements across

the 20,348 sequences – showing an overall additional enabling factor of AISE from the trans-

formations. No single transformation, however, shows a significant improvement over the

140 Chapter 7. Code Transformation and Instruction Set Extension

Per Transformation Code-Size Improvements

Trans. Usage Within 5% of Best Trans. Perf. Combined Perf. Expected Perf.

All 20,348 – 1.20x 1.29x 1.28x

T3 177 22% 1.16x 1.20x 1.24x

T8 5363 13% 1.12x 1.20x 1.20x

T9 79 1% 0.94x 1.02x 1.01x

T59 6828 91% 1.19x 1.28x 1.27x

T12 6828 93% 1.19x 1.29x 1.28x

T37 5983 12% 1.17x 1.26x 1.25x

T40 5795 14% 1.17x 1.26x 1.26x

T41 764 7% 0.52x 0.55x 0.56x

T42 66 0% 1.00x 1.07x 1.07x

T44 2697 5% 0.94x 1.01x 1.01x

T46 5508 19% 1.20x 1.29x 1.28x

T47 6224 7% 1.17x 1.26x 1.25x

T49[4] 5174 0% 0.82x 0.92x 0.89x

T51 5036 21% 1.18x 1.27x 1.26x

T58 5050 17% 1.18x 1.27x 1.26x

Table 7.3: Code-size improvement information for each transformation used in the

exhaustive experiments.

expected performance when considering sequences across all benchmarks, though T3 (bounds

comparison substitution) does notably worse than expected for run-time performance. If con-

sidering the results on a per-transformation per-benchmark basis it can be seen that the numbers

making up these averages have a larger amount of variance. There are too many combinations

to present them all, but a few highlights are:

• T8 (common sub-expression elimination) was expected to give a 1.96x speed-up on SNU-

RT matmul but only a 1.75x speed-up was actually achieved. A 1.41x speed-up was

expected for UTDSP fft-1024 but a 1.51x speed-up was actually achieved.

• T49[4] (loop unrolling with a factor of 4) was expected to give a speed-up of 1.81x to

SNURT matmul but only achieved a speed-up of 1.62x. Though for SNURT sqrt it

achieved a run-time speed-up of 2.44x when only 2.21x was expected.

Other more general results may be observed, such as T59 (forward and constant propaga-

tion), T12 (dead code elimination) and T49[4] (loop unrolling) are mostly likely to be part of a

good transformation sequence for improving run-time when considering combined transforma-

tions and AISE. To improve code-size T59 (forward and constant propagation) and T12 (dead

7.6. Summary and Conclusions 141

code elimination) are again likely to be involved in good sequences, but T44 (induction variable

detection) and T49[4] (loop unrolling) are not. These observations are in line with a compiler

writer’s “intuition”.

7.6 Summary and Conclusions

7.6.1 Critical Evaluation

The most notable omission in this performance evaluation is a cache model. The primary rea-

sons for excluding this was to allow more accurate comparisons with previous AISE work –

which does not use a cache model either, though without considering compiler transformations

there is less motivation to do so – and to avoid complicating the analysis of the results. Introduc-

ing caches would mean that there would be additional interactions between the transformations

and the cache configuration, which would potentially obscure the effect of the transformations

on AISE performance. To try and ensure that the lack of a cache model did not affect the re-

sults, no loop-level data transformations were considered. Loop unrolling was used, but that

mainly affects the instruction cache. It is also worth noting that a constant memory cost is

assumed in this evaluation and this is equivalent to having a scratchpad memory. This is quite

common for many of the digital signal processing applications as a data cache does not handle

streaming data very efficiently. In fact, many of the UTDSP benchmarks used for evaluation

in this chapter were used for the evaluation of chapter 6, where they operated entirely from

scratchpad memories.

7.6.2 Future Work

The area of future work with the most potential is exploring loop-based transforms, such as a

using a polyhedral model to be a transformation space of different loop shapes.

Related to the work in this chapter a transformation space could be specified to explore

how it can enhance a complex instruction mapper (such as MapISE).

7.6.3 Summary

This chapter described a methodology for improved AISE that combines the exploration of

high-level and generic platform-independent source transformations and low-level extension

instruction identification. It has been demonstrated that source-to-source transformations are

not only very effective on their own, but provide much larger scope for performance improve-

ment through AISE than any other isolated low-level technique. Both source-level transforma-

tions and AISE have been combined in a unified framework that can efficiently optimise both

hardware and software design spaces for extensible processors.

142 Chapter 7. Code Transformation and Instruction Set Extension

The empirical evaluation of the design space exploration framework is based on a model

of the Intel XScale processor and compute-intensive kernels and applications from the SNURT

and UTDSP benchmark suites. It has been successfully demonstrated that this approach is able

to outperform any other existing approach and gives an average speed-up of 1.49x. Compared

to previous work [Bonzini and Pozzi, 2006], a much broader array of existing transformations

have been covered. This provides a more global picture of the potential for transformation

in improving instruction set extension. In addition, it has been empirically demonstrated that

there exists a non-trivial dependence between high-level transformations and the generated

instruction set extensions justifying the co-exploration of the hardware and software design

spaces.

Chapter 8

Conclusion

“Après nous, le déluge.”
— Madame de Pompadour (Jeanne-Antoinette Poisson), mistress to King Louis XV, 1721–1764.

In this thesis an extensive evaluation of the compiler’s role in ASIP use and production was

undertaken. A set of compilation techniques that increased data and memory throughput were

presented. Finally a design space exploration was undertaken to investigate how the compiler

could enhance AISE’s capabilities.

8.1 Contributions

This thesis has made contributions in four main areas, these contributions are summarised

below.

8.1.1 Compiling for AISE

Commercially successful AISE systems rely on small, simple extension instructions which

are easy to use during compilation. Techniques which produce large, complex extension in-

structions can, in theory, produce much higher speed-ups. Without compiler support, however,

making use of these instructions is a difficult process. This thesis has demonstrated that by

focusing solely on complex extension instructions a high-level pass can use computationally

expensive algorithms while maintaining an acceptable run-time.

8.1.2 AISE for Compiling

Existing AISE techniques are fully focused on finding extension instructions which accelerate

the target application as much as possible. They do not consider ease-of-use from either a

compiler or a programmer’s perspective. This thesis manually searched a small AISE param-

eter space while evaluating the AISE and was quickly able to achieve better results than when

AISE was optimising purely for its internal model. This was further improved by introducing

143

144 Chapter 8. Conclusion

a heuristic to AISE to represent difficulty of compilation. This was able to significantly in-

crease performance. Finally, it was proposed that a complicated extension hardware interface

be discarded and replaced with a simpler one – even if that meant smaller extension instruc-

tions. Using this interface the compiler was able to achieve a higher speed-up even though the

automatically produced extension units were smaller.

8.1.3 Exploiting Dual Memory Banks

A source-level dual memory bank assignment technique was presented. Genetic programming

was found to out-perform an “optimal” integer linear programming solution and could be auto-

matically re-tuned for a different processor. Therefore, combined with its source-level design

the assignment tool is able to target almost any dual memory bank system and could provide

additional speed-ups over any AISE generated speed-ups.

8.1.4 Transformation-Based DSE and AISE

Finally a source-to-source compiler was used to drive AISE. A large transformation-space

was explored and it was discovered that combining transformations and AISE could result in

performance greater than the mere product of their individual gains. Additionally a set of key

transformations for AISE are found.

8.2 Critical Evaluation

8.2.1 Integration

Several different evaluation methodologies were used in this thesis, chapters 4 and 5 used

a hardware-verified cycle-accurate simulator, chapter 6 used a hardware DSP platform and

chapter 7 used a performance model. Additionally, a few experiments in chapter 5 built models

around the cycle-accurate simulator.

The results from chapter 6 (dual memory banks) can be applied directly to the results in the

previous two chapters (complex instruction mapping and AISE). Implementing dual memory

banks on EnCore would be possible as the ISA already supports it, but as none of the hardware,

the simulator or the compiler support dual memory banks it would be a large amount of work

and would not produce substantially different results from the alternative DSP processor that

was used for evaluation. The models that were built on-top of the simulator were valid first steps

for evaluating the proposed techniques and care was take to make them as accurate as possible.

A more complete implementation to verify the existing model would still be a sensible step to

take.

8.2. Critical Evaluation 145

Finally, chapter 7 (transformations) operates on a separate model from the previous three

chapters. It does not allow direct comparison with those chapters, but that is not required – it is

not presenting a technique in the same sense as those chapters. Rather it is performing a design

space exploration and then extracting conclusions from the results. These conclusions can be

applied universally regardless of the underlying model.

8.2.2 Limits of AISE

Section 5.3 proposed a 64-bit instruction format which could access four inputs and write

to four outputs. Of course, a long instruction word is only one step away from a very long

instruction word, or VLIW. In many ways AISE and VLIW are similar: they are both used in

the embedded domain, they both target data-level parallelism and they both require extensive

compiler support. This last point being well-known for VLIW, and demonstrated by this thesis

for AISE. It has been shown in this thesis that there are strong advantages to nudging AISE a

little in the direction of VLIW. On the other hand, Jain et al. [2004] have shown that there are

advantages to nudging VLIW a little in the direction of AISE. AISE was able to reduce VLIW

issue-width and register file size by adding extension instructions to the processor. There are,

therefore, elements that can be brought over to either system, and perhaps a full AISE/VLIW

hybrid would be able outperform either.

While there were many AISE technologies not used in this thesis there is one that could

have potentially solved many problems: state-holding extension instructions. This is an exist-

ing solution to the register bandwidth issues identified in chapter 4. The extension unit contains

a scratchpad memory which is used to pass data from one instruction to the next, without ever

being visible to the baseline processor. Whereas compiling for standard fully architecturally

visible scratchpad memories is a well studied topic, compiling for hidden AISE scratchpads is

not so well understood. Thus this thesis did not consider them at all, but instead found less

esoteric solutions to the register bandwidth problem.

A global trend has been noticed with the results in this thesis. The maximum average

speed-up, over 179 benchmarks, that any experiment could achieve was approximately 1.25x.

“Eliminating Poor Mappings” achieved 1.20x, “Hard-Wiring Constant Values” also reached

1.20x, “Register Load Cost” found a speed-up of 1.24x, combining these last two techniques

earned a speed-up of 1.26x. “Wide Instructions” managed to achieve a speed-up as high as

1.28x, but only which an unfeasibly complicated architecture, a more realistic architecture

reached a 1.26x speed-up. Finally, although ISEGen estimates a 1.54x speed-up, section 4.9.1

briefly demonstrates that this is generally off by a factor of at least 2x, which reduces ISEGen’s

speed-up estimate to 1.27x. The fact that all these numbers are around the same value could be

coincidence, or it could represent the limit of available performance for the AISE tool (ISEGen)

on this suite of benchmarks. If this does represent the limit of performance then the work

146 Chapter 8. Conclusion

presented in chapter 5 was able to reach the limit with several separate proposals.

8.3 Insights

This section briefly summarises some insights which can be gained from the results presented

in this thesis. Some of these insights imply future work, but they are not included in that section

as it is not clear how that work should proceed.

Section 4.5 showed that it is sometimes beneficial to ignore extension instructions and

many of the results in chapters 4 and 5 showed that it is rare for every extension instruction to

get used. This means that the AISE tool is generating instructions that the compiler is never

using, which is an obvious waste of expensive hardware resources. A simple post-processing

pass could be used to eliminate these instructions before hardware synthesis but it would be

better to avoid generating them in the first place. The creation of the unused instructions may

be blocking the generation of other, useful, instructions. Section 5.1.3 already describes one

additional heuristic for ISEGen that greatly improved the usefulness of the generated instruc-

tions by including one compiler issue in the cost model. It seems likely that further changes

could be made to the algorithm so that the AISE tool is trying to maximise the expected gains of

instructions when used by compilers rather than their expected gains in an idealised processor

model.

A good place to start trying to solve this problem would be to directly tackle the single

biggest performance blocker: fitting irregular instructions onto a regular datapath. ISEGen

generates very unusual instructions with irregular dataflow, but then data is fed in and out of

the instructions using regular vector registers. This mismatch results in many extra cycles spent

moving data into the correct position. This thesis presented several methods of minimising this

problem: skipping instructions in the compiler if they are likely to require too many extra cycles

moving data (section 4.5); adding a heuristic to ISEGen to try and avoid generating instructions

where this is likely to be an issue (section 5.1.3); or most drastically, eliminating the vector

registers completely (section 5.3). An interesting alternative would be to have the AISE tool

target vectors directly. ISEGen operates on an IR derived from a scalar SSA IR, an AISE tool

that operates on an IR derived from the vector descriptions of an auto-vectorising compiler

may be able to improve performance by producing large instructions which fit perfectly onto

the vector register model.

Another area where AISE tools could benefit from further work is in the area of domain-

based instruction set extension. A small experiment described in section 4.8.4 showed that

ISEGen is not able to perform domain-based analysis. Even large benchmarks suffer in per-

formance, partially because the use of many algorithms in the single application means that

ISEGen struggles to find a good representative set of extension, as it is effectively treating the

8.4. Future Work 147

large benchmark as if it is many smaller benchmarks glued together. A domain-based AISE

tool would be able to target situations where a single processor must perform many tasks – this

is becoming increasingly common due to device consolidation.

Section 8.2.2 has already said that AISE and VLIW are targeting the same set of perfor-

mance gains and this entire thesis has been about creating a basis for compilation on AISE

generated processors. An area that is ripe for inspiring further work on compilation for AISE

processors is VLIW complilation: most of the transformations designed for VLIW compilers

aim to increase the amount of data parallelism available. These are exactly the sort of transfor-

mations that would benefit AISE as well.

Compiler optimisations in general are crucial for effective AISE, chapter 7 showed that

badly formed code results in AISE tools targeting these pieces of “low hanging fruit”. So us-

ing the compiler middle-end to eliminate redundant or inefficient code is critical, otherwise

AISE does not find good extension instructions. A further generalisation of this is that run-

ning a standard compiler middle-end (e.g. GCC -O2) helps to normalise the code into more

standard patterns. This should increase the usability of extension instructions across different

applications as even if the C is different between two implementations of a related concept the

dataflow might end up the same.

8.4 Future Work

The previous chapters have already presented key ideas for future work. The most important

possibilities are to extended the complex instruction mapper (MapISE) with the ability to par-

tially map extension instructions based on arithmetic identities. Adapting to the restrictions of a

polynomial-time graph-subgraph isomorphism library would provide significant run-time ben-

efits. The existing machine learning work could be extended with more advanced techniques.

Finally the transformation space that has already been explored could be extended through the

use of polyhedral transformations.

An overall design space exploration experiment is essential for learning more about how the

compiler should affect AISE. This would involve searching ISEGen’s heuristic parameter space

but instead performing evaluation using its internal model, MapISE should use the extensions

and the resulting binary be run on the cycle accurate simulator. A simpler prototyping task

would be to take the knowledge gained from chapter 5 and encode it in ISEGen’s performance

model.

The complex instruction mapper presented in this thesis can target any form of graph-

shaped instruction. With a little retargeting effort it could target vector-based instructions such

as MMX or SSE. It would be for an interesting evaluation to see if the technique described here

could compete with a dedicated vectoriser.

148 Chapter 8. Conclusion

Finally, the memory bank techniques from chapter 6 could be ported to target XY memory

on EnCore, so as a true evaluation of using dual memory banks to increase memory bandwidth

could be performed.

Appendix A

SUIF Transformation List

“Keep Ithaka always in your mind.
Arriving there is what you are destined for.
But do not hurry the journey at all.
Better if it lasts for years,
so you are old by the time you reach the island,
wealthy with all you have gained on the way,
not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.
Without her you would not have set out.
She has nothing left to give you now.”
— Constantine P. Cavafy, Greek poet, 1863–1933. Extract from “Ithaka” (1911), translated by Edmund
Keeley and Philip Sherrard.

This appendix provides a complete list of SUIF1 based source-level transformations used

in chapter 7 together with a short description of their function. There were two experiments in

chapter 7, experiment two only made use of the reduced set of transformations in section A.1,

experiment one used all the transformations in this appendix. As the aim of experiment one was

to consider everything and see what had an effect there are many transformations in section A.2

that are not pure optimisations, e.g. the “dismantle” instructions perform lowerings. Some also

did not ever apply to any of the benchmarks considered as they targeted code features that

aren’t found in those benchmarks, but as they were considered in the first experiment they are

listed here. For a more detailed description of each transformation please refer to the SUIF

documentation [Stanford Compiler Group, 1996].

A.1 Most Important Transformations

T3: Bounds Comparison Substitution. This replaces comparisons of upper and lower

bounds of a loop inside the loop body with the known result of that comparison.

T8: Common Sub-expression Elimination. Simple common sub-expression elimination.

149

150 Appendix A. SUIF Transformation List

T9: Control Simplification. Simplify if statements for which one branch or the other al-

ways executes. Remove for loops that are never executed.

T12: Dead Code Elimination. Simple dead code eliminations.

T37: For Loop Normalisation. Normalise all for loops to have lower bound of zero, step

size of one, and less than or equal to test.

T40: Guard For. This adds if nodes around some TREE_FOR nodes to ensure that whenever

any TREE_FOR node is executed, the landing pad and first iteration will always be

executed.

T41: If Hoisting. This moves certain if nodes up in the code under some circumstances that

can allow the test for the if to be eliminated.

T42: Imperfectly Nested Loop Conversion. Turn imperfectly nested loop nests into perfectly

nested loop nests by pulling conditionals as far out as possible.

T44: Induction Variable Detection. This does simple induction variable detection. It re-

places the uses of the induction variable within the loop by expressions of the loop index

and moves the incrementing of the induction variable outside the loop.

T46: Lift Call Expression. This takes any calls that are within expression trees out of the

expression trees.

T47: Loop Invariant Hoisting. This moves the calculation of loop-invariant expressions out-

side of loop bodies.

T49: Loop Unrolling:x. Unroll loop x times. Values for x are limited to 2, 4, 5 or 7.

T51: Move Loop Invariant Conditionals. Move all loop-invariant conditionals that are in-

side a loop outside the outermost loop.

T58: Unstructured Control Flow Optimisation. Simple optimisations on unstructured con-

trol flow. Remove unreachable code. Remove labels that are not the target of any branch.

Remove labels that are followed by unconditional jumps. Remove branches to same tar-

get as “natural” control flow. Invert condition of branch if it simplifies control flow.

T59: Full Copy, Forward and Const Propagation. Composite transformation to perform

copy propagation, forward propagation, constant folding, local constant propagation and

constant extraction in this order iteratively until they stop changing the IR. These trans-

formations were not considered individually in experiment two, this composite was used

instead.

A.2. Additional Transformations 151

A.2 Additional Transformations

T1: Array Delinearisation. Turn 1-dimensional arrays into multi-dimensional arrays.

T2: Bit Packing. Combine local variables that are used only as single bits, packing them

together into variables of type int.

T4: Break Load Constant Instruction. This breaks all load constant instructions of a sym-

bol and non-zero offset into an explicit addition of the offset.

T5: Call By Reference Replacement. Replace call-by-reference scalar variables with copy-

in, copy-out.

T6: Chain Array References. Attempt to chain together multiple array reference instruc-

tions in series into a single array reference instruction.

T7: Constant Propagation. Propagate forward the definition of constants.

T10: Constant Folding. Fold constants wherever possible.

T11: Copy Propagation. Propagate forward copy operations on simple local variables.

T13: Default SUIF Transformations. This performs the default passes designed to be used

immediately after the front end, to turn some non-standard SUIF that the front end pro-

duces into standard SUIF.

T14: Dismantle Array Instruction. Dismantle array instructions (into explicit base plus off-

set).

T15: Dismantle Div Ceil/Floor Instruction. Dismantle all ceil/floor instructions.

T16: Dismantle Div Mod Instruction. Dismantle all mod instructions.

T17: Dismantle Empty Tree For. This dismantles TREE_FORs with empty bodies.

T18: Dismantle Int Abs/Max/Min Instruction. Dismantle all integer abs/max/min instruc-

tions.

T19: Dismantle Abs/Min/Max Instruction. Dismantle all min/max instructions.

T20: Dismantle Multiway Branch. Dismantles all multiway branch instructions.

T21: Dismantle Non Constant For. This dismantles TREE_FORs unless the upper bound

and step are both loop constants.

T22: Dismantle Tree Block. This dismantles all TREE_BLOCKs.

152 Appendix A. SUIF Transformation List

T23: Dismantle Tree Block Without Symbol Table. This dismantles all TREE_BLOCKs

that have empty symbol tables.

T24: Dismantle Tree For. This dismantles all TREE_FORs.

T25: Dismantle Tree For With Modified Index Variable. This dismantles TREE_FORs for

which the index variable might be modified by the TREE_FOR body.

T26: Dismantle Tree For With Spilled Index Variable. This dismantles TREE_FORs with

a spilled index variable.

T27: Dismantle Tree Loop. This dismantles all TREE_LOOPs.

T28: Eliminate Enumeration Types. This replaces all uses of enumerated types with a cor-

responding plain integer type.

T29: Eliminate Struct Copies. This gets rid of all structure copies, whether through copy

instructions, load-store pairs, or memcopy instructions.

T30: Eliminate Sub Variables. This removes all sub-variables and replaces uses of them with

uses of their root ancestors, with the appropriate offsets.

T31: Explicit Load Store. This puts in explicit loads and stores for access to all variables that

are not local, non-static, non-volatile variables without the addr_taken flag set.

T32: Extract Upper Array Bounds. Attempt to extract upper bound information for array

reference instructions from the variables for the arrays being referenced.

T33: Find For. This builds TREE_FOR nodes out of TREE_LOOP nodes for which a suitable

index variable and bounds can be found.

T34: Fix Address Taken. Set the is_addr_taken flag of each variable to TRUE or FALSE

depending on whether or not its address is actually taken.

T35: (Strictly) Fix Bad Nodes. This fixes bad nodes. This is used as part of the default

expansion after the front end.

T36: Fix LDC Types. This puts the correct types on all ldc (load constant) instructions that

load symbol addresses.

T38: Global Variable Privatisation. Do some code transformations to help with privatisation

of global variables across calls.

T39: Globalise Local Static Variables. This changes all static local variables into global

variables in the file symbol table.

A.2. Additional Transformations 153

T43: Improve Array Bounds. Try to improve the array bound information by replacing

variables used in array bounds with constants by looking for constant assignments to

those variables at the start of the scope of each such array type.

T45: Kill Redundant Line Marks. This removes all mark instructions that contain nothing

but line information.

T48: Loop Flattening. Same as loop unrolling, but unrolls the loop completely if it is small

enough and does not contain too many iterations.

T50: Mod Ref Annotations. This puts mod/ref annotations on TREE_FORs.

T52: Pointer Conversion. Add array reference instructions in place of pointer arithmetic

where possible.

T53: Privatisation. This privatises every variable listed in the annotation “privatisable” on

each TREE_FOR.

T54: Reduction Detection. This finds simple instances of reduction. It moves the summation

out of the loop.

T55: Replace Constant Variables. Replace uses of variables with “is constant” annotations

with constants based on the static initialisation information.

T56: Scalarisation. This turns local array variables into collections of element variables when

all uses of the array are loads or stores of known elements.

T57: (Aggressively) Scalarise Constant Array References. Overlap array references with

constant indexes with scalar variable.

Appendix B

Full Results

“Science is a way of trying not to fool yourself. The first principle is that you must not fool
yourself, and you are the easiest person to fool.”
— Richard Feynman, Physicist, 1918–1988.

The charts in this appendix are more complete versions of charts found in earlier chapters.

The charts found in earlier chapters only contained a subset of the benchmarks that were used

for evaluation, the charts in this chapter contain every benchmark. In some cases there are also

additional charts that cover a wider range of parameters than are shown in the main text.

This appendix is not intended to be read directly, the charts lack any context except for

their captions. They are intended to be referenced from the main text.

Some benchmark suite names are abbreviated in these charts to help them fit on the page.

These abbreviations are:

• Dint: DSPstone fixed-point

• Dfp: DSPstone floating-point

• E1A: EEMBC-1 Automotive

• E1C: EEMBC-1 Consumer

• E1N: EEMBC-1 Networking

• E1O: EEMBC-1 Office

• E1T: EEMBC-1 Telecom

• E2C: EEMBC-2 Consumer

• E2N: EEMBC-2 Networking

• U: UTDSP

• UU: UTDSP unrolled

155

156 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0
S

pe
ed

-u
p

Hardware Floating Point Unit
Extension Instructions

21.2 16.2

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

S
pe

ed
-u

p

Figure B.1: Note: this is the full version of figure 4.6 on page 48. A comparison

of a hardware floating point unit with extension instructions. In this chart the base-

line processor, that speed-ups are calculated from, has no floating point hardware.

(Continued on the next page.)

157

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

S
pe

ed
-u

p

8.4

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

S
pe

ed
-u

p

8.2

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

S
pe

ed
-u

p

Figure B.1 (continued): The left bar of each benchmark is the speed-up obtained by

adding a floating point unit to the baseline processor, the right bars are the speed-

ups obtained by adding extension instructions.

158 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

Extension Instructions 21.2 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.2: Note: this is the full version of figure 4.7(a) on page 50. The

performance of MapISE with default settings. Each benchmark is using its own

extension unit specialised for it by the AISE tools. (Continued on the next page.)

159

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.2 (continued): The speed-ups provided by adding extension instructions

specialised to each benchmark. Note that unlike figure 4.6 the baseline proces-

sor used to calculate speed-up from in this (and subsequent) graphs does have a

floating point unit.

160 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

uArchgen ISEs
ISEGen ISEs
Unique ISEs Used
Matches

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.3: Note: this is the full version of figure 4.7(b) on page 50. The

performance of MapISE with default settings. Each benchmark is using its own

extension unit specialised for it by the AISE tools. Number of extension instructions

found and used. Note that this chart has a logarithmic scale. The stacked bars on

the left are the number of extension instructions (Continued on the next page.)

161

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.3 (continued): found by the AISE tools. The lower bar is the number

of unique extension instructions, the upper bar is the number of non-unique exten-

sion instructions found. The stacked bars on the right describe the equivalent for

MapISE. The lower bar is the number of unique extension instructions exploited, the

upper bar is the total number of sites where extension instructions were used.

162 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.01

0.1

1

10

100

1000

10000
Ti

m
e

(S
ec

on
ds

)

Compile time without ISEs
Compile time with ISEs

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.01

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.01

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

Figure B.4: Note: this is the full version of figure 4.8(a) on page 51. Run-time

of MapISE compared to other tools. Note that both charts have a logarithmic scale.

(Continued on the next page.)

163

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.01

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.01

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
0.01

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

Figure B.4 (continued): The time taken to compile each benchmark with the stan-

dard compiler (left-hand bar) or with MapISE (right-hand bar).

164 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.01

0.1

1

10

100

1000

10000

100000
Ti

m
e

(S
ec

on
ds

)

Instruction generation runtime
Instruction mapper runtime

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.01

0.1

1

10

100

1000

10000

100000

Ti
m

e
(S

ec
on

ds
)

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.01

0.1

1

10

100

1000

10000

100000

Ti
m

e
(S

ec
on

ds
)

Figure B.5: Note: this is the full version of figure 4.8(b) on page 51. Run-time

of MapISE compared to other tools. Note that both charts have a logarithmic scale.

(Continued on the next page.)

165

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.01

0.1

1

10

100

1000

10000

100000

Ti
m

e
(S

ec
on

ds
)

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.01

0.1

1

10

100

1000

10000

100000

Ti
m

e
(S

ec
on

ds
)

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
0.01

0.1

1

10

100

1000

10000

100000

Ti
m

e
(S

ec
on

ds
)

Figure B.5 (continued): The left bar for each benchmark is the time taken to gener-

ate extension instructions (the run time of ISEGen, time to construct the hardware

of extension unit is not included). The right bars are the length of time that MapISE

adds to the compile time (over GCC alone).

166 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Speed-Up from all ISEs
Speed-Up after eliminating some ISEs

21.2 2.621.2 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.6: Note: this is the full version of figure 4.9(a) on page 53. An evaluation

of eliminating poor mappings in MapISE. (Continued on the next page.)

167

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

2.0

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.6 (continued): Speed-up obtainable with default mapping (left-hand bar)

or when eliminating poor mappings (right-hand bar).

168 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Matches from all ISEs
Matches after eliminating some ISEs

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.7: Note: this is the full version of figure 4.9(b) on page 53. An evaluation

of eliminating poor mappings in MapISE. (Continued on the next page.)

169

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.7 (continued): The number of sites where extension instructions are found

for default mapping (left-hand bar) or when eliminating poor mappings (right-hand

bar).

170 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Full register allocation
No register allocation

21.2 2.621.2 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.8: Note: this is the full version of figure 4.10(a) on page 54. A comparison

of different register allocation modes. (Continued on the next page.)

171

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.8 (continued): The speed-ups obtained when using the default register

allocation settings (left-hand bar) and when a single static allocation is used for

every extension instruction (right-hand bar).

172 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

Full register allocation
Register allocation without permutations
Full register allocation + 2-step permutations

21.2 2.6 2.621.2 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.9: Note: this is the full version of figure 4.10(b) on page 54. A comparison

of different register allocation modes. This chart compares the speed-ups possible

when using the permutation units. (Continued on the next page.)

173

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.9 (continued): The default setting is to use one-step permutations (left

bar), this is compared with never using the permutation unit (middle bar) or using

two-step permutations (right-hand bar).

174 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

Commutativity
No commutativity

21.2 2.621.2 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.10: Note: this is the full version of figure 4.11(a) on page 57. A

comparison of different commutativity options. This chart shows the speed-ups

obtained when exploiting commutativity in MapISE. The left bar allows commutativity

in both integer and (Continued on the next page.)

175

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.10 (continued): floating point nodes for every arithmetic operation that is

naturally commutative. The right bar does not consider commutativity at all.

176 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125
N

um
be

ro
fI

S
E

s
Commutativity - Unique ISEs used
Commutativity - Matches
No commutativity - Unique ISEs used
No commutativity - Matches

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.11: Note: this is the full version of figure 4.11(b) on page 57. A

comparison of different commutativity options. This chart is similar to figure 4.7(b)

except that every (Continued on the next page.)

177

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.11 (continued): stacked bar relates to the number of extension instructions

that MapISE can use. The lower bars are the number of unique extension instruc-

tions used, the upper bars are the total number of sites that extension instructions

could be used.

178 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

With profiling
Without profiling

21.2 2.621.2 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.12: Note: this is the full version of figure 4.12(a) on page 58. An eval-

uation of MapISE when the compiler mode changes between extension instruction

generation and exploitation. Withholding profiling data affects the decisions made

by GCC’s optimiser. (Continued on the next page.)

179

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.12 (continued): Speed-ups obtained from the default (left-hand bar) and

the alternative modes (right-hand bar).

180 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125
N

um
be

ro
fI

S
E

s
With profiling - Unique ISEs used
With profiling - Matches
Without profiling - Unique ISEs used
Without profiling - Matches

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

4485.0

Figure B.13: Note: this is the full version of figure 4.12(b) on page 58. An eval-

uation of MapISE when the compiler mode changes between extension instruction

generation and exploitation. Withholding profiling data affects the decisions made

by GCC’s optimiser. (Continued on the next page.)

181

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.13 (continued): Mapping quality information for default (left-hand bar) and

alternative modes (right-hand bar).

182 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.0

0.5

1.0

1.5

2.0

2.5

3.0
S

pe
ed

-u
p

ISEGen estimated speed-up
Actual speed-up obtained

21.2

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

Figure B.14: Note: this is the full version of figure 4.18 on page 65. (Continued

on the next page.)

183

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

3.0

Figure B.14 (continued): A comparison of ISEGen’s estimated benefit from exten-

sion instructions and the benefit actually achieved by MapISE.

184 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

Standard aliasing rules
Lax aliasing rules

21.2 2.621.2 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.15: Note: this is the full version of figure 4.19(a) on page 67. An

investigation of the effect of weakening the aliasing rules in GCC with regards to

MapISE. (Continued on the next page.)

185

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.15 (continued): Speed-ups obtained with standard C aliasing rules (left-

hand bars) or less strict rules (right-hand bars).

186 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125
N

um
be

ro
fI

S
E

s
Standard aliasing - Unique ISEs used
Standard aliasing - Matches
Lax aliasing - Unique ISEs used
Lax aliasing - Matches

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.16: Note: this is the full version of figure 4.19(b) on page 67. An

investigation of the effect of weakening the aliasing rules in GCC with regards to

MapISE. (Continued on the next page.)

187

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.16 (continued): Mapping quality information.

188 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

No register allocation
Standard register allocation
Bad register allocation

21.2 2.621.2 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.17: Note: this is the full version of figure 4.20 on page 69. (Continued

on the next page.)

189

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.17 (continued): The speed-ups obtained when using deliberately bad

register allocation heuristics.

190 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

No register allocation
Standard register allocation
Bad register allocation

21.2 2.6 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.18: Note: this is the full version of figure 4.21(a) on page 70. The

speed-ups obtained when using deliberately bad register allocation heuristics with

permutation variations. (Continued on the next page.)

191

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.18 (continued): No permutations used.

192 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

No register allocation
Standard register allocation
Bad register allocation

21.2 2.621.2 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.19: Note: this is the full version of figure 4.21(b) on page 70. The

speed-ups obtained when using deliberately bad register allocation heuristics with

permutation variations. (Continued on the next page.)

193

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.19 (continued): Two-step permutations used.

194 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

Caller save
Callee save

21.2 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.20: Note: this is the full version of figure 4.22(a) on page 71. An

evaluation of callee-saved registers against caller-save. (Continued on the next

page.)

195

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p
2.0

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.20 (continued): Default register allocator.

196 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

Caller save
Callee save

21.2 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.21: Note: this is the full version of figure 4.22(b) on page 71. An

evaluation of callee-saved registers against caller-save. (Continued on the next

page.)

197

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.21 (continued): No register allocator.

198 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

12 in + 8 out
8 in + 8 out
8 in + 4 out
4 in + 4 out

21.2 2.621.2 2.621.2 2.621.2

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

5.72.9 3.35.0 2.9

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.22: Note: this is the full version of figure 5.1(a) on page 80. A comparison

of different register port constraints. (Continued on the next page.)

199

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.22 (continued): Speed-ups.

200 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

12 in + 8 out - Unique ISEs Used
8 in + 8 out - Unique ISEs Used
8 in + 4 out - Unique ISEs Used
4 in + 4 out - Unique ISEs Used

12 in + 8 out - Matches
8 in + 8 out - Matches
8 in + 4 out - Matches
4 in + 4 out - Matches

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.23: Note: this is the full version of figure 5.1(b) on page 80. A comparison

of different register port constraints. (Continued on the next page.)

201

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.23 (continued): Mapping quality information.

202 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125
N

um
be

ro
fI

S
E

s
12 in + 8 out - uArchgen ISEs
8 in + 8 out - uArchgen ISEs
8 in + 4 out - uArchgen ISEs
4 in + 4 out - uArchgen ISEs

12 in + 8 out - ISEGen ISEs
8 in + 8 out - ISEGen ISEs
8 in + 4 out - ISEGen ISEs
4 in + 4 out - ISEGen ISEs

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.24: Note: this is the full version of figure 5.2 on page 81. The effect

that different register port constraints have on the number of (Continued on the next

page.)

203

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.24 (continued): extension instructions that ISEGen and uArchGen will

produce.

204 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

No Constants
With Constants

21.2 2.621.2

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.25: Note: this is the full version of figure 5.3(a) on page 82. The effect

that introducing hard-wired constant values into extension instructions has on the

end results and MapISE’s ability to use (Continued on the next page.)

205

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p
2.0

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

2.4 2.4

Figure B.25 (continued): Speed-ups.

206 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125
N

um
be

ro
fI

S
E

s
No Constants - Unique ISEs Used
No Constants - Matches
With Constants - Unique ISEs Used
With Constants - Matches

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.26: Note: this is the full version of figure 5.3(b) on page 82. The effect

that introducing hard-wired constant values into extension instructions has on the

end results and MapISE’s ability to use (Continued on the next page.)

207

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.26 (continued): Mapping quality information.

208 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125
N

um
be

ro
fI

S
E

s
0.00 Cycles - uArchgen ISEs
0.50 Cycles - uArchgen ISEs
1.00 Cycles - uArchgen ISEs
1.25 Cycles - uArchgen ISEs

0.00 Cycles - ISEGen ISEs
0.50 Cycles - ISEGen ISEs
1.00 Cycles - ISEGen ISEs
1.25 Cycles - ISEGen ISEs

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.27: Note: this is the full version of figure 5.4(a) on page 83. A comparison

of different register cost values to provide to ISEGen’s heuristics. Note: Figures B.35

and B.29 on pages 224 and 212 cover additional parameter values (0.00, 0.25, 0.75

and 1.50 cycles). (Continued on the next page.)

209

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.27 (continued): The effect that the register load cost parameter has on the

number of extension instructions that ISEGen finds.

210 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125
N

um
be

ro
fI

S
E

s
0.00 Cycles - Unique ISEs Used
0.50 Cycles - Unique ISEs Used
1.00 Cycles - Unique ISEs Used
1.25 Cycles - Unique ISEs Used

0.00 Cycles - Matches
0.50 Cycles - Matches
1.00 Cycles - Matches
1.25 Cycles - Matches

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.28: Note: this is the full version of figure 5.4(b) on page 83. A comparison

of different register cost values to provide to ISEGen’s heuristics. Note: Figures B.35

and B.29 on pages 224 and 212 cover additional parameter values (0.00, 0.25, 0.75

and 1.50 cycles). (Continued on the next page.)

211

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.28 (continued): MapISE’s ability to use the instructions found with different

register load cost parameter values.

212 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

0.00 Cycles - Unique ISEs Used
0.25 Cycles - Unique ISEs Used
0.75 Cycles - Unique ISEs Used
1.50 Cycles - Unique ISEs Used

0.00 Cycles - Matches
0.25 Cycles - Matches
0.75 Cycles - Matches
1.50 Cycles - Matches

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.29: Note: This is a variation of figure B.28, which, in turn, is the full version

of figure 5.4(b) on page 83. (Continued on the next page.)

213

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.29 (continued):These charts contain three parameter values that were not

included in figures 5.4(b) or B.28.

214 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
S

pe
ed

-u
p

0.00 Cycles
0.50 Cycles
1.00 Cycles
1.25 Cycles

21.2 2.621.221.221.2

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

4.8

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.30: Note: this is the full version of figure 5.5 on page 84. The speed-ups

obtainable for extension instructions produced with different register cost parameter

values. (Continued on the next page.)

215

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

2.22.2

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

2.1 2.1

Figure B.30 (continued): Note: Figure B.31 on page 216 is the equivalent of this

chart but with different parameter values (0.00, 0.25, 0.75 and 1.50 cycles).

216 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

0.00 Cycles
0.25 Cycles
0.75 Cycles
1.50 Cycles

21.2 2.621.221.221.2

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

4.8

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.31: Note: This is a variation of figure B.30, which, in turn, is the full version

of figure 5.5 on page 84. (Continued on the next page.)

217

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

2.0 2.0 2.2

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

2.1 2.1

Figure B.31 (continued):These charts contain three parameter values that were not

included in figures 5.5 or B.30.

218 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

S
pe

ed
-u

p

Constants
1.25 Cycles Load Cost
1.25 Cycles Load Cost + Constants

21.2 21.221.2 2.7

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

S
pe

ed
-u

p

4.85.2

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

S
pe

ed
-u

p

Figure B.32: Note: this is the full version of figure 5.6 on page 84. A comparison

of hard-wired constants alone, a register load cost (Continued on the next page.)

219

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

S
pe

ed
-u

p

Figure B.32 (continued): of 1.25 cycles alone, and the two combined as single

run.

220 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.01

0.1

1

10

100

1000

10000
Ti

m
e

(S
ec

on
ds

)

Default ISEs
4/4 Input/Output ISEs
1.25 Cycle Load Cost ISEs

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.01

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.01

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

Figure B.33: Note: this is the full version of figure 5.7 on page 85. A run-

time comparison for MapISE when presented with default extension instructions,

(Continued on the next page.)

221

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.01

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.01

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
0.01

0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

Figure B.33 (continued): instructions with a 4/4 input/output constraint, and instruc-

tions generated with a 1.25 cycle load cost.

222 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Scalar Loads/Stores
Vector Loads/Stores

21.2 2.621.2 2.6

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.34: Note: this is the full version of figure 5.8 on page 86. A comparison of

a system with no vector loads or stores (the default) (Continued on the next page.)

223

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Figure B.34 (continued): with one that does have them.

224 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

0.00 Cycles - uArchgen ISEs
0.25 Cycles - uArchgen ISEs
0.75 Cycles - uArchgen ISEs
1.50 Cycles - uArchgen ISEs

0.00 Cycles - ISEGen ISEs
0.25 Cycles - ISEGen ISEs
0.75 Cycles - ISEGen ISEs
1.50 Cycles - ISEGen ISEs

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.35: Note: This is a variation of figure B.27, which, in turn, is the full version

of figure 5.4(a) on page 83. (Continued on the next page.)

225

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.35 (continued):These charts contain three parameter values that were not

included in figures 5.5 or B.30.

226 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.0

0.5

1.0

1.5

2.0

2.5

3.0
S

pe
ed

-u
p

Vector Registers
Scalar Registers

21.25.3

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

3.2

Figure B.36: Note: this is the full version of figure 5.9 on page 87. (Continued on

the next page.)

227

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

Figure B.36 (continued): The speed-ups provided by using extension instructions

with vector registers (left-hand bar) or scalar registers (right-hand bar).

228 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.0

0.5

1.0

1.5

2.0

2.5

3.0
S

pe
ed

-u
p

12 in + 8 out
6 in + 2 out
5 in + 3 out
4 in + 4 out

5.3 5.4

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

3.2

Figure B.37: Note: this is the full version of figure 5.10(a) on page 88. An eval-

uation of different input and output constraints for scalar register based extension

instructions. (Continued on the next page.)

229

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

Figure B.37 (continued): Speed-up.

230 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

1

5

25

125

625

3125
N

um
be

ro
fI

S
E

s
12 in + 8 out - Unique ISEs Used
6 in + 2 out - Unique ISEs Used
5 in + 3 out - Unique ISEs Used
4 in + 4 out - Unique ISEs Used

12 in + 8 out - Matches
6 in + 2 out - Matches
5 in + 3 out - Matches
4 in + 4 out - Matches

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.38: Note: this is the full version of figure 5.10(b) on page 88. An eval-

uation of different input and output constraints for scalar register based extension

instructions. (Continued on the next page.)

231

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Figure B.38 (continued): Mapping quality information.

232 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.0

0.5

1.0

1.5

2.0

2.5

3.0
S

pe
ed

-u
p

12 in + 8 out
6 in + 2 out
5 in + 3 out
4 in + 4 out

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

Figure B.39: Note: this is the full version of figure 5.11 on page 89. ISEGen’s

predicted speed-ups for various register constraints which are (Continued on the

next page.)

233

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

3.0

Figure B.39 (continued): realistic for scalar register based extension instructions,

the default 12-input, 8-input mode is also included for comparison.

234 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.0

0.5

1.0

1.5

2.0

2.5

3.0
S

pe
ed

-u
p

ISEGen estimated speed-up
Actual speed-up obtained

5.3

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

3.2

Figure B.40: Note: this is the full version of figure 5.12 on page 90. A re-evaluation

of the comparison of MapISE’s performance with ISEGen’s, (Continued on the next

page.)

235

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

3.0

Figure B.40 (continued): but now MapISE is using scalar register based extension

instructions (or “wide instruction”).

236 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.2
0.5

1

2

4

8

16

32
E

xt
en

si
on

H
ar

dw
ar

e
S

iz
e

(m
m

2)

12 in + 8 out ISEs
1.25 Cycle input cost ISEs
4 in + 4 out ISEs

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.2
0.5

1

2

4

8

16

32

E
xt

en
si

on
H

ar
dw

ar
e

S
iz

e
(m

m
2)

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k
0.2
0.5

1

2

4

8

16

32

E
xt

en
si

on
H

ar
dw

ar
e

S
iz

e
(m

m
2)

Figure B.41: Note: this is the full version of figure 5.13 on page 91. Extension unit

on-die hardware size per-benchmark (Continued on the next page.)

237

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P
0.2
0.5

1

2

4

8

16

32

E
xt

en
si

on
H

ar
dw

ar
e

S
iz

e
(m

m
2)

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s
0.2
0.5

1

2

4

8

16

32

E
xt

en
si

on
H

ar
dw

ar
e

S
iz

e
(m

m
2)

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

AVERAGE
0.2
0.5

1

2

4

8

16

32

E
xt

en
si

on
H

ar
dw

ar
e

S
iz

e
(m

m
2)

Figure B.41 (continued): for different hardware configurations, based on a 130nm

process.

238 Appendix B. Full Results

cry
pto

ae
s

cry
pto

an
ub

is

cry
pto

blo
wfis

h

cry
pto

de
s

cry
pto

mac
gu

ffin

cry
pto

se
rp

en
t

cry
pto

tea

cry
pto

trip
led

es

cry
pto

tw
ofi

sh

cry
pto

xx
tea

Dint
: co

mple
x mult

ipl
y

Dfp:
co

mple
x mult

ipl
y

Dint
: co

mple
x up

da
te

Dfp:
co

mple
x up

da
te

Dint
: co

nv
olu

tio
n

Dfp:
co

nv
olu

tio
n

Dint
: do

t p
ro

du
ct

Dfp:
do

t p
ro

du
ct

Dint
: fir2

dim

Dfp:
fir2

dim

Dint
: fir

Dfp:
fir

Dint
: iir

biq
ua

d N
se

cti
on

s

Dfp:
iir

biq
ua

d N
se

cti
on

s

Dint
: iir

biq
ua

d on
e se

cti
on

Dfp:
iir

biq
ua

d on
e se

cti
on

Dint
: lm

s

Dfp:
lm

s

Dint
: matr

ix1

Dfp:
matr

ix1

Dint
: matr

ix1
x3

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0
S

pe
ed

-u
p

Without Scatchpad
With Scratchpad

21.2 21.2

Dfp:
matr

ix1
x3

Dint
: matr

ix2

Dfp:
matr

ix2

Dint
: n co

mple
x up

da
tes

Dfp:
n co

mple
x up

da
tes

Dint
: n re

al
up

da
tes

Dfp:
n re

al
up

da
tes

Dint
: sta

rtu
p

E1A
: a

2ti
me0

1

E1A
: a

ifft
r0

1

E1A
: a

ifir
f01

E1A
: a

iiff
t01

E1A
: b

as
efp

01

E1A
: b

itm
np

01

E1A
: c

ac
he

b0
1

E1A
: c

an
rd

r0
1

E1A
: id

ctr
n0

1

E1A
: ii

rflt
01

E1A
: m

atr
ix0

1

E1A
: p

ntr
ch

01

E1A
: p

uw
mod

01

E1A
: r

sp
ee

d0
1

E1A
: tb

loo
k0

1

E1A
: tt

sp
rk0

1

E1C
: c

jpe
g

E1C
: d

jpe
g

E1C
: r

gb
cm

y0
1

E1C
: r

gb
hp

g0
1

E1C
: r

gb
yiq

01

E1N
: o

sp
f

E1N
: p

ktfl
ow

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

S
pe

ed
-u

p

E1N
: r

ou
tel

oo
ku

p

E1O
: b

ez
ier

01

E1O
: d

ith
er

01

E1O
: r

ota
te0

1

E1O
: te

xt0
1

E1T
: a

utc
or

00

E1T
: c

on
ve

n0
0

E1T
: fb

ita
l00

E1T
: ff

t00

E1T
: v

ite
rb

00

E2C
: a

es

E2C
: h

uff
de

E2C
: m

p3
pla

ye
r

E2C
: m

p4
de

co
de

E2C
: m

pe
g2

de
c

E2C
: m

pe
g2

en
c

E2C
: r

gb
cm

yk
v2

E2C
: r

gb
hp

gv
2

E2C
: r

gb
yiq

v2

E2N
: ip

pk
tch

ec
k

E2N
: ip

re
as

se
mbly

E2N
: n

at

E2N
: o

sp
fv2

E2N
: q

os

E2N
: r

ou
tel

oo
ku

p

E2N
: tc

p

E: c
or

em
ar

k

SNURT
ad

pc
m

SNURT
crc

SNURT
fft1

SNURT
fft1

k

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

S
pe

ed
-u

p

Figure B.42: Note: this is the full version of figure 6.1 on page 94. These results

are speculative estimates (see text) and are not as reliable as related results in

chapters 4 and 5. (Continued on the next page.)

239

SNURT
fib

ca
ll

SNURT
fir

SNURT
jfd

cti
nt

SNURT
lm

s

SNURT
lud

cm
p

SNURT
matm

ul

SNURT
minv

er

SNURT
qs

or
t

SNURT
qu

rt

SNURT
se

lec
t

SNURT
sq

rt

U: a
dp

cm
ar

ray
s

U: a
dp

cm
ar

ray
s SW

P

UU: a
dp

cm
ar

ray
s

U: a
dp

cm
ptr

s

U: a
dp

cm
ptr

s SW
P

U: c
om

pr
es

s ar
ray

s

U: c
om

pr
es

s ar
ray

s SW
P

U: c
om

pr
es

s ptr
s

U: c
om

pr
es

s ptr
s SW

P

U: e
dg

e de
tec

t a
rra

ys

U: e
dg

e de
tec

t a
rra

ys
SW

P

U: e
dg

e de
tec

t p
trs

U: e
dg

e de
tec

t p
trs

SW
P

U: ff
t 1

02
4 ar

ray
s

U: ff
t 1

02
4 ar

ray
s SW

P

U: ff
t 1

02
4 ptr

s

U: ff
t 2

56
ar

ray
s

U: ff
t 2

56
ptr

s

U: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ar

ray
s SW

P

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

S
pe

ed
-u

p

UU: fi
r 25

6 64
ar

ray
s

U: fi
r 25

6 64
ptr

s

U: fi
r 25

6 64
ptr

s SW
P

U: fi
r 32

1 ar
ray

s

U: fi
r 32

1 ar
ray

s SW
P

U: fi
r 32

1 ptr
s

U: fi
r 32

1 ptr
s SW

P

U: h
ist

og
ram

ar
ray

s

U: h
ist

og
ram

ar
ray

s SW
P

U: h
ist

og
ram

ptr
s

U: h
ist

og
ram

ptr
s SW

P

U: ii
r 1 1 ar

ray
s

U: ii
r 1 1 ar

ray
s SW

P

U: ii
r 1 1 ptr

s

U: ii
r 1 1 ptr

s SW
P

U: ii
r 4 64

ar
ray

s

U: ii
r 4 64

ar
ray

s SW
P

U: ii
r 4 64

ptr
s

U: ii
r 4 64

ptr
s SW

P

U: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ar

ray
s SW

P

UU: la
tnr

m
32

64
ar

ray
s

U: la
tnr

m
32

64
ptr

s

U: la
tnr

m
32

64
ptr

s SW
P

U: la
tnr

m
8 1 ar

ray
s

U: la
tnr

m
8 1 ar

ray
s SW

P

U: la
tnr

m
8 1 ptr

s

U: la
tnr

m
8 1 ptr

s SW
P

U: lm
sfi

r 32
64

ar
ray

s

U: lm
sfi

r 32
64

ar
ray

s SW
P

UU: lm
sfi

r 32
64

ar
ray

s

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

S
pe

ed
-u

p

U: lm
sfi

r 32
64

ptr
s

U: lm
sfi

r 32
64

ptr
s SW

P

U: lm
sfi

r 8 1 ar
ray

s

U: lm
sfi

r 8 1 ar
ray

s SW
P

U: lm
sfi

r 8 1 ptr
s

U: lm
sfi

r 8 1 ptr
s SW

P

U: lp
c ar

ray
s

U: lp
c ar

ray
s SW

P

U: lp
c ptr

s

U: lp
c ptr

s SW
P

U: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ar
ray

s SW
P

UU: m
ult

10
10

ar
ray

s

U: m
ult

10
10

ptr
s

U: m
ult

10
10

ptr
s SW

P

U: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ar
ray

s SW
P

UU: m
ult

4 4 ar
ray

s

U: m
ult

4 4 ptr
s

U: m
ult

4 4 ptr
s SW

P

U: s
pe

ctr
al

ar
ray

s

U: s
pe

ctr
al

ar
ray

s SW
P

U: s
pe

ctr
al

ptr
s

U: s
pe

ctr
al

ptr
s SW

P

GEO-M
EAN

AVERAGE

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

S
pe

ed
-u

p

Figure B.42 (continued): The left bar for each benchmark is the speed-up achieved

by adding extension instructions with vector registers and vector load/stores to the

baseline processor, as described in section 5.2. The right bars add a scratchpad

memory to this.

240 Appendix B. Full Results

0.9
28

4+

0.9
32

3+

0.9
36

3+

0.9
40

2+

0.9
44

2+

0.9
48

1+

0.9
52

0+

0.9
56

0+

0.9
59

9+

0.9
63

9+

0.9
67

8+

0.9
71

7+

0.9
75

7+

0.9
79

6+

0.9
83

6+

0.9
87

5+

0.9
91

5+

0.9
95

4+

0.9
99

3+

1.0
03

3+
0

100

200

300

400

500

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP adpcm (2048 data points)

Count

0.9
78

8+

0.9
81

4+

0.9
83

9+

0.9
86

4+

0.9
88

9+

0.9
91

4+

0.9
93

9+

0.9
96

4+

0.9
98

9+

1.0
01

5+

1.0
04

0+

1.0
06

5+

1.0
09

0+

1.0
11

5+

1.0
14

0+

1.0
16

5+

1.0
19

1+

1.0
21

6+

1.0
24

1+

1.0
26

6+
0

1

2

3

4

5

6

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP fft 256 (16 data points)

Count

0.9
91

2+

0.9
99

9+

1.0
08

6+

1.0
17

3+

1.0
26

0+

1.0
34

7+

1.0
43

3+

1.0
52

0+

1.0
60

7+

1.0
69

4+

1.0
78

1+

1.0
86

8+

1.0
95

5+

1.1
04

1+

1.1
12

8+

1.1
21

5+

1.1
30

2+

1.1
38

9+

1.1
47

6+

1.1
56

3+
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP fir 32 1 (8 data points)

Count

0.9
98

6+

1.0
26

9+

1.0
55

2+

1.0
83

5+

1.1
11

8+

1.1
40

2+

1.1
68

5+

1.1
96

8+

1.2
25

1+

1.2
53

4+

1.2
81

7+

1.3
10

0+

1.3
38

3+

1.3
66

7+

1.3
95

0+

1.4
23

3+

1.4
51

6+

1.4
79

9+

1.5
08

2+

1.5
36

5+
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP fir 256 64 (8 data points)

Count

1.0
00

0+

1.0
02

8+

1.0
05

6+

1.0
08

3+

1.0
11

1+

1.0
13

9+

1.0
16

7+

1.0
19

4+

1.0
22

2+

1.0
25

0+

1.0
27

8+

1.0
30

6+

1.0
33

3+

1.0
36

1+

1.0
38

9+

1.0
41

7+

1.0
44

4+

1.0
47

2+

1.0
50

0+

1.0
52

8+
0

1

2

3

4

5

6

7

8

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP iir 1 1 (16 data points)

Count

0.9
71

8+

0.9
75

5+

0.9
79

2+

0.9
82

8+

0.9
86

5+

0.9
90

2+

0.9
93

8+

0.9
97

5+

1.0
01

2+

1.0
04

9+

1.0
08

5+

1.0
12

2+

1.0
15

9+

1.0
19

5+

1.0
23

2+

1.0
26

9+

1.0
30

6+

1.0
34

2+

1.0
37

9+

1.0
41

6+
0

1

2

3

4

5

6

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP iir 4 64 (16 data points)

Count

1.0
00

0+

1.0
11

0+

1.0
22

0+

1.0
33

0+

1.0
44

0+

1.0
54

9+

1.0
65

9+

1.0
76

9+

1.0
87

9+

1.0
98

9+

1.1
09

9+

1.1
20

9+

1.1
31

9+

1.1
42

9+

1.1
53

8+

1.1
64

8+

1.1
75

8+

1.1
86

8+

1.1
97

8+

1.2
08

8+
0

1

2

3

4

5

6

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP latnrm 8 1 (16 data points)

Count

0.9
74

4+

0.9
77

5+

0.9
80

7+

0.9
83

9+

0.9
87

1+

0.9
90

2+

0.9
93

4+

0.9
96

6+

0.9
99

8+

1.0
02

9+

1.0
06

1+

1.0
09

3+

1.0
12

5+

1.0
15

6+

1.0
18

8+

1.0
22

0+

1.0
25

2+

1.0
28

3+

1.0
31

5+

1.0
34

7+
0

1

2

3

4

5

6

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP latnrm 32 64 (16 data points)

Count

Figure B.43: Note: this is the full version of figure 6.8 on page 114. (Continued on

the next page.)

241

0.9
09

1+

0.9
15

7+

0.9
22

3+

0.9
29

0+

0.9
35

6+

0.9
42

2+

0.9
48

9+

0.9
55

5+

0.9
62

1+

0.9
68

8+

0.9
75

4+

0.9
82

0+

0.9
88

6+

0.9
95

3+

1.0
01

9+

1.0
08

5+

1.0
15

2+

1.0
21

8+

1.0
28

4+

1.0
35

0+
0

1

2

3

4

5

6

7

8
N

o.
of

R
es

ul
ts

at
S

pe
ed

-u
p

UTDSP lmsfir 8 1 (32 data points)

Count

0.9
90

3+

0.9
91

5+

0.9
92

6+

0.9
93

8+

0.9
95

0+

0.9
96

2+

0.9
97

4+

0.9
98

5+

0.9
99

7+

1.0
00

9+

1.0
02

1+

1.0
03

3+

1.0
04

4+

1.0
05

6+

1.0
06

8+

1.0
08

0+

1.0
09

2+

1.0
10

3+

1.0
11

5+

1.0
12

7+
0

500

1000

1500

2000

2500

3000

3500

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP lpc (32768 data points)

Count

0.9
70

9+

0.9
76

4+

0.9
81

9+

0.9
87

4+

0.9
92

9+

0.9
98

4+

1.0
03

9+

1.0
09

4+

1.0
14

9+

1.0
20

4+

1.0
25

9+

1.0
31

4+

1.0
36

9+

1.0
42

4+

1.0
48

0+

1.0
53

5+

1.0
59

0+

1.0
64

5+

1.0
70

0+

1.0
75

5+
0.0

0.5

1.0

1.5

2.0

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP mult 4 4 (8 data points)

Count

0.9
56

6+

0.9
62

7+

0.9
68

9+

0.9
75

1+

0.9
81

3+

0.9
87

5+

0.9
93

7+

0.9
99

9+

1.0
06

1+

1.0
12

2+

1.0
18

4+

1.0
24

6+

1.0
30

8+

1.0
37

0+

1.0
43

2+

1.0
49

4+

1.0
55

6+

1.0
61

7+

1.0
67

9+

1.0
74

1+
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP mult 10 10 (8 data points)

Count

0.9
60

6+

0.9
63

2+

0.9
65

8+

0.9
68

5+

0.9
71

1+

0.9
73

7+

0.9
76

3+

0.9
78

9+

0.9
81

5+

0.9
84

1+

0.9
86

7+

0.9
89

3+

0.9
92

0+

0.9
94

6+

0.9
97

2+

0.9
99

8+

1.0
02

4+

1.0
05

0+

1.0
07

6+

1.0
10

2+
0

2

4

6

8

10

12

14

16

N
o.

of
R

es
ul

ts
at

S
pe

ed
-u

p

UTDSP spectral (128 data points)

Count

Figure B.43 (continued): The distribution of the performance of the exhaustive set

of memory bank assignments. Note that many of the benchmarks only have a small

number of possible assignments which results in a disjoint distribution.

242 Appendix B. Full Results

ad
pc

m
fft

25
6

fir
32

1

fir
25

6 64
iir

1 1

iir
4 64

lat
nr

m
8 1

lat
nr

m
32

64

lm
sfi

r 8 1 lpc

mult
4 4

mult
10

10

sp
ec

tra
l

GEO-M
EAN

AVERAGE
0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

ILP
Soft
Glob+ILP
Glob+Soft

Figure B.44: Note: this is the full version of figure 6.10(a) on page 116. Time taken

to perform memory assignment.

ad
pc

m
fft

25
6

fir
32

1

fir
25

6 64
iir

1 1

iir
4 64

lat
nr

m
8 1

lat
nr

m
32

64

lm
sfi

r 8 1 lpc

mult
4 4

mult
10

10

sp
ec

tra
l

GEO-M
EAN

AVERAGE
0.1

1

10

100

1000

10000

Ti
m

e
(S

ec
on

ds
)

ILP
GP
Glob+Soft

Soft
Glob+ILP
Glob+GP

Figure B.45: Note: this is the full version of figure 6.10(b) on page 116. Timings

with an additional automatic node.

Appendix C

Retargeting Extension Instructions

“The first 90% of the code accounts for the first 90% of the development time. The remaining
10% of the code accounts for the other 90% of the development time.”
— Tom Cargill, Computer Programmer, Writer.

The retargeting of extension results is considered in this appendix. The experiments per-

formed in section 4.8 are repeated for three of the changes proposed in chapter 5: “4/4 In-

put/Output Registers”, “Hard-Wiring Constant Values” and “Wide Instructions”. The results

are not summarised as they do not demonstrate anything that was not already shown in sec-

tion 4.8 – they are just included in this appendix so as that may be verified. The only difference

in the results is that “Wide Instructions” seem to be slightly worse for retargeting than vector

register based extension instructions. This seems surprising and may just be an artifact of the

evaluation model.

C.1 Reducing the Number of I/O Ports

Evaluates the technique presented in section 5.1.1 in the context of retargeting extension in-

structions.

243

244 Appendix C. Retargeting Extension Instructions

UTDSP
ad

pc
m

ar
ray

s

UTDSP
co

mpr
es

s ar
ray

s

UTDSP
ed

ge
de

tec
t a

rra
ys

UTDSP
fft

10
24

ar
ray

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
his

tog
ram

ar
ray

s

UTDSP
iir

1 1 ar
ray

s

UTDSP
iir

4 64
ar

ray
s

UTDSP
lat

nr
m

32
64

ar
ray

s

UTDSP
lat

nr
m

8 1 ar
ray

s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

UTDSP
lpc

ar
ray

s

UTDSP
mult

10
10

ar
ray

s

UTDSP
mult

4 4 ar
ray

s

UTDSP
sp

ec
tra

l a
rra

ys

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Speed-ups.

UTDSP
ad

pc
m

ar
ray

s

UTDSP
co

mpr
es

s ar
ray

s

UTDSP
ed

ge
de

tec
t a

rra
ys

UTDSP
fft

10
24

ar
ray

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
his

tog
ram

ar
ray

s

UTDSP
iir

1 1 ar
ray

s

UTDSP
iir

4 64
ar

ray
s

UTDSP
lat

nr
m

32
64

ar
ray

s

UTDSP
lat

nr
m

8 1 ar
ray

s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

UTDSP
lpc

ar
ray

s

UTDSP
mult

10
10

ar
ray

s

UTDSP
mult

4 4 ar
ray

s

UTDSP
sp

ec
tra

l a
rra

ys

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure C.1: Extension instructions are generated for ptrs benchmarks and then

exploited on arrays benchmarks. Both data-sets are for 4 input + 4 output extension

instructions.

C.1. Reducing the Number of I/O Ports 245

UTDSP
ad

pc
m

ptr
s

UTDSP
co

mpr
es

s ptr
s

UTDSP
ed

ge
de

tec
t p

trs

UTDSP
fft

10
24

ptr
s

UTDSP
fir

25
6 64

ptr
s

UTDSP
fir

32
1 ptr

s

UTDSP
his

tog
ram

ptr
s

UTDSP
iir

1 1 ptr
s

UTDSP
iir

4 64
ptr

s

UTDSP
lat

nr
m

32
64

ptr
s

UTDSP
lat

nr
m

8 1 ptr
s

UTDSP
lm

sfi
r 32

64
ptr

s

UTDSP
lm

sfi
r 8 1 ptr

s

UTDSP
lpc

ptr
s

UTDSP
mult

10
10

ptr
s

UTDSP
mult

4 4 ptr
s

UTDSP
sp

ec
tra

l p
trs

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

2.0

(a) Speed-ups.

UTDSP
ad

pc
m

ptr
s

UTDSP
co

mpr
es

s ptr
s

UTDSP
ed

ge
de

tec
t p

trs

UTDSP
fft

10
24

ptr
s

UTDSP
fir

25
6 64

ptr
s

UTDSP
fir

32
1 ptr

s

UTDSP
his

tog
ram

ptr
s

UTDSP
iir

1 1 ptr
s

UTDSP
iir

4 64
ptr

s

UTDSP
lat

nr
m

32
64

ptr
s

UTDSP
lat

nr
m

8 1 ptr
s

UTDSP
lm

sfi
r 32

64
ptr

s

UTDSP
lm

sfi
r 8 1 ptr

s

UTDSP
lpc

ptr
s

UTDSP
mult

10
10

ptr
s

UTDSP
mult

4 4 ptr
s

UTDSP
sp

ec
tra

l p
trs

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure C.2: Extension instructions are generated for arrays benchmarks and then

exploited on ptrs benchmarks. Both data-sets are for 4 input + 4 output extension

instructions.

246 Appendix C. Retargeting Extension Instructions

UTDSP
ad

pc
m

ar
ray

s SW
P

UTDSP
ad

pc
m

ptr
s SW

P

UTDSP
co

mpr
es

s ar
ray

s SW
P

UTDSP
co

mpr
es

s ptr
s SW

P

UTDSP
ed

ge
de

tec
t a

rra
ys

SW
P

UTDSP
ed

ge
de

tec
t p

trs
SW

P

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fir

25
6 64

ar
ray

s SW
P

UTDSP
fir

25
6 64

ptr
s SW

P

UTDSP
fir

32
1 ar

ray
s SW

P

UTDSP
fir

32
1 ptr

s SW
P

UTDSP
his

tog
ram

ar
ray

s SW
P

UTDSP
his

tog
ram

ptr
s SW

P

UTDSP
iir

1 1 ar
ray

s SW
P

UTDSP
iir

1 1 ptr
s SW

P

UTDSP
iir

4 64
ar

ray
s SW

P

UTDSP
iir

4 64
ptr

s SW
P

UTDSP
lat

nr
m

32
64

ar
ray

s SW
P

UTDSP
lat

nr
m

32
64

ptr
s SW

P

UTDSP
lat

nr
m

8 1 ar
ray

s SW
P

UTDSP
lat

nr
m

8 1 ptr
s SW

P

UTDSP
lm

sfi
r 32

64
ar

ray
s SW

P

UTDSP
lm

sfi
r 32

64
ptr

s SW
P

UTDSP
lm

sfi
r 8 1 ar

ray
s SW

P

UTDSP
lm

sfi
r 8 1 ptr

s SW
P

UTDSP
lpc

ar
ray

s SW
P

UTDSP
lpc

ptr
s SW

P

UTDSP
mult

10
10

ar
ray

s SW
P

UTDSP
mult

10
10

ptr
s SW

P

UTDSP
mult

4 4 ar
ray

s SW
P

UTDSP
mult

4 4 ptr
s SW

P

UTDSP
sp

ec
tra

l a
rra

ys
SW

P

UTDSP
sp

ec
tra

l p
trs

SW
P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Speed-ups.

UTDSP
ad

pc
m

ar
ray

s SW
P

UTDSP
ad

pc
m

ptr
s SW

P

UTDSP
co

mpr
es

s ar
ray

s SW
P

UTDSP
co

mpr
es

s ptr
s SW

P

UTDSP
ed

ge
de

tec
t a

rra
ys

SW
P

UTDSP
ed

ge
de

tec
t p

trs
SW

P

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fir

25
6 64

ar
ray

s SW
P

UTDSP
fir

25
6 64

ptr
s SW

P

UTDSP
fir

32
1 ar

ray
s SW

P

UTDSP
fir

32
1 ptr

s SW
P

UTDSP
his

tog
ram

ar
ray

s SW
P

UTDSP
his

tog
ram

ptr
s SW

P

UTDSP
iir

1 1 ar
ray

s SW
P

UTDSP
iir

1 1 ptr
s SW

P

UTDSP
iir

4 64
ar

ray
s SW

P

UTDSP
iir

4 64
ptr

s SW
P

UTDSP
lat

nr
m

32
64

ar
ray

s SW
P

UTDSP
lat

nr
m

32
64

ptr
s SW

P

UTDSP
lat

nr
m

8 1 ar
ray

s SW
P

UTDSP
lat

nr
m

8 1 ptr
s SW

P

UTDSP
lm

sfi
r 32

64
ar

ray
s SW

P

UTDSP
lm

sfi
r 32

64
ptr

s SW
P

UTDSP
lm

sfi
r 8 1 ar

ray
s SW

P

UTDSP
lm

sfi
r 8 1 ptr

s SW
P

UTDSP
lpc

ar
ray

s SW
P

UTDSP
lpc

ptr
s SW

P

UTDSP
mult

10
10

ar
ray

s SW
P

UTDSP
mult

10
10

ptr
s SW

P

UTDSP
mult

4 4 ar
ray

s SW
P

UTDSP
mult

4 4 ptr
s SW

P

UTDSP
sp

ec
tra

l a
rra

ys
SW

P

UTDSP
sp

ec
tra

l p
trs

SW
P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure C.3: Extension instructions are generated for arrays benchmarks and then

exploited on arrays-SWP benchmarks. Both data-sets are for 4 input + 4 output

extension instructions.

C.1. Reducing the Number of I/O Ports 247

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 co
ns

um
er

djp
eg

ee
mbc

2 co
ns

um
er

ae
s

ee
mbc

2 co
ns

um
er

mp4
de

co
de

SNURT
fft1

k

SNURT
fir

UTDSP
fft

10
24

ar
ray

s

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fft

10
24

ptr
s

UTDSP
fft

25
6 ar

ray
s

UTDSP
fft

25
6 ptr

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Speed-ups.

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 co
ns

um
er

djp
eg

ee
mbc

2 co
ns

um
er

ae
s

ee
mbc

2 co
ns

um
er

mp4
de

co
de

SNURT
fft1

k

SNURT
fir

UTDSP
fft

10
24

ar
ray

s

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fft

10
24

ptr
s

UTDSP
fft

25
6 ar

ray
s

UTDSP
fft

25
6 ptr

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure C.4: Extension instructions are generated for one benchmark (see table 4.3

on page 64) and then exploited on one or more related benchmarks. Both data-sets

are for 4 input + 4 output extension instructions.

248 Appendix C. Retargeting Extension Instructions

ee
mbc

1 tel
ec

om
au

tco
r0

0

ee
mbc

1 tel
ec

om
co

nv
en

00

ee
mbc

1 tel
ec

om
fbi

tal
00

ee
mbc

1 tel
ec

om
fft0

0

ee
mbc

1 tel
ec

om
vit

er
b0

0

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Speed-ups.

ee
mbc

1 tel
ec

om
au

tco
r0

0

ee
mbc

1 tel
ec

om
co

nv
en

00

ee
mbc

1 tel
ec

om
fbi

tal
00

ee
mbc

1 tel
ec

om
fft0

0

ee
mbc

1 tel
ec

om
vit

er
b0

0

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure C.5: Extension instructions are generated for each benchmark and then com-

bined to create a large set of instructions, MapISE then maps instructions from the

entire set to each benchmark. Both data-sets are for 4 input + 4 output extension

instructions.

C.2. Hard-Wiring Constant Values 249

UTDSP
ad

pc
m

ar
ray

s

UTDSP
co

mpr
es

s ar
ray

s

UTDSP
ed

ge
de

tec
t a

rra
ys

UTDSP
fft

10
24

ar
ray

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
his

tog
ram

ar
ray

s

UTDSP
iir

1 1 ar
ray

s

UTDSP
iir

4 64
ar

ray
s

UTDSP
lat

nr
m

32
64

ar
ray

s

UTDSP
lat

nr
m

8 1 ar
ray

s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

UTDSP
lpc

ar
ray

s

UTDSP
mult

10
10

ar
ray

s

UTDSP
mult

4 4 ar
ray

s

UTDSP
sp

ec
tra

l a
rra

ys

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Speed-ups.

UTDSP
ad

pc
m

ar
ray

s

UTDSP
co

mpr
es

s ar
ray

s

UTDSP
ed

ge
de

tec
t a

rra
ys

UTDSP
fft

10
24

ar
ray

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
his

tog
ram

ar
ray

s

UTDSP
iir

1 1 ar
ray

s

UTDSP
iir

4 64
ar

ray
s

UTDSP
lat

nr
m

32
64

ar
ray

s

UTDSP
lat

nr
m

8 1 ar
ray

s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

UTDSP
lpc

ar
ray

s

UTDSP
mult

10
10

ar
ray

s

UTDSP
mult

4 4 ar
ray

s

UTDSP
sp

ec
tra

l a
rra

ys

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure C.6: Extension instructions are generated for ptrs benchmarks and then

exploited on arrays benchmarks. Both data-sets are for extension instructions con-

taining constants.

C.2 Hard-Wiring Constant Values

Evaluates the technique presented in section 5.1.2 in the context of retargeting extension in-

structions.

250 Appendix C. Retargeting Extension Instructions

UTDSP
ad

pc
m

ptr
s

UTDSP
co

mpr
es

s ptr
s

UTDSP
ed

ge
de

tec
t p

trs

UTDSP
fft

10
24

ptr
s

UTDSP
fir

25
6 64

ptr
s

UTDSP
fir

32
1 ptr

s

UTDSP
his

tog
ram

ptr
s

UTDSP
iir

1 1 ptr
s

UTDSP
iir

4 64
ptr

s

UTDSP
lat

nr
m

32
64

ptr
s

UTDSP
lat

nr
m

8 1 ptr
s

UTDSP
lm

sfi
r 32

64
ptr

s

UTDSP
lm

sfi
r 8 1 ptr

s

UTDSP
lpc

ptr
s

UTDSP
mult

10
10

ptr
s

UTDSP
mult

4 4 ptr
s

UTDSP
sp

ec
tra

l p
trs

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

2.1

(a) Speed-ups.

UTDSP
ad

pc
m

ptr
s

UTDSP
co

mpr
es

s ptr
s

UTDSP
ed

ge
de

tec
t p

trs

UTDSP
fft

10
24

ptr
s

UTDSP
fir

25
6 64

ptr
s

UTDSP
fir

32
1 ptr

s

UTDSP
his

tog
ram

ptr
s

UTDSP
iir

1 1 ptr
s

UTDSP
iir

4 64
ptr

s

UTDSP
lat

nr
m

32
64

ptr
s

UTDSP
lat

nr
m

8 1 ptr
s

UTDSP
lm

sfi
r 32

64
ptr

s

UTDSP
lm

sfi
r 8 1 ptr

s

UTDSP
lpc

ptr
s

UTDSP
mult

10
10

ptr
s

UTDSP
mult

4 4 ptr
s

UTDSP
sp

ec
tra

l p
trs

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure C.7: Extension instructions are generated for arrays benchmarks and then

exploited on ptrs benchmarks. Both data-sets are for extension instructions contain-

ing constants.

C.2. Hard-Wiring Constant Values 251

UTDSP
ad

pc
m

ar
ray

s SW
P

UTDSP
ad

pc
m

ptr
s SW

P

UTDSP
co

mpr
es

s ar
ray

s SW
P

UTDSP
co

mpr
es

s ptr
s SW

P

UTDSP
ed

ge
de

tec
t a

rra
ys

SW
P

UTDSP
ed

ge
de

tec
t p

trs
SW

P

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fir

25
6 64

ar
ray

s SW
P

UTDSP
fir

25
6 64

ptr
s SW

P

UTDSP
fir

32
1 ar

ray
s SW

P

UTDSP
fir

32
1 ptr

s SW
P

UTDSP
his

tog
ram

ar
ray

s SW
P

UTDSP
his

tog
ram

ptr
s SW

P

UTDSP
iir

1 1 ar
ray

s SW
P

UTDSP
iir

1 1 ptr
s SW

P

UTDSP
iir

4 64
ar

ray
s SW

P

UTDSP
iir

4 64
ptr

s SW
P

UTDSP
lat

nr
m

32
64

ar
ray

s SW
P

UTDSP
lat

nr
m

32
64

ptr
s SW

P

UTDSP
lat

nr
m

8 1 ar
ray

s SW
P

UTDSP
lat

nr
m

8 1 ptr
s SW

P

UTDSP
lm

sfi
r 32

64
ar

ray
s SW

P

UTDSP
lm

sfi
r 32

64
ptr

s SW
P

UTDSP
lm

sfi
r 8 1 ar

ray
s SW

P

UTDSP
lm

sfi
r 8 1 ptr

s SW
P

UTDSP
lpc

ar
ray

s SW
P

UTDSP
lpc

ptr
s SW

P

UTDSP
mult

10
10

ar
ray

s SW
P

UTDSP
mult

10
10

ptr
s SW

P

UTDSP
mult

4 4 ar
ray

s SW
P

UTDSP
mult

4 4 ptr
s SW

P

UTDSP
sp

ec
tra

l a
rra

ys
SW

P

UTDSP
sp

ec
tra

l p
trs

SW
P

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

2.4

(a) Speed-ups.

UTDSP
ad

pc
m

ar
ray

s SW
P

UTDSP
ad

pc
m

ptr
s SW

P

UTDSP
co

mpr
es

s ar
ray

s SW
P

UTDSP
co

mpr
es

s ptr
s SW

P

UTDSP
ed

ge
de

tec
t a

rra
ys

SW
P

UTDSP
ed

ge
de

tec
t p

trs
SW

P

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fir

25
6 64

ar
ray

s SW
P

UTDSP
fir

25
6 64

ptr
s SW

P

UTDSP
fir

32
1 ar

ray
s SW

P

UTDSP
fir

32
1 ptr

s SW
P

UTDSP
his

tog
ram

ar
ray

s SW
P

UTDSP
his

tog
ram

ptr
s SW

P

UTDSP
iir

1 1 ar
ray

s SW
P

UTDSP
iir

1 1 ptr
s SW

P

UTDSP
iir

4 64
ar

ray
s SW

P

UTDSP
iir

4 64
ptr

s SW
P

UTDSP
lat

nr
m

32
64

ar
ray

s SW
P

UTDSP
lat

nr
m

32
64

ptr
s SW

P

UTDSP
lat

nr
m

8 1 ar
ray

s SW
P

UTDSP
lat

nr
m

8 1 ptr
s SW

P

UTDSP
lm

sfi
r 32

64
ar

ray
s SW

P

UTDSP
lm

sfi
r 32

64
ptr

s SW
P

UTDSP
lm

sfi
r 8 1 ar

ray
s SW

P

UTDSP
lm

sfi
r 8 1 ptr

s SW
P

UTDSP
lpc

ar
ray

s SW
P

UTDSP
lpc

ptr
s SW

P

UTDSP
mult

10
10

ar
ray

s SW
P

UTDSP
mult

10
10

ptr
s SW

P

UTDSP
mult

4 4 ar
ray

s SW
P

UTDSP
mult

4 4 ptr
s SW

P

UTDSP
sp

ec
tra

l a
rra

ys
SW

P

UTDSP
sp

ec
tra

l p
trs

SW
P

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure C.8: Extension instructions are generated for arrays benchmarks and then

exploited on arrays-SWP benchmarks. Both data-sets are for extension instructions

containing constants.

252 Appendix C. Retargeting Extension Instructions

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 co
ns

um
er

djp
eg

ee
mbc

2 co
ns

um
er

ae
s

ee
mbc

2 co
ns

um
er

mp4
de

co
de

SNURT
fft1

k

SNURT
fir

UTDSP
fft

10
24

ar
ray

s

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fft

10
24

ptr
s

UTDSP
fft

25
6 ar

ray
s

UTDSP
fft

25
6 ptr

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Speed-ups.

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 co
ns

um
er

djp
eg

ee
mbc

2 co
ns

um
er

ae
s

ee
mbc

2 co
ns

um
er

mp4
de

co
de

SNURT
fft1

k

SNURT
fir

UTDSP
fft

10
24

ar
ray

s

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fft

10
24

ptr
s

UTDSP
fft

25
6 ar

ray
s

UTDSP
fft

25
6 ptr

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure C.9: Extension instructions are generated for one benchmark (see table 4.3

on page 64) and then exploited on one or more related benchmarks. Both data-sets

are for extension instructions containing constants.

C.2. Hard-Wiring Constant Values 253

ee
mbc

1 tel
ec

om
au

tco
r0

0

ee
mbc

1 tel
ec

om
co

nv
en

00

ee
mbc

1 tel
ec

om
fbi

tal
00

ee
mbc

1 tel
ec

om
fft0

0

ee
mbc

1 tel
ec

om
vit

er
b0

0

GEO-M
EAN

AVERAGE
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Speed-ups.

ee
mbc

1 tel
ec

om
au

tco
r0

0

ee
mbc

1 tel
ec

om
co

nv
en

00

ee
mbc

1 tel
ec

om
fbi

tal
00

ee
mbc

1 tel
ec

om
fft0

0

ee
mbc

1 tel
ec

om
vit

er
b0

0

AVERAGE
1

5

25

125

625

3125

N
um

be
ro

fI
S

E
s

Direct ISEs - Unique ISEs used
Direct ISEs - Matches
Retargetting ISEs - Unique ISEs used
Retargetting ISEs - Matches

(b) Mapping quality information.

Figure C.10: Extension instructions are generated for each benchmark and then

combined to create a large set of instructions, MapISE then maps instructions from

the entire set to each benchmark. Both data-sets are for extension instructions

containing constants.

254 Appendix C. Retargeting Extension Instructions

UTDSP
ad

pc
m

ar
ray

s

UTDSP
co

mpr
es

s ar
ray

s

UTDSP
ed

ge
de

tec
t a

rra
ys

UTDSP
fft

10
24

ar
ray

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
his

tog
ram

ar
ray

s

UTDSP
iir

1 1 ar
ray

s

UTDSP
iir

4 64
ar

ray
s

UTDSP
lat

nr
m

32
64

ar
ray

s

UTDSP
lat

nr
m

8 1 ar
ray

s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

UTDSP
lpc

ar
ray

s

UTDSP
mult

10
10

ar
ray

s

UTDSP
mult

4 4 ar
ray

s

UTDSP
sp

ec
tra

l a
rra

ys

GEO-M
EAN

AVERAGE
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Extension instructions are generated for ptrs benchmarks and then exploited on arrays benchmarks.

UTDSP
ad

pc
m

ptr
s

UTDSP
co

mpr
es

s ptr
s

UTDSP
ed

ge
de

tec
t p

trs

UTDSP
fft

10
24

ptr
s

UTDSP
fir

25
6 64

ptr
s

UTDSP
fir

32
1 ptr

s

UTDSP
his

tog
ram

ptr
s

UTDSP
iir

1 1 ptr
s

UTDSP
iir

4 64
ptr

s

UTDSP
lat

nr
m

32
64

ptr
s

UTDSP
lat

nr
m

8 1 ptr
s

UTDSP
lm

sfi
r 32

64
ptr

s

UTDSP
lm

sfi
r 8 1 ptr

s

UTDSP
lpc

ptr
s

UTDSP
mult

10
10

ptr
s

UTDSP
mult

4 4 ptr
s

UTDSP
sp

ec
tra

l p
trs

GEO-M
EAN

AVERAGE
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(b) Extension instructions are generated for arrays benchmarks and then exploited on ptrs benchmarks.

Figure C.11: Retargeting wide extension instructions with 4 inputs + 4 outputs.

C.3 Wide Instructions

Evaluates the technique presented in section 5.3 in the context of retargeting extension instruc-

tions.

C.3. Wide Instructions 255

UTDSP
ad

pc
m

ar
ray

s SW
P

UTDSP
ad

pc
m

ptr
s SW

P

UTDSP
co

mpr
es

s ar
ray

s SW
P

UTDSP
co

mpr
es

s ptr
s SW

P

UTDSP
ed

ge
de

tec
t a

rra
ys

SW
P

UTDSP
ed

ge
de

tec
t p

trs
SW

P

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fir

25
6 64

ar
ray

s SW
P

UTDSP
fir

25
6 64

ptr
s SW

P

UTDSP
fir

32
1 ar

ray
s SW

P

UTDSP
fir

32
1 ptr

s SW
P

UTDSP
his

tog
ram

ar
ray

s SW
P

UTDSP
his

tog
ram

ptr
s SW

P

UTDSP
iir

1 1 ar
ray

s SW
P

UTDSP
iir

1 1 ptr
s SW

P

UTDSP
iir

4 64
ar

ray
s SW

P

UTDSP
iir

4 64
ptr

s SW
P

UTDSP
lat

nr
m

32
64

ar
ray

s SW
P

UTDSP
lat

nr
m

32
64

ptr
s SW

P

UTDSP
lat

nr
m

8 1 ar
ray

s SW
P

UTDSP
lat

nr
m

8 1 ptr
s SW

P

UTDSP
lm

sfi
r 32

64
ar

ray
s SW

P

UTDSP
lm

sfi
r 32

64
ptr

s SW
P

UTDSP
lm

sfi
r 8 1 ar

ray
s SW

P

UTDSP
lm

sfi
r 8 1 ptr

s SW
P

UTDSP
lpc

ar
ray

s SW
P

UTDSP
lpc

ptr
s SW

P

UTDSP
mult

10
10

ar
ray

s SW
P

UTDSP
mult

10
10

ptr
s SW

P

UTDSP
mult

4 4 ar
ray

s SW
P

UTDSP
mult

4 4 ptr
s SW

P

UTDSP
sp

ec
tra

l a
rra

ys
SW

P

UTDSP
sp

ec
tra

l p
trs

SW
P

GEO-M
EAN

AVERAGE
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(a) Extension instructions are generated for arrays benchmarks and then exploited on arrays-SWP benchmarks.

ee
mbc

1 co
ns

um
er

cjp
eg

ee
mbc

1 co
ns

um
er

djp
eg

ee
mbc

2 co
ns

um
er

ae
s

ee
mbc

2 co
ns

um
er

mp4
de

co
de

SNURT
fft1

k

SNURT
fir

UTDSP
fft

10
24

ar
ray

s

UTDSP
fft

10
24

ar
ray

s SW
P

UTDSP
fft

10
24

ptr
s

UTDSP
fft

25
6 ar

ray
s

UTDSP
fft

25
6 ptr

s

UTDSP
fir

25
6 64

ar
ray

s

UTDSP
fir

32
1 ar

ray
s

UTDSP
lm

sfi
r 32

64
ar

ray
s

UTDSP
lm

sfi
r 8 1 ar

ray
s

GEO-M
EAN

AVERAGE
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

(b) Extension instructions are generated for one benchmark (see table 4.3 on page 64) and then exploited on one or

more related benchmarks.

Figure C.12: Retargeting wide extension instructions with 4 inputs + 4 outputs.

256 Appendix C. Retargeting Extension Instructions

ee
mbc

1 tel
ec

om
au

tco
r0

0

ee
mbc

1 tel
ec

om
co

nv
en

00

ee
mbc

1 tel
ec

om
fbi

tal
00

ee
mbc

1 tel
ec

om
fft0

0

ee
mbc

1 tel
ec

om
vit

er
b0

0

GEO-M
EAN

AVERAGE
0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
pe

ed
-u

p

Direct ISEs
Retargetting ISEs

Figure C.13: Extension instructions are generated for each benchmark and then

combined to create a large set of instructions, MapISE then maps instructions from

the entire set to each benchmark. Both data-sets are for wide extension instructions

with 4 inputs + 4 outputs.

Bibliography

ECJ package. http://cs.gmu.edu/~eclab/projects/ecj/, 2008.

lp_solve package. http://lpsolve.sourceforge.net/5.5/, 2010.

ACE Associated Compiler Experts. DSP-C, an extension to ISO/IEC IS 9899:1990. Technical
report, ACE Associated Compiler Experts bv, 1998.

ACE Associated Compiler Experts. ACE CoSy website. http://www.ace.nl/compiler/
cosy.html, 2011.

Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Michael F.P. O’Boyle, John Thom-
son, Marc Toussaint, and Christopher K.I. Williams. Using machine learning to focus it-
erative optimization. In Proceedings of the 4th Annual International Symposium on Code
Generation and Optimization (CGO ’04), pages 295–305, March 2006.

Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann, 2001.

Oscar Almer, Richard Bennett, Igor Böhm, Alastair Murray, Xinhao Qu, Marcela Zuluaga,
Björn Franke, and Nigel Topham. An end-to-end design flow for automated instruction
set extension and complex instruction selection based on GCC. In Proceedings of the First
International Workshop on GCC Research Opportunities (GROW ’09), pages 49–60, January
2009.

ARC International. ARC FPX white paper, 2007. URL http://www.arc.com/
configurablecores/fpx.

ARC International. ARC XY advanced DSP product brief, 2010.

ARM. ARM website. http://www.arm.com/, 2011.

ARM Ltd. CortexTM-A8 Technical Reference Manual, Revision: r3p2. 2010a.

ARM Ltd. CortexTM-A9 Technical Reference Manual, Revision: r2p2. 2010b.

Marnix Arnold and Henk Corporaal. Designing domain-specific processors. In Proceedings
of the 9th International Symposium on Hardware/Software Codesign (CODES ’01), pages
61–66, April 2001.

Kubilay Atasu, Günhan Dündar, and Can Özturan. An integer-linear programming approach
for identifying instruction-set extensions. In Proceedings of the Third IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS
’05), pages 172–177, September 2005a.

257

http://cs.gmu.edu/~eclab/projects/ecj/
http://lpsolve.sourceforge.net/5.5/
http://www.ace.nl/compiler/cosy.html
http://www.ace.nl/compiler/cosy.html
http://www.arc.com/configurablecores/fpx
http://www.arc.com/configurablecores/fpx
http://www.arm.com/

258 Bibliography

Kubilay Atasu, Günhan Dündar, and Can Özturan. An integer linear programming approach
for identifying instruction-set extensions. In Proceedings of the 3rd IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System Synthesis, pages 172–177,
September 2005b.

F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-Vincentelli.
Metropolis: an integrated electronic system design environment. Computer, 36(4):45–52,
April 2003.

Marcel Beemster, Hans van Someren, Willem Wakker, and Walter Banks. The Embedded C
extension to C. http://www.ddj.com/cpp/184401988, 2005.

Richard V. Bennett, Alastair C. Murray, Björn Franke, and Nigel Topham. Combining source-
to-source transformations and processor instruction set extensions for the automated design-
space exploration of embedded systems. In Proceedings of the ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES ’07), pages
83–92, June 2007.

Michel Berkelaar. Mixed integer programming (MIP) solver. http://groups.yahoo.com/
group/lp_solve/, 2008.

Partha Biswas, Sundarshan Banerjee, Nikil D. Dutt, Laura Pozzi, and Paolo Ienne. ISEGEN:
An iterative improvement-based ISE generation technique for fast customization of proces-
sors. IEEE Transactions on VLSI, 14(7):754–762, July 2006a.

Partha Biswas, Nikil Dutt, Paolo Ienne, and Laura Pozzi. Automatic identification of
application-specific functional units with architecturally visible storage. In Proceedings of
Design Automation and Test in Europe DATE ’06), pages 212–217, March 2006b.

Paolo Bonzini and Laura Pozzi. Code transformation strategies for extensible embedded pro-
cessors. In Proceedings of the 2006 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES ’06), pages 242–252, October 2006.

Alexandre Borghi, Valentin David, and Akim Demaille. C-Transformers - A framework to
write C program transformations. ACM Crossroads, 12(3):3–3, 2006.

F Brandner, D Ebner, and A Krall. Compiler generation from structural architecture descrip-
tions. Proceedings of the 2007 international conference on Compilers, architecture, and
synthesis for embedded systems, pages 13–22, 2007.

D.L. Brown, William D. Henshaw, and Daniel J. Quinlan. Overture: An object-oriented frame-
work for solving partial differential equations on overlapping grids. In Proceedings of the
SIAM Conference on Object Oriented Methods for Scientfic Computing, 1999.

John Cavazos and Michael F. P. O’Boyle. Automatic tuning of inlining heuristics. In SC ’05:
Proceedings of the 2005 ACM/IEEE conference on Supercomputing, page 14, Washington,
DC, USA, 2005. IEEE Computer Society. ISBN 1-59593-061-2. doi: http://dx.doi.org/10.
1109/SC.2005.14.

Jianjiang Ceng, Manuel Hohenauer, Rainer Leuper, Gerd Ascheid, Heinrich Meyr, and Gunnar
Braun. C compiler retargeting based on instruction semantics models. Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition, pages 1–6, Dec 2005.

http://www.ddj.com/cpp/184401988
http://groups.yahoo.com/group/lp_solve/
http://groups.yahoo.com/group/lp_solve/

Bibliography 259

Kingsum Chow and Youfeng Wu. Feedback-directed selection and characterization of compiler
optimizations. In Proceedings of the 2nd Workshop on Feedback Directed Optimization,
November 1999.

E. Chung, L. Benini, and G. De Micheli. Energy efficient source code transformation based on
value profiling. In Proceedings of the International Workshop on Compilers and Operating
Systems for Low Power, Philadelphia, USA, October 2000.

Keith D. Cooper and Todd Waterman. Investigating adaptive compilation using the MIPSpro
compiler. In In Proc. of the Symp. of the Los Alamos Computer Science Institute, 2003.

L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Graph matching: A (sub)graph isomor-
phism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(10):1367–1372, 2004.

CoWare. Processor designer datasheet. http://www.coware.com/PDF/products/LISATek.
pdf, 2007.

Nicheal Lynn Cramer. A representation for the adaptive generation of simple sequential pro-
grams. In Proceedings of the International Conference on Genetic Algorithms and their
Applications (ICGA85), pages 183–187, 1985.

Reinhard Diestel. Graph Theory (Fourth Edition). 2010.

Dietmar Ebner, Florian Brandner, Bernhard Scholz, Andreas Krall, Peter Wiedermann, and
Albrecht Kadlec. Generalized instruction selection using SSA-graphs. In Proceedings of the
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES ’08), pages 31–40, March 2008.

Heiko Falk and Peter Marwedel. Source Code Optimization Techniques for Data Flow Domi-
nated Embedded Software. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004.

Heiko Falk and Manish Verma. Combined data partitioning and loop nest splitting for energy
consumption minimization. In Proceedings of the 8th International Workshop on Software
and Compilers for Embedded Systems (SCOPES ’04), pages 137–151, September 2004.

Joseph A. Fisher, Paolo Faraboschi, and Cliff Young. Embedded Computing: A VLIW Ap-
proach to Architecture, Compilers, and Tools. Elsevier Inc., 2005.

Stephen Fitzpatrick and Lambert Meertens. An experimental assessment of a stochastic, any-
time, decentralized, soft colourer for sparse graphs. In Proceedings of the International
Symposium on Stochastic Algorithms (SAGA ’01), pages 49–64, December 2001.

H. Francis. ARM DSP-enhanced extensions, 2001. URL http://www.arm.com/pdfs/
ARM-DSP.pdf.

Björn Franke and Michael O’Boyle. Array recovery and high-level transformations for DSP
applications. ACM Transactions on Embedded Computing Systems (ACM TECS), 2(2):132–
162, May 2003a.

Björn Franke and Michael O’Boyle. Combining program recovery, auto-parallelisation and
locality analysis for C programs on multi-processor embedded systems. In Proceedings of
the 12th International Conference on Parallel Architectures and Compilation Techniques
(PACT ’03), pages 104–113, September/October 2003b.

http://www.coware.com/PDF/products/LISATek.pdf
http://www.coware.com/PDF/products/LISATek.pdf
http://www.arm.com/pdfs/ARM-DSP.pdf
http://www.arm.com/pdfs/ARM-DSP.pdf

260 Bibliography

Björn Franke, Michael O’Boyle, John Thomson, and Grigori Fursin. Probabilistic source-
level optimisation of embedded programs. In Proceedings of the Conference on Languages,
Compilers and Tools for Embedded Systems, pages 78–86, June 2005.

Christopher W. Fraser and David R. Hanson. A retargetable compiler for ANSI C. ACM
SIGPLAN Notices, 26(10):29–43, October 1991.

Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engineering a simple,
efficient code generator generator. 1(3):213–226, 1992.

Stefan Fröhlich and Bernhard Wess. Integrated approach to optimized code generation for
heterogeneous-register architectures with multiple data-memory banks. In Proceedings of
the 14th Annual IEEE International ASIC/SOC Conference, pages 122–126, September
2001.

G. Fursin, M. O’Boyle, and P. Knijnenburg. Evaluating iterative compilation, 2002.

Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Ayal
Zaks, Bilha Mendelson, Phil Barnard, Elton Ashton, Eric Courtois, Francois Bodin, Edwin
Bonilla, John Thomson, Hugh Leather, Chris Williams, and Michael O’Boyle. Milepost gcc:
machine learning based research compiler. In Proceedings of the GCC Developers’ Summit,
June 2008.

Carlo Galuzzi and Koen Bertels. The instruction-set extension problem: A survey. ARC 2008,
LNCS 4943, page 12, Mar 2008.

Carlo Galuzzi and Koen Bertels. The instruction-set extension problem: A survey. To appear
in ACM Transactions on Reconfigurable Technology and Systems (ACM TRETS), 4(2), May
2011.

T. Glökler, A. Hoffmann, and H. Meyr. Methodical low-power ASIP design space exploration.
VLSI Signal Processing, 33(3):229–246, March 2003.

G. Gréwal, S. Coros, D. Banerji, and A. Morton. Comparing a genetic algorithm penalty func-
tion and repair heuristic in the DSP application domain. In Proceedings of the 24th IASTED
International Conference on Artificial Intelligence and Applications (AIA ’06), pages 31–39,
February 2006a.

G. Gréwal, S. Coros, A. Morton, and D. Banerji. A multi-objective integer linear program for
memory assignment in the DSP domain. In Proceedings of the IEEE Workshop on Memory
Performance Issues (WMPI ’06), pages 21–28, February 2006b.

Gary Gréwal, Tom Wilson, and Andrew Morton. An EGA approach to the compile-time as-
signment of data to multiple memories in digital-signal processors. SIGARCH Computer
Architecture News, 31(1):49–59, March 2003.

Rajiv Gupta and Rastislav Bodik. Register pressure sensitive redundancy elimination. Lecture
Notes in Computer Science, 1575:107–122, 2004.

J. D. Hiser and J. W. Davidson. EMBARC: An efficient memory bank assignment algorithm
for retargetable compilers. In Proceedings of the ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES ’04), pages 182–191, June
2004.

Bibliography 261

M. Hohenauer, H. Scharwaechter, K. Karuri, O. Wahlen, T. Kogel, R. Leupers, G. Ascheid,
and H. Meyr. Compiler-in-loop architecture exploration for efficient application specific
embedded processor design. Feb 2004.

Paolo Ienne and Rainer Leupers. Customizable Embedded Processors. Elsevier Inc., 2007.

Intel. Intel PXA270 processor for embedded computing, 2007. URL http://www.intel.com.

Diviya Jain, Anshul Kumar, Laura Pozzi, and Paolo Ienne. Automatically customising VLIW
architectures with coarse grained application-specific functional units. In Proceedings of the
8th International Workshop on Software and Compilers for Embedded Systems (SCOPES
’08), pages 17–32, September 2004.

Xiaoyi Jiang and Horst Bunke. Marked subgraph isomorphism of ordered graphs. In Advances
in Pattern Recognition, volume 1451 of Lecture Notes in Computer Science, pages 122–131.
Springer Berlin / Heidelberg, 1998.

Rahul Joshi, Uday Khedker, Vinay Kakade, and Medha Trivedi. Some interesting results about
applications of graphs in compilers. CSI Journal, 31(4), 2002.

JTC1, SC22, and WG14. Programming languages - C - extensions to support embedded pro-
cessors. Technical report, ISO/IEC, 2004.

K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli. System-
level design: Orthogonalization of concerns and platform-based design. IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems, 19:1523–1543, 2000.

Kurt Keutzer, Sharad Malic, and A. Richard Newton. From ASIC to ASIP: The next design
discontinuity. In Proceedings of the IEEE International Conference on Computer: VLSI in
Computers and Processors (ICCD ’02), pages 84–90, September 2002.

M-Y. Ko and S. S. Bhattacharyya. Data partioning for DSP software synthesis. In Proceedings
of the International Workshop on Software and Compilers for Embedded Systems (SCOPES
’03), pages 344–358, September 2003.

Shinsuke Kobayashi, Yoshinori Takeuchi, Akira Kitajima, and Masaharu Imai. Compiler gen-
eration in PEAS-III: An ASIP development system. In Proceedings of the Workshop on
Software and Compilers for Embedded Processors (SCOPES ’01), March 2001.

John Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. The MIT Press, 1992.

C. Kulkarni, F. Catthoor, and H. De Man. Code transformations for low power caching in
embedded multimedia processors. In 12th International Parallel Processing Symposium,
pages 292–297, 1998.

Martin Labrecque, Peter Yiannacouras, and J. Gregory Steffan. Custom code generation for
soft processors. 2006.

Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong program
analysis and transformation. In Proceedings of the International Symposium on Code Gen-
eration and Optimization (CGO ’04), pages 75–88, March 2004.

Hugh Leather, Edwin Bonilla, and Michael O’Boyle. Automatic feature generation for machine
learning based optimizing compilation. In Proceedings of the International Symposium on
Code Generation and Optimization (CGO ’09), March 2009.

http://www.intel.com

262 Bibliography

C. G. Lee. UTDSP benchmark suite. http://www.eecg.toronto.edu/~corinna/DSP/
infrastructure/UTDSP.html, 1998.

R. Leupers and D. Kotte. Variable partioning for dual memory bank DSPs. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
’01), volume 2, pages 1121–1124, May 2001.

Rainer Leupers and Steven Bashford. Graph-based code selection techniques for embedded
processors. ACM Transactions on Design Automation of Electronic Systems, 5(4):794–814,
October 2000.

Rainer Leupers and Peter Marwedel. Instruction selection for embedded DSPs with complex
instructions. In Proceedings of the Conference on European Design Automation (EURO-
DAC ’96), pages 200–205, 1996.

A. Linden and J. Fenn. Understanding gartner’s hype cycles. Gartner Research Report.

Sean Luke and Liviu Panait. Lexicographic parsimony pressure. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 829–836, July 2002.

Victor De La Luz and Mahmut Kandemir. Array regrouping and its use in compiling data-
intensive embedded applications. IEEE Transactions on Computers, 53(1):1–19, January
2004.

Brendan D. McKay. Nauty user’s guide. http://cs.anu.edu.au/~bdm/nauty/, 2008.

MIPS Technologies. MIPS32(R) architecture for programmers, 2007. URL http://www.
mips.com/.

Alastair Murray and Björn Franke. Fast source-level data assignment to dual memory banks. In
Proceedings of the 11th International Workshop on Software and Compilers for Embedded
Systems (SCOPES ’08), pages 43–52, March 2008.

Alastair Murray and Björn Franke. Using genetic programming for source-level data assign-
ment to dual memory banks. In Proceedings of the 3rd Workshop on Statistical and Machine
Learning Approaches to Architectures and Compilation (SMART ’09), pages 75–89, January
2009.

Alastair Murray and Björn Franke. Adaptive source-level data assignment to dual memory
banks. ACM Transactions on Embedded Computing Systems (ACM TECS), 11S(1), June
2012a.

Alastair Murray and Björn Franke. Compiling for automatically generated instruction set ex-
tensions. In Proceedings of the International Symposium on Code Generation and Optimiza-
tion (CGO ’12), April 2012b.

Alastair C. Murray, Richard V. Bennett, Björn Franke, and Nigel Topham. Code transformation
and instruction set extension. ACM Transactions on Embedded Computing Systems (ACM
TECS), 8(4):1–31, 2009.

The Complexity of Theorem-Proving Procedures. Stephen a. cook. In Proceedings of the third
annual ACM symposium on Theory of Computing (STOC ’71), pages 151–158, 1971.

Preeti R. Panda, Nikil D. Dutt, and Alexandru Nicolau. On-chip vs off-chip memory: The data
partioning problem in embedded processor-based systems. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 5(3):682–704, July 2000.

http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://cs.anu.edu.au/~bdm/nauty/
http://www.mips.com/
http://www.mips.com/

Bibliography 263

Armita Peymandoust, Laura Pozzi, Paolo Ienne, and Giovanni De Micheli. Automatic instruc-
tion set extension and utilization for embedded processors. In Proceedings of the 14th Inter-
national Conference on Application-Specific Systems, Architectures and Processors, pages
108–118, June 2003.

Laura Pozzi and Paolo Ienne. Exploiting pipelining to relax register-file port constraints of
instruction-set extensions. In Proceedings of the International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems, pages 2–10, 2005.

Laura Pozzi, Kubilay Atasu, and Paolo Ienne. Exact and approximate algorithms for the exten-
sion of embedded processor instruction sets. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 25(7):1209–1229, July 2006.

Todd A. Proebsting. Least-cost instruction selection in DAGs is NP-complete. https://
research.microsoft.com/en-us/um/people/toddpro/papers/proof.htm, 1998.

Jerzy Rozenblit and Klaus Buchenrieder. Codesign - Computer-Aided Software/Hardware En-
gineering. IEEE Press, New York, 1995.

Radu Rugina and Martin Rinard. Pointer analysis for multithreaded programs. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’99), pages 77–90, May 1999.

Mazen A. R. Saghir, Paul Chow, and Corinna G. Lee. Exploiting dual data-memory banks
in digital signal processors. In Proceedings of the 7th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS-VII), pages
234–243, September 1996.

Hanno Scharwaechter, Rainer Leupers, Gerd Ascheid, Heinrich Meyr, Jonghee M. Youn, and
Yunheung Paek. A code-generator generator for multi-output instructions. In Proceed-
ings of the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS ’07), pages 131–136, October 2007.

Markus Schordan and Daniel J. Quinlan. A source-to-source architecture for user-defined
optimizations. In Proceedings of the Joint Modular Languages Conference, pages 214–223,
August 2003.

Seoul National University - Real-Time Research Group. SNU real-time benchmarks. http:
//archi.snu.ac.kr/realtime/benchmark/, 2008.

Viera Sipkovà. Efficient variable allocation to dual memory banks of DSPs. In Proceedings of
the 7th International Workshop on Software and Compilers for Embedded Systems (SCOPES
’03), pages 359–372, September 2003.

Stanford Compiler Group. The SUIF Library: A set of core routines for manipulating SUIF
data structures. http://suif.stanford.edu/suif/suif1/docs/suif_toc.html, 1996.

M. Stephenson, M. Martin, U.-M. O’Reilly, and S. Amarasinghe. Meta optimization: Im-
proving compiler heuristics with machine learning. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’03), pages 77–
90, June 2003a.

Mark Stephenson, Una-May O’Reilly, Martin C. Martin, and Saman Amarasinghe. Genetic
programming applied to compiler heuristic optimization. In Proceedings of the 6th European
Conference on Genetic Programming, April 2003b.

https://research.microsoft.com/en-us/um/people/toddpro/papers/proof.htm
https://research.microsoft.com/en-us/um/people/toddpro/papers/proof.htm
http://archi.snu.ac.kr/realtime/benchmark/
http://archi.snu.ac.kr/realtime/benchmark/
http://suif.stanford.edu/suif/suif1/docs/suif_toc.html

264 Bibliography

Stretch Inc. SCP architecture reference. http://www.stretchinc.com/, 2007.

Tensilica Inc. The XPRES compiler: Triple-threat solution to code performance challenges,
2005.

Steve W. K. Tjiang. An olive twig. Technical report, Synopsys Inc., 1993.

Various. FFmpeg. http://ffmpeg.org, 2011a.

Various. x264. http://www.videolan.org/developers/x264.html, 2011b.

Ajay K. Verma and Paolo Ienne. Improved use of the carry-save representation for the synthesis
of complex arithmetic circuits. In Proceedings of the International Conference on Computer
Aided Design, pages 791–798, 2004.

Ajay K. Verma and Paolo Ienne. Towards the automatic exploration of arithmetic circuit ar-
chitectures. In Proceedings of the 43rd Design Automation Conference, pages 445–450,
2006.

Manish Verma and Peter Marwedel. Advanced Memory Optimisation Techniques for Low-
Power Embedded Processors. Springer, 2007.

Yijian Wang and David Kaeli. Source level transformations to improve I/O data partitioning.
In Proceedings of the International Workshop on Storage Network Architecture and Parallel
I/Os, pages 27–35, 2003.

Zheng Wang and Michael F.P. O’Boyle. Partitioning streaming parallelism for multi-cores:
A machine learning based approach. In PACT ’10: Proceedings of the 19th international
conference on Parallel architectures and compilation techniques, pages 307–318, September
2010.

Douglas B. West. Introduction to Graph Theory (Second Edition). 2000.

Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amarasinghe, Jennifer M.
Anderson, Steve W. K. Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W. Hall, Monica S.
Lam, and John L. Hennessy. SUIF: An infrastructure for research on parallelizing and opti-
mizing compilers. SIGPLAN Notices, 29(12):31–37, December 1994.

B.D. Winters and A.J. Hu. Source-level transformations for improved formal verification. In
Proceedings of the IEEE International Conference on Computer Design: VLSI in Computers
& Processors, pages 599–602, September 2000.

Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose. Application-specific customization
of soft processor microarchitecture. pages 201–210, 2006.

V. Zivojnović, J. M. Velarde, C. Schläger, and H. Meyr. DSPstone: A DSP-orientated bench-
marking methodology. In Proceedings of the 6th International Conference on Signal Pro-
cessing Applications and Technology (ICSPAT ’94), October 1994.

http://www.stretchinc.com/
http://ffmpeg.org
http://www.videolan.org/developers/x264.html

Index

ADL, see Architecture Description Language
AISE, see Automatic Instruction Set Exten-

sion
Aliasing, 66
Application Specific Instruction-set Processor,

2, 10
Application Specific Integrated Circuit, 2, 10
Architecture Description Language, 5, 29
ARM processors, 2
ASIC, see Application Specific Integrated Cir-

cuit
ASIP, see Application Specific Instruction-set

Processor
Automatic Instruction Set Extension, 33

Commutativity, 56

DAG, see Directed Acyclic Graph
Digital signal processing, 2
Digital Signal Processor, 2
Directed Acyclic Graph, 24
DSP, see Digital signal processing
DSPs, see Digital Signal Processor
DSPstone, 25
Dual memory banks, 30, 93

EEMBC, 25
EnCore, 14, 49
Extensible processors, see Customisable pro-

cessors

Floating point, 47, 56
FPX, 49

GAs, see Genetic Algorithms
GCC, 38, 66
Genetic Algorithms, 31
Genetic Programming, 23, 106, 111
GIMPLE, 38
GP, see Genetic Programming
Graph-subgraph isomorphism, 24, 40

ILP, see Integer Linear Programming

Instruction mapping, 27
Integer Linear Programming, 31, 101
ISE, see Extension Instructions

Machine learning, 23

PASTA, 13

Reconfigurable processors, see Customisable
processors

Scratchpad memories, 94, 138
SNURT, 25, 124
Soft colouring, 24, 104
Source-to-source transformations, 33, 120, 124,

133, 147
SUIF, 33, 110, 124, 147

UTDSP, 25, 124

XY Memory, 94

265

	PhD coversheet April 2012
	amurray_thesis
	Preamble
	Abstract
	Acknowledgements
	Declaration
	Table of Contents

	Introduction
	Specialised Processors
	The Problem
	Contributions
	Structure
	Summary

	Background and Infrastructure
	Embedded Processors
	Embedded Processor Families
	Application Specific Instruction-set Processors

	Infrastructure
	EnCore
	EnCore Extension Interface
	ISEGen and uArchGen

	Automated Instruction Set Extension
	Atasu AISE Algorithm
	HW/SW Codesign

	Design-Space Exploration
	Automated Instruction Set Extension

	Dual Memory Banks
	DSP-C and Embedded C

	Genetic Programming in Compilers
	Graph Theory
	The Basics
	Specific Problems

	Benchmarks

	Related Work
	Complex Instruction Mapping
	Compilation for Dual Memory Banks
	Transformations Affecting AISE
	Source-to-Source Transformations for Embedded Systems

	Code Generation for Complex Instructions
	Motivation
	Mapping by Graph-Subgraph Isomorphism Checking
	Overview
	Integration into GCC
	Construction of Graphical Intermediate Representation
	Matching Subgraphs
	Determining if Two Nodes are Equivalent
	Exploiting Matches

	Allocation of Vector-Registers
	Permutation of Vector-Register Elements
	Eliminating Poor Mappings
	Evaluation Methodology
	Presentation of Results
	Consideration of Floating Point Hardware

	Results
	Default Mapping
	Timings
	Eliminating Poor Mappings
	Register Allocation Variations
	Commutativity Variations

	Results - Retargeting Extension Instructions
	Compiler Differences
	Modifying Programs
	Using Different Implementations
	Combining Programs

	Critical Evaluation
	ISEGen Issues
	Effect of Aliasing Differences on Performance
	Matching Issues
	Register Allocation Issues

	Summary and Conclusions
	Future Work
	Summary

	Instruction Set Extension and Code Generation
	Reducing Register Pressure
	Reducing the Number of I/O Ports
	Hard-Wiring Constant Values
	Modifying the ISEGEN Heuristic Parameters

	Wide Memory Bus for Wide Registers
	Evaluation Methodology

	Replacing Wide Registers with Wide Instructions
	Avoiding Extremely Wide Instructions
	Evaluation Methodology

	Results - Reducing Register Pressure
	Reducing the Number of I/O Ports
	Hard-Wiring Constant Values
	Modifying the ISEGEN Heuristic Parameters
	Combining Techniques
	MapISE Timing

	Results - Wide Memory Bus
	Results - Wide Instructions
	Results - Retargeting Extension Instructions
	Critical Evaluation
	Reevaluation of ISEGEN Issues

	Summary and Conclusions
	Future Work
	Summary

	Increasing Memory Bandwidth: Dual Memory Banks
	Feasibility Study
	The Problem
	Difficulty of the Problem

	Methodology
	Group Forming
	Interference Model
	Partial Pre-assignments

	ILP Colouring
	Single Solution
	Multiple Solutions

	Soft Colouring
	Single Solution
	Changes To Interference Graph
	Multiple Solutions

	Genetic Program Colouring
	Single Solution
	Multiple Solutions

	Evaluation Methodology
	Platform and Benchmarks
	Evaluating Genetic Programming

	Results
	Scalability

	Summary and Conclusions
	Critical Evaluation
	Future Work
	Summary

	Code Transformation and Instruction Set Extension
	Limitations of Methodology
	Motivating Example
	Combined Design-Space

	Experiment Methodology
	Selection of Transformations
	Extension Instruction Identification
	Performance Evaluation

	Evaluation Methodology
	Results
	Performance and Code Size Results
	Application-Oriented Evaluation
	Transformation-Oriented Evaluation

	Summary and Conclusions
	Critical Evaluation
	Future Work
	Summary

	Conclusion
	Contributions
	Compiling for AISE
	AISE for Compiling
	Exploiting Dual Memory Banks
	Transformation-Based DSE and AISE

	Critical Evaluation
	Integration
	Limits of AISE

	Insights
	Future Work

	SUIF Transformation List
	Most Important Transformations
	Additional Transformations

	Full Results
	Retargeting Extension Instructions
	Reducing the Number of I/O Ports
	Hard-Wiring Constant Values
	Wide Instructions

	Bibliography
	Index

